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Preface

General relativity is one of the cornerstones of classical physics, providing a
synthesis of special relativity and gravitation, and is central to our understanding
of many areas of astrophysics and cosmology. This book is intended to give an
introduction to this important subject, suitable for a one-term course for advanced
undergraduate or beginning graduate students in physics or in related disciplines
such as astrophysics and applied mathematics. Some of the later chapters should
also provide a useful reference for professionals in the fields of astrophysics and
cosmology.

It is assumed that the reader has already been exposed to special relativity and
Newtonian gravitation at a level typical of early-stage university physics courses.
Nevertheless, a summary of special relativity from first principles is given in
Chapter 1, and a brief discussion of Newtonian gravity is presented in Chapter 7.
No previous experience of 4-vector methods is assumed. Some background in
electromagnetism will prove useful, as will some experience of standard vector
calculus methods in three-dimensional Euclidean space. The overall level of math-
ematical expertise assumed is that of a typical university mathematical methods
course.

The book begins with a review of the basic concepts underlying special rela-
tivity in Chapter 1. The subject is introduced in a way that encourages from the
outset a geometrical and transparently four-dimensional viewpoint, which lays the
conceptual foundations for discussion of the more complicated spacetime geome-
tries encountered later in general relativity. In Chapters 2–4 we then present a
mini-course in basic differential geometry, beginning with the introduction of
manifolds, coordinates and non-Euclidean geometry in Chapter 2. The topic of
vector calculus on manifolds is developed in Chapter 3, and these ideas are
extended to general tensors in Chapter 4. These necessary mathematical prelimi-
naries are presented in such a way as to make them accessible to physics students
with a background in standard vector calculus. A reasonable level of mathematical
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xvi Preface

rigour has been maintained throughout, albeit accompanied by the occasional
appeal to geometric intuition. The mathematical tools thus developed are then
illustrated in Chapter 5 by re-examining the familiar topic of special relativity in a
more formal manner, through the use of tensor calculus in Minkowski spacetime.
These methods are further illustrated in Chapter 6, in which electromagnetism is
described as a field theory in Minkowski spacetime, serving in some respects as a
‘prototype’ for the later discussion of gravitation. In Chapter 7, the incompatibility
of special relativity and Newtonian gravitation is presented and the equivalence
principle is introduced. This leads naturally to a discussion of spacetime curvature
and the associated mathematics. The field equations of general relativity are then
derived in Chapter 8, and a discussion of their general properties is presented.

The physical consequences of general relativity in a wide variety of astrophys-
ical and cosmological applications are discussed in Chapters 9–18. In particular,
the Schwarzschild geometry is derived in Chapter 9 and used to discuss the physics
outside a massive spherical body. Classic experimental tests of general relativity
based on the exterior Schwarzschild geometry are presented in Chapter 10. The
interior Schwarzschild geometry and non-rotating black holes are discussed in
Chapter 11, together with a brief mention of Kruskal coordinates and wormholes.
In Chapter 12 we introduce two non-vacuum spherically symmetric geometries
with a discussion of relativistic stars and charged black holes. Rotating objects are
discussed in Chapter 13, including an extensive discussion of the Kerr solution. In
Chapters 14–16 we describe the application of general relativity to cosmology and
present a discussion of the Friedmann–Robertson–Walker geometry, cosmologi-
cal models and the theory of inflation, including the generation of perturbations
in the early universe. In Chapter 17 we describe linearised gravitation and weak
gravitational fields, in particular drawing analogies with the theory of electromag-
netism. The equations of linearised gravitation are then applied to the generation,
propagation and detection of weak gravitational waves in Chapter 18. The book
concludes in Chapter 19 with a brief discussion of classical field theory and the
derivation of the field equations of electromagnetism and general relativity from
variational principles.

Each chapter concludes with a number of exercises that are intended to illumi-
nate and extend the discussion in the main text. It is strongly recommended that
the reader attempt as many of these exercises as time permits, as they should give
ample opportunity to test his or her understanding. Occasionally chapters have
appendices containing material that is not central to the development presented in
the main text, but may nevertheless be of interest to the reader. Some appendices
provide historical context, some discuss current astronomical observations and
some give detailed mathematical derivations that might otherwise interrupt the
flow of the main text.
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With regard to the presentation of the mathematics, it has to be accepted
that equations containing partial and covariant derivatives could be written more
compactly by using the comma and semi-colon notation, e.g. va�b for the partial
derivative of a vector and va�b for its covariant derivative. This would certainly
save typographical space, but many students find the labour of mentally unpacking
such equations is sufficiently great that it is not possible to think of an equation’s
physical interpretation at the same time. Consequently, we have decided to write
out such expressions in their more obvious but longer form, using �bv

a for partial
derivatives and �bv

a for covariant derivatives.
It is worth mentioning that this book is based, in large part, on lecture notes

prepared separately by MPH and GPE for two different relativity courses in the
Natural Science Tripos at the University of Cambridge. These courses were first
presented in this form in the academic year 1999–2000 and are still ongoing. The
course presented by MPH consisted of 16 lectures to fourth-year undergraduates
in Part III Physics and Theoretical Physics and covered most of the material
in Chapters 1–11 and 13–14, albeit somewhat rapidly on occasion. The course
given by GPE consisted of 24 lectures to third-year undergraduates in Part II
Astrophysics and covered parts of Chapters 1, 5–11, 14 and 18, with an emphasis
on the less mathematical material. The process of combining the two sets of
lecture notes into a homogeneous treatment of relativistic gravitation was aided
somewhat by the fortuitous choice of a consistent sign convention in the two
courses, and numerous sections have been rewritten in the hope that the reader
will not encounter any jarring changes in presentational style. For many of the
topics covered in the two courses mentioned above, the opportunity has been
taken to include in this book a considerable amount of additional material beyond
that presented in the lectures, especially in the discussion of black holes. Some
of this material draws on lecture notes written by ANL for other courses in Part
II and Part III Physics and Theoretical Physics. Some topics that were entirely
absent from any of the above lecture courses have also been included in the book,
such as relativistic stars, cosmology, inflation, linearised gravity and variational
principles. While every care has been taken to describe these topics in a clear and
illuminating fashion, the reader should bear in mind that these chapters have not
been ‘road-tested’ to the same extent as the rest of the book.

It is with pleasure that we record here our gratitude to those authors from
whose books we ourselves learnt general relativity and who have certainly
influenced our own presentation of the subject. In particular, we acknowledge
(in their current latest editions) S. Weinberg, Gravitation and Cosmology,
Wiley, 1972; R. M. Wald, General Relativity, University of Chicago Press,
1984; B. Schutz, A First Course in General Relativity, Cambridge Univer-
sity Press, 1985; W. Rindler, Relativity: Special, General and Cosmological,
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Oxford University Press, 2001; and J. Foster & J. D. Nightingale, A Short Course
in General Relativity, Springer-Verlag, 1995.

During the writing of this book we have received much help and encourage-
ment from many of our colleagues at the University of Cambridge, especially
members of the Cavendish Astrophysics Group and the Institute of Astronomy.
In particular, we thank Chris Doran, Anthony Challinor, Steve Gull and Paul
Alexander for numerous useful discussions on all aspects of relativity theory, and
Dave Green for a great deal of advice concerning typesetting in LaTeX. We are
also especially grateful to Richard Sword for creating many of the diagrams and
figures used in the book and to Michael Bridges for producing the plots of recent
measurements of the cosmic microwave background and matter power spectra.
We also extend our thanks to the Cavendish and Institute of Astronomy teach-
ing staff, whose examination questions have provided the basis for some of the
exercises included. Finally, we thank several years of undergraduate students for
their careful reading of sections of the manuscript, for pointing out misprints and
for numerous useful comments. Of course, any errors and ambiguities remaining
are entirely the responsibility of the authors, and we would be most grateful to
have them brought to our attention. At Cambridge University Press, we are very
grateful to our editor Vince Higgs for his help and patience and to our copy-editor
Susan Parkinson for many useful suggestions that have undoubtedly improved the
style of the book.

Finally, on a personal note, MPH thanks his wife, Becky, for patiently enduring
many evenings and weekends spent listening to the sound of fingers tapping on
a keyboard, and for her unending encouragement. He also thanks his mother,
Pat, for her tireless support at every turn. MPH dedicates his contribution to this
book to the memory of his father, Ron, and to his daughter, Tabitha, whose early
arrival succeeded in delaying completion of the book by at least three months, but
equally made him realise how little that mattered. GPE thanks his wife, Yvonne,
for her support. ANL thanks all the students who have sat through his various
lectures on gravitation and cosmology and provided useful feedback. He would
also like to thank his family, and particularly his parents, for the encouragement
and support they have offered at all times.



1

The spacetime of special relativity

We begin our discussion of the relativistic theory of gravity by reviewing some
basic notions underlying the Newtonian and special-relativistic viewpoints of
space and time. In order to specify an event uniquely, we must assign it three
spatial coordinates and one time coordinate, defined with respect to some frame
of reference. For the moment, let us define such a system S by using a set of three
mutually orthogonal Cartesian axes, which gives us spatial coordinates x, y and
z, and an associated system of synchronised clocks at rest in the system, which
gives us a time coordinate t. The four coordinates �t� x� y� z� thus label events in
space and time.

1.1 Inertial frames and the principle of relativity

Clearly, one is free to label events not only with respect to a frame S but also
with respect to any other frame S′, which may be oriented and/or moving with
respect to S in an arbitrary manner. Nevertheless, there exists a class of preferred
reference systems called inertial frames, defined as those in which Newton’s first
law holds, so that a free particle is at rest or moves with constant velocity, i.e. in
a straight line with fixed speed. In Cartesian coordinates this means that

d2x

dt2
= d2y

dt2
= d2z

dt2
= 0�

It follows that, in the absence of gravity, if S and S′ are two inertial frames then
S′ can differ from S only by (i) a translation, and/or (ii) a rotation and/or (iii) a
motion of one frame with respect to the other at a constant velocity (for otherwise
Newton’s first law would no longer be true). The concept of inertial frames is
fundamental to the principle of relativity, which states that the laws of physics
take the same form in every inertial frame. No exception has ever been found to
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2 The spacetime of special relativity

this general principle, and it applies equally well in both Newtonian theory and
special relativity.

The Newtonian and special-relativistic descriptions differ in how the coor-
dinates of an event P in two inertial frames are related. Let us consider two
Cartesian inertial frames S and S′ in standard configuration, where S′ is moving
along the x-axis of S at a constant speed v and the axes of S and S′ coincide at
t = t′ = 0 (see Figure 1.1). It is clear that the (primed) coordinates of an event
P with respect to S′ are related to the (unprimed) coordinates in S via a linear
transformation1 of the form

t′ = At+Bx�

x′ = Dt+Ex�

y′ = y�

z′ = z�

Moreover, since we require that x′ = 0 corresponds to x = vt and that x = 0
corresponds to x′ = −vt′, we find immediately that D =−Ev and D =−Av, so
that A= E. Thus we must have

t′ = At+Bx�

x′ = A�x−vt��

y′ = y�

z′ = z�

(1.1)

x x'

y'y

S S'

z'z

v

Figure 1.1 Two inertial frames S and S′ in standard configuration (the origins
of S and S′ coincide at t = t′ = 0).

1 We will prove this in Chapter 5.



1.3 The spacetime geometry of special relativity 3

1.2 Newtonian geometry of space and time

Newtonian theory rests on the assumption that there exists an absolute time, which
is the same for every observer, so that t′ = t. Under this assumption A = 1 and
B = 0, and we obtain the Galilean transformation relating the coordinates of an
event P in the two Cartesian inertial frames S and S′:

t′ = t�

x′ = x−vt�

y′ = y�

z′ = z�

(1.2)

By symmetry, the expressions for the unprimed coordinates in terms of the primed
ones have the same form but with v replaced by −v.

The first equation in (1.2) is clearly valid for any two inertial frames S and
S′ and shows that the time coordinate of an event P is the same in all inertial
frames. The second equation leads to the ‘common sense’ notion of the addition
of velocities. If a particle is moving in the x-direction at a speed u in S then its
speed in S′ is given by

u′x =
dx′

dt′
= dx′

dt
= dx

dt
−v= ux−v�

Differentiating again shows that the acceleration of a particle is the same in both
S and S′, i.e. du′x/dt′ = dux/dt.

If we consider two events A and B that have coordinates �tA� xA� yA� zA�

and �tB� xB� yB� zB� respectively, it is straightforward to show that both the time
difference �t = tB− tA and the quantity

�r2 = �x2+�y2+�z2

are separately invariant under any Galilean transformation. This leads us to
consider space and time as separate entities. Moreover, the invariance of �r2

suggests that it is a geometric property of space itself. Of course, we recognise
�r2 as the square of the distance between the events in a three-dimensional
Euclidean space. This defines the geometry of space and time in the Newtonian
picture.

1.3 The spacetime geometry of special relativity

In special relativity, Einstein abandoned the postulate of an absolute time and
replaced it by the postulate that the speed of light c is the same in all inertial
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frames.2 By applying this new postulate, together with the principle of relativity,
we may obtain the Lorentz transformations connecting the coordinates of an event
P in two different Cartesian inertial frames S and S′.

Let us again consider S and S′ to be in standard configuration (see Figure 1.1),
and consider a photon emitted from the (coincident) origins of S and S′ at t =
t′ = 0 and travelling in an arbitrary direction. Subsequently the space and time
coordinates of the photon in each frame must satisfy

c2t2−x2−y2− z2 = c2t′2−x′2−y′2− z′2 = 0�

Substituting the relations (1.1) into this expression and solving for the constants
A and B, we obtain

ct′ = 	�ct−
x��

x′ = 	�x−
ct��

y′ = y�

z′ = z�

(1.3)

where 
 = v/c and 	 = �1−
2�−1/2. This Lorentz transformation, also known
as a boost in the x-direction, reduces to the Galilean transformation (1.2) when

� 1. Once again, symmetry demands that the unprimed coordinates are given
in terms of the primed coordinates by an analogous transformation in which v is
replaced by −v.

From the equations (1.3), we see that the time and space coordinates are in
general mixed by a Lorentz transformation (note, in particular, the symmetry
between ct and x). Moreover, as we shall see shortly, if we consider two events
A and B with coordinates �tA� xA� yA� zA� and �tB� xB� yB� zB� in S, it is straight-
forward to show that the interval (squared)

�s2 = c2�t2−�x2−�y2−�z2 (1.4)

is invariant under any Lorentz transformation. As advocated by Minkowski, these
observations lead us to consider space and time as united in a four-dimensional
continuum called spacetime, whose geometry is characterised by (1.4). We note
that the spacetime of special relativity is non-Euclidean, because of the minus
signs in (1.4), and is often called the pseudo-Euclidean or Minkowski geometry.
Nevertheless, for any fixed value of t the spatial part of the geometry remains
Euclidean.

2 The reasoning behind Einstein’s proposal is discussed in Appendix 1A.
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We have arrived at the familiar viewpoint (to a physicist!) where the physical
world is modelled as a four-dimensional spacetime continuum that possesses
the Minkowski geometry characterised by (1.4). Indeed, many ideas in special
relativity are most simply explained by adopting a four-dimensional point of view.

1.4 Lorentz transformations as four-dimensional ‘rotations’

Adopting a particular (Cartesian) inertial frame S corresponds to labelling events in
the Minkowski spacetime with a given set of coordinates �t� x� y� z�. If we choose
instead to describe the world with respect to a different Cartesian inertial frame
S′ then this corresponds simply to relabelling events in the Minkowski spacetime
with a new set of coordinates �t′� x′� y′� z′�; the primed and unprimed coordinates
are related by the appropriate Lorentz transformation. Thus, describing physics
in terms of different inertial frames is equivalent to performing a coordinate
transformation on the Minkowski spacetime.

Consider, for example, the case where S′ is related to S via a spatial rotation
through an angle � about the x-axis. In this case, we have

ct′ = ct�

x′ = x′�

y′ = y cos�− z sin ��

z′ = y sin �+ z cos��

Clearly the inverse transform is obtained on replacing � by −�.
The close similarity between the ‘boost’ (1.3) and an ordinary spatial rotation

can be highlighted by introducing the rapidity parameter

� = tanh−1
�

As 
 varies from zero to unity, � ranges from 0 to�. We also note that 	= cosh�
and 	
= sinh�. If two inertial frames S and S′ are in standard configuration, we
therefore have

ct′ = ct cosh�−x sinh��

x′ = −ct sinh�+x cosh��

y′ = y�

z′ = z�

(1.5)

This has essentially the same form as a spatial rotation, but with hyperbolic
functions replacing trigonometric ones. Once again the inverse transformation is
obtained on replacing � by −�.
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x

y

S

z

z'

y'

x'

S'

a

v

Figure 1.2 Two inertial frames S and S′ in general configuration. The broken
line shown the trajectory of the origin of S′.

In general, S′ is moving with a constant velocity �v with respect to S in an
arbitrary direction3 and the axes of S′ are rotated with respect to those of S.
Moreover, at t = t′ = 0 the origins of S and S′ need not be coincident and may
be separated by a vector displacement �a, as measured in S (see Figure 1.2).4

The corresponding transformation connecting the two inertial frames is most
easily found by decomposing the transformation into a displacement, followed
by a spatial rotation, followed by a boost, followed by a further spatial rotation.
Physically, the displacement makes the origins of S and S′ coincident at t= t′ = 0,
and the first rotation lines up the x-axis of S with the velocity �v of S′. Then a boost
in this direction with speed v transforms S into a frame that is at rest with respect to
S′. A final rotation lines up the coordinate frame with that of S′. The displacement
and spatial rotations introduce no new physics, and the only special-relativistic
consideration concerns the boost. Thus, without loss of generality, we can restrict
our attention to inertial frames S and S′ that are in standard configuration, for
which the Lorentz transformation is given by (1.3) or (1.5).

1.5 The interval and the lightcone

If we consider two events A and B having coordinates �t′A�x′A� y′A� z′A� and
�t′B� x′B� y′B� z′B� in S′, then, from (1.5), the interval between the events is given by

3 Throughout this book, the notation �v is used specifically to denote three-dimensional vectors, whereas v
denotes a general vector, which is most often a 4-vector.

4 If �a= �0 then the Lorentz transformation connecting the two inertial frames is called homogeneous, while if
�a �= �0 it is called inhomogeneous. Inhomogeneous transformations are often referred to as Poincaré transfor-
mations, in which case homogeneous transformations are referred to simply as Lorentz transformations.
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�s2 = c2�t′2−�x′2−�y′2−�z′2

= 
�c�t� cosh�− ��x� sinh��2− 
−�c�t� sinh�+ ��x� cosh��2

−�y2−�z2

= c2�t2−�x2−�y2−�z2�

Thus the interval is invariant under the boost (1.5) and, from the above discussion,
we may infer that �s2 is in fact invariant under any Poincaré transformation. This
suggests that the interval is an underlying geometrical property of the spacetime
itself, i.e. an invariant ‘distance’ between events in spacetime. It also follows that
the sign of �s2 is defined invariantly, as follows:

for �s2 > 0� the interval is timelike�
for �s2 = 0� the interval is null or lightlike�
for �s2 < 0� the interval is spacelike�

This embodies the standard lightcone structure shown in Figure 1.3. Events A and
B are separated by a timelike interval, A and C by a lightlike (or null) interval and

ct

x

A

Future of A

Past of A

D

‘Elsewhere’ of A ‘Elsewhere’ of A

C

B

Figure 1.3 Spacetime diagram illustrating the lightcone of an event A (the y-
and z- axes have been suppressed). Events A and B are separated by a timelike
interval, A and C by a lightlike (or null) interval and A and D by a spacelike
interval.
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A and D by a spacelike interval. The geometrical distinction between timelike and
spacelike intervals corresponds to a physical distinction: if the interval is timelike
then we can find an inertial frame in which the events occur at the same spatial
coordinates and if the interval is spacelike then we can find an inertial frame
in which the events occur at the same time coordinate. This becomes obvious
when we consider the spacetime diagram of a Lorentz transformation; we shall
do this next.

1.6 Spacetime diagrams

Figure 1.3 is an example of a spacetime diagram. Such diagrams are extremely
useful in illustrating directly many special-relativistic effects, in particular coor-
dinate transformations on the Minkowski spacetime between different inertial
frames. The spacetime diagram in Figure 1.4 shows the change of coordinates of
an event A corresponding to the standard-configuration Lorentz transformation
(1.5). The x′-axis is simply the line t′ = 0 and the t′-axis is the line x′ = 0.
From the Lorentz-boost transformation (1.3) we see that the angle between the
x- and x′- axes is the same as that between the t- and t′- axes and has the value

t (A)

ct ct'

x

x'

t' (A)

x' (A)

Event A

x (A)

Figure 1.4 Spacetime diagram illustrating the coordinate transformation
between two inertial frames S and S′ in standard configuration (the y- and z-
axes have been suppressed). The worldlines of the origins of S and S′ are the
axes ct and ct′ respectively.
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tan−1�v/c�. Moreover, we note that the t- and t′- axes are also the worldlines of
the origins of S and S′ respectively.

It is important to realise that the coordinates of the event A in the frame S′ are
not obtained by extending perpendiculars from A to the x′- and t′- axes. Since
the x′-axis is simply the line t′ = 0, it follows that lines of simultaneity in S′ are
parallel to the x′-axis. Similarly, lines of constant x′ are parallel to the t′-axis. The
same reasoning is equally valid for obtaining the coordinates of A in the frame
S but, since the x- and t- axes are drawn as orthogonal in the diagram, this is
equivalent simply to extending perpendiculars from A to the x- and t- axes in the
more familiar manner.

The concept of simultaneity is simply illustrated using a spacetime diagram.
For example, in Figure 1.5 we replot the events in Figure 1.3, together with the x′-
and t′- axes corresponding to a Lorentz boost in standard configuration at some
velocity v. We see that the events A and D, which are separated by a spacelike
interval, lie on a line of constant t′ and so are simultaneous in S′. Evidently, A
and D are not simultaneous in S; D occurs at a later time than A. In a similar
way, it is straightforward to find a standard-configuration Lorentz boost such that
the events A and B, which are separated by a timelike interval, lie on a line of
constant x′ and hence occur at the same spatial location in S′.

line of
constant t'

x'

ct'
ct

x

A

D

C

B

Figure 1.5 The events illustrated in figure 1.3 and a Lorentz boost such that A
and D are simultaneous in S′.
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1.7 Length contraction and time dilation

Two elementary (but profound) consequences of the Lorentz transformations
are length contraction and time dilation. Both these effects are easily derived
from (1.3).

Length contraction

Consider a rod of proper length �0 at rest in S′ (see Figure 1.6); we have

�0 = x′B−x′A�

We want to apply the Lorentz transformation formulae and so find what length
an observer in frame S assigns to the rod. Applying the second formula in (1.3),
we obtain

x′A = 	 �xA−vtA� �

x′B = 	 �xB−vtB� �

relating the coordinates of the ends of the rod in S′ to the coordinates in S. The
observer in S measures the length of the rod at a fixed time t = tA = tB as

�= xB−xA =
1
	

(
x′B−x′A

)= �0
	
�

Hence in S the rod appears contracted to the length

�= �0
(
1−v2/c2

)1/2
�

If a rod is moving relative to S in a direction perpendicular to its length,
however, it is straightforward to show that it suffers no contraction. It thus follows
that the volume V of a moving object, as measured by simultaneously noting the
positions of the boundary points in S, is related to its proper volume V0 by V =
V0�1−v2/c2�1/2. This fact must be taken into account when considering densities.

x x'

y'y

S S'

z'z

v

x A' x B'

Figure 1.6 Two inertial frames S and S′ in standard configuration. A rod of
proper length �0 is at rest in S′.
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‘Click 1’ ‘Click 2’

x'A x'A
x'

y'

S'

z'

x'

y'

S'

z'

x

y

S

z

vv

Figure 1.7 Two inertial frames S and S′ in standard configuration. A clock is
at rest in S′.

Time dilation

Suppose we have a clock at rest in S′, in which two successive ‘clicks’ of the
clock (events A and B) are separated by a time interval T0 (see Figure 1.7). The
times of the clicks as recorded in S are

tA = 	
(
t′A+vx′A/c

2) �
tB = 	

(
t′A+T0+vx′B/c

2) �
Since the clock is at rest in S′ we have x′A = x′B, and so on subtracting we obtain

T = tB− tA = 	T0 =
T0

�1−v2/c2�1/2
�

Hence, the moving clock ticks more slowly by a factor of �1− v2/c2�1/2 (time
dilation).

Note that an ideal clock is one that is unaffected by acceleration – external
forces act identically on all parts of the clock (an example is a muon).

1.8 Invariant hyperbolae

Length contraction and time dilation are easily illustrated using spacetime
diagrams. However, while Figure 1.4 illustrates the positions of the x′- and t′- axes
corresponding to a standard Lorentz boost, we have not yet calibrated the length
scales along them. To perform this calibration, we make use of the fact that the
interval �s2 between two events is an invariant, and draw the invariant hyperbolae

c2t2−x2 = c2t′2−x′2 =±1
on the spacetime diagram, as shown in Figure 1.8. Then, if we first take the
positive sign, setting ct = 0, we obtain x = ±1. It follows that OA is a unit
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x'

ct'

O

line of
constant x'

line of
constant t'

C

D

ct

xA

B

Figure 1.8 The invariant hyperbolae c2t2−x2 = c2t′2−x′2 =±1.

distance along the x-axis. Now setting ct′ = 0 we find that x′ = ±1, so that OC is
a unit distance along the x′-axis. Similarly, OB and OD are unit distances along
the t- and t′- axes respectively. We also note that the tangents to the invariant
hyperbolae at C and D are lines of constant x′ and t′ respectively.
The length contraction and time dilation effects can now be read off directly

from the diagram. For example, the worldlines of the end-points of a unit rod
OC in S′, namely x′ = 0 and x′ = 1, cut the x-axis in less than unit distance.
Similarly, worldlines x = 0 and x = 1 in S cut the x′-axis inside OC, illustrating
the reciprocal nature of length contraction. Also, a clock at rest at the origin of
S′ will move along the t′-axis, reaching D with a reading of t′ = 1. However, the
event D has a t-coordinate that is greater than unity, thereby illustrating the time
dilation effect.

1.9 The Minkowski spacetime line element

Let consider more closely the meaning of the interval between two events A and
B in spacetime. Given that in a particular inertial frame S the coordinates of A
and B are �tA� xA� yA� zA� and �tB� xB� yB� zB�, we have so far taken the square of
the interval between A and B to be

�s2 = c2�t2−�x2−�y2−�z2�
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ct

x

B

A

Figure 1.9 Two paths in spacetime connecting the events A and B.

where �t = tB− tA etc. This interval is invariant under Lorentz transformation
and corresponds to the ‘distance’ in spacetime measured along the straight line
in Figure 1.9 connecting A and B. This line may be interpreted as the worldline
of a particle moving at constant velocity relative to S between events A and B.
However, the question naturally arises of what interval is measured between A

and B along some other path in spacetime, for example the ‘wiggly’ path shown
in Figure 1.9.

To address this question, we must express the intrinsic geometry of the
Minkowski spacetime in infinitesimal form. Clearly, if two infinitesimally sepa-
rated events have coordinates �t� x� y� z� and �t+dt� x+dx� y+dy� z+dz� in S

then the square of the infinitesimal interval between them is given by5

ds2 = c2dt2−dx2−dy2−dz2�

which is known as the line element of Minkowski spacetime, or the special-
relativistic line element. From our earlier considerations, it is clear that ds2 is
invariant under any Lorentz transformation. The invariant interval between A and
B along an arbitrary path in spacetime is then given by

�s =
∫ B

A
ds�

5 To avoid mathematical ambiguity, one should properly denote the squares of infinitesimal coordinate intervals
by �dt�2 etc., but this notation is not in common use in relativity textbooks. We will thus adopt the more
usual form dt2, but it should be remembered that this is not the differential of t2.
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where the integral is evaluated along the particular path under consideration.
Clearly, to perform this integral we must have a set of equations describing the
spacetime path.

1.10 Particle worldlines and proper time

Let us now turn to the description of the motion of a particle in spacetime terms.
A particle describes a worldline in spacetime. In general, for two infinitesimally
separated events in spacetime; by analogy with our earlier discussion we have:

for ds2 > 0� the interval is timelike�

for ds2 = 0� the interval is null or lightlike�

for ds2 < 0� the interval is spacelike�

However, relativistic mechanics prohibits the acceleration of a massive particle
to speeds greater than or equal to c, which implies that its worldline must lie
within the lightcone (Figure 1.3) at each event on it. In other words, the interval
between any two infinitesimally separated events on the particle’s worldline must
be timelike (and future-pointing). For a massless particle such as a photon, any
two events on its worldline are separated by a null interval. Figure 1.10 illustrates
general worldlines for a massive particle and for a photon.

ct

x

Figure 1.10 The worldlines of a photon (solid line) and a massive particle
(broken line). The lightcones at seven events are shown.
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A particle worldline may be described by giving x, y and z as functions of t
in some inertial frame S. However, a more four-dimensional way of describing a
worldline is to give the four coordinates �t� x� y� z� of the particle in S as functions
of a parameter � that varies monotonically along the worldline. Given the four
functions t���, x���, y��� and z���, each value of � determines a point along
the curve. Any such parameter is possible, but a natural one to use for a massive
particle is its proper time.

We define the proper time interval d� between two infinitesimally separated
events on the particle’s worldline by

c2d�2 = ds2� (1.6)

Thus, if the coordinate differences in S between the two events are dt�dx�dy�dz
then we have

c2d�2 = c2dt2−dx2−dy2−dz2�

Hence the proper time interval between the events is given by

d� = �1−v2/c2�1/2dt = dt/	v�

where v is the speed of the particle with respect to S over this infinitesimal
interval. If we integrate d� between two points A and B on the worldline, we
obtain the total elapsed proper time interval:

�� =
∫ B

A
d� =

∫ B

A

[
1− v2�t�

c2

]1/2
dt� (1.7)

We see that if the particle is at rest in S then the proper time � is just the
coordinate time t measured by clocks at rest in S. If at any instant in the history
of the particle we introduce an instantaneous rest frame S′ such that the particle
is momentarily at rest in S′ then we see that the proper time � is simply the
time recorded by a clock that moves along with the particle. It is therefore an
invariantly defined quantity, a fact that is clear from (1.6).

Thus the worldline of a massive particle can be described by giving the four
coordinates �t� x� y� z� as functions of � (see Figure 1.11). For example,

t = ��1−v2/c2�−1/2�

x = v��1−v2/c2�−1/2�

y = z= 0
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τ

τ = –2

τ = –1

τ = 0

τ = 1

τ = 2

τ = 3

ct

x

Figure 1.11 A path in the �t� x�-plane can be specified by giving one coordinate
in terms of the other, for example x = x�t�, or alternatively by giving both
coordinates as functions of a parameter � along the curve: t = t���� x = x���.
For massive particles the natural parameter to use is the proper time �.

is the worldline of a particle, moving at constant speed v along the x-axis of S,
which passes through the origin of S at t = 0.

1.11 The Doppler effect

A useful illustration of particle worldlines and the concept of proper time is
provided by deriving the Doppler effect in a transparently four-dimensional
manner. Let us consider an observer � at rest in some inertial frame S, and a
radiation-emitting source � moving along the positive x-axis of S at a uniform
speed v. Suppose that the source emits the first wavecrest of a photon at an
event A, with coordinates �te� xe� in S, and the next wavecrest at an event B
with coordinates �te+�te� xe+�xe�. Let us assume that these two wavecrests
reach the observer at the events C and D coordinates �to� xo� and �to+�to� xo�

respectively. This situation is illustrated in Figure 1.12. From (1.7), the proper
time interval experienced by � between the events A and B is

��AB =
(
1−v2/c2

)1/2
�te� (1.8)

and the proper time interval experienced by � between the events C and D is

��CD = �to� (1.9)
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ct
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Figure 1.12 Spacetime diagram of the Doppler effect.

Along each of the worldlines representing the photon wavecrests,

ds2 = c2 dt2−dx2−dy2−dz2 = 0�

Thus, since we are assuming that dy = dz = 0, along the worldline connecting
the events A and C we have ∫ to

te

c dt =−
∫ xo

xe

dx� (1.10)

where the minus sign on the right-hand side arises because the photon is travelling
in the negative x-direction. From (1.10), we obtain the (obvious) result c�to−te�=
−�xo−xe�. Similarly, along the worldline connecting B and D we have∫ to+�to

te+�te
c dt =−

∫ xo

xe+�xe
dx�

Rewriting the integrals on each side, we obtain(∫ to

te

+
∫ to+�to
to

−
∫ te+�te
te

)
c dt =−

(∫ xo

xe

−
∫ xe+�xe
xe

)
dx�

where the first integrals on each side of the equation cancel by virtue of (1.10).
Thus we find that c�to− c�te = �xe, from which we obtain

�to =
(
1+ 1

c

�xe
�te

)
�te =

(
1+ v

c

)
�te� (1.11)
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Hence, using (1.8), (1.9) and (1.11), we can derive the ratio of the proper time
intervals ��CD and ��AB experienced by � and � respectively:

��CD
��AB

= �1+
��te
�1−
2�1/2�te

= 1+


�1−
�1/2�1+
�1/2
= �1+
�1/2

�1−
�1/2
�

This ratio must be the reciprocal of the ratio of the photon’s frequency as measured
by � and � respectively, and thus we obtain the familiar Doppler-effect formula

��
��
=
(
1−


1+


)1/2

� (1.12)

1.12 Addition of velocities in special relativity

If a particle’s worldline is described by giving x, y and z as functions of t in
some inertial frame S then the components of its velocity in S at any point are

ux =
dx

dt
� uy =

dy

dt
� uz =

dz

dt
�

The components of its velocity in some other inertial frame S′ are usually obtained
by taking differentials of the Lorentz transformation. For inertial frames S and S′
related by a boost v in standard configuration, we have from (1.3)

dt′ = 	v�dt−vdx/c2�� dx′ = 	v�dx−vdt�� dy′ = dy� dz′ = dz�

where we have made explicit the dependence of 	 on v. We immediately obtain

u′x =
dx′

dt′
= ux−v

1−uxv/c
2
�

u′y =
dy′

dt′
= uy

	v�1−uxv/c
2�
�

u′z =
dz′

dt′
= uz

	v�1−uxv/c
2�
�

(1.13)

These replace the ‘common sense’ addition-of-velocities formulae of Newtonian
mechanics. The inverse transformations are obtained by replacing v by −v.

The special-relativistic addition of velocities along the same direction is
elegantly expressed using the rapidity parameter (Section 1.4). For example,
consider three inertial frames S, S′ and S′′. Suppose that S′ is related to S by a
boost of speed v in the x-direction and that S′′ is related to S′ by a boost of speed
u′ in the x′-direction. Using (1.5), we quickly find that

ct′′ = ct cosh��v+�u′�−x sinh��v+�u′��
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x′′ = −ct sinh��v+�u′�+x cosh��v+�u′��

y′′ = y�

z′′ = z�

where tanh�v = v/c and tanh�u′ = u′/c. This shows that S′′ is connected to S

by a boost in the x-direction with speed u, where u/c = tanh��v+�u′�. Thus we
simply add the rapidities (in a similar way to adding the angles of two spatial
rotations about the same axis). This gives

u= c tanh��v+�u′�= c
tanh�v+ tanh�u′

1+ tanh�v tanh�u′
= u′ +v

1+u′v/c2
�

which is the special-relativistic formula for the addition of velocities in the same
direction.

1.13 Acceleration in special relativity

The components of the acceleration of a particle in S are defined as

ax =
dux
dt

� ay =
duy

dt
� az =

duz
dt

�

and the corresponding quantities in S′ are obtained from the differential forms of
the expressions (1.13). For example,

du′x =
dux

	2
v �1−uxv/c

2�2
�

Also, from the Lorentz transformation (1.3) we find that

dt′ = 	v�dt−vdx/c2�= 	v�1−uxv/c
2�dt�

So, for example, we have

a′x =
du′x
dt′

= 1
	3
v �1−uxv/c

2�3
ax� (1.14)

Similarly, we obtain

a′y =
du′y
dt′

= 1
	2
v �1−uxv/c

2�2
ay+

uyv

c2	2
v �1−uxv/c

2�3
ax

a′z =
du′z
dt′

= 1
	2
v �1−uxv/c

2�2
az+

uzv

c2	2
v �1−uxv/c

2�3
ax
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We see from these transformation formulae that acceleration is not invariant
in special relativity, unlike in Newtonian mechanics, as discussed in Section 1.2.
However, it is clear that acceleration is an absolute quantity, that is, all observers
agree upon whether a body is accelerating. If the acceleration is zero in one
inertial frame, it is necessarily zero in any other frame.

Let us investigate the worldline of an accelerated particle. To make our illus-
tration concrete, we consider a spaceship moving at a variable speed u�t� relative
to some inertial frame S and suppose that an observer B in the spaceship makes
a continuous record of his accelerometer reading f��� as a function of his own
proper time �.

We begin by introducing an instantaneous rest frame (IRF) S′, which, at each
instant, is an inertial frame moving at the same speed v as the spaceship, i.e. v= u.
Thus, at any instant, the velocity of the spaceship in the IRF S′ is zero, i.e. u′ = 0.
Moreover, from the above discussion of proper time, it should be clear that at any
instant an interval of proper time is equal to an interval of coordinate time in the
IRF, i.e. �� = �t′. An accelerometer measures the rate of change of velocity, so
that, during a small interval of proper time ��, B will record that his velocity has
changed by an amount f�����. Therefore, at any instant, in the IRF S′ we have

du′

dt′
= du′

d�
= f����

From (1.14), we thus obtain

du

dt
=
(
1− u2

c2

)3/2

f����

However, since d� = �1−u2/c2�1/2 dt, we find that

du

d�
=
(
1− u2

c2

)
f����

which integrates easily to give

u���= c tanh�����

where c����= ∫ �
0 f�� ′�d� ′ and we have taken u�� = 0� to be zero. Thus we have

an expression for the velocity of the spaceship in S as a function of B’s proper time.
To parameterise the worldline of the spaceship in S, we note that

dt

d�
=
(
1− u2

c2

)−1/2
= cosh�����

dx

d�
= u

(
1− u2

c2

)−1/2
= c sinh����� (1.15)

Integration of these equations with respect to � gives the functions t��� and x���.
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1.14 Event horizons in special relativity

The presence of acceleration can produce surprising effects. Consider for simplic-
ity the case of uniform acceleration. By this we mean we do not mean that
du/dt = constant, since this is inappropiate in special relativity because it would
imply that u→� as t→�, which is not permitted. Instead, uniform acceler-
ation in special relativity means that the accelerometer reading f��� is constant.
A spaceship whose engine is set at a constant emission rate would be uniformly
accelerated in this sense.

Thus, if f = constant, we have � = f�/c. The equations (1.15) are then easily
integrated to give

t = t0+
c

f
sinh

f�

c
�

x = x0+
c2

f

(
cosh

f�

c
−1

)
�

where t0 and x0 are constants of integration. Setting t0 = x0 = 0 gives the path
shown in Figure 1.13. The worldline takes the form of a hyperbola.

Imagine that an observer B has the resources to maintain an acceleration f

indefinitely. Then there will be events that B will never be able to observe.
The events in question lie on the future side of the asymptote to B’s hyperbola;
this asymplote (which is a null line) is the event horizon of B. Objects whose
worldlines cross this horizon will disappear from B’s view and will seem to take

Hor
izo

n

B never sees A
after this event

ct

x

B
A

Figure 1.13 The worldline of a uniformly accelerated particle B starting from
rest from the origin of S. If an observer A remains at x = 0, then the worldline
of A is simply the t-axis. No message sent by A after t = c/f will ever reach B.
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for ever to do so. Nevertheless, the objects themselves cross the horizon in a finite
proper time and still have an infinite lifetime ahead of them.

Appendix 1A: Einstein’s route to special relativity

Most books on special relativity begin with some sort of description of the
Michelson–Morley experiment and then introduce the Lorentz transformation. In
fact, Einstein claimed that he was not influenced by this experiment. This is
disputed by various historians of science and biographers of Einstein. One might
think that these scholars are on strong ground, especially given that the experiment
is referred to (albeit obliquely) in Einstein’s papers. However, it may be worth
taking Einstein’s claim at face value.

Remember that Einstein was a theorist – one of the greatest theorists who has
ever lived – and he had a theorist’s way of looking at physics. A good theorist
develops an intuition about how Nature works, which helps in the formulation
of physical laws. For example, possible symmetries and conserved quantities are
considered. We can get a strong clue about Einstein’s thinking from the title of
his famous 1905 paper on special relativity. The first paragraph is reproduced
below.

On the Electrodynamics of Moving Bodies
by A. Einstein

It is known that Maxwell’s electrodynamics – as usually understood at the present time –
when applied to moving bodies, leads to asymmetries which do not appear to be inherent
in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet
and a conductor. The observable phenomenon here depends only on the relative motion
of the conductor and the magnet, whereas the customary view draws a sharp distinction
between the two cases in which either the one or the other of these bodies is in motion.
For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood
of the magnet an electric field with a certain definite energy, producing a current at the
places where parts of the conductor are situated. But if the magnet is stationary and
the conductor in motion, no electric field arises in the neighbourhood of the magnet. In
the conductor, however, we find an electromotive force, to which in itself there is no
corresponding energy, but which gives rise – assuming equality of relative motion in the
two cases discussed – to electric currents of the same path and intensity as those produced
by the electric forces in the former case.

You see that Einstein’s paper is not called ‘Transformations between inertial
frames’, or ‘A theory in which the speed of light is assumed to be a universal
constant’. Electrodynamics is at the heart of Einstein’s thinking; Einstein realized
that Maxwell’s equations of electromagnetism required special relativity.
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Maxwell’s equations are

�� · �D = �� �� · �B = 0�

��× �E =−��B
�t

� ��× �H = �j+ � �D
�t

�

where �D= �0 �E+ �P and �B= �0� �H+ �M�, �P and �M being respectively the polari-
sation and the magnetisation of the medium in which the fields are present. In free
space we can set �j= �0 and �= 0, and we then get the more obviously symmetrical
equations

�� · �E = 0� �� · �B = 0�

��× �E =−��B
�t

� ��× �B = �0�0
� �E
�t

�

Taking the curl of the equation for ��× �E, applying the relation

��× ���× �E�= ����� · �E�−�2 �E
and performing a similar operation for �B in the equation for ��× �B, we derive the
equations for electromagnetic waves:

�2 �E = �0�0
�2 �E
�t2

� �2 �B = �0�0
�2 �B
�t2

�

These both have the form of a wave equation with a propagation speed c =
1/
√
�0�0. Now, the constants �0 and �0 are properties of the ‘vacuum’:

�0� the permeability of a vacuum, equals 4�×10−7 Hm−1�

�0� the permittivity of a vacuum, equals 8�85×10−12 Fm−1�

This relation between the constants �0 and �0 and the speed of light was one of
the most startling consequences of Maxwell’s theory. But what do we mean by a
‘vacuum’? Does it define an absolute frame of rest? If we deny the existence of an
absolute frame of rest then how do we formulate a theory of electromagnetism?
How do Maxwell’s equations appear in frames moving with respect to each other?
Do we need to change the value of c? If we do, what will happen to the values
of �0 and �0?

Einstein solves all of these problems at a stroke by saying that Maxwell’s
equations take the same mathematical form in all inertial frames. The speed of light
c is thus the same in all inertial frames. The theory of special relativity (including
amazing conclusions such as E = mc2) follows from a generalisation of this
simple and theoretically compelling assumption. Maxwell’s equations therefore
require special relativity. You see that for a master theorist like Einstein, the
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Michelson–Morley experiment might well have been a side issue. Einstein could
‘see’ special relativity lurking in Maxwell’s equations.

Exercises

1.1 For two inertial frames S and S′ in standard configuration, show that the coordinates
of any given event in each frame are related by the Lorentz tranformations (1.3).

1.2 Two events A and B have coordinates �tA� xA� yA� zA� and �tB� xB� yB� zB� respectively.
Show that both the time difference �t = tB− tA and the quantity

�r2 = �x2+�y2+�z2

are separately invariant under any Galilean transformation, whereas the quantity

�s2 = c2�t2−�x2−�y2−�z2

is invariant under any Lorentz transformation.
1.3 In a given inertial frame two particles are shot out simultaneously from a given

point, with equal speeds v in orthogonal directions. What is the speed of each particle
relative to the other?

1.4 An inertial frame S′ is related to S by a boost of speed v in the x-direction, and S′′

is related to S′ by a boost of speed u′ in the x′-direction. Show that S′′ is related to
S by a boost in the x-direction with speed u, where

u= c tanh��v+�u′��

tanh�v = v/c and tanh�u′ = u′/c.
1.5 An inertial frame S′ is related to S by a boost �v whose components in S are �vx� vy� vz�.

Show that the coordinates �ct′� x′� y′� z′� and �ct� x� y� z� of an event are related by⎛⎜⎜⎜⎝
ct′

x′

y′

z′

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

	 −	
x −	
y −	
z

−	
x 1+�
2
x �
x
y �
x
z

−	
y �
y
x 1+�
2
y �
y
z

−	
y �
z
x �
z
y 1+�
2
z

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ct

x

y

z

⎞⎟⎟⎟⎠ �

where �
 = �v/c�	 = �1−��
�2�−1/2 and � = �	− 1�/��
�2. Hint: The transformation
must take the same form if both S and S′ undergo the same spatial rotation.

1.6 An inertial frame S′ is related to S by a boost of speed u in the positive x-direction.
Similarly, S′′ is related to S′ by a boost of speed v in the y′-direction. Find the
transformation relating the coordinates �ct� x� y� z� and �ct′′� x′′� y′′� z′′� and hence
describe how S and S′′ are physically related.

1.7 The frames S and S′ are in standard configuration. A straight rod rotates at a uniform
angular velocity �′ about its centre, which is fixed at the origin of S′. If the rod lies
along the x′-axis at t′ = 0, obtain an equation for the shape of the rod in S at t = 0.
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1.8 Two events A and B have coordinates �tA� xA� yA� zA� and �tB� xB� yB� zB� respec-
tively in some inertial frame S and are separated by a spacelike interval. Obtain an
expression for the boost �v required to transform to a new inertial frame S′ in which
the events A and B occur simultaneously.

1.9 Derive the Doppler effect (1.12) directly, using the Lorentz transformation
formulae (1.3).

1.10 Two observers are moving along trajectories parallel to the y-axis in some inertial
frame. Observer A emits a photon with frequency �A that travels in the positive
x-direction and is received by observer B with frequency �B. Show that the Doppler
shift �B/�A in the photon frequency is the same whether A and B travel in the same
direction or opposite directions.

1.11 Astronauts in a spaceship travelling in a straight line past the Earth at speed v= c/2
wish to tune into Radio 4 on 198 kHz. To what frequency should they tune at the
instant when the ship is closest to Earth?

1.12 Draw a spacetime diagram illustrating the coordinate transformation corresponding
to two inertial frames S and S′ in standard configuration (i.e. where S′ moves at a
speed v along the positive x-direction and the two frames coincide at t = t′ = 0).
Show that the angle between the x- and x′- axes is the same as that between the t-
and t′- axes and has the value tan−1�v/c�.

1.13 Consider an event P separated by a timelike interval from the origin O of your
diagram in Exercise 1.12. Show that the tangent to the invariant hyperbola passing
through P is a line of simultaneity in the inertial frame whose time axis joins P

to the origin. Hence, from your spacetime diagram, derive the formulae for length
contraction and time dilation.

1.14 Alex and Bob are twins working on a space station located at a fixed position in
deep space. Alex undertakes an extended return spaceflight to a distant star, while
Bob stays on the station. Show that, on his return to the station, the proper time
interval experienced by Alex must be less than that experienced by Bob, hence Bob
is now the elder. How does Alex explain this age difference?

1.15 A spaceship travels at a variable speed u�t� in some inertial frame S. An observer
on the spaceship measures its acceleration to be f���, where � is the proper time.
If at � = 0 the spaceship has a speed u0 in S show that

u���−u0

1−u���u0/c
2
= c tanh�����

where c����= ∫ �

0 f��
′�d� ′. Show that the velocity of the spaceship can never reach c.

1.16 If the spaceship in Exercise 1.15 left base at time t = � = 0 and travelled forever
in a straight line with constant acceleration f , show that no signal sent by base
later than time t = c/f can ever reach the spaceship. By sketching an appropriate
spacetime diagram show that light signals sent from the base appear increasingly
redshifted to an observer on the spaceship. If the acceleration of the spaceship is g
(for the comfort of its occupants), how long by the spaceship clock does it take to
reach a star 10 light years from the base?
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Manifolds and coordinates

Our discussion of special relativity has led us to model the physical world as a
four-dimensional continuum, called spacetime, with a Minkowski geometry. This
is an example of a manifold. As we shall see, the more complicated spacetime
geometries of general relativity are also examples of manifolds. It is therefore
worthwhile discussing manifolds in general. In the following we consider general
properties of manifolds commonly encountered in physics, and we concentrate in
particular on Riemannian manifolds, which will be central to our discussion of
general relativity.

2.1 The concept of a manifold

In general, a manifold is any set that can be continuously parameterised. The
number of independent parameters required to specify any point in the set uniquely
is the dimension of the manifold, and the parameters themselves are the coor-
dinates of the manifold. An abstract example is the set of all rigid rotations of
Cartesian coordinate systems in three-dimensional Euclidean space, which can be
parameterised by the Euler angles. So the set of rotations is a three-dimensional
manifold: each point is a particular rotation, and the coordinates of the point
are the three Euler angles. Similarly, the phase space of a particle in classical
mechanics can be parameterised by three position coordinates �q1� q2� q3� and
three momentum coordinates �p1� p2� p3�, and thus the set of points in this phase
space forms a six-dimensional manifold. In fact, one can regard ‘manifold’ as just
a fancy word for ‘space’ in the general mathematical sense.

In its most primitive form a general manifold is simply an amorphous collection
of points. Most manifolds used in physics, however, are ‘differential manifolds’,
which are continuous and differentiable in the following way. A manifold is
continuous if, in the neighbourhood of every point P, there are other points whose
coordinates differ infinitesimally from those of P. A manifold is differentiable if
it is possible to define a scalar field at each point of the manifold that can be
differentiated everywhere. Both our examples above are differential manifolds.

26
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The association of points with the values of their parameters can be thought of
as a mapping of the points of a manifold into points of the Euclidean space of the
same dimension. This means that ‘locally’ a manifold looks like the corresponding
Euclidean space: it is ‘smooth’ and has a certain number of dimensions.

2.2 Coordinates

An N -dimensional manifold � of points is one for which N independent real
coordinates �x1� x2� � � � � xN � are required to specify any point completely.1 These
N coordinates are entirely general and are denoted collectively by xa, where it is
understood that a= 1�2� � � � �N .

As a technical point, we should mention that in general it may not be possible
to cover the whole manifold with only one non-degenerate coordinate system,
namely, one which ascribes a unique set of N coordinate values to each point,
so that the correspondence between points and sets of coordinate values (labels)
is one-to-one. Let us consider, for example, the points that constitute a plane.
These points clearly form a two-dimensional manifold (called R2). An example
of a degenerate coordinate system on this manifold is the polar coordinates �r���
in the plane, which have a degeneracy at the origin because � is indeterminate
there. For this manifold, we could avoid the degeneracy at the origin by using,
for example, Cartesian coordinates. For a general manifold, however, we might
have no choice in the matter and might have to work with coordinate systems that
cover only a portion of the manifold, called coordinate patches. For example, the
set of points making up the surface of a sphere forms a two-dimensional manifold
(called S2). This manifold is usually ‘parameterised’ by the coordinates � and
�, but � is degenerate at the poles. In this case, however, it can be shown that
there is no coordinate system that covers the whole of S2 without degeneracy; the
smallest number of patches needed is two. In general, a set of coordinate patches
that covers the whole manifold is called an atlas.

Thus, in general, we do not require the whole of a manifold � to be covered
by a single coordinate system. Instead, we may have a collection of coordinate
systems, each covering some part of � , and all these are on an equal footing.
We do not regard any one coordinate system as in some way preferred.

2.3 Curves and surfaces

Given a manifold, we shall be concerned with points in it and with subsets of
points that define curves and surfaces. We shall frequently define these curves

1 The reason why the coordinates are written with superscripts rather than subscripts will become clear later.
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and surfaces parametrically. Thus, since a curve has one degree of freedom,
it depends on one parameter and so we define a curve in the manifold by the
parametric equations

xa = xa�u� �a= 1�2� � � � �N��

where u is some parameter and x1�u�� x2�u�� � � � � xN �u� denote N functions of u.
Similarly, since a submanifold or surface of M dimensions �M < N� has M

degrees of freedom, it depends on M parameters and is given by the N parametric
equations

xa = xa�u1� u2� � � � � uM� �a= 1�2� � � � �N�� (2.1)

If, in particular, M = N −1 then the submanifold is called a hypersurface. In this
case, the N −1 parameters can be eliminated from these N equations to give one
equation relating the coordinates, i.e.

f�x1� x2� � � � � xN �= 0�

From a different but equivalent point of view, a point in a manifold is charac-
terised by N coordinates. If the point is restricted to lie in a particular hypersurface,
i.e. an �N − 1�-dimensional subspace, then the point’s coordinates must satisfy
one constraint equation, namely

f�x1� x2� � � � � xN �= 0�

Similarly, points in an M-dimensional subspace �M < N� must satisfy N −M

constraints

f1�x
1� x2� � � � � xN � = 0�

f2�x
1� x2� � � � � xN � = 0�

���

fN−M�x1� x2� � � � � xM� = 0�

which is an alternative to the parametric representation (2.1).

2.4 Coordinate transformations

To locate a point in a manifold we use a system of N coordinates, but the choice of
these coordinates is arbitrary. The important idea is not the ‘labels’ but the points
themselves and the geometrical and topological relationships between them.
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We may relabel the points of a manifold by performing a coordinate transfor-
mation xa→ x′a expressed by the N equations

x′a = x′a�x1� x2� � � � � xN � �a= 1�2� � � � �N�� (2.2)

giving each new coordinate as a function of the old coordinates. Hence we
view a coordinate transformation passively as assigning the new primed coor-
dinates �x′1� x′2� � � � � x′N � to a point of the manifold whose old coordinates are
�x1� x2� � � � � xN �.

We will assume that the functions involved in (2.2) are single-valued, contin-
uous and differentiable over the valid ranges of their arguments. Thus by differ-
entiating each equation in (2.2) with respect to each of the old coordinates xb we
obtain the N ×N partial derivatives �x′a/�xb. These may be assembled into the
N ×N transformation matrix2

[
�x′a

�xb

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x′1

�x1
�x′1

�x2
· · · �x′1

�xN

�x′2

�x1
�x′2

�x2
· · · �x′2

�xN

���
���

���

�x′N

�x1
�x′N

�x2
· · · �x′N

�xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

so that rows are labelled by the index in the numerator of the partial derivative
and columns by the index in the denominator. The elements of the transforma-
tion matrix are functions of the coordinates, and so the numerical values of the
matrix elements are in general different when evaluated at different points in the
manifold. The determinant of the transformation matrix is called the Jacobian of
the transformation and is denoted by

J = det
[
�x′a

�xb

]
�

Clearly, the numerical value of J also varies from point to point in the manifold.
If J �= 0 for some range of the coordinates xb then it follows that in this region

we can (in principle) solve the equations (2.2) for the old coordinates xb and
obtain the inverse transformation equations

xa = xa�x′1� x′2� � � � � x′N � �a= 1�2� � � � �N��

2 In general the notation 
 � denotes the matrix containing the elements within the square brackets.
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In a similar manner to the above, we define the inverse transformation matrix

�xa/�x′b� and the Jacobian of the inverse transformation J ′ = det
�xa/�x′b�.

Using the chain rule, it is easy to show that the inverse transformation matrix
is the inverse of the transformation matrix, since

N∑
b=1

�x′a

�xb
�xb

�x′c
= �x′a

�x′c
= �ac =

{
1 if a= c�

0 if a �= c�

where we have defined the Kronecker delta �ac and used the fact that

�x′a

�x′c
= �xa

�xc
= 0 if a �= c�

because the coordinates in either the unprimed or the primed set are independent.
Since the two transformation matrices are inverses of one another, it follows that
J ′ = 1/J .

If we consider neighbouring points P and Q in the manifold, with coordinates
xa and xa+ dxa respectively, then in the new, primed, coordinate system the
infinitesimal coordinate separation between P and Q is given by

dx′a = �x′a

�x1
dx1+ �x′a

�x2
dx2+· · ·+ �x′a

�xN
dxN �

where it is understood that the partial derivatives on the right-hand side are
evaluated at the point P. We can write this more economically as

dx′a =
N∑
b=1

�x′a

�xb
dxb� (2.3)

2.5 Summation convention

Our notation can be made more economical still by adopting Einstein’s summation
convention: whenever an index occurs twice in an expression, once as a subscript
and once as a superscript, this is understood to imply a summation over the index
from 1 to N , the dimension of the manifold.

Thus we can write (2.3) simply as

dx′a = �x′a

�xb
dxb�

where, once again, it is understood that all the partial derivatives are evaluated at
P. The index a appearing on each side of this equation is said to be a free index
and may take on separately any value from 1 to N . We consider a superscript that



2.6 Geometry of manifolds 31

appears in the denominator of a partial derivative as a subscript (and vice versa).
Thus the index b on the right-hand side in effect appears once as a subscript
and once as a superscript, and hence there is an implied summation from 1 to
N . An index that is summed over in this way is called a dummy index, because
it can be replaced by any other index not already in use. For example, we may
write

�x′a

�xb
dxb = �x′a

�xc
dxc�

since c was not already in use in the expression.
Note that the proper use of the summation convention requires that, in any

term, an index should not occur more than twice and that any repeated index must
occur once as a subscript and once as a superscript.

2.6 Geometry of manifolds

So far, we have considered manifolds only in a very primitive form. We have
assumed that the manifold is continuous and differentiable, but aside from these
properties it remains an amorphous collection of points. We have not yet defined
its geometry.

Consider two infinitesimally separated points P and Q in the manifold, with
coordinates xa and xa+dxa respectively �a = 1�2� � � � �N�. The local geometry
of the manifold at the point P is determined by defining the invariant ‘distance’
or ‘interval’ ds between P and Q. In general, the distance between the points can
be assigned to be any reasonably well-behaved function of the coordinates and
their differentials, i.e.3

ds2 = f�xa�dxa��

Clearly this function contains information on both the local geometry of the
manifold at P and our chosen coordinate system. It is the assignment at each
point in the manifold of a distance between points with infinitesimally different
values of the coordinates that determines the local geometry of the manifold. To
choose an example at random, a two-dimensional manifold, beloved of differential
geometers for its richness, is the Finsler geometry, in which one may define
coordinates � and � such that

ds2 = �d�4+d�4�1/2�

3 It is conventional to give the expression for ds2 rather than ds.
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2.7 Riemannian geometry

For developing general relativity, we are not interested in the most general geome-
tries and can confine our attention to manifolds in which the interval is given by
an expression of the form4 (assuming the summation convention)

ds2 = gab�x�dx
adxb� (2.4)

Thus, such an interval is quadratic in the coordinate differentials. We shall see
below that the gab�x� are the components of the metric tensor field in our chosen
coordinate system. For the moment, however, we can consider them simply as
a set of functions of the coordinates that determine the local geometry of the
manifold at any point. Manifolds with a geometry expressible in the form (2.4) are
called Riemannian manifolds. Strictly speaking, the manifold is only Riemannian
if ds2 > 0 always. If ds2 can be positive or negative (or zero), as is the case
in special relativity and general relativity, then the manifold should properly be
called pseudo-Riemannian but is usually simply referred to as Riemannian.

The metric functions gab�x� can be considered as the elements of a position-
dependent N ×N matrix. The metric functions can always be chosen so that
gab�x�= gba�x�, i.e the matrix is symmetric. Suppose for argument’s sake that the
functions gab were not symmetric in a and b. Then we could always decompose
the metric function into parts that are symmetric and antisymmetric respectively
in a and b, i.e.

gab�x�= 1
2 
gab�x�+gba�x��+ 1

2 
gab�x�−gba�x���

The contribution to ds2 from the antisymmetric part would be 1
2 
gab�x�−

gba�x��dx
a dxb, which vanishes identically, as is easily confirmed on swapping

indices in one of the terms, so that any antisymmetric part of gab can safely be
neglected. Thus in an N -dimensional Riemannian manifold there are 1

2N�N +1�
independent metric functions gab�x�.
It is important to remember that the form of the metric functions can always

be changed by making a change of coordinates. Since the interval between two
points in the manifold is invariant under a coordinate transformation, using (2.4)
and (2.3) we have

ds2 = gab�x�dx
a dxb

= gab�x�
�xa

�x′c
�xb

�x′d
dx′c dx′d

= g′cd�x
′�dx′c dx′d� (2.5)

4 As we shall see in Chapter 7, this is a consequence of the equivalence principle.
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where the new metric functions g′ab�x
′� in the primed coordinate system are related

to those in the unprimed coordinate system by

g′cd�x
′�= gab�x�x

′��
�xa

�x′c
�xb

�x′d
�

Clearly, the metric functions g′ab�x
′� describe the same local geometry of the

manifold as do the functions gab�x�.
Since there are N arbitrary coordinate transformations there are really only

1
2N�N +1�−N = 1

2N�N −1� independent degrees of freedom associated with the
gab�x�.

2.8 Intrinsic and extrinsic geometry

It is important to realise that the local geometry or curvature characterised by
(2.4) is an intrinsic property of the manifold itself, i.e. it is independent of whether
the manifold is embedded in some higher-dimensional space.

It is, of course, difficult (or impossible) to imagine higher-dimensional curved
manifolds, so it is instructive to consider two-dimensional Riemannian manifolds,
which can often be visualised as a surface embedded in a three-dimensional
Euclidean space. It is important to make a distinction, however, between the
extrinsic properties of the surface, which are dependent on how it is embedded
into a higher-dimensional space, and properties that are intrinsic to the surface
itself.

This distinction is traditionally made clear by considering the viewpoint of
some two-dimensional being (called a ‘bug’) confined exclusively to the two-
dimensional surface. Such a being would believe that it is able to look and measure
in all directions, whereas it is in fact limited to making measurements of distance,
angle etc. only within the surface. For example, it would receive light signals that
had travelled within the two-dimensional surface. Properties of the geometry that
are accessible to the bug are called intrinsic, whereas those that depend on the
viewpoint of a higher-dimensional creature (who is able to see how the surface
is shaped in the three-dimensional space) are called extrinsic.

The bug is able to define a coordinate system and measure distances in the
surface (e.g. by counting how many steps it has to take) from one point to another.
It can thus define a set of metric functions gab�x� that characterise the intrinsic
geometry of the surface (as expressed in the bug’s chosen coordinate system).

Consider, for example, a two-dimensional plane surface, such as a flat sheet
of paper, in our three-dimensional Euclidean space. The bug can label the entire
sheet using rectangular Cartesian coordinates, so that the distance ds measured
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over the surface between any pair of points whose coordinate separations are dx
and dy is given by

ds2 = dx2+dy2�

If this sheet is then rolled up into a cylinder, the bug would not be able to detect
any differences in the geometrical properties of the surface (see Figure 2.1).

To the bug, the angles of a triangle still add up to 180	, the circumference of a
circle is still 2�r etc. The proof of this fact is simple – the surface can simply be
unrolled back to a flat surface without buckling, tearing or otherwise distorting
it. A more mathematical approach is to note that if one parameterises the surface
of the cylinder (of radius a) using cylindrical coordinates �z���, the distance ds
measured over the surface between any two points whose coordinate separations
are dz and d� is given by

ds2 = dz2+a2 d�2�

By making the simple change of variables x = z and y = a� we recover the
expression ds2 = dx2+dy2, which is valid over the whole surface, and so the
intrinsic geometry is identical to that of a flat plane. Thus the surface of a cylinder
is not intrinsically curved; its curvature is extrinsic and a result of the way it is
embedded in three-dimensional space. Even if one were to crumple up the sheet
of paper (without tearing it), so that its extrinsic geometry in three-dimensional
space was very complicated, its intrinsic geometry would still be that of a plane.

The situation is somewhat different for a 2-sphere, i.e. a spherical surface,
embedded in three-dimensional Euclidean space. Once again the surface is mani-
festly curved extrinsically on account of its embedding. Additionally, however,
it cannot be formed from a flat sheet of paper without tearing or deformation.
Its intrinsic geometry – based on measurements within the surface – differs from
the intrinsic (Euclidean) geometry of the plane. This problem is well known to

Q
Q

P
P

A

A' B'

B

Figure 2.1 Rolling up a flat sheet of paper into a cylinder.
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cartographers. Mathematically, if we parameterise a sphere (of radius a) by the
usual angular coordinates ����� then

ds2 = a2�d�2+ sin2 �d�2��

which cannot be transformed to the Euclidean form ds2 = dx2+dy2 over the
whole surface by any coordinate transformation. Thus the surface of a sphere is
intrinsically curved.

We note, however, that locally at any point A on the spherical surface we
can define a set of Cartesian coordinates, so that ds2 = dx2+dy2 is valid in the
neighbourhood of A. For example, the street layout of a town can be accurately
represented by a flat map, whereas the entire globe can only be represented by
performing projections that distort distance and/or angles. As an idea of what can
happen to local Cartesian coordinate systems far from the point A where they are
defined, consider Figure 2.2. If a bug starts at A and travels in the locally defined
x-direction to B, it observes that C still lies in the y-direction. If instead the bug
travels from A to C, it finds that B still lies in the x-direction. The non-Euclidean
geometry of the spherical surface is also apparent from the fact that the angles of
the triangle ABC sum to 270	.
We may take our discussion one step further, dispense with the three-

dimensional space and embedding-related extrinsic geometry and consider the
surfaces in isolation. Intrinsic geometry is all that remains with any meaning.
For example, when we talk of the curvature of spacetime in general relativity,
we must resist any temptation to think of spacetime as embedded in any ‘higher’
space. Any such embedding, whether or not it is physically realised, would
be irrelevant to our discussion. Nevertheless, in developing our intuition for

C

x y

B

A

Figure 2.2 A two-dimensional spherical surface.
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curved manifolds it oftens remains useful to imagine two-dimensional surfaces
embedded in three-dimensional Euclidean space.

2.9 Examples of non-Euclidean geometry

Let us develop our intuition for non-Euclidean geometry by considering in more
detail the surface of a sphere. We begin by imagining the usual Cartesian coor-
dinate system (x, y, z) defining a Euclidean three-dimensional space with line
element

ds2 = dx2+dy2+dz2� (2.6)

Now, suppose that we have a sphere of radius a with its centre at the origin of
our coordinate system. We will now ask the following question: what is the line
element on the surface of the sphere?

The equation defining the sphere is

x2+y2+ z2 = a2�

So, differentiating this equation, we obtain

2xdx+2y dy+2zdz= 0�

and we can write an equation for dz,

dz=−xdx+y dy

z
= −�xdx+y dy�[

a2− (x2+y2
)]1/2 � (2.7)

Thus, equation (2.9) provides a constraint on dz that keeps us on the surface of
the sphere if we are displaced by small amounts dx and dy from an arbitrary
point on the sphere (for example, the point A in Figure 2.2). Substituting for dz
in (2.6) gives us the interval for such constrained displacements:

ds2 = dx2+dy2+ �xdx+y dy�2

a2− (x2+y2
) � (2.8)

which is the line element for the surface of the sphere in terms of our chosen
coordinates (as shown in Figure 2.2), taking A as the origin of x and y. We
see that this line element reduces to the Euclidean form ds2 = dx2 + dy2 in
the neighbourhood of A. Practically, one could construct the coordinate curves
x= constant and y = constant on the surface of the sphere by creating a standard
�x� y� coordinate grid in the tangent plane at A and ‘projecting’ vertically down
onto the spherical surface.
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We may obtain an alternative form for the line element by making the substi-
tutions

x = � cos�� y = � sin��

and after a little algebra we obtain5

ds2 = a2d�2

a2−�2
+�2d�2� (2.9)

As above, one can construct the � and � coordinate curves on the sphere by creat-
ing a standard ����� coordinate system in the tangent plane at A and projecting
vertically down onto the surface. We also note that this line element contains
a ‘hidden symmetry’, namely our freedom to choose an arbitrary point on the
sphere as the origin �= 0.

The observant reader will have noticed that the line elements (2.8) and (2.9)
have singularities at

√
x2+y2 = a, or, equivalently, �= a, corresponding to the

equator of the sphere (relative to A). From our embedding picture, it is clear
why the �x� y� and ����� coordinates cover the surface of the sphere uniquely
only up to this point. We note, however, that there is nothing pathological in the
intrinsic geometry of the 2-sphere at the equator. What we have observed is only
a coordinate singularity, which has resulted simply from choosing coordinates
with a restricted domain of validity. Although the embedding picture we have
adopted gives both the �x� y� and ����� coordinate systems a clear geometrical
meaning in our three-dimensional Euclidean space, it is important to realise that
a bug confined to the two-dimensional surface of the sphere could, if it wished,
have defined these coordinate systems to describe the intrinsic geometry without
any reference to an embedding in higher dimensions.

We can make an analogous construction to find the metric for a 3-sphere embed-
ded in four-dimensional Euclidean space. The metric for the four-dimensional
Euclidean space is

ds2 = dx2+dy2+dz2+dw2� (2.10)

and, by analogy with the example above, the equation defining a 3-sphere is

x2+y2+ z2+w2 = a2�

Differentiating as before gives

2xdx+2y dy+2zdz+2wdw = 0�

5 Note that the line elements (2.8) and (2.9) look different from the metric we would write down using
standard spherical polars, ds2 = a2d�2 + a2 sin2 �d�2. Nonetheless, both are valid line elements for the
two-dimensional surface of a sphere.
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and so substituting for dw in (2.10) gives the line element:

ds2 = dx2+dy2+dz2+ �xdx+y dy+ zdz�2

a2− (x2+y2+ z2
) �

Transforming to spherical polar coordinates

x = r sin � cos��

y = r sin � sin��

z = r cos��

we obtain an alternative form for the line element:

ds2 = a2

a2− r2
dr2+ r2d�2+ r2 sin2 �d�2� (2.11)

Notice that, in the limit a→�, the metric tends to the form

ds2 = dr2+ r2d�2+ r2 sin2 �d�2�

which is simply the metric of ordinary Euclidean three-dimensional space ds2 =
dx2+dy2+dz2, rewritten in spherical polar coordinates. The line element (2.11)
therefore describes a non-Euclidean three-dimensional space. We note that this
line element also has a singularity, this time at r = a. As one might expect from
our discussion above, this is once again just a coordinate singularity, although our
existence as three-dimensional ‘bugs’ makes the geometric reason for this less
straightforward to visualise!

2.10 Lengths, areas and volumes

For a given set of metric functions gab�x�, (2.4), it is useful to know how to
compute the lengths of curves and the ‘areas’ and ‘volumes’ of subregions of the
manifold.

The lengths of curves follow immediately from the line element. Suppose that
the points A and B are joined by some path; then the length of this curve is given by

LAB =
∫ B

A
ds =

∫ B

A
�gab dxa dxb�1/2�

where the integral is evaluated along the curve. As indicated, the absolute
value of ds is taken before the square root is evaluated when considering
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pseudo-Riemannian manifolds. If the equation of the curve xa�u� is given in
terms of some parameter u then

LAB =
∫ uB

uA

∣∣∣∣gab dxadu

dxb

du

∣∣∣∣1/2 du� (2.12)

where uA and uB are the values of the parameter u at the endpoints of the curve.
For the calculation of areas and volumes, let us begin by considering the simple

case where the metric is diagonal, i.e. gab�x�= 0 for a �= b.6 In this case the line
element takes the form

ds2 = g11�dx
1�2+g22�dx

2�2+· · ·+gNN �dx
N �2� (2.13)

Such a system of coordinates is called orthogonal since, at all points in the
manifold, any pair of coordinate curves cross at right angles, as is clear from
(2.13). Thus, in orthogonal coordinate systems the ideas of area and volume can be
built up simply. Consider, for example, an element of area in the �x1� x2�-surface
defined by xa = constant for a = 3�4� � � � �N . Suppose that the area element is
defined by the coordinate lengths dx1 and dx2 (see Figure 2.3). The proper
lengths of the two line segments will be

√
g11 dx

1 and
√
g22 dx

2 respectively.
Thus the element of area is7

dA=√�g11g22�dx1 dx2� (2.14)

x2
x1 + dx1

x1

x2 + dx2

Figure 2.3 An element of area, on a manifold � , defined by the coordinate
intervals dx1 and dx2. The proper lengths dl1 and dl2 of these intervals are related
to dx1 and dx2 by the metric functions. If the coordinate lines are orthogonal
then the area of is dl1 dl2.

6 The general case is discussed in Section 2.14.
7 We have implicitly assumed here that the manifold is strictly Riemannian. If the manifold is pseudo-
Riemannian, some of the elements gab in (2.13) may be negative (see Section 2.13), and then we require the
modulus signs.
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Similarly, for 3-volumes in the �x1� x2� x3�-surface defined by xa = constant for
a= 4�5� � � � �N , we have

d3V =√�g11g22g33�dx1 dx2 dx3� (2.15)

We may, of course, define 3-volumes for any other three-dimensional subspace.
We can define higher-dimensional ‘volume’ elements in a similar way until we
reach the N -dimensional volume element

dNV =√�g11g22 · · ·gNN �dx1 dx2 · · · dxN �
As examples of working with such metric functions, let us consider the non-

Euclidean spaces discussed in Section 2.9. We begin with the line element (2.9),

ds2 = a2d�2

a2−�2
+�2d�2� (2.16)

which describes two-dimensional geometry on the surface of a sphere in terms
of the coordinates �����, the geometrical meanings of which are illustrated in
Figure 2.4 assuming an embedding in three-dimensional Euclidean space. From
(2.16) we see that this coordinate system is orthogonal, with g�� = a2/�a2−�2�

and g�� = �2 (no sums on � or �).8 Let us consider a circle defined by � = R,

ρ

P

O

φ

Figure 2.4 The surface of a sphere parameterised by the coordinates �����
appearing in the line element (2.16).

8 This form of notation is quite common, once a particular coordinate system has been chosen, and it is usually
clear from the context that no summation is implied.
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where R is some constant, and calculate its length, its area and the distance from
its centre to the perimeter.

From (2.12) and (2.16), the distance in the surface from the centre to the
perimeter along a line of constant � is

D =
∫ R

0

a

�a2−�2�1/2
d�= a sin−1

(
R

a

)
�

while the circumference of the circle is given by

C =
∫ 2�

0
Rd�= 2�R�

Similarly, from (2.14) we have, for the area of the spherical surface enclosed by C,

A=
∫ 2�

0

∫ R

0

a

�a2−�2�1/2
�d�d�= 2�a2

[
1−

(
1− R2

a2

)1/2
]
�

Note that if we rewrite the circumference C and area A in terms of the distance
D then we obtain

C = 2�a sin
(
D

a

)
and A= 2�a2

[
1− cos

(
D

a

)]
� (2.17)

Thus, as D increases, both the circumference and area of the circle increase
until the point when D = �a/2, after which both C and A become smaller as D
increases.

In fact there is a slight subtlety here. As noted earlier, if we attempt to param-
eterise points beyond the equator of the sphere using the coordinates �����,
the system becomes degenerate, i.e. there is more than one point in the surface
with the same coordinates. The degenerate nature of the ����� coordinate system
means that some care is required, for example, in calculating the total area of the
surface. By symmetry this is given by

Atot = 2
∫ 2�

0

∫ a

0

a

�a2−�2�1/2
�d�d�= 4�a2�

Although we cannot easily visualise the geometry, we can perform similar
calculations for the line element (2.11),

ds2 = a2

a2− r2
dr2+ r2d�2+ r2 sin2 �d�2� (2.18)

which describes a non-Euclidean three-dimensional space that tends to Euclidean
three-dimensional space as a→�. Let us consider a 2-sphere of coordinate radius
r = R and calculate the circumference around the equator, the area, the volume
and the distance from its centre to the surface of the sphere.
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From (2.12) and (2.18), the distance from the centre to the surface along a line
� = constant, �= constant is

D =
∫ R

0

adr

�a2− r2�1/2
= a sin−1

(
R

a

)
�

Noting that the equator of the sphere is the curve r =R, �=�/2, its circumference is
C = ∫ 2�

0 Rd� = 2�R� while the area of the surface r = R and the volume it
encloses are obtained from (2.14) and (2.15) and read

A =
∫ 2�

0

∫ �

0
R2 sin �d�d�= 4�R2�

V =
∫ 2�

0

∫ �

0

∫ R

0

ar2 sin �
�a2− r2�1/2

dr d�d�

= 4�a3

⎧⎨⎩1
2
sin−1

(
R

a

)
+ R

a

[
1−

(
R

a

)2
]1/2⎫⎬⎭ �

It is not difficult to see that the familiar results of three-dimensional Euclidean
space are recovered when R/a� 1. Once again, we can rewrite our results in
terms of D rather than R, and we find that C, A and V all have maximum values
at D = �a/2. By analogy with the above two-dimensional example, the total
volume of this space is

Vtot = 2
∫ 2�

0

∫ �

0

∫ a

0

ar2 sin �
�a2− r2�1/2

dr d�d�= 2�2a3�

The three-dimensional non-Euclidean space described by the line element (2.18)
thus has a finite volume. We can generate a line element for an infinite non-
Euclidean three-dimensional space by making the substitution a= ib, i.e. choosing
the ‘radius’ of the space to be pure imaginary. The line element (2.18) then becomes

ds2 = b2

b2+ r2
dr2+ r2 d�2+ r2 sin2 �d�2�

If we again consider the sphere defined by r =R, we find easily that in this space
C = 2�R and A= 4�R2 as before but the distance from the centre of the sphere
to its surface is now given by D = b sinh−1�R/b�. In this case, one finds that C,
A and the volume V of the sphere are all monotonically increasing functions.

2.11 Local Cartesian coordinates

We now introduce a key property of Riemannian manifolds, to which we have
alluded in earlier sections. For the moment we will confine our attention to
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manifolds that are strictly Riemannian, so that ds2 > 0 always, but subsequently
we will extend our discussion to pseudo-Riemannian spaces, in which ds2 can be
of either sign (or zero).

For a general Riemannian manifold, it is not possible to perform a coordinate
transformation xa→ x′a that will take the line element ds2 = gab�x�dx

a dxb into
the Euclidean form

ds2 = �dx′1�2+ �dx′2�2+· · ·+ �dx′N �2 = �ab dx
′a dx′b�

at every point in the manifold. This is clear, since there are N�N + 1�/2 inde-
pendent metric functions gab�x� but only N coordinate transformation functions
x′a�x�. As we shall now demonstrate, however, it is always possible to make a
coordinate transformation such that in the neighbourhood of some specified point
P the line element takes the Euclidean form. In other words, we can always find
coordinates x′a such that at the point P the new metric functions g′ab�x

′� satisfy

g′ab�P� = �ab� (2.19)

�g′ab
�x′c

∣∣∣∣
P

= 0� (2.20)

Thus, in the neighbourhood of P, we have

g′ab�x
′�= �ab+�
�x′ −x′P�

2��

Such coordinates are called local Cartesian coordinates at P.
From (2.5), the general transformation rule for the metric functions is

g′ab =
�xc

�x′a
�xd

�x′b
gcd�

which we require to satisfy the conditions (2.19) and (2.20) at our chosen point
P. If xa is an arbitrary given coordinate system and x′a is the desired system
then there will be some relation xa�x′� connecting the two sets of coordinates.
Although we do not (as yet) know the required transformation, we can define it
in terms of its Taylor expansion about P:

xa�x′� = xaP+
(
�xa

�x′b

)
P

(
x′b−x′bP

)
+ 1

2

(
�2xa

�x′b�x′c

)
P

(
x′b−x′bP

) (
x′c−x′cP

)
+ 1

6

(
�3xa

�x′b�x′c�x′d

)
P

(
x′b−x′bP

) (
x′c−x′cP

) (
x′d−x′dP

)+· · · �
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The numbers of free independent variables we have for this purpose are as
follows:

��xa/�x′b�P has N 2 independent values�

��2xa/�x′b�x′c�P has 1
2N

2�N +1� independent values�

��3xa/�x′b�x′c�x′d�P has 1
6N

2�N +1��N +2� independent values�

where we have made use of the fact that the second set of quantities is symmetric
in b and c and the third set of quantities is totally symmetric in b, c and d. We
may compare this with the number of independent parameters we may want to fix:

g′ab�P� has 1
2N�N +1� independent values�

��g′ab/�x
′c�P has 1

2N
2�N +1� independent values�

��2g′ab/�x
′c�x′d�P has 1

4N
2�N +1�2 independent values�

The first question is whetherwe can satisfy the requirement (2.19). This condition
consists ofN�N +1�/2 independent equations, and to satisfy them we haveN 2 free
values in ��xa/�x′b�P . Therefore, they can indeed be satisfied, leaving N�N −1�/2
numbers to spare! These spare degrees of freedom correspond exactly to the number
of independentN -dimensional ‘rotations’ that leave �ab unchanged.
The next question is whether we can satisfy the requirement (2.20). This

condition consists of N 2�N +1�/2 independent equations, and we can choose an
equal number of free values ��2xa/�x′b�x′c�P to satisfy them.
The final question is whether we can continue in this way to higher orders. In

other words, can we find a set of coordinates x′a such that ��2g′ab/�x
′c�x′d�P = 0?

This condition consists of N 2�N +1�2/4 independent equations, but we have only
N 2�N +1��N +2�/6 free values in ��2g′ab/�x

′c�x′d�P , so these equations cannot
in general be satisfied. This means that there are N 2�N 2− 1�/12 ‘degrees of
freedom’ among the second derivatives ��2g′ab/�x

′c�x′d�P , i.e. in general at least
this number of second derivatives will not vanish.

Although we have shown, in principle, that it is always possible to define local
Cartesian coordinates at any given point P, we have not shown explicitly how to
find such coordinates. We will return to this point in Chapter 3.

2.12 Tangent spaces to manifolds

To aid our intuition of local Cartesian coordinates, it is useful to consider the
simple example of a two-dimensional Riemannian manifold, which we can often
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TP
P

Figure 2.5 The tangent plane TP to the curved surface � at the point P.

consider as a generally curved surface embedded in three-dimensional Euclidean
space. A simple example is the surface of a sphere, shown in Figure 2.2. As we
have shown, at any arbitrary point P we can find coordinates x and y (say) such
that in the neighbourhood of P we have

ds2 = dx2+dy2�

It thus follows that a Euclidean two-dimensional space (a plane) will match the
manifold locally at P. This Euclidean space is called the tangent space TP to the
manifold at P. In other words, in terms of our embedding picture a plane can
always be drawn at any arbitrary point on a two-dimensional Riemannian surface
in such a way that it is locally tangential to the surface (see Figure 2.5). Although
the tangent plane to a surface at P gives a useful way of visualising the tangent
space of a manifold at a point, this view can be misleading. As we stressed
earlier, a manifold should be regarded as an entity in itself: there is no need for
a higher-dimensional space in which it and its tangent spaces are embedded.

We may extend the idea of tangent spaces to higher dimensions. At an arbitrary
point P in an N -dimensional Riemannian manifold we can find a coordinate
system such that in the neighbourhood of P the line element is Euclidean. Thus,
an N -dimensional Euclidean space matches the manifold locally at P. Just as each
point P of an embedded two-dimensional surface has its tangent plane, making
contact with the surface at P, so each point P of a manifold has a tangent space
TP attached to it.

2.13 Pseudo-Riemannian manifolds

Thus far we have confined our attention almost exclusively to strictly Rieman-
nian manifolds, in which ds2 > 0 always. In a pseudo-Riemannian manifold,
however, ds2 can be either positive, negative or zero and it is therefore much
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harder to visualise even two-dimensional manifolds of this type. Nevertheless,
the mathematical tools we have developed so far are straightforwardly applied to
pseudo-Riemannian manifolds with little modification.

The simplest way to understand pseudo-Riemannian manifolds is to consider
the transformation to local ‘Cartesian’ coordinates at some arbitrary point P. You
will notice from Section 2.11 that our argument showing that the condition (2.20)
holds for the derivatives of the metric functions in a Riemannian manifold can
be extended immediately to the pseudo-Riemannian case. Let us assume that
the coordinate system xa already satisfies this condition. However, the condition
(2.19) on the values of the metric functions themselves requires further investi-
gation. Let us now attempt to obtain a new coordinate system x′a in which (2.19)
is also satisfied. We note in passing that, in order for (2.20) to remain valid, the
new coordinates x′a must be related to the old ones xa by a linear transformation,
x′a = Xa

bx
b, where the Xa

b are constants.
In general, at a point P the metric functions in the new coordinate system are

given in terms of the original metric functions by

g′ab�P�=
(
�xc

�x′a

)
P

(
�xd

�x′b

)
P

gcd�P�� (2.21)

Let us define symmetric matrices G and G′ having elements gab�P� and g′ab�P�
respectively. Similarly, we can define a matrix X having elements ��xa/�x′b�P .
Then, in matrix notation, (2.21) can be written as

G′ = XTGX�

Since G is symmetric, it can be diagonalised by this similarity transformation,
provided that we choose the columns of X to be the normalised eigenvectors
of G. Then G′ = diag��1��2� � � � � �N �, where �a is the ath eigenvalue of G (the
eigenvalues must all be real).

In a strictly Riemannian manifold, ds2 = gab dx
adxb is always positive at any

point P. Thus the matrix G≡ 
gab� at any point must be positive definite, i.e. all
its eigenvalues must be positive. At an arbitrary point in a pseudo-Riemannian
manifold, however, ds2 can be positive, negative or zero, depending on the
direction in which one moves from P. Correspondingly, some of the eigenvalues
of G are negative.

If we now scale our coordinates according to x′a→ x′a/
√��a� (note that here

there is no sum on a), we obtain at the point P

G′ = diag�±1�±1� � � � �±1��
where the + and − signs depend on whether the corresponding eigenvalue is
positive or negative. Thus, at any arbitrary point P in a pseudo-Riemannian
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manifold, it is always possible to find a coordinate system x′a such that in the
neighbourhood of P we have

g′ab�x
′�= �ab+�
�x′ −x′P�

2��

where 
�ab� = diag�±1�±1� � � � �±1�. The number of positive entries minus the
number of negative entries in 
�ab� is called the signature of the manifold and is
the same at all points.

It follows that, at any arbitrary point P in a pseudo-Riemannian manifold, an
N -dimensional space with line element

ds2 =±�dx1�2± �dx2�2±· · ·± �dxN �2

will match the manifold locally at P. Such a space is called pseudo-Euclidean and
is the tangent space TP to the pseudo-Riemannian manifold at P. An example of a
pseudo-Euclidean space is the four-dimensional Minkowski spacetime of special
relativity, which has the line element

ds2 = d�ct�2−dx2−dy2−dz2

when expressed in coordinates corresponding to a Cartesian inertial frame.
Minkowski spacetime thus has a signature of −2.

2.14 Integration over general submanifolds

In Section 2.10, we restricted our calculation of ‘volumes’ to coordinate systems
xa that were orthogonal and to submanifolds that were obtained simply by allowing
some of the coordinates to be constants. In fact neither of these simplifications is
necessary, and we are now in a position to consider the general case.

Let us begin by calculating the full N -dimensional volume element dNV in an
N -dimensional (pseudo-)Riemannian manifold. From Section 2.10, we know that
if we are working in an orthogonal coordinate system then this volume element
is given by

dNV =√�g11g22 · · ·gNN �dx1dx2 · · ·dxN �
For such a coordinate system the matrix G is given by

G≡ 
gab�= diag�g11� g22� � � � � gNN ��

so that its determinant is simply the product of the diagonal elements,

detG= g11g22 · · ·gNN �
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It is usual to denote detG simply by the symbol g. Thus, we may rewrite the
volume element as

dNV =√�g�dx1dx2 · · ·dxN � (2.22)

What we will now show is that this expression remains valid for an arbitrary
coordinate system.

The key to proving the general result (2.22) for the volume element at some
arbitrary point P in the manifold is to transform to local Cartesian coordinates
x′a at P. We know that a small N -dimensional region at P will have volume
dNV = dx′1dx′2 · · ·dx′N . In any other general coordinate system xa it is a well-
known result that

dx′1dx′2 · · ·dx′N = J dx1dx2 · · ·dxN � (2.23)

where the Jacobian factor J is given by

J = det
[
�x′a

�xb

]
�

If, as in Section 2.13, we use X to denote the transformation matrix 
�xa/�x′b� then
J = det�X−1�= �detX�−1. Defining matrices G and G′ as those having elements
gab�P� and g′ab�P� respectively, we have (see Section 2.13)

G′ = XTGX� (2.24)

Taking determinants of both sides of (2.24) and denoting detG by g and detG′
by g′ we obtain

g′ = �detX�2g = 1
J2

g�

Since the x′a are locally Cartesian coordinates, G′ = diag�±1�±1� � � � �±1�, where
the number of positive and negative signs depends on the signature of the manifold.
Thus we have g′ = ±1, so that g =±J2. Hence, we obtain the required result:

dNV = dx′1dx′2 · · ·dx′N =√�g�dx1dx2 · · ·dxN �
We now turn to the question how to integrate over submanifolds that are not

defined simply by setting some of the coordinates xa to be constant. Consider
some M-dimensional subspace of an N -dimensional manifold. In general, the
subspace can be defined by the N parametric equations

xa = xa�u1� u2� � � � � uM��

where the ui �i = 1�2� � � � �M� may be considered simply as a set of coordinates
that parameterise the subspace. If we consider two neighbouring points in the
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subspace whose parameters differ by dui then the coordinate separation between
these points is simply

dxa = �xa

�ui
dui�

Thus the distance ds between the points is given by

ds2 = gabdx
adxb = gab

�xa

�ui
�xb

�uj
duiduj�

which we may write as

ds2 = hij du
iduj�

where the hij are the induced metric functions on the subspace and are given by

hij = gab
�xa

�ui
�xb

�uj
� (2.25)

Thus we can now work simply in terms of this subspace and regard it as a
manifold in itself. Thus the volume element for integrals over this subspace is
given in terms of the parameters ui by

dMV =√�h� du1du2 · · ·duM�
where h= det
hij�.
It is also worth noting here that the relation (2.25) is the key to determin-

ing whether one can embed a given manifold in another manifold of higher
dimension. Suppose we begin with an M-dimensional manifold possessing the
metric hij�u� when labelled with the coordinates ui�i= 1�2� � � � �M�. In order to
embed this manifold in an N -dimensional manifold (where N >M) with metric
gab�x� in the coordinates xa�a= 1�2� � � � �N�, then one must be able to satisfy the
relation (2.25).

2.15 Topology of manifolds

In this chapter we have discussed only the local geometry of manifolds, which
is defined at any point by the line element (2.4) giving the distance between
points with infinitesimal coordinate separations. In addition to this local geometry
a manifold also has a global geometry or topology. The topology of a manifold
is defined by identifying certain sets of points, that is, regarding them as being
coincident. For example, in Figure 2.1, we identified the line AA′ with the line
BB′. This property can be detected by a ‘bug’ on the surface, since by continuing
in a straight line in a certain direction, it can get back to where it started. Thus a
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topology (in this case the fact that the space is periodic in one of the coordinates)
is an intrinsic property of a manifold.

We shall see that general relativity is a ‘local’ theory, in which the local
geometry (or curvature) of the four-dimensional spacetime manifold at any point
is determined by the energy density of matter and/or radiation at that point. The
field equations of general relativity do not constrain the global topology of the
spacetime manifold.

Exercises

2.1 In three-dimensional Euclidean space R3, write down expressions for the change of
coordinates from Cartesian coordinates 
xa�= �x� y� z� to spherical polar coordinates

x′a�= �r� ����. Obtain expressions for the transformation and inverse transformation
matrices in terms of the primed coordinates. By calculating the Jacobians J and J ′ for
the transformation and its inverse, find where the transformation is non-invertible.

2.2 Write down the line element for three-dimensional Euclidean space in spherical
polar coordinates xa and cylindrical polar coordinates x′a. Hence identify the metric
functions in each coordinate system and show that they obey

g′cd�x
′�= gab�x�

�xa

�x′c
�xb

�x′d
�

2.3 In three-dimensional Euclidean space a coordinate system x′a is related to the Carte-
sian coordinates xa by

x1 = x′1+x′2� x2 = x′1−x′2� x3 = 2x′1x′2+x′3�

Describe the coordinate surfaces in the primed system. Obtain the metric functions
g′ab in the primed system and hence show that these coordinates are not orthogonal.
Calculate the volume element dV in the primed coordinate system.

2.4 Consider the surface of a 2-surface embedded in three-dimensional Euclidean space.
In a stereographic projection, one assigns coordinates ����� to each point on the
surface of the sphere. The �-coordinate is the standard azimuthal polar angle. The
�-coordinate of each point is obtained by drawing a straight line in three dimensions
from the south pole of the sphere through the point in question and extending the line
until it intersects the tangent plane to the north pole of the sphere; the �-coordinate
is then the distance in the tangent plane from the north pole to the intersection point.
Show that the line element for the surface of the sphere in these coordinates is

ds2 = d�2

�1+�2/a2�2
+ �2

1+�2/a2
d�2�

At what point(s) on the sphere are these coordinates degenerate? If instead one works
in terms of the Cartesian coordinates x and y in the tangent plane at the north pole,
what is the corresponding form of the line element? At what point(s) on the sphere
are these new coordinates degenerate?
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2.5 Consider the surface of the Earth, which we assume for simplicity to be a 2-sphere
of radius a. In terms of standard polar coordinates �����, the longitude of a point,
in radians, rather than the usual degrees, is simply � (measured eastwards from the
Greenwich meridian), whereas its latitude � = �/2− � radians. Show that the line
element on the Earth’s surface in these coordinates is

ds2 = a2�d�2+ cos2 �d�2��

To make a map of the Earth’s surface, we introduce the functions x = x����� and
y = y����� and use them as Cartesian coordinates on a flat rectangular piece of
paper. Each choice of the two functions corresponds to a different map projection.
The Mercator projection is defined by

x = W�

2�
� y = H

2�
ln
[
tan
(
�

4
+ �

2

)]
�

where W and H are the width and height of the map respectively. Find the line
element for this projection.

2.6 For the general map projection discussed in Exercise 1.5, show that the angle between
two directions at some point on the Earth’s surface will equal the angle between the
corresponding directions on the map, provided that the functions x and y are chosen
such that

��x� y��dx2+dy2�= a2�d�2+ cos2 � d�2��

for some function ��x� y�. Show that the Mercator projection satisfies this condition.
Write down the general requirement on x and y for an equal-area projection, in
which the area of any region of the map is proportional to the corresponding area on
the Earth’s surface. Find such a projection. Is it possible to obtain a projection that
simultaneously is equal-area and preserves angles?

2.7 A conformal transformation is not a change of coordinates but an actual change in
the geometry of a manifold such that the metric tensor transforms as

g̃ab�x�=�2�x�gab�x��

where ��x� is some non-vanishing scalar function of position. In a pseudo-
Riemannian manifold, show that if xa��� is a null curve with respect to gab (i.e.
ds2 = 0 along the curve), then it is also a null curve with respect to g̃ab. Is this true
for timelike curves?

2.8 A curve on the surface of a 2-sphere of radius a is defined parametrically by � = u,
�= 2u−�, where 0 ≤ u≤ �. Sketch the curve and show that its total length is

L= a
∫ �

0

√
1+4 sin2 udu�

Show that, in general, the length of a curve is independent of the parameter used to
describe it.
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2.9 Show that the line element of a 3-sphere of radius a embedded in four-dimensional
Euclidean space can be written in the form

ds2 = a2
d�2+ sin2 ��d�2+ sin2 �d�2���

Hence, in this three-dimensional non-Euclidean space, calculate the area of the
2-sphere defined by � = �0. Also find the total volume of the three-dimensional
space.

2.10 Consider the three-dimensional space with line element

ds2 = dr2

1−2�/r
+ r2�d�2+ sin2 �d�2��

and calculate the following quantities:

(a) the area of a sphere of coordinate radius r = R;
(b) the 3-volume of a sphere of coordinate radius r = R;
(c) the radial distance between the sphere r = 2� and the sphere r = 3�;
(d) the 3-volume contained between the two spheres in part (c).

Verify that your answers reduce to the usual Euclidean results in the limit �→ 0.
2.11 Prove the following results used in Section 2.11:

(a) ��xa/�x′b�P has N 2 independent values;
(b) ��2xa/�x′b�x′c�P has 1

2N
2�N +1� independent values;

(c) ��3xa/�x′b�x′c�x′d�P has 1
6N

2�N +1��N +2� independent values;
(d) g′ab�P� has

1
2N�N +1� independent values;

(e) ��g′ab/�x
′c�P has 1

2N
2�N +1� independent values;

(f)
(
�2g′ab/�x

′c�x′d
)
P
has 1

4N
2�N +1�2 independent values.

Hence show that, in a general Riemannian manifold, at least N 2�N 2−1�/12 of the
second derivatives

(
�2g′ab/�x

′c�x′d
)
P
will not vanish in any coordinate system.

2.12 Consider the two-dimensional space with line element

ds2 = dr2

1−2�/r
+ r2 d�2�

Using the result (2.25), show that this geometry can be embedded in three-
dimensional Euclidean space, and find the equations for the corresponding two-
dimensional surface.

2.13 By identifying a suitable coordinate transformation, show that the line element

ds2 = �c2−a2t2�dt2−2at dt dx−dx2−dy2−dz2�

where a is a constant, can be reduced to the Minkowski line element.
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Vector calculus on manifolds

The notion of a vector is extremely useful in describing physical processes and is
employed in nearly all branches of mathematical physics. The reader should be
familiar with vector calculus in two- and three-dimensional Euclidean spaces and
with the description of vectors in terms of their components in simple coordinate
systems such as Cartesian or spherical polar coordinates.

The concept of vectors is also very useful in both special and general relativity,
and we now consider how to generalise our familiar Euclidean ideas in order to
define vectors in a general (pseudo-)Riemannian manifold and in arbitrary coor-
dinate systems. For illustration, however, we will often consider two-dimensional
Riemannian manifolds that can be envisaged as surfaces embedded in three-
dimensional Euclidean space. An example is the surface of a sphere, which we
might take to be the surface of the Earth (remembering to consider ourselves as
truly two-dimensional ‘bugs’!).

3.1 Scalar fields on manifolds

Before considering vector fields on manifolds, let us briefly discuss scalar fields.
A real (or complex) scalar field defined on (some region of) a manifold� assigns
a real (or complex) value to each point P in (that region of) �; an example is
the air temperature on the surface of the Earth. If one labels the points in �
using some coordinate system xa then one can express the value at each point
as a function of the coordinates ��xa�. The value of the scalar field at any point
P does not depend on the chosen coordinate system. Thus, under an arbitrary
coordinate transformation xa → x′a, the scalar field is described by a different
function �′�x′a� of the new coordinates, such that

�′�x′a�= ��xa��

Indeed, this is the defining characteristic for a scalar field.

53
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3.2 Vector fields on manifolds

A vector field defined on (some region of) a manifold � assigns a single vector
to each point P in (that region of) � . The vector at P is often drawn as an
extended directed line segment with its base at P, but this convention requires
careful interpretation on general manifolds. Once again it is convenient to illustrate
our discussion by considering a two-dimensional manifold such as the spherical
surface of the Earth. Let us consider, for example, the vector field defined by the
wind velocity (at ground level). Wind velocity is measured at a given observation
point and refers solely to that point, despite the visual convenience of showing it
on a chart as an arrow apparently extending for a long distance. It is an example
of a local vector. Other examples include momentum, current density and velocity
in general. Such vectors are defined at a given point P. More accurately, they can
be measured by an observer (bug) in a laboratory covering a small region of the
manifold in the neighbourhood of P.

At an arbitrary point P in the manifold, any local vector v lies in the tangent
space TP to the manifold at P. Indeed, TP consists of the set of all (local) vectors
at the point P. This may be visualised simply for two-dimensional manifolds by
embedding them as surfaces in three-dimensional Euclidean space (see Figure 3.1),
but the idea is easily extended to higher dimensions and can be defined indepen-
dently of any embedding. As we discussed in Chapter 2, the tangent space at any
point of a (pseudo-)Riemannian manifold is a (pseudo-)Euclidean space of the
same dimensionality. Moreover, at an arbitrary point P, local vectors obey all the
usual rules of vector algebra in (pseudo-)Euclidean geometry.

It is important to realise, however, that local vectors defined at different points
P and Q in the manifold lie in different tangent spaces. Thus there is no way of
adding local vectors at different points. Other notions that must be abandoned are
those of position vectors and displacement vectors, which clearly are not locally

TP
P

Figure 3.1 Local vectors defined at the point P lie in the tangent space TP to
the manifold at that point.
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P

Q

Figure 3.2 The displacement vector between two general points P and Q does
not lie in the manifold � , unless the manifold is itself Euclidean.

defined. Using an embedding picture of a two-dimensional manifold, this is may be
visualised as shown in Figure 3.2. The ‘displacement vector’ connecting the points
P andQ does not lie in the manifold and thus has no intrinsic geometrical meaning.
Heuristically, however, we can define the displacement vector �s between two
nearby points P and Q, since this is a local quantity. In the limit Q→ P, the
vector �s lies in the tangent space at P.

Clearly, if the original manifold is itself (pseudo-)Euclidean then the tangent
space at any point coincides with the manifold. Thus vectors defined at different
points in the manifold do lie in the same space, and the notions of position and
displacement vectors are valid. This reflects our common experience of vector
algebra.

3.3 Tangent vector to a curve

The most obvious example of a vector field defined on (a subregion of) a manifold
is the tangent vector to a curve � , which is defined at each point along � . The
notion of a tangent vector to a curve is also central to our subsequent development
of basis vectors, described below.

Consider a curve � in an N -dimensional manifold. This curve may be described
by the N parametric equations xa�u�, where u is some general parameter that
varies along the curve. At any point P along � , the tangent vector t to the curve,
with respect to the parameter value u, is defined as

t = lim
�u→0

�s
�u

� (3.1)

where �s is the infinitesimal separation vector between the point P and some
nearby point Q on the curve corresponding to the parameter value u+�u. Clearly
t will lie in the tangent space TP at the point P; this is illustrated in Figure 3.3.
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TP

�

P

t

Figure 3.3 The tangent vector t to the curve � at a point P.

Although the heuristic approach we have adopted here is perfectly adequate for
our purposes, in a general manifold the formal mathematical device for construct-
ing the tangent vector to some curve at P is to identify t with the directional
derivative operator along the curve at that point. This is discussed further in
Appendix 3A and, in fact, enables one to give a precise mathematical meaning to
the general notion of a vector in a non-Euclidean manifold.

3.4 Basis vectors

As we have seen, a vector field on a manifold is defined simply by giving, in
a smooth manner, a prescription for a local vector v�x� at each point in the
manifold. At each point P the vector lies in the tangent space TP at that point. This
vector is a geometrical entity, defined independently of any coordinate system
with which we choose to label points in the manifold. Nevertheless, at each point
P we can define a set of basis vectors ea for the tangent space TP , the number of
such vectors being equal to the dimension of TP and hence of � (how this may
be achieved will be discussed shortly). Any vector at P can then be expressed
as a linear combination of these basis vectors, provided that they are linearly
independent, which we will assume is always the case. Thus, we can express the
local vector field v�x� at each point in terms of basis vectors ea�x� defined at
each point:

v�x�= va�x� ea�x��

The numbers va�x� are known as the contravariant components of the vector field
v�x� in the basis ea�x�.

For any set of basis vectors ea�x�, we can define a second set of vectors called
the dual basis vectors. Instead of denoting the dual basis vectors by some other
kernel letter, it is the convention to denote a member of this second basis set by
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ea�x�. Although the positioning of the index may seem odd (not least because of
the possible confusion with powers), it enables effective use of the summation
convention that we shall adopt in due course. At any point P, the dual basis
vectors are defined by the relation

ea�x� · eb�x�= �ab� (3.2)

so that ea and ea form reciprocal systems of vectors.
The dual basis vectors at P also lie in the tangent space TP and form an

alternative basis for it.1 Thus, we can also express the local vector field v�x� at
each point as a linear combination of the dual basis vectors ea�x� defined at that
point:

v�x�= va�x� e
a�x��

The numbers va�x� are known as the covariant components of the vector v�x� in
the basis ea�x�.
Using the relation (3.2) we can find simple expressions for the contravariant

and covariant components of a vector v. For example,2

v · ea = vbeb · ea = vb�ab = va�

where we have used the fact that �ba can be used to replace one index with another.
Thus we may write va = v · ea. Similarly, we may show that va = v · ea. We now
consider how a set of basis vectors (and their duals) may be constructed at each
point P in the manifold.

Coordinate basis vectors

An obvious basis in which to describe local vectors is the coordinate basis. In any
particular coordinate system xa, we can define at every point P of the manifold
a set of N coordinate basis vectors

ea = lim
�xa→0

�s
�xa

� (3.3)

where �s is the infinitesimal vector displacement between P and a nearby point Q
whose coordinate separation from P is �xa along the xa coordinate curve. Thus
ea is the tangent vector to the xa coordinate curve at the point P. This set of
vectors provides a basis for the tangent space TP at the point P (see Figure 3.4).

1 More precisely, these vectors define the dual tangent space T ∗P at P, but this subtlety need not concern us
here.

2 From now on we will no longer make explicit the dependence of the basis vectors and components on the
position x in the manifold, except where including this argument makes the explanation clearer.
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x1

x2

TP
e1

e2

P

Figure 3.4 The coordinate basis vectors ea at a point P in a manifold are the
tangent vectors to the coordinate curves in the manifold and form a basis for the
tangent space at P.

From the definition (3.3), we see that if two nearby points P and Q have
coordinates xa and xa+dxa respectively, where now we allow dxa to be non-zero
for all a, then their infinitesimal vector separation is given by

ds= ea�x�dx
a� (3.4)

We can use this expression to relate the inner product of the coordinate basis
vectors at some arbitrary point P to the value of the metric functions gab�x� at
that point. From (3.4), we have

ds2 = ds ·ds= �dxaea� · �dxbeb�= �ea · eb�dxa dxb�
Comparing this with the standard expression ds2 = gab�x�dx

a dxb, (2.4), for the
line element, we find that

ea�x� · eb�x�= gab�x�� (3.5)

Thus, quite generally, in a coordinate basis the scalar product of two vectors is
given by

v ·w= �vaea� · �wbeb�= gabv
awb�

If the basis ea�x� is dual to a coordinate basis ea�x� then the a-coordinate
distance between two nearby points separated by the displacement vector ds is
given by

dxa = ea ·ds�
Moreover, in this case we may use the dual basis vectors to define the quantities

gab�x�= ea�x� · eb�x�� (3.6)
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which, as we will show, form the contravariant components of the metric tensor
and are in general different from the quantites gab�x�; we will return to these
later.

Orthonormal basis vectors at a point

At any given point P in a manifold, it is often useful to define a set of orthonormal
basis vectors êa in TP , which are chosen to be of unit length and orthogonal to
one another. This is expressed mathematically by the requirement that at P

êa · êb = �ab� (3.7)

where 
�ab�= diag�±1�±1� � � � �±1� is the Cartesian line element of the tangent
space TP and depends on the signature of the (in general) pseudo-Riemannian
manifold (see Section 2.13). These orthonormal basis vectors need not be related
to any particular coordinate system that we are using to label the manifold,
although they can always be defined by, for example, giving their components
in a coordinate basis. Moreover, it is clear from (3.7) that the orthonormal basis
vectors êa at P are in fact the coordinate basis vectors of a coordinate system for
which gab�P�= �ab (or gab�P�= �ab for a strictly Riemannian manifold).

3.5 Raising and lowering vector indices

Unless otherwise stated, we will assume that we are working with a coordinate
basis, as discussed above, and its dual. The contravariant and covariant compo-
nents in these bases are equally good ways of specifying a vector. The link
between them is found by considering the different ways in which one can write
the scalar product v ·w of two vectors. First, we can write

v ·w= �vaea� · �wbeb�= �ea · eb�vawb = gabv
awb�

where we have used the contravariant components of the two vectors. Similarly,
using the covariant components, we can write the scalar product as

v ·w= �vae
a� · �wbe

b�= �ea · eb�vawb = gabvawb�

Finally, we could express the scalar product in terms of the contravariant compo-
nents of one vector and the covariant components of the other,

v ·w= �vaea� · �wbe
b�= vawb�ea · eb�= vawb�

b
a = vawa�

similarly, we could write

v ·w= �vae
a� · �wbeb�= vaw

b�ea · eb�= vaw
b�ab = vaw

a�
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By comparing these four alternative expressions for the scalar product of two
vectors, we can deduce one of the most useful properties of the quantities gab and
gab. Since gabv

awb = vawa holds for any arbitrary vector v, it follows that

gabw
b = wa�

which illustrates the fact that the quantities gab can be used to lower an index.
In other words, we can obtain the covariant components of a vector from its
contravariant components. By a similar argument, we have

gabwb = wa�

so that the quantities gab can be used to perform the reverse process of raising
an index. It is straightforward to show that the coordinate and dual basis vectors
themselves are related in an analogous way by

ea = gabe
b and ea = gabeb�

We will now prove the useful result that the matrix 
gab� containing the
contravariant components of the metric tensor is the inverse of the matrix 
gab� that
contains its covariant components. Using the index-lowering and index-raising
action of gab and gab on the components of an arbitrary vector v, we find that

�acv
c = va = gabvb = gabgbcv

c�

but since v is arbitrary we must have

gabgbc = �ac � (3.8)

Denoting the matrix 
gab� by G and the matrix 
gab� by G̃, this equation
can be written in matrix form as GG̃= I. Hence G and G̃ are inverse matrices.

3.6 Basis vectors and coordinate transformations

Let us consider a coordinate transformation xa → x′a on a manifold. There is
a simple relationship between the coordinate basis vectors ea associated with
the coordinate system xa and the coordinate basis vectors e′a associated with the
new system of coordinates x′a. It can be found by considering the infinitesi-
mal displacement vector ds between two nearby points P and Q. Clearly, this
displacement cannot depend on the coordinate system being used, so we must have

ds= dxaea = dx′ae′a�
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Noting that dxa = ��xa/�x′b� dx′b, we find that at any point P the two sets of
coordinate basis vectors are related by

e′a =
�xb

�x′a
eb� (3.9)

where the partial derivative is evaluated at the point P. Repeating this calculation
using the dual basis vectors, we find that

e′a = �x′a

�xb
eb� (3.10)

Using (3.9) and (3.10), we can now calculate how the components of any
general vector v must transform under the coordinate transformation. Since a
vector is a geometrical entity that is independent of the coordinate system, we
have (for example)

v= vaea = v′ae′a�

So, the new contravariant components are given by

v′a = e′a · v= �x′a

�xb
eb · v ⇒ v′a = �x′a

�xb
vb�

Similarly, the new covariant components are given by

v′a = e′a · v=
�xb

�x′b
eb · v ⇒ v′a =

�xb

�x′a
vb�

3.7 Coordinate-independent properties of vectors

As we have seen, in a coordinate basis and its dual the scalar product v ·w of two
vectors at each point P of the manifold can be written in four ways:

gabv
awb = gabvawb = vawa = vaw

a�

Using the transformation properties of the metric coefficients gab and those of the
vector components, it is straightforward to show that these expressions yield the
same result in any other coordinate system.

In a strictly Riemannian manifold the scalar product is positive definite, which
means that gabv

avb ≥ 0 for all vectors va, with gabv
avb = 0 only if va = 0. In a

pseudo-Riemannian space, however, this condition is relaxed and leads to some
rather odd properties, such as the possibility of non-zero vectors having zero
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length. We must therefore make definitions that allow us to deal with such prop-
erties in a way that extends and generalises familiar concepts in Euclidean space.

The length of a vector �v� is defined in terms of its components by

�gabvavb�1/2 = �gabvavb�1/2 = �vava�1/2�
A unit vector has length unity. As remarked above, in a pseudo-Riemannian
manifold we can have �vava�1/2 = 0 for va �= 0, in which case the vector v is
described as null.

The angle � between two non-null vectors v and w is defined by

cos� = vaw
a

�vbvb�1/2�wcw
c�1/2 �

In a pseudo-Riemannian manifold, this formula can lead to �cos��> 1, resulting
in a non-real value for �.

Two vectors are orthogonal if their scalar product is zero. This definition makes
sense even if one or both of the vectors is or are null. In fact, a null vector is a
non-zero vector that is orthogonal to itself.

3.8 Derivatives of basis vectors and the affine connection

As we have said, local vectors at different points P and Q in a manifold lie
in different tangent spaces, so there is no way of adding or subtracting them.
In order to define the derivative of a vector field, however, one must compare
vectors at different points, albeit in the limit where the distance between the points
tends to zero. We will adopt here an intuitive approach that is sufficient for our
purposes in developing vector calculus on curved manifolds and provides a simple
geometrical picture. Specifically, on this occasion, we will assume the manifold
to be embedded in a higher-dimensional (pseudo-)Euclidean space, which thus
allows vectors at different points to be compared.3

In some arbitrary coordinate system xa on the manifold, let us consider the basis
vectors ea at two nearby points P and Q with coordinates xa and xa+�xa respec-
tively (see Figure 3.5). In general, the basis vectors at Q will differ infinitesimally
from those at P, so that

ea�Q�= ea�P�+�ea�

3 It is worth noting that one can embed any four-dimensional torsionless (pseudo-)Riemannian manifold in
some (pseudo-)Euclidean space of sufficiently higher dimension; see, for example, J. Nash, The imbedding
problem for Riemannian manifolds, Annals of Mathematics 63, 20–63, 1956 and C. Clarke, On the global
isometric embedding of pseudo-Riemannian manifolds, Proceedings of the Royal Society A314, 417–28,
1970. Indeed, recent theoretical work on braneworld models suggests that our spacetime may indeed be
embedded in some higher-dimensional manifold! Alternatively, one can define the derivative of a vector field
on a general manifold without using an embedding picture, but in a rather more formal manner; see, for
example, R.M. Wald, General Relativity, University of Chicago Press, 1984.
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Q

P

ea(Q)
ea(P)

Figure 3.5 The basis vectors ea�P� and ea�Q� lie in the tangent spaces to the
manifold � at the points P and Q respectively.

The standard partial derivative of the basis vector is given by �ea/�x
c in the

limit �xc→ 0. In general, however, the resulting vector will not lie in the tangent
space to the manifold at P. We thus define the derivative in the manifold of the
coordinate basis vector by projecting into the tangent space at P,

�ea
�xc

≡
(

lim
�xc→0

�ea
�xc

)
�TP

� (3.11)

Now we can expand this derivative vector in terms of the basis vectors ea�P� at
the point P, and write

�ea
�xc

=  b
aceb� (3.12)

where the N 3 coefficients  b
ac are known collectively as the affine connection or,

in older textbooks, the Christoffel symbol (of the second kind) at the point P.
From (3.11), it is also clear that the derivative operator obeys Leibnitz’ theorem.
By taking the scalar product of (3.12) with the dual basis vector ed and using the
reciprocity relation (3.2), we can also write the affine connection as4

 b
ac = eb · �cea� (3.13)

Furthermore, by differentiating the reciprocity relation ea ·eb = �ba with respect
to the coordinate xc, we find that

�c�e
a · eb�= ��ce

a� · eb+ ea · ��ceb�= 0�

4 From now on, we shall often use the shorthand �c to denote �/�xc. We also note here that, in some textbooks,
an even more terse notation is used, in which partial differentation is denoted by a comma. For example, the
partial derivative �cv

a of the contravariant components of a vector would be written va�c.
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Then, on using (3.13), we find that the derivatives of the dual basis vectors with
respect to the coordinates are given by

�ce
a =− a

bce
b� (3.14)

The expressions (3.12–3.14) will be used extensively in our subsequent discus-
sions.

3.9 Transformation properties of the affine connection

From the expression (3.13) for the affine connection,

 a
bc = ea · �eb

�xc
� (3.15)

we see that, in some new coordinate system x′a, it is given by

 ′abc = e′a · �e
′
b

�x′c
�

Substituting the expressions (3.9) and (3.10) for the new basis and dual basis
vectors, we find

 ′abc =
�x′a

�xd
ed · �

�x′c

(
�xf

�x′b
ef

)
= �x′a

�xd
ed ·

(
�xf

�x′b
�ef
�x′c

+ �2xf

�x′c�x′b
ef

)
= �x′a

�xd
�xf

�x′b
�xg

�x′c
ed · �ef

�xg
+ �x′a

�xd
�2xf

�x′c�x′b
ed · ef

= �x′a

�xd
�xf

�x′b
�xg

�x′c
 d

fg+
�x′a

�xd
�2xd

�x′c�x′b
� (3.16)

where in the last line we have used the reciprocity relation (3.2) between the
basis and dual basis vectors. We will see later that, because of the presence of
the last term on the right-hand side of (3.16), the  a

bc do not transform as the
components of a tensor.

By swapping derivatives with respect to x and x′ in the last term on the
right-hand side of (3.16), we arrive at an alternative (but equivalent) expression:

 ′abc =
�x′a

�xd
�xf

�x′b
�xg

�x′c
 d

fg−
�xd

�x′b
�xf

�x′c
�2x′a

�xd�xf
� (3.17)
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3.10 Relationship of the connection and the metric

The observant reader will have noticed that there was some arbitrariness in how
we introduced the affine connection in (3.12). We could just as easily have written
(3.12) with  b

ac replaced by  b
ca, i.e. with the two subscripts interchanged. In

a general Riemannian manifold, these two sets of quantities are not necessarily
equal to one another. In fact, one can show that the quantities

Tb
ac =  b

ac− b
ca (3.18)

are the components of a third-rank tensor (see Chapter 4) called the torsion tensor.
For our considerations of standard general relativity, however, we can assume
that our manifolds are torsionless, so that Tb

ac = 0 in any coordinate system.5

Hence, from here onwards, we will assume (unless otherwise stated) that the
affine connection is symmetric in its last two indices, i.e.

 b
ac =  b

ca� (3.19)

In a manifold that is torsionless, so that (3.19) is satisfied, there is a simple
relationship between the affine connection  b

ac and the metric functions gab,
which we now derive. From (3.5) we have gab = ea · eb. Differentiating this
expression with respect to xc, we obtain

�cgab = ��cea� · eb+ ea · ��ceb�
=  d

aced · eb+ ea · d
bced

=  d
acgdb+ d

bcgad� (3.20)

By cyclically permuting the indices a�b� c, we obtain two equivalent expressions,

�bgca =  d
cbgda+ d

abgcd�

�agbc =  d
bagdc+ d

cagbd�

Using these three expressions, we now form the combination

�cgab+ �bgca− �agbc

=  d
acgdb+ d

bcgad+ d
cbgda+ d

abgcd− d
bagdc− d

cagbd = 2 d
cbgad�

where, in obtaining the last line, we have used the assumed symmetry properties
(3.19) of the affine connection and the symmetry of metric functions. Multiplying

5 It is straightforward to show that any (pseudo-)Riemannian manifold that can be embedded in some (pseudo-)
Euclidean space of higher dimension must be torsionless.
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through by gea, recalling from (3.8) that geagad = �ea and relabelling indices, we
finally obtain

 a
bc = 1

2g
ad��bgdc+ �cgbd− �dgbc�� (3.21)

In fact, the quantity defined by the right-hand side in (3.21) is properly called the
metric connection and is often denoted by the symbol ! a

bc ". In a manifold with
torsion, it will differ from the affine connection defined by (3.11). As we have
shown, however, in a torsionless manifold the affine and metric connections are
equivalent, and so  a

bc is usually referred to simply as the connection. Unless
otherwise stated, we will follow this convention from now on.

Equation (3.21) is very important, because it tells us how to compute the
connection at any point in a manifold. In other words, if one knows the metric gab
in some coordinate system xa then one can form the derivatives of gab appearing
in (3.21) and hence calculate all the numbers  a

bc at any point.
We finish this section by establishing a few useful formulae involving the

connection  a
bc and the related quantities

 abc ≡ gad 
d
bc�

It is straightforward to show that  a
bc = gad dbc. From (3.21), we find that

 abc = 1
2��bgac+ �cgba− �agbc�� (3.22)

The quantity  abc is traditionally known as a Christoffel symbol of the first kind.
Adding  bac to  abc gives

�cgab =  abc+ bac� (3.23)

which allows us to express partial derivatives of the metric components in terms
of the connection coefficients. If we denote the value of the determinant det
gab�
by g then the cofactor of the element gab in this determinant is ggab (note that
g is not a scalar: changing coordinates changes the value of g at any point). It
follows that �cg = ggab��cgab�, so from (3.23) we have

�cg = ggab� abc+ bac�= g
(
 b

bc+ a
ac

)= 2g a
ac� (3.24)

The implied summation over a is an example of a contraction over a pair of
indices (see Chapter 4);  a

ac means simply  1
1c+  2

2c+· · ·+  N
Nc. Thus the

contraction of the connection coefficients (3.21) is given by

 a
ab = 1

2g
−1�bg = 1

2�b ln �g�� (3.25)
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the modulus signs being needed if the manifold is pseudo-Riemannian. Alterna-
tively, we can write

 a
ab = �b ln

√�g� = 1√�g� �b√�g�� (3.26)

3.11 Local geodesic and Cartesian coordinates

In Chapter 2, we showed that at any point P in a pseudo-Riemannian manifold it
is possible in principle to find local Cartesian coordinates x′a such that

g′ab�P� = �ab� (3.27)

�g′ab
�x′c

∣∣∣∣
P

= 0� (3.28)

where 
�ab� = diag�±1�±1� � � � �±1�. The number of positive entries in 
�ab�

minus the number of negative entries is the signature of the manifold. Supposing
that we start with some general system of coordinates xa, we now show how to
obtain local Cartesian coordinates in practice.

Let us begin by demanding that our new coordinate system x′a satisfies the
condition (3.28) but not necessarily the condition (3.27). From our expression
(3.20) for the derivative of the metric in terms of the connection, we see that
the condition (3.28) will be satisfied if the connection coefficients in the new
coordinate system vanish at P, i.e.

 ′abc�P�= 0� (3.29)

Conversely, from (3.21) we see that the condition (3.28) implies (3.29). The
condition (3.29) makes much simpler the mathematics of parallel transport, covari-
ant differentiation and intrinsic differentiation (see later). Coordinates for which
(3.29) holds are generally referred to as geodesic coordinates about P, but this is
not always appropriate since they need not be based on geodesics (which we will
also discuss later).

Suppose that we start with some arbitrary coordinate system xa, the ‘original’
system, in which the point P has coordinates xaP . Let us now define a new system
of coordinates x′a by

x′a = xa−xaP+ 1
2 

a
bc�P�

(
xb−xbP

) (
xc−xcP

)
� (3.30)
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where the  a
bc�P� are the connection coefficients at P in the original coordinate

system. Clearly, the origin of the new coordinate system is at P. Differentiation
of (3.30) with respect to xd yields

�x′a

�xd
= �ad+ a

dc�P� �x
c−xcP� �

so that, at the point P, �x′a/�xd = �ad; its inverse is given by �xa/�x′d = �ad.
Differentiating again we obtain

�2x′a

�xe�xd
=  a

dc�P��
c
e =  a

de�P��

If we now substitute these results into the expression (3.17) for the transformation
properties of the connection, we find that

 ′abc�P�= �ad�
f
b�

g
c 

d
fg�P�−�db�

f
c  

a
df �P�=  a

bc�P�− a
bc�P�= 0�

So in the new (primed) coordinate system the connection coefficients at P are
zero, and from (3.29) we have a system of geodesic coordinates at P.

The metric functions g′ab�P� in the geodesic coordinates x′a will not necessarily
satisfy the condition (3.27). Nevertheless, we can obtain such a system of local
Cartesian coordinates by making a second linear coordinate transformation

x′′a = Xa
bx
′b�

where the coefficients Xa
b are constants. Thus we can bring the metric g′′ab�P�

in these coordinates into the form (3.27) without affecting its derivatives, so that
(3.28) will still be satisfied. The required values of the coefficients Xa

b were
discussed in Section 2.13.

3.12 Covariant derivative of a vector

Suppose that a vector field v�x� is defined over some region of a manifold. We
will consider the derivative of this vector field with respect to the coordinates
labelling the points in the manifold. Let us begin by writing the vector in terms
of its contravariant components v= vaea. We thus obtain

�bv= ��bv
a�ea+va��bea�� (3.31)

where the second term arises because, in an arbitrary coordinate system, the coor-
dinate basis vectors vary with the position in the manifold. If we defined locally
Cartesian coordinates at some point P in the manifold then in the neighbourhood
of this point the coordinate basis vectors are constant and so the second term would
vanish at P (but not elsewhere, unless the manifold � is (pseudo-)Euclidean, so
that the whole of � can be covered by a Cartesian coordinate system).
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Using (3.13), we may write (3.31) as

�bv= ��bv
a�ea+va c

abec�

Since a and c are dummy indices in the last term on the right-hand side, we may
interchange them to obtain

�bv= ��bv
a�ea+vc a

cbea = ��bv
a+vc a

cb� ea�

The reason for interchanging the dummy indices is that we may then factor out
ea. Thus, at any point P, we now have an expression for the derivative of a vector
field with respect to the coordinates in terms of the basis vectors of the coordinate
system at P. The quantity in brackets is called the covariant derivative of the
vector components, and the standard notation for it is6

�bv
a ≡ �bv

a+ a
cbv

c� (3.32)

Thus the derivative of the vector field v can be written in the compact notation

�bv= ��bv
a�ea�

We note that, in local geodesic coordinates about some point P, the second term
in the covariant derivative (3.32) vanishes at P and thus reduces to the ordinary
partial derivative.

So far we have considered only the covariant derivative of the contravariant
components va of a vector. The corresponding result for the covariant components
va may be found in a similar way, by considering the derivative of v= vae

a and
using (3.14) to obtain

�bva = �bva− c
abvc� (3.33)

Comparing the expressions (3.32) and (3.33) for the covariant derivatives of
the contravariant and covariant components of a vector respectively, we see that
there are some similarities and some differences. It may help to remember that
the index with respect to which the covariant derivative is taken (b in this case) is
also the last subscript on the connection; the remaining indices can then only be
arranged in one way without raising or lowering them. Finally, the sign difference
must be remembered: for a contravariant index (superscript) the sign is positive,
whereas for a covariant index (subscript) the connection carries a minus sign.

We conclude this section by considering the covariant derivative of a scalar.
The covariant derivative differs from the simple partial derivative only because
the coordinate basis vectors change with position in the manifold. However, a

6 In some textbooks, the covariant derivative is denoted by a semicolon, so that the covariant derivative �bv
a

would be written as va�b .
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scalar � does not depend on the basis vectors at all, so its covariant derivative
must be the same as its partial derivative, i.e.

�b�= �b�� (3.34)

3.13 Vector operators in component form

The equations of electromagnetism, fluid mechanics and many other areas of
classical physics make use of vector calculus in three-dimensional Euclidean
space, employing the gradient �� and the Laplacian �2� of scalar fields, together
with the divergence � · v and the curl � × v of a vector field. Explicit forms for
these are given in many texts for useful coordinate systems such as Cartesian,
cylindrical polar, spherical polar (typically the 11 coordinate systems in which
Laplace’s equation separates). The covariant derivative provides a unified picture
of all these derivatives and a direct route to the explicit forms in an arbitrary
coordinate system. Moreover, it allows for the generalisation of these operators
to more general manifolds.

Gradient

The gradient of a scalar field � is given simply by

��= ��a��e
a = ��a��e

a� (3.35)

since the covariant derivative of a scalar is the same as its partial derivative.

Divergence

Replacing the partial derivatives that occur in local Cartesian coordinates by
covariant derivatives, which are valid in arbitrary coordinate systems, the diver-
gence of a vector field is given by the scalar quantity

� · v= �av
a = �av

a+ a
abv

b�

Using the result (3.26) we can rewrite the divergence as

� · v≡ �av
a = 1√�g� �a

(√�g�va) � (3.36)

where g is the determinant of the matrix 
gab�.
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Laplacian

If we replace v by �� in � · v then we obtain the Laplacian �2�. From (3.35),
v= vae

a= ��a��e
a, so the covariant components are va= �a�. In (3.36), however,

we require the contravariant components va. These may be obtained by raising
the index with the metric to give

va = gabvb = gab�b��

Subtituting this into (3.36), we obtain

�2�≡ �a�
a�= 1√�g� �a

(√�g�gab�b�) �
It is worth noting that the symbol used for the Laplacian operator often depends
on the dimensionality of the manifold being used. In particular, the triangular
(three-sided) symbol �2 that is commonly used in the three-dimensional (and
N -dimensional cases) is replaced by the box-shaped (four-sided) symbol �2 in
four-dimensional spacetimes, in which case it is called the d’Alembertian operator.

Curl

The special form of the curl of a vector field, which is itself a vector, exists
only in three dimensions. In its more general form, which is valid in higher
dimensions, the curl is defined as a rank-2 antisymmetric tensor (see Chapter 4)
with components

�curl v�ab = �avb−�bva�

In fact this difference of covariant derivatives can be simplified, since

�avb−�bva = �avb− c
bavc− �bva+ c

abvc = �avb− �bva�

where the connections have cancelled because of their symmetry properties.

3.14 Intrinsic derivative of a vector along a curve

Normally, we think of vector fields as functions of the coordinates xa defined
over some region of the manifold. However, we can also encounter vector fields
that are defined only on some subspace of the manifold, and an extreme example
occurs when the vector field v�u� is defined only along some curve xa�u� in the
manifold; an example might be the spin 4-vector s��� of a single particle along
its worldline in spacetime. We now consider how to calculate the derivative of
such a vector with respect to the parameter u along the curve.
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Let us begin by writing the vector field at any point along the curve � as

v�u�= va�u�ea�u��

where the ea�u� are the coordinate basis vectors at the point on the curve corre-
sponding to the parameter value u. Thus, the derivative of v along the curve � is
given by

dv
du
= dva

du
ea+va

dea
du

= dva

du
ea+va

�ea
�xc

dxc

du
�

where we have used the chain rule to rewrite the last term on the right-hand side;
this is a valid procedure since the basis vectors ea are also defined away from
the curve � . Using (3.13) to write the partial derivatives of the basis vectors in
terms of the connection, we obtain

dv
du
= dva

du
ea+ b

acv
a dx

c

du
eb�

Interchanging the dummy indices a and b in the last term, we may factor out the
basis vector, and we find that

dv
du
=
(
dva

du
+ a

bcv
b dx

c

du

)
ea ≡

Dva

Du
ea� (3.37)

The term in parentheses is called the intrinsic (or absolute) derivative of the
components va along the curve � and is often denoted by Dva/Du as indicated.
Similarly, the intrinsic derivative of the covariant components va of a vector is
given by

Dva
Du

= dva
du

− b
acvb

dxc

du
�

A convenient way to remember the form of the intrinsic derivative is to pretend
that the vector v is in fact defined throughout (some region of) the manifold, i.e.
not only along the curve � . In some cases of interest, this may in fact be true
anyway; for example, v might denote the 4-velocity of some distributed fluid. We
can now differentiate the components va (say) with respect to the coordinates xa.
Thus we can write

dva

du
= �va

�xc
dxc

du
�

Substituting this into (3.37), we can then factor out dxc/du and recognise the
other factor as the covariant derivative �cv

a. Thus we can write

Dva

Du
= ��cv

a�
dxc

du
(3.38)
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and similarly for the intrinsic derivatives of the covariant components. It must be
remembered, however, that if v is only defined along the curve � then formally
(3.38) is not defined and acts merely as an aide-memoire.

3.15 Parallel transport

Let us again consider some curve � in the manifold, given parameterically in
some general coordinate system by xa�u�. Moreover, let O be some initial point
on the curve with parameter u0 at which a vector v is defined. We can now think
of ‘transporting’ v along � in such a way that

dv
du
= 0 (3.39)

is satisfied at each point along the curve. The result is a ‘parallel’ field of vectors
at each point along � , generated by the parallel transport of v.
In a (pseudo-)Euclidean manifold, the parallel transport of a vector has the

simple geometrical interpretation that the vector v is transported without any
change to its length or direction. This is illustrated in Figure 3.6 for a curve �
in a two-dimensional Euclidean space (i.e. a plane). If the coordinates xa are
Cartesian, it is clear that the components va of the vector field satisfy

dva

du
= 0� (3.40)

O

v

�

Figure 3.6 A parallel field of vectors v�u� generated by parallel transport along
a curve � parameterised by u.
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In an arbitrary coordinate system in the plane, however, (3.40) is no longer valid,
and from (3.37) we see that it must be generalised to

Dva

Du
≡ dva

du
+ a

bcv
b dx

c

du
= 0� (3.41)

From the basic requirement (3.39), it is clear that (3.41) is equally valid for the
parallel transport of a vector along a curve in any (pseudo-)Riemannian manifold
in some arbitrary coordinate system xa, although the geometrical interpretation is
more subtle in this case. If one is willing to adopt a picture in which the (pseudo-)
Riemannian manifold is embedded in a (pseudo-)Euclidean space of sufficiently
higher dimension, then one can recover a simple geometrical interpretation of
parallel transport. Consider some curve � in the (pseudo-)Riemannian manifold
given in terms of some coordinate system in the manifold by xa�u�. Let P and
Q be two neighbouring points on the curve with affine parameter values u and
u+ �u respectively. Starting with the vector v at P, which lies in the tangent
space TP , shift the vector to the neighbouring point Q while keeping it parallel
to itself. In a Euclidean embedding space, this simply means transporting the
vector without changing its length or direction. At the point Q the vector will
not, in general, lie in the tangent space TQ, on account of the curvature of the
embedded manifold. Nevertheless, by considering only that part of the vector
that is tangential to the embedded manifold at Q, we obtain a definite vector
lying in TQ. It is straightforward to show that this vector coincides with the
parallel-transported vector at Q according to (3.41).

If we rewrite (3.41) as

dva

du
=− a

bcv
b dx

c

du
� (3.42)

then we can see that, if we specify the components va at some arbitrary point
along the curve, equation (3.43) fixes the components of va along the entire
length of the curve. If you are worried about whether the transportation is really
parallel, simply consider an infinitesimal displacement of the vector from some
point P. For a small displacement we can choose locally Cartesian coordinates at
P, in which the  s vanish, and so setting the covariant derivative equal to zero
describes an infinitesimal displacement which keeps the vector parallel (dva = 0).

We note here that, in at least one respect, parallel transport along curves in a
general (pseudo-)Riemannian manifold is significantly different from that along
curves in a (pseudo-)Euclidean space, in that it is path dependent: the vector
obtained by transporting a given vector from a point P to a remote point Q
depends on the route taken from P to Q. This path dependence is also apparent
in transporting a vector around a closed loop, where on returning to the starting
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point the direction of the transported vector is (in general) different from the
vector’s initial direction. This path dependence can be demonstrated on a curved
two-dimensional surface, and in general can be expressed mathematically in terms
of the curvature tensor of the manifold. We will return to this topic in Chapter 7.

3.16 Null curves, non-null curves and affine parameters

So far, we have treated all curves in a manifold on a equal footing. In pseudo-
Riemannian manifolds, however, it is important to distinguish between null curves
and non-null curves. In the former, the interval ds between any two nearby points
on the curve is zero, whereas in the latter case ds is non-zero. The distinction
between these two types of curve may also be defined in terms of their tangent
vectors, and this leads to the identification of a class of privileged parameters,
called affine parameters, in terms of which the curves may be defined.

Consider some curve xa�u� in a general manifold. As discussed earlier, the
tangent vector t to the curve at some point P, with respect to the parameter value
u, is defined by (3.1). In a given coordinate system, we can write �s = ea�x

a,
where the ea are coordinate basis vectors at P. We then obtain

t = dxa

du
ea� (3.43)

From this expression, we see that the length of the tangent vector t to the curve
xa�u� at the point P is given by

�t� = �gabtatb�1/2 =
∣∣∣∣gab dxadu

dxb

du

∣∣∣∣1/2 = �gab dxadxb�1/2
du

=
∣∣∣∣ dsdu

∣∣∣∣ �
where ds is the distance measured along the curve at P that corresponds to the
parameter interval du along the curve.

A non-null curve is one for which the tangent vector at every point is not null,
i.e. �t� �= 0. For such a curve, the length of the tangent vector at each point depends
on the parameter u and, in general, can vary along the curve. However, we see
that if the curve is parameterised in terms of a parameter u that is related to the
distance s measured along the curve by u= as+b, where a and b are constants,
with a �= 0, then the length of the tangent vector will be constant along the curve.
In this case u is called an affine parameter along the curve. Moreover, if we take
u= s then the tangent vector (with components dxa/ds) is always of unit length.

A null curve is one for which the tangent vector is null, �t� = 0, at every point
along the curve; equivalently, the distance ds between any two points on a null
curve is zero. Since s does not vary along the curve, we clearly cannot use it as
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a parameter. We are, however, free to use any other non-zero scalar parameter u
that does vary along the curve. Moreover, even for null curves it is still possible
to define a privileged family of affine parameters. The definition of an affine
parameter for a null curve is best introduced through the study of geodesics.

3.17 Geodesics

A geodesic in Euclidean space is a straight line, which has two equivalent defining
properties. First, its tangent vector always points in the same direction (along
the line) and, second, it is the curve of shortest length between two points. We
can use generalisations of either property to define geodesics in more general
manifolds. The fixed direction of their tangent vectors can be used to define both
non-null and null geodesics in a pseudo-Riemannian manifold, whereas clearly
the extremal length can only be used to define non-null geodesics. In a manifold
that is torsionless (so that (3.19) is satisfied) these two defining properties are
equivalent, for non-null geodesics, and lead to the same curves.7

Let us begin by characterising a geodesic as a curve xa�u� described in terms
of some general parameter u by the fixed direction of its tangent vector t�u�. The
equations satisfied by the functions xa�u� are thus determined by the requirement
that, along the curve,

dt
du
= ��u� t� (3.44)

where ��u� is some function of u. From (3.41), we see that the components ta of
the tangent vector in the coordinate basis must satisfy

Dta

Du
= dta

du
+ a

bct
b dx

c

du
= ��u�ta�

Since the components of the tangent vector are ta = dxa/du we find that the
equations satisfied by a geodesic are

d2xa

du2
+ a

bc

dxb

du

dxc

du
= ��u�

dxa

du
� (3.45)

Equation (3.45) is valid for both null and non-null geodesics parameterised
in terms of some general parameter u. If the curve is parameterised in such a
way that ��u� vanishes, however, then u is a privileged parameter called an
affine parameter. From (3.44), we see that this corresponds to a parameterisation

7 In a manifold with torsion, the two properties lead to different curves: a curve whose length is stationary with
respect to small variations in the path is called a metric geodesic, whereas a curve whose tangent vector is
constant along the path is an affine geodesic.



3.18 Stationary property of non-null geodesics 77

in which the tangent vector is the same at all points along the curve (i.e. it is
parallel-transported), so that

dt
du
= 0 ⇒ Dta

Du
= 0� (3.46)

The equations satisfied by an affinely parameterised geodesic are thus

d2xa

du2
+ a

bc

dxb

du

dxc

du
= 0� (3.47)

Since one is always free to choose an affine parameter, we shall henceforth
restrict ourselves to this simplified form. In particular, for non-null geodesics
a convenient affine parameter is the distance s measured along the curve. The
geodesic equation (3.47) is one of the most important results for our study of
particle motion in general relativity.

Finally, we note how affine parameters are related to one another. If we change
the parameterisation from an affine parameter u to some other parameter u′ then
the functions xa�u′� describing � in terms of the new parameter will differ from
the original functions xa�u�. If, for some arbitrary new parameter u′, we rewrite
(3.47) in terms of derivatives with respect to u′ then the geodesic equation does
not, in general, retain the form (3.47) but instead becomes

d2xa

du′2
+ a

bc

dxb

du′
dxc

du′
=
(
d2u/du′2

du/du′

)
dxa

du′
� (3.48)

It is clear from (3.48) that if u is an affine parameter then so too is any linearly
related parameter u′ = au+ b, where a and b are constants (i.e. they do not
depend on position along the curve) and a �= 0.

3.18 Stationary property of non-null geodesics

Let us now consider non-null geodesics as curves of extremal length between two
fixed points A and B in the manifold. Suppose that we describe the curve xa�u�
in terms of some general (not necessarily affine) parameter u. The length along
the curve is

L=
∫ B

A
ds =

∫ B

A
�gabẋaẋb�1/2 du�

where the overdot is a shorthand for d/du. Now consider the variation in path
xa�u�→ xa�u�+�xa�u�, where A and B are fixed. The requirement for xa�u� to be
a geodesic is that �L= 0 with respect to the variation in the path. This is a calculus-
of-variations problem, (3.66), in which the integrand F = ṡ = �gabẋaẋb�1/2.
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If we substitute this form for F directly into the Euler–Lagrange equa-
tions (3.67), i.e.

d

du

(
�F

�ẋc

)
− �F

�xc
= 0�

then we obtain
d

du

(
gacẋ

a

ṡ

)
− 1

2ṡ
��cgab�ẋ

aẋb = 0� (3.49)

Noting that ġac = ��bgac�ẋ
b, the u-derivative is given by

d

du

(
gacẋ

a

ṡ

)
= 1

ṡ

[
��bgac�ẋ

aẋb+gacẍ
a− s̈

ṡ
gacẋ

a

]
�

Substituting this expression back into (3.49) and rearranging yields

gacẍ
a+ ��bgac�ẋ

aẋb− 1
2��cgab�ẋ

aẋb =
(
s̈

ṡ

)
gacẋ

a� (3.50)

By interchanging dummy indices, we can write ��bgac�ẋ
aẋb = 1

2��bgac +
�agbc�ẋ

aẋb. Substituting this into (3.50), multiplying the whole equation by gdc

and remembering that gdcgac = �dc , we find that

ẍd+ 1
2g

dc��bgac+ �agbc− �cgab�ẋ
aẋb =

(
s̈

ṡ

)
ẋd�

Finally, using the expression (3.21) for the connection in terms of the metric and
relabelling indices, we obtain

ẍa+ a
bcẋ

bẋc =
(
s̈

ṡ

)
ẋa� (3.51)

Comparing this equation with (3.48) we see that the two are equivalent. We also
see that, for a non-null geodesic, an affine parameter u is related to the distance
s measured along the curve by u= as+b, where a and b are constants �a �= 0�.

3.19 Lagrangian procedure for geodesics

In order to obtain the parametric equations xa= xa�u� of an affinely parameterised
geodesic, we must solve the system of differential equations (3.47). Bearing in
mind that the equations (3.21), which define the  a

bc, are already complicated,
it would seem a formidable procedure to set up the geodesic equations, let alone
solve them. Nevertheless, in the previous section we found that the equations
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for a non-null geodesic arise very naturally from a variational approach. Looking
back at the derivation of (3.51), however, we note this requires that ṡ �= 0. Thus
the proof is not valid for null geodesics. Fortunately, it is possible to set up a
variational procedure which generates the equations of an affinely parameterised
geodesic and which remains valid for null geodesics. This very neat procedure
also produces the connection coefficients  a

bc as a spin-off.
In standard classical mechanics, one can describe a system in terms of a set of

generalised coordinates xa that are functions of time t. These coordinates define
a space with a line element

ds2 = gab dx
adxb�

which, in classical mechanics, is called the configuration space of the system. One
can form the Lagrangian for the system from the kinetic and potential energies,

L= T −V = 1
2gabẋ

aẋb−V�x��

where ẋa ≡ dxa/dt. By demanding that the action

S =
∫ tf

ti

Ldt

is stationary with respect to small variations in the functions xa�t�, the equations
of motion of the system are then found as the Euler–Lagrange equations

d

dt

(
�L

�ẋa

)
− �L

�xa
= 0�

This should all be familiar to the reader (but is discussed in more detail in
Chapter 19). Less familiar, perhaps, is how the equations of motion look if we
write them out in full:

ẍa+ a
bcẋ

bẋc =−gab�bV�

These are just the equations of an affinely parameterised geodesic with a force
term on the right-hand side. In this case, the  a

bc are the metric connections of
the configuration space. If the forces vanish then Lagrange’s equations say that
‘free’ particles move along geodesics in the configuration space.

Thus, by analogy, in an arbitrary pseudo-Riemannian manifold we may obtain
the equations for an affinely parameterised (null or non-null) geodesic xa�u� by
considering the ‘Lagrangian’

L= gabẋ
aẋb�
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where ẋa ≡ dxa/du and we have omitted the irrelevant factor 1
2 . As can be shown

directly, substituting this Lagrangian into the Euler–Lagrange equations

d

du

(
�L

�ẋa

)
− �L

�xa
= 0 (3.52)

yields, as required,

ẍa+ a
bcẋ

bẋc = 0� (3.53)

Performing this calculation, one finds that nowhere does it require ṡ �= 0 and so
is valid for both null and non-null geodesics. Thus the Euler–Lagrange equations
provide a useful way of generating the geodesic equations, and the connection
coefficients may be extracted from the latter.

We note that, in seeking solutions of the geodesic equations (3.53), it often
helps to make use of the first integral of the equations. For null geodesics, the
first integral is simply

gabẋ
aẋb = 0� (3.54)

whereas, for non-null geodesics, if we choose the parameter u= s then

�gabẋaẋb� = 1� (3.55)

These results can prove extremely useful in solving the geodesics equations.
Demonstrating the equivalence of the geodesic and Euler–Lagrange equations

allows us to make a useful observation. If the gab do not depend on some particular
coordinate xd (say) then (3.52) shows that

�L

�ẋd
= gdbẋ

b = constant�

However, ẋb = tb, where t is the tangent vector to the geodesic, and so we find that

td = constant�

Thus, we have the important result that if the metric coefficients gab do not depend
on the coordinate xd then the dth covariant component td of the tangent vector is
a conserved quantity along an affinely parameterised geodesic. We will use this
result often in our discussion of particle motion in general relativity.
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3.20 Alternative form of the geodesic equations

The most common form of the geodesic equations is that given in (3.53). It is
sometimes useful, however, to recast the geodesic equations in different forms.
Thus, we note here an alternative way of writing them that will be of particular
practical use when we come to study particle motion in general relativity.

From (3.46), for a geodesic we have dt/du = 0. In some coordinate system
we may write this equation in terms of the intrinsic derivative of the covariant
components of the tangent vector as

Dta
Du

≡ dta
du

− b
actb

dxc

du
= 0�

Remembering that tc = ẋc = dxc/du, we thus have

ṫa =  b
actbt

c�

which, on rewriting the connection coefficients  b
ac using (3.21), becomes

ṫa = 1
2g

bd��agdc+ �cgad− �dgac�tbt
c = 1

2��agdc+ �cgad− �dgac�t
dtc�

Using the symmetry of the metric tensor, we see that the last two terms in the
summation on d and c cancel. Thus, we obtain a useful alternative form of the
geodesic equations,

ṫa = 1
2��agcd�t

ctd� (3.56)

From this equation, we may immediately verify our earlier finding that if the
metric gcd does not depend on the coordinate xa then ta = constant.

Appendix 3A: Vectors as directional derivatives

In an arbitrary manifold, the formal mathematical definition of a tangent vector
to a curve at some point P is in terms of the directional derivative along the
curve at that point. In particular, let us consider some curve � defined in terms of
an arbitrary coordinate system by xa�u�. In addition, suppose that some arbitrary
scalar function f�xa� is defined on the manifold. At any point P on the curve, the
directional derivative of f is defined simply as

df

du
= �f

�xa
dxa

du

at that point. However, ta ≡ dxa/du gives the components of a tangent vector to
the curve at P and, since f is arbitrary, we may write

d

du
= ta

�

�xa
�
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Thus, the components ta define a unique directional derivative, which we may
identify as the tangent vector t. Moreover, it follows that the differential operators
�/�xa are the coordinate basis vectors ea at P, i.e. they are the tangent vectors to
the coordinate curves at this point.

In fact, any set of vector components va defines a unique directional derivative

va
�

�xa
� (3.57)

and, conversely, this directional derivative defines a unique set of components va.
We may thus identify (3.57) as the vector v. Thus the definition of a vector as a
directional derivative replaces the more familiar notion of a directed line segment,
which cannot be generalised to non-Euclidean manifolds. It is straightforward
to verify that all the usual rules of vector algebra and the behaviour of the
components va under coordinate transformations follow immediately from (3.57).

Appendix 3B: Polar coordinates in a plane

As a simple example of the material presented in this chapter, let us consider
the special case of a two-dimensional Euclidean plane. The most common way
of labelling points in a plane is by using Cartesian coordinates �x� y�, but it is
sometimes convenient to use plane polar coordinates �����. The two coordinate
systems are related by the equations

�= �x2+y2�1/2� �= tan−1�y/x��

and their inverses

x = � cos�� y = � sin��

The transformation matrices relating these two sets of coordinates are⎛⎜⎜⎜⎝
��

�x

��

�y

��

�x

��

�y

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝ cos� sin�

−1
�
sin�

1
�
cos�

⎞⎟⎟⎟⎠
and ⎛⎜⎜⎜⎝

�x

��

�x

��

�y

��

�y

��

⎞⎟⎟⎟⎠=
⎛⎜⎜⎝cos� −� sin�

sin� � cos�

⎞⎟⎟⎠ �

which are easily shown to be inverses of one another. For convenience, in the
following we will sometimes refer to the polar coordinates as the coordinate
system xa�a= 1�2�.
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ex
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Figure 3.7 Labelling points in a plane with Cartesian coordinates and plane
polar coordinates. Examples of basis vectors for the two systems are also shown.

Basis vectors Let us now consider the coordinate basis vectors in each system.
The coordinate curves for each system are shown as dotted lines in Figure 3.7
and the basis vectors are tangents to these curves. For the Cartesian coordinates,
ex and ey have the special property that they are the same at every point P in the
plane. They are of unit length and point along the x- and y-directions respectively,
and we can write

ds= dx ex+dy ey�

In plane polar coordinates this becomes

ds= �cos�d�−� sin�d��ex+ �sin�d�+� cos�d��ey� (3.58)

and so, using the definition (3.3) of the coordinate basis vectors, we obtain

e� = cos� ex+ sin� ey� (3.59)

e� = −� sin� ex+� cos� ey (3.60)

Alternatively, we could have arrived at the same result using the transformation
equations (3.9) for basis vectors. The basis vectors e� and e� are shown in
Figure 3.7.

Metric components Substituting the expressions (3.59) and (3.60) into the result
gab = ea · eb, we find that in polar coordinates


gab�=
(
1 0
0 �2

)
�
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Thus, we have

ds2 = ds ·ds= gab dx
a dxb = d�2+�2 d�2�

which matches the result obtained using (3.58) directly. The matrix 
gab� is the
inverse of the matrix 
gab� and thus is given by


gab�=
(
1 0
0 1/�2

)
�

Dual basis The dual basis vectors given by ea = gabeb are

e� = g��e�+g��e� = e��

e� = g��e�+g��e� =
1
�2

e��

where no summation is implied over � or �. These dual basis vectors are easily
shown to obey the reciprocity relation ea · eb = �ab .

Derivatives of basis vectors Since ex and ey are constant vector fields, the
derivatives of the polar coordinate basis vectors are easily found as

�e�
��

= �

��
�cos� ex+ sin� ey�= 0�

�e�
��

= �

��
�cos� ex+ sin� ey�=− sin� ex+ cos� ey =

1
�
e��

These have a simple geometrical picture. At each of two nearby points P and
Q the vector e� must point away from the origin, and so in slightly different
directions. The derivative of e� with respect to � is just the difference between
between e� at P and Q divided by �� (the angle between them). The difference
in this case is clearly a vector parallel to e�, which makes the above results
reasonable. Similarly,

�e�
��

= �

��
�−� sin� ex+� cos� ey�=− sin� ex+ cos� ey =

1
�
e��

�e�
��

= �

��
�−� sin� ex+� cos� ey�=−� cos� ex−� sin� ey =−� e��

The student is encouraged to explain these formulae geometrically.
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Connection coefficients Using the general formula �cea =  b
aceb, we can now

read off the connection coefficients in plane polar coordinates:

�e�
��

=0 ⇒  �
�� = 0�  �

�� = 0

�e�
��

= 1
�
e� ⇒  �

�� = 0�  �
�� =

1
�

�e�
��

= 1
�
e� ⇒  �

�� = 0�  �
�� =

1
�

�e�
��

= −� e� ⇒  �
�� =−��  �

�� = 0�

where no summation is assumed over repeated indices. Thus, although we
computed the derivatives of e� and e� by using the constancy of ex and ey, the
Cartesian basis vectors do not appear in the above equations. The connection’s
importance is that it enables one to express these derivatives without using
any other coordinates than polar. We can alternatively calculate the connection
coefficients from the metric using the general result (3.21). For example,

 �
�� = 1

2g
a����ga�+ ��ga�− �ag����

where summation is implied only over the index a. Since g��= 0 and g��= 1/�2,
we have

 �
�� =

1
2�2

���g��+ ��g��− ��g���=
1
2�2

��g�� =
1
2�2

����
2�= 1

�
�

This is the same expression for  �
�� as that derived above. Indeed, this method of

computing the connection is generally far more straightforward than calculating
the derivatives of basis vectors.

Covariant derivative Given the connection coefficients, we can calculate the
covariant derivative of a vector field in polar coordinates. As an example of its
use, let us find an expression for the divergence � · v of a vector field. This is
given by

� · v= �av
a = �av

a+ a
bav

b�

Now, the contracted connection coefficients are given by

 a
�a =  �

��+ �
�� =

1
�
�

 a
�a =  �

��+ �
�� = 0�
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so we have

� · v= �v�

��
+ 1
�
v�+ �v�

��
= 1

�

�

��
��v��+ �v�

��
�

This formula may not be immediately familiar. The reason for this is that most
often a vector v is expressed in terms of the normalised basis vectors ê� = e�
and ê� = e�/�. In this normalised basis the vector components are v̂� = v� and
v̂� = �v�, and the divergence takes its more usual form

� · v= 1
�

�

��
��v̂��+ 1

�

�v̂�

��
�

Geodesics Finally, let us consider a geodesic in a plane. We already know that
the answer is a straight line, and this is trivially proven in Cartesian coordinates.
For illustration, however, let us perform the calculation the hard way, i.e. in plane
polar coordinates. There are two geodesic equations,

d2xa

ds2
+ a

bc

dxb

ds

dxc

ds
= 0

for a = ���, where we are using the arclength s as our parameter along the
geodesic. The only non-zero connection coefficients are  �

�� =−� and  �
�� =

 �
�� = 1/�. Thus, writing out the geodesic equations for a = � and a = �,

we have

d2�

ds2
−�

(
d�

ds

)2

= 0� (3.61)

d2�

ds2
+ 2
�

d�

ds

d�

ds
= 0� (3.62)

Also, since in a Euclidean plane we can only have non-null geodesics, a first
integral of these equations is provided by

gab
dxa

ds

dxb

ds
= 1 ⇒

(
d�

ds

)2

+�2
(
d�

ds

)2

= 1� (3.63)

Of course, this could have been obtained simply by dividing through ds2 =
d�2+�2 d�2 by ds2.

Equation (3.62) can be written as

1
�2

d

ds

(
�2

d�

ds

)
= 0�

from which we obtain

�2
d�

ds
= k= constant� (3.64)
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Inserting this into (3.63), we find that

d�

ds
=
(
1− k2

�2

)1/2

� (3.65)

The shape of the geodesic is what really interests us, i.e. � as a function of � or
vice versa. Dividing (3.64) by (3.65), we obtain

d�

d�
= k

�2

(
1− k2

�2

)−1/2
�

which can be integrated easily to give

�= �0+ cos−1
(
k

�

)
�

where �0 is the integration constant. The shape of the geodesic is given by

� cos��−�0�= k�

which, on expanding the cosine and using x = � cos� and y = � sin�, gives

x cos�0+y sin�0 = k�

This is the general equation of a straight line. Thus we recover the familiar result
in an unfamiliar coordinate system.

Appendix 3C: Calculus of variations

The calculus of variations provides a means of finding a function (or set of
functions) that makes an integral dependent on the function(s) stationary, i.e.
makes the value of the integral a local maximum or minimum. Let us consider
the path integral

I =
∫ B

A
F�xa� ẋa� u�du� (3.66)

where A, B and the form of the integrand F are fixed, but the ‘curve’ or path
xa�u� has to be chosen so as to make stationary the value of I . From (3.66),
we see that we are considering quite a general case, in which the integrand
F is a function of the 2N independent functions xa and ẋa ≡ dxa/du and the
parameter u.

Now consider making an arbitrary variation xa�u�→ xa�u�+ �xa�u� in the
path, keeping the endpoints A and B fixed. The corresponding first-order variation
in the value of the integral is

�I =
∫ B

A
�F du=

∫ B

A

(
�F

�xa
�xa+ �F

�ẋa
�ẋa

)
du�
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Integrating the last term by parts and requiring the variation �I to be zero, we
obtain

�I =
[
�F

�ẋa
�xa

]B
A

+
∫ B

A

[
�F

�xa
− d

du

(
�F

�ẋa

)]
�xa du= 0�

Since A and B are fixed, the first term vanishes. Then, since �xa is arbitrary, our
required extremal curve xa�u� must satisfy the N equations

d

du

(
�F

�ẋa

)
− �F

�xa
= 0� (3.67)

These are the Euler–Lagrange equations for the problem.

Exercises

3.1 Show that, in general, ea = gabe
b and ea = gabeb. Show also that, under a coordinate

transformation,

e′a =
�xb

�x′a
eb and e′a = �x′a

�xb
eb�

3.2 Calculate the coordinate basis vectors e′a of the coordinates system x′a in Exercise 2.3
in terms of the coordinate basis vectors ea of the Cartesian system. Hence verify
that the metric functions g′ab agree with those found earlier. Calculate the dual basis
vectors e′a in the primed system and hence the quantities g′ab. Find the contravariant
and covariant components of e1 in the primed basis. Hence verify that e1 is of unit
length.

3.3 For any metric gab show that gabgab = N , where N is the dimension of the manifold.
3.4 Show that the affine connection can be written as  b

ac = eb ·�cea. Show further that,
in a torsionless manifold, �cea = �aec.

3.5 Show that, under a coordinate transformation, the affine connection transforms as

 ′abc =
�x′a

�xd
�xf

�x′b
�xg

�x′c
 d

fg−
�xd

�x′b
�xf

�x′c
�2x′a

�xd�xf
�

3.6 For a diagonal metric gab, show that the connection coefficients are given by (with
a �= b �= c and no summation over repeated indices)

 a
bc = 0�  b

aa =−
1

2gbb
�bgaa�

 a
ba =  a

ab = �b

(
ln
√�gaa�) �  a

aa = �a

(
ln
√�gaa�) �

3.7 Let g be the determinant of the matrix 
gab�. By considering the cofactor of the
element gab in this determinant, or otherwise, show that �cg = ggab��cgab�.
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3.8 In a manifold with non-zero torsion, show that the affine connection defined by
(3.11) may be written as

 a
bc =

{
a

bc

}
− 1

2
�Ta

cb+Tc
a
b−Tbc

a��

where
{

a

bc

}
is the metric connection defined by the right-hand side of (3.21) and Ta

bc

is the torsion tensor defined in (3.18). Defining an index symmetrisation operation
such that  a

�bc� ≡ 1
2 � 

a
bc+ a

cb�, show further that

 a
�bc� =

{
a

bc

}
+T�bc�

a�

3.9 In a manifold with non-zero torsion, show that the condition  a
bc = 0 implies that

�agbc = 0 but not vice versa. Show further that, under a coordinate transformation
of the form

x′a = xa−xaP+
1
2
 a

bc�P��x
b−xbP��x

c−xcP��

the affine connection at the point P in the new coordinate system is given by

 ′abc�P�=
1
2
T ′abc�P�

and hence the transformation does not yield a set of geodesic coordinates. Is it still
possible to define local Cartesian coordinates in a manifold with non-zero torsion?

3.10 Show that, for the covariant components va of a vector, the covariant derivative and
the intrinsic derivative along a curve are given respectively by

�bva = �bva− c
abvc and

Dva
Du

= dva
du

− b
acvb

dxc

du
�

3.11 Show that for a vector field with contravariant components vb to have a vanishing
covariant derivative �av

b everywhere in a manifold, it must satisfy the relation

��b 
d
ac− �c 

d
ab+ e

ac 
d
eb− e

ab 
d
ec�v

a = 0�

Hint: Use the fact that partial derivatives commute.
3.12 If a vector field va vanishes on a hypersurface S that bounds a region V of an

N -dimensional manifold, show that∫
V
��av

a�
√−g dNx = 0�

3.13 On the surface of a unit sphere, ds2 = d�2+ sin2 �d�2. Calculate the connection
coefficients in the ����� coordinate system. A vector v of unit length is defined
at the point ��0�0� as parallel to the circle � = 0. Calculate the components of v
after it has been parallel-transported around the circle � = �0. Hence show that,
in general, after parallel transport the direction of v is different but its length is
unchanged.
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3.14 If the two vectors with contravariant components va and wa are each parallel-
transported along a curve, show that vawa remains constant along the curve. Hence
show that if a geodesic is timelike (or null or spacelike) at some point, it is timelike
(or null or spacelike) at all points.

3.15 An affinely parameterised geodesic xa�u� satisfies

d2xa

du2
+ a

bc

dxb

du

dxc

du
= 0�

Show that the form of this equation remains unchanged by an arbitrary coordinate
transformation xa → x′a. Find the form of the geodesic equation for a geodesic
described in terms of some general (non-affine) parameter �. Hence show that all
affine parameters are related by a linear transformation with constant coefficients.

3.16 If x���� is an affinely parameterised geodesic, show that

Du�

D�
= 0�

where u� = dx�/d�. Hence show that the geodesic equations can be written as

du�

d�
= 1

2
���g�#�u

�u#�

3.17 By substituting the ‘Lagrangian’ L = gabẋ
aẋb into the Euler–Lagrange equations,

show directly that

ẍa+ a
bcẋ

bẋc = 0�

where the dots denote differentiation with respect to an affine parameter.
3.18 By transforming from a local inertial coordinate system �� in which

ds2 = c2d�2 = ��� d�
� d���

to a general coordinate system x�, show that freely falling particles obey the geodesic
equations of motion

d2x�

d�2
+ �

��

dx�

d�

dx�

d�
= 0�

where

 �
�� =

�x�

���
�2��

�x��x�
�

3.19 By considering the ‘Lagrangian’ L = gabẋ
aẋb, derive the equations for an affinely

parameterised geodesic on the surface of a sphere in the coordinates �����. Hence
show that, of all the circles of constant latitude on a sphere, only the equator is a
geodesic. Use your geodesic equations to pick out the connection coefficients in
this coordinate system.

3.20 In the 2-space with line element

ds2 = dr2+ r2d�2

r2−a2
− r2dr2

�r2−a2�2
�
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where r > a, show that the differential equation for the geodesics may be written as

a2

(
dr

d�

)2

+a2r2 = Kr4�

where K is a constant such that K = 1 if the geodesic is null. By setting r d�/dr =
tan�, show that the space is mapped onto a Euclidean plane in which �r��� are
taken as polar coordinates and the geodesics are mapped to straight lines.
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Tensor calculus on manifolds

The coordinates with which one labels points in a manifold are entirely arbitrary.
For example, we could choose to parameterise the surface of a sphere in terms
of the coordinates �����, taking any point as the north pole, or we could use
any number of alternative coordinate systems. It is also clear, however, that our
description of any physical processes occurring on the surface of the sphere should
not depend on our chosen coordinate system. For example, at any point P on the
surface one can say that, for example, the air temperature has a particular value
or that the wind has a certain speed in a particular direction. These respectively
scalar and vector physical quantities do not depend on which coordinates are used
to label points in the surface. Thus in, order to describe these physical fields
on the surface, we must formulate our equations in a way that is valid in all
coordinate systems. We have already dealt with such a description for scalar and
vector quantities on manifolds, but now we turn to the generalisation of these
ideas to quantities that cannot be described as a scalar or a vector. This requires
the introduction of the concept of tensors.

4.1 Tensor fields on manifolds

Let us begin by considering vector fields in a slightly different manner. Suppose
we have some arbitrary vector field, defining a vector t at each point of a manifold.
How can we obtain from t a scalar field? Clearly, the only way to do this is to
take the scalar product of t with a vector v from another vector field. Thus, at
each point P in the manifold, we can think of vector t in TP as a linear function
t�·� that takes another vector in TP as its argument and produces a real number.
We can denote the number produced by the action of t on a particular vector v by

t�v�≡ t · v� (4.1)

92
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It is now clear how we can generalise the notion of a vector: in the tangent
space TP , we can define a tensor t as a linear map from some number of vectors
to the real numbers. The rank of the tensor is the number of vectors it has for its
arguments. For example, we can write a third-rank tensor as t�·� ·� ·�. Once again,
we denote the number that the tensor t produces from the vectors u, v and w by

t�u� v�w��

The tensor is defined by the precise set of operations applied to the vectors u, v
and w to produce a scalar. Notice, however, that the definition of a tensor does
not mention the components of the vectors; a tensor must give the same real
number independently of the reference system in which the vector components
are calculated. If at each point P in some region of the manifold we have a tensor
defined then the result is a tensor field in this region.

In fact we have already encountered examples of tensors. Clearly, from our
above discussion, any vector is a rank-1 tensor. Higher-rank tensors thus constitute
a generalisation of the concept of a vector. For example, a particularly important
second-rank tensor is the metric tensor g, which we have already met. This defines
a linear map of two vectors into the number that is their inner product, i.e.

g�u� v�≡ u · v�

We will investigate the properties of this special tensor shortly. Finally, we note
also that a scalar function of position ��x� is a real-valued function of no vectors
at all, and is therefore classified as a zero-rank tensor.

The fact that a tensor is a linear map of the vectors into the reals is particularly
useful. For simplicity, let us consider a rank-1 tensor. Linearity means that, for
general vectors u and v and general scalars � and 
,

t��u+
v�= �t�u�+
t�v��

Similar expansions may be performed for tensors of higher rank. For a second-rank
tensor, for example, we can write

t��u+
v� 	w+ �z� = �t�u� 	w+ �z�+
t�v� 	w+ �z�

= �	t�u�w�+��t�u� z�+
	t�v�w�+
�t�v� z��

4.2 Components of tensors

When a tensor is evaluated with combinations of basis and dual basis vectors
it yields its components in that particular basis. For example, the covariant and
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contravariant components of the rank-1 tensor (vector) in (4.1) in the basis ea are
given by

t�ea�= ta and t�ea�= ta�

Consider now a second-rank tensor t�·� ·�. Its covariant and contravariant compo-
nents are given by

t�ea� eb�= tab and t�ea� eb�= tab�

For tensors of rank 2 and higher, however, we can also define sets of mixed
components. For a rank-2 tensor there are two possible sets of mixed components,

t�ea� eb�= tab and t�ea� e
b�= ta

b�

For a general rank-2 tensor these two sets of components need not be equal.
The contravariant, covariant and mixed components of higher-rank tensors can be
obtained in an analogous manner.

The components of a tensor in a particular basis set specify the action of the
tensor on any other vectors in terms of their components. For example, using the
linearity property, we find that

t�u� v�= t�uaea� v
beb�= tabu

avb�

To obtain this result, we expressed u and v in terms of their contravariant compo-
nents. We could have written either vector in terms of its contravariant or covariant
components, however. Hence we find that there are numerous equivalent expres-
sions for t�u� v� in component notation:

t�u� v�= tabu
avb = tabuavb = ta

buavb = tabuav
b�

This illustrates the general rule that the subscript and superscript positions of a
dummy index can be swapped without affecting the result.

4.3 Symmetries of tensors

A second-rank tensor t is called symmetric or antisymmetric if, for all pairs of
vectors u and v,

t�u� v�=±t�v�u��
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with the plus sign for a symmetric tensor and the minus sign for an antisym-
metric tensor. Setting u = ea and v = eb, we see that the covariant components
of a symmetric or antisymmetric tensor satisfy tab = ±tba. By using different
combinations of basis and dual basis vectors we also see that, for such a tensor,
tab =±tba and ta

b =±tba.
An arbitrary rank-2 tensor can always be split uniquely into the sum of its

symmetric and antisymmetric parts. For illustration let us work with the covariant
components tab of the tensor in some basis. We can always write

tab = 1
2�tab+ tba�+ 1

2�tab− tba��

which is clearly the sum of a symmetric and an antisymmetric part. A notation
frequently used to denote the components of the symmetric and antisymmetric
parts is

t�ab� ≡ 1
2�tab+ tba� and t
ab� ≡ 1

2�tab− tba��

In an analogous manner, a general rank-N tensor t�u� v� � � � �w� is symmetric
or antisymmetric with respect to some permutation of its vector arguments if
its value after permuting the arguments is equal to respectively plus or minus
its original value. From an arbitrary rank-N tensor, however, we can always
obtain a tensor that is symmetric with respect to all permutations of its vector
arguments and one that is antisymmetric with respect to all permutations. In terms
of the tensor’s covariant components, these symmetric and antisymmetric parts are
given by

t�ab���c� =
1
N !�sum over all permutations of the indices a�b� � � � � c��

t
ab���c� =
1
N !�alternating sum over all permutations of the indices a�b� � � � � c��

For example, the covariant components of the totally antisymmetric part of a
third-rank tensor are given by

t
abc� = 1
6�tabc− tacb+ tcab− tcba+ tbca− tbac��

We may extend the notation still further in order to define tensors that are
symmetric or antisymmetric to permutations of particular subsets of their indices.
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To illustrate this, let us consider the covariant components tabcd of a fourth-rank
tensor. Typical expressions might include:

t�ab�cd = 1
2�tabcd+ tbacd��

ta
b�c�d� = 1
2�tabcd− tadcb��

t�a�b�cd� = 1
6�tabcd+ tabdc+ tdbac+ tdbca+ tcbda+ tcbad��

t
ab��cd� = 1
2

[
tab�cd�− tba�cd�

]
= 1

2

[ 1
2�tabcd+ tabdc�− 1

2�tbacd+ tbadc�
]

= 1
4�tabcd+ tabdc− tbacd− tbadc��

The symbols �� are used to exclude unwanted indices from the (anti-)
symmetrisation implied by ( ) and [ ].

4.4 The metric tensor

The most important tensor that one can define on a manifold is the metric tensor
g. This defines a linear map of two vectors into the number that is their inner
product, i.e.

g�u� v�≡ u · v� (4.2)

From this definition, it is clear that g is a symmetric second-rank tensor. Its
covariant and contravariant components are given by

gab = g�ea� eb�= ea · eb and gab = g�ea� eb�= ea · eb�

which, from (4.2), clearly match our earlier definitions. As we showed in Chap-
ter 3, the matrix 
gab� containing the contravariant components of the metric
tensor is the inverse of the matrix 
gab� that contains its covariant components.
The mixed components of g are given by

g�eb� ea�= g�ea� e
b�= �ba�

where the last equality is a result of the reciprocity relation between basis vectors
and their duals.
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4.5 Raising and lowering tensor indices

The contravariant and covariant components of the metric tensor can be used
for raising and lowering general tensor indices, just as they are used for vector
indices. As we have seen, when a tensor acts on different combinations of basis
and dual basis vectors it yields different components. Consider, for example, a
third-rank tensor t. Its covariant components are given by

t�ea� eb� ec�= tabc� (4.3)

whereas one possible set of mixed components of the tensor is given by

t�ea� eb� e
c�= tab

c�

As we stated earlier, in general these two sets of components will differ, since
the basis and dual basis vectors are related by the metric: ec = gcde

d. Thus, for
example,

tabc = gcdtab
d�

In a similar way we can raise or lower more than one index at a time. For example,

tabc = gadgcetdb
e�

4.6 Mapping tensors into tensors

Tensors can be thought of not just as maps between vectors and real numbers
but also as maps between tensors and other tensors. Consider, for example, a
third-rank tensor t, but let us not ‘fill’ all of its argument ‘slots’ with vectors. If,
for instance, we fill just its last slot with some fixed vector u, we have the object

t�·� ·�u�� (4.4)

What sort of object is this? Well, it is clear that, if we supply two further vectors to
this object, we will obtain a real number. Thus the object (4.4) is itself a second-
rank tensor, which we could denote by s (say). Thus the third-rank tensor t has
‘mapped’ the vector u into the second-rank tensor s. The covariant components
(say) of s are given by

sab ≡ s�ea� eb�= t�ea� eb�u�= tabcu
c�

where, in the last slot, we have expressed u as ucec. By expressing this vector as
uce

c instead, we obtain the equivalent expression sab = tab
cuc.

As a further example of mapping between tensors, let us fill both the first and
last slots of t with fixed vectors v and u respectively to obtain the object

t�v� ·�u��
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Clearly, this object is a first-rank tensor (or vector), which we denote by w. Thus
the third-rank tensor t has mapped the two vectors v and u into the vector w. The
covariant components (say) of w are

wb = w�eb�= t�v� eb�u��

which can be expressed in several equivalent ways, i.e.

wb = tabcv
auc = tabcvau

c = tab
cvauc = tabcvauc�

The number of free indices in such expressions is the rank of the resulting tensor.

4.7 Elementary operations with tensors

Tensor calculus is concerned with tensorial operations, that is, operations on
tensors which result in quantities that are still tensors. We now consider some
elementary tensorial operations.

Addition (and subtraction)

It is clear from the definition of a tensor that the sum and difference of two tensors
of rank N are both themselves tensors of rank N . For example, the covariant
components (say) of the sum s and difference d of two rank-2 tensors are given
straightforwardly by

sab = s�ea� eb�= t�ea� eb�+ r�ea� eb�= tab+ rab�

dab = d�ea� eb�= t�ea� eb�− r�ea� eb�= tab− rab�
(4.5)

Multiplication by a scalar

If t is a rank-N tensor then so too is �t, where � is some arbitrary real constant.
Clearly, its components are all multiplied by �.

Outer product

The outer or tensor product of two tensors produces a tensor of higher rank. The
simplest example of an outer product is that of two vectors. This is defined as the
rank-2 tensor, denoted by u⊗ v, such that

�u⊗ v��p�q�≡ u�p�v�q��

where p and q are arbitrary vector arguments (this notation is not to be confused
with the vector product u× v of two vectors, which is itself a vector). Note that
the outer product is not, in general, commutative, so that u⊗ v and v⊗ u are
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different rank-2 tensors. The covariant components (say) of u⊗ v in some basis
are given by

�u⊗ v��ea� eb�≡ u�ea�v�eb�= uavb�

The outer product of higher-rank tensors is a simple generalisation of the outer
product of two vectors. For example, the outer product of a rank-2 tensor t with
a rank-1 tensor s is defined by

�t⊗ s��p�q� r�≡ t�p�q�s�r��

This is a rank-3 tensor, which we could call h. The mixed components, for
instance, of this tensor are given by

habc = t�ea� eb�s�ec�= tabsc� (4.6)

In general, the outer product of an N th-rank tensor with an Mth-rank tensor will
produce an �N +M�th-rank tensor.

Contraction (and inner product)

The contraction of a tensor is performed by summing over the basis and dual
basis vectors in two of its vector arguments, and it results in a tensor of lower
rank. Let us take as an example a rank-3 tensor h and consider the quantity

q�·�= h�ea� ·� ea��

This is clearly a rank-1 tensor with covariant components (say) given by

qb = h�ea� eb� ea�= haba� (4.7)

Thus in terms of tensor components, contraction amounts to setting a subscript
equal to a superscript and summing, as the summation convention requires. In
general, performing a single contraction on an N th-rank tensor will produce a
tensor of rank N −2.

Contraction may be combined with tensor multiplication to obtain the inner
product of two tensors. For example, if habc were in fact given by (4.6), then
(4.7) could be written as

qb = t�ea� eb�s�ec�= tabsa�

which is the inner product of the tensors t and s. Alternatively, one could view
the qb as a contraction of the rank-3 tensor having components tabsc, which is
the outer product t⊗ s.

If two tensors t and s are rank 2 or lower then we can denote their inner product
unambiguously by t · s. Note, however, that in general such an inner product is
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not commutative. For example, if t is a rank-2 tensor and s is rank 1 then the
contravariant components (say) of the vectors t · s and s · t are respectively

tabsb and tabsa�

Clearly, the ‘dot’ notation for the inner product becomes ambiguous if either
tensor is rank 3 or higher, since there is then a choice concerning which indices
to contract.

4.8 Tensors as geometrical objects

We have seen that a rank-1 tensor t�·� can be identified as a vector. The covariant
and contravariant components of this vector in some basis are given by

t�ea�= ta and t�ea�= ta�

We are used to thinking of a vector t as a geometrical object which can be made
up from a linear combination of the basis vectors,

t = taea = tae
a� (4.8)

Tensors of higher rank are generalisations of the concept of a vector and can
also be regarded as geometrical entities. In a particular basis, a general tensor
can expressed as a linear combination of a tensor basis made up from the basis
vectors and their duals.

Let us consider the outer product ea⊗eb of two basis vectors of some coordinate
system. The contravariant components of this rank-2 tensor in this basis are very
simple,

�ea⊗ eb��e
c� ed�= ea�e

c�eb�e
d�= �ca�

d
b �

Now suppose that we have some general rank-2 tensor t, whose contravariant
components in our basis are tab. Let us consider the quantity tab�ea⊗eb�. This is
a sum of rank-2 tensors, which must therefore also be a rank-2 tensor (see above).
If we consider its action on two basis vectors, we find

tab�ea⊗ eb��e
c� ed�= tab�ca�

d
b = tcd�

the tcd are simply the contravariant components of t. Thus, in an analogous way
to the vector in (4.8), we may express the rank-2 tensor t as a linear combination
basis tensors,

t = tab�ea⊗ eb��
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By considering different tensor bases, constructed from other combinations of the
basis and dual basis vectors, we can also write t in several different ways:

t = tab�e
a⊗ eb�= ta

b�ea⊗ eb�= tab�ea⊗ eb��

This idea is extended straightforwardly to higher-rank tensors.

4.9 Tensors and coordinate transformations

The description of tensors as a geometrical objects lends itself naturally to a
discussion of the behaviour of tensor components under a coordinate transfor-
mation xa → x′a on the manifold. As shown in Chapter 3, there is a simple
relationship between the coordinate basis vectors ea associated with the coordi-
nate system xa and the coordinate basis vectors e′a associated with a new system
of coordinates x′a. We found that at any point P the two sets of coordinate basis
vectors are related by

e′a =
�xb

�x′a
eb� (4.9)

where the partial derivative is evaluated at the point P. A similar relationship
holds between the two sets of dual basis vectors:

e′a = �x′a

�xb
eb� (4.10)

Using (4.9) and (4.10), we can now calculate how the components of any general
tensor must transform under the coordinate transformation.

As shown in Chapter 3, the contravariant components of a vector t in the new
coordinate basis are given by

t′a = t�e′a�= �x′a

�xb
t�eb�= �x′a

�xb
tb�

Similarly, the covariant components of t are given by

t′a = t�e′a�=
�xb

�x′a
t�eb�=

�xb

�x′a
tb�

It is important to remember that the unprimed and primed components describe
the same vector t in terms of different basis vectors, i.e. t = taea = t′ae′a. The
vector t is a geometric entity that does not depend on the choice of coordinate
system.
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The transformation properties of the components of higher-rank tensors may
be found in a similar way. For example, if t is a second-rank tensor then

t′ab =
�xc

�x′a
�xd

�x′b
tcd�

t′ab = �x′a

�xc
�x′b

�xd
tcd�

t′ba =
�xc

�x′a
�x′b

�xd
tc
d�

(4.11)

Once again, these components describe the same tensor (which is a geometric
entity) in terms of different bases. For example,

t = tab�ea⊗ eb�= t′ab�e′a⊗ e′b��

In general, when transforming the components of a tensor of arbitrary rank,
each superscript inherits a transformation ‘matrix’ �x′a/�xc and each subscript a
transformation matrix �xc/�x′a. Thus, for example,

t′ab
c = �xd

�x′a
�xe

�x′b
�x′c

�xf
tde

f � (4.12)

Indeed, the basic requirement for a set of quantities to be the components of a
tensor is that they transform in such a way under a change of coordinates. We
shall return to this point later.

4.10 Tensor equations

Given a coordinate system (and hence a coordinate basis and its dual), it is
convenient to work in terms of the components of a tensor t in this system rather
than with the geometrical entity t itself. Therefore, from here onwards we shall
adopt a much-used convention, which is to confuse a tensor with its components.
This allows us to refer simply to the tensor tab

c, rather than the tensor with
components tab

c.
We now come to the reason why tensors are important in mathematical physics.

Let us illustrate this by way of an example. Suppose we find that in one particular
coordinate system two tensors are equal, for example,

tab = sab� (4.13)
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Let us multiply both sides by �xa/�x′c and �xb/�x′d and take the implied summa-
tions to obtain

�xa

�x′c
�xb

�x′d
tab =

�xa

�x′c
�xb

�x′d
sab�

Since tab and sab are both covariant components of tensors of rank 2, this equation
can be restated as t′ab = s′ab. In other words, the equation (4.13) holds in any
other coordinate system. In short, a tensor equation which holds in one coordi-
nate system necessarily holds in all coordinate systems. Put another way, tensor
equations are coordinate independent, which is in fact obvious from the geomet-
ric approach we have adopted since the outset. One particularly useful fact that
emerges clearly from this discussion, and the transformation law (4.12), is that if
all the components of a tensor are zero in one coordinate system then they vanish
in all coordinate systems. This is useful in proving many tensor relations.

4.11 The quotient theorem

Not all objects with indices are the components of a tensor. An important example
is provided by the connection coefficients  a

bc, which vanish in a locally Cartesian
coordinate system but not in other coordinate systems. Moreover, in Chapter 3
we derived the transformation properies of  a

bc and found that these were not of
the form (4.12).

As mentioned above, the fundamental requirement that a set of quantities form
the components of a tensor is that they obey a transformation law of the kind
(4.12) under a change of coordinates. The quotient theorem provides a means of
establishing this requirement in a particular case without having to demonstrate
explicitly that the transformation law holds. It states that if a set of quantities
when contracted with a tensor produces another tensor then the original set of
quantities is also a tensor. Rather than give a general statement of the theorem
and its proof, which tend to become obscured by a mass of indices, we shall give
an example that illustrates the gist of the theorem.

In an N-dimensional manifold, suppose that with each system of coordinates
about a point P there are associated N 3 numbers tabc and it is known that, for arbi-
trary contravariant vector components va, the N 2 numbers tabcv

c transform as the
components of a rank-2 tensor at P under a change of coordinates. This means that

t′abcv′c =
�x′a

�xd
�xe

�x′b
tdef v

f � (4.14)

where the t′abc are the corresponding N 3 numbers associated with the primed
coordinate system. Then we may deduce that the tabc are the components of a
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rank-3 tensor, as follows. Since vf = ��xf /�x′c�v′c, equation (4.14) yields

t′abcv′c =
�x′a

�xd
�xe

�x′b
tdef

�xf

�x′c
v′c

which, on rearrangement gives(
t′abc−

�x′a

�xd
�xe

�x′b
�xf

�x′c
tdef

)
v′c = 0�

This holds for arbitrary vector components v′c, so the expression in parentheses
must vanish identically. Thus

t′abc =
�x′a

�xd
�xe

�x′b
�xf

�x′c
tdef �

and therefore the tabc must be the components of a third-rank tensor.
Thus the gist of the quotient theorem is that if a set of numbers displays tensor

characteristics when some of their indices are ‘killed off’ by summation with the
components of an arbitrary tensor then the original numbers are the components
of a tensor.

4.12 Covariant derivative of a tensor

It is straightforward to show that in an arbitrary coordinate system (unlike in local
Cartesian coordinates) the differentiation of the components of a general tensor,
other than a scalar, with respect to the coordinates does not in general result in
the components of another tensor. For example, consider the derivative of the
contravariant components va of a vector. Under a change of coordinates we have

�v′a

�x′b
= �xc

�x′b
�v′a

�xc

= �xc

�x′b
�

�xc

(
�x′a

�xd
vd
)

= �xc

�x′b
�x′a

�xd
�vd

�uc
+ �xc

�x′b
�2x′a

�xc�xd
vd� (4.15)

The presence of the second term on the right-hand side of (4.15) shows that the
derivatives �va/�xb do not form the components of a second-order tensor. This
term arises because the ‘transformation matrix’ 
�x′a/�xb� changes with position
in the manifold (this is not true in local Cartesian coordinates, for which the
second term vanishes).

To avoid this difficulty, in Chapter 3 we introduced the covariant derivative of
a vector,

�bv
a = �bv

a+ a
cbv

c�
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in terms of which we may write �bv= ��bv
a�ea. Using the transformation prop-

erties of the connection, derived in Chapter 3, it is straightforward to show that
the �bv

a are the (mixed) components of a rank-2 tensor, which is in fact clear
from their definition. We denote this rank-2 tensor by �v, which is formally the
outer product of the vector differential operator � with the vector v, although it
is usual to omit the symbol ⊗ in outer products containing � . In a given basis we
have � = ea�a, so we may write, for example,

�v= ea�a⊗vbeb = ea⊗ �a�v
beb�= ��av

b�ea⊗ eb�

Similarly, the �bva form the covariant components of this tensor, i.e. �v =
��avb�e

a⊗ eb. Indeed, it is easy to check that �bv
a and �bva satisfy the required

transformation laws for being the components of a tensor.
We can extend the idea of the covariant derivative to higher-rank tensors. For

example, let us consider an arbitrary rank-2 tensor t and derive the form of the
covariant derivative �ct

ab of its contravariant components. Expressing t in terms
of its contravariant components, we have

�ct = �c�t
abea⊗ eb�=

(
�ct

ab
)
ea⊗ eb+ tab��cea�⊗ eb+ tabea⊗ ��ceb��

We can rewrite the derivatives of the basis vectors in terms of connection coeffi-
cients to obtain

�ct = ��ct
ab�ea⊗ eb+ tab d

aced⊗ eb+ tabea⊗ d
bced�

Interchanging the dummy indices a and d in the second term on the right-hand
side and b and d in the third term, this becomes

�ct =
(
�ct

ab+ a
dct

db+ b
dct

ad
)
ea⊗ eb�

where the expression in parentheses is the required covariant derivative,

�ct
ab = �ct

ab+ a
dct

db+ b
dct

ad� (4.16)

Using (4.16), the derivative of the tensor t with respect to xc can be written in
terms of its contravariant components as

�ct = ��ct
ab�ea⊗ eb�
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Similar results may be obtained for the the covariant derivatives of the mixed
and covariant components of the second-order tensor t. Collecting these results
together, we have

�ct
ab = �ct

ab+ a
dct

db+ b
dct

ad�

�ct
a
b = �ct

a
b+ a

dct
d
b− d

bct
a
d�

�ctab = �ctab− d
actdb− d

bctad�

(4.17)

The positions of the indices in these expressions are once again very systematic.
The last index on each connection coefficient matches that on the covariant
derivative, and the remaining indices can only be logically arranged in one way.
For each contravariant index (superscript) on the left-hand side we add a term on
the right-hand side containing a Christoffel symbol with a plus sign, and for every
covariant index (subscript) we add a corresponding term with a minus sign. This
is extended straightforwardly to tensors with an arbitrary number of contravariant
and covariant indices. We note that the quantities �ct

ab��ct
a
b and �ctab are the

components of the same third-order tensor � t with respect to different tensor
bases, i.e.

� t = ��ct
ab�ec⊗ ea⊗ eb = ��ct

a
b�e

c⊗ ea⊗ eb = ��ctab�e
c⊗ ea⊗ eb�

One particularly important result is that the covariant derivative of the metric
tensor g is identically zero at all points in a manifold, i.e.

�g= 0�

Alternatively, we can write this in terms of the components in any basis as

�cgab = 0 and �cg
ab = 0� (4.18)

This result follows immediately from comparing, for example, the third result in
(4.17) with our expression (3.20), derived in Chapter 3, for the partial derivative
of the metric in terms of the affine connection. We note, in particular, that the
expression (3.20) holds even in a manifold with non-zero torsion, and therefore
so too must the result (4.18).1

The result (4.18) has an important consequence, which considerably simplifies
tensor manipulations. This is that we can interchange the order of raising or

1 In fact, for a general manifold with non-zero torsion, it is not necessary that (4.18) holds since one can,
in principle, define the affine connection and the metric independently. In arriving at our earlier expression
(3.20), we had in fact already assumed implicitly that the affine connection was metric-compatible, in which
case (4.18) holds automatically. This topic is, however, beyond the scope of our discussion.
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lowering an index and performing covariant differentiation without affecting the
result. For example, consider the contravariant components tab of some rank-2
tensor. Using (4.18), we can write, for example,

�ct
ab = �c�g

bdtad�= ��cg
bd�tad+gbd��ct

a
d�= gbd��ct

a
d��

We also note that the covariant derivative obeys the standard rule for the differ-
entiation of a product.

4.13 Intrinsic derivative of a tensor along a curve

In Chapter 3 we encountered vector fields that are defined only on some subspace
of the manifold, an extreme example being when the vector field v�u� is defined
only along some curve xa�u� in the manifold (as for the spin s��� of a single
particle along its worldline in spacetime). In a similar way a tensor field t�u�
could be defined only along some curve � . We now consider how to calculate
the derivative of such a tensor with respect to the parameter u along the curve.

Let us begin by expressing the tensor at any point along the curve in terms of
its contravariant components (say),

t�u�= tab�u� ea�u�⊗ eb�u��

where the ea�u� are the coordinate basis vectors at the point on the curve corre-
sponding to the parameter value u. Thus, the derivative of t along the curve � is
given by

dt
du
= dtab

du
ea⊗ eb+ tab

dea
du

⊗ eb+ tabea⊗
deb
du

�

Using the chain rule to rewrite the derivatives of the basis vectors, we obtain

dt
du
= dtab

du
ea⊗ eb+ tab

dxc

du

�ea
�xc

⊗ eb+ tabea⊗
dxc

du

�eb
�xc

�

Finally, by writing the partial derivatives of the basis vectors in terms of the
connection and relabelling indices, we find that

dt
du
=
(
dtab

du
+ a

dct
db dx

c

du
+ b

dct
ad dx

c

du

)
ea⊗ eb� (4.19)

The term in brackets is called the intrinsic (or absolute) derivative of the compo-
nents tab along the curve � and is denoted

Dtab

Du
= dtab

du
+ a

dct
db dx

c

du
+ b

dct
ad dx

c

du
�
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Similar results may be obtained for the covariant and mixed components of the
tensor t. For example, the derivative of t along the curve may be written

dt
du
= Dtab

Du
ea⊗ eb =

Dtab
Du

ea⊗ eb = Dtab
Du

ea⊗ eb�

Clearly, the method can be extended easily to higher-rank tensors.
In a similar way to vectors, a tensor t is said to be parallel-transported along a

curve � if dt/du= 0 or, equivalently, in terms of its components, if for example
Dtab/Du= 0.
Following our discussion of the intrinsic derivative of a vector in Chapter 3, a

convenient way to remember the form of the intrinsic derivative is to pretend that
the tensor t is in fact defined throughout (some region of) the manifold, i.e. not
only along the curve � . If this were the case then we could differentiate t with
respect to the coordinates xa. Thus we could write

dtab

du
= �tab

�xc
dxc

du
�

Substituting this into (4.19), we could then factor out dxc/du and recognise the
other factor as the covariant derivative �ct

ab. Thus we could write

Dtab

Du
= �ct

ab dx
c

du
� (4.20)

with similar expressions for the intrinsic derivatives of its other components. It
must be remembered, however, that if t is only defined along the curve � then
formally (4.20) is not defined and acts merely as an aide-memoire.

Exercises

4.1 If t is a rank-2 tensor, show that

t�u+ v�w+ z�= tab�u
a+va��wb+ zb��

4.2 If sab = sba and tab =−tba are the component of a symmetric and an antisymmetric
tensor respectively, show that sabt

ab = 0.
4.3 If tab are the components of an antisymmetric tensor and va the components of a

vector, show that

v
atbc� = 1
3 �vatbc+vctab+vbtca��

4.4 If tab are the components of a symmetric tensor and va the components of a vector,
show that if

vatbc+vctab+vbtca = 0

then either tab = 0 or va = 0.
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4.5 If the tensor tabcd satisfies tabcdv
awbvcwd = 0 for arbitrary vectors va and wa, show

that

tabcd+ tcdab+ tcbad+ tadcb = 0�

4.6 Consider the infinitesimal coordinate transformation

x′a = xa+ �va�x��

where va�x� is a vector field and � is a small scalar quantity. Show that, to first
order in �,

g′ab�x
′�= gab�x�− ��gac�bv

c+gcb�av
c��

4.7 By investigating their transformation properties, show that �bv
a are the mixed

components of a rank-2 tensor.
4.8 If va are the covariant components of a vector and Aab are the components of an

antisymmetric rank-2 tensor, show that

�avb−�bva = �avb− �bva�

�aAbc+�cAab+�bAca = �aAbc+ �cAab+ �bAca�

Determine the symmetry properties of the rank-3 tensor

Babc = �aAbc+ �cAab+ �bAca�

4.9 Show that covariant differentiation obeys the usual product rule, e.g.

�a�AbcB
cd�= ��aAbc�B

cd+Abc��aB
cd��

Hint: Use local Cartesian coordinates.
4.10 For a general rank-2 tensor Tab, show that the covariant divergence is given by

�aT
ab = 1√�g� �a�√�g�Tab�+ b

caT
ac�

Show further that if Aab = −Aba are the components of an antisymmetric rank-2
tensor then

�aA
ab = 1√�g� �a�√�g�Aab��

Hence show that if the antisymmetric tensor field Aab vanishes on a hypersurface
S that bounds a region V of an N -dimensional manifold then∫

V
��aA

ab�
√−g dNx = 0�

4.11 Any coordinate transformation xa → x′a under which the metric is form invariant,
i.e. such that

g′ab�x�= gab�x�
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is called an isometry (note that the argument is the same on both sides of the above
equation). Show that the infinitesimal coordinate transformation in Exercise 4.6 is
an isometry, to first order in �, provided that va satisfies

gac�bv
c+gcb�av

c+vc�cgab = 0�

Show further that this expression can be written as

�avb+�bva = 0�

This is Killing’s equation and any vector satisfying it is known as a Killing vector
of the metric gab. Show that if va and wa are both Killing vectors then so too is any
linear combination �va+�wa, where � and � are constants.
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Special relativity revisited

Now that we have the machinery of tensor calculus in place, let us return to special
relativity and consider how to express this theory in a more formal manner.

5.1 Minkowski spacetime in Cartesian coordinates

In the language of Chapter 2, the Minkowski spacetime of special relativity
is a fixed four-dimensional pseudo-Euclidean manifold. As such, there exists a
privileged class of Cartesian coordinate systems �t� x� y� z� covering the whole
manifold, so that at every point (or event) the squared line element takes the form

ds2 = c2 d�2 = c2 dt2−dx2−dy2−dz2�

where we have taken the opportunity to define the proper time interval d�2 =
ds2/c2. It is convenient to introduce the indexed coordinates x���= 0�1�2�3�,1

so that

x0 ≡ ct� x1 ≡ x� x2 ≡ y� x3 ≡ z�

and to write the line element as

ds2 = ��� dx
� dx��

1 It is conventional to use Greek indices when discussing four-dimensional spacetimes rather than the Latin
indices a�b� c etc. from the start of the alphabet, which are used for abstract N -dimensional manifolds.
Moreover, in relativity theory, it is more common for a Greek index to run from 0 to 3 than from 1 to 4
(although the latter usage is found in some textbooks). Also, it is conventional to use Latin letters from the
middle of the alphabet, such as i� j� k etc., for indices that run from 1 to 3.
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where the ��� are the covariant components of the metric tensor and are
given by


����=

⎛⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ � (5.1)

From now on we will often use the shorthand notation 
����= diag�1�−1�−1�−1�.
It is clear that the contravariant components of the metric are identical, i.e.

���� = diag�1�−1�−1�−1�. With this definition of the metric, Minkowski
spacetime has a signature of −2.2 We also note that, since the metric coefficients
are constant, the connection  �

�# vanishes everywhere in this coordinate system.

5.2 Lorentz transformations

Cartesian coordinates, which we are using in the context of special relativity, have
a direct physical interpretation and correspond to distances and times measured
by an observer at rest in some inertial frame S that is labelled using three-
dimensional Cartesian coordinates3 (remember that, in Chapter 1, we defined
an inertial frame as one in which a free particle moves in a straight line with
fixed speed). Transforming to a different Cartesian inertial frame corresponds to
performing a coordinate transformation on the Minkowski spacetime to a new
system x′�. Since we require that the new coordinate system x′� also corresponds
to a Cartesian inertial frame, the (squared) line element ds2 must take the same
form in these primed coordinates as it did in the unprimed coordinates, i.e.

ds2 = ��� dx
� dx� = ��� dx

′� dx′��

In other words the metric in the new coordinates must also be given by (5.1).
From the transformation properties of a second-rank tensor, this means that the
transformation x�→ x′� must satisfy

��� =
�x′�

�x�
�x′#

�x�
��#� (5.2)

which is the necessary and sufficient condition that a transformation x� → x′�
is a Lorentz transformation between two Cartesian inertial coordinate systems.
From (5.2), we see that the elements of the transformation matrix must be

2 Note that some relativists use an alternative, but equivalent, definition 
����= diag�−1�1�1�1� in which the
signature is +2.

3 We shall prove this shortly.
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constants. Thus the transformation between two inertial coordinate systems must
be linear, i.e.

x′� =$�
�x

�+a� (5.3)

where the$�
� and a

� are constants. This has the form of a general inhomogeneous
Lorentz transformation (or Poincaré transformation). We will generally take the
(unimportant) constants a� to be zero, in which case (5.3) reduces to a normal,
homogeneous, Lorentz transformation. As discussed in Chapter 1, the constants
$�

� in the transformation matrix depend upon the relative speed and orientation
of the two inertial frames. If the unprimed and primed coordinates correspond
to inertial frames S and S′ in standard configuration, with S′ moving at a speed
v relative to S, then the transformation matrix can be written in two equivalent
forms:


$�
��=

[
�x′�

�x�

]
=

⎛⎜⎜⎜⎝
	 −
	 0 0
−
	 	 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

cosh� − sinh� 0 0
− sinh� cosh� 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ � (5.4)

where 
 = v/c, 	 = �1−
2�−1/2 and the rapidity is defined by � = tanh−1
.
Clearly, if the axes of S′ and S are rotated with respect to one another then the
transformation is more complicated.

The transformation inverse to (5.4) is clearly obtained by putting v→−v (or
equivalently �→−�). In general, the inverse transformation matrix is denoted by


$�
��=

[
�x�

�x′�

]
and may be calculated from the forward transform using the index-raising and
index-lowering properties of the metric, i.e.

$�
� = ����

�#$�
#�

That this is indeed the required inverse may be shown using the condition (5.2),
which gives

$�
�$�

# =$�
�����

#�$�
� = ����

#� = �#� �

5.3 Cartesian basis vectors

Figure 5.1 shows the coordinate curves for two systems of coordinates xa and
x′a, corresponding to Cartesian inertial frames S and S′ in standard configuration
(with the 2- and 3- directions suppressed). In any coordinate system the coordinate



114 Special relativity revisited

e1

e0

e1

e1

e0

e0

e0'

e1'

e1'

e1'

e0'

e0'

Figure 5.1 The coordinate curves (dotted lines) for two systems of coordinates
xa and x′a, corresponding to Cartesian inertial frames S and S′ in standard
configuration. The coordinate basis vectors for each system are also shown. The
2- and 3-directions are suppressed, and null vectors would lie at 45 degrees to
the vertical axis.

basis vectors are tangents to the coordinate curves; these are shown for S and S′
in Figure 5.1 (in this diagram, null vectors would lie at 45 degrees to the vertical
axis). In general, the two sets of basis vectors are related by

e′� =$�
�e� and e� =$�

�e
′
��

which tells us how to draw one set of basis vectors in terms of the other set.
The two sets of basis vectors satisfy

e� · e� = e′� · e′� = ����

and so both sets form an orthonormal basis at each point in the pseudo-Euclidean
Minkowski spacetime. As drawn in Figure 5.1 the vectors e� appear mutually
perpendicular, but the e′� do not. This is an artefact of representing a pseudo-
Euclidean space on a Euclidean piece of paper. As we shall see, the notion of an
orthonormal set of basis vectors at any point in the spacetime is of fundamental
importance for our description of observers.

We can also define dual basis vectors for each system as

e� = ���e� and e′� = ���e′��

These vectors also form orthonormal sets, since

e� · e� = e′� · e′� = ����

and the components ��� are identical to the components ���.
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5.4 Four-vectors and the lightcone

As in any manifold, we can define vectors at any point P in Minkowski spacetime
(and thus vector fields).4 In relativity, vectors defined on a four-dimensional
spacetime manifold are called 4-vectors. These 4-vectors are geometrical entities
in spacetime, which can be defined without any reference to a basis (or coordinate
system). Nevertheless, in a particular coordinate system, we can write a general
4-vector v at P in terms of the coordinate basis vectors at P:

v= v�e��

Let us assume for the moment that we are using Cartesian coordinates x�

corresponding to some inertial frame S. At each point P in spacetime we have a
constant set of orthonormal basis vectors e�. The square of the length of a vector
v at a point P (which is a coordinate-independent quantity) is then given by

v · v= v�v
� = ���v

�v��

We have that
for ���v

�v� > 0 the vector is timelike� (5.5)

for ���v
�v� = 0 the vector is null� (5.6)

for ���v
�v� < 0 the vector is spacelike� (5.7)

e0

e2

e1

future-pointing timelike vector

future-pointing null vector

spacelike vector

past-pointing timelike vector

Figure 5.2 The lightcone at some point P in Minkowski spacetime (with one
spatial dimension suppressed).

4 In fact, since Minkowski spacetime is pseudo-Euclidean, the tangent space TP at any point P coincides with
the manifold itelf. Thus, in this special case, we are not restricted to local vectors and can reinstate the notions
of position vector and of the displacement vector between arbitrary points in the manifold.
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Thus, as we would expect, the coordinate basis vector e0, which has components
(1, 0, 0, 0), is timelike. Similarly, the basis vectors ei�i = 1�2�3� are spacelike.
Moreover, for any timelike or null vector v, if v · e0 > 0 then v is called future-
pointing whereas if v · e0 < 0 then v is past-pointing.

At any point P in the Minkowski spacetime, the set of all null vectors at P
forms the lightcone or null-cone. The structure of the lightcone is illustrated in
Figure 5.2, with one spatial dimension suppressed.

5.5 Four-vectors and Lorentz transformations

Suppose that the Cartesian coordinates x� and x′� correspond to inertial frames
S and S′. Thus, at each point P in the Minkowski spacetime we have two sets of
(constant) basis vectors e� and e′�, and a general 4-vector v defined at P can be
expressed in terms of either set:

v= v�e� = v′�e′��

Thus, the components in the two bases are related by

v′� = v · e′� =$�
�v

�

v� = v · e� =$�
�v′��

(5.8)

where $�
� is the Lorentz transformation linking the coordinates x� and x′�. Let

us now consider some examples of physical 4-vectors and investigate the physical
consequences of these transformations.

5.6 Four-velocity

A particularly important 4-vector is the 4-velocity of a (massive) particle (or
observer). As discussed in Chapter 1, the trajectory of a particle describes a curve
� or worldline in spacetime. We could parameterise this curve in any way we
wish, but for massive particles it is usual to parameterise it using the proper time
� measured by the particle. The 4-velocity u of the particle at any event is then
the tangent vector to the worldline at that event. For a massive particle, u is a
future-pointing timelike vector. The length of this tangent vector (which is defined
independently of any coordinate system) is constant along the worldline, since
(as shown in Chapter 3)

u ·u=
(
ds

d�

)2

= c2� (5.9)
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x0

x1

Figure 5.3 The 4-velocity at events along the worldlines of a particle travelling
at uniform speed in S (solid line) and a particle accelerating with respect to S
(broken line).

Since � is proportional to the interval s along the worldline, it is an affine parameter
(see Chapter 3).

Suppose that we label spacetime with some Cartesian coordinate system corre-
sponding to an inertial frame S. We can then write the worldline of a particle
in this coordinate system as x� = x����. Figure 5.3 shows the 4-velocity at two
events on the worldline of a particle moving at uniform velocity in the frame S.
In this case the direction of the 4-velocity is also constant along the worldline.
The figure also shows the 4-velocity at two events on the worldline of a particle
that is accelerating (back and forth) with respect to the frame S. Clearly, in this
case, the direction of the 4-velocity changes along the worldline.

The (contravariant) components of the 4-velocity in the frame S are given by

u� = u · e� = dx�

d�
� (5.10)

Setting x0 = ct for the moment, and noting that d� = dt/	u, we can write these
components as


u��= 	u

(
c�

dx1

dt
�
dx2

dt
�
dx3

dt

)
= 	u�c� �u�� (5.11)

where in the last line (with a slight abuse of notation) we have introduced the rela-
tive 3-vector �u = �u1� u2� u3�, which is the familiar (three-dimensional) velocity
vector of the particle as measured by an observer at rest in S.
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In some other inertial frame S′, the components of the 4-velocity of the parti-
cle are

u′� = u · e′� =$�
�u

��

Writing this out in full for the case where S and S′ are in standard configuration
with relative speed v, we obtain⎛⎜⎜⎜⎝

	u′c

	u′u
′1

	u′u
′2

	u′u
′3

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

	v −
	v 0 0
−
	v 	v 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
	uc

	uu
1

	uu
2

	uu
3

⎞⎟⎟⎟⎠ �

This is equivalent to four equations. From the first, we find that

	u
	u′

= 1
	v

1
1−u1v/c2

�

and from the others we obtain the 3-velocity addition law in special relativity,

u′1 = u1−v

�1−u1v/c2�
�

u′2 = u2

	v�1−u1v/c2�
�

u′3 = u3

	v�1−u1v/c2�
�

Note that this approach has allowed us to derive the 3-velocity addition law in an
almost trivial way.

5.7 Four-momentum of a massive particle

The 4-momentum of a massive particle of rest mass m0 is defined in terms of its
four-velocity u by

p=m0u�

At any point P along the particle’s worldline the square of the length of this
vector is

p ·p=m0u ·m0u=m2
0c

2� (5.12)

In Cartesian coordinates x� corresponding to some inertial frame S, the compo-
nents of the 4-momentum are simply p�= p ·e�. According to convention we write


p��= �E/c�p1� p2� p3�= �E/c� �p�� (5.13)
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where E is the energy of the particle as measured in the frame S and �p is its
3-momentum measured in S. Comparing (5.13) with (5.11) we see that, in special
relativity,

E = 	um0c
2� (5.14)

�p = 	um0�u� (5.15)

In the frame S, the squared length of the 4-momentum is given by p�p�. Thus,
from (5.13) and (5.12), we find that

E2−p2c2 =m2
0c

4�

where p2 = �p · �p. This is the well-known energy–momentum invariant.

5.8 Four-momentum of a photon

The above discussion concerned particles of non-zero rest mass, which move
at speeds less than c. We now consider particles such as photons and perhaps
neutrinos, which move at the speed of light. The worldline of a massless particle is
a null curve, along which d� = 0. Thus, we cannot parameterise such a worldline
using the proper time �. Nevertheless, there are many other parameters that we
can use. For example, in an inertial frame, a photon travelling in the positive
x-direction will describe the path x = ct. This could be written parametrically as

x� = u�#� (5.16)

where # is the parameter and 
u��= �1�1�0�0�. Using (3.43), the tangent vector
to the worldline is then

u= dx�

d#
e� = u�e��

Since the worldline is a null curve, we have

u ·u= 0� (5.17)

in contrast with (5.9). Moreover, with this choice of parameter � we see that

du
d#

= 0� (5.18)

which is the equation of motion for a photon. We note that although this has
been derived using the fact that the Cartesian basis vectors e� do not change
with position, it is a vector equation and therefore will hold in any basis (i.e. any
coordinate system).
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Our choice of parameterisation in (5.16) may appear somewhat arbitrary.
Indeed, it is true that there exists an unlimited number of parameterisations that
could be used. For example, suppose that we replaced # by �2 (say). As the new
parameter � varies between −� and �, the same worldline x = ct would be
described in the spacetime. Since this is a null curve, the condition (5.17) would
continue to be true (as may be verified explicitly). In the new parameterisation,
however, the equation of motion (5.18) would not still hold. The special class of
parameters for which the equation of motion has the simple form (5.18) is the
class of affine parameters (as discussed in Section 3.16). Since one is always free
to choose such a parameter, we will assume from here on that equation (5.18) is
satisfied.

So far, we have not mentioned the frequency (or energy) of the photon, which
characterises it in much the same way as the rest mass m0 characterises a massive
particle. Clearly, the tangent vector u can be multipled by any scalar constant and
will still satisfy the equations (5.17) and (5.18). The 4-momentum of a photon is
therefore defined as

p= �u�

for a constant � chosen such that, in an arbitrary inertial frame S, the components
of p are


p��= �E/c� �p��
where E is the energy of the photon as measured in S and �p is its 3-momentum
in S. From (5.17) we thus have E = pc.

For photons, it is also common to introduce the 4-wavevector k, which is related
to the four-momentum by p = �k. Thus, in the frame S, the 4-wavevector has
components given by


k��= �2�/�� �k��
where � is the wavelength of the photon as measured in S and �k= �2�/���n and
�n is a unit 3-vector in the direction of propagation.

5.9 The Doppler effect and relativistic aberration

An example of the usefulness of the 4-vector approach (and particularly the photon
4-wavevector) is provided by the Doppler effect. Suppose that an observer � is at
rest in some Cartesian inertial frame S defined by the coordinates x� in spacetime.
Let us also suppose that a source of radiation is moving relative to S with a speed
v in the positive x1-direction and that at some event P the observer receives a
photon of wavelength � in a direction that makes an angle � with the positive



5.9 The Doppler effect and relativistic aberration 121

x1-direction. Thus, at the event P the components k� = k · e� of the photon’s
4-wavevector in this coordinate system are


k��= 2�
�
�1� cos�� sin ��0��

The photon observed at the event P must have been emitted by the source at some
other event Q (say). However, the equation of motion of a photon implies that
its 4-momentum p, and hence its 4-wavevector k, is constant along its worldline.
Thus the photon’s 4-wavevector k at the event Q is the same as that at the
event P.

Let us denote the Cartesian inertial frame in which the radiation source is at
rest by S′ (whose spatial axes are assumed not to be rotated with respect to those
of S); this frame is represented by the coordinates x′� in spacetime. Thus, at
the event Q the components in S′ of the photon’s 4-wavevector are given by
k′� = k · e′� and read

k′� =$�
�k

�� (5.19)

where 
$�
�� is given by (5.4).

We denote these components in S′ by


k′��= 2�
�′

�1� cos�′� sin �′�0��

The zeroth component of (5.19) yields the ratio of the proper wavelength and the
observed wavelength:

�′

�
= 	�1−
 cos���

This equation contains all the familiar Doppler effect results as special cases. If
� = 0, the source must be approaching the observer along the negative x1-axis.
If � = �, the source is receding from the observer along the positive x1-axis.
Finally, if �=±�/2 we obtain the transverse Doppler effect. Similarly, from the
2- and 3- components of (5.19) we obtain immediately

tan �′ = tan �
	
1− �v/c� sec��

�

which is a version of the relativistic aberration formula.
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5.10 Relativistic mechanics

In relativistic mechanics, the equation of motion of a massive particle is given by

dp
d�
= f �

where f is the 4-force. In some Cartesian inertial frame S (for which the basis
vectors are constant throughout the spacetime) the components f� of the 4-force
are given by the familiar expression

f� = e� · dp
d�
= e� · d

d�
�p�e��=

dp�

d�
��� =

dp�

d�
�

where we have used the fact that e� and e� are reciprocal sets of vectors. Noting
that d� = dt/	u, we may write


f��= 	u
d

dt

(
E

c
� �p
)
= 	u

( �f · �u
c

� �f
)
�

where in the last equality we have introduced the familiar 3-force �f as measured
in the frame S, and �u is the 3-velocity in this frame. Writing the compo-
nents in this way, the time and space parts of the equation of motion in S are
(as required)

1
	u

dE

d�
= dE

dt
= �f · �u� (5.20)

1
	u

d�p
d�

= d�p
dt
= �f� (5.21)

where E and �p are given by (5.14) and (5.15) respectively.
There is, however, a certain rarely discussed subtlety in relativistic mechan-

ics. Let us consider the scalar product u · f , which is of course invariant under
coordinate transformations. This is given by

u · f = u · dp
d�

= u ·
(
dm0

d�
u+m0

du
d�

)
= c2

dm0

d�
+m0u ·

du
d�

= c2
dm0

d�
�

where we have (twice) used the fact that u ·u= c2. Thus, we see that in special
relativity the action of a force can alter the rest mass of a particle! A force that
preserves the rest mass is called a pure force and must satisfy u · f = 0.
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If so desired, one can also introduce the 4-acceleration of a particle, a= du/d�,
in terms of which a pure 4-force takes the familiar form f = m0a. In some
Cartesian inertial frame S, the components of the 4-acceleration are


a��=
[
du�

d�

]
= 	u

d

dt
�	uc�	u�u� = 	u

(
c
d	u
dt

�	u
d�u
dt
+ �ud	u

dt

)
�

= 	u

(
c
d	u
dt

�	u�a+ �u
d	u
dt

)
�

where �a= d�u/dt is the 3-acceleration in the frame S.

5.11 Free particles

We now come to a very important observation concerning relativistic mechanics.
In the absence of any forces, the equation of motion of a massive particle is

dp
d�
= 0� (5.22)

where the proper time � is an affine parameter along the particle’s worldline.
Similarly, the equation of motion of a photon is

dp
d#

= 0� (5.23)

where # is some affine parameter along the photon’s worldline. However, in each
case the 4-momentum p at some point on the worldline is simply a fixed multiple
of the tangent vector to the worldline at that point. Thus, equations (5.22) and
(5.23) say that tangent vectors to the worldlines of free particles and of photons
form a parallel field of vectors along the worldline. From Chapter 2 we know
that this is the definition of an affinely parameterised geodesic. Thus, in special
relativity the worldlines of free particles and photons are respectively non-null
and null geodesics in Minkowski spacetime.

5.12 Relativistic collisions and Compton scattering

We note from (5.22) and (5.23) that the conservation of energy and momentum
for a free particle or photon is represented by the single equation p = constant.
We can, of course, add the 4-momenta of different particles. Thus for a system of
n interacting particles i= 1�2� � � � � n with no external forces, we have

∑n
i=1 pi =

constant, which is very useful in relativistic-collision calculations.
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Figure 5.4 The Compton effect.

An important example of a relativistic collision is Compton scattering, in which
a photon of 4-momentum p collides with an electron of 4-momentum q. It is
easiest to consider the collision in the inertial frame S in which the electron is at
rest and the photon is travelling along the positive x1-axis (see Figure 5.4). Thus
the components of p and q in S are


p�� = �h�/c�h�/c�0�0��


q�� = �mec�0�0�0��

where � is the frequency of the photon as measured by a stationary observer in
S, and me is the rest mass of the electron. Let us assume that, after the collision,
the electron and photon have 4-momenta p̄ and q̄ such that they move off in the
plane x3 = 0, making angles � and � respectively with the x1-axis. Thus


p̄ �� = �h�̄/c� �h�̄/c� cos�� �h�̄/c� sin ��0��


q̄ �� = �	umec�	umeu cos��−	ume sin��0��

where u is the electron’s speed and �̄ is the photon frequency as measured by
a stationary observer in S after the collision. Conservation of total 4-momentum
means that

p�+q� = p̄�+ q̄��

which gives

h�/c+mec = h�̄/c+	umec� (5.24)

h�/c = �h�̄/c� cos�+	umeu cos�� (5.25)

0 = �h�̄/c� sin �−	umeu sin�� (5.26)
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Eliminating u and � from these equations leads to the formula for Compton
scattering, which gives the frequency of the photon in S after the collision:

�̄ = �

[
1+ h�

mec
2
�1− cos��

]−1
�

The components of the 4-momentum p̄ (or q̄) in any other inertial frame S′
can be found easily by using p̄′� = $�

�p̄
�, where $�

� are the elements of the
Lorentz transformation matrix connecting the frames S and S′.

5.13 Accelerating observers

So far we have only considered inertial observers, who move at uniform speeds
with respect to one another. Let us now consider a general observer �, who
may be accelerating with respect to some inertial frame S. If the observer has a
4-velocity u���, where � is the proper time measured along the worldline, then
his 4-acceleration is given by

a���= du
d�

�

It is worth noting that, at any given event P, the 4-acceleration a is always
orthogonal to the corresponding 4-velocity u, since

a ·u= d

d�

( 1
2u ·u

)= d

d�

( 1
2c

2)= 0� (5.27)

An accelerating observer has no inertial frame in which he or she is always at
rest. Nevertheless, at any event P along the worldline we can define an instan-
taneous rest frame S′, in which the observer � is momentarily at rest. Since
the observer is at rest in S′, the timelike basis vector e′0 of this frame must be
parallel to the 4-velocity u of the observer. The remaining spacelike basis vectors
e′i (i= 1�2�3) of S′ are all orthogonal to e′0 and to one another and will depend on
the relative velocity of S and S′ and the relative orientation of their spatial axes.
Observations made by � at the event P thus correspond to measurements made
in the instantaneous rest frame (IRF) S′ at P. This is illustrated in Figure 5.5.

Thus, the notion of a localised laboratory can be idealised as follows. An
observer (whether accelerating or not) carries along four orthogonal unit vectors
e′���� (or tetrad), which vary along his worldline but always satisfy

e′���� · e′����= ���� (5.28)
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Figure 5.5 The basis vectors e′0� e
′
1 at the event P in the instantaneous rest frame

S′ of an observer � who is accelerating with respect to the inertial frame S.

In particular, the timelike unit vector is given by

e′0���= û���� (5.29)

where û��� is the normalised 4-velocity of the observer and is simply u���/c. At
any event P along the observer’s worldline, the tetrad comprises the basis vectors
of the Cartesian IRF at the event P and defines a time direction and three space
directions to which the observer will refer all measurements. Thus, the results of
any measurement made by the observer at the event P are given by projections
of physical quantities (i.e. vectors and tensors) onto these tetrad vectors.

An important example occurs when the worldline of the observer intersects the
worldline of some particle at the event P (at which we take the observer’s proper
time to be �). If p is the 4-momentum of the particle at this event then the energy
E′ of the particle as measured by the observer is given by

E′

c
= p · e′0��� ⇒ E′ = p ·u����

Similarly, the covariant components p′i of the spatial momentum of the particle
as measured by the observer are given by

p′i = p · e′i����
Another example is provided by the 4-acceleration a. Since at any event P on the
worldline we have e′0 = û, the orthogonality condition (5.27) and the fact that in

the IRF 
u′��= �c� �0� imply that the components of the 4-acceleration in the IRF
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are 
a′�� = �0� �a′�. Thus the magnitude of the 3-acceleration in the IRF can be
computed as the simple invariant a ·a.

It is interesting to consider how the tetrad of basis vectors changes along
the worldline of an observer whose acceleration varies arbitrarily with time.
As it is transported along the observer’s worldline, the tetrad must satisfy the
two requirements (5.28) and (5.29). Clearly, given u��� the condition (5.29)
determines the timelike basis vector e′0��� uniquely. Unfortunately, condition
(5.28) is obviously insufficient to determine uniquely the evolution of the spacelike
basis vectors e′i����i = 1�2�3�, which reflect the different ways in which the
observer’s local laboratory might be spinning and tumbling. An important special
case, however, is when the tetrad is ‘non-rotating’.

This last requirement requires some clarification. Clearly, the basis vectors of
the tetrad at any proper time � are related to the basis vectors e� of some given
inertial frame by the Lorentz transformation

e′����=$�
����e��

Thus the tetrad basis vectors at two successive instants must also be related to each
other by a Lorentz transformation, which can be thought of as a ‘rotation’ in space-
time.A ‘non-rotating’ tetrad is onewhere the basis vectors e′���� change from instant
to instant by precisely the amount implied by the rate of change of u but with no
additional rotation. In other words, we accept the inevitable rotation in the timelike
plane defined by u and a but rule out any ordinary rotation of the 3-space vectors.

Since we wish to treat the time and space directions on an equal footing, we must
seek a general expression for the rate of change de′�/d� of a basis vector along
the worldline such that: (i) it generates the appropriate Lorentz transformation if
e′� lies in the timelike plane defined by u and a, and (ii) it excludes any rotation
if e′� lies in any other plane, in particular any spacelike plane. A little reflection
shows that the unique answer to these requirements is

de′�
d�

= 1
c2
[
�u · e′��a− �a · e′��u

]
� (5.30)

Any vector that undergoes the above transformation is said to be Fermi–Walker
transported along the worldline. From (5.30), we find that if e′� is orthogonal to
both u and a then de′�/d� = 0 as required. Moreover, we see that de′0/d� = a/c,
again as required.

A physical example of a 3-space vector that does not rotate along the worldline
is the spin (i.e. the angular momentum vector) of a gyroscope that the observer
accelerates with himself by means of forces applied to its centre of mass (so that
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there are no torques). Indeed, a careful observer could set up a non-rotating tetrad
by aligning his three spatial axes using such gyroscopes.

5.14 Minkowski spacetime in arbitrary coordinates

There is no need to label events in Minkowski spacetime with the Cartesian
inertial coordinates we have used thus far. The advantage of Cartesian coordinates
X�, which put the line element into the form5

ds2 = ��� dX�dX� (5.31)

(even just at a particular event P), is that they have a clear physical meaning, i.e.
they correspond to time and distances measured by an observer at P who is at rest
in some inertial frame S labelled using three-dimensional Cartesian coordinates
(we will prove this below). Nevertheless, we are free to label events in spacetime
using any arbitrary system of coordinates x� although, in general, the coordinates
in such an arbitrary system may not have simple physical meanings.

Since the path of a free massive particle is a geodesic in Minkowski spacetime,
its worldline x���� in some arbitrary coordinate system is given by the geodesic
equations

d2x�

d�2
+ �

�#

dx�

d�

dx#

d�
= 0� (5.32)

An inertial frame S is defined as one in which a free particle moves in a straight
line with fixed speed. Thus from (5.31) it is clear that coordinates X�, such that
(5.31) holds, define an inertial frame. In this case, the connection  �

�# vanishes,
and so the worldline of a particle is given by

d2X�

d�2
= 0� (5.33)

Setting 
X�� = �cT�X�Y�Z� for the moment, the � = 0 equation (5.33) shows
that dT/d� = constant. Thus the �= 1�2�3 equations read

d2X

dT 2
= d2Y

dT 2
= d2Z

dT 2
= 0�

from which we see immediately that a free particle moves in a straight line with
constant speed in S.

We could label the inertial frame S using three-dimensional spatial coordi-
nates that are not Cartesian, however. For example, we could use spherical polar

5 In the interest of clarity, in this section we will denote Cartesian inertial coordinates by X� and an arbitrary
coordinate system by x�.
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coordinates. This would correspond to making a change of variables in Minkowski
spacetime to the new system 
x��= �ct� r� ����, where

T = t� X = r sin � cos�� Y = r sin � sin�� Z = r cos��

In this case, the line element becomes

ds2 = c dt2−dr2− r2d�2− r2 sin2 � d�2�

so the metric is 
g��� = diag�1�−1�−r2�−r2 sin2 ��. From the metric we can
show that the non-vanishing components of the connection in this coordinate
system are (with c = 1)

 1
22 =−r�  1

33 = r sin2 ��

 2
12 = 1/r�  2

33 =− sin � cos��

 3
13 = 1/r�  1

22 = cot ��

Thus, from (5.32), the geodesic equations for the worldline x���� of a free particle
are very complicated in these coordinates (exercise), in spite of the fact that, to
an observer with fixed �r� ���� coordinates (i.e. at rest in S), a free particle still
moves in a straight line with fixed speed.

Alternatively, we could use three-dimensional Cartesian coordinates to label
points in a non-inertial frame S′ that is accelerating with respect to S. As an
example, consider transforming from 
X�� = �cT�X�Y�Z� to a new system of
coordinates 
x��= �ct� x� y� z�, where t� x� y� z are defined by the equations6

T = t� X = x cos�t−y sin�t� Y = x sin�t+y cos�t� Z = z�

Thus points with constant x� y� z values (i.e. the values are fixed in S′) rotate
with angular speed � about the Z-axis of S (see Figure 5.6). Substituting these
definitions into (5.31), the line element becomes

ds2 = 
c2−�2�x2+y2��dt2+2�ydtdx−2�xdtdy−dx2−dy2−dz2�

and the geodesic equations (5.32) are (exercise)

ẗ = 0�

ẍ−�2xṫ2−2�ẏṫ = 0�

ÿ−�2yṫ2+2�ẋṫ = 0�

z̈ = 0�

6 For a full discussion, see for example J. Foster & J. D. Nightingale, A Short Course in General Relativity,
Springer-Verlag, 1995.
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Figure 5.6 The coordinate system �x� y� z� rotating relative to the inertial coor-
dinate system �X�Y�Z�.

where the dots denote differentiation with respect to proper time �. These equa-
tions give the worldline x���� of a free particle in this coordinate system. Once
again, the first equation implies that dt/d� = constant, so that we can replace
the dots in the remaining three equations with derivatives with respect to t.
Multiplying through by the rest mass m of the particle and rearranging, these
equations become

m
d2x

dt2
= m�2x+2m�

dy

dt
�

m
d2y

dt2
= m�2y−2m�

dx

dt
�

m
d2z

dt2
= 0�

or, in 3-vector notation,

m
d2�x
dt2

=−m��× ���×�x�−2m��× d�x
dt

� (5.34)

where �x = �x� y� z� and �� = �0�0���. Thus we recover the equation of motion
for a free particle in a rotating frame of reference. We note, however, that the
coordinate t is the time measured by clocks at rest in the non-rotating system S,
since we have set t= T . It is possible to rewrite the equation of motion in terms of
the proper time measured by an observer at some some fixed position in S′, but to
do so would involve replacing (5.34) by a more complicated equation that tends to
conceal the Coriolis and centrifugal forces. Note that t is exactly the proper time
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for an observer situated at the common origin O of the two systems, so observers
close to O who are at rest in S′ would accept (5.34) as (approximately) valid.
From these examples, we see that in general the geodesic equations can be

rather complicated both for non-inertial frames and for inertial frames labelled
by non-Cartesian spatial coordinates. Thus, when describing physical effects in
an inertial frame, it is conventional to use Cartesian spatial coordinates to label
points in the frame and so to work in a coordinate system X� for which (5.31) is
valid. It is then much easier to disentangle the physical effects from artefacts of
the coordinate system.

Exercises

5.1 Show that the transformation matrix for a Lorentz transformation from S to S′ in
standard configuration is given by (5.4).

5.2 Show that, under a Lorentz transformation, the covariant components of a vector
transform as v′� = $�

�v�. Hence show explicitly in component form that, for two
4-vectors v and w, the scalar product v ·w is invariant under a Lorentz transformation.

5.3 Prove that, for any timelike vector v in Minkowski space, there exists an inertial
frame in which the spatial components are zero.

5.4 Prove (a) that the sum of any two spacelike vectors is spacelike; and (b) that a
timelike vector and a null vector cannot be orthogonal.

5.5 For the spaceship discussed in Section 1.14, which maintains a uniform acceleration
a in the x-direction of some inertial frame S, the worldline is given by

t���= c

a
sinh

a�

c
� x���= c2

a

(
cosh

a�

c
−1

)
� y���= 0� z���= 0�

where � is the proper time of an astronaut on the spaceship. Show that the 4-velocity
of the rocket in the coordinate system �ct� x� y� z� is given by


u��=
(
c cosh

a�

c
� c sinh

a�

c
�0�0

)
�

Hence show explicitly that u�u� = c2 and that the spaceship’s 3-velocity is

�u=
(
c tanh

a�

c
�0�0

)
�

5.6 Show that the 4-acceleration of the spaceship in Exercise 5.5 is given by


a��=
(
a sinh

a�

c
�a cosh

a�

c
�0�0

)
�

Hence show that a�a� = a2 and that the magnitude of the spaceship’s 3-acceleration
in its own instantaneous rest frame is also a.

5.7 A spaceship has constant acceleration g in the x-direction in its locally comoving
frame, i.e. the IRF. Show that, in an inertial frame, the spaceship’s 4-velocity 
u��=
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�u0� u1�0�0� and 4-acceleration 
a�� = �a0� a1�0�0� satisfy a1 = gu0/c and a0 =
gu1/c. Show also that

d2u�

d�2
= g2u�

c2
�

where � is the proper time as measured by an occupant of the spaceship. A spaceship
accelerates at a constant rate g = 9�5m s−2 in its own locally comoving frame.
It starts out towards the centre of the Galaxy 10 kpc distant. After going 5 kpc
it decelerates at the same rate to come to rest again at the Galactic centre. The
outward journey is then repeated in reverse to come back home. Show that, in the
spaceship’s frame, the elapsed travel time is 41.5 years. What is the elapsed time
for the waiting observer (or descendants) on Earth?

5.8 Show that in its own instantaneous rest frame (IRF), a particle’s 4-acceleration is
given by 
a��= �0� �a�, where �a is the 3-acceleration of the particle in the IRF.

5.9 Show that, in an inertial frame in which a particle’s 3-acceleration �a is orthogonal
to its 3-velocity �u, the particle’s 4-acceleration is given by 
a��= 	2

u�0� �a�.
5.10 Show that when an electron and a positron annihilate, more than one photon must

be produced.
5.11 Show that if a photon is reflected from a mirror moving parallel to its plane, then

the angle of incidence of the photon is equal to the angle of reflection.
5.12 An inertial frame S′ moves with constant velocity u along the x-axis with respect

to frame S. A photon in frame S′ is fired at an angle �′ to the forward direction of
motion. Show that the angle � measured in frame S is

tan � = tan �′�1−
2�1/2

1+
 sec�′
�

where 
= u/c.
5.13 A photon with energy E collides with a stationary electron whose rest mass is m0.

As a result of the collision the direction of the photon’s motion is deflected through
an angle � and its energy is reduced to E′. Show that

m0c
2

(
1
E′
− 1

E

)
= 1− cos��

Deduce that the wavelength of the photon is increased by

��= 2h
m0c

sin2
(
�

2

)
�

where h is Planck’s constant. At what angle to the initial photon direction does
the electron move? Show that, if the photon is deflected through a right angle, and
the photon energy satisfies E � m0c

2, then after the interaction the angle of the
electron’s motion to the direction of the photon’s initial motion is �=−�/4.

5.14 Inverse Compton scattering occurs whenever a photon scatters off a particle moving
with a speed very nearly equal to that of light. Suppose that a particle of rest mass
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m0 and total energy E collides head on with a photon of energy E	 . Show that the
scattered photon has energy

E

(
1+ m2

0c
4

4EE	

)−1
�

Ultra-high-energy cosmic rays have energies up to 1020 eV. How much energy can
a cosmic ray proton transfer to a microwave background photon?

5.15 For a pure 4-force f acting on a particle of rest massm0, show that the corresponding
3-force �f satisfies

�f = 	um0�a+
�f · �u
c2
�u�

Hence show that �a is only parallel to �f when �f is either parallel or orthogonal
to �u. Show further that, in these two cases, one has �f = 	3

um0�a and �f = 	um0�a
respectively.

5.16 For a pure 4-force f acting on a particle of rest mass m0, show that

m0

d�u
d�
= 	u

�f �
5.17 In Minkowski spacetime, consider an emitter � moving at speed v along the positive

x1-axis of the frame S in which a receiver � is at rest. Prove the Doppler shift
formula

��

��

= 	v

(
1− v

c
cos�

)
�

where � is the angle made by the photon trajectory with the x1-axis of S. Show that
this expression can be written in the manifestly covariant way

��

��

= u
�
�k�

u��k�
�

where k is the photon 4-wavevector and u� and u� are the 4-velocities of � and �
respectively.

5.18 An astronaut on the space rocket in Exercise 5.5 refers all his measurements to an
orthonormal tetrad !e′����" that comprises the basis vectors of a Cartesian instan-
taneous rest frame S′ at proper time �. Suppose that at � = 0 the tetrad coincides
with the fixed basis vectors !e�" of the �ct� x� y� z� coordinate system in the inertial
frame S and that the rocket is not rotating in any way. Show that, in the �ct� x� y� z�
coordinate system, the components of the astronaut’s orthonormal tetrad at some
later proper time � are

e′0��� =
(
cosh

a�

c
� sinh

a�

c
�0�0

)
�

e′1��� =
(
sinh

a�

c
� cosh

a�

c
�0�0

)
�

e′2��� = �0�0�1�0� �

e′3��� = �0�0�0�1� �
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The astronaut observes photons that were emitted with frequency �0 from a star that
is stationary at the origin of S. Show that the frequency of the photons as measured
by the astronaut at proper time � is given by

����= �0 exp�−a�/c��
5.19 At some event P in Minkowski spacetime, the worldline of a particle (either massive

or massless) and an observer cross. If, at this event, the particle has 4-momentum
p and the observer has 4-velocity u then show that the observer measures the
magnitude of the spatial momentum of the particle to be

��p� =
[
�p ·u�2
c2

−p ·p
]1/2

�

5.20 Repeat Exercise 1.10 using 4-vectors.
5.21 In Minkowski spacetime, the coordinates �cT�X�Y�Z� correspond to a Cartesian

inertial frame. The coordinates �ct� r� ���� are related to them by the equations

X = r sin � cos�� Y = r sin � sin�� Z = r cos��

Obtain the special-relativistic equations of motion of a free particle in the �ct� r� ����
coordinate system, and interpret these equations physically.

5.22 Repeat Exercise 5.21 for the coordinates �ct� ���� z�, that are related to the Cartesian
inertial coordinates �cT�X�Y�Z� by

T = t�

X = � cos� cos�t−� sin� sin�t�

Y = � cos� sin�t+� sin� cos�t�

Z = z�

where � is a constant.
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Electromagnetism

At the time special relativity was devised only two forces were known, electro-
magnetism and gravity. As mentioned in Chapter 1, it was electromagnetism that
actually led to the development of special relativity. Therefore, we now discuss
electromagnetism in some detail; in particular its relativistic formulation. This
will introduce a number of ideas that we will use later in developing and applying
a relativistic formulation of gravity, namely general relativity. Our guiding prin-
ciple here is to derive tensorial equations in Minkowski spacetime. This makes
it possible to express the theory in a form that is independent of the coordinate
system used. We will see that a consistent theory of electromagnetism follows
from saying that there exists a pure 4-force that depends linearly on 4-velocity
and also on a certain property of a particle, namely its charge q. Even if one has
no prior knowledge of electromagnetism, one can derive the complete theory in
a few lines using this basic assumption and occasional appeals to simplicity.

6.1 The electromagnetic force on a moving charge

In some inertial frame S, the 3-force on a particle of charge q moving in an
electromagnetic field is

�f = q��E+ �u× �B��
where �u is the particle’s 3-velocity in S. The 3-vector fields �E and �B are the
electric and magnetic fields as measured in S. This equation suggests that for the
proper relativistic formulation we should write down a tensor equation in four-
dimensional spacetime in which the electromagnetic 4-force f depends linearly
on the particle’s 4-velocity u. Thus we are led to an equation of the form

f = qF ·u� (6.1)

135
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where F must be a rank-2 tensor in order to make a 4-force from a 4-velocity.
We call F the electromagnetic field tensor. The scalar q is some property of the
particle that determines the strength of the electromagnetic force upon it (i.e. its
charge).

We could develop the theory entirely in terms of coordinate-independent
4-vectors and 4-tensors. Nevertheless, if we label points in spacetime with some
arbitrary coordinate system x�, we may express (6.1) in component form as

f� = qF��u
��

where the F�� are the covariant components of F in our chosen coordinate
system. In order that the rest mass of a particle is not altered by the action of
the electromagnetic force we require the latter to be a pure force, so that for any
4-velocity u we have u · f = 0. In component form this reads

f�u
� = qF��u

�u� = 0�

which implies that the electromagnetic field tensor must be antisymmetric, i.e.

F�� =−F���

The contravariant components of F are given by

F�� = g�#g��F#��

where the g�� are the contravariant components of the metric tensor in our
coordinate system. Since g�� is symmetric, it is clear that F�� =−F�� also.

6.2 The 4-current density

So far we have found only the relativistic form of the electromagnetic force on
an idealised point particle with charge q and 4-velocity u, in terms of some as
yet undetermined rank-2 antisymmetric tensor F. In order to develop the theory
further, we must now construct the field equations of the theory, which determine
the electromagnetic field tensor F�x� at any point in spacetime in terms of charges
and currents. To construct these field equations, we must first find a properly
relativistic (or covariant) way of expressing the source term. In other words, we
need to identify the 4-tensor, defined at each event in spacetime, that acts as the
source of the electromagnetic field.

Let us consider some general time-dependent charge distribution. At each
event P in spacetime we can characterise the distribution completely by giving
the charge density � and 3-velocity �u as measured in some inertial frame. For
simplicity, let us consider the fluid in the frame S in which �u = �0 at P. In this
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l

Lorentz contracted in
direction of motion

l'= l /γ

l

l

Figure 6.1 The Lorentz contraction of a fluid element in the direction of motion.

frame, the (proper) charge density is given by �0 = qn0, where q is the charge
on each particle and n0 is the number of particles in a unit volume. In some
other frame S′, moving with speed v relative to S, the volume containing a fixed
number of particles will be Lorentz contracted along the direction of motion (see
Figure 6.1). Hence in S′ the number density of particles is n′ = 	vn0, from which
we obtain

�′ = 	v�0�

Thus we see that the charge density is not a 4-scalar but does transform as the
0-component of a 4-vector. This suggests that the source term in the electromag-
netic field equations should be a 4-vector. At each point in spacetime, the obvious
choice is

j�x�= �0�x�u�x��

where �0�x� is the proper charge density of the fluid (i.e. that measured by an
observer comoving with the local flow) and u�x� is its 4-velocity. The squared
length of this 4-current density j at any event is

j · j = �20c
2�

In an inertial frame S the components of the 4-current density j are


 j��= �0	u�c� �u�= �c���j��

where � is the charge density as measured in S and �j is the relativistic 3-current
density in S. Thus, we see that c2�2− j2 is a Lorentz invariant, where j2 = �j · �j.
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6.3 The electromagnetic field equations

We are now in a position to write down the electromagnetic field equations. The
simplest way in which to relate the rank-2 electromagnetic field tensor F to the
4-vector j is to contract F with some other 4-vector. Since there are no more
physical 4-vectors associated with the theory, the only other 4-vector that the field
equations can contain is the 4-gradient � . Thus the field equations must be of the
form

� ·F = kj� (6.2)

where k is an unimportant constant related to our choice of units. In order to make
our final results more familiar, let us work in Cartesian inertial coordinates x�

corresponding to some inertial frame S. In such a system, the covariant derivative
reduces simply to the partial derivative, and so we can write (6.2) in component
form as

��F
�� = kj�� (6.3)

We can use this field equation to obtain the law for the conservation of charge.
If we take the partial derivative �� of (6.3), we obtain

����F
�� = k��j

�� (6.4)

However, since F�� is antisymmetric, we can write the scalar on the left-hand
side as

����F
�� =−����F�� =−����F�� =−����F���

from which we deduce that ����F
�� = 0. Thus the right-hand side of (6.4) must

also be zero, so that

��j
� = 0�

Using 3-vector notation in the frame S, we may write this in a more familiar way:

��

�t
+ �� · �j = 0�

which expresses the conservation of charge. This equation has the same form as
the non-relativistic equation of charge continuity, but the relativistic expressions
for � and �j must be used in it.

It is clear, however, that we do not yet have a viable theory. The field equations
of the theory are given by (6.3), but there are six independent components in
F�� and only four field equations. Evidently our theory is under-determined as it
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stands. This suggests that F could be constructed from a 4-vector ‘potential’ A.
Again working in Cartesian inertial coordinates x�, let us write

F�� = ��A�− ��A�� (6.5)

Thus F�� is antisymmetric by construction and contains only four independent
fields A�. Using the field equation (6.3), we can write

kj� = k���j
� = ��F

�
� = ��#��F#��

where we have used the fact that the metric coefficients ��� in Cartesian inertial
coordinates x� are constants.1 Hence, by substituting into the expression (6.5),
we obtain the electromagnetic field equations in terms of the 4-vector potential A
as

��#����#A�− ����A#�= kj�� (6.6)

Alternatively, we can express electromagnetism entirely in terms of the electro-
magnetic field tensor F��. In this case, we require the two field equations

��F
�� = kj��

�#F��+ ��F#�+ ��F�# = 0�
(6.7)

where the second of these is straightforwardly derived from (6.5). Using the
antisymmetrisation operation described in Section 4.3, the second equation can
also be written very succinctly as �
#F��� = 0. The constant k may be found by
demanding consistency with the standard Maxwell equations (see Section 6.5). In
SI units we have k= �0, where �0�0 = 1/c2.

6.4 Electromagnetism in the Lorenz gauge

Suppose that we add an arbitrary 4-vector Q to the 4-potential A. Thus, in
component form (in Cartesian inertial coordinates, x�, for example) we have

A�new�
� = A�+Q�� (6.8)

Note that this is not a coordinate transformation. We are still working in the same
set of coordinates x� but have defined a new vector A�new�, whose components

1 In fact, such an operation is valid in any coordinate system. As we showed in Chapter 4, the covariant
derivative of the metric tensor is identically zero, which means that we can interchange the order of index
raising or lowering and covariant differentiation without affecting the result.
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in this basis are given by (6.8). The new electromagnetic field tensor is then
given by

F�new�
�� = ��A

�new�
� − ��A

�new�
� = ��A�− ��A�+ ��Q�− ��Q��

Clearly, we will recover the original electromagnetic field tensor provided that

��Q� = ��Q��

This equation can be satisfied if Q is the gradient of some scalar field � (say), so
that Q� = ���. Thus we have uncovered a gauge freedom in the theory: we are
free to add the gradient of any scalar field � to the 4-vector potential A, giving

A�new�
� = A�+ ���� (6.9)

and still recover the same electromagnetic field tensor and hence the same elec-
tromagnetic field equations. The transformation (6.9) is an example of a gauge
transformation and, as stated above, is distinct from a coordinate transformation.

In the field equations

��#����#A�− ����A#�= �0j��

the second term on the left-hand side can be written as ����A
�. Thus, we can

make this term zero by choosing a scalar field � such that

��A
� = 0� (6.10)

This condition is called the Lorenz gauge. It is worth noting that the condition
(6.10) is preserved by any further gauge transformation A� → A�+ ��� if and
only if ���

�� = 0.
Adopting the Lorenz gauge allows the electromagnetic field equations to be

written very simply as

��#���#A� = ���
�A� = �0j��

It is usual to write the four-dimensional Laplacian ���
� using the notation �2 =

���� = ���
�, where �2 is the d’Alembertian operator.2 In Cartesian inertial

coordinates �ct� x� y� z�,

�2 = 1
c2

�2

�t2
− �2

�x2
− �2

�y2
− �2

�z2
�

2 This operator should properly be written �2, which is the inner product � ·� of the 4-gradient with itself.
However, the notation we have adopted is quite common, since it makes clearer the distinction between the
four-dimensional Laplacian and the three-dimensional Laplacian ��2 = �� · �� .
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Then the electromagnetic field equations in the Lorenz gauge take the especially
simple form

�2A� = �0j��

together with the attendant gauge condition (6.10). Moreover, in the absence of
charges and currents, the right-hand side becomes zero and so A� has wave
solutions travelling at the speed of light, as do the components of F�� since in
this case we also have �2F�� = 0.

6.5 Electric and magnetic fields in inertial frames

We have not yet identified the components of F (or A) with the familiar electric
and magnetic 3-vector fields �E and �B as observed in some Cartesian inertial frame
S. This is simply a matter of convention; we just have to name the components of
A (say) in a way which results in 3-vector equations in S that describe the physics
correctly in terms of the traditionally defined 3-vectors �E and �B. Thus, in some
Cartesian inertial frame S, the components of A are taken to be as follows:


A��=
(
�

c
� �A
)
�

where � is the electrostatic potential and �A is the traditional three-dimensional
vector potential. In terms of � and �A, the Lorenz gauge condition becomes

�� · �A+ 1
c

��

�t
= 0�

and, in this gauge, the field equations take the form

�2 �A= �0
�j and �2�= �

�0
�

In terms of � and A, the electric and magnetic fields in S are given by

�B = ��× �A and �E =−���− � �A
�t

� (6.11)

It is straightforward to show that these equations lead to the Maxwell equations
in their familiar form,

�� · �E = �

�0
�

�� · �B = 0�

��× �E =−��B
�t

�

��× �B = �0
�j+�0�0

� �E
�t

�
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From the expressions (6.11) and (6.5) we have

Ei =−�ij�j�− c�0A
i =−c�ij��jA0− �0Aj�=−c�ijFj0�

where we have used the fact that A0 = �0�A� = A0. Also, we have

B1 = �2A
3− �3A

2 = �3A2− �2A3 = F32�

where we have used the fact that Ai = �i�A� =−Ai. Similar results hold for B2

and B3. Thus we find that the covariant components of F in S are given by


F���=

⎛⎜⎜⎜⎝
0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

⎞⎟⎟⎟⎠ �

The corresponding electric and magnetic fields �E′ and �B′ in some other Cartesian
inertial frame S′ are most easily obtained by calculating the components of the
electromagnetic field tensor F or the 4-potential A in this frame. For example, if S′
is moving at speed v relative to S in standard configuration then the components
in S′ are given by

A′� =$�
�A

� and F ′�� =$�
#$

�
�F

#��

where the matrix 
$�
�� is given in Chapter 5.

6.6 Electromagnetism in arbitrary coordinates

So far we have developed electromagnetic theory in Cartesian inertial coordinates.
In general, however, we are free to label points in the Minkowski spacetime using
any arbitrary coordinate system x�. We could have developed the entire theory
in such an arbitrary system, or even in a coordinate-independent way by using
the 4-tensors themselves rather than their components in some coordinate system.
Nevertheless, having expressed the theory in Cartesian inertial coordinates, it is
now trivial to re-express it in a form valid in arbitrary coordinates.

As shown in (6.7), the electromagnetic field equations in Cartesian inertial
coordinates, when expressed in terms of F, are given by

��F
�� = �0j

��

�#F��+ ��F#�+ ��F�# = 0�
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In such a coordinate system, the partial derivative �� is identical to the covariant
derivative ��, so we can rewrite these equations as

��F
�� = �0j

��

�#F��+��F#�+��F�# = 0�
(6.12)

These new equations are now fully covariant tensor equations, however, so that if
they are valid in one system of coordinates then they are valid in all coordinate
systems. Thus, (6.12) gives the electromagnetic field equations in an arbitrary
coordinate system! Once again, using the antisymmetrisation operation discussed
in Section 4.3, one can write the second equation simply as �
#F��� = 0.
A similar procedure can be performed for the electromagnetic field equations

when expressed in terms of the 4-vector potential A. From (6.6), in Cartesian
inertial coordinates we have

��#����#A�− ����A#�= �0j��

Once again, we can replace �� by ��, but in this case we must also replace ��#

by g�# , to obtain

g�#����#A�−����A#�= �0j��

Again we have a fully covariant tensor equation, which must therefore be valid
in any arbitrary coordinate system, the metric coefficients of which are g�# .
In arbitrary coordinates, the electromagnetic field equations still permit the

gauge transformation

A�new�
� = A�+��� = A�+ ����

where the last equality holds because the covariant derivative of the scalar field
� is simply its partial derivative. We can again choose a scalar field �, so that

��A
� = 0�

which is the Lorenz gauge condition in arbitrary coordinates. In this case the
electromagnetic field equations can again be written in the form

�2A� = �0j��
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but now the d’Alembertian operator is given by �2= g������ = ����. In vacuo,
we may again write �2A� = 0 and �2F�� = 0. Also, charge conservation is given
in arbitrary coordinates by

��j
� = 0�

Finally, we note that the components of F and A in two different arbitrary
coordinate systems x� and x′� are related by

A′� = �x′�

�x�
A� and F ′�� = �x′�

�x#
�x′�

�x�
F#��

6.7 Equation of motion for a charged particle

From our original considerations in Section 6.1, we see that the coordinate-
invariant manner of writing the equation of motion of a charged particle in an
electromagnetic field is

dp
d�
=m0

du
d�
= qF ·u�

where m0 is the rest mass of the particle, p is its 4-momentum, u is its 4-velocity
and � is the proper time measured along its worldline. Note that the first equality
holds because the electromagnetic force is a pure force.

In Cartesian inertial coordinates, this becomes

m0
du�

d�
= qF�

�u
��

In a general coordinate system, however, the left-hand side is no longer valid
since the ordinary derivative of the components of the 4-velocity along the parti-
cle’s worldline must be replaced by the intrinsic derivative along the worldline.
Using the expression for the intrinsic derivative given in Chapter 3, we find
that in an arbitary coordinate system the equation of motion of a particle in an
electromagnetic field is

m0
Du�

D�
=m0

(
du�

d�
+ �

�#u
�u#

)
= qF�

�u
��

where we have written dx#/d� as u# since the 4-velocity is the tangent to the
particle’s worldline x����.
The equation for the particle’s worldline in arbitrary coordinates is thus given by

d2x�

d�2
+ �

�#

dx�

d�

dx#

d�
= q

m0
F�

�

dx�

d�
� (6.13)
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In the absence of an electromagnetic field (or for an uncharged particle), the
right-hand side is zero and we can recognise the result as the equation of a
geodesic.

In summary, the general procedure for converting an equation valid in Cartesian
inertial coordinates into one that is valid in an arbitrary coordinate system is as
follows:

• replace partial derivatives with covariant derivatives;
• replace ordinary derivatives along curves with intrinsic derivatives;
• replace ��� by g��.

Exercises

6.1 Show that the second Maxwell equation in (6.7) can be written as �
#F��� = 0.
6.2 Show that the Maxwell equation (6.6) is unchanged under the gauge transformation

(6.9).
6.3 In some Cartesian inertial frame S, the contravariant components of the electric and

magnetic fields are Ei and Bi respectively. Show that the corresponding electromag-
netic field-strength tensor has the contravariant components


F���=

⎛⎜⎜⎜⎝
0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

⎞⎟⎟⎟⎠ �

6.4 In a Cartesian inertial coordinate system in Minkowski spacetime the field equations
of electromagnetism can be written

��F
�� = �0j

��

�#F��+ ��F#�+ ��F�# = 0�

Show that these equations are equivalent to the standard form of Maxwell’s equations
in vacuo.

6.5 Two Cartesian inertial frames S and S′ are in standard configuration. Show that the
components of electric and magnetic fields in the two frames are related as follows:

E′1 = E1�

E′2 = 	�E2−vB3��

E′3 = 	�E3+vB2��

B′1 = B1�

B′2 = 	
(
B2+ v

c2
E3
)
�

B′3 = 	
(
B3− v

c2
E2
)
�

Show further that c2 �B2− �E2 is Lorentz invariant.
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6.6 Show that the transformation equations derived in Exercise 6.5 can be written as

�E′� = �E��
�B′� = �B��

�E′⊥ = 	��E⊥+�v× �B⊥��

�B′⊥ = 	

(
�B⊥−

1
c2
�v× �E⊥

)
�

where �v= �v�0�0�, and �E� and �E⊥ denote the projections of �E parallel and orthog-

onal to �v respectively (and similarly for �B). Explain why these equations must hold
for a Lorentz boost �v in an arbitrary direction with respect to the axes of S.

6.7 Show that one may eliminate the explicit reference to the projections of �E and �B
in Exercise 6.6 and write the transformations as

�E′ = 	��E+�v× �B�+ 1−	

v2
��v · �E��v�

�B′ = 	

(
�B− 1

c2
�v× �E

)
+ 1−	

v2
��v · �B��v�

6.8 Show that �E · �B is a Lorentz invariant.
6.9 In an arbitrary coordinate system, the second Maxwell equation reads

�#F��+��F#�+��F�# = 0�

Show that this can be written as

�#F��+ ��F#�+ ��F�# = 0�

and hence show that �
#F��� = 0.
6.10 In Cartesian inertial coordinates, the equation of motion for a charged particle in

an electromagnetic field is

m0

du�

d�
= qF�

�u
��

Show that
d�p
dt
= q��E+ �u× �B� and

d�

dt
= q �E · �u�

where �p and � are the 3-momentum and the energy respectively of the particle in
S. Interpret these results physically.

6.11 In some inertial frame S, show that the 3-acceleration of a charged particle in an
electromagnetic field is

�a= d�u
dt
= q

	m0

[
�E+ �u× �B− 1

c2
��u · �E��u

]
�
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The equivalence principle and spacetime curvature

We are now in a position to use the experience gained in deriving a relativistic
formulation of electromagnetism (together with some flashes of inspiration from
Einstein!) to begin our formulation of a relativistic theory of gravity, namely
general relativity.

7.1 Newtonian gravity

In our development of electromagnetism, we began by considering the electro-
magnetic 3-force on a charged particle. Let us therefore start our discussion of
gravity by considering the description of the gravitational force in the classical,
non-relativistic, theory of Newton. In the Newtonian theory, the gravitational
force �f on a (test) particle of gravitational mass mG at some position is

�f =mG�g =−mG
��%�

where �g is the gravitational field derived from the gravitational potential % at that
position. In turn, the gravitational potential is determined by Poisson’s equation:

��2% = 4�G�� (7.1)

where � is the gravitational matter density and G is Newton’s gravitational
constant. This is the field equation of Newtonian gravity.

It is clear from (7.1) that Newtonian gravity is not consistent with special
relativity. There is no explicit time dependence, which means that the potential
% (and hence the gravitational force on a particle) responds instantaneously to a
disturbance in the matter density �; this violates the special-relativistic requirement
that signals cannot propagate faster than c. We might try to remedy this by noting

147



148 The equivalence principle and spacetime curvature

that the Laplacian operator ��2 in (7.1) is equivalent to minus the d’Alembertian
operator �2 in the limit c→�, and thus postulate the modified field equation

�2% =−4�G��

However, this equation does not yield a consistent relativistic theory. It is still
not Lorentz covariant, since the matter density � does not transform as a Lorentz
scalar. We shall discuss the transformation properties of the matter density later.

In addition to the incompatibility of Newtonian gravity with special relativity,
there is a second fundamental difference between the electromagnetic and grav-
itational forces. The equation of motion of a particle of inertial mass mI in a
gravitational field is given by

d2�x
dt2

=−mG

mI

��%� (7.2)

It is a well-established experimental fact, however, that the ratiomG/mI appearing
in the equation of motion is the same for all particles. By an appropriate choice of
units one may thus arrange for this ratio to equal unity. In contrast, the ratio q/mI

occurring in the equation of motion of a charged particle in an electromagnetic
field is not the same for all particles. From (7.2), we thus see that the trajectory
through space of a particle in a gravitational field is independent of the nature of
the particle.

This equivalence of the gravitational and inertial masses (which allows us to
refer simply to ‘the mass’), is a truly remarkable coincidence in the Newtonian
theory. In this theory, there is no a-priori reason why the quantity that determines
the magnitude of the gravitational force on the particle should equal the quantity
that determines the particle’s ‘resistance’ to an applied force in general. It appears
as an isolated experimental result, which has since been verified to an accuracy
of at least one part in 1011 (by Dicke and co-workers).

7.2 The equivalence principle

The equality of the gravitational and inertial masses of a particle led Einstein
to his classic ‘elevator’ thought experiment. Consider an observer in a freely
falling elevator (i.e. after the lift cable has been cut). Objects released from
rest relative to the elevator cabin remain floating ‘weightless’ in the cabin.
A projectile shot from one side of the elevator to the other appears to move
in a straight line at constant velocity, rather than in the usual curved trajectory.
All this follows from the fact that the acceleration of any particle relative to
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the elevator is zero: the particle and the elevator cabin have the same accelera-
tion relative to the Earth as a result of the equivalence of gravitational and inertial
mass.

All these observations would hold exactly if the gravitational field of the Earth
were truly uniform. Of course, the gravitational field of the Earth is not uniform
but acts radially inwards towards its centre of mass, with a strength proportional
to 1/r2. Thus, if the elevator were left to free-fall for a long time or if it were very
large (i.e. a significant fraction of the Earth’s radius), two particles released from
rest near the walls of the elevator would gradually drift inwards, since they would
both be falling along radial lines towards the centre of the Earth (see Figure 7.1).
Furthermore, as a result of the varying strength of the gravitational field, particles
released from rest near the floor of the elevator would gradually drift downwards
whereas those near the ceiling would drift upwards. What the observer in the
elevator would be experiencing would be the tidal forces resulting from the
residual inhomogeneity in the strength and direction of the gravitational field once
the main acceleration has been subtracted. It should always be remembered that
these tidal forces can never be completely abolished in an elevator (laboratory)
of finite, i.e. non-zero, size.

Nevertheless, provided that we consider the elevator cabin over a short time
period and that it is spatially small, then a freely falling elevator (which may
have �x� y� z� coordinates marked on its walls and an elevator clock measuring
time t) resembles a Cartesian inertial frame of reference, and therefore the laws
of special relativity hold inside the elevator.1 These observations lead to

The equivalence principle: In a freely falling (non-rotating) laboratory occupying
a small region of spacetime, the laws of physics are those of special relativity.2

7.3 Gravity as spacetime curvature

These observations led Einstein to make a profound proposal that simultaneously
provides for a relativistic description of gravity and incorporates in a natural way
the equivalence principle (and consequently the equivalence of gravitational and
inertial mass). Einstein’s proposal was that gravity should no longer be regarded
as a force in the conventional sense but rather as a manifestation of the curvature
of the spacetime, this curvature being induced by the presence of matter. This is
the central idea underpinning the theory of general relativity.

1 The elevator cabin must not only occupy a small region of spacetime but also be non-rotating with respect to
distant matter in the universe. This statement is related to Mach’s principle.

2 This is in fact a statement of the strong equivalence principle, since it refers to all the Laws of physics. The
more modest weak equivalence principle refers only to the trajectories of freely falling particles.
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Figure 7.1 An elevator in free-fall towards the Earth.

If gravity is regarded a manifestation of the curvature of spacetime itself, and
not as the action of some 4-force f defined on the manifold then the equation of
motion of a particle moving only under the influence of gravity must be that of a
‘free’ particle in the curved spacetime, i.e.

dp
d�
= 0�

where p is the particle’s 4-momentum and � is the proper time measured along the
particle’s worldline. Thus, the worldline of a particle freely falling under gravity
is a geodesic in the curved spacetime.

The equivalence principle restricts the possible geometry of the curved space-
time to pseudo-Riemannian, as follows. The mathematical meaning of the equiv-
alence principle is that it requires that at any event P in the spacetime manifold
we must be able to define a coordinate system X� such that, in the local neigh-
bourhood of P, the line element of spacetime takes the form

ds2 ≈ ��� dX
� dX��

where exact equality holds at the event P. From the geodesic equation (as shown
in Chapter 5), in such a coordinate system the path of a ‘free’ particle, i.e. one
moving only under the influence of gravity, in the vicinity of the event P is
given by

d2Xi

dT 2
≈ 0�

where i = 1�2�3 and we have denoted X0 by cT (once again the equality in the
above equations holds exactly at P). Thus, in the vicinity of P the coordinates X�

define a local Cartesian inertial frame (like our small elevator considered over a
short time interval), in which the laws of special relativity hold locally. In order
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that we can construct such a system, spacetime must be a pseudo-Riemannian
manifold (which is curved and four-dimensional). For such a manifold, in some
arbitrary coordinate system x� the line element takes the general form

ds2 = g�� dx
� dx��

7.4 Local inertial coordinates

The curvature of spacetime means that it is not possible to find coordinates in
which the metric g�� = ��� at all points in the manifold. Thus, it is not possible
to define global Cartesian inertial frames as we could in the pseudo-Euclidean
Minkowski spacetime. Instead, we are forced to use arbitrary coordinate systems
x� to label events in spacetime, and these coordinates often do not have simple
physical meanings. It is often the case that x0 is a timelike coordinate and the
xi�i = 1�2�3� are spacelike (i.e. the tangent vector to the x0 coordinate curve is
timelike at all points, and similarly the tangent vectors to the xi coordinate curves
are always spacelike). This allocation of coordinates is not necessary, however,
and it is sometimes useful to define null coordinates. In any case, the arbitrary
coordinates x� need not have any direct physical interpretation.

Nevertheless, as demanded by the equivalence principle, problems of physical
meaning can always be overcome by transforming, at any event P in the curved
spacetime, to a local inertial coordinate system X�, which, in a limited region of
spacetime about P, corresponds to a freely falling, non-rotating, Cartesian frame
over a short time interval. Mathematically, this corresponds to constructing about
the event P a coordinate system X� such that

g���P�= ��� and ��#g���P = 0� (7.3)

This also means that  �
�#�P� = 0 and that the coordinate basis vectors at the

event P form an orthonormal set, i.e.

e��P� · e��P�= ���� (7.4)

There are in fact an infinite number of local inertial coordinate systems at P, all
of which are related to one another by Lorentz transformations. In other words,
if a coordinate system X� satisfies the conditions (7.3), and hence the condition
(7.4), then so too will the coordinate system

X′� =$�
�X

��

where $�
� defines a Lorentz transformation. Thus, local Cartesian freely falling

(non-rotating) frames at an event P are related to one another by boosts, spatial
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rotations or combinations of the two. For any one of these coordinate systems, the
timelike basis vector e0�P� is simply the normalised 4-velocity vector û�P� of the
origin of that frame at the event P, and the three mutually orthogonal spacelike
vectors ei�P��i= 1�2�3� define the orientation of the spatial axes of the frame.

For points near to P, the metric in a local inertial coordinate system X� (whose
origin is at P) is given by

g�� = ���+ 1
2��#��g���PX

#X�+· · · �
The sizes of the second derivatives ��#��g���P thus determine the region over
which the approximation g�� ≈ ��� remains valid. We shall see the significance
of these second derivatives shortly.

7.5 Observers in a curved spacetime

We discussed the subject of observers in Minkowski spacetime in Chapter 5, but
let us now consider the subject in its full generality, in a curved spacetime. An
observer will trace out some general (timelike) worldline x���� through spacetime,
as expressed in some arbitrary coordinate system, where � is the observer’s proper
time. An idealisation of his local laboratory is a frame of four orthonormal vectors
ê���� (or tetrad) satisfying

ê���� · ê
���= ��
�

which are carried with him along his worldline (these vectors may, in general,
be totally unrelated to the basis vectors e� of the coordinate system that we are
using to label points in spacetime, although we can always express one set of
vectors in terms of the other). In particular, at any point along his worldline the
timelike vector ê0��� coincides with the normalised 4-velocity û��� = u���/c of
the observer. Similarly, the evolution of the spacelike vectors êi��� along the
worldline reflect the different ways in which his local laboratory may be spinning
or tumbling. Quantities measured in this laboratory correspond to projections of
the relevant physical 4-vectors and 4-tensors onto this orthonormal frame.

As shown in Chapter 5, if the observer has a 4-acceleration a���= du/d� but
is not rotating, the tetrad basis vectors are Fermi–Walker-transported along the
observer’s worldline:

dê�
d�

= 1
c2
[
�u · ê��a− �a · ê��u

]
� (7.5)

This expression holds equally well in a curved spacetime. An important special
case is that of a non-rotating, freely falling observer, i.e one who is moving only
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under the influence of gravity. The vectors ê���� then define what is called a
freely falling frame (FFF). Free from any external forces, the observer’s worldline
traces out a geodesic in the curved spacetime. Thus the timelike vector ê0 changes
with proper time along the worldline according to

dê0
d�

= 0�

In other words, ê0 is parallel-transported along the worldline, and the observer’s
4-acceleration a is zero. In this case we see from (7.5) that Fermi–Walker transport
reduces to parallel transport. Thus the spacelike frame vectors êi (i= 1�2�3) are
also parallel-transported along the geodesic, so that

dêi
d�

= 0�

Hence, in an arbitrary coordinate system x�, the components �ê��
����= ê���� ·e�

of any frame vector evolve as follows:

D�ê��
�

D�
= d�ê��

�

d�
+ �

�#�ê��
�u# = 0�

This equation is extremely useful for determining what a freely falling observer
would measure at a given event in spacetime. It is also clear that the frame vectors
ê� at any event P along the observer’s worldline are the basis vectors of a local
Cartesian inertial coordinate system at P.

7.6 Weak gravitational fields and the Newtonian limit

It is clear that, by construction, our description of gravity in terms of spacetime
curvature reduces to special relativity in local inertial frames. It is important to
check, however, that such a description also reduces to Newtonian gravity in the
appropriate limits.

In the absence of gravity, spacetime has a Minkowski geometry. Therefore a
weak gravitational field corresponds to a region of spacetime that is only ‘slightly’
curved. In other words, in such a region there exist coordinates x� in which the
metric takes the form

g�� = ���+h��� where �h��� � 1� (7.6)

Note that it is important to say ‘there exist coordinates’ since (7.6) does not hold
for all coordinates; as we saw in Chapter 5, one can find coordinates even in
Minkowski space in which g�� is not close to the simple form ���. Let us assume
that in the coordinate system (7.6) the metric is stationary, which means that all
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the derivatives �0g�� are zero. An example of such a coordinate system might be
a fixed Cartesian frame at some point on the surface of the (non-rotating) Earth.

The worldline of a particle freely falling under gravity is given in general by
the geodesic equation

d2x�

d�2
+ �

�#

dx�

d�

dx#

d�
= 0�

We shall assume, however, that the particle is slow-moving, so that the compo-
nents of its 3-velocity satisfy dxi/dt � c�i = 1�2�3�, where t is defined by
x0 ≡ ct. This is equivalent to demanding that, for i= 1�2�3,

dxi

d�
� dx0

d�
�

Thus we can ignore the 3-velocity terms in the geodesic equation to obtain

d2x�

d�2
+ �

00c
2
(
dt

d�

)2

= 0� (7.7)

Now, recalling the expression (3.21) giving the connection in terms of the metric
and using the form (7.6) for g��, we find that the connection coefficients  �

00

are given by

 �
00 = 1

2g
&���0g0&+ �0g0&− �&g00�=− 1

2g
&��&g00 =− 1

2�
&��&h00�

where the last equality is valid to first order in h��. Since we have assumed that
the metric is stationary, we have

 0
00 = 0 and  i

00 = 1
2�

ij�jh00�

where the Latin index runs over i= 1�2�3. Inserting these coefficients into (7.7)
gives

d2t

d�2
= 0 and

d2�x
d�2

=− 1
2c

2
(
dt

d�

)2
��h00�

The first equation implies that dt/d� = constant, and so we can combine the two
equations to yield the following equation of motion for the particle:

d2�x
dt2
=− 1

2c
2 ��h00�

If we compare this equation with the usual Newtonian equation of motion for
a particle in a gravitational field (7.2), we see that the two are identical if we
make the indentification h00 = 2%/c2. Hence for a slowly moving particle our
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description of gravity as spacetime curvature tends to the Newtonian theory if the
metric is such that, in the limit of a weak gravitational field,

g00 =
(
1+ 2%

c2

)
� (7.8)

How big is the correction to the Minkowski metric? Some values of %/c2 for
various systems are as follows:

%

c2
=−GM

c2r
=

⎧⎪⎨⎪⎩
−10−9 at the surface of the Earth

−10−6 at the surface of the Sun

−10−4 at the surface of a white dwarf star�

Thus, we see that even at the surface of a dense object like a white dwarf, the
size of %/c2 is much smaller than unity and hence the weak-field limit will be
an excellent approximation.

From (7.8), the observant reader will have noticed that the description of gravity
in terms of spacetime curvature has another immediate consequence, namely that
the time coordinate t does not, in general, measure proper time. If we consider a
clock at rest at some point in our coordinate system (i.e. dxi/dt = 0), the proper
time interval d� between two ‘clicks’ of the clock is given by

c2d�2 = g�� dx
� dx� = g00c

2 dt2�

from which we find that

d� =
(
1+ 2%

c2

)1/2

dt�

This gives the interval of proper d� corresponding to an interval dt of coordinate
time for a stationary observer near a massive object, in a region where the
gravitational potential is%. Since% is negative, this proper time interval is shorter
than the corresponding interval for a stationary observer at a large distance from
the object, where %→ 0 and so d� = dt. Thus, as a bonus, our analysis has also
yielded the formula for time dilation in a weak gravitational field.

7.7 Electromagnetism in a curved spacetime

Before going on to discuss the mathematics of curvature in detail, let us look
back at our development of electromagnetism in Chapter 6. It is clear that our
derivation of the electromagnetic field equations in arbitrary coordinates did not
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depend on the intrinsic geometry of the manifold on which the electromagnetic
field tensor F and the 4-current j are defined. In other words, one can arrive at
these equations without assuming the spacetime to have a Minkowski geometry.
Thus, in the presence of gravitating matter, spacetime becomes curved but the
field equations of electromagnetism in an arbitrary coordinate system are still
given by

��F
�� = �0j

��

�#F��+��F#�+��F�# = 0�
(7.9)

The effects of gravitation are automatically included in these field equations
through the covariant derivatives, which depend on the metric g�� describing
the spacetime geometry. Moreover, if we construct a local Cartesian coordinate
system about some point P in the manifold then (as discussed above) these
coordinates correspond to a local inertial frame in the neighbourhood of P. In these
coordinates, the equations of electromagnetism then take their familiar special
relativistic forms.

An electromagnetic field tensor F defined on a curved spacetime gives rise (as
in Minkowski space) to a 4-force f = qF ·u, which acts on a particle of charge
q with 4-velocity u. Thus the equation of motion of a charged particle moving
under the influence of an electromagnetic field in a curved spacetime has the
same form as that in Minkowski spacetime, i.e.

m0
du
d�
= qF ·u�

where m0 is the rest mass of the particle. In this case, however, because of
the curvature of spacetime the particle is moving under the influence of both
electromagnetic forces and gravity. In some arbitrary coordinate system, the
particle’s worldline is again given by

d2x�

d�2
+ �

�#

dx�

d�

dx#

d�
= q

m0
F�

�

dx�

d�
�

Obviously, in the absence of an electromagnetic field (or for an uncharged parti-
cle), the right-hand side is zero and we recover the equation of a geodesic.

We must remember, however, that the energy and momentum of the electro-
magnetic field will itself induce a curvature of spacetime, so the metric in this
case is determined not only by the matter distribution but also by the radiation.
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7.8 Intrinsic curvature of a manifold

Since the notion of curvature is central to general relativity, we must now inves-
tigate how to quantify the intrinsic curvature of a manifold at any given point P.3

A manifold (or region of a manifold) is flat if there exist coordinates X� such
that, throughout the region, the line element can be written

ds2 = �1�dX
1�2+ �2�dX

2�2+· · ·+ �N �dX
N�2� (7.10)

where �a = ±1 (in other words ‘flat’ is a shorthand for pseudo-Euclidean). If,
however, points in the manifold are labelled with some arbitrary coordinate system
xa then in general the line element ds2 will not be of the above form. Thus, if for
some manifold the line element is given by

ds2 = gab�x�dx
a dxb�

how can we tell whether the intrinsic geometry of the manifold in some region is
flat or curved in some way?

Consider, for example, the following line element for a three-dimensional space:

ds2 = dr2+ r2d�2+ r2 sin2 �d�2�

Of course, we recognise this as the line element of ordinary three-dimensional
Euclidean space written in spherical polar coordinates. In other words, the trans-
formation

x = r sin � cos�� y = r sin � sin�� z= r cos�

will turn the above line element into the form

ds2 = dx2+dy2+dz2� (7.11)

But what about other line elements? For example, recall from Chapter 2 the
three-dimensional space described by the line element (2.21):

ds2 = a2

a2− r2
dr2+ r2 d�2+ r2 sin2 �d�2�

How can we tell whether this metric, or a more complicated metric, corresponds
to flat space but merely looks complicated because of a weird choice of coordi-
nates? It would be immensely tedious to try to discover whether there exists a
coordinate transformation that reduces a metric to the form (7.11). We therefore
need some means of telling whether a manifold is flat directly from the metric
gab, independently of the coordinate system being used.

3 Since the material presented here is applicable to any N -dimensional pseudo-Riemannian manifold, we will
use indices a�b etc. that have a range 1 to N , rather than ��� etc., with a range 0 to 3. Of course, the final
application to general relativity will govern the scope of our results.



158 The equivalence principle and spacetime curvature

The physical significance of this to general relativity is as follows. If, throughout
some region of a four-dimensional spacetime, we can reduce the line element

ds2 = g�� dx
� dx�

to Minkowski form then there can be no gravitational field in this region. The
equivalence of a general line element to that of Minkowski spacetime therefore
guarantees that the gravitational field will vanish. The solution to our mathematical
problem of finding a coordinate-independent way of defining the curvature of
spacetime will lead us to the field equations of gravity.

7.9 The curvature tensor

We can find a solution to the problem of measuring the curvature of a manifold at
any point by considering changing the order of covariant differentiation. Covariant
differentiation is clearly a generalisation of partial differentiation. There is one
important respect in which it differs, however: it matters in which order covariant
differentiation is performed, and changing the order (in general) changes the result.

Since for a scalar field the covariant derivative is simply the partial deriva-
tive, the order of differentiation does not matter. However, let us consider some
arbitrary vector field defined on a manifold, with covariant components va. The
covariant derivative of the va is given by

�bva = �bva− d
abvd�

A second covariant differentiation then yields

�c�bva = �c��bva�− e
ac�bve− e

bc�eva

= �c�bva− ��c 
d
ab�vd− d

ab�cvd

−  e
ac��bve− d

ebvd�− e
bc��eva− d

aevd��

which follows since �bva is itself a rank-2 tensor. Swapping the indices b and c
to obtain a corresponding expression for �b�cva and then subtracting gives

�c�bva−�b�cva = Rd
abcvd� (7.12)

where

Rd
abc ≡ �b 

d
ac− �c 

d
ab+ e

ac 
d
eb− e

ab 
d
ec� (7.13)

To determine directly whether the N 4 quantities Rd
abc transform as the compo-

nents of a tensor under a coordinate transformation would be an arduous algebraic
task. Fortunately the quotient theorem (Section 4.11) provides a much shorter
route. The left-hand side of (7.12) is a tensor, for arbitrary vectors va, so the



7.10 Properties of the curvature tensor 159

contraction of Rd
abc with vd is also a tensor. Since Rd

abc does not depend on va,
we conclude from the quotient theorem that the Rd

abc are indeed the components
of some rank-4 tensor R. This tensor is called the curvature tensor (or Riemann
tensor), and equation (7.13) shows that it is defined in terms of the metric tensor
gab and its first and second derivatives.

We must now establish how the tensor (7.13) is related to the curvature of the
manifold. In a flat region of a manifold, we may choose coordinates such that
the line element takes the form (7.10) throughout the region. In these coordinates
 a

bc and its derivatives are zero, and hence

Rd
abc = 0

at every point in the region. This is a tensor relation, however, and so it must hold
in any coordinate system. Conversely, if Rd

abc = 0 at every point in some region
of a manifold, then it may be shown that it is possible to introduce a coordinate
system in which the line element takes the form (7.10), and hence this region
is flat.4 Thus the vanishing of the curvature tensor is a necessary and sufficient
condition for a region of a manifold to be flat.

7.10 Properties of the curvature tensor

The curvature tensor (7.13) possesses a number of symmetries and satisfies certain
identities, which we now discuss. The symmetries of the curvature tensor are most
easily derived in terms of its covariant components

Rabcd = gaeR
e
bcd�

For completeness, we note that in an arbitrary coordinate system an explicit form
for these components is found, after considerable algebra, to be

Rabcd = 1
2��d�agbc− �d�bgac+ �c�bgad− �c�agbd�−gef � eac fbd− ead fbc��

One could use this expression straightforwardly to derive the symmetry properties
of the curvature tensor, but we take the opportunity here to illustrate a general
mathematical device that is often useful in reducing the algebraic burden of tensor
manipulations.

Let us choose some arbitrary point P in the manifold and construct a geodesic
coordinate system about this point (see Section 3.11), in which the connec-
tion vanishes,  a

bc�P� = 0, although in general its derivatives will not. In this

4 For a proof of this result, see (for example) P. A. M. Dirac, General Theory of Relativity, Princeton Landmarks
in Physics Series, Princeton University Press, 1996.
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coordinate system, one may easily show directly from (7.13) that the covariant
components of the curvature tensor at P are given by

�Rabcd�P = 1
2��d�agbc− �d�bgac+ �c�bgad− �c�agbd�P�

From this expression one may immediately establish the following symmetry
properties at P:

Rabcd =−Rbacd�

Rabcd =−Rabdc�

Rabcd = Rcdab�

(7.14)

(7.15)

(7.16)

The first two properties show that the curvature tensor is antisymmetric with
respect to swapping the order of either the first two indices or the second two
indices. The third property shows that it is symmetric with respect to swapping
the first pair of indices with the second pair of indices. Moreover, we may also
easily deduce the cyclic identity

Rabcd+Racdb+Radbc = 0� (7.17)

which on using (7.15) may be written more succinctly as Ra
bcd� = 0. Although
the results (7.14–7.17) have been derived in a special coordinate system, each
condition is a tensor relation and so if it is valid in one coordinate system then it is
valid in all. Moreover, since the point P is arbitrary, the results hold everywhere.

Although first appearances might suggest that the curvature tensor has N 4

components, the conditions (7.14–7.17) reduce the number of independent compo-
nents to N 2�N 2−1�/12. Recall from Section 2.11 that this is also the number of
degrees of freedom among the second derivatives �d�cgab. This is not surprising
since, at any point P in a manifold, we can perform a transformation to local
Cartesian coordinates in which gab�P� = ��� and ��cgab�P = 0. Thus, a general
metric at any point P is characterised by the N 2�N 2−1�/12 second derivatives
that cannot be made to vanish there.

For manifolds of different dimensions we have the following results:

No. of dimensions 2 3 4
No. of independent components of Rabcd 1 6 20

You can see from this table that in four dimensions the number of independent
components is reduced from a possible 256 to 20. You will also see that in one
dimension the curvature tensor is always equal to zero: R1111 = 0. How can this
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be? Can a line not be curved? Think about this – the curvature measures the
‘inner’ properties of the space. When we say that a line is curved we refer to
a particular embedding in a higher-dimensional space, but this does not tell us
about the inner properties of the space. In one dimension, it is evident that we
can always find a coordinate transformation that will reduce an arbitrary metric to
the form (7.10). As a two-dimensional example, in Appendix 7A we calculate the
single independent component of the curvature tensor for the surface of a sphere.
The Gaussian curvature K of a two-dimensional surface is given by

K = R1212

g
�

where g = det
gab� is the determinant of the metric tensor.
The curvature tensor also satisfies a differential identity, which may be derived

as follows. Let us once again adopt a geodesic coordinate system about some
arbitrary point P. In this coordinate system, differentiating and then evaluating
the result at P gives

��eRabcd�P = ��eRabcd�P = ��e�c abd− �e�d abc�P�

Cyclically permuting c, d and e to obtain two further analogous relations and
adding, one finds that at P

�eRabcd+�cRabde+�dRabec = 0� (7.18)

This is, however, a tensor relation and thus holds in all coordinate systems;
moreover, since P is arbitrary the relationship holds everywhere. This result is
known as the Bianchi identity and, using the antisymmetry relation (7.14), it may
be written more succinctly as

�
eRab�cd = 0�

7.11 The Ricci tensor and curvature scalar

It follows from the symmetry properties (7.14–7.16) of the curvature tensor that
it possesses only two independent contractions. We may find these by contracting
either on the first two indices or on the first and last indices respectively. From
(7.14), raising the index a and then contracting on the first two indices gives

Ra
acd = 0�

Contracting on the first and last indices, however, gives in general a non-zero
result and this leads to a new tensor, the Ricci tensor. It is traditional to use the
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same kernel letter for the Ricci tensor as for the curvature tensor, so we denote
its components by

Rab ≡ Rc
abc�

By raising the index a in the cyclic identity (7.17) and contracting with d, one
may easily show that the Ricci tensor is symmetric. Thus we have Ra

b =Ra
b and

we can denote both by Rb
a.

A further contraction gives the curvature scalar (or Ricci scalar)

R≡ gabRab = Ra
a�

where again the same kernel letter is used. This is a scalar quantity defined at
each point of the manifold.

The covariant derivatives of the Ricci tensor and the curvature scalar obey a
particularly important relation, which will be central to our development of the
field equations of general relativity. Raising a in the Bianchi identity (7.18) and
contracting with d gives

�eRbc+�cR
a
bae+�aR

a
bec = 0�

which, on using the antisymmetry property (7.16) in the second term, gives

�eRbc−�cRbe+�aR
a
bec = 0�

If we now raise b and contract with e, we find

�bR
b
c−�cR+�aR

ab
bc = 0� (7.19)

Using the antisymmetry properties (7.14, 7.15) we may write the third term as

�aR
ab

bc = �aR
ba

cb = �aR
a
c = �bR

b
c�

so the first and last terms in (7.19) are identical and we obtain

2�bR
b
c−�cR= �b

(
2Rb

c−�bcR
)= 0�

Finally, raising the index c, we obtain the important result

�b

(
Rbc− 1

2g
bcR

)= 0�

The term in parentheses is called the Einstein tensor

Gab ≡ Rab− 1
2g

abR�
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It is clearly symmetric and thus possesses only one independent divergence �aG
ab,

which vanishes (by construction). As we will see, it is this tensor that describes
the curvature of spacetime in the field equations of general relativity.

7.12 Curvature and parallel transport

In Chapter 3, we remarked that parallel transport in a curved manifold was path
dependent. We now have a more formal description of curvature. If a region
of manifold is flat then the curvature tensor vanishes throughout the region;
otherwise, it is curved. Thus there must be some link between the curvature tensor
and parallel transport.

Let us consider the parallel transport of a vector v around a closed curve �
in a manifold. We can define an arbitrary surface � bounding the curve � and
break this surface up into a lot of small areas each bounded by closed curves
�N , as indicated in Figure 7.2. The change in the components va on being
parallel-transported around the closed curve � is then

�va =∑
N

��va�N �

where ��va�N is the change in va around the small closed curve �N . This follows
because the changes in �va around any of the interior closed curves cancel,
leaving just the contributions around the outer edges that bound the curve � .

Let us now calculate ��va�N around the small closed curve �N defined by the
parametric equations xa�u�. The equation for parallel transport is given by (3.41):

dva

du
=− a

bcv
b dx

c

du
�

Define an arbitrary surface 
bounding the curve    – break
this area up into lots of little
closed curves �N

�
�

Figure 7.2 An arbitrary surface � bounding a closed curve � .
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Thus, if va is parallel-transported along the small closed curve �N from some
initial point P then at some other point along this curve we have

va�u�= vaP−
∫ u

uP

 a
bcv

b dx
c

du
du� (7.20)

However, since the closed curve is small we can expand the factors in the integrand
about P to first order in xa−xaP :

 a
bc�u� = � a

bc�P+ ��d 
a
bc�P

[
xd�u�−xdP

]+· · · �
va�u� = vaP− � a

bc�P v
b
P 
x

c�u�−xcP�+· · · �
Substituting these expressions into (7.20) and retaining terms only up to first order
in xa−xaP , we obtain

va�u� = vaP− � a
bc�P v

b
P

∫ u

uP

dxc

du
du

− ��d 
a
bc− a

ec 
e
bd�P v

b
P

∫ u

uP

(
xd−xdP

) dxc
du

du�

If we integrate the coordinate differentials around a closed loop we have
∮
dxc= 0,

and so we find that

�va =− ��d 
a
bc− a

ec 
e
bd�P v

b
P

∮ u

uP

xd dxc�

We may obtain an analogous result by interchanging the dummy indices c and d.
Now using the result ∮

d�xcxd�=
∮
�xc dxd+xd dxc�= 0�

we find that

�va =− 1
2 ��c 

a
bd− �d 

a
bc+ a

ec 
e
bd− a

ed 
e
bc�P v

b
P

∮
xc dxd�

On using the expression (7.13), we finally obtain

�va =− 1
2 �R

a
bcd�P v

b
P

∮
xc dxd� (7.21)

Equation (7.21) establishes the link between the curvature tensor at a point
P and parallel transport around a small loop close to P. It tells us that the
components va will remain unchanged after parallel transportation around a small
closed loop near P if and only if the curvature tensor vanishes at P. So, returning
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A

B C

A

B

C

D

Figure 7.3 Parallel transport around a closed curve on the surface of a sphere
and the surface of a cylinder.

to our construction of ��va�N , the vector components va will not change on
parallel transportation around the entire closed curve � if the curvature tensor
Ra

bcd vanishes over the entire area � bounding the curve.
As an example, consider the parallel transportation of a vector around the

closed triangle ABC on the surface of a sphere (see Figure 7.3). As shown in
Appendix 7A, the curvature tensor is nowhere zero, and it is evident that the
vector changes direction after parallel transportation around the triangle. However,
as also mentioned in Appendix 7A, the curvature tensor vanishes everywhere
on the surface of a cylinder and hence the components of a vector will remain
unchanged if the vector is parallel-transported around any closed curve (see
Figure 7.3).

7.13 Curvature and geodesic deviation

Another important consequence of curvature is that two nearby geodesics that
are initially parallel either converge or diverge, depending on the local curvature.
This is embodied in the equation of geodesic deviation, which we now derive.

Consider two neighbouring geodesics, � given by xa�u� and �̄ given by x̄a�u�,
where u is an affine parameter, and let �a�u� be the small ‘vector’ connecting
points on the two geodesics with the same parameter value (see Figure 7.4), i.e.

x̄a�u�= xa�u�+�a�u��

In particular, let us suppose that for some arbitrary value of u the vector �a�u�
connects the point P on � to the point Q on �̄ .

Once again our derivation is simplified considerably by constructing local
geodesic coordinates about the point P, in which the connection coefficients
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ξ 
a (u)

xa (u)

xa(u)

�

�

Figure 7.4 Two neighbouring geodesics.

vanish at P but their derivatives are in general non-zero there. In this coordinate
system, since � and �̄ are geodesics we have(

d2xa

du2

)
P

= 0� (7.22)(
d2x̄a

du2
+ a

bc

dx̄b

du

dx̄c

du

)
Q

= 0� (7.23)

at the points P and Q respectively. However, to first order in �a,

 a
bc�Q�=  a

bc�P�+ ��d 
a
bc�P �

d = ��d 
a
bc�P �

d�

Thus, subtracting (7.22) from (7.23) gives, to first order, at P

�̈a+ ��d 
a
bc� ẋ

bẋc�d = 0�

where the dots denote d/du. However, in our geodesic coordinates the second-
order intrinsic derivative of �a at P is given by

D2�a

Du2
= d

du

(
�̇a+ a

bc�
bxc
)
= �̈a+ ��d 

a
bc� �

bẋcẋd�

where we have used the fact that  a
bc�P� = 0; we note that nevertheless the

derivatives of  a
bc at P may not vanish. Thus, combining the last two equations

and relabelling dummy indices, we find that at P

D2�a

Du2
+ ��b 

a
cd− �d 

a
bc�+�bẋcẋd = 0�

We may now identify the terms in parentheses on the left-hand side as components
Ra

cbd of the Riemann tensor when expressed in local geodesic coordinates about
P. Thus we may write the above result as

D2�a

Du2
+Ra

cbd�
bẋcẋd = 0� (7.24)
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A

B C

Figure 7.5 Converging geodesics on the surface of a sphere.

which is clearly a tensor relation and is hence valid in any coordinate system.
Moreover, since P is an arbitrary point on � , this relation is valid everywhere
along the curve. The result (7.24) is the equation of geodesic deviation.

The geometric meaning of (7.24) is straightforward. In a flat region of a mani-
fold, Ra

bcd = 0 and we may adopts Cartesian coordinates throughout. In this case,
D/Du= d/du and the equation of geodesic deviation reduces to d2�a/du2 = 0,
which implies that �a�u� = Aau+Ba where Aa and Ba are constants. So in a
flat region the separation vector �a�u� connecting the two geodesics (which are
simple straight lines in this case) in general increases linearly with u. In the
special case where the two lines are initially parallel then they will remain so
and hence never intersect. In a curved region of a manifold, however Ra

bcd �= 0
and so neighbouring geodesics either converge or diverge. For example, the two
neighbouring geodesics AB and AC on the surface of a sphere (see Figure 7.5)
converge as we approach the point A at the pole because the surface is positively
curved. Equation (7.24) allows us to compute the rates of convergence or diver-
gence of neighbouring geodesics for Riemannian spaces of arbitrary complexity.
All one needs to do is to compute the curvature tensor (7.13) at each point using
the metric.

7.14 Tidal forces in a curved spacetime

Now that we have derived the equation of geodesic variation (7.24), we can
give a more quantitative account of the gravitational tidal forces mentioned
in our discussion of the equivalence principle in Section 7.2. Let us begin by
working in Newtonian gravity and consider an initially spherical distribution of
non-interacting particles freely falling towards the Earth (see Figure 7.6). Each
particle moves on a straight line through the centre of the Earth, but those nearer
the Earth fall faster because the gravitational attraction is stronger. Thus the
sphere no longer remains a sphere but is distorted into an ellipsoid of the same
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sphere
of particles

ellipsoid
of particles

Figure 7.6 Tidal force on a collection of non-interacting particles.

volume: gravity has produced a tidal force in the sphere of particles that results
in an elongation of the distribution in the direction of motion and a compression
of the distribution in the transverse directions. Indeed, it is straightforward to
show that, for two nearby particles with trajectories xi�t� and x̄i�t��i = 1�2�3�
respectively in Cartesian coordinates, that the components of the separation vector
�i = xi− x̄i evolve as

d2�i

dt2
=−

(
�2%

�xi�xj

)
�j�

where % is the Newtonian gravitational potential (see Exercise 7.21).
A similar tidal effect occurs in general relativity and can be understood in

terms of the curvature of the spacetime. In particular, we can gain some idea
of the general-relativistic tidal forces by considering the equation of geodesic
deviation (7.24). Consider any pair of our non-interacting particles. Each one
is in free fall and so they must move along the timelike geodesics x���� and
x̄���� respectively, where � is the proper time experienced by the first particle
(say). If we define a small separation vector between the two particle worldlines
by ����� = x̄����− x����, then (7.24) shows that it evolves according to the
equation

D2��

D�2
= S���

�� (7.25)

where we have defined the tidal stress tensor

S�� ≡ R�
#��u

#u�� (7.26)

in which u# ≡ du#/d� is the 4-velocity of the first particle. Note that in defining
S�� we have made use of the fact that the curvature tensor is antisymmetric in
its last two indices. The result (7.25) is a fully covariant tensor equation and
therefore holds in any coordinate system.
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To understand the physical consequences of the geodesic deviation effect, it is
helpful to consider how some observer will view the relative spatial acceleration
of the two particles. Suppose that our observer is sitting on the first particle,
the worldline x���� of which passes through some event P. In order to calculate
the relative spatial acceleration measured by our observer, we may erect a set of
orthonormal basis vectors ê� at P that define the instantaneous rest frame (IRF)
of the first particle (and the observer) at this event. The timelike basis vector is
given simply by ê0 = û, where u is the 4-velocity at P of the first particle, and
we may choose the spacelike basis vectors êi in any way, provided that the full
set satisfies

ê� · ê
 = ��
�

In this way, the duals of these basis vectors, which are given by ê� = ��
ê
,
also form an orthonormal set. The general situation is illustrated schematically in
Figure 7.7.

The components of the separation vector � with respect to our new frame are

��̂ ≡ ê� ·� = �ê����
��

these components give the temporal and spatial separations of the events P and
Q on the two particle worldlines, as measured by our observer. Since the ê���=
0�1�2�3� are the basis vectors of an inertial Cartesian coordinate system at P,
the intrinsic derivative in this coordinate system is simply equal to the ordinary

ê0

ê1

ê3

ê2

ξ(τ)

xµ (τ)

ζ(τ)P

Q

xµ (τ)

Figure 7.7 Schematic illustration of the basis vectors of the instantaneous rest
frame at P. A general connecting vector � and the orthogonal connecting vector
� are also shown.
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derivative. Moreover, with respect to the IRF, the 4-velocity of the first particle
is simply 
u�̂�= �c� �0�. Thus from (7.25) we have

d2��̂

d�2
= c2R�̂

0̂0̂	̂�
	̂� (7.27)

where the components of the curvature tensor in the Cartesian inertial frame at P
may be written as

R�̂

̂	̂�̂ ≡ R�

#���ê
����ê
�

#�ê	�
��ê��

�� (7.28)

Equation (7.27) in fact holds for any orthonormal freely falling frame ê�.
Clearly, the general separation vector � is inappropriate for our discussion of

the evolution of the spatial separation seen by our observer at P, since typically
� will have some temporal component in the observer’s frame. Thus, we must
work instead with the orthogonal connecting vector ���� shown in Figure 7.7,
which has a zero component in the ê0-direction, i.e. �

0̂ = 0. Since (7.27) is valid
for any small connecting vector it must also hold for the orthogonal connecting
vector � , but we must remember that � 0̂���= 0 for all �.
A useful alternative interpretation of (7.25) or (7.27) is that it gives the force

per unit mass required to keep two particles moving along parallel curves; this
force must be supplied by some mechanical means. For example, the worldline
of the centre of mass of a rigid body in free fall is a timelike geodesic, but this
is not true of the other parts of the object, which are constrained to move along
curves parallel to the centre of mass rather than along neighbouring geodesics.
The necessary forces must be supplied by internal stresses in the object. The
physical magnitude of the stresses is most easily found by solving the eigenvalue
problem

S��v
� = �v�� (7.29)

where S�� is given by (7.26). One of the eigenvalues is always zero (for v
�= u�),

and the remaining three eigenvalues give the principal stresses in the object.

Appendix 7A: The surface of a sphere

The metric5 of the surface of a sphere in spherical polar coordinates is

ds2 = a2 d�2+a2 sin2 �d�2�

5 Note that this term is often applied, as here, to the line element itself.
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To get used to handling problems involving curved spaces you should calculate
the components of the affine connection, starting from this metric. The definition
of the affine connection is

 a
bc = 1

2g
ad��bgdc+ �cgbd− �dgbc��

as given in (3.21), and in two dimensions there are six independent connection
coefficients,

 1
11�  1

12�  1
22�  2

11�  2
12�  2

22�

These coefficients are given by (exercise):

 1
11 = 1

2g
11��1g11+ �1g11− �1g11�= 0�

 1
12 = 1

2g
11��2g11+ �2g21− �1g12�= 0�

 1
22 = 1

2g
11��2g21+ �2g21− �1g22�=− 1

2g
11�1g22�

 2
11 = 1

2g
22��2g12+ �2g12− �2g11�= 0�

 2
12 = 1

2g
22��1g22+ �2g12− �2g11�= 1

2g
22�1g22�

 2
22 = 1

2g
22��2g22+ �2g22− �2g22�= 0�

So, the only two non-zero coefficients are

 1
22 = −

1
2a2

2a2 sin � cos� =− sin � cos��

 2
12 =

1

2a2 sin2 �
2a2 sin � cos� = cos�

sin �
�

The curvature tensor is

Rabcd = 1
2��d�agbc− �d�bgac+ �c�bgad− �c�agbd�−gef � 

e
ac 

f
bd− e

ad 
f
bc�

and in two dimensions the symmetry properties of this tensor mean that there is
only one independent component. We can take this to be R1212, so fortunately we
only have to calculate this single component:

R1212 = 1
2��2�1g21− �22g11+ �1�2g12− �21g22�−gef � 

e
11 

f
22− e

12 
f
21�

= − 1
2�

2
1g22−g11� 

1
11 

1
22− 1

12 
1
12�−g22� 

2
11 

2
22− 2

21 
2
21�

= a2 sin2 ��

Thus the Gaussian curvature K of a spherical surface is given by

K = R1212

g
= a2 sin2 �

a4 sin2 �
= 1

a2
�
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Instead of a spherical surface, we could instead consider the surface of a
cylinder of radius a. The metric of the surface in cylindrical polar coordinates is

ds2 = a2 d�2+dz2�

and it is obvious that this two-dimensional space is spatially flat because we can
transform the metric into the form

ds2 = dx2+dz2

by the coordinate transformation x = a�. It therefore follows that the curvature
of a cylindrical surface vanishes.

Exercises

7.1 From Poisson’s equation �2% = 4�G� show that the gravitational potential outside
a spherical object of mass M at a radial distance r from its centre is given by
%�r�=−GM/r. What is the form of %�r� inside a uniform spherical body?

7.2 A charged object held stationary in a laboratory on the surface of the Earth does not
emit electromagnetic radiation. If the object is then dropped so that it is in free fall, it
will begin to radiate. Reconcile these observations with the principle of equivalence.
Hint: Consider the spatial extent of the electric field of the charge.

7.3 If X� is a local Cartesian coordinate system at some event P, show that so too is the
coordinate system X′� =$�

�X
�, where $�

� defines a Lorentz transformation.
7.4 If two vectors v and w are Fermi–Walker-transported along some observer’s world-

line, show that their scalar product v ·w is preserved at all points along the line.
7.5 Photons of frequency �E are emitted from the surface of the Sun and observed by an

astronaut with fixed spatial coordinates at a large distance away. Obtain an expression
for the frequency �O of the photons as measured by the astronaut. Hence estimate
the observed redshift of the photon.

7.6 An experimenter A drops a pebble of rest mass m in a uniform gravitational field g.
At a distance h below A, experimenter B converts the pebble (with no energy loss)
into a photon of frequency �B. The photon passes by A, who observes it to have
frequency �A. Use simple physical arguments to show that to a first approximation

�B
�A
= 1+ gh

c2
�

Use this result to argue that for two stationary observers A and B in a weak gravi-
tational field with potential %, the ratio of the rates at which their laboratory clocks
run is 1+�%/c2, where �% is the potential difference between A and B.

7.7 A satellite is in circular polar orbit of radius r around the Earth (radius R, mass M).
A standard clock C on the satellite is compared with an identical clock C0 at the
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south pole on Earth. Show that the ratio of the rate of the orbiting clock to that of
the clock on Earth is approximately

1+ GM

Rc2
− 3GM

2rc2
�

Note that the orbiting clock is faster only if r > 3
2R, i.e. if r−R > 3184km.

7.8 Consider the limit of a weak gravitational field in a coordinate system in which
g�� = ���+h��, with �h��� � 1, and �0g�� = 0. Keeping only terms that are first
order in v/c, show that the equation of motion for a slowly moving test particle
takes the form

d2xi

dt2
≈− 1

2c
2�ij�jh00+ c�ik��jh0k− �kh0j�v

j�

Give a physical interpretation of the second term on the right-hand side.
7.9 Show that in a two-dimensional Riemannian manifold all the components of Rabcd

are equal either to zero or to ±R1212.
7.10 Show that the line element ds2 = y2 dx2+x2 dy2 represents the Euclidean plane, but

the line element ds2 = y dx2+xdy2 represents a curved two-dimensional manifold.
7.11 For a two-dimensional manifold with line element ds2 = dr2+f 2�r�d�2, show that

the Gaussian curvature is given by K =−f ′′/f , where a prime denotes d/dr.
7.12 By calculating the components of the curvature tensor Rd

abc in each case, show that
the line element

ds2 = a2

a2− r2
dr2+ r2 d�2+ r2 sin2 �d�2

represents a curved three-dimensional manifold. Show that the manifold is flat in
the limit a→ 0.

7.13 A spacetime has the metric

ds2 = c2 dt2−a2�t��dx2+dy2+dz2��

Show that the only non-zero connection coefficients are are

 0
11 =  0

22 =  0
33 = aȧ and  1

10 =  2
20 =  3

30 = ȧ/a�

Deduce that particles may be at rest in such a spacetime and that for such particles
the coordinate t is their proper time. Show further that the non-zero components of
the Ricci tensor are

R00 = 3ä/a and R11 = R22 = R33 =−aä−2ȧ2�

Hence show that the 00-component of the Einstein tensor is G00 =−3ȧ2/a2.
7.14 Show that the covariant components of the curvature tensor are given by

Rabcd = 1
2 ��d�agbc− �d�bgac+ �c�bgad− �c�agbd�−gef � eac fbd− ead fbc��

and hence verify its symmetries. Show further that, for an N -dimensional manifold,
the number of independent components is N 2�N 2−1�/12.
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7.15 Show that for any two-dimensional manifold the covariant curvature tensor has the form

Rabcd = K�gacgbd−gadgbc��

where the scalar K may be a function of the coordinates. Why does this result not
generalise to arbitrary manifolds of higher dimension?

7.16 If va are the contravariant components of a vector and Tab are the contravariant
components of a rank-2 tensor, prove the results

�c�bv
a−�b�cv

a = −Ra
dbcv

d�

�d�cT
ab−�c�dT

ab = −Ra
ecdT

eb−Rb
ecdT

ae�

Can you guess the corresponding result for the mixed components Tab
c of a rank-3

tensor?
7.17 Show that any Killing vector va, as defined in Exercise 4.11, satisfies the relations

�c�bv
a = Ra

bcdv
d�

va�aR = 0�

7.18 Calculate explicit forms for the Ricci tensor Rab and the Ricci scalar R in terms of
the metric, the connection and its partial derivatives.

7.19 Prove that the Ricci tensor Rab is symmetric.
7.20 A conformal transformation, such as that in Exercise 2.7, is not a change of

coordinates but an actual change in the geometry of a manifold such that the metric
tensor transforms as

g̃ab�x�=�2�x�gab�x��

where ��x� is some non-vanishing scalar function of position. Show that, under
such a transformation, the metric connection transforms as

 ̃ a
bc =  a

bc+
1
�

(
�ac�b�+�ab�c�−gbcg

ad�d�
)
�

Hence show that the curvature tensor, the Ricci tensor and the Ricci scalar transform
respectively as

R̃a
bcd = Ra

bcd−2
(
�a
c�

e
d��

f
b −gb
c�

e
d�g

af
) �e�f�

�

+2
(
2�a
c�

e
d��

f
b −2gb
c�

e
d�g

af +gb
c�
a
d�g

ef
) ��e����f��

�2
�

R̃bc = Rbc+
[
�N −2��fb�

e
c+gbcg

ef
] �e�f�

�

−
[
2�N −2��fb�

e
c− �N −3�gbcg

ef
] ��e����f��

�2
�

R̃ = R

�2
+2�N −1�gef

�e�f�

�3
+ �N −1��N −4�gef

��e����f��

�4
�

where N is the dimension of the manifold.
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7.21 Show that parallel transportation of a vector around the closed triangle ABC on the
surface of a sphere, as shown in Figure 7.3, results in a vector that is orthogonal to
its original direction.

7.22 On the surface of a sphere, show that, along the geodesic �= constant, the geodesic
deviation vector �i satisfies

D2��

Ds2
= 0�

D2��

Ds2
=−��

(
d�

ds

)2

�

Choose a geodesic � = �0 with path length s = � measured from � = 0, and a
neighbouring geodesic �=�0+��0, also with s= �, and define �i��� as the vector
between s = � on one and s = � on the other. Show that �i���= �0� ��� for all �.
Show in addition that if �� = 0 when � = 0 then

���� = l2 sin2��

where l2 is a constant, and that the two geodesics pass through � = �.
7.23 In Newtonian gravity, consider two nearby particles with trajectories xi�t� and

x̄i�t��i = 1�2�3� respectively in Cartesian coordinates. Show that the components
of the separation vector �i = xi− x̄i evolve as

d2�i

dt2
=−

(
�2%

�xi�xj

)
�j�

where % is the Newtonian gravitational potential.
7.24 In the weak-field, Newtonian, limit of general relativity, we may choose coordinates

such that g�� =���+h��, where �h���� 1, and we assume that all particle velocities
are small compared with c. By considering the equation of geodesic deviation,
show that the general-relativistic tidal force reduces to the Newtonian limit given
in Exercise 7.23.
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The gravitational field equations

Let us now follow Einstein’s suggestion that gravity is a manifestation of space-
time curvature induced by the presence of matter. We must therefore obtain a set
of equations that describe quantitatively how the curvature of spacetime at any
event is related to the matter distribution at that event. These will be the gravi-
tational field equations, or Einstein equations, in the same way that the Maxwell
equations are the field equations of electromagnetism.

Maxwell’s equations relate the electromagnetic field F at any event to its
source, the 4-current density j at that event. Similarly, Einstein’s equations relate
spacetime curvature to its source, the energy–momentum of matter. As we shall
see, the analogy goes further. In any given coordinate system, Maxwell’s equa-
tions are second-order partial differential equations for the components F�� of
the electromagnetic field tensor (or equivalently for the components A� of the
electromagnetic potential). We shall find that Einstein’s equations are also a set of
second-order partial differential equations, but instead for the metric coefficients
g�� of spacetime.

8.1 The energy–momentum tensor

To construct the gravitational field equations, we must first find a properly rela-
tivistic (or covariant) way of expressing the source term. In other words, we must
identify a tensor that describes the matter distribution at each event in spacetime.

We will use our discussion of the 4-current density in Chapter 6 as a guide. Thus,
let us consider some general time-dependent distribution of (electrically neutral)
non-interacting particles, each of rest mass m0. This is commonly called dust in
the literature. At each event P in spacetime we can characterise the distribution
completely by giving the matter density � and 3-velocity �u as measured in some
inertial frame. For simplicity, let us consider the fluid in its instantaneous rest
frame S at P, in which �u = �0. In this frame, the (proper) density is given by

176
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l

Lorentz contracted in
direction of motion

l'= l /γ

l

l

Figure 8.1 The Lorentz contraction of a fluid element in the direction of motion.

�0 = m0n0, where m0 is the rest mass of each particle and n0 is the number of
particles in a unit volume. In some other frame S′, moving with speed v relative
to S, the volume containing a fixed number of particles is Lorentz contracted
along the direction of motion (see Figure 8.1). Hence, in S′ the number density
of particles is n′ = 	vn0. We now have an additional effect, however, since the
mass of each particle in S′ is m′ = 	vm0. Thus, the matter density in S′ is

�′ = 	2
v�0�

We may conclude that the matter density is not a scalar but does transform as
the 00-component of a rank-2 tensor. This suggests that the source term in the
gravitational field equations should be a rank-2 tensor. At each point in spacetime,
the obvious choice is

T�x�= �0�x�u�x�⊗u�x�� (8.1)

where �0�x� is the proper density of the fluid, i.e. that measured by an observer
comoving with the local flow, and u�x� is its 4-velocity. The tensor T�x� is
called the energy–momentum tensor (or the stress–energy tensor) of the matter
distribution. We will see the reason for these names shortly. Note that from now
on we will denote the proper density simply by �, i.e. without the zero subscript.

In some arbitrary coordinate system x�, in which the 4-velocity of the fluid is
u�, the contravariant components of (8.1) are given simply by

T�� = �u�u�� (8.2)

To give a physical interpretation of the components of the energy–momentum
tensor, it is convenient to consider a local Cartesian inertial frame at P in which
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the set of components of the 4-velocity of the fluid is 
u�� = 	u�c� �u�. In this
frame, writing out the components in full we have

T 00 = �u0u0 = 	2
u�c

2�

T 0i = T i0 = �u0ui = 	2
u�cu

i�

T ij = �uiuj = 	2
u�u

iuj�

Thus the physical meanings of these components in this frame are as follows:

T 00 is the energy density of the particles;
T 0i is the energy flux× c−1 in the i-direction;
T i0 is the momentum density× c in the i-direction;
T ij is the rate of flow of the i-component of momentum per unit area in the

j-direction.

It is because of these identifications that the tensor T is known as the energy–
momentum or stress–energy tensor.

8.2 The energy–momentum tensor of a perfect fluid

To generalise our discussion to real fluids, we have to take account of the facts that
(i) besides the bulk motion of the fluid, each particle has some random (thermal)
velocity and (ii) there may be various forces between the particles that contribute
potential energies to the total. The physical meanings of the components of the
energy–momentum tensor T give us an insight into how to generalise its form to
include these properties of real fluids.

Let us consider T at some event P and work in a local Cartesian inertial frame
S that is the IRF of the fluid at P. For dust, the only non-zero component is T 00.
However, let us consider the components of T in the IRF for a real fluid.

• T 00 is the total energy density, including any potential energy contributions from forces
between the particles and kinetic energy from their random thermal motions.

• T 0i: although there is no bulk motion, energy might be transmitted by heat conduction,
so this is basically a heat conduction term in the IRF.

• T i0: again, although the particles have no bulk motion, if heat is being conducted then
the energy will carry momentum.

• T ij: the random thermal motions of the particles will give rise to momentum flow,
so that T ii is the isotropic pressure in the i-direction and the T ij (with i �= j) are the
viscous stresses in the fluid.

These identifications are valid for a general fluid. A perfect fluid is defined as
one for which there are no forces between the particles, and no heat conduction
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or viscosity in the IRF. Thus, in the IRF the components of T for a perfect fluid
are given by


T���=

⎛⎜⎜⎜⎝
�c2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞⎟⎟⎟⎠ � (8.3)

It is not hard to show that

T�� = ��+p/c2�u�u�−p���� (8.4)

However, because of the way in which we have written this equation, it must
be valid in any local Cartesian inertial frame at P. Moreover, we can obtain an
expression that is valid in an arbitrary coordinate system simply by replacing
��� with the metric functions g�� in the arbitrary system. Thus, we arrive at a
fully covariant expression for the components of the energy–momentum tensor of
a perfect fluid:

T�� = ��+p/c2�u�u�−pg��� (8.5)

We see that T�� is symmetric and is made up from the two scalar fields � and p

and the vector field u that characterise the perfect fluid. We also see that in the
limit p→ 0 a perfect fluid becomes dust.

Finally, we note that it is possible to give more complicated expressions repre-
senting the energy–momentum tensors for imperfect fluids, for charged fluids and
even for the electromagnetic field. These tensors are all symmetric.

8.3 Conservation of energy and momentum for a perfect fluid

Let us investigate how to express energy and momentum conservation in a local
Cartesian inertial frame S at some event P that is represented by the local inertial
coordinates x�. In these coordinates, the energy–momentum tensor takes the
form (8.4).

By analogy with the equation ��j
� = 0 for the conservation of charge, which

we derived in Chapter 6, the conservation of energy and momentum is represented
by the equation

��T
�� = 0� (8.6)

Rather than arriving at this result from first principles, which would take us into
a lengthy discussion of relativistic fluid mechanics, let us instead reverse the
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process and justify our assertion by arguing that it produces the correct equations
of motion and continuity for a fluid in the Newtonian limit.

Substituting the form (8.4) into (8.6) gives

����+p/c2�u�u�+ ��+p/c2�
���u
��u�+u����u

���− ���p��
�� = 0� (8.7)

Now, the 4-velocity satisfies the normalisation condition u�u� = c2 and differenta-
tion of this gives

���u
��u�+u����u��= 2���u

��u� = 0�

Thus, contracting (8.7) with u�, dividing through by c2 and collecting terms gives

����u
��+ �p/c2���u

� = 0� (8.8)

Equation (8.7) therefore simplifies to

��+p/c2����u
��u� = ����−u�u�/c2���p� (8.9)

Equations (8.8) and (8.9) are, in fact, respectively the relativistic equation of
continuity and the relativistic equation of motion for a perfect fluid in local inertial
coordinates at some event P.1 We will now show that for slowly moving fluids
and small pressures they reduce to the classical equations of Newtonian theory.

By a slowly moving fluid, we mean one for which we may neglect u/c and so
take 	u ≈ 1 and 
u��≈ �c� �u�; note that the difference between the proper density
and the density disappears in this limit. By small pressures we mean that p/c2 is
negligible compared with �. In these limits, equation (8.8) then reduces to

����u
��= 0�

or, in 3-vector notation,
��

�t
+ �� · ���u�= 0�

which is the classical equation of continuity for a fluid. In the limit of small
pressures, equation (8.9) reduces to

����u
��u� = ����−u�u�/c2���p�

Moreover, in our slowly-moving approximation, the zeroth components of the
left- and right-hand sides are both zero. Thus the spatial components i = 1�2�3
satisfy

����u
i�u� =−�ji�jp�

1 As usual, these equations may be generalised to a form valid in arbitrary coordinates by replacing �� by ��

and replacing ��� by g�� .
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In 3-vector notation this reads

�

(
�

�t
+ �u · ��

)
�u=−��p�

which is Euler’s classical equation of motion for a perfect fluid. Hence we have
shown that the relativistic continuity equation (8.8) and the equation of motion
(8.9) for a perfect fluid reduce to the appropriate Newtonian equations. If we were
to accept that a relativistic fluid were described by (8.8) and (8.9) then we could
reverse our overall argument and derive the result ��T

�� = 0.
So far we have worked in local inertial coordinates in order to make contact

with the Newtonian theory. Nevertheless, we can trivially obtain the condition for
energy and momentum conservation in arbitrary coordinates by replacing �� by
�� in (8.6), which then gives

��T
�� = 0� (8.10)

This important equation is worthy of further comment. In our discussion so
far, we have not been explicit about whether our spacetime is Minkowskian or
curved. Although the form (8.10) is valid (in arbitrary coordinates) in both cases,
its interpretation differs in the two cases. If we neglect gravity and assume a
Minkowski spacetime, the relation (8.10) does indeed represent the conservation
of energy and momentum. In the presence of a gravitational field (and hence
a curved spacetime), however, the energy and momentum of the matter alone
is not conserved. In this case, (8.10) represents the equation of motion of the
matter under the influence of the gravitational field; this is discussed further in
Section 8.8. As we will see below, the condition (8.10) places a tight restriction
on the possible forms that the gravitational field equations may take.

8.4 The Einstein equations

We are now in a position to deduce the form of the gravitational field equations
proposed by Einstein. Let us begin by recalling some of our previous results.

• The field equation of Newtonian gravity is

��2% = 4�G��

• If gravity is a manifestation of spacetime curvature, we showed in Chapter 7, equa-
tion (7.8), that for a weak gravitational field, in coordinates such that g�� = ���+h��

(with �h��� � 1) and in which the metric is static, then

g00 =
(
1+ 2%

c2

)
� (8.11)
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• The correct relativistic description of matter is provided by the energy–momentum
tensor and, for a perfect fluid or dust, in the IRF we have

T00 = �c2�

Combining these observations suggests that, for a weak static gravitational field
in the low-velocity limit,

��2g00 =
8�G
c4

T00�

Einstein’s fundamental intuition was that the curvature of spacetime at any
event is related to the matter content at that event. The above considerations thus
suggest that the gravitational field equations should be of the form

K�� = &T��� (8.12)

where K�� is a rank-2 tensor related to the curvature of spacetime and we have
set &= 8�G/c4. Since the curvature of spacetime is expressed by the curvature
tensor R��#�, the tensorK�� must be constructed from R��#� and the metric tensor
g��. Moreover, K�� should have the following properties: (i) the Newtonian limit
suggests that K�� should contain terms no higher than linear in the second-order
derivatives of the metric tensor; and (ii) since T�� is symmetric then K�� should
also be symmetric. The curvature tensor R��#� is already linear in the second
derivatives of the metric, and so the most general form for K�� that satisfies (i)
and (ii) is

K�� = aR��+bRg��+�g��� (8.13)

where R�� is the Ricci tensor, R is the curvature scalar and a�b�� are constants.
Let us now consider the constants a�b��. First, if we require that every term

in K�� is linear in the second derivatives of g�� then we see immediately that
�= 0. We will relax this condition later, but for the moment we therefore have

K�� = aR��+bRg���

To find the constants a and b we recall that the energy–momentum tensor satisfies
��T

�� = 0; thus, from (8.10), we also require

��K
�� = ���aR

��+bRg���= 0�

However, in Section 7.11 we showed that

���R
��− 1

2g
��R�= 0�

and so, remembering that ��g
�� = 0, we obtain

��K
�� = � 12a+b�g����R= 0�
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The quantity ��R will, in general, be non-zero throughout (a region of) spacetime
unless the latter is flat and hence there is no gravitational field. Thus we find that
b =−a/2, and so the gravitational field equations must take the form

a�R��− 1
2g��R�= &T���

To fix the constant a, we must compare the weak-field limit of these equations
with Poisson’s equation in Newtonian gravity. The comparison is presented in the
next section, where we show that, for consistency with the Newtonian theory, we
require a=−1 and so

R��− 1
2g��R=−&T��� (8.14)

where & = 8�G/c4. Equation (8.14) constitutes Einstein’s gravitational field
equations, which form the mathematical basis of the theory of general relativity.
We note that the left-hand side of (8.14) is simply the Einstein tensorG��, defined
in Chapter 7.

We can obtain an alternative form of Einstein’s equations by writing (8.14) in
terms of mixed components,

R�
� − 1

2�
�
� R=−&T�

� �

and contracting by setting � = �. We thus find that R = &T , where T ≡ T
�
� .

Hence we can write Einstein’s equations (8.14) as

R�� =−&�T��− 1
2Tg���� (8.15)

In four-dimensional spacetime g�� has 10 independent components and so in
general relativity we have 10 independent field equations. We may compare this
with Newtonian gravity, in which there is only one gravitational field equation.
Furthermore, the Einstein field equations are non-linear in the g�� whereas Newto-
nian gravity is linear in the field %. Einstein’s theory thus involves numerous
non-linear differential equations, and so it should come as no surprise that the
theory is complicated.

8.5 The Einstein equations in empty space

In general, T�� contains all forms of energy and momentum. Of course, this
includes any matter present but if there is also electromagnetic radiation, for
example, then it too must be included in T�� (the resulting expression is somewhat
complicated; see Exercise 8.3).
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A region of spacetime in which T�� = 0 is called empty, and such a region is
therefore not only devoid of matter but also of radiative energy and momentum. It
can be seen from (8.15) that the gravitational field equations for empty space are

R�� = 0� (8.16)

From this simple equation, we can immediately establish a profound result.
Consider the number of field equations as a function of the number of space-
time dimensions; then, for two, three and four dimensions, the numbers of field
equations and independent components of R��#� are as shown in the table.

No. of spacetime dimensions 2 3 4
No. of field equations 3 6 10
No. of independent components of R��#� 1 6 20

Thus we see that in two or three dimensions the field equations in empty space
guarantee that the full curvature tensor must vanish. In four dimensions, however,
we have 10 field equations but 20 independent components of the curvature
tensor. It is therefore possible to satisfy the field equations in empty space with
a non-vanishing curvature tensor. Remembering that a non-vanishing curvature
tensor represents a non-vanishing gravitational field, we conclude that it is only
in four dimensions or more that gravitational fields can exist in empty space.

8.6 The weak-field limit of the Einstein equations

To determine the ‘weak-field’ limit of the Einstein equations our preliminary
discussion in Section 8.4 suggests that we need only consider their 00-component.
It is most convenient to use the form (8.15) of the equations, from which we have

R00 =−&
(
T00− 1

2Tg00
)
� (8.17)

In the weak-field approximation, spacetime is only ‘slightly’ curved and so
there exist coordinates in which g�� = ���+h��, with �h��� � 1, and the metric
is stationary. Hence in this case g00 ≈ 1. Moreover, from the definition of the
curvature tensor we find that R00 is given by

R00 = �0 
�
0�− �� 

�
00+ �

0� 
�
�0− �

00 
�
���

In our coordinate system the  �
�# are small, so we can neglect the last two

terms to first order in h��. Also using the fact that the metric is stationary in our
coordinate system, we then have

R00 ≈−�i i
00�



8.7 The cosmological-constant term 185

In our discussion of the Newtonian limit in Chapter 7, however; we found that
 i

00 ≈ 1
2�

ij�jh00 to first order in h��, and so

R00 ≈− 1
2�

ij�jh00�

Substituting our approximate expressions for g00 and R00 into (8.17), in the
‘weak-field’ limit we thus have

1
2�

ij�jh00 ≈ &�I00− 1
2T�� (8.18)

To proceed further we must assume a form for the matter producing the weak
gravitational field and for simplicity we consider a perfect fluid. Most classical
matter distributions have p/c2 � � and so we may in fact take the energy–
momentum tensor to be that of dust, i.e.

T�� = �u�u��

which gives T = �c2. In addition, let us assume that the particles making up the
fluid have speeds u in our coordinate system that are small compared with c. We
thus make the approximation 	u ≈ 1 and hence u0 ≈ c. Therefore equation (8.18)
reduces to

1
2�

ij�i�jh00 ≈ 1
2&�c

2�

We may, however, write �ij�i�j = ��2; furthermore, from (8.11) we have h00 =
2%/c2, where % is the gravitational potential. Thus, remembering that & =
8�G/c4, we finally obtain

��2% ≈ 4�G��

which is Poisson’s equation in Newtonian gravity. This identification verifies our
earlier assertion that a=−1 in the derivation of Einstein’s equations (8.14).

8.7 The cosmological-constant term

The standard Einstein gravitational field equations are

R��− 1
2g��R=−&T��� (8.19)

However, these equations are not unique. In fact, shortly after Einstein derived
them he proposed a modification known as the cosmological term.

In deriving the field equations (8.14), we assumed that the tensor K�� that
makes up the left-hand side of the field equations,

K�� = &T���
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should contain only terms that are linear in the second-order derivatives of g��.
This led us to set �= 0 in (8.13), i.e. to discard the term �g�� in the tensor K��.
Let us now relax this assumption.

Recalling that ��T
�� = 0 we still require ��K

�� = 0, but in Section 4.12 we
showed that

��g
�� = 0�

Thus, we can add any constant multiple of g�� to the left-hand side of (8.19) and
still obtain a consistent set of field equations. It is usual to denote this multiple
by $, so that the field equations become

R��− 1
2g��R+$g�� =−&T��� (8.20)

where $ is some new universal constant of nature known as the cosmological
constant. By writing this equation in terms of the mixed components and contract-
ing, as we did with the standard field equations, we find that R = &T + 4$.
Substituting this expression into (8.20), we obtain an alternative form of the field
equations,

R�� =−&
(
T��− 1

2Tg��
)+$g��� (8.21)

Following the procedure presented in Section 8.6, it is straightforward to show
that, in the weak-field limit, the field equation of ‘Newtonian’ gravity becomes

�2% = 4�G�−$c2�

For a spherical mass M , the gravitational field strength is easily found to be

�g =−��% =−GM

r2
�̂r+ c2$r

3
�̂r�

Thus, in this case, we see that the cosmological constant term corresponds to a
gravitational repulsion whose strength increases linearly with r.

The reason for calling $ the cosmological constant is historical. Einstein first
introduced this term because he was unable to construct static models of the
universe from his standard field equations (8.19). What he found (and we will
discuss this in detail in Chapter 15) was that the standard field equations predicted
a universe that was either expanding or contracting. Einstein did this work in about
1916, when people thought that our Milky Way Galaxy represented the whole
universe, which Einstein represented as a uniform distribution of ‘fixed stars’.
By introducing $, Einstein constructed static models of the universe (which as
we will see are actually unstable). It was later realised, however, that the Milky
Way is just one of a great many galaxies. Moreover, in 1929 Edwin Hubble
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discovered the expansion of the universe by measuring distances and redshifts to
nearby external galaxies. The universe was proved to be expanding and the need
for a cosmological constant disappeared. Einstein is reputed to have said that the
introduction of the cosmological constant was his ‘biggest blunder’.

Nowadays we have a rather different view of the cosmological constant. Recall
that the energy–momentum tensor of a perfect fluid is

T�� = ��+p/c2�u�u�−pg���

Imagine some type of ‘substance’ with a strange equation of state p=−�c2. This
is unlike any kind of substance that you have ever encountered because it has a
negative pressure! The energy–momentum tensor for this substance would be

T�� =−pg�� = �c2g���

There are two points to note about this equation. First, the energy–momentum
tensor of this strange substance depends only on the metric tensor – it is therefore
a property of the vacuum itself and we can call � the energy density of the
vacuum. Second, the form of T�� is the same as the cosmological-constant term
in (8.20). We can therefore view the cosmological constant as a universal constant
that fixes the energy density of the vacuum,

�vacc
2 = $c4

8�G
� (8.22)

Denoting the energy–momentum tensor of the vacuum by T vac
�� = �vacc

2g��, we
can thus write the modified gravitational field equations (8.20) as

R��− 1
2g��R=−&

(
T��+T vac

��

)
�

where T�� is the energy–momentum tensor of any matter or radiation present.
How can we calculate the energy density of the vacuum? This is one of the

major unsolved problems in physics. The simplest calculation involves summing
the quantum mechanical zero-point energies of all the fields known in Nature.
This gives an answer about 120 orders of magnitude higher than the upper limits
on $ set by cosmological observations. This is probably the worst theoretical
prediction in the history of physics! Nobody knows how to make sense of this
result. Some physical mechanism must exist that makes the cosmological constant
very small.

Some physicists have thought that A mechanism must exist that makes$ exactly
equal to zero. But in the last few years there has been increasing evidence that
the cosmological constant is small but non-zero. The strongest evidence comes
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from observations of distant Type Ia supernovae that indicate that the expansion of
the universe is actually accelerating rather than decelerating. Normally, one would
have thought that the gravity of matter in the universe would cause the expansion
to slow down (perhaps even eventually halting the expansion and causing the
universe to collapse). But if the cosmological constant is non-zero, the negative
pressure of the vacuum can cause the universe to accelerate.

Whether these supernova observations are right or not is an area of active
research, and the theoretical problem of explaining the value of the cosmological
constant is one of the great challenges of theoretical physics. It is most likely
that we require a fully developed theory of quantum gravity (perhaps superstring
theory) before we can understand $.

8.8 Geodesic motion from the Einstein equations

The Einstein equations give a quantitative description of how the energy–
momentum distribution of matter (or other fields) at any event determines the
spacetime curvature at that event. We also know that, under the influence of
gravity alone, matter moves along geodesics in the curved spacetime. We now
show that it is, in fact, unnecessary to make the separate postulate of geodesic
motion, since it follows directly from the Einstein equations themselves.

The field equations were derived partly from the requirement that the covariant
divergence of the energy–momentum tensor vanishes,

��T
�� = 0� (8.23)

As noted in Section 8.3, this relation represents the equation of motion for matter
in the curved spacetime, and in this section we explore this interpretation in more
detail. For later convenience, we may also write (8.23) as

��T
�� = ��T

��+ �
#�T

#�+ �
#�T

�#

= 1√−g ���
√−gT���+ �

#�T
�#� (8.24)

where in the last line we have used the expression (3.26) for the contracted
connection coefficient  �

#�, and we note that �g� = −g for a spacetime metric
with signature −2.

Let us first consider directly the specific case of a single test particle of rest
mass m. By analogy with (8.2), the energy–momentum tensor of the particle as a
function of position x may be written as

T���x�= m√−g
∫ dz�

d�

dz�

d�
�4�x− z����d�� (8.25)
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where z���� is the worldline of the particle and � is its proper time.2 Inserting
(8.25) into (8.23) and using the result (8.24), we obtain∫

ż�ż�
�

�x�
�4�x− z����d�+ �

#�

∫
ż�ż#�4�x− z����d� = 0� (8.26)

where the dots denote differentiation with respect to �. Since �4�x−z���� depends
only on the difference x�− z�, we can replace �/�x� by −�/�z� where it acts
upon the delta function. Then, by noting that

ż�
�

�z�
�4�x− z����= d

d�
�4�x− z�����

we may write (8.26) as

−
∫
ż�

d

d�
�4�x− z����d�+ �

#�

∫
ż�ż#�4�x− z����d� = 0�

On performing the first integral on the left-hand side by parts and collecting
together terms, this becomes∫ (

z̈�+ �
#�ż

�ż#
)
�4�x− z����d� = 0�

For this integral to vanish, we clearly require the first factor in the integrand to
equal zero, from which we recover directly the standard geodesic equation of
motion.

The derivation above offers an entirely new insight into the equation of motion.
The position of the particle is where the field equations become singular, but
the solution of the field equations in the empty space surrounding the singularity
determines how it should move, i.e. it obeys the same equation of motion as that of
a ‘test particle’. The fact that the Einstein equations predict the equation of motion
is remarkable and should be contrasted with the situation in electrodynamics. In the
latter case, the Maxwell equations for the electromagnetic field do not contain the
corresponding equation of motion for a charged particle, which has to be postulated
separately. The origin of this distinction between gravity and electromagnetism
lies in the non-linear nature of the Einstein equations. The physical reason for
this non-linearity is that the gravitational field itself carries energy–momentum
and can therefore act as its own source, whereas electromagnetic field carries no
charge and so cannot act as its own source.

2 The four-dimensional delta function �4�x−y� is defined by the relation∫
%�x��4�x−y�d4x =%�y��

where % is any scalar field. Since
√−g d4x is the invariant volume element, it follows that �4�x−y�/

√−g
is the invariant scalar that must be used in (8.25).
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It is worthwhile generalising the above discussion from a single point particle
to a continuous matter distribution. As a simple example, we shall consider
a distribution of dust (i.e. a pressureless perfect fluid), for which the energy–
momentum tensor is given by

T�� = �u�u��

In this case, the equation of motion (8.23) thus reads

����u
�u��= ����u

��u�+�u���u
� = 0� (8.27)

Contracting this expression with u�, we have

c2����u
��+�u�u���u

� = 0� (8.28)

where we have used the fact that u�u
� = c2. Using this result again, one finds

that u���u
� = 0, and so the second term in (8.28) vanishes. Thus, we obtain

����u
��= 0�

which is simply the general-relativistic conservation equation. Substituting this
expression back into (8.27) gives

u���u
� = 0� (8.29)

which is the equation of motion for the dust distribution in a gravitational field.
Moreover, let us consider the worldline x���� of a dust particle. From (3.38) the
intrinsic derivative of the particle’s 4-velocity u� along the worldline is given by

Du�

D�
= ���u

��u� = 0�

where we have used (8.29) to obtain the last equality. Since the intrinsic derivative
of the 4-velocity (i.e. the tangent vector to the worldline) is zero, the dust particle’s
worldline x���� is a geodesic. We can show this explicitly using the expression
(3.37) for the intrinsic derivative, from which we immediately obtain the geodesic
equation

ẍ�+ �
#�ẋ

�ẋ# = 0�

8.9 Concluding remarks

We have now completed the task commenced in Chapter 1 of formulating a
consistent relativistic theory of gravity. This has led us to the interpretation of
gravity as a manifestation of spacetime curvature induced by the presence of
matter (and other fields). This principle is embodied mathematically in the Einstein
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field equations (8.20). In the remainder of this book, apart from the final chapter,
we will explore the physical consequences of these equations in a wide variety of
astrophysical and cosmological applications. In the final chapter we will return to
the formulation of general relativity itself, rederiving the Einstein equations from
a variational principle.

Appendix 8A: Alternative relativistic theories of gravity

In Section 8.7, we described a relatively simple (but theoretically profound)
modification of the Einstein field equations. This shows that Einstein’s field
equations are not unique. It is also worth noting that it is possible to create more
radically different theories of gravity, as follows.

Scalar theory of gravity

The simplest relativistic generalisation of Newtonian gravity is obtained by contin-
uing to represent the gravitational field by the scalar %. Since matter is described
relativistically by the energy–momentum tensor T��, the only scalar with the
dimensions of a mass density is T�

� . Thus a consistent scalar relativistic theory of
gravity is given by the field equation

�
2% =−4�G

c2
T�
� � (8.30)

However, this theory must be rejected since, when used with the appropriate
equation of motion, it predicts a retardation of the perihelion of Mercury, in
contradiction of observations. Moreover, it does not allow one to couple gravity
to electromagnetism, since �TEM�

�
� = 0; in such a theory we could have neither

gravitational redshift nor the deflection of light by matter.

Brans–Dicke theory

A gravitational theory based on a vector field can be eliminated since such a theory
predicts that two massive particles would repel one another, rather than attract. It is,
of course, possible to construct relativistic theories of gravity inwhich combinations
of the three kinds of field (scalar, vector and tensor) are used. The most important
of these alternative theories is Brans–Dicke theory, which we now discuss briefly.

In deriving the Einstein field equations, we started with the principle of equiv-
alence, which led us to consider gravitation as spacetime curvature, and we found
a rank-2 tensor theory of gravity that agreed with Newton’s theory in the limit
of weak gravitational fields and small velocities. Brans and Dicke also took the
principle of equivalence as a starting point, and thus again described gravity
in terms of spacetime curvature. However, they set about finding a consistent



192 The gravitational field equations

scalar–tensor theory of gravity. Instead of treating the gravitational constant G as
a constant of nature, Brans and Dicke introduced a scalar field � that determines
the strength of G, i.e. the scalar field � determines the coupling strength of matter
to gravity. The key ideas of the theory are thus:

• matter, represented by the energy–momentum tensor �TM���, and a coupling constant
� fix the scalar field �;

• the scalar field � fixes the value of G;
• the gravitational field equations relate the curvature to the energy–momentum tensors
of the scalar field and matter.

The coupled equations for the scalar field and the gravitational field in this
theory are therefore

�
2�=−4���TM����

R��−
1
2
g��R=−

8�
c4�

(
TM
��+T�

��

)
�

(8.31)

where TM
�� is the energy–momentum tensor of the matter and T

�
�� is the energy–

momentum tensor of the scalar field � (the form of T�
�� is rather complicated). It

is usual (for historical reasons) to write the coupling constant as �= 2/�3+2��.
In the limit �→� we have �→ 0, so � is not affected by the matter distribution
and can be set equal to a constant �= 1/G. In this case, T�

�� vanishes, and hence
Brans–Dicke theory reduces to Einstein’s theory in the limit �→�.

The Brans–Dicke theory is interesting because it shows that it is possible to
construct alternative theories that are consistent with the principle of equivalence.
Einstein’s theory is beautiful and simple, but it is not unique. One must therefore
look to experiment to find out which theory is correct. One of the features of
the Brans–Dicke model is that the effective gravitational ‘constant’ G varies with
time because it is determined by the scalar field �. A variation in G would affect
the orbits of the planets, altering, for example, the dates of solar eclipses (which
can be checked against historical records). A reasonably conservative conclusion
from experiments is that �≥ 500, so Einstein’s theory does seem to be the correct
theory of gravity, at least at low energies.

Torsion theories

Throughout our discussion of curved spacetimes we have assumed that the mani-
fold is torsionless. This is not a requirement, and we can generalise our discussion
to spacetimes with a non-zero torsion tensor,

T�
�# =  �

�# − �
#��
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Typically, torsion is generated by the (quantum-mechanical) spin of particles.
Such theories are rather complicated mathematically, since we must make the
distinction between affine and metric connections and geodesics. Gravitational
theories that include spacetime torsion are often described as Einstein–Cartan
theories and have been extensively investigated. We will not discuss these theories
any further, however.

Appendix 8B: Sign conventions

There is no accepted system of sign conventions in general relativity. Different
books use different sign conventions for the metric tensor, for the curvature tensors
and for the field equations. We can summarize these sign conventions in terms
of three sign factors S1, S2 and S3. These are defined as follows:

��� = 
S1� �−1�+1�+1�+1� �
R�

�
	 = 
S2�
(
�
 

�
�	− �	 

�
�
+ �

#
 
#
	�− �

#	 
#

�

)
�

G�� = 
S3�
8�G
c4

T���

R�� = 
S2� 
S3�R�
����

In this text we have used a convention that matches that of both R. d’Inverno,
An Introduction to Einstein’s Relativity, Oxford University Press, 1992, and
W. Rindler, Relativity: Special, General and Cosmological, Oxford University
Press, 2001, but this differs from the convention used by, for example, Misner,
Thorne and Wheeler, Gravitation, Freeman (1973) or Weinberg, Gravitation and
Cosmology, Wiley, (1972). Here is a summary of the sign conventions used in
the various books:

Present text d’Inverno, Rindler MTW Weinberg

S1� − − + +

S2� + + + −

S3� − − + −

Exercises

8.1 Show that the components of the energy–momentum tensor of a perfect fluid in its
instantaneous rest frame can be written as in (8.3):

T�� = ��+p/c2�u�u�−p����

Can the components be written in any other covariant form?
8.2 Show that, for any fluid,

u���u
� = 0�
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Hence show that a perfect fluid in a gravitational field must satisfy the equations

����u
��+ p

c2
��u

� = 0�(
�+ p

c2

)
u���u

� =
(
g��− u�u�

c2

)
��p�

Obtain the equation of motion for the worldline x���� of a particle in a perfect fluid
with pressure, and hence show that the particle is ‘pushed off’ geodesics by the
pressure gradient.

8.3 The electromagnetic field in vacuo has an energy–momentum tensor T��
em . By analogy

with the energy–momentum tensor for dust, we require that (i) T��
em is symmetric;

(ii) ��T
��
em = 0; (iii) T��

em must be quadratic in the dynamical variable F��. Hence
show that

T��
em = ��F�

#F
�# − 1

4g
��F#�F

#���

where � is a constant. By examining the component T 00
em in local Cartesian inertial

coordinates, show that the constant �=−1/�0.
8.4 Consider a cloud of charged dust particles. Show that the equation of motion of such

a fluid is

�u���u
� = #F�

�u
��

where � is the proper matter density of the fluid, # is its proper charge density and
u� is the fluid 4-velocity. Define an energy–momentum tensor T��

d = �u�u�, where
� is the proper density of the fluid. Hence show that

��T
��
d = F�

�j
��

��T
��
em = −F�

�j
��

where j� = #u� is the 4-current density. Thus write down the energy–momentum
tensor for charged dust, T�� = T

��
d +T��

em .
8.5 The energy–momentum tensor of an electromagnetic field interacting with a source

satisfies ��T
��
em = −F�#J# , where J# is the 4-current density of the source. Hence

show that the worldline of a particle of charge q in an electromagnetic field satisfies

z̈�+ �
#�ż

�ż# = q

m
F�

# ż
#�

and interpret this result physically.
8.6 The weak energy condition (WEC) states that any energy–momentum tensor must

satisfy

T��t
�t� ≥ 0

for all timelike vectors t�. Show that for a perfect fluid the WEC implies that

�≥ 0 and �c2+p ≥ 0�
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8.7 The strong energy condition (SEC) states that any energy–momentum tensor must
satisfy

T��t
�t� ≥ 1

2T
�
� t

#t#

for all timelike vectors t�. Show that for a perfect fluid the SEC implies that

�c2+p ≥ 0 and �c2+3p ≥ 0�

Does the SEC imply the WEC in Exercise 8.7? Show further that, from the Einstein
equations, the SEC implies that R��t

�t� ≥ 0, where R�� is the Ricci tensor.
8.8 The equation-of-state parameter w is defined by w = p/��c2�. If one restricts

oneself to sources for which � ≥ 0, show that both the weak and strong energy
conditions in Exercises 8.6 and 8.7 imply that w ≥−1.

8.9 Write down the form of the energy–momentum tensor for a perfect fluid with
4-velocity u� with respect to some Cartesian inertial frame S. Show that for the
energy–momentum tensor to be invariant under a Lorentz transformation to any
other inertial frame one requires p = −�c2. Compare this result with that for the
energy–momentum tensor of the vacuum.

8.10 Find the most general tensor which can be constructed from the curvature tensor
and the metric tensor and which contains terms no higher than quadratic in the
second-order derivatives of g��. Hence write down the most general form of the
gravitational field equations in such a theory.

8.11 In the Newtonian limit of weak gravitational fields, for a slowly moving perfect fluid
with pressure p� �c2 show that the 00-component of the Einstein field equations
with a non-zero cosmological constant $ reduces to

�2% = 4�G�−$c2�

where �2 = �ij�i�j and � is the proper density of the fluid. Hence show that the
corresponding Newtonian gravitational potential of a spherically symmetric mass
M centred at the origin can be written as

% =−GM

r
− $c2r2

6

where r2 = �ijxixj . Give a physical interpretation of this result.
8.12 In the scalar theory of gravity (8.30) show that, in any inertial frame, the gravitational

potential % produced by a perfect fluid at some event P satisfies

1
c2

�2%

�t2
− ��2% =−4�G

(
�− 3p

c2

)
�

where � and p are the density and isotropic pressure as measured in the instantaneous
rest frame of the fluid at P. Hence show that the theory reduces to Newtonian
gravity in the non-relativistic limit. How might a cosmological constant be included
in the theory?
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The Schwarzschild geometry

We now consider how to solve the Einstein field equations and so discover the
metric functions g�� in any given physical situation. Clearly, the high degree of
non-linearity in the field equations means that a general solution for an arbitrary
matter distribution is analytically intractable. The problem becomes easier if we
look for special solutions, for example those representing spacetimes possessing
symmetries. The first exact solution to Einstein’s equations was found by Karl
Schwarzschild in 1916.1 As we shall see, the Schwarzschild solution represents
the spacetime geometry outside a spherically symmetric matter distribution.

9.1 The general static isotropic metric

Schwarzschild sought the metric g�� representing the static spherically symmetric
gravitational field in the empty space surrounding some massive spherical object
such as a star. Thus, a good starting point for us is to construct the most general
form of the metric for a static spatially isotropic spacetime.

A static spacetime is one for which some timelike coordinate x0 (say) with the
following properties: (i) all the metric components g�� are independent of x

0; and
(ii) the line element ds2 is invariant under the transformation x0→−x0. Note that
(i) does not necessarily imply (ii), as is made clear by the example of a rotating
star: time reversal changes the sense of rotation, but the metric components are
constant in time. A spacetime that satisfies (i) but not (ii) is called stationary.

Thus, starting from the general expression for the line element

ds2 = g�� dx
� dx��

we wish to find a set of coordinates x� in which the g�� do not depend on the
timelike coordinate x0 and the line element ds2 is invariant under x0→−x0, i.e.
1 Astonishingly, Schwarzschild derived the solution while in the trenches on the Eastern Front during the First
World War but sadly he did not survive the conflict.

196
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the metric is static, and in which ds2 depends only on rotational invariants of the
spacelike coordinates xi and their differentials, i.e. the metric is isotropic.

In fact, it is only slightly more complicated to derive the general form of the
spatially isotropic metric without insisting that it is static. We therefore begin by
constructing this more general metric. Only after its derivation will we impose
the additional constraint that the metric is static.

The only rotational invariants of the spacelike coordinates xi and their differ-
entials are

�x · �x ≡ r2� d�x ·d�x� �x ·d�x�

where �x≡ �x1� x2� x3� and we have defined the coordinate r. Denoting the timelike
coordinate x0 by t, we thus find that the most general form of a spatially isotropic
metric must be

ds2 = A�t� r�dt2−B�t� r�dt �x ·d�x−C�t� r���x ·d�x�2−D�t� r�d�x2� (9.1)

where A, B, C and D are arbitrary functions of the coordinates t and r.
Let us now transform to the (spherical polar) coordinates �t� r� ����, defined by

x1 = r sin � cos�� x2 = r sin � sin�� x3 = r cos��

In this case, we have

�x · �x = r2� �x ·d�x = r dr� d�x ·d�x = dr2+ r2d�2+ r2 sin2 �d�2�

and so the general metric (9.1) now takes the form

ds2 = A�t� r�dt2−B�t� r�r dt dr−C�t� r�r2dr2

−D�t� r� (dr2+ r2d�2+ r2 sin2 �d�2) �
Collecting together terms and absorbing factors of r into our functions, thereby
redefining A�B�C�D, the metric can be written

ds2 = A�t� r�dt2−B�t� r�dt dr−C�t� r�dr2−D�t� r��d�2+ sin2 �d�2��

If we now define a new radial coordinate by r̄2 = D�t� r� and collect together
terms into new arbitrary functions of t and r̄, thereby again redefining A�B�C,
we can write the metric as

ds2 = A�t� r̄� dt2−B�t� r̄� dt dr̄−C�t� r̄� dr̄2− r̄2�d�2+ sin2 �d�2�� (9.2)
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Let us also introduce a new timelike coordinate t̄ defined by the relation

dt̄ =%�t� r̄�
[
A�t� r̄� dt− 1

2B�t� r̄� dr̄
]
�

where %�t� r� is an integrating factor that makes the right-hand side an exact
differential. Squaring, we obtain

dt̄2 =%2 (A2 dt2−ABdt dr̄+ 1
4B

2 dr̄2
)
�

from which we find

Adt2−Bdt dr̄ = 1
A%2

dt̄2− B

4A
dr̄2�

Thus defining the new functions Ā= 1/�A%2� and B̄ = C+B/�4A�, our metric
(9.2) becomes diagonal and takes the form

ds2 = Ā�t̄� r̄� dt̄2− B̄�t̄� r̄� dr̄2− r̄2�d�2+ sin2 �d�2��

There is no need to retain the bars on the variables, so we can write the metric as

ds2 = A�t� r�dt2−B�t� r�dr2− r2�d�2+ sin2 �d�2�� (9.3)

Thus, the general isotropic metric is specified by two functions of t and r, namely
A�t� r� and B�t� r�. We will also see that, for surfaces given by t� r constant,
the line element (9.3) describes the geometry of 2-spheres, which expresses the
isotropy of the metric. In fact this line element shows that such a surface has a
surface area 4�r2. However, because B�t� r� is not necessarily equal to unity we
cannot assume that r is the radial distance.

The final step in obtaining the most general stationary isotropic metric is now
trivial. We require the metric functions g�� to be independent of the timelike
coordinate, which means simply that A and B must be functions only of r. Thus,
we have

ds2 = A�r�dt2−B�r�dr2− r2�d�2+ sin2 �d�2�� (9.4)

Moreover, we see immediately that ds2 is already invariant under t→−t, and
so this is the required form of the metric for a general static spatially isotropic
spacetime.

9.2 Solution of the empty-space field equations

The functionsA�r� and B�r� in the general static isotropic metric are determined by
solving the Einstein field equations. We are interested in the spacetime geometry
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outside a spherical mass distribution, so we must solve the empty-space field
equations, which simply require the Ricci tensor to vanish:

R�� = 0� (9.5)

From equation (7.13) we can write the Ricci tensor as

R�� = �� 
#
�# − �# 

#
��+ �

�# 
#
��− �

�� 
#
�#� (9.6)

and, in turn, the connection is defined in terms of the metric g�� by

 #
�� = 1

2g
#����g��+ ��g��− ��g���� (9.7)

Thus, we see that the deceptively simple expression (9.5) in fact equates to a rather
complicated set of differential equations for the components of the metric g��.
To proceed further, we must calculate the connection coefficients  #

�� corre-
sponding to our static isotropic metric. This can be done in two ways. The quicker
route (with any metric) is to use the Lagrangian procedure for geodesics discussed
in Section 3.19. This involves writing down the ‘Lagrangian’

L= g��ẋ
�ẋ��

in which ẋ� denotes dx�/d# , where # is some affine parameter along the
geodesic. Subtituting L into the Euler–Lagrange equations then yields the equa-
tions of an affinely parameterised geodesic, from which the connection coeffi-
cients can be identified. Since later we will discuss the motion of particles in the
Schwarzschild geometry, this procedure would be doubly beneficial.

For illustration, however, we will adopt the more traditional (but slower)
method, in which the  #

�� are calculated directly from the metric g�� using (9.7).
Thus we first need to identify the metric components from the line element (9.4).
The non-zero elements of g�� and g�� are

g00 = A�r�� g00 = 1/A�r��

g11 =−B�r�� g11 =−1/B�r��
g22 =−r2� g22 =−1/r2�
g33 =−r2 sin2 �� g33 =−1/�r2 sin2 ���

where we note that the contravariant components of the metric are simply the
reciprocals of the covariant components, since the metric is diagonal.

Substituting the metric components into the expression (9.7) for the connection,
we find the expressions given in Table 9.1 (with no sums on Latin indices) with
all the other components equalling zero. Thus, summarising these results, we find
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Table 9.1 The connection coefficients of the general static isotropic metric

 0
00 = 0

 i
00 =− 1

2g
i���g00 ⇒  1

00 =
1

2B�r�
dA�r�

dr

 0
0i = 1

2g
0���ig�0+ �0g�i− ��g0i�= 1

2g
00�ig00 ⇒  0

01 =
1

2A�r�
dA�r�

dr
 0

ij = 0

 i
ii = 1

2g
i���ig�i+ �ig�i− ��gii�= 1

2g
ii�igii ⇒  1

11 =
1

2B�r�
dB�r�

dr

 1
22 = 1

2g
11��2g12+ �2g12− �1g22� ⇒  1

22 =−
r

B�r�

 1
33 =− 1

2g
11�1g33 ⇒  1

33 =−
r sin2 �
B�r�

 2
21 = 1

2g
22�1g22 ⇒  2

21 =
1
r

 2
33 =− 1

2g
22�2g33 ⇒  2

33 =− sin � cos�

 3
31 = 1

2g
33�1g33 ⇒  3

31 =
1
r

 3
32 = 1

2g
33�2g33 ⇒  3

32 =
cos�
sin �

that only nine of the 40 independent connection coefficients are non-zero; they
read as follows:

 0
01 = A′/�2A��  1

00 = A′/�2B��  1
11 = B′/�2B��

 1
22 =−r/B�  1

33 =−�r sin2 ��/B�  2
12 = 1/r�

 2
33 =− sin � cos��  3

13 = 1/r�  3
23 = cot ��

We now substitute these connection coefficients into the expression (9.6) in
order to obtain the components R�� of the Ricci tensor. This requires quite a lot
of tedious (but simple) algebra. Fortunately the off-diagonal components R�� for
� �= � are identically zero, and we find that the diagonal components are

R00 = −
A′′

2B
+ A′

4B

(
A′

A
+ B′

B

)
− A′

rB
� (9.8)

R11 =
A′′

2A
− A′

4A

(
A′

A
+ B′

B

)
− B′

rB
� (9.9)

R22 =
1
B
−1+ r

2B

(
A′

A
− B′

B

)
� (9.10)

R33 = R22 sin
2 �� (9.11)
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The empty-space field equations (9.5) are thus obtained by setting each of the
expressions (9.8–9.11) equal to zero. Of these four equations, only the first three
are useful, since the fourth merely repeats the information contained in the third.
Adding B/A times (9.8) to (9.9) and rearranging gives

A′B+AB′ = 0�

which implies that AB = constant. Let us denote this constant by �. Substituting
B = �/A into (9.10) we obtain A+ rA′ = �, which can be written as

d�rA�

dr
= ��

Integrating this equation gives rA = ��r + k�, where k is another integration
constant. Thus the functions A�r� and B�r� are given by

A�r�= �

(
1+ k

r

)
and B�r�=

(
1+ k

r

)−1
�

In solving for A and B we have used only the sum of equations (9.8) and (9.9),
not the separate equations. It is, however, straightforward to check that, with these
forms for A and B, the equations (9.8–9.11) are satisfied separately.

It can be seen that the integration constant k must in some way represent the
mass of the object producing the gravitational field, as follows. We can identify
k (and �) by considering the weak-field limit, in which we require that

A�r�

c2
→ 1+ 2%

c2
�

where % is the Newtonian gravitational potential. Moreover, in the weak-field
limit r can be identified as the radial distance, to a very good approximation. For
a spherically symmetric mass M we thus have %=−GM/r, and so we conclude
that k=−2GM/c2 and �= c2. Therefore, the Schwarzschild metric for the empty
spacetime outside a spherical body of mass M is2

ds2 = c2
(
1− 2GM

c2r

)
dt2−

(
1− 2GM

c2r

)−1
dr2− r2 d�2− r2 sin2 �d�2�

(9.12)

We will use this metric to investigate the physics in the vicinity of a spherical
object of mass M , in particular the trajectories of freely falling massive particles

2 We note that the constant � could have been identified earlier by making the additional assumption that
spacetime is asymptotically flat, i.e. that the line element (9.4) tends to the Minkowski line element in the
limit r→�. Thus we require that, in this limit, A�r�→ c2 and B�r�→ 1 and so AB = c2.
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and photons. The Schwarzschild metric is valid down to the surface of the spheri-
cal object, at which point the empty-space field equations no longer hold. Clearly,
the metric functions are infinite at r = 2�, which is known as the Schwarzschild
radius. As we shall see, if the surface of the massive body contracts within this
radius then the object becomes a Schwarzschild black hole (see Chapter 11). For
the remainder of this chapter, however, we will restrict our attention to the region
r > 2GM/c2. We will often use the shorthand � ≡ GM/c2 when writing down
this metric.

9.3 Birkhoff’s theorem

If we do not demand that our original metric is static (or stationary) but only that
it is isotropic, then we would substitute the more general form (9.3),

ds2 = A�t� r�dt2−B�t� r�dr2− r2�d�2+ sin2 �d�2��

into Einstein’s empty-space field equations R�� = 0 in order to determine the
functions A�t� r� and B�t� r�. On repeating our earlier analysis, we would find
some additional non-zero connection coefficients and components of the Ricci
tensor. However, on solving this new set of equations, one discovers that the
resulting metric must still be the Schwarzschild metric (9.12). Thus, we obtain
Birkhoff’s theorem, which states that the spacetime geometry outside a general
spherically symmetric matter distribution is the Schwarzschild geometry.

This is an unexpected result because in Newtonian theory spherical symmetry
has nothing to do with time dependence. This highlights the special character of
the empty-space Einstein equations and of the solutions they admit. In particular,
Birkhoff’s theorem implies that if a spherically symmetric star undergoes strictly
radial pulsations then it cannot propagate any disturbance into the surrounding
space. Looking ahead to Chapter 18, this means that a radially pulsating star
cannot emit gravitational waves.

One can show that the converse of Birkhoff’s theorem is not true, i.e. a matter
distribution that gives rise to the Schwarzschild geometry outside it need not be
spherically symmetric. Indeed, some specific counter-examples are known.

9.4 Gravitational redshift for a fixed emitter and receiver

We begin our discussion of the physics in the vicinity of a spherical mass M by
considering the phenomenon of gravitational redshift. In particular, we consider
the specific example of an emitter, at fixed spatial coordinates �rE� �E��E�,
which emits a photon that is received by an observer at fixed spatial coordinates
�rR� �R��R�. If tE is the coordinate time of emission and tR the coordinate time
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Figure 9.1 Schematic illustration of the emission and reception of two light signals.

of reception then the photon travels from the event �tE� rE� �E��E� to the event
�tR� rR� �R��R� along a null geodesic in the Schwarzschild spacetime. This is
illustrated schematically in Figure 9.1, which also shows a second photon, emitted
at a later coordinate time tE+�tE and received at tR+�tR.
In Appendix 9A we present an approach for calculating gravitational redshifts

in more general situations. Nevertheless, in this simple case, it is instructive to
derive the result in a more elementary manner: we need only use the fact that the
photon geodesic is a null curve.3 Thus ds2 = 0 at all points along it, and from the
Schwarzschild metric (9.12), we find that

c2
(
1− 2�

r

)
dt2 =

(
1− 2�

r

)−1
dr2+ r2 d�2+ r2 sin2 �d�2�

where we have written �≡GM/c2. Let us consider the first signal. Thus, if # is
some affine parameter along the null geodesic then we have

dt

d#
= 1

c

(
1− 2�

r

)−1/2 [
−gij

dxi

d#

dxj

d#

]1/2
�

3 This approach is based on that presented in J. Foster & J. D. Nightingale, A Short Course in General Relativity,
Springer-Verlag, 1995.
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where as before we use the notation 
x��= �t� r� ����, the g�� are the components
of the Schwarzschild metric and Latin indices run from 1 to 3. On integrating,
we obtain

tR− tE =
1
c

∫ #R

#E

(
1− 2�

r

)−1/2 [
−gij

dxi

d#

dxj

d#

]1/2
d#�

where #E is the value of # at emission and #R the value at reception. The
important thing to notice about this expression is that the integral on the right-
hand side depends only on the path through space. Thus, for a spatially fixed
emitter and receiver, tR− tE is the same for all signals sent. Thus the coordinate
time difference �tE separating events A and B is equal to the coordinate time
�tR between events C and D,

�tR = �tE�

Now let us consider the proper time intervals along the worldlines of the emitter
and receiver between each pair of events. Along both the emitter’s and receiver’s
worldlines, dr = d�= d�= 0. Thus, from the Schwarzschild line element (9.12),
in both cases

c2 d�2 ≡ ds2 = c2
(
1− 2�

r

)
dt2�

Moreover, in each case r is constant along the worldline, so we can immediately
integrate this equation to obtain

��E =
(
1− 2�

rE

)1/2

�tE and ��R =
(
1− 2�

rR

)1/2

�tR�

Thus, since �tR = �tE, we find that

��R
��E

=
(
1−2�/rR
1−2�/rE

)1/2

�

which forms the basis of the formula for gravitational redshift. If we think of the
two light signals as, for example, the two wavecrests of an electromagnetic wave,
then it is clear that this ratio must also be the ratio of the period of the wave
as observed by the receiver and emitter respectively. Thus the frequencies of the
photon as measured by each observer are related by

�R
�E
=
[
1−2GM/�rEc

2�

1−2GM/�rRc
2�

]1/2
� (9.13)

which shows that �R < �E if rR > rE. The photon redshift z is defined by

1+ z= ��R/�E�
−1�
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There is an important point to notice about this derivation. It can be generalised
very easily to any spacetime in which we can choose coordinates such that the
spacetime is stationary ��0g�� = 0� and g0i��x�= 0. In this case,

ds2 = g00��x�dt2+gij��x�dxi dxj�
where, as indicated, all the metric components are independent of t. By repeating
the above derivation for an emitter and observer at fixed spatial coordinates in
this more general spacetime, we easily find that

�R
�E
=
[
g00��xE�
g00��xR�

]1/2
� (9.14)

The derivations presented here depend crucially upon the fact that the emitter
and receiver are spatially fixed. However, this is not often physically realistic.
For example, we might want to calculate the gravitational redshift of a photon
if the emitter or receiver (or both) are in free fall or moving in some arbitrary
manner. A method for calculating redshifts in such general situations is given in
Appendix 9A. In order to use this formalism, however, we require knowledge
of the paths followed by freely falling particles and photons. Therefore, we now
consider geodesics in the Schwarzschild geometry.

9.5 Geodesics in the Schwarzschild geometry

In deriving the Schwarzschild line element,

ds2 = c2
(
1− 2�

r

)
dt2−

(
1− 2�

r

)−1
dr2− r2 d�2− r2 sin2 �d�2� (9.15)

we also calculated the connection coefficients  �
�� for this metric. Thus we could

now write down the geodesic equations for the Schwarzschild geometry in the
form

d2x�

d#2
+ �

��

dx�

d#

dx�

d#
= 0�

where # is some affine parameter along the geodesic x��#�. It is more instruc-
tive, however, to obtain the geodesic equations using the very neat ‘Lagrangian’
procedure discussed in Chapter 3.

Thus, let us consider the ‘Lagrangian’ L = g��ẋ
�ẋ�, where ẋ� ≡ dx�/d# .

Using (9.15), L is given by

L= c2
(
1− 2�

r

)
ṫ2−

(
1− 2�

r

)−1
ṙ2− r2

(
�̇2+ sin2 � �̇2

)
� (9.16)
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The geodesic equations are then obtained by substituting this form for L into the
the Euler–Lagrange equations

d

d#

(
�L

�ẋ�

)
− �L

�x�
= 0�

Performing this calculation, we find that the four resulting geodesic equations (for
�= 0�1�2�3) are given by (

1− 2�
r

)
ṫ = k� (9.17)(

1− 2�
r

)−1
r̈+ �c2

r2
ṫ2−

(
1− 2�

r

)−2 �

r2
ṙ2− r

(
�̇2+ sin2 � �̇2

)
= 0� (9.18)

�̈+ 2
r
ṙ�̇− sin � cos� �̇2 = 0� (9.19)

r2 sin2 � �̇ = h� (9.20)

In (9.17) and (9.20) respectively, the quantities k and h are constants. These two
equations are derived immediately since L is not an explicit function of t or �.

We see immediately that � = �/2 satisfies the third geodesic equation (9.19).
Because of the spherical symmetry of the Schwarzschild metric we can therefore,
with no loss of generality, confine our attention to particles moving in the ‘equato-
rial plane’ given by �=�/2. In this case our set of geodesic equations reduces to(

1− 2�
r

)
ṫ = k� (9.21)(

1− 2�
r

)−1
r̈+ �c2

r2
ṫ2−

(
1− 2�

r

)−2 �

r2
ṙ2− r�̇2 = 0� (9.22)

r2�̇ = h� (9.23)

These equations are valid for both null and non-null affinely parameterised
geodesics. In each of these cases, however, it is easier to replace the rather
complicated r-equation (9.22) by a first integral of the geodesics equations. For
a non-null geodesic this first integral is simply

g��ẋ
�ẋ� = c2� (9.24)

whereas for a null geodesic it is

g��ẋ
�ẋ� = 0� (9.25)

Before going on to discuss separately non-null and null geodesics in the equa-
torial plane � = �/2, it is instructive to discuss the physical interpretation of the
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constants k and h. One can arrive at equations (9.21) and (9.23) simply by using
the fact that the components p0 and p3 of a particle’s 4-momentum are conserved
along geodesics since L does not depend explicitly on t and � (remember that p
is proportional to the tangent vector to the geodesic at each point). For notational
simplicity, for a massive particle, we shall take the particle to have unit rest
mass and choose the affine parameter to be the particle’s proper time �, so that
p� = ẋ�. Similarly, for a massless particle we are free to choose an appropriate
affine parameter along the null geodesic, once again such that p� = ẋ�. Thus, for
� = �/2 we may write

p0 = g00 ṫ = c2
(
1− 2�

r

)
ṫ = kc2� (9.26)

p3 = g33�̇=−r2�̇=−h� (9.27)

where in the last equality on each line we have defined the constants in a manner
that coincides with (9.21) and (9.23). Let us first consider the constant k. If, at some
event, an observer with 4-velocity u encountered a particle with 4-momemtum p
then he would measure the particle’s energy to be

E = p ·u= p�u
��

For an observer at rest at infinity we have 
u��= �1�0�0�0� and so E = p0 = kc2

(which is conserved along the particle geodesic). Thus we may take k = E/c2,
where E is the total energy of the particle in its orbit. Since for massive particles
we have assumed unit mass, in the general case we have k = E/�m0c

2�, where
m0 is the rest mass of the particle. For the constant h, we can see immediately
from (9.27) that it equals the specific angular momentum of the particle and that
(as result of the choice of signature for the metric) p3 is equal to minus the
specific angular momentum. Finally, we note that the results (9.17–9.20) can also
be derived using the alternative form (3.56) of the geodesic equations, which may
be written

p� = 1
2���g�#�p

�p#� (9.28)

9.6 Trajectories of massive particles

The trajectory of a massive particle is a timelike geodesic. Considering motion in
the equatorial plane, we replace the geodesic equation (9.22) by (9.24), where g��
is taken from (9.15) with �=�/2. Moreover, since we are considering a timelike
geodesic we can choose our affine parameter # to be the proper time � along the
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path. Thus we find that the worldline x���� of a massive particle moving in the
equatorial plane of the Schwarzschild geometry must satisfy the equations(

1− 2�
r

)
ṫ = k� (9.29)

c2
(
1− 2�

r

)
ṫ2−

(
1− 2�

r

)−1
ṙ2− r2�̇2 = c2� (9.30)

r2�̇ = h� (9.31)

By substituting (9.29) and (9.31) into (9.30), we obtain the combined ‘energy’
equation for the r-coordinate,

ṙ2+ h2

r2

(
1− 2GM

c2r

)
− 2GM

r
= c2�k2−1�� (9.32)

where we have written �=GM/c2. We shall use this ‘energy’ equation to discuss
radial free fall and the stability of orbits. Note that the right-hand side is a constant
of the motion. We can verify the physical meaning of the constant k by noting
that E ∝ k. The constant of proportionality is fixed by requiring that, for a particle
at rest at r =�, we have E =m0c

2. Letting r→� and ṙ = 0 in (9.32), we thus
require k2 = 1. Hence, as previously, we must have k = E/�m0c

2�, where E is
the total energy of the particle in its orbit.

A second useful equation, which enables us to determine the shape of a particle
orbit (i.e. r as a function of �), may be found by using h= r2�̇ to express ṙ in
the energy equation (9.32) as

dr

d�
= dr

d�

d�

d�
= h

r2
dr

d�
�

We thus obtain(
h

r2
dr

d�

)2

+ h2

r2
= c2�k2−1�+ 2GM

r
+ 2GMh2

c2r3
�

If we make the substitution u≡ 1/r that is usually employed in Newtonian orbit
calculations, we find that(

du

d�

)2

+u2 = c2

h2
�k2−1�+ 2GMu

h2
+ 2GMu3

c2
�

We now differentiate this equation with respect to � to obtain finally

d2u

d�2
+u= GM

h2
+ 3GM

c2
u2� (9.33)
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In Newtonian gravity, the equations of motion of a particle of mass m in the
equatorial plane � = �/2 may be determined from the Lagrangian

L= 1
2m�ṙ2+ r2�̇2�+ GMm

r
�

From the Euler–Lagrange equations we have

r2�̇ = h�

r̈ = h

r3
− GM

r2
�

where the integration constant h is the specific angular momentum of the particle.
If we now substitute u = 1/r and eliminate the time variable, the Newtonian
equation of motion for planetary orbits is obtained:

d2u

d�2
+u= GM

h2
� (9.34)

We must remember, however, that in this equation u= 1/r, where r is the radial
distance from the mass, whereas in (9.33) r is a radial coordinate that is related
to distance through the metric. Nevertheless, the forms of the two equations are
very similar except for the extra term 3GMu2/c2 in (9.33). We note that this term
correctly tends to zero as c→�.

Two interesting special cases of massive-particle orbits are worth investigating
in detail, namely radial motion and motion in a circle.

9.7 Radial motion of massive particles

For radial motion � is constant, which implies that h= 0. Thus, (9.32) reduces to

ṙ2 = c2�k2−1�+ 2GM

r
� (9.35)

Differentiating this equation with respect to � and dividing through by ṙ gives

r̈ =−GM

r2
� (9.36)

which has precisely the same form as the corresponding equation of motion in
Newtonian gravity. This does not imply, however, that general relativity and
Newtonian gravity predict the same physical behaviour. It should be remem-
bered that in (9.36) the coordinate r is not the radial distance, and dots indicate
derivatives with respect to proper time rather than universal time.
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As a specific example, consider a particle dropped from rest at r = R. From
(9.35) we see immediately that k2 = 1−2GM/�c2R�, so (9.35) can be written

ṙ2

2
=GM

(
1
r
− 1
R

)
� (9.37)

This has the same form as the Newtonian formula equating the gain in kinetic
energy to the loss in gravitational potential energy for a particle (of unit mass)
falling from rest at r = R. This provides a useful way to remember this equation,
but the different meanings of r and of the dot should again be borne in mind.

We could continue our analysis of this quite general situation, but we can
illustrate the main physical points by considering a particle dropped from rest at
infinity. In this case k= 1 and the algebra is much less complicated. Thus, setting
k= 1 in the geodesic equation (9.29) and in (9.35), we obtain

dt

d�
=
(
1− 2�

r

)−1
� (9.38)

dr

d�
= −

(
2�c2

r

)1/2

� (9.39)

where in (9.39) we have taken the negative square root. These equations form the
basis of our discussion of a radially infalling particle dropped from rest at infinity.
From these equations we see immediately that the components of the 4-velocity
of the particle in the �t� r� ���� coordinate system are simply


u��≡
[
dx�

d�

]
=
((

1− 2�
r

)−1
� −

(
2�c2

r

)1/2

�0�0

)
�

Equation (9.39) determines the trajectory r���. On integrating (9.39) we imme-
diately obtain

� = 2
3

√
r30

2�c2
− 2

3

√
r3

2�c2
�

where we have written the integration constant in a form such that � = 0 at r = r0.
Thus � is the proper time experienced by the particle in falling from r = r0 to a
coordinate radius r .

Instead of parameterising the worldline in terms of the proper time �, we can
alternatively describe the path as r�t�, thereby mapping out the trajectory of the
particle in the �t� r� coordinate plane. This is easily achieved by writing

dr

dt
= dr

d�

d�

dt
=−

(
2�c2

r

)1/2(
1− 2�

r

)
� (9.40)
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On integrating, we find

t = 2
3

⎛⎝√ r30
2�c2

−
√

r3

2�c2

⎞⎠+ 4�
c

(√
r0
2�
−
√

r

2�

)

+ 2�
c

ln

∣∣∣∣∣
(√

r/�2��+1√
r/�2��−1

)(√
r0/�2��−1√
r0/�2��+1

)∣∣∣∣∣ �
where the choice of the integration constant gives t = 0 at r = r0.
In particular we note that

�→ 2
3

√
r30

2�c2
as r→ 0�

t→� as r→ 2��

Evidently, the particle takes a finite proper time to reach r = 0. When the worldline
is expressed in the form r�t�, however, we see that r asymptotically approaches 2�
as t→�. Since the coordinate time t corresponds to the proper time experienced
by a stationary observer at large radius, we must therefore conclude that, to such
an observer, it takes an infinite time for the particle to reach r = 2�. We return
to this point later.

It is interesting to ask what velocity a stationary observer at r measures for
the infalling particle as it passes. From the Schwarzschild metric (9.15) we see
that, for a stationary observer at coordinate radius r, a coordinate time interval dt
corresponds to a proper time interval

dt′ =
(
1− 2�

r

)1/2

dt�

Similarly, a radial coordinate separation dr corresponds to a proper radial distance
measured by the observer equal to

dr ′ =
(
1− 2�

r

)−1/2
dr�

Thus the velocity of the radially infalling particle, as measured by a stationary
observer at r , is given by

dr ′

dt′
=
(
1− 2�

r

)−1 dr
dt
=−

(
2�c2

r

)1/2

� (9.41)

Thus we find the rather surprising result that, as the particle approaches r = 2�,
a stationary observer at that radius observes that the particle’s velocity tends to c.
We note that the equation (9.41) is only physically valid for r > 2� since, as we
shall see, it is impossible to have a stationary observer at r ≤ 2�.
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9.8 Circular motion of massive particles

For circular motion in the equatorial plane we have r = constant, and so ṙ = r̈ = 0.
Setting u= 1/r = constant in the ‘shape’ equation (9.33) we have

u= GM

h2
+ 3GM

c2
u2�

from which we find that

h2 = �c2r2

r−3�
�

Putting ṙ = 0 in the energy equation (9.32) and substituting the above expression
for h2 allows us to identify the constant k:

k= 1−2�/r
�1−3�/r�1/2

� (9.42)

The energy of a particle of rest mass m0 in a circular of radius r is then given by
E = km0c

2. We can use this result to determine which circular orbits are bound.
For this we require E < m0c

2, so the limits on r for the orbit to be bound are
given by k= 1. This yields

�1−2�/r�2 = 1−3�/r�

which is satisfied when r = 4� or r = �. Thus, over the range 4� < r < �,
circular orbits are bound. A plot of E/�m0c

2� as a function of r/� is shown in
Figure 9.2.
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Figure 9.2 The variation of k = E/�m0c
2� as a function of r/� for a circular

orbit of a massive particle in the Schwarzschild geometry.
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We can obtain another useful result by substituting our expression for h2 into
the geodesic equation r2�̇= h; then we can write(

d�

d�

)2

= �c2

r2�r−3��
�

The significance of this equation is that it cannot be satisfied for circular orbits
with r < 3�. Such orbits cannot be geodesics (since they do not satisfy the
geodesic equations) and so cannot be followed by freely falling particles. Thus,
according to general relativity a free massive particle cannot maintain a circular
orbit with r < 3� around a spherical massive body, no matter how large the
angular momentum of the particle. This is very different from Newtonian theory.

It is also useful to calculate the expression for d�/dt, which is given by(
d�

dt

)2

=
(
d�

d�

d�

dt

)2

= �1−2�/r�2

k2

(
d�

d�

)2

= �c2

r3
= GM

r3
�

This expression is exactly the same as the Newtonian expression for the period
of a circular orbit of radius r. Although we cannot say that r is the radius of
the orbit in the relativistic case, we see that the spatial distance travelled in one
complete revolution is 2�r, just as in the Newtonian case.

9.9 Stability of massive particle orbits

The above analysis appears to suggest that the closest bound circular orbit around
a massive spherical body is at r = 4�. However, we have not yet determined
whether this orbit is stable.

In Newtonian dynamics the equation of motion of a particle in a central potential
can be written

1
2

(
dr

dt

)2

+Veff�r�= E�

where Veff�r� is the effective potential and E is the total energy of the particle
per unit mass. For an orbit around a spherical mass M , the effective potential is

Veff�r�=−
GM

r
+ h2

2r2
� (9.43)

where h is the specific angular momentum of the particle. This effective potential
is shown in Figure 9.3. It can be seen that bound orbits have two turning points
and that a circular orbit corresponds to the special case where the particle sits at
the minimum of the effective potential. Furthermore one sees that, in Newtonian
dynamics, a finite angular momentum provides an angular momentum barrier
preventing a particle reaching r = 0. This is not true in general relativity.
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Figure 9.3 The Newtonian effective potential for h �= 0, showing how an angular
momentum barrier prevents particles reaching r = 0.

In general relativity, the ‘energy’ equation (9.32) for the motion of a particle
around a central mass can be written

1
2

(
dr

d�

)2

+ h2

2r2

(
1− 2�

r

)
− �c2

r
= c2

2
�k2−1��

where we recall that the constant k = E/�m0c
2�. Thus in general relativity we

identify the effective potential per unit mass as

Veff�r�=−
�c2

r
+ h2

2r2
− �h2

r3
� (9.44)

which has an additional term proportional to 1/r3 as compared with the Newtonian
case (9.43). Remembering that � = GM/c2, we see that (9.44) reduces to the
form (9.43) in the non-relativistic limit c→�.

Figure 9.4 shows the general relativistic effective potential for several values of
h̄≡ h/�c��. The dots indicate the locations of stable circular orbits, which occur
at the local minimum of the potential. The local maxima in the potential curves
are the locations of unstable circular orbits. For any given value of h̄, circular
orbits occur where dVeff/dr = 0. Differentiating (9.44) gives

dVeff

dr
= �c2

r2
− h2

r3
+ 3�h2

r4
�

and so the extrema of the effective potential are located at the solutions of the
quadratic equation

�c2r2−h2r+3�h2 = 0�
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Figure 9.4 The general relativistic effective potential plotted for several values
of the angular momentum parameter h̄.

which occur at

r = h

2�c2

(
h±

√
h2−12�2c2

)
�

We note, in particular, that if h = √12�c = 2
√
3�c then there is only one

extremum, and there are no turning points in the orbit for lower values of h. The
significance of this result is that the innermost stable circular orbit has

rmin = 6�= 6GM

c2
�

This orbit, with r = 6� and h/��c� = 2
√
3, is unique in satisfying both

dVeff/dr = 0 and d2Veff/dr
2 = 0, the latter being the condition for marginal

stability of the orbit.
The existence of an innermost stable orbit has some interesting astrophysical

consequences. Gas in an accretion disc around a massive compact central body
settles into circular orbits around the compact object. However, the gas slowly
loses angular momentum because of turbulent viscosity (the turbulence is thought
to be generated by magnetohydrodynamic instabilities). As the gas loses angular
momentum it moves slowly inwards, losing gravitational potential energy and
heating up. Eventually it has lost enough angular momentum that it can no longer
follow a stable circular orbit, and so it spirals rapidly inwards onto the central
object.

We can make an estimate of the efficiency of energy radiation in an accretion
disc. The maximum efficiency is of the order of the ‘gravitational binding energy’
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at the innermost stable circular orbit (i.e. the energy E lost as the particle moves
from infinity to the innermost orbit) divided by the rest mass energy of the particle.
Setting r = 6� in (9.42) and remembering that k= E/�m0c

2�, we find that

E

m0c
2
= 2

√
2

3
≈ 0�943�

Thus the maximum radiation efficiency of the accretion disc is

�acc ≈ 1−0�943= 5�7%�

Thus, an accretion disc around a highly compact astrophysical object can convert
perhaps a few percent of the rest mass energy of the gas into radiation; this may be
compared with the efficiency of nuclear burning of hydrogen to helium (26MeV
per He nucleus),

�nuclear ∼ 0�7%�

Accretion discs are therefore capable of converting rest mass energy into radiation
with an efficiency that is about 10 times greater than the efficiency of the nuclear
burning of hydrogen. The ‘accretion power’ of highly compact objects (such as
black holes) cause some of the most energetic phenomena known in the universe.

A physically intuitive picture of a non-circular orbit and the capture of a particle
with non-zero angular momentum h may be obtained by differentiating the energy
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Figure 9.5 Orbit for a particle projected azimuthally from r = 20GM/c2 with
h= 3�5GM/c. A circular orbit would require h= �20/

√
17�GM/c. The points

are plotted at equal intervals of the particle’s proper time.
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equation (9.32) for massive particle orbits with respect to proper time �. Using
the original equation to remove the first derivative dr/d�, we find that

d2r

d�2
=−GM

r2
+ h2

r3
− 3h2GM

c2r4
�

As we might expect, the first two terms on the right-hand side are very like
the Newtonian expressions corresponding to an inward gravitational force and a
repulsive ‘centrifugal force’ proportional to h2. The third term is new, however,
and is also proportional to h2 but this time acts inwards. This shows that close to a
highly compact object, specifically within the radius r = 3GM/c2, the centrifugal
force ‘changes sign’ and is directed inwards, thus hastening the demise of any
particle that strays too close to the object. This leads to spiral orbits of the type
shown in Figure 9.5.

9.10 Trajectories of photons

The trajectory of a photon (and of any other particle having zero rest mass) is a
null geodesic. We cannot use the proper time � as a parameter, so instead we use
some affine parameter # along the geodesic. Considering motion in the equatorial
plane, the equations of motion are given by the geodesic equations (9.21) and
(9.23), and we replace the r-equation (9.22) by the condition g��ẋ

�ẋ� = 0. Thus
we have (

1− 2�
r

)
ṫ = k� (9.45)

c2
(
1− 2�

r

)
ṫ2−

(
1− 2�

r

)−1
ṙ2− r2�̇2 = 0� (9.46)

r2�̇ = h� (9.47)

For photon trajectories, an analogue of the energy equation (9.32) can again be
obtained by substituting (9.45) and (9.47) into (9.46), which gives

ṙ2+ h2

r2

(
1− 2�

r

)
= c2k2� (9.48)

Similarly, the analogue for photons of the shape equation (9.33) is obtained by
substituting h= r2�̇ into (9.46) and using the fact that

dr

d#
= dr

d�

d�

d#
= h

r2
dr

d�
�
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Making the usual substitution u ≡ 1/r and differentiating with respect to � we
find

d2u

d�2
+u= 3GM

c2
u2� (9.49)

It is again worth mentioning the two special cases of radial motion and motion in
a circle.

9.11 Radial motion of photons

For radial motion �̇= 0 and (9.46) reduces to

c2
(
1− 2�

r

)
ṫ2−

(
1− 2�

r

)−1
ṙ2 = 0�

from which we obtain

dr

dt
=±c

(
1− 2�

r

)
� (9.50)

On integrating, we have

ct = r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant �outgoing photon��

ct =−r−2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant �incoming photon��

Notice that under the transformation t→−t, incoming and outgoing photon paths
are interchanged, as we would expect. In fact for the moment the differential
equation (9.50) is more useful. In a �ct� r�-diagram, we see that the photon
worldlines will have slopes±1 as r→� (forming the standard special-relativistic
lightcone), but their slopes approach±� as r→ 2�. This means that they become
more vertical; the cone ‘closes up’.

Our knowledge of the lightcone structure allows us to construct the ‘picture’
behind our earlier algebraic result that a particle takes infinite coordinate time to
reach the horizon; this is illustrated in Figure 9.6. The curved solid line is the
worldline of a massive particle dropped from rest by an observer fixed at r = R.
Since massive particle worldlines are confined within the forward lightcone in any
event, the closing up of the lightcones forces the worldlines of massive particles
to become more vertical as r → 2�. Thus, the particle ‘reaches’ r = 2� only
at t = �. Further, suppose that at some point along its trajectory the particle
emits a radially outgoing photon in the direction of the observer. The tangent to
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Figure 9.6 A radially infalling particle emitting a radially outgoing photon. The
wavy line indicates the singularity at r = 0.

the resulting photon worldline must, at any event, lie along the outward-pointing
forward lightcone at that point. This is illustrated by the broken line in Figure 9.6.
Thus, in the limit where the particle approaches r = 2�, the initial direction of
the photon worldline approaches the vertical and so the photon will be received
by the observer only at t =�. Thus to an external observer the particle appears
to take an infinite time to reach the horizon.

As discussed earlier, however, the proper time � experienced by a massive
particle in falling to r = 2� is finite. Moreover, dr/d� does not tend to zero at this
point, so the particle has not ‘run out of steam’ and presumably passes beyond
this threshold. Thus, our present coordinate system is inadequate for discussing
what happens at and within r = 2�, and our �ct� r�-diagram is in some respects
misleading in these regions. We discuss this further in Chapter 11.

9.12 Circular motion of photons

For motion in a circle we have r = constant. Thus, from the shape equation (9.49),
we see that the only possible radius for a circular photon orbit is

r = 3GM

c2
�
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Therefore a massive object can have a considerable effect on the path of a photon.
There is no such orbit around the Sun, for example, since the solar radius is much
larger than 3GM�/c2 ≈ 4�5km, but outside a black hole there can be such an
orbit. As we shall see below, however, the orbit is not stable.

9.13 Stability of photon orbits

We can rewrite the ‘energy’ equation (9.48) for photon orbits as

ṙ2

h2
+Veff�r�=

1
b2

� (9.51)

where we have defined the quantity b = h/�ck� and the effective potental

Veff�r�=
1
r2

(
1− 2�

r

)
�

In fact, by rescaling the affine parameter along the photon geodesic in such a way
that �→ h� the explicit h-dependence in (9.51) may be removed.

The effective potential is plotted in Figure 9.7, from which we see that Veff�r�

has a single maximum at r = 3�, where the value of the potential is 1/�27�2�.
Thus the circular orbit at r = 3� is unstable. We conclude that there are no stable
circular photon orbits in the Schwarzschild geometry.

The character of general photon orbits is determined by the value of the
constant b. To find the physical meaning of b, we begin by using the geodesic
equation (9.45) and the energy equation (9.47) to write

d�

dr
= �̇

ṙ
= 1

r2

[
1
b2
− 1
r2

(
1− 2�

r

)]−1/2
�

r

Veff

r = 2µ r = 3µ

27µ2
1

Figure 9.7 The effective potential for photon orbits.
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b
r

φ
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approach

Figure 9.8 The shape of a photon orbit passing a spherical mass if b > 3
√
3�.

Thus, for a photon orbit, as r→� we have

r2
d�

dr
=±b�

Assuming that �→ 0 as r→�, the solution to this equation is

r =± b

sin�
�

which gives the equations of two straight lines with impact parameter b passing
on either side of the origin.

The nature of the orbits depends very much on the value of the impact param-
eter b. Let us first consider inward-moving photons, i.e. photons for which r is
initially decreasing. From (9.51) and Figure 9.7 we see that if 1/b2 < 1/�27�2�,
so that b > 3

√
3�, then the orbit will have a single turning point of closest

approach and escape again to infinity. This situation is illustrated in Figure 9.8.
If b < 3

√
3�, however, then the light ray will be captured by the massive body

and spiral in towards the origin.
Similar considerations hold for trajectories that start at small radii. If b> 3

√
3�

then the photon will escape, and at infinity its straight-line path will have an impact
parameter b. If b < 3

√
3� then the photon path will have a turning point, and it

will fall back towards the origin. In this case the particle does not reach infinity,
so b cannot be interpreted simply as an impact parameter. It is straightfoward to
show that if a photon is emitted from within the region r = 2� to r = 3� then the
opening angle � from the radial direction for the photon to escape varies from
�= 0 at r = 2� to �= �/2 at r = 3�.

Appendix 9A: General approach to gravitational redshifts

Consider a general spacetime with metric g�� in some arbitrary coordinate system
x�, where x0 is a timelike coordinate and the xi are spacelike. Suppose that an
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Figure 9.9 Schematic illustration of the emission and reception of a photon.

emitter � and a receiver� have worldlines x�E��E� and x
�
R��R� respectively, where

�E and �R are the proper times of each observer. At some event A, � emits a
photon with 4-momentum p�A� that is received by � at an event B. Furthermore,
let us assume that at event A the emitter � has 4-velocity uE�A� and that at event
B the receiver has 4-velocity uR�B�. This is illustrated schematically in Figure 9.9.

The energies of the photon as observed by the emitter at A and by the receiver
at B are respectively given by

E�A� = p�A� ·uE�A�= p��A�u
�
E�A��

E�B� = p�B� ·uR�B�= p��B�u
�
R�B��

Since in both cases E = h�, the ratio of the photon frequencies is given by the
general result

�R
�E
= p��B�u

�
R�B�

p��A�u
�
E�A�

� (9.52)

If we know the components of the 4-momentum p��A� at emission then we can
calculate the components p��B� at reception, using the fact that the photon travels
along a null geodesic. Since the photon 4-momentum p at any point is tangent
to this geodesic, it is parallel-transported along the path. Thus, if the photon
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geodesic x��#� is described in terms of some affine parameter # then

dp�

d#
− �

��p�
dx�

d#
= 0�

Moreover, since p is tangent to the geodesics, we can choose the affine parameter
# so that p� = dx�/d# , in which case

dp�

d#
=  �

��p�p
��

It is also worth remembering that a first integral of the equation for a photon
geodesic, which can prove very useful, is

p�p
� = 0� (9.53)

Let us now examine some special cases of the general formula (9.52). We
begin by considering the case in which both the emitter � and the receiver �
have fixed spatial coordinates. Thus, for i = 1�2�3 the spatial components of
their 4-velocities are

uiE ≡
dxiE
d�E

= 0 and uiR ≡
dxiR
d�R

= 0�

Moreover, in each case, the squared length of the 4-velocity is g��u
�u� = c2. In

our situation, this reduces to g00�u
0�2 = c2, so we find that

u0 = c

�g00�
1/2

�

Hence the formula (9.52) reduces to

�R
�E
= p0�B�

p0�A�

[
g00�A�

g00�B�

]1/2
� (9.54)

Let us now make the additional assumption that the metric is stationary in our
chosen cooordinate system, i.e.

�0g�� = 0�

Thus, the metric components g�� cannot depend explicitly on the coordinate x0.
As shown in Section 3.19, this means that the zeroth covariant component of the
tangent vector is constant along an affinely parameterised geodesic. Since the
photon 4-momentum is simply proportional to the tangent vector, this means that
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p0 is constant along the photon’s geodesic. Thus, in this case, (9.54) reduces
further to

�R
�E
=
[
g00�A�

g00�B�

]1/2
� (9.55)

and we have recovered the result (9.14) derived earlier.

Exercises

9.1 Show that surfaces of constant t and r in the general isotropic metric (9.3) have
surface area 4�r2.

9.2 For the general static isotropic metric (9.4), show that the off-diagonal components of
the Ricci tensorR�� are zero and that the diagonal components are given by (9.8–9.11).

9.3 The Schwarzschild line element is

ds2 = c2
(
1− 2�

r

)
dt2−

(
1− 2�

r

)−1
dr2− r2 d�2− r2 sin2 �d�2�

By considering the ‘Lagrangian’ L= g��ẋ
�ẋ�, where the dots denote differentiation

with respect to an affine parameter �, calculate the connection coefficients  �
�# .

Hence verify that the geodesic equations are given by (9.17–9.20).
9.4 Derive the results (9.17–9.20) using the alternative form (9.28) of the geodesic

equations.
9.5 Calculate the connection coefficients and the Ricci tensor for the general isotropic

metric (9.3). Hence prove Birkoff’s theorem.
9.6 Use Birkhoff’s theorem to show that a particle inside a spherical shell of matter

experiences no gravitational force.
9.7 Show that the ‘Lemaitre’ line element

ds2 = c2 dw2− 4
9

[
9�

2�z− cw�

]2/3
dz2−

[
9�
2
�z− cw�2

]2/3
d�2�

where d�2 = d�2+ sin2 �d�2, describes the Schwarzschild geometry. Show that
observers with fixed spatial coordinates �z� ���� are in free fall and had zero velocity
at infinity, and that the proper time of such observers is w.

9.8 For a general stationary spacetime with line element

ds2 = g00��x�dt2+gij��x�dxi dxj�
show that, for a fixed emitter and receiver, the ratio of the received photon frequency
to the emitted frequency is

�R
�E
=
[
g00��xE�
g00��xR�

]1/2
�

where �xE and �xR are the fixed spatial coordinates of the emitter and receiver
respectively.
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9.9 An isolated thin rigid spherical shell has mass M and radius R. Suppose that a
small hole is drilled through the shell, so that an observer O at the shell’s centre
can observe the outside universe. Show that a photon emitted by a fixed observer
E at r = rE (where rE > R) and received by O is blueshifted by the amount

�O
�E
=
(
1−2�/rE
1−2�/R

)1/2

�

9.10 Show that the quantity

L2 = p2
�+

p2
�

sin2 �
�

where p is the 4-momentum of a particle, is a constant of motion along any
geodesic in the Schwarzschild geometry. Hence show that the particle orbits in a
Schwarzschild geometry are stably planar.

9.11 For a particle dropped from rest at infinity in the Schwarzschild geometry, find
expressions for t�r� and ��r�, where t is the coordinate time and � is the proper
time of the particle.

9.12 A particle is dropped from rest at a coordinate radius r = R in the Schwarzschild
geometry. Obtain an expression for the 4-velocity of the particle in �t� r� ����

coordinates when it passes coordinate radius r.
9.13 A particle at infinity in the Schwarzschild geometry is moving radially inwards with

coordinate speed u0. Show that at any coordinate radius r the coordinate velocity
is given by (

dr

dt

)2

=
(
1− 2GM

c2r

)2

c2
[
1− 1

	2
0

(
1− 2GM

c2r

)]
�

where 	0 =
(
1−u2

0/c
2
)−1/2

. Determine the velocity relative to a stationary observer
at r, and show that this velocity tends to c as r tends to 2GM/c2, irrespective of
the value of u0.

9.14 Suppose that the particle in Exercise 9.13 has rest mass m0 and that it stopped at
r = r1. If its excess energy was converted to radiation that is observed at infinity,
show that the energy released as seen by a stationary observer at r1 is

E =m0c
2

(
	0√

1−2GM/�c2r1�
−1

)
�

What is the energy released as observed at infinity? Show that this tends to 	0m0c
2

as r1 tends to 2GM/c2.
9.15 For a particle in a circular orbit of radius r in the Schwarzschild geometry, use the

alternative form (9.28) of the geodesic equations to show that

d�

dt
= GM

r3
�

9.16 In the Schwarzschild geometry, a photon is emitted from a coordinate radius r = r2
and travels radially inwards until it is reflected by a fixed mirror at r = r1, so
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that it travels radially outwards back to r = r2. How long does the round trip take
according to a stationary observer in infinity?

9.17 A photon moves in a circular orbit at r = 3� in the Schwarzschild geometry. Show
that the period of the orbit as measured by a stationary observer at this radius is
� = 6��/c. What is the period of the orbit as measured by a stationary observer
infinity?

9.18 Show that a massive particle moving in the innermost stable circular orbit in the
Schwarzschild geometry has speed c/2 as measured by a stationary observer at this
radius. Hence calculate the period of the orbit as measured by the local observer.
What is the period of the orbit as measured by a stationary observer infinity?

9.19 Alice is situated at a fixed position on the equator of the Earth (which is assumed to
be spherical). In Schwarzschild coordinates �t� r� ����, her worldline is described
in terms of a parameter � by

t = 	�� r = R� � = �/2� �= ���

where 	 and � are constants and R is the coordinate radius of the Earth’s surface.
Bob is a distant stationary observer in space. Show that he will measure the orbital
speed of Alice to be v=R�/	. By considering the magnitude of Alice’s 4-velocity,
show that

	 =
[
1−

(
v2

c2
+ GM

c2r

)]−1/2
�

where M is the mass of the Earth. Interpret this result physically.
9.20 All massive objects look larger than they really are. Show that a light ray grazing

the surface of a massive sphere of coordinate radius r > 3GM/c2 will arrive at
infinity with impact parameter

b = r

(
r

r−2GM/c2

)1/2

�

Hence show that the apparent diameter of the Sun �M� = 2× 1030 kg�R� =
7×108 m� exceeds the coordinate diameter by nearly 3 km.

9.21 The Hipparcos satellite can measure the positions of stars to an accuracy of 0.001
arcseconds. If it is measuring the position of a star in a direction perpendicular
to the plane of the Earth’s orbit, do Hipparcos observers need to account for the
gravitational bending of light by the Sun?

9.22 A massive particle is moving in the equatorial plane of the Schwarzschild geometry.
Show that at infinity the particle moves in a straight line with impact parameter
b = h/�c

√
k2−1�.

9.23 An observer at rest at coordinate radius r = R in the Schwarzschild geometry
drops a massive particle which free-falls radially inwards. When the particle is at a
coordinate radius r = rE it emits a photon radially outwards. Find an expression for
the redshift z of the photon when it is received by the observer. Show that z→�
as rE → 2GM/c2.
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9.24 Show that the geodesic equations for photon motion in the equatorial plane �=�/2
of the Schwarzschild geometry can be written in the form

ṫ = 1
bc

(
1− 2�

r

)−1
� �̇= 1

r2
� ṙ2 = 1

b2
−U�r��

where b is a constant, the dots correspond to differentiation with respect to some
affine parameter and

U�r�= 1
r2

(
1− 2�

r

)
�

Suppose that a photon moving in the equatorial plane passes an observer at rest at
a coordinate radius in the range 2�< r < 3�. Show that the observer measures the
radial and azimuthmal components of the photon’s velocity to be

vr =±c
[
1−b2U�r�

]1/2
and v� = cb
U�r��1/2�

If the observer emits a photon that makes an angle � with the outward radial
direction, show that the photon will escape to infinity provided that

sin� < 3
√
3�
U�r��1/2�

Find the values of � at r = 2� and r = 3�.
9.25 Alice and Bob are astronauts in a space capsule, with no engine, in a circular orbit

at r = R (where R> 3�) in the equatorial plane of the Schwarzschild geometry. At
some point in the orbit, Bob leaves the capsule, uses his rocket-pack to maintain
a hovering position at that fixed point in space and then rejoins the capsule after
it has completed one orbit. Show that the proper time interval measured by Alice
while Bob is out of the capsule is

��A = 2�
[
R2

�c2
�R−3��

]1/2
�

If ��B is the corresponding proper time interval measured by Bob between these
two events, show that

��B
��A

=
(
R−2�
R−3�

)1/2

�

Briefly compare this result with the ‘twin paradox’ result in special relativity. If
Bob chooses not to rejoin the capsule but instead observes it fly past him, show
that he will measure the capsule’s speed as

v=
(

�c2

R−2�

)1/2

�

9.26 A particle A and its antiparticle B are travelling in opposite senses in free circular
orbits in the equatorial plane of the Schwarzschild geometry, one at coordinate
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radius rA and the other at rB�> rA�. At some instant, A emits a photon of frequency
�A that travels radially and is received by B with frequency �B. Show that

�B
�A
=
(
1−3�/rA
1−3�/rB

)1/2

�

Suppose now that rA = rB = r, so that the particles collide and annihilate each other.
Show that the total radiated energy as measured by an observer at rest at the point
of collision is given by

E = 2m0c
2

(
1−2�/r
1−3�/r

)1/2

�

where m0 is the rest mass of each particle.
9.27 If the cosmological constant $ is non-zero, show that the line element outside a

static spherically symmetric matter distribution is given by

ds2 = c2
(
1− 2�

r
− $r2

3

)
dt2−

(
1− 2�

r
− $r2

3

)−1
dr2− r2�d�2+ sin2 �d�2��

Hence show that, in the weak-field Newtonian limit, a spherically symmetric mass
M produces a gravitational field strength �g given by

�g =
(
−GM

r2
+ c2$r

3

)
�̂r�

Show that the shapes of massive particle orbits in the above geometry differ
from those in the Schwarzschild geometry, but that the shapes of photon orbits
do not.

9.28 Consider a static axisymmetric spacetime that is invariant under translations and
reflections along the axis of symmetry. Show that, in general, the line element for
such a spacetime can be written in the form

ds2 = A���dt2−d�2−B���d�2−C���dz2�

for arbitrary functions A, B and C. Show that the non-zero connection coefficients
for this line element are given by

 0
01 =

A′

2A
�  1

22 =−
B′

2
�  1

33 =−
C ′

2
�

 1
00 =

A′

2
�  2

21 =
B′

2B
�  3

31 =
C ′

2C
�
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where the primes denote d/d�. Hence show that the non-zero components of the
Ricci tensor are given by

R00 = −
A′′

2
+ A′

2

(
A′

2A
− B′

2B
− C ′

2C

)
�

R11 =
A′′

2A
− �A′�2

4A2
+ B′′

2B
− �B′�2

4B2
+ C ′′

2C
− �C ′�2

4C2
�

R22 =
B′′

2
− B′

2

(
B′

2B
− A′

2A
− C ′

2C

)
�

R33 =
C ′′

2
− C ′

2

(
C ′

2C
− A′

2A
− B′

2B

)
�

9.29 Consider a static, infinitely long, cylindrically symmetric matter distribution of
constant radius that is invariant to Lorentz boosts along the symmetry axis (a
‘cosmic string’). Show that the line element outside the body can be written as

ds2 = c2 dt2−d�2− ��+
��2 d�2−dz2�

where � and 
 are constants. For the case � = 0, consider the spacelike surfaces
defined by t= constant and z= constant and calculate the circumference of a circle
of constant coordinate radius � in such a surface. Hence show that, for 
 < 1, the
geometry on the spacelike surface is that of a two-dimensional cone embedded in
three-dimensional Euclidean space.
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Experimental tests of general relativity

Most of the experimental tests of general relativity are based on the Schwarzschild
geometry in the region r > 2GM/c2. Some are based on the trajectories of massive
particles and others on photon trajectories. Most of the ‘classic’ tests are in the
weak-field limit, but more recent observations have begun to probe the more
discriminative strong-field regime. We will now discuss both these ‘classic’ exper-
imental tests and some of the more recent findings and proposals. Some later
tests are in fact more closely linked to the Kerr geometry (see Chapter 13), which
describes spacetime outside a rotating massive body, but the basic principles can
still be understood in terms of the simpler Schwarzschild geometry.

10.1 Precession of planetary orbits

For a general non-circular orbit in Newtonian theory the equation of motion is

d2u

d�2
+u= GM

h2
�

where u ≡ 1/r and h is the angular momentum per unit mass of the orbiting
particle. For a bound orbit, the equation has the solution

u= GM

h2
�1+ e cos��� (10.1)

which describes an ellipse; the parameter e measures the ellipticity of the orbit.
Thus, for example, we can draw the orbit of a planet around the Sun as in
Figure 10.1. We can write the distance of closest approach (perihelion) as r1 =
a�1− e� and the distance of furthest approach (aphelion) as r2 = a�1+ e�. The
equation of motion then requires that the semi-major axis is given by

a= h2

GM�1− e2�
� (10.2)
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Planet

φ

Sun
PerihelionAphelion

a (1 – e)

Figure 10.1 The elliptical orbit of a planet around the Sun; e is the ellipticity
of the orbit.

The general-relativistic equation of motion is

d2u

d�2
+u= GM

h2
+ 3GM

c2
u2� (10.3)

If the gravitational field is weak, as it is for planetary orbits around the Sun, then
we expect Newtonian gravity to provide an excellent approximation to the motion
in general relativity. We can therefore treat the Newtonian solution (10.1) as the
zeroth-order solution to the general-relativistic equation of motion. Thus let us
write the general-relativistic solution as

u= GM

h2
�1+ e cos��+�u�

where �u is a perturbation. Substituting this expression into the general-relativistic
equation (10.3) we find that, to first-order in �u,

d2�u

d�2
+�u= A

(
1+ e2 cos2�+2e cos�

)
�

where the constant A = 3�GM�3/�c2h4� is very small. A particular integral of
this equation is easily found to be

�u= A
[
1+ e2

( 1
2 − 1

6 cos 2�
)+ e� sin�

]
� (10.4)

which can be checked by direct differentiation.
Since the constant A is very small, the first two terms on the right-hand side

of (10.4) are tiny, and of no use in testing the theory. However, the last term,
Ae� sin�, might be tiny at first but will gradually grow with time, since the factor
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� means that it is cumulative. We must therefore retain it, and so our approximate
solution reads

u= GM

h2

1+ e�cos�+�� sin��� � (10.5)

where �= 3�GM�2/�h2c2�� 1. Using the relation

cos 
��1−��� = cos� cos��+ sin� sin��

≈ cos�+�� sin� for �� 1� (10.6)

we can therefore write

u≈ GM

h2
!1+ e cos
��1−���" � (10.7)

From this expression, we see that the orbit is periodic, but with a period
2�/�1−��, i.e. the r-values repeat on a cycle that is larger than 2�. The result
is that the orbit cannot ‘close’, and so the ellipse precesses (see Figure 10.2). In
one revolution, the ellipse will rotate about the focus by an amount

��= 2�
1−�

−2� ≈ 2��= 6��GM�2

h2c2
�

Substituting for h from (10.2), we finally obtain

��= 6�GM

a�1− e2�c2
� (10.8)

∆φ

Figure 10.2 Precession of an elliptical orbit (greatly exaggerated).
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Let us apply equation (10.8) to the orbit of Mercury, which has the following
parameters: period= 88 days, a= 5�8×1010 m� e= 0�2. UsingM� = 2×1030 kg,
we find

��= 43′′ per century�

In fact, the measured precession is

5599′′�7±0′′�4 per century�

but almost all of this is caused by perturbations from other planets. The residual,
after taking perturbations into account, is in remarkable agreement with general
relativity. The residuals for a number of planets (and Icarus, which is a large
asteroid with a perihelion that lies within the orbit of Mercury) may also be
calculated (in arcseconds per century):

Observed residual Predicted residual

Mercury 43�1±0�5 43.03
Venus 8±5 8.6
Earth 5±1 3.8
Icarus 10±1 10.3

In each case, the results are in excellent agreement with the predictions of general
relativity. Einstein included this calculation regarding Mercury in his 1915 paper
on general relativity. He had solved one of the major problems of celestial
mechanics in the very first application of his complicated theory to an empirically
testable problem. As you can imagine, this gave him tremendous confidence in
his new theory.

10.2 The bending of light

We have already noted that a massive object can have a significant effect on
the propagation of photons. For example, photons can travel in a circular orbit
at r = 3GM/c2. We do not, however, expect to observe this effect directly, but
a more modest bending of light can be observed. For investigating the slight
deflection of light by, for example, the Sun, it is easiest to follow an approximation
technique analogous to that used in predicting the perihelion shift of Mercury.

As we showed in Chapter 9, the ‘shape’ equation for a photon trajectory in the
equatorial plane of the Schwarzschild geometry is

d2u

d�2
+u= 3GM

c2
u2� (10.9)
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b r

φ

∆φ /2

Figure 10.3 Angles and coordinates in the deflection of light by a spherical mass.

where u≡ 1/r . In the absence of matter, the right-hand side vanishes and we may
write the solution as

u= sin�
b

� (10.10)

which represents a straight-line path with impact parameter b (see Figure 10.3).
We again treat (10.10) as the zeroth-order solution to the equation of motion.
Thus we write the general-relativistic solution as

u= sin�
b

+�u�

where �u is a perturbation. Substituting this expression into (10.9), we find that,
to first order in �u,

d2�u

d�2
+�u= 3GM

c2b2
sin2��

This is satisfied by the particular integral

�u= 3GM

2c2b2
(
1+ 1

3 cos 2�
)
� (10.11)

and adding (10.11) into the original solution yields

u= sin�
b

+ 3GM

2c2b2
(
1+ 1

3 cos 2�
)
� (10.12)

Now consider the limit r→�, i.e. u→ 0. Clearly, for a slight deflection we
can take sin�≈ � and cos2�≈ 1 at infinity, to obtain �=−2GM/�c2b�. Thus
the total deflection (see Figure 10.3) is

��= 4GM

c2b
� (10.13)

This is the famous gravitational deflection formula (which incidentally is twice
what had previously been worked out using a Newtonian approach). For light
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grazing the Sun it yields��= 1′′�75. The 1919 eclipse expedition led by Eddington
gave two sets of results:

�� = 1′′�98±0′′�16�

�� = 1′′�61±0′′�4�

both consistent with the theory. This provided the first experimental verification
of a prediction of Einstein’s theory (the ‘anomalous’ perihelion shift of Mercury
had been known for many years) and turned Einstein into a scientific superstar.1

Some historians have argued that Eddington ‘fiddled’ the results to agree with the
theory. If Eddington did indeed massage the results, then he gambled correctly.
Later high-precision tests using radio sources, which can be observed near the
Sun even when there is no lunar eclipse, show there is now no doubt that the
general-relativistic prediction is accurate to a fraction of a percent. Modern radio
experiments using very long baseline interferometry (VLBI) have been performed
to measure the gravitational deflection of the positions of radio quasars as they are
eclipsed by the Sun. Such experiments can be performed to an accuracy of better
than ∼10−4 arcseconds. Figure 10.4 summarizes the results of measurements of
the deflection angle �� from experiments conducted over the period 1969–75.
The results are in excellent agreement with the predictions of general relativity.
Moreover, as one can see from the figure, the results constrain the parameter �
in the Brans–Dicke theory of gravity (see Appendix 8A): we have �≥ 40.
For more dramatic light deflection, our adopted approach of successive approx-

imations is unsuitable. In this case, it is more appropriate to use the exact equation
for d�/dr derived in Chapter 9, which reads

d�

dr
= 1

r2

[
1
b2
− 1
r2

(
1− 2�

r

)]−1/2
�

where b is the impact parameter at infinity. We also showed in Chapter 9 that if
b > 3

√
3� then the photon is not captured by the mass; the resulting general orbit

shape is illustrated in Figure 10.5. From the figure, we see that the deflection
angle is given by

��= 2
∫ �

r0

1
r2

[
1
b2
− 1
r2

(
1− 2�

r

)]−1/2
dr (10.14)

where r0 is the point of closest approach, at which the expression in the square
brackets in (10.14) vanishes.

1 The media had a great story. Remember that this was just after the end of the First World War, and so
the headlines read something like ‘Newton’s theory of gravity overthrown by German physicist, verified by
British scientists.’
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Weiler et al. (1974)

Counselman et al. (1974)

Weiler et al. (1974)

Fomalont and Stramek (1975)

Fomalont and Stramek (1976)

Riley (1973)

Stramek (1974)

Stramek (1971)

Shapiro (quoted in Weinberg 1972)

Hill (1971)

Seilestad et al. (1970)

Muhleman et al. (1970)

Radio deflection experiments
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∞

Figure 10.4 Results of radio-wave deflection measurements of the positions
of quasars in the period 1969–75 (from C. Will, Theory and Experiment in
Gravitational Physics, Cambridge University Press, 1981). The deflection angle
is �� = �4GM/�R�c2� and the error bars are plotted on the parameter �.
If general relativity is correct, we expect � = 1. The abscissa scale gives the
measured values of the parameter � in the Brans–Dicke scalar-tensor theory of
gravity, discussed in Appendix 8A.

b

closest
approach

r0

∆φ

Figure 10.5 Angles and coordinates in the deflection of light by a spherical mass.

10.3 Radar echoes

In Chapter 9, we showed that the ‘energy’ equation for a photon orbit in the
Schwarzschild geometry is

ṙ2+ h2

r2

(
1− 2�

r

)
= c2k2�
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Using the result (
dr

d�

)2

=
(
dr

dt

dt

d�

)2

= k2

�1−2�/r�2

(
dr

dt

)2

�

we can rewrite the energy equation as

1
�1−2�/r�3

(
dr

dt

)2

+ h2

k2r2
− c2

1−2�/r
= 0� (10.15)

Now consider a photon path from Earth to another planet (say Venus), as shown
in Figure 10.6. Evidently the photon path will be deflected by the gravitational
field of the Sun (assuming that the planets are in a configuration like that shown
in the figure, where the photon has to pass close to the Sun in order to reach
Venus). Let r0 be the coordinate distance of closest approach of the photon to the
Sun; then (

dr

dt

)
r0

= 0�

and so from (10.15) we have

h2

k2r20
= c2

1−2�/r0
�

Thus, after rearrangement, we can write (10.15) as

dr

dt
= c�1−2�/r�

[
1− r20 �1−2�/r�

r2�1−2�/r0�

]1/2
�

Sun

r0

r

Earth

Venus

Figure 10.6 Photon path from Earth to Venus deflected by the Sun.
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which can be integrated to give for the time taken to travel between points r0
and r

t�r� r0�=
∫ r

r0

1
c�1−2�/r�

[
1− r20 �1−2�/r�

r2�1−2�/r0�

]−1/2
dr�

The integrand can be expanded to first order in �/r to obtain

t�r� r0�=
∫ r

r0

r

c�r2− r20 �

[
1+ 2�

r
+ �r0
r�r+ r0�

]
dr�

which can be evaluated to give

t�r� r0�=
�r2− r20 �

1/2

c
+ 2�

c
ln

[
r+ �r2− r20 �

1/2

r0

]
+ �

c

(
r− r0
r+ r0

)1/2

� (10.16)

The first term on the right-hand side is just what we would have expected if
the light had been travelling in a straight line. The second and third terms give us
the extra coordinate time taken for the photon to travel along the curved path to
the point r . So, you can see from Figure 10.6 that if we bounce a radar beam to
Venus and back then the excess coordinate-time delay over a straight-line path is

�t = 2

[
t�rE� r0�+ t�rV� r0�−

(
r2E− r20

)1/2
c

−
(
r2V− r20

)1/2
c

]
�

where the factor 2 is included because the photon has to go to Venus and back.
Since rE � r0 and rV� r0 we have

t�rE� r0�−
(
r2E− r20

)1/2
c

≈ 2�
c

ln
(
rE
r0

)
+ �

c
�

and likewise for tV and rV. Thus, the excess coordinate-time delay is

�t ≈ 4GM

c3

[
ln

(
rErV

r20

)
+1

]
�

Of course, clocks on earth do not measure coordinate time but the corresponding
proper time. Assuming the Earth to be at fixed coordinates �r� ���� during the
travel time of the signal, this is given by

�� =
(
1− 2GM

c2rE

)1/2

�t�

However, since rE � GM/c2, we can ignore this effect to the accuracy of our
calculation. For Venus, when it is opposite to the Earth on the far side of the Sun,

�� ≈ 220's�
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The idea of the experiment is as follows. Fire an intense radar beam towards
Venus when it is almost opposite to the Earth on the far side of the Sun and
measure the time delay of the radar echo with a sensitive radio telescope. The
excess time delay gives us a test of the principle of equivalence. This sounds
straightforward, but the time delay is very small and depends on the values of
rE� rV� r0. How can one determine these parameters to the required precision?
The answer is to fit the measured delays over a long period of time to a curve
chosen by varying rE� rV�� etc. as free parameters (see Figure 10.7). There are a
number of technical problems that limit the accuracy of this method. Firstly, we
must correct for the motion of Venus and the Earth in their orbits and for their
individual gravitational fields. Also, in practice, the radar beam is reflected from
different points on the surface of Venus (mountain peaks, valleys, etc.) and this
introduces a dispersion in the time delay of several hundred 's. This problem
can be solved by bouncing the radar beams from a mirror – as has since been
done using the Viking landers on Mars. Another, more complicated, problem is
correcting for refraction by the Solar corona – this can be important for photon
paths that graze the surface of the Sun. Nevertheless, Figure 10.7 confirms that the
corrected measurements are in excellent agreement with the general-relativistic
prediction.
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Figure 10.7 The Earth–Venus time-delay measurement compared with the
general-relativistic prediction.
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10.4 Accretion discs around compact objects

As we have seen, the orbits of particles and photons are probes of the geometry of
spacetime. Information about the geometry produced by compact massive objects
or black holes can be obtained from observations of the orbits of particles in the
accretion disc that often surrounds them. As we saw in Chapter 9, the radiation
efficiency of the accretion disc around a Schwarzschild black hole is 10 times
greater than the efficiency of the nuclear burning of hydrogen, and such disks are
very strong emitters in X-rays.

Even at the temperatures of ∼ 107 K that characterise an accretion disc, some
heavy nuclei retain bound electrons. The small trace of iron found in the accreting
matter is such a nucleus. Incident radiation from X-ray flares above and below
the disc can lead to fluorescence from the highly ionised atoms in the disc; in
this process an electron in the atom is de-excited from a higher energy level
to a lower one and emits a photon. For iron atoms, this results in photons of
energy 6.4 keV, giving a spectral line roughly in the middle of the X-ray band.
As one might expect, however, the frequency of the emitted photons as measured
by some observer at infinity (i.e. an astronomer on Earth) will differ from the
frequency with which the photons were emitted. Qualitatively, there are two
effects that cause this frequency shift. First, the photons will be gravitationally
redshifted by an amount that depends on the radius from which they were emitted.
Second, they will be Doppler shifted by an amount that depends on the speed and
direction (relative to the distant observer) of the material from which they were
emitted, in particular whether the material was moving towards or away from the
observer.

Unfortunately, given the typical size of accretion disks around compact objects,
and their large distance from us, the angular size of such systems as viewed
from Earth is typically far smaller than the width of the observing beam of any
telescope. Thus when an astronomer measures the spectrum (i.e. the photon flux as
a function of frequency) of such an object, the radiation received at each frequency
comes from various parts of the disc. Nevertheless, the observed spectrum is seen
to consist of a much-broadened iron line, whose shape contains information about
the spacetime geometry around the accreting object. In spite of the integration of
contributions from across the disc, the photons coming from the inner parts of
the accretion disc close to the compact object allow one to use the line profile to
probe the strong-field regime of gravity.

As an illustration, let us calculate in some simple cases the redshift one would
expect if the central object were not rotating, so that the geometry outside it is
given by the Schwarzschild metric. For simplicity, take the disc to be oriented
edge-on to the observer, as shown in Figure 10.8. All orbits are then in the plane
of the observer and the disc, which we take to be the equatorial plane � = �/2.
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Photon path
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uE

p(E)

r φ

Figure 10.8 The emission of a photon by matter in an accretion disc around a
compact object. The observer is viewing the disc edge-on.

The ratio of the photon’s frequency at reception to that at emission is given by

�R
�E
= p�R� ·uR

p�E� ·uE
= p��R�u

�
R

p��E�u
�
E

� (10.17)

where p�E� and p�R� are the photon 4-momenta at emission and reception respec-
tively, uE is the 4-velocity of the material at emission and uR is the 4-velocity
of the observer at reception. Assuming the observer to be fixed at infinity, the
components of his 4-velocity in the �t� r� ���� coordinate system are[

u
�
R

]= �1�0�0�0��

Now consider the 4-velocity of the emitting material. Since we are assuming that
this material is moving in a circular orbit it must have a 4-velocity of the form[

u
�
E

]= (u0E�0�0� u3E) �
Using the fact that

u3E =
d�

d�
= d�

dt

dt

d�
= d�

dt
u0E�

we can write the emitter’s 4-velocity as


u
�
E�= u0E�1�0�0����

where, for circular motion, � ≡ d�/dt = �GM/r3�1/2, which we derived in
Chapter 9. We can now fix u0E by using the fact that g��u

�u� = c2. If the emitting
material is at a coordinate radius r, we have

u0E = c

[
c2
(
1− 2�

r

)
− r2�2

]−1/2
=
(
1− 3�

r

)−1/2
�

Our general expression (10.17) therefore yields

�R
�E
= p0�R�

p0�E�u
0
E+p3�E�u

3
E

=
(
1− 3�

r

)1/2 p0�R�

p0�E�

[
1± p3�E�

p0�E�
�

]−1
�
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where the plus sign corresponds to the emitting matter on the side of the disc
moving towards the observer and the minus sign corresponds to the matter on
the other side. However, the Schwarzschild metric is stationary, i.e. the metric
components g�� do not depend explicitly on t. Thus p0 is conserved along the
geodesic, and so

�R
�E
=
(
1− 3�

r

)1/2 [
1± p3�E�

p0�E�
�

]−1
�

It therefore remains only to fix the ratio p3�E�/p0�E� in order to determine the
observed redshift. In general, we must use the fact that the photon worldline is
null, and so g��p�p� = 0. As we are working in the equatorial plane � = �/2,
this yields

1
c2

(
1− 2�

r

)−1
�p0�

2−
(
1− 2�

r

)
�p1�

2− 1
r2
�p3�

2 = 0� (10.18)

For photons emitted from material at a general position angle �, one would now
need to use the geodesic equations for the photon worldline in order to eliminate
p1. There are, however, two special cases for which this is not necessary.

The simplest case occurs when the photon is emitted from matter moving
transverse to the observer, i.e. when � = 0 or � = �. We then have p3�E� = 0,
and so the observed frequency ratio is

�R
�E
=
(
1− 3�

r

)1/2

� (10.19)

The other simple cases occur when the matter is moving either directly towards
or away from the observer, i.e. when � = −�/2 or � = �/2. Then the radial
components of the photon 4-momentum, p1�E�, will be zero. From (10.18) we
obtain

p3�E�

p0�E�
= r

c�1−2�/r�1/2
�

so that the photon frequency shift for �=∓�/2 is given by

�R
�E
= �1−3�/r�1/2

1± �r/�−2�−1/2
� (10.20)

The above discussion has been for a disc viewed edge-on. The other limiting case,
when the disc is viewed face-on, is easier to analyse. Since the motion of the
emitting matter is always transverse to the observer, the frequency shift is given
by (10.19).
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Although the observed iron line consists of photons coming from different
radii in the disc, we may still calculate the smallest possible frequency (or largest
redshift) present in the observed spectrum. It is clear that such photons must
be emitted from the smallest possible value of r. As discussed in the previous
chapter, the innermost stable circular orbit for the Schwarzschild metric is at
r = 6�. Thus the smallest frequency represented is therefore given by

�R/�E =
{√

2/3= 0�47 for a disc viewed edge-on�

1/
√
2= 0�71 for a disc viewed face-on�

If the central object were rotating (so that the exterior geometry is given by the
Kerr metric – see Chapter 13), then the smallest frequencies could be even lower.
Figure 10.9 shows the iron spectral line measured in the galaxy MCG-6-30-15.

In general the detailed shape of the line profile depends on the mass and rotation
of the central object, the inclination of the disc to the line of sight and relativistic
beaming effects. It is hoped that, in the future, line profiles can be measured to
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Figure 10.9 The line profile of the iron 6.4 keV spectral line from MCG-6-30-15
observed by the ASCA satellite (Y. Tanaka et al., Nature 375, 659, 1995). The
emission line is extremely broad, the width indicating velocities of order one-
third the speed of light. There is a marked asymmetry towards energies lower
than the rest energy of the emission line, with a smallest energy of about 4 keV.
The solid line shows a fit to the data assuming a disc around a non-rotating
Schwarzschild black hole, extending between 3 and 10 Schwarzschild radii and
inclined at an angle of 30	 to the line of sight. Certain features suggest that the
central object may in fact be rapidly rotating.
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sufficient accuracy to determine the mass and angular momentum of the central
compact object.

10.5 The geodesic precession of gyroscopes

We have seen how the motion of test bodies can be used to explore the geometry
of a curved spacetime. If the test body has spin then the motion of its spin vector
can also be used to probe the spacetime geometry. Here we discuss the idealised
case of an infinitesimally small test body with spin, such as a small gyroscope.

The test body moves along a timelike geodesic curve, so its 4-velocity u���
is parallel-transported along its worldline. Thus, in some coordinate system, its
components satisfy

du�

d�
+ �

�#u
�u# = 0�

Suppose that the spin of the test body is described by the 4-vector s��� along the
geodesic. Since this vector can have no timelike component in the instantaneous
rest frame of the test body, we require that at all points along the geodesic

s ·u= g��s
�u� = 0� (10.21)

Since the 4-velocity u of the test body is parallel-transported along its geodesic,
to ensure that the inner product is conserved at all points along the worldline
we require that s��� is also parallel-transported along the geodesic. Hence its
components must satisfy

ds�

d�
+ �

�#s
�u# = 0� (10.22)

Let us now suppose that the test body is in a circular orbit of coordinate radius
r in the equatorial plane of the Schwarzschild geometry. Using the expressions we
derived in Chapter 9 for the connection coefficients  �

�# for the Schwarzschild
metric in �t� r� ���� coordinates (with � = �/2), one finds that most of the  �

�#

are zero. Moreover, for a test body in a circular orbit we have u1 = u2 = 0, and
we find that the equations (10.22) reduce to

ds0

d�
+ 0

10s
1u0 = 0� (10.23)

ds1

d�
+ 1

00s
0u0+ 1

33s
3u3 = 0� (10.24)

ds2

d�
= 0� (10.25)

ds3

d�
+ 3

13s
1u3 = 0� (10.26)
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where the connection coefficients are given by

 0
10 =

�

r2

(
1− 2�

r

)−1
�  1

00 =
�

r2

(
1− 2�

r

)
�

 1
33 =−r

(
1− 2�

r

)
�  3

13 =
1
r
�

Moreover, from our discussion in the previous section, we can write the test
body’s 4-velocity as


u��= u0�1�0�0����

where u0 = dt/d� = �1− 3�/r�−1/2 and � = d�/dt = ��c2/r3�1/2 are both
constants.

Since u1 = u2 = 0 the orthogonality condition (10.21) reduces to

c2�1−2�/r�s0u0− r2s3u3 = 0

and noting that u3/u0 =� we may express s0 in terms of s3:

s0 = �r2

c2�1−2�/r�
s3�

Using this result it is straightforward to show that equation (10.23) is equivalent
to equation (10.26). Thus the system of equations reduces to

ds2

d�
− r�

u0
s3 = 0�

ds2

d�
= 0�

ds3

d�
+ u0�

r
s1 = 0� (10.27)

It is more convenient to convert the �-derivatives to t-derivatives using u0 =
dt/d�. Then, on using the third equation to eliminate s3 from the first, the system
of equations becomes

d2s1

dt2
+
(
�

u0

)2

s1 = 0�
ds2

dt
= 0�

ds3

dt
+ �

r
s1 = 0�

Let us take the initial spatial direction �s of the spin vector to be radial, so that
s2�0�= s3�0�= 0. The corresponding solution to our system of equations is easily
shown to be

s1�t�= s1�0� cos�′t� s2�t�= 0� s3�t�=− �

r�′ s
1�0� sin�′t� (10.28)

where �′ = �/u0 = ��1− 3�/r�1/2. This solution shows that the spatial part
�s of the spin vector rotates relative to the radial direction with a coordinate
angular speed �′ in the negative �-direction. However, the radial direction itself
rotates with coordinate angular speed � in the positive �-direction, and it is the
difference between these two speeds that gives rise to the geodesic precession
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Figure 10.10 The geodesic precession effect for a spinning object in a circular
orbit in the equatorial plane of the Schwarzschild geometry. Here the initial
direction �t = 0� is radial.

effect. This is illustrated in Figure 10.10. Since one revolution is completed in
a coordinate time t = 2�/�, the final direction of �s is therefore 2�+�, where
�= �2�/����−�′�. Thus, after one revolution the spatial spin vector is rotated
in the direction of the orbital motion by an angle

�= 2�
1− �1−3�/r�1/2��

The geodesic precession effect may be observable experimentally by measuring
the spacelike spin vector of a gyroscope in an orbiting spacecraft. Although the
effect is small, it is cumulative. Thus, for a gyroscope in a near-Earth orbit, the
precession rate is about 8′′ per year, which should be measurable. (In fact there is
an additional very small effect, which may also be measurable, due to the fact that
the Earth is slowly rotating and so the geometry outside it is correctly described
by the Kerr metric). In April 2004, NASA launched the Gravity Probe B (GP-B)
satellite to carry out this experiment and it is currently recording measurements;
the results are eagerly awaited.

Exercises

10.1 Show that the equation of motion for planetary orbits in Newtonian gravity is

d2u

d�2
+u= GM

h2
�

where u = 1/r and r is the radial distance from the centre of mass of the central
object.
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10.2 Show that the equation of motion in Exercise 10.1 has the solution

u= GM

h2
�1+ e cos���

and that this describes an ellipse. Show further that

a= h2

GM�1− e2�
�

where r1 = a�1− e� and r2 = a�1+ e� are the distances of closest and furthest
approach respectively.

10.3 Verify that the general-relativistic equation of motion for planetary orbits (10.3)
has the solution

u= GM

h2
�1+ e cos��+ 3�GM�2

c2h4

[
1+ e2

(
1
2
− 1

6
cos2�

)
+ e� sin�

]
�

to first order in the relativistic perturbation to the Newtonian solution.
10.4 Verify that the general-relativistic equation of motion for a photon trajectory (10.9)

has the solution

u= sin�
b

+ 3GM

2c2b2

(
1+ 1

3
cos2�

)
�

to first order in the relativistic perturbation to a straight-line path.
10.5 Show that the gravitational deflection of light by the Sun predicted in the Newto-

nian theory of gravity is exactly half the value predicted in general relativity.
10.6 In the radar-echoes test, a photon travels from radial coordinate r to r0, which is

the radial coordinate of the closest approach of the photon to the Sun. Verify that,
to first order in �/r, the elapsed coordinate time is given by

t�r� r0�=
�r2− r20 �

1/2

c
+ 2�

c
ln
[
r+ �r2− r20 �

1/2

r0

]
+ �

c

(
r− r0
r+ r0

)1/2

�

10.7 An accretion disc extends from r = 6� to r = 20� in the equatorial plane of the
Schwarzschild geometry. A photon is emitted radially outwards by a particle on
the inner edge of the disc and is absorbed by a particle on the outer edge of the
disc. Find the ratio of the energy absorbed to that emitted.

10.8 For a gyroscope in a circular orbit in the equatorial plane of the Schwarzschild
geometry, show that the components s� of its spin 4-vector satisfy equa-
tions (10.23–10.26).

10.9 Show that the system of equations (10.27) has the solution (10.28).
10.10 A gyroscope in a circular orbit of radius r in the equatorial plane of the

Schwarzschild geometry has its spatial spin vector �s also lying in the equatorial
plane. Show that, after one complete orbit, the angle between the initial and final
directions of the spatial spin vector is given by

�= 2�
[
1− �1−3�/r�1/2

]
�

irrespective of the initial direction of the spin vector. Does this still hold if the
original spatial spin vector does not lie in the plane of the orbit?
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Schwarzschild black holes

In our discussion of the Schwarzschild geometry, we have thus far used the
coordinates �t� r� ���� to label events in the spacetime. In this context, �t� r� ����
are called the Schwarzschild coordinates. Moreover, until now we have been
concerned only with the exterior region r > 2�. We now turn to the discussion
of the Schwarzschild geometry in the interior region r < 2�, and the significance
of the hypersurface r = 2�. We shall see that, in order to understand the entire
Schwarzschild geometry, we must relabel the events in spacetime using different
sets of coordinates.

11.1 The characterisation of coordinates

Before discussing the Schwarzschild geometry in detail, let us briefly consider the
characterisation of coordinates. In general, if we wish to write down a solution
of Einstein’s field equations then we need to do so in some particular coordinate
system. But what, if any, is the significance of any such system? For example,
suppose we take the Schwarzschild solution and apply some complicated coor-
dinate transformation x� → x′�. The resulting metric will still be a solution of
the empty-space field equations, of course, but there is likely to be little or no
physical or geometrical significance attached to the new coordinates x′�.
One thing we can do, however, is to establish whether at some event P a

coordinate x� is timelike, null or spacelike. This corresponds directly to the nature
of the tangent vector e� to the coordinate curve at P. The easiest way to determine
this property of the coordinate is to fix the other coordinates at their values at P
and consider an infinitesimal variation dx� in the coordinate of interest. If the
corresponding change in the interval ds2 is positive, zero or negative then x� is
timelike, null or spacelike respectively. This, in turn, corresponds simply to the
sign of the relevant diagonal element g�� (no sum) of the metric.

248
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11.2 Singularities in the Schwarzschild metric

With these ideas in mind, let us look at the Schwarzschild metric in the traditional
�t� r� ���� coordinate system. We have

ds2= c2
(
1− 2GM

c2r

)
dt2−

(
1− 2GM

c2r

)−1
dr2−r2 d�2−r2 sin2 �d�2� (11.1)

Inspection of this line element shows immediately that the metric is singular at
r = 0 and r = 2GM/c2. The latter value is known as the Schwarzschild radius
and is often denoted rS, so that

rS =
2GM

c2
�

We must remember, however, that we derived the Schwarzschild solution by
solving the vacuum field equations R�� = 0, and so the metric given by (11.1) is
only valid down to the surface of the spherical matter distribution. For example,
the Schwarzschild radius for the Sun is

rS =
2GM�
c2

= 2�95km�

which is much smaller than the radius of the Sun �R� = 7×105 km�. Similarly,
the Schwarzschild radius for a proton is

rS =
2GMp

c2
= 10−52 m�

again much smaller than the characteristic radius of a proton (Rp = 10−15 m). In
fact, for most real objects the Schwarzschild radius lies deep within the object,
where the vacuum field equations do not apply. But what if there exist objects so
compact that they lie well within the Schwarzschild radius? For such an object, the
Schwarzschild solution looks very odd. Ignoring for the moment the singularity
in the metric at r = rS, let us denote the region r > rS as region I, and r < rS as
region II.

From the Schwarzschild metric (11.1) we see that, in region I, the metric
coefficient g00 is positive and the gii (for i = 1�2�3) are negative. It therefore
follows that for r > rS the coordinate t is timelike and the coordinates r� ���

are spacelike. Indeed, in region I we may attach simple physical meanings to the
coordinates. For example, t is the proper time measured by an observer at rest at
infinity. Similarly, r is a radial coordinate with the property that the surface area
of a 2-sphere t= constant, r = constant is 4�r2. In region II, however, the metric
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coefficients g00 and g11 change sign. Hence, for r < rS , t is a spacelike coordinate
and r is timelike. Thus ‘time’ and ‘radial’ coordinates swap character on either
side of r = rS. It is natural to ask what this means, and, indeed, whether it is
physically meaningful.

Let us therefore consider in more detail the singularities in the metric at
r = 0 and r = rS. We must remember that coordinates are simply a way of
labelling events in spacetime. The physically meaningful geometric quantites are
the 4-tensors defined at any point on the spacetime manifold. Spacetime curvature
is described covariantly by the components of the curvature tensor R���# (and its
contractions), which we may easily calculate for the Schwarzschild metric (11.1).
For example, the curvature scalar at any point is given by

R���#R
���# = 48�2

r6
� (11.2)

which we see is finite at r = rS. Moreover, since it is a scalar, its value remains
the same in all coordinate systems. Thus the spacetime curvature at r = rS is
perfectly well behaved, and so we see that r = rS is a coordinate singularity. By
the same token, (11.2) is singular at r = 0 and so this point is a true intrinsic
singularity of the Schwarzschild geometry.

We may illustrate the idea of coordinate singularities with a simple example.
As discussed in Chapter 2, one may write the line element for the surface of a
2-sphere as

ds2 = a2d�2

a2−�2
+�2 d�2�

This line element has a singularity at � = a. Embedding this manifold, for the
moment, in three-dimensional Euclidean space, we know that �= a corresponds
simply to the equator of the sphere (relative to the origin of the coordinate system)
and it is clear why the ����� coordinates cover the surface of the sphere uniquely
only up to this point. There is nothing pathological occurring in the intrinsic geom-
etry of the 2-sphere at the equator, i.e. there is no ‘real’ (or intrinsic) singularity
in the metric. As shown in Appendix 7A, the Gaussian curvature of a 2-sphere
is simply K = 1/a2, which does not ‘blow up’ anywhere. Thus, � = a is only a
coordinate singularity, which has resulted simply from choosing coordinates with
a restricted domain of validity. In an analogous way, the coordinate singularity
of the Schwarzschild metric is simply a result of the coordinate system that we
have chosen to use. We can remove it by making appropriate transformations
of coordinates, which we will discuss later. For the time being, however, let us
continue our investigation of the Schwarzschild geometry using the Schwarzschild
coordinates �t� r� ����.
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11.3 Radial photon worldlines in Schwarzschild coordinates

Let us investigate the spacetime diagram of the Schwarzschild solution in
�t� r� ���� coordinates. The metric reads

ds2 = c2
(
1− 2�

r

)
dt2−

(
1− 2�

r

)−1
dr2− r2 d�2�

where d� is an element of solid angle. We have written it in this form because
we shall usually ignore the angular coordinates in drawing spacetime diagrams,
i.e. these diagrams will show the �r� ct�-plane for fixed values of � and �.

We begin by determining the lightcone structure in the diagram, by considering
the paths of radially incoming and outgoing photons; these were discussed briefly
in Section 9.11. From the metric, for a radially moving photon we have

dt

dr
=±1

c

(
1− 2�

r

)−1
�

where the plus sign corresponds to a photon that is outgoing (in that dr/dt is
positive in the region r > 2�) and the minus sign corresponds to a photon that
is incoming (in that dr/dt is negative in the region r > 2�). On integrating, we
obtain

ct = r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant �outgoing photon��

ct = −r−2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant �incoming photon��

Notice that under the transformation t→−t the incoming and outgoing photon
paths are interchanged, as we would expect. We can now plot these curves in the
�r� ct�-plane, as shown in Figure 11.1. The diagram is drawn for fixed � and �.
Since the diagram will be the same for all other � and �, we should think of each
point �r� ct� in the diagram as representing a 2-sphere of area 4�r2.
Figure 11.1 requires some words of explanation. At large radii in region I the

gravitational field becomes weak and the metric tends to the Minkowski metric
of special relativity. Thus, as expected, the lightcone structure becomes that of
Minkowski spacetime, where incoming and outgoing light rays define straight
lines of slope ±1 in the diagram. As we approach the Schwarzschild radius, the
ingoing light rays tend to the ordinate t→+� and outgoing light rays tend to
t→−�. This seems to suggest that it takes an infinite time for an incoming signal
to cross the Schwarzschild radius, but in this respect the diagram is misleading,
as we shall see shortly (we discussed this point briefly in Section 9.11).
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Figure 11.1 Lightcone structure of the Schwarzschild solution.

In region II the lightcones flip their orientation by 90	, since the coordinates
t and r reverse their character. We see that all photons in this region must end
up at r = 0. At this point there is real singularity, where the curvature of the
Schwarzschild solution diverges. Moreover, any massive particle in region II
must also end up at the singularity, since a timelike worldline must lie within
the forward light-cone at each point. Thus we conclude that once within the
Schwarzschild radius you necessarily end up at a spacelike singularity at r = 0.
To escape would require a violation of causality.

11.4 Radial particle worldlines in Schwarzschild coordinates

The causal structure in Figure 11.1 is determined by radially moving photons.
It is also of interest to determine the worldlines of radially moving massive
particles in Schwarzschild coordinates. For simplicity let us consider an infalling
particle released from rest at infinity, which we investigated in detail in Chapter 9.
Parameterising the particle worldline in terms of the proper time �, we found that
the trajectory r��� could be written implicitly as

� = 2
3

√
r30

2�c2
− 2

3

√
r3

2�c2
� (11.3)
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taking � = 0 at r = r0. Alternatively, if the trajectory is described as r�t�, where
t is the coordinate time, we found that

t = 2
3

⎛⎝√ r30
2�c2

−
√

r3

2�c2

⎞⎠+ 4�
c

(√
r0
2�
−
√

r

2�

)

+ 2�
c

ln

∣∣∣∣∣
(√

r/�2��+1√
r/�2��−1

)(√
r0/�2��−1√
r0/�2��+1

)∣∣∣∣∣ � (11.4)

where t= 0 at r = r0. Using equations (11.3) and (11.4), we can associate a given
value of the particle’s proper time � with a point in a �r� ct�-diagram. Thus, as �
increases, we can plot out the particle trajectory in the �r� ct�-plane.
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τ = 10.67µ /c
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0

Figure 11.2 Trajectory of a radially infalling particle released from rest at
infinity. The dots correspond to unit intervals of c�/�, where � is the particle’s
proper time and we have taken � = t = 0 at r0 = 8�.
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The corresponding curve is shown in Figure 11.2, which is a more quantitative
version of Figure 9.6; we have taken � = t = 0 at r0 = 8�. Also plotted are dots
showing unit intervals of c�/�, together with the light-cone structure at particular
points on the trajectory. We see from the plot that the particle worldline has a
singularity at r = 2� and that it takes an infinite coordinate time t for the particle
to travel from r = 8� to r = 2�. Since t is the time experienced by a stationary
observer at large radius, to such an observer it thus takes an infinite time for the
particle to reach r = 2�. However, the proper time taken by the particle to reach
r = 2� is finite (� = 9�33�/c). Moreover, we see that for later values of � the
particle worldline lies in the region r < 2�, which was not plotted in Figure 9.6.
In this region the coordinates t and r swap character, as indicated by the fact
that the light-cone is flipped by 90	. For r < 2�, we also note that, although �

continues to increase until r = 0 is reached (� = 10�67�/c), the coordinate time
t decreases along the particle worldline.

Clearly, although the coordinate t is useful and physically meaningful as r→�,
it is inappropriate for describing particle motion at r ≤ 2�. Therefore, in the
following section we introduce a new time coordinate that is adapted to describing
radial infall, and in the process we shall remove the coordinate singularity at
r = 2�.

11.5 Eddington–Finkelstein coordinates

The spacetime diagrams in Figures 11.1 and 11.2 show that the worldlines of
both radially moving photons and massive particles cross r = 2� only at t=±�.
This suggests that the ‘line’ r = 2�, −�< t <� might really not be a line at all,
but a single point. That is, our coordinates may go bad owing to the expansion
of a single event into the whole line r = 2�. One technique for circumventing
the problem of unsatisfactory coordinates is to ‘probe’ spacetime with geodesics,
which after all are coordinate independent and will not be affected in any way by
the boundaries of coordinate validity. Of the many possibilities, we will use as
probes the null worldlines of radially moving photons.1

Advanced Eddington–Finkelstein coordinates

Since in particular, we wish, to develop a better description of infalling particles,
let us begin by constructing a new coordinate system based on radially infalling

1 It is also possible to use the timelike worldlines of freely falling radially moving massive particles as probes of
the spacetime geometry. The traditional approach leads to useful new coordinates, called Novikov coordinates,
but they are related to Schwarzschild coordinates by transformations that are algebraically very complicated.
A more physically meaningful set of new coordinates that are also based on radially moving massive particle
geodesics is discussed in Exercise 11.9.
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photons. Recall that the worldline of a radially ingoing photon is given by

ct =−r−2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant�

The trick is to use the integration constant as the new coordinate, which we
denote by p. Thus, we make the coordinate transformation

p= ct+ r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣ � (11.5)

where p, for historical reasons, is known as the advanced time parameter and is
clearly a null coordinate (see Section 11.1). Since p is constant along the entire
worldline of the radially ingoing photon, it will be a ‘good’ coordinate wherever
that worldline penetrates.

Differentiating (11.5), we obtain

dp= c dt+ r

r−2�
dr�

and, on substituting for dt in the Schwarzschild line element, we find that in
terms of the parameter p the line element takes the simple form

ds2 =
(
1− 2�

r

)
dp2−2dpdr− r2

(
d�2+ sin2 �d�2) � (11.6)

We see immediately from (11.6) that ds2 is now regular at r = 2�; indeed it is
regular for the whole range 0< r <�, which is the range of r-values probed by
an infalling photon geodesic. Thus, in some sense, the transformation (11.5) has
extended the coordinate range of the solution in a way reminiscent of the analytic
continuation of a complex function.

One might object that the coordinate transformation (11.5) cannot be used at
r = 2� because it becomes singular. This must happen, however, if one is to
remove the coordinate singularity there. In any case, this transformation takes the
standard form (11.1) for the Schwarzschild line element to the form (11.6). Given
these two solutions, we can simply ask, what is the largest range of coordinates
for which each solution is regular? For the standard form this is 2� < r <�,
whereas for the new form (11.6) it is 0< r<�. In the overlap region 2�< r<�
the two solutions are related by (11.5), and hence they must represent the same
solution in this region.
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As one might expect, the metric (11.6) is especially convenient for calculating
the paths of null geodesics. In particular, we see that radial null geodesics (for
which ds = d� = d�= 0) are given by(

1− 2�
r

)(
dp

dr

)2

−2
dp

dr
= 0�

which has the two solutions

dp

dr
= 0 ⇒ p= constant�

dp

dr
= 2

(
1− 2�

r

)−1
⇒ p= 2r+4� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant� (11.7)

which correspond to incoming and outgoing radial null geodesics respectively
(the former being valid by construction).

Since p is a null coordinate, which might be intuitively unfamiliar, it is common
practice to work instead with the related timelike coordinate t′, defined by

ct′ ≡ p− r = ct+2� ln

∣∣∣∣ r2� −1

∣∣∣∣ � (11.8)

The line element then takes the form

ds2 = c2
(
1− 2�

r

)
dt′2− 4�c

r
dt′dr−

(
1+ 2�

r

)
dr2− r2

(
d�2+ sin2 �d�2

)
�

(11.9)

which is again regular for the whole range 0< r<�. The coordinates �t′� r� ����
are called advanced Eddington–Finkelstein coordinates. We note that the line
element (11.9) is not invariant with respect to the transformation t′ → −t′, under
which the second term on the right-hand side changes sign. From (11.7), we see
that incoming and outgoing photon worldlines are given by

ct′ = −r+ constant� (11.10)

ct′ = r+4� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant� (11.11)

The first equation, for ingoing photons, corresponds to a straight line making
an angle of 45	 with the r-axis and is valid for 0 < r < �. Thus the photon
geodesics are continuous straight lines across r = 2�. The spacetime diagram
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Figure 11.3 Lightcone structure in advanced Eddington–Finkelstein coordinates.

of the Schwarzschild geometry in advanced Eddington–Finkelstein coordinates is
shown in Figure 11.3.

The spacetime diagram now appears more sensible. It is straightforward to see
that the radial trajectory of an infalling particle or photon is continuous at the
Schwarzschild radius r = 2�. The lightcone structure changes at the Schwarzschild
radius and, as you can see from the diagram, once you have crossed the boundary
r = 2� your future is directed towards the singularity. Similarly, it can be seen
that a photon (or particle) starting at r < 2� cannot escape to the region r > 2�.
The Schwarzschild radius r = 2� defines an event horizon, a boundary of no
return. Once a particle crosses the event horizon it must fall to the singularity
at r = 0. Moreover, from the paths of the ‘outgoing’ null geodesics, we see
that any photons emitted by the infalling particle at r < 2� will not reach an
observer in region I. Thus to such an observer the particle appears never to cross
the event horizon. A compact object that has an event horizon is called a black
hole.

Retarded Eddington–Finkelstein coordinates

One may reasonably ask what occurs if one instead chooses to construct a
new coordinate system based on the worldlines of radially outgoing photons.
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By analogy with our discussion above, this is achieved straightforwardly by intro-
ducing the new null coordinate q defined by

q = ct− r−2� ln

∣∣∣∣ r2� −1

∣∣∣∣ �
which is known as the retarded time parameter. The line element of the
Schwarzschild geometry then becomes

ds2 =
(
1− 2�

r

)
dq2+2dq dr− r2�d�2+ sin2 �d�2��

which is again regular for 0< r<�. Similarly, it is common practice to introduce
a new timelike coordinate t∗ defined by

ct∗ ≡ q+ r = ct−2� ln

∣∣∣∣ r2� −1

∣∣∣∣ �
The coordinates �t∗� r� ���� are called retarded Eddington–Finkelstein coordi-
nates, and the corresponding line element in these coordinates is simply the time
reversal of the advanced Eddington–Finkelstein line element (11.9).

It is straightforward to draw an spacetime diagram analogous to Figure 11.3 in
retarded Eddington–Finkelstein coordinates, and one finds that (by construction)
the outgoing radial null geodesics are continuous straight lines at 45	 but the
ingoing null rays are discontinuous, tending to t∗ = +� at r = 2�. In this case,
the surface r = 2� again acts as a one-way membrane, but this time letting only
outgoing timelike or null geodesics cross from inside to outside. Indeed, particles
must move away from the singularity at r = 0 and are forcibly expelled from the
region r < 2�. Such an object is called a white hole.

This behaviour appears completely at odds with our intuition regarding the
gravitational attraction of a massive body. Moreover, how can the physical
processes that occur be so radically different depending on one’s choice of coordi-
nates, since we have maintained throughout that coordinates are merely arbitrary
labels of spacetime events? The key to resolving this apparent paradox is to
realise that our original coordinates �t� r� ���� covered only a part of the ‘full’
Schwarzschild geometry. This topic is discussed fully in Section 11.9, in which we
introduce Kruskal coordinates, which cover the entire geometry and which show
that it possesses both a black-hole and a white-hole singularity. The advanced
Eddington–Finkelstein coordinates ‘extend’ the solution into the (more familiar)
part of the manifold that constitutes a black hole, whereas the retarded Eddington–
Finkelstein coordinates extend the solution into a different part of the manifold,
corresponding to a white hole. As we will discuss in Section 11.9, the existence
of white holes as a physical reality (as opposed to a mathematical curiosity) is
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rather doubtful. Black holes, however, are likely to occur physically, as we now
go on to discuss.

11.6 Gravitational collapse and black-hole formation

Our investigation of the properties of a black hole would be largely academic
unless there were reasons for believing that they might exist in Nature. The
possibility of their existence arises from the idea of gravitational collapse.

A star is held up by a mixture of gas and radiation pressure, the relative
contributions depending on its mass. The energy to provide this pressure support is
derived from the fusion of light nuclei into heavier ones, predominantly hydrogen
into helium, which releases about 26MeV for each atom of He that is formed.
When all the nuclear fuel is used up, however, the star begins to cool and collapse
under its own gravity. For most stars, the collapse ends in a high-density stellar
remnant known as a white dwarf. In fact, we expect that in around 5 billion years
the Sun will collapse to a form a white dwarf with a radius of about 5000 km and
a spectacularly high mean density of about 109 kgm−3.
Astronomers have known about white dwarfs since as long ago as 1915 (the

earliest example being the companion to the bright star Sirius, known as Sirius
B), but nobody at the time knew how to explain them. The physical mechanism
providing the internal pressure to support such a dense object was a mystery. The
answer had to await the development of quantum mechanics and the formulation
of Fermi–Dirac statistics. Fowler realised in 1926 that white dwarfs were held
up by electron degeneracy pressure. The electrons in a white dwarf behave like
the free electrons in a metal, but the electron states are widely spaced in energy
because of the small size of the star in its white-dwarf form. Because of the
Pauli exclusion principle, the electrons completely fill these states up to a high
characteristic Fermi energy. It is these high electron energies that save the star
from collapse.

In 1930, Chandrasekhar realized that the more massive a white dwarf, the denser
it must be and so the stronger the gravitational field. For white dwarfs over a
critical mass of about 1�4M� (now called the Chandrasekhar limit), gravity would
overwhelm the degeneracy pressure and no stable solution would be possible.
Thus, the gravitational collapse of the object must continue. At first it was thought
that the white dwarf must collapse to a point. After the discovery of the neutron,
however, it was realized that at some stage in the collapse the extremely high
densities occurring would cause the electrons to interact with the protons via
inverse 
-decay to form neutrons (and neutrinos, which simply escape). A new
stable configuration – a neutron star – was therefore possible in which the pressure
support is provided by degenerate neutrons. A neutron star of one solar mass
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would have a radius of only 30 km, with a density of around 1016 kgm−3. Since
the matter in a neutron star is at nuclear density, the gravitational forces inside the
star are extremely strong. In fact, it is the first point in the evolution of a stellar
object at which general relativistic effects are expected to be important (we will
discuss relativistic stars in Chapter 12).

Given the extreme densities inside a neutron star, there remain uncertainties
in the equation of state of matter. Nevertheless, it is believed that (as for white
dwarfs), there exists a maximum mass above which no stable neutron-star config-
uration is possible. This maximum mass is believed to be about 3M� (which
is known as the Oppenheimer–Volkoff limit). Thus, we believe that stars more
massive than this limit should collapse to form black holes. Moreover if the
collapse is spherically symmetric then it must produce a Schwarzschild black
hole.

Some theorists were very sceptical about the formation of black holes. The
Schwarzschild solution in particular is very special – it is exactly spherically
symmetric by construction. In reality, a star will not be perfectly symmetric
and so perhaps, as it collapses, the asymmetries will amplify and avoid the
formation of an event horizon. In the early 1960s, however, Penrose applied global
geometrical techniques to prove a famous series of ‘singularity theorems’. These
showed that in realistic situations an event horizon (a closed trapped surface)
will be formed and that there must exist a singularity within this surface, i.e. a
point at which the curvature diverges and general relativity ceases to be valid.
The singularity theorems were important in convincing people that black holes
must form in Nature. In Appendices 11A and 11B, we discuss some of the
observational evidence for the existence of black holes. As we will see, there is
compelling evidence that black holes do indeed exist. Furthermore, as mentioned
in Section 10.4, it should become possible within the next few years not only to
measure the masses of black holes but also to measure their angular momenta,
using powerful X-ray telescopes! Direct experimental probes of the strong-gravity
regime are now possible.

11.7 Spherically symmetric collapse of dust

Let us consider the spherically symmetric collapse of a massive star to form a
Schwarzschild black hole and also the view this process seen by a stationary
observer at large radius. For simplicity, we consider the case in which the star has
a uniform density and the internal pressure is assumed to be zero. In the absence
of pressure gradients to deflect their motion, the particles on the outer surface of
this ‘ball of dust’ will simply follow radial geodesics. In order to simplify our
analysis still further, we will assume that initially the surface of the ‘star’ is at
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rest at infinity.2 In this case, the particles on the surface will follow the radial
geodesics we discussed earlier.

Consider two observers participating in the gravitational collapse of the spher-
ical star. One observer rides the surface of the star down to r = 0, and the other
observer remains fixed at a large radius. Moreover, suppose that the infalling
observer carries a clock and communicates with the distant one by sending out
radial light signals at equal intervals according to this clock. Figure 11.4 shows
the relevant spacetime diagram in advanced Eddington–Finkelstein coordinates
�ct′� r�, with � and � suppressed. The dots denote unit intervals of ct/� and we
have chosen � = t′ = 0 at r = 8�. This diagram is easily constructed from the
results that were used to obtain Figure 11.2.

For a distant observer at fixed r, we know that the standard Schwarzschild
coordinate time t measures proper time. From (11.8), however, we see that if r is
fixed then dt′ = dt. Thus, a unit interval of t′ corresponds to a unit interval of
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Figure 11.4 Collapse of the surface of a pressureless star to form a black hole
in advanced Eddington–Finkelstein coordinates. The star’s surface started at rest
at infinity, and we have chosen � = t′ = 0 at r = 8�.

2 This is equivalent to the collapse commencing with the star’s surface at some finite radius r = r0 with some
finite inwards velocity.
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proper time for a distant fixed observer. From the diagram, we see that the light
pulses are not received at equal intervals of t′. Rather, the proper time interval
measured by the distant observer between each pulse steadily increases. Indeed,
the last light pulse to reach this observer is the one emitted just before the surface
of the star crosses r = 2�. The worldine of this photon is simply the vertical line
r = 2�, and so this pulse would only ‘reach’ the distant observer at t=�. Pulses
emitted after the surface of the star has crossed the event horizon do not progress
to larger r but instead progress to smaller r and end up at the singularity at r = 0.

Thus, the distant observer never sees the star’s surface cross the radius r = 2�.
Furthermore, the pulses emitted at equal intervals by the falling observer’s clock
arrive at the distant observer at increasingly longer intervals. Correspondingly, the
photons received by the distant observer are increasingly redshifted, the redshift
tending to infinity as the star’s surface approaches r = 2�. Both these effects
mean that the distant observer sees the luminosity of the star fall to zero. To
summarise, the distant observer sees the collapse slow down and the star’s state
approach that of a quasi-equilibrium object with radius r = 2�, which eventually
becomes totally dark. Thus, the distant observer sees the formation of a black hole.

Let us quantify further what the observer sees as the star collapses to form
a black hole. Since we are interested in measurements made by a distant
fixed observer, we may use either advanced Eddington–Finkelstein coordinates
�t′� r� ���� or traditional Scharwzschild coordinates �t� r� ���, as both correspond
to physical quantities at large r. We shall use the latter simply because we
have already obtained the equations for a massive radially infalling particle in
Schwarzschild coordinates. Suppose that a particle on the surface of the star emits
a radially outgoing pulse of light at coordinates �tE� rE�, which is received by the
distant fixed observer at �tR� rR�. Since the photon follows a radially outgoing
null geodesic, we can write

ctE− rE−2� ln

∣∣∣∣ rE2� −1

∣∣∣∣= ctR− rR−2� ln

∣∣∣∣ rR2� −1

∣∣∣∣ � (11.12)

The radial coordinate ‘seen’ by the distant observer at time tR is the function
rE�tR� obtained by solving (11.12). Using the fact that the coordinates tE and rE of
the freely falling emitter are related by (11.4), we find that, if r is very close to 2�,

rE�tR�≈ 2�+a exp
(
−ctR
4�

)
� (11.13)

where a is an unimportant constant depending on � and rR. The important
consequence of this result is that the radius r = 2� is approached exponentially,
as seen by the distant observer, with a characteristic time 4�/c. Since

�

c
= GM

c3
= 5×10−6

(
M

M�

)
seconds�
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the time scale for stellar-size objects is very small by the usual astrophysical
standards. Thus for any collapse even approximately like the free-fall collapse
described here, the approach to a black hole is extremely rapid.

Let us work out the redshift seen by the distant observer as a function of time t.
The ratio of the frequencies of a photon at emission and reception is

�R
�E
= u

�
Rp��R�

u
�
Ep��E�

� (11.14)

where uE and uR are the 4-velocities of the emitter and receiver respectively and
p is the photon 4-momentum. The 4-velocity of our emitter riding on the star’s
surface is [

u
�
E

]= 
�1−2�/r�−1�−�2�c2/r�1/2�0�0��
whereas the 4-velocity of the stationary observer at infinity is[

u
�
R

]= 
1�0�0�0��

Hence (11.14) reduces to

�R
�E
= p0�R�

u0Ep0�E�+u1Ep1�E�
=
[
u0E+

p1�E�

p0�E�
u1E

]−1
�

where we have used that fact that the Schwarzschild metric is stationary and so
p0 is conserved along the photon geodesic. Moreover, since p is null we require
g��p�p� = 0, which in our case reduces to

1
c2

(
1− 2�

r

)−1
�p0�

2−
(
1− 2�

r

)
�p1�

2 = 0�

So, for a radially outgoing photon, p1 =−�1−2�/r�−1p0/c and we find that

�R
�E
=
(
1− 2�

r

)[
1+

(
2�
r

)1/2
]−1

= 1−
(
2�
r

)1/2

� (11.15)

As r→ 2� we see that �R→ 0, so the redshift is infinite. By Taylor-expanding
(11.15) about r = 2�, we find that for r close to 2� we can write

�R
�E
≈ r−2�

4�
�

however, near the event horizon the time of reception is given by (11.13). Hence

�R
�E
∼ exp

(
− ct

4�

)
�
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so that the redshift goes exponentially to infinity with a characteristic time 4�/c.
The computation of the luminosity is more complicated since it involves non-radial
photon geodesics also. Nevertheless, using the above analysis we see that the time
intervals between successive photons will also decrease as ∼ exp
−ct/�4��� and
so we expect the luminosity to decay exponentially as ∼ exp
−ct/�2���.

11.8 Tidal forces near a black hole

As discussed in Section 7.14, in Newtonian gravity a distribution of non-
interacting particles freely falling towards the Earth will be elongated in the
direction of motion and compressed in the transverse directions, as a result of
gravitational tidal forces. The same effect occurs in a body falling towards a
spherical object in general relativity, but if the object is a black hole then the
effect becomes infinite at r = 0.

We may calculate the tidal forces in the Schwarzschild geometry, working in
traditional Schwarzschild coordinates �t� r� ����. At any particular point in space,
the tidal forces have the same form for any (close) pair of particles that are in
free fall. Thus, it is easiest to calculate the tidal forces at some coordinate radius
r for the case in which the two particles are released from rest at r. In this case, a
frame of orthonormal basis vectors defining the inertial instantaneous rest frame
of one of the particles may be taken as

�ê0�
� = 1

c
u� = 1

c

(
1− 2�

r

)−1/2
�
�
0 � �ê1�

� =
(
1− 2�

r

)1/2

�
�
1 �

�ê2�
� = 1

r
�
�
2 � �ê3�

� = 1
r sin �

�
�
3 �

Substituting these expressions into (7.28), together with the appropriate expres-
sions for the components of the Riemann tensor in Schwarzschild coordinates,
from (7.27) we obtain (after some algebra) that the spatial components of the
orthogonal connecting vector between the two particles satisfy

d2�r̂

d�2
=+2�c2

r3
�r̂ �

d2��̂

d�2
=−�c2

r3
��̂�

d2��̂

d�2
=−�c2

r3
��̂�

The positive sign in the �r̂ -equation indicates a tension or stretching in the radial
direction and the negative signs in the ��̂- and ��̂- equations indicate a pressure or
compression in the transverse directions. Note the 1/r3 radial dependence in each
case, which is characteristic of tidal gravitational forces. Moreover, the equations
reveal that the tidal forces do not undergo any ‘transition’ at r = 2� but become
infinite at r = 0.
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Let us consider an intrepid astronaut falling feet first into a black hole. The
equations derived above will not hold exactly, since there will exist forces between
the particles (atoms) that comprise the astronaut. Nevertheless, when the tidal
gravitational forces become strong we can neglect the interatomic forces, and
the equations derived above will be valid to an excellent approximation. Thus
the unfortunate astronaut would be stretched out like a piece of spaghetti (!), as
illustrated in Figure 11.5. In fact, not only do the tidal forces tear the astronaut
to pieces, but the very atoms of which the astronaut is composed must ultimately
suffer the same fate! Assuming that the limit of tolerance to stretching or compres-
sion of a human body is an acceleration gradient of ∼ 400m s−2 per metre, for
a human to survive the tidal forces at the Schwarzschild radius requires a very
massive black hole with

M � 105M��

If you fell towards a supermassive black hole, with say M ∼ 109M� (such black
holes are believed to lie at the centres of some galaxies; see Appendix 11B) you
would cross the event horizon without feeling a thing. However, your fate will
have been sealed – you will end up shredded by the tidal forces of the black
hole as you approach the singularity, from which there is no escape. If you fell
towards a ‘small’ black hole, of mass say 10M�, you would be shredded by the
tidal forces of the hole well before you reached the event horizon.

Figure 11.5 An astronaut stretched by the tidal forces of a black hole. For a
human to survive this stretching at the Schwarzschild radius requires a very
massive black hole, with M � 105M�
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11.9 Kruskal coordinates

In our discussion of advanced and retarded Eddington–Finkelstein coordinates, we
found that neither coordinate system was completely satisfactory. In the advanced
coordinates the outgoing null rays are discontinuous, and in the retarded coor-
dinates the ingoing null rays are discontinuous. It is natural to ask whether it is
possible to find a system of coordinates in which both the incoming and outgoing
radial photon geodesics are continuous straight lines. Such a coordinate system
was indeed discovered in 1961 by Martin Kruskal, and it serves also to clarify
the structure of the complete Schwarzschild geometry.

An obvious way to begin is to introduce both the advanced null coordinate p

and the retarded null coordinate q that we met during our discussion of Eddington–
Finkelstein coordinates. In the coordinates �p� q� ���� the Schwarzschild metric
becomes

ds2 =
(
1− 2�

r

)
dpdq− r2�d�2+ sin2 �d�2�� (11.16)

where r is considered as a function of p and q, defined implicitly by

1
2�p−q�= r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣ �
Our new system of coordinates has some appealing properties. Most impor-

tantly, the 2-space defined by � = constant, �= constant has the simple metric

ds2 =
(
1− 2�

r

)
dpdq� (11.17)

Transforming from the null coordinates p and q to the new coordinates

ct = 1
2�p+q�� (11.18)

r̃ = 1
2�p−q�= r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣ � (11.19)

where t is the standard Schwarzschild timelike coordinate and r̃ is a radial space-
like coordinate (sometimes called the tortoise coordinate!), the 2-space metric
then becomes

ds2 =
(
1− 2�

r

)(
c2 dt2−dr̃2

)
(11.20)

= �2�x���� dx
� dx�� (11.21)

where x0 = ct and x1 = r̃. This line element has the same form as that of a
Minkowski 2-space (which is spatially flat) but it is multiplied by what mathemati-
cians call a conformal scaling factor, �2�x�, which is a function of position. The
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2-space itself is curved, because the derivatives of the function��x� enter into the
components of the curvature tensor, but the line element (11.21) of the 2-space
is manifestly conformally flat. In fact, any two-dimensional (pseudo-)Riemannian
manifold is conformally flat (see Appendix 11C), in that a coordinate system
always exists in which the line element takes the form (11.21). We have thus
succeeded in finding such a coordinate system for the 2-space (11.17).

The form of the line element (11.21) has an important consequence for studying
the paths of radially moving photons (for which d�=d�= 0). Since the conformal
factor �2�x� is just a scaling, it does not change the lightcone structure and so
the latter should just look like that in Minkowski space. Thus, in a spacetime
diagram in �ct� r̃� coordinates, both ingoing and outgoing radial null geodesics
are straight lines with slope ±1, as is easily seen by setting ds2 = 0 in (11.20).
Unfortunately, however, the coordinates �ct� r̃� are pathological when r = 2�,

as is easily seen from (11.19). This suggests that, instead of using the parameters
p and q directly, we should look for a coordinate transformation that preserves
the manifest conformal nature of the 2-space defined by (11.17) but removes the
offending factor 1− 2�/r, which is the cause of the pathological behaviour. It
is straightforward to see that a transformation of the form p̃�p� and q̃�q� will
achieve this goal, since, in this case, the metric becomes

ds2 =
(
1− 2�

r

)
dp

dp̃

dq

dq̃
dp̃dq̃�

which has the same general form as (11.17). An appropriate choice of the functions
p̃�p� and q̃�q� that removes the factor �1− 2�/r� in the line element is (as
suggested by Kruskal)

p̃= exp
(

p

4�

)
� q̃ =− exp

(
− q

4�

)
�

for which we find that

ds2 = 32�3

r
exp

(
− r

2�

)
dp̃dq̃�

The usual form of the metric is then obtained by defining a timelike variable v

and a spacelike variable u by

v= 1
2 �p̃+ q̃� � u= 1

2 �p̃− q̃� �

Thus, the full line element for the Schwarzschild geometry in Kruskal coordinates
�v�u� ���� is given by

ds2 = 32�3

r
exp

(
− r

2�

)(
dv2−du2

)− r2�d�2+ sin2 �d�2�� (11.22)
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where r is considered as a function of v and u that is defined implicitly by

u2−v2 =
(

r

2�
−1

)
exp

(
r

2�

)
� (11.23)

It is straightforward to show that the coordinates v and u are related to the
original Schwarzschild coordinates t and r by the following transformations. For
r > 2� we have

v =
(

r

2�
−1

)1/2

exp
(

r

4�

)
sinh

(
ct

4�

)
�

u =
(

r

2�
−1

)1/2

exp
(

r

4�

)
cosh

(
ct

4�

)
�

whereas, for r < 2�,

v =
(
1− r

2�

)1/2

exp
(

r

4�

)
cosh

(
ct

4�

)
�

u =
(
1− r

2�

)1/2

exp
(

r

4�

)
sinh

(
ct

4�

)
�

Considerable insight into the nature of the Schwarzschild geometry can be
obtained by plotting its spacetime diagram in Kruskal coordinates. The causal
structure defined by radial light rays is (by construction) particularly easy to
analyse in Kruskal coordinates. From the metric (11.22), we see that for ds =
d� = d�= 0 we have

v=±u+ constant�

which represents straight lines at ±45	 to the axes. This is a direct consequence of
the fact that the 2-space with d�= d�= 0 is manifestly conformally flat in �v�u�
coordinates. Thus, the lightcone structure should look like that in Minkowski
space. Also, we note that a massive particle worldline must always lie within the
future light-cone at each point.

It is also instructive to plot lines of constant t and r. From (11.23) we see that
lines of constant r are curves of constant u2− v2 and are hence hyperbolae. In
particular, the value r = 2� correpsonds to either of the straight lines u = ±v,
which are the asymptotes to the set of constant-r hyperbolae, and the value r = 0
corresponds to the hyperbolae v = ±√u2+1. Thus the ‘point’ in space r = 0
is mapped into two lines. However, not too much can be made of this since it
is a singularity of the geometry. We should not glibly speak of it as a part of
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spacetime with a well-defined dimensionality. Similarly, lines of constant t may
be mapped out. It is straightforward to show that

tanh
ct/�4���=
{
v/u for r > 2��

u/v for r < 2��

so fixed values of t correspond to lines of constant u/v, i.e. straight lines through
the origin. The value t = −� corresponds to u = −v, while t =� corresponds
to u = v. The value t = 0 for r > 2� corresponds to the line v = 0, whereas for
r < 2� it is the line u= 0.

We note that the entire region covered by the Schwarzschild coordinates −�<

t <�, 0 < r <� is mapped onto the regions I and II in Figure 11.6. Thus, we
would require two Schwarzschild coordinate patches (I, II) and (I′� II′) to cover the
entire Schwarzschild geometry, but a single Kruskal coordinate system suffices.
The diagonal lines r = 2�, t = � and r = 2�, t = −� define event horizons
separating the regions of spacetime II and II′ from the other regions, I and I′.
The Kruskal diagram has some curious features. There are two ‘Minkowski’

regions, I and I′, so apparently there are two universes. We can identify region I
as the spacetime region outside a Schwarzschild black hole and region II as the
interior of the black-hole event horizon. Any particle that travels from region I to
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Figure 11.6 Spacetime diagram of the Schwarzschild geometry in Kruskal coor-
dinates. The lower and upper wavy lines at the boundaries of the shaded regions
are respectively the past singularity and the future singularity at r = 0. The
broken-line arrows show escaping signals.
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region II can never return and, moreover, must eventually reach the singularity
r = 0. Regions I′ and II′ are completely inaccessible from regions I or II. Region
II′ is similar to region II but in reverse: it is a part of spacetime from which
a particle can escape (into regions I and I′) but not enter. Moreover, there is
a singularity in the past – a white hole – from which particles can emanate.
Indeed, we may now understand more clearly our discussion of the advanced
and retarded Eddington–Finkelstein coordinates in Section 11.5: the advanced
coordinates describe the Schwarzschild geometry in regions I and II, whereas the
retarded coordinates cover the regions I′ and II′. The two universes I and I′ are
actually connected by a wormhole at the origin, which we discuss in more detail
in the next section, but, as we will show, no particle can travel between regions
I and I′.

It is worth asking what has happened here. How can a few simple coordinate
transformations lead to what is apparently new physics? What we have done
amounts to mathematically extending the Schwarzschild solution. Mathematicians
would call this a maximal extension of the Schwarzschild solution because all
geodesics either extend to infinite values of their affine parameter or end at a
past or future singularity. Thus Kruskal coordinates probe all the Schwarzschild
geometry. Hence, we find that the complete Schwarzschild geometry consists of
a black hole and white hole and two universes connected at their horizons by a
wormhole.

The extended Schwarzschild metric is a solution of Einstein’s theory and hence
is allowed by classical general relativity. Thus, for example, classical general
relativity allows the existence of white holes. Photons or particles could, in
principle, emanate from a past singularity. But, as you can see from the Kruskal
spacetime diagram, you cannot ‘fall into’ a white hole since it can only exist in
your past. Can a white hole really exist? The answer is that we don’t know for
sure. Classical GR must break down at singularities. We would expect quantum
effects to become important at ultra-short distances and ultra-high energies. In
fact, from the three fundamental constants G, � and c we can form the following
energy, mass, time, length and density scales:

Planck energy EP =
(
�c5/G

)1/2 = 1�22×1019 GeV�

Planck mass mP = ��c/G�1/2 = 2�18×10−5 g�

Planck time tP =
(
�G/c5

)1/2 = 5�39×10−44 s�

Plancklength lP =
(
�G/c3

)1/2 = 1�62×10−33 cm�

Planck density �P =
(
c5/�G2

)
= 5�16×1093 g cm−3�
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These Planck scales define the characteristic energies, lengths, times, etc. at which
we expect quantum gravitational effects to become important. To put it into some
kind of perspective, an elementary particle with the Planck mass would weigh
about the same as a small bacterium.

Nobody really expects the centres of black holes to harbour true singularities.
Instead, it is expected that, close to the classical singularity, quantum gravitational
effects will occur that will prevent the divergences of classical general relativity.
We do not yet have a complete theory of quantum gravity, though many people
hope that M-theory (formerly known as superstring theory) might one day provide
such a theory. Theorists have developed semi-classical theories, however, which
might (or might not) contain some of the features of a complete theory of quantum
gravity. Such calculations suggest that white holes would be unstable and could
not exist for more than about a Planck time. It is interesting that within a few
pages we have pushed Einstein’s theory of gravity to the edge of known physics.

11.10 Wormholes and the Einstein–Rosen bridge

Although it is not obvious from Figure 11.6, the two universes I and I′ are actually
connected by a wormhole at the origin. To understand the structure at the origin,
you must realize that the coordinates � and � have been suppressed in this figure;
each point in Figure 11.6 actually represents a 2-sphere.

We can gain some intuitive insight into wormholes by considering the geometry
of the spacelike hypersurface v = 0, which extends from u = +� to u = −�.
The line element for this hypersurface is

ds2 =−32�3

r
exp

(
− r

2�

)
du2− r2�d�2+ sin2 �d�2��

We can draw a cross-section of this hypersurface corresponding to the equatorial
plane � = �/2, in which the line element reduces further to

ds2 =−32�3

r
exp

(
− r

2�

)
du2− r2 d�2� (11.24)

To interpret this, we may consider a two-dimensional surface possessing a
line element d#2 given by minus (11.24) and embed it in a three-dimensional
Euclidean space.

This embedding is most easily performed by re-expressing d#2 in terms of the
coordinates r and �, which is easily shown to yield the familiar form

d#2 =
(
1− 2�

r

)−1
dr2+ r2 d�2� (11.25)
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However, we must remember that, in the spacelike hypersurface v = 0, as we
move along the u-axis from +� to −� the value of r decreases to a minimum
value r = 2� (at u= 0) and then increases again. In general, in Euclidean space, a
2-surface parameterised by arbitrary coordinates ����� can be specified by giving
three functions xa������a= 1�2�3�, where the xa define some coordinate system
in the three-dimensional Euclidean space. In our particular case, it will be useful
to use cylindrical polar coordinates ����� z�, in which case the line element of
the three-dimensional space is

d#2 = d�2+�2 d�2+dz2� (11.26)

Moreover, since the 2-surface we wish to embed (which is parameterised by the
coordinates r and �) is clearly axisymmetric, we may take the three functions
specifying this surface to have the form

�= ��r�� � = �� z= z�r��

Substituting these forms into (11.26), we may thus write the line element on the
embedded 2-surface as

d#2 =
[(

d�

dr

)2

+
(
dz

dr

)2
]
dr2+�2 d�2� (11.27)

For the geometry of the embedded 2-surface to be identical to the geometry of
the 2-space of interest, we require the line elements (11.25) and (11.27) to be
identical, and so we require ��r�= r and thus

1+
(
dz

dr

)2

=
(
1− 2�

r

)−1
�

The solution to this differential equation is easily found to be

z�r�=√8��r−2��+ constant�

and substituting r = � gives us the equation of the cross-section of the embedded
2-surface in the ��� z�-plane of the Euclidean 3-space. Taking the constant of
integration to be zero, and remembering that r (and hence �) is never less than
2�, we find that the surface has the form shown in Figure 11.7. Thus, the
geometry of the spacelike hypersurface at v= 0 can be thought of as two distinct,
but identical, asymptotically flat Schwarzschild manifolds joined at the ‘throat’
r = 2� by an Einstein–Rosen bridge. If one so wishes, one can also connect the
two asymptotically flat regions together in a region distant from the throat. In this
case, the wormhole connects two distant regions of a single universe.

In either case, the structure of the wormhole is dynamic. One is used to thinking
of the Schwarzschild geometry as ‘static’. However, working for the moment in
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φ = constant u = constant

Figure 11.7 The structure of the Einstein–Rosen bridge.

terms of the traditional Schwarzschild coordinate, it is only in regions I and I′ that
t is timelike and the fact that the metric coefficients are independent of t means
that spacetime is static. In regions II and II′, the t-coordinate is spacelike and
the r-coordinate is timelike. Since the metric coefficients do depend explicitly on
r, the spacetime in these regions is no longer static but evolves with respect to
this timelike coordinate. Returning to Kruskal coordinates, consider the spacelike
hypersurface v= 0. As this surface is pushed forwards in time (in the +v direction
in the Kruskal diagram), part of it enters region II and begins to evolve.

As v increases, the picture of the geometry of the hypersurface is qualitatively
the same as that illustrated in Figure 11.7, but the bridge narrows, the universes
now joining at r < 2�. At v = 1, the bridge pinches off completely and the two
universes simply touch at the singularity r = 0. For larger values of v the two
universes, each containing a singularity at r = 0, are completely separate. Since
the Kruskal solution is symmetric in v, the same things happen for negative values
of v. The full time evolution is shown schematically in Figure 11.8. Thus, the
two universes are disconnected at the beginning, each containing a singularity of
infinite curvature �r = 0�. As they evolve in time, their singularities join each
other and form a non-singular bridge. The bridge enlarges until at v= 0 it reaches
a maximum radius at the throat equal to r = 2�. It then contracts and pinches off,

v< –1 v= –1 –1 < v < 0 0 < v < 1 v> 1v= 0 v= 1

Figure 11.8 Time evolution of the Einstein–Rosen bridge.
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leaving the two universes disconnected and containing singularities �r = 0� once
again.

Sadly, it is impossible for a traveller to pass through the wormhole from one
universe into the other, since the formation, expansion and collapse of the bridge
occur too rapidly. By examining the paths of light rays in the Kruskal diagram, we
can deduce that no particle or photon can pass across the bridge from the faraway
region of one universe to the faraway region of the other without getting caught
and crushed in the throat as it pinches off. Nevertheless, after falling through
the horizon of the black hole, a traveller could see light signals from the other
universe through the throat of the wormhole. Unfortunately, the penalty for seeing
the other universe is death at the singularity.

Can wormholes exist in Nature? Can they connect different universes, or differ-
ent parts of the same universe? Again, nobody knows for sure. Many theorists
would argue that we need to understand quantum gravity to understand worm-
holes. Wormholes are probably unstable, but ‘virtual’ wormholes are a feature of
some formulations of quantum gravity.

11.11 The Hawking effect

So far our discussion of black holes has been purely classical. Indeed, we have
found that classically nothing can escape from the within the event horizon
of a black hole; that is why they are called black holes! However, in 1974,
Stephen Hawking applied the principles of quantum mechanics to electromagnetic
fields near a black hole and found the amazing result that black holes radiate
continuously as a blackbody with a temperature inversely proportional to their
mass! Hawking’s original calculation uses the techniques of quantum field theory,
but we can derive the main results very simply from elementary arguments.

According to quantum theory, even the vacuum of empty space exhibits quan-
tum fluctuations, in which particle–antiparticle pairs are created at one event
only to annihilate one another at some other event. Pair creation violates the
conservation of energy and so is classically forbidden. In quantum mechanics,
however, one form of Heisenberg’s uncertainty principle is �t�E = �, where �E
is the minimum uncertainty in the energy of a particle that resides in a quantum
mechanical state for a time �t. Thus, provided the pair annihilates in a time less
than �t = �/�E, where �E is the amount of energy violation, no physical law
has been broken.

Let us now consider such a process occurring just outside the event horizon of a
black hole. For simplicity, let us consider a Schwarzschild black hole in �t� r� ����
coordinates. Suppose that a particle–antiparticle pair is produced from the vacuum
and that the constituents of the pair have 4-momenta p and p̄ respectively. Since
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the spacetime is stationary ��0g�� = 0�, the quantities p0 = e0 ·p and p̄0 = e0 · p̄ are
conserved along the particle worldlines; here e0 is the t-coordinate basis vector.
Thus, for a fluctuation from the vacuum, classical conservation requires

e0 ·p+ e0 · p̄= 0� (11.28)

The squared ‘length’ of the coordinate basis vector e0 is given by

e0 · e0 = g00 = c2�1−2�/r�� (11.29)

Thus, outside the horizon �r > 2��, e0 is timelike. The components e0 ·p and e0 · p̄
are therefore proportional to the particle energies as measured by an observer
whose 4-velocity is along the e0-direction. Hence both must be positive, so the
conservation condition (11.28) cannot be satisfied.

However, if the fluctuation occurs near the event horizon then the inward-
moving particle may travel to the region r < 2�. Inside the event horizon e0
is spacelike, as shown by (11.29). Thus e0 · p is a component of the spatial
momentum for some observer and so may be negative. Hence the conservation
condition (11.28) can be satisfied if the antiparticle (say) crosses the horizon with
negative e0 · p̄ and the particle escapes to infinity with positive e0 ·p. As seen by
an observer at infinity, the black hole has emitted a particle of energy e0 ·p and
the black hole’s mass has decreased by �e0 · p̄�c2 as a consequence of the particle
falling into it. This is the Hawking effect. Of course, the argument is equally valid
if it is the particle that falls into the black hole and the antiparticle that escapes
to infinity. The black hole emits particles and antiparticles in equal numbers.

For a fluctuation near the horizon, the inward-travelling particle needs to endure
in a prohibited negative e0 ·p condition only for a short proper time, as measured by
some locally free-falling observer, before reaching the inside of the horizon where
negative e0 ·p is allowed. The particle has, in fact, tunnelled quantum mechanically
through a region outside the horizon, where negative e0 ·p is classically forbidden,
to a region inside the event horizon where it is classically allowed. The process
works best where the proper time in the forbidden region is smallest, i.e. close to
the horizon.

The distant observer sees a steady flux of particles and antiparticles. The flux
must be steady, since the geometry is independent of t and so the rate of particle
emission must also be independent of t. Let us calculate the typical energy of
such a particle as measured by the distant observer. Suppose that the particle–
antiparticle pair is created at some event P with coordinate radius R= 2�+�. Let
us consider this event as viewed by a freely falling observer, starting from rest at
this point. Since the observer is in free fall, the rules of special relativity apply in
his frame. A typical measure of the proper time �� elapsed before the observer
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reaches the horizon may be obtained by considering a radially free-falling particle
that starts from rest at r = R. In this case,

ṫ = �1−2�/R�1/2

1−2�/r
�

ṙ = −
[
2�c2

(
1
r
− 1
R

)]1/2
�

Thus the required proper time interval is

�� =−
∫ 2�

2�+�

(
2�c2

r
− 2�c2

2�+ �

)−1/2
dr ≈ 2�2���1/2

c
�

where the final result is quoted to first order in �. From the uncertainty principle,
the typical energy � of the particle, as measured by a freely falling observer, is
given by

� = �

��
= �c

2�2���−1/2
�

However, this can also be written as

� = p ·u≈ p0u
0�

where u is the observer’s 4-velocity and the approximation holds since u1� u0.
Now, u0 = ṫ ≈ �2�/��1/2 to first order in �. Moreover, p0 is conserved along
the particle’s worldline and is equal to the energy E of the particle as measured
by the distant observer, whose 4-velocity is simply 
u��= �1�0�0�0�. Thus, we
finally obtain

E = �

(
�

2�

)1/2

= �c3

4GM
� (11.30)

Remarkably, this result does not depend on �; the particle always emerges with
this characteristic energy.

The full quantum field theory calculation shows that the particles are in
fact received with a blackbody energy spectrum characterised by the Hawking
temperature

T = �c3

8�kBGM
�

The typical particle energy is thus E = kBT = �c3/�8�GM�, which is only a
factor 2� smaller than our crude estimate (11.30). Putting in numbers, we find that

T = 6×10−8
(

M

M�

)−1
K�
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Thus the radiation from a solar-mass black hole, such as might be formed by the
gravitational collapse of a massive star, is negligibly small.

It is straightforward to calculate the rate dM/dt at which the black hole loses
mass, as determined by a stationary distant observer whose proper time is t. Since
the black-hole event horizon emits radiation as a blackbody of temperature T , the
black-hole mass must decrease at a rate

dM

dt
=−#T 4A

c2
�

where # = �2k4B/�60�
3c2� is the Stefan–Boltzmann constant and A is the proper

area of the event horizon. From the Schwarzschild metric we find that A= 16��2,
and so we obtain

dM

dt
=− ��

M2
� (11.31)

where the dimensionless constant �= c4/�15360�G2�= 3�76×1049. The solu-
tion M�t� to (11.31) is easily calculated. For a black hole whose evaporation is
complete at time t0, we find that

M�t�= 
3���t0− t��1/3� (11.32)

This result shows that a burst of energy is emitted right at the end of a black
hole’s life. For example, in the final second it should emit ∼ 1022 J of energy,
primarily as 	-rays. No such events have yet been identified.

Appendix 11A: Compact binary systems

One of the best ways of finding candidate black holes is to search for luminous
compact X-ray sources. The reason is that if a black hole has a stellar companion
then the intense tidal field can pull gas from the companion, producing an accretion
disc around the black hole. A schematic picture is shown in Figure 11.9. As we
showed in Chapter 10, accretion discs can radiate very efficiently and we would
expect to observe high-energy (X-ray) photons emitted from a small region of
space.

Table 11.1 summarizes the two common classes of compact binaries. The
compact object can be a white dwarf, neutron star or black hole. If you find a
compact binary system then you can set limits on the mass of the compact object
from the dynamics of the binary orbit. If you find evidence for a compact object
that is more massive than the Chandrasekhar limit then you have good evidence
that the object might be a black hole.
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Table 11.1 Compact accreting binary systems

Compact object

Companion star White dwarf Neutron star Black hole

Early type, massive None known Massive X-ray binaries Cyg X-I
Late type, low mass Cataclysmic variables

(e.g., dwarf novae)
Low mass X-ray binaries A0620−00

Figure 11.9 Schematic picture of a compact binary system.

In fact it is not so straightforward. What observers actually measure is the mass
function

f�M�= PK3

2�G
�

where P is the orbital period, and K is the radial velocity amplitude. For example,
for the low-mass X-ray binary A0620-00 the period is P = 7�7 hours and K =
457km s−1. From Kepler’s laws we can show that the mass function is related
to the masses M1 and M2 of the compact object and the companion star and the
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Table 11.2 Derived parameters and dynamical mass measurements of SXTs

Source f�M��M�� ��gcm−3� q�=M1/M2� i M1�M�� M2�M��

V404 Cyg 6�08±0�06 0�005 17±1 55±4 12±2 0.6
G2000+25 5�01±0�12 1�6 24±10 56±15 10±4 0.5
N Oph 77 4�86±0�13 0�7 >19 60±10 6±2 0.3
N Mus 91 3�01±0�15 1�0 8±2 54+20−15 6+5−2 0.8
A0620−00 2�91±0�08 1�8 15±1 37±5 10±5 0.6
J0422+32 1�21±0�06 4�2 >12 20−40 10±5 0.3
J1655−40 3�24±0�14 0�03 3�6±0�9 67±3 6�9±1 2.1
4U1543−47 0�22±0�02 0�2 — 20−40 5�0±2�5 2.5
Cen X-4 0�21±0�08 0�5 5±1 43±11 1�3±0�6 0.4

inclination angle i of the orbit to the plane of the sky by

f�M�= M3
1 sin

3 i

�M1+M2�
2
�

You can see from this equation that the mass function is a strict lower limit on the
mass M1 of the compact object. It is equal to the latter, f =M1, only if M2 = 0
and the orbit is viewed edge on (so that sin i= 1). For example, for A0620−00
the lower limit on the mass of the compact object is 2�9M�, and this makes it
a very good black hole candidate because this mass limit is very close to the
theoretical upper limit for the mass of a neutron star. In fact, it is possible to
make reasonable estimates3 for M2 and sin i in this system, leading to a probable
mass of ≈ 10M� for the compact object – well into the black-hole regime.

Table 11.2 summarises the dynamical mass limits on some good black-hole
candidates (so-called short X-ray transients). As you can see, in several systems,
such as V404 Cyg, G2000+25 and N Oph 77, the minimum mass inferred from
the mass function is well above the theoretical maximum mass limit for a neutron
star. As we understand things at present there can be no other explanation than
that the compact objects are black holes.

Appendix 11B: Supermassive black holes

The first quasar4 (3C273) was discovered in 1963 by Maarten Schmidt. He
measured a cosmological redshift of z = 0�15 for this object, which was

3 An estimate of the mass M2 can be made by measuring the spectral type and luminosity of the companion
star. The inclination angle can be estimated from the shape of the star’s light curve by searching for evidence
of eclipsing by the compact object.

4 Quasi-stellar radio source. We now know that the majority of quasars are radio quiet, and so they are often
called QSOs for quasi-stellar object.
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unprecedently high at the time (quasars have since been discovered with redshifts
as high as z= 5�8). Quasars are very luminous, typically 100–1000 times brighter
than a large galaxy. However, they are compact, so compact, in fact, that quasars
look like stars in photographs. In fact, from variability and other studies one can
infer that the size of the continuum-emitting region of a quasar is of order a few
parsecs or less. How can we explain such a phenomenon? Imagine an object
radiating many times the luminosity of an entire galaxy from a region smaller
than the Solar System. Donald Lynden-Bell was one of the first to suggest that
the quasar phenomenon is caused by accretion of gas onto a supermassive black
hole residing at the centre of a galaxy. The black-hole masses required to explain
the high luminosities of quasars are truly spectacular – we require black holes
with masses a few million to a few billion times the mass of the Sun.

Do such supermassive black holes exist? The evidence in recent years has
become extremely strong. Using the Hubble Space Telescope it is possible to
probe the velocity dispersions of stars in the central regions of galaxies. According
to Newtonian dynamics, we would expect the characteristic velocities to vary as

v2 ∼ GM

r
�

If the central mass is dominated by a supermassive black hole then we expect the
typical velocities of stars to increase as we go closer to the centre. This is indeed
what is found in a number of galaxies. From the rate of increase of the velocities
with radius, we can estimate the mass of the central object, which seems to be
correlated with the mass of the bulge component of the galaxy:

Mbh ≈ 0�006Mbulge�

It seems as though, at the time of galaxy formation, about half a percent of the
mass of the bulge material collapses right to the very centre of a galaxy to form a
supermassive black hole. During this phase the infalling gas radiates efficiently,
producing a quasar. When the gas supply is used up, the quasar quickly fades
away leaving a dormant massive black hole that is starved of fuel. Nobody has
yet developed a convincing theory of how this happens, or of what determines
the mass of the central black hole.

A sceptic might argue that these observations merely prove that a dense compact
object exists at the centre of a galaxy that is not necessarily a black hole. But there
are two beautiful observational results that probe compact objects on parsecond
scales – making it almost certain that the central objects are black holes. In our
own Milky Way Galaxy it is possible to measure the proper motions of stars in
the Galactic centre (using infrared wavelengths to penetrate through the dense
dust that obscures optical light). This has allowed astronomers to see the stars
actually moving and so infer their three-dimensional motions. These observations
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imply that there exists a black hole of mass 2�5× 106M� at the centre of our
Galaxy.

In a remarkable set of observations, a disc of H2O masers has been detected in
the galaxy NGC 4258 using very long baseline interferometry (VLBI). The VLBI
observations measure the velocities of the masing clouds on scales of ∼ 0�3–2
parseconds and are well fitted by a thin (actually slightly warped) disc in circular
motion (see Figure 11.10). The mass of the central black hole is estimated to be
4×107M�.

Table 11.3 lists the masses of some potential supermassive black holes, with
a five-star rating. The masing disc of NGC 4258 gets a full five stars – this is
the strongest observational evidence for a supermassive black hole. The stellar

Figure 11.10 The masing H2O disc in the centre of NGC 4258. The lower
left-hand panel shows the variation in the line-of-sight velocity in km s−1 of
the material in the disc as a function of the distance along its major axis in
milliarcseconds. In the upper panel and lower right-hand panel the distance scales
are given in light years.
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Table 11.3 Potential supermassive black holes

Rating Source Mbh/M� Evidence

∗∗∗ M87 2×109 stars and optical disc
∗∗ NGC 3115 1×109 stars
∗∗ NGC 4594 (Sombrero) 5×108 stars
∗∗ NGC 3377 1×109 stars

∗∗∗∗∗ NGC 4258 4×107 masing H2O disc
∗∗ M31 (Andromeda) 3×107 stars
∗∗ M32 3×106 stars

∗∗∗∗ Galactic centre 2�5×106 stars and 3D motions

motions in the Galactic centre get four stars, though some astronomers might
argue that this evidence is so strong that it should rate five stars. Most of the other
observations are based on measurements of stellar-velocity dispersion. This is
fairly strong evidence but not completely convincing5 and so rates only two stars.

Appendix 11C: Conformal flatness of two-dimensional Riemannian
manifolds

Consider a general two-dimensional (pseudo-)Riemannian manifold in which the
points are labelled with some arbitrary coordinate system xa�a = 1�2�. For any
such manifold to be conformally flat, we require that we can always find a
coordinate system x′a in which the metric takes the form

g′ab�x
′�=�2�x′��ab� (11.33)

where �2�x′� is an arbitrary function of the new coordinates and 
�ab� =
diag�±1�±1�, the signs depending on the signature of the metric.

Suppose the primed coordinates are given by the transformation

x′1 = ��x1� x2� and x′2 = 
�x1� x2��

In order that (11.33) is satisfied, we thus require

g′12 = ��a����b
�g
ab = 0� (11.34)

g′11∓g′22 = 
��a����b��∓ ��a
���b
�� g
ab = 0� (11.35)

where in the second equation the minus sign corresponds to the case where the
metric is positive- or negative-definite, and the plus sign corresponds to the case
where the metric is indeterminate.

5 The interpretation of velocity dispersion measurements requires some assumptions about the degree of velocity
anisotropy.
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It is straightforward to verify that (11.34) is satisfied identically if

�a�= &�abg
bc�c
�

where & is an arbitrary function of the coordinates and �ab is the alternating
symbol, for which �11 = �22 = 0 and �12 =−�21 = 1. Moreover, substituting this
expression into (11.35), we find that(

&2

g
∓1

)

��a
���b
�g

ab�= 0�

where g= det
gab�. For a positive- or negative-definite metric the factor in square
brackets cannot be zero and, moreover, we can guarantee that g �= 0. Thus, in this
case, we can satisfy our requirements by choosing &2 = g. For an indeterminate
metric, however, we must require that the above factor is zero, i.e. 
 must not
be a null coordinate. In this case, we can again guarantee that g �= 0, and so
we choose &2 = −g. Thus we have shown explicitly that any two-dimensional
(pseudo-)Riemannian manifold is conformally flat.

Exercises

11.1 In the Schwarzschild geometry, we introduce the new coordinates

x = r sin � cos�� y = r sin � sin�� z= r cos��

Find the form of the line element in these coordinates.
11.2 By introducing the new coordinate � defined by

r = �

(
1+ �

2�

)2

�

show that the line element for the Schwarzschild geometry can be written in the
isotropic form

ds2 = c2
(
1− �

2�

)2(
1+ �

2�

)−2
dt2−

(
1+ �

2�

)4

�d�2+�2 d�2+�2 sin2 �d�2��

Show that g00 ≈ 1−2�/� in the weak-field limit �� �.
11.3 Show that the worldlines of radially moving photons in the Schwarzschild geometry

are given by

ct = r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant (outgoing photon)�

ct =−r−2� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant (incoming photon)�
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11.4 Show that, on introduction of the advanced Eddington–Finkelstein timelike coordi-
nate t′ = ct+2� ln �r/�2��−1�, the Schwarzschild line element takes the form

ds2 = c2
(
1− 2�

r

)
dt′2− 4�c

r
dt′dr−

(
1+ 2�

r

)
dr2− r2

(
d�2+ sin2 �d�2

)
�

Hence show that the worldlines of radially moving photons in advanced Eddington–
Finkelstein coordinates are given by

ct′ = r+4� ln

∣∣∣∣ r2� −1

∣∣∣∣+ constant (outgoing photon)�

ct′ = −r+ constant (incoming photon)�

11.5 Show that, on introduction of the retarded Eddington–Finkelstein timelike coordinate
t∗ = ct+2� ln �r/�2��−1�, the Schwarzschild line element takes the form

ds2 = c2
(
1− 2�

r

)
dt∗2+ 4�c

r
dt∗ dr−

(
1+ 2�

r

)
dr2− r2

(
d�2+ sin2 �d�2

)
�

Hence find the equations for the worldlines of radially moving photons in retarded
Eddington–Finkelstein coordinates. Use this result to sketch the spacetime diagram
showing the light-cone structure in this coordinate system.

11.6 A particle in the Schwarzschild geometry emits a radially outgoing photon at
coordinates �tE� rE�, which is received by the distant fixed observer at �tR� rR�.
Show that, if rE lies just outside the horizon r = 2�, the radial coordinate ‘seen’ by
the distant observer at the time tR is given by

rE�tR�≈ 2�+2�e−c�tR−rR�/4��

11.7 An observer sits on the surface of a star as it collapses to form a black hole. Once
an event horizon forms would the observer see any light from the star?

11.8 A spherical distribution of dust of coordinate radius R and total mass M collapses
from rest under its own gravity. Show that, as the collapse progresses, the coordinate
radius r of the star’s surface and the elapsed proper time � of an observer sitting
on the surface are related by

��r�=− 1
�2GM�1/2

∫ r

R

(
r

1− r/R

)1/2

dr�

By making the substitution r = R cos2��/2�, or otherwise, show that the solution
can be expressed parametrically as

r = R

2
�1+ cos��� � = R

2

(
R

2GM

)1/2

��+ sin���

Calculate the proper time experienced by the observer before the star collapses to
a point.
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11.9 A massive particle is released from rest at infinity in the Schwarzschild geometry.
Show that the covariant components of its subsequent 4-velocity at coordinate
radius r can be written as u� = c2��T , where

T = t+ 1
c

∫ r

�

(
2�
r ′

)1/2(
1− 2�

r ′

)−1
dr ′�

Hence show that the line element of the Schwarzschild geometry in �T� r� ����

coordinates is given by

ds2 = c2dT 2−
(
dr+√2�c2/r dT

)2− r2
(
d�2+ sin2 �d�2� �

Is this new form singular at r = 2�? What can you say about the hypersurface
T = constant? Show that observes infalling radially from rest at infinity have
Ṫ = 1 and hence give a physical interpretation of the T coordinate.

11.10 A massive particle is released from rest at coordinate radius r in the Schwarzschild
geometry. Show that a frame of orthonormal basis vectors defining the inertial
instantaneous rest frame of the particle may be taken as

�ê0�
� = 1

c
u� = 1

c

(
1− 2�

r

)−1/2
�
�
0 � �ê1�

� =
(
1− 2�

r

)1/2

�
�
1 �

�ê2�
� = 1

r
�
�
2 � �ê3�

� = 1
r sin �

�
�
3 �

Hence show that the spatial components of the orthogonal connecting vector
between two such nearby particles satisfy

d2�r̂

d�2
=+2�c2

r3
�r̂ �

d2��̂

d�2
=−�c2

r3
��̂�

d2��̂

d�2
=−�c2

r3
��̂�

11.11 Two compact masses, each of mass m, are connected by a light strong wire of
length l. The system is aligned in such a way that the two masses lie along a radial
line from a Schwarzschild black hole, and it is released from rest at coordinate
radius r. Obtain an expression for the tension in the wire immediately after the
system is released.

11.12 An astronaut, starting from rest at infinity, falls radially inwards towards a
Schwarzschild black hole with M = 105M�. Calculate the radial coordinate from
the centre of the black hole at which the astronaut first experiences a lateral tidal
force of 400m s−2 m−1 and is therefore crushed. How does this radial coordinate
compare with the position of the event horizon?

11.13 An unpowered satellite is in radial free fall towards a Schwarzschild black hole.
Show that the principal stresses in the satellite are given by

2�c2

r3
� −�c2

r3
� −�c2

r3
�

In what directions do these principal stresses act? Compare your answer with that
obtained in Exercise 11.10.
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11.14 An unpowered satellite follows a circular orbit of radius r around a Schwarzschild
black hole. Show that the principal stresses in the satellite are given by

�c2

r3
2r−3�
r−3�

� −�c2

r3
r

r−3�
� −�c2

r3
�

In what directions do these principal stresses act?
11.15 Suppose that p and q are respectively the advanced and retarded Eddington–

Finkelstein time parameters, defined in terms of Schwarzschild coordinates by

p = ct+ r+2� ln

∣∣∣∣ r2� −1

∣∣∣∣ �
q = ct− r−2� ln

∣∣∣∣ r2� −1

∣∣∣∣ �
A new set of (Kruskal) coordinates is defined by

v= 1
2 �e

p/4�− e−q/4�� and u= 1
2 �e

p/4�+ e−q/4���

Show that these new coordinates are related to Schwarzschild coordinates for
r > 2� by

v =
(

r

2�
−1

)1/2

exp
(

r

4�

)
sinh

(
ct

4�

)
�

u =
(

r

2�
−1

)1/2

exp
(

r

4�

)
cosh

(
ct

4�

)
�

and for r < 2� by

v =
(
1− r

2�

)1/2

exp
(

r

4�

)
cosh

(
ct

4�

)
�

u =
(
1− r

2�

)1/2

exp
(

r

4�

)
sinh

(
ct

4�

)
�

11.16 Show that, in terms of the Kruskal coordinates u and v defined in Exercise 11.15,
the Schwarzschild line element takes the form

ds2 = 32�3

r
exp

(
− r

2�

)(
dv2−du2

)− r2�d�2+ sin2 �d�2��

where r is considered as a function of v and u and is defined implicitly by

u2−v2 =
(

r

2�
−1

)
exp

(
r

2�

)
�

Show further that v is timelike and u is spacelike throughout the Schwarzschild
geometry.
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11.17 Perform an embedding into three-dimensional Euclidean space of the 2-space with
line element

d#2 = dr2+ �r2+a2�d�2�

and hence show that the resulting 2-surface has a geometry reminiscent of a
wormhole.

11.18 By examining the paths of light rays in the Kruskal diagram, deduce that no
particle can pass through the Einstein–Rosen wormhole from region I to region I′

or vice versa, before the throat of the wormhole pinches off.
11.19 A Schwarzschild black hole of mass M radiates as a blackbody of temperature

T = �c3/�8�kBGM�. Show from first principles that the black hole has a lifetime
� =M3/�3���, where � = c4/�15360�G2�. In its last second, calculate the total
energy radiated and estimate the typical energy of each radiated particle.

11.20 From observations of a compact binary system, one may calculate the mass
function

f�M�= PK3

2�G
�

where P is the orbital period and K is the radial velocity amplitude. From Kepler’s
laws in Newtonian gravity, show that f�M� is related to the masses M1 and M2 of
the compact object and the companion star and the inclination angle i of the orbit
to the plane of the sky by

f�M�= M3
1 sin

3 i

�M1+M2�
2
�
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Further spherically symmetric geometries

In the preceding three chapters, we have considered in some detail the
Schwarzschild geometry, which represents the gravitational field outside a
static spherically symmetric object. We also considered the structure of the
Schwarzschild black hole, in which the empty-space field equations are satisfied
everywhere except at the central intrinsic singularity. In this chapter, we consider
solving the Einstein equations for a static spherically symmetric spacetime in
regions where the presence of other fields means that the energy–momentum
tensor is non-zero. In particular, we will concentrate on two physically inter-
esting situations. First, we discuss the relativistic gravitational equations for the
interior of a spherically symmetric matter distribution (or star); in this case the
energy–momentum tensor of the matter making up the star must be included in
the Einstein field equations. Second, we consider the spacetime geometry outside
a static spherically symmetric charged object; once again this is not a vacuum,
since it is filled with a static electric field whose energy–momentum must be
included in the field equations.

12.1 The form of the metric for a stellar interior

Most stars in the sky are nowhere near dense enough for general-relativistic effects
to be important in determining their structure. This is true for main sequence stars
(of which our Sun is an example), red giants and even such high-density objects
as white dwarfs. Thus, most stars will never even evolve into an object that is not
adequately described by the Newtonian theory of stellar structure.1 For neutron
stars, however, the extremely high densities involved (see Section 11.6) mean that
the internal gravitational forces will be very strong, and so we expect general-
relativistic effects to play a significant role in determining their structure and their
stability to collapse. As a result, it is of practical (as well as theoretical) interest

1 See, for example, S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, 1958.
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to consider the relativistic equations governing the equilibrium of a centrally
symmetric self-gravitating distribution of matter.

Since we are assuming spherical symmetry and a static matter distribution, the
appropriate general form of the metric is that derived in Section 9.1, namely

ds2 = A�r�dt2−B�r�dr2− r2�d�2+ sin2 �d�2�� (12.1)

As in our derivation of the Schwarzschildmetric, the two functionsA�r� andB�r� are
determined by solving the Einstein equations. For our present discussion, however,
we shall not solve the empty-space field equationsR�� = 0, which are valid outside
the spherical object, but instead solve the full field equations that hold in the
interior of the object. These aremost convenientlywritten in the form (8.15), namely

R�� =−&
(
T��− 1

2Tg��
)
� (12.2)

where T�� is the energy–momentum tensor of the matter of which the object is
composed, T ≡ T

�
� and & = 8�G/c4. For the discussion in this chapter we will

assume the matter to be described by a perfect fluid, so that

T�� =
(
�+ p

c2

)
u�u�−pg��� (12.3)

where ��r� is the proper mass density and p�r� is the isotropic pressure in the
instantaneous rest frame of the fluid, both of which may be taken as functions
only of the radial coordinate r for a static matter distribution. Using the fact that
u�u

� = c2, we find that

T =
(
�+ p

c2

)
c2−p��� = �c2−3p�

and so the field equations (12.2) read

R�� =−&
[(
�+ p

c2

)
u�u�− 1

2��c
2−p�g��

]
� (12.4)

As shown in Section 9.2, the off-diagonal components of the Ricci tensor R��

for the metric (12.1) are all zero and the diagonal components are given by

R00 = −
A′′

2B
+ A′

4B

(
A′

A
+ B′

B

)
− A′

rB
� (12.5)

R11 =
A′′

2A
− A′

4A

(
A′

A
+ B′

B

)
− B′

rB
� (12.6)

R22 =
1
B
−1+ r

2B

(
A′

A
− B′

B

)
� (12.7)

R33 = R22 sin
2 �� (12.8)
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It is of interest first to determine the consequences of the vanishing off-diagonal
components of the Ricci tensor, R0i = 0 for i = 1�2�3. From the field equa-
tions (12.4), and using the fact that g0i = 0, we see immediately that we require
uiu0 = 0. Combining this with u�u

� = c2, we find that the covariant components
of the fluid 4-velocity are given by


u��= c
√
A�1�0�0�0�� (12.9)

and thus the spatial 3-velocity of the fluid must vanish everywhere. In particular,
we note that this conclusion holds without our assuming in advance that the
proper density � and the pressure p are independent of t. Thus, the fact the metric
(12.1) is independent of t automatically implies that the matter distribution itself
is static and so the object is in a state of hydrostatic equilibrium. This is another
illustration how the equations of motion for matter follow directly from the field
equations (see Section 8.8).

Let us now use the diagonal ��= �� components of the field equations (12.2)
to obtain the differential equations that the functions A�r� and B�r� must satisfy.
Inserting the expression (12.3) into the right-hand side of the field equations and
using the metric (12.1), we find that

R00 = − 1
2&��c

2+3p�A� (12.10)

R11 = − 1
2&��c

2−p�B� (12.11)

R22 = − 1
2&��c

2−p�r2� (12.12)

R33 = R22 sin
2 �� (12.13)

From these equations, one quickly obtains

R00

A
+ R11

B
+ 2R22

r2
=−2&�c2�

On substituting the expressions (12.5–12.8) for the Ricci tensor components and
simplifying, one finds that (

1− 1
B

)
+ rB′

B2
= &r2�c2� (12.14)

which can be rewritten in the form

d

dr

[
r

(
1− 1

B

)]
= &r2�c2�
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Integrating this expression with respect to r, and noting that the associated constant
of integration must be zero in order for B�r� to be non-zero at the origin (as
demanded by (12.14)), we find that the solution for B�r� is given by

B�r�=
[
1− 2Gm�r�

c2r

]−1
� (12.15)

where we have defined the function

m�r�= 4�
∫ r

0
��r̄�r̄2 dr̄� (12.16)

This function is worthy of further comment, since it has the appearance of being
the mass contained within a coordinate radius r. This interpretation is not quite
correct, however, since the proper spatial volume element for the metric (12.1) is
given by

d3V =√B�r� r2 sin �dr d�d��

Thus the proper integrated ‘mass’ (i.e. energy/c2) within a coordinate radius r is

m̃�r�= 4�
∫ r

0
��r̄�

√
B�r̄� r̄2 dr̄ = 4�

∫ r

0
��r̄�

[
1− 2Gm�r̄�

c2r̄

]−1/2
r̄2 dr̄�

Nevertheless, we note that it is m�r�, not m̃�r�, that appears in the radial metric
coefficient B�r� in (12.15). In particular, if the object extends to a coordinate
radius r = R, beyond which there is empty space, then the spacetime geometry
outside this radius is described by the Schwarzschild metric with mass parameter
M =m�R�, rather than M̃ = m̃�R�. The difference E = M̃−M corresponds to the
gravitational binding energy of the object, which is the amount of energy required
to disperse the material of which the object consists to infinite spatial separation.

We now turn to determining the differential equation that must be satisfied by
the function A�r� in (12.1). In principle, this could be obtained by substituting for
B�r� using (12.15) in any of the equations (12.10–12.13). It is more convenient and
instructive, however, to use the conservation equation ��T

�� = 0 directly, from
which the fluid equations of motion may be derived (as discussed in Section 8.3).
Using (12.3), we may write

��T
�� = ��

[(
�+ p

c2

)
u�u�

]
−���pg

���

= 1√−g ��
[(
�+ p

c2

)
u�u�

]
+
(
�+ p

c2

)
 �

#�u
�u# −g����p� (12.17)

where, in going from the first to the second line, the first term has been rewritten
using the expression (8.24) for the covariant divergence and the second term
has been manipulated by noting that ��g

�� = 0 and that p is a scalar function.
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From (12.9), however, we have u0 = c/
√
A and ui = 0, and since � and p do not

depend on t the first term on the right-hand side of (12.17) must vanish. For the
same reason, the second term becomes equal to ��c2+p� �

00/A. From (3.21)
and (12.1), we have

 �
00 =− 1

2g
����g00 =− 1

2g
����A�

and so the conservation equation ��T
�� = 0 can be written as

�c2+p

2A
g����A+g����p= 0�

Multiplying through by g�# and simplifying, one obtains

�c2+p

2A
�#A+ �#p= 0� (12.18)

Since A is a function only of r, the above equation is trivial for # = 0, in which
case we recover the fact that p is independent of t. Similarly, for # = 2 and
# = 3 we find that the corresponding (tangential) derivatives of p also vanish,
as dictated by spherical symmetry. For # = 1, however, the relation (12.18) is
non-trivial and reads (where primes denote d/dr)

A′

A
=− 2p′

�c2+p
� (12.19)

which gives a differential equation, in terms of ��r� and p�r�, that A�r� must
satisfy in hydrostatic equilibrium.

12.2 The relativistic equations of stellar structure

The equations (12.15) and (12.19) show how to calculate the functions A�r� and
B�r� in the metric (12.1), given particular functions of ��r� and p�r�. Specifying
these two functions does, however, imply an equation of state p = p��� by
elimination of r , and this is likely to be physically unrealistic for arbitrary choices
of ��r� and p�r�. For astrophysical investigations, one is more interested in
building models of the density and pressure distribution inside a star under the
assumption of some (quasi-)realistic equation of state. Thus, it is usual to recast
the results obtained in the previous section into an alternative form.

In this approach, the first equation of stellar structure is taken simply from
(12.16) and written as

dm�r�

dr
= 4�r2��r�� (12.20)



12.2 The relativistic equations of stellar structure 293

which clearly relates the functions m�r� and ��r�. The next step is to obtain an
equation linking m�r� and p�r�. This is most conveniently achieved by using
(12.7) and (12.12):

1
B
−1+ r

2B

(
A′

A
− B′

B

)
=−1

2
&��c2−p�r2�

Eliminating the functions A and B using (12.19) and (12.15) and simplifying, one
obtains the second equation of stellar structure,

dp

dr
=− 1

r2
��c2+p�

[
4�G
c4

pr3+ Gm�r�

c2

][
1− 2Gm�r�

c2r

]−1
� (12.21)

which is also known as the Oppenheimer–Volkoff equation. As mentioned above,
to obtain a closed system of equations we need to define the equation of state for
the matter, which gives the pressure in terms of the density, namely

p= p���� (12.22)

This provides the third (and final) equation of stellar structure. We note that, for
many astrophysical systems, the matter obeys a polytropic equation of state of
the form p= K�	 , where K and 	 are both constants. In the usual notation used
in this field, 	 = 1+1/n, where n is known as the polytropic index.

The closed system of three equations (12.20–12.22) contains two coupled
first-order differential equations, and so to obtain a unique solution one must
specify two boundary conditions. The first is straightforward, since we must have
m�0�= 0, leaving just one further adjustable boundary condition to be specified.
It is most common to choose this adjustable parameter to be the central pressure
p�0�, or equivalently the central density ��0�, which can be obtained immediately
from the equation of state (12.22). Very few exact solutions are known for real-
istic equations of state, and so in practice the system of equations is integrated
numerically on a computer. The procedure is to ‘integrate outwards’ from r = 0
(in practice in small radial steps of size �r) until the pressure drops to zero. This
condition defines the surface �r = R� of the star, since otherwise there would be
an infinite pressure gradient, and hence an infinite force, on the material elements
constituting the outer layer of the star. For r > R���r� and p�r� are both zero and
m�r�=m�R�=M , and the spacetime geometry is described by the Schwarzschild
metric with mass parameter M .

Before looking for particular solutions to the set of equations (12.20–12.22), it is
worthwhile considering briefly their Newtonian limit. In fact, the forms of (12.20)
and (12.22) remain unchanged in this limit, and it is only the equation (12.21) for
the pressure gradient that is simplified. In the Newtonian limit we have p� � and
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therefore 4�r3p� mc2. Moreover, we require the metric (12.1) to be close to
Minkowski, and so we require 2Gm/�c2r�� 1. Thus, the Oppenheimer–Volkoff
equation reduces to

dp

dr
=−Gm�r���r�

r2
� (12.23)

which is simply the Newtonian equation for hydrostatic equilibrium. Comparing
(12.23) with (12.21), we see that all the relativistic effects serve to steepen the
pressure gradient relative to the Newtonian case. Thus, for an object to remain
in hydrostatic equilibrium, the fluid of which it consists must experience stronger
internal forces when general-relativistic effects are taken into account.

12.3 The Schwarzschild constant-density interior solution

The simplest analytic interior solution for a relativistic star is obtained by making
the assumption that, throughout the star,

�= constant�

which constitutes an equation of state. There is no physical justification for this
assumption, but it is on the borderline of being realistic. It corresponds to an
ultra-stiff equation of state that represents an incompressible fluid. Consequently,
the speed of sound in the fluid, which is proportional to �dp/d��1/2, is infinite
(which is clearly not allowed relativistically). Nevertheless, it is believed that the
interiors of dense neutron stars are of nearly uniform density, and so this simple
case is of some practical interest.

Equation (12.20) immediately integrates to give

m�r�=
{

4
3��r

3 for r ≤ R
4
3��R

3 ≡M for r > R�
(12.24)

where R is the radius of the star, as yet undetermined, andM is the mass parameter
for the Schwarzschild metric describing the spacetime geometry outside the star.
Moreover, the Oppenheimer–Volkoff equation (12.21) becomes

dp

dr
=−4�G

3c4
r��c2+p���c2+3p�

(
1− 8�G

3c2
�r2

)−1
�

This equation is separable and we may write∫ p�r�

p0

dp̄

��c2+ p̄���c2+3p̄�
=−4�G

3c4

∫ r

0

r̄ dr̄

1−8�G�r̄2/�3c2�
�
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where p0 = p�0� is the central pressure of the star. Performing these standard
integrals, one finds that

�c2+3p
�c2+p

= �c2+3p0
�c2+p0

(
1− 8�G

3c2
�r2

)1/2

� (12.25)

At the surface r = R of the star, the pressure p is zero and so the left-hand side
of the above equation equals unity. Thus, we obtain

R2 = 3c2

8�G�

[
1−

(
�c2+p0
�c2+3p0

)2
]
�

which gives the radius of a star of uniform density � with a central pressure p0.
Alternatively, we may rearrange this result and use (12.24) to obtain a useful
expression for the central pressure,

p0 = �c2
1− �1−2�/R�1/2

3�1−2�/R�1/2−1
� (12.26)

where �=GM/c2. Using this expression to replace p0 in (12.25) gives

p�r�= �c2
�1−2�r2/R3�1/2− �1−2�/R�1/2

3�1−2�/R�1/2− �1−2�r2/R3�1/2
for r ≤ R� (12.27)

To obtain the complete solution to the problem, it remains to determine the
functions A�r� and B�r� in the metric (12.1). From (12.15) and (12.24), we
immediately find that

B�r�=
(
1− 2�r2

R3

)−1
� (12.28)

In particular, we note that at the star’s surface, where r = R, the above solution
matches with the corresponding expression from the Schwarzschild metric for
the exterior solution. The function A�r� is obtained from (12.19), (12.24) and
(12.27). One may fix the integration constant arising from (12.19) by imposing
the boundary condition that A�r� matches the corresponding expression in the
Schwarzschild metric at r = R. One then finds

A�r�= c2

4

[
3
(
1− 2�

R

)1/2

−
(
1− 2�r2

R3

)1/2
]2

� (12.29)

The expressions (12.28) and (12.29) constitute Schwarzschild’s interior solution
for a constant-density object.
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12.4 Buchdahl’s theorem

The most important feature of the Schwarzschild constant-density solution
discussed above is that it imposes a constraint connecting the star’s ‘mass’ M
and its (coordinate) radius R. To derive this constraint, one notices that (12.26)
implies that p0 →� as �/R→ 4/9. Since pressure is a general scalar, this
infinity will persist in any coordinate system, and so one can only avoid this
behaviour by demanding that

GM

c2R
<

4
9
� (12.30)

Although we have only shown that this constraint holds for an object of constant
density, Buchdahl’s theorem states that (12.30) is in fact valid for any equation
of state. This theorem can be proved directly from the Einstein equations but
requires considerable care and lies outside the scope of our discussion.

Equation (12.30) can be regarded as providing an upper limit on the mass of
a star for a fixed radius. If one attempts to pack more mass inside R than is
allowed by (12.30), general relativity admits no static solution: the hydrostatic
equilibrium is destroyed by the increased gravitational attraction. Such a star must
therefore collapse inwards without stopping. Throughout the collapse, the exterior
geometry is described by the Schwarzschild metric, and so eventually one obtains
a Schwarzschild black hole. The limit (12.30) is, in fact, quite easily reached. For
example, the density of a neutron star is around 1016 kg m−3 and, assuming it to
be of uniform density, we find from (12.30) and (12.24) that M < 7× 1031 kg.
This is approximately 35 solar masses, which is of same order as the most massive
stars in our Galaxy.

12.5 The metric outside a spherically symmetric charged mass

We now turn to our second physical application, namely the form of the metric
outside a static spherically symmetric charged body. The exterior of such an
object is not a vacuum, since it is filled with a static electric field. We must
therefore once again solve the Einstein field equations for a static spherically
symmetric spacetime in the presence of a non-zero energy–momentum tensor,
this time representing the electromagnetic field of the object.

Since we are assuming spherical symmetry and a static object, the general form
of the metric is once more given by (12.1). The two functions A�r� and B�r�

are determined by solving the full Einstein equations outside the spherical object;
these equations are again most conveniently written in the form (12.2). In this
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case, however, T�� is the energy–momentum tensor of the electromagnetic field
of the charged object, which from Exercise 8.3 has the general form

T�� =−�−10 �F��F�
�− 1

4g��F�#F
�#�� (12.31)

where F�� = ��A�−��A� is the electromagnetic field strength tensor andA� is the
electromagnetic 4-potential. The first point to note about this energy–momentum
tensor is that it has zero trace,

T ≡ T�
� =−�−10 �F��F

��− 1
4�

�
�F�#F

�#�= 0�

Thus, in this case, the Einstein field equations (12.2) take the simplified form

R�� =−&T��� (12.32)

In addition to the Einstein field equations, our solution must also satisfy the
Maxwell equations. In the region outside the charged object, the 4-current density
j� is zero and so the Maxwell equations read

��F
�� = 0� (12.33)

�#F��+��F#�+��F�# = 0� (12.34)

The Einstein and Maxwell equations are coupled together, since F�� enters the
gravitational field equations through the energy–momentum tensor (12.31) and
the metric g�� enters the electromagnetic field equations through the covariant
derivative.

The constraint imposed on the metric coefficients g�� (or gravitational fields)
by requiring the solution to be spherically symmetric and static is embodied in the
choice of line element (12.1). We thus begin by considering the corresponding
consequences of these symmetry constraints for the form of the electromagnetic
field. In this case, the electromagnetic 4-potential in �t� r� ���� coordinates takes
the form


A��=
(
��r�

c2
� a�r��0�0

)
� (12.35)

where ��r� and a�r� depend only on r and may be interpreted respectively as
the electrostatic potential and the radial component of the 3-vector potential as
r →� (the extra factor of 1/c multiplying ��r� in (12.35), as compared with
the usual form in Minkowski coordinates, is a result of taking x0 = t rather than
x0 = ct; also, note that the 3-vector potential a�r� should not be confused with
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the function A�r� in the metric (12.1)). From (12.35), the field-strength tensor has
the form


F���= E�r�

⎛⎜⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ � (12.36)

where E�r� is an arbitrary function of r only and may be interpreted as the radial
component of the static electric field as r →�. Thus our task is to use the
Einstein equations (12.32) and the Maxwell equations (12.33–12.34) to determine
the three unknown functions A�r�, B�r� and E�r�.

Let us begin by using the Maxwell equations. As discussed in Section 6.6, the
equations (12.34) are automatically satisfied by the definition of F��. Moreover,
from Exercise 4.10, since F�� is antisymmetric we may rewrite the covariant
divergence in the first Maxwell equation (12.33) to obtain

��F
�� = 1√−g �� �

√−gF���= 0� (12.37)

where g is the determinant of the metric. For a diagonal line element such as
(12.1), the determinant is simply the product of the diagonal elements, so that
g =−A�r�B�r�r4 sin2 �. Given the form of F�� in (12.36), the expression (12.37)
yields the single equation

�1

(√
ABr2F 10

)
= 0�

Writing the required contravariant component as F 10 = g1�g0�F�� = g11g00F10 =
−E/�AB�, we thus obtain the equation

d

dr

(
r2E√
AB

)
= 0�

This integrates to give

E�r�= k
√
A�r�B�r�

r2
� (12.38)

where k is a constant of integration. If we make the assumption that the metric is
asymptotically flat then A�r�→ c2 and B�r�→ 1 as r→�. Identifying E�r� with
the radial electric field component at infinity, we thus require k = Q/�4��0c�,
where Q is the total charge of the object.

We now turn to the Einstein equations (12.32). The Ricci tensor components
for the metric (12.1) are given in (12.5–12.8), and the form of the electromagnetic
field energy–momentum tensor T�� may be found by substituting the form (12.36)
for F�� into the expression (12.31). On performing this substitution, one quickly
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finds that the off-diagonal components of T�� are zero, and so the Einstein
equations for � �= � are satisfied identically. For the diagonal components of the
Einstein equations, one finds

R00 = − 1
2&c

2�0E
2/B� (12.39)

R11 = 1
2&c

2�0E
2/A� (12.40)

R22 = − 1
2&c

2�0r
2E2/�AB�� (12.41)

R33 = R22 sin
2 �� (12.42)

where we have used the facts that F0
1 = g11F01 = E/B and F1

0 = g00F10 = E/A;
we have also made use of the relation �0�0 = 1/c2. From (12.39) and (12.40),
we immediately obtain

BR00+AR11 = 0�

On substituting the expressions (12.5, 12.6) for the Ricci tensor coefficients and
rearranging, this yields

A′B+B′A= 0�

which implies that AB= constant. We may fix this constant from the requirement
that the metric is asymptotically flat as r→�, and so we have

A�r�B�r�= c2� (12.43)

A further independent equation may be obtained from the 22-component (12.41)
of the Einstein equations. Inserting the expression (12.7) for the Ricci tensor
component and using (12.38), one finds that

A+ rA′ = c2
(
1− GQ2

4��0c4r2

)
�

Noting that A+ rA′ = �rA�′ and integrating, one thus obtains

A�r�= c2
(
1− 2GM

c2r
+ GQ2

4��0c4r2

)
�

where we have identified the integration constant as −2GM/c2,M being the mass
of the object, since the line element must reduce to the Schwarzschild case when
Q= 0. The solutions for B�r� and E�r� are then found immediately from (12.43)
and (12.38) respectively.
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Thus, collecting our results together and defining the constants �=GM/c2 and
q2=GQ2/�4��0c

4�, the line element for the spacetime outside a static spherically
symmetric body of mass M and charge Q has the form

ds2 = c2
(
1− 2�

r
+ q2

r2

)
dt2−

(
1− 2�

r
+ q2

r2

)−1
dr2− r2�d�2+ sin2 �d�2��

(12.44)

from which one may read off the metric coefficients g�� that determine the
gravitational field of the object. The resulting solution is known as the Reissner–
Nordström geometry. The electromagnetic F�� of the field of the object is given
by (12.36) with

E�r�= Q

4��0r2
�

12.6 The Reissner–Nordström geometry: charged black holes

The Reissner–Nordström (RN) metric (12.44) is only valid down to the surface of
the charged object. As in our discussion of the Schwarzschild solution, however,
it is of interest to consider the structure of the full RN geometry, namely the
solution to the coupled Einstein–Maxwell field equations for a charged point mass
located at the origin r = 0, in which case the RN metric is valid for all positive r.

Calculation of the invariant curvature scalar R��#�R
��#� shows that the only

intrinsic singularity in the RN metric occurs at r = 0. In the ‘Schwarzschild-
like’ coordinates �t� r� ����, however, the RN metric also possesses a coordinate
singularity wherever r satisfies

��r�≡ 1− 2�
r
+ q2

r2
= 0� (12.45)

with ��r�=−1/g11�r�= g00�r�/c
2. Multiplying (12.45) through by r2 and solving

the resulting quadratic equation, we find that the coordinate singularities occur
on the surfaces r = r±, where

r± = �± ��2−q2�1/2� (12.46)

It is clear that there exist three distinct cases, depending on the relative values of
�2 and q2; we now discuss these in turn.
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• Case 1: �2 < q2 In this case r± are both imaginary, and so no coordinate singularities
exist. The metric is therefore regular for all positive values of r. Since the function ��r�
always remains positive, the coordinate t is always timelike and r is always spacelike.
Thus, the intrinsic singularity at r = 0 is a timelike line, as opposed to a spacelike line
in the Schwarzschild case. This means that the singularity does not necessarily lie in
the future of timelike trajectories and so, in principle, can be avoided. In the absence
of any event horizons, however, r = 0 is a naked singularity, which is visible to the
outside world. The physical consequences of a naked singularity, such as the existence
of closed timelike curves, appear so extreme that Penrose has suggested the existence
of a cosmic censorship hypothesis, which would only allow singularities that are hidden
behind an event horizon. As a result, the case �2 < q2 is not considered physically
realistic.

• Case 2: �2 > q2 In this case, r± are both real and so there exist two coordinate
singularities, occurring on the surfaces r = r±. The situation at r = r+ is very similar to
the Schwarzschild case at r = 2�. For r > r+, the function ��r� is positive and so the
coordinates t and r are timelike and spacelike respectively. In the region r− < r < r+,
however, ��r� becomes negative and so the physical natures of the coordinates t and
r are interchanged. Thus, a massive particle or photon that enters the surface r = r+
from outside must necessarily move in the direction of decreasing r, and thus r = r+
is an event horizon. The major difference from the Schwarzschild geometry is that
the irreversible infall of the particle need only continue to the surface r = r−, since
for r < r− the function ��r� is again positive and so t and r recover their timelike
and spacelike properties. Within r = r−, one may (with a rocket engine) move in
the direction of either positive or negative r, or stand still. Thus, one may avoid the
intrinsic singularity at r = 0, which is consistent with the fact that r = 0 is a timelike
line. Perhaps even more astonishing is what happens if one then chooses to travel
back in the direction of positive r in the region r < r−. On performing a maximal
analytic extension of the RN geometry, in analogy with the Kruskal extension for the
Schwarzschild geometry discussed in Section 11.9, one finds that one may re-cross
the surface r = r−, but this time from the inside. Once again one is moving from a
region in which r is spacelike to a region in which it is timelike, but this time the
sense is reversed and one is forced to move in the direction of increasing r. Thus
r = r− acts as an ‘inside-out’ event horizon. Moreover, one is eventually forceably
ejected from the surface r = r+ but, according to the maximum analytic extension, the
particle emerges into a asymptotically flat spacetime different from that from which it
first entered the black hole. As discussed in Section 11.9, however, such matters are
at best highly speculative, and we shall not pursue them further here.

• Case 3: �2 = q2 In this case, called the extreme Reissner–Nordström black hole, the
function ��r� is positive everywhere except at r = �, where it equals zero. Thus, the
coordinate r is everywhere spacelike except at r =�, where it becomes null, and hence
r = � is an event horizon. The extreme case is basically the same as that considered
in case 2, but with the region r− < r < r+ removed.
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We may illustrate the properties of the RN spacetime in more detail by considering
the paths of photons and massive particles in the geometry, which we now go on
to discuss. Since the case �2 >q2 is the most physically reasonable RN spacetime,
we shall restrict our discussion to this situation.

12.7 Radial photon trajectories in the RN geometry

Let us begin by investigating the paths of radially incoming and outgoing photons
in the RN metric for the case �2 > q2. Since ds = d� = d� = 0 for a radially
moving photon, we have immediately from (12.44) that

dt

dr
=±1

c
=
(
1− 2�

r
+ q2

r2

)−1
=±1

c

r2

�r− r−��r− r+�
� (12.47)

where, in the second equality, we have used the result (12.46); the plus sign
corresponds to an outgoing photon and the minus sign to an incoming photon. On
integrating, we obtain

ct = r− r2−
r+− r−

ln

∣∣∣∣ rr− −1

∣∣∣∣+ r2+
r+− r−

ln

∣∣∣∣ rr+ −1

∣∣∣∣+ constant �outgoing��

ct = −r+ r2−
r+− r−

ln

∣∣∣∣ rr− −1

∣∣∣∣− r2+
r+− r−

ln

∣∣∣∣ rr+ −1

∣∣∣∣+ constant �ingoing��

We will concentrate in particular on the ingoing radial photons. To develop a
better description of infalling particles in general, we may construct the equivalent
of the advanced Eddington–Finkelstein coordinates derived for the Schwarzschild
metric in Section 11.5. Once again this coordinate system is based on radially
infalling photons, and the trick is to use the integration constant as the new
coordinate, which we denote by p. As before, p is a null coordinate and it is more
convenient to work instead with the timelike coordinate t′ defined by ct′ = p− r.
Thus, we have

ct′ = ct− r2−
r+− r−

ln

∣∣∣∣ rr− −1

∣∣∣∣+ r2+
r+− r−

ln

∣∣∣∣ rr+ −1

∣∣∣∣ � (12.48)

On differentiating, or from (12.47) directly, one obtains

c dt′ = dp−dr = c dt+
[

1
��r�

−1
]
dr� (12.49)
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where ��r� is defined in (12.45). Using the above expression to substitute for c
in (12.44), one quickly finds that

ds2 = c2�dt′2−2�1−��dt′ dr− �2−��dr2− r2�d�2+ sin2 �d�2��

which is the RN metric in advanced Eddington–Finkelstein coordinates. In partic-
ular, we note that this form is regular for all positive values of r and has an
instrinsic singularity at r = 0.

From (12.47) and (12.49), one finds that, in advanced Eddington–Finkelstein
coordinates, the equation for ingoing radial photon trajectories is

ct′ + r = constant� (12.50)

whereas the trajectories for outgoing radial photons satisfy the differential equation

c
dt′

dr
= 2−�

�
� (12.51)

II I

r = r–

III

r = r+

Event horizon Event horizon

r = 0

Figure 12.1 Spacetime diagram of the Reissner–Nordström solution in advanced
Eddington–Finkelstein coordinates. The straight diagonal lines are ingoing
photon worldlines whereas the curved lines correspond to outgoing photon world-
lines.
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We may use these equations to determine the light-cone structure of the RN metric
in these coordinates. For ingoing radial photons, the trajectories (12.50) are simply
straight lines at 45	 in a spacetime diagram. For outgoing radial photons, (12.51)
gives the gradient of the trajectory at any point in the spacetime diagram, and so
one may sketch these without solving (12.51) explicitly. This resulting spacetime
diagram is shown in Figure 12.1. It is worth noting that the light-cone structure
depicted confirms the nature of the event horizon at r = r+. Moreover, the light-
cones remain tilted over in the region r− < r < r+, indicating that any particle
falling into this region must move inwards until it reaches r = r−. Once in the
region r < r−, the lightcones are no longer tilted and so particles need not fall into
the singularity r = 0. As was the case in Section 11.5 for the Schwarzschild metric,
however, this spacetime diagram may be somewhat misleading. For an outward-
moving particle in the region r < r−, Figure 12.1 suggests that it can only reach
r = r− asymptotically, but by peforming an analytic extension of the RN solution
one can show that the particle can cross the surface r = r− in finite proper time.

12.8 Radial massive particle trajectories in the RN geometry

We now consider the trajectories of radially moving massive particles for the
case �2 > q2. To simplify our discussion, we will assume that the particles are
electrically neutral. In this case, the particles will follow geodesics. In the more
general case of an electrically charged particle, one must also take into account
the Lorenz force on the particle produced by the electromagnetic field of the black
hole. The equation of motion for the particle is then given by (6.13).

For a radially moving particle, the 4-velocity has the form


u��= �u0� u1�0�0�= �ṫ� ṙ�0�0��

where the dots denote differentiation with respect to the proper time � of the
particle. The geodesic equations of motion, obeyed by neutral particles in the RN
metric, are most conveniently written in the form (3.56):

u̇# = 1
2��#g���u

�u��

Since the metric coefficients in the RN line element (12.44) do not depend on t,
we immediately obtain

u0 = g00 ṫ = constant�

The radial equation of motion may then be obtained using the normalisation
condition g��u

�u� = c2, which gives

g00�u
0�2+g11�u

1�2 = c2�
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r

u0 > c2

u0 = c2

u0 < c2

r+r–

c2

c2∆(r)

Figure 12.2 The limits of radial motion for a neutral massive particle in the
Reissner–Nordström geometry.

Using the fact, from (12.45), that ��r�= g00/c
2 =−1/g11, one finds that

ṙ2+ c2��r�= u20
c2
� (12.52)

This clearly has the form of an ‘energy’ equation, in which c2��r� plays the role
of a potential. Qualitative information on the properties of the radial trajectories
can be obtained directly from (12.52) by simply plotting the function c2��r�;
this plot is shown in Figure 12.2. The radial limits of the motion depend on
the choice of the constant u0, as indicated. The case u0 = c2 corresponds to the
particle being released from rest at infinity. In all cases, there exists an inner radial
limit that is greater than zero. This indicates that a neutral particle moving freely
under gravity cannot reach the central intrinisic singularity at r = 0 but is instead
repelled once it has approached to within some finite distance. As mentioned in
Section 12.6. performing a maximum analytic extension the RN metric suggests
that the particle passes back through r = r− and r = r+ and ultimately emerges
in a different asymptotically flat spacetime.

Exercises

12.1 For a general static diagonal metric, show that the 4-velocity of a perfect fluid in
the spacetime must have the form


u��= c√
g00

�1�0�0�0��
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12.2 Calculate the gravitational binding energy E= M̃−M of a spherical star of constant
density � and coordinate radius R. Compare your answer with the corresponding
Newtonian result and interpret your findings physically.

12.3 Derive the Oppenheimer–Volkoff equation from the Einstein equations for a static
spherically symmetric perfect-fluid distribution, and show that it reduces to the
standard equation for hydrostatic equilibrium in the Newtonian limit.

12.4 In Newtonian gravity, show directly that the equation for hydrostatic equilibrium is

dp�r�

dr
=−Gm�r���r�

r2
�

12.5 Show that, in the Newtonian limit, the equation before (12.15) reduces to

d%�r�

dr
= Gm�r�

r
�

where %�r� is the Newtonian gravitational potential.
12.6 For a spherical star of uniform density � and central pressure p0, verify that the

Oppenheimer–Volkoff equation requires p�r� to satisfy

�c2+3p�r�
�c2+p�r�

= �c2+3p0

�c2+p0

(
1− 8�G

3c2
�r2

)1/2

�

and hence show that

p�r�= �c2
�1−2�r2/R3�1/2− �1−2�/R�1/2

3�1−2�/R�1/2− �1−2�r2/R3�1/2
�

where R is the coordinate radius of the star.
12.7 In Newtonian gravity, obtain the expression for p�r� for a spherical star of uniform

density �, central pressure p0 and radius R. Compare your result with that obtained
in Exercise 12.6.

12.8 Show that, for a spherical star of uniform density �,

R2 <
c2

3�G�
and M2 <

16c6

243��G3
�

If a photon is emitted from the star’s surface and received by a stationary observer
at infinity, show that the observed redshift must obey the constraint z < 2. Show
also, however, that the observed redshift for a photon emitted from the star’s centre
can be arbitrarily large.

12.9 For a spherical star of uniform density �, show that in order for the star not to lie
within its own Schwarzschild radius, one requires

M2 <
3c6

32��G3
�

Compare this limit with that derived in Exercise 12.8.
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12.10 For a spherical uniform-density star of mass M and coordinate radius R, show that
the line element of spatial sections with t = constant can be written in the form

d#2 = Rc2

2GM

[
d�2+ sin2 � �d�2+ sin2 �d�2�

]
�

12.11 Consider a static infinitely long cylindrical configuration of matter that is invariant
to translations and Lorentz boosts along the axis of symmetry (a cosmic string).
Adopting ‘cylindrical polar’ coordinates �ct� r��� z�, show that a self-consistent
solution to the Einstein field equations may be obtained if the stress-energy tensor
for the matter is of the form


T���= diag��c2�0�0�−�c2��
such that there is a negative pressure (or tension) along the string, and the line
element is of the form

ds2 = c2 dt2−dr2−B�r�d�2−dz2�

where B�r� satisfies

B′′

2B
− �B′�2

4B2
=−&�c2�

Show further that b�r�=√B�r� satisfies b′′ = −&c2�b.
Hint: You may find your answers to Exercises 8.9, 9.28 and 9.29 useful.

12.12 Suppose that the matter distribution in a cosmic string has a uniform density across
the string, such that

��r�=
{
�0 for r ≤ r0�

0 for r > r0�

By demanding that g��→−r2 as r→ 0, so that the spacetime geometry is regular
on the axis of the string, show that the line element for r ≤ r0 is

ds2 = c2 dt2−dr2−
(
sin�r
�r

)2

d�2−dz2�

where � = √&�0c
2. By demanding that g�� and its derivative with respect to r

are both continuous at r = r0, show that the line element for r > r0 is

ds2 = c2 dt2−dr2−
[
sin�r0
�r

+ �r− r0� cos�r0

]2
d�2−dz2�

For the interesting case in which �r0 � 1, show that for r � r0 the line element
takes the form

ds2 = c2 dt2−dr2−
(
1− 8G�

c2

)
r2 d�2−dz2�
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where � = �r20�0 is the ‘mass per unit length’ of the string. Interpret this line
element physically.

12.13 Show that the electromagnetic field tensor outside a static spherically symmetric
charged matter distribution has the form


F���= E�r�

⎛⎜⎜⎜⎝
0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ �

where E�r� is some arbitrary function. Hence show that, if the line element outside
the matter distribution has the form

ds2 = A�r�dt2−B�r�dr2− r2�d�2+ sin2 �d�2��

the energy–momentum tensor of the electromagnetic field in this region is given by


T���=
1
2
c2�0E

2 diag

(
1
B
�− 1

A
�
r2E2

AB
�
r2E2 sin2 �

AB

)
�

12.14 Calculate the invariant curvature scalar R���#R
���# for the Reissner–Nordström

geometry and hence show that the only intrinsic singularity occurs at r = 0.
12.15 Show that the worldlines of radially moving photons in the Reissner–Nordström

geometry are given by

ct = r− r2−
r+− r−

ln

∣∣∣∣ rr− −1

∣∣∣∣+ r2+
r+− r−

ln

∣∣∣∣ rr+ −1

∣∣∣∣+ constant �outgoing��

ct =−r+ r2−
r+− r−

ln

∣∣∣∣ rr− −1

∣∣∣∣− r2+
r+− r−

ln

∣∣∣∣ rr+ −1

∣∣∣∣+ constant �ingoing��

12.16 Show that, by introducing the advanced Eddington–Finkelstein timelike coordinate

ct′ = ct− r2−
r+− r−

ln

∣∣∣∣ rr− −1

∣∣∣∣+ r2+
r+− r−

ln

∣∣∣∣ rr+ −1

∣∣∣∣ �
the Reissner–Nordström line element takes the form

ds2 = c2�dt′2−2�1−��dt′ dr− �2−��dr2− r2�d�2+ sin2 �d�2��

where � ≡ ��r� = 1− 2�/r+q2/r2. Hence show that the worldlines of radially
moving photons in advanced Eddington–Finkelstein coordinates are given by

ct′ + r = constant �incoming�� c
dt′

dr
= 2−�

�
�outgoing��

What is the significance, if any, of the fact that c dt′/dr = 0 at ��r� = 2 for
outgoing radially moving photons?
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12.17 For a particle of mass m and charge e in geodesic motion in the Reissner–
Nordström geometry, show that the quantity

k=m

(
1− 2�

r
+ q2

r2

)
dt

d�
+ eq

r

is conserved, and interpret this result physically.
12.18 An observer is in a circular orbit of coordinate radius r = R in the Reissner–

Nordström geometry. Find the components of the magnetic field measured by the
observer.
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The Kerr geometry

The Schwarzschild solution describes the spacetime geometry outside a spheri-
cally symmetric massive object, characterised only by its mass M . In the previous
chapter we derived further spherically symmetric solutions. Most real astrophys-
ical objects, however, are rotating. In this case, a spherically symmetric solution
cannot apply because the rotation axis of the object defines a special direction, so
destroying the isotropy of the solution. For this reason, in general relativity it is not
possible to find a coordinate system that reduces the spacetime geometry outside
a rotating (uncharged) body to the Schwarzschild geometry. The non-linear field
equations couple the source to the exterior geometry. Moreover, a rotating body
is characterised not only by its mass M but also by its angular momentum J , and
so we would expect the corresponding spacetime metric to depend upon these
two parameters.

We now consider how to derive the metric describing the spacetime geometry
outside a rotating body. Since the mathematical complexity in this case is far
greater than that encountered in deriving the Schwarzschild metric (or the other
spherically symmetric geometries discussed in the previous chapter), we shall
content ourselves with just an outline of how the solution may be obtained.

13.1 The general stationary axisymmetric metric

In our derivation of the Schwarzschild solution, we began by constructing the
general form of the static isotropic metric. We are now interested in deriving the
spacetime geometry outside a steadily rotating massive body. Thus we begin by
constructing the general form of the stationary axisymmetric metric.

For the description of such a spacetime, it is convenient to introduce the
timelike coordinate t�= x0� and the azimuthal angle ��= x3� about the axis of
symmetry. The stationary and axisymmetric character of the spacetime requires

310
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that the metric coefficients g�� be independent of t and �, so that

g�� = g���x
1� x2��

where x1 and x2 are the two remaining spacelike coordinates.
Besides stationarity and axisymmetry, we shall also require that the line element

is invariant to simultaneous inversion of the coordinates t and �, i.e. the trans-
formations

t→−t and �→−��
The physical meaning of this additional requirement is that the source of the
gravitational field, whatever it may be, has motions that are purely rotational
about the axis of symmetry, i.e. we are considering the spacetime associated with
a rotating body. This assumed invariance requires that

g01 = g02 = g13 = g23 = 0�

since the corresponding terms in the line element would change sign under the
simultaneous inversion of t and �. Therefore, under the assumptions made thus
far, the line element must have the form

ds2 = g00 dt
2+2g03 dt d�+g33 d�

2+ [g11�dx1�2+2g12 dx
1 dx2+g22�dx

2�2
]
�

(13.1)

We note that, since the metric coefficients g�� are functions only of x1 and
x2, the expression in square brackets in (13.1) can be considered as a separate
two-dimensional submanifold. A further reduction in the form of the metric can
thus be achieved by using the fact that any two-dimensional (pseudo-)Riemannian
manifold is conformally flat, i.e. it is always possible to find a coordinate system
in which the metric takes the form

gab =�2�x��ab� (13.2)

where�2�x� is an arbitrary function of the coordinates and 
�ab�= diag�±1�±1�;
the signs depend on the signature of the manifold. We proved this result in
Appendix 11C. Thus, taking advantage of this fact, and writing the result in way
suggestive of a rotating body, we can express the line element (13.1) in the form

ds2 = Adt2−B�d�−�dt�2−C
[
�dx1�2+ �dx2�2

]
� (13.3)

where A�B�C and � are arbitrary functions of the spacelike coordinates x1 and x2.
For definiteness, let us denote the coordinates x1 and x2 by r and � respectively.

For our axisymmetric metric, these coordinates are not so readily associated with
any geometrical meaning. Nevertheless, in order that they can be chosen later to
be as similar as possible to the spherically symmetric r and �, it is useful to allow
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some extra freedom in the metric by not demanding that the metric coefficients
g22 and g33 be identical. Thus, from now on we will work with the metric

ds2 = Adt2−B�d�−�dt�2−C dr2−Dd�2� (13.4)

where A�B�C�D and � are arbitrary functions of the spacelike coordinates r

and � but we have the freedom to relate C and D in such a way so that the
physical meanings of r and � are as close as possible to the spherically symmetric
case. The functions in (13.4) are related to the metric coefficients g�� by

gtt = A−B�2� gt� = B�� g�� =−B� grr =−C� g�� =−D�
where, from now on, we use coordinate names rather than numbers to denote the
components. Note that �=−gt�/g�� and, if the body is not rotating, we can set
� = 0 since in this case we would require that the metric is invariant under the
single transformation t→−t and consequently gt� = 0.

For later convenience, let us also calculate the contravariant components g�� of
the metric corresponding to the line element (13.4). The only off-diagonal terms
involve t and �, and so immediately we have

grr =−1/C� g�� =−1/D�
To find the remaining contravariant components, we must invert the matrix

G=
(
gtt gt�
gt� g��

)
⇒ G−1 = 1

�G�

(
g�� −gt�
−gt� gtt

)
�

where the determinant �G� = gttg��− �gt��
2 =−AB. Thus

gtt = g��

�G� =
1
A
� gt� =−gt�

�G� =
�

A
� g�� = gtt

�G� =
B�2−A

AB
� (13.5)

Shortly we will show that a metric of the form (13.4) can indeed be made to
satisfy the empty-space field equations R�� = 0 by suitable choice of the functions
A�B�C�D and �. Before specialising to any particular solution, however, we
investigate three particularly interesting generic properties of such spacetimes:
the dragging of inertial frames and the existence of stationary limit surfaces and
event horizons.

13.2 The dragging of inertial frames

The presence of gt� �= 0 in the metric (13.4) introduces qualitatively new effects
into particle trajectories. Since g�� is independent of �, the covariant component
p� of a particle’s 4-momentum is still conserved along its geodesic. Indeed
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p� =−L, where L is the component of angular momentum of the particle along
the rotation axis, which is conserved (note the minus sign, which also occurred in
the Schwarzschild case discussed in Chapter 9). This conservation law is a direct
consequence of the axisymmetry of the spacetime. Note, however, that the total
angular momentum of a particle is not a conserved quantity, since the spacetime
is not spherically symmetric about any point.

The corresponding contravariant component p� of the particle’s 4-momentum
is given by

p� = g��p� = g�tpt+g��p��

and similarly the contravariant time component of the 4-momentum is

pt = gt�p� = gttpt+gt�p��

Let is now consider a particle (or photon) with zero angular momentum, so that
p� = 0 along its geodesic. Using the definition of the 4-momentum, for either a
massive particle or a photon we have

pt ∝ dt

d#
and p� ∝ d�

d#
�

where # is an affine parameter along the geodesic and the constants of propor-
tionality in each case are equal. Thus the particle’s trajectory is such that

d�

dt
= p�

pt
= gt�

gtt
= ��r� ���

This equation defines what we mean by �: it is the coordinate angular velocity
of a zero-angular-momentum particle.

We shall find the explicit form for � for the Kerr geometry later, but it is
clear that this effect is present in any metric for which gt� �= 0, which in turn
happens whenever the source of the gravitational field is rotating. So we have the
remarkable result that a particle dropped ‘straight in’ from infinity �p� = 0� is
‘dragged’ just by the influence of gravity so that it acquires an angular velocity
in the same sense as that of the source of the metric. This effect weakens with
distance (roughly as ∼1/r3 for the Kerr metric) and makes the angular momentum
of the source measurable in practice.

The effect is called the dragging of inertial frames. Remember that inertial
frames are defined as those in which free-falling test bodies are stationary or move
along straight lines at constant speed. Consider the freely falling particle discussed
above. At any spatial point �r� ����, in order for the particle to be at rest in some
(inertial) frame the frame must be moving with an angular speed��r� ��. Any other
inertial frame is then related to this instantaneous rest frame by a Lorentz transfor-
mation. Thus the inertial frames are ‘dragged’ by the rotating source. A schematic
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φ

t = 0 t > 0

Figure 13.1 A schematic illustration of the dragging of inertial frames around
a rotating source.

illustration of this effect in a plane � = constant is shown in Figure 13.1, where
the spacetime around the source is viewed along the rotation axis.

13.3 Stationary limit surfaces

A second generic property of spacetimes outside a rotating source is the existence
of stationary limit surfaces; this is related to the dragging of inertial frames. This
effect may be illustrated by considering, for example, photons emitted from a
position with fixed spatial coordinates �r� ���� in the spacetime. In particular,
consider those photons emitted in the ±� directions so that, at first, only dt and
d� are non-zero along the path. Since ds2 = 0 for a photon trajectory, we have

gtt dt
2+2gt� dt d�+g�� d�

2 = 0�

from which we obtain

d�

dt
=− gt�

g��
±
⎡⎣( gt�

g��

)2

− gtt
g��

⎤⎦1/2

�

Now, provided that gtt�r� �� > 0 at the point of emission, we see that d�/dt is
positive (negative) for a photon emitted in the positive (negative) �-direction, as
we would expect, although the value of d�/dt is different for the two directions.
On any surface defined by gtt�r� �� = 0, however, a remarkable thing happens.
The two solutions of the above equation in this case are

d�

dt
=−2gt�

g��
= 2� and

d�

dt
= 0�

The first solution represents the photon sent off in the same direction as the source
rotation, and the second solution corresponds to the photon sent in the opposite
direction. For this second case, we see that when gtt = 0 the dragging of orbits is so
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severe that the photon initially does not move at all! Clearly, any massive particle,
which must move more slowly than a photon, will therefore have to rotate with
the source, even if it has an angular momentum arbitrarily large in the opposite
sense. Any surface defined by gtt�r� �� = 0 is called a stationary limit surface.
Inside the surface, where gtt < 0, no particle can remain at fixed �r� ���� but must
instead rotate around the source in the same sense as the source’s rotation. This
is consistent with our discussion of the Schwarzschild metric, for which gtt = 0
occurs at r = 2�, within which no particle can remain at fixed spatial coordinates.

The fact that a particle (or observer) cannot remain at a fixed �r� ���� inside a
stationary limit surface, where gtt < 0, may also be shown directly by considering
the 4-velocity of an observer at fixed �r� ����, which is given by


u��= �ut�0�0�0�� (13.6)

We require, however, that u · u = gtt�u
t�2 = c2, but this cannot be satisfied if

gtt < 0, hence showing that a 4-velocity of the form (13.6) is not possible in such
a region.

Any surface defined by gtt = 0 is also physically interesting in another way. In
Appendix 9A, we presented a general approach to the calculation of gravitational
redshifts. In particular, we showed that, for an emitter E and receiver R with fixed
spatial coordinates in a stationary spacetime (i.e. one for which �tg�� = 0), the
gravitational frequency shift of a photon is, quite generally,

�R
�E
=
[
gtt�A�

gtt�B�

]1/2
�

where A is the event at which the photon is emitted and B the event at which
it is received. Thus, we see that if the photon is emitted from a point with fixed
spatial coordinates, then �R → 0 in the limit gtt → 0, so that the photon suffers
an infinite redshift. Thus a surface defined by gtt�r� �� = 0 is also often called
an infinite redshift surface. This is again consistent with our discussion of the
Schwarzschild metric, for which the surface r = 2� (where gtt = 0) is indeed an
infinite redshift surface.

13.4 Event horizons

In the Schwarzschild metric, the surface r = 2� is both a surface of infinite
redshift and an event horizon, but in our more general axisymmetric spacetime
these surfaces need not coincide. In general, as we shall see below, the defining
property of an event horizon is that it is a null 3-surface, i.e. a surface whose
normal at every point is a null vector.
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Before discussing the particular case of a stationary axisymmetric spacetime,
let us briefly consider null 3-surfaces in general. Suppose that such a surface is
defined by the equation

f�x��= 0�

The normal to the surface is directed along the 4-gradient n� = ��f = ��f

(remembering that f is a scalar quantity), and for a null surface we have

g��n�n� = 0� (13.7)

This last property means that the direction of the normal lies in the surface
itself; along the surface df = n� dx

� = 0, and this equation is satisfied when the
directions of the 4-vectors dx� and n� coincide. In this same direction, from the
property (13.7) we see that the element of length in the 3-surface is ds = 0. In
other words, along this direction the 3-surface is tangent, at any given point, to
the lightcone at that point. Thus, the lightcone at each point of a null 3-surface
(say, in the future direction) lies entirely on one side of the surface and is tangent
to the 3-surface at that point. This means that the (future-directed) worldline of a
particle or photon can cross a null 3-surface in only one direction, and hence the
latter forms an event horizon.

In a stationary axisymmetric spacetime the equation of the surface must take
the form

f�r� ��= 0�

Moreover, the condition that the surface is null means that

g�����f����f�= 0�

which, for a metric of the form (13.4), reduces to

grr��rf�
2+g�����f�

2 = 0� (13.8)

This is therefore the general condition for a surface f�r� �� to be an event horizon.
We may, however, choose our coordinates r and � in such a way that we can

write the equation of the surface as f�r�= 0, i.e. as a function of r alone. In this
case, the condition (13.8) reduces to

grr��rf�
2 = 0�

from which we see that an event horizon occurs when grr = 0, or equivalently
grr = �. This is consistent with our analysis of the Schwarzschild metric, for
which grr =� at r = 2�.
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13.5 The Kerr metric

So far our discussion has been limited to using symmetry arguments to restrict
the possible form of the stationary axisymmetric line element, which we assumed
to be

ds2 = gtt dt
2+2gt� dt d�+g�� d�

2+grr dr
2+g�� d�

2 (13.9)

or, equivalently,

ds2 = Adt2−B�d�−�dt�2−C dr2−Dd�2� (13.10)

where the arbitrary functions in either form depend only on r and �. As we have
seen, the general form of this line element leads to some interesting new physical
phenomena in such spacetimes. Nevertheless, we must now verify that such a
line element does indeed satisfy Einstein’s gravitational field equations and thus
obtain explicit forms for the metric functions appearing in ds2.

The general approach to performing this calculation is the same as that used in
deriving the Schwarzschild metric. We first calculate the connection coefficients
 �

�# for the metric (13.9) or (13.10) and then use these coefficients to obtain
expressions for the components R�� of the Ricci tensor in terms of the unknown
functions in the line element. Since we are again interested in the spacetime
geometry outside the rotating matter distribution, we must then solve the empty-
space field equations

R�� = 0�

Although this process is conceptually straightforward, it is algebraically very
complicated, and the full calculation is extremely lengthy.1

In fact, one finds that the Einstein equations alone are insufficient to deter-
mine all the unknown functions uniquely. This should not come as a surprise
since the requirement of axisymmetry is far less restrictive than that of spherical
symmetry, used in the derivation of the Schwarzschild geometry. Although we
are envisaging a ‘compact’ rotating body, such as a star or planet, the general
form of the metric (13.10) would also be valid outside a rotating ‘extended’
axisymmetric body, such as a rotating cosmic string. To obtain the Kerr metric,
we must therefore impose some additional conditions on the solution. It tran-
spires that if we demand that the spacetime geometry tends to the Minkowski
form as r →� and that somewhere there exists a smooth closed convex event
horizon outside which the geometry is non-singular, then the solution is unique.

1 For a full derivation, see (for example) S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford
University Press, 1983.



318 The Kerr geometry

In this case, in terms of our ‘Schwarzschild-like’ coordinates �t� r� ����, the line
element for the Kerr geometry takes the form

ds2 = c2
(
1− 2�r

�2

)
dt2+ 4�acr sin2 �

�2
dt d�− �2

�
dr2−�2 d�2

−
(
r2+a2+ 2�ra2 sin2 �

�2

)
sin2 �d�2�

(13.11)

where � and a are constants and we have introduced the functions �2 and �,
defined by

�2 = r2+a2 cos2 �� �= r2−2�r+a2�

This standard expression for ds2 is known as the Boyer–Lindquist form and
�t� r� ���� as Boyer–Lindquist coordinates. The dedicated student may wish to
verify that this metric does indeed satisfy the empty-space field equations.

We can write the metric (13.11) in several other useful forms. In particular, it
is common also to define the function

(2 = �r2+a2�2−a2� sin2 �

and write the metric as

ds2 = �−a2 sin2 �
�2

c2 dt2+ 4�ar sin2 �
�2

c dt d�

− �2

�
dr2−�2 d�2− (2 sin2 �

�2
d�2�

(13.12)

This form can be rearranged in a manner that is more suggestive of a rotating
object, to give

ds2 = �2�

(2
c2 dt2− (2 sin2 �

�2
�d�−wdt�2− �2

�
dr2−�2 d�2� (13.13)

where the physically meaningful function � is given by �= 2�cra/(2.
For later convenience, it is useful to calculate the covariant components g��

of the Kerr metric in Boyer–Lindquist coordinates. Using our earlier calculations
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for the general stationary axisymmetric metric, we find that grr and g�� are simply
the reciprocals of grr and g�� respectively,

grr =− �

�2
� g�� =− 1

�2
�

whereas the remaining contravariant components are given by

gtt = (2

c2�2�
� gt� = 2�ar

c�2�
� g�� = a2 sin2 �−�

�2� sin2 �
�

13.6 Limits of the Kerr metric

We see that the Kerr metric depends on two parameters � and a, as we might
expect for a rotating body. Moreover, in the limit a→ 0,

�→ r2
(
1− 2�

r

)
�

�2 → r2�

(2 → r4�

and so any of the forms for the Kerr metric above tends to the Schwarzschild
form,

ds2→ c2
(
1− 2�

r

)
dt2−

(
1− 2�

r

)−1
dr2− r2 d�2− r2 sin2 �d�2�

Thus suggests that we should make the identification � = GM/c2, where M is
the mass of the body, and also that a corresponds in some way to the angular
velocity of the body. In fact, by investigating the slow-rotation weak-field limit
(see Section 13.20), one can show that the angular momentum J of the body
about its rotation axis is given by J =Mac.

The fact that the Kerr metric tends to the Schwarzschild metric as a→ 0 allows
us to give some geometrical meaning to the coordinates r and � in the limit of a
slowly rotating body. In the general case, however, r and � are not the standard
Schwarzschild polar coordinates. In particular, from (13.11) we see that surfaces
t = constant, r = constant do not have the metric of 2-spheres.

The geometrical nature of Boyer–Lindquist coordinates is elucidated further by
considering the Kerr metric in the limit �→ 0, i.e. in the absence of a gravitating
mass, in which case the spacetime should be Minkowski. One quickly finds that,
in this limit, the line element becomes

ds2 = c2 dt2− �2

r2+a2
dr2−�2 d�2− �r2+a2� sin2 �d�2�
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This is indeed the Minkowski metric ds2= c2 dt2−dx2−dy2−dz2, but written in
terms of spatial coordinates �r� ���� that are related to Cartesian coordinates by2

x =
√
r2+a2 sin � cos��

y =
√
r2+a2 sin � sin��

z = r cos��

where r ≥ 0, 0 ≤ � ≤ � and 0 ≤ �< 2� (see Figure 13.2).
In this case (with � = 0), the surfaces r = constant are oblate ellipsoids of

rotation about the z-axis, given by

x2+y2

r2+a2
+ z2

r2
= 1�

The special case r = 0 corresponds to the disc of radius a in the equatorial plane,
centred on the origin of the Cartesian coordinates. The surfaces � = constant
correspond to hyperbolae of revolution about the z-axis given by

x2+y2

a2 sin2 �
− z2

a2 cos2 �
= 1�

θ = 2π/3

θ = π/3

θ=
π/6

θ=π/4

θ=3π/4

z

θ = π/2
x

θ=
5π/6

–a a

r = 4

r = 3

r = 2

r = 1

r = 0

θ=
0

Figure 13.2 Boyer–Lindquist coordinates in the �= 0 plane in Euclidean space.

2 The coordinates �r� ���� are related to the standard oblate spheroidal coordinates ������� by r = a sinh �
and � = �−�/2; see, for example, M. Abramowitz & I. Stegun, Handbook of Mathematical Functions,
Dover (1972).
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The asymptote for large values of r is a cone, with its vertex at the origin, that
subtends a half-angle �. The angle � is the standard azimuthal angle. Clearly, in
the limit a→ 0 the coordinates �r� ���� correspond to standard spherical polar
coordinates. It should be remembered, however, that the simple interpretation of
the coordinates given above no longer holds in the general case of the Kerr metric,
when � �= 0.

13.7 The Kerr–Schild form of the metric

The form (13.11) for the line element is not in fact the form originally discovered
by Roy Kerr in 1963. Indeed, Kerr himself followed an approach to the derivation
very different from that presented here. His original interest was in line elements
of the general form

ds2 = ��� dx
� dx�−�l�l� dx

� dx��

where the vector l� is null with respect to the Minkowski metric ���, i.e.

���l
�l� = 0�

This form for a line element is now known as the Kerr–Schild form. Kerr showed
that a line element of this form satisfied the empty-space field equations (together
with our additional conditions on the solution mentioned above), provided that

� = 2�r3

r2+a2z2
�

[
l�
] = (

c�
rx+ay

a2+y2
�
ry−ax

a2+y2
�
z

r

)
�

where 
x��= � t̄� x� y� z� and r is defined implicitly in terms of x� y and z by

r4− r2�x2+y2+ z2−a2�−a2z2 = 0� (13.14)

The corresponding form for the line element is given by

ds2 = c2 dt̄2−dx2−dy2−dz2− 2�r3

r4+a2z2

×
[
c d t̄− r

r2+a2
�xdx+y dy�− a

r2+a2
�xdy−y dx�− z

r
dz

]2
�

(13.15)
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It is straightforward, but lengthy, to show that the two forms (13.15) and (13.11)
for the line element are identical if the two sets of coordinates are related by

c d t̄ = c dt− 2�r
�

dr� (13.16)

x = �r cos�′ +a sin�′� sin �� (13.17)

y = �r sin�′ −a cos�′� sin �� (13.18)

z = r cos�� (13.19)

where d�′ = d�− �a/��dr.

13.8 The structure of a Kerr black hole

The Kerr metric is the solution to the empty-space field equations outside a
rotating massive object and so is only valid down to the surface of the object.
As in our discussion of the Schwarzschild solution, however, it is of interest to
consider the structure of the full Kerr geometry as a vacuum solution to the field
equations.

Singularities and horizons

The Kerr metric in Boyer–Lindquist coordinates is singular when �= 0 and when
�= 0. Calculation of the invariant curvature scalar R��#�R

��#� reveals that only
�= 0 is an intrinsic singularity. Since

�2 = r2+a2 cos2 � = 0�

it follows that this occurs when

r = 0� � = �/2�

From our earlier discussion of Boyer–Lindquist coordinates, we recall that r = 0
represents a disc of coordinate radius a in the equatorial plane. Moreover, the
collection of points with r = 0 and �=�/2 constitutes the outer edge of this disc.
Thus, rather surprisingly, the singularity has the form of a ring, of coordinate
radius a, lying in the equatorial plane. Similarly, using (13.14) and (13.19), we
see that, in terms of the ‘Cartesian’ coordinates �t̄� x� y� z�, the singularity occurs
when x2+y2 = a2 and z= 0.
The points where �= 0 are coordinate singularities, which occur on the surfaces

r± = �± (�2−a2
)1/2

� (13.20)
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As discussed above, event horizons in the Kerr metric will occur where r =
constant is a null 3-surface, and this is given by the condition grr = 0 or, equiva-
lently, grr =�. From (13.11), we have

grr =−
�2

�
�

from which we see that the surfaces r = r+ and r = r−, for which � = 0, are
in fact event horizons. Thus, the Kerr metric has two event horizons. In the
Schwarzschild limit a→ 0, these reduce to r = 2� and r = 0. The surfaces r = r±
are axially symmetric, but their intrinsic geometries are not spherically symmetric.
Setting r = r± and t = constant in the Kerr metric and noting from (13.20) that
r2±+a2 = 2�r±, we obtain two-dimensional surfaces with the line elements

d#2 = �2± d�
2+

(
2�r±
�±

)2

sin2 �d�2� (13.21)

which do not describe the geometry of a sphere. If one embeds a 2-surface with
geometry given by (13.21) in three-dimensional Euclidean space, one obtains a
surface resembling an axisymmetric ellipsoid, flattened along the rotation axis.

The existence of the outer horizon r = r+, in particular, shows that the Kerr
geometry represents a (rotating) black hole. It is a one-way surface, like r = 2�
in the Schwarzschild geometry. Particles and photons can cross it once, from the
outside, but not in the opposite direction. It is common practice to define three
distinct regions of a Kerr black hole, bounded by the event horizons, in which the
solution is regular: region I, r+ < r <�; region II, r− < r < r+; and region III,
0< r < r−.
Not all values of � and a correspond to a black hole, however. From (13.20),

we see that horizons (at real values of r) exist only for

a2 < �2� (13.22)

Thus the magnitude of the angular momentum J =Mac of a rotating black hole
is limited by its squared mass. Moreover, if the condition (13.22) is satisfied
then the intrinsic singularity at �= 0 is contained safely within the outer horizon
r = r+. An extreme Kerr black hole is one that has the limiting value a2 = �2.
In this case, the event horizons r+ and r− coincide at r = �. It may be that
near-extreme Kerr black holes develop naturally in many astrophysical situations.
Matter falling towards a rotating black hole forms an accretion disc that rotates
in the same sense as the hole. As matter from the disc spirals inwards and falls
into the black hole, it carries angular momentum with it and hence increases the
angular momentum of the hole. The process is limited by the fact that radiation
from the infalling matter carries away angular momentum. Detailed calculations
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suggest that the limiting value is a≈ 0�998�, which is very close to the extreme
value.

For a2 > �2 we find that � > 0 throughout, and so the Kerr metric is regular
everywhere except � = 0, where there is a ring singularity. Since the horizons
have disappeared, this means that the ring singularity is visible to the outside
world. In fact, one can show explicitly that timelike and null geodesics in the
equatorial plane can start at the singularity and reach infinity, thereby making
the singularity visible to the outside world. Such a singularity is called a naked
singularity (as mentioned in Section 12.6) and opens up an enormous realm for
some truly wild speculation. However, Penrose’s cosmic censorship hypothesis
only allows singularities that are hidden behind an event horizon.

Stationary limit surfaces

As we showed earlier, in a general stationary axisymmetric spacetime the condi-
tion gtt = 0 defines a surface that is both a stationary limit surface and a surface
of infinite redshift. For the Kerr metric, we have

gtt = c2
(
1− 2�r

�2

)
= c2

r2−2�r+a2 cos2 �
�2

�

so that (for a2 ≤ �2) these surfaces, S+ and S−, occur at

rS± = �± (�2−a2 cos2 �
)1/2

�

The two surfaces are axisymmetric, but setting r = rS± and t = constant in the
Kerr metric, and noting from (13.20) that r2

S± +a2 = 2�rS± +a2 sin2 �, we obtain
two-dimensional surfaces with line elements

d#2 = �2S± d�
2+

[
2�rS±�2�rS± +2a2 sin2 ��

�2
S±

]
sin2 �d�2� (13.23)

which again do not describe the geometry of a sphere. If one embeds a 2-surface
with geometry given by (13.23) in three-dimensional Euclidean space then a
surface resembling an axisymmetric ellipsoid, flattened along the rotation axis, is
once more obtained. In the Schwarzschild limit a→ 0, the surface S+ reduces to
r = 2� and S− to r = 0. As anticipated we see that, in the Schwarzschild solution,
the surfaces of infinite redshift and the event horizons coincide.

The surface S− coincides with the ring singularity in the equatorial plane.
Moreover, S− lies completely within the inner horizon r = r− (except at the poles,
where they touch). The surface S+ has coordinate radius 2� at the equator and,
for all �, it completely encloses the outer horizon r = r+ (except at the poles,
where they touch), giving rise to a region between the two called the ergoregion.
The structure of a Kerr black hole is illustrated in Figure 13.3.



13.8 The structure of a Kerr black hole 325

Infinite redshift
surface S–

Event horizon r = r–

Ring singularityEvent horizon r = r+

Stationary limit
surface (infinite
redshift surface) S+

Ergosphere

z

y

Symmetry axis (θ = 0)

Figure 13.3 The structure of a Kerr black hole.

The ergoregion

The ergoregion gets its name from the Greek word ergo meaning work. The
key property of an ergoregion (which can occur in other spacetime geometries)
is that it is a region for which gtt < 0 and from which particles can escape.
Clearly, the Schwarzschild geometry does not possess an ergoregion, since gtt < 0
is only satisfied within its event horizon. As we will discuss in Section 13.9,
Roger Penrose has shown that it is possible to extract the rotational energy of
a Kerr black hole from within the ergoregion. To assist in that discussion, it is
useful here to consider the constraints induced by the spacetime geometry on the
motion of observers within the ergoregion.

Since gtt < 0 at all points within the ergoregion, an immediate consequence (as
already discussed in Section 13.3) is that an observer (even in a spaceship with
an arbitrarily powerful rocket) cannot remain at a fixed �r� ���� position. The
4-velocity of such an observer would be given by


u��= �ut�0�0�0�� (13.24)

but the requirement that u ·u= gtt�u
t�2= c2 cannot be satisfied if gtt < 0, showing

that a 4-velocity of the form (13.24) is not possible.
It is possible, however, for a rocket-powered observer to remain at fixed r

and � coordinates by rotating around the black hole (with respect to an observer
at infinity) in the same sense as the hole’s rotation; this is an illustration of the
frame-dragging phenomenon discussed in Section 13.3. The 4-velocity of such an
observer is


u��= ut�1�0�0���� (13.25)
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where �= d�/dt is his angular velocity with respect to the observer at infinity.
For any particular values of r and �, there exists a range of allowed values for �,
which we now derive. We again require u ·u= g��u

�u� = c2 and, using (13.25),
this condition becomes

gtt�u
t�2+2gt�u

tu�+g���u
��2 = �ut�2�gtt+2gt��+g���

2�= c2� (13.26)

Thus, for ut to be real we require that

g���
2+2gt��+gtt > 0� (13.27)

Since g�� < 0 everywhere, the left-hand side of (13.27) as a function of � gives
rise to an upward pointing parabola. Thus, the allowed range of angular velocities
is given by �− <�<�+, where

�± = −
gt�

g��
±
⎡⎣( gt�

g��

)2

− gtt
g��

⎤⎦1/2

= �±
(
�2− gtt

g��

)1/2

� (13.28)

There are clearly two special cases to be considered. First, when gtt = 0 we
have �− = 0 and �+ = 2�. This occurs on the stationary limit surface r = rS+ ,
which is the outer defining surface of the ergoregion. The lower limit �− = 0 is
precisely the physical meaning of a stationary limit surface: within it an observer
must rotate in the same direction as the black hole and so � must be positive.
For larger values of r , however, � can be negative. The second special case to
consider is when �2 = gtt/g��, in which case �± =�. Thus, at points where this
condition holds, every observer on a circular orbit is forced to rotate with angular
velocity � = �. Where (if anywhere) does this condition hold? Upon inserting
the appropriate expressions for �, gtt and g�� from the Kerr metric (13.13) into
(13.28), one finds, after some careful algebra, that our condition holds where
�= 0, i.e. at the outer event horizon r = r+, which is the inner defining surface
of the ergoregion.

Putting our results together we find that, for an observer at fixed r and �

coordinates within the ergoregion, the allowed range of angular velocities �− <

� < �+ becomes progressively narrower as the observer is located closer and
closer to the horizon r = r+, and at the horizon itself the angular velocity is
limited to the single value

�H ≡ ��r+� ��=
ac

2�r+
� (13.29)
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which is, in fact, independent of �. We also note that �H is the maximum
allowed value of the angular velocity for any observer at fixed r and � within the
ergoregion.

Extension of the Kerr metric

So far we have not discussed the disc region interior to the ring singularity.
Although beyond the scope of our discussion, it may be shown that if a particle
passes through the interior of the ring singularity then it emerges into another
asymptotically flat spacetime, but not a copy of the original one. The new space-
time is described by the Kerr metric with r < 0 and hence � never vanishes, so
there are no event horizons.3

In the new spacetime, the region in the vicinity of the ring singularity has the
very strange property that it allows the existence of closed timelike curves. For
example, consider a trajectory in the equatorial plane that winds around in �

while keeping t and r constant. The line element along such a path is

ds2 =−
(
r2+a2+ 2�a2

r

)
d�2�

which is positive if r is negative and small. These are then closed timelike curves,
which violate causality and would seem highly unphysical. If they represent
worldlines of observers, then these observers would travel back and meet them-
selves in the past! It must be remembered, however, that the analytic extension
of the Kerr metric to negative values of r is subject a number of caveats and
may not be physically meaningful. It seems highly improbable that in practice
the gravitational collapse of a real rotating object would lead to such a strange
spacetime.

13.9 The Penrose process

We now discuss the Penrose process, by which energy may be extracted from
the rotation of a Kerr black hole (or, indeed, from any spacetime possessing
an ergoregion). Suppose that an observer, with a fixed position at infinity, for
simplicity, fires a particle A into the ergoregion of a Kerr black hole. The energy
of particle A, as measured by the observer at the emission event �, is given by

E�A� = p�A���� ·uobs = p
�A�
t ���� (13.30)

where p�A���� is the 4-momentum of the particle at this event and uobs is the
4-velocity of the observer, which has components 
u�obs�= �1�0�0�0�.

3 In the extended Kerr solution it is common to define region III to cover the coordinate range −�< r < r−.
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Suppose now that, at some point in the ergoregion, particle A decays into two
particles B and C. By the conservation of momentum, at the decay event �
one has

p�A����= p�B����+p�C����� (13.31)

If the decay occurs in such a way that particle C (say) eventually reaches infinity,
a stationary observer there would measure the particle’s energy at the reception
event � to be

E�C� = p
�C�
t ���= p

�C�
t ����

where, in the second equality, we have made use of the fact that the covariant time
component of a particle’s 4-momentum is conserved along geodesics in the Kerr
geometry, since the metric is stationary ��tg�� = 0�. Similarly, for the original

particle we have p�A�t ���= p
�A�
t ���. Thus, the time component of the momentum

conservation condition (13.31) may be written in the form

E�C� = E�A�−p
�B�
t ���� (13.32)

where p�B�t is also conserved along the geodesic followed by particle B.
The key step is now to note that p�B�t = et · p�B�, where et is the t-coordinate

basis vector, whose squared ‘length’ is given by

et · et = gtt�

If particle B were ever to escape beyond the outer surface of the ergoregion,
i.e. to a region where gtt > 0, then et would be timelike. Thus, p�B�t would be
proportional to the particle energy as measured by an observer with 4-velocity
along the et-direction. In this case p�B�t must therefore be positive, and so (13.32)
shows that E�C� < E�A�, i.e. we get less energy out than we put in. However, if
the particle B were never to escape the ergoregion but instead fall into the black
hole, then it would remain in a region where gtt < 0 and so et is spacelike. In this
case p

�B�
t would be a component of spatial momentum, which might be positive

or negative. For decays where it is negative, from (13.32) we see that E�C� > E�A�

and so we have extracted energy from the black hole. This is the Penrose process.
What are the consequences of the Penrose process for the black hole? Once the

particle has fallen inside the event horizon, the mass M and angular momentum
J =Mac of the black hole are changed:

M → M+p
�B�
t /c2� (13.33)

J → J −p
�B�
� � (13.34)

where in the last equation we must remember that, for particle orbits in general,
p� is minus the component of angular momentum of the particle along the rotation
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axis of the black hole. From (13.33), we see that the negative value of p�B�t for
the infalling particle in the Penrose process reduces the total mass of the black
hole. As we now show, however, the Penrose process also reduces the angular
momentum of the black hole. This is what is meant by saying that the Penrose
process extracts rotational energy from the black hole.

To show that the angular momentum of the black hole is reduced by the
infalling particle, it is useful to consider an observer in the ergoregion at fixed
r and � coordinates, who observes the particle B as it passes him. As shown in
Section 13.8, the 4-velocity of such an observer is


u��= ut�1�0�0���� (13.35)

where �= d�/dt is the observer’s angular velocity with respect to infinity. This
observer would measure the energy of particle B to be

E�B� = p�B�� u� = ut
(
p
�B�
t +p

�B�
� �

)
�

Since this energy must be positive, we require

L <
p
�B�
t

�
(13.36)

where L=−p�B�� is the component of the angular momentum of the particle along

the rotation axis of the hole. Since p�B�t is negative in the Penrose process and �

must be positive for an observer in the ergoregion, we see that L < 0. Thus the
infalling particle must have negative angular momentum, which therefore reduces
the net angular momentum of the black hole. Rotational energy can continue to
be extracted until the angular momentum of the black hole is reduced to zero and
it becomes a Schwarzschild black hole.

We can, in fact, go slightly further and set a strict upper limit on L (which, since
L is negative, is equivalent to a lower limit on its magnitude). We actually require
(13.36) to hold for any observer at fixed r and � in the ergoregion. From our
earlier discussion of the ergoregion, the maximum value of the angular velocity
occurs for an observer at the horizon r = r+, in which case � = �H, (13.29).
Thus, denoting the changes in the mass and angular momentum of the black hole
by �M and �J respectively, the condition (13.36) becomes

�J <
c2�M

�H
�

where it should be remembered that both �M and �J are negative.
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13.10 Geodesics in the equatorial plane

As one might expect, the general equations for non-null and null geodesics in the
Kerr geometry are much less tractable than in the Schwarzschild case, and particle
trajectories exhibit complicated behaviour. For example, in general the trajectory
of a massive particle or photon is not constrained to lie in a plane. This is a direct
consequence of the fact that the spacetime is not spherically symmetric and so, in
general, the angular momentum of a test particle is not conserved. Since the Kerr
geometry is stationary and axisymmetric, the conserved quantities along particle
trajectories are pt and p�. The latter corresponds to the conservation of only the
component of angular momentum along the rotation axis. Nevertheless, since the
metric is reflection-symmetric through the equatorial plane, particles for which
p� = 0, i.e. which are initially in the equatorial plane, will always have p� = 0 and
so the trajectory remains in this plane. We shall therefore confine our attention to
this simpler special case.

Setting � = �/2 in the Kerr metric (13.11), we obtain

ds2 = c2
(
1− 2�

r

)
dt2+ 4�ac

r
dt d�− r2

�
dr2−

(
r2+a2+ 2�a2

r

)
d�2�

(13.37)
from which the covariant metric components g�� in the equatorial plane can
be read off. Following the method described in Section 13.1, the corresponding
contravariant metric components are found to be

gtt = 1
c2�

(
r2+a2+ 2�a2

r

)
� gt� = 2�a

cr�
�

grr =−�

r2
� g�� =− 1

�

(
1− 2�

r

)
�

From (13.37) one can immediately write down the corresponding ‘Lagrangian’
� = g��ẋ

�ẋ�. In the interests of notational simplicity, for a massive particle we
shall take the particle to have unit rest mass and for a photon we shall choose
an appropriate affine parameter along the null geodesic such that, in both cases,
p� = ẋ�. One may obtain the geodesic equations by writing down the appropriate
Euler–Lagrange equations. It is quicker, however, simply to use the fact that pt and
p� are conserved along geodesics (since the metric does not depend explicitly on
t and �), which leads immediately to the first integrals of the t- and �- equations.
These are given by

pt = gttṫ+gt��̇= c2
(
1− 2�

r

)
ṫ+ 2�ac

r
�̇= kc2� (13.38)

p� = g�tṫ+g���̇=
2�ac
r

ṫ−
(
r2+a2+ 2�a2

r

)
�̇=−h� (13.39)
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where we have defined the constants k and h so that in the Schwarzschild limit
a→ 0 they coincide with the constants introduced in Chapter 9. This pair of
simultaneous equations for ṫ and �̇ is straightforwardly solved to give

ṫ = 1
�

[(
r2+a2+ 2�a2

r

)
k− 2�a

cr
h

]
�

�̇= 1
�

[
2�ac
r

k+
(
1− 2�

r

)
h

]
�

(13.40)

Instead of using the complicated Euler–Lagrange equation for r, we may use
the first integral provided by the invariant length of the 4-momentum p. Since
the covariant components of p are particularly simple, the most convenient form
to use is g��p�p� = �2, where �2 = c2 for a massive particle and �2 = 0 for a
photon.4 Since p� = 0 this gives

gtt�pt�
2+2gt�ptp�+g���p��

2+grr�pr�
2 = �2� (13.41)

where, for the moment, it is simpler not to write out the contravariant metric
components in full. By substituting pt = kc2 and p� = −h into (13.41) and
remembering that pr = grr ṙ and grr = 1/grr , we may then obtain the ‘energy’
equation for equatorial trajectories, which gives ṙ in terms of only r and a set of
constants. This yields

ṙ2 = grr��2−gttc4k2+2gt�c2kh−g��h2�� (13.42)

At this stage, we may (if we wish) substitute the explicit forms for the contravariant
metric coefficients to obtain

ṙ2 = c2k2− �2+ 2�2�
r

+ a2�c2k2− �2�−h2

r2
+ 2��h−ack�2

r3
� (13.43)

In the limit a→ 0, the energy equation reduces to those derived in Chapter 9
for massive-particle ��2 = c2� and photon ��2 = 0� orbits in the Schwarzschild
geometry.

Since we are restricting our attention to the equatorial plane, we need not
consider the Euler–Lagrange equation for �, since it will not yield an independent
equation of motion. Thus, equations (13.40) and (13.43) completely determine
the null and non-null geodesics in the equatorial plane for given values of the
constants k and h.

4 The device of working in terms of �2 allows one to calculate the null and non-null geodesic equations
simultaneously; one simply sets �2 to the appropriate value at the end of the calculation.
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The null and non-null geodesics in the equatorial plane can be delineated in
much the same way as for the Schwarzschild case in Chapter 9, albeit requiring
significantly more complicated algebra. Before moving on to discuss particu-
lar examples, however, it is worth noting two essential differences from the
Schwarzschild case. First, in the Kerr equatorial geometry trajectories will depend
upon whether the particle or photon is in a co-rotating (prograde) or counter-
rotating (retrograde) orbit, i.e. rotating about the symmetry axis in the same sense
or the opposite sense to that of the rotating gravitational source. Second, both t

and � are ‘bad’ coordinates near the horizons. Expressed in terms of these coor-
dinates, a trajectory approaching an horizon (at r+ or r−) will spiral around the
black hole an infinite number of times, just as it takes an infinite coordinate time
t to cross the horizon; neither behaviour is experienced by an observer comoving
with the particle.

13.11 Equatorial trajectories of massive particles

For a massive particle, the timelike geodesics in the equatorial plane are governed
by (13.40), and the ‘energy’ equation (13.43) with �2 = c2, which reads

ṙ2 = c2�k2−1�+ 2�c2

r
+ a2c2�k2−1�−h2

r2
+ 2��h−ack�2

r3
� (13.44)

The interpretation of the constants k and h may be obtained by considering the
limit r→�, in the same way as for the Schwarzschild geometry. One thus finds
that kc2 and h are, respectively, the energy and angular momentum per unit rest
mass of the particle describing the trajectory.

One may rewrite the energy equation (13.44) in the form

1
2 ṙ

2+Veff�r�h� k�= 1
2c

2�k2−1�� (13.45)

where we have identified the effective potential per unit mass as

Veff�r�h� k�=−
�c2

r
+ h2−a2c2�k2−1�

2r2
− ��h−ack�2

r3
� (13.46)

There are several points to note here. First, Veff has the same r-dependence as
the corresponding expression for the Schwarzschild case, derived in Chapter 9;
it is only that the coefficients of the last two terms are more complicated in the
Kerr case. The graph of Veff therefore has the same general shape as those shown
in Figure 9.4. Indeed, as one would expect, in the limit a→ 0 equation (13.46)
reduces to the Schwarzschild result. When a �= 0, however, one must be careful
in interpreting (13.46) as an effective potential, since it depends on the energy k
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of the particle (as well as the usual dependence on the angular momentum h).
Nevertheless, by differentiating (13.45) with respect to �, one finds that the radial
acceleration of a particle is still given by r̈ =−dVeff/dr. Similarly, the stability of
circular orbits, for example, may be deduced by considering the sign of d2Veff/dr

2

in the usual manner. Also, an incoming particle will fall into the black hole only
if the parameters h and k defining its trajectory are such that the maximum value
of Veff�r�h� k� exceeds

1
2c

2�k2−1�.
In our discussion of the Schwarzschild geometry in Chapter 9, in addition to the

energy equation it was reasonably straightforward also to derive the ‘shape’ equa-
tion for a general massive particle orbit and, equivalently, a simple expression for
d�/dr. Unfortunately, it is algebraically very complicated (and unilluminating)
to obtain the equivalent expressions for the Kerr geometry, even in the case of
equatorial orbits. It is therefore natural to confine our attention to special cases
in which the symmetry of the orbit makes the algebra more manageable. We are
once again unfortunate, however, since the Kerr solution does not admit radial
geodesics (either null or non-null). In a loose sense, the reason is that the rotating
object ‘drags’ the surrounding space and the geodesics with it. Nevertheless, it is
still reasonably straightforward to consider motion with zero angular momentum
and motion in a circle.

13.12 Equatorial motion of massive particles with zero angular momentum

For a particle falling into a Kerr black hole whose angular momentum about
the black hole is zero, we have h = 0. Setting h = 0 reduces the complexity of
the geodesic equations (13.40–13.44) somewhat. To simplify the equations still
further, however, we will also consider the limit in which the particle starts at
rest from infinity, in which case k = 1. In this case the particle will initially be
moving radially.

Using these values of h and k, the geodesic equations become

ṫ = 1

�

(
r2+a2+ 2�a2

r

)
�

�̇ = 2�ac
r�

�

ṙ2 = 2�c2

r

(
1+ a2

r2

)
�

From these expression, we see that both ṫ and �̇ are infinite at the horizons (when
�= 0), which is an illustration of the fact that both t and � are ‘bad coordinates’
in these regions. Interestingly, the singular behaviours of the t and � coordinates
‘cancel’ in the expression for ṙ2.
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The above equations may in turn be used to obtain expressions relating differ-
entials of the coordinates along the particle trajectory. In particular, we find that

dr

dt
= ṙ

ṫ
= −�

[
2�c2

r

(
1+ a2

r2

)]1/2(
r2+a2+ 2�a2

r

)−1
d�

dt
= �̇

ṫ
= 2�ac

r

(
r2+a2+ 2�a2

r

)−1
d�

dr
= �̇

ṙ
= −2�a

r�

[
2�
r

(
1+ a2

r2

)]−1/2
�

We note that both dt/dr and d�/dr become infinite at the horizons (when
� = 0), but d�/dt remains finite there. The above equations may be integrated
numerically in a straightforward way to obtain the trajectory of the massive
particle. In Figure 13.4, we plot such a trajectory in the �ct� r�-plane and in the
�x� y�-plane (where x = √r2+a2 cos� and y = √r2+a2 sin�) for a particle
that passes through the point �r��� = �8��0� at t = 0 in a Kerr geometry with
rotation parameter a= 0�8�. In particular, we note that both plotted curves have
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Figure 13.4 The trajectory of an initially radially moving massive particle falling
from rest at infinity in a Kerr geometry with rotation parameter a= 0�8�. The
trajectory (solid line) is plotted in the �ct� r�-plane (left) and the �x� y�-plane
(right), where x =√r2+a2 cos� and y =√r2+a2 sin�. The locations of the
horizons (broken lines) and ring singularity (dotted line) are also indicated. The
points correspond to unit intervals of c�/�, where � is the proper time and we
have taken � = t = 0 at r = 8�.
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discontinuities at the horizons, which are shown as broken lines. This illustrates
the pathology of the t- and �-coordinates in these regions. The points in each plot
correspond to unit intervals of c�/�, where � is the proper time and we have taken
� = 0 at r = 8�. The proper time increases steadily, without becoming singular;
the particle reaches the ring singularity in the equatorial plane at c�/�= 10�2. In
the right-hand plot we also note the effect of frame-dragging on the trajectory of
the initially radially moving particle.

13.13 Equatorial circular motion of massive particles

For circular motion, we require that ṙ = 0 and, for the particle to remain in a
circular orbit, that the radial acceleration r̈ must also vanish. In terms of the
effective potential defined in (13.46), for a circular orbit at r = rc we thus require

Veff�rc�h� k�= 1
2c

2�k2−1� and
dVeff

dr

∣∣∣∣
r=rc

= 0� (13.47)

These two equations determine the values of the constants k and h that correspond
to a circular orbit at some assigned radius r = rc.
Obtaining analytic expressions for k and h is, algebraically, considerably more

complicated than in the Schwarzschild case. The derivation is simplified some-
what, however, by working in terms of u = 1/r. Making this substitution into
(13.46) and then differentiating the resulting expression with respect to u, we
find that

−�c2u+ 1
2 
h

2−a2c2�k2−1��u2−��h−ack�2u3 = 1
2c

2�k2−1��

−�c2+ 
h2−a2c2�k2−1��u−3��h−ack�2u2 = 0�

where the second equality holds since dVeff/dr = �dVeff/du��du/dr�, and there-
fore dVeff/du = 0 implies that dVeff/dr = 0. The algebra is further eased by
introducing the variable x = h−ack, so that the two equations above become

−�c2u+ 1
2�x

2+2ackx+a2c2�u2−�x2u3 = 1
2c

2�k2−1�� (13.48)

−�c2+ �x2+2ackx+a2c2�u−3�x2u2 = 0� (13.49)

Subtracting (13.48) from u times (13.49) and performing a simple rearrangment
of (13.49), we obtain

c2k2 = c2�1−�u�+�x2u3� (13.50)

2xacku = x2u�3�u−1�− c2�a2u−��� (13.51)
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These are the basic equations to be used for obtaining analytic expressions for
the constants k and h.

Eliminating k between (13.50) and (13.51), we quickly obtain a quadratic
equation for x2,

u2
[
�3�u−1�2−4a2�u3

]
x4−2c2u

[
�3�u−1��a2u−��−2ua2��u−1�

]
x2

+ c4�a2u−��2 = 0�

Using the standard formula for the roots of a quadratic equation, one finds (after
some straightforward but substantial algebra) that

x2 = c2�a
√
u±√��2

u�1−3�u∓2a
√
�u3�

� (13.52)

As we shall see below, the upper signs corresponds to the counter-rotating circular
orbit and the lower signs to the co-rotating one. Furthermore, in order to obtain
x we must choose either the positive or negative square root of (13.52). As we
might expect from our discussion of the stability of massive particle orbits in the
Schwarzschild case (see Chapter 9), the possibility exists for a circular orbit at
a given coordinate radius to be either stable or unstable. It is straightforward to
show that it is the negative root of (13.52) that corresponds to the stable case, in
which we are most interested. We therefore consider only the solution

x =− c�a
√
u±√��


u�1−3�u∓2a
√
�u3��1/2

� (13.53)

Inserting this solution into (13.50), for a stable circular orbit of inverse coordinate
radius u we find that

k= 1−2�u∓a
√
�u3

�1−3�u∓2a
√
�u3�1/2

� (13.54)

the energy of a particle of rest mass m0 being E = km0c
2. The corresponding

value of the specific angular momentum for the orbit is obtained by calculating
h= x+ack, which gives

h=∓ c
√
��1+a2u2±2a

√
�u3�√

u�1−3�u∓2a
√
�u3�1/2

� (13.55)

We note that, as expected, in the limit a→ 0 the expressions (13.54) and (13.55)
reduce to the corresponding results in the Schwarzschild case derived in Chapter 9.
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13.14 Stability of equatorial massive particle circular orbits

It is worthwhile considering in some detail the stability of equatorial massive-
particle orbits. Of particular astrophysical interest is the stability of the circular
orbits discussed above and, especially, the coordinate radius of the innermost
stable circular orbit in the co- and counter-rotating cases.

For a circular orbit of coordinate radius r = rc we require the condition (13.47).
In addition, for marginal stability we require that (for r = rc)

d2Veff

dr2
= d2Veff

du2

(
du

dr

)2

+ dVeff

du

d2u

dr2
= u3

(
d2Veff

du2
+2

dVeff

du

)
= 0�

where u= 1/r . Since dVeff/du= 0 for a circular orbit, this additional requirement
amounts to d2Veff/du

2 = 0. From (13.49), this reads

x2+2ackx+a2c2−6�x2u= 0�

which may be more conveniently written as

u= x2+2ackx+a2c2

6�x2
= h2−a2c2�k2−1�

6�x2
�

Inserting the expressions (13.53–13.55) for x, k and h respectively into this
equation and simplifying, one finds that

1−3a2u2−6u�∓8a
√
�u3 = 0�

Finally, using u= 1/r, one obtains an implicit equation for the coordinate radius
r of the innermost stable circular orbit,

r2−6�r−3a2∓8a
√
�r = 0� (13.56)

where, once again, the upper sign corresponds to the counter-rotating orbit and
the lower sign to the co-rotating orbit. In the limit a= 0, we see that we recover
r = 6� for the innermost stable circular orbit in the Schwarzschild case. In the
extreme Kerr limit a = � we find, by inspection, that r = 9� for the counter-
rotating orbit and r = � for the co-rotating case.

The general solution to the above quartic equation in
√
r can be found analyti-

cally by standard methods, but the resulting expressions are algebraically messy.
It is more instructive instead to solve the equation numerically and plot the results
for a range of a/� values, as shown in Figure 13.5 (left-hand panel). Also of
particular interest is the energy E of a particle in the innermost co- and counter-
rotating stable circular orbits. Using the expression (13.54), in the right-hand
panel of Figure 13.5 we plot k= E/�m0c

2� for these orbits as a function of a/�.
The difference between the energy E = km0c

2 of a particle in an orbit and the
energy m0c

2 of the particle at rest at infinity is the gravitational binding energy
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Figure 13.5 The scaled coordinate radii r/� (left) and the constant ks =
E/�m0c

2� (right) for the innermost stable co-rotating and counter-rotating circu-
lar orbits in the equatorial plane of the Kerr geometry, as functions of a/�.

of the orbit. As discussed in Chapter 9, the binding energy of a particle in an
accretion disc around a compact object can be released. As the particle loses
angular momentum, owing to turbulent viscosity, it gradually moves inwards,
releasing gravitational energy mostly as radiation, until it reaches the innermost
stable circular orbit, at which point it spirals rapidly inwards onto the compact
object. The efficiency )acc of the accretion disc is the fraction of the rest mass
energy that can be released in making the transition from rest at infinity to
the innermost stable circular orbit and is given by )acc = 1− k. We see from
Figure 13.5 (right-hand panel) that for all values of a/� the co-rotating orbit is
the more bound, and the corresponding binding energy is greatest for an extreme
Kerr black hole �a/�= 1�. In this case

)acc = 1− 1√
3
≈ 42%�

and so an accretion disc around such an object could convert nearly one-half
of the rest mass energy of its constituent particles into radiation. For a realistic
astrophysical Kerr black hole that has been ‘spun-up’ by the accretion process one
expects that a/� ≈ 0�998, in which case )acc ≈ 32%, which is still substantially
larger than the value of 5�7% in the Schwarzschild case.

13.15 Equatorial trajectories of photons

For photons, the null geodesics in the equatorial plane are governed by (13.40)
and the ‘energy’ equation (13.43) with )2 = 0, which reads

ṙ2 = c2k2+ a2c2k2−h2

r2
+ 2��h−ack�2

r3
� (13.57)
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As in our discussion of photon trajectories in the Schwarzschild geometry in
Chapter 9, it is useful to introduce the parameter b = h/�ck�. By considering the
limit r →�, one again finds that b may be interpreted as an impact parameter
for the trajectories that extend to infinity. We note that for r→� the constant k
is positive and so b (or h) has the same sign as �̇ in this limit.

One may rewrite the energy equation (13.57) in the form

ṙ2

h2
+Veff�r� b�=

1
b2

� (13.58)

where we have identified the effective potential as

Veff�r� b�=
1
r2

[
1−

(a
b

)2− 2�
r

(
1− a

b

)2]
� (13.59)

As was the case for massive particles, Veff has the same r-dependence as the
corresponding expression for the Schwarzschild case, derived in Chapter 9, and
so the graph of Veff has the same general shape. Indeed, as one would expect,
in the limit a→ 0 equation (13.59) reduces to the Schwarzschild result. When
a �= 0, however, one must again be careful in interpreting (13.59) as an effective
potential, since it depends on the value b (and hence k) of the particle trajectory.
Nevertheless, by differentiating (13.58) with respect to �, one finds that the radial
acceleration of a particle is still given by r̈ =−h2 dVeff/dr. (In fact, by a rescaling
�→ h� of the affine parameter �, the explicit h-dependence is removed from
this result and (13.58).) Similarly, the stability of a circular orbit, for example,
may be deduced by considering the sign of d2Veff/dr

2 in the usual manner.

13.16 Equatorial principal photon geodesics

As might be expected, radial photon geodesics do not exist in the equatorial plane
of the Kerr geometry. Nevertheless, we can obtain information about the radial
variation of the light-cone structure by investigating the principal null geodesics.
These are defined by the condition b = a. The system of equations (13.38),
(13.39), (13.57) then reduces to

ṫ = �r2+a2�k/��

�̇ = ack/��

ṙ = ±ck�
where the plus sign and the minus sign in the last equation correspond respectively
to outgoing and incoming photons. We can see that such geodesics play the same
role in the Kerr geometry as do the radial geodesics in the Schwarzschild case, in
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that the radial coordinate is described at a uniform rate with respect to the affine
parameter.

Choosing ṙ =+ck for outgoing photons, we find that

dt

dr
= ṫ

ṙ
= �r2+a2�

c�
�

d�

dr
= �̇

ṙ
= a

�
�

Using the fact that � > 0 in region I, it follows that dr/dt > 0 in region I, thus
confirming that these equations correspond to outgoing photons. If we restrict our
attention to the case a2 <�2, the equations can be immediately integrated to give

ct = r+
(
�+ �2√

�2−a2

)
ln

∣∣∣∣ rr+ −1

∣∣∣∣+
(
�− �2√

�2−a2

)
ln

∣∣∣∣ rr− −1

∣∣∣∣
+ constant� (13.60)

� = a

2
√
�2−a2

ln

∣∣∣∣r− r+
r− r−

∣∣∣∣+ constant� (13.61)

The solution corresponding to incoming photons is obtained by choosing ṙ =−ck
and has the same form as above but with t→−t and �→−�. In Figure 13.6 we
plot an incoming principal null geodesic in the �ct� r�-plane and in the �x� y�-plane
(with x=√r2+a2 cos� and y=√r2+a2 sin�) for a photon that passes through
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Figure 13.6 A principal null geodesic in a Kerr geometry with rotation param-
eter a = 0�8�. The trajectory (solid line) is plotted in the �ct� r�-plane (left)
and in the �x� y�-plane (right); x =√r2+a2 cos� and y =√r2+a2 sin�. The
locations of the horizons (broken lines) and the ring singularity (dotted line) are
also indicated.
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the point �r��� = �8��0� at t = 0 in a Kerr geometry with rotation parameter
a= 0�8�.

We note that, in the limit a→ 0, (13.60) reduces to the equation for a radial
photon trajectory in the Schwarzschild geometry, as presented in Section 11.3.
Indeed, the null geodesics considered above play the same role as the null radial
geodesics in the Schwarzschild case, giving information about the radial variation
of the light-cone structure. We can draw a spacetime diagram of the light-cone
structure using these equations and we find in region I a diagram analogous to that
obtained for the Schwarzschild geometry in �t� r� ���� coordinates in Chapter 11:
the light-cones narrow down as r→ r+. On r = r+ both t and � become infinite,
again indicating that this is a coordinate singularity.

13.17 Equatorial circular motion of photons

For circular photon motion we require ṙ = 0 and, for the photon to remain in a
circular orbit, the radial acceleration r̈ must also vanish. In terms of the effective
potential defined in (13.59), for a circular orbit at r = rc we thus require

Veff�rc� b�=
1
b2

and
dVeff

dr

∣∣∣∣
r=rc

= 0� (13.62)

These two equations determine a single value r = rc (different for prograde and
retrograde orbits) for which there exists a circular orbit, and the corresponding
value of the constant b.

Using the expression (13.59), the above conditions yield respectively

rc = 3�
b−a

b+a
� (13.63)

�b+a�3 = 27�2�b−a�� (13.64)

These equations may be solved by setting y = b+ a in (13.64), solving the
resulting cubic equation and substituting the resulting value of b into (13.63). One
may easily verify that the result can be written as

rc = 2�
{
1+ cos

[
2
3
cos−1

(
± a

�

)]}
� (13.65)

b = 3
√
�rc−a� (13.66)

where the upper sign in (13.65) corresponds to retrograde orbits and the lower
sign to prograde orbits. In the limit a→ 0 we recover the conditions for a circular
photon orbit in the Schwarzschild case, obtained in Chapter 9, namely rc = 3�
and b = 3

√
3�. As in the Schwarzschild case, circular photon orbits in the Kerr

geometry are unstable.
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13.18 Stability of equatorial photon orbits

In our discussion of the stability of photon orbits in the Schwarzschild geometry,
it was useful to consider the effective potential for photon motion. As mentioned
above, however, when a �= 0 one must be careful in interpreting (13.59) as an
effective potential since it depends on the value b (and hence k) of the particle
trajectory. Nevertheless, we can still investigate the stability of the photon orbits
by factorising the energy equation (13.57).5 One finds that

ṙ2 = �r2+a2�2−a2�

r4

[
c2k2− 4�ra

�r2+a2�2−a2�
ckh− r�r−2��

�r2+a2�2−a2�
h2
]

= �r2+a2�2−a2�

c2r4
[
c2k−V+�r�

] [
c2k−V−�r�

]
� (13.67)

where V±�r� do not depend on k and are given by

V±�r�=
2�ra± r2�1/2

�r2+a2�2−a2�
ch=

[
�±

(
�2− g��

gtt

)1/2
]
h� (13.68)

The first property to notice is that if �< 0 then the functions V±�r� are complex
and so there are no (real) solutions to the equation ṙ = 0. This shows that the
photon orbit has no turning points. Thus once a photon crosses the surface �= 0,
it cannot turn around and return back across the surface. Therefore �= 0 defines
an event horizon in the equatorial plane (in fact, as we showed earlier, that �= 0
defines the event horizon is true in the general case).

The qualitative features of photon trajectories may be deduced by plotting the
functions V±�r�. We choose first the case ah > 0 (angular momentum in the
same sense as the rotation of the source) and confine our attention to r > r+ (i.e.
outside the outer horizon). The curves are plotted in Figure 13.7. It is clear from
(13.67) that photon propagation is only possible if c2k > V+ or c2k < V−, since
we require ṙ2 > 0. Thus, at any given coordinate radius r, photon propagation
cannot occur if c2k has a value lying in the region between the curves V−�r�
and V+�r�. However, we must also remember, from (13.38), that c2k = pt, the
covariant time component of the photon’s 4-momentum. This is the energy of
the photon relative to a fixed observer at infinity. We are used to the idea of
‘positive-energy’ photons with pt > 0. They may come in from infinity and either
reach a minimum r or plunge into the black hole, depending on whether they
encounter the hump in V+�r�.

What about photons for which pt < V−? Some of these have pt > 0 but others
have pt < 0. Which photons of these types, if any, can actually exist? Near the

5 This approach is based on that presented in B. Schutz, A First Course in General Relativity, Cambridge
University Press, 1985.
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Figure 13.7 The factored effective-potential diagram for equatorial photon
orbits with positive angular momentum �ah > 0�. The quantity �+ is the value
of � at r = r+. Photon propagation is forbidden in the shaded region.

horizon in the Kerr metric, the ‘energy’ pt relative to an observer at infinity has no
obvious physical meaning. The important requirement is that to an observer near
the horizon the photon has a positive energy. A convenient observer, although
any would suffice, is one who resides at fixed r in the equatorial plane, circling
the hole with a fixed angular velocity � (this observer is not on a geodesic, so
would need to be in a spaceship). As discussed in Section 13.8, the observer’s
4-velocity u in �t� r� ���� coordinates has components


u��= ut�1�0�0����

Thus, he measures a photon energy

E = p ·u= ptu
t+p�u

� = ut�pt−�h��

The photon must therefore have pt > �h. Since pt = c2k, we thus require

c2k > �h� (13.69)

From our discussion in Section 13.8 about observers in the ergoregion, we know
that � is restricted to lie in the range �− < � < �+, where �± are given by
(13.28). Comparing (13.28) with (13.68) we see that, remarkably, V± = �±h.
Thus, any photon with c2k > V+ also satisfies the condition (13.69) and so is
allowed, while any photon with c2k < V− violates (13.69) and is forbidden. We
conclude that here there is nothing qualitatively different from our discussion of
photon orbits in the Schwarzschild geometry.

For photons moving in the opposite direction to the hole’s rotation �ah < 0�,
new features do appear. If ah < 0 it is clear from (13.68) that the shapes of the
V±�r� curves are simply turned upside down (see Figures 13.8 and 13.7). From
(13.67) directly, we again see that in the region between the curves V−�r� and
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Figure 13.8 The factored effective-potential diagram for equatorial photon
orbits with negative angular momentum �ah < 0�. The quantity �+ is the value
of � at r = r+. Photon propagation is forbidden in the shaded region. The Penrose
process is also illustrated (see the text for details).

V+�r� there is no photon propagation. Moreover, the condition (13.69) means
that photons must have c2k > V+ but from Figure 13.8 we see that in the region
r < rS+ (the ergoregion) some of these photons can have c2k < 0. We can now
understand in an alternative manner an idealised version of the Penrose process,
discussed in Section 13.9. At some point between r+ and rS+ it is allowable to
create two photons, one having pt = E and the other having pt = −E, so that
their total energy is zero. Then the ‘positive-energy’ photon could be directed in
such a way as to leave the hole and reach infinity, while the ‘negative-energy’
photon is necessarily trapped and inevitably crosses the horizon. The net effect is
that the positive-energy photon will leave the hole, carrying its energy to infinity.
Thus energy has been extracted.

13.19 Eddington–Finkelstein coordinates

We have seen throughout our discussion of the Kerr geometry that the Boyer–
Lindquist coordinates t and � are ‘bad’ in the region near the horizons. By analogy
with our discussion of removing the coordinate singularity in the Schwarzschild
geometry, we may use the equations for the principal photon geodesics, (13.60)
and (13.61), to obtain a coordinate transformation that extends the solution through
r = r+.
Working with these equations in differential form, we have

c dt = −r2+a2

�
dr� (13.70)

d� = − a

�
dr� (13.71)
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for the ingoing photons. For advanced Eddington–Finkelstein coordinates
�t′��′� r� �� we want ingoing principal photon trajectories to be straight lines.
Thus, for such a trajectory, we require

c dt′ = −dr and d� = d�′ = 0�

From (13.70) and (13.71), we see immediately that the required transformations are

c dt′ = c dt+ 2�r
�

dr�

d�′ = d�+ a

�
dr�

The Kerr solution in advanced Eddington–Finkelstein coordinates then takes the
form

ds2 =
(
1− 2�r

�2

)
c2 dt′2− 4�r

�2
c dt′ dr

−
(
1+ 2�r

�2

)
dr2+ 4�ra sin2 �

�2
c dt′ d�′

+2�r2+a2�a sin2 �
�2

dr d�′ −�2 d�2

−
[
�r2+a2� sin2 �+ 2�ra2 sin4 �

�2

]
d�′2�

If we define the advanced time parameter p= ct′ + r (such that dp= 0 along the
photon geodesic), the Kerr solution can also be written as

ds2 =
(
1− 2�r

�2

)
dp2−2dpdr+ 4�ra sin2 �

�2
dpd�′ +2a sin2 �dr d�′ −�2 d�2

−
[
�r2+a2� sin2 �+ 2�ra2 sin4 �

�2

]
d�′2�

One may alternatively straighten the outgoing photon geodesics by introducing
retarded Eddington–Finkelstein coordinates �t∗��∗� r� �� and the retarded time
parameter q = ct∗ − r, in an analogous manner.

Figure 13.9 shows a spacetime diagram along the equator of a Kerr black hole
using advanced Eddington–Finkelstein coordinates. As in the Schwarzschild solu-
tion, the event horizon at r+ marks a surface of ‘no return’. Once a particle has
crossed the event horizon, its future is directed towards region III, which contains
the singularity – you can never return back to region I. Unlike the Schwarzschild
solution, the singularity in the Kerr solution is timelike (the singularity in the
Schwarzschild solution is spacelike). In theory, this means that it is possible to
avoid the singularity by moving along a timelike path; in other words, if we
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Figure 13.9 spacetime diagram of the Kerr solution in advanced Eddington–
Finkelstein coordinates.

were in a spaceship (and ignoring the intense tidal forces which would make this
experiment impractical) we could manoeuvre along a path to avoid the singularity.
Indeed, by performing a maximal extension of the Kerr geometry in an analo-
gous way to the Kruskal extension of the Schwarzschild geometry described in
Chapter 9, one finds that a particle may re-cross the surface r = r− and eventually
emerge from r = r+ into a different asymptotically flat spacetime (in an analogous
way to that described for the Reissner–Nordström geometry in Section 12.6).
However, you should not take the internal structure of the Kerr solution too seri-
ously. As mentioned above, region III also contains closed timelike curves (at
r < 0), which are very bad news because they violate causality. Most theorists
would hope that quantum gravity comes to the rescue and prevents causality
violation. At present we do not really know what happens within region III.

Figure 13.10 shows a schematic illustration of the light-cone structure in the
equatorial plane of the Kerr solution, which also illustrates the frame-dragging
effect. As we approach the infinite redshift surface S+, any particle travelling
against the direction of rotation has to travel at the speed of light just to remain
stationary (relative to a fixed observer at infinity). At smaller r, in the ergoregion,
the light-cones are tipped over, so that photons (and massive particles) are forced
to travel in the direction of rotation. At the event horizon r+, the lightcones tip
over so far that the future is directed towards region II.
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Figure 13.10 Frame dragging in the equatorial plane of the Kerr solution.

13.20 The slow-rotation limit and gyroscope precession

Since the full Kerr solution is rather complicated, it is useful to consider the
simpler approximate form for the common limiting case of a slowly rotating body.
Thus, we will only keep terms in the Kerr metric to first order in a. Writing the
resulting metric in terms of the angular momentum J =Mac of the rotating body,
in Boyer–Lindquist coordinates we obtain

ds2 = ds2Schwarzschild+
4GJ

c2r
sin2 �d�dt� (13.72)

where the first term on the right-hand side is the standard Schwarzschild
line element. In the slow-rotation limit, Boyer–Lindquist coordinates tend to
Schwarzschild coordinates. This metric is useful for performing calculations of,
for example, the general-relativistic effects due to the rotation of the Earth. In
fact, for terrestrial applications, and many other astrophysical situations, we may
also assume the gravitational field to be weak, in which case the line element
becomes

ds2 = c2
(
1− 2GM

c2r

)
dt2−

(
1+ 2GM

c2r

)
�dr2+ r2 d�2+ r2 sin2 �d�2�

+4GJ

c2r
sin2 �d�dt� (13.73)

It is often also convenient to work in Cartesian coordinates defined by

x = r sin � cos�� y = r sin � sin�� y = r cos��
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for which the line element is easily shown to take the form

ds2 = c2
(
1− 2GM

c2r

)
dt2−

(
1+ 2GM

c2r

)
�dx2+dy2+dz2�

+ 4GJ

c2r3
�xdy−y dx�dt� (13.74)

where r is now defined by r =√x2+y2+ z2.
To illustrate the usefulness of the slow-rotation limit, we now consider the

precession of a gyroscope induced by the frame-dragging effect of a slowly rotat-
ing body, such as the Earth. As discussed in Chapter 10, in general a gyroscope
in orbit around a massive non-rotating body will precess simply as a result of
the spacetime curvature induced by the massive body (geodesic precession). If
the central body is also rotating then there is an additional precessional effect,
which we now discuss. Let us consider the thought experiment shown schemati-
cally in Figure 13.11. A gyroscope falls freely down the rotation axis of a slowly
rotating body. Initially the spin axis is oriented perpendicular to the rotation axis.
By symmetry, if the body were not rotating then the spin axis would remain
fixed with respect to infinity (e.g. pointing constantly to one distant star), thus
for this particular orbit there is no geodesic precession of the gyroscope. By this
measure, the local inertial frames on the axis are not rotating with respect to
infinity. However, if instead the body were rotating, even with a small angular
momentum, then the gyroscope would precess, indicating that the local inertial
frames are rotating with respect to infinity.

z

s

J

Figure 13.11 A gyroscope (solid circle) falling down the rotation axis of a
spinning body.
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We can use the metric (13.74) to calculate the precession rate of the gyro-
scope on its downward ‘polar plunge’ trajectory. As shown in Section 10.5, the
spin 4-vector s��� is parallel-transported along the geodesic trajectory. Thus, its
components satisfy

ds�

d�
+ �

�#s
�u# = 0� (13.75)

For the physical arrangement under consideration, the initial 4-velocity u and the
spin 4-vector s of the gyroscope in Cartesian coordinates have the forms


u��= �ut�0�0� uz� and 
s��= �0� sx� sy�0��

Moreover, these forms remain valid at all later times, since the trajectory is a
polar plunge and s ·u is conserved along it. Thus, in (13.75), the only equations
we need to consider are

dsx

d�
+ x

xts
xut+ x

xzs
xuz+ x

yts
yut+ x

yzs
yuz = 0� (13.76)

dsy

d�
+ y

xts
xut+ y

xzs
xuz+ y

yts
yut+ y

yzs
yuz = 0� (13.77)

To continue with our calculation, we must first find the connection coeffi-
cients appearing in the above equations. This is most easily achieved using the
‘Lagrangian’ approach, writing down the Euler–Lagrange equation for x and
remembering that on the polar axis all terms proportional to some positive power
of x or y are zero and r = z. One finds that the only non-zero connection coeffi-
cients of the form  x

�� are(
 x

yt

)
z-axis =

2GJ

c2z3
and

(
 x

xz

)
z-axis =−

2GM

c2z�z+2GM/c2�
�

By considering the symmetry properties of the metric (13.74), one immediately
deduces that, on the polar axis, the only non-zero connection coefficients of the
form  y

�� are

� y
xt�z-axis =−

2GJ

c2z3
and

(
 y

yz

)
z-axis =−

2GM

c2z�z+2GM/c2�
�

These connection coefficients can now be substituted into equations (13.76,
13.77), which can be solved once ut and uz have been determined from the
geodesic equations. Assuming, however, that the speed of the falling gyroscope
is non-relativistic, then to leading order in 1/c we may take ut ≈ 1 and uz ≈ 0.
Thus, in this approximation, equations (13.76, 13.77) reduce to

dsx

d�
=−2GJ

c2z3
sy and

dsy

d�
= 2GJ

c2z3
sx�
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Hence, as it falls, the gyroscope precesses in the same direction as the body is
rotating, i.e. the local inertial frames are dragged with respect to infinity. This is
called the Lens–Thirring effect. At a height z the rate of precession is

�LT =
2GJ

c2z3
�

It should be noted that we have calculated this precession rate in a Cartesian
coordinate system in which the centre of the gravitating body is at rest and
the gyroscope is falling. Fortunately, an observer free-falling with the gyroscope
would measure the same precession rate since the Lorentz transformation that
connects the two frames is a boost along the z-axis, which does not affect the
transverse components sx and sy of the spin vector. Of course, the Lens–Thirring
effect also results in the precession of gyroscopes following trajectories other
than the polar plunge considered here, but determining the rate of precession in
general requires a considerably longer calculation (see Exercise 17.26).

Exercises

13.1 Verify that the Boyer–Lindquist form of the Kerr metric satisfies the empty-space
Einstein field equations.
Note: This exercise is only for the truly dedicated reader!

13.2 Show that the Boyer–Lindquist form of the Kerr metric can be written in the forms
(13.12) and (13.13).

13.3 Calculate the contravariant components g�� of the Kerr metric in Boyer–Lindquist
coordinates.

13.4 Show that, in the limit �→ 0, the Kerr metric tends to the Minkowksi metric.
13.5 Show that the Kerr–Schild form of the Kerr metric can be transformed into the

Boyer–Lindquist form by the coordinate transformations (13.16 –13.19).
13.6 Consider the 2-surfaces defined by t = constant and r = r± in the Kerr geometry.

Show that, for each surface, the circumference around the ‘poles’ is less than the
circumference around the equator. Show that the same is true for the 2-surfaces
defined by t = constant and r = rS±.

13.7 Show that the proper area of the event horizon r = r+ in the Kerr geometry is
given by

A= 4�
(
r2++a2

)
�

Hence show that, for fixed �, the area A is a maximum for a= 0. Conversely, for
fixed A, show that � is a minimum for a= 0. Comment on your results.
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13.8 An observer is at fixed (r, �) coordinates in the ergoregion of a Kerr black hole
and has angular velocity � = d�/dt with respect to a second observer at rest at
infinity. Show that the allowed range for � is given by �− <�<�+, where

�± = �± c

(
�

(2

)1/2

and �, � and (2 have their usual meanings in the Kerr metric.
13.9 Use your answer to Exercise 13.7 to show that the area of the event horizon r = r+

in the Kerr geometry may be written as

A= 8�G
c4

⎡⎣M2+
√
M4−

(
cJ

G

)2
⎤⎦ �

where M and J are the mass and angular momentum of the black hole. Hence
show that if the mass and angular momentum change by �M and �J respectively
then the corresponding change in the proper area of the horizon is given by

�A= 8�G
c

a

�H

√
�2−a2

(
�M−�H

�J

c2

)
�

where �H is the ‘angular velocity of the horizon’, defined in (13.29). Thus show
that the area of the event horizon must increase in the Penrose process.

13.10 Show that, in the equatorial plane �=�/2 of the Kerr geometry, the contravariant
metric components in Boyer–Lindquist coordinates are

gtt = 1
c2�

(
r2+a2+ 2�a2

r

)
� gt� = 2�a

cr�
�

grr = −�

r2
� g�� =− 1

�

(
1− 2�

r

)
�

13.11 Show that the geodesic equations for particle motion in the equatorial plane of the
Kerr geometry may be written in Boyer–Lindquist coordinates as

ṫ = 1
�

[(
r2+a2+ 2�a2

r

)
k− 2�a

cr
h

]
�

�̇ = 1
�

[
2�ac
r

k+
(
1− 2�

r

)
h

]
�

ṙ2 = �c2k2− �2�+ 2�2�
r

+ a2�c2k2− �2�−h2

r2
+ 2��h−ack�2

r3
�

where �2 = c2 for a massive particle and � = 0 for a photon. Verify that these
equations reduce to the Schwarzschild case in the limit a→ 0.

13.12 The trajectory of an infalling particle of mass m in the equatorial plane of a
Kerr black hole is characterised by the usual parameters k and h. If the particle
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eventually falls into the black hole, show that the mass and the angular momentum
of the hole are changed in such a way that

M→M+kmc2� J → J +mh�

Show further that the corresponding change �a in the rotation parameter of the
black hole is given by

�a= m

cM
�h−ack��

If the particle falls into an extreme Kerr black hole, for which a= �, show that a
naked singularity would be created if

h > 2ck��

However, by determining the maximum value of the effective potential Veff�r�h� k�

defined in (13.46) for a = �, show that a particle with h > 2ck� can never fall
into the black hole.

13.13 For a Kerr black hole, using the Boyer–Lindquist coordinates show that, for a
particle in circular orbit in the � = �/2 plane, the coordinate angular velocity
�= d�/dt satisfies

�= c�1/2

a�1/2± r3/2
�

This is the Kerr-metric analogue to �2 = GM/r3 for the Schwarzschild metric.
Here the plus sign corresponds to prograde orbits, the minus to retrograde orbits.

13.14 If a particle’s motion is initially in the � = �/2 plane in a Kerr metric, show that
the motion will remain in this plane.

13.15 Show that the values of the parameters k and h for a circular orbit of coordinate
radius r = rc, given in (13.54) and (13.55) respectively, satisfy the requirements

Veff�rc�h� k�= 1
2c

2�k2−1� and
dVeff

dr

∣∣∣∣
r=rc

= 0�

Show further that for the orbit to be stable one requires

r2c −6�rc−3a2∓8a
√
�rc = 0�

13.16 An observer (not necessarily free-falling) orbits a Kerr black hole in the equatorial
plane in a circular orbit. His ‘angular velocity with respect to a distant observer’
is �= d�/dt. Find the components ut� u��ut and u� in terms of ��r�� and a.

13.17 Suppose that the circular orbit considered in Exercise 13.16 lies outside the horizon
r+ but inside the stationary limit rS+ . Show that under these circumstances � must
be non-zero, i.e. the observer cannot remain at rest relative to a distant observer.
If the orbiting observer is in the region r− < r < r+, show that the orbit cannot be
circular.
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13.18 Show that the effective potential for photon orbits in the equatorial plane of the
Kerr geometry is given by

Veff�r� b�=
1
r2

[
1−

(a
b

)2− 2�
r

(
1− a

b

)2]
�

13.19 For a circular photon orbit of coordinate radius r = rc in the Kerr geometry,
show that

rc = 2�
{
1+ cos

[
2
3
cos−1

(
± a

�

)]}
�

b = 3
√
�rc−a�

where the upper sign in the first equation corresponds to retrograde orbits and the
lower sign to prograde orbits. Hence show that, for an extreme Kerr black hole
(a= �), rc = 4� for a retrograde orbit and rc = � for a prograde orbit.

13.20 For a photon orbit in the equatorial plane of the Kerr geometry, show that

ṙ2 = �r2+a2�2−a2�

c2r4

c2k−V+�r��
c

2k−V−�r���

where

V±�r�=
2�ra± r2�1/2

�r2+a2�2−a2�
ch=

[
�±

(
�2− g��

gtt

)1/2
]
h�

13.21 The general axisymmetric stationary metric can be written in the form

ds2 = Adt2−B�d�−�dt�2−C dr2−Dd�2�

where A, B, C, D and � are functions only of the coordinates r and �. Alice
is an astronaut in a powered spaceship that maintains fixed �r��� coordinates in
the equatorial plane �= �/2 (at a position for which gtt > 0). She simultaneously
emits two photons in opposite tangential directions in the equatorial plane and uses
a prearranged system of mirrors to cause each photon to move along a circular
(non-geodesic) path of constant r. Show that the coordinate angular velocities of
the two photons are given by

d�

dt
= �±

(
A

B

)1/2

�

Hence show that the two photons do not arrive back with Alice simultaneously
but are separated by a time interval

�� = 4��B
c�A−B�2�1/2

�

as measured by Alice’s on-board clock. Comment on the physical significance of
this result.
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13.22 Bob is in a powered spaceship following a circular orbit r = constant in the
equatorial plane of the geometry in Exercise 13.21. His angular velocity is such
that the component u� of his 4-velocity is zero. Using the same arrangement of
mirrors as in Exercise 13.21, he performs an experiment similar to Alice’s. Show
that for Bob the two photons arrive back to him simultaneously.

13.23 Which, if any, of the photons considered in Exercises 13.21 and 13.22 is redshifted
from its original frequency on arriving back with Alice or Bob? Explain your
reasoning.

13.24 An isolated thin rigid spherical shell has mass M and radius R. If the shell is set
spinning slowly, with angular momentum J , show that inertial frames within the
shell rotate with angular velocity

�= 2GJ

c2R3
�

Comment briefly on how this result is related to Mach’s principle.
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The Friedmann–Robertson–Walker geometry

We now discuss the application of general relativity to modelling the behaviour
of the universe as a whole. In order to do this, we make some far-reaching
assumptions, but only those consistent with our observations of the universe. As
in our derivations of the Schwarzschild and Kerr geometries, we begin by using
symmetry arguments to restrict the possible forms for the metric describing the
overall spacetime geometry of the universe.1

14.1 The cosmological principle

When we look up at the sky we see that the stars around us are grouped into a
large-density concentration – the Milky Way Galaxy. On a slightly larger scale,
we see that our Galaxy belongs to a small group of galaxies (called the Local
Group). Our Galaxy and our nearest large neighbour, the Andromeda galaxy,
dominate the mass of the Local Group. On still larger scales we see that our
Local Group sits on the outskirts of a giant supercluster of galaxies centred in the
constellation of Virgo. Evidently, on small scales matter is distributed in a highly
irregular way but, as we look on larger and larger scales, the matter distribution
looks more and more uniform. In fact, we have very good evidence (particularly
from the constancy of the temperature of the cosmic microwave background in
different directions on the sky) that the universe is isotropic on the very largest
scales, to high accuracy. If the universe has no preferred centre then isotropy also
implies homogeneity. We therefore have good physical reasons to study simple
cosmological models in which the universe is assumed to be homogeneous and

1 For a detailed discussion, see, for example, J. N. Islam, An Introduction to Mathematical Cosmology,
Cambridge University Press, 1992.

355
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isotropic2. We thus assume the cosmological principle, which states that at any
particular time the universe looks the same from all positions in space at a
particular time and all directions in space at any point are equivalent.

14.2 Slicing and threading spacetime

The intuitive statement of the cosmological principle given above needs to be
made more precise. In particular, how does one define a ‘particular time’ in general
relativity that is valid globally, when there are no global inertial frames? Also,
since observers moving relative to one another will view the universe differently,
according to which observers do we demand the universe to appear isotropic?

In general relativity the concept of a ‘moment of time’ is ambiguous and is
replaced by the notion of a three-dimensional spacelike hypersurface. To define
a ‘time’ parameter that is valid globally, we ‘slice up’ spacetime by introducing
a series of non-intersecting spacelike hypersurfaces that are labelled by some
parameter t. This parameter then defines a universal time in that ‘a particular
time’ means a given spacelike hypersurface. It should be noted, however, that
we may construct the hypersurfaces t = constant in any number of ways. In a
general spacetime there is no preferred ‘slicing’ and hence no preferred ‘time’
coordinate t.

It is useful at this point to introduce the idealised concept of fundamental
observers, who are assumed to have no motion relative to the overall cosmological
fluid associated with the ‘smeared-out’ motion of all the galaxies and other matter
in the universe. A fundamental observer would, for example, measure no dipole
moment in his observations of the cosmic microwave background radiation; an
observer with a non-zero peculiar velocity would observe such a dipole as a
result of the Doppler effect arising from his motion relative to the cosmological
fluid. Adopting Weyl’s postulate, the timelike worldlines of these observers are
assumed to form a bundle, or congruence, in spacetime that diverges from a point
in the (finite or infinitely distant) past or converges to such a point in the future.
These worldlines are non-intersecting, except possibly at a singular point in the
past or future or both. Thus, there is a unique worldline passing through each
(non-singular) spacetime point. The set of worldlines is sometimes described as
providing threading for the spacetime.

The hypersurfaces t= constant may now be naturally constructed in such a way
that the 4-velocity of any fundamental observer is orthogonal to the hypersurface.

2 It is worth noting that isotropy about every point automatically implies homogeneity. However, homogeneity
does not necessarily imply isotropy. For example, a universe with a large-scale magnetic field that pointed
in one direction everywhere and had the same magnitude at every point would be homogeneous but not
isotropic.
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Simultaneity surface
in local Lorentz frame

t = t2

t = t1

Spacelike
hypersurface

Worldline
of observer

Figure 14.1 Representation (with one spatial dimension suppressed) of spacelike
hypersurfaces on which fundamental observers are assumed to lie. The worldline
of any fundamental observer is orthogonal to any such surface.

Thus, the surface of simultaneity of the local Lorentz frame of any such observer
coincides locally with the hypersurface (see Figure 14.1). Each hypersurface may
therefore be considered as the ‘meshing together’ of all the local Lorentz frames
of the fundamental observers.

14.3 Synchronous coordinates

The spacelike hypersurfaces discussed above are labelled by a parameter t, which
may be taken to be the proper time along the worldline of any fundamen-
tal observer. The parameter t is then called the synchronous time coordinate. In
addition, we may also introduce spatial coordinates �x1� x2� x3� that are constant
along any worldline. Thus each fundamental observer has fixed �x1� x2� x3�

coordinates, and so the latter are called comoving coordinates. Since each hyper-
surface t = constant is orthogonal to the observer’s worldline, the line element
takes the form

ds2 = c2 dt2−gij dx
i dxj �for i� j = 1�2�3�� (14.1)

where the gij are functions of the coordinates �t� x1� x2� x3�.
We may verify that the metric (14.1) does indeed incorporate the properties

described in the previous section, as follows. Let x���� be the worldline of a
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fundamental observer, where � is the proper time along the worldline. Then, by
construction, x���� is given by

x0 = �� x1 = constant� x2 = constant� x3 = constant� (14.2)

Since dxi = 0 along the worldline, we obtain ds = c d� = c dt and so t = �,
thereby showing that the proper time � along the worldline is indeed equal to t.
Thus, from (14.2), it is clear that the 4-velocity of a fundamental observer in
comoving coordinates is


u��≡
[
dx�

d�

]
= �1�0�0�0�� (14.3)

Since any vector lying in the hypersurface t = constant has the form 
a�� =
�0� a1� a2� a3�, we see that

g��u
�a� = 0�

because g0i = 0 for i = 1�2�3. Hence, the observer’s 4-velocity is orthogonal to
the hypersurface, as we required. Finally, we may show that the worldline given
by (14.2) satisfies the geodesic equation

d2x�

d�2
+ �

�#

dx�

d�

dx#

d�
= 0�

Using (14.3), we see that we require only that  �
00 = 0. This quantity is given by

 �
00 = 1

2g
���2�0g0�− ��g00��

which is easily shown to be zero by using the fact that g0i = 0 for i= 1�2�3. Thus
the worldlines x���� are geodesics and hence can describe particles (observers)
moving only under the influence of gravity.

14.4 Homogeneity and isotropy of the universe

The metric (14.1) does not yet incorporate the property that space is homogeneous
and isotropic. Indeed this form of the metric can be used, with the help of a special
coordinate system obtained by singling out a particular fundamental observer,
to derive some general properties of the universe, without the assumptions of
homogeneity and isotropy, although we will not consider such cases here.

Let us now incorporate the postulates of homogeneity and isotropy. The former
demands that all points on a particular spacelike hypersurface are equivalent,
whereas the latter demands that all directions on the hypersurface are equiv-
alent for fundamental observers. The (squared) spatial separation on the same
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hypersurface t = constant of two nearby galaxies at coordinates �x1� x2� x3� and
�x1+�x1� x2+�x2� x3+�x3� is

d#2 = gij�x
i�xj�

If we consider the triangle formed by three nearby galaxies at some particular
time t, then isotropy requires that the triangle formed by these same galaxies at
some later time must be similar to the original triangle. Moreover, homogeneity
requires that the magnification factor must be independent of the position of the
triangle in the 3-space. It thus follows that time t can enter the gij only through
a common factor, so that the ratios of small distances are the same at all times.
Hence the metric must take the form

ds2 = c2 dt2−S2�t�hij dx
i dxj� (14.4)

where S�t� is a time-dependent scale factor and the hij are functions of the
coordinates �x1� x2� x3� only. We note that it is common practice to identify
fundamental observers loosely with individual galaxies (which are assumed to be
pointlike). However, since the magnification factor is independent of position, we
must neglect the small peculiar velocities of real individual galaxies.

14.5 The maximally symmetric 3-space

We clearly require the 3-space spanned by the spacelike coordinates �x1� x2� x3�
to be homogeneous and isotropic. This leads us to study the maximally symmet-
ric 3-space. In three dimensions, the curvature tensor Rijkl has, in general, six
independent components, each of which is a function of the coordinates. We
therefore need to specify six functions to define the intrinsic geometric properties
of a general three-dimensional space. Clearly, the more symmetrical the space,
the fewer the functions needed to specify its properties. A maximally symmetric
space is specified by just one number – the curvature K, which is independent
of the coordinates. Such constant curvature spaces must clearly be homogeneous
and isotropic.

The curvature tensor of a maximally symmetric space must take a particularly
simple form. It must clearly depend on the constant K and on the metric tensor
gij . The simplest expression that satisfies the various symmetry properties and
identities of Rijkl and contains just K and the metric tensor is given by

Rijkl = K�gikgjl−gilgjk�� (14.5)
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In fact, a maximally symmetric space is defined as one having a curvature tensor
of the form (14.5).

The Ricci tensor is given by

Rjk = gilRijkl = Kgil�gikgjl−gilgjk�

= K��lkgjl−�llgjk�

= K�gjk−3gjk�=−2Kgjk�

The curvature scalar is thus given by

R= Rk
k =−2K�kk =−6K�

As in our derivation of the general static isotropic metric in Section 9.1, the
metric of an isotropic 3-space must depend only on the rotational invariants

�x · �x ≡ r2� d�x ·d�x� �x ·d�x�

and in spherical polar coordinates �r� ���� it must take the form

d#2 = C�r���x ·d�x�2+D�r��d�x ·d�x�2
= C�r�r2 dr2+D�r��dr2+ r2 d�2+ r2 sin2 �d�2��

Following our analysis in Chapter 9, we can simplify this line element by redefin-
ing the radial coordinate r̄2 = r2D�r�. Dropping the bars on the variables, the
metric can thus be written as

d#2 = B�r�dr2+ r2d�2+ r2 sin2 �d�2�

where B�r� is an arbitrary function of r.
We have met this line element before – it is identical to the space part of the

general static isotropic metric. In Chapter 9, we showed that the only non-zero
connection coefficients are

 r
rr =

1
2B�r�

dB�r�

dr
�  r

�� =−
r

B�r�
�  r

�� =−
r sin2 �
B�r�

�

 �
r� =  �

r� =
1
r
�  �

�� =− sin � cos��  �
�� = cot ��

The Ricci tensor is given in terms of the connection coefficients by

Rij = �j 
k
ik− �k 

k
ij+ l

ik 
k
lj− l

ij 
k
lk�
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and, after some algebra, we find that its non-zero components are

Rrr = −
1
rB

dB

dr
�

R�� =
1
B
−1− r

2B2

dB

dr

R�� = R�� sin
2 �

For our 3-space to be maximally symmetric, however, we must have

Rij =−2Kgij�

and so we require

1
rB

dB

dr
= 2KB�r�� (14.6)

1+ r

2B2

dB

dr
− 1
B
= 2Kr2� (14.7)

Integrating (14.6) we immediately obtain

B�r�= 1
A−Kr2

�

where A is a constant of integration. Substituting this expression into (14.7) then
gives

1−A+Kr2 = Kr2�

from which we see that A = 1. Thus, we have constructed the line element for
the maximally symmetric 3-space, which takes the form

d#2 = dr2

1−Kr2
+ r2d�2+ r2 sin2 �d�2 (14.8)

and has a curvature tensor specified by one number, K, the curvature of the space.
Notice also that this is exactly the same form as the metric for a 3-sphere

embedded in four-dimensional Euclidean space, which we discussed in Chapter 2.
The metric contains a ‘hidden symmetry’, since the origin of the radial coordinate
is completely arbitrary. We can choose any point in this space as our origin since
all points are equivalent. There is no centre in this space. We also note that,
on scales small compared with the spatial curvature, the line element (14.8) is
equivalent to that of a three-dimensional Euclidean space.
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14.6 The Friedmann–Robertson–Walker metric

Combining the our expression (14.8) for the maximally symmetric 3-space with
the line element (14.4), which incorporates the cosmological principle and Weyl’s
postulate, we obtain

ds2 = c2 dt2−S2�t�

[
dr2

1−Kr2
+ r2�d�2+ sin2 �d�2�

]
� (14.9)

It is usual to write this line element in an alternative form in which the
arbitrariness in the magnitude of K is absorbed into the radial coordinate and the
scale factor. Assuming firstly that K �= 0 we define the variable k = K/�K� in
such a way that k = ±1 depending on whether K is positive or negative. If we
introduce the rescaled coordinate

r̄ = �K�1/2r�
then (14.9) becomes

ds2 = c2 dt2− S2�t�

�K�
[

dr̄2

1−kr̄2
+ r̄2�d�2+ sin2 �d�2�

]
�

Finally, we define a rescaled scale function R�t� by

R�t�=
⎧⎨⎩

S�t�

�K�1/2 if K �= 0�

S�t� if K = 0�

Then, dropping the bars on the radial coordinate, we obtain the standard form for
the Friedmann–Robertson–Walker (FRW) line element,

ds2 = c2 dt2−R2�t�

[
dr2

1−kr2
+ r2

(
d�2+ sin2 �d�2)] � (14.10)

where k takes the values −1, 0, or 1 depending on whether the spatial section
has negative, zero or positive curvature respectively. It is also clear that the
coordinates �r� ���� appearing in the FRW metric are still comoving, i.e. the
worldline of a galaxy, ignoring any peculiar velocity, has fixed values of �r� ����.

14.7 Geometric properties of the FRW metric

The geometric properties of the homogeneous and isotropic 3-space corresponding
to the hypersurface t = constant depend upon whether k = −1, 0 or 1. We now
consider each of these cases in turn.
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Positive spatial curvature: k= 1

In the case k = 1, we see that the coefficient of dr in the FRW metric becomes
singular as r→ 1. We therefore introduce a new radial coordinate �, defined by
the relation

r = sin� ⇒ dr = cos� d� = �1− r2�1/2 d��

so that the spatial part of the FRW metric takes the form

d#2 = R2 [d�2+ sin2 ��d�2+ sin2 �d�2�
]
�

where R is the value of the scale factor at the particular time t defining the
spacelike hypersurface of interest.

Some insight into this spatial metric may be gained by considering the 3-space
as embedded in a four-dimensional Euclidean space with coordinates �w�x� y� z�,
where

w = R cos��

x = R sin� sin � cos��

y = R sin� sin � sin��

z = R sin� cos��

In fact we have already discussed exactly this embedding in Section 2.9. Such an
embedding is possible since one can write

d#2 = dw2+dx2+dy2+dz2 = R2 [d�2+ sin2 ��d�2+ sin2 �d�2�
]
�

where, from the transformation equations, we have the constraint

w2+x2+y2+ z2 = R2�

This shows that our 3-space can be considered as a three-dimensional sphere in the
four-dimensional Euclidean space. This hypersurface is defined by the coordinate
ranges

0 ≤ � ≤ �� 0 ≤ � ≤ �� 0 ≤ �≤ 2��

The surfaces � = constant are 2-spheres with surface area

A=
∫ �

�=0

∫ 2�

�=0
�R sin� d���R sin� sin �d��= 4�R2 sin2 ��

and ����� are the standard spherical polar coordinates of these 2-spheres. Thus, as
� varies from 0 to �, the area of the 2-spheres increases from zero to a maximum
value of 4�R2 at � = �/2, after which it decreases to zero at � = �. The proper
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radius of a 2-sphere is R�, and so the surface area is smaller than that of a sphere
of radius R� in Euclidean space.

The entire 3-space has a finite total volume given by

V =
∫ �

�=0

∫ �

�=0

∫ 2�

�=0
�Rd���R sin� d���R sin� sin �d��= 2�2R3�

which is the reason why, in this case, R is often referred to as the ‘radius of the
universe’.

Zero spatial curvature: k= 0

In this case, if we set r = � (to keep our notation consistent), the 3-space line
element is

d#2 = R2 [d�2+�2�d�2+ sin2 �d�2�
]
�

which is simply the ordinary three-dimensional Euclidean space. As usual, under
the transformation

x = R� sin � cos�� y = R� sin � sin�� z= R� cos��

the line element becomes

d#2 = dx2+dy2+dz2�

Negative spatial curvature: k=−1
In this case, it is convenient to introduce a radial coordinate � given by

r = sinh� ⇒ dr = cosh� d� = �1+ r2�1/2 d��

so that the spatial part of the FRW metric becomes

d#2 = R2 [d�2+ sinh2 ��d�2+ sin2 �d�2�
]
�

We cannot embed this 3-space in a four-dimensional Euclidean space, but it can
be embedded in a four-dimensional Minkowski space with coordinates �w�x� y� z�
given by

w = R cosh��

x = R sinh� sin � cos��

y = R sinh� sin � sin��

z = R sinh� cos��

In this case, we can write

d#2 = dw2−dx2−dy2−dz2�
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together with the constraint

w2−x2−y2− z2 = R2�

which shows that the 3-space can be represented as a three-dimensional hyper-
boloid in the four-dimensional Minkowski space. The hypersurface is defined by
the coordinate ranges

0 ≤ � ≤�� 0 ≤ � ≤ �� 0 ≤ �≤ 2��

The 2-surfaces � = constant are 2-spheres with surface area

A= 4�R2 sinh2 ��

which increases indefinitely as � increases. The proper radius of such a 2-sphere
is R�, and so the surface area is larger than the corresponding result in Euclidean
space. The total volume of the space is infinite.

From the above discussion, we see that a convenient form for the FRWmetric is

ds2 = c2dt2−R2�t�
[
d�2+S2����d�2+ sin2 �d�2�

]
� (14.11)

where the function r = S��� is given by

S���=

⎧⎪⎨⎪⎩
sin� if k= 1�

� if k= 0�

sinh� if k=−1�
(14.12)

Once again, it is clear that ��� ���� are comoving coordinates.

14.8 Geodesics in the FRW metric

In the comoving coordinate system(s) we have defined above, the galaxies have
fixed spatial coordinates (by construction; any peculiar velocities are ignored).
Thus the ‘cosmological fluid’ is at rest in the comoving frame we have chosen.
We now consider the motion of particles travelling with respect to this comoving
frame. In particular, we consider the geodesic motion of ‘free’ particles, i.e. those
experiencing only the ‘background’ gravitational field of the cosmological fluid
and no other forces. Examples of such particles might include a projectile shot out
of a galaxy or a photon travelling through intergalactic space. We could use the
‘Lagrangian’ procedure to calculate the geodesic equations for the FRW metric,
but instead we take advantage of the fact that the spatial part of the metric is
homogeneous and isotropic to arrive at the equations rather more quickly.
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It is convenient to express the FRW metric in the form (14.11) and write

x��= �t��� ����, so that

g00 = c2� g11 =−R2�t�� g22 =−R2�t�S2���� g33 =−R2�t�S2��� sin2 ��

The path of a particle is given by the geodesic equation

u̇�+ �
�#u

�u# = 0�

where u� = ẋ� and the dot corresponds to differentation with respect to some
affine parameter. For our present purposes, however, it will be more useful to
rewrite the geodesic equation in the form

u̇� = 1
2���g�#�u

�u#�

which shows, as expected, that if the metric is independent of a particular coor-
dinate x� then u� is conserved along the geodesic.

Let us suppose that the geodesic passes through some spatial point P. Since the
spatial part of the metric is spatially homogeneous and isotropic we can, without
loss of generality, take the spatial origin of the coordinate system, i.e. � = 0, to
be at the point P. This simplifies the analysis considerably.

Consider first the �-component u3. Since the metric is independent of �, we
have u̇3 = 0 so that u3 is constant along the geodesic. But

u3 = g33u
3 =−R2�t�S2��� sin2 � u3�

so that u3 = 0 at the point P where � = 0. Thus u3 = 0 along the path and so also
we have u3 = �̇= 0. Hence, along the geodesic,

�= constant�

For the �-component, we have

u̇2 = 1
2��2g�#�u

�u#� (14.13)

The only component of g�� that depends on x2 = � is g33, but the contribution of
the corresponding term in (14.13) vanishes since u3 = 0. Thus u̇2 = 0 and so u2
is constant along the geodesic. Again

u2 = g22u
2 =−R2�t�S2���u2�

which vanishes at P�� = 0�, and so u2 is zero along the geodesic, as is u2, so that

� = constant�

For the r-component,

u̇1 = 1
2��1g�#�u

�u#� (14.14)
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We have u2 = u3 = 0, while g00 and g11 are independent of �. Thus, u̇1 = 0 so
that u1 is constant along the geodesic, so u1 = g11u

1 must be constant. Thus, we
have

R2�t��̇ = constant� (14.15)

Finally, u0 can be found from the appropriate normalisation condition,
u�u� = c2 for massive particles or u�u� = 0 for photons. Thus, we have

ṫ2 =

⎧⎪⎪⎨⎪⎪⎩
1+ R2�t��̇2

c2
for a massive particle�

R2�t��̇2

c2
for a photon�

14.9 The cosmological redshift

We can use the results of the last section to derive the cosmological redshift.
Suppose that a photon is emitted at cosmic time tE by a comoving observer with
fixed spatial coordinates ��E� �E��E� and that the photon is received at time
tR by another observer at fixed comoving coordinates. We may take the latter
observer to be at the origin of our spatial coordinate system.

For a photon one can choose an affine parameter such that the 4-momentum
is p� = ẋ�. From our above discussion, d� = d�= 0 along the photon geodesic,
or equivalently p2 = p3 = 0, and (14.15) shows that p1 is constant along the
geodesic. Since the photon momentum is null, we also require that g��p�p� = 0,
which reduces to

1
c2
�p0�

2− 1
R2�t�

�p1�
2 = 0�

from which we find p0 = cp1/R�t�.
In Appendix 9A we showed that, for an emitter and receiver with fixed spatial

coordinates, the frequency shift of the photon is given, in general, by

�R
�E
= p0�R�

p0�E�

[
g00�E�

g00�R�

]1/2
� (14.16)

For the FRW metric we have g00 = c2, and so we find immediately that

1+ z≡ �E
�R
= R�tR�

R�tE�
� (14.17)

Thus we see that if the scale factor R�t� is increasing with cosmic time, so that the
universe is expanding, then the photon is redshifted by an amount z. Conversely,



368 The Friedmann–Robertson–Walker geometry

if the universe were contracting then the photon would be blueshifted. Only if the
universe were static, so that R= constant, would there be no frequency shift.

In fact, we may also arrive at this result directly from the FRW metric. Since
ds = d�= d�= 0 along the photon path, from (14.11) we have, for an incoming
photon, ∫ tR

tE

c dt

R�t�
=
∫ �E

0
d��

Now, if the emitter sends a second light pulse at time tE+�tE, which is received
at time tR+�tR, then ∫ tR+�tR

tE+�tE
c dt

R�t�
=
∫ �E

0
d� =

∫ tR

tE

c dt

R�t�
�

from which we see immediately that∫ tR+�tR
tR

c dt

R�t�
=
∫ tE+�tE
tE

c dt

R�t�
�

Assuming that �tE and �tR are small, so that R�t� can be taken as constant in
both integrals, we have

�tR
R�tR�

= �tE
R�tE�

�

Considering the pulses to be the successive wavecrests of an electromagnetic
wave, we again find that

1+ z≡ �E
�R
= �tR

�tE
= R�tR�

R�tE�
�

14.10 The Hubble and deceleration parameters

In a common notation we shall write the present cosmic time, or epoch, as t0. Thus
photons received today from distant galaxies are received at t0. If the emitting
galaxy is nearby and emits a photon at cosmic time t, we can write t = t0−�t,
where �t� t0. Thus, let us expand the scale factor R�t� as a power series about
the present epoch t0 to obtain

R�t� = R
t0− �t0− t��

= R�t0�− �t0− t�Ṙ�t0�+ 1
2�t0− t�2R̈�t0�−· · ·

= R�t0�
[
1− �t0− t�H�t0�− 1

2�t0− t�2q�t0�H
2�t0�−· · ·

]
� (14.18)



14.10 The Hubble and deceleration parameters 369

where we have introduced theHubble parameterH�t� and the deceleration param-
eter q�t�. These are given by

H�t�≡ Ṙ�t�

R�t�
�

q�t�≡− R̈�t�R�t�

Ṙ2�t�
�

(14.19)

where the dot corresponds to differentiation with respect to cosmic time t. It
should be noted that these definitions are valid at any cosmic time. The present-day
values of these parameters are usually denoted by H0 ≡H�t0� and q0 ≡ q�t0�.
Using these definitions, we can write the redshift z in terms of the ‘look-back

time’ t− t0 as

z= R�t0�

R�t�
−1= [1− �t0− t�H0− 1

2�t0− t�2q0H
2
0 −· · ·

]−1−1

and, assuming that t0− t� t0, we have

z= �t0− t�H0+ �t0− t�2
(
1+ 1

2q0
)
H2

0 +· · · � (14.20)

Since it is the redshift that is an observable quantity, it is more useful to invert
the above power series to obtain the look-back time t0− t in terms of z. Thus for
z� 1 we have

t0− t =H−1
0 z−H−1

0

(
1+ 1

2q0
)
z2+· · · � (14.21)

It is worth noting that, as one might expect in this approximation, the relations
(14.20) and (14.21) depend only on the present-day valuesH0 and q0 of the Hubble
and deceleration parameters and hence may be evaluated without knowledge of
the complete expansion history R�t� of the universe.

Using the Taylor expansion (14.18), we can also obtain an approximate expres-
sion for the �-coordinate of the emitting galaxy, which is given by

� =
∫ t0

t

c dt

R�t�
=
∫ t0

t
cR−10 
1− �t0− t�H0−· · · �−1 dt�

Assuming once more that t0− t� t0, we have

� = cR−10

[
�t0− t�+ 1

2�t0− t�2H0+· · ·
]
� (14.22)
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We may now substitute for the look-back time t0− t in this result using (14.21),
to obtain an expression for the �-coordinate of the emitting galaxy in terms of its
redshift (assuming z� 1), which reads

� = c

R0H0

[
z− 1

2�1+q0�z
2+· · · ] � (14.23)

Once again, in this approximation the results (14.22) and (14.23) only depend
on the present-day values H0 and q0 and may be evaluated without knowing the
expansion history of the universe.

From the FRW metric, we see that the proper distance d to the emitting galaxy3

at cosmic time t0 is d = R0�. Thus, for very nearby galaxies, d ≈ c�t0− t�.
Moreover, from (14.20), in this case z ≈ �t0− t�H0. So, if we were to interpret
the cosmological redshift as a Doppler shift due to a recession velocity v of the
emitting galaxy, we would obtain

v= cz=H0d� (14.24)

which is approximately valid for small z. The galaxies will therefore appear to
recede from us with a recession speed proportional to their distance from us.
This is, of course, Hubble’s law, named after Edwin Hubble, who discovered
the expansion of the universe in 1929 by comparing redshifts with distance
measurements to nearby galaxies (derived from the period–luminosity relation of
Cepheid variables). His results suggested a linear recession law, as in (14.24).
This was an amazing result. It implies that the universe started off at high density
at some finite time in the past. You will notice from (14.24) that the Hubble
‘constant’ has the dimensions of inverse time. As we will see later, the quantity
1/H0 gives the age of the universe to within a factor of order unity. It is clear
that, in general, the Hubble parameter will vary with cosmic time t and hence
with redshift z. By combining the expressions (14.18), (14.19) and (14.21), we
can obtain an expression for how the Hubble parameter varies with z for small
redshift,

H�z�=H0
1+ �1+q0�z−· · · �� (14.25)

So far, we have been considering the low-z limit. Having introduced the Hubble
parameter, however, we may use it to derive useful general expressions for the

3 In order to measure the proper distance d, one would in fact have to arrange for all the ‘civilisations’ along
the route to the galaxy to lay out measuring rods at the same cosmic time t0. This could be synchronised by,
for example, requiring the temperature of the cosmic microwave background or the mean matter density of
the universe to have a given value. We will discuss more practical measures of distance shortly.
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look-back time to an emitting galaxy, and for its �-coordinate, as functions of the
redshift z of the received photon. In general, we have

dz= d�1+ z�= d

(
R0

R

)
=−R0

R
Ṙdt =−�1+ z�H�z�dt�

which provides a very useful relation between an interval dz in redshift and the
corresponding interval dt in cosmic time. Thus, we can write the look-back time as

t− t0 =
∫ t0

t
dt =

∫ z

0

dz

�1+ z�H�z�
� (14.26)

and the galaxy’s �-coordinate is given by

� =
∫ t0

t

c dt

R�t�
= c

R0

∫ z

0

dz

H�z�
� (14.27)

It is clear, however, that in order to evaluate either of these integrals we must
know how H�z� varies with z, which requires knowledge of the evolution of the
scale factor R�t�.

14.11 Distances in the FRW geometry

Distance measures in an expanding universe can be confusing. For example, let us
consider the distance to some remote galaxy. The light received from the galaxy
was emitted when the universe was younger, because light travels at a finite
speed c. Evidently, as we look at more distant objects, we see them as they were
at an earlier time in the universe’s history when proper distances were smaller,
since the universe is expanding. What, therefore, do we mean by the ‘distance’ to
a galaxy? In fact, interpreting and calculating distances in an expanding universe
is straightforward, but one must be clear about what is meant by ‘distance’.

From the FRW metric

ds2 = c2dt2−R2�t�
[
d�2+S2����d�2+ sin2 �d�2�

]
�

we can define a number of different measures of distance. The parameter � is
a comoving coordinate that is sometimes referred to as the coordinate distance,
whereas the proper distance to an object at some cosmic time t is d= R�t��, but
this cannot be measured in practice. Thus, we must look for alternative ways of
defining the distance to an object. The two most important operationally defined
distance measures are the luminosity distance and the angular diameter distance.
These distance measures form the basis for observational tests of the geometry of
the universe.
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Luminosity distance

In an ordinary static Euclidean universe, if a source of absolute luminosity L

(measured in W= J s−1) is at a distance d then the flux that we receive (measured
in Wm−2) is F = L/�4�d2�. Now suppose that we are actually in an expanding
FRW geometry, but we know that the source has a luminosity L and we observe
a flux F . The quantity

dL =
(

L

4�F

)1/2

� (14.28)

is called the luminosity distance of the source. This is an operational definition,
and we must now investigate how to express it in terms of the FRW metric.

Consider an emitting source E with a fixed comoving coordinate � relative to
an observer O (note that, by symmetry, the emitter would assign the same value of
� to the observer). We assume that the absolute luminosity of E as a function of
cosmic time is L�t� and that the photons it emits are detected by O at cosmic time
t0. Clearly, the photons must have been emitted at an earlier time te. Assuming
the photons to have been emitted isotropically, the radiation will be spread evenly
over a sphere centred on E and passing through O (see Figure 14.2). The proper
area of this sphere is

A= 4�R2�t0�S
2����

However, each photon received by O is redshifted in frequency, so that

�0 =
�e

1+ z
�

t = te

t = t0

O E

Figure 14.2 Geometry associated with the definition of luminosity distance
(with one spatial dimension suppressed).
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and, moreover, the arrival rate of the photons is also reduced by the same factor.
Thus, the observed flux at O is

F�t0�=
L�te�

4�
R0S����
2

1
�1+ z�2

�

The luminosity distance defined above is now evaluated as

dL = R0S����1+ z�� (14.29)

This is an important quantity, which can be used practically, but note that it
depends on the time history of the scale factor through the dependence on �.

Angular diameter distance

Another important distance measure is based upon the notion of the existence of
some standard-length ‘rods’, whose angular diameter we can observe. Suppose
that a source has proper diameter �. Then, in Euclidean space, if it were at a
distance d it would subtend an angular diameter ��=D/d. In an FRW geometry,
we thus define the angular diameter distance to an object to be

dA =
�

��
� (14.30)

This is again an operational definition, and we now investigate how to express it
in terms of the FRW metric.

Suppose we have two radial null geodesics (light paths) meeting at the observer
at time t0 with an angular separation ��, having been emitted at time te from
a source of proper diameter � at a fixed comoving coordinate � (assuming,
for simplicity, that the spatial axes are oriented so that � = constant along the
photon paths); see Figure 14.3. To obtain a clearer view of the specification of
the coordinates, we may look vertically down the worldline of O and define the
coordinates as in Figure 14.4. From the angular part of the FRW metric we have

�= R�te�S������

so that

dA = R�te�S���= R�t0�
R�te�

R�t0�
S���= R�t0�S���

1+ z
�

Thus the angular diameter distance is given by

dA =
R0S���

1+ z
� (14.31)



374 The Friedmann–Robertson–Walker geometry

t = t0

t = te

EO

�

Figure 14.3 Geometry associated with the definition of angular diameter
distance (with one spatial dimension suppressed).

(te, χ, θ + ∆θ, φ)

(te, χ, θ, φ)

�(t0, 0, 0, 0) ∆θ

Figure 14.4 Specification of the coordinates in the definition of angular diameter
distance.

This differs from the luminosity distance dL by a factor �1+ z�2, emphasizing
again that ‘distance’ depends on definition. Again, because of the �-dependence
we need to know the time history of the scale factor R�t� to evaluate dA.

14.12 Volumes and number densities in the FRW geometry

The interpretation of cosmological observations often requires one to determine
the volume of some three-dimensional region of the FRW geometry. Consider a
comoving cosmological observer, whom we may take to be at the origin � = 0
of our comoving coordinate system. From the FRW metric

ds2 = c2 dt2−R2�t�
[
d�2+S2����d�2+ sin2 �d�2�

]
�
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we see that, at cosmic time t0, the proper volume of the region of space lying in
the infinitesmial coordinate range � → �+d� and subtending an infinitesmial
solid angle d�= sin �d�d� at the observer is

dV0 = �R0 d��
[
R2
0S

2���d�
]= R3

0S
2���d� d��

For the interval �→ �+d� in the radial comoving coordinate there exists a
corresponding interval z→ z+dz in the redshift of objects lying in this radial
range (and also a corresponding cosmic time interval t→ t+dt within which the
light observed by O at t = t0 was emitted). We may therefore write the volume
element as

dV0 = R3
0S

2���
d�

dz
dzd��

From (14.27), however, we have

d�

dz
= c

R0H�z�
�

and so

dV0 =
cR2

0S
2���z��

H�z�
dzd��

where we have made explicit that � is also a function of z. This volume element
is illustrated in Figure 14.5. For an expanding universe, the proper volume of this

O

t = t0, z = 0

t = t, z = z

t = t – dt,
z = z + dz

dV0

χ

χ + dχ

Figure 14.5 Geometry associated with the definition of a proper volume element
dV0 at cosmic time t = t0 (with one spatial dimension suppressed).
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comoving region will be smaller at some earlier cosmic time t (which corresponds
to some redshift z). Indeed, using (14.17), we have

dV�z�= dV0

�1+ z�3
= cR2

0S
2���z��

�1+ z�3H�z�
dzd�� (14.32)

The main use of the result (14.32) is in predicting the number of galaxies (of a
certain type) that one would expect to observe in a given area of sky and redshift
interval, and comparing that result with observations. Suppose, for example, that
the proper number density of galaxies of a certain type at a redshift z is given by
n�z�. Using (14.32), the total number dN of such objects in the redshift interval
z→ z+dz and in a solid angle d� is

dN = n�z�dV�z�= cR2
0S

2���z��

H�z�

n�z�

�1+ z�3
dzd�� (14.33)

The above expression has been arranged to make use of the fact that, if objects are
conserved (so that, once formed, galaxies are not later destroyed), we may write
n�z�/�1+ z�3 = n0, where n0 is the present-day proper number density of such
objects; hence the resulting expression is simplified somewhat. As an illustration,
let us consider a population of galaxies which are formed instantaneously at a
redshift z= zf , which are not later destroyed and which have a present-day number
density n0. From (14.33), the total number of such objects in the whole sky is

N = 4�cn0R
2
0

∫ zf

0

S2���z��

H�z�
dz�

Clearly, in order to evaluate this integral one requires knowledge of the expansion
history R�t� of the universe.

14.13 The cosmological field equations

So far we have investigated only the geometric and kinematic consequences of the
FRW metric. The dynamics of the spacetime geometry is characterised entirely
by the scale factor R�t�. In order to determine the function R�t�, we must solve
the gravitational field equations in the presence of matter.

From Chapter 8 the gravitational field equations, in the presence of a non-zero
cosmological constant, are

R��− 1
2g��R+$g�� =−&T���

where &= 8�G/c4. It is, however, more convenient to express the field equations
in the alternative form

R�� =−&�T��− 1
2Tg���+$g��� (14.34)
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where T = T
�
� . In order to solve these equations, we clearly need a model for the

energy–momentum tensor of the matter that fills the universe. For simplicity, we
shall grossly idealise the universe and model the matter by a simple macroscopic
fluid, devoid of shear-viscous, bulk-viscous and heat-conductive properties. Thus
we assume a perfect fluid, which is characterised at each point by its proper density
� and the pressure p in the instantaneous rest frame. The energy–momentum
tensor is given by

T�� =
(
�+ p

c2

)
u�u�−pg��� (14.35)

Since we are seeking solutions for a homogeneous and isotropic universe, the
density � and pressure p must be functions of cosmic time t alone.

We may perform the calculation in any coordinate system, but the algebra is
simplified slightly by adopting the comoving coordinates 
x�� = �t� r� ����, in
which the FRW metric takes the form

ds2 = c2 dt2−R2�t�

[
dr2

1−kr2
+ r2�d�2+ sin2 �d�2�

]
�

Thus the covariant components g�� of the metric are

g00 = c2� g11 =−
R2�t�

1−kr2
� g22 =−R2�t�r2� g33 =−R2�t�r2 sin2 ��

Since the metric is diagonal, the contravariant components g�� are simply the
reciprocals of the covariant components.

The connection is given in terms of the metric by

 #
�� = 1

2g
#����g��+ ��g��− ��g����

from which it is straightforward to show that the only non-zero coefficients are

 0
11 = RṘ/
c�1−kr2���  0

22 = RṘr2/c�  0
33 = �RṘr2 sin2 ��/c�

 1
01 = cṘ/R�  1

11 = kr/�1−kr2��  0
33 = �RṘr2 sin2 ��/c�

 1
33 =−r�1−kr2� sin2 ��

 2
02 = cṘ/R�  2

12 = 1/r�  2
33 = sin � cos��

 3
03 = cṘ/R�  3

13 = 1/r�  3
23 = cot ��

where the dots denote differentiation with respect to cosmic time t. We next
substitute these expressions for the connection coefficients into the expression for
the Ricci tensor,

R�� = �� 
#
�# − �# 

#
��+ �

�# 
#
��− �

�� 
#
�#�
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After some tedious but straightforward algebra, we find that the off-diagonal
components of the Ricci tensor are zero and the diagonal components are given by

R00 = 3R̈/R�

R11 = −�RR̈+2Ṙ2+2c2k�c−2/�1−kr2��

R22 = −�RR̈+2Ṙ2+2c2k�c−2r2�

R33 = −�RR̈+2Ṙ2+2c2k�c−2r2 sin2 ��

We must now turn our attention to the right-hand side of the field equa-
tions (14.34). In our comoving coordinate system �t� r� ����, the 4-velocity of the
fluid is simply


u��= �1�0�0�0��

which we can write as u� = �
�
0 . Thus the covariant components of the

4-velocity are

u� = g���
�
0 = g�0 = c2�0��

so we can write the energy–momentum tensor (14.35) as

T�� = ��c2+p�c2�0��
0
�−pg���

Moreover, since u�u� = c2, contraction of the energy–momentum tensor gives

T = T�
� =

(
�+ p

c2

)
c2−p��� = �c2−3p�

Hence we can write the terms on the right-hand side of the field equations (14.34)
that depend on the energy–momentum as

T��− 1
2Tg�� = ��c2+p�c2�0��

0
�− 1

2��c
2−p�g���

Including the cosmological-constant term, we find that the right-hand side of the
field equations (14.34) vanishes for � �= �. The non-zero components read

−&�T00− 1
2Tg00�+$g00 = − 1

2&��c
2+3p�c2+$c2�

−&�T11− 1
2Tg11�+$g11 = −

[ 1
2&��c

2−p�+$
]
R2/�1−kr2��

−&�T22− 1
2Tg22�+$g22 = −

[ 1
2&��c

2−p�+$
]
R2r2�

−&�T33− 1
2Tg33�+$g33 = −

[ 1
2&��c

2−p�+$
]
R2r2 sin2 ��

Combining these expressions with those for the components of the Ricci tensor,
we see that the three spatial field equations are equivalent, which is essentially
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due to the homogeneity and isotropy of the FRW metric. Thus the gravitational
field equations yield just the two independent equations,

3R̈/R = − 1
2&��c

2+3p�c2+$c2�

RR̈+2Ṙ2+2c2k = [ 1
2&��c

2−p�+$
]
c2R2�

Eliminating R̈ from the second equation and remembering that &= 8�G/c4, we
finally arrive at the cosmological field equations

R̈=−4�G
3

(
�+ 3p

c2

)
R+ 1

3$c
2R�

Ṙ2 = 8�G
3

�R2+ 1
3$c

2R2− c2k�

(14.36)

These two differential equations determine the time evolution of the scale factor
R�t� and are known as the Friedmann–Lemaître equations. In the case $= 0 they
are often called simply the Friedmann equations. We will discuss the solutions
to these equations in various cases in Chapter 15.

14.14 Equation of motion for the cosmological fluid

For any particular model of the universe, the two cosmological field equa-
tions (14.36) are sufficient to determine R�t�. Nevertheless, we can derive one
further important equation (which is often useful in shortening calculations) from
the fact that energy–momentum conservation requires

��T
�� = 0�

From our discussion of a perfect fluid in Chapter 8, we know that this requirement
leads to the relativistic equations of continuity and motion for the cosmological
fluid. These equations read

����u
��+ p

c2
��u

� = 0� (14.37)(
�+ p

c2

)
u���u

� =
(
g��− u�u�

c2

)
��p� (14.38)

The second equation is easily shown to be satisfied identically, since both sides
equal zero. This confirms that the fluid particles (galaxies) follow geodesics,
which was to be expected since p is a function of t alone, and so there is no
pressure gradient to push them off geodesics. The continuity equation (14.37) can
be written

���p�u
�+

(
�+ p

c2

)
���u

�+ �
��u

��= 0�
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Remembering that � is a function of t alone, and with u� = �
�
0 , this reduces to

�̇+
(
�+ p

c2

) 3Ṙ
R
= 0� (14.39)

which expresses energy conservation. This equation can in fact be derived directly
from the field equations (14.36) by eliminating R̈. Thus, only two of the three
equations (14.36) and (14.39) are independent. One may use whichever two
equations are most convenient in any particular calculation.

Equation (14.39) can be simply rearranged into the useful alternative form

d��R3�

dt
=−3pṘR2

c2
� (14.40)

Moreover, by transforming the derivative with respect to t to a derivative with
respect to R, one obtains a third useful form of the equation, namely

d��R3�

dR
=−3pR2

c2
� (14.41)

Finally, we note that the density and pressure of a fluid are related by its
equation of state. In cosmology, it is usual to assume that (each component of)
the cosmological fluid has an equation of state of the form

p= w�c2�

where the equation-of-state parameter w is a constant (in the more exotic cosmo-
logical models one sometimes allows w to be a function of cosmic time t, but we
shall not consider such models here). The energy equation (14.41) can then be
written

d��R3�

dR
=−3w�R2�

This equation has the immediate solution

�∝ R−3�1+w�� (14.42)

which gives the evolution of the density � as a function of the scale factor R�t�.
Note that in general �c2 is the energy density of the fluid. In particular w = 0
for pressureless ‘dust’, w = 1

3 for radiation and w = −1 for the vacuum (if the
cosmological constant $ �= 0; see Section 8.7).
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14.15 Multiple-component cosmological fluid

Suppose that the cosmological fluid in fact consists of several distinct components
(for example, matter, radiation and the vacuum) that do not interact except through
their mutual gravitation. Let us suppose further that each component can be
modelled as a perfect fluid, as discussed above.

The energy–momentum tensor of a multiple-component fluid is given simply by

T�� =∑
i
�T���i �

where i labels the various fluid components. Since each component is modelled
as a perfect fluid, we have

T�� =∑
i

[(
�i+

pi
c

)
u�u�−pig

��
]

=∑
i

(
�i+

pi
c

)
u�u�− �

∑
i
pi�g���

Thus, the multicomponent fluid can itself be modelled as a single perfect fluid with

�=∑
i
�i and p=∑

i
pi� (14.43)

which can be substituted directly into our cosmological field equations (14.36).4

Moreover, since we are assuming that the fluid components are non-interacting,
conservation of energy and momentum requires that the condition

���T
���i = 0

holds separately for each component. Then each fluid will obey an energy equation
of the form (14.39). Thus, if wi = pi/��ic

2� then the density of each fluid evolves
independently of the other components as

�i ∝ R−3�1+wi�� (14.44)

Exercises

14.1 In an N -dimensional manifold, consider the tensor

Rijkl = K�gikgjl−gilgjk��

whereK may be a function of position. Show that this tensor satisfies the symmetry
properties and the cyclic identity of the curvature tensor. Show that, in order to
satisfy the Bianchi identity, one requires K to be constant if N > 2.

4 Unfortunately, if the individual equation-of-state parameters wi are constants one cannot, in general, define
a single effective equation-of-state parameter w = p/��c2� that is also independent of cosmic time t.
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14.2 For a 3-space with a line element of the form

d#2 = B�r�dr2+ r2d�2+ r2 sin2 �d�2�

show that the non-zero components of the Ricci tensor are

Rrr =−
1
rB

dB

dr
� R�� =

1
B
−1− r

2B2

dB

dr
� R�� = R�� sin

2 ��

Hence show that if the 3-space is maximally symmetric then B�r� must take the
form

B�r�= 1
A−Kr2

�

where A and K are constants.
14.3 In a four-dimensional Euclidean space with ‘Cartesian’ coordinates �w�x� y� z�, a

3-sphere of radius R is defined by w2+x2+ y2+ z2 = R2. Show that the metric
on the surface of the 3-sphere can be written in the form

d#2 = R2
[
d�2+ sin2 ��d�2+ sin2 �d�2�

]
�

Show that the total volume of the 3-sphere is V = 2�2R3.
14.4 In a four-dimensional Minkowski space with ‘Cartesian’ coordinates �w�x� y� z�,

a 3-hyperboloid is defined by w2−x2− y2+−z2 = R2. Show that the metric on
the surface of the 3-hyperboloid can be written in the form

d#2 = R2
[
d�2+ sinh2 � �d�2+ sin2 �d�2�

]
�

Show that the total volume of the 3-hyperboloid is infinite.
14.5 At cosmic time t1, a massive particle is shot out into an expanding FRW universe

with velocity v1 relative to comoving cosmological observers. At a later cosmic
time t2 the particle has a velocity v2 with respect to comoving cosmological
observers. Show that, at any intermediate cosmic time t, the velocity of the particle
as measured by a comoving cosmological observer is

v�t�= R�t�
d�

dt
�

Hence show that
	v2

v2

	v1
v1
= R�t1�

R�t2�
�

where 	v = �1− v2/c2�−1/2 and R�t� is the scale factor at cosmic time t. By
considering the particle momentum, show that as v1 → c the photon redshift
formula is recovered.

14.6 In the limit z� 1, show that the look-back time for a galaxy with redshift z is

t0− t =H−1
0 z−H−1

0

(
1+ 1

2q0
)
z2+· · · �
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Show also that, in this limit, the variation of the Hubble parameter with redshift
is given by

H�z�=H0
1+ �1+q0�z−· · · ��

14.7 In a spatially flat FRW geometry, show that the luminosity and angular diameter
distances to an object of redshift z are given, in the limit z� 1, by

dL =
c

H0

[
z+ 1

2 �1−q0�z
2+· · · ] �

dA =
c

H0

[
z− 1

2 �3+q0�z
2+· · · ] �

Hence show that the angular diameter of a standard object can increase as z

increases. Do these results still hold in a spatially curved FRW geometry?
14.8 In the FRW geometry, show that the look-back time to a nearby object at proper

distance d is

t0− t = d

c
− H0d

2

2c2
+· · · �

Hence show that the redshift to the object is

z= H0d

c
+ 1+q0

2
H2

0d
2

c2
+· · · �

14.9 The observed flux in the frequency range 
�1� �2� received from some distant
comoving object is given by

Fobs��1� �2�=
∫ �2

�1

fobs���d��

where fobs�v� is the observed flux density (in Wm−2 Hz−1) as a function of
frequency. If fem��� is the emitted (or intrinsic) flux density of the object, show
that

fobs���=
fem��1+ z���

1+ z
�

where z is the redshift of the object. If fem���∝ �� over a wide range of frequencies,
show that

Fobs��1� �2�= Kz Fem��1� �2��

where the K-correction is given by Kz = �1+ z��−1.
14.10 The observed surface brightness (obs of an extended object observed in the

frequency range 
�1� �2� is defined as the observed flux per unit solid angle. Thus,
for a (small) circular object subtending an angular diameter �� we have

(obs =
4Fobs��1� �2�

�����2
�
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where Fobs��1� �2� is defined in Exercise 14.9. Show that (obs can be written as

(obs =
4
�

Lem��1� �2�

4��2
Kz

�1+ z�4
�

where � is the physical (projected) diameter of the object, Lem��1� �2� is the
intrinsic luminosity of the object in the frequency range 
�1� �2� and Kz is the
K-correction.
Note: The above result is independent of cosmological parameters. Moreover,
setting aside the K-correction, the �1+ z�−4-dependence means that the surface
brightness of extended objects drops very rapidly with redshift, making the detec-
tion of high-z objects difficult.

14.11 A commonly used distance measure in cosmology is the proper-motion distance
dM defined by

dM =
v

�̇
�

where v is the proper transverse velocity of (some part of) the object, which is
assumed known from astrophysics, and �̇ is the corresponding observed angular
velocity. Show that

dM = �1+ z�dA =
dL

�1+ z�
�

where dA and dL are the angular-diameter distance and the luminosity distance to
the object respectively.

14.12 A certain population of galaxies undergoes a short ultra-luminous phase at redshift
z= z∗ that lasts for a proper time interval �t. After this phase, such galaxies are
neither created or destroyed. If z∗ � 1, show that for a spatially flat universe the
total number of such galaxies in the sky that are in this phase is given by

N = 4�c3n0�t

H2
0

[
z∗ + 1

2 �1−q0�z
2
∗ + · · ·

]
�

where n0 is the present-day proper number density of these galaxies.
14.13 In the comoving coordinates 
x��= �t� r� ����, the FRW metric takes the form

ds2 = c2 dt2−R2�t�

[
dr2

1−kr2
+ r2�d�2+ sin2 �d�2�

]
�

Using the ‘Lagrangian’ method, or otherwise, calculate the corresponding connec-
tion coefficients  #

��. Hence calculate the non-zero elements of the Ricci
tensor R��.

14.14 In Newtonian cosmology, the universe is modelled as an infinite gas of density ��t�
that is expanding in such a way that the relative recessional velocity of any two
gas particles is v�t�=H�t�R�t�, where H�t�= Ṙ�t�/R�t� and R�t� is the separation



Exercises 385

of the particles at time t. Use Gauss’ law to determine the force on a particle of
mass m on the edge of an arbitrary spherical region, and hence show that

R̈=−4�G
3

�R�

By considering the total energy E of the above particle, show further that

Ṙ2 = 8�G
3

�R2− c2k�

where the constant k=−2E/�mc2�. Compare these Newtonian cosmological field
equations with their general-relativistic counterparts.

14.15 Show that the relativistic equation of motion for the cosmological fluid is satisfied
identically and that the relativistic equation of continuity takes the form

�̇+
(
�+ p

c2

) 3Ṙ
R
= 0�

Show further that this equation may also be written in the forms

d��R3�

dt
=−3pṘR2

c2
and

d��R3�

dR
=−3pR2

c2
�

14.16 Use the cosmological field equations directly to derive the relativistic equation of
continuity for the cosmological fluid given in Exercise 14.15.

14.17 Consider a spherical comoving volume of the cosmological fluid whose surface is
defined by � = constant. As the universe expands show that, for the infinitesimal
time interval t→ t+dt, the conservation of energy requires that

c2�V = c2��+d���V +dV�+pdV�

where �c2 and p are the energy density and pressure of the fluid respectively.
Hence show that

d�

dR
=−3�1+w�

�

R
�

where w = p/��c2� and R�t� is the scale factor of the universe. Show that this
equation has the solution �∝ R−3�1+w�.



15

Cosmological models

In the previous chapter, we considered the geometric and kinematic properties of
the Friedmann–Robertson–Walker (FRW) metric and derived the cosmological
field equations for the scale factor R�t�. In this chapter, we will use the cosmo-
logical field equations to determine the behaviour of the scale factor as a function
of cosmic time in various cosmological models.

15.1 Components of the cosmological fluid

In a general cosmological model, the universe is assumed to contain both matter
and radiation. In addition, the cosmological constant $ is generally assumed to be
non-zero. As discussed in Section 8.7, the modern interpretation of $ is in terms
of the energy density of the vacuum, which may also be modelled as a perfect
fluid (with a peculiar equation of state). Thus, one usually adopts the viewpoint
that the cosmological fluid consists of three components, namely matter, radiation
and the vacuum, each with a different equation of state. The total equivalent mass
density is simply the sum of the individual contributions,

��t�= �m�t�+�r�t�+�$�t�� (15.1)

where t is the cosmic time and we have adopted the commonly used cosmological
notation for the equivalent mass densities of matter, radiation and the vacuum
respectively. Moreover, we shall assume that these three components are non-
interacting (see Section 14.13); although matter and radiation did interact in the
early universe, this is a reasonable approximation for most of its history.

As mentioned in Section 14.12, each component of the cosmological fluid is
modelled as a perfect fluid with an equation of state of the form

pi = wi�ic
2�

386
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where the equation-of-state parameter wi is a constant (and i labels the compo-
nent). In particular wi= 0 for pressureless ‘dust’, wi= 1

3 for radiation and wi=−1
for the vacuum. In general, if wi is a constant then, requiring that the weak energy
condition is satisfied (see Exercise 8.8) and that the local sound speed �dp/d��1/2

is less than c, one finds that wi must lie in the range −1 ≤ wi ≤ 1. We see that
this is indeed the case for dust, radiation and the vacuum. We now discuss each
of these components in turn and conclude with a description of their relative
contributions to the total density as the universe evolves.

Matter

In general, matter in the universe may come in several different forms. In addi-
tion to the normal baryonic matter of everyday experience (such as protons and
neutrons), the universe may well contain more exotic forms of matter consisting
of fundamental particles that lie beyond the ‘Standard Model’ of particle physics.
Indeed, observations of the large-scale structure in the universe suggest that most
of the matter is in the form of non-baryonic dark matter, which interacts electro-
magnetically only very weakly (and is hence invisible or ‘dark’). Moreover, dark
matter may itself come in different forms, such as cold dark matter (CDM) and
hot dark matter (HDM), the naming of which is connected to whether the typical
energy of the particles is non-relativistic or relativistic. We shall not pursue this
very interesting subject any further here1 but merely note that the total matter
density (at any particular cosmic time t) may be expressed as the sum of the
baryonic and dark matter contributions,

�m�t�= �b�t�+�dm�t��

In the following discussion, we will not differentiate between different types of
matter, since it is only the total matter density that determines how the scale factor
R�t� evolves with cosmic time t. We shall also make the common assumption that
the matter particles (in whatever form) have a thermal energy that is much less
than their rest mass energy, and so the matter can be considered to be pressureless,
i.e. dust. In this case the equation of state parameter is simply w= 0. Thus, from
(14.44), if the matter has a present-day proper density of �m�t0�≡ �m�0, its density
at some other cosmic time t is given by

�m�t�= �m�0

[
R0

R�t�

]3
or �m�z�= �m�0�1+ z�3�

1 For a full discussion, see (for example) T. Padmanabhan, Structure Formation in the Universe, Cambridge
University Press, 1993.
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where in the second expression we have used (14.17) to write the density in terms
of the redshift z. These expressions concur with our expectation for the behaviour
of the space density of dust particles in an expanding universe.

Radiation

The term radiation naturally includes photons, but also other species with very
small or zero rest masses, such that they move relativistically today. An example
of the latter is neutrinos (which may in fact have a small non-zero rest mass). The
total equivalent mass density of radiation in the universe at some cosmic time t

may then be written as the sum of the photon and neutrino contributions:

�r�t�= �	�t�+���t��

Once again, we will not differentiate between different types of radiation in our
subsequent discussion, since it is only the total energy density that determines
the behaviour of the scale factor. For radiation, in general, we have w= 1

3 . Thus,
from (14.44), if the total radiation in the universe has a present-day energy density
of �r�0c

2 then, at other cosmic times,

�r�t�= �r�0

[
R0

R�t�

]4
or �r�z�= �r�0�1+ z�4�

In this case, the variation in the space density of photons (for example) again goes
as �1+z�3, but there is an additional factor 1+z resulting from the cosmological
redshift of each photon.

It is worth noting that, to a very good approximation, the dominant contribution
to the radiation energy density of the universe is due to the photons of the
cosmic microwave background (CMB). This radiation is (to a very high degree
of accuracy) uniformly distributed throughout the universe and has a blackbody
form. For blackbody radiation, the number density of photons with frequencies
in the range 
�� �+d�� is given by

n���T�d� = 8��2

c3
(
eh�/kT −1

) d�� (15.2)

where T is the ‘temperature’ of the radiation. Since the energy per unit frequency
is simply u���T�= n���T�h�, the total equivalent mass density of the radiation is

�r�T�=
1
c2

∫ �

0
u� d� =

aT 4

c2
�

where a = 4�2k4B/�60�
3c3� is the reduced Stefan–Boltzmann constant. Obser-

vations show that the CMB is characterised by a present-day temperature
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T0 = 2�726K, which corresponds to a total present-day number density n	�0 ≈
4×108 m−3. It is easily shown that the CMB photon energy distribution retains
its general blackbody form as the universe expands. Thus, at any given cosmic
time t, the temperature of the CMB radiation in the universe is given by

T�t�= T0

[
R0

R�t�

]
or T�z�= T0�1+ z�� (15.3)

from which we see that the universe must have not only been denser in the past,
but also ‘hotter’.

Vacuum

As mentioned above the vacuum can be modelled as a perfect fluid having
an equation of state p = −�c2, so that the fluid has a negative pressure. This
corresponds to an equation of state parameter w = −1. Thus, from (14.44), we
see that at any cosmic time t, we have

�$ = �$�0 =
$c2

8�G
�

Thus, the energy density of the vacuum always has the same constant value.

Relative contributions of the components

On combining the above results, we find that the variation in the total equivalent
mass density (15.1) may be written as

��t�= �m�0

[
R0

R�t�

]3
+�r�0

[
R0

R�t�

]4
+�$�0� (15.4)

From this expression, we see that the relative contributions of matter, radiation
and the vacuum to the total density vary as the universe evolves. The details
clearly depend on the relative values of �m�0, �r�0 and �$�0. Typically, however,
one would expect radiation to dominate the total density when R�t� is small. As
the universe expands, the radiation energy density dies away the most quickly
and matter becomes the dominant component. Finally, if the universe continues
to expand then the matter density also dies away and the vacuum ultimately
dominates the energy density. We conclude by noting that cosmologists often
define the normalised scale parameter

a�t�≡ R�t�

R0
�

in terms of which the above results are more compactly written, since a0 = 1 by
definition. We shall make use of this parameter further in subsequent sections.
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15.2 Cosmological parameters

In our very simplified model of the universe discussed above, its entire history
is determined by only a handful of cosmological parameters. In particular, if one
specifies the values of the equivalent mass densities �m�t∗�, �r�t∗� and �$ at
some particular cosmic time t∗ then the value of each density, and hence the total
density, is determined at all other cosmic times t. Thus, specifying these quantities
is sufficient to determine the scale factor R�t� at all cosmic times. It is most
natural to take t∗ to be the present-day cosmic time t0, and so the cosmological
model is entirely fixed by specifying the three quantities

�m�0� �r�0� �$�0�

It is, however, both convenient and common practice in cosmology to work
instead in terms of alternative dimensionless quantities, usually called density
parameters or simply densities, which are defined by

�i�t�≡
8�G
3H2�t�

�i�t� (15.5)

where H�t� is the Hubble parameter and the label i denotes ‘m’, ‘r’ or ‘$’. It
is worth noting that �$�t� is, in general, a function of cosmic time t (unlike
�$, which is a constant). In terms of these new dimensionless parameters, the
cosmological model may thus be fixed by specifying the values of the four
present-day quantities

H0� �m�0� �r�0� �$�0� (15.6)

A major goal of observational cosmology is therefore to determine these quantities
for our universe. Significant advances in the last decade mean that cosmologists
now know these values to an accuracy of just a few per cent.2 We simply note
here that

H0 ≈ 70km s−1Mpc−1� �m�0 ≈ 0�3� �r�0 ≈ 5×10−5� �$�0 ≈ 0�7�

(15.7)

where the units of H0 are those most commonly used in cosmology, in which
1Mpc≡ 106 parsecs≈ 3�09×1022 m; in SI units, H0 ≈ 2�27×10−18 s−1. Perhaps
most astonishing is that the present-day energy density of the universe is domi-
nated by the vacuum!

2 How these observational advances have been achieved is discussed in, for example, J. Peacock, Cosmological
Physics, Cambridge University Press, 1999 or P. Coles & F. Lucchin, Cosmology: The Origin and Evolution
of Cosmic Structure (2nd edition), Wiley, 2002.
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We also note, for completeness, that cosmologists define further analogous
dimensionless density parameters for the individual contributions to the matter
and the radiation. For example, �b, �dm and �� are commonly used to denote
the dimensionless density of baryons, dark matter and neutrinos respectively. For
our universe, cosmological observations suggest the present-day values

�b�0 ≈ 0�05� �dm�0 ≈ 0�25� ���0 ≈ 0� (15.8)

noting, in particular, that only around one-sixth of the matter density is in the form
of the familiar baryonic matter. Moreover, the majority of the baryonic matter
seems not to reside in ordinary (hydrogen-burning) stars; the contribution of such
stars is only �∗ ≈ 0�008. The values of the individual quantities (15.8) affect the
astrophysical process occurring in the universe and have a profound influence on,
for example, the formation of structure. For determining the overall expansion
history of the universe, however, only the quantities (15.6) need be specified.

The reason for defining the densities (15.5) becomes clear when we rewrite
the second of the cosmological field equations (14.36) in terms of them. Dividing
this equation through by R2 and noting that H = Ṙ/R, we obtain

1=�m+�r+�$−
c2k

H2R2
� (15.9)

where, for notational simplicity, we have dropped the explicit time dependence of
the variables. Indeed, it is also common practice to define the curvature density
parameter

�k�t�=−
c2k

H2�t�R2�t�
� (15.10)

so that, at all cosmic times t, we have the elegant relation

�m+�r+�$+�k = 1� (15.11)

It should be noted that, in cosmological models with positive spatial curvature
�k = 1�, the parameter �k is negative. Moreover, if the cosmological constant
$ is negative then so too is the vacuum density parameter �$. This behaviour
should be contrasted with that of �m and �r, which are always positive.

From (15.9), we see that the values of �m, �r and �$ determine the spatial
curvature of the universe in a simple fashion. We have three cases:

�m+�r+�$ < 1 ⇔ negative spatial curvature �k=−1� ⇔ ‘open’�
�m+�r+�$ = 1 ⇔ zero spatial curvature �k= 0� ⇔ ‘flat’�
�m+�r+�$ > 1 ⇔ positive spatial curvature �k= 1� ⇔ ‘closed’�
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The above relations are valid at any cosmic time t but are most often applied to
the present day, t = t0. In particular, it is also clear from (15.9) that, although
the density parameters �m��r and �$ are all, in general, functions of cosmic
time t, their sum cannot change sign. Thus, the universe cannot evolve from one
form of the FRW geometry to another. We note that cosmologists often add to
the plethora of density parameters by also defining the total density parameter

�≡�m+�r+�$ = 1−�k� (15.12)

which is related to the total equivalent mass density (15.1) by �= 8�G�/�3H2�.
From (15.7), we see that for our universe �0 ≈ 1 or equivalently �k�0 ≈ 0, and
it is therefore close to being spatially flat �k= 0�.

Finally, it is worth noting that, for any cosmological model to be spatially
flat, one requires � = 1 and it is common to describe the corresponding total
equivalent mass density as the critical density, which is given by

�crit ≡
3H2

8�G
�

Hence, for any given value of the Hubble parameter, this expression gives the total
equivalent mass density required for the universe to be spatially flat. Since recent
cosmological observations suggest that our universe is indeed close to spatially
flat and, (15.7), that H0 ≈ 70km s−1Mpc−1, one finds that the present-day total
equivalent mass density in our universe is

�crit�0 =
3H2

0

8�G
≈ 9�2×10−27 kg m−3�

As mentioned above, it is thought that only around 30 per cent of this equivalent
mass density is in the form of matter and only around 5 per cent in the form of
baryonic matter. Nevertheless, it is worth noting that �crit�0 ≈ 5�5 protonsm−3,
and so the critical density turns out to be extremely low by laboratory standards.3

15.3 The cosmological field equations

Since the cosmological model can be fixed by specifying the values of the quan-
tities listed in (15.6), it is worthwhile rewriting the cosmological field equations
(14.36) in terms of these parameters. Let us begin with the second field equation.
Recalling that H = Ṙ/R, this may be written

H2 = 8�G
3

(∑
i
�i

)
− c2k

R2
�

3 The fact that this is a number of order unity is an accident of our choice of units!
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where the label i includes matter, radiation and the vacuum. From (15.4), (15.5)
and (15.10), we therefore find

H2 =H2
0

(
�m�0 a

−3+�r�0 a
−4+�$�0+�k�0 a

−2) � (15.13)

where we have written the result in terms of the dimensionless scale parameter
a= R/R0. It should be remembered that �k�0 = 1−�m�0−�r�0−�$�0 and may
be considered merely as a convenient shorthand. It is also worth noting that, since
a= R/R0 = �1+z�−1, equation (15.13) immediately yields an expression for the
Hubble parameter H�z� as a function of redshift z.

We now turn to the first cosmological field equation in (14.36). Multiplying
this equation through by R/Ṙ2 and again noting that H = Ṙ/R, we have

RR̈

Ṙ2
=−4�G

3H2

∑
i
�i�1+3wi��

where the label i once more includes matter, radiation and the vacuum. The left-
hand side is equal to minus the deceleration parameter q defined in (14.19). Thus,
substituting the appropriate value of wi for each component and using (15.5), one
finds the neat relation

q = 1
2��m+2�r−2�$�� (15.14)

If desired, one can easily write this equation explicitly in terms of the present-day
values of the density parameters by using the result (15.13) and the relation

�i =�i�0

(
H0

H

)2

a−3�1+wi��

which holds generally for matter, radiation and the vacuum.

15.4 General dynamical behaviour of the universe

The cosmological field equations (15.13) and (15.14) allow us to determine the
general dynamical behaviour and the spatial geometry of the universe for any
given set of values for the parameters �m�0, �r�0 and �$�0. The observations
(15.7) suggest that the present-day value of the radiation density �r�0 is signifi-
cantly smaller than the matter and vacuum densities. It is therefore a reasonable
approximation to neglect�r�0 and parameterise a universe like our own in terms of
just�m�0 and�$�0 (and H0, which is irrelevant for our discussion in this section).

Figure 15.1 presents a summary of the properties of FRW universes dominated
by matter and vacuum energy (known as Lemaitre models) as a function of
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Figure 15.1 Properties of FRW universes dominated by matter and vacuum
energy, as a function of the present-day density parameters �m�0 and �$�0. The
circle indicates the region of the parameter space that is consistent with recent
cosmological observations.

position in the ��m�0��$�0� parameter space. The dividing lines between the
various regions may be determined from the field equations (15.13, 15.14) and the
relation (15.11). In particular, the ‘open–closed’ line comes directly from (15.11)
evaluated at the present epoch, which gives the condition

�$�0 = 1−�m�0�

Similarly, the ‘accelerating–decelerating’ line is obtained immediately by setting
q0 = 0 in (15.14) for t = t0, which gives

�$�0 = 1
2�m�0�

The ‘expand-forever–recollapse’ line and the ‘big-bang–no-big-bang’ line require
a little more work, as we now discuss.

In fact, both these lines are determined from the expression (15.13) for the
Hubble parameter. In particular, the condition for the graph of R�t�, or equivalently
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of a�t�, to have a turning point at some cosmic time t= t∗ is simply thatH�t∗�= 0.
Setting �k�0 = 1−�m�0−�$�0 in (15.13), we find that, after rearranging, this
condition corresponds to

f�a�≡�$�0 a
3+ �1−�m�0−�$�0�a+�m�0 = 0� (15.15)

This is a cubic equation for the value(s) of the scale factor a= a∗ at which a�t�

has a turning point. We are not, in fact, interested in the particular value(s) a= a∗
that solve (15.15) but only in whether a (real) solution exists in the region a≥ 0
(which is the only physically meaningful regime).

For the case �$�0 < 0 we may deduce immediately from (15.14) that the
universe must have started with a ‘big bang’, at which a= 0, and must eventually
recollapse in a ‘big crunch’ as a→ 0 once more. In (15.14), a negative value of
�$ means that the deceleration parameter q is always positive. Thus ä is always
negative, and hence the a�t� graph must be convex for all values of t. Since at
the present epoch ȧ�t0� > 0 (because we observe redshifts, not blueshifts), this
means that a�t� must have equalled zero at some point in the past, which it is
usual to take as t = 0;4 similar reasoning may be used to deduce that the universe
must eventually recollapse, although a little more care is required in this case. As
the universe expands, the vacuum energy eventually dominates and so we need
only consider the �$-term on the right-hand side of (15.14), which will not tend
to zero as the scale factor increases. Thus, ä cannot tend to zero and so a→ 0 at
some finite cosmic time in the future.

In our further analysis, we now need only consider the case in which �$�0 ≥ 0
in (15.15), but this still requires some care. Let us first consider the case for
which �$�0 = 0. Immediately, we see that equation (15.15) then has the single
solution a∗ = �m�0/��m�0− 1�, which is negative in the range 0 ≤ �m�0 ≤ 1,
indicating that there is no (physically meaningful) turning point. Therefore, over
this range, the ‘expand-forever–recollapse’ line is simply given by �$�0 = 0. We
must now address the far more complicated case for which �$�0 > 0. In this case
f�a�→±� as a→±�. Moreover f�0� = �m�0, which is positive. Thus, for
f�a� to have a positive root, it must have a turning point in the region a > 0.
On evaluating the derivatives f ′�a� and f ′′�a� with respect to a, it is clear that,
in the limiting case of interest, f�a� must have the general form illustrated in
Figure 15.2. Thus, we require f�a∗�= f ′�a∗�= 0, which quickly yields

a∗ =
(
�m�0

2�$�0

)1/3

� (15.16)

4 In fact, this reasoning is still valid in the case �$�0 = 0, provided that the universe contains even an
infinitesimal amount of matter (or radiation). Thus all cosmological models with $ ≤ 0 have a big-bang
origin at some finite cosmic time in the past.
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Figure 15.2 The limiting form of the cubic f�a� defined in (15.15) for �$�0 > 0.

On substituting this expression back into (15.15) one then obtains a separate cubic
equation for �$�0, given by

4�1−�m�0−�$�0�
3+27�2

m�0�$�0 = 0� (15.17)

By introducing the variable x = 
�$�0/�4�m�0��
1/3, this equation quickly

reduces to

x3− 3x
4
+ �m�0−1

4�m�0
= 0�

which is amenable to analysis using the standard formulae for finding the roots
of a cubic. In particular, rewriting the resulting roots in terms of �$�0, one finds
the following three cases:

• 0<�m�0 ≤ 1
2 , one positive root at

�$�0 = 4�m�0 cosh
3

[
1
3
cosh−1

(
1−�m�0

�m�0

)]
� (15.18)

• 1
2 <�m�0 ≤ 1, one positive root at

�$�0 = 4�m�0 cos
3

[
1
3
cos−1

(
1−�m�0

�m�0

)]
� (15.19)

• �m�0 > 1, two positive roots, the larger given by (15.19) and the smaller by

�$�0 = 4�m�0 cos
3

[
1
3
cos−1

(
1−�m�0

�m�0

)
+ 4�

3

]
� (15.20)



15.5 Evolution of the scale factor 397

Moreover, from (15.16), one easily finds that a∗ < 1 for (15.18, 15.19), whereas
a∗ > 1 for (15.20). Since the universe is expanding, a∗ < 1 corresponds to a
turning point in the past (i.e. no big bang), whereas a∗ > 1 corresponds to a
turning point in the future (i.e. recollapse).

The resulting lines, plotted in Figure 15.1, show some interesting features. In
particular, we note that when �$�0 = 0 there is a direct correspondence between
the geometry of the universe and its eventual fate. In this case, open universes
expand forever, whereas closed universes recollapse. This correspondence no
longer holds in the presence of a non-zero cosmological constant, in which case
any combination of spatial geometry and eventual fate is possible. It is also
worth noting that the region of the ��m�0��$�0�-plane consistent with recent
cosmological observations is centred on the spatially flat model (0.3,0.7) and
excludes the possibility of a zero cosmological constant at high significance.
These observations also show the expansion of the universe to be accelerating.
They also require the universe to have started at a big bang at some finite cosmic
time in the past and to expand forever in the future.

15.5 Evolution of the scale factor

So far, we have considered only the limiting behaviour of the (normalised)
scale factor a�t� for different values of the cosmological parameters; this was
summarised in Figure 15.1. We now discuss how to find the form of the a�t�-
curve at all cosmic times, for a given set of (present-day) cosmological parameter
values. This behaviour is entirely determined by the cosmological field equation
(15.13). Remembering that H = ȧ/a, this may be written as(

da

dt

)2

=H2
0

(
�m�0 a

−1+�r�0 a
−2+�$�0a

2+1−�m�0−�r�0−�$�0

)
�

(15.21)
Instead of working directly in terms of the cosmic time t, it is more convenient
to introduce the new dimensionless variable

t̂ =H0�t− t0�� (15.22)

which measures cosmic time relative to the present epoch in units of the ‘Hubble
time’ H−1

0 . In terms of this new variable, (15.21) becomes

(
da

dt̂

)2

=�m�0 a
−1+�r�0 a

−2+�$�0a
2+1−�m�0−�r�0−�$�0� (15.23)

There exist some special cases, where �m�0, �r�0 and �$�0 take on particular
simple values, for which equation (15.23) can be solved analytically; we will
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discuss some of these cosmological models in Section 15.6. In general, however, a
numerical solution is necessary. Starting at the point t̂= 0 (the present epoch), for
which a0 = 1, the normalised scale factor at time step n+1 can be approximated
by the Taylor expansion

an+1 ≈ an+
(
da

dt̂

)
n

�t̂+ 1
2

(
d2a

dt̂2

)
n

��t̂�2� (15.24)

where �t̂ is the (small) step size in t̂. The coefficient of �t̂ is given by (15.23),
and the coefficient of ��t̂�2 may be obtained by differentiating (15.23). The latter
is important since, without the ��t̂�2 term, equation (15.24) would not carry the
integration correctly through a value of a for which da/dt̂ is small or zero.

Figure 15.3 shows the variation in the normalised scale factor a�t̂� as a function
of t̂ for different values of ��m�0��$�0� as indicated, assuming that �r�0 is
negligible, as it is for our universe. In the top panel �m�0+�$�0 = 1 in each case,
so each universe has a flat spatial geometry �k = 0�. The solid line corresponds
to the case (0.3, 0.7), which is preferred by recent cosmological observations. An
interesting cosmological ‘coincidence’ for this model is that the present epoch,
t̂ = 0, corresponds almost exactly to the point of inflection on the a�t̂� curve.
A second such ‘coincidence’ is that the age of the universe in this model (i.e.
the time since the big bang) is very close to one Hubble time.5 The broken-and-
dotted line in the top panel of the figure corresponds to the case (0, 1), which is
known as the de Sitter model and will be discussed further in Section 15.6. For
the moment, we simply note that this model has no big-bang origin (although
a→ 0 as t̂→−�) and will expand forever. The broken line in the top panel
corresponds to the case (1, 0), which is known as the Einstein–de-Sitter model and
will also be discussed in Section 15.6. As we see from the figure, this model does
have a big-bang origin. It is also on the borderline between expanding forever
and recollapsing; it will in fact expand forever, but ȧ→ 0 as t̂→�.

In the bottom panel of Figure 15.3 we have �m�0+�$�0 �= 1 in each case,
and so each universe is spatially curved; in particular the case (0.3, 0) is open
and the cases (0.3, 2) and (4, 0) are closed. We see that the case (0.3, 2) has no
big-bang origin, and is, in fact, what is known as a bounce model, where the
universe collapses from large values of the scale factor and ‘bounces’ at some
finite minimum value of a, after which it re-expands forever. Conversely, the case
(4, 0) corresponds to a cosmological model with a big-bang origin that expands
to some finite maximum value of a before recollapsing to a big crunch.

Before going on to discuss cosmological models that admit an analytic solution
for a�t�, it is worth discussing the general case in the limit a→ 0. Whether

5 Whether such coincidences have some deeper significance is the subject of current cosmological research.
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Figure 15.3 The variation in the normalised scale factor as a function of the
dimensionless variable H0�t− t0� for different values of ��m�0��$�0� as indi-
cated, assuming that �r�0 is negligible. Top panel: �m�0 +�$�0 = 1 in each
case, so the universes have a flat spatial geometry �k = 0�. Bottom panel:
�m�0+�$�0 �= 1 in each case, so the universes are spatially curved; in particular,
the case (0.3, 0) is open and the cases (0.3, 2) and (4, 0) are closed.

considering the big bang or the big crunch, in this limit we can assume that the
energy density of the universe is dominated by a one kind of source (which one
will depend on the particular cosmological model under consideration). In this
case, (15.23) can be written(

da

dt̂

)2

=�i�0 a
−�1+3wi�+�k�0� (15.25)

where the label i denotes the dominant form of the energy density as a→ 0
and wi is the corresponding equation-of-state parameter. Moreover, if we restrict
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our attention to the (realistic) case, in which i denotes either dust �wi = 0� or
radiation �wi = 1

3�, then the first term on the right-hand side of (15.25) dominates
as a→ 0, so we can neglect the curvature density �k�0. In this case, (15.25) can
be immediately integrated to give

a�t̂�=±
[
3
2�1+wi�

√
�i�0

]2/
3�1+wi��

�t̂− t̂∗�2/
3�1+wi��� (15.26)

where t̂∗ is the value of t̂ at which a= 0 and the plus and minus signs correspond
to the big bang and big crunch respectively. From (15.25), we also note that
da/dt̂→� as a→ 0. Thus, we conclude that the a�t̂�-graph meets the t̂-axis at
right angles.

15.6 Analytical cosmological models

Although in the general case the evolution of the (normalised) scale factor a�t�
must be determined numerically, there exist a number of special cases, corre-
sponding to particular values of the cosmological parameters �m�0, �r�0 and
�$�0, for which equation (15.23) can be solved analytically. We now discuss
some of these analytical cosmological models, all of which have inherited special
names that are widely used in cosmology. In this section, we will work in terms
of the cosmic time t directly, rather than the dimensionless variable t̂ defined
in (15.22).

The Friedmann models

Cosmological models with a zero cosmological constant (and, strictly, a non-zero
matter or radiation density) are known as the Friedmann models. As noted in
Section 15.4, all Friedmann models have a big-bang origin at a finite cosmic time
in the past. Moreover, it is possible to place a strict upper limit on the age of the
universe in such models. Since the a�t�-curve is everywhere convex, it is clear
from Figure 15.4 that it crosses the t-axis at a time that is closer to the present
time t = t0 than the time at which the tangent to the point �t0� a0� reaches the
t-axis (note that a0 = 1). Clearly, the point where the tangent meets the t-axis is
the point at which a�t� would have been zero for ȧ = constant and ä = 0. The
time elapsed from that point to the present epoch is simply ȧ�t0�/a�t0� = H−1

0 .
Thus, in Friedmann models, the age of the universe must be less than the Hubble
time:

t0 <H−1
0 �
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t = t0 – H0 t = 0 t = t0
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Figure 15.4 Diagram to illustrate that, for all Friedmann models, the age of the
universe is less than the Hubble time 1/H0.

The behaviour of a�t� near the big-bang origin is given by (15.26) and is
independent of the curvature density parameter�k�0= 1−�m�0−�r�0 (and hence
of the sign of k). The future evolution, however, depends crucially on this constant.
From (15.21) we can distinguish three possible histories, depending on the value
of �k�0:

�k�0 > 0 ⇔ open �k=−1� ⇔ ȧ→ non-zero constant as a→��

�k�0 = 0 ⇔ flat �k= 0� ⇔ ȧ→ 0 as a→��

�k�0 < 0 ⇔ closed �k= 1� ⇔ ȧ= 0 at some finite value amax�

Thus, we see the main feature of Friedmann models, namely, that the dynamics of
the universe is directly linked to its geometry. The three cases above are illustrated
in Figure 15.5. We shall now find explicit analytical solutions for a�t� in the
special cases of a dust-only and a radiation-only Friedmann model. We will also
obtain an analytic form for t as a function of a for the case of a spatially flat
�k= 0� Friedmann model containing both matter and radiation.

Dust-only Friedmann models ��$�0 = 0��r�0 = 0� In this case (15.21) becomes

ȧ2 =H2
0

(
�m�0a

−1+1−�m�0

) ⇒ t = 1
H0

∫ a

0

[
x

�m�0+ �1−�m�0�x

]1/2
dx�

(15.27)

which may be integrated straightforwardly in each of the three cases �m�0 = 1,
�m�0 > 1 and �m�0 < 1 respectively, as follows.
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Figure 15.5 Schematic illustration of the evolution of the normalised scale factor
a�t� in closed, open and spatially flat Friedmann models.

• For �m�0 = 1 (k= 0) the solution is immediate, and we find that

a�t�= ( 32H0t
)2/3

� (15.28)

This particular case is known as the Einstein–de-Sitter (or EdS) model.
• For �m�0 > 1�k = 1� the integral (15.27) can be evaluated by substituting x =

�m�0/��m�0−1�� sin2��/2�, where � is known as the development angle and varies
over the range 
0���. One then obtains

a= �m�0

2��m�0−1�
�1− cos��� t = �m�0

2H0��m�0−1�3/2
��− sin���

which shows that the graph of a�t� is a cycloid.
• For �m�0 < 1�k = −1� the integral (15.27) can be evaluated by substituting x =

�m�0/�1−�m�0�� sinh

2��/2�, and one obtains

a= �m�0

2�1−�m�0�
�cosh�−1�� t = �m�0

2H0�1−�m�0�
3/2

�sinh�−���

In each case, one may also obtain expressions for �m�t� = �m�0a
−3 and H�t� =

ȧ/a, and hence for �m�t�.
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Radiation-only Friedmann models ��$�0 = 0��m�0 = 0� In this case (15.21)
becomes

ȧ2 =H2
0

(
�r�0a

−2+1−�r�0

) ⇒ t = 1
H0

∫ a

0

x√
�r�0+ �1−�r�0�x

2
dx�

(15.29)

which may again be integrated straightforwardly for �r�0 = 1, �r�0 > 1 and
�r�0 < 1 respectively.

• For �r�0 = 1 (k= 0) the solution is again immediate, and we find that

a�t�= �2H0t�
1/2�

• For�r�0 < 1�k=−1� and�r�0 > 1�k= 1� the integral (15.29) can be evaluated
by inspection to give

a�t�=
(
2H0�

1/2
r�0 t

)1/2(
1+ 1−�r�0

2�1/2
r�0

H0t

)1/2

�

In each case, one may again obtain expressions for �r�t�= �m�0a
−3 and H�t�=

ȧ/a, and hence for �r�t�.

Spatially flat Friedmann models ��$�0= 0,�m�0+�r�0= 1� In this case (15.21)
becomes

ȧ2 =H2
0

(
�m�0a

−1+�r�0a
−2) ⇒ t = 1

H0

∫ a

0

x√
�m�0x+�r�0

dx�

(15.30)

which may be straightforwardly integrating by substituting y =�m�0x+�r�0 to
obtain

H0t =
2

3�2
m�0

[
��m�0a+�r�0�

1/2��m�0a−2�r�0�+2�3/2
r�0

]
�

Unfortunately, this expression cannot be easily inverted to give a�t�. Nevertheless,
it is simple to show that the above expression becomes 2

3a
3/2 for a matter-only

model and 1
2a

2 for a radiation-only model, and therefore agrees with our earlier
results.
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The Lemaitre models

The Lemaitre models are a generalisation of the Friedmann models in which the
cosmological constant is non-zero. In particular, we will focus here on matter-
only models (�r�0 = 0), although our discussion is easily modified for radiation-
only models, and can be extended to include models containing both matter and
radiation. The general dynamical properties of Lemaitre models with �r�0 = 0
were discussed in detail in Section 15.4, with particular focus on their limiting
behaviour. We concentrate here on determining the generic form of the a�t�-curve
for models of this type that have a big-bang origin and will expand forever.
We begin by considering the general case of arbitrary spatial curvature and then
specialise to the spatially flat case. A model of the latter sort appears to provide
a reasonable description of our own universe, if one neglects its radiation energy
density.

Matter-only Lemaitre models with arbitrary spatial curvature ��r�0 = 0� In this
case the cosmological field equation (15.13) reads

ȧ2 =H2
0

(
�m�0a

−1+�$�0a
2+�k�0

)
� (15.31)

where �k�0 = 1−�m�0−�$�0. Obtaining explicit formulae giving, for example,
the scale factor as a function of time is in general quite complicated, since the
integrals turn out to involve elliptic functions,6 which are unfamiliar to most
physicists these days. Nevertheless, we see that for small a the first term on the
right-hand side dominates and the equation is easily integrated. Thus, after starting
from a big-bang origin at t = 0, the a�t�-curve at first increases as

a�t�=
(
3
2H0

√
�m�0 t

)2/3
�for small t��

which agrees with our earlier result (15.26). As the universe expands, however,
the matter energy density decreases and the vacuum energy eventually dominates.
Thus, for large t (and hence large a), the second term on the right-hand side of
(15.31) dominates. Once again the equation is then easily integrated to give

a�t�∝ exp
(
H0

√
�$�0 t

)
�for large t��

6 See e.g. M. Abramowitz & I. A. Stegun, Handbook of Mathematical Physics, Dover, 1972.



15.6 Analytical cosmological models 405

From the above limiting behaviour at small and large t, it is clear that the
universe must, at some point, make a transition from a decelerating to an accel-
erating phase. This occurs when ä= 0, at which point the a�t�-curve has a point
of inflection. Differentiating (15.31), we find that

ä= 1
2H

2
0

(
2�$�0a−�m�0a

−2) � (15.32)

From this result, we may verify immediately that at early cosmic times (when a

is small) we have ä < 0, and so the expansion is decelerating. As the universe
expands, the deceleration gradually decreases until ä changes sign, after which the
expansion accelerates ever more rapidly. We see that the value of the normalised
scale factor at which the point of inflection (ä= 0) occurs is given by

a∗ =
(
�m�0

2�$�0

)1/3

� (15.33)

It is, in fact, possible to obtain an approximate analytic expression for the
normalised scale factor a�t� in the vicinity of the point of inflection. To do this,
we must first obtain an approximate form for the cosmological field equation
(15.31) in the vicinity of this point. Denoting the cosmic time at the point of
inflection by t∗, we may perform separate Taylor expansions of a and ȧ2 about
t = t∗ to obtain

a≈ a∗ + ȧ∗�t− t∗� and ȧ2 ≈ ȧ2∗ + ȧ∗
...
a∗�t− t∗�2�

where, for notational convenience, we have written a∗ ≡ a�t∗�, ȧ∗ ≡ ȧ�t∗�, etc.
Using the first expression to subtitute for �t− t∗�2 in the second, we obtain

ȧ2 ≈ ȧ2∗ +
...
a∗�a−a∗�2

ȧ∗
� (15.34)

Differentiating (15.32) one easily obtains an expression for
...
a . Then, substituting

(15.33) into the resulting expression, and into (15.31), one finds that (15.34)
becomes

ȧ2 ≈H2
0

[
�k�0+3�$�0a

2
∗ +3�$�0�a−a∗�2

]
�

This equation can now be integrated analytically and has the solution

a�t�= a∗ +a∗
[
1+ 1

3�k�0

( 1
4�$�0�

2
m�0

)−1/3]1/2
sinh

[
H0�3�$�0�

1/2�t− t∗�
]
�

(15.35)

An interesting property of this type of model is that in the case of positive
spatial curvature (k = 1), for which �k�0 < 0, there is a ‘coasting period’ in the
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Figure 15.6 The behaviour of a�t� in the Lemaitre model with k= 1. For k= 0
or k=−1, there is no extended coasting period.

vicinity of the point where ä= 0, during which the value of a�t� remains almost
equal to a∗ (see Figure 15.6). It is easily seen from (15.35) that, by setting the
value of the quantity 1

3�k�0�
1
4�$�0�

2
m�0�

−1/3 sufficiently close to −1, one can
make the coasting period arbitrarily long. Indeed, in the limiting case, it is easy
to show that one requires that �m�0 and �$�0 should satisfy (15.17).

Spatially flat matter-only Lemaitre models ��r�0 = 0� �m�0+�$�0 = 1� In this
case one can give an explicit formula for the scale factor. Moreover, even if the
universe turns out not to be exactly spatially flat, recent cosmological observations
show that it is close enough to flatness for the formulae involved to act as a
reasonable first approximation and so it is worthwhile to have them available.

In the spatially flat case, the cosmological field equation (15.13) may be written

ȧ2=H2
0

[
�1−�$�0�a

−1+�$�0a
2] ⇒ t= 1

H0

∫ a

0

x√
�1−�$�0�+�$�0x

4
dx�

This integral is a little more difficult than those considered earlier, but it can be
made tractable by the substitution y2 = x3��$�0�/�1−�$�0�, which yields

H0t =
2

3
√��$�0�

∫ √a3��$�0�/�1−�$�0�

0

dy√
1±y2

�

where the plus sign in the integrand corresponds to the case �$�0 > 0 and the
minus sign to �$�0 < 0. This may now be integrated easily to give

H0t =
2

3
√��$�0�

⎧⎪⎨⎪⎩
sinh−1

[√
a3��$�0�/�1−�$�0�

]
if �$�0 > 0�

sin−1
[√

a3��$�0�/�1−�$�0�
]

if �$�0 < 0�
(15.36)
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which may be inverted to give a�t� in each case. One can also obtain analytic
expressions for H�t� and �m�t� (see Exercise 15.24) and thus for �m�t� and
�$�t�.

The de Sitter model

The de Sitter model is a particular special case of a Lemaitre model defined
by the cosmological parameters �m�0 = 0, �r�0 = 0 and �$�0 = 1. This model
is therefore spatially flat (k = 0) but is not a true cosmological model in the
strictest sense, since it assumes that the matter and radiation densities are zero.
Nevertheless, it is interesting in its own right both for historical reasons and
because of its close connection with the theory of inflation (see Section 16.1).

For the de Sitter model, the cosmological field equation (15.13) reads(
ȧ

a

)2

=H2
0 �

which immediate tells us that the Hubble parameter H�t� is a constant and the
normalised scale factor increases exponentially as

a�t�= exp
H0�t− t0��= exp
[√

$/3c�t− t0�
]
�

where, in the second equality, we have expressed the solution in terms of the
cosmological constant $. Thus, the de Sitter model has no big-bang singularity
at a finite time in the past.

Einstein’s static universe

All the cosmological models that we have constructed so far are evolving cosmolo-
gies. We know now, of course, that the universe is expanding and so there is no
conflict with the field equations. Nevertheless, it is interesting historically to look
at Einstein’s static model of the universe. Einstein derived his field equations
well before the discovery of the expansion of the universe and he was worried
that he could not find static cosmological solutions. He therefore introduced the
cosmological constant with the sole purpose of constructing static solutions.

For $ > 0, we seek a solution to the field equations in which the universe is
static, i.e. ä = ȧ = 0. In this case, the Hubble parameter H is zero always, and
so the dimensional densities in (15.5) are formally infinite. It is more convenient
therefore to work with the field equations in their original forms (14.36). We see
immediately that we require

4�G�m�0 =$c2 = c2k

R2
0

�
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In fact, the first equality can be more succinctly written as �m�0 = 2�$�0. Since
$ is positive we thus require k = 1, and so the universe has positive spatial
curvature.

How well did Einstein’s static universe fit with cosmological observations of
the time? The mean matter density of the universe is still a matter of great debate,
but recent cosmological observations suggest that

�m�0 ≈ 3×10−27 kgm−3�

In Einstein’s time, this value was estimated only to within about two orders
of magnitude. Nevertheless, adopting the above value of �m�0 we find that the
scale factor is R0 ≈ 2×1026 m ≈ 6000Mpc, which is more than sufficient for the
closed spatial geometry to be large enough to encompass the observable universe.
Also $= 1/R2

0 = 2�5×10−53 m−2, which is small enough to evade the limits on
$ from Solar System experiments ��$� ≤ 10−46 m−2�. Thus the Einstein static
universe was not immediately and obviously wrong.

However, aside from the fact that the model disagreed with later observations
indicating an expanding universe, it has the theoretically undesirable feature of
being unstable. The cosmological constant must be fine-tuned to match the density
of the universe. Thus, if we add or subtract one proton from this universe, or
convert some matter into radiation, we will disturb the finely tuned balance
between gravity and the cosmological constant and the universe will begin to
expand or contract.

15.7 Look-back time and the age of the universe

Since the cosmological model may be fixed by specifying the values of the four
(present-day) cosmological parameters H0, �m�0��r�0 and �$�0, it is possible to
use these quantities to determine other useful derived cosmological parameters.
In this section we consider the look-back time and the age of the universe.

In Chapter 14, we showed that if a comoving particle (galaxy) emitted a photon
at cosmic time t that is received by an observer at t= t0 then the ‘look-back time’
t0− t is given as a function of the photon’s redshift by

t0− t =
∫ z

0

dz̄

�1+ z̄�H�z̄�
� (15.37)

From the cosmological field equation (15.13), on noting that a=R/R0= �1+z�−1
we obtain the useful result

H2�z�=H2
0

[
�m�0�1+ z�3+�r�0�1+ z�4+�$�0+�k�0�1+ z�2

]
� (15.38)
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Thus, the look-back time to a comoving object with redshift z is given by

t0− t = 1
H0

∫ z

0

dz̄

�1+ z̄�
√
�m�0�1+ z̄�3+�r�0�1+ z̄�4+�$�0+�k�0�1+ z̄�2

�

We note that the differential form of this relation is perhaps more useful since
one is often interested simply in the cosmic time interval dt corresponding to an
interval dz in redshift. In any case, a more convenient form of the integral for
evaluation is obtained by making the substitution x = �z+1�−1, which yields

t0− t = 1
H0

∫ 1

�1+z�−1
xdx√

�m�0x+�r�0+�$�0x
4+�k�0x

2
� (15.39)

Assuming �r�0 = 0 (which is a reasonable approximation for our universe), in
Figure 15.7 we plot H0�t− t0�, the look-back time in units of the Hubble time,
as a function of redshift for several values of �m�0 and �$�0.

In any cosmological model with a big-bang origin, an extremely important
quantity is the age of the universe, i.e. the cosmic time interval between the point
when a�t� = 0 and the present epoch t = t0. Since z→� at the big bang, we
may immediately obtain an expression for the age of the universe in such a model
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t 0
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Figure 15.7 The variation in look-back time, in units of the Hubble time, as
a function of redshift z for several sets of values ��m�0��$�0� as indicated,
assuming that �r�0 is negligible.
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Table 15.1 The age of the universe in Gyr for various
cosmological models (with �r�0 = 0)

H0 in km s−1 Mpc−1

�m�0 �$�0 50 70 90

1.0 0.0 13.1 9.3 7.2
0.3 0.0 15.8 11.3 8.8
0.3 0.7 18.9 13.5 10.5

by letting z→� in (15.39), so that the lower limit of the integral equals zero.
Since the resulting integral is dimensionless, we can write

t0 =
1
H0

f��m�0� �r�0� �$�0��

where f is the value of the integral, which is typically a number of order unity.
The age of the universe is therefore the Hubble time multiplied by a number of
order unity. For general values of the density parameters �m�0, �r�0 and �$�0,
it is not possible to perform the integral analytically and so one has to resort to
numerical integration. Table 15.1 lists the age of the universe t0 for the same
values of �m�0 and �$�0 as considered in Figure 15.7. It is interesting to compare
these values with estimates of the ages of the oldest stars in globular clusters,

tstars ≈ 11�5±1�3 Gyr�

where the uncertainty is dominated by uncertainties in the theory of stellar evolu-
tion. Clearly, one requires t0 > tstars for a viable cosmology!
It is worth noting that, in our discussion of analytical cosmological models in

the previous section, we have already performed (a generalised version of) the
relevant integral required to calculate the corresponding age of the universe in each
case. Thus, for each model with a big-bang origin for which we have calculated an
analytical form for a�t� or t�a�, the corresponding age of the universe is obtained
simply by setting t = t0 and a = 1. For example, from (15.28), the age of an
Einstein–de-Sitter universe is simply t0 = 2/�3H0�. Similarly, from (15.36), the
age of a spatially flat matter-only Lemaitre model with �$�0 > 0 is given by

t0 =
2

3H0
√
�$�0

sinh−1
√

�$�0

1−�$�0
= 2

3H0

tanh−1
√
�$�0√

�$�0
�

where, in the second equality, we have rewritten the result in a more useful form
involving �$�0, using standard formulae for inverse hyperbolic trigonometric
functions.
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15.8 The distance–redshift relation

We may also obtain a general expression for the comoving �-coordinate of a
galaxy emitting a photon at time t that is received at time t0 with redshift z. This
is given by

� =
∫ t0

t

c dt̄

R�t̄�
= c

R0

∫ z

0

dz̄

H�z̄�
�

We may now subsitute for H�z� using the expression (15.38) derived in the
previous section. Thus the �-coordinate of a comoving object with redshift z is
given by

��z�= c

R0H0

∫ z

0

dz̄√
�m�0�1+ z̄�3+�r�0�1+ z̄�4+�$�0+�k�0�1+ z̄�2

� (15.40)

Once again, the differential form of this result is perhaps more useful, since one
is often interested in the comoving coordinate interval d� corresponding to an
interval dz in redshift. As before, a simpler form for the integral is obtained by
making the substitution x = �1+ z̄�−1, which yields

��z�= c

R0H0

∫ 1

�1+z�−1
dx√

�m�0x+�r�0+�$�0x
4+�k�0x

2
� (15.41)

From (14.29) and (14.31), the corresponding luminosity distance dL�z� and angu-
lar diameter distance dA�z� to the object are given by

dL�z�= R0�1+ z�S���z�� and dA�z�=
R0

1+ z
S���z���

where S��� is given by (14.12), whereas the proper distance to the object is simply
d�z�= R0S���z��. It is useful to introduce the notation ��z�= cE�z�/�R0H0�, so
that E�z� denotes the integral in (15.41). Using the expression (15.10) to obtain
�k�0, one can then write

R0S���z��=
c

H0

{
��k�0�−1/2S

(√��k�0�E�z�
)

for �k�0 �= 0�

E�z� for �k�0 = 0�

which allows simple direct evaluation of dL�z� and dA�z� in each case.
As was the case in the previous section, for general values of �m�0, �r�0 and

�$�0 it is not possible to perform the integral (15.41) analytically and so one
has to resort to numerical integration. Figure 15.8 shows plots of dimensionless
luminosity distance �c/H0�

−1dL�z� (top panel) and dimensionless angular diame-
ter distance �c/H0�

−1dA�z� (bottom panel) for various values of �m�0 and �$�0,
assuming that �r�0 is negligible; the solid, broken and dotted lines correspond to
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Figure 15.8 The variation in dimensionless luminosity distance (top panel) and
dimensionless angular diameter distance (bottom panel) as functions of redshift,
for different sets of values ��m�0��$�0� as indicated, assuming that �r�0 is
negligible. The solid, broken and dotted lines correspond to spatially flat, open
and closed models respectively.

spatially flat, open and closed models respectively. In particular, it is worth noting
that, for the models with a non-zero matter density, the angular diameter distance
has a maximum at some finite value of the redshift z= z∗. Thus, for a source of
fixed proper length �, the angular diameter �� = �/dA declines with redshift for
z < z∗, as one might naively expect, but then increases with redshift for z > z∗.
A very-high-redshift galaxy (if such a thing existed) would therefore cast a large,
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but dim, ghostly image on the sky. The physical reason for this is that the light
from a distant object was emitted when the universe was much younger than it is
now – the object was close to us when the light was emitted. This, coupled with
gravitational focussing of the light rays by the intervening matter in the universe,
means that the galaxy looks big!

The integral (15.41) can, in fact, be evaluated analytically in some simple cases.
As an example, consider the Einstein–de-Sitter (EdS) model (�m�0 = 1, �r�0 = 0,
�$�0 = 0). In this case, we find that

��z�= c

R0H0

∫ 1

�1+z�−1
dx√
x
= 2c

R0H0

[
1− �1+ z�−1/2

]
�

Thus, the luminosity distance in the EdS model is given as a function of z by

dL�z�=
2c
H0

�1+ z�
[
1− �1+ z�−1/2

]
�

and the angular diameter distance by

dA�z�=
2c
H0

1
1+ z

[
1− �1+ z�−1/2

]
�

Note that, in this case, dA�z� has a maximum at a redshift z= 5/4.
The relations between redshift and luminosity distance (angular diameter

distance), form the basis of observational tests of the geometry of the universe. All
one needs is a standard candle (for application of the luminosity-distance–redshift
relation) or a standard ruler (for application of the angular-diameter-distance–
redshift relation). Comparison with the predicted relations shown in Figure 15.8
can then fix the values of �m�0 and �$�0. Unfortunately, standard candles and
standard rulers are hard to find in the universe! Nevertheless, in recent years
there has been remarkable progress, using distant Type Ia supernovae as standard
candles and anisotropies in the cosmic microwave background radiation as a
standard ruler. The results of these observations suggest that we live in a spatially
flat universe with �m�0 ≈ 0�3 and �$�0 ≈ 0�7.

15.9 The volume–redshift relation

In Section 14.10 we found that, at the present cosmic time t0, the proper volume
of the region of space lying in the infinitesmial coordinate range �→ �+d� and
subtending an infinitesmial solid angle d�= sin �d�d� at the observer is

dV0 =
cR2

0S
2���z��

H�z�
dzd�� (15.42)
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the corresponding volume of this region at a redshift z being given by dV�z� =
dV0/�1+z�3. We may now express dV0 in terms of the cosmological parameters
H0, �m�0, �r�0 and �$�0. Using the expressions (15.40), (15.38) and (15.10) for
��z�, H�z� and �k respectively, we find immediately that

dV0 =
�cH−1

0 �3

h�z�

{
��k�0�−1S2

(√��k�0�E�z�
)

for �k�0 �= 0�

E2�z� for �k�0 = 0�
(15.43)

where we have defined the new function

h�z�≡ H�z�

H0
=
√
�m�0�1+ z�3+�r�0�1+ z�4+�$�0+�k�0�1+ z�2

and E�z�≡ ∫ z
0 dz̄/h�z̄� is the function defined in the previous section.

For general values of �m�0, �r�0 and �$�0, one must once again resort to
numerical integration to obtain dV0. In Figure 15.9, we plot the dimensionless
differential comoving volume element �c/H0�

−3 dV0/�dzd�� as a function of
redshift z for several values of �m�0 and �$�0, assuming that �r�0 = 0. In
particular, we note that, in the currently favoured case ��m�0��$�0�= �0�3�0�7�,
we may explore a large comoving volume by observing objects in the redshift
range z= 2–3.
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Figure 15.9 The variation in the dimensionless differential comoving volume
element as a function of redshift z for several sets of values ��m�0��$�0� as
indicated, assuming that �r�0 is negligible.
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15.10 Evolution of the density parameters

For the majority of our discussion so far, we have concentrated on exploring
cosmological models with properties determined by fixing the values of the
present-day densities�m�0,�r�0 and�$�0. From the definition (15.5), however, it
is clear that each density is, in general, a function of cosmic time t. It is therefore
of interest to investigate the evolution of these densities as the universe expands.

From (15.5) we have

�i�t�=
8�G
3H2�t�

�i�t� ⇒ �̇i =
8�G
3H2

(
�̇i−

2Ḣ
H

�i

)
� (15.44)

where the label i denotes ‘m’, ‘r’ or ‘$’ and the dots denote differentiation with
respect to cosmic time t. From the equation of motion (14.39) for a cosmological
fluid, however, we have

�̇i =−3�1+wi�H�i�

where we have written H = Ṙ/R, and wi = pi/��ic
2� is the equation-of-state

parameter. Thus (15.44) becomes

�̇i =−�iH

[
3�1+wi�+

2Ḣ
H2

]
� (15.45)

where we have taken a factor of H outside the brackets for later convenience. We
now need an expression for Ḣ , which is given by

Ḣ = d

dt

(
Ṙ

R

)
= R̈

R
−
(
Ṙ

R

)2

= R̈

R
−H2�

and so we may write

Ḣ

H2
= RR̈

Ṙ2
−1=−�q+1��

where q is the deceleration parameter. Substituting this result into (15.45) and
using the expression (15.14) for q, we finally obtain the neat relation

�̇i =�iH��m+2�r−2�$−1−3wi��

Setting wi = 0, 1
3 and −1 respectively for matter (dust), radiation and the vacuum,

we thus obtain

�̇m =�mH
��m−1�+2�r−2�$��

�̇r =�rH
�m+2��r−1�−2�$��

�̇$ =�$H
�m+2�r−2��$−1���

(15.46)
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By dividing these equations by one another, we may remove the dependence on
the Hubble parameter H and the cosmic time t and hence obtain a set of coupled
first-order differential equations in the variables�m,�r and�$ alone. Therefore,
given some general point in this parameter space, these equations define a unique
trajectory that passes through this point. As an illustration, let us consider the
case in which �r = 0. Dividing the remaining two equations then gives

d�$

d�m
= �$
�m−2��$−1��

�m
��m−1�−2�$�
�

which defines a set of trajectories (or ‘flow lines’) in the ��m��$�-plane. This
equation also highlights the significance of the points (1, 0) and (0, 1) in this plane,
which act as ‘attractors’ for the trajectories. This is illustrated in Figure 15.10,
which shows a set of trajectories for various cosmological models. Since any
general point in the plane defines a unique trajectory passing through that point, it
is convenient to specify each trajectory by the present-day values �m�0 and �$�0

(although one could equally well use the values at any other cosmic time). In
the left-hand panel, we plot trajectories passing through �m�0 = 0�3 and �$�0 =
0�1�0�2� � � � �1�1, and in the right-hand panel the trajectories pass through �$�0 =
0�7 and �m�0 = 0�1�0�2� � � � �1�1. We see that the trajectories all start at (1, 0),
which is an unstable fixed point, and converge on (0, 1), which is a stable fixed
point.
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Figure 15.10 Evolution of the density parameters �m and �$ for various
cosmological models passing through the points �m�0 = 0�3 and �$�0 =
0�1�0�2� � � � �1�1 (left-hand panel) and �$�0 = 0�7 and �m�0 = 0�1�0�2� � � � �1�1
(right-hand panel).
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It is worth noting the profound effect of a non-zero cosmological constant on
the evolution of the density parameters. In the case $ = 0, any slight deviation
from�m = 1 in the early universe results in a rapid evolution away from the point
(1, 0) along the �m-axis, tending to (0, 0) for an open universe and to ���0� for
a closed one. If $ > 0, however, the trajectory is ‘refocussed’ and tends to the
spatially flat de Sitter case (0, 1). Indeed, for a wide range of initial conditions,
by the time the matter density has reached �m ≈ 0�3 the universe is close to
spatially flat.

15.11 Evolution of the spatial curvature

We may investigate directly the behaviour of the spatial curvature as the universe
expands by determining the evolution of the curvature density parameter

�k = 1−�m−�r−�$ =−
c2k

H2R2
� (15.47)

Differentiating the final expression on the right-hand side with respect to cosmic
time, or combining the derivatives (15.46), one quickly finds that

�̇k = 2�kHq =�kH��m+2�r−2�$�� (15.48)

where q is the deceleration parameter. We observe that if�$= 0 then the quantity
in parentheses is always positive. Thus, in this case, if �k differs slightly from
zero at some early cosmic time then the spatial curvature rapidly evolves away
from the spatially flat case. In particular, �k→ 1 in the open case and �k→−�
in the closed case. The presence of a positive cosmological constant, however,
changes this behaviour completely. In this case, at some finite cosmic time the
2�$ term in (15.48) will dominate the matter and radiation terms, with the result
that �k is ‘refocussed’ back to �k = 0.

We may in fact obtain an analytic expression for the spatial curvature as a
function of redshift z, in terms of the present-day values of the density parameters.
Substituting for c2k from (15.47) evaluated at t= t0, and noting that R0/R= 1+z,
we obtain the useful general formula

�k�z�=
[
H0�1+ z�

H�z�

]2
�k�0�

Using our expression (15.38) for H�z� then gives

�k�z�=
�k�0

�m�0�1+ z�+�r�0�1+ z�2+�$�0�1+ z�−2+�k�0
�
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In particular, we see that (apart from models with only vacuum energy), even if
the present-day value �k�0 differs greatly from zero, at very high redshift (i.e.
in the distant past) �k�z� must have differed by only a tiny amount from zero.
Since today we measure the value �k�0 to be (conservatively) in the range −0�5
to 0.5, this means that at very early epochs �k must have been very finely tuned
to near zero. This tuning of the initial conditions of the expansion is called the
flatness problem and has no solution within standard cosmological models. From
our above discussion, however, the presence of a positive cosmological constant
goes some way to explaining why the universe is close to spatially flat at the
present epoch.

15.12 The particle horizon, event horizon and Hubble distance

Thus far, we have considered the evolution of the entire spatial part of the
FRW geometry. It is, however, interesting to consider the extent of the region
‘accessible’ (via light signals) to some comoving observer at a given cosmic
time t.

Particle horizon

Let us consider a comoving observer O situated (without loss of generality) at
� = 0. Suppose further that a second comoving observer E has coordinate �1 and
emits a photon at cosmic time t1, which reaches O at time t. Assuming light to
be the fastest possible signal, the only signals emitted at time t1 that O receives
by the time t are from radial coordinates � < �1.

The comoving coordinate �1 of the emitter E is determined by

�1 = c
∫ t

t1

dt̄

R�t̄�
� (15.49)

If the integral on the right-hand side diverges as t1→ 0 then �1 can be made as
large as we please by taking t1 sufficiently small. Thus, in this case, in principle
it is possible to receive signals emitted at sufficiently early epochs from any
comoving particle (such as a typical galaxy). If, however, the integral converges
as t1→ 0 then �1 can never exceed a certain value for a given t. In this case our
vision of the universe is limited by a particle horizon. At any given cosmic time
t, the �-coordinate of the particle horizon is given by

�p�t�= c
∫ t

0

dt̄

R�t̄�
= c

∫ R�t�

0

dR

RṘ
� (15.50)

where in the second equality we have rewritten the expression as an integral over
R. The corresponding proper distance to the particle horizon is dp�t�=R�t��p�t�.
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We see that expression (15.50) will be finite if RṘ∼ R� with � < 1, which is
equivalent to the condition R̈ < 0. Hence, any universe for which the expansion
has been continually decelerating up to the cosmic time t will have a finite particle
horizon at that time. Clearly, this includes all the Friedmann models that we
discussed earlier, but particle horizons also occur in other cosmological models,
for example in the spatially flat Lemaitre model with �m�0 ≈ 0�3 and �$�0 ≈ 0�7
that seems to provide a reasonable description of our universe.

On differentiating (15.50) with respect to t, we have d�p/dt= c/R�t�, which is
always greater than zero. Thus, the particle horizon of a comoving observer grows
as the cosmic time t increases, and so parts of the universe that were not in view
previously must gradually come into view. This does not mean, however, that a
galaxy that was not visible at one instant suddenly appears in the sky a moment
later! To understand this, we note that if the universe has a big-bang origin then
we have R�t1�→ 0 as t1 → 0, and so z→�. Thus, the particle horizon at any
given cosmic time is the surface of infinite redshift, beyond which we cannot see.
If the particle horizon grew to encompass a galaxy, the galaxy would therefore
appear at first with an infinite redshift, which would gradually reduce as more
cosmic time passed. Hence the galaxy would not simply ‘pop’ into view.7

In fact, we can obtain explicit expressions for the particle horizon in some
cosmological models. For example, a matter-dominated model at early epochs
obeys R�t�/R0 = �t/t0�

2/3, whereas a radiation-dominated model at early epochs
obeys R�t�/R0 = �t/t0�

1/2. Substituting these expressions into (15.50) gives the
proper distance to the particle horizon at cosmic time t as

dp�t�= 3ct (matter-dominated)� dp�t�= 2ct (radiation-dominated)�

These proper distances are larger than ct because the universe has expanded while
the photon has been travelling. Alternatively, if one has an analytic expression
for ��z� for some cosmological model then the corresponding expression for �p
may be obtained simply by letting z→�.

The existence of particle horizons for the common cosmological models illus-
trates the horizon problem, i.e. how do vastly separated regions display the
same physical characteristics (e.g. the nearly uniform temperature of the cosmic
microwave background) when, according to standard cosmological models, these
regions could never have been in causal contact? This problem, like the flatness
problem, is a serious challenge to standard cosmology that can only be resolved
by invoking the theory of inflation (see Chapter 16).

7 In practice, our view of the universe is not limited by our particle horizon but by the epoch of recombination,
which occurred at zrec ≈ 1500 (long before the formation of any galaxies). Prior to this epoch, the universe
was ionised and photons were frequently scattered by the free electrons, whereas after this point electrons and
protons (and neutrons) combined to form atoms and the photons were able to propagate freely. This surface
of last scattering is therefore the effective limit of our observable universe.
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The horizon problem can be illustrated by a simple example. Consider a galaxy
at a proper distance of 109 light years away from us. Since the age of the universe
is ∼ 1�5× 1010 years, there has been sufficient time to exchange about 15 light
signals with the galaxy. At earlier times, when the scale factor R was smaller,
everything was closer together and so we might have naively expected that this
would improve causal contact. In a continuously decelerating universe, however,
it makes the problem worse. At, for example, the epoch of recombination (when
the cosmic microwave background photons were emitted) the redshift z was
approximately 1000, so R�trec�/R0 ≈ 10−3 and the proper distance to the ‘galaxy’
is 106 light years.8 If we assume, for simplicity, that after trec the expansion
followed a matter-dominated Einstein–de-Sitter universe, then(

trec
t0

)2/3

= Rrec

R0
= 10−3�

and so trec = 1�5×105�5 years. However, assuming that prior to trec the expansion
followed a radiation-dominated Einstein–de-Sitter model, the proper distance to
the particle (causal) horizon is 2ctrec = 3× 105�5 light years. Thus, by trec ‘we’
could not have exchanged even one light signal with the other ‘galaxy’.

Event horizon

Although our particle horizon grows as the cosmic time t increases, in some
cosmological models there could be events that we may never see (or, conversely,
never influence). Returning to our expression (15.49), we see that if the integral
on the right-hand side diverges as t→� (or the time at which R equals zero
again), then it will be possible to receive light signals from any event. However,
if the integral instead converges for large t then, for light signals emitted at t1, we
will only ever receive those from events for which the �-coordinate is less than

�e�t1�= c
∫ tmax

t1

dt

R�t�
�

where tmax is either infinity or the time of the big crunch (i.e. R�tmax�= 0). This
is called the event horizon. By symmetry, �e�t0� is the maximum �-coordinate
that can be reached by a light signal sent by us today.

Hubble distance

From our discussion in Section 15.7, the elapsed cosmic time t since the big
bang is, in general, of the order H−1�t�, which is known as the Hubble time and

8 In reality the galaxy would not yet have formed, but this does not affect the main point of the argument.
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provides a characteristic time scale for the expansion of the universe. In a similar
way, at a cosmic time t one can define the Hubble distance

dH�t�= cH−1�t��

which provides a characteristic length scale for the universe. We may also define
the comoving Hubble distance

�H�t�=
dH�t�

R�t�
= c

H�t�R�t�
= c

Ṙ�t�
� (15.51)

where in the last equality we have used the fact that H = Ṙ/R. The above
expression simply gives the �-coordinate corresponding to the Hubble distance.

The Hubble distance dH�t� corresponds to the typical length scale (at cosmic
time t) over which physical processes in the universe operate coherently. It is also
the length scale at which general-relativistic effects become important; indeed,
on length scales much less than dH�t�, Newtonian theory is often sufficient to
describe the effects of gravitation. From our discussion above, we further note
that the proper distance to the particle horizon for standard cosmological models
is typically

dp�t�∼ ct ∼ cH−1�t��

Thus, we see that the particle horizon in such cases is of the same order as the
Hubble distance. As a result, the Hubble distance is often described simply as the
‘horizon’. It should be noted, however, that the particle horizon and the Hubble
distance are distinct quantities, which may differ by many orders of magnitude in
inflationary cosmologies, which we discuss in the next chapter. In particular, we
note that the particle horizon at time t depends on the entire expansion history of
the universe to that point, whereas the Hubble distance is defined instantaneously
at t. Moreover, once an object lies within an observer’s particle horizon it remains
so. On the contrary, an object can be within an observer’s Hubble distance at one
time, lie outside it at some later time and even come back within it at a still later
epoch.

Exercises

15.1 For blackbody radiation, the number density of photons with frequencies in the
range 
�� �+d�� is given by

n���T�d� = 8��2

c3 �eh�/kT −1�
d�� (E15.1)

where T is the ‘temperature’ of the radiation. By conserving the total number
of photons, show that the photon energy distribution of the cosmic microwave
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background (CMB) radiation retains its general blackbody form as the universe
expands. Show further that the total number density n of photons is

n�T�= 0�244
(
2�kBT
hc

)3

�

Hence show that the present-day number density of CMB photons in the universe is
n0 ≈ 4×108 m−3, and compare this with the present-day number density of protons.
How does this ratio vary with cosmic time?

Hint:
∫ �
0

x2

ex−1
dx = 0�244�2.

15.2 Suppose that the present-day energy densities of radiation and matter (in the form
of dust) are �r�t0�c

2 and �m�t0�c
2 respectively. Show that the energy densities of

the two components were equal at a redshift zeq given by

1+ zeq =
�m�t0�

�r�t0�
�

What assumptions underlie this result? Hence show that

1+ zeq =
3c2�m�0H

2
0

8�GaT 4
0

�

where a is the reduced Stefan–Boltzmann constant and T0 is the present-day temper-
ature of the cosmic microwave background. Show that for our universe zeq ≈ 5000.
What was the temperature of the CMB radiation at this epoch?

15.3 Show that in the early, radiation-dominated, phase of the universe, the temperature
T of the radiation satisfies the equation(

Ṫ

T

)2

= 8�GaT 4

3
�

where the dot denotes differentiation with respect to the cosmic time t and a is the
reduced Stefan–Boltzmann constant. Hence show that

T =
(

3c2

32�Ga

)1/4

t−1/2 ≈ 1�5×1010
( t
s

)−1/2
K�

and that the cosmic time at matter–radiation equality is teq ≈ 16000 years.
15.4 The CMB radiation was emitted at the epoch of recombination at redshift zrec ≈

1500. Show that trec ≈ 450000 years.
15.5 Consider a cylindrical piston chamber of cross-sectional area A ‘filled’ with vacuum

energy. The piston is withdrawn a linear distance dx. Show that the energy created
by withdrawing the piston equals the work done by the vacuum, provided that

pvac =−�vacc
2�

Hence show that, in this case, the vacuum energy density is constant as the piston
is withdrawn.
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15.6 Show that the present-day value of the scale factor of the universe may be written as

R0 =
c

H0

(
k

�k�0

)1/2

�

What value does R0 take in a spatially flat universe?
15.7 Show that, for our universe to be spatially flat, the total density must be equivalent

to ≈ 5 protons m−3.
15.8 In the Newtonian cosmological model discussed in Exercise 14.14, show that the

total energy E of the test particle of mass m can be written as

E = 1
2m�1−�m�R

2H2�

and interpret this result physically.
15.9 Show that at all cosmic times the density parameters obey the relation

�m+�r+�$+�k = 1�

15.10 In terms of the dimensionless density parameters, show that the two cosmological
field equations can be written in the forms

H2 = H2
0

[
�m�0 a

−3+�r�0 a
−4+�$�0+�k�0 a

−2] �
q = 1

2 ��m+2�r−2�$��

where H and q are the Hubble and deceleration parameters respectively, and
a= R/R0 is the normalised scale factor.

15.11 The conformal time variable is defined by d� = c dt/R. Hence show that the
second cosmological field equation can be written as(

da

d�

)2

=− k

�k�0

��m�0 a+�r�0+�$�0a
4+�k�0 a

2��

15.12 Show that the density parameter for matter, radiation or the vacuum varies with
the normalised scale factor as

�i =�i�0

(
H0

H

)2

a−3�1+wi��

where wi is the appropriate equation-of-state parameter.
15.13 Show that the condition for the a�t�-curve to have a turning point is

f�a�≡�$�0a
3+ �1−�m�0−�$�0�a+�m�0 = 0�

In the case �$�0 > 0, show by evaluating the derivatives f ′�a� and f ′′�a� that the
condition for f�a� to have a single positive root at a= a∗ is f�a∗�= f ′�a∗�= 0.
Show further that this root occurs at

a∗ =
(
�m�0

2�$�0

)1/3

�
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Hence show that the values �m�0 and �$�0, along any dividing line in this plane
that separates those models with a turning point in the a�t�-curve from those
without, must satisfy

4�1−�m�0−�$�0�
3+27�2

m�0�$�0 = 0�

15.14 Show that the substitution x= 
�$�0/�4�m�0��
1/3 reduces the final cubic equation

in Exercise 15.13 to

x3− 3x
4
+ �m�0−1

4�m�0

= 0�

By using the standard formulae for the roots of a cubic, or otherwise, verify the
results (15.18–15.20).

15.15 Show that, in terms of the variable t̂ =H0�t− t0�, the evolution of the normalised
scale factor obeys the equation(

da

dt̂

)2

=�m�0a
−1+�r�0a

−2+�$�0a
2+1−�m�0−�r�0−�$�0�

Show that, when one is integrating this equation numerically, an iterative algorithm
of the form

an+1 ≈ an+
(
da

dt̂

)
n

�t̂

would not be able to propagate the solution through points for which da/dt̂ = 0�
15.16 For a k = −1 Friedmann model containing no matter or radiation, show that the

line element becomes

ds2 = c2dt2− c2t2
d�2+ sinh2 � �d�2+ sin2 �d�2���

Show that this metric describes a Minkowski spacetime.
15.17 For a dust-only Friedmann model with �m�0 > 1, show that

a= �m�0

2��m�0−1�
�1− cos��� t = �m�0

2H0��m�0−1�3/2
��− sin���

Hence show that the a�t�-curve has a maximum at

amax =
�m�0

�m�0−1
� tmax =

�

2H0

�m�0

��m�0−1�3/2
�

and that the age t0 of such a universe is given by

t0 =
�m�0

2H0��m�0−1�3/2

[
cos−1

(
2

�m�0

−1
)
− 2

�m�0

��m�0−1�1/2
]
<

2
3H0

�

15.18 For the Einstein–de-Sitter model, prove the following useful results:

a�t�=
(
t

t0

)2/3

� H�t�= 2
3t
=H0�1+z�3/2� q0=

1
2
� �m�t�=

1
6�Gt2

�
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15.19 For a radiation-only Friedmann model with �r�0 �= 1, show that

a�t�= �2H0�
1/2
r�0 t�

1/2

(
1+ 1−�r�0

2�1/2
r�0

H0t

)1/2

�

Hence, for �r�0 > 1, show that the a�t�-curve has a maximum at

amax =
(

�r�0

�r�0−1

)1/2

� tmax =
1
H0

�
1/2
r�0

��r�0−1�
�

and that the age t0 of such a universe is given by

t0 =
1
H0

1

�
1/2
r�0 +1

<
1

2H0

�

15.20 For the spatially flat, radiation-only, Friedmann model, prove the following useful
results:

a�t�=
(
t

t0

)1/2

� H�t�= 1
2t
=H0�1+ z�2� q0 = 1� �r�t�=

3
32�Gt2

�

15.21 For a spatially flat Friedmann model containing both matter and radiation, show
that

H0t =
2

3�2
m�0

[
��m�0a+�r�0�

1/2��m�0a−2�r�0�+2�3/2
r�0

]
�

15.22 For a Lemaitre model containing no radiation, show that at the point of inflection
of the a�t�-curve the value of the normalised scale factor is

a∗ =
(
�m�0

2�$�0

)1/3

�

and calculate a∗ for our universe. Show further that, in the vicinity of the point of
inflection, the scale factor obeys the equation

ȧ2 ≈H2
0 
�k�0+3�$�0a

2
∗ +3�$�0�a−a∗�

2�

and that this has the solution

a�t�= a∗ +a∗
[
1+ 1

3�k�0

(
1
4�$�0�

2
m�0

)−1/3]1/2
sinh

[
H0�3�$�0�

1/2�t− t∗�
]
�

15.23 For a spatially flat Lemaitre model containing no radiation, show that

H0t =
2

3
√��$�0�

∫ √a3��$�0�/�1−�$�0�

0

dy√
1±y2

�

Hence show that

a�t�=
(
1−�$�0

��$�0�
)1/3

{
sinh2/3

(
3
2

√
�$�0H0t

)
if �$�0 > 0�

sin2/3
(
3
2

√��$�0�H0t
)

if �$�0 < 0�
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15.24 Show that, in general,

R̈

R
=H2+ Ḣ�

Hence use the cosmological field equations to show that, for a spatially flat
Lemaitre model containing no radiation, the Hubble parameter and the matter
density satisfy the equations

2Ḣ+3H2 = $c2�

3H2−$c2 = 8�G�m�

Assuming $> 0 and requiring �m > 0, thus show that

H�t� =
√
$c2

3
coth

(
3
2

√
$c2

3
t

)
�

�m�t� =
$c2

8�G
cosech2

(
3
2

√
$c2

3
t

)
�

and therefore find expressions for �m�t� and �$�t�. Show further that

t = 2
3H

tanh−1
√
�$√

�$

�

Hint:
∫
a2/�a2−x2�dx = coth−1�x/a�+ constant, for x2 > a2.

15.25 Show that for a physically reasonable perfect fluid (i.e. density > 0 and pressure
≥ 0) there is no static isotropic homogeneous solution to Einstein’s equations with
$ = 0. Show that it is possible to obtain a static zero-pressure solution by the
introduction of a cosmological constant $ such that

$c2 = 4�G�m�0 =
c2k

R2
0

�

Show that this solution is unstable, however.
15.26 Show that the comoving �-coordinate of a galaxy emitting a photon at time t that

is received at t0 is given by

� = c

R0

∫ 1

�1+z�−1
da

aȧ
�

Using the cosmological field equation (15.13) to substitute for ȧ, show that

��z�= c

R0H0

∫ 1

�1+z�−1
dx√

�m�0x+�r�0+�$�0x
4+�k�0x

2
�

15.27 For a dust-only Friedmann model, show that the luminosity–distance relation varies
with redshift as

dL�z�=
2c

H0�
2
m�0

[
�m�0z+ ��m�0−2�

(√
�m�0z+1−1

)]
�

This result is known as Mattig’s formula.
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15.28 For a Friedmann model dominated by a single source of energy density, show that

�−1
i �z�−1= �−1

i�0 −1

�1+ z�1+3wi
�

where wi is the equation-of-state parameter of the source. Use this result to
comment on the flatness problem.

15.29 For a general cosmological model, show that

�̇i =�iH��m+2�r−2�$−1−3wi��

where i denotes matter, radiation or the vacuum.
15.30 By differentiating the definition �k =−kc2/�R2H2�, show that

�̇k = 2�kHq =�kH��m+2�r−2�$��

where q is the deceleration parameter.
15.31 Show that the particle horizon at cosmic time t is given

�p�t�=
c

R0H0

∫ a�t�

0

dx√
�m�0x+�r�0+�$�0x

4+�k�0x
2
�

15.32 Consider the cosmological line element

ds2 = c2dt2− e2t/b�dr2+ r2d�2+ r2 sin2 �d�2��

Light signals from a galaxy at coordinate distance r are emitted at epoch t1 and
received by an observer at epoch t0. Show that

r

bc
= e−t1/b− e−t0/b�

For a given r, show that there is a maximum epoch t1 and interpret this result
physically. Show that a light ray emitted by the observer asymptotically approaches
the coordinate r = bc but never reaches it.
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Inflationary cosmology

In the last two sections of the previous chapter, we saw that standard cosmological
models suffer, in particular, from the flatness problem and the horizon problem.
To these problems, one might also add the ‘expansion problem’, which asks
simply why the universe is expanding at all. Although this appears as an initial
condition in cosmological models, one would hope to explain this phenomenon
with an underlying physical mechanism. In this chapter, we therefore augment
our discussion of cosmological models with a brief outline of the inflationary
scenario, which seeks to solve these problems (and others) and has, over the
past two decades, become a fundamental part of modern cosmological theory.1 In
particular, we will discuss the effect of inflation on the evolution of the universe
as a whole and also consider how inflation gives rise to perturbations in the
early universe that subsequently collapse under gravity to form all the structure
we observe in the universe today. Given the general algebraic complexity of
these topics (particularly the perturbation analysis), we will adopt the convention
throughout this chapter that

8�G= c = 1�

This choice of units makes many of the equations far less cluttered and amounts
only to a rescaling of the scalar field and its potential (see below), which we can
remove at the end if desired.

16.1 Definition of inflation

As noted in Section 15.12, the horizon problem is a direct consequence of the
deceleration in the expansion of the universe. Thus, a possible solution is to

1 For a detailed discussion of inflationary cosmology, see, for example, A. Liddle & D. Lyth, Cosmological
Inflation and Large-scale Structure, Cambridge University Press, 2000.

428
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postulate an accelerating phase of expansion, prior to any decelerating phase. In
an accelerating phase, causal contact is better at earlier times and so remotely
separated parts of our present universe could have ‘coordinated’ their physical
characteristics in the early universe. Such an accelerating phase is called a period
of inflation. Hence the basic definition of inflation is that

R̈ > 0� (16.1)

In fact, we may recast this condition in an alternative manner that is physically
more meaningful by considering the comoving Hubble distance defined in (15.51),
namely �H�t�=H−1�t�/R�t�. The derivative with respect to t is given by

d

dt

(
H−1

R

)
= d

dt

(
1

Ṙ

)
=− R̈

Ṙ2
�

and so the condition (16.1) can be written as

d

dt

(
H−1

R

)
< 0�

Thus, an equivalent condition for inflation is that the comoving Hubble distance
decreases with cosmic time. Hence, when viewed in comoving coordinates, the
characteristic length scale of the universe becomes smaller as inflation proceeds.
Let us suppose that, at some period in the early universe, the energy density

is dominated by some form of matter with density � and pressure p. The first
cosmological field equation (14.36) (with $= 0 and 8�G= c = 1) then reads

R̈=− 1
6��+3p�R� (16.2)

Thus, we see that in order for the universe to accelerate, i.e. for inflation to occur,
we require that

p <− 1
3�� (16.3)

In other words, we need the ‘matter’ to have an equation of state with negative
pressure. In fact, the above criterion can also solve the flatness problem. The
second cosmological field equation (with $= 0 and 8�G= c = 1) reads

Ṙ2 = 1
3�R

2−k� (16.4)
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During a period of acceleration �R̈ > 0�, the scale factor must increase faster than
R�t� ∝ t. Provided that p < −1

3�, the quantity �R2 will increase during such a
period as the universe expands and can make the curvature term on the right-
hand side negligible, provided that the accelerating phase persists for sufficiently
long.

We could, of course, have included the cosmological-constant terms in the
two field equations, which would then be equivalent to those for a fluid with
an equation of state � = −p and so would clearly satisfy the criterion (16.3).
However, we have chosen to omit such terms since, as we will see, if ‘matter’
in the form of a scalar field exists in the early universe then this can act as an
effective cosmological constant. In order to show that the existence of such fields
is likely, we must consider briefly the topic of phase transitions in the very early
universe.

16.2 Scalar fields and phase transitions in the very early universe

The basic physical mechanism for producing a period of inflation in the very
early universe relies on the existence, at such epochs, of matter in a form that can
be described classically in terms of a scalar field (as opposed to a vector, tensor
or spinor field, examples of which are provided by the electromagnetic field, the
gravitational field and normal baryonic matter respectively). Upon quantisation,
a scalar field describes a collection of spinless particles.

It may at first seem rather arbitrary to postulate the presence of such scalar
fields in the very early universe. Nevertheless, their existence is suggested by our
best theories for the fundamental interactions in Nature, which predict that the
universe experienced a succession of phase transitions in its early stages as it
expanded and cooled. For the purposes of illustration, let us model this expansion
by assuming that the universe followed a standard radiation-dominated Friedmann
model in its early stages, in which case

R�t�∝ t1/2 ∝ 1
T�t�

� (16.5)

where the ‘temperature’ T is related to the typical particle energy by T ∼ E/kB.
The basic scenario is as follows.

• EP ∼ 1019 GeV> E> EGUT ∼ 1015 GeV The earliest point at which the universe can
be modelled (even approximately) as a classical system is the Planck era, corresponding
to particle energies EP ∼ 1019 GeV (or temperature TP ∼ 1032 K) and time scales tP ∼
10−43 s (prior to this epoch, it is considered that the universe can be described only
in terms of some, as yet unknown, quantum theory of gravity). At these extremely
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high energies, grand unified theories (GUTs) predict that the electroweak and strong
forces are in fact unified into a single force and that these interactions bring the
particles present into thermal equilibrium. Once the universe has cooled to EGUT ∼
1014 GeV (corresponding to TGUT ∼ 1027 K), there is a spontaneous breaking of the
larger symmetry group characterising the GUT into a product of smaller symmetry
groups, and the electroweak and strong forces separate. From (16.5), this GUT phase
transition occurs at tGUT ∼ 10−36 s.

• EGUT ∼ 1015 GeV > E > EEW ∼ 100GeV During this period (which is extremely
long in logarithmic terms), the electroweak and strong forces are separate and these
interactions sustain thermal equilibrium. This continues until the universe has cooled
to EEW ∼ 100GeV (corresponding to TGUT ∼ 1015 K), when the unified electroweak
theory predicts that a second phase transition should occur in which the electromagnetic
and weak forces separate. From (16.5), this electroweak phase transition occurs at
tEW ∼ 10−11 s.

• EEW ∼ 100GeV>E>EQH ∼ 100MeV During this period the electromagnetic, weak
and strong forces are separate, as they are today. It is worth noting, however, that
when the universe has cooled to EQH ∼ 100MeV (corresponding to TQH ∼ 1012 K)
there is a final phase transition, according to the theory of quantum chromody-
namics, in which the strong force increases in strength and leads to the confine-
ment of quarks into hadrons. From (16.5), this quark–hadron phase transition occurs
at tQH ∼ 10−5 s.

In general, phase transitions occur via a process called spontaneous symmetry
breaking, which can be characterised by the acquisition of certain non-zero values
by scalar parameters known as Higgs fields. The symmetry is manifest when
the Higgs fields have the value zero; it is spontaneously broken whenever at
least one of the Higgs fields becomes non-zero. Thus, the occurrence of phase
transitions in the very early universe suggests the existence of scalar fields and
hence provides the motivation for considering their effect on the expansion of the
universe. In the context of inflation, we will confine our attention to scalar fields
present at, or before, the GUT phase transition (the most speculative of these phase
transitions).

16.3 A scalar field as a cosmological fluid

For simplicity, let us consider a single scalar field � present in the very early
universe. The field � is traditionally called the ‘inflaton’ field for reasons that will
become apparent shortly. The Lagrangian for a scalar field � (see Section 19.6)
has the usual form of a kinetic term minus a potential term:

L= 1
2g

������������−V����
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The corresponding field equation for � is obtained from the Euler–Lagrange
equations and reads

�2�+ dV

d�
= 0� (16.6)

where �2 ≡ ���� = g������ is the covariant d’Alembertian operator. A simple
example is a free relativistic scalar field of mass m, for which the potential would
be V��� = 1

2m
2�2 and the field equation becomes the covariant Klein–Gordon

equation,

�2�+m2�= 0�

For the moment, however, it is best to keep the potential function V��� general.
The energy–momentum tensor T�� for a scalar field can be derived from

this variational approach (see Section 19.12), but in fact we can use our earlier
experience to anticipate its form. By analogy with the forms of the energy–
momentum tensor for dust and for electromagnetic radiation, we require that T��
is (i) symmetric and (ii) quadratic in the derivatives of the dynamical variable �,
and (iii) that ��T

�� = 0 by virtue of the field equation (16.6). It is straightforward
to show that the required form must be

T�� = ����������−g��
[ 1
2��#����

#��−V���
]
� (16.7)

The energy–momentum tensor for a perfect fluid is

T�� = ��+p�u�u�−pg���

and by comparing the two forms in a Cartesian inertial coordinate system �g�� =
���� in which the fluid is at rest, we see that the scalar field acts like a perfect
fluid, with an energy density and pressure given by

�� = 1
2 �̇

2+V���+ 1
2�
����2�

p� = 1
2 �̇

2−V���− 1
6�
����2�

(16.8)

In particular, we note that if the field � were both temporally and spatially
constant, its equation of state would be p� =−�� and so the scalar field would
act as a cosmological constant with $= V��� (with 8�G= c= 1). In general this
is not the case, but we will assume that the spatial derivatives can be neglected.
This is equivalent to assuming that � is a function only of t and so has no spatial
variation.
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16.4 An inflationary epoch

Let us suppose that the scalar field does not interact (except gravitationally) with
any other matter or radiation that may be present. In this case, the scalar field
will independently obey an equation of motion of the form (14.39), namely

�̇+3��+p�
Ṙ

R
= 0�

Substituting the expressions (16.8) and assuming no spatial variations, we quickly
find that the equation of motion of the scalar field is

�̈+3H�̇+ dV

d�
= 0� (16.9)

The form of this equation will be familiar to any student of classical mechanics
and allows one to develop an intuitive picture of the evolution of the scalar field.
If one thinks of the plot of the potential V versus � as defining some curve, then
the motion of the scalar field value � is identical to that of a ball rolling (or,
more precisely, sliding) under gravity along the curve, subject to a frictional force
proportional to its speed (and to the value of the Hubble parameter).

Let us assume further that there is some period when the scalar field dominates
the energy density of the universe. Moreover we will demand that the scalar field
energy density is sufficient large that we may neglect the curvature term in the
cosmological field equation (16.4) although this is not strictly necessary.2 Thus,
we may write (16.4) as

H2 = 1
3

[
1
2 �̇

2+V���
]
. (16.10)

This equation and (16.9) thus provide a set of coupled differential equations in
� and H that determine completely the evolution of the scalar field and the
scale factor of the universe during the epoch of scalar-field domination. From our
criterion (16.3) and the expressions (16.8), we see that inflation will occur (i.e.
R̈ > 0) provided that

�̇2 < V���� (16.11)

2 Note that, even if the curvature term is not negligible to begin with, the initial stages of inflation will soon
render it so.
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16.5 The slow-roll approximation

The inflation equations (16.9) and (16.10) can easily be solved numerically, and
even analytically for some special choices of V���. In general, however, an
analytical solution is only possible in the slow-roll approximation, in which it is
assumed that �̇2� V���. On differentiating, this in turn implies that �̈� dV/d�

and so the �̈-term can be neglected in the equation of motion (16.9), to yield

3H�̇=−dV

d�
� (16.12)

Moreover, the cosmological field equation (16.10) becomes simply

H2 = 1
3V���� (16.13)

It is worth noting that, in this approximation, the rate of change of the Hubble
parameter and the scalar field can be related very easily. Differentiating (16.13)
with respect to t and combining the result with (16.12), one obtains

Ḣ =− 1
2 �̇

2� (16.14)

The conditions for inflation in the slow-roll approximation can be put into
a useful dimensionless form. Using the two equations above and the condition
�̇2� V���, it is easy to show that

�≡ 1
2

(
V ′

V

)2

� 1� (16.15)

where V ′ ≡ dV/d� and the factor 1
2 is included according to the standard conven-

tion. Differentiating the above expression with respect to �, one also finds that

�≡ V ′′

V
� 1� (16.16)

These two conditions make good physical sense in that they require the potential
V��� to be sufficiently ‘flat’ that the field � ‘rolls’ slowly enough for inflation to
occur. It is worth noting, however, that these conditions alone are necessary but
not sufficient conditions for inflation, since they limit only the form of V��� and
not that of �̇, which could be chosen to violate the condition (16.11). Thus, one
must also assume that (16.11) holds.

It is worth considering the special case in which the potential V��� is sufficiently
flat that, during (some part of) the period of inflation, its value remains roughly
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constant. From (16.12), we see that in this case the Hubble parameter is constant
and the scale factor grows exponentially:

R�t�∝ exp
(√

1
3V���t

)
�

16.6 Ending inflation

As the field value � ‘rolls’ down the potential V���, the condition (16.11) will
eventually no longer hold and inflation will cease. Equivalently, in the slow-
roll approximation, the conditions (16.15, 16.16) will eventually no longer be
satisfied. If the potential V��� possesses a local minimum, which is usually the
case in most inflationary models, the field will no longer roll slowly downhill but
will oscillate about the minimum of the potential, the oscillation being gradually
damped by the 3H�̇ friction term in the equation of motion (16.9). Eventually,
the scalar field is left stationary at the bottom of the potential. If the value of
the potential at its minimum is Vmin > 0 then clearly the condition (16.11) is
again satisfied and the universe continues to inflate indefinitely. Moreover, in this
case p� =−�� and so the scalar field acts as an effective cosmological constant
$ = Vmin. If Vmin = 0, however, no further inflation occurs, the scalar field has
zero energy density and the dynamics of the universe is dominated by any other
fields present.

In fact, the scenario outlined above would occur only if the scalar field were
not coupled to any other fields, which is almost certainly not the case. In practice,
such couplings will cause the scalar field to decay during the oscillatory phase
into pairs of elementary particles, into which the energy of the scalar field is thus
converted. The universe will therefore contain roughly the same energy density
as it did at the start of inflation. The process of decay of the scalar field into
other particles is therefore termed reheating. These particles will interact with
each other and subsequently decay themselves, leaving the universe filled with
normal matter and radiation in thermal equilibrium and thereby providing the
initial conditions for a standard cosmological model.

16.7 The amount of inflation

Although the motivation for the introduction of the inflationary scenario was (in
part) to solve the flatness and horizon problems, we have not yet considered the
amount of inflation required to achieve this goal. From our present understanding
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of particle physics, it is thought that inflation occurs at around the era of the GUT
phase transition, or earlier. For illustration, let us assume that the universe has
followed a standard radiation-dominated Friedmann model for (the majority of)
its history since the epoch of inflation at t ∼ t∗. From (16.5), we thus have

R∗
R0
∼
(
t∗
t0

)1/2

∼ T0
T∗

� (16.17)

where T0 ∼ 3K is the present-day temperature of the cosmic microwave back-
ground radiation and t0 ∼ 1/H0 ∼ 1018 s is the present age of the universe.
Let us first consider the flatness problem. From (15.47), the ratio of the spatial

curvature density at the inflationary epoch to that at the present epoch is given by

�k�∗
�k�0

=
(
H0

H∗

)2(R0

R∗

)2

∼ t∗
t0
� (16.18)

where we have used the fact that H0/H∗ ∼ t∗/t0. Assuming inflation to occur
at some time between the Planck era and the GUT phase transition, so that
tP < t∗ < tGUT, from Section 16.2 we find that the ratio (16.18) lies in the range
∼ 10−60–10−54. Thus, if the present-day value �k�0 is of order unity then the
required degree of fine-tuning of �k�∗ is extreme, in a standard cosmological
model. Since the ratio above depends on 1/R2∗ we thus find that, to solve the
flatness problem (in order that �k�∗ can also be of order unity), we require the
scale factor to grow during inflation by a factor ∼ 1027–1030. In terms of the
required number N of e-foldings of the scale factor, we thus have

N � 60–70 (flatness problem)�

We now turn to the horizon problem. If the universe followed a standard
radiation-dominated Friedmann model in its earliest stages, then (reinstating c for
the moment) the particle horizon at the inflationary epoch is

dp�∗ = 2ct∗�

which, taking tP < t∗ < tGUT, gives the size of a causally connected region at this
time as ∼ 10−33–10−27 m. From (16.17), we see that the size of such a region
today would be only ∼ 10−3–1m. The current size of the observable universe,
however, is given approximately by the present-day Hubble distance,

dH�0 = cH−1
0 ∼ 1026 m ∼ 3000Mpc�
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To solve the horizon problem, we thus require the scale factor to grow by a factor
of ∼ 1026–1029 during the period of inflation. Expressing this result in terms of
the required number N of e-foldings, we once again find

N � 60–70 (horizon problem)�

We have thus found that both the flatness and the horizon problems can be
solved by a period of inflation, provided that the scale factor undergoes more than
around 60–70 e-foldings during this period. We may now consider the constraints
placed by this condition on the form of the scalar field potential V���. In the
slow-roll approximation, the number of e-foldings that occur while the scalar field
‘rolls’ from �1 to �2 is given by

N =
∫ t2

t1

H dt =
∫ �2

�1

H

�̇
d�=−

∫ �2

�1

V

V ′
d��

If the potential is reasonably smooth then V ′ ∼ V/�. Thus, if ��= ��start−�end�
is the range of �-values over which inflation occurs, one finds N ∼ ����2. In
order to solve the flatness and horizon problems, one hence requires ��� 1.

16.8 Starting inflation

The observant reader will have noticed that so far we have not discussed how
inflation may start. During the inflationary epoch, the scalar field rolls downhill
from �start to �end, but we have not yet considered how the universe can arrive at
an appropriate starting state. The details will depend, in fact, on the precise infla-
tionary cosmology under consideration, but there are generally two main classes
of model. In early models of inflation, the inflationary epoch is an ‘interlude’ in
the evolution of a standard cosmological model. In such models, the inflaton field
� is usually identified with a scalar Higgs field operating during the GUT phase
transition. It is thus assumed that the universe was in a state of thermal equi-
librium from the very beginning and that this state was relatively homogeneous
and large enough to survive until the beginning of inflation at the GUT era; an
example of this sort is provided by the ‘new’ inflation model discussed below in
Section 16.9. In more recent models of inflation, the scalar field � is not identified
with the Higgs field in the GUT phase transition but is some generic scalar field
present in the very early universe. In particular, in these models the universe may
inflate soon after it exits the Planck era, thereby avoiding the above assumptions
regarding the state of the universe prior to the inflationary epoch; an example of
such a model is the chaotic inflation scenario discussed in Section 16.10. We will
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also discuss briefly the natural extension of the chaotic inflation model, called
stochastic inflation (or eternal inflation) in Section 16.11.

16.9 ‘New’ inflation

In the ‘new’ inflation model,3 the inflationary epoch occurs when the universe
goes through the GUT phase transition. As we will see, models of this general type
typically require a rather special form for the potential V��� in order to produce
an effective period of inflation. In particular, identifying the inflaton field � with
the scalar Higgs field operating during the GUT spontaneous-symmetry-breaking
phase transition, considerations from quantum field theory suggest a form for the
potential V���T� which is actually also a function of temperature T . The typical
form for V���T� is shown in Figure 16.1 for several values of T . At very high
temperatures the potential is parabolic with a minimum at � = 0, which is the
true vacuum state (i.e. the state of lowest energy). Thus at very high temperatures
we would expect the scalar field to have the value � = 0. However, for lower
temperatures the form of the potential changes until at the critical temperature

V(0)

V(φ)

φ = 0
φ

φ = σ

T > Tc T ~ Tc T < Tc

Figure 16.1 The temperature-dependent potential function for a Higgs-like
scalar field �.

3 The ‘new’ inflationary model is so called in order to distinguish it from the original ‘old’ inflation model of
Guth, in which the scalar Higgs field executed quantum mechanical tunnelling at T ∼ Tc, where Tc is the
critical temperature, from the metastable false ground state at � = 0 through a potential barrier to the true
ground state with � > 0. Although this model provided the genesis for the inflationary idea, it was quickly
shown to predict a universe very different to the one we observe. In short, the tunnelling process produces
bubble nucleation and it turns out that these bubbles are too small to be identified with the observable universe
and are carried apart too quickly by the intervening inflating space for them to coalesce, hence resulting in a
highly inhomogeneous universe, contrary to observations.
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T = Tc the potential develops a lower energy state than that at �= 0. Thus this
new non-zero value of � is now the true vacuum state, and �= 0 is now a false
vacuum state. For even lower values the new true vacuum state becomes more
pronounced until a final form is reached for ‘low’ temperatures.

Let us now consider the evolution of the scale factor R�t�, the radiation energy
density �r and the scalar field �.

Phase 1 When the temperature is very high, i.e. far above the GUT phase
transition scale of Tc ∼ 1027 K, from Figure 16.1 we would expect the scalar field
to have the value � = 0 (i.e. at the true vacuum state for these temperatures),
and Figure 16.1 shows that it will remain at �= 0. Since �r ∝ R−4, however, we
would expect the radiation to dominate over the scalar field at very early epochs.
Thus we have the standard early-time radiation-dominated Friedmann model, in
which we can neglect the curvature constant k. Thus, for T � Tc,

R∝ t1/2� �r ∝ t−2� �= 0�

Phase 2 It is clear from the above equations that there will come a time when
the scalar-field energy density dominates over that of the radiation. Provided that
this occurs for T> Tc the scalar field remains at �= 0, in which case it acts as an
effective cosmological constant of value $= V�0�. Thus, in this phase, the scale
factor undergoes an exponential expansion:

R�t�∝ exp

(√
1
3
V�0�t

)
�

As a result of the exponential expansion, however, there is a corresponding
exponential decrease in the temperature T , which results in a rapid change of
the potential function. Thus T ∼ Tc is reached very quickly, and so this phase
is extremely short-lived, and very little expansion is actually achieved. Indeed, if
T ∼ Tc is reached before the scalar-field energy density dominates over that of
the radiation then phase 2 does not occur at all.

Phase 3 Once T ∼ Tc, we see from Figure 16.1 that the scalar field is now able to
roll downhill away from �= 0 and so the GUT phase transition occurs. Provided
that the potential is sufficiently flat, the slow-roll approximation holds and the
universe inflates, the evolution of the scalar field being determined by (16.12)
and the Hubble parameter by (16.13). If the potential is roughly constant then
the exponential expansion continues. The rapid growth of the scale factor once
again causes the evolution of the potential function as the temperature drops. The



440 Inflationary cosmology

duration of this period of inflation depends critically on the flatness and length
of the plateau of the V��� function for T < Tc. For certain ‘reasonable’ potentials
the universe can easily inflate in such a way that the number of e-foldings
N � 60, and can be considerably larger. This is therefore the main inflationary
phase. According to detailed calculations, phase 3 occurs between t1 ∼ 10−36 s
and t2 ∼ 10−34 s and the scale factor increases by a factor of around 1050.

Phase 4 Eventually, the slow-roll approximation fails and inflation ends. The
scalar field then rolls rapidly down towards the true vacuum state at � = # ,
oscillating about the minimum point, and follows the behaviour outlined in
Section 16.6. In particular, if V�#�= 0 then the universe will revert to the standard
radiation-dominated Friedmann model with

R�t�∝ t1/2�

Hence, at t ∼ 10−34 s, the universe starts a standard Friedmann expansion, albeit
with the desired ‘initial’ conditions. Thus, the inflationary model incorporates all
the observationally verified predictions of the standard cosmological models.

Although the ‘new’ inflation model still has its advocates, it suffers from
undesirable features. In particular, the scenario only provides an effective period
of inflation if V���T� has a very flat plateau near � = 0, which is somewhat
artificial. Moreover, the period of thermal equilibrium prior to the inflationary
phase (so one can speak sensibly of the universe having a particular temperature)
requires many particles to interact with one another, and so already one requires
the universe to be very large and contain many particles. Finally, the universe
could easily recollapse before inflation starts. As a result of these difficulties, new
inflation may not be a viable model, and so there are strong theoretical reasons
to believe that the inflaton field � cannot be identified with the GUT symmetry-
breaking Higgs field. Thus, the hope that GUTs could provide the mechanism for
the homogeneity and flatness of the universe may have to be abandoned.

16.10 Chaotic inflation

In more recent models of inflation, the scalar field � is not identified with
the Higgs field in the GUT phase transition but is regarded as a generic scalar
field present in the very early universe. In particular, these models invoke the
idea of chaotic inflation. In this scenario, as the universe exits the Planck era
at t ∼ 10−43 s the initial value of the scalar field �start is set chaotically, i.e. it
acquires different random values in different regions of the universe. In some
regions, �start is somewhat displaced from the minimum of the potential and
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φ

V(φ)

φ start

Figure 16.2 The potential V��� = 1
2m

2�2 for a free scalar field. The field is
initially displaced from the minimum of the potential due to chaotic initial
conditions as the universe comes out of the Planck era.

so the field subsequently rolls downhill. If the potential is sufficiently flat, the
field is more likely to be displaced a greater distance from its minimum and
will roll slowly enough, and for a sufficiently prolonged period, for the region to
undergo an effective period of inflation. Conversely, in other regions �start may
not be displaced sufficiently from the minimum of the potential for the region to
inflate. Thus, on the largest scales the universe is highly inhomogeneous, but our
observable universe lies (well) within a region that underwent a period of inflation.

According to this scenario, inflation may occur even in theories with very
simple potentials, such as V���∼ �n, and is thus a very generic process that can
take place under a broad range of conditions. Indeed, the potential function need
not depend on the temperature T . A very simple example is a free scalar field,
for which V��� = 1

2m
2�2 (see Figure 16.2). Moreover, in the chaotic scenario,

inflation may begin even if there is no thermal equilibrium in the early universe,
and it may even start just after the Planck epoch.

16.11 Stochastic inflation

A natural extension to the chaotic inflation model is the mechanism of stochastic
(or eternal) inflation. The main idea in this scenario is to take account of quantum
fluctuations in the evolution of the scalar field, which we have thus far ignored
by modelling the field entirely classically. If, in the chaotic assignment of initial
values of the scalar field, some regions have a large value of �start then quantum
fluctuations can cause � to move further uphill in the potential V���. These
regions inflate at a greater rate than the surrounding ones, and the fraction of the
total volume of the universe containing the growing �-field increases. Quantum
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fluctuations within these regions lead in turn to the production of some new
inflationary regions that expand still faster. This process thus leads to eternal
self-reproduction of the inflationary universe.

16.12 Perturbations from inflation

We have seen that inflation can solve the horizon and flatness problems. Arguably
its greatest success so far, however, is to provide a mechanism by which the
fluctuations needed to seed the development of structure within the universe can
be generated. This topic is the subject of much current research, and we can give
only a limited treatment here. Nevertheless, by following through the equations for
structure generation and development in the simplest case, namely for a spatially
flat universe with a simple ‘gauge choice’ (see below), we hope that the reader
will be able to get a flavour of the physics involved.

The current opinion of how structure in the universe originated is that it was via
amplification, during a period of inflation, of initial quantum irregularities of the
scalar field that drives inflation. Thus what we need to do can be divided into two
broad categories. First, we need to work out the equations of motion for spatial
perturbations in the scalar field. This can be done classically, i.e. taking the scalar
field as a classical source linked self-consistently to the gravitational field via a
classical energy–momentum tensor. Second, we need to derive initial conditions
for these perturbations, and this demands that we understand the quantum field
theory of the perturbations themselves. This sounds formidable but actually turns
out to be no more complicated than considering the quantum physics of a mass
on a spring, albeit one in which the mass changes as a function of time. These
topics are discussed in detail in the remainder of this chapter.

16.13 Classical evolution of scalar-field perturbations

We assume that the scalar field �, which hitherto has been a function of cosmic
time t only, now has perturbations that are functions of space and time. We can
thus write

��t�→ �0�t�+���t� �x�� (16.19)

These perturbations will lead to a perturbed energy–momentum tensor, which we
shall derive shortly. The Einstein field equations then imply that the Einstein
tensor is also perturbed away from its background value. In turn, therefore, we
must have a metric different from the Friedmann–Robertson–Walker one assumed
so far. We thus need to assume a form for this metric in order to calculate the
new Einstein tensor. It is at this point we must make the choice of ‘gauge’ (i.e.
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coordinate system) referred to above. Once perturbations are present there is no
preferred way to define a spacetime slicing of the universe. The details of this are
quite subtle but amount simply to the fact that by choosing different coordinate
systems we can change the apparent character of the perturbations considerably.
For example, suppose that we choose, as a new time coordinate, one for which
surfaces of constant time have a constant value of the new perturbed scalar field
on them. This is always possible and, in such a gauge, the spatial fluctuations of
� have apparently totally vanished!

To meet such problems, methods that deal only with gauge-invariant quantities
have been developed. We will make contact with such methods below, when
we introduce the so-called ‘curvature’ perturbations. These are gauge invariant
and therefore represent physical quantities. To reach this point, however, we first
work with a specific simple form of gauge known as the as the longitudinal
or Newtonian gauge, and indeed with a restricted form of this – one where
only one extra function (known here as a ‘potential function’) is introduced.
The justification for using such a restricted form is that it leads to an Einstein
tensor with the correct extra degrees of freedom to match the extra terms in the
scalar-field energy–momentum tensor arising from the field perturbations.

For a spatially flat (k = 0) background FRW model, which is what we will
assume, we adopt Cartesian comoving coordinates and write the perturbed metric as

ds2 = �1+2%� dt2− �1−2%�R2�t�
(
dx2+dy2+dz2

)
� (16.20)

where % is a general infinitesimal function of all four coordinates (and should
not to be confused with the scalar field �). Its assumed smallness means that we
will only need to consider quantities to first order in %. A general discussion of
this linearising process is presented in the next chapter, but for the time being we
simply note that one can consider % as representing the Newtonian potential of
the perturbations. For instance, for a spherically symmetric perturbation of mass
M and radius r , if we put %=GM/rc2 then the first term of (16.20) recovers the
tt-term of the Schwarzschild metric.

The perturbed Einstein field equations

We now need to find both the new energy–momentum tensor of the scalar field
� and the new Einstein tensor corresponding to our perturbed metric. Equating
them will link our two perturbation variables �� and % and provide us with the
equations of evolution that we need. The first step is to calculate the connection
coefficients corresponding to the perturbed metric (16.20) to first order in %.
These are easily shown to take the form  #

�� = � 0�
#
��+� #

��, where the first
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term corresponds to the connection coefficients of the unperturbed metric (i.e.
with % = 0) and the perturbation terms are given by

� 0
0� = ��%�

� 0
ii = −R2�%̇+4H%��

� i
00 =

1
R2

�i%�

� i
i� = −��%�

In these expressions, H = Ṙ/R is the Hubble parameter of the unperturbed back-
ground, and no sum over repeated i indices is implied. The remaining perturbed
connection coefficients either follow from symmetry or are zero.

These connection coefficients yield a Riemann and hence an Einstein tensor.
Again working to first order in %, the perturbed part of the Einstein tensor is
found to be

�G0
i =−2�i�%̇+H%��

�G0
0 =−2���2%−3H%̇−3H2%��

�Gi
i = 2
%̈+4%̇H+ �2Ḣ+3H2�%��

(16.21)

where again no sum over repeated i indices is implied and the remaining entries
either follow from symmetry or are zero. The symbol ��2 here denotes the spatial
Laplacian, which in this simple flat case is given by

��2 = 1
R2

(
�2

�x2
+ �2

�y2
+ �2

�z2

)
� (16.22)

It is worth noting that, in the entries of (16.21), the time derivative of the Hubble
parameter appears. From (16.14), this can be rewritten as

Ḣ =− 1
2 �̇

2
0� (16.23)

remembering that this equation now applies to the background FRW spacetime.
We also need to evaluate the perturbed part of the scalar-field energy–

momentum tensor. Substituting (16.19) into (16.7) and working to first order in
�, one quickly finds that

�T 0
i = �̇0�i�����

�T 0
0 =−�̇2

0%+ �̇0��̇+V ′���

�T i
i = �̇2

0%− �̇0��̇+V ′���

(16.24)
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where V ′ = dV/d�0 and the remaining components either follow from symmetry
or are zero.

We may now use the Einstein field equations to relate the Einstein tensor and
the scalar-field energy–momentum tensor. Since the unperturbed part of the field
equations is automatically satisfied, one simply requires that �G�

� =−�T�
� (since

& = 8�G/c4 equals unity in our chosen system of units). We may thus equate,
with the inclusion of a minus sign, the components shown in equations (16.21)
and (16.24). At first sight, it is by no means obvious that we have allowed
ourselves enough freedom in including only one extra function, %, in the metric.
Nevertheless, as we now show, everything in fact works out. Let us start with the(0
i

)
-components, for which we have the equation

2�i�%̇+H%�= �̇0�i����� (16.25)

Remembering that H and �0 have no spatial dependence, we can integrate this
immediately to obtain

%̇+H% = 1
2 �̇0��� (16.26)

One next equates the
(i
i

)
-components, which gives

−2
%̈+4%̇H+ �2Ḣ+3H2�%�= �̇2
0%− �̇0��̇+V ′��� (16.27)

but we may show that this contains no information beyond that already obtained
from the

(0
i

)
-components. In particular, differentiating (16.26) with respect to time

gives

%̈+ Ḣ%+H%̇ = 1
2 �̈0��+ 1

2 �̇0��̇� (16.28)

then, using equations (16.9) and (16.23) to substitute for �̈0 and Ḣ respectively,
one finds that (16.27) is satisfied if (16.26) holds, thus establishing consistency.
The only new information must therefore come from equating the

(0
0

)
-components.

Using (16.28) and eliminating V ′ again then yields

(
�̇2
0+2��2

)
% = �̇2

0
d

dt

(
��

�̇0

)
� (16.29)

Perturbation equations in Fourier space

The results (16.26) and (16.29) are the basic equations relating % and ��. To
make further progress, however, it is convenient to work instead in terms of
the Fourier decomposition of these quantities and analyse what happens to a
perturbation corresponding to a given comoving spatial scale. Thus, we assume
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that % and �� are decomposed into a superposition of plane-wave states with
comoving wavevector �k, so that

%��x�= 1
�2��3/2

∫
%�k exp�i�k · �x�d3�k�

where (with a slight abuse of notation) �x = �x� y� z� and a similar expression
holds for ��. The evolution of a mode amplitude %�k depends only on the

comoving wavenumber k = ��k�; the corresponding actual physical wavenumber
is k/R�t�. We thus work simply in terms of %k and ��k. In terms of these
variables, the action of ��2 will be just to multiply %k by −k2/R2�t�, whereas
the time derivatives remain unchanged. Equations (16.26) and (16.29) therefore
become

%̇k+H%k = 1
2 �̇0��k�(

1− 2k2

R2�̇2
0

)
%k =

d

dt

(
��k

�̇0

)
�

(16.30)

Thus, we see that we have obtained two coupled first-order differential equations
for the quantities %k and ��k, which are the amplitudes of the plane-wave
perturbations of comoving wavenumber k in the metric and in the scalar field
respectively. Clearly, what we could do next is to eliminate one quantity in terms
of derivatives of the other and then obtain a single second-order equation in
terms of just one of them (plus the background quantities, of course, but the
evolution of these is assumed known). In fact, this leads to rather messy equations
and, moreover, in terms of the discussion given above the results are not gauge
invariant, since neither %k nor ��k is gauge invariant on its own.

16.14 Gauge invariance and curvature perturbations

As mentioned above, gauge invariance is related to how we define spatial ‘slices’
of the perturbed spacetime. By transforming to a new time coordinate, one can
apparently make the perturbations in the scalar field come and go at will. There
are two ways to take care of this difficulty. First, one can choose variables that are
insensitive to such changes and therefore definitely describe something physical.
These are called gauge-invariant variables. Second, one can use variables which
would change if one altered the slicing but which are defined relative to a particular
slicing that can itself be defined physically. These are then also physical variables
and are, perhaps confusingly, also sometimes called gauge invariant, although this
is not really a good description. Note that changing spatial coordinates within a
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particular slicing also induces changes, but these are not relevant to our discussion
here and we concentrate just on changes in time coordinate.

Let us start our discussion by taking the first of the two routes outlined above,
namely describing the perturbations in terms of truly gauge-invariant quantities.
For any scalar function f in spacetime, consider the effects upon it of the change
in time coordinate t→ t′ = t+�t. We may define a new, perturbed, function by

f ′�t′�= f�t�� (16.31)

where, as just stated, we suppress the �x-dependences in what follows. Thus, to
first order in �t, we may write

f ′�t�= f ′�t′ −�t�≈ f�t�− ḟ �t (16.32)

where we do not have to specify whether it is f or f ′ that is being differentiated
with respect to time to obtain ḟ or whether the latter is evaluated at t or t′, since
these would be second-order differences. Hence the perturbation in the scalar
function due to the ‘gauge transformation’ t→ t+�t is given by4

�f =−ḟ�t� (16.33)

We may now evaluate the change in the perturbed spacetime metric corre-
sponding to the gauge transformation t→ t+�t. To do this, however, one must
distinguish between the two occurrences of the %-variable in (16.20). For an
arbitrary scalar perturbation, the general form of the perturbed metric in fact
takes the form

ds2 = �1+2*�dt2− �1−2%�R2�t�
(
dx2+dy2+dz2

)
� (16.34)

in which * and % are different functions. Nevertheless, for matter with no
‘anisotropic stress’ (so that all the off-diagonal components of the space part
of the stress–energy tensor are zero), the two functions may be taken as equal;
this is the case for a perfect fluid or a scalar field and hence leads to (16.20).
Even in this case, however, the two functions behave differently under the gauge
transformation. We need consider only the %-function above, which clearly takes
the role of a spatial curvature term since it modifies the space part of the metric
by a multiplicative factor. Under t→ t+�t we find that

R2�1−2%�→ R2�1−2%�+
[
2RṘ�1−2%�−2R2%̇

]
�t� (16.35)

4 This is the simplest version of the ‘Lie derivative’, which describes the change in a (possibly tensor) function
when ‘dragged back’ along ‘flow lines’ in parameter space; see, for example, B. Schutz, Geometrical Methods
of Mathematical Physics, Cambridge University Press, 1980.
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Since both % and �t are infinitesimal, we may employ the same arguments that
led to (16.33). Then, to first order, we have

�% =H�t� (16.36)

where we have also used the fact that RṘ = R2H . Thus, for any scalar function
f with perturbations �f , we see that the combination

�f =%+ H �f

ḟ
(16.37)

is gauge invariant under the gauge transformation t→ t+�t that we are consid-
ering, since to first order we have

�f → � ′f =%+H�t+ H��f − ḟ�t�

ḟ
= �f � (16.38)

Thus, for the specific example of our scalar-field perturbation ��, we may
identify the corresponding gauge-invariant quantity as

� =%+ H ��

�̇0

� (16.39)

We will therefore use this variable (or its Fourier transform) in our subsequent
discussion in later sections. In the literature this quantity is called the curvature
perturbation, for reasons that will become clear shortly.

Before going on to consider the evolution of these curvature perturbations,
let us first discuss briefly the second route outlined at the start of this section
for defining a physically meaningful perturbation variable. This route can be
illustrated directly with the %-function, and one begins by defining the quantity

�≡ −%�co � (16.40)

where the subscript indicates that % is to be evaluated on comoving slices. By
‘comoving’ we mean a time-slicing that is orthogonal to the worldlines of the
‘fluid’ that makes up the matter. For an ordinary fluid, this would amount to
choosing frames in which, at each instant and position, the fluid appears to be
at rest. The same applies here and, because the frame involved is physically
defined, the variable �, which measures the spatial curvature in the given frame,
is itself physically well defined. Thus the quantity � is also called the ‘curvature
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perturbation’ in the literature. As we now show, it is in fact equal to minus the
variable � defined in (16.39), and so both may be described as such.

For any scalar density perturbation ��, one can write the spatial curvature in
the comoving slice as

�=−��+
H��co
�̇

� (16.41)

Let us therefore consider what happens for the particular case of a perturbation in
a scalar field. As shown in (16.24), the

(0
i

)
-components of the perturbed stress–

energy tensor read

�T 0
i = �̇0 �i����� (16.42)

In the comoving frame, this momentum density must vanish, by definition, and
so the scalar-field perturbation cannot depend on the spatial coordinates and thus
vanishes. Hence, for a scalar field, we have

�=−�� (16.43)

16.15 Classical evolution of curvature perturbations

We now consider the evolution of the Fourier transform of the gauge-invariant
perturbation (16.39), namely

�k ≡%k+H
��k

�̇0

� (16.44)

which is clearly itself gauge invariant. Using (16.30), the second-order differential
equation satisfied by this quantity is quite simply shown to be

�̈k+
(
�̇2
0

H
+ 2�̈0

�̇0

+3H

)
�̇k+

k2

R2
�k = 0� (16.45)

Given a potential V��0� and some initial conditions forH and �0, we can integrate
the background evolution equations numerically and obtain H and �0 as functions
of cosmic time t. If we simultaneously integrate �k using (16.45), we can thereby
trace the evolution of the curvature perturbation over the time period of interest.
An example of the results of this procedure is shown in Figures 16.3 and 16.4,
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Figure 16.3 Evolution of the logarithm of the comoving Hubble distance
ln
1/�RH�� versus ln t (solid line) in a chaotic inflation model driven by a free
scalar field of mass m∼ 2×10−6, the initial values of H and �0 being chosen in
such a way that there is a period of inflation lasting approximately for the period
ln t ≈ 11–16. Also shown (broken line) is the fixed comoving scale 1/k, where
k= 104 is the comoving wavenumber of the perturbation shown in Figure 16.4.
Note that all quantities are in Planck units.
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in a chaotic inflation model driven by a free scalar field of mass m∼ 2×10−6.
Note that all quantities are in Planck units.
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for the particular choice of potential V��0� = 1
2m

2�2
0 (chaotic inflation) with

m∼ 2×10−6 (a typical value in such theories). The initial conditions for H and
�0 were chosen to give inflation over the period ln t ≈ 11–16, and the comoving
wavenumber of the perturbation5 was chosen as k= 104.

From Figure 16.3, one can verify that the universe is indeed inflating during the
period ln t ≈ 11–16, since the comoving Hubble distance 1/�RH� is decreasing
with cosmic time (see Section 16.1). In inflationary theory, this quantity is loosely
called the ‘horizon’ but must be distinguished from the ‘particle horizon’, as
discussed in Section 15.12. The broken line in Figure 16.3 is the natural logarithm
of the reciprocal of the comoving wavenumber k, which is of course constant for
a given perturbation. This reciprocal, 1/k, gives another dimensionless scale and
(ignoring possible factors of 2� that, one could argue, should be introduced) can
be thought of as the comoving wavelength scale of the perturbation itself.

The behaviour of the curvature perturbation �k is shown in Figure 16.4 for
k = 104 and can be understood from the behaviour of the comoving Hubble
distance (or horizon) in Figure 16.3.6 Whilst the perturbation scale 1/k is less
than the horizon radius 1/�RH� the curvature perturbation �k just oscillates. Once
the comoving horizon radius has dropped below 1/k, however, we see that (at
ln t ∼ 13) the perturbation suddenly ‘freezes’ and no longer oscillates. We speak
of this moment, when 1/k becomes greater than 1/�RH�, as the perturbation
‘leaving the horizon’ and, in intuitive terms, we can understand that beyond this
point the perturbation is no longer able to feel its own self-gravity, since it is larger
than the characteristic scale over which physical processes in the universe operate
coherently. The curvature perturbation thereafter remains frozen at whatever value
it has reached at this point until much later in the history of the universe, when
the comoving horizon scale eventually catches up with 1/k again. At this point,
the perturbation is said to ‘re-enter the horizon’, and oscillations will begin again
(though at this stage it is not expected that these will be in the scalar field itself,
since the latter is thought to decay into other particles, via the process of reheating,
shortly after inflation ends – see Section 16.6).

The key point to note is that, via inflation, one has produced ‘super-horizon’
scale fluctuations in the early universe. These fluctuations later go on to provide
the seeds for galaxy formation and the perturbations in the cosmic microwave

5 Note that all quantities here are measured in Planck units, e.g. the masses are in inverse Planck lengths and
the times in Planck times.

6 The initial conditions used for examining the classical behaviour of �k can of course be chosen arbitrarily. The
starting values of �k and its time derivative used in Figure 16.4 in fact correspond to ‘quantum’ conditions,
where field-theoretic values for the initial fluctuation are set. This is discussed in Section 16.6 below, where a
new variable �k, related to �k, is introduced. The specific values used correspond to evaluating the imaginary
part of equation (16.51) and its time derivative, followed by a global phase shift such that the initial phase
is zero.
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background radiation that we observe today. By studying the distribution of
galaxies and CMB fluctuations as a function of scale, it is possible to obtain an
idea of the underlying primordial spectrum of perturbations that produced them.
Thus, by predicting this primordial spectrum, we can perform a test of the whole
inflationary picture for the origin of fluctuations. This is obviously an area of great
current interest. We can give only a simplified treatment, but the basic equations
are within our reach, as we now discuss.

16.16 Initial conditions and normalisation of curvature perturbations

The key concept we need for predicting the primordial spectrum of perturbations
produced during inflation can be stated in the following question: what sets the
initial conditions for the perturbation �k itself? If we knew this for each k, then,
since the evolution of �k through to the point where it freezes would be known,
given the evolution of the background model we could compute a spectrum of
curvature perturbations as a function of k.

The basic idea for setting the initial conditions for the perturbations is that they
come from quantum-field-theoretic fluctuations in the value of the scalar field �.
Thus the ‘classical’ perturbations discussed above need to be quantized, in a field
theory sense, and this will allow their initial values to be set. A rigorous way
of performing this quantisation has been developed7 and, although the process is
complicated, the final result in our case is very simple. To apply the result, we
must first make two changes of variable in our discussion above.

• Convert from cosmic time t to a new dimensionless time variable � known as ‘confor-
mal time’ and defined by d�/dt = c/R.

• Convert from the curvature perturbation �k to a new variable �k given by �k = ��k,
where �= R�̇0/H .

The formal procedure then shows that the correct quantisation may be achieved
simply by treating �k as a free complex scalar field and quantising it in the standard
fashion. The evolution equation for the quantum perturbations turns out to be
identical to the ‘classical’ equation for �k. Thus, having fixed initial conditions
for �k quantum mechanically, one may follow the classical evolution.

Let us first derive the classical evolution equation for �k. Making the trans-
formation of variables noted above, equation (16.45) becomes even simpler. In
particular, the intermediate variable � was chosen in order to remove the first-
derivative term in (16.45), so as to make it more like a simple harmonic oscillator

7 See, for example, V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, Theory of cosmological pertur-
bations, Physics Reports 215, 203–333, 1992.
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equation. Using a prime to denote a derivative with respect to conformal time,
we obtain

�′′k +
(
k2− �′′

�

)
�k = 0� (16.46)

It is now clear that we are dealing with the equation for the kth mode of a scalar
field with a time-variable mass given by m2

� = −�′′/�. The explicit expression
for this effective mass is given in terms of the background quantities by

m2
� =

�′20
2
− 2�′0�

′′
0

RH
− �′40

2R2H2
− �′′′0

�′0
� (16.47)

= −2R2H2

(
1+ �̇2

0

2H2
+ �̇4

0

4H4
+ �̇0�̈0

H3
+ 3�̈0

2H�̇0

+
...
�0

2H2�̇0

)
� (16.48)

where, in the last line, we have re-expressed the result in terms of derivatives with
respect to cosmic time t rather than conformal time, which we will find useful
momentarily. Perhaps surprisingly, it is the �′′′0 /�

′
0 term in (16.47) that gives rise

to the leading-order term 2R2H2 in (16.48)!
To set the initial conditions for �k, we will study the variable-mass term m2

� in

the form (16.48). In the ‘slow-roll’ approximation, �̈0 and higher derivatives were
neglected. Furthermore, here we shall assume that �̇0�H during the periods of
interest. In this case m2

� ∼−2R2H2 and (16.46) becomes

�′′k +
(
k2−2R2H2)�k = 0� (16.49)

In this form, we can see the origin of the behaviour discussed above in terms of
a perturbation ‘leaving the horizon’. When k� RH the perturbation length scale
is within the horizon (since 1/k� 1/�RH�) and we have oscillatory behaviour.
When k� RH , however, the perturbation length scale exceeds the horizon and
we have exponential growth in �k. Moreover, in the latter case we see directly
from (16.46) that, if k can be neglected, we may immediately deduce the solution
�k ∝ �. Since �k = ��k, this means that the curvature perturbation �k is constant,
which is exactly the behaviour seen in Figure 16.4.

Let us now consider further the regime k�RH , when the perturbations are well
inside the horizon, which is where the initial conditions for �k can be set. In this
regime, (16.49) becomes simply the harmonic oscillator equation �′′k +k2�k = 0,
the quantisation of which is well understood. This quantisation demands that the
norm of any state evaluates to unity in Planck units, or equivalently that the
conserved current of the field � is unity, so that

−i��� ′+−� ′�+�= 1� (16.50)
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It is this condition that sets the absolute scale of the perturbations. Hence, the
properly normalised positive-energy solution in the regime k�RH is given (up to
a constant phase factor) by

�k =
1√
2k

exp�−ik��� (16.51)

which is therefore the form to which any solution of (16.49) must tend well within
the horizon.

We may now attempt to obtain a full solution to (16.49) and can in fact achieve
this quite simply. Consider the following series of manipulations concerning the
conformal time �, in which we carry out an integration by parts:

�=
∫ dt

R
=
∫ dR

R2H
=
[
− 1
RH

]
−
∫ dH

RH2

=
[
− 1
RH

]
−
∫ Ḣ

H2

dR

R2H

=
[
− 1
RH

]
+
∫ �̇2

0

2H2

dt

R
�

Again ignoring a term in �̇2
0/H

2, we can thus write

�= �end−
1
RH

� (16.52)

where �end is the value at which the conformal time saturates at the end of
inflation (that it does indeed saturate is obvious from the facts that d�/dt = 1/R
and that R is increasing exponentially during inflation). Figure 16.5 shows that
(16.52) is indeed a good approximation during inflation in our current numerical
example. Equation (16.49) now becomes

�′′k +
[
k2− 2

��end−��2

]
�k = 0� (16.53)

which finally is exactly soluble. There is a unique solution (up to a constant phase
factor) that tends to (16.51) for small �; it is given by

�k =
1√
2k3

i+k��end−��

�end−�
e−ik�� (16.54)

By inspection this has the correct property for �� �end provided that k�end� 1.
Comparison with Figure 16.5 shows that this is indeed the case for k-values of
interest (for the figure, k= 104 and �end ≈ 0�64).
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Figure 16.5 Evolution of conformal time � for the same numerical case as that
illustrated in Figures 16.3 and 16.4 (solid curve). The broken curve shows the
approximation given in equation (16.52), which is seen to be very good once
inflation starts, around ln t ∼ 11.

Now that we have a correctly normalised general solution for �k, let us consider
the regime k� RH at which the perturbation length scale exceeds the horizon.
We use (16.52) to rewrite the solution just found as

�k =
1√
2k3

�k+ iRH�eik/RH ≈ iRH√
2k3

� (16.55)

where the final expression is valid for k� RH . Thus, for such modes,

�k =
�k
�
≈ i√

2k3
H2

�̇0

� (16.56)

Since we have demonstrated that �k is constant after the mode has left the horizon,
this means we are free to evaluate the right-hand side at the horizon exit itself.
We therefore write schematically

�k ≈
i√
2k3

(
H2

�̇0

)∣∣∣∣
k=RH

(16.57)

This is a famous and important result in inflationary theory; it gives the (constant)
value of the amplitude of the plane-wave curvature perturbation having comoving
wavenumber k for modes whose length scale exceeds the horizon.
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16.17 Power spectrum of curvature perturbations

From the result (16.57), we can deduce an expression for the power spectrum
	��k� of the primordial curvature perturbations. The precise definition of this
spectrum is a matter of convention, of which there are several, but we will adopt
the most commonly used. In this case, the power spectrum of a given spatially
varying field is defined as the contribution to the total variance of the field per unit
logarithmic interval in k. Thus, we define the curvature spectrum 	��k� such that

����x��∗��x�� ≡
∫ �

0
	��k�d�ln k�� (16.58)

where �· · · � denotes a expectation value and the total spatial variation of the
curvature perturbations is

���x�= 1
�2��3/2

∫
��k exp�i�k · �x�d3�k� (16.59)

In these expressions, �x refers to comoving coordinates and k = ��k�. Evaluating
����x��∗��x��, and remembering that d3�k = 4�k2dk, one finds that (16.58) is
satisfied providing that 〈

��k �
∗
�k′
〉= 2�2

k3
	��k��

�3�(�k−�k′)�
where ��3�

(�k−�k′) is the three-dimensional delta function. We may therefore write
	��k�= k3���k�2�/�2�2� and, using (16.57), we finally obtain8

	��k�=
(

H2

2��̇0

)2

k=RH
� (16.60)

In the slow-roll approximation, we know that H is only slowly decreasing
whilst �̇0 is approximately constant. To a first approximation, therefore, the
power spectrum of the perturbations expected from inflation, as measured by
the contribution to the total fluctuation per unit logarithmic interval, is constant.
Such a spectrum is called scale invariant and was proposed in the late 1960s as
being the most likely to lead to structure appropriately distributed over the scales
we see today. It is also known as a Harrison–Zel’dovich spectrum, after its two
co-proposers. Here we can see it emerging as a prediction of inflation. We can
go further, however, by noting that, during inflation, H is slowly declining, �̇0

is approximately constant and R is increasing exponentially. Thus modes with

8 We note that the quantity 	� �k� is often written using the alternative notation �
2
� �k�. In addition, it is common

to define the quantity P��k�≡ ���k�2�, which is also often called the power spectrum and is related to 	� �k�

by 	� �k�= k3P��k�/�2�
2�.
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higher k, which leave the horizon later in time, have a slightly lower value of
	��k� since H is lower there. As a result, the spectrum is predicted to be not
exactly constant, but slightly declining, as a function of k. The details of this
depend on the details of the potential V��0�, but we can see from the analysis
here that this is a generic prediction of inflation (assuming that slow-roll is an
accurate model).

Before going on to discuss in the next section the comparison of the prediction
(16.60) with cosmological observations, it is worthwhile re-deriving this result
in a more heuristic (and perhaps enlightening) manner. For a scalar field in an
ordinary Minkowski spacetime, the zero-point uncertainty fluctuation is given by

��kp
≈ 1

V 1/2

e−ikpt√
2kp

(16.61)

for a mode with physical wavenumber kp, where V is a normalising volume. Here,
instead of kp, we wish to use the comoving wavenumber k, which is related to
the physical wavenumber by k= Rkp. Moreover, an obvious length scale for the
normalising volume is the scale factor R. Thus, in our expanding FRW spacetime,
we assume that

��k ≈
e−ikt/R

R
√
2k

� (16.62)

As explained above, the corresponding power spectrum of the fluctuations ��k

is obtained by multiplying its squared norm by 4�k3/�2��3, which gives

	��k�=
(

k

2�R

)2

k=RH
=
(
H

2�

)2

� (16.63)

As above, we have evaluated the second expression at the ‘horizon crossing’
value of k, RH , since fluctuations on larger length scales are ‘frozen in’ at the
value they reached at this point. To translate this result into the power spectrum
of curvature perturbations �, we need to link � and ��. Consider the change �t
in time coordinate that would be needed to move between the ‘comoving slicing’,
in which �� vanishes, to a ‘flat slicing’, in which % vanishes. Since � , as defined
in (16.39), remains constant in this process, we see that, in this case,

�% =% =−�=H�t and ��= ��=−�̇0�t� (16.64)

Eliminating �t we find that �=H��/�̇0 and hence we recover the result

	��k�= 	��k�=
(

H2

2��̇0

)2

k=RH
� (16.65)
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16.18 Power spectrum of matter-density perturbations

As discussed in Section 16.6, at the end of inflation the scalar field decays
into other particles. Thus, one is left with a spectrum of curvature perturbations,
which from (16.40) is equivalent to the spectrum of fluctuations in the gravita-
tional potential �% in a comoving slicing. These in turn may be related to the
corresponding fluctuations �� in the matter density. The full general-relativistic
equations describing the evolution under gravity of these density fluctuations may
be obtained by repeating all the above discussion for a perfect fluid rather than
a scalar field. We will not pursue this calculation here but merely note that the
resulting equations are the same as those obtained using Newtonian theory, except
for a term that is important only on super-horizon scales. Therefore, on sub-
horizon scales, to a good approximation we may take these potential fluctuations
as obeying the perturbed Poisson’s equation in Newtonian gravity,

��2��%�= 4�G�����

where �� is the fluctuation in the matter density corresponding to that in the
potential. Indeed, we might have expected the Newtonian theory to be a good
approximation on sub-horizon scales since the gravitational field associated with
the perturbations is weak.

It is more common to work instead in terms of the fractional-density fluctuation
�≡ ��/�0, where �0 is the background matter density. Thus, working in Fourier
space, we have

�%k =−
4�G�0R

2

k2
�k�

Using �0 = 3H2/�8�G�, for the simple spatially flat case that we are considering
we see that

�k =−
2
3

(
k

RH

)2

�%k� (16.66)

from which we deduce that ���k�2� ∝ k4���%k�2�. Therefore, defining the matter
power spectrum by P��k�≡ ���k�2� (note that this differs from definition of 	��k�

by a factor k3/�2�2�, as mentioned earlier), we find that P��k�∝ k	��k�. Since
	��k� is roughly constant for slow-roll inflation, we thus obtain

P��k�∝ k� (16.67)

In general, the matter power spectrum is parameterised as P��k�∝ kn, where n is
known as the primordial spectral index. We therefore see that inflation naturally
predicts n= 1, which is also known as the Harrison–Zel’dovich spectrum.



16.19 Comparison of theory and observation 459

An alternative way of characterising this spectrum is to note from (16.66) that
if we do not define the perturbation spectrum at a single instant of cosmic time
but evaluate it when a given scale re-enters the horizon (k= RH) then

�k ∝%k�

Since the spectrum 	��k�, defined as the contribution to the total variance per
unit logarithm interval of k at a single instant of time, is roughly constant then
so too is the matter power spectrum defined in the same way but evaluated at
horizon entry. This is why the Harrison–Zel’dovich spectrum is also known as the
scale-invariant spectrum. The fractional-density perturbations, as they enter the
horizon, make a constant contribution to the total variance per unit logarithmic
interval of k.

Finally, we note from (16.66) that, at a given k, the time evolution of the
fractional-density perturbation �k is given by

�k ∝
1

�RH�2
�

For a radiation-dominated model we have R∝ t1/2 and H = 1/�2t�, whereas for
a matter-dominated model R∝ t2/3 and H = 2/�3t�. Thus, we find

�k�t�∝
{
t (radiation-dominated)�

t2/3 (matter-dominated)�

which provides a quick derivation of the time dependence of what is known as
the growing mode of the matter-density perturbations. In particular, we note that
the time dependence of this mode is the same as that of the scale factor R in the
matter-dominated case.

16.19 Comparison of theory and observation

The details of the comparison of the inflationary prediction for the perturbation
spectrum with cosmological observations would take us too far afield here. We
thus content ourselves with two brief illustrations. Figure 16.6 shows the prediction
for the power spectrum of anisotropies in the cosmic microwave background
radiation, assuming an early-universe perturbation spectrum that is exactly scale
invariant. The anisotropies in the temperature of the CMB radiation provide a
‘snapshot’ of the (projected) density perturbations at the epoch of recombination
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Figure 16.6 The predicted power spectrum of CMB temperature anisotropies
(solid line), assuming an early-universe perturbation spectrum that is exactly
scale invariant. The points show the results of recent observations of the CMB
anisotropies by the Wilkinson Microwave Anisotropy Probe (WMAP, circles),
Very Small Array (VSA, squares) and Arcminute Cosmology Bolometer Array
Receiver (ACBAR, triangles) experiments. The vertical error bars indicate the
68 per cent uncertainty in the measured value.

(zrec ≈ 1500). The CMB anisotropies over the sky are usually decomposed in
terms of spherical harmonics as

�T�����=
�∑
�=2

�∑
m=−�

a�mY�m������

where the � = 0 (constant) and � = 1 (dipole) terms are usually ignored, since
the former is unrelated to the anisotropies and the latter is due to the peculiar
velocity of the Earth with respect to the comoving frame of the CMB. The power
in the fluctuations as a function of angular scale is therefore characterised by the
spectrum

C� =
1

2�+1

�∑
m=−�

�a�m�2�

The characteristic peaks in the predicted CMB power spectrum (solid line) are
a consequence of another feature of inflation that we have already seen in our
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equations, namely that all modes outside the horizon are frozen and can only start
to oscillate once they re-enter the horizon later in the universe’s evolution. This
means that a ‘phasing up’ is able to occur, in which all modes of interest start
from effectively a ‘zero velocity’ state when they begin the oscillations, during
the epoch of recombination, that lead to the CMB imprints. This is what enables
peaks to be visible in the power spectrum, with modes on different scales able
to complete a different number of oscillations before the end of recombination.
Coherence, leading to peaks, is maintained since each mode has the same starting
conditions. This is only possible if the modes of interest are indeed on super-
horizon scales prior to recombination, and the only known way of achieving
this is via inflation. Thus the peaks visible in the predictions of Figure 16.6
are a powerful means of testing for inflation. The points shown in the figure
are the results of recent observations of the CMB anisotropies by the WMAP
(circles), VSA (squares) and ACBAR (triangles) experiments, which yield a very
impressive confirmation of the peak structure and thereby a direct confirmation
that inflation occurred.
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Figure 16.7 The predicted power spectrum of matter fluctuations (solid line)
assuming an early-universe perturbation spectrum that is exactly scale invariant.
The points show the results derived from the 2dF sample of galaxy redshift
measurments. The horizontal error bars indicate the width of the bin in k-space
over which the measurement is made and the vertical error bars indicate the
68 per cent uncertainty in the measured value.
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From the current data it is, however, not possible to tell whether the primordial
spectrum is exactly scale invariant, as assumed in generating the prediction, or
whether it has the slight decrease at larger k, and therefore smaller scales, that we
said was also a generic prediction of inflation. This question should be resolved by
future experimental results, particularly from the CMB on smaller angular scales
and from measurements of the matter distribution on a range of scales. In the
latter case, one may compare the observed distribution of galaxies (both over the
sky and in redshift) with the predicted power spectrum for matter fluctuations in
the universe. The primordial matter power spectrum P��k� in (16.67) is modified
by the evolution under gravity of the perturbations once they re-enter the horizon.
This effect may be calculated, and the predicted matter power spectrum resulting
from an exactly scale-invariant primordial spectrum from inflation is shown as
the solid line in Figure 16.7. Once again, we see that the predicted spectrum
has oscillations resulting from an mechanism analogous to that which produces
the oscillations in the CMB power spectrum discussed above. The points in the
figure show the measurements derived from the 2dF (2 degree field) sample of
galaxy redshift measurments. Again, a good fit to the data is visible, and time
will tell whether the detailed dynamics of inflation, which can be measured by the
departures from scale invariance, will become accessible from the combination
of data of this type and future CMB experiments.

Exercises

16.1 In the cosmological field equation

Ṙ2 = 1
3�R

2−k�

show that, if p < − 1
3�, the curvature term becomes negligible as the universe

expands.
16.2 Show that the energy–momentum tensor of a scalar field,

T�� = ����������−g��
[
1
2 ��#����

#��−V���
]
�

satisfies the condition ��T
�� = 0.

16.3 Show that a scalar field acts like a perfect fluid with an energy density and pressure
given by

�� = 1
2 �̇

2+V���+ 1
2 �
����2�

p� = 1
2 �̇

2−V���− 1
6 �
����2�

Show further that if the field � is spatially constant then inflation will occur,
provided that �̇2 < V���. If, in addition, the scalar field does not change with time,
show that its equation of state is p� = −�� and that it thus acts as an effective
cosmological constant.
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16.4 Show that the equation of motion for a scalar field with potential V��� is

�̈+3H�̇+ dV

d�
= 0�

Hence find the general solution for a free scalar field �, for which V = 1
2m

2�2, in
the case where H is approximately constant.

16.5 For a potential of the form

V���= V0 exp�−����
where � is a positive constant, show that the inflation equations can be solved
exactly to give

R�t�= R0

(
t

t0

)2/�2

� ��t�= �0+
2
�
ln

(√
V0

2�6−�2�
�2t

)
�

Hence show that, provided �<
√
2, the solution corresponds to a period of inflation.

Show further that the slow-roll parameters for this model are �= 1
2�= 1

2�
2, and so

the inflationary epoch never ends. This model is known as power-law inflation.
16.6 Show that, in general,

R̈= R�Ḣ+H2��

Show that Ḣ > 0 only if p <−�, which is forbidden by the weak energy condition
(see Exercise 8.8). Hence show that, for inflation to occur, one requires

− Ḣ

H2
< 1�

and thus that the first slow-roll parameter must obey � < 1.
16.7 In the slow-roll approximation, show that

Ḣ =− 1
2 �̇

2�

Assuming that �̇ varies monotonically with t throughout the period of inflation,
show that

�̇=−2H ′����

where H is now considered as a function of �, and hence that we may write the
cosmological field equation as


H ′����2− 3
2H

2���=− 1
2V����

This is known as the Hamilton–Jacobi formalism for inflation.
16.8 Repeat Exercise 16.5 using the Hamilton–Jacobi formalism developed in Exer-

cise 16.7.
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16.9 In the Hamilton–Jacobi formalism developed in Exercise 16.7, show that the
condition for inflation to occur is

2
[
H ′���
H���

]2
< 1�

16.10 Show that, during an exponential expansion phase of the universe, the proper
distance between any two comoving objects separated by more than H−1 grows
at a speed exceeding the speed of light. Hence show that an observer in such a
universe can only see processes occurring inside the ‘horizon’ radius H−1, and so
the process of inflation in any spatial domain of radius H−1 (or ‘mini-universe’)
occurs independently of any events outside it.

16.11 A fluctuation �� in the scalar inflation field leads to a local delay of the end of
inflation by �t ∼ ��/�̇. Assuming that the density of the universe after inflation
decreases as t−2, show that the fluctuation in the scalar field leads to a relative
density contrast at the end of inflation given by

��

�
∼ H��

�̇
�

Assuming the root mean square (rms) scalar field perturbation to be ��rms ∼
H/�2��, show that (

��

�

)
rms

∼ H2

2��̇
�

16.12 Consider an inflationary domain (or mini-universe in the context of Exercise 16.10)
of initial radius H−1, in which the value of the scalar field �� 1. In a time interval
�t = H−1, show that classically, in the slow-roll approximation, the value of �
will change by

��≈− 2
�
�

Assuming that the typical amplitude of quantum fluctuations in the scalar field is
��≈H/�2��, show that

��≈ 1
2�

√
V���

3
�

Hence, for the case V���= 1
2m

2�2, show that the decrease in the value of the scalar
field due to its classical motion is less than changes due to quantum fluctuations
generated in the same time interval, provided that

�� 6√
m
�

Assuming that the typical wavelength of the quantum fluctuation is �� is H−1,
show that, after a time interval �t=H−1, the original domain becomes effectively
divided into e3 ∼ 20 domains of radius H−1, each containing a roughly homoge-
neous scalar field �+��+ ��. Thus, on average, the volume of the universe
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containing a growing �-field increases by a factor ∼ 10 after every time interval
�t =H−1.
Note: This is the mechanism underlying stochastic inflation.

16.13 For the line element

ds2 = �1+2%� dt2− �1−2%�R2�t��dx2+dy2+dz2��

show that, to first order in %, the perturbed parts of the connection coefficients
take the form

� 0
0� = ��%�

� 0
ii = −R2�%̇+4H%��

� i
00 =

1
R2

�i%�

� i
i� = −��%�

where no sum over repeated i indices is implied and and the remaining perturbed
coefficients either follow from symmetry or are zero. Hence show that the
perturbed part of the Einstein tensor is given by

�G0
i = −2�i�%̇+H%��

�G0
0 = −2���2%−3H%̇−3H2%��

�Gi
i = 2
%̈+4%̇H+ �2Ḣ+3H2�%��

where again no sum over repeated i indices is implied and the remaining entries
either follow from symmetry or are zero.

16.14 For the scalar-field perturbation

��t�→ �0�t�+���t� �x��
show that, to first order in ��, the perturbed parts of the scalar-field energy–
momentum tensor are given by

�T 0
i = �̇0�i�����

�T 0
0 = −�̇2

0%+ �̇0��̇+V ′���

�T i
i = �̇2

0%− �̇0��̇+V ′���

where V ′ = dV/d�0 and the remaining components either follow from symmetry
or are zero.

16.15 Use your answers to Exercises 16.13 and 16.14 to show that the perturbed Einstein
field equations yield only the two equations

%̇+H% = 1
2
�̇0���(

�̇2
0+2��2

)
% = �̇2

0

d

dt

(
��

�̇0

)
�
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16.16 Show that the gauge-invariant Fourier curvature perturbation

�k ≡%k+H
��k

�̇0

satisfies the equation of motion

�̈k+
(
�̇2

0

H
+ 2�̈0

�̇0

+3H

)
�̇k+

k2

R2
�k = 0�

Defining the new variables d�= c dt/R and �k = ��k, where �= R�̇0/H , show
further that

�′′k +
(
k2− �′′

�

)
�k = 0�

where a prime denotes d/d� and the ‘effective mass’ m2
� =−�′′/� is given by

m2
� =

�′20
2
− 2�′0�

′′
0

RH
− �′40

2R2H2
− �′′′0

�′0
�

= −2R2H2

(
1+ �̇2

0

2H2
+ �̇4

0

4H4
+ �̇0�̈0

H3
+ 3�̈0

2H�̇0

+
...
�0

2H2�̇0

)
�

16.17 Consider the equation of motion

�′′k +
[
k2− 2

��end−��2

]
�k = 0�

Show that the unique solution (up to a phase factor) that tends to (16.51) for small
� is given by

�k =
1√
2k3

i+k��end−��

�end−�
e−ik��
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Linearised general relativity

The gravitational field equations give a quantitative description of how the curva-
ture of spacetime at any event is related to the energy–momentum distribution at
that event. The high degree of non-linearity in these field equations means that
a general solution for an arbitrary matter distribution is analytically intractable.
Consequently, thus far we have concentrated primarily on investigating a number
of special solutions that represent spacetimes with particular symmetries (aside
from our discussion of perturbations in the previous chapter). In this chapter,
we return to a more general investigation of the gravitational field equations and
their solutions. To enable such a study, however, one must make the physical
assumption that the gravitational fields are weak. Mathematically, this assumption
corresponds to linearising the gravitational field equations.

17.1 The weak-field metric

As discussed in Sections 7.6 and 8.6, a weak gravitational field corresponds to a
region of spacetime that is only ‘slightly’ curved. Thus, throughout such a region,
there exist coordinate systems x� in which the spacetime metric takes the form

g�� = ���+h�� where �h��� � 1� (17.1)

and the first and higher partial derivatives of h�� are also small.1 Such coordinates
are often termed quasi-Minkowskian coordinates, since they allow the metric
to be written in a close-to-Minkowski form. Clearly, h�� must be symmetric
with respect to the swapping of its indices. We also note that, when previously

1 We note that one could equally well consider small perturbations about some other background metric, such
that g�� = g

�0�
�� +h�� . This was the case in our discussion of inflationary perturbations in the previous chapter,

in which g
�0�
�� was the metric for the background Friedmann–Robertson–Walker spacetime in comoving

Cartesian coordinates.

467
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considering the weak-field limit, we further assumed that the metric was stationary,
so that �0g�� = �0h�� = 0 where x0 is the timelike coordinate. In our present
discussion, however, we wish to retain the possibility of describing time-varying
weak gravitational fields, and so we shall notmake this additional assumption here.

As we have stressed many times, coordinates are arbitrary and, in principle,
one could develop the description of weak gravitational fields in any coordinate
system. Nevertheless, by adopting quasi-Minkowsian coordinates the mathemati-
cal labour of pursuing our analysis is greatly simplified, as is the interpretation of
the resulting expressions. If one coordinate system exists in which (17.1) holds,
however, then there must be many such coordinate systems. Indeed, two differ-
ent types of coordinate transformation connect quasi-Minkowskian systems to
each other: global Lorentz transformations and infinitesimal general coordinate
transformations, both of which we now discuss.

Global Lorentz transformations

Global Lorentz transformations are of the form

x′� =$�
�x

�� where ��� =$�
�$

#
���#

and the quantities $�
� are constant everywhere. These transform the metric

coefficients as follows:

g′�� =
�x�

�x′�
�x#

�x′�
g�# =$�

�$�
#���# +h�#�= ���+$�

�$�
#h�#�

Thus, g′�� is also of the form (17.1), with

h′�� =$�
�$�

#h�#�

Moreover, we see from this expression that, under a Lorentz transformation, h��
itself transforms like the components of a tensor in Minkowski spacetime.

The above property suggests a convenient alternative viewpoint when describ-
ing weak gravitational fields. Instead of considering a slightly curved spacetime
representing the general-relativistic weak field, we can consider h�� simply as a
symmetric rank-2 tensor field defined on the flat Minkowski background space-
time in Cartesian inertial coordinates. In other words, h�� is considered as a
special-relativistic gravitational field, in an analogous way to that in which the
4-potential A� describes the electromagnetic field in Minkowski spacetime, as
discussed in Chapter 6; we return to this point below. We note, however, that
h�� does not transform as a tensor under a general coordinate transformation but
only under the restricted class of global Lorentz transformations; for this reason
h�� and tensors derived from it are sometimes called pseudotensors, although we
will not use this terminology.
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Infinitesimal general coordinate transformations

Infinitesimal general coordinate transformations take the form

x′� = x�+���x�� (17.2)

where the ���x� are four arbitrary functions of position of the same order of
smallness as the h��. Infinitesimal transformations of this sort make tiny changes
in the forms of all scalar, vector and tensor fields, but these can be ignored in
all quantities except the metric, where tiny deviations from ��� contain all the
information about gravity. From (17.2), we have

�x′�

�x�
= ��� + ���

��

and, working to first order in small quantities, it is straightforward to show that
the inverse transformation is given by2

�x�

�x′�
= ��� − ���

�� (17.3)

Thus, again working to first order in small quantities, the metric transforms as
follows:

g′�� =
�x�

�x′�
�x#

�x′�
g�# = ����− ���

����#� − ���
#����# +h�#�

= ���+h��− ����− �����

where we have defined �� = ����
�. Hence, we see that g′�� is also of the form

(17.1), the new metric perturbation functions being related to the old ones via

h′�� = h��− ����− ����� (17.4)

If we adopt the viewpoint in which h�� is considered as a tensor field defined
on the flat Minkowski background spacetime, then (17.4) can be considered
as analogous to a gauge transformation in electromagnetism. As discussed in
Chapter 6, if A� is a solution of the electromagnetic field equations then another
solution that describes precisely the same physical situation is given by

A�new�
� = A�+ ����

where � is any scalar field. An analogous situation holds in the case of the
gravitational field. From (17.4), it is clear that if h�� is a solution to the linearised

2 Note that, for the remainder of this chapter, the normal symbol for equality will be used to indicate equality
up to first order in small quantities as well as exact equality.
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gravitational field equations (see below) then the same physical situation is also
described by

h�new��� = h��− ����− ����� (17.5)

In this interpretation, however, (17.5) is viewed as a gauge transformation rather
than a coordinate transformation. In other words, we are still working in the same
set of coordinates x� and have defined a new tensor h�new��� whose components in
this basis are given by (17.5).

Now that we have considered the coordinate transformations that preserve the
form of the metric g�� in (17.1), it is useful to obtain the corresponding form for
the contravariant metric coefficients g��. By demanding that g��g�# = �

�
# , it is

straightforward to verify that, to first order in small quantities, we must have

g�� = ���−h���

where h�� = �����#h�# . Moreover, it follows that indices on small quantities
may be respectively raised and lowered using ��� and ��� rather than g�� and
g��. For example, to first order in small quantities, we may write

h�� = g�#h#� = ���# −h�#�h#� = ��#h#��

17.2 The linearised gravitational field equations

In the weak-field approximation to general relativity, one expands the gravitational
field equations in powers of h��, using a coordinate system where (17.1) holds. On
keeping only the linear terms, we thus arrive at the linearised version of general
relativity. The Einstein gravitational field equations were derived in Section 8.4
and read

R��− 1
2g��R=−&T���

To obtain the linearised form of these equations, we thus need to find the linearised
expression for the Riemann tensor R#

���; the corresponding expressions for the
Ricci tensor R�� and the Ricci scalar R then follow by the contraction of indices.

To perform this task, we first need the linearised form of the connection
coefficients  #

��. To first order in small quantities we have

 #
�� = 1

2�
#����h��+ ��h��− ��h���= 1

2���h
#
�+ ��h

#
� − �#h���� (17.6)

where we have defined �# ≡ �#���. We may now substitute (17.6) directly into
the expression (7.13) for the Riemann tensor, namely

R#
��� = �� 

#
��− �� 

#
��+ �

�� 
#
��− �

�� 
#
��� (17.7)
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The last two terms on the right-hand side are products of connection coefficients
and so will clearly be second order in h��; they will therefore be ignored. Hence,
to first order, we obtain

R#
��� = 1

2�����h
#
�+ ��h

#
� − �#h���− 1

2�����h
#
�+ ��h

#
� − �#h���

= 1
2�����h

#
� + ���

#h��− ���
#h��− ����h

#
� ��

which is easily shown to be invariant to a gauge transformation of the form (17.5).
The linearised Ricci tensor is obtained by contracting the above expression for
R#

��� on its first and last indices. This yields

R�� = 1
2�����h+�2h��− ����h

�
�− ����h

�
��� (17.8)

where we have defined the trace h ≡ h## and the d’Alembertian operator �2 ≡
�#�

# . The Ricci scalar is obtained by a further contraction, giving

R= R�
� = ���R�� =�2h− ����h

��� (17.9)

Substituting the expressions (17.8) and (17.9) into the gravitational field equa-
tions we obtain the linearised form

����h+�2h��− ����h
�
�− ����h

�
�−�����2h− ���#h

#��=−2&T��� (17.10)

The number of terms on the left-hand side of the field equations has clearly
increased in the linearisation process. This can be simplified somewhat by defining
the ‘trace reverse’ of h��, which is given by

h̄�� ≡ h��− 1
2���h�

On contracting indices we find that h̄ = −h. It is also straightforward to show
that ¯̄h�� = h��, i.e. h�� = h̄��− 1

2���h̄. On substituting these expressions into
(17.10), the field equations become

�2h̄��+������#h̄
�# − ����h̄

�
�− ����h̄

�
� =−2&T��� (17.11)

These are the basic field equations of linearised general relativity and are valid
whenever the metric takes the form (17.1). Unless otherwise stated, for the remain-
der of this chapter we will adopt the viewpoint that h�� is simply a symmetric
tensor field (under global Lorentz transformations) defined in quasi-Cartesian
coordinates on a flat Minkowski background spacetime.
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17.3 Linearised gravity in the Lorenz gauge

The field equations (17.11) can be simplified further by making use of the gauge
transformation (17.5). Denoting the gauge-transformed field by h′�� for conve-
nience, the components of its trace-reverse transform as

h̄′�� = h′��− 1
2�

��h′

= h��− ����− ����− 1
2�

���h−2�#�
#�

= h̄��− ����− ����+����#�
#� (17.12)

and hence we find that

��h̄
′�� = ��h̄

��−�2���

Therefore, if we choose the functions ���x� so that they satisfy

�2�� = ��h̄
��

then we have ��h̄
′�� = 0. The importance of this result is that, in this new gauge,

each of the last three terms on the left-hand side of (17.11) vanishes. Thus, the
field equations in the new gauge become

�2h̄′�� =−2&T ′���
Let us take stock of the simplification we have just achieved. Dropping primes

and raising indices for convenience, we have found that the linearised field
equations may be written in the simplified form

�2h̄�� =−2&T��� (17.13)

provided that the h̄�� satisfy the gauge condition

��h̄
�� = 0� (17.14)

Moreover, we note that this gauge condition is preserved by any further gauge
transformation of the form (17.5) provided that the functions �� satisfy �2�� = 0.
The above simplification is entirely analogous to that introduced in electro-

magnetism in Chapter 6. In that case, the electromagnetic field equations were
reduced to the simple form �2A� =�0j

� by adoption of the Lorenz gauge condi-
tion ��A

� = 0. This condition is preserved by any further gauge transformation
A� → A�+ ��� if and only if �2� = 0. As a result of the similarities between
the electromagnetic and gravitational cases, (17.14) is often also referred to as the
Lorenz gauge.
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17.4 General properties of the linearised field equations

Now that we have arrived at the form of the field equations for linearised general
relativity, it is instructive to consider some general consequences of our lineari-
sation process for the resulting physical theory. The non-linearity of the original
Einstein equations is a direct result of the fact that ‘gravity gravitates’. In other
words, any form of energy–momentum acts as a source for the gravitational field,
including the energy–momentum associated with the gravitational field itself. By
linearising the field equations we have ignored this effect.

One may straightforwardly take steps to address this shortcoming by ‘bootstrap-
ping’ the theory as follows: (i) the energy–momentum carried by the linearised
gravitational field h�� is calculated; (ii) this energy–momentum acts as a source for

corrections h�1��� to the field; (iii) the energy–momentum carried by the corrections

h
�1�
�� is calculated ; (iv) this energy–momentum acts as a source for corrections

h
�2�
�� to the corrections h�1��� ; and so on. It is widely stated in the literature3 that,

on completing this bootstrapping process, one arrives back at the original non-
linear field equations of general relativity, although this claim has recently been
brought into question.4 In either case, it is worth noting that this approach allows
the resulting equations to be interpreted simply as a (fully self-consistent) rela-
tivistic theory of gravity in a fixed Minkowski spacetime. This viewpoint brings
gravitation closer in spirit to the field theories describing the other fundamental
forces. Indeed, the remarkable point is that only the field theory of gravitation
has the elegant geometrical interpretation that we have spent so long exploring.

Returning to the linearised theory, one result of ignoring the energy–momentum
carried by the gravitational field is an inconsistency between the linearised field
equations (17.11) and the equations of motion for matter in a gravitational field.
Raising the indices � and � on (17.11) and operating on both sides of the resulting
equation with ��, one quickly finds that

��T
�� = 0� (17.15)

This should be contrasted with the requirement, derived from the full non-linear
field equations, that ��T

�� = 0. As was shown in Section 8.8, the latter require-
ment leads directly to the geodesic equation of motion for the worldline x���� of
a test particle, namely

ẍ�+ �
�#ẋ

�ẋ# = 0� (17.16)

where the dots denote differentiation with respect to the proper time �. Performing
a similar calculation for the condition (17.15), however, leads to the equation

3 See, for example, R. P. Feynman, F. B. Morinigo & W. G. Wagner, Feynman Lectures on Gravitation,
Addison–Wesley, 1995.

4 See T. Padmanabhan, From Gravitons to Gravity: Myths and Reality, http://arxiv.org/abs/gr-qc/0409089.
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of motion ẍ� = 0, which means that the gravitational field has no effect on the
motion of the particle. In general, this clearly contradicts the geodesic postulate.

An alternative way to uncover this inconsistency is to note that an immediate
consequence of having linearised the field equations is that solutions can be added.
In other words, if the pairs of tensors �h���i and �T���i individually satisfy (17.11)
for i = 1�2� � � � then the quantity

∑
i�h���i is also a solution, corresponding to

the energy–momentum tensor
∑

i�T���i. Thus, for example, two point masses
could remain at a fixed separation from one another indefinitely, the resulting
gravitational field being simply the superposition of their individual radial fields.

Despite this inconsistency, linearised general relativity is still a useful approx-
imation, provided that we are interested only in the far field of sources whose
motion we know a priori and that we are willing to neglect the ‘gravity of grav-
ity’. In such cases, the effect of weak gravitational fields on test particles can
be computed by inserting the form (17.6) for the connection coefficients into the
geodesic equations (17.16). To calculate how the sources themselves move under
their own gravity, however, one would need to re-insert into the field equations
the non-linear terms that the linear theory discards.

17.5 Solution of the linearised field equations in vacuo

In empty space, the linearised field equations in the Lorenz gauge reduce to the
wave equation

�2h̄�� = 0� (17.17)

with the attendant gauge condition

��h̄
�� = 0� (17.18)

It is straightforward to show that the field equations have plane-wave solutions
of the form

h̄�� = A�� exp�ik�x
��� (17.19)

where the A�� are constant (and, in general, complex) components of a symmetric
tensor, and the k� are the constant (real) components of a vector. Substituting
the expression (17.19) into the wave equation (17.17) and using the fact that
��h̄

�� = k�h̄
��, we find that

�2h̄�� = ��#���#h̄
�� = ��#k�k#h̄

�� = 0�

This can only be satisfied if

��#k�k# = k#k# = 0� (17.20)
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and hence the vector k must be null. Since the linearised Einstein equations only
take the simple form (17.17) in the Lorenz gauge, we must also take into account
the gauge condition (17.18). On substituting into the latter the plane-wave form
(17.19), we immediately find that the gauge condition is satisfied provided that
one obeys the additional constraint

A��k� = 0� (17.21)

Thus any plane wave of the form (17.19) is a valid solution of the linearised
vacuum field equations in the Lorenz gauge, provided that the vector k� satisfies
(17.20) and (17.21). We will discuss plane gravitational waves in detail in the
next chapter.

Since the vacuum field equations are linear (by design), any solution of them
may be written as a superposition of such plane-wave solutions of the form

h̄���x�=
∫
A����k� exp�ik�x��d3�k� (17.22)

where 
k�� = �k0� �k� and the integral is taken over all values of �k. Physical
solutions are obtained by taking the real part of (17.22).

17.6 General solution of the linearised field equations

We now consider the general form of the solution to the linearised field equations
in the presence of some non-zero energy–momentum tensor T��. In this case,
the field equations take the form of an inhomogeneous wave equation for each
component,

�2h̄�� =−2&T��� (17.23)

together with the attendant gauge condition ��h̄
�� = 0. The general solution to

(17.23) is most easily obtained by using a Green’s function, in a similar manner
to that employed for solving the analogous problem in electromagnetism. We will
now outline this approach.

One begins by considering the solution to the inhomogeneous wave equation
when the source is a �-function, i.e. it is located at a definite event in spacetime.
If this event has coordinates y# , one is therefore interested in solving an equation
of the form

�2
xG�x# −y#�= ��4��x# −y#�� (17.24)

where the subscript on �2
x makes explicit that the d’Alembertian operator is with

respect to the coordinates x# and G�x# − y#� is the Green’s function for our
problem, which in the absence of boundaries must be a function only of the
difference x# − y# . Since the field equations (17.23) are linear, sources that are
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more general can be built up by adding further �-function sources located at
different events. Thus, the general solution to the linearised field equations can
be written5

h̄���x#�= h̄
��
�0��x

#�−2&
∫
G�x# −y#�T���y#�d4y� (17.25)

where, for completeness, we have made use of the freedom to add any solution
h̄
��
�0��x� of the homogeneous field equations (i.e. the in vacuo field equations). It

may be verified immediately by direct substitution that (17.25) does indeed solve
(17.23). For the discussions in this chapter, however, we will take h̄

��
�0��x� = 0

without loss of generality.
The problem of obtaining a general solution of the linearised field equations has

thus been reduced to solving (17.24) to obtain the appropriate Green’s function.
This may be achieved in a number of ways, and here we shall take a physically
motivated approach. For convenience, we begin by placing the �-function source
at the origin of our coordinate system. We will also make the identifications

x��= �ct� �x� and r = ��x�. With the source at the origin, we may write (17.24) as

���
�G�x#�= ��4��x#�� (17.26)

We first integrate this equation over a four-dimensional hypervolume V . Since
the spatial spherical symmetry of the problem suggests that the Green’s function
should only depend on ct and r, we choose the hypervolume to be a sphere of
radius r in its spatial dimensions and we integrate in t from −� to �. The
geometry of the bounding surface S of the hypervolume is illustrated by the
vertical cylinder in Figure 17.1, in which the third spatial dimension x3 has been
suppressed. Performing the integration of (17.26) over V we obtain∫

V
���

�G�x#�d4x =
∫
S

��G�x#��n� dS = 1� (17.27)

where in the first equality we have used the divergence theorem to rewrite the
volume integral as an integral over the bounding surface S with unit normal n�.
Since we are working with a metric of signature �+�−�−�−�, it should be noted
that n� is chosen to be outward pointing if it is timelike and inward pointing if
spacelike.

Let us now consider the contributions to this surface integral over S. Since
gravitational field variations travel at speed c, the only points in spacetime that
can be influenced by a �-function source at the origin are those lying on the

5 Note that there is no need to include
√−g factors in our integral or delta-function definition, since we are

considering the problem simply as a tensor field h̄���x� defined on a Minkowski spacetime background in a
Cartesian coordinate system.
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x1

x2

x0

r

L

S

nµ

Figure 17.1 The geometry of the surface S in spacetime used to evaluate the
Green’s function for the wave equation. The lightcone L emanating from the
origin is also shown. The x3-direction has been suppressed.

future-pointing part of the lightcone L. Thus G�x#� must be zero at all points in
spacetime except those lying on the future lightcone, and so must be of the form

G�x#�=
{
f�r���ct− r� for ct ≥ 0�

0 for ct < 0�
(17.28)

where f is an arbitrary function of r. The intersection of the future lightcone
with the surface S is a sphere (corresponding to a circle in Figure 17.1) of radius
r lying in the spatial hypersurface ct = r. Thus, the only contribution to the
surface integral in (17.27) is from this sphere (a circle in the figure), for which
the (spacelike) unit normal n� points in the inward spatial radial direction (as
illustrated). Rewriting the surface integral using dS = c dt d� (where d� is an
element of solid angle) and n��� = −�r , and performing the integral over the
spatial sphere, we thus have

−4�r2
∫ �

−�
�G�x#�

�r
c dt = 1� (17.29)

where the only contribution to the integral over t occurs at ct = r. Substituting
(17.28) into (17.29), we find that

4�r2f�r�
∫ �

0
�′�ct− r�c dt−4�r2

df�r�

dr

∫ �

0
��ct− r�c dt = 1� (17.30)

where the prime on the �-function denotes differentiation with respect to its
argument. Integration by parts quickly shows the first integral on the left-hand
side of (17.30) to be zero, whereas the second integral equals unity. We therefore
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require −4�r2df/dr = 1 and so f�r�= 1/�4�r�, where the constant of integration
vanishes since the Green’s function must tend to zero at spatial infinity. Thus,
re-expressing the result in terms of the coordinates x# , the required Green’s
function is

G�x#�= ��x0−��x��
4���x� ��x0��

where the Heaviside function ��x0� equals unity if x0 ≥ 0 and zero if x0 < 0.
We may now use this form to substitute for G�x# − y#� in (17.25), with h̄

��
�0�

set to zero, to obtain

h̄���x#�=− &

2�

∫ �
(
�x0−y0�−��x−�y�)

��x−�y� ��x0−y0�T���y#�d4y�

Using the delta function to perform the integral over y0, we finally find that the
general solution to the linearised field equations (17.23) is given by

h̄���ct� �x�=−4G
c4

∫ T���ct−��x−�y�� �y�
��x−�y� d3�y� (17.31)

The interpretation of (17.31) requires some words of explanation. Here �x repre-
sents the spatial coordinates of the field point at which h̄�� is determined, �y
represents the spatial coordinates of a point in the source and ��x−�y� is the spatial
distance between them. We see that the disturbance in the gravitational field at the
event �ct� �x� is the integral over the region of spacetime occupied by the points
of the source at the retarded times tr given by

ctr = ct−��x−�y��
This region is the intersection of the past lightcone of the field point with the
world tube of the source. An illustration of the geometric meaning of the retarded
time is shown in Figure 17.2.

Although we have shown that (17.31) satisfies the linearised field equations
(17.23), this form of the field equations is only valid in the Lorenz gauge. We must
therefore verify that (17.31) also satisfies the Lorenz gauge condition ��h̄

�� = 0.
Before embarking on this we first remind ourselves how to differentiate a function
of retarded time. Setting x0r ≡ ctr = x0−��x−�y�, for any function f we have

�f
(
x0r � �y

)
�x�

=
[
�f�y0� �y�

�y0

]
r

�x0r
�x�

� (17.32)

�f
(
x0r � �y

)
�yi

=
[
�f�y0� �y�

�yi

]
r
+
[
�f�y0� �y�

�y0

]
r

�x0r
�yi

� (17.33)
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x2

x1

ct

(ct, xi)
(ct, yi)

(ctr, yi)

Figure 17.2 The disturbance in the gravitational field at the event �ct� xi� is the
sum of the influences of the energy and momentum sources at the points �ctr� y

i�
on the past lightcone.

where 
 �r denotes that the expression contained within the brackets is eval-
uated at y0 = x0r and where i = 1�2�3. In addition to (17.33), we note that
�f�x0r � �y�/�y0 = 0.

Let us now verify that the solution (17.31) does indeed satisfy the Lorenz gauge
condition. Differentiating, we obtain

�h̄���x0� �x�
�x�

= −4G
c4

∫ [ 1

��x−�y�
�T 0�

(
x0r � �y

)
�x0

+ �

�xi

(
T i�

(
x0r � �y

)
��x−�y�

)]
d3�y�

= −4G
c4

∫ [ 1

��x−�y�
�T��

(
x0r � �y

)
�x�

+T i�
(
x0r � �y

) �

�xi

(
1

��x−�y�
)]

d3�y�

(17.34)

where we show explicitly that the partial derivatives are with respect to the
coordinates x�. Using (17.32), the derivative in the first term of the integrand can
be rewritten as follows:

�T��
(
x0r � �y

)
�x�

=
[
�T���y0� �y�

�y0

]
r

�x0r
�x�

=
[
�T 0��y0� �y�

�y0

]
r
−
[
�T i��y0� �y�

�y0

]
r

�x0r
�yi

�

where in the second equality we have used the fact that �x0r /�x
i = −�x0r /�yi.

Returning to (17.34), in a similar manner we may replace �/�xi by −�/�yi in
the second term of the integrand, which then allows this term to be integrated by
parts, since∫
T i�

(
x0r � �y

) �

�yi

(
1

��x−�y�
)
d3�y=

∫
S

T i�
(
x0r � �y

)
��x−�y� ni dS−

∫ 1

��x−�y�
�T i�

(
x0r � �y

)
�yi

d3�y�
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where S is the surface of the region of intersection between the past lightcone of
the field point and the world tube of the source and ni is the outward-pointing
normal to the surface. Moreover, since T i�

(
x0r � �y

)
vanishes on S, the surface

integral is zero.
Combining our results, we may therefore write (17.34) as

�h̄��

�x�
=−4G

c4

∫ {[�T 0�
(
y0� �y)

�y0

]
r

−
[
�T i��y0� �y�

�y0

]
r

�x0r
�yi

+ �T i�
(
x0r � �y

)
�yi

}
d3�y
��x−�y� �

Making use of the result (17.33) to combine the last two terms within the braces,
we thus arrive at the final form

�h̄��

�x�
=−4G

c4

∫ 1

��x−�y�
[
�T���y0� �y�

�y�

]
r
d3�y� (17.35)

As shown in Section 17.4, however, in the linearised theory the energy–momentum
tensor obeys ��T

�� = 0. Thus the integrand in (17.35) vanishes, and so we have
verified that the solution (17.31) satisfies the Lorenz gauge condition ��h̄

�� = 0.

17.7 Multipole expansion of the general solution

In general, the source of the gravitational field may be dynamic and have a spatial
extent that is not small compared with the distance to the point at which one
wishes to calculate the field. In such cases, obtaining a simple expression for the
solution (17.31) is often analytically intractable. In an analogous manner to that
used in electromagnetism, it is often convenient to perform a multipole expansion
of (17.31), which lends itself to the calculation of successive approximations to
the solution. One begins by writing down the Taylor expansion

1

��x−�y� =
1
r
+ �−yi��i

(
1
r

)
+ 1

2!�−y
i��−yj��i�j

(
1
r

)
+· · · �

= 1
r
+yi

xi
r3
+yiyj

(
3xixj− r2�ij

r5

)
+· · · �

where r ≡ ��x� is the spatial distance from the origin to the field point and �i ≡
�/�xi. One may then write the solution (17.31) as

h̄���ct� �x� = −4G
c4

[
1
r

∫
T���ctr� �y�d3�y+ xi

r3

∫
T���ctr� �y�yi d3�y

+ 3xixj− r2�ij

r5

∫
T���ctr� �y�yiyj d3�y+· · ·

]
� (17.36)
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where ctr = ct−��x−�y�. This multipole expansion may be written in a particularly
compact form:

h̄���ct� �x�=−4G
c4

�∑
�=0

�−1��
�! M��i1i2···i��ctr��i1�i2 · · · �i�

(
1
r

)
�

where the multipole moments of the source distribution at any time t are given by

M��i1i2···i��ct�=
∫
T���ct� �y�yi1yi2 · · ·yi� d3�y�

Since the fall-off with distance of the term associated with the �th multipole
moment goes as 1/r�+1, the gravitational field at large distances from the source
is well approximated by only the first few terms of the multipole expansion.

17.8 The compact-source approximation

Let us suppose that the source is some matter distribution localised near the origin
O of our coordinate system. If we take our field point �x to be a distance r from
O that is large compared with the spatial extent of the source, we need consider
only the first term in the multipole expansion (17.36). Moreover, we assume that
the source particles have speeds that are sufficiently small compared with c for us
to take ctr = ct− r in the argument of the stress–energy tensor. Thus, the solution
in the compact-source approximation is given by

h̄���ct� �x�=−4G
c4r

∫
T���ct− r� �y�d3�y� (17.37)

In this approximation, we are thus considering only the far-field solution to the
linearised gravitational equations, which varies as 1/r.

From (17.37), we see that calculating the gravitational field has been reduced
to integrating T�� over the source at a fixed retarded time ct− r. The physical
interpretation of the various components of this integral is as follows:∫

T 00 d3�y, total energy of source particles (including rest mass energy) ≡Mc2;∫
T 0i d3�y� c× total momentum of source particles in the xi-direction ≡ Pic;∫
T ij d3�y, integrated internal stresses in the source.

For an isolated source, the quantities M and Pi are constants in the linear
theory (this is easily proved directly from the conservation equation ��T

�� = 0).6

Moreover, without loss of generality, we may take our spatial coordinates xi to

6 We shall see later that a source does in fact lose energy via the emission of gravitational radiation, but the
energy–momentum carried away by the gravitational field is quadratic in h�� and hence neglected in the
linear theory.
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correspond to the ‘centre-of-momentum’ frame of the source particles, in which
case Pi = 0. Thus, from (17.37), in centre-of-momentum coordinates we have

h̄00 =−4GM

c2r
� h̄i0 = h̄0i = 0� (17.38)

The remaining components of the gravitational field are then given by the inte-
grated stress within the source,

h̄ij�ct� �x�=−4G
c4r

[∫
T ij�ct′� �y�d3�y

]
r
� (17.39)

where 
 �r denotes that the expression in the brackets is evaluated at ct′ = ct− r.
The integral in (17.39) is surprisingly troublesome to evaluate directly. Fortu-

nately, there exists an alternative route that leads to a very neat expression for this
quantity. We first recall that ��T

�� = 0 (where, for consistency with (17.39), we
are considering T�� as a function of the coordinates �ct′� �y� and so �0 = �/��ct′�
and �k = �/�yk). From this result, we may write

�0T
00+ �kT

0k = 0� (17.40)

�0T
i0+ �kT

ik = 0� (17.41)

Let us now consider the integral∫
�k�T

ikyj�d3�y =
∫
��kT

ik� yj d3�y+
∫
T ij d3�y�

where the integral is taken over a region of space enclosing the source, so that
T�� = 0 on the boundary surface S of the region. Using Gauss’ theorem to convert
the integral on the left-hand side to an integral over the surface S, we find that
its value is zero. Hence, on using (17.41), we can write∫

T ij d3�y =−
∫
��kT

ik� yj d3�y =
∫
��0T

i0� yj d3�y = 1
c

d

dt′
∫
T i0yj d3�y�

For later convenience, interchanging i and j and adding gives∫
T ij d3�y = 1

2c
d

dy0

∫
�T i0yj+Tj0yi�d3�y� (17.42)

We must now consider the integral∫
�k�T

0kyiyj�d3�y =
∫
��kT

0k� yiyj d3�y+
∫
�T 0iy j+T 0jyi� d3�y�

where, once again, we may use Gauss’ theorem to show that the left-hand side is
zero. Using (17.40), we thus have∫

�T 0iy j+T 0jyi� d3�y = 1
c

d

dt′
∫
T 00yiyj d3�y� (17.43)
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Combining (17.42) and (17.43) yields∫
T ij d3�y = 1

2c2
d2

dt′2
∫
T 00yiyj d3�y�

Inserting this expression into (17.39), we finally obtain the quadrupole formula

h̄ij�ct� �x�=−2G

c6r

[
d2Iij�ct′�

dt′2

]
r
� (17.44)

where we have defined the quadrupole-moment tensor of the energy density of
the source,

Iij�ct�=
∫
T 00�ct� �y� yiyj d3�y� (17.45)

which is a constant tensor on each hypersurface of constant time. In the next
chapter, we will use this formula to determine the far-field gravitational radiation
generated by a time-varying matter source.

17.9 Stationary sources

Let us return to the general solution (17.31) to the linearised field equation. In the
previous section we confined our attention to the far-field solution for a compact
source. This behaves like 1/r as a function of distance and depends only on
the mass and inertia tensor of the source. As shown in the multipole expansion
(17.36), other properties of the source generate a field that falls off more rapidly
with distance. In general, it is often impossible to obtain a simple expression
for the solution (17.31). Nevertheless, the solution simplifies somewhat when the
source is stationary.

A stationary source has �0T
�� = 0, i.e. the energy–momentum tensor is constant

in time. Note that this does not necessarily imply that the source is static (so that
its constituent particles are not moving), which would additionally require the
form of T�� to be invariant to the transformation t→−t. A typical example of a
stationary, but non-static, source is a uniform rigid sphere rotating with constant
angular velocity. The main advantage of the stationary-source limit is that the
time dependence vanishes and thus retardation is irrelevant. Hence, the general
solution (17.31) to the linearised field equations reduces to

h̄����x�=−4G
c4

∫ T����y�
��x−�y� d

3�y� (17.46)



484 Linearised general relativity

One can perform a multipole expansion of this solution identical to that given
in (17.36) but for which all time dependence is omitted. Indeed, in this case, it
becomes somewhat simpler to interpret the various multipole moments physically.

A particularly interesting special case is the non-relativistic stationary source.
Consider a source having a well-defined spatial velocity field ui��x�, where the
speed u of any constituent particle is small enough compared with c that we
can neglect terms of order u2/c2 and higher in its energy–momentum tensor. In
particular, we will take 	u= �1−u2/c2�−1/2 ≈ 1. Moreover, the pressure p within
the source is everywhere much smaller than the energy density and may thus be
neglected. From the discussion of energy–momentum tensors in Section 8.1 we
see that, for such a source,

T 00 = �c2� T 0i = c�ui� T ij = �uiuj�

where ���x� is the proper-density distribution of the source. We see that
�T ij�/�T 00� ∼ u2/c2 and so we should take T ij ≈ 0 to the order of our approxi-
mation. The corresponding solution (17.46) to the linearised field equations can
then be written as

h̄00 = 4%
c2

� h̄0i = Ai

c
� h̄ij = 0� (17.47)

where we have defined the gravitational scalar potential% and gravitational spatial
vector potential Ai by

%��x� ≡ −G
∫ ���y�
��x−�y� d

3�y� (17.48)

Ai��x� ≡ −4G
c2

∫ ���y�ui��y�
��x−�y� d3�y� (17.49)

The corresponding components of h�� are given by h�� = h̄�� − 1
2�

��h̄. The
result (17.47) implies that h̄ = h̄00 and, on lowering indices, we find that the
non-zero components are

h00 = h11 = h22 = h33 =
2%
c2

� h0i =
Ai

c
� (17.50)

It should be remembered that raising or lowering a spatial (roman) index intro-
duces a minus sign. Thus the numerical value of Ai is minus that of Ai, the latter
being the ith component of the spatial vector �A. The obvious analogy between the
equations (17.48, 17.49) and their counterparts in the theory of electromagnetism
will be discussed in detail in Section 17.11.

For the most part, in this chapter we adopt the viewpoint that h�� is simply a
rank-2 tensor field defined in Cartesian coordinates on a background Minkowski
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spacetime. At this point, however, it is useful to revert to the viewpoint in which
g�� =���+h�� defines the metric of a (slightly) curved spacetime. From (17.50),
we may therefore write the line element, in the limit of the non-relativistic source
considered here and in quasi-Minkowski coordinates, as

ds2 =
(
1+ 2%

c2

)
c2 dt2+ 2Ai

c
c dt dxi−

(
1− 2%

c2

)∑
�dxi�2� (17.51)

in which it is worth noting that Ai dx
i =−�ijAi dxj =−�A · d�x. Determining the

geodesics of this line element provides a straightforward means of calculating the
trajectories of test particles in the gravitational field of a non-relativistic source
(in the weak-field limit). In particular, we note that we need not assume that the
test particles are slow-moving, and so the trajectories of photons in this limit may
also be found by determining the null geodesics of the line element (17.51).

17.10 Static sources and the Newtonian limit

A special case of stationary sources are static sources, for which the constituent
particles are not moving. In this case the only non-zero component of the source
energy–momentum tensor is the rest energy T 00 = �c2, where ���x� is the proper
density distribution of the source. Indeed, this Newtonian source limit is clearly
equivalent to a stationary source with a vanishing velocity field ui��x�= 0. Thus,
from (17.50), we immediately find that in this case the non-zero elements of
h�� are

h00 = h11 = h22 = h33 =
2%
c2

� (17.52)

In fact, the above solution remains valid to a good approximation even if the
source particles are moving, provided that the source energy–momentum tensor is
still dominated by the rest energy of the matter distribution, so that �T 00� � �T 0i�
and �T 00� � �T ij�.

The line element corresponding to (17.52) is given by

ds2 =
(
1+ 2%

c2

)
c2 dt2−

(
1− 2%

c2

)
d#2� (17.53)

where d#2 = dx2+dy2+dz2; (17.53) is often referred to as the line element in
the Newtonian limit. Moreover, this line element is easily adapted to allow for
arbitrary spatial coordinate transformations, since d#2 is simply the line element
of three-dimensional Euclidean space. Thus if, for example, we adopt spatial
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spherical polar coordinates then one need only rewrite the spatial line element as
d#2 = dr2+ r2 d�2+ r2 sin2 �d�2.
It is interesting to compare (17.53) with our discussion of the Newtonian limit

in Chapter 7, where we considered weak gravitational fields, static sources and
slowly moving test particles. Under these assumptions, we found that we recovered
the Newtonian equation of motion for a test particle provided that we made the
identification h00 = 2%/c2, where % is the Newtonian gravitational potential. In
the solution (17.53), we have arrived at the Newtonian limit without making any
restriction on the velocity of the test particle. This generalisation is important,
as previously we needed to consider only the effects of the g00-component of
the metric, but, as the above solution shows, the trajectories of relativistic test
particles and photons also depend on the metric spatial components.

As an example of the line element (17.53), let us consider the simple case of
a static spherical object of mass M , so that the Newtonian gravitational potential
is given by % = −GM/r, where r is a radial coordinate. In this case, adopting
spherical polar spatial coordinates, the line element in the Newtonian limit is
given by

ds2 = c2
(
1− 2GM

c2r

)
dt2−

(
1+ 2GM

c2r

)
�dr2+ r2 d�2+ r2 sin2 �d�2��

which is straightforwardly shown to be identical to the Schwarzschild solution,
to first order in M . In the Solar System, this approximation is sufficiently accu-
rate to determine correctly the bending of light and gravitational redshifts (the
Shapiro effect) induced by the Sun, giving identical results to those discussed in
Chapter 10. The accuracy of the above approximation is, however, insufficient to
predict perihelion shifts correctly. This is not surprising, since perihelion shift is
a cumulative effect.

17.11 The energy–momentum of the gravitational field

Physically, one would expect the gravitational field to carry energy–momentum
just as, for example, the electromagnetic field does. Unfortunately, the task of
assigning an energy density to a gravitational field is famously difficult, both
technically and in principle. From our discussion of the equivalence principle in
Chapter 7, we know that transforming coordinates to a freely falling frame can
always eliminate gravitational effects at any one event. As a result, there is no local
notion of gravitational energy density in general relativity. Moreover, in a general
spacetime there is no reason why energy and momentum should be conserved.
In electromagnetism, for example, the conservation of energy and momentum
for the field is a direct consequence of the symmetries of the Minkowski space-
time assumed in the theory. In a general spacetime, however, there are no such
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symmetries. Even in the linearised gravitational theory developed in this chapter,
the field h�� represents a weak distortion of Minkowski space and so the Lorentz
symmetry properties are lost.

Nevertheless, as we have remarked several times, one can also regard the
linearised theory as describing a simple rank-2 tensor field h�� in Cartesian
inertial coordinates propagating in a fixed Minkowski spacetime background. We
might therefore hope to assign an energy–momentum tensor to this field just as
we do for electromagnetism, or any other field theory in Minkowski spacetime.
As was discussed in Section 17.4, the linearised gravitational theory ignores the
energy–momentum associated with the gravitational field itself (i.e. the ‘gravity
of gravity’). To include this contribution, and thereby go beyond the linearised
theory, one must modify the linearised field equations to read

G�1�
�� =−

8�G
c4

�T��+ t����

where G�1�
�� is the linearised Einstein tensor, T�� is the energy–momentum tensor

of any matter present and t�� is the energy–momentum tensor of the gravitational
field itself. Trivially rearranging this equation gives

G�1�
�� +

8�G
c4

t�� =−
8�G
c4

T���

Returning to the exact Einstein equations, however, we may expand beyond first
order to obtain

G�� ≡G�1�
�� +G�2�

�� +· · · = −
8�G
c4

T��� (17.54)

where superscripts in parentheses indicate the order of the expansion in h��. This
suggests that, to a good approximation, we should make the identification

t�� ≡
c4

8�G
G�2�

�� � (17.55)

This is also in keeping with our experience of other field theories in Minkowski
spacetime, such as electromagnetism, in which the energy–momentum tensor is
quadratic in the field variable. One should not, however, be too firmly guided by
the analogy with electromagnetism. The reason why the electromagnetic energy–
momentum tensor is quadratic in the field variable is that the electromagnetic
field (constituted by photons in the quantum description) does not carry charge
and so cannot act as its own source. Indeed, this is the physical reason why
electromagnetism is a linear theory. In the gravitational case, however, one could
in fact include the higher-order terms in (17.54) in the definition of t��; these
terms correspond to the contribution to the total energy–momentum arising from
the gravitational interaction of the gravitational field with itself. Nevertheless,
when the gravitational field is weak these higher-order terms may be neglected.
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As one might expect from such an heuristic approach, however, there are some
shortcomings of the identification (17.55), which we now outline. The terms in
the Einstein tensor that are second-order in h�� are given by

G�2�
�� = R�2�

�� − 1
2���R

�2�− 1
2h��R

�1�+ 1
2���h

�#R�1�
�# � (17.56)

where R�2�
�� denotes the terms in the Ricci tensor that are second-order in h�� and

R�1� and R�2� denote the terms in the Ricci scalar that are first- and second-order
in h�� respectively. Although (17.56), and hence t��, is covariant under global
Lorentz transformations (although not under general coordinate transformations,
as one might expect), it may be may shown, after considerable algebra, that
it is not invariant under the gauge transformation (17.5) (or equivalently the
infinitesimal coordinate transformation (17.4)). One way of circumventing this
problem is to take seriously the fact that the energy–momentum of a gravitational
field at a point in spacetime has no real meaning in general relativity, since at
any particular event one can always transform to a free-falling frame in which
gravitational effects disappear. This suggests that, at each point in spacetime, one
should average G�2�

�� over a small region in order to probe the physical curvature
of the spacetime, which gives a gauge-invariant measure of the gravitational
field strength. Denoting this averaging process by �· · · �, one should thus replace
(17.55) by

t�� ≡
c4

8�G

〈
G�2�

��

〉
� (17.57)

Having made this identification, our task is now an algebraic one of determining

the form of
〈
G

�2�
��

〉
as a function of h��. This is rather a cumbersome calculation,

but the job is made somewhat easier by averaging over small spacetime regions.
Since we are averaging over all directions at each point, first derivatives average
to zero. Thus, for any function of position a�x�, we have ���a� = 0. This has the
important consequence that ����ab�� = ����a�b�+�a���b�� = 0, and hence we
may swap derivatives in products and inherit only a minus sign, i.e.

����a�b� = −�a���b��� (17.58)

Let us begin by considering the last two terms on the right-hand side of (17.56),
which depend on the first-order Ricci tensor and Ricci scalar. It will prove most
convenient to express these in terms of the energy–momentum tensor T�� of any
matter present. The first-order (linearised) field equation (17.11) can be written as

R�1�
�� =−&�T��− 1

2���T��
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where T ≡ T
�
� and &≡ 8�G/c4. We also note from this equation that R�1� = &T .

Thus, we may write (17.56) as

G�2�
�� = R�2�

�� − 1
2���R

�2�− 1
2&�h̄��−���h

�#T�#�� (17.59)

It therefore remains only to find the form of R
�2�
�� , from which R�2� may

be obtained by contraction. The standard expression for the full Ricci tensor
is obtained by contracting (17.7) on its first and last indices. Thus, the terms
second-order in h�� are given by

R�2�
�� = �� 

�2�#
�# − �# 

�2�#
��+ �1��

�# 
�1�#

��− �1��
�� 

�1�#
�#� (17.60)

where, on the right-hand side, the superscripts in parentheses denote the order of
expansion in h�� for the connection coefficients. The connection coefficients to
first order were calculated in (17.6), and now including the second-order terms
we have

 #
�� =  �1�#

��+ �2�#
��+· · ·

= 1
2���h

#
�+ ��h

#
� − �#h���− 1

2h
#����h��+ ��h��− ��h���+· · · �

Inserting these expressions into (17.60) and simplifying, one finds after a little
algebra

R�2�
�� = − 1

4���h
�#���h�# + 1

2h
�#����#h��+ ���#h��− ����h�# − ���#h���

+ 1
2��

#h������h#�− �#h���+ 1
2��#h

�# − 1
2�

�h����h��+ ��h��− ��h����

(17.61)

Although the third group of terms on the right-hand side is not manifestly symmet-
ric in � and �, this symmetry is easy to verify. In fact, in subsequent calculations
it is convenient to maintain manifest symmetry by writing out this term again
with � and � reversed and multiplying both terms by one-half.

To evaluate the averaged expression (17.57), we must now calculate
〈
R
�2�
��

〉
.

One first makes use of the result (17.58) to rewrite products of first derivatives in
(17.61) in terms of second derivatives. Using the first-order field equation (17.10)
to substitute for terms of the form �2h��, and then applying (17.58) once more
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to rewrite terms containing second derivatives as products of first derivatives, one
finally obtains〈

R�2�
��

〉
= 1

4

〈
���h�#���h

�# −2��#h
�#����h���+2���h����h

�
��− ���h���h

+&
(
2h��T +2hT��−���hT −4h���T

�
��

)〉
� (17.62)

where we have made use of the symmetrisation notation discussed in Chapter 4.
Contracting this expression, and once again making use of the result (17.58) and
the first-order field equation (17.10), one quickly finds that

�R�2�� = − 1
2&�h�#T�#�� (17.63)

Combining the expressions (17.59), (17.62) and (17.63) and writing the result
(mostly) in terms of the trace reverse field h̄�� = h��− 1

2���h, we thus find that
the energy–momentum tensor (17.57) of the gravitational field is given by

t�� = 1
4&
−1
〈
���h̄�#���h̄

�# −2��#h̄
�#����h̄���− 1

2���h̄���h̄

−&
(
4h̄���T

�
��+���h

�#T�#

)〉
�

(17.64)

It may be verified by direct substitution that this expression is indeed invariant
under the gauge transformation (17.5), as required. We shall use this tensor in the
next chapter to determine the energy carried by gravitational waves.

Appendix 17A: The Einstein–Maxwell formulation of linearised gravity

In our discussion of non-relativistic stationary sources in Section 17.9, we found
that the expressions for the gravitational field exhibited a remarkable similarity to
the corresponding results in electromagnetism. We now pursue further the analogy
between linearised general relativity and electromagnetism for non-relativistic
stationary sources.

As discussed in Section 17.9, for such a source we may write

h00 = h11 = h22 = h33 = 2%g

c2
� h0i = Ai

g

c
� hij = 0� (17.65)

here we denote the gravitational scalar and vector potentials by %g and �Ag

respectively. The linearised field equations may then be written as

�2%g = 4�G� and �2 �Ag =
16�G
c2

�j� (17.66)
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where we have defined the momentum density (or matter current density) �j ≡ ��v.
These equations have the solutions (17.48, 17.49), which we write as

%g��x�=−G
∫ ���y�
��x−�y� d

3�y and �Ag��x�=−
4G
c2

∫ �j��y�
��x−�y� d

3�y�

Comparing the above results with the corresponding equations in electromag-
netism for the electric potential and the magnetic vector potential in the absence
of time-varying fields, there is a direct analogy on making the identifications

�0↔− 1
4�G

and �0↔−16�G
c2

�

The minus signs in these relations are a result of the fact that the electric force
repels like charges, whereas the gravitational force attracts (like) masses. Clearly,
in the electromagnetic case, � and �j correspond to the charge and current densities
respectively, rather than the matter and momentum densities. We can take the
analogy further by defining the gravitoelectric and gravitomagnetic fields

�Eg =−��%g and �Bg = ��× �Ag� (17.67)

Using the equations (17.66), it is straightforward to verify that the fields �Eg and
�Bg satisfy the gravitational Maxwell equations

�� · �Eg =−4�G�� �� · �Bg = 0�

��× �Eg = 0� ��× �Bg =−
16�G
c2

�j�

The equations for �Eg describe the standard gravitational field produced by a static

mass distribution, whereas the equations for �Bg provide a notationally familiar
means of determining the ‘extra’ gravitational field produced by moving masses
in a stationary non-relativistic source.

Although the gravitational Maxwell equations completely determine the gravi-
tational fields produced by a non-relativistic stationary source, they do not deter-
mine the effect of such fields on the motion of a test particle. In electromagnetism
one must, in addition, postulate the Lorentz force law. From our discussion in
Section 8.8, however, one might suspect that in the case of gravitation the corre-
sponding force law could be derived rather than postulated. The equation of
motion for a test particle in a gravitation field is the geodesic equation

ẍ# + #
��ẋ

�ẋ� = 0� (17.68)
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where the dots denote differentiation with respect to the proper time � of the
particle. Let us assume that the test particle is slow-moving, i.e. its speed v

is sufficiently small compared with c that we may neglect terms in v2/c2 and
higher. Hence we may take 	v = �1−v2/c2�−1/2 ≈ 1. Writing 
x��= �ct� �x�, the
4-velocity of the particle may thus be written


ẋ��= 	v�c� �v�≈ �c� �v��
This immediately implies that ẍ# = 0 and, moreover, that dt/d� = 1, so we may
replace dots with derivatives with respect to t. Thus, the spatial components of
(17.68) may be written as

d2xi

dt2
≈− (c2 i

00+2c i
0jv

j+ i
ijv

ivj
)≈− (c2 i

00+2c i
0jv

j
)
� (17.69)

where in the first approximate equality we have expanded the summation in
(17.68) into terms containing respectively two time components, one time and one
spatial component, and two spatial components. In the second approximation, we
have neglected the purely spatial terms since their ratio with respect to the purely
temporal term c2 i

00 is of order v2/c2. To first order in the gravitational field
h��, the connection coefficients are given by (17.6). Inserting this expression into
(17.69) and remembering that for a stationary field �0h�� = 0, one obtains

d2xi

dt2
≈ 1

2c
2�ih00+ c

(
�ih0j− �jh

i
0

)
vj =− 1

2c
2�ij�jh00− c�ik��kh0j− �jh0k�v

j�

Substituting the expressions (17.65) and remembering that one inherits a minus
sign on raising or lower a spatial (roman) index, the equation of motion may be
written as

d2�x
dt2

≈−��%g+�v× ���× �Ag��

Thus, using (17.67), one obtains the gravitational Lorenz force law

d2�x
dt2

≈ �Eg+�v× �Bg�

for slow-moving particles in the gravitational field of a stationary non-relativistic
source. The first term on the right-hand side gives the standard Newtonian result
for the motion of a test particle in the field of a static non-relativistic source,
whereas the second term gives a notationally familiar result for the ‘extra’ force
felt by a moving test particle in the presence of the ‘extra’ field produced by
moving masses in a stationary non-relativistic source.
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Exercises

17.1 In a region of spacetime with a weak gravitational field, there exist coordinates in
which the metric takes the form g�� = ��� +h��. Show that h�� is not a tensor
under a general coordinate transformation. Show further that, to first order in h��,

g�� = ���−h��

where h�� = �����#h�# .
17.2 For an infinitesimal general coordinate transformation x′� = x�+���x�, show that

to first order in �� the inverse transformation is given by

�x�

�x′�
= ��� − ���

��

17.3 If g�� = ���+h�� with �h��� � 1, verify that, to first order in h��,

R#
��� = 1

2 �����h
#
� + ���

#h��− ���
#h��− ����h

#
� ��

R�� = 1
2 �����h+�2h��− ����h

�
�− ����h

�
���

R = �2h− ����h
���

Hence show that the linearised Einstein field equations are given by

����h+�2h��− ����h
�
�− ����h

�
�−�����2h− ���#h

#��=−2&T���

17.4 The trace reverse of h�� is defined by

h̄�� ≡ h��− 1
2���h�

Show that h̄ = −h and ¯̄h�� = h��. Hence show that the linearised Einstein field
equations in Exercise 17.3 can be written as

�2h̄��+������#h̄
�# − ����h̄

�
�− ����h̄

�
� =−2&T���

17.5 Obtain an expression for the covariant components R#��� of the linearised Riemann
tensor in Exercise 17.3 and show that it is invariant under a gauge transformation
of the form (17.5). Hence show that the linearised Einstein field equations are also
invariant under such a gauge transformation.

17.6 From the linearised Einstein field equations, show that ��T
�� = 0.

17.7 For a plane gravity wave of the form h�� =A�� exp�ik�x
��, show that the linearised

Riemann tensor is given by

R#��� = 1
2 �k�k#h��+k�k�h#�−k�k�h#�−k�k#h����

Hence show that the linearised Ricci tensor is given by

R�� = 1
2 �k�w�+k�w�−k2h����
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where k2 = k�k
� and w� = k�h̄��. Hence show that the linearised Einstein field

equations require that

k2h�� = k�w�+k�w��

17.8 From your answer to Exercise 17.7, show that for k2 �= 0 one requires R#��� = 0.
Hence show that this case does not correspond to a physical wave but merely a
periodic oscillation of the coordinate system.

17.9 From your answer to Exercise 17.7, show that for k2 = 0 one requires k�h̄�� = 0.
Hence show that the wavevector k� is an eigenvector of the Riemann tensor in the
sense that R#���k

� = 0.
17.10 Show explicitly that

h̄���x#�= h̄
��
�0��x

#�−2&
∫
G�x# −y#�T���y#�d4y�

is a solution of the linearised Einstein field equations in the Lorenz gauge if
h̄
��
�0��x

#� is any solution of the linearised field equations in vacuo and G�x# −y#�

satisfies

�2
xG�x# −y#�= ��4��x# −y#��

17.11 The Green’s function G�x# −y#� satisfies the equation

�2
xG�x# −y#�= ��4��x# −y#��

Show that the four-dimensional Dirac delta function can be written as

��4��x# −y#�= 1
�2��4

∫
exp

[
ik�
(
x�−y�

)]
d4k�

Hence, by writing the Green’s function in terms of its Fourier transform G̃�k#�,
show that

G�x# −y#�=− 1
�2��4

∫ 1
k2

exp
[
ik�
(
x�−y�

)]
d4k�

where k2 = k�k
�.

17.12 Verify that the solution in Exercise 17.10 satisfies the Lorenz gauge condition.
17.13 Prove the results (17.32, 17.33) for the derivatives of a function of retarded time.
17.14 By writing r ≡ ��x� = ��ijx

ixj�−1/2, show that

�i

(
1
r

)
=−xi

r
�

Hence show that

�i�j

(
1
r

)
= 3xixj− r2�ij

r5
�
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17.15 In Newtonian gravity, the gravitational potential %��x� produced by some density
distribution ���x� is given by

%��x�=−G
∫
V

���y�
��x−�y� d

3�y�

where the integral extends over the volume of the distribution. Show that

1

��x−�y� =
1

��x� +
�x · �y
��x�3 +�

(
1

��x�3
)
�

Hence show that the gravitational potential can be written as

%��x�=−GM

��x� −
G �d · �x
��x�3 +�

(
1

��x�3
)
�

where

M =
∫
V
���y�d3�y and �d =

∫
V
���y��y d3�y�

17.16 From the conservation equation ��T
�� = 0, show that

�0T
00+ �kT

0k = 0 and �0T
i0+ �kT

ik = 0�

By integrating each equation over a spatial volume V whose bounding surface S

encloses the energy–momentum source and using the three-dimensional divergence
theorem, show that the quantities

Mc2 ≡
∫
V
T 00 d3�y and Pi ≡

∫
T i0 d3�y

are constants and give a physical interpretation of them.
17.17 For a stationary source, show that �0T

0i = 0. Hence show that∫
V
�T 0iy j+T 0jyi� d3�y = 0�

where the spatial volume V encloses the source.
17.18 For a non-relativistic stationary source, show that, in centre-of-momentum

coordinates,

h̄00��x� = −4GM

c2��x� +�

(
1

��x�2
)
�

h̄0i��x� = 2G

c3��x�3 xjJ
ij+�

(
1

��x�3
)
�

h̄ij��x� = 0�

where the quantities M and J ij are given by

M =
∫
V
���y�d3�y and J ij =

∫
V

[
yipj��y�−y jpi��y�] d3�y�
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in which ���y� is the proper density distribution of the source and pi��y�= ���y�ui��y�
is the momentum density distribution of the source. Give a physical interpretation
of J ij .
Hint: You will find your answer to Exercise 17.17 useful.

17.19 Use your answer to Exercise 17.18 to show that, for a stationary non-relativistic
source, the gravitational scalar and vector potentials respectively are given to
leading order in 1/��x� by

%g��x�=−
GM

��x� and �Ag��x�=−
2G

c2��x�3 �J ×�x�

where �J = ∫
��y× �p�d3�y is the total angular momentum vector of the source.

Show further that these expressions are exact in the linear theory for a spherically
symmetric source.

17.20 Use your answer to Exercise 17.19 to show that, in the linear theory, the line
element outside a spherically symmetric matter distribution rotating about the
z-axis at a steady rate is given by

ds2= c2
(
1− 2GM

c2r

)
dt2+ 4GJ

c2r3
�xdy−y dx�dt−

(
1+ 2GM

c2r

)
�dx2+dy2+dz2��

where r = ��x�. Show that this is equal to the Kerr line element to first order in M

and J .
Hint: Ai dx

i =−�ijAj dxi =−�A ·d�x and ��J ×�x� ·d�x = �J · ��x×d�x�.
17.21 If g�� = ���+h��, show that the terms in the Einstein tensor that are second order

in h�� are given by

G�2�
�� = R�2�

�� − 1
2���R

�2�− 1
2h��R

�1�+ 1
2���h

�#R�1�
�# �

where R�2�
�� denotes the terms in the Ricci tensor that are second order in h��, and

R�1� and R�2� denote the terms in the Ricci scalar that are first and second order
in h�� respectively. Show further that this quantity is not invariant under a gauge
transformation of the form (17.5).

17.22 Verify that the energy–momentum tensor of the linearised gravitational field is
given by (17.64). Show further that this tensor is invariant under a gauge trans-
formation of the form (17.5).

17.23 Use your answer to Exercise 17.19 to show that, in the linear theory, a spherically
symmetric body of mass M rotating steadily with angular momentum �J produces
gravitoelectric and gravitomagnetic fields given respectively by

Eg��x�=−
GM

��x�2 �̂x and Bg��x�=
2G

c2��x�3
[�J −3

(�J · �̂x) �̂x] �
where �̂x is a unit vector in the �x- direction.
Hint: For any scalar field � and spatial vector fields �a and �b one has �����a�=
���×�a+����×�a� and ��×��a×�b�= �a��� · �b�−�b��� · �a�+��b · ����a−��a · ����b. Also,
���1/��x�3�=−3�x/��x�5.
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17.24 Consider a particle moving under gravity at speed v in a circular orbit of radius
r in the equatorial plane of the body in Exercise 17.23. Show that the vector
acceleration of the particle is given by

�a=−GM

r2
�̂r± 2GJv

c2r3
�̂r�

where �r is the position vector of the orbiting particle and the plus and minus signs
corresponding to prograde and retrograde orbits respectively. Hence show that the
angular velocity � of the particle is given to first order in J by

�2 = GM

r3
∓ 2GJ

c2r4

√
GM

r
�

where the minus and plus signs now correspond to prograde and retrograde orbits
respectively. Thus show that the retrograde orbit has a shorter period than the
prograde orbit.

17.25 In electromagnetism, the magnetic dipole moment of a current density distribution
�j��y� is defined by �m = 1

2

∫
��y×�j�d3�y, and the force and torque on the dipole

in a magnetic field �B are given by �F = � �m · ����B and �T = �m× �B respectively.
Hence deduce that, in linearised gravity, the force and torque exerted by the
gravitomagnetic field �Bg on a spinning body with spin angular momentum �s are
given respectively by

�Fg = 1
2 ��s · ����Bg and �Tg = 1

2 ��s× �Bg��

Thus show that the spin angular momentum of the body will evolve as

d�s
dt
= 1

2 ��s× �Bg�

and therefore that �s precesses about �Bg with angular velocity �=− 1
2 ��Bg� (i.e. in

the negative sense). This is called the Lens–Thirring precession.
17.26 A gyroscope is in orbit about the massive rotating body in Exercise 17.23. Use

your answer to Exercise 17.25 to show that the precessional angular velocity vector
of the gyroscope is given by

��= G

c2��x�3
[
3��J · �̂x� �̂x− �J

]
�

where �x is the position vector of the gyroscope relative to the centre of the massive
body. Show that this result agrees with that derived in Section 13.20 when �x points
along �J .
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Gravitational waves

In the previous chapter, we saw that the linearised field equations of general
relativity could be written in the form of a wave equation

�2h̄�� =−2&T��� (18.1)

provided that the h̄�� satisfy the Lorenz gauge condition

��h̄
�� = 0� (18.2)

This suggests the existence of gravitational waves in an analogous manner to that
in which Maxwell’s equations predict electromagnetic waves. In this chapter, we
discuss in detail the propagation, generation and detection of such gravitational
radiation. As in the previous chapter, we will adopt the viewpoint that h�� is
simply a symmetric tensor field (under global Lorentz transformations) defined
on a flat Minkowski background spacetime.

18.1 Plane gravitational waves and polarisation states

In Section 17.5, we showed that the general solution of the linearised field
equations in vacuo may be written as the superposition of plane-wave solutions
of the form

h̄�� = A�� exp�ik�x
��� (18.3)

where the A�� are constant (and, in general, complex) components of a symmetric
tensor and k� are the constant (real) components of a vector. The Lorenz gauge
condition is satisfied provided that the additional constraint

A��k� = 0 (18.4)

498
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is obeyed. Physical solutions corresponding to propagating plane gravitational
waves in empty space may be obtained by taking the real part of (18.3):

h̄�� =  
A�� exp�ik�x
���

= 1
2A

�� exp�ik�x
��+ 1

2�A
���∗ exp�−ik�x���

which is clearly just a superposition of two plane waves of the form (18.3).
The constants A�� are the components of the amplitude tensor, and the k� ≡

���k� are the components of the 4-wavevector. It is conventional to denote
the components of the 4-wavevector by 
k�� = ��/c� �k�, where �k is the spatial
3-wavevector in the direction of propagation and � is the angular frequency of
the wave. The nullity of k implies that �2 = c2��k�2, and so both the group and
phase velocity of a gravitational wave are equal to the speed of light.

Since A�� =A��, the amplitude tensor has 10 different (complex) components,
but the four Lorenz gauge conditions (18.4) reduce the number of independent
components to six. Moreover, we still have the freedom to make a further gauge
transformation of the form (17.5), which will preserve the Lorenz gauge provided
that we choose the four functions ���x� so that they satisfy �2��= 0. As we show
below, this may be used to reduce the number of independent components in the
amplitude matrix from six to just two. This results in two possible polarisations
for plane gravitational waves.

It is convenient to consider the concrete example of a plane gravitational
wave propagating in the x3-direction, in which case the components of the 4-
wavevector are


k��= �k�0�0� k�� (18.5)

where k = �/c. The Lorenz gauge condition (18.4) then immediately gives
A�3 = A�0. Together with the symmetry of the amplitude tensor, this implies
that all the components A�� can be expressed in terms of the six quantities
A00�A01�A02�A11�A12�A22:


A���=

⎛⎜⎜⎜⎝
A00 A01 A02 A00

A01 A11 A12 A01

A02 A12 A22 A02

A00 A01 A02 A00

⎞⎟⎟⎟⎠ �

We may now perform a gauge transformation of the form (17.5) to simplify the
amplitude tensor still further. To preserve the Lorenz gauge condition we must
ensure that �2�� = 0. A suitable transformation, which satisfies this condition, is
given by

�� = �� exp�ik�x
���
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where the �� are constants. Substituting this expression into the transformation
law (17.12) for the trace reverse tensor h̄��, which we assume to be of the form
(18.3), one quickly finds that the amplitude tensor transforms as

A′�� = A��− i��k�− i��k�+ i�����k�� (18.6)

Using the expression (18.5) for the 4-wavevector and the result (18.6), we obtain

A′00 = A00− ik��0+ �3�� A′11 = A11− ik��0− �3��

A′01 = A01− ik�1� A′12 = A12�

A′02 = A02− ik�2� A′22 = A22− ik��0− �3��

Now, by choosing the constants �� as follows,

�0 =−i�2A00+A11+A22�/�4k�� �1 =−iA01/k�

�2 =−iA02/k� �3 =−i�2A00−A11−A22�/�4k��

we obtain

A′00 = A′01 = A′02 = 0 and A′11 =−A′22�
On dropping primes, the first condition means that only A11�A12 and A22 are

non-zero. Moreover, the second condition means that only two of these can be
specified independently. Choosing A11 ≡ a and A12 ≡ b as the two independent
(in general, complex) components in our new gauge, we thus have


A
��
TT�=

⎛⎜⎜⎜⎝
0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

⎞⎟⎟⎟⎠ � (18.7)

for a wave travelling in the x3-direction. As indicated, the new gauge we have
adopted is known as the transverse-traceless gauge (or TT gauge), which we will
discuss in more detail in Section 18.3. For now we simply note that (18.7) implies
h̄TT = 0= hTT (hence the term traceless) and h̄

��
TT = h

��
TT for our plane wave.

It is also convenient to introduce the two linear polarisation tensors e��1 and
e
��
2 , the components of which are obtained by setting a= 1� b= 0 and a= 0� b= 1
respectively in (18.7). The general amplitude tensor in the TT gauge for a wave
travelling in the x3-direction can then be written as

A
��
TT = ae

��
1 +be

��
2 �

It follows that all possible polarisations of the gravitational wave may be obtained
by superposing just two polarisations, with arbitrary amplitudes and relative
phases.
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18.2 Analogy between gravitational and electromagnetic waves

Before going on to discuss gravitational waves in more detail, it is instructive to
illustrate the close analogy with electromagnetic waves. By adopting the Lorenz
gauge condition ��A

� = 0, the electromagnetic field equations in free space take
the form �2A� = 0. These admit plane-wave solutions of the form

A� = 
Q� exp�ik�x
����

where the Q� are the constant components of the amplitude vector. The field
equations again imply that the 4-wavevector k is null and the Lorenz gauge
condition requires that Q�k� = 0, thereby reducing the number of independent
components in the amplitude vector to three. In particular, if we again consider
a wave propagating in the x3-direction then 
k�� = �k�0�0� k� and the Lorenz
gauge condition implies that Q0 =Q3, so that


Q��= �Q0�Q1�Q2�Q0��

The Lorenz gauge condition is preserved by any further gauge transformation
of the form A� → A�+ ���, provided that �2� = 0. An appropriate gauge
transformation that satisfies this condition is

� = � exp�ik�x
���

where � is a constant. This yields Q′� =Q�+ i�k�, and so

Q′0 =Q0+ i�k� Q′1 =Q1� Q′2 =Q2�

By choosing � = −iQ0/k, on dropping primes we have Q0 = 0. In the new
gauge, the amplitude vector has just two independent components, Q1 and Q2,
and the electromagnetic fields are transverse to the direction of propagation. By
introducing the two linear polarisation vectors

e
�
1 = �0�1�0�0� and e

�
2 = �0�0�1�0��

we may write the general amplitude vector as

Q� = ae
�
1 +be

�
2 �

where a and b are arbitrary (in general, complex) constants.
If b= 0 then as the electromagnetic wave passes a free positive test charge this

will oscillate in the x1-direction with a magnitude that varies sinusoidally with
time. Similarly, if a= 0 then the test charge will oscillate in the x2-direction. The
particular combinations of linear polarisations given by b = ±ia give circularly
polarised waves, in which the mutually orthogonal linear oscillations combine in
such a way that the test charge moves in a circle.
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18.3 Transforming to the transverse-traceless gauge

In Section 18.1, we considered only the transformation into the TT gauge of a
plane gravitational wave travelling in the x3-direction. We now consider a general
gravitational perturbation h̄�� satisfying the empty-space linearised field equation
and the Lorenz gauge condition. As discussed previously, a gauge transformation
of the form (17.5) will preserve the Lorenz gauge condition provided that the four
functions ���x� satisfy �2�� = 0. From (17.12), the trace-reverse field tensor
transforms as

h̄′�� = h̄��− ����− ����+����#�
#�

Since the components h̄�� also satisfy the in vacuo wave equation �2h̄�� = 0,
this gauge transformation may be used to set any four linear combinations of the
h̄′�� to zero. The TT gauge is defined by choosing

h̄0iTT ≡ 0 and h̄TT ≡ 0� (18.8)

This last condition means that h̄��TT = h
��
TT, and these quantities may therefore

be used interchangeably. Moreover, setting � = 0 and � = j respectively in the
Lorenz gauge condition ��h̄

��
TT = 0, and using (18.8), gives the constraints

�0h̄
00
TT = 0 and �ih̄

ij
TT = 0� (18.9)

We note that, if the gravitational field perturbation is non-stationary (i.e. it depends
on t), as for a general gravitational wave disturbance, the first constraint in (18.9)
implies that h00TT also vanishes and so h

�0
TT = 0 for all �. In other words, in this

case only the spatial components hijTT are non-zero.
Let us now consider the particular case of an arbitrary plane gravitational wave

of the form (18.3) and satisfying the Lorenz gauge condition. The conditions
(18.4) immediately imply that

A0i
TT = 0 and �ATT�

�
� = 0�

Moreover, the conditions (18.9) also require that

A00
TT = 0 and A

ij
TTkj = 0�

These last conditions ensure that, quite generally, a plane gravitational wave is
transverse, like electromagnetic waves.

The above conditions tell us the constraints on the form of A
��
TT. We must

now consider how to construct this tensor for a plane wave with a given spatial
wavevector �k and amplitude matrix A��. First, it is clear that we need consider
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only the spatial components Aij
TT, since the remaining components are all zero.

Moreover, from the above conditions, this spatial tensor must be orthogonal to �k
and traceless. We therefore introduce the spatial projection tensor

Pij ≡ �ij−ninj�

which projects spatial tensor components onto the surface orthogonal to the unit
spatial vector with components ni. The action of the projection tensor is easily
illustrated by applying it to an arbitrary spatial vector vi. One quickly finds that
niP

i
jv

j = 0 and Pi
kP

k
j v

j = Pi
jv

j , as required. In the case of our plane gravitational

wave, we choose ni to lie in the direction of the spatial wavevector, so that ni= k̂i,
and thus obtain the components of the spatial amplitude tensor that are transverse
to the direction of propagation, namely

A
ij
T = Pi

kP
j
l A

kl�

The trace of this tensor is given by �AT�
i
i = PklA

kl, which in general does not
vanish. Using the fact that Pi

i = 3−1= 2, we may however construct a traceless

tensor that still remains transverse to �k; this is given by

A
ij
TT = �Pi

kP
j
l − 1

2P
ijPkl�A

kl� (18.10)

For a plane gravitational wave travelling in the x3-direction, so that 
k�� =
�k�0�0� k�, it is a simple matter to verify that (18.10) produces an amplitude
matrix of the form

[
A
��
TT

]=
⎛⎜⎜⎜⎝
0 0 0 0
0 1

2�A
11−A22� A12 0

0 A12 1
2�A

22−A11� 0
0 0 0 0

⎞⎟⎟⎟⎠ � (18.11)

which agrees with that given in (18.7). In fact this result illustrates that there is
a quick and simple algorithm for transforming a plane wave travelling along one
of the coordinate directions into the TT gauge. We see that the transformation
(18.11) corresponds to setting to zero all components that are not transverse to
the direction of wave propagation and subtracting one-half the resulting trace
from the remaining diagonal elements, to make the final tensor traceless. There
is, however, nothing special about our choice of x3-direction and so the above
prescription must be true for a plane wave travelling in any of the three coordinate
directions.
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18.4 The effect of a gravitational wave on free particles

Let us now consider the motion of a set of test particles, initially at rest, in the
presence of a gravitational wave. In fact, in the latter case it is not enough to
consider the trajectory of just a single test particle, as we discuss below. To obtain
a coordinate-independent measure of the effects of the wave, it is necessary to
consider the relative motion of a set of nearby particles.

First consider a single free test particle, whose 4-velocity u# must satisfy the
geodesic equation

du#

d�
+ #

��u
�u� = 0�

Suppose that the particle is initially at rest in our chosen coordinate system, so
that 
u��= c�1�0�0�0�. The geodesic equation then reads

du#

d�
=−c2 #

00 =− 1
2c

2�#���0h�0+ �0h0�− ��h00��

where in the last equality we have used (17.6) to obtain the connection coefficients
to first order in terms of the derivatives of h��. Let us now adopt the TT gauge,
which we may do for any general gravitational wave disturbance in vacuo. From
the discussion in Section 18.3, we know that hTT�0 = 0 for all values of �. Thus,
initially, du#/d� = 0 and so the particle will still be at rest a moment later.
The argument may then be repeated, showing that the particle remains at rest
forever, regardless of the passing of the gravitational wave. In other words 
u#�=
c�1�0�0�0� is a solution of the geodesic equation in this case, as may readily be
verified by direct substitution.

What has gone wrong here? The key point is that ‘at rest’ in this context means
simply that the particle has constant spatial coordinates. What we have uncovered
is that by choosing the TT gauge we have found a coordinate system that stays
attached to individual particles. This has no coordinate-invariant physical meaning.
To obtain a proper physical interpretation of the effect of a passing gravitational
wave, we must consider a set of nearby particles.

Let us therefore consider a cloud of non-interacting free test particles. From
the above discussion, the worldlines of the particles are curves having constant
spatial coordinates. Thus the small spacelike vector 
���= �0� �1� �2� �3� giving
the coordinate separation between any two nearby particles is constant (this may
also be shown explicitly by demonstrating that the equation of geodesic deviation
(7.24) has �� = constant as a solution in this case). Although the coordinate
separation of the particles is constant, this does not mean that their physical spatial
separation l is constant. The latter is given by

l2 =−gij�i�j = ��ij−hij��
i�j�
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where not all the hij are constant (in any gauge) and i� j = 1�2�3. Thus we see
that the passing of a gravitational wave will indeed cause the physical separation
of nearby particles to vary. It is convenient at this point to introduce the quantities

�i = �i+ 1
2h

i
k�

k� (18.12)

One then finds straightforwardly that, in terms of these new variables (to first
order in h��),

l2 = �ij�
i�j�

which is again valid in any gauge. Thus, the �i may be regarded as the components
of a position vector giving the correct physical spatial separation when contracted
with the Euclidean metric tensor �ij .
Let us now discuss the particular case of a plane gravitational wave propagating

in the x3-direction and consider a set of particles initially at rest in the �x1� x2�-
plane, i.e. the plane perpendicular to the direction of wave propagation. Thus,
the coordinate separation vector between any two particles has �3 = 0. In the
TT gauge, however, we see from (18.7) that �hTT�

3
k = 0, and so (18.12) implies

that �3 = 0 throughout the passage of the wave. Hence the particles remain in
the plane perpendicular to the wave propagation direction; it is only the physical
separations in the transverse directions that vary. Thus the gravitational wave is
transverse not only in its mathematical description

(
h
��
TT

)
but also in its physical

effects.
We first consider the effect of the passage of a gravitational wave with A�� =

ae
��
1 (i.e. a single polarisation), where we take a to be real and positive for

convenience, and e
��
1 was introduced at the end of Section 18.1. Remembering

that h̄��TT = h
��
TT, we thus have

h
��
TT = ae

��
1 cosk�x

� = ae
��
1 cosk�x0−x3�

where k= �/c, and using (18.12) we quickly find that[
�i
]= ��1� �2�0�− 1

2a cosk�x
0−x3���1�−�2�0��

Thus, for two particles initially separated in the x1-direction ��1 �= 0� the physical
separation in the x1-direction will oscillate, and likewise for two particles with an
initial x2 separation. Let us consider a set of particles that, when cosk�x0−x3�= 0,
form a circle in the �x1� x2�-plane with a reference particle at the centre, with
respect to which we refer to the other particles, using the �i-vector components.
Then, as the wave passes, the particles remain coplanar and at other times have
spatial separations as illustrated in Figure 18.1.
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ζ 
1

ζ 
2

Figure 18.1 The solid dots show the effect of a plane gravitational wave with
A�� = ae

��
1 on a transverse circle of particles. The initial configuration of parti-

cles is shown by the open dots. From left to right, k�x0 − x3� is equal to
2n��

(
2n+ 1

2

)
�� �2n+1���

(
2n+ 3

2

)
� respectively.

ζ1

ζ 
2

Figure 18.2 The solid dots show the effect of a plane gravitational wave with
A�� = be

��
2 on a transverse circle of particles. The initial configuration of

particles is shown by the open dots. From left to right, k�x0− x3� is equal to
2n��

(
2n+ 1

2

)
�� �2n+1���

(
2n+ 3

2

)
� respectively.

We may straightforwardly repeat our analysis for a gravitational wave with the
other polarisation, i.e. A�� = be

��
2 again with real and positive b. In this case one

finds that


�i�= ��1� �2�0�− 1
2b cosk�x

0−x3���2� �1�0��

and this results in our initial circle of particles having spatial separations as
illustrated in Figure 18.2, which may be obtained from Figure 18.1 by a 45	
rotation.

Having determined the relative displacements of test particles induced by the
two separate polarisations of a plane gravitational wave, it is straightforward to
find the effect in the general case in which A�� = ae

��
1 + be

��
1 , where a and b
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ζ 
1

ζ 
2

Figure 18.3 The solid dots show the effect of a plane gravitational wave with
A�� = a

(
e
��
1 + ie

��
2

)
(i.e. right-handed circular polarisation) on a transverse circle

of particles. The initial configuration of particles is shown by the open dots.
From left to right, k�x0−x3� is equal to 2n��

(
2n+ 1

2

)
�� �2n+1���

(
2n+ 3

2

)
�

respectively.

may, in general, be complex. Of particular interest are the left- and right-handed
circularly polarised modes, for which b=−ia and b= ia respectively. The effect
of, for example, a right-handed circularly polarised wave would be to distort our
initial circle of particles into an ellipse and to rotate the ellipse in a right-handed
sense, as illustrated in Figure 18.3. Note that the individual particles do not move
around the ring but instead execute small circular ‘epicycles’.

18.5 The generation of gravitational waves

Let us suppose that we have a matter distribution (the source) localised near the
origin O of our coordinate system that we and take our field point �x to be a
distance r from O that is large compared with the spatial extent of the source. We
may therefore use the compact-source approximation discussed in Section 17.8.
Without loss of generality, we may take our spatial coordinates xi to correspond
to the ‘centre-of-momentum’ frame of the source particles, in which case from
(17.38) we have

h̄00 =−4GM

c2r
� h̄i0 = h̄0i = 0� (18.13)

The remaining (spatial) components of the gravitational field are given by
the integrated stress within the source, which may be written in terms of the
quadrupole formula (17.44) as

h̄ij�ct� �x�=−2G

c6r

[
d2Iij�ct′�

dt′2

]
r

� (18.14)
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In this expression 
 �r denotes that the expression in the brackets is evaluated at
the retarded time ct′ = ct− r, and the quadrupole-moment tensor of the source is

Iij�ct�=
∫
T 00�ct� �y�yiyj d3�y� (18.15)

Thus, we see that, in the compact-source approximation, the far field of the source
falls into two parts: a steady field (18.13) from the total constant ‘mass’ M of the
source and a possibly varying field (18.14) arising from the integrated internal
stresses of the source. It is clearly the latter that will be responsible for any emitted
gravitational radiation.

For slowly moving source particles we have T 00 ≈ �c2, where � is the proper
density of the source, and so the integral (18.15) may be written as

Iij�ct�= c2
∫
��ct� �x�xixj d3�x� (18.16)

Thus, the gravitational wave produced by an isolated non-relativistic source is
proportional to the second derivative of the quadrupole moment of the matter-
density distribution. By contrast, the leading contribution to electromagnetic radi-
ation is the first derivative of the dipole moment of the charge density distribution.
This fundamental difference between the two theories may be easily understood
from elementary considerations. Using � to denote either the proper mass density
or the proper charge density, the volume integral

∫
�dV over the source is constant

in time for both electromagnetism and linearised gravitation and so generates no
radiation. Now consider the next moment

∫
�xi dV , i.e. the dipole moment. For

electromagnetism, this gives the position of the centre of charge of the source,
which can move with time and hence have a non-zero time derivative; this
provides the dominant contribution in the generation of electromagnetic radiation.
For gravitation, however,

∫
�xi dV gives the centre of mass of the source and,

for an isolated system, conservation of momentum means that it cannot change
with time and so cannot contribute to the generation of gravitational waves. Thus,
it is the generally much smaller quadrupole moment, which measures the shape
of the source, that is dominant in generating gravitational waves. This fact, and
the weak coupling of gravitation to matter, means that gravitational radiation
is much weaker than electromagnetic radiation. As a corollary, we note that a
spherically symmetric system has a zero quadrupole moment and thus cannot emit
gravitational radiation.

As an illustration of the generation of gravitational waves, let us consider two
particles A and B of equal mass M moving (non-relativistically) in circular orbits
of radius a about their common centre of mass with an angular speed � (see
Figure 18.4). This might represent a simple model of a binary star system, in
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field
point

Figure 18.4 Two particles A, B of equal mass M rotating at angular speed �
in circular orbits of radius a about their common centre of mass.

which mutual gravitational attraction keeps the particles (stars) in orbit. In this
case, treating the motion in the Newtonian limit, we require that

�=
(
GM

4a3

)1/2

� (18.17)

Alternatively, in a more terrestrial setting, one might imagine the particles to
be connected by a light rod of length 2a that is spun with constant angular
velocity about its centre point, in which case � need not be related to M and a.
For simplicity, we shall assume the particle orbits to lie in the plane x3 = 0, as
illustrated in Figure 18.4.

At any time t, the coordinates of particles A and B may be written[
xiA
]= �a cos�t�a sin�t�0��

[
xiB
]=−�a cos�t�a sin�t�0��

Thus, the proper density of the source is given by

��ct� �x� = M
[
��x1−a cos�t���x2−a sin�t�

+ ��x1+a cos�t���x2+a sin�t�
]
��x3��

On substituting into (18.16) and making use of the standard trigonometric identi-
ties 2 cos2�t= 1+cos2�t�2 sin2�t= 1−cos2�t and 2 sin�t cos�t = sin 2�t,
one quickly finds the quadrupole-moment tensor,


Iij�ct��=Mc2a2

⎛⎜⎝1+ cos2�t sin 2�t 0
sin 2�t 1− cos2�t 0

0 0 0

⎞⎟⎠ � (18.18)
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Inserting this expression into the quadrupole formula (18.14) and performing the
necessary differentiations, we finally obtain


h̄ij�ct� �x��= 8GMa2�2

c4r

⎛⎜⎝cos2��t− r/c� sin 2��t− r/c� 0
sin 2��t− r/c� − cos2��t− r/c� 0

0 0 0

⎞⎟⎠ �

We note that, for the physical arrangement illustrated in Figure 18.4, the coordi-
nates xi already correspond to the centre-of-momentum frame of the source and
so the remaining components of h̄�� are given by (18.13).
In fact, one is often only interested in the radiative part h̄��rad of the gravitational

field (i.e. the part corresponding only to gravitational radiation). In general, the
remaining components of h̄�0rad may be found from the spatial components h̄

ij
rad

using the Lorenz gauge condition. For the two-particle system discussed above,
we see from (18.13) that all the remaining components h̄�0rad are zero, and so

[
h̄
��
rad�ct� �x�

]= 8GMa2�2

c4r

⎛⎜⎜⎜⎝
0 0 0 0
0 cos2��t− r/c� sin 2��t− r/c� 0
0 sin 2��t− r/c� − cos2��t− r/c� 0
0 0 0 0

⎞⎟⎟⎟⎠ �

(18.19)

Since the amplitude goes as 1/r, the gravitational perturbation has the form of
a spherical wave rather than a plane wave. Nevertheless, for large r the wave
is well approximated by a plane wave in a small range of angles about any
particular direction. We also note that the angular frequency of the wave is twice
the rotational angular frequency of the two particles.

It is of interest to determine the polarisation of the gravitational waves received
by observers located in different directions relative to the orbiting particles. To
do this, one must transform to the TT gauge appropriate to each observer. Let us
first consider an observer located on the x3-axis (at some large distance from O).
By comparing with (18.7), we see that (18.19) is already in transverse-traceless
form for a wave travelling in the x3-direction. Remembering that h̄��TT = h

��
TT and

using the fact that r = x3, it is straightforward to show that(
hTTrad

)�� = 8GMa2�2

c4r
 [(e��1 − ie

��
2

)
exp2i��t−x3/c�

]
� (18.20)

where e
��
1 and e

��
2 are the linear polarisation tensors introduced at the end of

Section 18.1. Since the amplitude tensor has the form A�� = ae
��
1 + be

��
2 with

b = −ia, this corresponds to right-handed circularly polarised radiation, as one
might expect.
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Let us now consider an observer located on the x1-axis. The form (18.19) is
not in the transverse-traceless gauge for a wave travelling in the x1-direction. To
transform to the TT gauge, we follow the prescription outlined in Section 18.3.
We first set to zero all non- transverse components, i.e. all entries except those
with �i� j� = �2�2�, (2, 3), (3, 2) and (3, 3). We then subtract one-half of the
resulting trace from the remaining diagonal elements (2, 2) and (3, 3) to make the
final tensor traceless. Remembering that r = x1 in this case, and that h̄��TT = h

��
TT,

we obtain

[(
hTTrad�

���ct� �x)] = 4GMa2�2

c4r

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 − cos2��t− r/c� 0
0 0 0 cos2��t− r/c�

⎞⎟⎟⎟⎠
= 4GMa2�2

c4r
 [−ẽ��1 exp2i��t−x1/c�

]
� (18.21)

where ẽ
��
1 is a linear polarisation tensor analogous to those used above, but for

propagation in the x1- direction. Thus, the gravitational waves received by the
observer are linearly polarised in the ‘+’ orientation illustrated in Figure 18.1 –
again as one might have expected.

18.6 Energy flow in gravitational waves

Physically, one would expect gravitational waves to carry energy away from a
radiating source. As discussed in Section 17.11, however, the task of assigning
an energy density to a gravitational field is notoriously difficult. Nevertheless,
bearing in mind the caveats made in Section 17.11, from (17.64) an appropriate
expression for the energy–momentum tensor of the gravitational field in vacuo is

t�� =
c4

32�G

〈
���h̄�#���h̄

�# −2��#h̄
�#����h̄���− 1

2���h̄���h̄
〉
�

where �· · · � denotes an average over a small region at each point in spacetime.
If we adopt the TT gauge, however, the Lorenz gauge condition ��h̄

��
TT = 0 is

automatically satisfied, and also h̄TT = 0 and h̄
��
TT = h

��
TT. Thus in this gauge the

energy–momentum tensor in vacuo reduces to

t�� =
c4

32�G

〈(
��h

TT
�#

)
��h

�#
TT

〉
�
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We will assume further that we are considering only the radiative part of the
gravitational field, in which case we know from the discussion in Section 18.3
that h�0TT = 0, and so

t�� =
c4

32�G

〈(
��h

TT
ij

)
��h

ij
TT

〉
� (18.22)

In particular, from our discussion of energy–momentum tensors in Section 8.1, at
any given time and spatial position the energy flux (i.e. the energy crossing unit
area per unit time) of the gravitational radiation in the unit spatial direction ni is

F��n�=−ct0knk� (18.23)

where the minus sign appears as a result of our choice of metric signature, since
then F��n�=−c�kjt

0knj = �kjt
0knj , as required.

As an illustration of these general results, let us calculate the energy flux in the
direction of propagation for a plane gravitational wave of the form

h
ij
TT = A

ij
TT cosk�x

��

where Aij
TT are constants and, for convenience, we have chosen the arbitrary phase

of the wave in such a way that the amplitude matrix is real. Substituting this
expression into (18.22), and using the fact that �sin2�k�x��� = 1

2 when averaged
over several wavelengths, the energy–momentum tensor reads

t�� =
c4

64�G
k�k�A

ij
TTA

TT
ij � (18.24)

Thus, the flux F in the �k-direction is given by

F =−ct0lk̂l =−
c5

64�G
k0klk̂lA

ij
TTA

TT
ij =

c5

64�G
k0k0A

ij
TTA

TT
ij = ct00� (18.25)

where in the third equality we have used the fact that k0 = ��k� = −klk̂l, since the
wavevector is null. The final expression is simply the energy density associated
with the plane wave multiplied by its speed, and hence makes good physical sense
as the energy flux carried by the wave in its direction of propagation.

Specialising still further, we may calculate the forms of the expressions (18.24)
and (18.25) explicitly for a wave travelling in the x3-direction, in which case
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k��= �k�0�0�−k� where k=�/c and A��
TT is given by (18.7). Thus, in this case,

the energy–momentum tensor (18.24) can be written as


t���=
c2

32�G
�2�a2+b2�

⎛⎜⎜⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎞⎟⎟⎟⎠ �

and the flux in the direction of propagation is

F = c3

32�G
�2�a2+b2�� (18.26)

Clearly, similar results hold for a plane gravitational wave travelling along any
of the coordinate axes.

Using the result (18.26) and the expressions (18.20) and (18.21), we find
that, for the two-particle rotating system considered in the previous section, the
gravitational-wave energy flux at a (large) distance r in the x1- and x3- directions
respectively is

F1 =
c3

32�G
�2��2

(
4GMa2�3

c4r

)2

= 2G

�c5

(
Ma2�3

r

)2

�

F3 = 2
c3

32�G
�2��2

(
8GMa2�3

c4r

)2

= 16G

�c5

(
Ma2�3

r

)2

�

Thus, we see that the energy flux in the x3-direction is eight times that in the
x1-direction (or, by symmetry, in any direction in the x3 = 0 plane). Hence the
energy flux due to the gravitational radiation emitted from this system is highly
anisotropic.

18.7 Energy loss due to gravitational-wave emission

Since gravitational waves carry away energy, we expect energy to be lost at a
corresponding rate by the physical system generating the gravitational radiation.
Let us suppose that the source matter distribution is localised near the origin O of
our coordinates. To calculate the rate at which the physical system loses energy,
we equate it to the energy flux of the emitted gravitational radiation evaluated
over a sphere S of large radius r centered on O. Thus, if E is the energy of the
physical system, we have

dE

dt
=−LGW =−r2

∫
4�

F��er�d�� (18.27)
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where LGW is the total gravitational-wave luminosity, F��er� is the gravitational-
wave energy flux at a radius r in the (unit) radial direction �er and d� is an
element of solid angle.

In general, using (18.22) and (18.23) we may write the gravitational-wave flux
in a unit spatial direction �n as

F��n�=− c4

32�G

〈(
�th

TT
ij

) (
�kh

ij
TT

)〉
nk =− c4

32�G

〈(
�th

TT
ij

) (�n · ��)hijTT〉 �
where we have made the identification x0 ≡ ct and where �t ≡ �/�t. In the second
equality the operator �n · �� returns simply the rate of change of its argument in the
direction �n. Thus, taking �n to lie in the radial direction and writing �r ≡ �/�r, we
have

F��er�=−
c4

32�G

〈(
�th

TT
ij

) (
�rh

ij
TT

)〉
� (18.28)

To obtain a general formula for (18.27), we must calculate the above energy flux
in terms of properties of the source distribution. From the quadrupole formula
(18.14) we have

h̄ij =−2G

c6r

[
Ï ij
]
r �

where Iij is the quadrupole-moment tensor of the source distribution defined in
(18.16), the dots denote d/dt and 
 �r denotes that the expression should be
evaluated at the retarded time ctr = ct− r. It will, in fact, be more convenient to
work in terms of the reduced quadrupole-moment tensor of the source distribution,
which is defined by

Jij = Iij− 1
3�ijI� (18.29)

where I = I
j
j is the trace of the original tensor. One immediately sees that Jij

is simply the traceless version of Iij . As a result, we may write the transverse-
traceless part of the gravitational field tensor as

h
ij
TT = h̄

ij
TT =−

2G

c6r

[
Ï
ij
TT

]
r
=−2G

c6r

[
J̈
ij
TT

]
r
� (18.30)

where J
ij
TT is the transverse-traceless part of (18.29). Since at any point on the

sphere S the direction of gravitational-wave propagation is radial, from (18.10)
we have

J
ij
TT =

(
Pi
kP

j
l − 1

2P
ijPkl

)
Jkl� (18.31)

where Pij = �ij − eire
j
r is the spatial projection tensor, which projects tensor

components onto the spatial surface orthogonal to the radial direction at any point.
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Using (18.30) and the expressions (17.32, 17.33) for the derivatives of time-
retarded quantities, the derivatives in the expression (18.28) for the energy flux
are given by

�th
TT
ij = −

2G

c6r

[...
J
ij
TT

]
r
�

�rh
TT
ij =

2G

c6r2

[
J̈
ij
TT

]
r
+ 2G
c7r

[...
J
ij
TT

]
r
≈ 2G

c7r

[...
J
ij
TT

]
r
�

where, in the second equation, we have retained only the term in 1/r, which
dominates for large r . Substituting these expressions into (18.28) we obtain

F��er�=
G

8�r2c9

〈[...
J
TT
ij

...
J
ij
TT

]
r

〉
�

For convenience, we now use (18.31) to rewrite the product of transverse-traceless
quadrupole moments in terms of products of reduced moments. Denoting the
components eir of the unit radial vector by x̂i, this yields

JTTij J
ij
TT = JijJ

ij−2Jji J
ikx̂j x̂k+ 1

2J
ijJklx̂ix̂j x̂kx̂l�

where we have made use of the fact that Jij is traceless. Thus, the total
gravitational-wave luminosity is given by

LGW =
G

8�c9

∫
4�

〈[...
J ij

...
J
ij−2

...
J
j
i

...
J
ikx̂jx̂k+ 1

2

...
J
ij ...
J
klx̂ix̂j x̂kx̂l

]
r

〉
d��

Since the reduced quadrupole moment Jij is defined as an integral over all space,
it does not depend on the angular coordinates and so may be taken outside the
integral. The three remaining integrals are easily evaluated to give∫

4�
d�= 4��

∫
4�

x̂ix̂j d�= 4�
3
�ij�∫

4�
x̂ix̂j x̂kx̂l d�= 4�

15
��ij�kl+�ik�jl+�il�jk��

The first result is trivial. The second result may be obtained by noting that
integration over all angles yields zero for i �= j, whereas on raising one index and
setting i= j the integrand becomes x̂ix̂

i = 1 and so the integral equals 4�. Similar
reasoning leads to the third result. Substituting these three results into (18.27) and
simplifying, one finally obtains

dE

dt
=−LGW =−

G

5c9

〈[...
J ij

...
J
ij
]
r

〉
� (18.32)
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As an illustration, let us apply the general formula (18.32) to the specific exam-
ple of the two-particle rotating system discussed in Section 18.5. The quadrupole-
moment tensor Iij for this system is given in (18.18), from which we quickly find
that the reduced quadrupole-moment tensor (18.29) is given by


J ij�=Mc2a2

⎛⎜⎝
1
3 + cos2�t sin 2�t 0
sin 2�t 1

3 − cos2�t 0
0 0 −2

3

⎞⎟⎠ �

The corresponding third time derivative reads



...
J
ij�= 8Mc2a2�3

⎛⎜⎝ sin 2�t − cos2�t 0
− cos2�t − sin 2�t 0

0 0 0

⎞⎟⎠ �

and so (18.32) becomes

dE

dt
=−LGW = − G

5c9
�8Mc2a2�3�2

〈
2 sin2 2��t− r/c�+2 cos2 2��t− r/c�

〉
= − G

5c5
�128M2a4�6�� (18.33)

18.8 Spin-up of binary systems: the binary pulsar PSR B1913+16

As discussed in Section 18.5, our simple two-particle rotating system can be used
to model an equal-mass astrophysical binary system, in which case � is given by
(18.17). Inserting this expression into (18.33), we find that the total energy E of
the binary system obeys

dE

dt
=−2

5
G4M5

a5
� (18.34)

Treating the binary in the Newtonian limit, the total energy is simply

E = 1
2
�2Mv2�− GM2

2a
�

where v is the orbital speed of either object. Using the radial equation of motion
Mv2/a=GM2/�2a�2, we may write

E =−GM2

4a
=−Mv2�

from which we see that the total energy is negative, since the binary system is
gravitationally bound. Moreover, we note that as E decreases (i.e. becomes more
negative), according to (18.34) the radius a of the orbit must decrease whereas
the orbital speed v must increase. Thus, the emission of gravitational radiation
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causes the binary system to ‘spin-up’, ending ultimately in the coalescence of the
two objects.

For comparison with observations of binary systems, the most useful way of
characterising the spin-up is by the rate of change of the orbital period P. For our
simple system P = 2�a/v, and so we may write the total energy as

E =−
(
�2GM5

4

)1/3

P−2/3� (18.35)

Differentiating this expression with respect to t and inverting, we find that the
rate of change of the orbital period is related to the rate of change of energy by

dP

dt
=−3P

2E
dE

dt
� (18.36)

Substituting a=−GM2/4E into (18.34) and then substituting for E using (18.35),
we find that (18.36) can be written as follows:

dP

dt
=−96

5
41/3�

(
2�GM

P

)5/3

�

This expression gives the rate of change of the orbital period solely in terms
of some constants and P itself, which can be determined straightforwardly from
observations.

The spin-up of a binary system resulting from the emission of gravitational
waves has already been observed in the binary pulsar PSR B1913+ 16. This
system was discovered in 1974 by Hulse and Taylor and consists of a pulsar and
an unseen companion, each with a mass of about 1�4M�; the orbital period is
7.75 hours. The pulsar provides a very accurate clock, so that the change in the
orbital period as the system loses energy can be measured. In practice, our results
above have to be modified slightly to allow for the considerable eccentricity of
the orbit �e= 0�617�, but this is relatively straightforward. Timing measurements
made by Taylor and colleagues over several decades show that the decrease in
orbital period as a function of time is in agreement with that predicted from
the emission of gravitational radiation, to within one-third of one per cent. This
constitutes an additional, and highly accurate, experimental verification of general
relativity (albeit in the weak-field regime), for which Hulse and Taylor received
the Nobel Prize in Physics in 1993.

18.9 The detection of gravitational waves

Although the measurement of the spin-up of the binary pulsar PSR B1913+ 16
provides indirect evidence of the existence of gravitational radiation, a major goal
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of modern experimental astrophysics is to make a direct detection of gravitational
waves by measuring their influence on some test bodies.

There are two distinct approaches to gravitational-wave detection, ‘free-particle’
and ‘resonant’ detection. In our discussion in Section 18.4, we found that the
effect of a gravitational wave on a cloud of free test particles is a variation in
their relative separations. Thus one may attempt to detect gravitational waves by
measuring the separations of a set of free test particles as a function of time,
which is the basis of free-particle detection experiments. Alternatively, if the
particles are not free, but are instead the constituent particles of some elastic
body, then tidal forces on the particles induced by a gravitational wave will give
rise to vibrations in the body, which one can attempt to measure. In particular, if
the incident gravitational radiation were in the form of a plane wave of a given
frequency then the amplitude of the induced vibrations would be enhanced if
the elastic body were designed to have a resonant frequency close to that of the
incident wave. This is the basis of resonant detection.

Resonant detectors are the older type of realistic gravitational-wave detector,
having been pioneered by Weber in the early 1960s and refined by him and
others over several decades. We will concentrate our discussion, however, on
free-particle gravitational-wave detectors, which have gained in popularity over
recent years and are also very much easier to analyse. In our discussion of the
motion of free test particles in the presence of a passing gravitational wave, we
showed in Section 18.4 that the relative physical separation l of two free particles
varies as

l2 = ��ij−hij��
i�j�

where �i is the separation vector between the two particles. In the absence of a
gravitational wave, the undisturbed distance l0 between the particles is given by
l0 = �ij�

i�j . To first order in hij , the fractional change in the physical separation
of the particles is therefore given by

�l

l0
=− 1

2hijn
inj�

where ni is a unit vector in the direction of separation of the two particles. Thus,
we see that the passing of a gravitational wave produces a linear strain, i.e. the
change in the relative separation of the particles is proportional to their original
undisturbed separation. For typical astrophysical sources, the largest strain one
might reasonably expect to receive at the Earth is of order

�l

l
∼ 10−21�
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Thus, even if the two test masses were separated by a distance l0 = 1km, the
change �l in this distance is of order 10−16 cm, which corresponds to ∼10−6 of
the size of the atoms that comprise the test masses!

Fortunately, laser Michelson interferometers provide a means of measuring
such tiny changes in the separation of the test masses. The principle of operation
of such an experiment is quite straightforward and is illustrated in Figure 18.5.
The basic system of made up of three test masses. Two have mirrorsM attached to
them, and to the third is attached a beamsplitter B. Each mass is suspended from
a support that isolates the mass from external vibrations but allows it to swing
freely in the horizontal direction. A laser L (with typical wavelength �∼10−4 cm)
is aimed at B, which splits the laser light into two beams directed down the arms
of the interferometer. The beams are reflected by the mirrors at the end of each
arm and then recombined in B before being detected in the detector D. When
the beams are recombined they will interfere constructively if the lengths of the
two arms L1 and L2 differ by an amount �L = n� and will interfere destruc-
tively if �L = �n+ 1

2��, where n is an integer. The system is arranged so that
the beams interfere destructively if all three masses are perfectly stationary. In
practice, the experimental set-up is more sophisticated than the simple Michelson

L

D

B P M

M

P

Figure 18.5 A schematic representation of a laser Michelson interferometer
designed to detect gravitational waves (see the main text for details).
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interferometer we have discussed. The most important improvement is the intro-
duction of an additional test mass with a partially reflecting mirror P in each arm
of the interferometer, thereby forming a ‘cavity’, as illustrated in Figure 18.5.
A typical photon may travel up and down this cavity many times before eventually
arriving at the beamsplitter, thereby greatly increasing the effective arm length of
the interferometer. The use of large laser Michelson interferometers as a means
for attempting to detect gravitational waves is currently being actively pursued
by a number of laboratories around the world.

Exercises

18.1 For a plane gravitational wave of the form h̄�� = A�� exp�ik�x
��, show that, under

the gauge transformation (17.5) with �� = �� exp�ik�x
��, the amplitude tensor trans-

forms as

A′�� = A��− i��k�− i��k�+ i�����k��

18.2 The trace-reverse gravitational-field tensor transforms as

h̄′�� = h̄��− ����− ����+����#�
#�

Since the components h̄�� also satisfy the in vacuo wave equation �2h̄�� = 0, show
that this gauge transformation may be used to set any four linear combinations of
the h̄′�� to zero.

18.3 The transverse-traceless (TT) gauge is defined by choosing

h̄0i
TT = 0 and h̄TT = 0�

Hence show that

�0h̄
00
TT = 0 and �ih̄

ij
TT = 0�

18.4 For a plane gravitational wave of the form h̄�� =A�� exp�ik�x
��, show that the four

conditions in Exercise 18.3 become

A0i
TT = 0� �ATT�

�
� = 0� A00

TT = 0� A
ij
TTkj = 0�

18.5 Show that the spatial projection tensor Pij ≡ �ij −ninj , where ni is a unit vector,
satisfies the relations

niP
i
jv

j = 0 and Pi
kP

k
j v

j = Pi
jv

j�

and interpret these relations geometrically.
18.6 The quantities Aij are the spatial components of the amplitude tensor for a plane

gravitational wave with spatial wavevector ki. Consider the tensor

A
ij
TT =

(
Pi
kP

j
l − 1

2P
ijPkl

)
Akl�



Exercises 521

where Pij = �ij − k̂ik̂j . Show that Aij
TT is both transverse, so that Aij

TTkj = 0, and
traceless.

18.7 Use your answer to Exercise 18.6 to show that, for a plane gravitational wave
propagating in the x1-direction,


A
��
TT�=

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 1
2 �A

22−A33� A23

0 0 A23 1
2 �A

33−A22�

⎞⎟⎟⎟⎠ �

18.8 In the TT gauge show that, to first order in h��,

 �
00 = 0 and  �

0� = 1
2�0�hTT�

�
� �

18.9 Consider two nearby particles, initially at rest in our chosen coordinate system x�,
which have a coordinate separation given by a small spacelike connecting vector

��� = �0� �1� �2� �3�. During the passage of a gravitational wave show that, to
first order in h�� in the TT gauge, the equation of geodesic deviation may be
written as

D2��

D�2
= c2R�

00��
� = 1

2c
2 ��0�0h

�
� � �

��

Show further that, to the same order of approximation, in the TT gauge one has

D2��

D�2
= d2��

d�2
+ 1

2c
2 ��0�0h

�
� � �

��

Hence show that �� = constant is a solution of the geodesic equation, and so the
coordinate separation of the two particles remains unaltered during the passage of
the gravitational wave.

18.10 If �i is the spatial coordinate separation vector of two nearby particles, show that
the square of their physical separation is given by

l2 = �ij�
i�j�

where �i = �i+ 1
2h

i
k�

k. Show that, during the passage of a gravitational wave with
A�� = be

��
2 that is travelling in the x3-direction,


�i�= ��1� �2�0�− 1
2b cosk�x

0−x3���2� �1�0��

18.11 For two test particles reacting to the passage of a circularly polarised gravitational
wave, show that one particle moves in a circle with respect to the other.

18.12 For the two-particle system considered in Section 18.5, verify that

[
h̄
��
rad�ct� �x�

]= 8GMa2�2

c4r

⎛⎜⎜⎜⎝
0 0 0 0

0 cos2��t− r/c� sin 2��t− r/c� 0

0 sin 2��t− r/c� − cos2��t− r/c� 0

0 0 0 0

⎞⎟⎟⎟⎠ �
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and hence show that an observer on the x3-axis measures a right-handed circularly
polarised gravitational wave of the form(

hTT
rad

)�� = 8GMa2�2

c4r
 [(e��1 − ie

��
2

)
exp2i��t−x3/c�

]
�

18.13 Consider a system of four equal masses attached to the ends of a cross formed
from massless rods of equal length, set at 90	. If the system rotates freely about
an axis through the centre of the cross and perpendicular to its plane, show that
in the far field there is no quadrupole gravitational radiation.
Hint: Consider the system as the superposition of two systems, each like that in
Exercise 18.12 but 90	 out of phase.

18.14 For a plane gravitational wave of the form

h
ij
TT = A

ij
TT cos k�x

��

travelling in the x3-direction, verify that the energy–momentum tensor of the
linearised gravitational field is given by


t���=
c2

32�G
�2�a2+b2�

⎛⎜⎜⎜⎝
1 0 0 −1
0 0 0 0

0 0 0 0

−1 0 0 1

⎞⎟⎟⎟⎠
and that the flux in the direction of propagation is

F = c3

32�G
�2�a2+b2��

18.15 For the two-particle system considered in Section 18.5, verify that the gravitational-
wave energy flux at a (large) distance r is, in the x1- and x3-directions respectively,

F1 =
c3

32�G
�2��2

(
4GMa2�3

c4r

)2

= 2G
�c5

(
Ma2�3

r

)2

�

F3 = 2
c3

32�G
�2��2

(
8GMa2�3

c4r

)2

= 16G
�c5

(
Ma2�3

r

)2

�

18.16 If J ij
TT =

(
Pi
kP

j
l − 1

2P
ijPkl

)
Jkl and Pij = �ij− x̂ix̂j , show that

JTT
ij J

ij
TT = JijJ

ij−2Jj
i J

ikx̂j x̂k+
1
2
J ijJklx̂ix̂j x̂kx̂l�

18.17 If x̂i is a unit radial vector, show that∫
4�
x̂ix̂j d�= 4�

3
�ij�

∫
4�
x̂ix̂j x̂kx̂l d�= 4�

15
��ij�kl+�ik�jl+�il�jk��

18.18 For the two-particle system considered in Section 18.5, verify that gravitational-
wave emission causes the the total energy E of the system to decrease according to

dE

dt
=− G

5c5
�128M2a4�6��
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18.19 For a binary star system containing two stars of mass M and separation 2a, show
that the orbital angular speed is

�=
(
GM

4a3

)1/2

�

Hence show that gravitational-wave emission causes the the total energy E of the
system to decrease according to

dE

dt
=−2

5
G4M5

a5
�

Thus show that the orbital period P decreases according to

dP

dt
=−96

5
41/3�

(
2�GM

P

)5/3

�

18.20 Show that, to first order in hij , the fractional change in the physical separation of
the particles during the passage of a gravitational wave is

�l

l0
=− 1

2hijn
inj�

where ni is a unit vector in the direction of separation of the two particles.
18.21 Consider a line element of the form

ds2 = c2 dt2−dx2−f 2�u�dy2−g2�u�dz2�

where f�u� and g�u� are functions of u= ct−x. Calculate the connection coeffi-
cients and hence the Ricci tensor for this line element. Hence show that the line
element is a solution to the full empty-space field equations R�� = 0, provided that

f ′′

f
+ g′′

g
= 0�

where a prime denotes d/du. Show that this solution may be interpreted, with no
approximation, as a linearly polarised plane gravitational wave travelling in the
x-direction.
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A variational approach to general relativity

Most of classical and quantum physics can be expressed in terms of variational
principles, and it is often when written in this form that the physical meaning
is most clearly understood. Moreover, once a physical theory has been writ-
ten as a variational principle it is usually straightforward to identify conserved
quantities, or symmetries of the system of interest, that otherwise might have
been found only with considerable effort. Conversely, by demanding that the
variational principle be invariant under some symmetry, one ensures that the
equations of motion derived from it also respect that symmetry. In this final
chapter, we therefore present an introductory account of variational principles
and the Lagrangian formalism. Our ultimate aim will be to derive afresh the field
equations of general relativity from this new perspective. This will require us to
consider some general aspects of classical field theory in flat and curved space-
times. As a result, this chapter lies somewhat outside the mainstream discussion
presented in preceding chapters and may be omitted on a first reading. Never-
theless the variational approach that we shall outline is extremely powerful and
provides the basis for most current research into the formulation of classical (and
quantum) field theories, including general relativity and other candidate theories
of gravitation.

19.1 Hamilton’s principle in Newtonian mechanics

To begin, let us remind ourselves of a familiar example of a physical varia-
tional principle, namely Hamilton’s principle in Newtonian mechanics. Consider
a mechanical system whose configuration can be defined uniquely by a number
of generalised coordinates qa, a = 1�2� � � � � n (usually distances and angles),
together with time t, and which experiences only forces derivable from a potential.
Hamilton’s principle states that in moving from one configuration at time t1 to

524



19.1 Hamilton’s principle in Newtonian mechanics 525

another at time t2 the motion of such a system is such as to make stationary the
action

S =
∫ t2

t1

L�qa� q̇a� t�dt� (19.1)

The Lagrangian L is defined, in terms of the kinetic energy T and the potential
energy V (with respect to some reference situation), by L = T − V . Here V

is a function of the qa (and possibly t) only, but not of the q̇a. As discussed
in Section 3.19, the coordinates define a configuration space with line element
ds2 = gab dq

a dqb. For example, the Lagrangian for a particle of mass m can be
written as

L= T −V = 1
2mgabq̇

aq̇b−V� (19.2)

Returning to the general expression (19.1), let us consider an arbitrary variation

qa�t�→ q′a�t�= qa�t�+�qa�t�

in the trajectory in configuration space and demand that the corresponding varia-
tion �S in the action vanishes. Assuming that �qa�t�= 0 at the endpoints t1 and
t2, we know from our discussion of the calculus of variations in Appendix 3C at
the end of Chapter 3 that the Lagrangian L must satisfy the Euler–Lagrange (EL)
equations

�L

�qa
− d

dt

(
�L

�q̇a

)
= 0� a= 1�2� � � � � n�

For example, as shown in Section 3.19, the EL equations for the Lagrangian
(19.2) are

m�q̈a+ a
bcq̇

bq̇c�=−gab�bV�

which corresponds to Newton’s second law in an arbitrary coordinate system.
If the qa�t� are taken to be the Cartesian coordinates xa�t� of the particle, we
immediately recover the more familiar form mẍa =−�ab�bV .

Hamilton’s principle is easily extended from the notion of discrete particles
to continuous systems. As an example, let us consider a flexible string stretched
between two fixed points at x= 0 and x= l. In this case, we again have one inde-
pendent time coordinate t, but now in the context of a continuum in which the qa�t�
become the continuous variable ��t� x� describing the transverse displacement
of the string as a function of position and time (see Figure 19.1). Consequently,
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x

φ

0 l

t1

t2

φ (t2, x)

φ (t1, x)

t

Figure 19.1 The transverse displacement ��t� x� of a taut string fixed at two
points a distance l apart, viewed as a function in the �t� x�-plane.

the expressions for T and V become integrals over x rather than sums over the
label a. If ��x� and ��x� are the local line density and tension of the string then the
kinetic and potential energies of the string for small displacements are given by

T =
∫ l

0

1
2�

(
��

�t

)2

dx and V =
∫ l

0

1
2�

(
��

�x

)2

dx�

Thus, the action (19.1) becomes

S ≡
∫ t2

t1

∫ l

0
�dxdt =

∫ t2

t1

∫ l

0

1
2

[
���t��

2− ���x��
2] dxdt� (19.3)

where in the first equality we have defined the Lagrangian density � and in the
final expression we have adopted the shorthand �t = �/�t and �x = �/�x. Let us
now consider an arbitrary variation in the function � of the form

��t� x�→ �′�t� x�= ��t� x�+���t� x�� (19.4)

This leads to a variation in the action (19.1) given by

�S =
∫ t2

t1

∫ l

0

[
��

���t��
���t��+

��

���x��
���x��

]
dxdt� (19.5)

From (19.4), one immediately notes that ���t��= �t���� and ���x��= �x����.
Substituting these expressions in (19.5) and using Leibnitz’ rule for the differen-
tiation of a product, we may write

�S = �Sb−
∫ t2

t1

∫ l

0

{
�t

[
��

���t��

]
+ �x

[
��

���x��

]}
��dxdt� (19.6)
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where the ‘boundary’ (or ‘surface’) term is given by

�Sb =
∫ t2

t1

∫ l

0

{
�t

[
��

���t��
��

]
+ �x

[
��

���x��
��

]}
dxdt

=
∫ l

0

[
��

���t��
��

]t=t2
t=t1

dx+
∫ t2

t1

[
��

���x��
��

]x=l
x=0

dt�

If we assume that the variation is such that

���t1� x�= 0= ���t2� x� and ���t�0�= 0= ���t� l�

then it vanishes on the entire ‘boundary’ of the region of interest in the �t� x�-
plane, and we have �Sb = 0. Thus, in this case, by demanding that the total
variation (19.6) in the action vanishes (�S = 0) and using the fact that �� is
arbitrary, we obtain

�t

[
��

���t��

]
+ �x

[
��

���x��

]
= �t���t��− �x���x��= 0�

where, in the first equality, we have evaluated the derivatives of � with respect
to �t� and �x� using (19.3). If, in addition, � and � do not depend on x or t then

�2�

�x2
= 1

c2
�2�

�t2
�

where c2 = �/�. This is the wave equation for small transverse oscillations of a
taut uniform string.

19.2 Classical field theory and the action

In the above discussion, the function ��t� x� may be regarded as a ‘field’ defined
on a two-dimensional space (or manifold) parameterised by the coordinates
x and t. To extend the idea of a variational principle to a field theory in spacetime,
one therefore needs only to replace ��t� x� by a (finite) set of fields %a�x��

defined on a four-dimensional spacetime parameterised in terms of some (in
general) arbitrary set of continuous coordinates x�. Alternatively, one could even
consider each member of the (finite) set of generalised coordinates qa�t� in (19.1)
as a ‘field’ defined on a one-dimensional manifold parameterised by the continu-
ous coordinate t, and simply replace the qa�t� by the set of fields%a�x��. In either
case, the index a acts merely as a label for the individual fields in the theory.

This last point is worth clarifying. If, for example, one were considering a field
theory containing a set of M scalar fields �1��2� � � � ��M then the set of fields
would be simply !%a"= !�1��2� � � � ��M". Alternatively, one might be interested
in a field theory containing a vector field (such as electromagnetism). In this



528 A variational approach to general relativity

case, the label a would run over the four components of the vector field in the
chosen coordinate system, i.e. we would write !%a" = !A0�A1�A2�A3" = !A�"

and so a would then be a spacetime index. Similar considerations apply to the
components of tensor fields. Use of the index a may also be trivially extended to
label the components of two or more vector or tensor fields involved in the theory.
Indeed, when considering field theories defined on some arbitrary manifold and
in arbitrary coordinates, one must always include the metric tensor components
in the set of fields. For example, in electromagnetism on an arbitrary manifold,
the full set of fields is in fact !%a"= !A�� g��".
By analogy with (19.3), the action S for a set of fields defined on some

general four-dimensional spacetime manifold should take the form of an integral
of some function �, called the Lagrangian density, of the fields %a and their
first (and possibly higher) derivatives over some four-dimensional region � of
the spacetime. Thus, we take the action integral to be

S =
∫
�
��%a� ��%

a� ����%
a� � � �� d4x� (19.7)

where d4x denotes the product of coordinate differentials dx0 dx1 dx2 dx3. It is
believed that physical theories should be generally covariant and so this symmetry
must be reflected in the action S, which therefore has to be a scalar under
general coordinate transformations. From the discussion in Section 2.14, we know
that in any arbitrary coordinate system x� the invariant volume element (which
transforms as a scalar field) is d4V =√−g d4x, where g is the determinant of the
metric tensor in that coordinate system (and is negative for the signature of the
metric used in this book). It is therefore convenient to write the action (19.7) in
the form

S =
∫
�
L
√−g d4x�

where we have introduced the field Lagrangian L, which is clearly related to the
Lagrangian density � by1

�= L
√−g� (19.8)

For the action S to be a scalar, the quantity L
√−g d4x must be a scalar field at

each point in �. Since the invariant volume element
√−g d4x is already a scalar

field, then so too must be the Lagrangian L. Taking L to be in general a function
of the fields %a and their first (and possibly higher) derivatives, the action for a

1 Although most authors agree that � is called the Lagrangian density, it is common in field theory for the
term Lagrangian (and the symbol L) to mean the integral of � over some three-dimensional spacelike
hypersurface, rather than the relationship given in (19.8). We will adopt the convention (19.8) throughout
this chapter.
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set of classical fields defined on some 4-dimensional spacetime manifold may be
written as

S =
∫
�
L�%a� ��%

a� ����%
a� � � ��

√−g d4x�

where L is a scalar function of spacetime position. We note finally that the
Lagrangian density � in (19.8) will not transform as a scalar field under coor-
dinate transformations; in fact, it is what is known as a scalar density of weight
unity, although we need not concern ourselves here with the definition of such
objects.

19.3 Euler–Lagrange equations

We now derive the form of the field equations for (some subset of) the fields %a

by demanding that the action is stationary, or invariant, under small variations in
(the same subset of) the fields of the form

%a�x�→%′a�x�=%a�x�+�%a�x�� (19.9)

It is important to note that we are not performing any coordinate transformation
here; we are considering only variations in the functional forms of the fields %a in
a fixed coordinate system. For simplicity, we shall perform our derivation of the
field equations under the assumption that the field theory is local, which means
that second- or higher-order derivatives of the fields do not appear in the action.
Thus, we need only consider the consequent variation in the first derivatives of
the fields, which, from (19.9), is given by

��%
a→ ��%

′a = ��%
a+ ����%

a�� (19.10)

We also note for later use that, from its definition (19.9), the �-operator commutes
with derivatives since

����%
a�= ���%

′a−%a�= ��%
′a− ��%

a = ����%
a�� (19.11)

The variations (19.9, 19.10) lead to a variation in the action S→ S+�S, with

�S =
∫
�
��d4x =

∫
�

[
��

�%a
�%a+ ��

����%
a�
����%

a�

]
d4x� (19.12)

where, for the time being, it is convenient to work in terms of the Lagrangian
density � defined in (19.8). To derive the field equations, we wish to factor out
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the variation �%a in the second term of the integrand. Using (19.11), this second
term may be written

∫
�

��

����%
a�
����%

a�d4x =
∫
�
��

[
��

����%
a�
�%a

]
d4x

−
∫
�
��

[
��

����%
a�

]
�%a d4x�

where we have integrated by parts (which corresponds simply to rewriting the
integrand using Leibnitz’ theorem for the derivative of a product). The first
integral on the right-hand side is a total derivative and can therefore be converted
into an integral over the bounding surface �� of the region �, by straightforward
calculus. If we restrict the permissible variations �%a to those that vanish on the
boundary ��, this integral will also vanish and so (19.12) becomes2

�S ≡
∫
�

��

�%a
�%a d4x =

∫
�

{
��

�%a
− ��

[
��

����%
a�

]}
�%a d4x�

where, in the first equality, we define the variational derivative ��/�%a of the
Lagrangian density with respect to the field %a. If we demand that the action is
stationary, so that �S = 0, under the arbitrary variations �%a we thus require that

��

�%a
= ��

�%a
− ��

[
��

����%
a�

]
= 0� (19.13)

These are the Euler–Lagrange (EL) equations, which correspond to the field
equations of the (local) field theory defined by the action S = ∫��d4x. If, in
addition, the Lagrangian density depends on second- or higher-order derivatives of
the fields then the above derivation is straightforwardly generalised. For example,
if second-order derivatives also appear then one obtains

��

�%a
= ��

�%a
− ��

[
��

����%
a�

]
+ ����

[
��

������%
a�

]
= 0� (19.14)

provided that the variations �%a and their first derivatives vanish on the bound-
ary ��.

2 The restriction that the variation �%a vanishes on the boundary �� is generally allowable, except when
discussing topological objects in field theory such as instantons, which are beyond the scope of our discussion.
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19.4 Alternative form of the Euler–Lagrange equations

The EL equations in the form (19.13), or generalised to higher-order derivatives
of the fields, provide a straightforward means of determing the field equations
corresponding to a given action. In particular, these equations still hold if (some
of) the fields %a being varied are the components of the metric tensor g�� (or
functions thereof), as will be the case when we derive the Einstein equations from
the gravitational action in Section 19.8.

Nevertheless, if the fields %a being varied are not functions of the metric tensor
components then the presence of the

√−g factor in the Lagrangian density (19.8)
makes evaluation of the derivative terms in the EL equations (19.13) unnecessarily
cumbersome, although one will nevertheless arrive at the correct field equations.
In such cases, however, the Lagrangian L can often be written in terms of the
fields %a and their first (and possibly higher-order) covariant derivatives ��%

a,
as opposed to partial derivatives. Indeed, recalling that L should be a scalar
function of spacetime position, one might expect this to be the case since scalars
are most easily obtained by contracting tensor indices. Let us therefore repeat our
derivation of the form of the EL equations, working instead with an action of the
form

S =
∫
�
L�%a���%

a�����%
a� � � � � g��� �#g��� � � ��

√−g d4x� (19.15)

where the fields %a being varied are independent of the metric tensor g�� but
L might still contain g��, to raise or lower indices, for example (L might also
contain the partial derivatives of g��; recall that the covariant derivatives of the
metric vanish identically).

For simplicity, let us again assume that no second- or higher-order covari-
ant derivatives appear in L. The variation (19.9) leads to variations in the first
covariant derivatives of the fields given by

��%
a→ ��%

′a = ��%
a+����%

a�� (19.16)

In a similar way to before, we note that the �-operator commutes with covariant
derivatives, so that ����%

a� = ����%
a�. The variations (19.9–19.16) lead, in

turn, to a variation in the action S→ S+�S, with

�S=
∫
�
�L
√−g d4x=

∫
�

[
�L

�%a
�%a+ �L

����%
a�
����%

a�

]
√−g d4x� (19.17)

where we are now working in terms of the Lagrangian L (as opposed to the
Lagrangian density �). The partial derivative appearing in the first term of
the integrand on the right-hand side deserves some comment. In (19.17), we
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are treating %a and ��%
a as independent variables. In general, however, the

covariant derivatives ��%
a will contain terms involving the fields %a multiplied

by some connection coefficient. If, for some reason, these terms are written out
explicitly in the Lagrangian, they must not be included when calculating the
partial derivative of L with respect to the fields %a.

As in our previous derivation of the EL equations, we must now factor out the
variation �%a in the second term of the integrand in (19.17). Using the fact that
the �-operator commutes with the covariant derivative and employing Leibnitz’
theorem for the covariant differentiation of a product, this term may be written

∫
�

�L

����%
a�
����%

a�
√−g d4x =

∫
�
��

[
�L

����%
a�
�%a

]
√−g d4x

−
∫
�
��

[
�L

����%
a�

]
�%a√−g d4x� (19.18)

We may now use the divergence theorem to convert the first integral on the
right-hand side to an integral over the boundary ��. The divergence theorem
reads ∫

�
���V

��
√�g�d4x =

∫
��

n�V
�
√�	�d3y� (19.19)

where V� is an arbitrary vector field, 	 is the determinant of the induced metric
on the boundary in the coordinates yi (see Section 2.14) and n� is a unit normal
to the boundary. Applying this theorem to the first integral on the right-hand side
of (19.18) and restricting the allowed variations �%a to vanish on ��, we see
that this integral is zero. Thus (19.18) becomes

�S ≡
∫
�

�L

�%a
�%a√−g d4x =

∫
�

{
�L

�%a
−��

[
�L

����%
a�

]}
�%a√−g d4x�

where, in the first equality, we define the variational derivative �L/�%a of the
Lagrangian with respect to the field %a. Thus, demanding stationarity of the
action, �S = 0, we obtain the alternative form for the Euler–Lagrange equations

�L

�%a
= �L

�%a
−��

[
�L

����%
a�

]
= 0� (19.20)

We shall make use of this form for the EL equations when we consider the field
theories of a real scalar field in Section 19.6 and electromagnetism in Section 19.7.
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19.5 Equivalent actions

From the derivation of the EL equations, (19.13), the alert reader will have noticed
that there exists an ambigiuity in the definition of the action. This derives from
the fact that one can always convert the integral of a total derivative over some
region � into an integral over the bounding surface ��. Let us therefore consider
the following modification of the Lagrangian density:

�→ �̄= �+ ��Q
��%a�� (19.21)

where the Q� may, in general, be four arbitrary functions of the fields (but not
of their derivatives). The corresponding action thus reads

S̄ = S+
∫
�
��Q

� d4x�

The variation in this action under the variation in the fields %a (19.9) is given by

�S̄ = �S+
∫
�
����Q

��d4x = �S+
∫
�
��

(
�Q�

�%a
�%a

)
d4x�

where �S is the variation in the original action given by the equation before (19.13)
and we have used the fact that the �-operator commutes with derivatives. Since
the last integral on the right-hand side is a total derivative, it can be converted to
a surface integral over the boundary ��. Assuming once again that the variations
�%a vanish on ��, this surface integral is zero and so �S̄= �S. Hence demanding
that �S̄ = 0 yields the same EL equations as demanding that �S = 0, and the two
actions are said to be equivalent. In other words, any two Lagrangian densities
related by an expression of the form (19.21) lead to the same EL equations. The
above argument is easily extended to the case in which � contains second- or
higher-order derivatives of the fields. For example, if second-order derivatives
also appear in � then the same EL equations (19.14) will be obtained from any
Lagrangian density of the form

�̄= �+ ��Q
��%a� ��%

a�� (19.22)

provided that the variations �%a and their first derivatives vanish on the
boundary ��.

Despite the appealing features of the above mathematical manoeuvre, the very
general nature of the allowed transformation (19.21) can lead to problems of
principle. In particular, we have not constrained in any way the transformation
properties of the four quantities Q�. Thus, we have not ensured that the quantity
��Q

� d4x is a scalar function under coordinate transformations. Strictly speaking,
one should ensure that this is true in order that the second term on the right-
hand side of (19.21) is a scalar quantity. Without this criterion, the value of this
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integral (and hence the action S̄) is not a scalar, i.e. its value changes depending
on the choice of coordinates. We shall see in Section 19.9, however, that the
necessary requirements on the quantities Q� are not always imposed. A partial
defence of such practices is that, as stated earlier, in the variation (19.9) we are
not performing any coordinate transformation; we are considering only variations
in the functional forms of the fields %a in a fixed coordinate system. One might
therefore be persuaded that the variational formalism outlined above would survive
the introduction of terms in the action that are not scalars under general coordinate
transformations. In principle, however, such sleight of hand is best avoided, and
one should always aim to construct an action that is a true covariant scalar.

We may also construct equivalent actions when the original action takes the
form (19.15), remembering that in this case we are assuming that the fields of
interest %a are independent of the components of the metric tensor g��. Suppose,
for example, that no second- or higher-order covariant derivatives of the fields
appear in L, and consider the new Lagrangian

L̄= L+��Q
��%a��

where the functions Q� depend only on the fields and not on their first covariant
derivatives. The corresponding action then reads

S̄ = S+
∫
�
��Q

�√−g d4x� (19.23)

and its variation is given by

�S̄ = �S+
∫
�
����Q

��
√−g d4x = �S+

∫
�
��

(
�Q�

�%a
�%a

)√−g d4x�

where �S is the variation in the original action and again we have used the result
that the �-operator commutes with covariant derivatives. Using the divergence
theorem (19.19), the last integral on the right-hand side can be converted to a
surface integral over the boundary ��. Assuming once again that the variations
�%a vanish on ��, we find that �S̄ = �S, and so we have obtained the same EL
equations (19.20) by demanding that �S̄ = 0 as we did by demanding that �S = 0.
We note that, by using the divergence theorem to obtain a surface integral, in
the present case we require the Q� to be the components of a vector. This also
ensures that ��Q

� is a scalar field, and so the second term on the right-hand side
of (19.23) (and hence the total action S̄) is a scalar integral.

19.6 Field theory of a real scalar field

The simplest example of a field theory is that of a single real scalar field ��x��

defined on the spacetime. We will also restrict our considerations to a local field
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theory, so that no second- or higher-order derivatives of the field appear in the
Lagrangian L.

As a starting point, we take as inspiration the Lagrangian (19.2) for the classical
motion of a mechanical system in Newtonian mechanics. This Lagrangian is
expressed in terms of the derivatives of the generalised coordinates qa�t� with
respect to the time parameter t, the metric gab of the configuration space of the
system and a potential V�qa�. Replacing the generalised coordinates by the field
��x�� and time derivatives by derivatives with respect to spacetime position, a
reasonable choice of Lagrangian is given by

L= 1
2g

������������−V���� (19.24)

where the first term may be loosely regarded as the ‘kinetic energy’ of the
field and the second term as its ‘potential energy’. In the expression (19.24), we
have used covariant derivatives rather than partial derivatives since, as stated in
Section 19.2, L must itself be a scalar function of spacetime position. However,
since the covariant derivative of a scalar quantity reduces to a partial derivative,
in this case the latter could be used. Nevertheless, it is usually wiser to retain the
manifestly covariant notation in (19.24). In particular, we see immediately that
the corresponding action is given by

S =
∫
�

[ 1
2g

������������−V���
]√−g d4x� (19.25)

which is of the general form given in (19.15). Varying this action with respect to
�, we may therefore use the convenient form of the EL equations given in (19.20).

For the form of Lagrangian (19.24) we have

�L

��
=−dV

d�
and

�L

������
= �

������

[ 1
2g

�#�������#��
]
�

where in the second equation we have relabelled the dummy indices in order
to make the differentiation more transparent. Evaluating this derivative explicitly
gives3

�L

������
= 1

2g
�#
[
��� ��#��+ ������

�
#

]= 1
2�g

�#�#�+g������= g������

and so the EL equations (19.20) become

−dV

d�
−���g

������= 0�

3 With a little practice, derivatives of this sort can in fact be evaluated very quickly, without needing to employ
the explicit relabelling step used above.
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Remembering that the covariant derivative of the metric tensor is zero, and
rearranging, we thus find that the dynamical field equation satisfied by � is

�2�+ dV

d�
= 0� (19.26)

where �2 ≡ ���� = g������ is the covariant d’Alembertian operator.
A common choice for the potential is V = 1

2m
2�2, where m is a constant

parameter that characterises the dynamics of the scalar field. The field equation
(19.26) then becomes

�2�+m2�= 0�

which is known as the Klein–Gordon equation. Upon quantisation (which is
beyond the scope of our discussion), this field theory describes collections of
neutral spinless particles of mass m that do not interact with each other except
through their mutual gravitational attraction.

19.7 Electromagnetism from a variational principle

As discussed in Chapter 6, electromagnetism may be described in terms of the
vector field A�. Thus, using the general description given in Section 19.2, the
fields %a �a= 1� � � � �4� being varied are the components of this vector field and
so a is a spacetime index. To describe the dynamics of the electromagnetic field
in terms of the variational principle, again we begin by constructing a Lagrangian
L which is a function of A� and its first derivatives and which behaves as a scalar
field under general coordinate transformations. We will work from the outset
assuming arbitrary coordinates.

In the case of electromagnetism, however, we saw in Chapter 6 that the theory
also possesses a gauge invariance. If A� describes the electromagnetic field in
some physical situation then the same situation is also described by any other
field of the form

A′� = A�+��� = A�+ ���� (19.27)

where � is any scalar field (the last equality holds because the covariant derivative
of the scalar is simply its partial derivative). As discussed earlier, by demanding
that the action be invariant under some symmetry one ensures that the resulting
equations of motion also respect that symmetry. We must therefore make sure
that the action is invariant under the gauge transformation (19.27). This precludes
us from forming scalars depending on A�A

�, since it is easy to show that this
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expression is not gauge invariant. Nevertheless, the electromagnetic field-strength
tensor

F�� = ��A�−��A� = ��A�− ��A� (19.28)

is easily shown to be gauge invariant; the second equality in (19.28) holds since
a convenient cancellation occurs between the terms containing connection coef-
ficients arising from the two covariant derivatives. The most obvious scalar to
be constructed from the field-strength tensor is simply F��F

�� = g��g�#F�#F��.
Including a factor of−1/�4�0� for later convenience, we shall take the ‘free-field’
part of the Lagrangian to be

Lf =−
1

4�0
g��g�#���A# −�#A�����A�−��A���

where, again for later convenience, we have written the expression in terms of
covariant derivatives rather than partial derivatives.

So far we have not taken into account that the source of the electromagnetic
field is the 4-current density j� of any charged matter present. To describe this,
we must include an ‘interaction term’ in the Lagrangian. The most straightforward
scalar we may construct from the electromagnetic field and the current density is
j�A�, and we will take the interaction term to be Li = −j�A�. Taking the full
Lagrangian to be L= Lf +Li, the action reads

S =
∫
�

[
− 1
4�0

g��g�#���A# −�#A�����A�−��A��− j�A�

]√−g d4x�

(19.29)

As is immediately apparent, however, the interaction term −j�A� is not auto-
matically gauge invariant. Under the gauge transformation (19.27) the correspond-
ing term in the action becomes

−
∫
�

j�A�+ j�������

√−g d4x =−
∫
�

j�A�+���j

���− ���j
����

√−g d4x�

Using the divergence theorem (19.19), we may write the second term in the
integrand on the right-hand side as a surface integral over the boundary ��.
Taking the source j� to vanish on �� (by, for example, taking the boundary to
be at spatial infinity), the surface integral is zero. Thus, we see that the part of
the action arising from the interaction term is, in fact, gauge invariant, provided
that the source j� satisfies the covariant continuity equation

�� j
� = 0�

and so the requirement of gauge invariance implies the conservation of charge.
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Thus, under the appropriate conditions, the action (19.29) is invariant under
the gauge transformation (19.27) and, by construction, is a scalar under general
coordinate transformations. Let us now determine the Euler–Lagrange equations
resulting from varying the fields A� in this action (while keeping the source
j� fixed). From (19.29), we see that the action has the general form (19.15).
Therefore we may once again use the form of the EL equations given in (19.20),
which in this case read

�L

�A�

−��

[
�L

����A��

]
= 0� (19.30)

For the action in (19.29), we have immediately

�L

�A�

=−j���� =−j�� (19.31)

but evaluation of the second term on the left-hand side of (19.30) requires more
care. Relabelling dummy indices, and writing ��A� −��A� = F�� for conve-
nience, we have

�L

����A��
= �

����A��

[
− 1
4�0

g��g
#F�#F�


]
= − 1

4�0
g��g
#

[(
����

�
# −��#�

�
�

)
F�
+F�#

(
����

�

−�

�

�

�
�

)]
= − 1

4�0
�g��g
�−g��g
��F�
−

1
4�0

�g��g�# −g��g�#�F�#

= − 1
4�0

�F��−F���− 1
4�0

�F��−F���=− 1
�0

F���

where in the last equality we have used the antisymmetry of the field-strength
tensor (19.28). Combining this result with (19.31), the EL Lagrange equations
(19.30) read

��F
�� = �0j

��

which is the same expression as that for the inhomogeneous Maxwell equations in
an arbitrary coordinate system, given in Section 7.7. The remaining homogeneous
Maxwell equations are in fact automatically satisfied from the definition (19.28)
of the field-strength tensor, since

�#F��+��F#�+��F�# = �#F��+ ��F#�+ ��F�# = 0�

Of course, one may object to the fact that we carefully constructed the action
(19.29) (by, for example, including specific factors in Lf and Li) in such a way that
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its variation with respect to A� led to the field equations for electromagnetism.
Nevertheless, the derivation above illustrates the natural way in which the action
approach constrains the possible forms for the theory and allows any symmetries
in the theory to be made manifest.

19.8 The Einstein–Hilbert action and general relativity in vacuo

We now use our experience in expressing scalar field theory and electromagnetism
as variational principles to construct an action for gravitation from which the
Einstein field equations of general relativity can be derived. For the time being,
we will restrict our attention to general relativity in vacuo.

To construct an action for general relativity, we must define a Lagrangian L

which is a scalar under general coordinate transformations and which depends on
the components g�� of the metric tensor (these are now the dynamical fields), and
their first- and possibly higher-order derivatives. The simplest non-trivial scalar
that can be constructed from the metric and its derivatives is the Ricci scalar R,
which depends on g�� and its first- and second-order derivatives. In fact, R is
the only scalar derivable from the metric tensor that depends on derivatives no
higher than second order. From our knowledge of gravitation as a manifestation
of spacetime curvature, we might also expect L to be derived from the curvature
tensor. Thus, in searching for the simplest plausible variational principle for
gravitation, one is immediately led to the Einstein–Hilbert action

SEH =
∫
�
R
√−g d4x� (19.32)

Since the corresponding Lagrangian LEH = R now depends on the elements
of the metric tensor, it is more convenient to work in terms of the Lagrangian
density �EH = R

√−g. The resulting EL equations thus take the form (19.13),
which in this case reads

��

�g��
− �#

[
��

���#g���

]
+ ���#

[
��

�����#g���

]
= 0�

Unfortunately, the task of evaluating each term in the above equation involves
a formidable amount of algebra, albeit straightforward. We shall therefore not
pursue this approach any further. Instead, we shall derive the corresponding field
equations by considering directly the variation in the action resulting from a
variation in the metric tensor.

Let us therefore consider a variation in the metric tensor given by

g�� → g��+�g���
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where �g�� and its first derivative vanish on the boundary �� of the region �. It
will prove useful also to determine the corresponding variation �g�� in the inverse
metric components. This is most easily achieved by noting that g��g�� = �

�
� and

using the fact that the constant tensor ��� does not change under a variation. To
first order in the variation, one may therefore write

�g��g��+g���g�� = 0� (19.33)

Multiplying through by g�# , relabelling indices and rearranging, one obtains

�g�� =−g��g�#�g�#�
Writing the Ricci scalar as R= g��R��, the first-order variation in the Einstein–

Hilbert action (19.32) can be written as

�SEH =
∫
�
�g��R��

√−g d4x+
∫
�
g���R��

√−g d4x+
∫
�
g��R�� ��

√−g�d4x

≡ �S1+�S2+�S3� (19.34)

To derive the field equations, we need to factor out the variation �g�� in the
second and third integrals. Let us first focus on the second term and write the
variation �R�� in terms of the variation �g�� in the metric tensor. It is in fact
more illuminating, and no more work, to determine the variation �R#

��� in the
full curvature tensor, from which the corresponding variation in the Ricci tensor
can be obtained immediately by contraction. The curvature tensor is given by

R#
��� = �� 

#
��− �� 

#
��+ �

�� 
#
��− �

�� 
#
���

Let us first consider the variation in the curvature tensor resulting from an arbitrary
variation in the connection coefficients,

 #
�� →  #

��+� #
���

It is worth noting that the variation � #
�� is the difference of two connections

and is therefore a tensor. As is often the case in proving tensor identities, it is
easiest to work in local geodesic coordinates at some arbitrary point P. In such a
coordinate system  #

���P�= 0, and so at the point P we have

�R#
��� = ��

(
� #

��

)− ��
(
� #

��

)
�

Moreover, partial derivatives and covariant derivatives coincide at P and so

�R#
��� = ��

(
� #

��

)−��

(
� #

��

)
� (19.35)

We now see, however, that the quantities on the right-hand side are tensors, and
therefore (19.35) holds not only in geodesic coordinates at P but in any arbitrary
coordinate system. Since the point P was chosen arbitrarily, the result (19.35)
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thus holds generally and is known as the Palatini equation. The corresponding
variation in the Ricci tensor is obtained by contracting on # and � in (19.35)
to give

�R�� = ��

(
� #

�#

)−�#

(
� #

��

)
� (19.36)

We may therefore write the second term on the right-hand side of (19.34) as

�S2 =
∫
�
g��

[
��

(
� #

�#

)−�#

(
� #

��

)]√−g d4x

=
∫
�
��

(
g��� #

�# −g�#� �
�#

)√−g d4x�

where in the last line we have used the fact that the covariant derivative of the
metric vanishes and we have relabelled indices in the second term of the integrand.
Using the divergence theorem (19.19), however, we may write �S2 as a surface
integral over the boundary ��, which vanishes provided that the variation in the
connection vanishes on the boundary. This means that variations in the metric
tensor and in its first derivatives vanish on ��.

Let us now turn our attention to the third term �S3 in (19.34), in which we
must express �

√−g in terms of the variation �g��. Recalling that g = det
g���,
we note that the cofactor of the element g�� in this determinant is gg��. It follows
that

�g = gg���g�� =−gg���g���
where in the second equality we have used the result (19.33). Thus, we have

�
√−g =− 1

2�−g�−1/2�g =− 1
2

√−gg���g��� (19.37)

Substituting this expression into the third term �S3 in (19.34) and remembering
that �S2 = 0, we finally discover that the variation in the Einstein–Hilbert action
may be written as

�SEH =
∫
�

(
R��− 1

2g��R
)
�g��

√−g d4x� (19.38)

By demanding that �SEH = 0 and using the fact that the variation �g�� is arbitrary,
we thus recover Einstein’s field equations in vacuo:

G�� ≡ R��− 1
2g��R= 0� (19.39)

This is an impressive result, since we have obtained the field equations of general
relativity by varying an action (19.32) to which we were led very naturally
on the grounds of symmetry and simplicity. This illustrates the power of the
variational approach and should be contrasted with the more heuristic approach
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we had to employ in Section 8.4. Moreover, if one were willing to consider more
complicated actions, the variational formalism suggests how Einstein’s theory
might be modified by adding to the Lagrangian terms proportional to R2�R3, etc.
The formalism also provides a means for investigating alternative gravitational
Lagrangians. For example, the choice L = R���#R

���# leads to an alternative
self-consistent theory of gravity considered by Eddington.

19.9 An equivalent action for general relativity in vacuo

The Einstein–Hilbert action (19.32) differs from the action (19.25) for scalar field
theory and the action (19.29) for electromagnetism in that it depends on second-
order derivatives of the dynamical fields. It is therefore of interest to consider
whether the empty-space gravitational field equations can be derived from an
action that depends only on the metric tensor and its first derivatives. As stated
in the previous section, however, R is the only scalar derivable from the metric
tensor that depends on derivatives no higher than second order, so at first our goal
appears unattainable. Nevertheless, as we will show, we may use the notion of
equivalent actions discussed in Section 19.5 to circumvent this difficulty, albeit
in a way that results in a new action that is not a scalar under general coordinate
transformations.

The Lagrangian density �EH = √−gR in the Einstein–Hilbert action (19.32)
may be written as

�EH = √−gg��R��

= √−gg�� (�� #
�# − �# 

#
��+ �

�# 
#
��− �

�� 
#
�#

)
= √−gg�� (�� #

�# − �# 
#
��

)− �̄� (19.40)

where in the last line we have defined a new Lagrangian density

�̄≡√−g g�� ( �
�� 

#
�# − �

�# 
#
��

)
� (19.41)

which clearly depends only on the metric and its first derivatives. (Note that the
minus sign in (19.40) is for later convenience.) By relabelling indices and using
Leibnitz’ rule for the differentiation of products, we can write the first term in
(19.40) as

√−gg�� (�� #
�# − �# 

#
��

) = �� �
√−gg�� #

�# −√−gg#� �
#��

−���√−gg��� #
�# + �#�

√−gg��� #
���

(19.42)
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To evaluate the last two terms on the right-hand side, we note that

�#�
√−gg���= 1

2�−g�−1/2g���#g+
√−g�#g��� (19.43)

Using the result (3.24) derived in Section 3.10, we have �#g = 2g �
�# and, since

the covariant derivative of the metric (or its inverse) is zero,

�#g
�� = �#g

��+ �
�#g

��+ �
�#g

�� = 0�

Thus, we may write (19.43) as

�#�
√−gg���=√−g ( �

�#g
��− �

�#g
��− �

�#g
��
)
�

Substituting this result into the last two terms on the right-hand side of (19.42)
(contracting on � and # for the first of these terms), relabelling indices and
simplifying, one finds that

√−gg�� (�� #
�# − �# 

#
��

)= �� �
√−gg�� #

�# −√−gg#� �
#��+2�̄�

Thus, we finally discover that the Einstein–Hilbert Lagrangian density (19.40)
can be written

�EH = �̄+ �� �
√−gg�� #

�# −√−gg#� �
#�� � (19.44)

where �̄ is given by (19.41).
We see immediately, however, that the second term in (19.44) is a total deriva-

tive, and so �EH and �̄ are related by an expression of the form (19.22). The
two Lagrangian densities are therefore equivalent. As discussed in Section 19.5,
variation of the new action

S̄ =
∫
�
g��

(
 �

�� 
#
�# − �

�# 
#
��

)√−g d4x (19.45)

will thus lead to the same field equations as did the Einstein–Hilbert action SEH,
provided that the variation in the metric and its first derivative vanish on the
boundary ��. Thus, the variation of (19.45) will again yield Einstein’s field
equations in vacuo (which may be checked directly), but the action depends only
on the metric and its first derivatives. There is, however, a price to pay in adopting
the above result, since the new action S̄ is easily shown not to be a scalar with
respect to general coordinate transformations (see the discussion in Section 19.5).

19.10 The Palatini approach for general relativity in vacuo

A more elegant and illuminating method for obtaining the Einstein field equations
from an action depending only on dynamical fields and their first derivatives is
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provided by the Palatini approach, which we now discuss. In this formalism one
treats the metric g�� and the connection  #

�� as independent fields. In other
words, one does not assume any explicit relationship between the metric and the
connection.

We begin again with the Einstein–Hilbert Lagrangian density

�EH =√−gg��R�� =√−gg��
(
�� 

#
�# − �# 

#
��+ �

�# 
#
��− �

�� 
#
�#

)
�

which we now consider as a function of the metric, the connection and first
derivatives of the connection, i.e. �EH = �EH�g���  

#
��� �� 

#
���. Let us first

consider the variation in the action resulting from a variation in the metric alone.
This may be written as

�SEH =
∫
�
��
√−gg���R�� d

4x�

Demanding that �SEH = 0 for an arbitrary variation in the metric, we immediately
find that

R�� = 0�

which gives the Einstein field equations in vacuo.
Let us now consider varying the action with respect to the connection, which

yields

�SEH =
∫
�

√−gg�� �R�� d
4x

=
∫
�

√−gg�� 
���� 
#
�#�−�#�� 

#
����d

4x� (19.46)

where in the second line we have used the contracted version (19.36) of the
Palatini equation. Using Leibnitz’ theorem for the differentiation of products and
relabelling some dummy indices, we may write (19.46) as

�SEH =
∫
�
��

(
g��� #

�# −g�#� �
�#

)√−g d4x

−
∫
�

[(
��g

��
)
� �

��− ���g
���� �

��

]√−g d4x� (19.47)

where we note that we have not assumed that the covariant derivative of the
metric vanishes, since we have not (yet) specified any relationship between the
connection and the metric. Using the divergence theorem (19.19), we may write
the first integral on the right-hand side of (19.47) as a surface integral over the
boundary ��, which vanishes if we assume that the variation in the connection
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vanishes on the boundary. Relabelling some dummy indices in the second integral
on the right-hand side of (19.47), we thus find

�SEH =
∫
�

(
����#g

�# −��g
��
)
� �

��

√−g d4x� (19.48)

Since we are assuming that the manifold is torsionless, the variation � �
�� in the

connection, although arbitrary, must be symmetric in its lower two indices. As a
result, demanding that �SEH = 0 only requires the symmetric part of the term in
parentheses in (19.48) to vanish; when contracted with � �

��, the antisymmetric
part will automatically equal zero. Thus, stationarity of the action requires that

1
2�

�
��#g

�# + 1
2�

�
��#g

�# −��g
�� = 0�

We thus deduce that �#g
�� = 0, which in turn implies that �#g�� = 0. Hence by

demanding stationarity of the Einstein–Hilbert action with respect to variations in
the (symmetric) connection, we have derived that the covariant derivative of the
metric must vanish. We may thus write

��g�� =  #
��g#�+ #

��g�#�

Cyclically permuting the free indices to obtain similiar expressions for ��g�� and
��g��, combining the results and contracting with g�# one finds that

 �
�� = 1

2g
�#���g#�+ ��g�# − ��g����

and hence the connection must be the metric connection.

19.11 General relativity in the presence of matter

So far we have confined our attention to deriving the gravitational field equations
in vacuo. We now consider how the full Einstein equations, in the presence of
other (non-gravitational) fields, may be obtained by a variational principle. In
order to accommodate this generalisation, one simply needs to add an extra term
to the action to give

S = 1
2&

SEH+SM =
∫
�

(
1
2&

�EH+�M

)
d4x� (19.49)

where the Einstein–Hilbert action SEH is considered as a function of the metric
and of its first- and second-order derivatives (as in Section 19.8). SM is the
‘matter’ action for any non-gravitational fields present, and & = 8�G/c4. The
factor 1/�2&� in (19.49) is chosen for later convenience.
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Let us now consider varying the action with respect to the (inverse) metric, to
obtain

1
2&

��EH

�g��
+ ��M

�g��
= 0�

From (19.38), we see that

��EH

�g��
=√−gG���

where G�� = R�� − 1
2g��R is the Einstein tensor. Thus, if we make the bold

assertion that the energy–momentum tensor of the non-gravitational fields (or
‘matter’) is given by

T�� =
2√−g

��M

�g��
� (19.50)

then we recover the full Einstein equations

G�� =−&T���

The definition (19.50) of the ‘matter’ energy–momentum tensor may appear to
be somewhat arbitrary. Nevertheless, as we show in the next section, this tensor
has all the properties required of an energy–momentum tensor.

19.12 The dynamical energy–momentum tensor

The quantities T�� defined in (19.50) are clearly the components of a tensor, which
is known more properly as the dynamical energy–momentum tensor. From the
definition we also see immediately that T�� is a symmetric tensor, as is required
by the full Einstein equations (19.39). Most importantly, however, we now show
that it obeys the conservation equation ��T

�� = 0.
From the definition (19.50), the variation in the matter action resulting from a

variation in the metric is given by

�SM ≡
∫
�

��M

�g��
�g�� d4x = 1

2

∫
�
T�� �g

��√−g d4x

= − 1
2

∫
�
T�� �g��

√−g d4x� (19.51)

where, in the last equality, we have written �SM in terms of the contravariant
components T�� of the energy–momentum tensor for later convenience, using the
result (19.33). Let us now consider making an infinitesimal general coordinate
transformation

x′� = x�+���x�� (19.52)
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where ���x� is an infinitesimal smooth vector field. Since the action SM is, by
construction, a covariant scalar, then we must have �SM = 0 under the coordinate
transformation. We know, however, that the metric coefficients must transform as

g′���x
′�= �x�

�x′�
�x#

�x′�
g�#�x� =

[
���− ���

��x�
]

�#� − ���

#�x�� g�#�x� (19.53)

= g���x�−g���x����
��x�− g�#�x����

#�x��

(19.54)

to first order in ��, where we have used the expression (17.3) for the trans-
formation matrix corresponding to the infinitesimal coordinate transformation
(19.52). We have explicitly included the dependence on x and x′ in (19.54), since
it is crucial to determining the corresponding variation �g��. As mentioned in
Section 19.3, this variation is only of the functional form of the fields g��. Thus,
we have

�g���x�≡ g′���x�−g���x� =
[
g′���x

′�−g���x�
]− [g′���x′�−g′���x�

]
= [

g′���x
′�−g���x�

]−�#�x��#g
′
���x�

= [
g′���x

′�−g���x�
]−�#�x��#g���x��

to first order in ��. Using the expression (19.54) and dropping the explicit
dependence on x, we find that

�g�� =−g������−g�����
�−����g�� =−�����+������

where, in the second equality, we have rewritten the partial derivatives in terms of
covariant derivatives, cancelled matching terms involving connection coefficients
and used the fact that ��g�� = 0.

Substituting this result into (19.51) and remembering that �SM = 0 under a
coordinate transformation and that T�� is symmetric, we have

�SM =
∫
�
T��������

√−g d4x = 0�

Using Leibnitz’ theorem for the covariant differentiation of a product, we write

�SM =
∫
�
���T

�����
√−g d4x−

∫
�
���T

�����
√−g d4x = 0� (19.55)

We may use the divergence theorem (19.19) to write the first integral as a surface
integral over the boundary �� in the usual manner. Assuming that the functions
���x� vanish on the boundary �� this surface integral vanishes, leaving only the
second integral in (19.55). Since the ���x� are arbitrary, however, one immediately
finds that

��T
�� = 0�



548 A variational approach to general relativity

and so the covariant divergence of the energy–momentum tensor vanishes, as
required. Thus, we see that the general covariance of the matter action implies
energy–momentum conservation in the same way as the gauge invariance
of the action (19.29) for electromagnetism implies charge conservation (see
Section 19.7).

Now that we have shown that the tensor T�� defined by (19.50) has the
appropriate properties of an energy–momentum tensor, we may calculate the
explicit form of this tensor for some specific ‘matter’ actions. Let us begin by
considering the action (19.25) for a real scalar field �. Varying this action now
with respect to the (inverse) metric, rather than the field �, we obtain

�S� =
∫
�

{[ 1
2�g

������������
]√−g

+ [ 12g������������−V���
]
��
√−g�} d4x

=
∫
�

{ 1
2����������− 1

2g��
[ 1
2g

�#�������#��−V���
]}

�g��
√−g d4x�

where in the last line we have used the expression (19.37) for �
√−g. Comparing

the above expression with that in (19.51), we immediately see that the energy–
momentum tensor for a real scalar field is given by

T���
�� = ����������−g��

[ 1
2��#����

#��−V���
]
�

which agrees with the expression (16.7) adopted in our discussion of inflation in
Section 16.1.

We may also obtain the energy–momentum tensor for the electromagnetic field
in a similar manner. From (19.29) and (19.28), in the absence of sources we may
write the action for electromagnetism as

SEM =−
1

4�0

∫
�
g��g�#F�#F��

√−g d4x�

where F�� = ��A�− ��A� and so does not depend on the metric. Varying this
action with respect to the (inverse) metric, we have

�SEM = −
1

4�0

∫
�

[
��g��g�#�F�#F��

√−g+F�#F
�#��

√−g�] d4x

= − 1
4�0

∫
�

(
2g�#F��F�# − 1

2g��F�#F
�#
)
�g��

√−g d4x�

where in the second equality we have substituted the expression (19.37) for
�
√−g and relabelled some dummy indices. Comparing the above expression with
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(19.51), we find that the energy–momentum tensor for the electromagnetic field
is given by

T�EM�
�� =−�−10

(
F��F�

�− 1
4g��F�#F

�#
)
�

which agrees with the expression derived in Exercise 8.3.
Finally, we note that in field theory it is common to define also a canonical

energy–momentum tensor, which is based on Noether’s theorem.4 This states that
for every symmetry of the action there exists a corresponding conserved quantity.
In particular, if an action is invariant under a spacetime translation, characterised
by a coordinate transformation of the form x� → x�+a� in which the vector
a� does not depend on spacetime position, then one can define a tensor S�� that
obeys ��S

�� = 0. It is this tensor that is usually called the canonical energy–
momentum tensor. Unfortunately, there are some drawbacks in using it, since it
is not necessarily symmetric (although it can be made so) or gauge invariant.

Exercises

19.1 If ��x� and ��x� are the local line density and tension of a string, show that the
kinetic and potential energies of the string for small displacements ��t� x� are given
by

T =
∫ l

0

1
2�

(
��

�t

)2

dx and V =
∫ l

0

1
2�

(
��

�x

)2

dx�

19.2 In classical field theory, the conjugate field momenta are defined in terms of the
Lagrangian density � by

�a ≡
��

�%̇a
�

where %̇a ≡ �0%
a and x0 is a timelike coordinate. The Hamiltonian density is then

defined as


 ≡ �a%̇
a−��

Use the Euler–Lagrange equations to show that

%̇a = �


��a

and �̇a =−
�


�%a
�

19.3 Consider the quantity

E =
∫
S

 d3x�

4 See, for example, L. H. Ryder, Quantum Field Theory, Cambridge University Press, 1985.
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where 
 is the Hamiltonian density in Exercise 19.2 and the integral extends over
some spacelike hypersurface S for which x0 = constant. Setting 
x��≡ �t� xi� and
using a dot to denote �t, show that

dE

dt
=
∫
S

[
�


�%a
%̇a+ �


��a

�̇a+
�


���i%
a�
�i%̇

a+ �


�t

]
d3x�

By integrating the third term in the integrand by parts, show that dE/dt = 0
provided that 
 does not depend explicitly on t.

19.4 Obtain an expression for the Hamiltonian density
 for the string in Exercise 19.1.
Hence show that the total energy E of the string is given by

E =
∫ l

0

 dx�

and show explicitly that it is a constant of the motion.
19.5 A relative tensor of weight w transforms under a coordinate transformation as

� ′a···
b··· = J−w

�x′a

�xc
· · · �x

′b

�xd
� c···
d···

where J is the Jacobian of the transformation and is given by

J = det
[
�x′a

�xb

]
�

Show that the product of two relative tensors of weights w1 and w2 is a relative
tensor of weight w1+w2. Show further that

√−g is a relative scalar of weight
w = 1 (called a scalar density).

19.6 For a field theory defined by the action S = ∫��d4x show that, if � depends
on first- and second-order derivatives of the fields, the Euler–Lagrange equations
take the form

��

�%a
= ��

�%a
− ��

[
��

����%
a�

]
+ ����

[
��

������%
a�

]
= 0�

provided that the variations �%a and their first derivatives vanish on the boundary
��. How do the Euler–Lagrange equations generalise when � depends on higher-
order derivatives of the fields? What assumptions are required regarding the value
of the variation �%a and its derivatives on �R?

19.7 Consider a local field theory for which the action has the form

S =
∫
�
�
%a�x�� ��%

a�x��d4x�

Under an infinitesimal general coordinate transformation x′� = x�+ ���x�, the
variation in the action is given by

�S =
∫
�′
�′
%′a�x′�� ��%

′a�x′��d4x′ −
∫
�
�
%a�x�� ��%

a�x��d4x�
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Adopting the shorthand notation �S = ∫�′ �′�x′�d4x′ − ∫���x�d4x, show that

�S =
∫
�

���x�+��x����

��x��d4x =
∫
�
!���x�+ ��
��x��

��x��"d4x�

where ���x�= �′�x′�−��x� and ���x�= �′�x�−��x�.
19.8 Suppose that the action in Exercise 19.7 is invariant under the given coordinate

transformation, so that �S = 0. Since the range of integration � can be chosen
arbitrarily, show by writing

��= ��

�%a
�%a+ ��

����%
a�
����%

a��

or otherwise, that{
��

�%a
− ��

[
��

����%
a�

]}
�%a+ ��

[
��

����%
a�
�%a+���

]
= 0�

Hence show that the invariance of the action under the given coordinate transfor-
mation implies that ��j

� = 0, where

j� = ��

����%
a�
�%a−

[
��

����%
a�
��%

a−����

]
���

in which �%a�x�=%′a�x′�−%a�x�. This result is known as Noether’s theorem.
19.9 Use your answer to Exercise 19.8 to show that invariance of the action under the

infinitesimal translation x′� = x�+ �� implies that ��S
�
� = 0, where

S�
� =

��

����%
a�
��%

a−�����

which is known as the canonical energy–momentum tensor of the fields %a. Is
S�

� necessarily symmetric in � and �?
19.10 For the field theory considered in Exercise 19.7, use the fact that � does not

depend explicitly on the coordinates x� to write

���=
��

�%a
��%

a+ ��

����%
a�
����%

a�

By multiplying the Euler–Lagrange equations by ��%
a and summing over a, use

the above result to show directly that ��S
�
� = 0, where S�

� is the canonical
energy–momentum tensor given in Exercise 19.9.

19.11 Consider the ‘modified’ energy–momentum tensor

,�
� = S�

�+ �#�
#�

��

where S�
� is the canonical energy–momentum tensor given in Exercise 19.9 and

�#�
� is any tensor that is antisymmetric in # and �. Show that ��,

�
� = 0 and

that one can always arrange for ,�
� to be symmetric in � and �.
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19.12 Consider a local field theory defined on Minkowski spacetime in an arbitrary
coordinate system x� with metric g��. The action has the form

S =
∫
�
L
%a�x����%

a�x�� g���x��
√−g d4x�

where the fields %a are independent of the metric g�� and L is a scalar under
general coordinate transformations. Use the fact that L does not depend explicitly
on x� to write

��L=
�L

�%a
��%

a+ �L

����%
a�
����%

a�

By multiplying the appropriate form of the Euler–Lagrange equations by ��%
a,

summing over a and noting that covariant derivatives commute in Minkowski
spacetime, use the above result to show that ��S

�� = 0, where the covariant
canonical energy–momentum tensor S�� is given by

S�� = �L

����%
a�
��%a−g��L�

19.13 Consider the ‘modified’ energy–momentum tensor

,�
� = S�

�+�#�
#�

�

where S�
� is the canonical energy–momentum tensor given in Exercise 19.12 and

�#�
� is any tensor that is antisymmetric in # and �. Show that, in a flat spacetime,

��,
�
� = 0 and that one can always arrange for ,�

� to be symmetric in � and �.
19.14 In a four-dimensional spacetime, use the divergence theorem to show that∫

�
���
√−gv�� d4x =

∫
��
n�v

�√−	 d3y�

where v� is an arbitrary vector field, 	 is the determinant of the induced metric
on the boundary in the coordinates yi and n� is a unit normal to the boundary.

19.15 Consider complex scalar field � = ��1+ i�2�/
√
2, where �i�i = 1�2� are real

scalar fields with potentials of the form V = 1
2m

2�2
i . Show that the Lagrangian for

� may be written as

L= g�����������
∗�−m��∗�

where the asterisk denotes the complex conjugate. By varying � and �∗ indepen-
dently, show that

�2�+m2�= 0 and �2�∗ +m2�∗ = 0�

where �2 ≡ ���� = g������ is the covariant d’Alembertian operator.
19.16 In the theory of electromagnetism in arbitrary coordinates, the field tensor is

defined by F�� = ��A�−��A�. Show directly that

F�� = ��A�− ��A�
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and that

�#F��+��F#�+��F�# = �#F��+ ��F#�+ ��F�#�

Hence show that F�� automatically satisfies the relation

�#F��+��F#�+��F�# = 0�

19.17 If F�� = ��A�−��A�, show that

�#F��+��F#�+��F�# = 2�R�
��# +R�

�#�+R�
#���A��

where R�
��# is the Riemann tensor. Hence use the cyclic identity (??) to show

that the above expression is zero.
19.18 An alternative Lagrangian for electromagnetism is given by

L= 1
4�0

F��F
��− 1

2�0

F�����A�−��A��− j�A��

where F�� and A� are considered as independent quantities (i.e. no functional
relationship between them is assumed). By varying the corresponding action with
respect to F�� and A� independently, show that the Euler–Lagrange equations
yield

��F
�� = �0j

� and F�� = ��A�−��A��

19.19 The Lagrangian for a free massive vector field A� of mass m is

L=− 1
4g

��g�#���A# −�#A�����A�−��A��− 1
2m

2A�A
��

Show that the field equation for A� is given by

����
�A�−��A��+m2A� = 0�

By making use of the fact that covariant derivatives commute in Minkowski
spacetime, show that in this case ��A

� = 0 and hence that the field equation can
be written

�2A�+m2A� = 0�

where �2 ≡ ���� = g������ is the covariant d’Alembertian operator. These are
called the second-order Proca equations.

19.20 An alternative Lagrangian for a free massive vector field A� of mass m, is

L= 1
4F��F

��− 1
2F

�����A�−��A��− 1
2m

2A�A
��

where F�� and A� are considered as independent quantities. By varying the
corresponding action with respect to F�� and A� independently, show that the
Euler–Lagrange equations yield

��F
��+m2A� = 0 and F�� = ��A�−��A��

which are called the first-order Proca equations.
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19.21 The simplest scalar action for gravity in vacuo that one can construct from the
metric tensor alone is

S =
∫
�

√−g d4x�

Show that the corresponding field equations are given by
√−gg�� = 0 and clearly

do not constitute a viable theory of gravity.
19.22 Under a general infinitesimal coordinate transformation of the form x′� = x�+

���x�, show that

�g�� ≡ g′���x�−g���x�=−�����+������

19.23 Consider a general action for gravity in vacuo of the form

S =
∫
�
��g��� �#g��� ���#g��� � � �� d

4x�

By considering a general infinitesimal coordinate transformation of the form x′� =
x�+���x�, where the ���x� vanish on the boundary ��, show that the metric and
its derivatives must satisfy the differential constraints

��

(
��

�g��

)
= 0�

where ��/�g�� is the variational derivative of the Lagrangian density with respect
to the metric. Hence show that for the Einstein–Hilbert action these differential
constraints lead to the contracted Bianchi identities ��G

�� = 0.
19.24 Show explicitly that the quadratic action

S̄ =
∫
�
g��� �

�� 
#
�# − �

�# 
#
���
√−g d4x

is not a scalar with respect to general coordinate transformations. Show further
that varying this action with respect to the metric and its first derivative leads to
the Einstein field equations in vacuo, provided that the variation in the metric and
its first derivative vanish on the boundary ��.

19.25 Obtain an expression for the dynamical energy–momentum tensor of the complex
scalar field considered in Exercise 19.15 and that of the massive vector field
considered in Exercise 19.19.
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absolute luminosity, 372
accelerating observers, 125–8
acceleration

and instantaneous rest frames, 126–7
in special relativity, 19–20
radial, 335
three-acceleration, 123
uniform, 21
universe, 187
see also four-acceleration

accretion discs
around compact objects, 240–4, 277
radiation efficiency, 215–16, 240, 338

accretion power, of black holes, 216
action, 525, 526–7

and classical field theory, 527–9
equivalent, 533–4

and general relativity in vacuo, 542–3
stationary, 529–30
see also Einstein–Hilbert action

advanced time parameter, 255
affine connection, 62–4

and metric functions, 65–7
definition, 63
symmetry, 65
transformation properties, 64

affine parameters, 75–6, 117, 120, 221–2, 340
geodesics, 76–7

amplitude tensor, 499–500
Andromeda galaxy, 355
angular diameter distance, 371, 373–4, 411–13
angular momentum barrier, 213, 214
angular speed

coordinate, 245
proper, 245

antiparticles, 275
aphelion, 230

Arcminute Cosmology Bolometer Array Receiver
(ACBAR), 460

area, manifolds, 38–42
atlas, 27

basis tensors, 100
basis vectors, 56–9, 69

and coordinate transformations, 60–1
Cartesian, 113–14
derivatives, 62–4, 84
dual, 56–7, 84
orthonormal, 59
polar coordinates, 83
timelike, 152
see also coordinate basis vectors

Bianchi identity, 161, 162
big-bang origin, 399–400, 404, 409, 419
big-bang theory, 394, 398–400
big-crunch theory, 395, 398–400
binary system, 508–9

compact, 277–9
spin-up, 516–17

Birkhoff’s theorem, 202
black hole, 240, 270

accretion power, 216
angular momenta, 260
charged, Reissner–Nordström geometry,

300–2
definition, 257
detection, 277–9
dynamical mass limits, 279
existence of, 258, 260
formation of and gravitational collapse,

259–64, 277
Hawking effect, 274–7
in binary systems, 277, 278
singularities, 258, 270
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tidal forces near, 264–5
see also Kerr black hole; Schwarzschild black

hole; supermassive black hole; white hole;
wormhole

blackbody
energy spectrum, 276
radiation, 388–9
temperature, 277

bounce model, 398
Boyer–Lindquist coordinates, 318, 319, 320, 322,

344, 347
Boyer–Lindquist form, 318
Brans–Dicke theory, 191–2, 235, 236
Buchdahl’s theorem, 296
bug, two-dimensional, confined to two-dimensional

surface, 33–4, 54

calculus of variations, 87–8
Cartesian basis vectors, 113–14
Cartesian coordinates, 1, 27, 33–5, 320, 346–7, 525

advantages, 128
local, 42–4, 46–7, 48, 67–8, 160
Lorentz transformation, 112–13
Minkowski spacetime, 111–12
rotations, 26

Cartesian inertial frames, 47, 112, 122, 141,
142, 149

global, 151
local, 150–1, 153, 177–8, 179

centre of mass, worldline of, 170
centre-of-momentum coordinates, 482, 507
centrifugal force, repulsive, 217
Cepheid variable, 370
Chandrasekhar, Subrahmanyan (1910–95), 259
Chandrasekhar limit, 259, 277
charge and electromagnetic force, 135–6
charge density, 136–7

proper, 508
charge density distribution, 508
charged particle, equations of motion, 144–5
Christoffel symbol, 106

of the first kind, 66
of the second kind, 63
see also affine connection

circular motion, 209, 335
massive particle, 212–13
photon, 219–20
see also equatorial circular motion

circular orbits, 213, 243–4
stable, 214, 215, 243
unstable, 214

circularly polarised mode, 507
classical field theory, 524

and action, 527–9
clocks, ideal, 11
cold dark matter (CDM), 387

comoving coordinates, 443, 467n
and fundamental observers, 356–9

comoving Hubble distance, 421
compact-source approximation, 481–3, 507–8
complex functions, analytic continuation, 254
components

metric, 83–4
mixed, 94, 97
tensor, 93–4, 100, 102, 103–4
vector field, 73
see also contravariant components; covariant

components
Compton effect, 124
Compton scattering, and relativistic collisions,

123–5
configuration space, 79, 525
congruence of timelike worldlines, 356a
connection coefficients, 85, 202, 244, 317

of general static isotropic metric, 200–1
conservation of energy for perfect fluid, 179–81
conservation of momentum for perfect fluid,

179–81
continuity, equation of, 180
contraction, 66

Lorentz, 177
tensor, 99–100

contravariant components, 56, 57, 59–60, 68
tensors, 93–4, 100

coordinate angular speed, 245a
coordinate basis vectors, 57–9, 113–14, 115–16

spacelike, 275
timelike, 275

coordinate distance, 371
coordinate patches, 27
coordinate singularity, 37, 250, 341
coordinate transformations, 5, 8

and basis vectors, 60–1
infinitesimal general, 468, 469–70
manifolds, 28–30
tensor, 101–2

coordinates, 26–52
arbitrary, 128–31, 142–4, 145, 151, 155–6, 179
Boyer–Lindquist, 318, 319, 320, 322, 344, 347
characterisation, 248
concept of, 27
Kruskal, 258, 266–71, 273
Minkowski, 297–8
momentum, 26
non-degenerate, 27
Novikov, 254n
null, 248, 258
quasi-Minkowski, 467–8, 485
spacelike, 248, 249–50, 266, 273
tensor, 102–3
timelike, 248, 249–50, 256, 258, 266, 273
unique values, 27
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coordinates (cont.)
see also Cartesian coordinates; comoving

coordinates; Eddington–Finkelstein
coordinates; inertial coordinates;
polar coordinates; Schwarzschild
coordinates

corona, solar, 239
cosmic censorship hypothesis, 301, 324
cosmic microwave background (CMB)

characterisation, 388–9
distribution, 389
power spectrum, 459–62

cosmic time, 419
cosmological constant, 185–8, 376, 386,

407–8, 432
effective, 430
size of, 188

cosmological field equations, 386, 392–3, 407,
433, 434

derivation, 376–9
cosmological fluids

components, 386–9
equations of motion, 379–80
multiple-component, 381
scalar fields as, 431–2

cosmological models, 386–421
analytical, 400–8

cosmological parameters, 390–2
cosmological principle, 355–6
cosmological redshift, 367–8
covariant components, 57, 59–60, 81

of tensors, 93–4, 100, 112
covariant derivative, 68–70, 85–6

of tensor, 104–7
critical density, 392
curl, vector field, 71
curvature, 33

and geodesic deviation, 165–7
and parallel transport, 163–5
Gaussian, 161, 171
of manifold, 157–8
see also spacetime curvature; spatial curvature

curvature density parameter, 391
curvature perturbations

and gauge invariance, 446–9
evolution, 449–52
initial conditions, 452–5
normalisation, 452–5
power spectrum, 456–7

curvature scalar, see Ricci scalar
curvature spectrum, definition, 456
curvature tensor, 75, 158–9, 182, 250, 267

properties, 159–61
in Schwarzschild coordinates, 264
spherical surfaces, 161, 170

curve in manifold, 27–8

closed timelike, 301, 327
non-null, 75–6
null, 75–6
parametric, 28
tangent vector, 55–6

curved spacetime, 181, 244
electromagnetism in, 155–6
geodesic motion, 188
observers in, 152–3
tidal forces in, 167–70
see also spacetime curvature

cyclic identity, 160
cylinder, 34

parallel transport around, 165

d’Alembertian operator, 71, 140, 144, 148,
471, 475

covariant, 432, 535
dark matter, 387
de Sitter model, 398

properties, 407
deceleration parameter, 368–71
delta function, four-dimensional, 189
density parameters, 390–2, 410

curvature, 391
evolution, 415–17
present-day, 415
total, 392

derivatives
absolute, 72
of basis vectors, 62–4, 84
see also covariant derivative; directional

derivative; intrinsic derivative
development angle, 402
differential manifold, 26
directional derivative, 56

vectors as, 81–2
distance–redshift relation, 411–13
divergence, of vector field, 70
divergence theorem, 532
Doppler effect, 16–18, 240

and relativistic aberration, 120–1
formula for, 18

dual basis vectors, 56–7, 84
dust, 178, 182

spherically symmetric collapse of, 260–4
use of term, 176
worldline, 190

eclipses
lunar, 235
solar, 235

Eddington, Sir Arthur Stanley (1882–1944),
235, 542

Eddington–Finkelstein coordinates, 254–9, 303
advanced, 258, 261, 262, 270, 303, 346
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definition, 254–9
limitations, 266

and Kerr geometry, 344–6
retarded, 270

definition, 257–9
limitations, 266

effective potential, 335
general relativistic, 214–15
Newtonian, 213–14

Einstein, Albert (1879–1955)
and cosmological constant, 185–8, 407–8
and special relativity, 22–3
elevator experiment, 148–50
general relativity theory, 150, 233
‘On the Electrodynamics of Moving Bodies’

(1905), 22
Einstein–Cartan theories, 193
Einstein–de-Sitter (EdS) model, 398, 402, 410, 413

radiation-dominated, 420
Einstein equations, 176, 181–3

and cosmological term, 185–8
and geodesic motion, 188–90
exact, 487
in empty space, 183, 202
limitations, 317
non-linearity, 473
perturbed, 443–5
solving, 196, 198–202, 248, 270

for spherically symmetric geometries, 288–305
weak-field limit, 184–5
see also gravitational field equations

Einstein–Hilbert action
and general relativity in vacuo, 539–42
Lagrangian density, 544
stationarity, 545
variation, 540

Einstein–Hilbert Lagrangian density, 543, 544
Einstein–Maxwell coupled equations, 297–8, 300
Einstein–Maxwell formulation of linearised

gravity, 490–2
Einstein–Rosen bridge

and wormholes, 271–4
structure, 273

Einstein tensor, 162, 183, 442–3, 444, 546
linearised, 487

Einstein’s static universe, 407–8
electric fields in inertial frames, 141–2
electrodynamics, 22, 189–90
electromagnetic field, energy–momentum tensor

for, 548–9
electromagnetic field equations, 138–9, 176

derivation, 136–7
in arbitrary coordinates, 142–4, 155–6
simplification, 140–1
see also Maxwell’s equations

electromagnetic field tensor, 138, 139, 140, 156

antisymmetric, 136
components, 142, 176
definition, 136

electromagnetic forces, 148
and charge, 135–6

electromagnetic radiation, generation of, 508
electromagnetic waves and gravitational waves

compared, 501
electromagnetism, 135–46, 508

and Lorentz gauge conditions, 139–41
and special relativity, 135
consistent theory of, 135
from variational principles, 536–9
in arbitrary coordinates, 142–4
in curved spacetime, 155–6

electron degeneracy pressure, 259
elevator experiment, 148–50
ellipticity of planetary orbits, 230, 231
emitters

four-velocity, 241
gravitational redshift, 202–5, 315

empty-space field equations, 288
solutions, 198–202, 248

energy, 118–19
conservation of, 179–81
potential, 535

energy density
of universe, 390, 433
of vacuum, 187, 390

energy equation for particle motion, 213–14
energy–momentum invariant, 119
energy–momentum tensor, 176–8, 182, 188,

192, 484
and spacetime curvature, 176
canonical, 549
dynamical, 546–9
for electromagnetic field, 548–9
for gravitational field, 486–90, 511–13
for matter, 546
for multiple-component fluids, 381
for perfect fluid, 178–9, 187, 377–9, 432
for scalar field, 432, 444–5
non-zero, 288, 296–7, 475
of vacuum, 187–8
symmetry of, 179

epoch, 418, 19
inflationary, 433, 437
of recombination, 420

equation of continuity, 180
equation of state, 292

polytropic, 293
equation-of-state parameter, 380
equations of motion, 148

and Newtonian gravity, 209
Euler’s, 181
for charged particles, 144–5
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equations of motion (cont.)
for cosmological fluid, 379–80
for perfect fluids, 179–81
for photons, 119
for scalar field, 433
geodesics, 188–90
Newtonian, 154–5, 230, 486
radial, 304–5
relativistic, 180

equatorial circular motion
massive particle, 335–6
photon, 341

equatorial orbits
massive particle, stability, 337–8
photon, stability, 342–4

equatorial planes, geodesics in, 330–2
equatorial trajectories

energy equation, 331
massive particle, 332–3
photon, 338–9

equivalence principle, 148–50, 191
equivalent mass densities, 390, 392
ergoregion, 324, 325–7
Euclidean geometry, 4
Euclidean metric tensor, 505
Euclidean space, 27

four-dimensional, 37–8
pseudo-, 47, 54, 114
three-dimensional, 26, 33, 36–7, 40–2, 70, 271–2

Euler angles, 26
Euler–Lagrange (EL) equations, 78, 88, 209, 349,

432, 525, 529–30
alternative forms, 531–2, 538
alternatives to, 331
substitution of ‘Lagrangian’ into, 79–80, 199,

205–6
Euler’s equation of motion, 181
event horizons, 257, 269, 274–5, 301, 315–16, 420

formation, 260
in Kerr metric, 323
smooth closed convex, 317
in special relativity, 21–2

events, unique specification, 1
expansion problem, 428
experimental tests

and Schwarzschild geometry, 230
of general relativity, 230–46

exponential expansion, 439–40
extrinsic geometry, 33–6

Fermi–Dirac statistics, 259
Fermi energy, 259
Fermi–Walker transportation, 127, 152, 153
field equations, 524

dynamical, 536
homogeneous, 476

non-linearity of, 196
perturbed, 443–5
vacuum, 249
see also cosmological field equations;

electromagnetic field equations;
empty-space field equations; gravitational
field equations; linearised field
equations

field Lagrangian, 528–9
field theories

Minkowski spacetime, 487
of real scalar fields, 534–6
see also classical field theory

field-strength tensor, 537, 538
fixed spatial coordinates, 223, 315
flatness, conformal, 267, 282–3
flatness problem, 418, 428

solving, 429–30, 436, 442
fluid

four-velocity of, 177–8
in instantaneous rest frame, 176–7, 178–9
Lorentz contraction of, 177
multiple-component, 381
see also cosmological fluid; perfect fluid

fluorescence, 240
force

gravitational, 147, 148
pure, 122
repulsive centrifugal, 217
see also electromagnetic force; four-force;

three-force; tidal forces
four-acceleration, 123, 125–7, 152, 153

orthogonal, 125
four-current density, 136–7, 156, 176

components, 137
four-dimensional rotations, Lorentz transformations

as, 5–6
four-force, 122, 135–6, 156

pure, 123
four-gradient, 138
four-momentum, 123, 126, 144, 207, 274–5, 331

and Compton scattering, 123–5
conservation along geodesic, 312–13
of massive particle, 118–19
of photon, 119–20, 222–3, 224, 242, 244

four-potential, 297
four-tensors, 136, 152, 250
four-vector potential, 142, 143
four-vectors, 120, 136, 138–9, 349

and gyroscopes, 244–6
and lightcones, 115–16
and Lorentz transformations, 116
as geometrical entities in spacetime, 115

four-velocity, 168–9, 190, 276,
325–6, 349
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Fourier space, 458
perturbation equations in, 445–6
and gyroscopes, 244–6
definition, 116–18
normalised, 126, 152
of charged particle, 135–6, 144, 156
of emitter, 241
of fluid, 177–8
of free particle, 504
of massive particle, 207, 304
of perfect fluid, 290
spatial components of, 223

four-wavevector, 499–500, 501
and Doppler effect, 120–1
concept of, 120

Fowler, Ralph Howard (1889–1944), 259
frames of reference, 1
free particle, 123

gravitational-wave effects, 504–7
freely falling frame (FFF), 152–3
frequency shift, 240

see also Doppler effect; redshift
Friedmann equations, 379
Friedmann expansion, 440
Friedmann–Lemaître equations, 379
Friedmann models, 400–3, 419

dust-only, 401
radiation-only, 403, 430, 436

early-time, 439
spatially flat, 402, 403

Friedmann–Robertson–Walker (FRW) geometry,
355–81, 467n

spatial curvature
negative, 364–5
positive, 363–4
zero, 364

number densities, 374–6
proper volume, 375
volume element, 375

Friedmann–Robertson–Walker metric, 362,
386, 442

geodesics in, 365–7
geometric properties, 362–5

Friedmann–Robertson–Walker universes,
properties, 393–4

fundamental observers and comoving coordinates,
357–8

future-pointing vectors, 116

G2000+25, 279
Galactic centre, 282
galaxies, 186–7, 355, 420

and fundamental observers, 358
Andromeda, 355
comoving coordinates, 357
distribution of, 462

Milky Way, 186, 280, 355
proper time, 357–8
spectra, 243
worldlines, 356

Galilean transformations, 3, 4
Galilei, Galileo (1564–1642), 148
gauge

choice of, 442–3
longitudinal, 443
see also Lorentz gauge conditions;

transverse-traceless (TT) gauge
gauge freedom, 140
gauge invariance, 536, 548, 549

and curvature perturbation, 446–9
gauge transformation, 140, 472
Gauss’ theorem, 482–3
Gaussian curvature, 161, 171
general relativity

and matter, 545–6
experimental tests of, 230–46
in vacuo

and Einstein–Hilbert action, 539–42
equivalent action, 542–3
Palatini approach, 543–5

linearised, 467–92
predictions, 235
sign conventions, 193
theory of, 150, 183, 233
variational approach, 524–49
see also special relativity

geodesic convergence, 167
geodesic coordinates, local, 68–9
geodesic deviation

and curvature, 165–7
equation of, 165, 167, 168

geodesic equations, 77, 78–9, 145, 154,
189–90, 504

alternative forms, 81
integration, 206

geodesic motion and Einstein equations, 188–90
geodesic precession effect, 246
geodesics, 76–7

congruence, 356
in equatorial plane, 330–2
in Friedmann–Robertson–Walker metric, 365–7
in Minkowski spacetime, 128
in Schwarzschild geometry, 205–7
Lagrangian procedures, 78–80, 199, 205
non-null, 80, 123, 206, 332

stationary property, 77–8
null, 80, 123, 203, 206, 256

principal, 339
polar coordinates, 86–7
timelike, 168, 244

geometry
Euclidean, 4
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geometry (cont.)
extrinsic, 33–6
intrinsic, 33–6
Kerr, 230, 310–50
Newtonian, 3
of manifolds, 31
Riemannian, 32–3
spacetime, 3–5
see also Friedmann–Robertson–Walker

geometry; Minkowski geometry;
non-Euclidean geometry;
Reissner–Nordström (RN) geometry;
Schwarzschild geometry

gradient
four-gradient, 138
in scalar field, 70

grand unified theories (GUTs), 431
phase transitions in, 436, 438–9

gravitational binding energy, 337–8
gravitational collapse

and black-hole formation, 259–60, 261–4, 277
and redshift, 263–4
concept of, 259
free-fall, 263

gravitational deflection formula, 234
gravitational effects included in field equations, 156
gravitational field equations, 176–93, 376

in empty space, 183
non-linearity of, 196, 467
see also Einstein equations; linearised field

equations
gravitational field tensor, 514
gravitational fields

energy-momentum tensor, 486–90, 511–13
non-vanishing, 184
weak, 153–5, 467–70

gravitational focussing, 413
gravitational forces, 147, 148
gravitational Lorentz force law, 491
gravitational mass, 147, 149
gravitational matter density, 147–8
gravitational Maxwell equations, 491
gravitational perturbations, 502
gravitational potential, 147, 155, 168, 185, 201

Newtonian, 486
gravitational radiation, 508, 516–17
gravitational redshift, 486

for fixed emitter or receiver, 202–5, 315
general approach, 221–4

gravitational waves, 498–520
and electromagnetic waves compared, 501
and linear strain, 518–19
detection, 517–20
effect on free particle, 504–7
emission, energy loss, 513–16
energy flow, 511–13

existence, 498
generation, 507–11
polarisation, 510–11
see also plane gravitational waves

gravitational-wave luminosity, 514, 515
gravitoelectric fields, 491
gravitomagnetic fields, 491
gravity, 135

as spacetime curvature, 150–1
strong-field regime, 240
theories of, 524

Brans–Dicke, 191–2, 235, 236
relativistic, 191–3
scalar, 190
scalar–tensor, 192
self-consistent, 542

see also linearised gravity; Newtonian gravity
gravity–electromagnetism coupling, 191
gravity–matter coupling strength, 192
Gravity Probe B (GP-B), 246
Green’s functions, 475–8
Guth model, 438
gyroscopes, geodesic precession, 244, 246

slow-rotation limit, 347–50

Hamilton’s principle, 524–7
Harrison–Zel’dovich spectrum, 458, 459
Hawking, Stephen (1942–), 274
Hawking effect, 274–7

definition, 275
Hawking temperature, 276–7
Heaviside functions, 478
Heisenberg’s uncertainty principle, 274
Higgs field, 431, 438, 440
horizon problem, 419–20, 428

solving, 437, 442
hot dark matter (HDM), 387
Hubble, Edwin (1889–1953), 186–7, 369
Hubble distance, 420–1

comoving, 421, 429, 450, 451
Hubble parameter, 368–71, 390, 392, 407,

435, 444
and redshift, 393
periods when constant, 434–5

Hubble Space Telescope, 280
Hubble time, 397, 398, 400

and age of universe, 408–10
Hubble’s law, 370
Hulse, Russell Alan (1950–), 517
hydrogen, nuclear burning of, 216, 240
hyperbolae, 21, 268

invariant, 11–12
hypersurfaces, 28, 248, 271–2, 477, 483

non-intersecting spacelike, 356
hypervolumes, four-dimensional, 476
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impact parameter, 220–1
indices

dummy, 31, 94, 535, 544–6
free, 30–1
lowering, 60
raising, 60
tensor, 97
vector, 57, 59–60

inertial coordinates
Cartesian, 140, 144
local, 151–2

inertial frames, 117
and principle of relativity, 1–2
concept of, 1
dragging of, 312–14, 346, 347, 350
electric fields in, 141–2
four-current density in, 136–7
in standard configuration, 2, 113
magnetic fields in, 141–2
transformations between, 6
see also Cartesian inertial frames; instantaneous

rest frames
inertial mass, 148, 149
infinite redshift surfaces, 315, 324, 419
infinitesimal general coordinate transformations,

468, 469–70
inflation

amount of, 435–7
chaotic, 437–8, 440–1
definition, 428–9
ending, 435, 440
new, 437, 438–40
periods of, 429, 430
perturbations from, 442
predictions, 456–7
starting, 437–8
stochastic, 438, 441–2

inflationary cosmology, 420, 428–62
models, 437
theory vs. observation, 459–62

inflationary epoch, 433, 437
inflaton field, 431–2
instantaneous rest frame (IRF), 15, 20, 168–9

and acceleration, 126–7
definition, 125
fluid in, 176–7, 178–9

integration constant as new coordinate, 255
interferometers, 519
interval

and lightcone, 6–8
infinitesimal, 13–14
lightlike, 7, 14
quadratic, 32
spacelike, 7–8, 14
timelike, 7–8, 14

intrinsic derivative, 71–3
tensor, 107–8

intrinsic geometry, 33–6
invariant hyperbolae, 11–12
inverse transformations, 29–30
iron, spectral lines of, 240, 243
isotropic metric

general static, 196–8
connection coefficients, 199–200

stationary, 198
isotropy of universe, 355

Jacobian, 29–30, 48

Kepler’s laws, 277–8
Kerr, Roy P. (1934–), 321
Kerr black holes

binding energy, 338
extreme, 323
rotational energy, 325, 327–9
structure, 322–7

Kerr geometry, 230, 310–50
Kerr metric, 243, 246, 317–19, 322

event horizon, 323
extension, 327
limits of, 319–20

Kerr–Schild form, 321–2
Kerr solution, 345–6, 347

frame-dragging effect, 346, 347
kinetic energy, 535
Klein–Gordon equation, 536

covariant, 432
Kronecker delta, 30
Kruskal, Martin David (1925–), 266
Kruskal coordinates, 258, 266–71, 273
Kruskal extension, 301
Kruskal spacetime diagrams, 269, 270, 273

Lagrangian, 209, 525, 535, 536–7, 539
field, 528–9
gravitational, 542
substitution of, 79–80, 199, 205–6

Lagrangian density, 526, 528, 529–30, 531–2
in Einstein–Hilbert action, 542–3
modified, 533
variational derivative of, 530

Lagrangian formalism, 524
Lagrangian procedures, 349

for geodesics, 78–80, 199, 205
Laplacian, 148

four-dimensional, 140
scalar field, 70, 71
spatial, 444
symbols for, 71

laser Michelson interferometers, 519–20
Leibnitz’ rule, 526, 542
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Leibnitz’ theorem, 63, 530, 532, 544, 547
Lemaitre models, 393–4

matter-only, 404–6
spatially flat, 406–7, 410, 419

properties, 404
see also de Sitter model

length
coordinate, 39
in manifolds, 38–42
proper, 10, 39

length contraction, 10–11
Lens–Thirring effect, 350
Lie derivative, 447n
light, bending of, 233–6, 486, see also speed

of light
lightcones

and four-vectors, 115–16
and intervals, 6–8
and Schwarzschild solution, 251–2
at Schwarzschild radius, 257
future-pointing, 477
past, 479
special-relativistic, 218

line element of Minkowski spacetime, 12–14, see
also Schwarzschild line element

linear strain and gravitational waves, 518–19
linear transformations, 2, 46
linearised field equations, 467, 470–1,

487, 490–1
compact-source approximation, 481–3
empty-space, 502
far-field solution, 481–3
general properties, 473–4
general solution, 475–80

multipole expansion for, 480–1
in vacuo solution, 474–5
static source, 485–6
stationary source, 483–5

linearised general relativity, 467–97
linearised gravity, 472

Einstein–Maxwell formulation of, 490–2
Local Group, 355
local theories, 50
longitudinal gauge, 443
look-back time, 408–10
Lorentz contraction of fluid element, 177
Lorentz force law, 491

gravitational, 492
Lorentz invariant, 137
Lorentz symmetry, loss of in general relativity, 487
Lorentz transformation matrices, 125
Lorentz transformations, 4, 8, 13, 22, 127, 151

and four-vectors, 116
and length contraction, 10
as four-dimensional rotations, 5–6
Cartesian coordinates, 112–13

differentials, 18
global, 468, 488
homogeneous, 6, 113
inertial frames, 313
inhomogeneous, 6, 113

Lorentz-boost transformations, 4, 5, 8, 9, 11
Lorenz gauge conditions, 501, 510

and electromagnetism, 139–41
definition, 140
in arbitrary coordinates, 143–4
linearised gravity in, 472, 473–4
satisfying, 478–9, 498–9, 502, 511–12

luminosity
absolute, 372
and gravitational collapse, 263
gravitational-wave, 514, 515

luminosity distance, 372–4, 411–12
Lynden-Bell, Donald (1935–), 280

Mach’s principle, 149
magnetic fields in inertial frames, 141–2
magnetohydrodynamic instabilities, 215
manifold, 26–52

arbitrary, 528
area, 38–42
concept of, 26–7
coordinate transformations in, 28–30
coordinates for, 26
curvature of, 157–8
differential, 26
dimensions, 26
flat, 157, 159
geometry of, 31
length of, 38–42
local geometry of, 31
one-dimensional, 527
pseudo-Euclidean, 111
scalar fields, 53
Schwarzschild, 272
signatures of, 47
tangent spaces to, 44–5, 47, 54, 59
tensor calculus on, 92–110
tensor fields on, 92–3
topology, 49–50
torsionless, 65, 76
two-dimensional, 54–5
vector calculus, 53–91
vector fields on, 54–5
volume, 38–42
see also pseudo-Riemannian manifolds;

Riemannian manifolds; submanifolds
Mars, Viking lander, 239
masers, 281
mass function, 278–9
massive particle

circular motion, 212–13
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equatorial, 335–6
equatorial trajectories, 332–3
four-momentum, 118–19
orbits, stability of, 213–17
radial motion, 209–11

equatorial initially, 333–5
trajectories, 304–5

trajectories, 207–9
matter

and general relativity, 545–6
baryonic, 387, 391
dark, 387
energy–momentum tensor, 546
non-baryonic, 387

matter-density, 176–7, 387–8, 389, 393
gravitational, 147–8

matter-density distribution, quadrupole
moments, 508

matter density perturbations
growing mode, 459
power spectrum, 458–9

matter power spectrum, 458
maximal analytic extension, 301
maximally symmetric 3-space, 359–61
Maxwell’s equations, 22–3, 139, 141, 176, 189–90,

297–8
gravitational, 491
homogeneous, 538
inhomogeneous, 538
predictions, 498
see also electromagnetic field equations

MCG-6-30-15, spectra, 243
mechanics

Newtonian, 524–7
quantum, 259, 274
relativistic, 122–3

Mercury
perihelion shift, 233, 235
precession, 233
retardation, 191

metric components, 83–4
metric connection, use of term, 66
metric function, 196

and affine connection, 65–7
metric tensor, 32, 93, 96, 112
Michelson–Morley experiment, 22, 23
Milky Way Galaxy, 187, 280–1, 355
Minkowski, Hermann (1864–1909), 4
Minkowski coordinates, 297–8
Minkowski geometry, 5, 26, 317, 319–20

spacetime, 153, 156
use of term, 4

Minkowski regions, 269–70
Minkowski spacetime, 13, 123, 181, 251, 457, 468

as background, 469, 471, 476n, 484–5, 487, 498
coordinate transformations, 5

field theories, 487
fixed, 473
four-dimensional, 47, 364
in arbitrary coordinates, 128–31, 142–4
in Cartesian coordinates, 111–12
line element, 12–14
pseudo-Euclidean, 114, 151
symmetries, 486–7
tensorial equations, 135
weak distortions, 487

Minkowski 2-space, 266–7
momentum coordinates, 26
Moon, eclipses, 235
motion, equations of, see equations of motion
M-theory, 271

N Oph 77, 279
naked singularities, 301, 324
National Aeronautics and Space Administration

(NASA) (US), missions, 246
neutrinos, 259, 388
neutron, discovery of, 259
neutron star, 259–60, 288

gravitational forces, 260
in binary system, 277, 278

Newtonian dynamics, 213, 280
Newtonian gauge see longitudinal gauge
Newtonian geometry of space and time, 3
Newtonian gravity, 147–8, 153, 183, 185, 458

and equations of motion, 208–9
and planetary motion, 230
and tidal forces, 167–8, 264
field equation, 181–2, 186
relativistic generalisation, 191

Newtonian limit, 153–5, 180, 182, 185, 393–4, 509
and binary systems, 516
and static sources, 485–6

Newtonian mechanics, Hamilton’s principle in,
524–7

Newtonian potential, 443
Newtonian theory, 147, 154–5, 180, 181, 183, 230

and special relativity compared, 2
of stellar structure, 288

Newton’s laws of motion, 1
NGC 4258, 281
Nobel Prize, 517
Noether’s theorem, 549
non-Euclidean geometry, 4

examples, 36–8
non-Euclidean space

infinite, 42
three-dimensional, 38, 41–2

non-inertial frames, 129
normalised scale parameter, 389
Novikov coordinates, 254n
null curve, 75–6
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null-cone, 116
number densities

in Friedmann–Robertson–Walker geometry,
374–6

proper, 375–6

observers
accelerating, 125–8
in curved spacetime, 152–3
fundamental, 356–7

Oppenheimer–Volkoff equation, 293, 294
Oppenheimer–Volkoff limit, 260
orbit

Newtonian, 208
non-circular, 216–17, 230
of massive particle, 212–17
shape of, 208
spiral, 215, 217
see also circular orbits; equatorial orbits; photon

orbits; planetary orbits
orthogonal connecting vectors, 170
orthogonal coordinates, 39
orthonormal basis vectors, 59

Palatini approach for general relativity in vacuo,
543–5

Palatini equation, 541, 544
parallel transport, 222

and curvature, 163–5
and gyroscopes, 244
of tensor, 108
of vector, 73–5
on spherical surface, 165
path dependence, 74–5

particle
charged, 144–5
four-momentum, 312–13
infalling, 210–11, 219, 252–9
non-interacting, 176
tunnelling, 275
see also free particle; massive particle

particle–antiparticle pairs, 274
particle horizon, 418–20
particle worldlines, 14–16, 116–17, 154, 156

radial, in Schwarzschild coordinates, 252–4
past-pointing vectors, 116
Pauli exclusion principle, 259
Penrose, Sir Roger (1931–), 260, 301,

324, 325
Penrose process, 327–9, 344
perfect fluid, 289, 386–9

and weak-field limit, 184–5
conservation of energy–momentum, 179–81
definition, 178–9
energy–momentum tensors, 178–9, 187,

376–9, 432

equations of motion, 180–1
four-velocity, 290

perihelion, 230
shift, 233, 235, 486

perturbation equations, in Fourier space, 445–6
perturbations

from inflation, 442
gravitational, 502
Newtonian potential, 443
scalar-field, evolution, 442–6
see also curvature perturbations; matter density

perturbations
phase transitions, 430–1
photon, 388

circular motion, 219
equatorial, 341

equation of motion, 119
four-momentum, 119–20, 222, 223, 241, 243
four-wavevector, 120–1
radial motion, 218–19, 302–4
radially outgoing, 257–8
redshift, 204–5, 240, 243, 408
trajectories, 217, 233–4

equatorial, 338–9
photon orbits

circular, 233
energy equation, 219–20, 236–7
equatorial, stability of, 342–4
general, 220
stability of, 220–1

photon path deflection, 237–9
photon propagation, 342–3, 344
photon worldlines, 14, 218, 242, 256

radial, in Schwarzschild coordinates, 251–2
Planck era, 430–1, 436
Planck scales, 270–1
plane gravitational waves

and polarisation states, 498–500
effects on free particles, 504–7
propagation, 505

planetary motion and Newtonian gravity, 231
planetary orbits

ellipticity, 230, 231
precession, 230–3

Poincaré transformations, 6, 7, 113
Poisson’s equation, 147, 183, 185, 458
polar coordinates

cylindrical, 272
in a plane, 82–7

polarisation states and plane gravitational waves,
498–500

polarisation tensors, linear, 500, 511
polytropic index, 293
position coordinates, 26
potential energy, 535
potential functions, 443
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power spectrum
cosmic microwave background, 459–62
curvature perturbations, 456–7
definition, 456
matter density perturbations, 458–9
scale invariant, 456

precession
geodesic, 244–6
gyroscopes, 244–6

slow-rotation limit, 347–50
planetary orbits, 230–3

primordial spectral index, 457–2, 458
principal photon geodesics, equatorial, 339–41
principle of relativity and inertial frames, 1–2
principal stresses, 170
projectiles and elevator experiment, 148–9
proper angular speed, 245
proper charge density, 508
proper density, 509
proper distance, 371
proper length, 10, 39
proper mass density, 508
proper motion of stars, 280–1
proper number densities, 375–6
proper time, 14–16, 204, 206–7, 219, 252–3

finite, 211, 254
infinite, 211, 254

proper volume, 10
protons, 259

Schwarzschild radius, 249
pseudo-Euclidean geometry, see Minkowski

geometry
pseudo-Euclidean manifolds, four-dimensional, 111
pseudo-Euclidean space, 47, 54, 114
pseudo-Riemannian manifold, 39, 45–7, 53, 54,

59, 157
curved spacetime, 150–1
local Cartesian coordinates, 46–7, 67–8
non-null curve, 75
null curve, 75
use of term, 32
vectors, 62, 74

pseudotensors, use of term, 468
PSR B1913+16 (binary pulsar), 517–18
pulsars, binary, 516–17
pulsation, radial, 202

quadratic intervals, 32
quadrupole formula, 483, 507–8
quadrupole-moment tensor, 483, 508, 509–10,

514, 516
reduced, 514, 516

quadrupole moments, transverse-traceless, 514–15
quantum chromodynamics and inflation, 431
quantum gravity, theory, 188
quantum mechanics and white dwarfs, 259, 274

quark–hadron phase transition, 431
quasars

discovery, 279–80
radio-wave deflection measurements, 236

quasi-Minkowski coordinates, 467–8, 485
quasi-stellar objects (QSOs), 279n
quotient theorem, 103–4

radar echoes, 236–9
radial coordinates, 209
radial distance, 209
radial motion

equatorial initially, massive particle, 333–5
massive particle, 209–11
photon, 218–19

radiation density, 388–9, 393
radiation efficiency in accretion discs, 215–16,

240, 338
radio quasars, 235
radio sources, 235
rapidities, addition of, 19
rapidity parameter, 5, 18
receiver and emitter fixed, gravitational redshift,

202–5, 315
recombination, 420
red giants, 288
redshift, 187, 191, 395, 411

and gravitational collapse, 262–3
and Hubble parameter, 393
cosmological, 355–6
infinite, 315, 324, 419
photon, 204–5, 240, 242, 408
quasar, 279–80
see also gravitational redshift

reheating, 451
use of term, 435

Reissner–Nordström (RN) black hole, extreme, 301
Reissner–Nordström geometry

charged black hole, 300–2
radial massive particle trajectories, 304–5
radial photon trajectories, 302–4
spacetime diagram, 303

relative three-vector, 117
relativistic aberration

and Doppler effect, 120–1
formula, 121

relativistic collisions and Compton scattering,
123–5

relativistic gravitational equations
static spherically symmetric charged body, 288,

296–300
stellar interior, 288–92
stellar structure, 292–4

relativistic mechanics, 122–3
relativistic theories of gravity, 191–3
r-equation replacement, 206, 217
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resonant detectors, 518
retarded time parameter, 258
Ricci scalar, 250, 539–40

definition, 161–2
linearised, 470–1

Ricci tensor, 182, 199, 202, 359–60, 540
components, 200, 289–90, 298–9, 317, 378
definition, 161–2
linearised, 470–1
terms, 488–9

Riemann tensors, see curvature tensors
Riemannian geometry, 32–3
Riemannian manifolds, 26, 39, 61

definition, 32
local Cartesian coordinates, 42–4
two-dimensional, 33, 44–5, 53, 311

conformal flatness, 267, 282–3
vectors, 74
see also pseudo-Riemannian manifolds

rotating bodies
characterisation, 310
slow, 347–50
spacetime geometry, 310–50

scalar density, 529
scalar field, 430–1, 527–9

as cosmological fluid, 431–2
energy–momentum tensor, 432, 444–5
equations of motion, 433
field theories, 534–6
gradient, 70
Higgs-like, 438
Laplacian, 70, 71
on manifolds, 53
quantum irregularities, 442
reheating, 435, 451

scalar multiplication, tensors, 98
scalar parameters, 431
scalar product

positive definite, 61
vectors, 58

scalar–tensor theory of gravity, 191–2
scalar theory of gravity, 191
scalar, covariant derivatives, 69–70, see also Ricci

scalar
scale factor, 376–80

evolution of, 397–400
scale fluctuations, super-horizon, 451
scale invariance, 456
scale-invariant spectrum, 459
scaling factors, conformal, 266–7
Schmidt, Maarten (1929–), 279–80
Schwarzschild, Karl (1873–1916), 196
Schwarzschild black holes, 202, 240, 248–83, 288

formation of, 260–3, 296
Schwarzschild constant-density solution, 296

for stellar interior, 294–5
Schwarzschild coordinates, 248, 250, 261, 262,

264, 268
radial particle worldlines in, 252–4
radial photon worldlines in, 251–2
timelike, 266

Schwarzschild geometry, 196–224, 233–4, 248,
288, 301

and experimental tests, 230
geodesics in, 205–7
in Kruskal coordinates, 266–71
spacetime diagram, 256–7
static, 272
tidal forces in, 264

Schwarzschild line element, 204, 205, 255, 258
derivation, 198–201

Schwarzschild manifold, 272
Schwarzschild metric, 211, 240, 242–3, 266,

277, 443
connection coefficients, 244
singularities in, 249–50
spherical symmetry, 206, 289, 292, 296
validity, 201–2

Schwarzschild radius, 202, 249, 251, 252
lightcone structure at, 257

Schwarzschild solution, 260, 486
lightcone structure of, 251–2
maximal extension, 270

Schwarzschild spacetime, 202–3
Shapiro effect, 486
short X-ray transients, 279
sign conventions, in general relativity, 193
signatures, of manifolds, 47
simultaneity, concept of, 9
singularities, 38, 269–71

black-hole, 259, 271
coordinate, 37, 250, 341
intrinsic, 250, 288
naked, 301, 324
real, 252
ring, 327
in Schwarzschild metric, 249–50
spacelike, 252, 345–6
timelike, 345–6
white-hole, 258, 270

singularity theorems, 260
Sirius, 259
Sirius B, 259
slow-roll approximation, 434–5, 440
source term in field equations, 136, 176
space

empty, 183
pseudo-Euclidean, 47, 54, 114
with Newtonian geometry, 3
see also Euclidean space; Fourier space;

non-Euclidean space
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spacetime, 26
empty, 184
four-dimensional, 158
geometry of, 240
Minkowski geometry, 153, 156
of special relativity, 1–25
paths in, 13–14
rotations in, 127
Schwarzschild, 202–3
static, 196, 273
stationary, 196, 275, 315
symmetries, 196
see also curved spacetime; Minkowski spacetime

spacetime curvature, 181, 190, 250
and energy–momentum tensors, 176
gravity as, 150–1
see also curved spacetime

spacetime diagrams, 7, 8–9, 258, 261, 267
Kerr solution, 346
Reissner–Nordström geometry, 303
Schwarzschild geometry, 256–7
see also Kruskal spacetime diagrams

spacetime geometry
dynamics, 376
of special relativity, 3–5
rotating bodies, 310–50

spacetime indices, 528
spacetime torsion, 193
spatial amplitude tensor, 503
spatial curvature

evolution, 417–18
negative, 364–5, 391
positive, 363–4, 391
zero, 364

spatial momentum, 275
spatial projection tensors, 503
spatial velocity fields, 484
special relativity, 111–13

and electromagnetism, 135
and elevator experiment, 149–50
and Newtonian theory compared, 2
acceleration in, 19–20
Einstein’s route to, 22–3
event horizon in, 21–2
spacetime geometry of, 3–5
spacetime of, 1–25
velocity addition, 18–19
spectrum, 240, 243
curvature, 456
Harrison-Zel’dovich, 458, 459
matter power, 458
see also power spectrum

speed of light, 14, 23
constant, 3–4

spherical mass, 486
and gravitational redshift, 202–5

light deflection, 235, 236
Schwarzschild metric, 201

spherical surfaces, 36–7, 171–2
curvature tensor, 161, 171
four-dimensional, 37–8
geodesic convergence, 167
parallel transport, 165
three-dimensional, 35, 40–2
two-dimensional, 35
vector field, 54

spherical symmetry, 202, 206, 288–305, 310
spherically symmetric collapse, 260–4
spin, quantum mechanical, 192–3
spontaneous symmetry breaking, 431
stars

age of, 410
gravitational collapse, 259–60, 261–3
maximum mass, 260
proper motion of, 280–1
radial pulsation, 202
velocity dispersion, 280
see also binary system; neutron star; white dwarf

static metric, 196–7
static source

and Newtonian limit, 485–6
non-relativistic, 484

static spherically symmetric charged body,
relativistic gravitational equations, 288,
296–300

stationary axisymmetric metric, general, 310–12
stationary limit surface, 314–15, 324
stationary source, 483–5
Stefan–Boltzmann constant, 277, 388
stellar interior

relativistic gravitational equations, 288–92
Schwarzschild constant-density solution, 294–5

stellar structure
Newtonian theory of, 288
relativistic gravitational equations, 292–4

stress–energy tensor, see energy–momentum tensor
submanifold, 28

integration over, 47–9
subtraction, tensor, 98
summation convention, 30–1
Sun

corona, 239
eclipses, 235
gravitational collapse, 259
gravitational redshift, 486
and light bending, 233–6
photon path deflection, 237–9
Schwarzschild radius, 249

super-horizon scale fluctuations, 451
supermassive black holes, 265, 279–82

existence, 280
potential, 282
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supernovae, 188
superstring theory (M-theory), 271
surfaces in manifolds, 27–8

infinite redshift surfaces, 315, 325, 419
parametric, 28
stationary limit, 314–15, 324
three-surfaces, 315–16
two-surfaces, 272
see also hypersurfaces; spherical surfaces

tangent space to manifold, 44–5, 47, 54, 59
tangent vectors, 57, 76, 80, 123, 248

covariant components, 81
as directional derivative, 81–2
length, 75
to curve, 55–6

Taylor, Joseph Hooton, Jr (1941–), 517
tensor calculus on manifolds, 92–110
tensor equations, 102–3
tensor fields, 487, 528

on manifolds, 92–3
symmetric, 498

tensor product, 98–9
tensorial equation, 135
tensorial operations

definition, 98
elementary, 98–100

tensors
addition, 98
amplitude, 499–500
and coordinate transformations, 101–2
arbitrary, 104
as geometrical objects, 100–1
basis, 100
components, 93–4, 100, 102, 103–4, 112
concept of, 92
contraction, 99–100
coordinates, 102–3
covariant derivatives, 104–7
definition, 93
field-strength, 537, 538
four-tensors, 136, 152, 250
gravitational field, 514
indices, 97
inner product, 99–100
intrinsic derivatives, 107–8
linear polarisation, 500, 511
mapping, 97–8
metric, 96
outer product, 98–9
parallel transport, 108
rank of, 93
rank-1, 93
rank-2, 94, 95, 100, 105, 177, 182

definition, 98–9
rank-3, 99

scalar multiplication, 98
spatial, 503
subtraction, 98
symmetries, 94–6
tidal stress, 168
torsion, 65
zero-rank, 93
see also curvature tensor; electromagnetic field

tensor; energy–momentum tensor; metric
tensor; quadrupole-moment tensor

tetrads, 125, 126, 127, 152
threading for spacetime, 356–7
three-acceleration, 123
three-force, 122

electromagnetic, 147
three-momentum, 119
three-space, 272

see also maximally symmetric 3-space
three-space vectors, 127
three-spheres, 37–8
three-surfaces, null, 315–16
three-vector potential, 297–8
three-vectors, 130, 135, 138, 141

relative, 117
unit, 120

three-velocity, 118
spatial, 290

three-wavevectors, 499
tidal forces, 149

and Newtonian gravity, 167–8, 264
gravitational, 167
in binary systems, 277
in curved spacetime, 167–70
in Schwarzschild geometry, 264
near black holes, 264–5

tidal stress tensor, 168
time

cosmic, 419
look-back, 408–10
Newtonian geometry, 3
retarded, 478, 479
see also Hubble time; proper time;

spacetime
time dilation, 10, 11

in weak gravitational field, 155
timelike curves, closed, 301, 327
topology of manifolds, 49–50
torsion tensor, 65
torsion theories, 192–3
tortoise coordinate, 266
total density parameter, 392
trajectories

of infalling particle of, 210, 218, 219,
252–9

of massive particle, 207–9
of photon, 217, 233–4
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radial
of massive particles, 304–5
of photons, 302–4

see also equatorial trajectories
transformation matrices, 29
transformations

Galilean, 3, 4
gauge, 140, 472
inverse, 29–30
Jacobian of, 29–30
linear, 2, 46
Poincaré, 6, 7, 113
see also coordinate transformations; Lorentz

transformation
transverse-traceless (TT) gauge, 500, 504, 505

transformation into, 502–3, 510–11
tunnelling of particles, 275
turbulent viscosity, 215
two-spheres, 34–5, 41–2, 250
two-surfaces, 272

ultra-stiff equations, 294
uncertainty principle, 274, 276
unified electroweak theory, 431
unit vectors, 62

timelike, 126
universe

and Friedmann–Robertson–Walker geometry,
355–81

acceleration, 188
age of, 398, 400, 408–10
collapse, 398
dynamics, 401
energy density of, 390, 433
expansion, 367, 420

acceleration phase, 429–30
deceleration phase, 428–9
vs. contraction, 186, 188

general dynamical behaviour, 393–7
geometry, 401
homogeneity, 355–6
isotropy, 355–6
radiation energy density, 388
static models, 186, 407
structural origins, 442

V404 Cyg, 279
vacuum

energy density of, 187, 386, 389, 393
energy–momentum tensor, 187–8
models, 389
true, 438

variational derivative, 530
variational principles

electromagnetism from, 536–9
and general relativity, 524–49

variations, calculus of, 87–8
vector calculus, on manifolds, 53–91
vector fields, 92–3, 191, 527–8

components, 73
contravariant components, 56, 57
covariant components, 57
curl, 71
divergence, 70
on manifold, 54–5
parallel, 73

vector operator, component form,
70–1

vectors
angle between, 62
as directional derivatives, 81–2
as linear function, 92
concept of, 53
derivatives

covariant, 68–70
intrinsic, 71–3

future-pointing, 116
indices, 57, 59–60
length, 62
local, 54, 56
null, 62, 115, 116, 475
orthogonal, 62, 170
parallel transport, 73–5
past-pointing, 116
properties, coordinate-independent, 61–2
reciprocal systems, 57
scalar product, 58
spacelike, 115, 116, 152
tangent, 55–6
three-space, 127
timelike, 115, 116, 152, 153
zero-length, 61–2
see also basis vectors; four-vectors; tangent

vectors; three-vectors; unit vectors;
wavevectors

velocity addition in special relativity, 18–19
Venus, photon path deflection, 237–9
Venus–Earth time-delay measurements, 239
very long baseline interferometry (VLBI), 235

maser studies, 281
Very Small Array (VSA), 460
Viking lander, 239
Virgo, 355
volume

finite or infinite, of non-Euclidean
three-dimensional spaces, 42

in Friedmann–Robertson–Walker geometry,
374–6

manifolds, 38–42
proper, 10

volume–redshift relation, 413–14
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wave equations, 474, 475, 498
wavevectors

comoving, 446
see also four-wavevectors

weak-field metric, 467–70
Weber, Joseph (1919–2000), 518
Weyl’s postulate, 356–7
white dwarf, 155, 288

electron degeneracy pressure in, 259
in binary system, 277, 278

white hole
definition, 258
existence of, 258–9, 270
singularities, 258, 270
see also black hole; wormhole

Wilkinson Microwave Anisotropy Probe
(WMAP), 460

worldlines, 9, 12, 123, 125–6
dust, 190
fixed emitter and receiver, 204
in arbitrary coordinates, 144
in curved spacetime, 150, 152
of centre of mass, 170
of fundamental observers (galaxies), 356a
see also particle worldlines; photon

worldlines
wormhole, 270

and Einstein–Rosen bridge, 271–4
dynamic structure, 272

X-ray telescope, 260
X-rays, emitters of, 240

zero-rank tensor, 93
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