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Preface

The tools of mathematical statistics find wide
application in climatological research. Indeed,
climatology is, to a large degree, the study of the
statistics of our climate. Mathematical statistics
provides powerful tools which are invaluable for
this pursuit. Applications range from simple uses
of sampling distributions to provide estimates
of the uncertainty of a climatological mean to
sophisticated statistical methodologies that form
the basis of diagnostic calculations designed
to reveal the dynamics of the climate system.
However, even the simplest of statistical tools
has limitations and pitfalls that may cause the
climatologist to draw false conclusions from
valid data if the tools are used inappropriately
and without a proper understanding of their
conceptual foundations. The purpose of this
book is to help the climatologist understand
the basic precepts of the statistician’s art and
to provide some of the background needed
to apply statistical methodology correctly and
usefully.

We do not claim that this volume is in any
way an exhaustive or comprehensive guide to the
use of statistics in climatology, nor do we claim
that the methodology described here is a current
reflection of the art of applied statistics as it is
conducted by statisticians. Statistics as it is applied
in climatology is far removed from the cutting
edge of methodological development. This is
partly because statistical research has not come yet
to grips with many of the problems encountered
by climatologists and partly because climatologists
have not yet made very deep excursions into the
world of mathematical statistics. Instead, this book
presents a subjectively chosen discourse on the
tools we have found useful in our own research on
climate diagnostics.

We will discuss a variety of statistical concepts
and tools which are useful for solving problems in
climatological research, including the following.

• The concept of a sample.

• The notions of exploratory and confirmatory
statistics.

• The concept of the statistical model. Such a
model is implicit in every statistical analysis
technique and has substantial implications for
the conclusions drawn from the analysis.

• The differences between parametric and non-
parametric approaches to statistical analysis.

• The estimation of ‘parameters’ that describe
the properties of the geophysical process
being studied. Examples of these ‘parame-
ters’ include means and variances, temporal
and spatial power spectra, correlation coef-
ficients, empirical orthogonal functions and
Principal Oscillation Patterns. The concept of
parameter estimation includes not only point
estimation (estimation of the specific value
of a parameter) but also interval estimation
which account for uncertainty.

• The concepts of hypothesis testing, signifi-
cance, and power.

We donot deal with:

• Bayesian statistics, which is philosophically
quite different from the more common
frequentistapproach to statistics we use in
this book. Bayesians, as they are known,
incorporatea priori beliefs into a statistical
analysis of a sample in a rational manner (see
Epstein [114], Casella [77], or Gelman et al.
[139]).

• Geostatistics, which is widely used in geol-
ogy and related fields. This approach deals
with the analysis of spatial fields sampled at
a relatively small number of locations. The
most prominent technique is calledkriging
(see Journel and Huijbregts [207], Journel
[206], or Wackernagel [406]), which is re-
lated to thedata assimilationtechniques used
in atmospheric and oceanic science (see, e.g.,
Daley [98] and Lorenc [258]).

A collection of applications of many statistical
techniques has been compiled by von Storch and
Navarra [395]; we recommend this collection as
complementary reading to this book and refer to

ix
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its contributions throughout. This collection does
not cover the field systematically; instead it offers
examples of the exploitation of statistical methods
in the analysis of climatic data and numerical
experiments.

Cookbook recipes for a variety of standard
statistical situations are not offered by this book
because they are dangerous for anyone who does
not understand the basic concepts of statistics.
Therefore, we offer a course in the concepts
and discuss cases we have encountered in our
work. Some of these examples refer to standard
situations, and others to more exotic cases. Only
the understanding of the principles and concepts
prevents the scientist from falling into the many
pitfalls specific to our field, such as multiplicity
in statistical tests, the serial dependence within
samples, or the enormous size of the climate’s
phase space. If these dangers are not understood,
then the use of simple recipes will often lead to
erroneous conclusions. Literature describes many
cases, both famous and infamous, in which this has
occurred.

We have tried to use a consistent notation
throughout the book, a summary of which is
offered in Appendix A. Some elements of linear
algebra are available in Appendix B, and some
aspects of Fourier analysis and transform are listed
in Appendix C. Proofs of statements, which we do
not consider essential for the overall understand-
ing, are in Appendix M.

Thanks
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1 Introduction

1.1 The Statistical Description and
Understanding of Climate

Climatology was originally a sub-discipline of
geography, and was therefore mainly descriptive
(see, e.g., Br̈uckner [70], Hann [155], or Hann
and Knoch [156]). Description of the climate
consisted primarily of estimates of its mean state
and estimates of its variability about that state,
such as its standard deviations and other simple
measures of variability. Much of climatology is
still focused on these concerns today. The main
purpose of this description is to define ‘normals’
and ‘normal deviations,’ which are eventually
displayed as maps. These maps are then used
for regionalization (in the sense of identifying
homogeneous geographical units) and planning.
The paradigm of climate research evolved from
the purely descriptive approach towards an
understanding of the dynamics of climate with the
advent of computers and the ability to simulate the
climatic state and its variability. Statistics plays an
important role in this new paradigm.

The climate is a dynamical system influenced
not only by immense external factors, such as solar
radiation or the topography of the surface of the
solid Earth, but also by seemingly insignificant
phenomena, such as butterflies flapping their
wings. Its evolution is controlled by more or
less well-known physical principles, such as the
conservation of angular momentum. If we knew
all these factors, and the state of the full climate
system (including the atmosphere, the ocean, the
land surface, etc.), at a given time in full detail,
then there would not be room for statistical
uncertainty, nor a need for this book. Indeed, if we
repeat a run of a General Circulation Model, which
is supposedly amodelof the real climate system,
on the same computer with exactly the same code,
operating system, and initial conditions, we obtain
a second realization of the simulated climate that
is identical to the first simulation.

Of course, there is a ‘but.’ We do not know
all factors that control the trajectory of climate in

its enormously large phase space.1 Thus it is not
possible to map the state of the atmosphere, the
ocean, and the other components of the climate
system in full detail. Also, the models are not
deterministic in a practical sense: an insignificant
change in a single digit in the model’s initial
conditions causes the model’s trajectory through
phase space to diverge quickly from the original
trajectory (this is Lorenz’s [260] famous discovery,
which leads to the concept of chaotic systems).

Therefore, in a strict sense, we have a
‘deterministic’ system, but we do not have
the ability to analyse and describe it with
‘deterministic’ tools, as in thermodynamics.
Instead, we use probabilistic ideas and statistics to
describe the ‘climate’ system.

Four factors ensure that the climate system is
amenable to statistical thinking.

• The climate is controlled by innumerable
factors. Only a small proportion of these
factors can be considered, while the rest
are necessarily interpreted as background
noise. The details of the generation of this
‘noise’ are not important, but it is important
to understand that this noise is aninternal
source of variation in the climate system
(see also the discussion of ‘stochastic climate
models’ in Section 10.4).

• The dynamics of climate are nonlinear.
Nonlinear components of thehydrodynamic
part include important advective terms, such
as u ∂u

∂x . The thermodynamicpart contains
various other nonlinear processes, including
many that can be represented by step
functions (such as condensation).

1We use the expression ‘phase space’ rather casually. It
is the space spanned by the state variablesx of a system
dx
dt = f (x). In the case of the climate system, the state
variables consist of the collection of all climatic variables at
all geographic locations (latitude, longitude, height/depth). At
any given time, the state of the climate system is represented by
one point in this space; its development in time is represented
by a smooth curve (‘trajectory’).
This concept deviates from the classical mechanical definition
where the phase space is the space of generalized coordinates.
Perhaps it would be better to use the term ‘state space.’

1



2 1: Introduction

• The dynamics include linearly unstable
processes, such as the baroclinic instability in
the midlatitude troposphere.

• The dynamics of climate are dissipative. The
hydrodynamic processes transport energy
from large spatial scales to small spatial
scales, while molecular diffusion takes place
at the smallest spatial scales. Energy is
dissipated through friction with the solid
earth and by means of gravity wave drag at
larger spatial scales.2

The nonlinearities and the instabilities make
the climate systemunpredictablebeyond certain
characteristic times. These characteristic time
scales are different for different subsystems, such
as the ocean, midlatitude troposphere, and tropical
troposphere. The nonlinear processes in the system
amplify minor disturbances, causing them to
evolve irregularly in a way that allows their
interpretation as finite-amplitude noise.

In general, the dissipative character of the
system guarantees its ‘stationarity.’ That is, it does
not ‘run away’ from the region of phase space that
it currently occupies, an effect that can happen in
general nonlinear systems or in linearly unstable
systems. The two factors, noise and damping,
are the elements required for the interpretation of
climate as a stationary stochastic system (see also
Section 10.4).

Under what circumstances should the output
of climate models be considered stochastic? A
major difference between the real climate and any
climate model is the size of the phase space. The
phase space of a model is much smaller than that of
the real climate system because the model’s phase
space is truncated in both space and time. That is,
the background noise, due to unknown factors, is
missing. Therefore a model run can be repeated
with identical results, provided that the computing
environment is unchanged and the same initial
conditions are used. To make the climate model
output realistic we need to make the model
unpredictable. Most Ocean General Circulation
Models are strongly dissipative and behave almost
linearly. Explicit noise must therefore be added
to the system as an explicit forcing term to
create statistical variations in the simulated system
(see, for instance [276] or [418]). In dynamical
atmospheric models (as opposed to energy-balance
models) the nonlinearities are strong enough to

2The gravity wave drag maintains an exchange of
momentum between the solid earth and the atmosphere, which
is transported by means of vertically propagating gravity waves.
See McFarlane et al. [269] for details.

create their own unpredictability. These models
behave in such a way that a repeated run will
diverge quickly from the original run even if only
minimal changes are introduced into the initial
conditions.

1.1.1 The Paradigms of the Chaotic and
Stochastic Model of Climate. In the paradigm
of the chaotic model of the climate, and
particularly the atmosphere, a small difference
introduced into the system at someinitial time
causes the system to diverge from the trajectory it
would otherwise have travelled. This is the famous
Butterfly Effect3 in which infinitesimally small
disturbances may provoke large reactions. In terms
of climate, however, there is not justone small
disturbance, but myriads of such disturbances at
all times. In the metaphor of the butterfly: there
are millions of butterflies that flap their wings all
the time. The paradigm of the stochastic climate
model is that this omnipresent noise causes the
system to vary on all time and space scales,
independently of the degree of nonlinearity of the
climate’s dynamics.

1.2 Some Typical Problems and
Concepts

1.2.0 Introduction. The following examples,
which we have subjectively chosen as being
typical of problems encountered in climate
research, illustrate the need for statistical analysis
in atmospheric and climatic research. The order
of the examples is somewhat random and it is
certainly not a must to read all of them; the purpose
of this ‘potpourri’ is to offer a flavour of typical
questions, answers, and errors.

1.2.1 The Mean Climate State: Interpretation
and Estimation. From the point of view of
the climatologist, the most fundamental statistical
parameter is the mean state. This seemingly trivial
animal in the statistical zoo has considerable
complexity in the climatological context.

First, the computed mean is not entirely reliable
as an estimate of the climate system’s true long-
term mean state. The computed mean will contain
errors caused by taking observations over a limited
observing period, at discrete times and a finite
number of locations. It may also be affected
by the presence of instrumental, recording, and

3Inaudil et al. [194] claimed to have identified a Lausanne
butterfly that caused a rainfall in Paris.



1.2: Some Typical Problems and Concepts 3

Figure 1.1:The 300 hPa geopotential height fields in the Northern Hemisphere: the mean 1967–81
January field, the January 1971 field, which is closer to the mean field than most others, and the January
1981 field, which deviates significantly from the mean field. Units: 10 m [117].

transmission errors. In addition, reliability is not
likely to be uniform as a function of location.

Reliability may be compromised if the data has
been ‘analysed’, that is, interpolated to a regular
grid using techniques that make assumptions
about atmospheric dynamics. The interpolation is
performed eithersubjectivelyby someone who
has experience and knowledge of the shape of
dynamical structures typically observed in the
atmosphere, or it is performedobjectivelyusing a
combination of atmospheric and statistical models.
Both kinds of analysis are apt to introduce biases
not present in the ‘raw’ station data, and errors
at one location in analysed data will likely be
correlated with those at another. (See Daley [98]
or Thiébaux and Pedder [362] for comprehensive
treatments of objective analysis.)

Second, the mean state isnot a typical state.
To demonstrate this we consider the January
Northern Hemisphere 300 hPa geopotential height
field4 (Figure 1.1). The mean January height field,
obtained by averaging monthly mean analyses for
each January between 1967 and 1981, has contours
of equal height which are primarily circular with
minor irregularities. Two troughs are situated over
the eastern coasts of Siberia and North America.
The Siberian trough extends slightly farther south
than the North American trough. A secondary
trough can be identified over eastern Europe and
two minor ridges are located over the northeast
Pacific and the east Atlantic.

4The geopotential height fieldis a parameter that is
frequently used to describe the dynamical state of the
atmosphere. It is the height of the surface of constant pressure
at, e.g., 300 hPa and, being a length, is measured in metres. We
will often simply refer to ‘height’ when we mean ‘geopotential
height’.

Some individual January mean fields (e.g.,
1971) are similar to the long-term mean field.
There are differences in detail, but they share
the zonal wavenumber 2 pattern5 of the mean
field. The secondary ridges and troughs have
different intensities and longitudinal phases. Other
Januaries (e.g., 1981) 300 hPa geopotential height
fields are very different from the mean state. They
are characterized by a zonal wavenumber 3 pattern
rather than a zonal wavenumber 2 pattern.

The long-term mean masks a great deal of
interannual variability. For example, the minimum
of the long-term mean field is larger than the
minima of all but one of the individual January
states. Also, the spatial variability of each of the
individual monthly means is larger than that of the
long-term mean. Thus, the long-term mean field is
not a ‘typical’ field, as it is very unlikely to be
observed as an individual monthly mean. In that
sense, the long-term mean field is a rare event.

Characterization of the ‘typical’ January re-
quires more than the long-term mean. Specifically,
it is necessary to describe the dominant patterns
of spatial variability about the long-term mean and
to say something about the range of patterns one
is likely to see in a ‘typical’ January. This can be
accomplished to a limited extent through the use of
a technique calledEmpirical Orthogonal Function
analysis(Chapter 13).

Third, a climatological mean should be under-
stood to be a moving target. Today’s climate is
different from that which prevailed during the
Holocene (6000 years before present) or even
during the Little Ice Age a few hundred years ago.

5A zonal wavenumber 2 pattern contains two ridges and two
troughs in the zonal, or east–west, direction.



4 1: Introduction

We therefore need a clear understanding of
our interpretation of the ‘true’ mean state before
interpreting an estimate computed from a set of
observations.

To accomplish this, it is necessary to think of
the ‘January 300 hPa height field’ as arandom
field, and we need to determine whether the
observed height fields in our 15-year sample are
representative of the ‘true’ mean state we have in
mind (presumably that of the ‘current’ climate).
From a statistical perspective, the answer is a
conditional ‘yes,’ provided that:

1 the time series of January mean 300 hPa
height fields is stationary (i.e., their statistical
properties do not drift with time), and

2 the memory of this time series is short relative
to the length of the 15-year sample.

Under these conditions, the mean state is
representative of the random sample, in the sense
that it lies in the ‘centre’ of the scatter of the
individual points in the state space. As we noted
above, however, it is not representative in many
other ways.

The characteristics of the 15-year sample may
not be representative of the properties of January
mean 300 hPa height fields on longer time scales
when assumption 1 is not satisfied. The uncertainty
of the 15-year mean height field as an estimator
of the long-term mean will be almost as great
as the interannual variability of the individual
January means when assumption 2 is not satisfied.
We can have confidence in the 15-year mean
as an estimator of the long-term mean January
300 hPa height field when assumptions 1 and 2
hold in the following sense: thelaw of large
numbersdictates that a multi-year mean becomes
an increasingly better estimator of the long-term
mean as the number of years in the sample
increases. However, there is still a considerable
amount of uncertainty in an estimate based on a
15-year sample.

Statements to the effect that a certain estimate
of the mean is ‘wrong’ or ‘right’ are often made
in discussions of data sets and climatologies. Such
an assessment indicates that the speakers do not
really understand the art of estimation. An estimate
is by definition an approximation, or guess, based
on the available data. It is almost certain that the
exact value will never be determined. Therefore
estimates are never ‘wrong’ or ‘right;’ rather, some
estimates will be closer to the truth than others on
average.

To demonstrate the point, consider the following
two procedures for estimating the long-term mean
January air pressure in Hamburg (Germany). Two
data sets, consisting of 104 observations each, are
available. The first data set is taken at one minute
intervals, the second is taken at weekly intervals,
and a mean is computed from each. Both means
are estimates of the long-term mean air pressure in
Hamburg, and each tells us something about our
parameter.

The reliability of the first estimate is question-
able because air pressure varies on time scales
considerably longer than the 104 minutes spanned
by the data set. Nonetheless, the estimate does
contain information useful to someone who has
no prior information about the climate of locations
near sea level: it indicates that the mean air
pressure in Hamburg is neither 2000 mb nor 20 hPa
but somewhere near 1000 mb.

The second data set provides us with a
much more reliable estimate of long-term mean
air pressure because it contains 104 almost
independent observations of air pressure spanning
two annual cycles. The first estimate is not
‘wrong,’ but it is not very informative; the second
is not ‘right,’ but it is adequate for many purposes.

1.2.2 Correlation. In the statistical lexicon,
the word correlation is used to describe a
linear statisticalrelationship between two random
variables. The phrase ‘linear statistical’ indicates
that the mean of one of the random variables is
linearly dependent upon the random component
of the other (see Section 8.2). The stronger the
linear relationship, the stronger the correlation.
A correlation coefficient of+1 (−1) indicates a
pair of variables that vary together precisely, one
variable being related to the other by means of a
positive (negative) scaling factor.

While this concept seems to be intuitively
simple, it does warrant scrutiny. For example,
consider a satellite instrument that makes radiance
observations in two different frequency bands.
Suppose that these radiometers have been designed
in such a way that instrumental error in one
channel is independent of that in the other. This
means that knowledge of the noise in one channel
provides no information about that in the other.
However, suppose also that the radiometers drift
(go out of calibration) together as they age because
both share the same physical environment, share
the same power supply and are exposed to the same
physical abuse. Reasonable models for the total
error as a function of time in the two radiometer
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Figure 1.2:The monthly mean Southern Oscillation Index, computed as the difference between Darwin
(Australia) and Papeete (Tahiti) monthly mean sea-level pressure (‘Jahr’ is German for ‘year’).

Figure 1.3:Auto-correlation function of the index shown in Figure 1.2. Units: %.

channels might be:

e1t = α1(t − t0)+ ε1t,

e2t = α2(t − t0)+ ε2t,

where t0 is the launch time of the satellite and
α1 andα2 are fixed constants describing the rates
of drift of the two radiometers. The instrumental
errors,ε1t andε2t, are statistically independent of
each other, implying that the correlation between
the two, ρ(ε1t, ε2t), is zero. Consequently the
total errors, e1t and e2t, are also statistically
independent even though they share a common
systematic component. However, simple estimates
of correlation betweene1t and e2t that do not
account for the deterministic drift will suggest that
these two quantities are correlated.

Correlations manifest themselves in several dif-
ferent ways in observed and simulated climates.
Several adjectives are used to describe corre-
lations depending upon whether they describe
relationships in time (serial correlation, lagged
correlation), space (spatial correlation, telecon-
nection), or between different climate variables
(cross-correlation).

A good example ofserial correlation is the
monthly Southern Oscillation Index (SOI),6 which

6The Southern Oscillation is the major mode of natural
climate variability on the interannual time scale. It is frequently
used as an example in this book.
It has been known since the end of the last century
(Hildebrandson [177]; Walker, 1909–21) that sea-level pressure
(SLP) in the Indonesian region is negatively correlated with that
over the southeast tropical Pacific. A positive SLP anomaly
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is defined as the anomalous monthly mean
pressure difference between Darwin (Australia)
and Papeete (Tahiti) (Figure 1.2).

The time series is basically stationary, although
variability during the first 30 years seems to be
somewhat weaker than that of late. Despite the
noisy nature of the time series, there is a distinct
tendency for the SOI to remain positive or negative
for extended periods, some of which are indicated
in Figure 1.2. This persistence in the sign of the
index reflects the serial correlation of the SOI.

A quantitative measure of the serial correlation
is the auto-correlation function,ρSO I(t, t + 1),
shown in Figure 1.3, which measures the similarity
of the SOI at any time difference1. The auto-
correlation is greater than 0.2 for lags up to
about six months and varies smoothly around zero
with typical magnitudes between 0.05 and 0.1
for lags greater than about a year. This tendency
of estimated auto-correlation functions not to
converge to zero at large lags, even though the
real auto-correlation is zero at long lags, is a
natural consequence of the uncertainty due to finite
samples (see Section 11.1).

A good example of across-correlationis the
relationship that exists between the SOI and
various alternative indices of the Southern Os-
cillation [426]. The characteristic low-frequency
variations in Figure 1.2 are also present in area-
averaged Central Pacific sea-surface temperature
(Figure 1.4).7 The correlation between the two
time series displayed in Figure 1.4 is 0.67.

Pattern analysis techniques, such as Empiri-
cal Orthogonal Function analysis (Chapter 13),
Canonical Correlation Analysis (Chapter 14) and
Principal Oscillation Patterns (Chapter 15), rely
upon the assumption that the fields under study are

(i.e., a deviation from the long-term mean) over, say, Darwin
(Northern Australia) tends to be associated with a negative
SLP anomaly over Papeete (Tahiti). This seesaw is called
the Southern Oscillation (SO). The SO is associated with
large-scale and persistent anomalies of sea-surface temperature
in the central and eastern tropical Pacific (El Niño and
La Niña). Hence the phenomenon is often referred to as
the ‘El Niño/Southern Oscillation’ (ENSO). Large zonal
displacements of the centres of precipitation are also associated
with ENSO. They reflect anomalies in the location and intensity
of the meridionally (i.e., north–south) oriented Hadley cell and
of the zonally oriented Walker cell.
The state of the Southern Oscillation may be monitored with the
monthly SLP difference between observations taken at surface
stations in Darwin, Australia and Papeete, Tahiti. It has become
common practice to call this difference the Southern Oscillation
Index (SOI) although there are also many other ways to define
equivalent indices [426].

7Other definitions, such as West Pacific rainfall, sea-level
pressure at Darwin alone or the surface zonal wind in the central
Pacific, also yield indices that are highly correlated with the
usual SOI. See Wright [427].

spatially correlated. The Southern Oscillation In-
dex (Figure 1.2) is a manifestation of the negative
correlation between surface pressure at Papeete
and that at Darwin. Variables such as pressure,
height, wind, temperature, and specific humidity
vary smoothly in the free atmosphere and con-
sequently exhibit strong spatial interdependence.
This correlation is present in each weather map
(Figure 1.5, left). Indeed, without this feature,
routine weather forecasts would be all but impos-
sible given the sparseness of the global observing
network as it exists even today. Variables derived
from moisture, such as cloud cover, rainfall and
snow amounts, and variables associated with land
surface processes tend to have much smaller spa-
tial scales (Figure 1.5, right), and also tend not to
have normal distributions (Sections 3.1 and 3.2).
While mean sea-level pressure (Figure 1.5, left)
will be more or less constant on spatial scales of
tens of kilometres, we may often travel in and out
of localized rain showers in just a few kilometres.
This dichotomy is illustrated in Figure 1.5, where
we see a cold front over Ontario (Canada). The
left panel, which displays mean sea-level pressure,
shows the front as a smooth curve. The right panel
displays a radar image of precipitation occurring
in southern Ontario as the front passes through the
region.

1.2.3 Stationarity, Cyclo-stationarity, and Non-
stationarity. An important concept in statistical
analysis isstationarity. A random variable, or a
random process, is said to be stationary if all
of its statistical parameters are independent of
time. Most statistical techniques assume that the
observed process is stationary.

However, most climate parameters that are
sampled more frequently than one per year are
not stationary butcyclo-stationary, simply because
of the seasonal forcing of the climate system.
Long-term averages of monthly mean sea-level
pressure exhibit a marked annual cycle, which is
almost sinusoidal (with one maximum and one
minimum) in most locations. However, there are
locations (Figure 1.6) where the annual cycle is
dominated by asemiannualvariation (with two
maxima and minima). In most applications the
mean annual cycle is simply subtracted from the
data before the remaininganomaliesare analysed.
The process iscyclo-stationary in the meanif it is
stationary after the annual cycle has been removed.

Other statistical parameters (e.g., the percentiles
of rainfall) may also exhibit cyclo-stationary
behaviour. Figure 1.7 shows the annual cycles
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Figure 1.4:The conventional Southern Oscillation Index (SOI = pressure difference between Darwin
and Tahiti; dashed curve) and a sea-surface temperature (SST) index of the Southern Oscillation (solid
curve) plotted as a function of time. The conventional SOI has been doubled in this figure.

Figure 1.5:State of the atmosphere over North America on 23 May 1992.
Left: Analysis of the sea-level pressure field (12:00 UTC (Universal Time Coordinated); from
Europ̈aisher Wetterbericht 17, Band 144; with permission of the Deutsher Wetterdienst).
Right: Weather radar image, showing rainfall rates, for southern Ontario (19:30 local time; courtesy
Paul Joe, AES Canada [94].)
Note that the radar image and the weather map refer to different times, namely 12:00 UTC on 23 May
and 00:30 UTC on 24 May.

of the 70th, 80th, and 90th percentiles8 of 24-
hour rainfall amounts for each calendar month at

8Or ‘quantiles,’ that is, thresholds selected so that 70%,
80%, or 90% of all 24-hour rainfall amounts are less than the
respective threshold [2.6.4].

Vancouver (British Columbia) and Sable Island
(off the coast of Nova Scotia) [450].

The Southern Oscillation Index is not strictly
stationary. Wright [427] showed that the linear
serial correlation of the SOI depends upon the time
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Figure 1.6:Annual cycle of sea-level pressure at extratropical locations.
a) Northern Hemisphere Ocean Weather Stations: A =62◦N, 33◦W; D = 44◦N, 41◦W; E = 35◦N,
48◦W; J = 52◦N, 25◦W; P = 50◦N, 145◦W.
b) Southern Hemisphere.

Figure 1.7: Monthly 90th, 80th, and 70th per-
centiles (from top to bottom) of 24-hour rainfall
amounts at Vancouver and Sable Island [450].

of the year. The serial correlation is plotted as a
function of time of year and lag in Figure 1.8.
Correlations between values of the SOI in May
and values in subsequent months decay slowly
with increasing lag, while similar correlations with
values in April decay quickly. Because of this
behaviour, Wright defined an ENSO year that
begins in May and ends in April.

Regular observations taken over extended
periods at a certain station sometimes exhibit
changes in their statistical properties. These might
be abrupt or gradual (such as changes that might
occur when the exposure of a rain gauge changes
slowly over time, as a consequence of the growth
of vegetation or changes in local land use). Abrupt

Figure 1.8: Seasonal dependence of the lag
correlations of the SST index of the Southern
Oscillation. The correlations are given in hundreds
so that isolines represent lag correlations of 0.8,
0.6, 0.4, and 0.2. The row labelled ‘Jan’ lists
correlations between January values of the index
and the index observed later ‘lag’ months [427].

changes in the observational record may take
place if the instrument (or the observer) changes,
the site is moved,9 or recording practices are
changed. Such non-natural or artificial changes are

9Karl et al. [213] describe a case in which a precipitation
gauge recorded significantly different values after being raised
one metre from its original position.
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Figure 1.9:Annual mean daily minimum temper-
ature time series at two neighbouring sites in
Quebec. Sherbrooke has experienced considerable
urbanization since the beginning of the century
whereas Shawinigan has maintained more of its
rural character.
Top: The raw records. The abrupt drop of several
degrees in the Sherbrooke series in 1963 reflects
the move of the instrument from downtown Sher-
brooke to its suburban airport. The reason for
the downward dip before 1915 in the Shawinigan
record is unknown.
Bottom: Corrected time series for Sherbrooke
and Shawinigan. The Sherbrooke data from 1963
onward are increased by3.2◦C. The straight lines
are trend lines fitted to the corrected Sherbrooke
data and the 1915–90 Shawinigan record.
Courtesy L. Vincent, AES Canada.

called inhomogeneities. An example is contained
in the temperature records of Sherbrooke and
Shawinigan (Quebec) shown in the upper panel
of Figure 1.9. The Sherbrooke observing site
was moved from a downtown location to a
suburban airport in 1963—and the recorded
temperature abruptly dropped by more than 3◦C.
The Shawinigan record may also be contaminated
by observational errors made before 1915.

Geophysical time series often exhibit a trend.
Such trends can originate from various sources.
One source is urbanization, that is, the increasing
density and height of buildings around an obser-
vation location and the corresponding changes in
the properties of the land surface. The temper-
ature at Sherbrooke, a location heavily affected
by development, exhibits a marked upward trend
after correction for the systematic change in 1963

(Figure 1.9, bottom). This temperature trend is
much weaker for the neighbouring Shawinigan,
perhaps due to a weaker urbanization effect at that
site or natural variations of the climate system.
Both temperature trends at Sherbrooke and Shaw-
inigan are real, not observational artifacts. The
strong trend at Sherbrooke must not be mistaken
for an indication ofglobal warming.

Trends in the large-scale state of the climate
system may reflect systematic forcing changes
of the climate system (such as variations in the
Earth’s orbit, or increased CO2 concentration
in the atmosphere) or low-frequency internally
generated variability of the climate system. The
latter may be deceptive because low-frequency
variability, on short time series, may be mistakenly
interpreted as trends. However, if the length of
such time series is increased, a metamorphosis
of the former ‘trend’ takes place and it becomes
apparent that the trend is a part of the natural
variation of the system.10

1.2.4 Quality of Forecasts. The Old Farmer’s
Almanacpublishes regular outlooks for the climate
for the coming year. The method used to prepare
these outlooks is kept secret, and scientists
question the existence of skill in the predictions.
To determine whether these skeptics are right or
wrong, measures of the skill of the forecasting
scheme are needed. Theseskill scorescan be used
to compare forecasting schemes objectively.

The Almanac makescategorical forecasts of
future temperature and precipitation amount in
two categories, ‘above’ or ‘below’ normal. A
suitable skill score in this case is the number of
correct forecasts. Trivial forecasting schemes such
as persistence (no change), climatology, or pure
chance can be used as reference forecasts if no
other forecasting scheme is available. Once we
have counted the number of correct forecasts made
with both the tested and the reference schemes, we
can estimate the improvement (or degradation) of
forecast skill by computing the difference in the
counts. Relatively simple probabilistic methods
can be used to make a judgement about the

10This is an example of the importance of time scales
in climate research, an illustration that our interpretation of
a given process depends on the time scales considered. A
short-term trend may be just another swing in a slowly varying
system. An example is the Madden-and-Julian Oscillation
(MJO, [264]), which is the strongest intra-seasonal mode in the
tropical troposphere. It consists of a wavenumber 1 pattern that
travels eastward round the globe. The MJO has a mean period
of 45 days and has significant memory on time scales of weeks;
on time scales of months and years, however, the MJO has no
temporal correlation.
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Figure 1.10: Correlation skill scores for three
forecasts of the low-frequency variations within
the Southern Oscillation Index (Figure 1.2). A
score of 1 indicates a perfect forecast, while a zero
indicates a forecast unrelated to the predictand
[432].

significanceof the change. We will return to the
Old Farmer’s Almanacin Section 18.1.

Now consider another forecasting scheme
in which quantitative rather than categorical
statements are made. For example, a forecast
might consist of a statement such as:‘the SOI
will be x standard deviations above normal next
winter.’ One way to evaluate such forecasts is to
use a measure called thecorrelation skill score
ρ (Chapter 18). A score ofρ = 1 corresponds
with a perfect forecasting scheme in the sense that
forecast changes exactly mirror SOI changes even
though the dynamic range of the forecast may be
different from that of the SOI. In other words,
the correlation skill score is one when there is
an exact linear relationship between forecasts and
reality. Forecasts that are (linearly) unrelated to the
predictand yield zero correlation.

The correlation skill score for several methods
of forecasting the SOI are displayed in Figure 1.10.
Specifically, persistence forecasts (Chapter 18),
POP forecasts (Chapter 15), and forecasts made
with a univariate linear time series model
(Chapters 11 and 12). Forecasts based on
persistence and the univariate time series model
are superior at one and two month lead times. The
POP forecast becomes more skilful beyond that
time scale.

Regretfully, forecasting schemes generally do
not have the same skill under all circumstances.
The skill often exhibits a marked annual cycle

(e.g., skill may be high during the dry season, and
low during the wet season). The skilfulness of a
forecast also often depends on the low-frequency
state of the atmospheric flow (e.g., blocking
or westerly regime). Thus, in most forecasting
problems there are physical considerations (state
dependence and the memory of the system) that
must be accounted for when using statistical tools
to analyse forecast skill. This is done either
by conducting a statistical analysis of skill that
incorporates the effects of state dependence and
serial correlation, or by using physical intuition
to temper the precise interpretation of a simpler
analysis that compromises the assumptions of
stationarity and non-correlation.

There are various pitfalls in the art of forecast
evaluation. An excellent overview is given by
Livezey [255], who presents various examples in
which forecast skill is overestimated. Chapter 18
is devoted to the art of forecast evaluation.

1.2.5 Characteristic Times and Characteristic
Spatial Patterns. What are the temporal char-
acteristics of the Southern Oscillation Index illus-
trated in Figure 1.2? Visual inspection suggests
that the time series is dominated by at least two
time scales: a high frequency mode that describes
month-to-month variations, and a low-frequency
mode associated with year-to-year variations. How
can one objectively quantify these characteristic
times and the amount of variance attributed to
these time scales? The appropriate tool is referred
to as time series analysis (Chapters 10 and 11).

Indices, such as the SOI, are commonly used
in climate research to monitor the temporal
development of a process. They can be thought
of as filters that extract physical signals from a
multivariate environment. In this environment the
signal is masked by both spatial and temporal
variability unrelated to the signal, that is, by spatial
and temporal noise.

The conventional approach used to identify
indices is largely subjective. The characteristic pat-
terns of variation of the process are identified and
associated with regions or points. Corresponding
areal averages or point values are then used to
indicate the state of the process.

Another approach is to extract characteristic
patterns from the data by means of analytical
techniques, and subsequently use the coefficients
of these patterns as indices. The advantages
of this approach are that it is based on
an objective algorithm and that it yields the
characteristic patterns explicitly.Eigentechniques
such as Empirical Orthogonal Function (EOF)
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Figure 1.11: Empirical Orthogonal Functions
(EOFs; Chapter 13) of monthly mean wind stress
over the tropical Pacific [394].
a,b) The first two EOFs. The two patterns are
spatially orthogonal.
c) Low-frequency filtered coefficient time series
of the two EOFs shown in a,b). The solid curve
corresponds to the first EOF, which is displayed in
panel a). The two curves are orthogonal.

analysis and Principal Oscillation Pattern (POP)
analysis are tools that can be used to define
patterns and indices objectively (Chapters 13 and
15).

An example is the EOF analysis of monthly
mean wind stress over the tropical Pacific [394].
The first two EOFs, shown in Figure 1.11a
and Figure 1.11b, are primarily confined to the
equator. The two fields are (by construction)
orthogonal to each other. Figure 1.11c shows the
time coefficients of the two fields. An analysis of
the coefficient time series, using the techniques
of cross-spectral analysis (Section 11.4), shows
that they vary coherently on a time scaleT ≈
2 to 3 years. One curve leads the other by a time
lag of approximatelyT/4 years. The temporal lag-
relationship of the time coefficients together with
the spatial quadrature leads to the interpretation
that the two patterns and their time coefficients
describe an eastward propagating signal that,

Figure 1.12:A schematic representation of the
spatial distributions of simultaneous SST and SLP
anomalies at Northern Hemisphere midlatitudes in
winter, when the SLP anomaly induces the SST
anomaly (top), and when the SST anomaly excites
the SLP anomaly (bottom).
The large arrows represent the mean atmospheric
flow. The ‘L’ is an atmospheric low-pressure
system connected with geostrophic flow indicated
by the circular arrow. The hatching represents
warm (W) and cool (C) SST anomalies [438].

in fact, may be associated with the Southern
Oscillation.

1.2.6 Pairs of Characteristic Patterns. Almost
all climate components are interrelated. When one
component exhibits anomalous conditions, there
will likely be characteristic anomalies in other
components at the same time. The relative shapes
of the patterns in related climate components are
often indicative of the processes that dominate the
coupling of the components.

To illustrate this idea we consider large-scale
air–sea interactions on seasonal time scales at
midlatitudes in winter [438] [312]. Figure 1.12
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illustrates the two mechanisms that might be
involved in air–sea interactions in the North
Atlantic. The lower panel illustrates how a sea-
surface temperature (SST) anomaly pattern might
induce a simultaneous sea-level pressure (SLP)
anomaly pattern. The argument is linear so we
may assume that the SST anomaly is positive. This
positive SST anomaly enhances the sensible and
latent heat fluxes into the atmosphere above and
downstream of the SST anomaly. Thus SLP is
reduced in that area and anomalous cyclonic flow
is induced.

The upper panel of Figure 1.12 illustrates how
a SLP anomaly might induce an anomalous SST
pattern. The anomalous SLP distribution alters the
wind stress across the region by creating stronger
zonal winds in the southwest part of the anomalous
cyclonic circulation and weaker zonal winds in
the northeast sector. This configuration induces
anomalous mixing of the ocean’s mixed layer and
anomalous air–sea fluxes of sensible and latent
heat (cf. [3.2.3]). Stronger winds intensify mixing
and enhance the upward heat flux whereas weaker
winds correspond to reduced mixing and weaker
vertical fluxes. The result is anomalous cooling
of the sea surface in the southwest sector and
anomalous heating in the northeast sector of the
cyclonic circulation.

One strategy for finding out which of the
two proposed mechanisms dominates air–sea
interaction is to identify the dominant patterns in
SST and SLP that tend to occur simultaneously.
This can be accomplished by performing a
Canonical Correlation Analysis(CCA, Chapter
14). In the CCA two vector variablesEX and EY
are considered, and sets of orthogonal patterns
Ep i

X and Ep i
Y are constructed so that the expansion

coefficientsαx
i and αy

j in EX = ∑
i α

x
i Ep i

X and

EY = ∑ j α
y
j Ep j

Y are optimally correlated fori = j
or uncorrelated fori 6= j .

Zorita, Kharin, and von Storch [438] applied
CCA to winter (DJF) mean anomalies of North
Atlantic SST and SLP and found two pairs
of CCA patterns Ep i

SST and Ep j
SL P that were

associated with physically significant correlations.
The pair of patterns with the largest correlation
(0.56) is shown in Figure 1.13. The SLP pattern
represents 21% of the total DJF SLP variance
whereas the SST pattern explains 19% of the total
SST variance.11 Clearly the two patterns support
the hypothesis that the anomalous atmospheric
circulation is responsible for the generation of SST

11The proportion of variance represented by the patterns is
unrelated to the correlation.

anomalies off the North American coast. Peng and
Fyfe [312] refer to this as the ‘atmosphere driving
the ocean’ mode. See also Luksch [261].

Canonical Correlation Analysis is explained in
detail in Chapter 14 and we return to this example
in [14.3.1–2].

1.2.7 Atmospheric General Circulation Model
Experimentation: Evaluation of Paired Sensi-
tivity Experiments and Verification of Control
Simulation. Atmospheric General Circulation
Models (AGCMs) are powerful tools used to sim-
ulate the dynamics of the atmospheric circulation.
There are two main applications of these GCMs,
one being the simulation of the present, past (e.g.,
paleoclimatic conditions), or future (e.g., climate
change) statistics of the atmospheric circulation.
The other involves the study of the simulated cli-
mate’s sensitivity to the effect of different bound-
ary conditions (e.g., sea-surface temperature) or
parameterizations of sub-grid scale processes (e.g.,
planetary boundary layer).12

In both modes of operation two sets of statistics
are compared. In the first, the statistics of the
simulated climate are compared with those of
the observed climate, or sometimes with those of
another simulated climate. In the second mode
of experimentation, the statistics obtained in the
run with anomalous conditions are compared with
those from the run with thecontrolconditions. The
simulated atmospheric circulation is turbulent as
is that of the real atmosphere (see Section 1.1).
Therefore the true signal (excited by the prescribed
change in boundary conditions, parameterization,
etc.) or the true model error is masked by random
variations.

Even when the modifications in the experimen-
tal run have no effect on the simulated climate,
the difference field will be nonzero and will show
structure reflecting the random variations in the
control and experimental runs. Similarly, the mean
difference field between an observed distribution
and its simulated counterpart will exhibit, possibly
large scale, features, even if the model is perfect.

12Sub-grid scale processes take place on spatial scales too
small to be resolved by a climate model. Regardless of the
resolution of the climate model, there are unresolved processes
at smaller scales. Despite the small scale of these processes,
they influence the large-scale evolution of the climate system
because of the nonlinear character of the climate system.
Climate modellers therefore attempt to specify the ‘net effect’
of such processes as a transfer function of the large-scale state
itself. This effect is a forcing term for the resolved scales, and
is usually expressed as an expected value which is conditional
upon the large-scale state. The transfer function is called a
‘parameterization.’
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Figure 1.13:The dominant pair of CCA patterns
that describe the connection between simultaneous
winter (DJF) mean anomalies of sea-level pressure
(SLP, top) and sea-surface temperature (SST,
bottom) in the North Atlantic. The largest features
of the SLP field are indicated by shading in the
SST map, and vice versa. See also [14.3.1]. From
Zorita et al. [438].

Therefore, it is necessary to apply statistical tech-
niques to distinguish between the deterministic
signal (or model error) and the internal noise.

Appropriate methodologies designed to diag-
nose the presence of a signal include the use
of interval estimation methods (Section 5.4) or
hypothesis testing methods (Chapter 6). Interval
estimation methods use statistical models to pro-
duce a range of signal estimates consistent with
the realizations of control and experimental mean
fields obtained from the simulation. Hypothesis
testing methods use statistical models to determine
whether information in the realizations is consis-
tent with the null hypothesis that the difference
fields, such as in Figures 1.14 and 1.15, do not
contain a deterministic signal and thus reflect only
the effects of random variation.

We illustrate the problem with two examples: an
experiment in which there is no significant signal,
and another in which modifications to the model
result in a strong change in the atmospheric flow.

Figure 1.14:The mean SLP difference field be-
tween control and experimental atmospheric GCM
runs. Evaporation over the Iberian Peninsula was
artificially suppressed in the experimental run. The
signal is not statistically significant [402].

Figure 1.15:The mean 500 hPa height difference
field between a control run and an experimental
run in which a positive (El Nĩno) SST anomaly
was imposed in the equatorial Central and Eastern
Pacific. The signal is statistically significant. See
also Figures 9.1 and 9.2 [393].

In the first case, the surface properties of the
Iberian peninsula were modified so as to turn it
into a desert in the experimental climate. That
is, evaporation at the grid points representing
the Iberian peninsula was arbitrarily set to zero.
The response, in terms of January Northern
Hemisphere sea-level pressure, is shown in
Figure 1.14 [402]. The statistical analysis revealed
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that the signal, which appears to be of very large
scale, is mainly due to noise and is not statistically
significant.

In the second case, anomalously warm sea-
surface temperatures were prescribed in the
tropical Pacific, in order to simulate the effect of
the 1982/83 El Nĩno event on the atmosphere. The
resulting anomalous mean January 500 hPa height
field is shown in Figure 1.15. In this case the signal
is statistically distinguishable from the background
noise.

Before using statistical tests, we must account
for several methodical considerations (see Chap-
ter 6). Straightforward statistical assessments that
compare the mean states of two simulated climates
generally use simple statistical tests that are per-
formed locally at grid points. More complexfield
tests, often calledfield significance testsin the
climate literature, are used less frequently.

Grid point tests, while popular because of their
simplicity, may have interpretation problems. The
result of a set of statistical tests, one conducted at
each grid point, is a field of decisions denoting
where differences are, and are not,statistically
significant. However, statistical tests cannot be
conducted with absolute certainty. Rather, they are
conducted in such a way that there is ana priori
specified risk 1−p̃ of rejecting the null hypothesis:
‘no difference’ when it is true.13

The specified risk(1 − p̃) × 100% is often
referred to as thesignificance levelof the test.14

A consequence of setting the risk of false
rejection to 1− p̃, 0 < p̃ < 1, is that we
can expect approximately(1 − p̃) × 100% of
the decisions to bereject decisions when the
null hypothesis is valid. However, many fields of
interest in climate experiments exhibit substantial

13The standard, rather mundane statistical nomenclature for
this kind of error isType I error; failure to reject the null
hypothesis when it is false is termed aType IIerror. Specifying
a smaller risk reduces the chance of making a Type I error but
also reduces the sensitivity of the test and hence increases the
likelihood of a Type II error. More or less standard practice is
to set the risk of a Type I error to(1− p̃)× 100%= 5% in
tests of the mean and to(1 − p̃) × 100% = 10% in tests of
variability. A higher level of risk is usually felt to be acceptable
in variance tests because they are generally less powerful than
tests concerning the mean state. The reasons for specifying the
risk in the form 1− p̃, wherep̃ is a large probability near 1, will
become apparent later.

14There is some ambiguity in the climate literature about
how to specify a ‘significance level.’ Many climatologists use
the expression ‘significant at the 95% level,’ although standard
statistical convention is to use the expression ‘significant at the
5% level.’ With the latter convention, which we use throughout
this book, rejection at the 1% significance level indicates the
presence of stronger evidence against the null hypothesis than
rejection at the 10% significance level.

spatial correlation (e.g., smooth fields such as the
geopotential heights displayed in Figure 1.1).

The spatial coherence of these fields has two
consequences for hypothesis testing at grid points.
The first is that the proportion of the field covered
by reject decisions becomes highly variable from
one realization of the climate experiment to the
next. In some problems a rejection rate of 20%
may still be globally consistent with the null
hypothesis at the 5% significance level. The
second is that the spatial coherence of the studied
fields also leads to fields of decisions that are
spatially coherent: if the difference between two
mean 500 hPa height fields is large at a particular
point, it is also likely to be large at neighbouring
points because of the spatial continuity of 500 hPa
height. A decision made at one location is
generally not statistically independent of decisions
made at other locations. This makes regions of
significant change difficult to identify. Methods
that can be used to assess the field significance of
a field of reject/retain decisions are discussed in
Section 6.8. Local, orunivariate, significance tests
are discussed in Sections 6.6 and 6.7.

Another approach to the comparison of ob-
served and simulated mean fields involves the use
of classicalmultivariate statistical tests(Sections
6.6 and 6.7). The wordmultivariateis used some-
what differently in the statistical lexicon than it
is in climatology: it describes tests and other in-
ference procedures that operate on vector objects,
such as the difference between two mean fields,
rather than scalar objects, such as a difference of
means at a grid point. Thus a multivariate test is a
field significance test; it is used to make a single
inference about a field of differences between the
observed and simulated climate.

Classical multivariate inference methods can
not generally be applied directly to difference of
means or variance problems in climatology. These
methods are usually unable to cope with fields
under study, such as seasonal geopotential means,
that are generally ‘observed’ at numbers of grid
points one to three orders of magnitude greater
than the number of realizations available.15

15A typical climate model validation problem involves the
comparison of simulated monthly mean fields obtained from
a 5–100 year simulation, with corresponding observed mean
fields from a 20–50 year climatology. Such a problem therefore
uses a combined total ofn = 25 to 150 realizations of mean
January 500 hPa height, for example. On the other hand, the
horizontal resolution of typical present day climate models is
such that these mean fields are represented on global grids with
m = 2000 to 8000 points. Except on relatively small regional
scales, the dimension of (or number of points in) the difference
field is greater than the combined number of realizations from
the simulated and observed climates.
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One solution to this difficulty is to reduce the
dimension of the observed and simulated fields to
less than the number of realizations before using
any inference procedure. This can be done using
pattern analysis techniques, such as EOF analysis,
that try to identify the climate’s principal modes
of variation empirically. Another solution is to
abandon classical inference techniques and replace
them with ad hoc methods, such as the ‘PPP’ test
(Preisendorfer and Barnett [320]).

Both grid point and field significance tests are
plagued with at least two other problems that
result in interpretation difficulties. The first of
these is that the wordsignificancedoes not have
a specific physical interpretation. The statistical
significance of the difference between a simulated
and observed climate depends upon both location
and sample size. Location is a factor that affects
interpretation because variability is not uniform
in space. A 5 m difference between an observed
and a simulated mean January 500 hPa height
field may be statistically very significant in the
tropics, but such a difference is not likely to
be statistically, or physically, significant at mid-
latitudes where interannual variability is large.
Sample size is a factor because the sensitivity
of statistical tests is affected by the amount of

information about the mean state contained in
the observed and simulated realizations. Larger
samples have greater information content and
consequently result in more powerful tests. Thus,
even though a 5 m difference at midlatitudes may
not be physically important, it will be found to
be significant given large enough simulated and
observed climatologies. The statistical strength of
the signal (or model error) may be quantified by
a parameter called thelevel of recurrence, which
is the probability that the signal’s signature will
not be masked by the noise in another identical
but statistically independent run with the GCM
(Sections 6.9–6.10).

The second problem is that objective statis-
tical validation techniques are more honest than
modellers would like them to be. GCMs and
analysis systems have various biases that ensure
that objective tests of their differences will reject
the null hypothesis of no difference with certainty,
given large enough samples. Modellers seem to
have an intuitive grasp of the size and spatial
structure of biases and seem to be able to discount
their effects when making climate comparisons. If
these biases can be quantified, statistical inference
procedures can be adjusted to account for them
(see Chapter 6).
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2 Probability Theory

2.1 Introduction

2.1.1 The General Idea. The basic ideas behind
probability theory are as simple as those associated
with making lists—the prospect of computing
probabilities or thinking in a ‘probabilistic’
manner should not be intimidating.

Conceptually, the steps required to compute the
chance of any particular event are as follows.

• Define anexperimentand construct an ex-
haustive description of its possible outcomes.

• Determine therelative likelihood of each
outcome.

• Determine theprobabilityof each outcome by
comparing its likelihood with that of every
other possible outcome.

We demonstrate these steps with two simple
examples. In the first we consider three tosses of
an honest coin. The second example deals with the
rainfall in winter at West Glacier in Washington
State (USA).

2.1.2 Simple Events and the Sample Space.
The sample space, denoted byS, is a list of
possible outcomes of an experiment, where each
item in the list is asimple event, that is, an
experimental outcome that cannot be decomposed
into yet simpler outcomes.

For example, in the case of three consecutive
tosses of a fair coin, the simple events areS
= {HHH, HHT, HTH, THH, TTH, THT, HTT,
TTT} with H = ‘head’ and T = ‘tail.’ Another
description of the possible outcomes of the coin
tossing experiment is{‘three heads’, ‘two heads’,
‘one head’, ‘no heads’}. However, this is not a list
of simple events since some of the outcomes, such
as{‘two heads’}, can occur in several ways.

It is not possible, though, to list the simple
events that compose the West Glacier rainfall
sample space. This is because a reasonable sample
space for the atmosphere is the collection of all
possible trajectories through its phase space, an
uncountably large collection of ‘events.’ Here we

are only able to describecompoundevents, such as
the outcomes that the daily rainfall is more, or less,
than a threshold of, say, 0.1 inch. While we are
able to describe these compound events in terms
of some of their characteristics, we do not know
enough about the atmosphere’s sample space or
the processes that produce precipitation to describe
precisely the proportion of the atmosphere’s
sample space that represents one of these two
compound events.

2.1.3 Relative Likelihood and Probability. In
the coin tossing experiment we use the physical
characteristics of the coin to determine the relative
likelihood of each outcome inS. The chance of a
head is the same as that of a tail on any toss, if we
have no reason to doubt the fairness of the coin, so
each of the eight outcomes is as likely to occur as
any other.

The West Glacier rainfall outcomes are less
obvious, as we do not have an explicit character-
ization of the atmosphere’s sample space. Instead,
we assume that our rainfall observations stem from
a stationary process, that is, that the likelihood
of observing more, or less, than 0.1 inch daily
rainfall is the same for all days within a winter and
the same for all winters. Observed records tell us
that the daily rainfall is greater than the 0.1 inch
threshold on about 38 out of every 100 days. We
thereforeestimatethe relative likelihoods of the
two compound events inS.

As long as all outcomes are equally likely,
assigning probabilities can be done by counting
the number of outcomes inS. The sum of all
the probabilities must be unity because one of the
events inS mustoccur every time the experiment
is conducted. Therefore, ifS containsM items, the
probability of any simple event is just 1/M . We see
below that this process of assigning probabilities
by counting the number of elements inS can often
be extended to include simple events that do not
have the same likelihood of occurrence.

Once the probability of each simple event has
been determined, it is easy to determine the
probability of a compound event. For example, the

19
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event {‘Heads on exactly 2 out of 3 tosses’} is
composed of the three simple events{HHT, HTH,
THH} and thus occurs with probability 3/8 on any
repetition of the experiment.

The word repetition is important because it
underscores the basic idea of a probability. If an
experiment is repeatedad infinitum, the proportion
of the realizations resulting in a particular outcome
is the probability of that outcome.

2.2 Probability

2.2.1 Discrete Sample Space.A discrete
sample space consists of an enumerable collection
of simple events. It can contain either a finite or a
countably infinite number of elements.

An example of alarge finitesample space occurs
when a series of univariate statistical tests (see
[6.8.1]) is used to validate a GCM. The test makes
a decision about whether or not the simulated
climate is similar to the observed climate in each
model grid box (Chervin and Schneider [84];
Livezey and Chen [257]; Zwiers and Boer [446]).
If there arem grid boxes (m is usually of order 103

or larger), then the number of possible outcomes
of the decision making procedure is 2m—a large
but finite number. We could be exhaustive and list
each of the 2m possible fields of decisions, but it is
easy and convenient to characterize more complex
events by means of a numerical description and to
count the number of ways each can occur.1

An example of an infinite discrete sample
space occurs in the description of a precipitation
climatology, whereS = {0,1,2,3, . . .} lists the
waiting times between rain days.2

2.2.2 Binomial Experiments. Experiments
analogous to the coin tossing, rainfall threshold
exceedance, and testing problems described above
are particularly important. They are referred to as
binomial experiments because each replication of
the experiment consists of a number ofBernoulli
trials; that is, trials with only two possible
outcomes (which can be coded ‘S’ and ‘F’ for
success and failure).

An experiment that consists ofm Bernoulli trials
has a corresponding sample space that contains 2m

entries. One way to describeS conveniently is to

1We have taken some liberties with the idea of a discrete
sample space in this example. In reality, each of the ‘simple
events’ in the sample space is a compound event in a very large
(but discrete) space of GCM trajectories.

2We have taken additional liberties in this example. The
events are really compound events in the uncountably large
space of trajectories of the real atmosphere.

partition it into subsets of simple events according
to the number of successes. These compound
events are made up of varying numbers of sample
space elements. The smallest events (0 successes
and m successes) contain exactly one element
each. The next smallest events (one success inm
trials andm − 1 successes inm trials) contain
m elements each. In general, the event withn
successes inm trials contains(m

n
) = m!

n!(m− n)!

simple events. These compound events do not
contain any common elements, so it follows that∑m

n=1

(m
n
) = 2m.

2.2.3 A Sample Space is More Than a
Collection of Simple Events. A complete
probabilistic description of an experiment must be
more than just a list of simple events. We also
need a rule, sayP(·), that assigns probabilities
to events. In simple situations, such as the coin
tossing example of Section 2.1,P(·) can be based
on the numbers of elements in an event.

Different experiments may generate the same
set of possible outcomes but have different rules
for assigning probabilities to events. For example,
a fair and a biased coin, each tossed three times,
generate the same list of possible outcomes but
each outcome does not occur with the same
likelihood. We can use the same threshold for
daily rainfall at every station and will find different
likelihoods for the exceedance of that threshold.

2.2.4 Probability of an Event. The probability
of an event in a discrete sample space is computed
by summing up the probabilities of the individual
sample space elements that comprise the event.
A list of the complete sample space is usually
unnecessary. However, we do need to be able to
enumerate events, that is, count elements in subsets
of S.

Some basic rules for probabilities are as follows.

• Probabilities are non-negative.

• When an experiment is conducted, one of the
simple events inS mustoccur, so

P(S) = 1.

• It may be easier to compute the probability
of the complement of an eventthan that of
the event itself. IfA denotes an event, then
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¬A, its complement, is the collection of all
elements inS that are not contained inA.
That is,S = A ∪ ¬A. Also, A ∩ ¬A = ∅.
Therefore,

P(A) = 1− P(¬A).

• It is often useful to divide an event into
smaller, mutually exclusive events. Two
eventsA andB aremutually exclusiveif they
do not contain any common sample space
elements, that is, ifA∩B = ∅. An experiment
can not produce two mutually exclusive
outcomes at the same time. Therefore, ifA
andB are mutually exclusive,

P(A∪ B) = P(A)+ P(B). (2.1)

• In general, the expression for the probability
of observing one of two eventsA andB is

P(A∪ B) = P(A)+ P(B)− P(A∩ B).

The truth of this is easy to understand. The
common part of the two events,A ∩ B, is
included in bothA andB and thusP(A∩ B)
is included in the calculation ofP(A)+P(B)
twice.

2.2.5 Conditional Probability. Consider a
weather eventA (such as the occurrence of
severe convective activity) and suppose that the
climatological probability of this event isP(A).
Now consider a 24-hour weather forecast that
describes an eventB within the daily weather
sample space. If the forecast is skilful, our
perception of the likelihood ofA will change. That
is, the probability ofA conditionalupon forecast
B, which is writtenP(A|B), will not be the same
as the climatological probabilityP(A).

The conditional probability of eventA, given an
eventB for whichP(B) 6= 0, is

P(A|B) = P(A∩ B)/P(B). (2.2)

The interpretation is that only the part ofA
that is contained withinB can take place, and
thus the probability that this restricted version
of A takes place must be scaled byP(B) to
account for the change of context. Note that all
conditional probabilities range between 0 and 1,
just as ordinary probabilities do. In particular,
P(S|B) = P(B|B) = 1.

2.2.6 Independence. Two eventsA and B are
said to beindependentof each other if

P(A∩ B) = P(A)P(B). (2.3)

It follows from (2.2) that if A and B are
independent, thenP(A|B) = P(A). That is,
restriction of the sample space toB gives no
additional information about whether or notA will
occur.

SupposeA represents severe weather andB
represents a 24-hour forecast of severe weather.
If A and B are independent, then the forecasting
system does not produce skilful severe weather
forecasts: a severe weather forecast does not
change our perception of the likelihood of severe
weather tomorrow.

2.3 Discrete Random Variables

2.3.1 Random Variables. We are usually not
really interested in the sample spaceS itself, but
rather in the events inS that are characterized by
functions defined onS. For the three coin tosses
in [2.1.2] the function could be the number of
‘heads.’ Such functions are referred to asrandom
variables. We will usually use a bold face upper
case character, such asX, to denote the function
and a bold face lower case variablex to denote a
particular value taken byX. This value is also often
referred to as arealizationof X.

Random variables arevariable because their
values depend upon which event inS takes
place when the experiment is conducted. They
arerandombecause the outcome inS, and hence
the value of the function, can not be predicted in
advance.

Random variables arediscreteif the collection
of values they take is enumerable, andcontinuous
otherwise. Discrete random variables will be
discussed in this section and continuous random
variables in Section 2.6.

The probability of observing any particular
value x of a discrete random variableX is
determined by characterizing the event{X =
x} and then calculatingP(X = x). Thus, its
randomnessdepends upon bothP(·) and howX
is defined onS.

2.3.2 Probability and Distribution Functions.
In general, it is cumbersome to use the sample
space S and the probability rule P(·) to
describe the random, orstochasticcharacteristics
of a random variableX. Instead, the stochastic
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properties ofX are characterized by theprobability
function fX and thedistribution functionFX .

The probability function fX of a discrete
random variableX associates probabilities with
values taken byX. That is

fX(x) = P(X = x).

Two properties of the probability function are:

• 0 ≤ fX(x) ≤ 1 for all x, and

• ∑x fX(x) = 1, where the notation
∑

x
indicates that the summation is taken over all
possible values ofX.

Thedistribution functionFX of a discrete random
variableX is defined as

FX(x) =
∑
y≤x

fX(y).

Some properties of the distribution function are:

• FX(x) ≤ FX(y) if x ≤ y,

• limx→−∞ FX(x) = 0, and

• limx→+∞ FX(x) = 1.

The phraseprobability distribution is often used
to refer to either of these functions because the
probability function can be derived from the
distribution function and vice versa.

2.3.3 The Expectation Operator. A random
variableX and its probability functionfX together
constitute a model for the operation of an
experiment: every time it is conducted we obtain
a realizationx of X with probability fX(x). A
natural question is to ask what the average value of
X will be in repeated operation of the experiment.
For the coin tossing experiment, withX being the
number of ‘heads,’ the answer is 0× 1

8 + 1× 3
8 +

2× 3
8 + 3× 1

8 = 3
2 because we expect to observe

X = 0 (no ‘heads’ in three tosses of the coin) 1/8
of the time,X = 1 (one ‘head’ and two ‘tails’) 3/8
of the time, and so on. Thus, in this example, the
expectedvalue ofX is 1.5.

In general, theexpected valueof X is given by

E(X) =
∑

x
x fX(x).

The expected value of a random variable is
also sometimes called itsfirst moment, a term that
has its roots in elementary physics. Think of a
collection of particles distributed so that the mass
of the particles at locationx is fX(x). Then the

expected valueE(X) is the location of the centre
of mass of the collection of particles.

The idea of expectation is easily extended to
functions of random variables. Letg(·) be any
function and letX be a random variable. The
expected value ofg(X) is given by

E
(
g(X)

) =∑
x

g(x) fX(x).

The interpretation of the expected value as the
average value ofg(X) remains the same.

We often use the phraseexpectation operator
to refer to the act of computing an expectation
because we operate on a random variable (or a
function of a random variable) with its probability
function to derive one of its properties.

A very useful property of the expectation
operatorE is that the expectation of a sum is a sum
of expectations. That is, ifg1(·) andg2(·) are both
functions defined on the random variableX, then

E
(
g1(X) + g2(X)

) = E(g1(X)
)+ E(g2(X)

)
.

(2.4)

Another useful property is that ifg(·) is a
function ofX anda andb are constants, then

E
(
ag(X) + b

) = aE
(
g(X)

)+ b. (2.5)

As a special case, note that the expectation of a
constant, sayb, is that constant itself. This is, of
course, quite reasonable. A constant can be viewed
as an example of a degenerate random variable.
It has the same valueb after every repetition of
an experiment. Thus, its average value in repeated
sampling must also beb.

A special class of functions of a random variable
is the collection of powers of the random variable.
The expectation of thekth power of a random
variable is known as thekth moment of X.
Probability distributions can often be identified
by their moments. Therefore, the determination
of the moments of a random variable sometimes
proves useful when deriving the distribution of a
random variable that is a function of other random
variables.

2.3.4 The Mean and Variance. In the preceding
subsection we defined the expected valueE(X)
of the random variableX as the mean of X
itself. Frequently the symbolµ (µX when clarity
is required) is used to represent the mean. The
phrasepopulation meanis often used to denote the
expected value of a random variable; thesample
meanis the mean of a sample of realizations of a
random variable.
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Another important part of the characterization
of a random variable isdispersion. Random
variables with little dispersion have realizations
tightly clustered about the mean, and vice versa.
There are many ways to describe dispersion, but it
is usually characterized byvariance.

The population variance(or simply the vari-
ance) of a discrete random variableX with prob-
ability distribution fX is given by

Var(X) = E((X − µX)
2
)

=
∑

x
(x− µX)

2 fX(x).

The variance is often denoted byσ 2 or σ 2
X .

The square root of the variance, denoted asσX ,
is known as thestandard deviation.

In the coin tossing example above, in whichX
is the number of ‘heads’ in three tosses with an
honest coin, the variance is given by

σ 2 =
(
0− 3

2

)2× 1

8
+
(
3− 3

2

)2× 1

8

+
(
1− 3

2

)2× 3

8
+
(
2− 3

2

)2× 3

8
= 3

4
.

It will be useful to note a couple of the properties
of the variance.

First,

Var(X) = E((X − µX)
2
)

= E(X2− 2XµX + µ2
X

)
= E(X2

)− 2µXE(X)+ E
(
µ2

X

)
= E(X2

)− µ2
X .

The third step in this derivation, distributing
the expectation operator, is accomplished by
applying properties (2.4) and (2.5). The last step
is achieved by applying the expectation operator
and simplifying the third line.

Second, if a random variable is shifted by a
constant, its variance does not change. Adding a
constant shifts the realizations ofX to the left
or right, but it does not change the dispersion of
those realizations. On the other hand, multiplying
a random variable by a constant does change the
dispersion of its realizations. Thus, ifa andb are
constants, then

Var(aX + b) = a2Var(X). (2.6)

2.3.5 Random Vectors. Until now we have
considered the case in which a single random
variable is defined on a sample space. However,
we are generally interested in situations in which
more than one random variable is defined on

a sample space. Such related random variables
are conveniently organized into a random vector,
defined as follows:
A random vector EX is a vector of scalar
random variables that are the result of the same
experiment.
All elements of a random vector are defined on
the same sample spaceS. Theydo notnecessarily
all have the same probability distribution, because
their distributions depend not only on the
generating experiment but also on the way in
which the variables are defined onS.

We will see in Section 2.8 that random vectors
also have properties analogous to the probability
function, mean, and variance.

The termsunivariateandmultivariateare often
used in the statistical literature to distinguish
between problems that involve a random variable
and those that involve a random vector. In the
context of climatology or meteorology, univariate
means a single variable at a single location.
Anything else, such as a single variable at multiple
locations, or more than one variable at more than
one location, is multivariate to the statistician.

2.4 Examples of Discrete Random
Variables

2.4.1 Uniform Distribution. A discrete random
variableX that takes theK different values in a set
Ä = {x1, . . . , xK } with equal likelihood is called
auniformrandom variable. Its probability function
is given by

fX(x) =
{

1/K if x ∈ Ä
0 otherwise.

Note that the specification of this distribution
depends uponK parameters, namely the K
different values that can be taken. We use the
shorthand notation

X ∼ U(Ä)
to indicate thatX is uniformly distributed onÄ. If
the K values are given by

xk = a+ k− 1

K − 1
(b− a), for k = 1, . . . , K

for somea < b, then the parameters of the uniform
distribution are the three numbersa, b, andK . It
is readily shown that the mean and variance of a
discrete uniform random variable are given by

E
(
U(a,b, K )

) = (a+ b)/2

Var
(
U(a,b, K )

) = (b− a)2/12.

Note that the mean and variance do not depend on
K .
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2.4.2 Binomial Distribution. We have already
discussed thebinomial distribution in the coin
tossing and model validation examples [2.2.2].

When an experiment consists ofn independent
tosses of a fair coin, the number of headsH that
come up is abinomial random variable. Recall
that the sample space for this experiment has 2n

equally likely elements and that there are
( n

h
)

ways to observe the event{H = h}. This random
variableH has probability function

fH (h) =
( n

h
)(1

2

)n
.

In general, the ‘coin’ is not fair. For example,
consider sequences ofn independent daily
observations of West Glacier rainfall [2.1.2] and
classify each observation into two categories
depending upon whether the rainfall exceeds the
0.1 inch threshold. This natural experiment has
the same number of possible outcomes as the coin
tossing experiment (i.e., 2n), but all outcomes are
not equally likely.

The coin tossing and West Glacier experiments
are both examples ofbinomial experiments. That
is, they are experiments that:

• consist ofn independent Bernoulli trials, and

• have the same probability of success on every
trial.

A binomial random variableis defined as the
number of successes obtained in a binomial
experiment.

The probability distribution of a binomial
random variableH is derived as follows. LetS
denote a ‘success’ and assume that there aren
trials and thatP(S) = p on any trial. What is
the probability of observingH = h? One way to
obtain{H = h} is to observe

h times︷ ︸︸ ︷
SSS· · · S F F F · · · F︸ ︷︷ ︸

n−h times

.

Since the trials are independent, we may apply
(2.3) repeatedly to show that

P(SSS· · · SF F F · · · F) = ph(1− p)n−h.

Also, because of independence, we get the
same result regardless of the order in which
the successes and failures occur. Therefore all
outcomes with exactlyh successes have the same
probability of occurrence. Since{H = h} can

occur in
( n

h
)

ways, the probability of observing

this event is
( n

h
)
ph(1− p)n−h.

Hence thebinomial distributionis defined by

fH (h) =

( n

h
)
ph(1− p)n−h for 0≤ h ≤ n

0 otherwise.

(2.7)

We can readily verify that this is indeed a proper
probability distribution. First, the condition that
fH ≥ 0 is clearly satisfied. Second,

n∑
h=0

fH (h) =
n∑

h=0

( n
h
)
ph(1− p)n−h

= (
p+ (1− p)

)n = 1.

Thus, the probabilities sum to 1 as required.
The shorthandH ∼ B(n, p) is used to

indicate thatH has a binomial distribution with
two parameters: the number of trialsn and the
probability of successp. The mean and variance
of H are given by

E(H) = np (2.8)

Var(H) = np(1− p). (2.9)

2.4.3 Example: Rainfall Forecast. Consider
again the daily rainfall at West Glacier, Wash-
ington. Let R be the event that the daily rainfall
exceeds the 0.1 inch threshold and let¬R be
the complement (i.e., rain does not exceed the
threshold).

Let us now suppose that a forecast scheme has
been devised with two outcomes:Rf = there will
be more than0.1 inch of precipitationand¬Rf .
The binomial distribution can be used to assess the
skill of categorical forecasts of this type.

The probability of threshold exceedance at West
Glacier is 0.38 (i.e.,P(R) = 0.38). Suppose that
the forecasting procedure has been tuned so that
P
(
Rf
)

= P(R).
Assume first that the forecast has no skill, that is,

that it is statistically independent of nature. LetC
denote a correct forecast. Using (2.1) and (2.3) we
see that the probability of a correct forecast when
there is ‘no skill’ is

P(C) = P
(
Rf
)× P(R)

+ P
(¬Rf

)× P(¬R)

= 0.382+ 0.622 ≈ 0.53.

The forecasting scheme is allowed to operate
for 30 days and a total of 19 correct forecasts
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are recorded. The forecasters claim that they have
some useful skill. One way to substantiate this
claim is to demonstrate that it is highly unlikely for
unskilled forecasters to obtain 19 correct forecasts.
We therefore assume that the forecasters are not
skilful and compute the probability of obtaining 19
or more correct forecasts by accident.

The binomial distribution can be used if we
make two assumptions. First, the probability of
a ‘success’ (correct forecast) must be constant
from day to day. This is likely to be a reasonable
approximation during relatively short periods such
as a month, although on longer time scales
seasonal variations might affect the probability
of a ‘hit.’ Second, the outcome on any one
day must be independent of that on other days,
an assumption that is approximately correct for
precipitation in midlatitudes. Many other climate
system variables change much more slowly than
precipitation, however, and one would expect
dependence amongst successive daily forecasts of
such variables.

Once the assumptions have been made, the
30-day forecasting trial can be thought of as
a sequence ofn=30 Bernoulli trials, and the
number of successesh can be treated as a
realization of a B(30,0.53) random variable
H. The expected number of correct ‘no skill’
forecasts in a 30-day month isE(H) = 15.9. The
observed 19 hits is greater than this, supporting the
contention that the forecasts are skilful. However,
h can vary substantially from one realization of
the forecasting experiment to the next. It may
be that 19 or more hits can occur randomly
relatively frequently in a skill-less forecasting
system. Therefore, assuming no skill, we compute
the likelihood of an outcome at least as extreme as
observed. This is given by

P(H ≥ 19) =
30∑

h=19

fH (h)

=
30∑

h=19

(30
h
)
0.53h0.47(30−h)

≈ 0.22.

The conclusion is that 19 or more hits are not
that unlikely when there is no skill. Therefore the
observed success rate is not strong evidence of
forecast skill.

On the other hand, suppose 23 correct forecasts
were observed. ThenP(H ≥ 23) ≤ 0.007 under
the no-skill assumption. This is stronger evidence
of forecast skill than the scenario with 19 hits,

since 23 hits are unlikely under the no-skill
assumption.

In summary, a probability model of a forecasting
system was used to assess objectively a claim
of forecasting skill. The model was built on
two crucial assumptions: that daily verifications
are independent, and that the likelihood of a
correct forecast is constant. The quality of the
assessment ultimately depends on the fidelity of
those assumptions to nature.

2.4.4 Poisson Distribution. The Poisson dis-
tribution, an interesting relative of the binomial
distribution, arises when we are interested in
counting rare events. One application occurs in
the ‘peaks-over-threshold’ approach to the extreme
value analysis of, for example, wind speed data.
The wind speed is observed for a fixed time
interval t and the number of exceedancesX of
an established large wind speed thresholdVc is
recorded. The problem is to derive the distribution
of X.

First, let λ be the rate per unit time at which
exceedances occur. Ift is measured in years, thenλ
will be expressed in units of exceedances per year.
The latter is often referred to as theintensityof the
exceedance process.

Next, we have to make some assumptions about
the operation of the exceedance process so that we
can develop a corresponding stochasticmodel.

For simplicity, we assume thatλ is not a
function of time.3 We divide the base intervalt into
n equal length sub-intervals withn large enough
so that the likelihood of two exceedances in any
one sub-interval is negligible. Then the occurrence
of an exceedance in any one sub-interval can
be well approximated as a Bernoulli trial with
probability λt/n of success. Furthermore, we
assume that events in adjacent time sub-intervals
are independent of each other.4 That is, the
likelihood of an exceedance in a given sub-
interval is not affected by the occurrence or
non-occurrence of an exceedance in the other
sub-intervals. Thus, the number of exceedancesX
in the base interval is approximately binomially
distributed. That is,

X ∼ B
(
n,
λt

n

)
.

3In reality, the intensity often depends on the annual cycle.
4In reality there is always dependence on short enough

time scales. Fortunately, the model described here generalizes
well to account for dependence (see Leadbetter, Lindgren, and
Rootzen [246]).
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By taking limits as the number of sub-intervals
n → ∞, we obtain the Poisson probability
distribution:

fX(x) = (λt)x

x!
e−λt for x = 0,1, . . . . (2.10)

We use the notation

X ∼ P(δ)
to indicate thatX has aPoisson distributionwith
parameterδ = λt . The mean and the variance of
the Poisson distribution are identical:

E(P(δ)) = Var
(
P(δ)

) = δ.
We return to the Poisson distribution in [2.7.12]

when we discuss the distribution of waiting times
between events such as threshold exceedances.

2.4.5 Example: Rainfall Forecast Continued.
Suppose that forecasts and observations are made
in a number of categories (such as ‘no rain’,
‘trace’, ‘up to 1 mm’, . . . ) and that verification
is made in three categories (‘hit’, ‘near hit’, and
‘miss’), with ‘near hit’ indicating that the forecast
and observations agree to within one category (see
the example in [18.1.6]). Each day can still be
considered analogous to a binomial trial, except
that three outcomes are possible rather than two.
At the end of a month, two verification quantities
are available: the number of hitsH and the number
of near hitsN. These quantities can be thought
of as a pair of random variables defined on the
same sample space. (A third quantity, the number
of misses, is a degenerate random variable because
it is completely determined byH andN.)

The joint probability function for H and N
gives the likelihood of simultaneously observing
a particular combination of hits and near-hits. The
concepts introduced in Section 2.2 can be used to
show that this function is given by

fHN(h,n)=


C30

hnph
H pn

N p(30−h−n)
M

for h+ n ≤ 30 andh,n ≥ 0
0 otherwise,

where

C30
hn = 30!/

(
h!n!(30− h− n)!

)
,

pH andpN are the probabilities of a hit and a near
hit respectively, and

pM = (1− pH − pN)

is the probability of a miss.

2.4.6 The Multinomial Distribution. The
example above can be generalized to experiments
having independent trials withk possible outcomes
per trial if the probability of a particular
outcome remains constant from trial to trial. Let
X1, . . . ,Xk−1 represent the number of each of the
first k − 1 outcomes that occur inn independent
trials (we ignore thekth variate because it is again
degenerate).

The (k − 1)-dimensional random vector
EX = (X1, . . . ,Xk−1)

T is said to have amulti-
nomial distribution with parameters n
and Eθ = (p1, . . . , pk−1)

T, and we write
EX ∼ Mk(n, Eθ). The general form of the
multinomial probability function is given by

f EX(Ex)=


Cn
x1,...,xk−1

px1
1 · · ·pxk

k

if xi ≥ 0 for i = 1, . . . , k
0 otherwise

where

Cn
x1,...,xk−1

= n!

x1! · · · xk!

and

xk = n−
k−1∑
i=1

xi , pk = 1−
k−1∑
i=1

pi .

With this notation, the distribution in [2.4.5]
isM3(30, (pH , pN)

T). The binomial distribution,
B(n, p), is equivalent toM2(n, p).

2.5 Discrete Multivariate
Distributions

2.5.0 Introduction. The multinomial distribu-
tion is an example of a discrete multivariate
distribution. The purpose of this section is to
introduce concepts that can be used to understand
the relationship between random variables in a
multivariate setting. Marginal distributions [2.5.2]
describe the properties of the individual random
variables that make up a random vector when the
influence of the other random variable in the ran-
dom vector is ignored. Conditional distributions
[2.5.4] describe the properties of some variable in
a random vector when variation in other parts of
the random variable is controlled.

For example, we might be interested in
the distribution of rainfall when rainfall is
forecast. If the forecast is skilful, thisconditional
distribution will be different from the marginal
(i.e., climatological) distribution of rainfall. When
the forecast is not skilful (i.e., when the forecast
is independent of what actually happens) marginal
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X1

X2 strong normal weak all

weak 21 11 2 34
moderate 20 14 7 41

severe 4 4 6 14
very severe 0 3 8 11

all 45 32 23 100

Table 2.1:Estimated probability distribution (in
%) of EX = (X1,X2) = (strength of westerly flow,
severity of Baltic Sea ice conditions), obtained
from 104 years of data. Koslowski and Loewe
[231]. See [2.5.1].

and conditional distributions are identical. The
effect of independence is described in [2.5.7].

2.5.1 Example. We will use the following
example in this section. LetEX = (X1,X2)

be a discrete bivariate random vector whereX1
takes values(strong, normal, weak)describing
the strength of the winter mean westerly flow in
the Northeast Atlantic area, andX2 takes values
(weak, moderate, severe, very severe)describing
the sea ice conditions in the western Baltic
Sea (from Koslowski and Loewe [231]). The
probability distribution of the bivariate random
variable is completely specified by Table 2.1. For
example:p(X1 = weak flowandX2 = very severe
ice conditions) = 0.08.

2.5.2 Marginal Probability Distributions. If
EX = (X1, . . . ,Xm) is anm-variate random vector,
we might ask what the distribution of an individual
random variableXi is if we ignore the presence
of the others. In the nomenclature of probability
and statistics, this is themarginal probability
distribution. It is given by

fXi (xi ) =
∑

x1,...,xi−1,xi+1,...,xm

f (x1. . . xi . . . xm)

where the sum is taken over all possible
realizations ofEX for whichXi = xi .

2.5.3 Examples. If EX has a multinomial
distribution, the marginal probability distribution
of Xi is the binomial distribution withn trials and
probability pi of success. Consequently, ifEX ∼
Mm(n, Eθ), with Eθ defined as in [2.4.6], the mean
and variance ofXi are given by

µi = npi and σ 2
i = npi (1− pi ).

In example [2.5.1], the marginal distribution of
X1 is given in the row at the lowermargin of
Table 2.1, and that ofX2 is given in the column
at the right handmargin(hence the nomenclature).
The marginal distribution ofX2 is

fX2(x2) =


0.34, x2 = weak
0.41, x2 = moderate
0.14, x2 = strong
0.11, x2 = very strong.

Note that fX2(weak), for example, is given by

fX2(weak) = f EX(strong,weak)

+ f EX(normal,weak)

+ f EX(weak,weak)

= 0.21+ 0.11+ 0.02

= 0.34.

2.5.4 Conditional Distributions. The concept
of conditional probability [2.2.5] is extended
to discrete random variables with the following
definition.
Let X1 and X2 be a pair of discrete random
variables. The conditional probability function of
X1, givenX2 = x2, is

fX1|X2=x2(x1) = fX1X2(x1, x2)

fX2(x2)
(2.11)

provided thatfX2(x2) 6= 0.
Here fX2(x2) is the marginal distribution ofX2
which is given by fX2(x2) =

∑
fX1X2(x1, x2).

The sum is taken over all possible realizations of
(X1,X2) for whichX2 = x2.

2.5.5 Examples. The conditional distributions
for the example presented in Table 2.1 are derived
by dividing row (or column) entries by the
corresponding row (or column) sum. For example,
the probability that the sea ice conditions are
severe given that the westerly flow is strong is
given by

fX2|X1=strong(severe)= f EX(strong,severe)

fX1(strong)

= 0.04

0.45
= 0.09.

In the rainfall forecast verification example
[2.4.5] the conditional distribution for the number
of hits H given that there areN = m near hits is
B(30−m, pH/(1− pN)).
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X1

X2 strong normal weak all

weak 31 8 0 39
moderate 30 10 4 44

severe 6 3 3 12
very severe 0 2 4 6

all 67 23 11 101

Table 2.2:Hypothetical future distribution ofEX =
(X1,X2) = (strength of westerly flow, severity of
ice conditions), if the marginal distribution of the
westerly flow is changed as indicated in the last
row, assuming that no other factors control ice
conditions. (The marginal distributions do not sum
to exactly 100% because of rounding errors.) See
[2.5.6].

2.5.6 Example: Climate Change and Western
Baltic Sea-ice Conditions. In [2.5.5] we sup-
posed that sea-ice conditions depend on atmo-
spheric flow. Here we assume that atmospheric
flow controls the sea-ice conditions and that feed-
back from the sea-ice conditions in the Baltic Sea,
which have small scales relative to that of the
atmospheric flow, may be neglected. Then we can
view the severity of the ice conditions,X2, as being
dependent on the atmospheric flow,X1.

Table 2.1 seems to suggest that if stronger
westerly flows were to occur in a future climate,
we might expect relatively more frequentmoderate
and weak sea-ice conditions. The next few
subsections examine this possibility.

We represent present day probabilities with
the symbol f and those of a future climate,
in say 2050, by f̃ . We assume that conditional
probabilities are unchanged in the future, that is,

fX2|X1=x1(x2) = f̃ X2|X1=x1(x2).

Using (2.11) to express the joint present and
future probabilities as products of the conditional
and marginal distributions, we find

f̃ EX(x1, x2) = f̃ X1(x1)

fX1(x1)
f EX(x1, x2).

Now suppose that the future marginal probabilities
for the atmospheric flow aref̃ X1(strong) =
0.67, f̃ X1(normal) = 0.22 and f̃ X1(weak) =
0.11. Then the future version of Table 2.1
is Table 2.2.5 Note that the prescribed future

5These numbers were derived from a ‘doubled CO2
experiment’ [96]. Factors other than atmospheric circulation
probably affect the sea ice significantly, so this example should
not be taken seriously.

marginal distribution for the strength of the
atmospheric flow appears in the lowest row of
Table 2.2. The changing climate is clearly reflected
in the marginal distributionf̃ X2, which is tabulated
in the right hand column. This suggests that weak
and moderate ice conditions will be more frequent
in 2050 than at present, and that the frequency
of severe or very severe ice conditions will be
lowered from 25% to 18%.

2.5.7 Independent Random Variables. The
idea of independence is easily extended to random
variables because they describe events in the
sample space upon which they are defined. Two
random variables are said to be independent if they
always describe independent events in a sample
space. More precisely:

Two random variables,X1 andX2, are said to be
‘independent’ if

fX1,X2(x1, x2) = fX1(x1) fX2(x2) (2.12)

for all (x1, x2).

That is, two random variables are independent if
their joint probability function can be written as
the product of their marginal probability functions.

Using (2.11) and (2.12) we see that indepen-
dence ofX1 andX2 implies

fX1|X2=x2(x1) = fX1(x1).

Thus, knowledge of the value ofX2 does not
give us any information about the value ofX1.6

A useful result of (2.12) is that, ifX1 andX2 are
independent random variables, then

E(X1X2) = E(X1)E(X2). (2.13)

The reverse is not true: nothing can be said about
the independence ofX1 andX2 when (2.13) holds.
However, if (2.13) does not hold,X1 andX2 are
certainlydependent.

2.5.8 Examples. The two variables described
in Table 2.1 are not independent of each other
because the table entries are not equal to the
product of the marginal entries. Thus, knowledge
of the value of the westerly flow index,X1, tells
you something useful about the relative likelihood
that the different values of sea-ice intensityX2 will
be observed.

What would Table 2.1 look like if the strength
of the westerly flow,X1, and the severity of
the Western Baltic sea-ice conditions,X2, were
independent? The answer, assuming that there is

6Thus the present definition is consistent with [2.2.6].
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X1

X2 strong normal weak all

weak 15 11 8 34
moderate 18 13 9 40

severe 6 4 3 13
very severe 5 4 4 13

all 44 32 24 100

Table 2.3: Distribution of EX = (X1,X2) =
(strength of westerly flow, severity of ice condi-
tions) assuming that the severity of the sea-ice
conditions and the strength of the westerly flow
are unrelated. See [2.5.8]. (Marginal distribution
deviates from that of Table 2.1 because of rounding
errors.)

no change in the marginal distributions, is given in
Table 2.3.

The two variables described by the bivariate
multinomial distribution [2.4.5] are also depen-
dent. One way to show this is to demonstrate
that the product of the marginal distributions is
not equal to the joint distribution. Another way
to show this is to note that the set of values that
can be taken by the random variable pair(H,N)
is not equivalent to the cross-product of the sets of
values that can be taken byH andN individually.
For example, it is possible to observeH = n
or N = n separately, but one cannot observe
(H,N) = (n,n) because this violates the condition
that 0 ≤ H + N ≤ n.

2.5.9 Sum of Identically Distributed Inde-
pendent Random Variables. If X is a random
variable from whichn independent realizationsxi

are drawn, theny =∑n
i=1 xi is a realization of the

random variableY =∑n
i=1 Xi , where theXi s are

independent random variables, each distributed as
X. Using independence, it is easily shown that the
mean and the variance ofY are given by

E(Y) = nE(X)
Var(Y) = E(Y2

)− E(Y)2
=

n∑
i, j=1

E
(
Xi X j

)− n2E(X)2

= nE
(
X2
)+ n(n− 1)E(X)2

− n2E(X)2

= n
(
E
(
X2
)− E(X)2)

= n Var(X).

Thus, the mean of the sum ofn independent
identically distributed random variables isn times
the mean of the individual random variable.
Likewise, the variance of the sum isn times the
variance ofX.

2.6 Continuous Random Variables

2.6.0 Introduction. Up to this point we have
discussed examples in which, at least conceptually,
we can write down all the simple outcomes of an
experiment, as in the coin tossing experiment or
in Table 2.1. However, usually the sample space
cannot be enumerated; temperature, for example,
varies continuously.7

2.6.1 The Climate System’s Phase Space.We
have discussed temperature measurements in the
context of a sample space to illustrate the idea of a
continuous sample space—but the idea that these
measurements define the sample space, no matter
how fine the resolution, is fundamentally incorrect.
Temperature (and all other physical parameters
used to describe the state of the climate system)
should really be thought of as functions defined on
the climate’sphase space.

The exact characteristics of phase space are not
known. However, we assume that the points in the
phase space that can be visited by the climate are
not enumerable, and that all transitions from one
part of phase space to another occur smoothly.

The path our climate is taking through phase
space is conceptually one of innumerable paths.
If we had the ability to reverse time, a small
change, such as a slightly different concentration
of tropospheric aerosols, would have sent us down
a different path through phase space. Thus, it is
perfectly valid to consider our climate a realization
of a continuous stochastic process even though the
time-evolution of any particular path is governed
by physical laws. In order to apply this fact to our
diagnostics of the observed and simulated climate
we have to assume that the climate isergodic.
That is, we have to assume that every trajectory
will eventually visit all parts of phase space and
that sampling in time is equivalent to sampling
different paths through phase space. Without this
assumption about the operation of our physical
system the study of the climate would be all but
impossible.

7In reality, both the instrument used to take the
measurement and the digital computing system used to store
it operate at finite resolutions. However, it is mathematically
convenient to approximate the observed discrete random
variable with a continuous random variable.
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The assumption of ergodicity is well founded,
at least on shorter time scales, in the atmosphere
and the ocean. In both media, the laws of physics
describe turbulent fluids with limited predictability
(i.e., small perturbations grow quickly, so two
paths through phase space diverge quickly).

2.6.2 Continuous Random Variable. We have
expanded the concept of the sample spaceS to the
concept of a phase spaceS. We must also expand
the concept of the probability rule,P(·), used to
compute the probability of events, by converting
P(·) into a function that measures the relative size
of an event.

The way events are measured is not uniform
because measurements must reflect the likelihood
of events. For example, letT represent temperature
at a northern midlatitude location in January, and
consider eventsA and B, where A = {T ∈
(−5,5)◦C} and B = {T ∈ (30,40)◦C}. Both
A and B describe 10◦C temperature ranges but
P(A) 6= P(B), that is, theprobability measure of
these events is not the same.

Now assume that we are able to observe
temperature on a continuous scale (i.e., that
the intervening instruments do not discretize the
observed temperature) and consider the eventC =
{T = 0.48◦C}. This event challenges our intuition
becauseP(C) = 0. Why? Consider a sequence of
events

Ck =
{

T ∈
(

0.48− 1

k
,0.48+ 1

k

)
◦C
}
.

Note that limk→∞Ck = C and that the event
Ck+1 is a subset ofCk, or in mathematical terms
C1 ⊃ C2 ⊃ · · · . Therefore

P(C1) > P(C2) > · · · .
Intuitively, we see that, for largek, the probability
of eventCk is proportional tok−1. It follows that
P(C) = 0.

Let us consider another situation. Assume that
the probability measure is continuous and that
there is a pointx and anε > 0 such that

P(X = x) = 2ε.

Then, because of continuity, there must exist a
δ > 0 such that for ally with |x− y| < δ

P(X = y) > ε.

Now, if we choosen > 1/ε pointsx1, . . . , xn such
that|x− xi | < δ, we obtain the contradiction that

P(X ∈ {x1, . . . , xn}) > 1.

The conclusion is that our initial assumption, that
there is a pointx for whichP(X = x) > 0, is false.
That is,if X is a continuous random variable, then
P(X = x) = 0 for all x.

While counter intuitive, the result is reasonable;
the chance of observing a specific value is zero
because innumerable different values can occur.

Finally, a continuous random variable is defined
as follows:

Let S be a phase space and let P(·) be a
continuous probability measure onS. Then a
continuous random variableX is a continuous
function ofS that takes values in an intervalÄ ⊆
R, the real line, in such a way that

1 P(X ∈ 2) ≥ 0 for all 2 ⊆ Ä,

2 P(X ∈ Ä) = 1.

2.6.3 The Probability Density and Distribution
Functions. Events described in terms of con-
tinuous random variables are expressed as open
intervals on the real line,R, and the probability
of an event is expressed as the integral of a
probability density function(pdf) taken over the
interval that describes the event. In theory, the
density function is derived from the definition of
the random variable and the probability measure
P(·). In practice, we will use intuition and simple
mathematical arguments wherever possible.

Our working definition of the probability
density function will be as follows:

Let X be a continuous random variable that takes
values in the intervalÄ. The probability density
function for X is a continuous functionfX(·)
defined onR with the following properties:

1 fX(x) ≥ 0 for all x ∈ Ä,

2
∫
Ä

fX(x)dx = 1,

3 P(X ∈ (a,b)) = ∫ b
a fX(x)dx

for all (a,b) ⊆ Ä.

An equivalent description of the stochastic
characteristics of a continuous random variable
is given by the distribution function, frequently
referred to more descriptively as thecumulative
distribution function(cdf).

The distribution function forX is a non-
decreasing differentiable functionFX(·) defined on
R with the following properties:

1 lim x→−∞ FX(x) = 0,

2 lim x→+∞ FX(x) = 1,

3 d
dx FX(x) = fX(x).



2.6: Continuous Random Variables 31

Julian Day

T
em

pe
ra

tu
re

 (
D

eg
 C

)

0 100 200 300

-1
0

0
10

20C
o

T
em

p
er

at
u

re

Julian Day

Figure 2.1:The 10th, 50th, and 90th quantiles
of daily mean temperature at Potsdam, Germany
(1983–94).

The last equation tells us that

FX(x) =
∫ x

−∞
fX(r )dr. (2.14)

The cumulative distribution function is often
useful for computing probabilities because

P
(
X ∈ (a,b)) = FX(b)− FX(a).

2.6.4 Median and Quantiles. The median,x0.5,
is the solution of

FX(x0.5) = 0.50.

It represents themiddleof the distribution in the
sense that

P(x ≤ x0.5) = P(x ≥ x0.5) = 0.5.

Exactly 50% of all realizations will be less than the
median, the other 50% will be greater.

The median is an example of ap-quantile, the
point xp on the real line such that

P
(
X ∈ (−∞, xp)

) = p

P
(
X ∈ [xp,∞)

) = 1− p.

That is, thep-quantile is the solutionxp of

FX(xp) = p.

An example of the annual cycle of the quantiles
of daily mean temperature at Potsdam, Germany, is
displayed in Figure 2.1. Note that the distribution
is approximately symmetric during the transition
seasons, but negatively skewed in winter, and
slightly positively skewed in summer. The ‘noise’
evident in these curves is a consequence of
estimating the quantiles from a finite sample of
observations.

2.6.5 Expectation. The expected valueof a
continuous random variableX is given by

E(X) =
∫
Ä

x fX(x)dx.

If g(·) is a function then the definition of the
expected value ofg(X) generalizes from the
discrete case in the same way, and

E
(
g(X)

) = ∫
Ä

g(x) fX(x)dx.

Results (2.4) and (2.5), about the expectation of a
sum of functions and about linear transformations
of random variables, also apply in the continuous
case:

E
(
g1(X)+ g2(X)

) = E(g1(X)
)+ E(g2(X)

)
(2.15)

E
(
ag(X)+ b

) = aE
(
g(X)

)+ b. (2.16)

2.6.6 Interpreting Expectation as the Long-
term Average. The expectation is often also
named ‘the mean’ value, that is, this number is
identified with the average of an infinite number
of realizations of X. We will show this here
with an intuitive limit argument. Another heuristic
argument is presented in [5.2.5].

First, we approximate the continuous random
variableX with a discrete random variableXδ that
takes values in the set{kδ: k = 0,±1,±2, . . . }
for some small positive numberδ and with
probabilities

pkδ =
∫ (k+1/2)δ

(k−1/2)δ
fX(x)dx ≈ δ fX(kδ).

The expected value of the discrete random variable
Xδ is given by

E(Xδ) =
∞∑

k=−∞
kδpkδ.

By interpreting pkδ as the frequency with which
X takes a value in the neighbourhood ofx = kδ,
we see that the expectation of the approximating
discrete random variableXδ is indeed a ‘long-
term’ mean. Then, taking the limit asδ → 0, and
noting that pkδ tends toδ fX(kδ) as δ → 0, we
obtain

lim
δ→0
E(Xδ) = lim

δ→0

∞∑
k=−∞

kδ
∫ (k+1/2)δ

(k−1/2)δ
fX(x)dx

=
∫ ∞
−∞

x fX(x)dx,

thus concluding the argument. A rigorous proof is
obtained by demonstrating that the sample mean
is a consistent estimator of the expectation (see
[5.2.5]).
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2.6.7 The Central Moments: Location, Scale,
and Shape Parameters. The kth momentµ(k)

of a continuous random variableX is also defined
as in the discrete case. Specifically

µ(k) = E(xk
) = ∫ ∞

−∞
xk fX(x)dx.

The kth central momentµ′(k) of a random
variableX is the expectation of(X − µ)k, given
by

µ′(k) =
∫ ∞
−∞

(x − µ)k fX(x)dx.

Most characteristics of a distribution can be
summarized through the use of simple functions
of the first four moments. These slightly modified
parameters are the mean, variance,skewness, and
kurtosis:

• The mean, also known as thelocation
parameter, is given by the first moment

µ = µ(1).

• The variance is given by the second central
moment

Var(X) = E((X − µ)2) (2.17)

= E(X2
)− (E(X))2

= µ(2)− (µ(1))2.
The properties of the variance, discussed for
the discrete case in [2.3.4], extend to the
continuous case, in particular

Var(aX + b) = a2Var(X). (2.18)

The standard deviationσX =
√

Var(X) is
also often described as ascale parameter.

• Theskewnessis a scaled version of the third
central moment that is given by

γ1 =
∫
R

(x − µ
σ

)3
fX(x)dx.

Symmetric distributions (i.e., distributions for
which fX(µ− x) = fX(µ+ x)) have γ1 = 0.
Distributions for whichγ1 < 0 are said to be
negatively skewedor skewed to the left, and
distributions for whichγ1 > 0 are said to be
positively skewedor skewed to the right.

Daily rainfall distributions, bounded on the
left by zero and unbounded on the right,

are generally strongly skewed to the right—
even though small amounts of rainfall occur
considerably more often than large amounts.
This occurs because rainfall distributions
have a wide ‘tail’ that extends far to the right.

On the other hand, geopotential height tends
to be somewhat skewed to the left because
lows tend to have greater amplitude than
highs.8

• The kurtosis, a scaled and shifted version of
the fourth central moment, is given by

γ2 =
∫
R

(x − µ
σ

)4
fX(x)dx− 3. (2.19)

Kurtosis is a measure of peakedness.
Platykurticdistributions, such as the uniform
distribution, haveγ2 < 0 and are less
‘peaked’ than the normal distribution (see
[2.7.3]). Distributions withγ2 > 0 are said to
beleptokurtic, and are more ‘peaked’ than the
normal distribution. The double exponential
distribution, with densityfX(x) = 1

2e−|x−µ|,
is leptokurtic.

The skewness and kurtosis are often referred to
asshape parameters.9

Shape parameters can be useful aids in the
identification of appropriate probability models.
This seems to be especially true inextreme value
analysis (Section 2.9) where debate over the
merits of various distributions is often intense.
However, skewness and kurtosis are often difficult
to estimate well. In practice, it is advisable to use
alternative shape parameters such asL-moments
[2.6.9].

2.6.8 The Coefficient of Variation. When
a random variable, such as precipitation, takes
only positive values a scale parameter called the
coefficient of variation,

cX = σX/µX,

is sometimes used. The standard deviation of such
variables is often proportional to the mean and it
is therefore useful to describe the scale parameter
relative to the mean.

8Holzer [180] shows that this is due to the rectification of
nonlinear interactions in the atmosphere’s dynamics (see also
[3.1.8]).

9The concept of skewness and kurtosis is not limited to
continuous random variables. It carries over to discrete random
variables in the obvious way: by replacing integration with
summation in the definitions given above.
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2.6.9 L-Moments. Hosking [183] introduced
an alternative set of scale and shape statistics
called L-moments, which are based onorder
statistics. The L-moments play a role similar
to that of conventional moments; in particular,
any distribution can be completely specified by
either. The difference is that the higher( j ≥
3) L-moments can beestimatedmore reliably
than conventional moments such as skewness and
kurtosis. Robust estimators of higher moments are
needed to identify and fit distributions such as the
Gumbel, Pareto,or Wakebydistributions used in
extreme value analysis (see Section 2.9).

To define the L-moments of a random variable
X we must first define related random variables
called order statistics. LetEX = (x1, . . . , xn)

T be a
random vector that is made up ofn independent,
identically distributed random variables, each
with the same distribution asX. SupposeEx =
(x1, . . . , xn)

T is a realization ofEX. Let g(·) be
the function that sorts the elements of ann-
dimensional vector in increasing order. That is

g(Ex) = (x(1|n), . . . , x(n|n))T

wherex(i |n) is the i th smallest element ofEx. The
random vector that corresponds tog(Ex) is

g( EX) = (X(1|1), . . . ,X(n|n))T.
Note that the elements ofg( EX) are no longer inde-
pendent or identically distributed; their marginal
distributions (see [2.8.3]) are complicated func-
tions of the distribution ofX. The random variables
X( j |n) for j = 1, . . . ,n are called order statistics.
L-moments are defined as the expectations of
linear combinations of these order statistics.

The first three L-moments are defined as

λ(1) = E(X(1|1))
λ(2) = 1

2
E
(
X(2|2) − X(1|2)

)
λ(3) = 1

3
E
(
X(3|3) − 2X(2|3) + X(1|3)

)
. (2.20)

The generalkth L-moment is given by

λ(k) = 1

k

k−1∑
j=0

(−1) j ( k− 1
j

)
E
(
X(k− j |k)

)
.

(2.21)

Thus, the first L-moment is the expected
smallest value in a sample of one. Since there
is only one value in such a sample, the first L-
moment is equal to the conventional first moment.
The second L-moment is the expected absolute
difference between any two realizations (note that

X2|2 ≥ X1|2 by definition). The third and fourth
moments are shape parameters. Standardized L-
moments are

• theL-coefficient of variation

cL
X = λ(2)/λ(1), (2.22)

• theL-skewness

γ L
1 = λ(3)/λ(2), (2.23)

• theL-kurtosis

γ L
2 = λ(4)/λ(2). (2.24)

Examples of the application of L-moments
in climate research include Guttmann [151] and
Zwiers and Kharin [448].

2.7 Example of Continuous Random
Variables

2.7.1 The Uniform Distribution. The simplest
of all continuous distributions is the uniform
distribution. A random variable that takes values
in an interval (a,b) is said to be uniform if it
has a probability density function that is constant
inside the interval and zero outside. Such a density
function is given by

fX(x)=
{

1/(b− a) for all x ∈ (a,b)
0 elsewhere,

and the cumulative distribution function is given
by

FX(x) =
 0 for x ≤ a
(x − a)/(b− a) for x ∈ (a,b)
1 for x ≥ b.

We use the shorthandX ∼ U(a,b) to indicate that
X has a uniform distribution.

It is readily shown that the mean, variance,
skewness, and kurtosis of aU(a,b) random
variable are given by

E
(
U(a,b)

) = 1

2
(a+ b)

Var
(
U(a,b)

) = 1

12
(b− a)2

γ1
(
U(a,b)

) = 0

γ2
(
U(a,b)

) = −1.2 .

Thus, the uniform distribution is symmetric
(skewness = 0) and less peaked than a normal
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distribution (kurtosis< 0). The L-moments are
[183]:

λ(1) = 1

2
(a+ b)

λ(2) = 1

6
(b− a)

γ L
1 = 0

γ L
2 = 0.

2.7.2 Probability and Likelihood. The uni-
form distribution illustrates very clearly that a
probability densityis not a probability. When the
distribution is defined on an interval of length less
than 1, the density is uniformly greater than 1
throughout the interval, even though probabilities
are never greater than 1. Only integrated density
functions provide probabilities.

Nevertheless, the density function describes the
relative chances of observing specific events. In
particular, whenfX(x1) > fX(x2) it is more likely
that we will observe values ofX nearx1 than near
x2. Therefore we call the values of the density
function likelihoods. For the uniform distribution,
all values ofX in the range(a,b), including the
mean, are equally likely. This is not true in the
other distributions of continuous random variables.

2.7.3 The Normal Distribution. The distribu-
tion most frequently encountered in meteorology
and climatology is the normal distribution. Many
variables studied in climatology are averages or
integrated quantities of some type. The law of
large numbers, orCentral Limit Theorem[2.7.5],
states (under fairly broad regularity conditions)
that random variables of this type are nearly
normally distributed regardless of the distribution
of the variables that are averaged or integrated.

The form of the normal distribution is entirely
determined by the mean and the variance. Thus,
we write X ∼ N (µ, σ 2) to indicate thatX has a
normal distribution with parametersµ andσ 2.

In the climatological literature, the normal
distribution is also often referred to as the
Gaussian distribution, after C.F. Gauss who
introduced the distribution some 200 years ago.

The normal density function is given by

fN (x) =
1√

2π σ
e
− (x−µ)2

2σ2 for all x ∈ R.
(2.25)

The density functions of normal random
variables with different variances are illustrated in
Figure 2.2. Note that the distribution is symmetric

Figure 2.2: Probability density functions for
normal random variables with mean 0 and
variances 1 and 9 (standard deviationsσ = 1 and
3 respectively).

about the mean, values near the mean are more
likely than values elsewhere, and the spread
of the distribution depends upon the variance.
Larger variance is associated with greater spread.
Changes in the mean shift the density to the left or
right on the real line.

Also, note that the likelihood of obtaining a
large realization of a normal random variable
falls off quickly as the distance from the mean
increases. Observations more than 1.96σ from the
mean occur only 5% of the time, and observations
more than 2.33σfrom the mean occur only 1% of
the time.

The mean, variance, skewness, and kurtosis of a
normal random variableX are:

E(X) = µ

Var(X) = σ 2

γ1 = 0

γ2 = 0,

and the L-moments are:

λ(1) = µ

λ(2) = σ/π

γ L
1 = 0

γ L
2 = 0.1226.

The cumulative distribution function cannot be
given explicitly because the analytical form of∫ x
−∞ e−t2/2 dt does not exist. But the cumulative

distribution function is related in a simple manner
to theerror function, erf, which is available from
subroutine libraries (for example in theNumerical
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Figure 2.3:Cumulative distribution functions of
normal random variables forµ = 0 and σ = 1
and 3.

Recipes[322]). Specifically,

FN (x) =
1√

2π σ

∫ x

−∞
e
− (t−µ)2

2σ2 dt

= 1√
π

∫ x−µ√
2σ

−∞
e−t2

dt

= 0.5+ 0.5 erf

(
x − µ√

2σ

)
. (2.26)

The cumulative distribution functions forµ = 0
andσ = 1 and 3 are plotted in Figure 2.3.

2.7.4 The Standard Normal Distribution. Any
normal distribution can be transformed to the
standardnormal distribution, which has mean zero
and variance one. In fact, ifX ∼ N (µ, σ 2), then
Z = (X − µ)/σ ∼ N (0,1).10

The proof, which is straight forward, illustrates
the standard approach taken when deriving the
distribution of a transformed random variable.
First, suppose thatX ∼N (µ, σ 2). Then, for any
interval(a,b), we have

P
(
X ∈ (a,b)) = ∫ b

a

1√
2π σ

e
− (y−µ)

2

2σ2 dy

=
∫ (b−µ)/σ

(a−µ)/σ
1√
2π

e−z2/2 dz

by a simple transformation of variable under the
integral sign. However, the second expression
is P

(
Z ∈ ((a− µ)/σ, (b− µ)/σ)) where Z ∼

N (0,1).
The cumulative distribution function of the

standard normal distribution is denoted byFN

10Germans can find a plot of theN (0,1) probability density
function in their wallets. It appears on the regular German 10
DM bank note together with a picture of its inventor.

in this book. This function, which is tabulated in
Appendix D, can also be evaluated by numerical
integration or by using simple approximations. For
most purposes, the approximation

FN (x) ≈
(
1+ sgn(x)

√
1− e−2x2/π

)
/2

(2.27)

(where sgn(x) = 1 if x > 0 and sgn(x) = −1 if
x < 0) is adequate and eliminates the use of tables.

2.7.5 The Central Limit Theorem. The
Central Limit Theorem is of fundamental
importance for statistics because it establishes the
dominant role of the normal distribution.

If Xk, k = 1,2, . . ., is an infinite series of
independent and identically distributed random
variables withE(Xk) = µ and Var(Xk) = σ 2,
then the average1

n

∑n
k=1 Xi is asymptotically

normally distributed. That is,

lim
n→∞

1
n

∑n
k=1(Xk − µ)

1√
n
σ

∼ N (0,1).

Note that the Central Limit Theorem holds
regardless of the distribution of theXk.

According to the Central Limit Theorem,
the distribution of a sum of independent and
identically distributed random variables converges
towards a normal distribution as the number,
n, of random variables increases. Because the
theorem makes anasymptoticstatement nothing
is known about when the convergence has made
substantial progress. Sometimesn must be very
large before near-normal conditions are reached
[3.1.4]; other times the convergence is very fast
and the distribution of a sum over a few random
variables may be approximated by the normal
distribution. Figure 3.2 in [3.1.2] demonstrates
neatly the practical importance of the Central
Limit Theorem.

2.7.6 The Log-Normal Distribution. A random
variable X has a log-normal distribution with
medianθ if ln(X) ∼ N (ln(θ), σ ). The density
function is given by

fX(x) = 1√
2π σ

1

x
exp

(
−
(

ln(x) − ln(θ)
)2

2σ 2

)
.

Examples of this density function for various
values of σ are displayed in Figure 2.4. The
moments are given by

E
(
Xk
) = θke(kσ)

2/2.
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Figure 2.4:Log-normal density functions forσ =
1
2 and ln(θ) = 0, 1

4,
1
2 and1.

Therefore

E(X) = θe
1
2σ

2

Var(X) = θ2eσ
2(

eσ
2 − 1

)
γ1 =

√
eσ2 − 1

(
eσ

2 + 1
)
.

The distribution is skewed with a long tail to the
right. The expectation is larger than the median.

The log-normal distribution is often useful
when dealing with positive quantities such as
precipitation.

2.7.7 Some Important Sampling Distributions.
We now move on to the description of three
important sampling distributions derived from the
normal distribution: theχ2 distribution, the t
distribution, and theF distribution. We will see
these distributions often in settings where we need
to know about the uncertainty of an estimated
mean or variance, or compare estimates of means
or variances.

2.7.8 Theχ2 Distribution. Theχ2 distribution
is defined as that of the sum ofk independent
squaredN (0,1) random variables. It is therefore
defined only on the positive half of the real line.
The form of this distribution function depends
upon a single parameter,k, referred to as the
degrees of freedom(df).11

11The expressiondegrees of freedomis used frequently
in this book. Here it has two equivalent technical interpre-
tations. Specifically, ifX1, . . . ,Xn are independent, identi-
cally distributedN (µ, σ2) random variables, thenχ2 =
1
σ2

∑n
i=1(Xi = X)2 is distributedχχχ2(n− 1). This sum of

squared deviations can be re-expressed as a sum ofn − 1
squaredN (0,1) random variables. This gives the first interpre-
tation of degrees of freedom, which is frequently encountered
in climate research:χ2 contains information fromn − 1 in-
dependent, identically distributed random variables. The other
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Figure 2.5: Probability density functions for
χχχ2(d f ) random variables with 1, 2, 10, and 30
degrees of freedom.

The probability density function of aχχχ2(k)
random variableX is given by

fX(x)=


x(k−2)/2e−x/2

0(k/2)2k/2
if x > 0

0 otherwise

(2.28)

where 0 denotes the Gamma function. The
derivation of (2.28) can be found in most standard
mathematical statistics texts [335].

We write X ∼ χχχ2(k) to indicate that a random
variable X is χ2 distributed with k degrees of
freedom. Examples of theχχχ2(k) distribution with
k = 1, 2, 10, and 30 are shown in Figure 2.5. The
distributions are partially tabulated in Appendix E.

The χ2 distribution has a very important
additiveproperty: ifX1 andX2 are independentχ2

random variables withk1 and k2 df respectively,
then X1 + X2 is aχχχ2(k1+ k2) random variable.
It follows then that aχχχ2(k) random variable can
be thought of as a sum ofk independentχχχ2(1)
random variables.

Several characteristics of theχ2 distribution can
be noticed. First, all of the distributions are skewed
to the left, but distributions with small numbers of
degrees of freedom are more skewed than those
with large numbers of degrees of freedom. In
fact, theχχχ2(30)distribution is very nearly normal,
in accordance with the additive property and the
Central Limit Theorem [2.7.5]. Second, only the
distributions with one and two degrees of freedom
have theirmodes(i.e., their most likely values) at
the origin. Third, the spread of the distributions
depends strongly upon the number of degrees of
freedom.

interpretation is geometrical. The deviationsxi − x can be
arranged in ann-dimensional random vector(x1− x, . . . , xn−
x)T. This vector takes values in an(n − 1)-dimensional
subspace since the deviations are constrained to sum to zero.
See also [6.6.1] and Section 6.8.
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Figure 2.6:Probability density functions fort(k)
random variables with 1, 2, 10, and 30 degrees of
freedom.

In general, ifX ∼ χχχ2(k), then

E(X) = k

Var(X) = 2k.

2.7.9 Thet distribution. A random variableT
has thet distribution with k degrees of freedom,
that is,T ∼ t(k), if its probability density function
is given by

fT (t; k) = 0((k+ 1)/2)(1+ t2/k)−(k+1)/2

√
kπ 0(k/2)

.

T random variables are strongly related to normal
andχ2 random variables. In particular, ifA andB
are independent random variables such that

A ∼ N (0,1) and B ∼ χχχ2(k),

then

A√
B/k

∼ t(k).

The t distribution was introduced by W.L.
Gosset under the pseudonym ‘Student’—so is
often called theStudent’st distribution.

The t distribution is symmetric about zero.
WhenT has more than one degree of freedom, the
first central moment is zero (see e.g., Kalbfleisch
[208]),

E(T) = 0 for k ≥ 2.

The first moment does not exist whenk = 1.
Similarly, the second central moment exists for

k ≥ 3, where

Var(T) = k

k− 2
for k ≥ 3.

It may be shown [208] that thej th moments ofT
for j ≥ k donotexist.

The t(k) distribution is shown in Figure 2.6 for
four values of the degrees of freedom parameter
k. The density function fT (t;1) for T with
k = 1 degree of freedom does tend to zero
as t → ±∞, but too slowly for the integral∫

t fT (t;1)dt to exist. The convergence is faster
whenk = 2, so that the first moment exists but not
the second moment. The convergence increases
with the increasing numbers of degrees of
freedom. Ultimately, thet distribution converges
to the standard normal distribution. The difference
between the distributions is small even whenk =
10, and it becomes negligible fork ≥ 30.

The t(k) distribution is partially tabulated in
Appendix F.

2.7.10 The F Distribution. Another of the
sampling distributions closely related to the
normal distribution is theF distribution. A random
variableF is said to have anF distribution withk
and l degrees of freedom, that is,F ∼ F(k, l ), if
the density function ofF, fF ( f ; k, l ), is given by

fF ( f ; k, l ) = (k/ l )k/20((k+ l )/2)

0(k/2)0(l/2)

× f (k−2)/2
(
1+ k

l
f
)−(k+l )/2

.

This distribution arises in estimation and
testing problems when statistics are developed
that can be expressed as a constant times a
ratio of independentχ2 random variables (hence
the connection to the normal distribution—see
[2.7.8]).

In particular, ifX andY are independent random
variables such thatX ∼ χχχ2(k) and Y ∼ χχχ2(l ),
then

X/k

Y/ l
∼ F(k, l ). (2.29)

The first two central moments are

µ = E(F) = l

l − 2

for l > 2 and

Var(F) = 2l 2(k+ l − 2)

k(l − 2)2(l − 4)

for l > 4. As for thet distribution, not all moments
of the F distribution exist (see Kalbfleisch [208]).

The F(k, l ) density function is shown in
Figure 2.7 for three combinations of(k, l ). The
distribution is skewed for all values ofl . For
fixed k, the skewness decreases slightly with
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Figure 2.7: Probability density functions for
F(k, l ) random variables with(k, l ) = (5,5),
(5,20), and(5,100)degrees of freedom.

increasingl . In fact, the distribution converges to
a normalizedχ2 distribution asl →∞.

The F distribution is partially tabulated in
Appendix G.

2.7.11 The Exponential Distribution. The
distribution of wind energy, which is proportional
to the square of wind speed, provides an
interesting application of theχ2 distribution.
To a first order of approximation, the zonal
and meridional components of the wind are
normally distributed and independent (but see
[2.6.6] and also Cook [89] and Holzer [180]).
Thus the wind energy, when properly scaled,
is approximately distributedχχχ2(2). The latter
distribution, illustrated in Figure 2.5, is also
an example of anexponential distribution. The
likelihood of observing a particular wind energy
falls off exponentially with magnitude.

The density function of an exponential random
variableX is given by

fX(x) =
{
θ−1e−x/θ if x > 0
0 otherwise,

and the corresponding cumulative distribution
function is given by

FX(x) =
{

0 if x ≤ 0
1− e−x/θ if x > 0.

The mean and variance are

µ = θ andσ 2 = θ2.

The L-moments are

λ(1) = θ

λ(2) = θ/2

γ L
1 = 1/3

γ L
2 = 1/6.

The χ2 distribution with 2 df is an exponential
distribution withθ = 2.

2.7.12 Example: Waiting Times in a Poisson
Process. The exponential distribution also arises
when studying waiting times in a Poisson process.
We used a Poisson process in [2.4.4] to model the
occurrence of wind speed peaks over a threshold.
If the threshold is large, the distribution of waiting
times is useful for making inferences about the
frequency with which we might expect damaging
winds. Here, we will the derive the waiting time
distribution for a Poisson process with intensityλ.

Let T be the waiting time for the first event
in a Poisson process.12 T is obviously a random
variable because events in the Poisson process
occur randomly. LetFT (·) be the cumulative
distribution function of T. That is, FT (t) =
P(T < t) = 1−P(T ≥ t). The eventT ≥ t occurs
when no events take place in the time interval
(0, t). Equation (2.10) can be used to show that

P
(
no events in(0, t)

) = e−λt

and therefore that

FT (t) =
{

1− e−λt if t ≥ 0
0 otherwise.

Hence, the waiting time is exponentially dis-
tributed with θ = λ−1. Consequently, the mean
waiting time is inversely proportional to the inten-
sity of the Poisson process.

2.8 Random Vectors

2.8.1 Continuous Random Vectors. A contin-
uous random vectorEX is a vector of continuous
random variables.

The climate system has a myriad of examples
of continuous random vectors. One example is
the monthly mean 300 hPa height fieldEZ, either
as simulated by a climate model, or as analysed
from observations (Figure 1.1). In both cases,
the random vector contains several hundred or
thousand entries, each representing an observation
at a different location. Another example is the
surface temperature fieldET, which contains screen
temperature13 observations over the land and
ocean surfaces. If we want to study relationships

12We can assume that we start observing the process just
after the occurrence of an event, so the waiting time for the
first event is equivalent to the waiting time between events.

13‘Screen temperature’ is taken 2 m above the surface. The
word ‘screen’ alludes to the enclosures—Stevenson screens—
that are used to house land-based thermometers.
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between geopotential and surface temperature,
then we might form an even larger random vector
by combiningEZ andET.

2.8.2 Joint Probability Density Function.
The joint probability density function of anm-
dimensional random vectorEX is a non-negative,
continuous function defined onRm for which∫
Rm f EX(Ex)dEx = 1.
The cumulative distribution function also ex-

tends to the multivariate case in a natural way.
However, the concept is not as useful as in the uni-
variate case, and therefore will not be discussed.

2.8.3 Marginal Distributions. In our discussion
of discrete multivariate distributions [2.5.2], the
marginal distribution of one variable was found
by summing the joint probability function over
all combinations of values taken by the remaining
variables. Since integration is the continuous
variable analogue to summation, the marginal
probability density function for thekth variable in
EX, sayXk, is defined by

fXk(x)

=
∫
Rm−1

fEX(x1, . . . , xk−1, x, xk+1, . . . , xm)dExk′ ,

whereExk′ = (x1, . . . , xk−1, xk+1, . . . , xm).

2.8.4 Expectation of a Weighted Sum of
the Components of a Random Vector. The
expected value of thekth component ofEX is the
mean of the marginal distribution

E(Xk) =
∫ ∞
−∞

xk fXk(xk)dxk

=
∫
Rm

xk f EX(Ex)dEx,

whereEx = (x1, . . . , xm)
T.

The expected value of a linear combination of
two components ofEX is

E
(
aXk + bX j + c

)
=
∫
Rm
(axk + bxj + c) fEX(Ex)dEx

= aE(Xk)+ bE
(
X j
)+ c . (2.30)

The same result can be obtained directly from
(2.15) and (2.16) as follows:

E
(
a g1( EX)+ b g2( EX)+ c

)
= aE

(
g1( EX)

)+ bE
(
g2( EX)

)+ c,

where the functionsg1 and g2 select thekth and
j th components ofEX respectively.

Note that (2.30) holds regardless of the
correlation between the componentsXk andX j .

2.8.5 Independent Random Variables. The
definition of independent random variables also
extends smoothly from the discrete to the
continuous case.

Let EX be a random vector and letXi andX j be any
pair of elements in the vector. The components of
EX are said to bepairwise independentif for every
(i, j ) the joint density function ofXi and X j can
be written as the product of the marginal density
functions ofXi andX j .

The components ofEX are said to bejointly
independentif fEX(Ex) =

∏m
i=1 fXi (xi ).

2.8.6 Conditional Density Functions. Finally,
the concept of the conditional distribution is
extended to the continuous case. However, here
it is likelihoods, rather than probabilities, that
are scaled. We saw that in the discrete case
[2.5.4], the act ofconditioning on the outcome
of a variable reduced the number of outcomes
that were possible by some finite proportion.
Similarly, conditioning in the continuous case
restricts possible realizations of the random vector
to a hyper-space of the originalm-dimensional
vector space. The conditional probability density
function is defined as follows.

Let EX be a random vector of the form( EX1, EX2),
where EX1 and EX2 are also both random vectors.
Theconditional probability density functionof EX1,
given EX2 = Ex2, is

f EX1| EX2=Ex2
(Ex1) =

f EX1 EX2
(Ex1, Ex2)

f EX2
(Ex2)

(2.31)

for all Ex2 such thatf EX2
(Ex2) is nonzero.

2.8.7 The Multivariate Mean, the Covariance
Matrix, and the Correlation Matrix. The long-
term mean value of repeated realizations of an
m-dimensional random vectorEX is given by

Eµ EX = E( EX) =
∫
Rm
Ex fEX(Ex)dEx.

Note that the elements ofEµ EX are the means of
the corresponding marginal distributions. We will
usually refer only to Eµ rather than Eµ EX unless
clarity requires that specific reference be made to
the random vector.
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Jointly distributed random variables often have
a tendency to vary jointly.14 This ‘co-variability’
may be quantitatively described by the multivariate
analogue of variance, namely thecovariance
matrix:

Σ EX, EX = E
(
( EX − Eµ)( EX − Eµ)T) (2.32)

=
∫
Rm
(Ex − Eµ)(Ex − Eµ)T fEX(Ex)dEx.

As above, we will drop the reference to the random
vector in the notation for the covariance matrix
unless a need for clarity dictates otherwise.

The (i, j )th element of Σ contains the
covariance

σi j = E
(
(xi − µi )(xj − µ j )

)
=
∫∫
R2

(xi − µi )(xj − µ j ) fxi x j (xi , xj )dxi dxj

between thei th and j th elements ofEX. Note that
the covariance matrix is symmetric: the covariance
betweenXi and X j is the same as that between
X j and Xi . The diagonal elements of6 are the
variances of the individual random variables that
form the random vectorEX. That is,σ 2

i i = Var(Xi ).
The covariance matrix is positive-definite.
Covariances describe the tendency of jointly

distributed random variables to vary in concert. If
the deviations ofXi andX j from their respective
means tend to be of the same sign, the covariance
between Xi and X j will be positive, and if
the deviations tend to have opposite signs, the
covariance will be negative.

As in the discrete variable case, the covariance
is zero if Xi and X j are independent. This
occurs because the expectation of a product
of independent random variables factors into a
product of expectations. Note, however, that the
reverse need not be true (see the example in
[2.8.14]).

The effect of scaling on covariance is similar to
that which occurs in the scalar case (see (2.6)). If
A is ak×m matrix withk ≤ m, then

ΣA EX,A EX = AΣAT.

14Nearby values in all atmospheric and oceanic fields
are related to one another. In fact, without this property
initialization of numerical weather prediction models would
require a much denser observing network than exists today.
Objective analysis and data assimilation techniques, which
are used to initialize forecast models, make extensive use of
the covariancestructure of the atmosphere. Climate forecast
systems based on coupled ocean/atmosphere models also make
extensive use of such techniques to initialize the oceanic
components of these models.

A possible difficulty with covariance as a
measure of the joint variability of a pair of random
variables is that covariance is notscale invariant.
As with the transports that covariances often
represent in climate problems (see Section 8.2), a
change in units has a profound effect on the size
of the covariance. If all realizations ofXi andX j

are multiplied by constantsci andcj respectively,
the covariance will increase by a factor ofci cj .
However, the variances ofXi andX j also increase
by factors ofc2

i andc2
j .

Correlation (or cross-correlation) is a measure
of covariability that is scale invariant.

Thecorrelationbetween two random variablesXi

andX j is given by

ρi j =
Cov

(
Xi ,X j

)√
Var(Xi )Var

(
X j
) . (2.33)

The correlation coefficient always takes values
in the interval [−1,1]. The absolute value of the
coefficient is exactly 1 whenXi is linearly related
to X j , that is, when constantsa and b exist so
that Xi = a + bX j . Here the correlation is+1
if b is positive and−1 if b is negative. Values
of the correlation coefficient between−1 and+1
are an indication of the extent to which there
is a linear relationship between the two random
variables. In fact,ρ2

i j can be interpreted usefully
as the proportion of the variance of one of the
variables that can be represented linearly by the
other (see also [18.2.7] and Section 8.2).

As an example, consider the 1933–84 segment
of the Southern Oscillation Index (SOI) (Fig-
ure 1.4). Superimposed on the graph is Wright’s
SST index of the SO [426]. The SST index carries
roughly the same information about the Southern
Oscillation on time scales of a year or more. The
estimated correlation between the monthly mean
values of these indices is 0.67. We will examine
this example in more detail in Section 8.2.

A word of caution about the correlation
coefficient: it is not always a measure of the
extent to which there is a deterministic relationship
between two random variables. In fact, two
random variables may well be related through a
deterministic, nonlinear function and yet have a
correlation of zero.

2.8.8 Mapping the Correlation Matrix: Tele-
connection Patterns. The various combinations
of correlations between thei th and j th compo-
nents of a random vectorEX form thecorrelation
matrix. If EX represents afield, a (possibly gridded)
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Figure 2.8:Correlation matrices for the simulta-
neous variations of 500 hPa height along 50◦N
in the synoptic time scale (lower left) and the
low-frequency transpose (upper right) band. Only
negative correlations are shown. From Fraedrich
et al. [127].

set of observations in space, then thej th row
(or column) of the correlation matrix contains the
correlations between the field at thej th location
and all other locations. When this row is mapped
we obtain a spatial pattern of correlations that
climatologists call ateleconnection patternor
teleconnection map. A map is considered ‘inter-
esting’ if it exhibits large correlations at some
distance from the ‘base point’j , and if it suggests
physically plausible mechanisms (such as wave
propagation).

Such maps often unveil large-scale ‘teleconnec-
tions’ between a fixed base point and distant areas.
We deal with theseteleconnection mapsin some
detail in 17.4.

The entire correlation matrix may be plotted
when the field is one-dimensional. For example,
Fraedrich, Lutz, and Spekat [127] analysed daily
500 hPa geopotential height along 50◦N. The
annual cycle was removed from the data, and then
two different time filters (see 17.5) were applied to
separate the synoptic disturbances (2.5 to 6 days)
from low-frequency atmospheric variability (time
scales greater than 10 days).

The correlation matrices (onlynegativecorre-
lations are shown) of these two one-dimensional
random vectors are shown in Figure 2.8. The

upper right half shows spatial correlations of the
low-frequency variations while the lower left half
shows the longitudinal correlations at the synoptic
time scale. The diagrams are read as follows. If we
read across from 0◦ on the vertical scale and up
from 40◦E on the horizontal scale we see that the
(simultaneous) correlation between low-frequency
time scale variations at 0◦ and 40◦E is about−0.3.

The banded structure in the lower left reflects
the midlatitude stormtracks. The strongest (neg-
ative) correlations are found in a band that is
about 30◦ off the diagonal. When there is a deep
low at a given longitude, it is likely that there
will be a high 30◦ to the east or west, and vice
versa. The organization of the correlation minima
in bands indicates that the disturbances propagate
(the direction of this propagation cannot be read
from this diagram).

The correlation structure is no longer banded
at time scales of 10 or more days. On these time
scales, height anomalies east of the dateline are
strongly connected with anomalies of opposite
sign over North America (this reflects the PNA-
pattern, [3.1.7]); other links appear over Europe
and Asia, and over the East Atlantic and Europe.

2.8.9 Multivariate Normal Distribution. The
m-dimensional random vectorEX has amultivariate
normal distributionwith mean Eµ and covariance
matrixΣ if its joint probability density function is
given by

f EX(Ex) =
1

(2π |Σ|)1/2 e−(Ex−Eµ)TΣ−1
(Ex−Eµ). (2.34)

A bivariate normal density function is shown
in Figure 2.9. Like its univariate counterpart, the
distribution is symmetric across all planes which
pass through the mean. The spread, or dispersion,
of the distribution is determined by the covariance
matrixΣ.

An important property of the multivariate
normal distribution is that linear combinations of
normal random variables are again distributed as
normal random variables. In particular, letA be a
full rank m′ × m matrix of constants withm′ ≤
m. Then EY = A EX defines anm′-dimensional
random vector which is distributed multivariate
normal with mean vectorA Eµ and covariance
matrixAΣAT (Graybill [147]).

An immediate consequence of this result is
that all marginal distributions of the multivariate
normal distribution are also normal. That is,
individual elements of a normal random vectorEX
are normally distributed and subsets of elements of



42 2: Probability Theory

x1

x2

-2 -1 0 1 2

-2
-1

0
1

2

-2

-1

 0

1

2

X
-2

-1

 0

1

2

Y

 0
0.

05
0.

1
0.

15
0.

2
Z

Figure 2.9:A bivariate normal density function
with variancesσ 2

1 = σ 2
2 = 1 and covariances

σ1,2 = σ2,1 = 0.5.
Top: Contours of constant density;
Bottom: three-dimensional representation.

EX are multivariate normal. The reverse is not true
in general.

2.8.10 Independence. The covariance matrix
plays much the same role in the multivariate
case as does the variance in the scalar case: it
determines the spread of the distribution and the
shape of the region occupied by the main body of
the distribution.

Suppose thatΣ = σ 2I, whereI is the identity
matrix. Then the contours of constant density are
circular.

If Σ = diag(σ2
1 , · · · , σ 2

m), the contours of the
scaled random vectorΣ−1/2EX are circular where
Σ−1/2 = (σ−1

1 , · · · , σ−1
m ). The scaled random

vector is identical toEX except that each element
has been divided by its standard deviation. With
such a diagonal covariance matrix, the density
function of EX is given by

f EX(Ex) =
1

(2π)m/2
∏m

i=1 σi
e
−∑m

i=1
(xi−µi )

2

2σ2
i .

This can be rewritten as

f EX(Ex) =
m∏

i=1

1√
2π σi

e
− (xi−µi )

2

2σ2
i =

m∏
i=1

fXi (xi ).

Thus, if the non-diagonal elementsΣ are
zero, the joint density function factors as a
product of marginal density functions and hence
the components ofEX are jointly independent.
Furthermore, it can be shown that if some
non-diagonal element,6i j , of Σ is zero, the
corresponding random variablesXi and X j are
pairwise independent.

2.8.11 Computing Probabilities. If 2 is any
subset ofRm, then the probability that a random
outcome of the random vectorEX occurs in2 is
given as the integral of the densityf EX over the area
2:

P
( EX ∈ 2) = ∫

2

f EX(Ex)dEx.

Of particular interest are those regions2p chosen
so that2p is the smallest region for which

P
( EX ∈ 2p

) = p.

These areas turn out to be the interior regions
bounded by contours of constant probability
density. That is, for any givenp, there is a constant
κp such that2p is given by

2p = {Ex : f EX(Ex) ≥ κp}.

For multivariate normal distributions, the region
2p is the interior of an ellipsoid (such as those
shown in Figure 2.9).

The contours of constant density in a multivari-
ate normal distribution are given by the contours
of theMahalanobis distance

D2(Ex) = (Ex − Eµ)TΣ−1(Ex − Eµ).

Assuming EX ∼ N ( Eµ,Σ), it can be shown that
D2 ∼ χχχ2(m), so that

P
(
D2( EX) > κ p

) = ∫ κp

0
χ2

m(u)du= p.

Thus, the problem of calculating probabilities
reduces to the inversion of theχ2 distribution.
We will return to this concept when introducing
statistical tests in [6.2.2].
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Figure 2.10:Top: Example [2.8.12]: Ellipsoidal
regions that are expected to contain the vector
wind 95% of the time. Here the correlation
is ρU V = 0.5. The dots represent 1000
realizations of the vector wind simulated from the
corresponding normal distribution.
Bottom: As above exceptρU V = 0.8.

2.8.12 Example. Suppose that the vector wind
EV = (U,V)T at a particular location has a bivariate
normal distribution with mean and covariance
matrix

Eµ = (12,4)T and Σ =
(

16 4
4 4

)
.

The correlation betweenU andV is

ρ = σU V

σUσU
= 4√

16
√

4
= 1

2
.

The quadratic form for the contours of constant
density,

D2(Ev) = (Ev − Eµ)T6−1(Ev − Eµ),
is distributedχχχ2(2) and can be reduced to

D2(u, v) = u2− 2uv + 4v2− 16u− 8v + 108

12
.

Suppose now that we wish characterize the
‘normal’ winds at our location by identifying the
95% of possible wind vectors that are closest to
the mean. That is, we wish to exclude from our
characterization the 5% of winds that are most
extreme. The probability of obtaining a realization
of a χ2(2) random variable less than or equal to
5.99 is 0.95. Thus, the elliptical regionD2(u, v) ≤
5.99, bounded by the solid curve in the top
of Figure 2.10, is expected to contain 95% of
all realizations of the vector wind. The points
in the diagram represent 1000 realizations of a
normal random vector with the mean and variance
described above (see also [6.1.1]).

2.8.13 The Bivariate Normal Distribution. We
describe the two-dimensional normal distribution
in more detail because it comes up frequently.
SupposeU andV are jointly normal with means
µU and µV respectively. Suppose also that the
covariance matrix is

6 =
(

σ 2
u σuσvρ

σuσvρ σ 2
v

)
,

whereρ is the correlation betweenU andV. Using
(2.34) we see that the joint density function is
given by

fU V (u, v) = 1

2πσUσV

√
1− ρ2

(2.35)

× exp

{
− 1

2σUσV (1− ρ2)

[
(u− µu)

2

σ 2
u

−2ρ
(u− µu)(v − µv)

σuσv
+ (v − µv)

2

σ 2
v

]}
.

Ellipsoids of constant density, as shown in the top
of Figure 2.10, are characterized by the equation

c(1− ρ2) = z2
u − 2ρzuzv + z2

v,

where the constantc is determined by the chosen
density, andzu andzv are standardized deviations
from the mean, given by

zu = u− µu

σu

zv = v − µv
σv

.

This equation describes a circle ifU and V are
uncorrelated. Whenρ > 0 (ρ < 0) the ellipsoid
tips to the left (right), indicating that positive
values ofU tend to be associated with positive
(negative) values ofV. The principal axis of the
ellipse is given by

u = µu + sgn(ρ)(σu/σv)(v − µv)
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and the minor axis is given by

u = µu − sgn(ρ)(σu/σv)(v − µv).
The ratio of the length of the principal axis to that
of the minor axis in a given ellipsoid of constant
density is(1+ |ρ|

1− |ρ|
)1/2

.

Thus, the closer|ρ| is to 1, the more concentrated
the variation about the principal axis will be. The
bottom of Figure 2.10 illustrates this with another
hypothetical vector wind distribution, in which
ρU V is increased to 0.8.

2.8.14 Example. Let us consider two univariate
normal random variables,

U, V ∼ N (0,1),
related throughU = AV, where A is a discrete
random variable such that

P(A = 1) = P(A = −1) = 1/2.

Both random variables have a standard deviation
of 1, so by (2.33) the correlationρU V betweenU
andV is equal to the covariance

ρU V =
∫ ∞
−∞

uv fU V (u, v)dudv

=
∑

a

[∫ ∞
−∞

u2 fU (u)du

]
a× P(A = a)

=
[∑

a=±1

a
1

2

]∫
u2 fU (u)du

= 0.

This should not, however, lead us to the conclusion
that they are independent, sinceU2 = V2.
Examination of the probability density functions
adds more satisfying evidence that these variables
are dependent:

fU |V=v(u) = fU V (u, v)

fV (v)

=
{

0 if u 6= ±v
1/2 if u = ±v.

That is, fU |V=v 6= fU . The variables are
dependent, since the joint (bivariate) density
function fU V cannot be represented as the product
of the two marginal distributionsfU and fV (see
[2.8.5]).

Thus, we have found an example in which
two dependent normal random variables have zero
correlation. However, this does not contradict

[2.8.10]; although bothU andV are normal, they
are not jointly normal. Independence and zero
correlation are equivalent only when the random
variables involved are jointly normal.

2.8.15 Conditional Distributions. Let EX be
a normal random vector of the form( EX1, EX2)

where EX1 and EX2 are of dimensionm1 and m2
respectively. The mean ofEX is given by Eµ =
( Eµ1, Eµ2) where Eµ1 and Eµ2 are the means ofEX1
and EX2 respectively. The covariance matrix ofEX is
given by

6 =
(
611 612
621 622

)
where611 is the covariance matrix ofEX1, 622
is the covariance matrix ofEX2, 612, which is
called thecross-covariance matrix, is them1×m2
matrix of covariances of elements ofEX1 with EX2,
and 621 = 6T

12. The marginal distribution of
EX1 is N ( Eµ1, 611), and that ofEX2 has a similar
form. From (2.31), we obtain that the conditional
distribution of EX1, given EX2 = Ex2, is also
multivariate normal with conditional mean

Eµ1|2 = Eµ1+6126
−1
22 (Ex2− Eµ2) (2.36)

and conditional covariance matrix

611|2= 611−6126
−1
226

T
12. (2.37)

The proof may be found in [281] or [147].
It is interesting to note that the conditional mean

of EX1 depends uponEX2 when612 6= 0 (i.e., when
EX1 and EX2 are dependent upon each other).

2.8.16 More on Conditional Distributions—
Optional.15 The conditional mean (2.36) can be
thought of as alinear specificationof the value of
EX1 that is based onEX2. The specification is linear
because the conditional mean is a vector of linear
combinations of the elements ofEX2.

The specification skill can be determined by
computing the cross-covariances between the
vector of specification errors and random vectors
EX1 and EX2. Useful specifications will have errors
with near zero covariance withEX1 and exactly zero
covariance withEX2. The interpretation in the first
case is that the specification accounts for almost
all of the variation inEX1 because the errors have
little variation in common withEX1. In the second
case, the interpretation is that all the information in

15Interested readers may want to return to this subsection
after reading Chapter 8. This material is presented here because
it flows naturally from the previous subsection.
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EX2 aboutEX1 that is obtainable by linear methods is
contained in the specification.

The specification errors are given by

EX1|2 = EX1−
( Eµ1+6126

−1
22 (
EX2− Eµ2)

)
.

The covariance between the specification errors
and EX2 is zero as required:

Cov
( EX2, EX1|2

)
= E

(
EX2
( EX1− ( Eµ1+6126

−1
22 (
EX2− Eµ2))

)T)
= 0.

The covariance between the specification errors
and EX1 is

Cov
( EX1, EX1|2

)
= E

(
EX1
( EX1− ( Eµ1+Σ12Σ−1

22 (
EX2− Eµ2))

)T)
= Σ11|2.

To determine from this whether the specification
is skilful, one could compute the proportion of the
total variance ofEX1 that is explained byEX2. The
total variance of a random vector is simply the sum
of the variances of the individual random variables
that make up the vector. This is equal to the sum of
the diagonal elements (ortrace) of the covariance
matrix. Thus, a measure of the skill,s, is

s = 1− tr(611|2)/tr(611)

= tr(6126
−1
226

T
12)

tr(611)
.

Note thats = 0 if 612 = 0 and thats = 1
when612 = 61/2

11 6
1/2
22 . In fact,s cannot be greater

than 1.

2.9 Extreme Value Distributions

2.9.0 Introduction. Many practical problems
encountered in climatology and hydrology require
us to make inferences about theextremesof a
probability distribution. For example, the designs
of emergency measures in river valleys, floodways,
hydro-electric reservoirs, and bridges are all
constrained in one way or another by the largest
stream flow which is expected to occur over the
life of the plan, floodway, reservoir, bridge, etc.
The design of storm sewage systems, roads, and
other structures in a city is constrained by the
largest precipitation event anticipated during a
fixed design period (typically 50 or 100 years). The
design of electrical distribution systems, buildings
and other free-standing structures must account for

the extremes of wind pressure loading which are
likely to occur during the life of the structures.
The roofs of houses built in high latitudes must
be able to withstand extreme snow loads. Insurers
who underwrite the financial risk associated with
these natural risks must have good estimates of the
size and impact of extreme events in order to set
their premiums at a profitable level.

Extreme value analysisis the branch of
probability and statistics that is used to make
inferences about the size and frequency of
extreme events. The basic paradigm used varies
with application but generally has the following
components:

• data gathering;

• identification of a suitable family of probabil-
ity distributions, one of which is to be used
to represent the distribution of the observed
extremes;

• estimation of the parameters of the selected
model;

• estimation of return valuesfor periods of
fixed length. Return values are thresholds
which are exceeded, on average, once per
return period.

We will discuss each of these items briefly in the
following subsections.

2.9.1 Data Gathering. Typically, the objects of
study in extreme value analysis are collections of
annual maxima of parameters that are observed
daily, such as temperature, precipitation, wind
speed and stream flow. Thus, observations are
required on two time scales.

• Observations are taken on short time scales
over a fixed time interval to obtain a single
extreme value. For example, they might
consist of daily precipitation accumulations
for a year. The maximum of the 365
observations is retained as the extreme daily
precipitation accumulation for the year, while
the rest of the observations serve only to
determine the extreme value.

It is important to understand that the extreme
is a realization of a random variable, namely
theNth order statistic (see[2.6.9]) of a sample
of sizeN. The extreme value in a subsequent
sample of equal size is another realization of
the same random variable.



46 2: Probability Theory

• This process is repeated over several time
intervals in order to obtain the object of
extreme value analysis: a sample consisting
only of each interval’s extreme value. In the
previous example, if the daily precipitation
accumulation is observed over a period of 50
years, then the sample of extreme values to
be analysed is also of size 50, since each year
yields one maximum.

Extreme value analysis requires some sort of
assumption about the stationarity and ergodicity
of the climate system, since only one realization
of the past climate is available from climate
archives. The implicit working assumption in most
extreme value analyses is that the sample ofn
extremes are realizations ofn independent and
identically distributed random variables (we will
discuss suitable distributions for extreme values
shortly). Sometimes, though, it is clear that the
climate system violates this assumption on certain
time scales. For example, during an El Niño, the
statistical characteristics of precipitation change
on time scales of less than a season.

The following are examples of the context in
which extreme value analyses are conducted.

Structural engineers designing a transmission
tower may require knowledge about the extremes
of the five-minute mean wind speed. They would
extract daily, monthly or annual maxima of
five-minute mean wind speed for a particular
location from climatological archives for a nearby
observing station.

Civil engineers designing a floodway around a
city might require knowledge about the extremes
of 24-hour precipitation, and will therefore extract
daily, monthly and annual maxima of 24-hour
precipitation from climatological archives.

A frequently encountered difficulty with
archived precipitation data is that the archives
generally contain the accumulation for a
fixed 24-hour period (usually beginning at 00
UTC) as opposed to moving window 24-hour
accumulations. This is of concern because often
the critical quantity is not, for example, the
maximum amount of rain that falls in a 24-hour
time scale that consistently begins at 00 UTC
(i.e., a fixed 24-hour window), but the maximum
amount of rain that falls in a 24-hour period
starting at any time of the day (i.e., a moving
24-hour window). Therefore a nuance of the
analysis of extreme precipitation is that the
fixed window accumulations must be multiplied
by an empirically derived constant to ensure
that the extremes of a sample of fixed window

accumulations match those of a corresponding
sample of moving window accumulations.
Bruce [69] describes how the correction factor
is estimated (see also Watt [416], p.76, and
Hershfield and Wilson [176]).16

2.9.2 Model Identification. In extreme value
analysis, the behaviour of the sample of extremes
is almost always represented by aparametric
model, a probability distribution selected for its
ability to indicate the characteristics of the extreme
values reasonably well.17 Asymptotic arguments
can be used to select the extreme value distribution
if something is known about the distribution of the
random variable observed on short time scales; an
alternative approach is to use the extreme values
themselves to identify a suitable model. Both
methods will be briefly discussed here.

2.9.3 Model Identification: The Asymptotic
Approach. Asymptotic arguments are often an
important part of selecting an extreme value
distribution. Under fairly general conditions it can
be shown that, in samples of sizen, the distribution
of the extreme values converges, asn→∞, to one
of three models: theGumbel(or Pearson type I, or
EV-I) distribution, thePearson type II(or EV-II)
distribution, and thePearson type III(or EV-III)
distribution.18

The rate of convergence is largely determined by
the upper (sometimes lower) tail of the distribution
of the short time scale variable (e.g., daily
precipitation) that generates the extremes.19 If the

16The correction factor used to convert fixed window 24-hour
precipitation accumulations to moving window accumulations
in Canada is 1.13 [69]. This factor will vary with location
depending upon how and when precipitation is produced. The
factor also depends upon the accumulation period.

17See Section 4.2 for a discussion of the difference between
parametric and non-parametric statistics.

18In the classical treatment of extreme value analysis (see
Gumbel [149]) it is necessary to assume that the extremes
come from samples that can be represented by independent and
identically distributed random variables. Leadbetter et al. [246]
show that the independence assumption can be substantially
relaxed. The same asymptotic results obtained in the classical
setting are obtainable when the extremes are those of samples
taken from a weakly stationary, ergodic time series (see
[10.2.1]).

19When we speak of the ‘convergence’ of a sequence of
random variables, sayYi , i = 1,2, . . ., to another random
random variableZ we mean eitherconvergence in distribution
or convergence in mean square. We sayYi converges toZ in

distribution, and writeYi
d→ Z if P(|Yi − Z| > ε) → 0 as

i → ∞ for everyε > 0. We sayYi converges toZ in mean

square, and writeYi
ms→ Z if E

(
(Yi − Z)2

)
→ 0 asi → ∞.

Convergence in mean square usually implies convergence in
distribution.
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distribution of the extreme values converges, to say
the Gumbel distribution, then we say that the short
time scale variable lies inthe domain of attraction
of the Gumbel distribution.

The EV-I distribution will be described briefly
below. Descriptions of the EV-II and III distribu-
tions can be found in Gumbel [149] or Leadbetter
et al. [246].

Both the exponential distribution and the normal
distribution lie in the domain of attraction of
the EV-I distribution. However, the distribution
of the largest of a sample ofn independent
and identically distributed exponential random
variables is closer to the EV-I distribution than
the distribution of the largest of a sample of
n independent and identically distributed normal
random variables. Thus, Cook [89] argues that
it is better to do extreme value analyses on
wind pressure (which is proportional to wind
speed squared) than on wind speed because
the former has a distribution that is closer to
exponential, and therefore closer to EV-I. Zwiers
[439] makes use of this argument in his analysis
of extreme wind speeds at several Canadian
observing stations.

2.9.4 Model Identification: Using the Data.
Unfortunately, the asymptotic EV distributions do
not always fit the observed extremes well. This
can occur for a variety of reasons, not the least
of which is the cyclo-stationarity of the climate
data under the best of conditions. Consider, for
example, the daily precipitation accumulation.
While the annual maximum daily precipitation
accumulation is formally the maximum of 365
observations, the effect of the annual cycle may be
such that only a small number of observations have
any chance at all of attaining the status of annual
maximum.

At Vancouver (British Columbia, Canada), for
example (see Figure 1.7), the annual maximum
is usually generated during winter when there is
strong on-shore flow from the south-west. It is
apparent from Figure 1.7 that only about 60 days
of the year have the potential to generate the annual
maximum at Vancouver. On the other hand, the
annual maximum can occur with approximately
equal likelihood on any day of the year on Sable
Island (see Figure 1.7), located on the east coast of
Canada.

Because the asymptotic distribution is not
always obtained, other distributions such as
the Generalized Extreme Value (GEV), Weibull,
Pareto, and Wakeby distributions are also used in
extreme value analysis.

Another frequently used method of model
identification relies on estimates of the skewness
and kurtosis of the extreme value distribution that
are computed from the sample of extremes. The
(skewness, kurtosis) pair is plotted on a chart of
kurtosis as a function of skewness for various
families of distributions, often calledPearson
curves(see Elderton and Johnson [112]). A model
is identified by the proximity of the plotted point
to a distribution’s curve (there is a unique Pearson
curve for every distribution).

Model identification with Pearson curves is
difficult and often not completely successful
because the skewness and kurtosis estimates are
subject to a great deal of sampling variability.
Estimates often end up occupying a point in the
(skewness, kurtosis) plane that can not be visited
by adjusting parameters within known families of
distributions.

A better alternative is to use L-moments in com-
bination with L-moment versions of the Pearson
curves [183] for model identification. L-moments
are subject to less sampling variation, that is,
they are more robust than conventional moments
and discriminate better between competing models
(see Hosking [183]).

2.9.5 Model Fitting. Once a model (i.e., ex-
treme value distribution) has been selected the next
step in the analysis is to ‘fit’ the chosen extreme
value distribution to the sample of extremes.Fit-
ting means estimating the unknown parameters of
the chosen extreme value distribution.

Several methods may be used for parameter
estimation. These methods may produce quite
different results with the small sample of extremes
that is usually available, even though their results
become asymptotically identical as the number of
observed extremes becomes large. The theoretical
suitability of one method over another in repeated
sampling has often been the subject of literal
debate. However, these discussions are of little use
when economic decisions strongly depend on the
accuracy of the results, as is often true.20

The methods most often used for fitting (see
Section 5.2) are

• the method of moments,

• the method of maximum likelihood,

20For example, estimates of the largest precipitation event
expected to occur during a 25-year period will strongly
influence the diameter, slope and other parameters of a city’s
storm sewer system. An estimate of the 25-year event that is
too large will result in the building of a sewer system that has
larger capacity, and therefore higher cost, than necessary.
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Figure 2.11: An example of the probability
density functionfY(y) and cumulative distribution
function FY(y) of an extreme value distribution
(for annual maxima). This particular distribution
is the Gumbel with parametersu = ln 6 and
λ = 1 (see [2.9.8]). The location of 2, 5, 10, 100,
and 1000 year return values are indicated by the
vertical bars. Note that the two-year return value
corresponds toFY(y) = 1/2, the 10-year value
corresponds toFY(y) = 9/10, etc. Also note that
the distribution has a much wider right hand tail
than that of distributions we have become familiar
with.

• the method of probability weighted moments,
and

• the method of L-moments.

Optimality considerations in repeated sampling
generally lead to the use of the method of
maximum likelihood (see [5.3.8]). On the other
hand, the method of L-moments is morerobust.
This method is less affected by occasional
observational errors or data transcription errors
(such as a misplaced decimal point) than other
fitting methods. The method of probability
weighted moments (see Hosking, Wallis, and
Wood [184]) is closely related to the method of
L-moments. The ordinary method of moments is
also frequently used because of simplicity and
convention considerations.21

2.9.6 Return Values. The last step in an extreme
value analysis is usually to compute ‘return values’
for preset periods (e.g., 10, 50, 100 years). These
values are thresholds that, according to the fitted

21The ordinary method of moments is similar to the method
of L-moments [2.6.7, 2.6.9]. Instead of matching population
L-moments to estimated L-moments, ordinary population
moments (mean, variance, skewness, and kurtosis) are matched
with corresponding estimates.

model, will be exceeded on average once every
return period.

Return values are simply the upper quantiles of
the fitted extreme value distribution. For example,
suppose that the random variableY represents
an annual extreme maximum and thatY has
probability density functionfY(y). The 10-year
return value forY is the valueY(10) such that

P
(
Y > Y(10)

) = ∫ ∞
y(10)

fY(y)dy= 1/10.

In general, theT-year return value for the annual
maximum, sayY(T), is the solution of∫ ∞

Y(T)
fY(y)dy= 1/T.

That is, theT-year return values are simply points
on the abscissa such that the area under the right
hand tail of the density function is 1/T . The
concept is illustrated in Figure 2.11.

Return values for extreme minima are similarly
computed using the tail areas under the left hand
tail of a suitable extreme value distribution.

2.9.7 Example: Daily Maximum Temperature.
As an example, consider the change in the
extremes of the daily maximum temperature at 2 m
height that might occur as a result of a doubling
of the atmospheric CO2 concentration (see Zwiers
and Kharin [448]). Zwiers and Kharin showed that
the annual extremes of temperature can be well
represented by the EV-I distributions in both the
1×CO2 and 2×CO2 climates of the ‘CCC GCMII’
General Circulation Model.22 Estimates of the 10-
year return values derived from the ‘control run’
1×CO2 are displayed in Figure 2.12 (top). These
values verify reasonably well in general terms.
However, values at specific locations should not
be compared directly with return values estimated
from station data because climate simulations can
not be considered reliable at length scales shorter
than a few grid lengths.

Figure 2.12 (bottom) illustrates the change
induced in the 10-year return value by a doubling
of CO2. The globally averaged increase is about
3.1◦C. The corresponding value for the increase
in the 10-year return value of the daily minimum
temperature is 5.0◦C, indicating that the shape
of the temperature distribution might change
substantially with increasing CO2 concentrations.

22The Canadian Climate Centre GCMII (McFarlane et al.
[270]). The CCC 2×CO2 experiment is described by Boer,
McFarlane, and Lazare [52].
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In addition to the overall warming caused
by the change in the radiative balance of the
model climate under CO2 doubling, there are
also a variety of interesting physical effects that
contribute to the spatial structure of the changes
in the return values. For example, daily maximum
temperatures are no longer constrained by the
effect of melting ice at the location of the 1×CO2
sea ice margin. Also, the soil dries and the
albedo of the land surface increases over the
Northern Hemisphere land masses, leading to a
substantial increase in the extremes of modelled
daily maximum temperature.

2.9.8 Gumbel Distribution. To conclude this
section on extreme values, we provide a sim-
ple derivation of the Gumbel or EV-I distribu-
tion [149]. Let X1, . . . ,Xn representn indepen-
dent, identically distributed, exponential random
variables observed on the short time scale. These
random variables might, for example, represent a
sample ofn wind pressure measurements which, as
we have noted previously, have a distribution that
is close to exponential.23 The distribution function
for any one of these random variables is

FX(x; λ) = P(X < x) = 1− e−x/λ.

Let Y be the maximum of{X1, . . . ,Xn}. Then
Y < y if and only if Xi < y for eachi = 1, . . . ,n.
Using independence, we obtain that

P(Y < y) =
n∏

i=1

P(Xi < y)

= FX(y; λ)n
= (1− e−y/λ)n

≈ exp{−ne−y/λ}.
The quality of the approximation improves with
increasingn, that is, if each extreme is obtained
from a larger sample of observations collected on
the short time scale. After a bit more manipulation,
we see that, asn increases indefinitely, the
distribution function ofY takes the form

FY(y;u, λ) = P(Y < y) = exp{−e−(y−u)/λ}.
This is the distribution function of theGumbel

or EV-I distribution. Convergence to this distribu-
tion is achieved similarly for all distributions in

23We use exponential random variables in our derivation for
mathematical convenience. We could use any collection ofn
independent and identically distributed random variables that
have a distribution belonging to the ‘domain of attraction’ of
the EV-I distribution and obtain identical results by using more
sophisticated analytical techniques.

the domain of attraction of the EV-I distribution.
The essential element that controls convergence is
simply the point at which the right hand tail of the
distribution generating the individual observations
begins to behave as the right hand tail of the ex-
ponential distribution. Distributions for which the
maximum of a sample of sizen converges to the
Gumbel slowly exhibit exponential behaviour only
for observations that are many standard deviations
from the centre of the distribution.

The EV-I distribution is a two-parameter
distribution with a location parameteru and a
scale parameterλ. The density function of an EV-I
random variableY is given by

fY(y;u, λ) = exp{−[(y− u)/λ+ e−(y−u)/λ]}.
The mean and the variance ofY are given by

µY = u+ γ λ
Var(Y) = λ2π2/6,

whereγ is Euler’s constant. The L-moments are:

λ(1) = u+ γ λ
λ(2) = λ ln 2

γ L
1 = 0.1699

γ L
2 = 0.1504.

As noted above, return values are obtained
by inverting the distribution. For example, if the
Gumbel distribution were fitted to annual maxima,
then the T-year return value, sayY(T), is the
solution of

1/T = P
(
Y > Y(T)

)
= 1− FY(y(T);u, λ)
= 1− exp{−e−(Y(T)−u)/λ}. (2.38)

Solving (2.38) yields

y(T) = u− λ ln
(− ln(1− 1/T)

)
.

2.9.9 Other Approaches. Another approach
to extreme value analysis that we have not
discussed is the so-calledpeaks-over-threshold
approach. In contrast to analysing annual (or
other period) maxima, the peaks-over-threshold
approach sets a high threshold and then analyses
all exceedances above that threshold. The appeal
of this approach is that it may be possible to
extract additional information about the extremes
of a climate parameter by setting the threshold in
such a way that more than one threshold crossing
is observed per year. To apply the approach,
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Figure 2.12:Estimated 10-year return values of daily maximum temperature at 2 m height estimated
from the output of model experiments with a General Circulation Model coupled to a mixed-layer ocean
model and a sea-ice model. Units:◦C. From [270].
Top: Return values estimated from a 20-year control run.
Bottom: Change of the return values a derived from above and the output of a 10-year model experiment
with doubled atmospheric CO2 concentrations.

one must be careful about the placement of the
threshold and also account for the effects of
cyclo-stationarity. Ross [333] illustrates the peaks-
over-threshold approach with an application to the
analysis of wind speed data. Zwiers and Ross [450]
describe an approach that provides more reliable
estimates of return values and has been applied

to precipitation data at a variety of Canadian
locations. This method uses monthly extremes and
standard extreme value distributions, while also
accounting for cyclo-stationarity. References cited
by [439], [333], [450], and [448] will provide
the interested reader with entry points into the
immense collection of extreme value literature.



3 Distributions of Climate Variables

3.0.1 The Components of the Climate System.
The climate system is composed of all processes
that directly or indirectly control the atmospheric
environment of humans and ecosystems. The main
components of the system are the hydro- and
thermodynamic states of the atmosphere and the
ocean. Sea ice affects the exchange of heat,
momentum and fresh water between oceans and
atmosphere. On longer time scales, the shelf ice
and the land ice become relevant since these
components are able to store and release large
quantities of fresh water. The atmosphere, ocean,
and land surface are interconnected by means
of the hydrological cycle on a number of time
scales. Precipitation falls on the land where it
affects land surface properties such as albedo
and heat capacity. Some of this precipitation
evaporates into the atmosphere, and some flows
to the ocean as runoff. Fresh water flux into
the ocean by means of precipitation and runoff,
and out of the ocean through evaporation, affects
ocean variability, which in turn feeds back on
atmospheric variability.

Changes in the chemical composition of the
atmosphere also impact the climate system
because the concentration of carbon dioxide,
ozone, or other radiatively active gases affects
the radiative balance of the atmosphere. These
concentrations are controlled by the state of
the atmosphere and the ocean, as well as the
biospheric and anthropogenic sinks and sources
of these chemicals. Clearly the components of
the climate system cannot be defined exhaustively,
since it is not a closed system in a strict sense.

In the following sections we describe several
atmospheric, oceanic, cryospheric (ice and snow)
and hydrologic variables.1 The choice of the
variables is subjective and biased towards those
that are most easily observed. Shea et al. [348]
list addresses of atmospheric and oceanographic
data centres in the US, and give an overview of
easily accessible atmospheric and oceanographic
data sets at the National Center for Atmospheric
Research (NCAR).

1Biospheric variables are beyond the scope of this text.

3.0.2 The Law of Large Numbers and Climate
Time Scales. The instantaneous values or daily
accumulations of many climate variables have
skewed distributions. On the other hand, averages
or accumulations taken over long periods tend to
be ‘near normal’ because of the Central Limit
Theorem [2.7.5].

3.0.3 Length and Time Scales. Two terms
often used in climate research aretime scaleand
length scale. Although these terms are vaguely
defined, thinking about the temporal and spatial
resolution needed to describe a phenomenon
accurately will help us to select suitable variables
for study and to find suitable approximations of the
governing equations (see Pedlosky’s book [310] on
geophysical fluid dynamics).

A length scale is a characteristic length that
is representative of the spatial variations relevant
to the process under investigation. For instance,
if this process is an extratropical storm, then its
length scale may be taken as its diameter or as
the distance between a pressure minimum and
the closest pressure maximum. The length scale
of a wind sea2 may be the distance between a
wave crest and a wave valley, or between two
consecutive crests.

The term ‘time scale’ is defined similarly.
Time scales are representative of the duration
of the phenomenon of interest and the greater
environment. For example, extratropical storms
dissipate within a few days of cyclogenesis, so
suitable time scales range from about an hour
to perhaps two days. Convective storms (thunder
storms), on the other hand, occur on much shorter
spatial (up to tens of kilometres) and temporal
scales (minutes to several hours). In both cases, the
time scale gives an indication of the ‘memory’ of
the process. A statistical measure of ‘memory’ is
the decorrelation timedescribed in Section 17.1.
The decorrelation time for the mean sea-level
pressure (SLP) is typically three to five days in

2The part of the ocean wave field that is in dynamical
contact with the wind.
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the extratropics, while that for convection is on the
order of half a day.

We choose variables that describe the variation
on the length and time scales of interest that
are relevant to a problem. For example, to study
extratropical cyclones, the divergence should be
chosen rather than the velocity potential.3 When
we observe the process, we sample it at spatial and
temporal increments that resolve the length and
time scales.

An interesting feature of the climate system
is that the length and times scales of climate
variability are often related. Processes with long
length scales have long time scales, and short
time scales are associated with short length scales.
This fact is illustrated for the atmosphere and the
ocean in Figure 3.1. However, this rule is far from
precise. Atmospheric tides are an example of a
process with large spatial scales and short temporal
scales.

3.1 Atmospheric Variables

3.1.1 Significant Variables. A myriad of
variables can be used to monitor the physical
state of the atmosphere; so understandably the
following list of variables commonly used in
climate research is not at all exhaustive.

Local climate is often monitored withstation
data: temperature (daily minimum and maximum,
daily mean), precipitation (5 min, 10 min, hourly
and daily amounts, monthly amount, number
of wet days per month), pressure, humidity,
cloudiness, sunshine, and wind (various time
averaging intervals).

The large-scale climate is generally described
with gridded data, such as: sea-level pressure,
geopotential height, temperature, the vector wind,
stream function and velocity potential, vorticity
and divergence, relative humidity, and outgoing
long-wave radiation. Some of these are based on
observations (e.g., temperature) while others are
derived quantities (e.g., vorticity).

The main problem with time series from station
data is that the data are often not homogeneous;
they exhibit trends or sudden jumps in the mean or
variance that are caused by changes in the physical
environment of the observing site, in the observing
equipment, of the observing procedures and time,
and of the responsible personnel (see Figure 1.9).

3The divergence is approximately the second derivative of
the velocity potential and is sensitive to small scale features,
as in extratropical storms. The velocity potential, on the other
hand, displays planetary scale divergent, as in the large tropical
overturning of the Hadley circulation.

More examples, for instance of the complicating
effect of observation time on the daily temperature,
the snow cover derived from satellite data, and the
effect of lifting a precipitation gauge from the 1 m
level to the 2 m level, aredescribed in a review
paper by Karl, Quayle, and Groisman [213].

Jones [201] discusses, in some detail, the
problems in long time series of precipitation,
temperature and other atmospheric data, and lists
many relevant papers.

Gridded data have the advantage that they
represent the full spatial distribution. However,
in data sparse areas, the gridded value may be
more representative of the forecast models and
interpolation schemes that are used to do the
objective analysis4 than they are of the state of
the climate system. Unfortunately, when used for
diagnostic purposes, it is impossible to distinguish
between observed and interpolated, or guessed,
information. Difficulties also arise because most
gridded data are a byproduct of numerical weather
forecasting and therefore affected by changes in
the forecast and analysis systems.5 Such changes
are made almost continually in an effort to
improve forecast skill by incorporating the latest
research and data sources and exploiting the latest
computing hardware (see, e.g., Trenberth and
Olsen [370], or Lambert [240] [241]).

Finally, we note in passing that climate model
output is not generally affected by the kinds of
problems described above, although it too can
have its own idiosyncrasies (see, e.g., Zwiers
[444]). However, simulations that are constrained
by observations in some way can be affected.6

4Objective analysisis used to initialize numerical weather
forecasting models. Most weather forecasting centres re-
initialize their forecasting models every six hours. Typically,
the objective analysis system adjusts the latest six-hour forecast
by comparing it with station, upper air, satellite, airline, and
ship reports gathered during a six-hour window centred on
the forecast time. The adjusted forecast becomes the initial
condition for the next six-hour numerical forecast. Objective
analysis systems are the source of most gridded data used in
climate research. See Thiébaux and Pedder [362] or Daley [98]
for comprehensive descriptions of objective analysis.

5Re-analysisprojects (Kalnay et al. [210]) have done much
to ameliorate this problem. These projects re-analysed archived
observational data using a fixed analysis system. Note that
re-analysis data are still affected by changes in, for example, the
kind of observing systems used (e.g., many different satellite
based sensors have been ‘flown’ for various lengths of time) or
the distribution and number of surface stations.

6Examples include ‘AMIP’ (Atmospheric Model Intercom-
parison Project; see Gates [137]) and ‘C20C’ (Climate of the
Twentieth Century; see Folland and Rowell [123]) simulations.
Sea-surface temperature and sea-ice extent are prescribed from
observations in both cases, and thus the models are forced with
data that are affected by observing system changes.
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Figure 3.1:Length and time scales in the atmosphere and ocean. After [390].
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Figure 3.2: Empirical distribution functions of
the amount of precipitation, summed over a
day, a week, a month, or a year, at West
Glacier, Montana, USA. The amounts have been
normalized by the respective means, and are
plotted on a probability scale so that a normal
distribution appears as a straight line. For further
explanations see [3.1.3]. From Lettenmaier [252].

3.1.2 Precipitation. Precipitation, in the form
of rain or snow, is an extremely important
climate variable: for the atmosphere, precipitation
indicates the release of latent heat somewhere
in the air column; for the ocean, precipitation
represents a source of fresh water; on land,
precipitation is the source of the hydrological
cycle; for ecology, precipitation represents an
important external controlling factor.

There are two different dynamical processes that
yield precipitation. One is convection, which is
the means by which the atmosphere deals with
vertically unstable conditions. Thus, convection
depends mostly on the local thermodynamic
conditions. Convective rain is often connected
with short durations and high rain rates. The
other precipitation producing process is large-
scale uplift of the air, which is associated with
the large-scale circulation of the troposphere.
Large-scale rain takes place over longer periods
but is generally less intense than convective
rain. Sansom and Thomson [338] and Bell
and Suhasini [40] have proposed interesting
approaches for the representation of rain-rate
distributions, or the duration of rain-events, as
a sum of two distributions: one representing
the large-scale rain and the other the convective
rain.

There are a number of relevant parameters
that characterize the precipitation statistics at a
location.

• The statistics of theamount of precipitation
depend on the accumulation time, as demon-
strated in Figure 3.2. The curves, which
are empirical distribution functions of accu-
mulated precipitation, are plotted so that a
normal distribution appears as a straight line.
For shorter accumulation times, such as days
and weeks, the curves are markedly concave
with medians (at probability 0.5) that are less
than the mean (normalized precipitation = 1),
indicating that these accumulations are not
normally distributed. For the annual accumu-
lation, the probability plot is a perfect straight
line with coinciding mean and median. Thus,
for long accumulation times the distribution
is normal. Figure 3.2 is a practical demonstra-
tion of the Central Limit Theorem.

• Thenumber of rainy days per monthis often
independent of the amount of precipitation.

• The time between any two rainfall events, or
between two rainy days, is theinterarrival
time.

Lettenmaier [252] deals with the distribution
aspects of precipitation and offers many references
to relevant publications.

3.1.3 Probability Plots—a Diversion. Dia-
grams such as Figure 3.2 are calledprobability
plots, a type of display we discuss in more detail
here.

The diagram is a plot of the empirical
distribution function, rotated so the possible
outcomes y lie on the vertical axis, and the
estimated cumulative probabilitiesp(y) = F̂Y(y)
lie on the horizontal axis.7 Alternatively, if
we considerp the independent variable on the

horizontal axis, theny = F̂
−1
Y (p) is scaled by

the vertical axis. For reasons outlined below, the
variablep is re-scaled byx = F−1

X (p) with some
chosen distribution functionFX . The horizontal
axis is then plotted with a linear scale inx. The
p-labels (which are given on a nonlinear scale)
are retained. Thus, Figure 3.2 shows the function

x → F̂
−1
Y [FX(x)]. If F̂Y = FX , the function is

the identity and the graph is the straight line(x, x).
The probability plot is therefore a handy visual
tool that can be used to check whether the observed
random variableY has the postulated distribution
FX .

7The ‘hat’ notation, as in̂FY(y), is used throughout this
book to identify functions and parameters that are estimated.



3.1: Atmospheric Variables 55

Maximum Temperature

Figure 3.3: Frequency distribution of daily
maximum temperature in◦F at Napoleon (North
Dakota, USA) derived from daily observations
from 1900 to 1986. From Nese [291].

When the observed and postulated random
variables both belong to a ‘location-scale’ family
of distributions, such as the normal family, a
straight line is also obtained whenY andX have
different means and variances. In particular, if a
random variableX has zero mean and unit variance
such thatFY(y) = FX(

y−µ
σ
), then

y = F−1
Y (p) = µ+ σ F−1

X (p) = µ+ σ x.

The line has the interceptµ at x = 0 and a slope
of σ .

When we thinkY has a normal distribution, the
reference distributionFX is the standard normal
distribution. S-shaped probability plots indicate
that the data come from a distribution with wider
or narrower tails than the normal distribution.
Probability plots with curvature all of one sign,
as in Figure 3.2, indicate skewness. Other location
scale families include the log-normal, exponential,
Gumbel, and Weibull distributions.

3.1.4 Temperature. Generally, temperature is
approximately normally distributed, particularly
if averaged over a significant amount of time in
the troposphere. However, daily values of near-
surface temperature can have more complicated
distributions.

The frequency distribution of daily maximum
temperature at Napoleon (North Dakota) for 1900
to 1986 (Figure 3.3, Nese [291]) provides another
interesting example.

• The distribution is skewed with a wide
left hand tail. Cold temperature extremes

apparently occur over a broad range (caus-
ing the long negative tail) whereas warm
extremes are more tightly clustered.

• The distribution has two marked maxima at
35◦F and at 75◦F. This bimodality might
be due to the interference of the annual
cycle: summer and winter conditions are
more stationary than the ‘transient’ spring
and autumn seasons, so the two peaks may
represent the summer and winter modes.
The summer peak is taller than the winter
peak because summer weather is less variable
than winter weather. Also, the peak near the
freezing point of 33◦F might reflect energy
absorption by melting snow.

• There is a marked preference for temperatures
ending with the digits 0 and 5. Nese
[291] also found that the digits 2 and 8
were overrepresented. This is an example of
psychology interfering with science.

Averages of daily mean air temperature8 are also
sometimes markedly non-normal, as is the case
in Hamburg (Germany) in January and February.
Weather in Hamburg is usually controlled by
a westerly wind regime, which advects clouds
and maritime air from the Atlantic Ocean. In
this weather regime temperatures hover near the
median. However, the westerly flow is blocked
intermittently when a high pressure ‘blocking’
regime prevails. In this case, the temperature
is primarily controlled by the local radiative
balance. The absence of clouds and the frequent
presence of snow cover cause the temperatures to
drop significantly due to radiative cooling. Thus,
daily temperatures are sometimes very low, but
they usually vary moderately about the mean of
−0.4◦C. Strong positive temperature deviations
from the mean occur rarely. This behaviour is
reflected in the empirical distribution function
of the winter mean anomalies (Figure 3.4): the
minimum two-month mean temperature in the
1901–80 record is−8.2◦C, the maximum is
+3.2◦C, while the median is+0.2◦C.

The distribution function in Figure 3.4 is not
well approximated by a normal distribution. It is
markedly skewed (with an estimated skewness of
−1.3 and an estimated third L-moment of−2.86).
The degree of convergence towards the normal

8‘Daily means’ are supposed to represent diurnal averages.
In practice, they are obtained by averaging a small number of
regularly spaced observations taken over the 24 hours of each
day, or, more often, as the mean of the daily maximum and
minimum temperatures.
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Figure 3.4:Empirical distribution function of the
January/February mean temperatures in Hamburg
(Germany). The step function is the empirical
distribution function derived from the years 1901–
80, and the smooth line is the distribution function
of the normal distribution fitted to the data.

distribution that is predicted by the Central Limit
Theorem [2.7.5], withXk = daily temperature
at day k in one JF seasonand n = 60), is
still weak: more than 60 (non-independent) daily
observations are required for the convergence to
become significant.

3.1.5 Wind. Wind statistics are required for
various climate-related purposes. For, example,
wind statistics are needed to force a variety of
ocean models that simulate regional or global
circulation, the surface seas state, storm surges, or
the flux of energy or momentum through the air–
sea interface. Hasse [164] lists the ‘surface wind’
products that are frequently used in ocean-related
studies: They include data sets derived from:

• the surface wind simulated by numerical
weather forecasting models at their lowest
computational levels;

• local wind measurement at 10 m height,
(representative only for the immediate neigh-
bourhood of the measurement);

• surface air-pressure maps (used to compute
‘geostrophic winds’);

• satellite microwave backscatter signals,
which are transformed into wind estimates
with empirically derived algorithms;

• a large fleet ofvoluntary observing ships
(VOS), that provide either anemometer
readings or visual wind speed estimates on
the Beaufortscale.9 These VOS are mostly

9The Beaufort scale is a visual measure of wind speed that
is based on the state. It is reported as a force on a scale of 1–12.

Figure 3.5: Frequency distribution of wind
estimates on the Beaufort scale, derived from
voluntary ship reports in the English Channel
after 1949. The solid dots are derived from
24 442reports from shipswithout an anemometer,
whereas the open dots stem from 981 observations
made when an instrument was available. All
24 442+ 981reports are visual assessments of the
sea state. Peterson and Hasse [313].

regular merchant vessels, and the weather is
reported by the crew. The COADS10 data set
is composed of all archived VOS reports.

All these products have their problems. An ex-
ample is shown in Figure 3.5, which discriminates
between VOS reports based on visual estimates of
observers who do or do not have an anemometer at
their disposal (Peterson and Hasse [313]). Signifi-
cantly higher Beaufort winds are reported when an
instrument is available (Peterson and Hasse [313]
rejected the null hypothesis of equal distributions
at less than the 1% significance level).

It is generally believed that the Beaufort-
estimates are more homogeneous than observa-
tions from shipborne instruments since the latter
are affected by factors such as the height of the
instrument, the motion of the ship and deformation
of the flow as it passes over the ship’s superstruc-
ture.

Peterson and Hasse [313] offer the following
tentative explanation for the discrepancy in
Figure 3.5:

The reason for different Beaufort estimates of ships
with and without an anemometer is not really
known. A possible explanation is that anemometer

10The Comprehensive Ocean Atmosphere Data Set
(COADS) is an important collection of marine observations
such as sea-surface temperature, air temperature, cloudiness
and wind speed (see Woodruff et al. [425]). All available
ship reports have been pooled together in 2◦ × 2◦ longitude
× latitude bins. The data have not been corrected and they
suffer from temporal inhomogeneities due to changes in
instrumentation and observational practices.
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Figure 3.6:Time series of anomalies of annual
mean wind speeds in the North Pacific, as
derived from two independent data sets. Upper
panel: data from Ocean Weather Station P; lower
panel: data from voluntary observing ships in the
neighbourhood of the weather ship. From Isemer,
unpublished.

outputs . . . often use simple dial displays showing
instantaneous winds. On viewing the instruments one
tends to be more impressed by the gusts instead of
the lulls. The knowledge of gust speed may then
inadvertently influence the estimation of the Beaufort
force.

Another interesting case was investigated by
Isemer (unpublished), who derived annual mean
wind speeds for the area surroundingOcean
Weather Station Pin the North Pacific using two
different data sources. One data set contained the
observations made at the weather ship, where the
measurement was done in a fairly homogeneous
manner (same position, same height, trained
observers). The time series derived from this
data, displayed in the upper panel of Figure 3.6,
is stationary. The second data set consists of
instrumental and visual reports from merchant
vessels located in the neighbourhood of the Ocean
Weather Station (OWS). The corresponding time
series (lower panel of Figure 3.6) exhibits an
upward trend of more than 1 m/s in 20 years. This
trend is spurious, and is probably due to various
factors such as the increasing height of ships.

A convenient way to present the distribution
of the vector wind is by means ofwind roses.
The wind roses in Figure 3.7 describe the surface
wind in the northern North Sea in January. At
low wind speeds the vector wind distribution is
almost isotropic (i.e., independent of direction).

Figure 3.7:Wind roses for the northern North Sea
between 58–60◦N latitude and 0–2◦E longitude
in January stratified by the wind speed. From
Korevaar [230]. Reprinted by permission of
Kluwer Academic Publishers.

However, for stronger winds (|Ev| > 6.6 m/s or
|Ev| > 4 on the Beaufort scale) the vector wind
distribution is decidedly non-isotropic. In this case
the most frequent (ormodal) wind direction veers
from southwest to southeast with increasing wind
velocity.

3.1.6 Extratropical 500 hPa Height: Band-
pass Filtered Variance. In a classical study,
Blackmon [47] analysed the day-to-day winter
(and summer) variability of 10 years of gridded
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a)

d)

b)

c)

Figure 3.8:Standard deviation of time-filtered 500 hPa geopotential height (in m) during winter.
Courtesy V. Kharin.
a) Variability of the original time seriesXt (contour interval: 10 m),
b) ‘Slow’ variability ofXs

t (longer than about 10 days; contour interval: 10 m),
c) ‘Baroclinic’ variability of Xb

t (between 2.5 and 6 days; contour interval: 5 m),

d) ‘Fast’ variability of X f
t (between one and two days; contour interval: 2 m).

daily Northern Hemisphere 500 hPa geopotential
heights. After subtracting the annual cycle at
each grid point (by calculating the first four
harmonics of the annual cycle) he calculated first
the overall standard deviation, and then separated
the data into three components, each of which
represents a different time scale. We repeated
these calculations using 1979–87 analysis from
the European Centre for Medium Range Weather
Forecasts (ECMWF).

The overall standard deviation shown in
Figure 3.8a is largest at about 50◦N and smallest

in the subtropics. Two centres of action, with
standard deviations of about 175 m, are located
over the Northeast Pacific, the Northeast Atlantic
and North-Central Asia.

In order to determine how much of the
variability depicted in Figure 3.8a comes from
low-frequency11 variability (10 days and longer)

11The term ‘low-frequency’ is not defined in absolute
terms. Instead the meaning depends on the context. In the
present variations on time scales of 10 and more days are
‘slow’ compared to the baroclinic and fast components. Slow
variations are defined differently in [3.1.7].
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Figure 3.9: The teleconnection patterns that represent a substantial part of the month-to-month
variability of 500 hPa height during winter (Wallace and Gutzler [409]). Teleconnection patterns display
correlations between a base point (given by a 1.0 in the maps) and all other points in the Northern
Hemisphere extratropics. A maximum is marked by an ‘H’ and a minimum by an ‘L’. The patterns are
named (a)Eastern Atlantic Pattern, (b) Pacific/North American Pattern, (c) Eurasian Pattern, (d) West
Pacific Pattern, and (e)West Atlantic Pattern. See also [13.5.5].
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or from baroclinic activity on a shorter time
scale, the data aretime filtered. That is,
the original time series, sayXt , is split up
into Xt = X f

t + Xb
t + Xs

t , with X f ,Xb,
and Xs representingfast, baroclinic, and slow
components. The ‘fast’ component varies on time
scales between one and two days, the ‘baroclinic’
time scale covers the medium range between 2.5
and 6 days, and the ‘slow’ component contains
all variability longer than about 10 days. The
technical details of the separation are explained in
Section 17.5.

The three components vary independently, as
a result of the time scale separation. Thus the
variance of the complete time series is distributed
to the variances of the three components: Var(Xt )

≈ Var
(
X f

t
)+ Var

(
Xb

t

)+ Var
(
Xs

t

)
.

The spatial distributions of the standard de-
viations of the three components are shown in
Figure 3.8. The largest contribution to the overall
standard deviation in Figure 3.8a originates from
the low-frequency variations (Figure 3.8b). In the
North Pacific, the standard deviation due to low
frequency variations is 145 m compared with
175 m in the unfiltered data, that is, about 70% of
the total variance stems from the slow variations.
An important contributor to this pool of variability
is the process of ‘blocking,’ which often occurs
on the west coast of continents and over eastern
oceans. Another characterization of the low fre-
quency variability 500 hPa height field is given in
[3.1.7].

The baroclinic component (Figure 3.8c) is
considerably less energetic than the slow processes
with maximum standard deviations of about 70 m
(representing about another 25% of the total
variance). These variations may be traced back to
the baroclinic waves, that is, extratropical storms.
The regions of large variability in Figure 3.8c
over the western and central part of the Pacific
and Atlantic Ocean are called ‘stormtracks.’ (The
same stormtracks are displayed by the shaded
regions in Figure 3.10; there is a large circumpolar
stormtrack in the Southern Hemisphere.)

The ‘fast’ component has small standard
deviations, with maxima of the order of only
20 m (which is about 1–2% of the total variance;
Figure 3.8d). Blackmon [47] argued that most of
this variance is due to ‘a spurious high-frequency
component in the final analyses map.’ However,
the similarity of the structure of Figure 3.8d to
Figure 3.8c, and the comparable results from the
EOF analyses, suggest that at least some of the
‘fast’ variability is natural.

Figure 3.10:Distribution of the skewnessγ1 of
the low-pass filtered daily Northern Hemisphere
500 hPa geopotential height. All variability on
time scales longer than six days was retained.
Positive contours are dashed. The stormtracks
are indicated by the stippling (compare with Fig-
ure 3.8b). From Nakamura and Wallace [287].

3.1.7 Extratropical 500 hPa Height: Charac-
teristic Low-Frequency Patterns. Wallace and
Gutzler [409] examined the month-to-month vari-
ability of the 500 hPa height field during winter
in the Northern Hemisphere extratropics. They
calculatedteleconnection patterns, that is, spatial
distributions of the correlations at a base point with
the height field everywhere else. The concept of
teleconnection patterns and their identification is
explained in some detail in Section 17.4. Wallace
and Gutzler’s study is further discussed in [17.4.2]
and [17.4.3].

Five reproducible12 patterns were identified
(Figure 3.9). They were named after the regions
they affect: Eastern Atlantic (EA) Pattern, Pa-
cific/North American (PNA) Pattern,Eurasian
(EU) Pattern,West Pacific (WP) PatternandWest
Atlantic (WA) Pattern. Each pattern represents
a fixed structure whose amplitude and sign are
controlled by a time varying coefficient. The coef-
ficient time series can be determined by projecting
the monthly mean height fields onto the patterns.
The coefficients for the five patterns are more or
less statistically independent; that is, variations in
one modeare not related to those in another. In
space, the patterns have a wave-like appearance

12Reproduciblemeans that essentially the same result is
obtained when another independent data set is analysed with
the same technique.
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Figure 3.11:Frequency distributions of the low-
pass filtered daily 500 hPa geopotential height at
a location poleward (solid line) and equatorward
(dotted) of the Pacific stormtrack. From Nakamura
and Wallace [287].

with sequences of two or more nodes of op-
posite signs indicating that a substantial part of
the month-to-month variability in the extratropical
midtropospheric height field could originate from
standing oscillatory modes. The nodes in the pat-
terns are sometimes namedcentres of action.

Barnston and Livezey [27] extended Wallace
and Gutzler’s study by analysing data from all
seasons. By usingrotated EOFs(Section 13.5)
they were able to reproduce Wallace and Gutzler’s
results and increase the number of characteristic
midtropospheric patterns.

3.1.8 Extratropical 500 hPa Height: Skewness.
Nakamura and Wallace [287] analysed 30 years
of daily anomalies (i.e., deviations from the mean
annual cycle) of Northern Hemisphere 500 hPa
height and derived frequency distributions for all
grid points and for two different time scales. The
‘high-frequency’ variations, ranging from two to
six days, are generally normally distributed; the
‘low-frequency’ variations, beyond six days, are
not normal (Figure 3.10). North of the Pacific
and North Atlantic ‘stormtracks,’ the skewnessγ1
(see [2.6.7]) is negative, but equatorward of the
stormtracks the skewness is positive (Figure 3.11).
Nakamura and Wallace suggest that the dynamical
reason for this pattern is

. . . that quantities such as temperature and potential
vorticity exhibit large meridional contrasts across the
. . . stormtracks, as if there were two different ‘air
masses’ facing each other. It is conceivable that a
piece of one air mass could become cut off to form
an isolated vortex within the other air mass.. . . Once

Figure 3.12:Estimated probability density dis-
tribution fZ of the ‘wave-amplitude indica-
tor’ Z. Note the bimodality. From Hansen and
Sutera [162].

cut off from the family of streamlines that trace out
the westerly circumpolar flow, the anomaly is freed
from the effect of advection and can remain stationary
for a long time relative to the time scale of baroclinic
waves. Such cut off flow configurations are identified
with blocking anticyclones in high latitudes and cut
off lows in lower latitudes.. . . [We] suspect that
the primary contributions to the observed skewness
come from these anomalous circulations that occur
relatively infrequently.

3.1.9 Bimodality of the Planetary-Scale Cir-
culation. Even though the nonlinearity of the
dynamics of the planetary-scale13 atmospheric
circulation was well known, atmospheric scientists
only began to discuss the possibility of two or more
stable states in the late 1970s. If such multiple
stable states exist and are well separated, it should
be possible to find bi- or multimodal distributions
in the observed data.

Hansen and Sutera [162] identified a bimodal
distribution in a variable characterizing the energy
of the planetary-scale waves in the Northern
Hemisphere winter (DJF). Daily amplitudes for
the zonal wavenumbersk = 2 to 4 for 500 hPa
height were averaged for midlatitudes. These were
used to derive a ‘wave-amplitude indicator’Z
by subtracting the annual cycle and filtering out
all variability on time scales shorter than five
days. The probability density functionfZ was

13Often, the spatial scales of the atmospheric circulation
are discussed in terms ofwavenumberk in a zonal Fourier
decomposition along latitudes. Long waves, for instancek =
1, . . . ,4, representplanetaryscales while shorter waves,k ≥ 5,
are calledbaroclinicscales.
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estimated by applying the so-calledmaximum
penalty techniqueto 16 winters of daily data. The
resulting fZ has two maxima separated by a minor
minimum near zero (Figure 3.12).14

Hansen and Sutera conclude from the bimodal-
ity of their distribution that the nonlinear dynamics
of the atmospheric general circulation yield two
stable regimes. The ‘zonal regime,’ withZ < 0,
exhibits small amplitudes of the planetary waves.
The ‘wavy regime,’ withZ > 0, is characterized
by enhanced planetary-scale zonal disturbances.
The mean 500 hPa height field for the 62% of
all days when the system is in the ‘zonal’ regime
is indeed almost zonal (Figure 3.13a). The mean
field for the ‘wavy’ regime, derived from the
remaining 38% of all days, exhibits marked zonal
asymmetries (Figure 3.13b).15

3.1.10 Biological Proxy Data. The effects
of variation in, for example, temperature or
precipitation, are often reflected in biological
variables such as the width of tree rings (a detailed
discussion of this type of data is offered by
Briffa [65]), or the arrival of migrating birds.
Records of plant flowering dates or similar events
constitutephenological data.

An unusual example is the flowering date of
wild snow drops in the rural town of Leck
(northern Germany), which are plotted against the

14There is an interesting story associated with Hansen and
Sutera’s bimodality:

Hansen and Sutera [162] conducted a ‘Monte Carlo’
experiment to evaluate the likelihood of fitting a bimodal
sample distributionto the data when thetrue distribution
is unimodal with the maximum penalty technique. It was
erroneously concluded that the probability of such a misfit is
small. The error in this conclusion was not at all obvious.
Nitsche, Wallace, and Kooperberg [295] did a careful step-
by-step re-analysis of the original data to find that the Monte
Carlo experiments were inconsistent with the analysis of the
observational data.

This is a very educational example, demonstrating a
frequent pitfall of statistical analysis. Basic inconsistencies are
sometimes hidden in a seemingly unimportant detail when
sophisticated techniques, like the maximum penalty technique,
are used. The error was found only because J. Wallace
suspected that the finding could not be true.

Nitsche et al. reproduced the sample distribution shown
in Figure 3.12, but showed that about 150 years of daily
data would be required to exclude, with sufficient certainty,
the possibility that the underlying distribution is unimodal.
Essentially, then, reasonableestimateswere made but thetest
of the null hypothesis ‘The sample distribution originates from
a unimodal distribution’was performed incorrectly. However,
even without having rejected the null hypothesis, the possible
implications incorporated in Figure 3.12 indicate that there
couldbe two different stable atmospheric states.

15Compare with the monthly mean fields shown in
Figure 1.1. January 1971 belongs to the zonal regime whereas
January 1981 belongs to the wavy regime.

Figure 3.13: Averages of 500 hPa Northern
Hemisphere height fields in winter (DJF). Contour
interval: 100 m. From [162].
a) The ‘zonal’ regime:Z < 0.
b) The ‘wavy’ regime:Z > 0.

coefficient of the first EOF (Empirical Orthogonal
Function; see Chapter 13) of Northwest European
winter mean temperature in Figure 3.14. The
flowering date varies between Julian day 16
(16 January) and 80 (21 March). The two
variables, flowering date and the first EOF
coefficient, are well correlated as indicated by the
regression line in Figure 3.14. Thus, the flowering
date of wild snow drops at Leck is a proxy of
regional scale winter mean temperature.

There are other proxy data, some of them
derived from historical archives, such as the yield
of wine harvests or reports from courts and
monasteries (e.g., Zhang and Crowley [436]), and
others from tree rings (Briffa [65]), geological
data such as sediments (e.g., van Andel [378]),
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Figure 3.14: The flowering date of wild snow
drops at Leck (northern Germany) versus the
coefficient of the first EOF of regional winter mean
near-surface temperature. Courtesy K. Maak.

or chemical composition data such as the oxygen
isotope ratio of air trapped in the deep ice of
Antarctica and Greenland.

Researchers ‘translate’ these proxy data into
standard climate variables by means of (often
nonlinear)regressionrelationships (see Chapter 8)
that have been developed by relating contempora-
neous proxy and instrumental observations as in
Figure 3.14. The proxy data are often available for
much longer periods than the instrumental record,
so the proxy data together with the regression
relationship may be used to estimate past climate
states. Note that any such reconstruction is subject
to uncertainty, as demonstrated by the scatter in
Figure 3.14.

There are also many other limitations. The
proxy data are typically regional in character.
For example, trees that produce useful tree ring
data tend to live in extreme climate zones where
their growth is easily affected by relatively small
changes in environmental conditions. Also, while
proxy data typically yield one value per year, that
value is often not representative of annual mean.

3.1.11 Missing Data. Observed data sets are
often incomplete. Records of both station and
analysed data contain numerous, and sometimes
extended, gaps.16 Information is often lost through
data handling and management problems (e.g.,
paper records are lost, electronic transfers fail,
tapes are inadvertently overwritten, computers or
data assimilation systems crash). Most losses of
this type are not related to the processes the data
describe, but they are sometimes related to the
calendar; ‘procedural’ losses seem to occur more

16Trenberth and Olson’s [371] description of missing
National Meteorological Center analyses is typical.
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Figure 3.15:Monthly mean of sea-level observa-
tions at Nezugaseki (Japan,38.3◦N, 139.4◦E).
The abrupt change in July 1964 is caused by an
earthquake. From Cubasch et al. [97].

frequently on weekends and holidays. Other types
of losses, however, are the result of ‘censoring’ by
the process that is being observed. For example,
radiosonde data is often missing in the upper
troposphere because strong winds have carried the
balloon out of the tracking equipment’s range,
anemometer readings may be missing because
strong winds have toppled the tower or generated
large ocean waves that interfere with buoys, and so
on.

3.2 Some Other Climate Variables

3.2.1 Ocean Temperatures. In oceanography,
the sea-surface temperature(SST), and thesub-
surface temperatureare often regarded differently,
even though they are closely related dynamically.
One reason for this is that the sea-surface
is the interface through which the atmosphere
and ocean exchange energy and fresh water,
whereas sub-surface temperature is internal to the
ocean. The other reason is that SST is easily
observed from ships as well as from satellites
so that useful estimates of the mean SST, as
well as its variability in the last 100 years, can
be derived. Sub-surface temperature observation,
using hydrographic sections or buoys, is difficult
and expensive. Therefore, the data on sub-surface
temperature, as well as all other sub-surface
variables, is sparse, and little is known about the
variability below the surface of the ocean.
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Figure 3.16:Time series taken from daily 1994–95 observations of the ocean temperature at9◦N,140◦W
in the Equatorial Pacific at the surface, at 80 m depth, and at 140 m depth.

Historical SST data are compiled primarily
from VOS reports (see [3.1.5] and footnote 10).
The observations are scattered irregularly in both
space and time. Coverage is heavy along the main
shipping routes and non-existent in areas without
shipping. There are systematic inhomogeneities
in the observations that are caused by changes
in instrumentation and operating procedures.
For example, before 1945, SST was generally
measured by hauling a bucket of water onto
deck and taking its temperature with a mercury
thermometer. These buckets were often designed
differently for different countries, and some were
insulated while others were not. After 1945,
SSTs were generally obtained by measuring the
temperature of the sea water used to cool the
ship’s engine (‘engine intake temperature’). The
temperature readings were also affected by the
size and speed of the ships. The homogenization
of SST is an art that requires not only detailed
analysis of historical observational log books but
also laboratory experiments in the wind tunnel and
careful statistical correction schemes (see Folland
and Parker [122] and Jones [201]).

3.2.2 Sea Level. The elevation of the ocean’s
surface relative to some benchmark is fairly
easy to measure. However, the quantity that is
measured reflects not only the real sea level but
also the movement of the land-based observational
platform relative to the geoid. Such movement
can be caused by large-scale lifting and sinking

of the Earth’s crust associated with the process
of equilibration after the retreat of the Ice
Age glaciers. Earthquakes are another factor
(Figure 3.15), causing abrupt changes of 10 cm or
more in the reported sea level. More problems with
the ‘sea level’ data are discussed by Emery and
Aubrey [113], and Wyrtki [428]. An interesting
case study, on the reports of sea level in the
port of Shanghai (China), is given by Chen [81],
who discusses the impact of various nuisance
influences, such as changes in the discharge of
rivers, ground subsidence due to ground water
extraction, and the ‘Cultural Revolution.’

3.2.3 Ocean Temperature: An Example. A
buoy placed at 9◦N, 140◦W was used to monitor
the near-surface atmospheric conditions as well
as temperature at various levels in the ocean for
several years. Time series of the temperature at
the surface, at 80 m, and at 140 m are shown in
Figure 3.16. The sea-surface temperature exhibits
a marked annual cycle. Small variations with
similar negative and positive anomalies occur
on time scales shorter than one year. These
intra-seasonal variations are almost normally
distributed. The same holds for the temperature
at 140 m and below (not shown), where small
anomalies prevail.

At 80 m, however, the temperature variability
exhibits features similar to the variability of
rainfall. Minimum temperatures of 14◦C prevail
most of the time but are overridden by large
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b)a) c)

Figure 3.17:a) Annual cycle of the frequency of exceedance for wave height in the German Bight. The
curve labelled ‘≥ 4 m’ displays the frequency of observing wave heights of 4 m or more.
b) As above, except for the northern North Sea.
c) Annual cycle of the frequency of exceedance for wave periods of six seconds or longer in the German
Bight and northern North Sea.
From Korevaar [230]. With permission of Kluwer Academic Press.

positive anomalies of up to 8◦C during shorter
periods. Negative anomalies, on the other hand, are
of similar magnitude to those at 140 m. Thus, the
80 m temperature, in contrast to both the surface
temperature and the 140 m temperature, is strongly
skewed.

The explanation lies in the vertical stratification
of the ocean. The upper layer of the ocean is well
mixed, because of continuous flow of mechanical
energy from the atmosphere into the ocean, so
that temperature and salinity are almost constant.
Sometimes, when more mixing energy is available,
the mixed layer is deepened, so water that is
usually below the mixed layer has the same
temperature as the surface. This deepening of the
mixed layer is reflected by Figure 3.16.

3.2.4 Significant Wave Height and Mean
Frequency. The waves on the sea surface
modify the mechanical properties (roughness) of
this surface and thus partly control the exchange of
momentum and energy between the ocean and the
atmosphere. Thewave heightand thewave period
[230] are two variables that describe the state of the
wave field, and are part of standard ship reports.
Figure 3.17 displays the annual cycles of wave

height and wave period for two areas in the North
Sea. This is done by plotting the mean frequency
of the waves that are lower than 1.5 m, or higher
than 4 m or 6 m. Thefrequency of waves that have
a period of more than 6 s isalso given.

Wave heights in winter in the northern North
Sea are less than 1.5 m 40% of the time and
greater than 4 m 20% of the time. The waves are
much lower in the German Bight where 80% of
the waves are lower than 1.5 m. Most waves in
the German Bight throughout the year and in the
northern North Sea in summer have high frequency
(≤ (6 s)−1), and 60% of the waves in the northern
North Sea in winter have periods longer than 6 s.

3.2.5 Sea-ice Variables. Relevant variables
describing the sea ice include the ice thickness,
the thickness of the snow layer on top of the
sea ice, the ice concentration (the percentage of
area covered by sea ice), and the age of the ice.
Further variables are thefreeboard(the height by
which the sea ice rises beyond the ocean surface17)
and theice draft (the downward extension of the
ice-plus-snow column). Most of these variables are

17Freeboard might be negative if there is substantial snow
cover.
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Figure 3.18: Relative frequency distributions
for three variables of Antarctic sea ice, after
Wadhams, Lange, and Ackley [407].
Top: ice thickness.
Middle: depth of the snow layer on the ice.
Bottom: freeboard.

difficult to monitor and many must be observed
in situ,18 although ice concentration may be
inferred from satellites.19 Here we present some
empirically derived distribution functions of sea
ice variables.

An example of an Antarctic distribution of ice
thickness, the depth of the snow layer, and the
freeboard is shown in Figure 3.18. The thickness

18As opposed to beingremotelysensed from an aircraft or a
satellite.

19The satellite measures radiation reflected from or
generated by the surface. Ice concentration is indirectly derived
from these readings. The result is referred to aspseudo
ice concentration. Uncertainty about the transformation of
radiation into ice concentration sometimes results in ‘pseudo
ice concentration’ that is below 0% or above 100%.

Figure 3.19:Frequency distribution of pseudo sea-
ice concentration for the Arctic Ocean in January
and July. After Parkinson et al. [304].

of the Antarctic sea ice, which varies primarily
between zero and 1 m, is close to being normally
distributed except for a very wide positive tail
that contains extreme values of several metres
(the latter indicating multi-year ice). The snow
thickness is usually well below 50 cm and is
strongly skewed. The freeboard is usually less than
20 cm and is also skewed with a long positive tail
that contains maximum values up to several tenths
of a metre.

The sea-ice concentration in the Arctic Ocean
(Figure 3.19) is bimodal, with a pronounced max-
imum at very low ice concentrations representing
the almost ice-free ocean and an other maximum
at about 95%.20 The distribution is almost uniform
between these two extremes.

Figure 3.20 shows the distribution of the ice
draft for two Arctic areas, namely the Beaufort Sea
and the Fram Strait. Both distributions are strongly
skewed, with a mode at 2–4 metres and a wide tail
stretching out to 20 and more metres. The latter
generally represents heavily ridged multi-year ice.

3.2.6 Hydrological Variables.21 In this subsec-
tion we review the distributions of a number of
hydrological variables. Hydrology is the science
of the fresh water cycle, from precipitation to the
eventual runoff into the oceans. Precipitation, a key
hydrological variable, was discussed in [3.1.2]. We
consider thestreamflowof rivers in [3.2.7]. Other
relevant variables are evaporation, the storage of

20The sea is rarely fully ice covered. Insteadleadsopen at
least a small percentage of the surface.

21The material in [3.2.6] and [3.2.7] was supplied by Dennis
Lettenmaier from the Department of Civil Engineering of the
University of Washington in Seattle.
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Figure 3.20: Frequency distribution of sea-ice
draft, in metres, for the Beaufort Sea (horizontal
cross-hatching) and the Fram Strait (vertical
cross-hatching). After Rothrock [334].

water in the unsaturated soil (soil moisture) and the
storage and transport in the saturated sub-surface
(ground water) and the snow water equivalent.

Traditional measures of climate variability
related to these hydrological variables include
lake levels, the numbers of ice-free days on a
river, and the dates of the break-up of ice on
rivers in the spring. These measures are not as
useful as indicators of climate variability and
change as in the past because they are influenced
by managerial activities, such as damming, re-
routing and dredging of rivers, or the use of
ice-breakers to keep water ways open. Long,
homogeneous, historical records do exist and were
used extensively in an earlier period of climate
research (for instance Brückner [70]).

An example of such a record is displayed
in Figure 3.21 which shows the number of
ice-free days on the River Newa during the
eighteenth and nineteenth centuries. The record
contains substantial low-frequency fluctuations
with amplitudes of 5 to 10 days and also exhibits
changes in excess of 30 days between some five-
year periods.

The level of lakes with many tributaries may be
considered the result of a random process if the
regulation of the various rivers is not coordinated.
The Great Lakes in North America exhibit low-
frequency variations that do not mirror planned
human control but rather reflect the low-frequency
climatic variations. Also, for long time scales, say
tens of years, the effect of human control becomes
weaker than the effect of the uncontrolled climate
variations.

Figure 3.21:The number of ice-free days on the
River Newa in Saint Petersburg in the eighteenth
and nineteenth centuries. The numbers are given
as five-year mean deviations from the 1816–80
mean. The numbers on the abscissa are the
numbers of the first of five years: 1761 represents
the interval 1761–65, 71 represents 1771–80 and
so on. Data taken from Brückner [70].

3.2.7 Streamflow. The streamflow of rivers that
are regulated and manipulated by man can hardly
be regarded as a random variable. Its variation
on time scales of less than a year or so is not
fully stochastic but rather is often influenced by
deliberate human activities.

In the following we consider the 1948–87
records of streamflow of two unregulated rivers
in the USA. There are essentially three processes
that control the streamflow of unregulated rivers:
precipitation in the drainage area, storage of water
in the soil, and storage of water in the form of
frozen water or snow. If the soil is wet, its storage
capacity is low and most of the precipitated water
will be routed to the river. In dry soil most of the
water will be stored and streamflow will not be
affected unless the amount of rain is substantial
(see, e.g., [424]). Water that precipitates as snow or
freezes at the ground is released to the streamflow
at a later time, and at a more steady rate, when
melting occurs (the details depend on temperature,
net solar radiation and other variables).

The Chehalis Riverin Washington drains 113
square miles of low-lying coastal hills and flows to
the Pacific. Moisture is steadily supplied by frontal
storms primarily between November and May.
Cumulative probability functionsfor monthly
mean streamflows in February, June and October
are given in Figure 3.22.22 The distributions
are displayed on ‘normal probability paper’ on

22The units are ‘cubic feet per second’: 1 cf/s corresponds to
0.028 m3/s.
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Figure 3.22:The cumulative probability distri-
bution of the monthly mean streamflow of the
Chehalis River in Washington (USA) in cubic-feet
per second (cf/s). The three distributions describe
the February, June, and October 1948–87 aver-
ages. A straight line indicates a normal distribu-
tion. Courtesy D. Lettenmaier.

which they would appear as straight lines if the
distributions were normal.

The distribution of the February monthly
averaged streamflow is almost normal. In winter,
the wet soil has little capacity to store water so
that almost all rainfall is directly transferred to
streamflow. In June the occurrence of precipitation
is much more variable and the dry soil is able to
store a significant amount of water. Thus, minor
rain events have little influence on the streamflow.
As a consequence the distribution is substantially
skewed. The mean is about 150 cf/s, the 10th
percentile is about 80 cf/s while the 90th percentile
is 250 cf/s. There are many Junes with weak
streamflow and few with large streamflow. The
October distribution is intermediate between the
June and February distributions.

The other case is theVerde River, a tributary of
the Salt River. It drains the White Mountains in
central Arizona and flows westward. The moisture
supply is obtained from extratropical storms in
the winter season, and from convection and the
‘Arizona Monsoon’ in summer.

The latter are responsible for the most extreme
streamflows, whereas snowmelt controls the
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Figure 3.23:The cumulative probability distri-
bution of the streamflow of the Verde River in
Arizona (USA) in cubic-feet per second. The four
distributions describe the annual and February
averages as well as the daily (sampled on the
1st, 11th, and the 21st) and weekly (first week of
the month) streamflows in February. Courtesy D.
Lettenmaier.

winter and spring streamflows most of the time.
This configuration leads to markedly non-normal
distribution functions of annual and February
mean streamflow (Figure 3.23) which indicate
the presence of two different regimes. Weaker
streamflows occur during the ‘snowmelt’ regime
whereas the very large streamflows, connected
with tropical storms, occur relatively infrequently.

The weekly and daily mean streamflows in
Figure 3.23 mirror the non-normality of the rainfall
rates: The river has almost no water 70% of
the time. At other times the streamflow is quite
variable, with a few very large extreme events
(25 000 cf/s).

The shapes of the probability distributions
obtained for different averaging intervals neatly
demonstrate theCentral Limit Theorem[2.7.5].
The distributions deviate from the normal distri-
bution most strongly for the daily averages and
least strongly for the annual averages. The annual
averages of Verde River streamflow are clearly
non-normal, a good illustration of theasymptotic
nature of the Central Limit Theorem.



4 Concepts in Statistical Inference

4.0.1 Overview. Our purpose here is to
introduce some basic ideas about how information
is extracted from data. Section 4.1 deals with the
fundamental concept of “inference.’ The keywords
here, “estimation’ and ‘hypothesis testing,’ are
introduced in a rather intuitive manner. The
technicalities will be explained in detail in
Chapters 5 and 6. However, special attention
is given to the type of knowledge that can be
gained under certain circumstances. This is done
by presenting simple examples and discussing
the logic that is applied. Two other fundamental
concepts, sampling (i.e., gathering empirical
evidence) andstatistics(i.e., the condensation of
the raw empirical evidence into a few useful
quantities), are introduced in Sections 4.2 and 4.3.

4.1 General

4.1.1 Inference. The word inferenceis central
in statistical analysis. A dictionary definition
of inference [150] rephrases ‘to infer’ as ‘to
conclude by reasoning from something known
or assumed.’ A broad definition of statistical
inference could be ‘the procedure that involves
extracting information from data about the process
underlying the observations.’

There are two central steps in this process.

1 A statistical model is adopted that supposedly
describes both the stochastic characteristics
of the observed process and the properties of
the method of observation. It is important to
be aware of the models implicit in the chosen
statistical method and the constraints those
models necessarily impose on the extraction
and interpretation of information.

2 The observations are analysed in the context
of the adopted statistical model.

There are two major types of inference, namely
estimationand hypothesis testing. The latter is a
decision making process that tries to determine the
truth of statements, calledhypotheses, proposed
before seeing the data.

There are also two major types of statistical
data analysis, namelyexploratory analysisand
confirmatory analysis[375]. Exploratory data
analysis is the art of extracting from a data set
all possible information about the relationships
between the variables represented in the data set.
This information is used to develop hypotheses
about the workings of the climate system. Then,
in the best of all worlds, carefully designed
experiments are conducted to produce data that can
be used toconfirmindependently the hypotheses.

The opportunities for performing truly confir-
matory analyses are very different when dealing
with theobservational recordrather than a model
simulation. We discuss this point in the next two
subsections.

4.1.2 Confirmatory Analysis of the Obser-
vational Record. For obvious reasons, experi-
ments cannot be done with the actual climate sys-
tem (cf. Navarra [289]). Instead, special observing
programs (such as the ‘First GARP Global Ex-
periment’ [44]) are sometimes mounted to obtain
the data required to address a particular scien-
tific agenda.1 However, even carefully designed
observing programs are unable to eliminate the
possibility that the effect the program is designed
to observe is confounded (or contaminated) with
other non-observed processes in the climate sys-
tem.

Any confirmatory analysis of the observational
record, that is, climate data observed in the past,
is limited by two factors: thelack of independent
data and the inability to separate completely the
signal of interest from other sources of variation.

The presence of signals from various competing
processes leads to anopen observed record.
That is, we cannot observe all state and forcing

1Such campaigns are often called ‘experiments,’ another
case of bad scientific slang. They are not experiments because
the investigators involved in these observing programs are
unable to control the factors that affect climate variability.
These programs are very useful, however, because the coverage
and consistency of their observing networks (in space and
time and also in terms of the observed variables) are greatly
enhanced relative to the regular observing network.

69
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variables. Even if we have enough data to establish
a statistical link, we can not exclude the possibility
that the repeated coincidence of two events is
caused by another non-observed process. Our data
coverage allows us to study only an open sub-
system of the full system. In contrast, verifiable,
‘confirmatory’ statements require closed systems
(for a discussion of this fundamental problem, see
Oreskes, Schrader-Frechette, and Beltz [301]).

All observational data reflect the sametrajec-
tory of the climate system during the past tens or
hundreds of years. Certainly, there are many dif-
ferentdata sets, such as air pressure reported from
land stations or sea-surface temperature reported
from ships of opportunity (see Chapter 3). These
data sets differ somewhat even if they purport-
edly represent the same variable—say near-surface
wind (see [3.1.5])—but these differences are due
to different observational, reporting and analysis
practices. Theydo notrepresent the kind of inde-
pendent information about the climate system that
would be obtained by observing the same variables
over a period of similar length at another point in
time (e.g., beginning two centuries ago). In other
words, such data sets do not offer the option for
confirmatory analysis.

This limitation has a severe consequence: Many
people, probably hundreds or thousands, have
used different techniques to screen our ‘one’
observational record for rare events. Most of
these ‘unusual’ results are eventually published
in articles in scientific journals. Clearly, some of
these ‘unusual’ facets are due to peculiar and rare
circumstances that are, nevertheless, ‘usual,’—
they are ‘Mexican Hats’ (to use an analogy from
Section 6.4) and can not be contested with a
statistical test. We can identify an ‘unusual’ object
by comparing it with all others in the observational
record. Thus the statement, or null hypothesis,
‘this object is not unusual’ cannot be contested
with a statistical test since independent data are
unavailable. No statistical test, regardless of its
power or elegance, can overcome this problem,
although there are two possible solutions. The first
is to extend the observational record backwards
by creating new paleo data sets,2 the second is
to postpone testing the developed theories until
nature generates enough independent data. Using
suitably designed GCM experiments to test a
hypothesis derived from the observational record

2Paleo dataare data derived from indirect evidence, such
as sediments, that are believed to be representative of the state
of climatic components before the current short instrumental
period.

is another approach to confirmatory analysis that
is often satisfying.

4.1.3 Confirmatory Analysis of Simulated Data.
The situation is different when dealing with data
generated in simulations with GCMs since new
additional data can be created, and experiments
can be designed to sort out different hypotheses.
However, climate models can not be completely
validated, which is a big limitation.3 The answers
given by GCMs could simply be anartifact of the
model.

Experimentation with GCMs began in the
1960s, when pioneers such as Manabe and
Bryan [265] examined the sensitivity of the climate
to enhanced greenhouse gas concentrations. The
standard methodology is to produce a pair of
simulations that deviate from each other in
only one aspect (such as different greenhouse
gas concentrations or sea-surface temperature
regimes). This type of experiment is well designed
and can be used to confirm hypotheses derived
from the observational record or other model
experiments. (See Chapter 7 for examples.)

4.1.4 Estimation of Parameters. In estimation,
a sample of realizations of a random variable is
used to try toinfer the value of a parameter that
describes some property of the random variable.
That is, a function of the observations is taken
to be an educated guess of the true parameter
value. This educated guess, theestimator, is
either a number (point estimator) or an interval
(interval estimator). Ideally, the point estimate is
in the neighbourhood of the true value, and the
neighbourhood becomes smaller with increasing
sample size. Similarly, a good interval estimator
uses the sample to select a range of parameter
values that is likely to contain the true parameter.
This interval is constructed tocover the true
parameter with a fixed, high probability (typically

3General Circulation Models aretunedto reproduce, to the
extent possible, the statistics of the observational record of the
last few decades. Success in this regard is not a guarantee that
the models can successfully simulate natural climate variability
on longer time scales. It is also not a guarantee that the models
will respond correctly to changes in, for example, the chemical
composition or turbidity of the atmosphere. See Oreskes et al.
[301].
However, GCMs are considered powerful tools for examining
the sensitivity of the climate system since they are based, to a
large extent, on physically robust concepts.
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95%) in repeated sampling.4 Thus, the length of
the interval decreases with increasing sample size.

Various ‘parameters’ are subject to estimation,
such as the conventional moments (see [2.6.7])
that characterize the probability distribution of the
observed random variable. However, estimation is
not limited to such elementary parameters; one
may also want to estimate the entire probability
distribution, or more exotic parameters such as
the ‘level of recurrence’ of two random variables
(Sections 6.9–6.10). The ‘random variable’ might
really be a random field observed atm points and
we might want to estimate them2 parameters that
comprise the field’s covariance matrix.

As discussed in [1.2.1], there are no ‘right’ or
‘wrong’ statements in the realm of estimation;
rather, statements can only be considered in terms
of precision and reliability. There are some well-
defined concepts that can be used, in principle,
to obtain estimators with desirable properties.
For example, themaximum likelihood method
can be used to construct estimators that are
‘asymptotically optimal’ under broad regularity
conditions (see [5.3.8]). However, the complexity
that is often encountered in climatology causes the
design of estimators to be closer to art than sound
craftsmanship.

4.1.5 Point Estimation: Examples. A simple
example of a point estimation exercise can be
found at the end of [2.8.7] where we report
the estimated correlation between the standard
Southern Oscillation Index (SOI) and an SST
index developed by Wright [426]. Here the sample
consists of the 624 realizations of the monthly
mean SOI and the monthly mean SST index
observed between 1933 and 1984. The correlation
between corresponding random variablesI SO and
I SST is estimated to be

ρ̂SST,SO I = 0.67.

A more involved example of an estimation
exercise is found in [1.2.6], where optimally
correlated patterns are identified in a sample
of realizations of a paired random vector. The
statistical model treats the SLP and SST fields as
a paired random variable( EX, EY) with covariance
and cross-covariance matricesΣX , ΣY, andΣXY.
These matrices are estimated in the conventional

4This statement mustnot be reduced, or changed, to the
misleading statement ‘the interval contains the true parameter
with (the selected high) probability.’ While the latter is
technically equivalent, it encourages the mistake of regarding
the parameter, rather than the endpoints of the interval, as being
random.

manner (see [5.2.7]) and the estimates are
subsequently employed in a Canonical Correlation
Analysis (see Chapter 14). The patterns shown
in Figure 1.13 are a best guess rather than
the true canonical correlation patterns. Note that
these patterns represent simultaneous estimates of
several hundred parameters.

4.1.6 Interval Estimators: An Example. We
return to the example that deals with the
correlation between the SOI and the SST based
index of the Southern Oscillation [1.2.6]. In [8.2.3]
we impose a model on the bivariate random
variable, EX = (I SO, I SST), and then use it
to construct an interval estimator(ρ̂L , ρ̂U ) for
ρSST,SO I. The estimator is designed so that the
interval will cover the true value ofρSST,SO I 19
out of 20 times if the ‘experiment’ that resulted
in the 1933 to 1984 segments of the SO and SST
indices is repeated infinitely often. Note that it
is the endpoints of the interval that vary from
one replication of the experiment to the next: the
true value ofρSST,SO I is fixed by the physical
mechanism that connects SST variations in the
Equatorial Pacific with the Southern Oscillation.
Performing the computation with the observed
indices yieldsρ̂L = 0.621 andρ̂U = 0.708.
The confidence interval is therefore given by the
inequality

0.621< ρSST,SO I < 0.708. (4.1)

Note that (4.1) does not include a probability
statement about its correctness. In that sense,
the ‘confidence interval’ (4.1) really provides no
‘confidence.’

None the less, interval estimators are much more
useful than point estimators because they give con-
crete expression to the idea that the estimator is but
another random variable subject to sampling vari-
ation. Unfortunately, often in practice a confidence
interval cannot be constructed. Then, an estimator
is often considered useful if it performs well
in some controlled laboratory setting, or returns
‘physically reasonable’ numbers or distributions.
In this context ‘physical significance’ is the catch
phrase that seems to be able to override most
statistical scepticism.

4.1.7 The Test of a Null Hypothesis. We briefly
touched on the subject of statistical hypothesis
testing in [1.2.7]. Here, we continue to discuss the
concept in an intuitive manner before using a more
rigorous approach in Chapter 6.

A statistical test is a decision making procedure
that attempts to determine whether a given set
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of observations contains information consistent
with a concept that was formulateda priori. This
‘concept’ is known as thenull hypothesisand is
usually denoted with the symbol H0.

In general, only two decisions are possible about
H0:

• rejectH0 (if sufficient evidence is found that
it is false), or

• do not rejectH0 (if sufficient evidence can not
be found that it is false).

The decision is a random variable because it is
a function of the sample. Thus, there will be
some sampling variability in the decision. The
same decision about H0 may not be made in every
replication of the experiment that produced the
sample.

The decision making rule used in hypothesis
testing is constructed using a statistical model
so that effects of the sampling variability on the
average decision are known, and so that the rule
extracts the strongest possible evidence against
H0 from the sample.

Since there is sampling variability, there is
a chance of rejecting H0 when H0 is true. The
probability, or risk p̃, of making this incorrect
decision is called thesignificance level. The
amount of risk can be controlled by the user of the
test. The only way to avoid all risk is to setp̃ =
0 so that H0 is never rejected, which, of course,
makes the test useless. However, the risk of false
rejection can be set very near zero, at the expense
of reducing the chances of rejecting H0 when it is
false.

It is important to remember that the concept of
significanceis an artifact of the conceptual model
that we place around our data gathering. The
significance level̃p is realized only if the statistical
model we are using is correct and only if the
‘experiment’ that generated the data is replicated
ad infinitum. In the real world we need to base our
decision about H0 on a single sample.

The decision making mechanism often consists
of a statisticT and an interval designed so that
it contains (1 − p̃) × 100% of the realizations
of T when H0 is true. Then H0 is rejected at the
p̃× 100% significance level if the observed value
of T, sayT = t, falls outside the interval.

The important aspects of a statistical test are as
follows.

• The statistical model correctly reflects the
stochastic properties of the observed random
variables and the way in which they were

observed. The actual significance level of the
decision is different from the specified levelp̃
if there is a problem with the statistical model.

• The decision rule should be constructed so
that the chances of rejecting H0 are optimized
when H0 is false. That is, the decision rule
should maximize thepowerof the test.

Usually the model and the null hypothesis are
separate but related entities.

The statistical model used to represent an
experiment is expressed in terms of a random
variable and the way in which it was observed.
For example, if the null hypothesis is that the mean
of a random variable is zero (i.e., H0: µ = 0), we
might use a model that says that the sample was
drawn at random from a normal distribution with
known varianceσ 2 and unknown meanµ. That is,
the model describes, in statistical terms, the way
in which observations were collected (they were
drawn at random), and the probability distribution
(normal, with known varianceσ 2) of the random
variable which is observed.

Note that it is often not necessary, or desirable,
to prescribe a particular probability distribution.
Our test of the mean can be conducted almost as
efficiently if we assume only that the observations
are drawn from a symmetric distribution with
unknown meanµ.

The null hypothesis H0 specifies a value of the
unknown parameter in the statistical model of
the experiment. Note that in general the model
may have many parameters and H0 might specify
values for only a few of them. The parameters that
are not specified are callednuisance parameters
and must be estimated. The testing procedure
must properly account for the uncertainty of any
parameter estimates.

4.1.8 Example: Number of Hurricanes in a
Pair of GCM Experiments. As an example, we
consider Bengtsson, Botzet, and Esch’s simulation
[42, 43] of possible changes of the frequency
of hurricanes due to increasing atmospheric
concentrations of greenhouse gases. They dealt
with hurricanes in both hemispheres, but we limit
ourselves in the following to their results for the
Northern Hemisphere.

Bengtsson et al. conducted a pair of ‘time-slice
experiments’ with a high-resolution Atmospheric
General Circulation Model. One experiment was
performed with present-day sea ice and sea-surface
temperature distributions, and atmospheric CO2
concentration. In the other experiment, doubled
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CO2 concentrations were prescribed together with
anomalous sea ice and SST conditions simulated
in an earlier experiment in which the GCM was
coupled to a low-resolution ocean.5 The number of
hurricanes in a model year is treated as a random
variable.

The number of hurricanes in a year in
the 1×CO2 and the 2×CO2 experiment is
labelled N1 and N2, respectively. The question
of whether the number of storms changes in the
2×CO2 experiment can be expressed as the null
hypothesis:

H0: E(N1) = E(N2)

or, in words, ‘the expected number of hurricanes
in the 1×CO2-model world equals the expected
number of hurricanes in the 2×CO2-model world.’
We adopt a significance level of 5%, that is, we
accept a 5% risk of incorrectly rejecting the null
hypothesis.

To design a test strategy we consider the
number of hurricanes in any model year as being
statistically independent. We also assume that
the shape of the distribution of the number of
hurricanes is the same in both the 1×CO2 and
2×CO2 experiments. That is, we assume that the
mean changes in response to CO2 doubling but that
the higher moments (see [2.6.7]) do not.

Given these assumptions we may then use the
Mann–Whitney test[6.6.11]. This test operates
with the sum of theranksof the samples. Rank 1 is
given to the smallest number of hurricanes found
in all years from both time-slice experiments,
rank 2 to the second smallest number and so
on. Then the sum of the ranks of the yearly
hurricane frequencies in the 2×CO2-experiment
N2 is formed. Very small or large rank sums give
evidence that the null hypothesis is false because
rank sums of this type occur when most of the
yearly hurricane frequencies in one experiment
are greater than those in the other experiment.
Under the null hypothesis we would expect a
roughly equal number of large frequencies in both
experiments. Rank sum thresholds for making
decisions about H0 at various significance levels
are listed in Appendix I.

5Briefly, the rationale for this methodology is as follows:
Hurricanes are not resolved in the low-resolution GCMs. It
is, however, assumed that the low-resolution model simulates
the large-scale SST and sea-ice distributions well. It is
also assumed that the atmospheric circulation is, to a first
order approximation, in equilibrium with its lower boundary
conditions. These assumptions make it possible to assess the
impact of the changed SST and sea-ice distributions and
the enhanced CO2 concentration on hurricanes in the high-
resolution GCM.

In Bengtsson et al.’s case, the sample sizes are
n1 = n2 = 5 since both simulations were run for
five years. The yearly hurricane frequencies in the
simulations are:

year 1×CO2 2×CO2

1 49 41
2 55 42
3 63 46
4 51 38
5 63 38

The rank sum for then2 = 5 realizations of
N2 is 15. Note that all are smaller than any of
the realizations ofN1. When the null hypothesis
is true, the 5% threshold value for the rank sum
is 18; that is, if H0 is true, the rank sum will
be greater than or equal to 18 in 19 out of
every 20 replications of this experiment, and it
will be less than 18 only once. Since the actual
rank sum of 15 is smaller than the 5% threshold
of 18, we reject the null hypothesis at the 5%
significance level.6 We may conclude, at least
in the framework of the GCM world, that an
increase of the CO2-concentration will reduce the
frequency of Northern Hemisphere hurricanes.

4.1.9 Testing a Null Hypothesis: Interpretation
of the Result. Given a particular sample, the
decision to reject H0 with a significance level of
p̃ may occur for several reasons.

• We may have incorrectly rejected a true null
hypothesis.Occasional errors of this kind are
unavoidable if we wish to make decisions.We
saw in the example above that unusual rank
sums can occur even when there is no change
in hurricane frequency.7

• The statistical model adopted for the observa-
tions may not be valid. The observations may
not have been sampled in the way assumed
by the model (e.g., they might not be inde-
pendent) or they might not have the assumed
distribution (e.g., it might not be symmet-
ric about the mean). The resulting decision
making procedure may reject H0 much more
frequently than specified bỹp even when
H0 is true.

6If the null hypothesis is true, the probability that the five
years representative of 2×CO2 conditions all have fewer storms
than those representative of the 1×CO2 conditions is 1/252
(0.49%).

7We reiterate that the significance level determines the
frequency with which we will make this type of error (which
statisticians call a ‘type I’ error). A testing procedure that
operates at the 5% significance level will make a type I error
5% of the time when H0 is true.
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Protection against this type of error can be
partly obtained by usingrobust statistical
methods. Robust methods continue to per-
form reasonably well under moderate de-
partures from the assumed model (see Sec-
tion 6.6 and [8.3.17]). However, in general,
there is no way to determine positively that
the model underlying the test is valid. Instead
additional physical arguments are required to
support the model. Also, other statistical tests
can sometimes be used to ensure that the data
are not grossly inconsistent with the adopted
model (e.g., one can test the null hypothesis
that the observations come from a normal
distribution).

• We may have correctly rejected a false H0.

Similarly, the decision not to reject H0 can
happen for several reasons.

• H0 may be false, but the test may not
have sufficient evidence to reject H0. The
probability of this type of error depends upon
the powerof the test. The probability of not
rejecting H0 when it is false must also be
nonzero to have a useful decision making
mechanism.

• The model adopted for the observations
may not be valid and the decision making
procedure developed from this model rejects
H0 too infrequently even when H0 is false.
This error in the model results in a test with
very low power.

• H0 may be true and insufficient evidence
was found to reject H0. This is the desired
outcome.

The relevant catch phrase in all of this is
‘statistical significance,’ which may be markedly
different from ‘physical significance.’ The size
of departure that is detectable by a statistical
test is a function of the amount of information
about the tested parameter available in the sample.
Large samples contain more information than do
small samples, and thus even physically trivial
departures from H0 will be found to be statistically
significant given a large enough sample.

4.1.10 Source of Confusion: The Significance
Level. The term significance levelsometimes
causes confusion. Some people, particularly
climatologists, interpret the ‘significance level’
as ‘one minus the probability of rejecting a
correct null hypothesis.’ With this convention large

probabilities, for example, 99%, are associated
with statistical significance. This usage is contrary
to the convention used in the statistical literature.
Here we follow the statistical convention and
define the ‘significance level’ as the probability of
incorrectly rejecting the null hypothesis. Asmaller
significance level impliesmoreevidence that H0 is
false. If H0 is rejected with a significance level
of 1%, then there is 1 chance in 100 of obtaining
the result by accident when the null hypothesis is
true.

4.1.11 Source of Confusion: Confidence and
Significance. One often reads statements that an
author is ‘95% confident that the null hypothesis
is false’ or that ‘the null hypothesis is rejected
at the 95% confidence level.’ These statements
interpret rejection of the null hypothesis at the
5% significance level incorrectly. When we reject a
null hypothesis we are simply stating that the value
of the test statistic is unusual in the context of the
null hypothesis (i.e., we have observed a value of
the test statistic that occurs less than 5% of the time
when H0 is true). Because the value is unusual,
we conclude that the null hypothesis is likely
false. But we can not express this ‘likelihood’ as
a probability.8

The precise logical statement in the argument is
‘H0 true⇒ 1 out of 20 decisions is ‘reject H0’ ,’
which is not at all related to the statement ‘reject
H0⇒ H0 false in 19 out of 20 cases.’

4.2 Random Samples

4.2.1 Sampling. The conceptual model for a
simple random sample is that a simple, repeatable
experiment is performed that has the effect of
drawing elements from a sample space at random
and with replacement.

The amount of imagination required to apply
this paradigm depends upon the problem at hand.
We will briefly consider three examples.

• Suppose one wanted to estimate the height
of the average human living today. We
can literally accomplish this by selecting
humans at random from the global population
(about five billion people) and recording their

8 At least not in the ‘frequentist’ paradigm we use in this
book. Bayesianstatisticians extend the notion of probability
to include subjective assessments of the likelihood that a
parameter has one value as opposed to another. It then becomes
possible to solve statistical decisions by comparing the odds in
favour of one hypothesis with those in favour of another. See
Gelman et al. [139] for an introduction to Bayesian analysis.
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heights. With care, and a lot of preparation,
it is at least conceptually possible to ensure
that everyone has the same probability of
being selected. Thus, we can be assured that,
if we sample the population 1000 times, the
resulting sample of 1000 heights will be
representativeof the entire global population.

Here, the concept of a simple random sample
representative of the population is easy to
comprehend because the population from
which the sample is to be drawn is finite.
The logistics required to obtain the sample
(i.e., preparing a list of five billion names
and selecting randomly from those names)
are easily visualized.

• Suppose now that one wanted to estimate
global mean temperature at 00 UTC on
a given day: again, an easily imagined
accomplishment. One approach would be to
select randomlyn locations on the globe and
to measure the temperature at each location
at precisely 00 UTC. Our thinking in this
example is necessarily a bit more abstract
than in the previous example. The number of
points at which a temperature measurement
can be taken is infinite, and the logistics of
placing a thermometer are more difficult for
some points than for others. None the less,
given the desire and sufficient resources, this
exercise could actually be performed.9

• Finally, suppose that one wanted to estimate
the climatological mean temperature at a
location such as Hamburg (Germany), or Vic-
toria (Canada), without consulting historical
temperature observations. The concept of the
simple random sample does not serve us
particularly well here. Our observations are
necessarily confined to an interval of time
near the present. Temperatures in the past
and in the distant future cannot be sampled;
only a finite number of observations will be
taken so temperatures realized after the last
observation will not be sampled. To treat
the sample as a random sample, we must
make some assumptions about the proper-
ties of the temperature process. In particular,
we assume that the process isstationaryor
cyclo-stationary(meaning that its statistical
properties are time invariant) and that the

9Shen et al., [349] have given careful thought to the problem
of estimating the sampling error in the global mean temperature
that arises from the density and distribution of the observing
network (including the random network discussed above).

process isergodic (meaning that sampling a
given realization of the process in time yields
information equivalent to randomly sampling
independent realizations of the same pro-
cess).

It is clear, then, that the concept of sampling
a geophysical process is complex, and that very
strong assumptions are implicit in the analysis of
climate data.

4.2.2 Models for a Collection of Data.
Usually, thesamplingexercise can be represented
by a collection of independent and identically
distributed random variables, say{X1, . . . ,Xn}.
When the sample is taken, we end up with
a set of realizations {x1, . . . , xn}. Part of the
conceptual baggage we carry is the idea that
the sample could be taken again, resulting in
another set of realizations, say{x′1, . . . , x′n} of
{X1, . . . ,Xn}. The statistical model describes the
range of possible realizations of the sample and the
relative likelihood of each realization.

The phrase independent and identically dis-
tributed represents twosampling assumptionsthat
are almost always needed when using classical
inference methods (see Chapters 5–9). The as-
sumptions are as follows.

• The observationsx1, . . . , xn are realiza-
tions of n independent random variables
X1, . . . ,Xn.

• The random variablesX1, . . . ,Xn are identi-
cally distributed.

However, the independence assumption can not be
made when making inferences about time series
or stochastic processes (Chapter 12). Then models
are required that account for the dependence
between observations. One way to do this is to
assume that the sample comes from a stationary
and ergodic process. Some types of analysis (e.g.,
extreme value analysis, see Section 2.9) are able to
cope with dependence quite well; others, such as
hypothesis testing about the mean of a sample (see
Section 6.6), cope with dependence very poorly.

In general, models are eitherparametric or
non-parametric.

• Parametric models require adistributional
assumption: that is, the assumption that the
distribution of Xi , i = 1, . . . ,n, belongs to
a certain family of probability distributions
(such as Xi is normal). The model is
parametric because it specifies everything
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about the distribution function except for
a few free parameters (for instance, the
mean and variance in the case of a normal
distribution). Provided that the distribution
assumption is correct, the parametric model
leads to very efficient statistical inference
because it brings a substantial amount of
information into the procedure in addition to
that contained in the data.

• Non-parametric approaches to statistical in-
ference are distinguished from parametric
methods in that the distributional assumption
is replaced by something more general. For
example, instead of assuming that data come
from a distribution having a specific form,
such as the normal distribution, it might be
assumed that the distribution is unimodal
and symmetric. This includes not only the
normal distribution, but many other families
of distributions as well.

Non-parametric methods are advantageous
when it is not possible to make specific
distributional assumptions. Frequently, non-
parametric methods are only slightly less ef-
ficient than methods that use the correct para-
metric model, and generally more efficient
compared with methods that use the incorrect
parametric model. Non-parametric statistical
inference is therefore relatively cheap insur-
ance against moderate departures from the
distributional assumptions. We will discuss
a few non-parametric inference techniques
in Chapter 6. A complete treatment of the
subject can be found in Conover [88].

While they allow us to relax the distributional
assumption needed for parametric statistical
inference, these procedures rely more heavily
upon the sampling assumptions than do para-
metric procedures. Non-parametric models
are heavily impacted by departures from the
sampling assumptions (see Zwiers [442]), so
their use isnot advised when there may be
dependence within a sample.

4.3 Statistics and Sampling
Distributions

4.3.0 Introduction. In the rest of this chapter we
will make the standard assumptions that a sample
can be represented by a collection of independent
and identically distributed (iid) random variables.
The effects of dependence and methods used when

there is dependence are addressed in Chapters 6, 8,
9, and 10–12.

We have seen that a random variable is
a function defined on a sample space and
that it inherits a probability distribution from
the probabilities assigned to the sample space
elements. In the same way, a statistic is a function
defined on a sample, and it inherits its probability
distribution from those of the random variables
that represent the sample. Thus, a statistic is
a random variable. Every time we replicate the
‘experiment’ that generates the sample, we get a
different set of realizations of the random variables
that constitute the sample, and thus a different
realization of the statistic computed from the
sample.

We describe here some basic statistics and
their probability distributions under thestandard
normal conditions. That is, we assume that the
random variables{X1, . . . ,Xn} that represent a
sample are independent and identically distributed
normal random variables with meanµ and
varianceσ 2.

4.3.1 The Sample Mean. An example of a
simple statistic is thesample mean,

X̄ = 1

n

n∑
i=1

Xi , (4.2)

expressed here as a random variable. Once an
experiment has been conducted and a particular
sample{x1, . . . , xn} has been observed, we write

x̄ = 1

n

n∑
i=1

xi

to represent the corresponding realized value ofX̄.
By applying (2.16) we see that the random variable
X̄ has mean and variance

E
(
X̄
) = µ (4.3)

Var
(
X̄
) = σ 2/n. (4.4)

Thus, it is apparent that the sample mean can be
regarded as anestimator10 of the true mean and
that the spread of the distribution of̄X, as well
as the uncertainty of the estimator, decreases with
increasing sample size.

The sample mean has a normal distribution
when random variablesXi are normally dis-
tributed. When observations are not normally

10The concept of an estimator is discussed with more
precision in Chapter 5.
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Figure 4.1: The probability density function of
the sample mean when the sample consists of
n = 10 and n = 40 independent and identically
distributed random variables. The distribution of
the individual observations is labelledn = 1.

distributed, theCentral Limit Theorem11 [2.7.5]
assures us, under quite general conditions, that
the sample mean will have a distribution that
approaches a normal distribution as the sample
size increases.

The effect of increasing sample size on the
distribution of the sample mean is illustrated in
Figure 4.1. The distribution becomes increasingly
compact as the sample size increases. Conse-
quently the true population mean,µ, becomes
better known as sample size increases.

4.3.2 The Sample Variance. Another example
of a relatively simple statistic is thesample
variance, which is given by

S2 = 1

n− 1

n∑
i=1

(Xi − X̄)2 (4.5)

= 1

n− 1

(( n∑
i=1

X2
i

)
− nX̄2

)
.

By using (2.16) and (2.17) it can be shown that

E
(
S2
) = σ 2. (4.6)

11Independence of theXi s is not a necessary condition
for obtaining convergence results such as the Central Limit
Theorem. Similar results can often be obtained when the
Xi s are dependent on one another, although in this case the
asymptotic variance ofX will only be proportional rather than
equal toσ2/n. The constant of proportionality depends upon
the nature of the dependence.

When random variablesXi are normally dis-
tributed, it can be shown that(n− 1)S2/σ 2 ∼
χχχ2(n− 1).12 Consequently,

Var
(
S2
) = 2σ 4

n− 1
. (4.7)

Equation (4.7) shows that we can think ofS2 as
an estimator ofσ 2 that has decreasing uncertainty
with increasing sample sizen. The uncertainty
goes to zero in the limit as the sample becomes
infinitely large.

It can also be shown thatS2 is independent of̄X.

4.3.3 The t Statistic. It is natural to interpret
the sample mean as a measure of thelocation of
the sample. This measure is often expressed as a
distance from some fixed pointµ0. This distance
should be stated in dimensionless units so that the
same inference can be made regardless of the scale
of observation.13

Suppose, for now, thatµ0 = E(Xi ). When the
varianceσ 2 is known, the distance betweenX̄ and
µ0, in dimensionless units, is

Z = √n
X̄ − µ0

σ
.

Random variableZ has mean zero and unit
variance regardless of the scale on which the
observations are made. It is normally distributed
when random variablesXi are normal. When this
is not true, the Central Limit Theorem [2.7.5]
states that the distribution ofZ will approach the
standard normal distribution as the sample size
grows large.

When that variance is not known, we can
estimate it withS2 and compute thet statisticor,
as it is also often called,Student’st statistic

T = √n
X̄ − µ0

S
.

Again, we have a measure that is independent of
the scale of measurement and it can be shown that
the asymptotic distribution is normal with unit var-
iance. When samples are finite and consist of in-
dependent, identically distributed normal random
variables with meanµ0, T has thet distribution

12Theχχχ2(k) distribution is discussed in [2.7.8]. Figure 2.5
shows theχχχ2(k) distribution for four different degrees of
freedomk.

13This is theprinciple of invariance. Statistical methods that
are not invariant under transformations of scale should not be
trusted because users can manipulate the inferences made with
such methods by using a suitable transform.
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with n − 1 degrees of freedom (see [2.7.9]). One
way to show this is to factorT as

T = √n
X̄ − µ0

S

=
√

n(X̄ − µ0)/σ[(
(n− 1)S2/σ 2

)
/(n− 1)

]1/2
= Z√

Y/(n − 1)
.

Here

Z = √n
X̄ − µ0

σ
∼ N (0,1)

Y = (n− 1)S2

σ 2
∼ χχχ2(n− 1),

andY is independent ofZ. This exactly character-
izes at distributed random variable (see [2.7.9]).T
has zero mean and variancen−1

n−3.
Figure 2.6 shows that thet distribution is

slightly wider than the standard normal distribu-
tion and that it tends towards the normal dis-
tribution as sample size increases. Indeed, the
two are essentially the same for samples of size
n > 30. The extra width in the small sample
case comes about because the distance betweenX̄
andµ0 is measured in units of estimated rather
than known standard deviations. The additional
variability induced by this estimate is reflected in
the slightly wider distribution.

4.3.4 The F-ratio. Suppose now that we have
two collections of independent and identically
distributed random variablesX1, . . . ,XnX and
Y1, . . . ,YnY representing two random samples of
size nX and nY respectively. A natural way to
compare thedispersionof the two samples is to
compute

F = S2
X

S2
Y

, (4.8)

whereS2
X is the sample variance of theX sample

and S2
Y is the sample variance of theY sample.

When both samples consist of independent and
identically distributed normal random variables,
and the random variables in one sample are
independent of those in the other, the random
variable(σY/σX)

2F is independent of both scales
of observation andF ∼ F(nX − 1,nY − 1) (see
[2.7.10]). This is shown by factoringF so that
it can be expressed as a ratio of independentχ2

random variables, each divided by its own degrees
of freedom. In fact, by (2.29), we have

F =
[
(nX − 1)S2

X/σ
2
X

]
/(nX − 1)[

(nY − 1)S2
Y/σ

2
Y

]
/(nY − 1)

= χX/(nX − 1)

χY/(nY − 1)
,

with χX ∼ χχχ2(nX − 1) andχY ∼ χχχ2(nY − 1).
Several examples of theF distribution are dis-
played in Figure 2.7.



5 Estimation

5.1 General

In Chapter 4 we describe some of the general
concepts of statistical inference, including the
basic ideas underlying estimation and hypothesis
testing. Our purpose here is to discuss estimation
in more detail, while hypothesis testing is
addressed further in Chapter 6.

5.1.1 The Art of Estimation. We stated
in Chapter 4 that statistical inference is the
process of extracting information from data about
the processes underlying the observations. For
example, suppose we haven realizations xi

of a random variableX. How can we use
these realizations to make inferences about the
distribution ofX?

The first step is to adopt some kind of statistical
model that describes how the sample{x1, . . . , xn}
was obtained. It is often possible to use the
‘standard normal setup’ introduced in Section 4.3.
It represents the sample as a collection ofn
independent and identically distributed normal
random variables{X1, . . . ,Xn}. Estimators of the
mean (4.2) and the variance (4.5) are derived in
this setting.

The standard notation used to differentiate a
parameterp from its estimator is to indicate the
estimator with a hat, as in̂p. Confusion can
arise because the notation does not make it clear
when p̂ represents a random variable and when
it represents a realization of a random variable.
Estimators should be viewed as random variables
unless the context makes it clear that a particular
value has been realized. The language we use also
gives verbal cues that help to distinguish between
the two; we generally think of anestimator as
a function on a sample (and hence as a random
variable) and anestimateas a particular value
that is realized by an estimator. Just to exercise
this notation, the estimators of the mean and
variance that are introduced in Section 4.3 are
µ̂ = X, and σ̂ 2 = S2. Intuitively, these
estimators behave as we would expect. They take
values in the neighbourhoods of the true values

of the parameters they are estimating, their scatter
decreases with increasing sample size, and their
scatter is related to the scatter within the sample.

For the moment,estimatorsare mere functions
of the sample without any qualitative properties.
The art is to find good estimators that yield
estimates in a specified neighbourhood of the true
value with some known likelihood. The objective
of estimation theory is to offer concepts and
measures useful for evaluating the performance of
estimators.

Because estimators are random variables, they
are subject to sampling variability. An estimator
can not be right or wrong, but some estimators
are better than others. Examples of admittedly silly
estimators of the meanµ and the varianceσ 2 are

µ̂s = X1

σ̂ 2
s = (X1− X2)

2/2.

Note that̂µs hasn times the variance of estimator
(4.2), and σ̂ 2

s has n − 1 times the variance of
estimator (4.5).

5.1.2 Estimation and the ‘iid’ Assumptions.
In Chapter 4 we stressed the importance of the
‘iid’ (or sampling) assumptions in the process of
inference. However, these assumptions are often
not satisfied in climate research. Even so, many
estimators will still produce useful parameter
estimates. But it is much more difficult (sometimes
even impossible) to construct confidence intervals
or other measures of the uncertainty of the point
estimate.

5.1.3 Some ways in which to violate the ‘iid’
assumptions. The ‘independence’ assumption is
violated when methods that require independence
are applied to serially correlated data. A possible
solution is to sub-sample the data, that is, remove
data from the complete data set until the gaps
between the remaining observations are long
enough to ensure independence.

Information is generally lost by sub-sampling
and the quality of the estimator is not improved

79



80 5: Estimation

(in terms of bias or mean squared error; see
Section 5.3). The estimate computed from the
sub-sampled data is generally less certain than that
computed from all of the data.

However, sometimes the use of the entire data
set leads to problems. For example, when serially
correlated data are not evenly distributed in time,
the use of all of the data can lead to severe biases
(systematic errors).

For example, suppose that we want to estimate
the expected (i.e., mean) daily summer rainfall at
a location affected by the El Niño phenomenon
using a 31-year data set of rainfall observations. A
naive estimate could be constructed by averaging
over all observations without accounting for the
characteristics of the data set. Suppose that the
data set contains 1 year of very good daily data
(obtained during a special observing project) and
30 years of once weekly observations. Further,
suppose that the special observing project took
place during an El Nĩno year in which there was
a marked lack of rain. If we average over all
the available data, then the year of the special
observing project has seven times moreinfluence
on the estimate than any of the other years. It
is very likely, then, that the computed average
underestimatesthe true expected (long-term mean)
rainfall. Sub-sampling is an appropriate solution to
this problem.

The ‘identically distributed’ assumption is
violated when the sampled process is non-
stationary. For example, if there are annual or
diurnal cycles in the mean of the sampled process,
the sampling method affects the way in which
an estimated mean can be interpreted. A data
set that contains observations taken at frequent,
equally spaced intervals over an integral number
of years or days will provide good estimates of the
annual or daily mean respectively. On the other
hand, if all the data come from winter, or from
the early morning, then the estimate will not be
representative of the true annual mean value.

5.2 Examples of Estimators

5.2.0 The Setting. We again assume that the
result of the sampling process can be represented
by a sample ofn independent and identically
distributed random variables{X1, . . . ,Xn}. In
general, we useX to represent any of the iid
random variables in the sample and assume that
the (common) probability density function ofX
is fX(·). The only difference between the current

setup and the standard normal setup in Chapter 4 is
that we do not yet assume a specific form forfX .

Having now set the stage, we carry on to
introduce a number of estimators. Whenever
possible, we write the estimators in their random
(rather than realized) form to emphasize that they
are subject to sampling variability inherited from
the sampling process.

5.2.1 Histograms. The frequency histogram
is a crude estimator of the true probability
density function,fX , of X. To obtain a frequency
histogram or arelative frequency distribution,
the real line,R (or the complex plane, or the
multi-dimensional space), is partitioned intoK
subsets2k such that

K⋃
k=1

2k = R and (5.1)

2k ∩2 j = ∅ for k 6= j .

The number of observations that fall into each2k

is counted, and the total count is divided by the
total number of observations so we obtain

H(2k) = |{Xk : Xk ∈ 2k}|
n

,

where|S| denotes the number of elements in setS.
H(2k) is an estimator of

P(X ∈ 2k) =
∫
2k

fX(x)dx,

which in turn is a discretized approximation of
the density functionfX . Consequently, the random
step function

f̂ X(x) =
H(2k)∫
2k

dx
if x ∈ 2k, (5.2)

is a crude estimator of the true density function.1

The denominator in (5.2) is the area of subset
2k (or the length of the interval, if the
partitions (5.1) are intervals, as is often true). The
denominator in (5.2) has been introduced to ensure∫
R f̂ X(x)dx = 1. It turns out, with suitable

regularity conditions, that this estimator converges
to the true density function as sample sizen→∞
if the number of elements in each subset tends
to infinity as the sample sizen → ∞, and if
the number of subsets2k also goes to infinity as
n→∞.

1Kerneltype density estimators produce much better density
function estimates. See, for example, Silverman [350] or Jones,
Marron, and Sheather [200].
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The histogram is also an estimator of prob-
abilities. The probability thatX ∈ [a,b] is
conveniently estimated by

P̂(X∈ [a,b]) =
∫ b

a
f̂ X(x)dx

= |{Xk : Xk∈ [a,b]}|
n

=H([a,b]).

That is, the probability of obtaining an observation
in a given interval or region the next time the
experiment (i.e., sampling exercise) is repeated
is estimated by the frequency with which
observations fall into that set in the available
sample.

Several examples of histograms are shown in
Chapter 3, for example, Figures 3.3, 3.5, 3.7, 3.18,
or 3.20.

Note that the histogram depends on the details
of the partitioning, and that the partitioning is
chosen subjectively.

5.2.2 Empirical Distribution Function. Com-
bining the definition of the cumulative distribution
function in (2.14) with the definition of the esti-
mated probability density function in (5.2) gives
the following natural estimator of the distribution
function

F̂ X(x) = |{Xk : Xk ≤ x}|
n

= P̂(X ≤ x) = H([−∞, x]). (5.3)

F̂ X is often called theempirical distribution
function. It is a non-decreasing step function with
F̂ X(−∞) = 0 and F̂ x(∞) = 1. The value
of the function increases by a step of 1/n at
each observation (or it increases by a multiple of
1/n if several observations have the same value).
Note thatF̂ X(x(n|n)) = 1, and that the estimated
probability of observing a value larger than the
largest value,x(n|n), in the sample or a value
smaller than the smallest value,x(1|n), is zero.2

A slightly different estimator of the distribution
function is described in [5.2.4].

The empirical distribution function of the
monthly mean Southern Oscillation Index (see
Figures 1.2 and 1.4, and subsections [1.2.2],
[2.8.7], and [8.1.4]) is shown in Figure 5.1.

5.2.3 Goodness-of-fit Tests—a Diversion.The
subject of goodness-of-fit tests arises naturally in
the context of estimating the distribution function.

2A reminder:x( j |n) is the j th order statistic of the sample
{x1, . . . , xn}, that is, thej th largest value in the sample.
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Figure 5.1:The empirical distribution function of
the monthly mean SO index as computed from
1933–84 observations.

It is sometimes of interest to know whether a
given sample{x1, . . . , xn} could be realizations
of a random variableY, with a particular
type of probability distribution, such as the
normal distribution. One approach to this type of
goodness-of-fitquestion compares the empirical
distribution function F̂ X with the proposed
distribution functionFY. The differencêF X − FY

is a random variable and it is therefore possible
to construct goodness-of-fit tests that determine
whether the difference is unlikely to be large
under the null hypothesis H0: FX = FY. Conover
[88] provides a good introduction to the subject.
Stephens [356] [357] provides technical details of
a variety of goodness-of-fit tests not discussed by
Conover.

The Kolmogorov–Smirnov testis a popular
goodness-of-fit statistic that compares an empirical
distribution function with a specified distribution
function FY. The Kolmogorov–Smirnov test
statistic,

DK S = max
x
|F̂ X(x)− FY(x)|,

measures the distance between the empirical dis-
tribution function and the specified distribution.
Obviously, a large difference indicates an incon-
sistency between the data and the statistical model
FY.

There is a large family of related tests, some
of which feature norms other than themax-
norm.3 The Kolmogorov–Smirnov test becomes
‘conservative,’ that is, rejects the null hypothesis

3Other tests, such as the Anderson–Darling test and
the Cramer–von Mises test (see [356], [357], [307]) use
statistics that are more difficult to compute, but they are
also more powerful and more sensitive to departures from
the hypothesized distribution in the tails of the distribution.
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less frequently than indicated by the significance
level, whenFY has parameters that are estimated
from the sample.

This problem often occurs when we want to
test for normality in a set of data. TheLilliefors
test [253], is a variation of the Kolmogorov–
Smirnov test that accounts for the uncertainty
of the estimate of the mean and variance. The
Lilliefors test statistic is given by

DL = max
x
|F̂ X(x)− F∗N (x)|,

where F∗N ∼ N (µ̂X, σ̂ X) is the normal
distribution in which the mean and standard
deviation are replaced with the sample mean
and standard deviation.DL measures the distance
between the empirical distribution function and
the normal distribution fitted to the data. Large
realizations of DL indicate that H0 should be
rejected. Conover (see Section 6.1 and Table
15 in [88]) provides tables with thresholds
for rejection as a function of sample size
and significance level. Stephens [356] offers
approximate formulae for the same purpose.

Empirical distribution (SOI)
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Figure 5.2: The empirical distribution function
(5.3) of the SOI plotted against the cumulative
distribution function of the standard normal
random variables. Points are expected to lie
approximately on they = x line if the SOI is
normal. The lines parallel toy = x are thresholds
that, if crossed, indicate thatH0: ‘sample is
normal’ should be rejected at the 5% significance
level (see [4.1.10]). The test may not be reliable
because the sampling assumptions are not satisfied
by the SOI.

Stephens [356] and Pearson and Hartley [307] describe how to
adjust several goodness-of-fit tests, including the Kolmogorov–
Smirnov test, when sample sizes are small and when it
is necessary to estimate the parameters of the distribution
specified in H0.

Figure 5.2 redisplays the empirical distribution
function of the SO index as(F̂ X(x), F∗N (x)) pairs
where F∗N (x) is the normal distribution function
with mean and variance estimated from the SO
data. These points are expected to more or less lie
on the F̂ X(x) = F∗N (x) line when the fit is good
(i.e., when H0 is true). Note that the placement of
the thresholds parallel to thêF X(x) = F∗N (x) line
is correct only if the iid assumption holds for the
SOI, which is known not to be true. The results of
the test can therefore not be taken literally.

5.2.4 Probability Plots. Subsection [3.1.3]
discusses the format of a probability plot that
is similar to Figure 5.2, but more useful for
determining whetherFY = FX . A probability
plot depicts the graph of the functiony →
F−1

X [FY(y)], where FY is some prescribed,
possibly hypothesized, distribution andFX is the
distribution of the data. The graph is plotted
linearly in y but the horizontal axis is labelled with
the probabilitiesFY(y) (see Figure 3.2).

A probability plot may be derived from a
finite sample by plotting points(F−1

Y (F̃X(xi )), xi )

whereF̃X is an estimator of the distribution func-
tion. SinceF̂ X(xn) = 1 we cannotuseF̃X = F̂ X .
Otherwise the scatter plot would include the point
(∞, xn). Alternative estimators are

F̃X(x) = |{Xk : Xk ≤ x}|
n+ 1

= n

n+ 1
F̂ X(x)

and

F̃X(x) = |{Xk : Xk ≤ x}| − 0.5

n

= F̂ X(x)− 0.5

n
(5.4)

so that the points to be plotted are(F−1
Y ( i

n+1), xi )

or (F−1
Y ( i−0.5

n ), xi ). Equation (5.4) is used in
[8.3.13].

5.2.5 Estimating the First Moment. The first
momentµ(1) = µ of a real-valued random variable
X with probability density function fX is the
expected value ofX, E(X), given by

µ =
∫ ∞
−∞

x fX(x)dx. (5.5)

We identified the sample mean (4.2)

µ̂ = X̄ = 1

n

n∑
k=1

Xk (5.6)
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as a reasonable estimator ofµ in [4.3.2] because
its expectation isµ and its variance goes to
zero as the sample sizen increases. However,
the relationship between (5.5) and (5.6) is not
immediately obvious.

A heuristic argument that links the two
expressions is as follows. First, letX(i |n), i =
1, . . . ,n, be the order statistics of sample
{X1, . . . ,Xn} (see [2.6.9]). Then equation (5.5)
can be rewritten as

µ =
∫ (X(1|n)+X(2|n))/2

−∞
x fX(x)dx (5.7)

+
n−1∑
i=2

∫ (X(i |n)+X(i+1|n))/2

(X(i−1|n)+X(i |n))/2
x fX(x)dx

+
∫ ∞
(X(n−1|n)+X(n|n))/2

x fX(x)dx.

Now, in the i th sub-integral, we approximate the
integrandx fX(x) with X(i |n) fX(x). Thus, thei th
sub-integral, fori = 2, . . . ,n−1, is approximated
as

X(i |n)
∫ (X(i |n)+X(i+1|n))/2

(X(i−1|n)+X(i |n))/2
fX(x)dx (5.8)

= X(i |n)
[

FX

(
X(i |n) + X(i+1|n)

2

)
− FX

(
X(i−1|n) + X(i |n)

2

)]
.

Similarly, the first sub-integral is approximated as

X(1|n)
[

FX

(
X(1|n) + X(2|n)

2

)
− 0

]
(5.9)

and thenth sub-integral is approximated as

X(n|n)
[
1− FX

(
X(n−1|n) + X(n|n)

2

)]
. (5.10)

The next step is to approximate the true
distribution functionFX with its estimator (5.3).
Note that each of the cumulative distribution
function differences in (5.8)–(5.10) straddles one
of the ‘steps’ in (5.3). Thus, each of these
differences is equal to 1/n and thei th sub-integral
in (5.7) is further approximated as1nX(i |n). Finally
we obtain

µ ≈
n∑

i=1

1

n
X(i |n)

= 1

n

n∑
i=1

Xi = µ̂.

5.2.6 Estimating the Second and Higher
Moments. Useful estimators for thej th moment
µ( j ) = ∫∞

−∞ x j fX(x)dx can be defined, in a
manner similar to that of the first moment, as

µ̂( j ) = 1

n

n∑
k=1

X j
k.

For the second central moment, the variance, we
have

σ̂ 2 = 1

n

n∑
k=1

(Xk − µ̂)2. (5.11)

Note that the estimator (5.11) differs from the
sample variance (4.5) by a factor ofn/(n− 1). We
return to this point in [5.3.7].

The same rules that apply to moments apply to
the estimated moments as well. For example, for
σ̂ 2 as given in (5.11),

σ̂ 2 = µ̂(2) −
(
µ̂(1)

)2
.

5.2.7 Mean Vectors, Covariances, and
Correlations. The univariate estimators of
the mean and variance defined above are easily
extended to apply to samples ofn iid random
vectors { EX1, . . . , EXn} distributed as the random
vector EX. The mean vector is estimated as

Êµ = 1

n

n∑
i=1

EXi (5.12)

and, in analogy to the sample variance, the
covariance matrixΣ (see [2.8.7] and (2.32)) may
be estimated with thesample covariance matrixas

Ĉ = 1

n− 1

n∑
i=1

( EXi − Êµ)( EXi − Êµ)T. (5.13)

As with the variance, we can also define an
estimatorΣ̂, expressed in terms of the moments
of the sample, and obtained by dividing the sum of
products in (5.13) byn rather thann− 1:

Σ̂ = 1

n

n∑
i=1

( EXi − Êµ)( EXi − Êµ)T.

When we want to clarify that the estimated
covariance matrix refers to the random vector
EX, we add subscripts to matriceŝC or Σ̂. The
elements of the estimated covariance matrixΣ̂,
denoted̂σ jk , are given by

σ̂ jk = 1

n

n∑
i=1

(Xi ; j − µ̂ j )(Xi ;k − µ̂k), (5.14)



84 5: Estimation

whereXi ; j represents thej th component of the
i th random vectorEXi . Similarly µ̂ j is the j th

component of the estimated mean vectorÊµ.
It may happen, in practice, that there are missing

values in some of then sample vectorsEx1, . . . , Exn.
Then the summations in (5.12) and (5.14) are taken
only over the non-missing values and the sums are
divided not byn but by the number of terms in
the sum. Theoretical results concerning properties
of the estimators may not extend smoothly when
there are gaps in the data.

The correlation between thej th and kth
elements ofEX is

ρi j = σ jk√
σ j j σkk

,

whereσ jk is the covariance betweenX j andXk,
andσ j j andσkk are the corresponding variances
(see [2.8.7] and (2.33)).

This correlation is estimated with thesample
correlation

ρ̂ jk =
σ̂ jk√
σ̂ j j σ̂ kk

. (5.15)

5.2.8 Estimating L-Moments. Recall that L-
moments (see [2.6.9] and (2.20)–(2.24)) are the
expected values of linear combinations of order
statistics of samples that are the same size as
the order of the L-moment. For example, the
third L-moment is the expected value of a linear
combination of the order statistics of a sample
of size three. The natural way to estimate an L-
moment [183] is with aU statistic(first described
by Hoeffding [178]). That is, if the third L-moment
is to be estimated, then, at least conceptually, all
possible sub-samples of size three are selected
from the full sample, the linear combination is
computed, as for the expected order statistics, from
the order statistics of each sub-sample, and these
linear combinations are averaged. Hosking [183]
uses combinatorial arguments to show that thej th
L-moment can be estimated as

λ̂( j ) =
j−1∑
l=0

(−1) j−l−1( j − 1
l

)( j + l − 1
l

)
bl

(5.16)

where

bl = 1

n

n∑
i=1

(i − 1)(i − 2) · · · (i − l )

(n− 1)(n− 2) · · · (n− l )
X(i |n).

5.3 Properties of Estimators

5.3.1 Estimator Selection Criterion. Chapter 4
mentions that a good estimator will produce
estimatesα̂ in the neighbourhood of the true
parameter valueα. A mathematically concise
definition of ‘in the neighbourhood’ is obtained
by defining a ‘distance’ such as themean squared
error

M (̂α;α) = E((̂α − α)2). (5.17)

The mean squared error allows us to compare
two estimators. In particular, we have the
following definition about the relative efficiency
of estimators:

Let α̂ and α̃ be two competing estimators of a
parameterα. Then̂α is said to be amore efficient
estimator ofα than α̃ if M (̂α;α) < M (̃α;α) for
all possible values ofα.

Estimators that have mean squared error less
than or equal to that of all other estimators ofα
are obviously desirable. However, other properties,
such as unbiasedness(defined in [5.3.3]) are
also desirable. In [5.3.7] we show that the mean
squared error may be written as the sum of
the mean squaredbias and the variance of the
estimator. Because lack of bias is often very
desirable, the search for efficient estimators is
often restricted to unbiased estimators. Thus,
statisticians often search forminimum variance
unbiasedestimators. The search is often further
restricted to estimators that can be expressed as
linear combinations of the random variables that
make up the sample.

We will continue to discuss the bias and
variance of a variety of estimators after formally
defining bias.

5.3.2 Definition: Bias. Letα be a parameter of
the distribution of random variableX and let α̂
be an estimator of this parameter. Then thebiasof
estimator̂α is its expected, or mean, error, which
is given by

B(̂α) = E (̂α)− α.
Positive bias indicates that̂α overestimatesα,
on average, when the experiment that generates
the sample is repeated several times. Similarly,
negative bias indicates thatα̂ underestimatesα, on
average. An estimator that has no bias is said to be
unbiased.

Positive bias does not imply that all realizations
of α̂ are greater thanα, although that could be
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true if B(̂α) is large compared with the variability
of α̂. Also, unless we know something about the
distribution of α̂, we can not say what proportion
of realizations of̂α will be greater thanα. For
example, ifα̂ is positively biased and distributed
symmetrically aboutE (̂α), then we can say that
more than 50% of all estimates will be larger than
α. However, if the distribution of̂α is skewed, then
we can make this statement only if we know that
the median4 value of α̂ is greater thanα. Similar
comments apply if̂α is negatively biased.

It is highly desirable to have estimators with
little or no bias, but, as we will see below, it may
be necessary to balance small bias against other
desirable properties.

5.3.3 The Bias of Some Estimators. We now
derive the bias of some frequently used estimators.
The propositions to be proved appear in italics.

The empirical distribution function̂F X (5.3) has
zero bias as an estimator of the cumulative
distribution functionFX . That is,

B(F̂ X) = 0. (5.18)

To prove this, recall thatnF̂ X(y) is the number
of random variablesXk in the sample such
that Xk < y. As usual, all random variables
are assumed to be independent and identically
distributed. Since the random variables are
identically distributed,P(Xk ≤ y) = FX(y).
Thus, using independence, we see that the
integer-valued random variablenF̂ X(y) has
the binomial distributionB(n, FX(y)). Therefore
E
(
nF̂ X(y)

) = nFX(y) for all y. This proves
(5.18).

The sample mean̂µ (5.6) is an unbiased estimator
ofµ. That is,

B(µ̂) = 0. (5.19)

The proof of (5.19) is straightforward:

E(µ̂) = 1

n

∑
k

E(Xk) = 1

n
nE(X) = µ.

The sample varianceS2 (4.5) is an unbiased

4Themedianof a random variableX is a valuex0.5 such that
P(X ≤ x0.5) ≤ 0.5 andP(X ≥ x0.5) ≥ 0.5 (see [2.6.4]). If the
distribution ofX is symmetric about the meanµ = E(X) (i.e.,
fX(x − µ) = fX(x + µ) for all x ≥ 0), thenx0.5 = µ. If X is
skewed, with a large tail to the right,x0.5 < µ, andx0.5 > µ if
X is skewed with a large tail on the left.

estimator ofσ 2, while σ̂ 2 (5.11), is a biased
estimator ofσ 2. The bias of the latter is given by5

B(̂σ 2) = 1

n
σ 2. (5.20)

The bias ofS2 andσ̂ 2 is derived as follows. First,
note that

n∑
i=1

(Xi − µ̂)2

=
n∑

i=1

(Xi − µ− µ̂+ µ)2

=
n∑

i=1

(Xi − µ)2− n(µ̂− µ)2.

Then

E (̂σ 2) = 1

n
E
(∑n

k=1(xk − µ̂)2
)

= 1

n
E
(∑n

k=1(xk − µ)2
)− E((µ̂− µ)2)

= 1

n

n∑
k=1

σ 2− Var(µ̂) (5.21)

= σ 2− Var(µ̂). (5.22)

The step that results in (5.21) requires the
‘identically distributed’ assumption. We will show
below that Var(µ̂) = 1

nσ
2 if the random variables

in the sample are also independent.6 Thus, (5.20)
is proven. The unbiasedness ofS2 follows from the
relationshipS2 = ( n

n−1 )̂σ
2.

Similar results are obtained for the multivariate
mean and the sample covariance matrix:

B( Êµ) = 0

B(Ĉ) = 0

B(Σ̂) = 1

n
Σ.

The uncertainty of the estimator of the mean vector
is easily characterized as

Cov
( Êµ, Êµ ) = 1

n
Σ,

but the uncertainty of the estimator of the
covariance matrixΣ is not easily characterized

5It is assumed here that the sample consists of iid random
variables. Both estimators are, in general, biased if the
independence assumption is replaced by the more general
assumption that the sample is obtained from a stationary,
ergodic stochastic process.

6The bias is caused by the Var(µ̂) term in (5.22).
This term can be considerably greater thanσ2/n when the
independence assumption is replaced by the stationary and
ergodic assumption. Then the ‘memory’ within the sample
tends to inflate the variance of̂µ (see Section 6.6).
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because it involves all of the fourth moments of
EX. This is possible using the Wishart distribution
when EX is multivariate normal [2.8.9] (see [197]
[147]).

5.3.4 Asymptotically Unbiased Estimators.
We have shown that the empirical distribution
function F̂ X , the sample mean̂µ = X, and the
sample varianceS2 are all unbiased estimators of
the distribution function, of the mean, and of the
variance, respectively, when the sample consists of
iid random variables. On the other hand,σ̂ 2 (5.11)
is a biased estimator of the variance. Here the bias
disappears as sample size increases. Indeed,

lim
n→∞ B(̂σ 2) = 0.

Estimators with this property are said to be
asymptotically unbiased.

Many biased estimators are asymptotically
unbiased, for example, the estimator of the
correlation coefficientρ (5.15) or the estimator of
the L-moments (5.16).

5.3.5 Variances of Some Estimators. We
derive here the expression for the variance of
the sample mean used in [5.3.3] as well as
some other results. Again we assume that the
sample consists ofn independent and identically
distributed random variables.

The variance of the empirical distribution function
F̂ X (5.3) at pointx is given by

Var
(
F̂ X(x)

) = 1

n
FX(x)(1− FX(x)).

(5.23)

The proof of (5.18) shows thatnF̂ X(x) ∼
B(n, FX(x)). Therefore, using (2.9), we obtain
Var

(
nF̂ X(x)

) = nFX(x) (1− FX(x)), proving
(5.23).

The variance of the sample mean̂µ (5.6) is given
by

Var(µ̂) = 1

n
σ 2. (5.24)

To demonstrate this we first note that

Var(µ̂)

= E
(
( 1

n

∑n
k=1 xk)

2− µ2
)

= 1

n2

n∑
k, j=1

E
(
xkx j − µ2

)
= 1

n2

n∑
k, j=1

E
(
(xk − µ)(x j − µ)

)
.

Now, using independence, all the expectations in
the last expression vanish except those wherek =
j . Consequently

Var(µ̂) = 1

n2

∑
k

σ 2 = 1

n
σ 2.

The variance of̂σ 2 (5.11) is given by

Var
(
σ̂ 2
) = 1

n
(γ ∗ − σ 4) (5.25)

− 2

n2
(γ ∗ − 2σ4)+ 1

n3
(γ ∗ − 3σ4),

where γ ∗ = E((X − µ)4) is the fourth central
moment.7The variance ofS2 is n2/(n − 1)2 times
the variance of̂σ 2.
The proof of this result is lengthy but elementary
(see [325]).

When the sample consists of iid normal random
variables, the variance of the sample varianceS2

and the biased variance estimatorσ̂ 2 are

Var
(
σ̂ 2
) = 2(n− 1)

n2
σ 4 (5.26)

Var
(
S2
) = 2

n− 1
σ 4. (5.27)

For normal random variables,γ2 = 0, so (5.26)
and (5.27) are a direct consequence of (5.25).

It can be shown that the estimator (5.15) of the
correlation coefficientρ has asymptotic variance
equal to(1− ρ2

i j )/n, meaning that

lim
n→∞Var

(
ρ̂ i j
) = 1− ρ2

i j

n
.

We describe the uncertainty of this estimator
when samples are finite in [8.2.3].

Hosking provides an expression for the asymp-
totic covariance matrix of the L-moment estimator
(5.16), but this expression is difficult to use be-
cause it depends upon the form of the distribution
of the elements of the sample.

5.3.6 Consistency. Another desirable property
of an estimator is that it beconsistent.

An estimator̂α is ‘consistent’ if its mean squared
error (5.17) goes to zero with increasing sample
size. That is, if

lim
n→∞M (̂α;α) = 0.

All of the estimators discussed in [5.3.3]–[5.3.5]
can be shown to be consistent using the following
proposition.

7The fourth central moment is related to the kurtosis via
γ2 = γ ∗/(σ4 − 3) (see (2.19)).
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Figure 5.3:Bias and variance contribute to the
expected mean squared error.

The mean squared error of an estimator̂α is
the sum of its squared bias and its variance (see
Figure 5.3). That is,

M (̂α;α) = [B(̂α)]2+ Var(̂α). (5.28)

The proof is easy to demonstrate.

M (̂α;α) = E((̂α − α)2)
= E((̂α − E (̂α)− (α − E (̂α)))2)
= E((̂α − E (̂α))2)+ (α − E (̂α))2

− 2
(
α − E (̂α))E (̂α − E (̂α)).

The cross-product term in the last expression
is zero, so (5.28) follows. Therefore, any
asymptotically unbiased estimator with variance
that is asymptotically zero is consistent.

5.3.7 Bias Correction and the Jackknife. We
showed in [5.3.3] that̂σ 2 is a biased estimator
of σ 2 with B(̂σ 2) = 1

nσ
2. We also showed that

the sample varianceS2 corrects this bias by
multiplying the estimator̂σ 2 by n/(n− 1).

Many bias corrections are of the above form,
that is, a bias correction is often made by scalingα̂,
a biased estimator ofα, by a constantc(n) so that
the resulting estimator̃α = α̂/c(n) is an unbiased
estimator ofα. Biases and the corresponding bias
corrections come in a variety of forms, however,
so there is no general rule about the form of these
corrections.

The consequences of bias correction are
interesting even in this limited context, that is,
where a scale correction will make an estimator
unbiased. In particular, the ‘improved’̃α may not
always be more efficient than the originalα̂. If
the scaling factorc(n) > 1, then α̃ is more
efficient thanα̂ because both components of the
expected mean square error, the squared bias, and
the variance, have been reduced. On the other
hand, if c(n) < 1, the bias is reduced but the
variance is enhanced. Thus, it is generally advised
that the ‘improved’ estimator be accepted with
caution.

The scaling factor that turns biased̂σ 2 into the
unbiasedS2 is c(n) = (n − 1)/n < 1. The mean
squared error for the unbiased estimatorS2 is

M(S2; σ 2) = Var
(
S2
) = 2

n− 1
σ 4,

while that for the biased estimator̂σ 2 is

M (̂σ 2; σ 2) = 1

n2
σ 4+ 2(n− 1)

n2
σ 4

= 2n− 1

n2
σ 4.

Since
2n− 1

n2
<

2

n− 1
,

we see that the biased estimatorσ̂ 2 is slightly more
efficient than the unbiased estimatorS2. We will
see shortly that the biased estimator is also the
maximum likelihood estimatorof σ 2.

An empirical approach frequently used to find
bias corrections is called thejackknife(see Efron
[111] or Quenouille [326]). The idea is that
the estimator is computed from the full sample,
then recomputedn times, leaving a different
observation out each time. These estimators are
denoted α̂ and α̂(i ), where the subscript(i )
indicates that̂α(i ) is computed withXi removed
from the sample. Thejackknife bias correction,
which is subtracted from̂α, is then given by

α̂B = (n− 1)(̂α(·) − α̂),
where

α̂(·) = 1

n

n∑
i=1

α̂(i ).

The jackknifedestimator,̃α = α̂ − α̂B, can often
be re-expressed in the form̃α = α̂/c(n).

It can be shown, with some algebraic manipu-
lation, that the jackknifed bias correction for̂σ 2

is

σ̂ 2
B = −

1

n(n− 1)

n∑
i=1

(Xi − X)2.
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Therefore the jackknifed estimator ofσ 2 is

σ̃ 2 = σ̂ 2− σ̂ 2
B = S2.

A jackknifing approach can also be used to
estimate variance of an estimatorα̂. Tukey [374]
suggested that the variance ofα̂, say σ2

α̂ , could be
estimated with

σ̂ 2
α̂ =

n− 1

n

n∑
i=1

(̂α(i ) − α̂(·))2.

Efron [111] explains why this works. The
jackknife estimator of the variance of the sample
mean is

σ̂ 2
µ̂ =

1

n
S2,

which is also the estimator obtained when we
replaceσ 2 with S2 in (5.24).

5.3.8 Maximum Likelihood Method. The
estimators introduced in this section have been
arbitrary so far. One systematic approach to
obtaining estimators is theMethod of Maximum
Likelihood, introduced by R.A. Fisher [119, 120]
in the 1920s.

The Maximum Likelihood Estimator of the
Parameter of the Binomial Distribution. The
idea is most easily conveyed through an example.
For simplicity, suppose that our sample consists
of n iid Bernoulli random variables{X1, . . . ,Xn}
[2.4.2], which take values 0 or 1 with probabilities
1 − p and p, respectively. The problem is to
estimatep.

The probability of observing a particular set of
realizations{x1, . . . , xn} is
P(X1 = x1, . . . ,Xn = xn) = ph(1− p)n−h,

(5.29)

whereh = ∑n
i=1 xi . Therefore, we see that the

useful information aboutp is carried not by the
individual random variablesXi but by their sum

H =
n∑

i=1

Xi .

We come to this conclusion because (5.29) has
the same value regardless of the order in which
the contributions toh (i.e., the 0s and 1s) were
observed. Thus our estimator should be based on
the statisticH.

The probability distribution ofH is the binomial
distribution (2.7)

fH (h; p) = ( n
h
)
ph(1− p)n−h. (5.30)

Now suppose that we have observedH = h. The
likelihoodof observingh for a particular value of
the parameterp is given by thelikelihood function

L H (p) = fH (h; p). (5.31)

The likelihood function is identical to the
probability distribution of our statisticH except
that it is now viewed as a function of the parameter
p.

The maximum likelihood estimator(MLE) of
p is now obtained by determining the value of
parameterp for which the observed valueh of
H is most likely. That is, givenH = h, (5.31) is
maximized with respect top.

It is often easier to maximize thelog-likelihood
function

l H (p) = ln(L H (p)),

which is defined as the natural log of the likelihood
function. For this example the log-likelihood is
given by

l H (p) = ln
( n

h
)+ h ln(p)+ (n− h) ln(1− p).

(5.32)

We maximize (5.32) by taking the derivative of
l H (p) with respect top and solving the equation
obtained by setting the derivative to zero. In the
present example there will be only one solution
to this equation. However, there may be many
solutions in general, and it is necessary to select
the solution that produces the overall maximum of
l (or, equivalently,L).

Taking the partial derivative of (5.32) and
setting it to zero, we obtain

∂l H (p)

∂p
= h

p
− n− h

1− p
= 0. (5.33)

The unique solution of (5.33) isp′ = h/n.
The corresponding MLE ofp, written in random
variable form, is p̂ = H/n. Thus, we have
discovered that here the estimator we would
intuitively use to estimatep is also its maximum
likelihood estimator.

The Maximum Likelihood Estimator in
General. We will continue to assume that our
sample consists ofn iid random variables,
{X1, . . . ,Xn}, all distributed as random variable
X. For convenience we will assume that they
are continuous, and refer to probability density
functions rather than probability distributions.
However, everything here can be repeated with
probability distributions simply by replacing all



5.3: Properties of Estimators 89

occurrences of density functions with probability
distributions.

Let fX(x; Eα) be the density function ofX, where
Eα is a vector containing the parameters of the
distribution of X. The joint probability density
function for the random vector(X1, . . . ,Xn)

T is

fX1...Xn(x1, . . . , xn; Eα) =
n∏

i=1

fX(xi ; Eα)

(see (2.12)). Suppose we have observedXi =
xi , i = 1, . . . ,n. Then thelikelihood functionfor
the unknown parametersEα is

L X1...Xn(Eα) =
n∏

i=1

fX(xi ; Eα), (5.34)

and the correspondinglog-likelihood functionis
given by

l X1...Xn(Eα) =
n∑

i=1

ln( fX(xi ; Eα)). (5.35)

Themaximum likelihood estimator̂Eα of Eα is found
by maximizing (5.34) or (5.35) with respect toEα.

The Appeal of Maximum Likelihood
Estimators. There are several good reasons
to use maximum likelihood estimators. First,
as we have noted, the method of maximum
likelihood provides a systematic way to search for
estimators. Second, MLEs tend to have pleasing
asymptotic properties. They can be shown to be
consistent and asymptotically normal under fairly
general conditions (see, e.g., Cox and Hinkley
[92], Section 9.2). The asymptotic normality can,
in turn, be used to construct asymptotic confidence
regions.8

5.3.9 Maximum Likelihood Estimators of the
Mean and the Variance of a Normal Random
Variable. We derive the MLEs of the mean and
the variance of a normal distributionN (µ, σ 2)

from a sample ofn iid normal random variables
using (5.35). The natural log of the normal density
function is given by

ln( fX(x;µ, σ 2)) = −1

2
ln(2πσ 2)− (x− µ)

2

2σ 2
.

Consequently, the log-likelihood function is given
by

l X1...Xn(µ, σ
2) = −n

2
ln(2πσ 2)

−
n∑

i=1

(xi − µ)2
2σ 2

.

8That is, confidence regions that attain the specified
coverage, say 95%, as the sample becomes large.

Differentiation yields

∂l X1...Xn(µ, σ
2)

∂µ
=

n∑
i=1

xi − µ
σ 2

(5.36)

∂l X1...Xn(µ, σ
2)

∂σ 2
= − n

2σ 2
+

n∑
i=1

(xi − µ)2
2σ 4

.

(5.37)

We obtain the MLE of the mean by setting
(5.36) to zero, to obtain

µ′ = 1

n

n∑
i=1

xi . (5.38)

Re-expressing (5.38) in the random variable
form, we find that the sample mean̂µ = X
(see [4.3.1], [5.3.3] and [5.3.5]) is the maximum
likelihood estimator of the mean.

Similarly, setting (5.37) to zero, we obtain

σ 2′ = 1

n

n∑
i=1

(xi − µ)2.

Then, replacingµ with its MLE, and rewriting the
resulting expression in random variable form, we
obtain

σ̂ 2 = 1

n

n∑
i=1

(Xi − µ̂)2

as the maximum likelihood estimator of the
variance. Thus, we see that the MLE of the
variance is the biased estimator introduced in
[5.2.6].

5.3.10 MLEs of Related Estimators. The
following theorem (see, for example, Pugachev
[325]) extends the utility of a maximum likelihood
estimator:

Consider a random vectorEX with two parameters
Eα and Eβ, related to each other throughg(Eα) = Eβ
and g−1( Eβ) = Eα, where g and g−1 are both

continuous. If̂Eα is an MLE of Eα, then Êβ = g(̂Eα)
is an MLE of Eβ. Similarly, if Êβ is an MLE of Eβ,
then Êα = g−1( Êq ) is an MLE ofEα.

There are various applications of this theorem.
For example, supposeEX is a normal random vector
with covariance matrixΣ. Let {λ1, . . . , λn} be
the eigenvalues ofΣ and let{Ee 1, . . . , Ee n} be the
corresponding eigenvectors (see Chapter 13). Both
the covariance matrix (corresponding toEα in the
theorem above) and its eigenvalues and eigenvec-
tors (corresponding toEβ) are parameter vectors
of EX. Moreover, there is a continuous, one-to-one
relationship between these two representations of
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the covariance structure ofEX. Therefore, since the
covariance estimator̂Σ in [5.2.7] is the maximum
likelihood estimator ofΣ, it follows from the
theorem that the eigenvalues and eigenvectors of
Σ̂ are MLEs of the eigenvalues and eigenvectors
of Σ.

5.4 Interval Estimators

5.4.1 What are Confidence Intervals? So
far we have dealt withpoint estimates, that
is, prescriptions that describe how to use the
information in a sample to estimate a specific
parameter of a random variable. We were
sometimes able to make statements about the
statistical properties of the estimators in repeated
sampling, such as their mean squared errors, their
biases and their variances.

In the following we deal withinterval estima-
tion, that is, the estimation of intervals or regions
that will cover the unknown, but fixed, parameter
with a given probability.

Statisticians often use the wordcoveragewhen
discussing confidence intervals since the location
of parameterα is fixed on the real line. Ãp×100%
confidence interval forα is constructed from two
statisticŝαL andα̂U , α̂L < α̂U , such that

P
(
(̂αL , α̂U ) 3 α

) = p̃. (5.39)

We use the symbol3 to mean that the set on the
left covers the point on the right in (5.39). The
confidence level̃p is chosen to be relatively large
(e.g.,p̃= 0.95). The upper and lower limits of the
confidence interval are random variables; they are
functions of then random variablesX1, . . . ,Xn

that represent the sampling mechanism. Thus, the
interval varies in length and location on the real
line. The interval is constructed so that it willcover
the fixed pointα on the real linep̃ × 100% of
the time. That is,̃p× 100% of the realizations of
the confidence interval will lie on top of pointα.
Figure 5.4 illustrates this concept.

Many authors use the word ‘contain’ in the
context of confidence intervals, that is, they
state that the confidence interval will contain the
unknown parameter̃p × 100% of the time. We
have found this language to be a great source of
confusion because it somehow implies that the
parameterα is random. Rather, it is the endpoints
of the confidence interval that are random; they
vary from one realization of the sample to the
next. Note that, conditional upon a particular
sample, everything about the confidence interval
is fixed (both the endpoints and parameterα) and,

-2 0 2

Figure 5.4:Ten realizations of a 95% confidence
interval for unknown parameterα. On average, 19
out of 20 intervals will coverα. In this example,
α = 0. The curve shows the density function of the
sampled random variable.

thus, no probabilitist interpretation can be given
to the interval. Rather, the interval is interpreted
as reporting a range of parameter values that
are strongly consistent with the realized sample
(i.e., this is a range of possible parameters for
which the likelihood function [5.3.8] is large). The
confidence levelindicates the average behaviour of
the reporting procedure, but it does not, and can
not, give a probabilitist interpretation to any one
realization of the confidence interval.

5.4.2 Confidence Interval for a Random
Variable—Optional.9While the discussion to this
point has focused on the probability that a random
interval (̂αL , α̂U ), defined as a function of random
variablesX1, . . . ,Xn, covers a fixed parameterα,
our thinking need not be restricted to fixed targets.

Consider an experiment in whichn + 1
observations are obtained in such a way that
they can be represented byn + 1 iid random
variablesX1, . . . ,Xn,Xn+1. Suppose that there
is an interval between the time the firstn
observations are obtained and the time the(n+1)th
observation becomes available. Then we might be
interested in using the information in the firstn
observations to predict an interval

(XL [X1, . . . ,Xn], XU [X1, . . . ,Xn])

9This type of interval estimator is suitable when a
regression equation is used to specify the value of an unknown
dependent variable (see Chapter 8). A typical application
in climatology and meteorology is a statistical forecast
improvement procedure in which forecasts from a numerical
weather forecast are enhanced using regression equations.
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Figure 5.5:Ten realizations of a 95% confidence
interval for a random variableX. On average, 19
out of 20 intervals will cover the next realization
of X. The curve shows the density function ofX.

that will coverXn+1 p̃× 100% of the time. This
is a confidence interval for a random variable (see
Figure 5.5). The random intervals are now wider
than they were in Figure 5.4 because they need to
be able to cover a moving, rather than fixed, target.

Again note that the confidence level refers to the
average behaviour of the interval

(XL [X1, . . . ,Xn],XU [X1, . . . ,Xn])

in relation to the unknown random variableXn+1.
The interval is constructed so that in repeated
sampling ofX1, . . . ,Xn,Xn+1 the probability of
coverage is

P(XL [X1, . . . ,Xn] < Xn+1

< XU [X1, . . . ,Xn]) = p̃.

Note, that if we condition on the observed values
x1, . . . , xn of X1, . . . ,Xn and continue to think
of Xn+1 as random, then the coverage of the
interval is no longer exactlỹp. However, in most
practical applications the coverage will be close
to p̃ becausen will be relatively large. That is, we
do not expect the upper and lower bounds of the
interval to move a great deal due to variation in
X1, . . . ,Xn.

5.4.3 Constructing Confidence Intervals. In
general, aconfidence regionis defined indirectly
as a set2p̃(X1, . . . ,Xn) such that

P
(
2p̃(X1, . . . ,Xn) 3 A

) = p̃. (5.40)

That is, 2p̃(X1, . . . ,Xn) is constructed so that
it covers A p̃ × 100% of the time in repeated

sampling. Depending on the situation,A denotes
either a fixed parameter or a random variable.
The definition of2p̃(X1, . . . ,Xn) depends on the
assumed statistical model (e.g., the sample can
be represented by iid normal random variables),
the nature of the target (i.e., either a parameter
or a random variable), and the confidence level
p̃.

For the moment we limit ourselves to univariate
problems (and thus intervals) instead of the more
general multivariate problems (which require the
use of multi-dimensional confidence regions).
Multivariate problems arise in the context of
regression analysis (see Chapter 8), for example.

As with point estimators, there are various ways
to derive interval estimators. The only condition
that mustbe satisfied is (5.40). Other reasonable
requirements are that the set2p̃(X1, . . . ,Xn) has
minimum size, on average, and that it is compact.
The latter implies, in the univariate case, that
confidence regions can only be intervals.

If the target is a parameter, the general
procedure is as follows. We start with an efficient
estimatorα̂ of parameterα. We then derive the
distribution of α̂. This distribution will depend
on α somehow. There will generally be a way
to transform α̂ so that the distribution of the
transformed variable no longer depends onα. For
example, ifα is a location parametersuch as a
mean, then the distribution ofZ = α̂ − α will not
depend uponα. Similarly, if α is ascale parameter
such as a variance, then the distribution of9 =
α̂/α will not depend onα. The distribution of the
transformed variable is then used to construct the
confidence interval.

For a location parameter we find critical values
zL and zU so thatP(zL ≤ Z) = 1 − p̃/2 and
P(Z ≥ zU ) = 1 − p̃/2. Therefore, in repeated
sampling,

p̃ = P(zL < Z < zU )

= P(zL < α̂ − α < zU )

= P(−zU < α − α̂ < −zL)

= P (̂α − zU < α < α̂ − zL). (5.41)

Thus, thẽp×100% confidence interval for location
parameterα has the form̂α − zU < α < α̂ − zL .
Note that it is centred on estimator̂α and that it
excludes equal proportions of the upper and lower
tails of the distribution of̂α.

For a scale parameter, we find critical values
9L and9U so thatP(9L ≤ 9) = 1 − p̃/2 and
P(9 ≥ 9U ) = 1− p̃/2. Both critical values will
be positive because we are dealing with a scale
parameter. Also, for large values ofp̃, 9L will
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be less than 1 and9U will be greater than 1. We
expect that in repeated sampling

p̃ = P(9L < 9 < 9U )

= P
(
9L <

α̂

α
< 9U

)
= P

( 1

9U
<
α

α̂
<

1

9L

)
= P

( α̂

9U
< α <

α̂

9L

)
. (5.42)

Thus, thep̃ × 100% confidence interval for the
scale parameterα has the form α̂

9U
< α <

α̂
9L

. This will generally be an asymmetric interval
about α̂ because the sampling distributions of
scale parameters are usually skewed. None the
less, the interval has been constructed to exclude
equal portions of the lower and upper tails of the
distribution ofα̂.

If the target is a random variable, a model is
needed to predict the value of the unknown random
variable from the observed random variables
X1, . . . ,Xn. Often, the model has the formXi =
α + Ei , i = 1, . . . ,n+ 1, whereα is a location
parameter and the errorsEi are iid with mean
zero. The approach is to estimate the location
parameter and then predictXn+1 asX̂n+1 = α̂ +
Ên+1. Because the errors are iid we can only
predict Ên+1 = 0. Thus, the prediction error is
A pred = Xn+1 − α̂ = (α − α̂) + En+1. The
next step is to find the distribution of the prediction
error, and then to find critical valuesAL and
AU such thatP

(
AL ≤ A pred

) = 1 − p̃/2 and
P
(
A pred ≤ AU

) = 1 − p̃/2. We expect that in
repeated sampling

p̃ = P
(
AL < A pred < AU

)
= P(AL < Xn+1− α̂ < AU )

= P (̂α + AL < Xn+1 < α̂ + AU ).

The confidence interval has structure similar to
that of α, but is substantially wider because the
critical valuesAL and AU account for sampling
variation in botĥα andXn+1.

These confidence intervals may depend upon
yet more parameters. For example, the limits of a
confidence interval for a location parameter may
depend upon the value of a scale parameter. Such
parameters are callednuisance parameters(see
also [4.1.7]). The only solution is to estimate
the nuisance parameter and then reformulate the
confidence interval to account for the sampling
variability of the nuisance parameter estimator.

Examples of confidence intervals for location
and scale parameters are described below.

5.4.4 Confidence Intervals for the Mean. Let
X1, . . . ,Xn represent a sample of iid normal
random variables with meanµ and varianceσ 2.
Then

Z = √n(X − µ)/σ (5.43)

has the standard normal distributionN (0,1) (see
[4.3.3]). The quantiles of this distribution are
tabulated in Appendix D. Using the Appendix, we
find critical valueszl andzU for a given confidence
level such that10

p̃= P(zL < Z < zU ).

The shortestp̃ × 100% confidence interval is
obtained by choosingzU so thatP(Z < zU ) =
0.5 + p̃/2 and selectingzL = −zU . Then
substituting (5.43) forZ and manipulating as in
(5.41), we find that

p̃= P
(
X − zU

σ√
n
< µ < X + zU

σ√
n

)
.

Thus, whenσ 2 is known, thẽp×100% confidence
interval forµ is(

X − zU
σ√
n
, X + zU

σ√
n

)
. (5.44)

We still express the distance betweenX andµ
in dimensionless units as in (5.43), but we replace
σ with the estimatorS. The resultingt statistic,

T = √n(X − µ)/S,

has at distributionwith n− 1 degrees of freedom
(see [2.7.9] and [4.3.3]). Proceeding as above, we
find that, whenσ is unknown, thep̃ × 100%
confidence interval forµ is(

X − tU
S√
n
, X + tU

S√
n

)
, (5.45)

wheretU is the 0.5+ p̃/2 quantile of thet(n− 1)
distribution (see Appendix F).11

Be aware that the coverage of intervals (5.44)
and (5.45) deviates from the nominalp̃ × 100%
level when one or more of the assumptions
we have made is violated. For example, serial
correlations within the sample will tend to reduce
the coverage of these intervals (see Chapter 4,
[5.1.2] and [6.6.7–9]).

10For example,zU = 1.96(1.63)for p̃= 0.95(0.90).
11For example,tU = 2.776 (2.132) for p̃ = 0.95 (0.90)

whenT has 4 degrees of freedom.
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5.4.5 Confidence Intervals for the Variance.
Again, let X1, . . . ,Xn represent a sample of
iid N (µ, σ 2) random variables. As described in
[5.4.3], confidence intervals for scale parameters,
such asσ 2, are constructed by first expressing an
estimator ofσ 2 in dimensionless units. Here we
use

9 = (n− 1)S2/σ 2,

which isχχχ2(n− 1) distributed (see [2.7.8]). Upper
and lower tail critical values,9U and9L , of the
χ2 distribution are tabulated in Appendix E. These
values are chosen so thatP(9 < 9L) = 0.5− p̃/2
and P(9 < 9U ) = 0.5 + p̃/2.12 Following the
derivation in (5.42), we see that thẽp × 100%
confidence interval forσ 2 is(
(n− 1)S2

9U
,
(n− 1)S2

9L

)
. (5.46)

This interval contains the point estimatorS2, but
unlike the confidence interval for the mean, it is
not located at its centre. As with the mean, the
coverage of (5.46) is sensitive to departures from
the assumptions.

5.5 Bootstrapping

5.5.1 Concept. The interval estimation methods
of the previous section use a fully parametric
model to express the uncertainty of the corre-
sponding point estimator. That is, all elements
of the assumed statistical model are required to
derive the confidence interval. However, it is often
not possible to make a distributional assumption,
or a distributional assumption can be made but
derivation of a confidence interval is mathemati-
cally intractable. Thebootstrap[111] provides a
solution in both instances.

Suppose we assume only that the sample can be
represented by iid random variablesX1, . . . ,Xn.
Each has the same distribution function,FX(x),
but its form is not known. If we did know
the distribution we could easily write down
the joint density function of the random vector
EX = (X1, . . . ,Xn)

T, and with luck derive the
distribution of parameter estimator̂α( EX).13 To
keep the discussion simple, assume thatα is a
location parameter and that the distribution of
α̂( EX) − α is free of nuisance parameters (see

12For example,9U = 12.8 (11.1) and9L = 1.24(1.64) for
p̃= 0.95 (0.90) when9 has 5 degrees of freedom.

13We write α̂( EX) instead of just̂α to emphasize that̂α is a
random variable whose distribution is derived from that ofEX.

[4.1.7], [5.4.3]). Then we can find a confidence
interval for α simply by finding the lower and
upper tail critical values of̂α( EX)−α. The bootstrap
procedure solves the problem of the missing
distribution functionFX(x) by replacing it with
a consistent estimator, the empirical distribution
function F̂ X(x) (see [5.2.2]). Then, following the
same steps outlined above, we arrive at an estimate
of the distribution of̂α( EX) − α that converges to
the true distribution as the sample size increases.
The estimated distribution can be used to obtain
an approximate confidence interval forp or an
estimate of the variance of̂α( EX).

The steps that producebootstrappedconfidence
intervals or variance estimates can sometimes be
performed analytically (see, e.g., Efron [111]). In
general, though, the mathematics are intractable,
and Monte Carlo simulation is used instead. The
steps are as follows.

1 Generate a random sampley1, . . . , yn from
the population that has distribution function
F̂ X(x).14 This can be done by using a random
number generator to simulate a sample
u1, . . . ,un from theU(0,1) distribution and
then solving F̂ X(y j ) = u j for each j =
1, . . . ,n.

2 Evaluatêα for the realized sample.

3 Repeat steps 1 and 2 a large number of times.

The resulting sample of realizations of̂α can
be used to estimate properties of the distribution
of α̂ such as its variance or its quantiles. The
(1 − p̃)/2 and(1 + p̃)/2 quantiles are the lower
and upper bounds of the bootstrappedp̃ × 100%
confidence interval forα. The inferences made
with bootstrapping procedures are approximate
because the distribution of the parameter estimate
is derived from an estimated distribution function.
There may also be additional uncertainty if
only a small number of bootstrap samples are
generated. Inferences made with the bootstrap are
asymptoticallyexact15 provided thatF̂ X(x) is a
consistent estimator ofFX(x).

14In the ordinary bootstrap,F̂ X(x) is the empirical
distribution function. However, other estimators of the
distribution function can also be used. For example,F̂ X(x)
could be a parametric form in which the unknown parameters
are replaced with efficient estimators. In this case the procedure
is known as the ‘parametric’ bootstrap.

15That is, the true convergence of confidence intervals and
true significance levels of tests will approach the specified
values when samples become large.
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5.5.2 Ordinary Bootstrap. The bootstrap is an
example of aresampling procedure. When̂F X(x)
is given by the empirical distribution function
(5.3), step 1 above is equivalent to taking a
sample of sizen, with replacement, from then
observationsx1, . . . , xn.16

To see that this is so, consider again step 2
above. When̂F X is a smooth function, there will
be a uniqueyj for everyu j . However, when̂F X

is a step function such as the empirical distribution
function, a range ofu values can produce the same
yj ; the resulting sample may therefore contain
a given yj more than once. In particular, the
empirical distribution function hasn steps of equal
height that completely partition the interval(0,1).
Thus it follows thatyj will be equal to xi for
some i , and that every member of the sample
{x1, . . . , xn} has the same probability of selection,
that is, random resampling with replacement.

Each sample produced by the procedure
described above is called abootstrap sample.
WhenF̂ X is the empirical distribution function, 2n

different samples can be generated. Consequently,
the bootstrapped estimate of the distribution
of α̂(Ex) will be quite coarse whenn is
small. However, the ‘resolution’ of the estimator
quickly increases with increasingn. Even for
moderate sample sizes, the cost of evaluating
α̂(Ex) for all possible samples becomes prohibitive
(and is generally not necessary). Satisfactory
bootstrapped variance estimates can often be
made with as few as 100 bootstrap samples. A
somewhat larger number of samples is required
to produce good confidence intervals since these
require estimates of quantiles in the tails of theα̂
distribution.

There are some problems for which bootstrap
estimators can be derived analytically. For ex-
ample, the bootstrap estimator ofσ 2 is σ̂ 2 =
n−1

n S2 (see [5.2.6] and [5.3.3]).

16That is, the elements of the sample are obtained one at a
time by drawing an observation at random, noting its value, and
returning it to the pool of observations.

5.5.3 Moving Blocks Bootstrap. As with all the
other estimators discussed in this chapter, boot-
strapped estimators are vulnerable to the effects of
departures from the sampling assumptions. Zwiers
[442] illustrates what can happen when serial
correlation is ignored. The difficulty arises because
the resampling procedure does not preserve the
temporal dependence of the observations in the
sample; the resampling done in the ordinary boot-
strap produces samples of independent observa-
tions regardless of the dependencies that may exist
within the original sample.

A simple adaptation that accounts for short-term
dependence is called themoving blocks bootstrap
(see K̈unsch [235], Liu and Singh [254], and
also Leger, Politis, and Romano [248]). Instead
of resampling individual observations, blocks of
l consecutive observations are resampled, thus
preserving much of the dependent structure in the
observations. In general, the block length should
be related to the ‘memory,’ or persistence, of
the process that has been sampled, with longer
block lengths used when the process is more
persistent. Wilks [423] points out that care is
required to choosel appropriately. Blocks that are
too long will result in confidence intervals with
coverage greater than the nominalp̃, and vice
versa. Theoretical work [235, 254] also shows that
the block lengthl should increase with sample
size n in such a way thatl/n tends to zero asn
approaches infinity.

Wilks [423] describes the use of the moving
block bootstrap when constructing confidence
intervals for the difference of two means from
data that are serially correlated. He gives simple
expressions for the block length that can be used
when data come fromauto-regressions of order 1
or 2 (Chapter 10). Wang and Zwiers [414] applied
the moving blocks bootstrap to GCM simulated
precipitation.
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Overview

In Part II we address the problem of determining the correctness of a certain statistical model1 in the
light of empirical evidence. To make sure that the assessment is fair, the model must be tested with
information that is gathered independently of that which is used to formulate the model. The standard
method that is used is called statisticalhypothesis testing. We deal with this concept in some length in
Chapter 6 (see also [1.2.7] and [4.1.7–11]).2 Examples of applications in climate research are presented
in Chapter 7.

The application of hypothesis testing in climate research is fraught with problems that are not always
encountered in other fields.

• In climate research it is rarely possible to perform realindependent experiments(see Navarra
[289]) with the observed climate system. There is usually only one observational record, which
is analysed again and again until the processes of building and testing hypotheses are hardly
separable. Dynamical climate models often provide a way out of this dilemma. Hypotheses that
are formed by analysing the observed record can frequently be tested by running independent
experiments with GCMs. However, even these experiments are not completely independent of
the observed record since GCMs rely heavily on parameterizations that have been tuned with the
observed record.

Even though fully independent tests are not possible, testing is often useful as an interpretational
aid because it helps quantify unusual aspects of the data. On the other hand, we need to be wary of
indiscriminate testing because it sometimes allows unusual quirks to draw our attention away from
physically significant aspects of our data.

• Almost all data in climate research have spatial and temporal correlations, which is most useful
since it allows us to infer the space–time state of the atmosphere and the ocean from a limited
number of observations (cf. [1.2.2]). However this correlation causes difficulties in testing problems
since most standard statistical techniques assume that the data are realizations of independent
random variables.

Because of these difficulties, the use of statistical tests in acookbookmanner is particularly
dangerous. Tests can become very unreliable when the statistical model implicit in the test
procedure does not properly account for properties such as spatial or temporal correlation.

The problems caused by the indiscriminate use of recipes are compounded when obscure
sophisticated techniques are used. It is fashionable to surprise the community with miraculous
new techniques, even though the statistical model implicit in the method is often not understood.

Hypothesis testing is carried out by formulating two propositions: thenull hypothesis that is to be
tested, and thealternativehypothesis, which usually encompasses a range of possibilities that may be
true if the null hypothesis is false. The alternative hypothesis indirectly influences the test because it
affects the interpretation of the evidence against the null hypothesis. The null hypothesis is rejected
if the evidence against it is strong enough; it is not rejected when the evidence is weak, but this does
not imply rejection of the alternative. We then continue to entertain the possibility that either of the
hypotheses is true.

Null hypotheses are typically of the typeA = B, and in climate research the alternativeA 6= B
is usually correct. Often, though, the difference betweenA and B is small and physically irrelevant.
Statistical tests can not be used to detect the difference between physically significant and insignificant
differences. The strength of the evidence against the null hypothesis, and thus for the detection of
a ‘statistically significant’ difference, depends on the amount of evidence, that is, the number of
independent samples. As the sample size increases so do the chances of detectingA 6= B. With the very
large sample sizes that can be constructed with GCMs, almost every physically irrelevant difference can
achieve statistically significant status.

1To be more precise: an attempt is made to determine whether the model isincorrect; absolutecorrectnesscan not be
determined statistically.

2There are two approaches to statistical decision making. We use thefrequentistapproach, since it is more common in
climatology than theBayesianapproach (see, e.g., Gelman et al. [139]).
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Obviously, this is not satisfactory. We introducerecurrence analysis(see Sections 6.9–6.10) as an
alternative for assessing the strength of the differenceA− B. This technique produces estimates of the
degree of separation betweenA andB that are independent of the sample size.



6 The Statistical Test of a Hypothesis

6.0.0 Summary. In this chapter we introduce the
ideas behind the art of testing statistical hypotheses
(Section 6.1). The general concepts are described,
terminology is introduced, and several elementary
examples are discussed. We also examine some
philosophical questions about testing and some
extensions to cases in which it is difficult to build
the statistical models needed for testing.

The significance level, power, bias, efficiency,
and robustnessof statistical tests are discussed
in Section 6.2. The application of Monte Carlo
simulation in problem testing is discussed in
Section 6.3, and in Section 6.4 we examine how
hypotheses are formulated and explore some of
the limitations of statistical testing. The spatial
correlation structure of the atmosphere often
impacts testing problems. Strategies for coping
with and using this structure are discussed in
Section 6.5. A number of tests of the null
hypothesis of equal means and variances are
discussed in Sections 6.6 and 6.7. Tests designed
to provide a global interpretation for a field
of local decisions, calledfield significance tests,
are presented in Section 6.8. Univariate and
multivariate recurrence analysisare discussed in
Sections 6.9 and 6.10.

6.1 The Concept of Statistical Tests

6.1.1 Introduction. Since we should now be
somewhat comfortable with the ideas underlying
hypothesis testing (see [1.2.7], [4.1.7–11], and the
preamble to this part of the book), we only briefly
characterize the testing paradigm here.

Statistical hypothesis testing is a formalized
process that uses the information in a sample
to decide whether or not to reject H0, the
null hypothesis. The evidence is judged in the
context of a statistical model in such a way
that the risk of falsely rejecting H0 is known. A
second proposition, the alternative hypothesis Ha,

generally describes the range of possibilities that
may be true when H0 is false. The alternative
hypothesis affects the decision making process by

altering the way the evidence in the sample is
judged.

A hypothesis testing process can only have two
outcomes: either H0 is rejected or it is not rejected.
The former does not imply acceptance of Ha—it
simply means that we have fairly strong evidence
that H0 is false. Failure to reject H0 simply means
that the evidence in the sample is not inconsistent
with H0.

6.1.2 The Ingredients of a Test. We need two
objects to perform a statistical test: the object
to be examined—a set of observations that, for
convenience, we collect in a single vectorEx—and
a rule that determines whether to reject the null
hypothesis or not. This rule usually takes the
form ‘reject H0 if S(Ex) > κp̃,’ where S is a
predetermined function that measures the evidence
against H0, and κp̃ is a threshold value forS
beyond which we are willing to risk making the
reject decision.

The rule is defined in three steps.
First, we regard the set of observationsEx

as a realization of a random vectorEX. The
latter represents the ensemble of values thatEx
is able to take, when H0 is true, under infinite
replication of the ‘experiment’ that produced the
set of observations. A statistical model is built for
the experiment by representing the likelihood of
observing a particular realization in this ensemble
with a probability distributionf EX .

Second, we specify thesignificance level, the
probability of rejecting the null hypothesis when
it is true, at which the test is to be conducted. The
choice of the significance level affects the power,
or sensitivity, of the test. Thus the consequences
of falsely rejecting H0 should be balanced against
the consequences of failing to reject H0 when H0 is
false. In Section 6.2 we present this idea in more
concrete terms.

Finally, the chosen significance level, the
alternative hypothesis, and the statistical model are
used jointly to derive the decision making criterion
for the test. This is usually expressed in terms of a
test statisticand a range of values of that statistic,
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or non-rejection region,1 that is consistent with the
null hypothesis.

6.2 The Structure and Terminology
of a Test

6.2.1 Risk and Power. The general mathemat-
ical setup is derived from the three components
described above. A statistical model is developed
to describe the stochastic characteristics of the
observations and the way in which they were
obtained, provided that H0 is true. This model is
expressed in terms of a random vectorEX and its
probability distribution. Then a probabilitỹp ∈
[0;1] and a domain2(p̃) are chosen so thatp̃×
100% of all realizations ofEX fall inside2(p̃), that
is,

P
( EX ∈ 2(p̃)) = p̃. (6.1)

The null hypothesis H0 is rejected if Ẽx 6∈ 2(p̃).
The probability of rejecting H0 when it is actually
true is 1− p̃. This probability, therisk of false
rejection, is called thesignificance levelof the
statistical test.

The probabilityp̃ is chosen to be large, typically
95% or 99%, so that thenon-rejection region
2(p̃) contains the realizations ofEX most likely to
occur when H0 is true. Only the(1− p̃)× 100%
of realizations that are unusual, and therefore
constitute evidence contrary to H0, are excluded
from2(p̃).

The probability of rejecting H0 when H0 is false
is the power of the test. While we would like
the power to be large, it is sometimes small,
often when the alternative hypothesis describes a
probability distribution similar to that described by
H0. ThenP

( EX 6∈ 2(p̃)) under Ha will be close to
that under H0.

Two types of decision making errors can occur
in the testing process. First, H0 can be rejected
when it is true. This is referred to as atype I error.
The probability of a type I error, 1− p̃, is equal to
thesignificance level.

The significance level is chosen by the user of
the test. However, reducing the likelihood of a
type I error comes at the cost of increasing the
likelihood of thetype II error: the failure to reject
H0 when it is false. The probability of a type II

1This is admittedly an awkward expression. The term
‘acceptance region’ is sometimes used instead, but this
expression is imprecise as it implies that we might be able to
actively support the validity of the null hypothesis. Instead we
just do not reject the null hypothesis—so ‘non-rejection’ is the
correct word.

error is 1−power. Thus, reduced significance level
comes at the cost of decreased power. Ultimately,
the user must choosep̃ to balance the risk of a type
I error with the costs of a type II error.

6.2.2 The Non-rejection Region When an
Alternative Hypothesis is not Specified. To
conduct a test it is necessary to derive the
non-rejection region2(p̃). Intuitively, it should
contain all events except those that are unusual
under the null hypothesisand consistent with the
alternative hypothesis. We will assume for now
that Ha = ¬H0. In this context the non-rejection
region contains all events except those that are
unusual under H0.

In particular, if the observations are realizations
of continuous random variables, then the non-
rejection region will cover all possible realizations
Ex for which the density functionf (Ex) under the
null hypothesis is larger than some thresholdαp̃,
that is,

2(p̃)= {Ex : f (Ex) ≥ αp̃}. (6.2)

In many applications the derivation of2(p̃)
is facilitated by assuming that the sampling
procedure and stochastic characteristics of the
observations are such thatEX ∼ N ( Eµ,Σ). Then
the outer surface of2(p̃) is given by f (Ex) = αp̃,
an ellipsoidal surface defined by

D2(Ex) = (Ex − Eµ)TΣ−1(Ex − Eµ) = κp̃.

The domain2(p̃) = {Ex : D2(Ex) ≤ κp̃} is the
interior of the ellipsoid. Thus the statementEx 6∈
2(p̃) is equivalent toD2(Ex) > κp̃, and the test
statistic isD2.

When H0 is true, the random variableD2( EX)
has aχ2 distribution withm degrees of freedom
[2.7.8], wherem is the dimension ofEX. Therefore
it is easy to determineκp̃ so that the test operates
at the appropriate significance level. The non-
rejection region is sketched in Figure 6.1 form =
1 and m= 2.

In the univariate case,EX = X and the matrix
Σ degenerates to the scalarσ 2. The surface of
the ellipsoid(x − µ)TΣ−1(x − µ) = κp̃ is given
by the equation(x − µ)2/σ 2 = κp̃. Only two
points satisfy this equation, so the ellipsoid2(p̃)
degenerates to an interval that has two points as
its ‘surface’ (Figure 6.1a). The null hypothesis is
rejected whenever an observationx lies outside the
interval; it is not rejected when an observationx
falls inside the interval.

The isolines of a bivariate normal density
function f are plotted in Figure 6.1b (withΣ =
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Figure 6.1:Schematic diagrams illustrating the
domains for which the null hypothesis ‘Ẽx is drawn
from EX’ is accepted. The shaded area represents
the non-rejection region2(95%) = {Ex : f (Ex) ≥
α95%} (a) univariate distribution; (b) bivariate
distribution. The pointsx′ and Ex′ are examples of
realizations of the sampling process that provide
evidence contrary to the null hypothesis, whereas
the realizationsx′′ and Ex′′ are consistent with the
null hypothesis [396].

diag(1,2)). The maximum of f is located in the
centre of the diagram, and the region bounded by
the2(95%)-ellipsoid is shaded. In both cases, the
observationEx′ leads to the rejection of the null
hypothesis H0, whereasEx′′ leads to the conclusion
that the observations are consistent with the null
hypothesis.

6.2.3 The Non-rejection Region WhenHa is
Specified. The choice of the non-rejection region
may be constrained in various ways when an
alternative hypothesis is specified. The region must
satisfy (6.1) to ensure that the test operates at
the selected significance level, but it need not
necessarily satisfy (6.2), which was derived under

the assumption that the alternative hypothesis is
the complement of the null hypothesis, that is,
Ha= ¬H0. This particular choice of alternative
hypothesis dictates that all ‘unusual’ values ofEX
represent evidence contrary to H0. However, we
often have prior knowledge about the expected
kind of departure from the null hypothesis. An
example: if we summarize the response of the
climate system to a doubling of CO2 with the
global mean (near-surface) temperature and the
global mean precipitation, then we anticipate an
increase in temperature, but we might be uncertain
about the sign of the change in precipitation.
This prior knowledge, which is expressed as the
alternative hypothesis, results in a non-rejection
region that is constrained in some way.

Consider again the simple examples of the
previous subsection. Figure 6.1 illustrates non-
rejection regions when Ha is the complement of
H0. However, suppose that we anticipate, as in the
climate change example above, that the mean of
X1 will be greater than zero if H0 is false (we
use the subscript ‘1’ to indicate the first element
of EX). Then a reasonable non-rejection region that
accounts for Ha is given by2(p̃) = {Ex : f (Ex) ≥
αp andx1 ≥ 0} ∩ {Ex : f (0, x2) ≥ αp andx1 ≤ 0},
whereαp̃ is chosen to satisfy (6.1). The alternative
hypothesis has modified the ‘rules of evidence’
by instructing the test not to treat unusually large
negative values ofx1 as evidence inconsistent with
H0. The change in the non-rejection region is
illustrated in Figure 6.2. This change reduces the
magnitude ofEX realizations needed on the right
hand side of thex1 = 0 plane to reject H0.
Hence the power of the test is increased against
alternatives for whichE(X1) is positive.

6.2.4 Efficiency. A test may not beefficienteven
if it operates at the selected significance level, that
is, the constraint (6.1) is satisfied. For example,
one might choose the non-rejection region2(p̃) =
{Ex : f (Ex) ≤ αp̃}. This would lead to the rejection
of the null hypothesis for realizations ofEX that
are close to ‘normal’ and hence nearest the null
hypothesis. Although this is a test of H0, it is
clearly an absurd one. One could also choose to
ignore the data by tossing a coin that comes up
heads(1 − p̃) × 100% of the time. Generally
speaking, inefficient low-power tests are avoided if
the non-rejection region satisfies (6.1) and contains
the outcomesEx that are most likely to occur
under H0. Technical details of the construction of
optimal tests can be found in standard texts on
mathematical statistics such as [335] or [92].
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Figure 6.2:Same as Figure 6.1 but for a one-sided
test. The non-rejection region is described in the
text.

6.2.5 Statistical and Physical Significance.
Suppose we wish to test the null hypothesis, H0:
µX = µY, that the means of two random variables
are equal. This can be accomplished by collecting
a sample from both populations and computing a
confidence interval for the difference of means,
µY − µX , similar to (5.45). The null hypothesis
is rejected at the 5% significance level when the
hypothesized value forµY −µX , 0, is not covered
by the 95% confidence interval.

Zero will lie outside just about every real-
ization of the confidence interval when the two
populations are well separated, regardless of the
size of the sample, since there is probably a
large, physically significant difference between the
populations. On the other hand, suppose that the
true difference of means is small and of little
physical consequence, and that the populations
have heavy overlap. Zero will often be inside the
confidence intervals when the sample size is small.
However, the width of the confidence interval
decreases with increasing sample size. Given large
enough samples, zero will again lie outside most

Figure 6.3:Signal-strengthδ = µY−µX
σ

for which
H0: µY = µX is rejected with probability50%
or 90% at the5% significance level, shown as a
function ofn, the number of realizations of each
X and Y. It is assumed thatX ∼ N (µX, σ ) and
Y ∼ N (µY, σ ). [404]

realizations of the confidence interval. Thus, even
though the difference betweenµX and µY is
physically insignificant, we will judge it to be
statistically significant given large enough samples
(i.e., resources).

This is illustrated in Figure 6.3, which shows
the minimum strength of the difference of means
signalµX − µY for which an ordinaryt test (see
[6.6.1]) will reject H0: µX = µY with probability
50% or 90%. These power curves are shown as
a function of sample size under the assumptions
that both populations have the same varianceσ 2

and sizen. The figure shows, for example, that if
µX − µY = 0.5σ, then samples of approximately
n = 24 observations are needed to detect the
signal with a probability of 50%. Eighty-eight
observations are needed in each sample to increase
the power to 90%. The size of signal that can be
detected with a given level of reliability tends to
zero asO(1/

√
n).

Another way to illustrate these ideas is shown
in Figure 6.4, where we see the density functions
of a control and an experimental random variable
(solid and dashed curves labelledn = 1)
and corresponding sampling distributions of the
means for samples of 10 and 40. The population
means differ by one standard deviation. The
two density functions overlap considerably; a
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Figure 6.4: The solid curves display the
distribution of the mean of samples of sizen =
1,10, and40 taken from aN (−0.5,1) population.
The dashed curves show the same distributions for
theN (+0.5,1) population. Note that the overlap
is very large whenn = 1, and virtually nonexistent
whenn = 40.

large portion of experimental states can occur
under control conditions and vice versa. However,
as the sample size increases, the spread of
the density functions of the sample means
decreases, and eventually there is virtually no
overlap. Under these circumstances the control
and the experimental random variables can be
distinguished with almost perfect reliability. Thus,
given a large enough sample, it will be possible
to state with confidence that the experimental and
control random variables cluster around different
means.

Thus the likelihood of rejection of the null
hypothesis depends not only on the strength of the
signal but also on the amount of available data. We
must therefore be careful to distinguish between
statisticalandphysicalsignificance. We return to
this point when we introducerecurrence analysis
in Sections 6.9–6.10.

6.2.6 Example: AGCM Validation. One
application of statistical tests occurs in the
validation of the climate simulated by an
Atmospheric General Circulation Model (AGCM).
The assessment is performed by comparing
individual fieldsEy generated by the AGCM with
a statistical modelEX that is fitted to an ensemble
of fields obtained from the observed climate.

In the following example (see [397])
the observed random vector of interest is
EX = {meridionally averaged(30◦ –60◦N) eddy

120 E 0180 60 W 60 E

m
/1

0

120 W

Figure 6.5:Zonal distribution of the meridionally
averaged (30◦N–60◦N) eddy component of Jan-
uary mean 500 hPa height in decametres. Shaded:
the observed univariate 95% confidence band at
each longitude. Curves: 10 individual states simu-
lated with a General Circulation Model [397].

component of January mean500 hPaheight} and
we let EY be the corresponding random vector that
is simulated by the AGCM. The null hypothesis is
that EX and EY have the same distributions. In the
absence of prior knowledge about the AGCM’s
biases, we take the alternative hypothesis to be the
complement of the null and use the non-rejection
region2(95%) = {Ex : f (Ex) ≥ α95%}. We find
that 6 of the 10 AGCM realizationsEy lie outside
2(95%), so we reject the null hypothesis that the
model simulates the observed climate.

The 10 Ey curves are displayed in Figure 6.5
together with the univariate 95% confidence
band (i.e., the univariate2(p̃) at each longitude;
shaded). Some of the simulated fields are fairly
realistic but most have severe distortions. We
return to this example in Section 7.1.

6.2.7 Example: Sign Test. SupposeX1, . . . ,

Xm are iid random variables that represent a
sample from a populationX, and that we want to
decide whether or notE(X) has a particular value
a. That is, we want to test

H0: E(X) = a. (6.3)

The following is a simplenon-parametricsolution
(see [4.2.2]).

Assume thatX has asymmetricaldistribution,
that is, that there exists a constantb such that
f (b − x) = f (b + x) for all x. Then (6.3) is
equivalent to H0: b = a.

Now consider the test statistic

n(X1, . . . ,Xm) = number ofX j ≥ a. (6.4)
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Since we have assumed independence, we can
think of N = n(X1, . . . ,Xm) as the number of
heads inm tosses of a coin where the probability
of a head on thej th toss is pj = P

(
X j ≥ a

)
.

When H0 is correct, pj = 0.5 and thusN has
the binomial distribution:N ∼ B(m,0.5). If n is
the actual number of observationsx j for which
x j ≥ a, then the probability of observingN ≥ n is
given by

P(N ≥ n|H0) =
∑
n≥n

m!

n!(m− n)!
0.5m. (6.5)

We reject H0 when N is unusually large in the
context of H0, i.e., whenP(N ≥ n|H0) is small
(e.g., 5% or 1%).

We illustrate the sign test with an example from
AMIP, the Atmospheric Model Intercomparison
Project (see Gates [137]).

AMIP established a benchmark 10-year climate
simulation experiment that was performed by a
large number of modelling groups. One feature
of these experiments is that the monthly mean
SSTs and sea-ice extents observed between
January 1979 and December 1988 were prescribed
as time varying lower boundary conditions.
Therefore, since AMIP simulations experience
the same ‘forcing’ at the lower boundary as the
real atmosphere, it is natural to compare the
variability in the AMIP simulations with that in
observations.

In particular, suppose that we want to test the
null hypothesis, H0, that the spatial variability
of the December, January, February (DJF) mean
500 hPa height (φ500) that is simulated by model
X is the same as that contained in the US
National Meteorological Center (NMC) global
φ500 analyses. The table below gives measures
of spatial variability computed from the analyses
and AMIP simulations performed with two climate
models.

Spatial variance of DJF mean φ500

in m2

NMC
Year analyses Model A Model B

79/80 451 471 205
80/81 837 209 221
81/82 598 521 373
82/83 979 988 419
83/84 555 234 334
84/85 713 331 265
85/86 598 217 291
86/87 448 487 351
87/88 270 448 582

The analysed observations contain more spatial
variability than does Model A inn = 5 of nine DJF
seasons. Using (6.5) we find that the probability of
observingn ≥ 5 under H0 is (126+84+36+9+
1)(0.5)9 = 0.5. Thus we cannot conclude that the
spatial variability of the DJF climate simulated by
Model A is significantly different from that which
is observed. On the other hand,n = 8 for Model B,
andP(N ≥ 8) = (9+1)9 = 0.0195. Thus the null
hypothesis can be rejected for Model B at about
the 2% significance level.

Not all of the assumptions required by the sign
test are satisfied in this example. The measure
of spatial variability we used,〈(φ500− 〈φ500〉)2〉
where〈·〉 denotes global average, is not likely to
be exactly symmetrically distributed, although a
Central Limit Theorem [2.7.5] type of argument
can be used to show that its distribution is close to
the normal distribution. Also, the spatial variability
is not likely to be identically distributed in all years
since it is strongly affected by ENSO (see [1.2.3]).
Both of these departures from the assumptions
will have some effect on the significance level and
power of the test.

6.2.8 Sufficient Statistics. The decisions in
the previous example [6.2.7] were made on the
basis of a statistic that is a function of the
pairs of variance differences, not the variances
themselves. It is obvious that such reductions
of data are necessary, but how do statisticians
choose the statistic that results in the most effective
test? In this example the hypothesis concerns the
value of a parameter of the binomial distribution.
The nine random variables that represent the
variance differences may be transformed into nine
other random variables such that distribution of
one of the random variables, sayS, depends
upon the unknown binomial parameter and the
remaining eight of the random variables have a
joint distribution that depends only upon the value
of S. If such a transformation exists, thenS is
said to be asufficient statisticfor the unknown
parameter because it contains all the information
that can be found in the sample about the unknown
parameter. Sufficient statistics are therefore very
good test statistics.

6.3 Monte Carlo Simulation

6.3.1 General. The analytical procedures men-
tioned above, as well as other theoretical methods
used to derive the distributions of test statistics,
often result in intractable mathematical problems.
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The Monte Carlo method is often used when this
happens.2 The idea is to simulate the statistical
model on a computer under the assumption that
H0 is true. The computer is used to generate a large
number of realizations of the test statistic, sayS,
which in turn are used to construct an empirical
estimate of the distribution ofS under H0. Finally,
the estimated distribution is used to determine the
critical valueκp̃ just as its analytical counterpart
would be used if it were available.

The Monte Carlo method is a powerful tool
because it substantially increases the range of
problems that will yield to statistical reasoning. As
with all powerful tools, there are also a number
of pitfalls to be avoided. Although the Monte
Carlo approach can be applied to any statistic,
heuristically derived statistics may not be efficient
and can result in misleading inferences. For
example, theinvariance principle[4.3.3], which
requires that the same inference be made under all
linear transformations of the data, may be violated.

6.3.2 Example. The Monte Carlo method
was used to study the relationship between the
appearance of tropical storms in the Southwest
Pacific and the phase of the tropical Madden-and-
Julian Oscillation (MJO) [399]. The latter is a
stochastic oscillation that affects the intensity of
convection in the tropical West Pacific. Intensified
convection may, in turn, be associated with
increased tropical cyclogenesis and vice versa.

We therefore consider the null hypothesis: ‘H0:
the frequency of tropical storms in the West Pacific
is independent of the phase of the Madden-and-
Julian Oscillation.’ To test this hypothesis we need
an objective measure of the phase of the MJO.
One such measure is given by the oscillation’s
‘POP index’ [15.2.3]. The observed phases can
then be classified into one of eight 45◦ sectors.
Each tropical cyclone is assigned to the sector
corresponding to the phase of the MJO on the
day of genesis. Then, ifFk, k = 1, . . . ,8, is the
frequency of storms in sectork, the null hypothesis
may be re-expressed as

H0: ζk = 1/8, (6.6)

whereζk = E(Fk).
A reasonable alternative hypothesis Ha is

Ha: max
j

[
j+3∑
k= j

(ζk − ζk+4)

]
> 0,

2The ideas discussed here are closely related to the
bootstrapping ideas discussed in Section 5.5.
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Figure 6.6: Monte Carlo simulation of the
probability function fS( j ) of (6.7) with n =
51 cases. The functions are derived from 1000,
10 000, and 100 000 trials. The distribution
function FS( j ), estimated from100 000 trials is
also shown.

with the conventionζk = ζk−8 if k > 8. This
alternative was chosen because it was anticipated
that theζk will vary smoothly withk if H0 is false
in such a way that phases on one half of the circle
are preferred over those in opposite sectors. A
natural test statistic for this setup is

S= max
j

[
j+3∑
k= j

(Fk − Fk+4)

]
. (6.7)

S is a discrete random variable that takes
values between zero andn, the total number of
storms observed. In this example, 51 storms were
observed in a five year period.

To make an inference about (6.6) we need to
determine the probability distributionfS( j ) of S
given that H0 is true. This was done with the
Monte Carlo method by repeatedly:

• generating n independent realizations
x1, . . . , xn from the discrete uniform
distribution on the set of integers{1, . . . ,8}
[2.4.4],

• computing the frequenciesf1, . . . , f8, and

• finally obtaining a realization ofS by
substituting the realized frequencies into
(6.7).

By doing this often, the probabilitiesP(S= j ) for
j = 1, . . . ,n can be estimated.

Estimates based on 1000, 10 000, and 100 000
samples are shown in Figure 6.6. The three
estimates are very similar. The differences
arise from sampling variations: slightly different
estimates of the true probability function are
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Figure 6.7:The Mexican Hat at the border between
Utah and Arizona—is this rock naturally formed?
[3]

obtained each time the Monte Carlo procedure is
repeated. The estimate obtained from the 100 000
trial sample, of course, has less uncertainty than
that obtained from the 1000 trial sample.

The observed set of 51 storms is distributed
on the eight classes as follows:f1,...,8 =
3,9,16,6,3,4,2,8, which results ins = 19.
The corresponding critical value isκ(5%) = 14
(derived from 100 000 trials; see the distribution
functionFS in Figure 6.6). Hence we reject the null
hypothesis that the occurrence of tropical cyclones
in the Southwest Pacific is independent of the
phase of the MJO.

6.4 On Establishing Statistical
Significance

6.4.1 Independence of the Null Hypothesis.
A rock formation called the Mexican Hat
(Figure 6.7), near the border between Arizona and
Utah, consists of a very large boulder perched
precariously on a rocky outcrop. It is instructive to
think briefly about whether we can use statistical
methods to test the null hypothesis that this
rock formation has natural origins. To gather

information with which to test this hypothesis we
might

1 randomly select a (large) sample of rock
formations that have not been altered by
humans, and

2 count the number of rock formations arranged
as the Mexican Hat.

Let us assume that no other Mexican Hat-like
formations are found. Humans have traversed most
of the rocky desert of the world at one time or
another and it would appear that the Mexican
Hat is unique in the collective experience of
these travellers. Therefore, the chances of finding
another Mexican Hat among, say, one million
randomly selected rocks, are nil. Thus we may
reject the null hypothesis at a small significance
level, and give credence to the explanation given
in Figure 6.8.

Obviously we can generalize this example to
include many different null hypotheses of the type
‘rare event is common.’

The problem with these null hypotheses is that
they were derived from the same data used to
conduct the test. We already know from previous
exploration that the Mexican Hat is unique, and
its rarity leads us to conjecture that it is unnatural.
Unfortunately, statistical methodology can not take
us any farther in this instance unless we are willing
to wait a very long time so that tectonic processes
can generate a new independent realization of the
surface of the earth.

6.4.2 More on the Role of Statistical Inference.
The Mexican Hat is a pretty obvious example—
but there are many similar examples in climate
research journals. There are even instances
in which peer reviewers have requested that
authors perform statistical tests as outlined
above. One example concerns theLabitzke
and van Loon hypothesis[238] about the
relationship between the 11-year solar cycle and
the atmospheric circulation in the stratosphere and
the troposphere.3 They found, using about 30
years of data, that the North Pole winter mean
30 hPa temperature is only weakly correlated

3The original draft of [238] did not contain statistical infer-
ences about the relationship between atmospheric circulation
and solar activity. However, reviewers of that article demanded
a statistical test even though there are really only two ways
to verify the Labitzke and van Loon hypothesis. These are a)
develop a physical hypothesis that can be verified by numerical
experimentation, and b) wait a few decades so that additional
independent data can be collected for a confirmatory statistical
test of the hypothesis (cf. [4.1.2]).
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Figure 6.8:Creation of the Mexican Hat: Null hypothesis correctly rejected!

with solar activity. The observed correlation was
0.14 (Figure 6.9, top). The apparent strength of
the relationship was much stronger when the
data were stratified according to the phase of
the Quasi-Biennial Oscillation (QBO; Veryard and
Ebdon [382], Dunkerton [106]): A highpositive
correlation of 0.76 was obtained for the winters in
which the QBO was in its west phase (Figure 6.9,
middle), and a negative correlation of−0.45 when
the QBO was in its east phase (Figure 6.9, bottom).
The similarity of the middle and bottom curves
in Figure 6.9 is certainly as remarkable as the
Mexican Hat.

6.4.3 What if Confirmatory Analysis is not
Possible? Although it is frequently not possible
to make confirmatory statistical inferences once
an exploratory analysis has suggested questions,
methods of statistical inference, such as testing,
are valuable. They serve to underline the unusual
quantitatively and thus help us to focus on unusual
aspects of the data. But the statistical test can not
be viewed as an objective and unbiased judge of
the null hypothesis under these circumstances.

6.4.4 What Constitutes Independent Data?
Confirmatory analysis, as discussed in [6.4.1], re-
quires additional independent data. Independence
is the essential point here; it is generally not
sufficient to have additional data from independent
sources. For example, workers sometimes claim
that they use independent data when they use
station data toderivea hypothesis and grid point
data from the same or a similar period toconfirm
the hypothesis. While it is certainly valuable to
analyse both data sets to make sure that the
hypothesis does not come about as a result of,
for example, systematic biases in an ensemble
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Figure 6.9:Time series of January/February mean
solar activity (solid curve) and 30 hPa temperature
at the North Pole (broken curve). Top: all winters.
Middle: winters when the QBO is in its west phase.
Bottom: winters when the QBO is in its east phase.
From Labitzke and van Loon [238].

of analyses fields, the two data sets are strongly
correlated.

This observation limits anyconfirmatorystatis-
tical analysis with observed (atmospheric or other
geophysical) data. Truly independent confirmatory
analyses can only be performed with observations
in the future because we can only collect the nec-
essary independent information in the future. One
alternative is to carefully construct a sensitivity
experiment with a GCM to test the question. This
avoids waiting, and often gives the experimenter
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opportunities to control or eliminate extraneous
sources of variability that obscure the effects of
interest in observations. Another alternative is to
divide the observations intolearning andvalida-
tion data sets. The latter is set aside and reserved
for confirmatory analysis of questions that arise
from exploratory analysis of the former.

6.5 Multivariate Problems

6.5.0 Overview. The spatial covariance charac-
teristics of the climate system have a profound ef-
fect on the analysis of just about any climate quan-
tity that is distributed in space. Subsection 6.5.1
describes a prototypical problem in which we
might want to use a multivariate test or multiple
univariate tests. In both cases it is necessary to be
aware of the relevant spatial covariance structure to
interpret the results correctly. In subsection 6.5.2
we discuss the interpretation of multiple univariate
tests, conducted, for example, at each grid point
of a GCM. Another approach is to conduct a
multivariate test on the entire field [6.5.3].

However, we often have information that can
be used to sharpen the alternative hypothesis
and therefore improve the efficiency of the
multivariate test. The impact of ignoring this
information is discussed in subsection 6.5.4. The
prior information is expressed as a set of ‘guess
patterns’ [6.5.6] and it is used by projecting the
observed fields onto the space spanned by the
guess patterns, therefore reducing the dimension
of the multivariate testing problem. There are
also practical considerations that motivate the
dimension reduction [6.5.5]. Even after dimension
reduction, it may be possible to further increase the
sensitivity of the test by searching for a pattern
in the space spanned by the guess patterns that
optimizes the signal-to-noise ratio [6.5.7]. Finally,
it is sometimes possible to develop a hierarchy of
nested sets of guess patterns, and this inevitably
leads to a step-wise testing procedure [6.5.8].

6.5.1 GCM Experiments. Analyses of GCM
experiments are usually multivariate in nature
simply because such models produce fields, such
as monthly mean 500 hPa height fields, as
output. GCM experiments are eithersensitivity
experimentsor simulationsof the present or a past
climate of Earth or another planet.

A typical sensitivity study will consist of two
climate simulations. One run, labelled thecontrol
run is conducted under ‘normal’ conditions, and
the other, theexperimental run, is conducted with,

for example, the anomalous boundary conditions
or a modified parameterization of a sub-grid
scale physical process. Statistical tests are often
used to determine whether the changes affect
the distribution of climatic states simulated by
the model. Since distributional changes alter the
moments (such as mean and variance, see [2.6.7]),
a basic problem is to test H0: µcontrol =
µexperiment, that is, the null hypothesis that
the changes do not affect the mean state of
the simulated climate. Examples are given in
Section 7.2, where we compare two simulated
climates, and Section 7.1, where a simulation is
compared with the observed climate.

6.5.2 The Effect of Spatial Correlation
on Multiple Univariate Tests. The simplest
approach to comparing the mean states of the
climates simulated in a pair of GCM experiments
is to conduct a univariate difference of means test
[6.6.1] at every grid point. This is called thelocal
test approach because alocal null hypothesisis
tested at each grid point.

There can, however, be difficulty with the global
interpretation of the results of a collection of local
tests.

Assume, for the moment, that thetreatment
applied to the experimental simulation has no
effect on the simulated mean state. Then the local
equality of means hypothesis is true everywhere.
Theglobal null hypothesisthat corresponds to the
collection of local hypotheses is that the mean
fields are equal. Now suppose that the local null
hypothesis is tested at each ofm grid points at
the 5% significance level. Under the global null
hypothesis we expect that roughly 5% of the local
test decisions will be reject decisions. Each test is
analogous to the toss of a fair 20-sided die that has
19 black faces and 1 white face. The white face
will come up 5% of the time on average, but the
proportion of white faces observed varies between
replications of anm-roll die-rolling experiment. In
the same way there is variability in the number
of reject decisions that will be made in any one
replication of the climate simulation experiment.

If decisions made at adjacent grid points are
independent of each other, then the 20-sided die
model can be used to predict the probability
distribution of the number of reject decisions under
the global null hypothesis. In fact, the probability
of making reject decisions atk or more grid
points is given by the binomial distribution that
has cumulative distribution functionFm(k) =∑m

i=k B(m,5%)(i ). For example, if the local test is
conducted atm=768 grid points, the probability
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of obtaining more than 48 local rejections under
the global null hypothesis is 5%. Thus, in
this example with independent grid points, a
reasonableglobal testis to reject the global null
hypothesis if the local reject decision is made at
the 5%-significance level at 49 or more grid points.

In the real world, decisions made at adjacent
grid points arenot independent because meteo-
rological fields are spatially correlated. Thus the
binomial distribution does not provide the appro-
priate null distribution for the number of local
reject decisions.

This was demonstrated in an experiment
in which seven independent integrations were
conducted with a simplified GCM [384]. Each
integration produced one monthly mean field. The
runs were identical except for small variations in
their initial conditions. Because small-scale errors
quickly cascade to all resolved spatial scales in
AGCMs, this produced a set of seven independent
realizations of the same geophysical process.

The set ofK = 7 simulated monthly mean fields
was arbitrarily split up into two sets, the firsti and
the lastK− i . The first set was used to estimate the
statistical parameters of the simulated geophysical
process. Each realization in the second set of fields
was tested at each grid point to see if it belonged
to the population represented by the first set. The
local rejection rate was subsequently calculated.
On average, the reject decision was made 5.2% of
the time, nearly the nominal 5% rate specified by
the null hypothesis. However, there are instances
in which the rate of incorrect decision was as
high as 10%. We would expect reject rates to vary
between 3.4% and 6.6% in the absence of spatial
correlation. Thus it appears that spatial correlation
affects the variability of the proportion of reject
decisions.

The effect of spatial correlation is illustrated in
Figure 6.10 where we see one field of erroneous
rejections. Note that erroneous rejections do
not occur at isolated points. Rather, the spatial
correlation structure results in pools of reject
decisions. On average these pools will occupy
5% of the map. Map to map variation in the
area covered by the pools depends on the average
size of the pools, which in turn is determined by
the spatial correlation structure of the field. The
map to map variation is smallest when the ‘pools’
degenerate to isolated points that are not spatially
correlated.

6.5.3 Multivariate Tests of the Mean. There
are at least two ways to test the global null
hypothesis of the equality of mean fields. One is

Figure 6.10: The spatial distribution of false
rejections of local null hypotheses in a Monte
Carlo experiment [384].

to find the correct distribution for the number of
false local rejections under the null hypothesis.
Livezey and Chen [257] have suggested methods
that are widely used [6.8.1–3]. Another is to use
multivariate techniques such as the Hotelling test
or a permutation test [6.6.4–7].

The multivariate method induces strategic and
technical problems related to the dimension of the
observed climate fields. We discuss these in the
next two subsections.

6.5.4 Strategic Problems. The strategic prob-
lem arises because the signal induced by the
experimental ‘treatment’ may not be present in
all components of the observed field. Often it
resides in a low-dimensional subspace spanned
by only a few vectors. The totalm-dimensional
space that contains the climate realizations may be
represented as a sum of two spacesÄS andÄN

with dimensionsmS andmN respectively, where
mS + mN = m. The signal is confined toÄS.
BothÄS andÄN contain variations due to random
fluctuations. A multivariate test of the equality of
means hypothesis (i.e., the signal is absent) will be
more powerful if is restricted toÄS because the
signal-to-noiseratio inÄS is greater than it is in
the full spaceÄS∪ÄN .

This is demonstrated in the following example.
Let EX be anm-dimensional normal random vector
with meanEµ = (0, . . . ,0)T and covariance matrix
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Σ = I.4 Let EY be anotherm-dimensional normal
random vector defined byEY = EX + Ea whereEa =
(2,0, . . . ,0) and letEy be a realization ofEY. We
want to test the null hypothesis, H0, thatEy belongs
to the population defined byEX. The Mahalanobis
test statistic

D2(Ey) = (Ey− Eµ)TΣ−1(Ey− Eµ)

=
m∑

i=1

y2
i (6.8)

has aχ2 distribution withm degrees of freedom
under H0. Its expected value under the alternative
hypothesis, which is true by construction, is
E
(
D2) = 22 + m. These expected values, and

corresponding 5% significance level values for the
test statistic under H0, are:

m E
(
D2) under Ha χm

5% under H0

1 5 3.8
2 6 6.0
3 7 7.8
4 8 9.5

We see that form = 1 the expected Mahalanobis
distance is larger than the critical value; usually
the null hypothesis will correctly be rejected.
However, as more components that contain only
noise are included, the chances of detecting the
signal deteriorate.

6.5.5 Practical Problems. A practical problem
arises in multivariate difference of means tests
because the covariance matrix is generally not
known. The problem was avoided in the previous
example becauseΣ was specified. Consequently,
we were able to useD2( EY) (6.8) as the test
statistic. In most problems, though,Σ must be
estimated. One implication is that we must base
the test on the HotellingT2 statistic, which is
the counterpart toD2 if Σ is replaced with the
sample covariance matrix. To computeT2 we must
be able to invert the sample covariance matrix,
which means that we need to have a sample of
n = m+ 1 realizations of the climate represented
by EX. However, in most climate applications, there
are many more spatial degrees of freedom than
observations (i.e.,n ¿ m). Then, reducing the
number of spatial degrees of freedom by restricting
the test to a subspace that is thought to contain the
signal of interest is also a practical expedient.

4I denotes them×m identity matrix.

6.5.6 Guess Patterns. The spatial degrees of
freedom may be reduced by approximating the full
m-dimensional fieldsEX as a linear combination of
a set ofm̃ patternsEp i , as

EX ≈
m̃∑

i=1

αi Ep i . (6.9)

The coefficientsαi are usually fitted by a least
square approximation (see Chapter 8). Theguess
patterns Ep i should be specified independently of
the outcome of the experiment.

There are various ways to obtain guess patterns.

1 Patterns known to yield efficient approxi-
mations of the analysed fieldsEX: examples
are Empirical Orthogonal Functions (EOFs;
see Chapter 13) or, in case of a spherical
geometry, surface spherical harmonics.

2 Problem-related patterns: patterns that were
found as signals in similar but independent
GCM experiments or patterns that were
diagnosed from similar observations.

3 Physically based patterns: patterns that were
derived by means of simplified theory that is
appropriate to the hypothesis the experiment
is designed to test.

It is often more profitable to invest in choices
2 and 3, which provide patterns with a physical
basis, rather than to try to improve the power of
the statistical tests. These choices also provide
confirmation that the physical reasoning that
leads to the experimental design and choice of
patterns is correct. For example, if empirical guess
patterns are derived from observations on the
basis of physical reasoning (choice 2) and the
null hypothesis that their ‘experimental’ treatment
does not induce a climate signal is rejected, then
there is statistical confirmation that the GCM has
reproduced these aspects of the observed climate.
If dynamically derived patterns are used (choice
3), rejection is an indication that the simplified
theory behind the guess patterns operates within
the GCM, at least to a first order of approximation.
Examples are presented in Sections 6.9, 6.10 and
Chapter 7.

6.5.7 Optimizing the Signal-to-Noise Ratio.
Hasselmann [166, 168] suggested the following
interesting way to construct anoptimal guess
patternEp o from a given guess patternEp.

Let EX be a random vector of dimensionm with
covariance matrixΣ and expectationEµX . Let EY
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be anotherm-dimensional random vector with the
same covariance matrix and expectationEµY 6=
EµX . Next, let Ep be a guess pattern representing the
anticipated form of the true signal1 = EµY − EµX .
This pattern will not point in exactly the same
direction as1, but we will act as if Ep were the
true signal. Then the challenge is to find anoptimal
guess patternEp o that maximizes the likelihood of
signal detection.

To do so we consider thesignal-to-noise ratio

r = 〈 Ep , Ep o〉2
Var

(
〈 EY − EX, Ep o〉

) , (6.10)

where〈·, ·〉 denotes the scalar, or dot, product of
two vectors. The numerator in (6.10) is the strength
of the (anticipated) signal in the direction of the
optimal guess patternEp o. The denominator is the
variance of the noise,EY− EX, in the direction ofEp o.
Whenr is large, the likelihood of rejecting the null
hypothesis H0: µY − µX = 0, and thus detecting
a nonzero signal1 in the direction of Ep , is also
large.

We now specifyEp o. Becauser does not depend
on‖ Ep o‖ we may constrainEp o so that

〈 Ep , Ep o〉2 = 1. (6.11)

Then r may be maximized by minimizing the
denominator of (6.10),

Var
(
〈 EY − EX, Ep o〉

)
= 2( Ep o)TΣ Ep o. (6.12)

The guess pattern that minimizes (6.12) satisfies

d

d Ep o

[
2( Ep o)TΣ Ep o − ν

(
〈 Ep , Ep o〉2− 1

)]
= 0,

(6.13)

whereν is a Lagrange multiplier used to enforce
the constraint (6.11). Note that any solution of
(6.13) satisfies (see, e.g., Graybill [148])

2Σ Ep o = ν〈 Ep , Ep o〉 Ep . (6.14)

Thus the only solutionEp o of (6.13) is

Ep o = 1

2
νΣ−1 Ep ,

with ν = 2( Ep TΣ−1 Ep )−1.
When Σ = diag(σ 2

1 , . . . , σ
2
m), that is, Σ is

diagonal, thei th component ofEp o is expressed
in terms of thei th component ofEp as po

i =
pi /σi . That is, the original guess pattern is
rotated towards directions with small values ofσi ,
directions that have little ‘noise’ relative to the
signal.

An example of an application of this optimiza-
tion procedure (Hegerl et al. [172]) is given in
some detail in Section 7.4. Other applications in-
clude Bell [37, 39], Mikolajewicz, Maier-Reimer,
and Barnett [277] and Hannoschöck and Frankig-
noul [161].

6.5.8 Hierarchies. When an extended set of
guess patterns is available, step-wise test proce-
dures are also possible within the multivariate
testing paradigm discussed in this section.

For example, suppose a set of guess patterns
contains a subset of patterns4 = { Ep i : i ∈ I }
that are physically derived (choices 2 and 3 in
[6.5.6]). HereI is a collection of indices. We call
the low-dimensional spaceÄ4, which is spanned
by4, the ‘signal space.’ The space spanned by the
full collection of guess patterns is then given by
the full set of patterns that are likely to contain the
sought after signalÄ = Ä4∪Ä⊥4 whereÄ⊥4 is the
space spanned by the guess patterns that are not
contained in4. The full response, sayEZ = EY− EX,
is then written asEZ = EZ4 + EZ⊥4. The components
parallel andperpendicularto the signal space,EZ4
and EZ⊥4, are then tested. The parallel component
is projected on the problem-specific guess patterns
contained in4 and the perpendicular component
is tested using problem-independent guess patterns
(choice 1 in [6.5.6]) such as EOFs.

An example is given in Section 7.2.
The approach discussed above imposes a simple

ordering on a set of guess patterns: the full set
of patterns that are likely to contain the sought
after signal and a smaller subset of patterns derived
from problem-specific reasoning. A hierarchical
approach to testing would involve conducting
a test in the space spanned by the problem-
specific patterns, and then, if a signal is detected,
conducting a second test in the full space. Of
course, this approach is not limited to two levels;
a hierarchy of nested vector spaces could be
constructed by scaling arguments, for example.
A sequence of tests could then be conducted
[22], either in order of increasing or decreasing
dimension, to isolate the region on the supposed
response space (the space spanned by the full set
of guess patterns) that contains the signal (see
Section 7.3).

6.6 Tests of the Mean

6.6.1 The Difference of Means Test. Thet test,
also known as Student’st test, is a parametric test
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of the null hypothesis that two univariate random
variablesX andY have equal means, that is,

H0: E(X) = E(Y) or µX = µY. (6.15)

The statistical model required to conduct the
test is built by making three assumptions [454].
The first is a sampling assumption that every
realization of X or Y occurs independently
of all other realizations. The second and third
are distributional assumptions: first, that the
distribution that generates realizations ofX (or
Y) is the same for each observation in theX (or
Y) sample and, second, that the distributions are
normal5 and have equal varianceσ 2. The t test
is moderately robust against departures from the
normal distribution, particularly if relatively large
samples of both random variables are available.
However, the test is not robust against departures
from the sampling assumption (see [454] and
[6.6.6]) or against large departures from the
assumption that all realizations in a sample come
from the same distribution.

The optimal test statistic, within the constraints
of the statistical model implied by the three
assumptions, is conceptually different from that
used for the sign test.6 The difference of means is
estimated and then scaled by an estimate of its own
standard deviation, making it dimensionless.

The optimal test statistic is given by

t = µ̂X − µ̂Y

Sp

√
1

nX
+ 1

nY

, (6.16)

wherenX andnY indicate the size of theX andY
samples respectively,̂µX and µ̂Y are the sample
means of{x1, . . . , xnX } and{y1, . . . , ynY }, andSp

is the pooled estimate of the common standard
deviation

S2
p =

∑nX
i=1(xi − µ̂X)

2+∑nY
i=1(yi − µ̂Y)

2

nX + nY − 2
.

(6.17)

Under the null hypothesis (6.16) has at
distribution withnX + nY − 2 degrees of freedom

5The test is said to beparametric because it concerns
parameters (the meansµX andµY) of a specific distribution
(the normal distribution). A non-parametric version of the test
(see [6.6.11]) would focus on the expected values ofX andY
and would use less specific information about the distribution of
these random variables to construct the statistical model needed
to conduct the test.

6The sign test is an example of a non-parametric test.
The Mann–Whitney test [6.6.11] is another example of a
non-parametric test.

[2.7.9].7 This is fortunate because it means that
the reference distribution under the null hypothesis
does not depend upon either the unknown common
population meanµ = µX = µY or standard
deviationσ = σX = σY. Consequently, only a
small number of reference distributions, indexed
by nX + nY − 2, are required. Critical values
for this family of distributions are tabulated in
Appendix F.

6.6.2 Components of thet Statistic. It is useful
to take a slight diversion to dissect (6.16) and
better understand why it has thet distribution
under the null hypothesis.

A random variableT has thet distribution with
m degrees of freedom, writtenT ∼ t(m) [2.7.9],
when

T = A√
B/m

, (6.18)

where A is a standard normal random variable,
A ∼ N (0,1), and B is a χ2 random variable
with m degrees of freedom,B ∼ χχχ2(m), that is
independent ofA. Under the null hypothesis of
equality of means we find that

A = µ̂X − µ̂Y

σ
√

1/nX + 1/ny
∼ N (0,1),

B = nX + nY − 2

σ 2
S2

p ∼ χχχ2(nX + nY − 2),

and thatA andB are independent. By substituting
these quantities into (6.18) we see that the test
statistic for the difference of means test (6.16) is
T ∼ t(nX + nY − 2).

6.6.3 When the Variance is Known. The t test
discussed above has been derived assuming that
the variance is unknown. When the variance is
known, its square root may be substituted directly
for Sp in (6.16). The resultingz-statistic has the
standard normal distributionN (0,1) under the
null hypothesis. Critical values may be obtained
from Appendix D.

7The termdegrees of freedomhas geometrical roots. The
random variableT , of which t is a realization, is a function
of deviationsxi − µ̂X , i = 1, . . . ,nX and y j − µ̂Y, j =
1, . . . ,nY . When thesenX + nY random deviations are
organized into an(nX + nY)-dimensional random vector, we
find that the random vector is confined to an(nX + nY −
2)-dimensional vector space. This happens because thenX X
deviations must sum to zero as must thenY Y deviations. A
derivation of this distribution of (6.16) may be found in, among
others, [280] or [272].
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6.6.4 Relaxing the Assumptions. The differ-
ence of means test described above operates as
expected (e.g., the risk of false rejection is equal to
that specified) only if the assumptions are fulfilled.
In the following subsections we discuss methods
that can be used when:

• the variances ofX andY are unequal,σX 6=
σY (see [6.6.5]),

• the observations are paired in such a
manner that pairs(xi , yi ) are independent
realizations of a random vector(X,Y)T that
has dependent components (see [6.6.6]),

• the observations areauto-correlated (see
[6.6.7,8]).

6.6.5 Unequal Variances. We suppose now that
the sampling and distributional assumptions of
[6.6.1] continue to hold except that Var(X) 6=
Var(Y).8 Under these circumstances only some of
the ingredients that lead to thet distribution as
reference distribution are obtainable. The natural
estimator of the true difference of means is still
µ̂X − µ̂Y. This is a normal random variable with
meanµX−µY and varianceσ 2

X/nX+σ 2
Y/nY. The

variance is estimated byS2
X/nX + S2

Y/nY with S2
X

andS2
Y defined as usual byS2

X = 1
nx−1

∑nX
i=1(xi −

µ̂X)
2. Thus the difference of means is expressed in

dimensionless units as

t = µ̂X − µ̂Y√
S2

X/nX + S2
Y/nY

. (6.19)

The square of the denominator can be shown to
be statistically independent of the numerator but
it doesnot have a distribution proportional to the
χ2 distribution. Therefore the test statistic does not
have at distribution under the null hypothesis.

The accepted solution to this problem, which is
known in the statistical literature as theBehrens–
Fisher problem, is to approximate the distribution
of this statistic with at distribution whose degrees
of freedom are estimated from the data. The
formula used to determine the approximatingt
distribution is obtained by comparing the first and
second moments ofS2

X/nX+S2
Y/nY with those of

theχ2 distribution. The resulting formula for the
approximating number of degrees of freedom is

d f = (S2
X/nX + S2

Y/nY)
2

(S2
X/nX)

2

nX−1 +
(S2

Y/nY)
2

nY−1

. (6.20)

8When the equality of the two variances is uncertain,
one might resort to anF test for the equality of variances
(Section 6.7).

Hypothesis (6.15) is tested by comparing the
t-value computed using (6.19) with the critical
values of thet distribution with d f degrees of
freedom, whered f is computed with (6.20). This
recipe constitutes a test that operates at an actual
significance level close, but not exactly equal, to
the level specified by the user.

6.6.6 The Paired Difference Test. Not all
experimental designs lead to pairs of samples that
are independent of each other. For example, one
may conduct an experiment consisting of a series
of five-day simulations with an AGCM to study
the effects of a particular cloud parameterization.
Suppose that two parameterizations are chosen,
and that pairs of five-day runs are conducted from
the same initial conditions. The initial conditions
are selected randomly from a much longer run of
the same AGCM, and the total liquid water content
of the atmosphere is computed at the end of each
five-day integration.

Because the integrations are short, one can
imagine that the pairs of liquid water fields
obtained from each set of initial conditions are not
independent of each other. Thus the difference of
means tests discussed above are not appropriate
for testing the null hypothesis that the change in
parameterization has not affected the total liquid
water content of the atmosphere. The statistical
model used with these tests relies upon the
independence of all observations.

The solution to this problem is to compute the
difference fields and test the null hypothesis that
the mean difference is zero using a one samplet
test. It is reasonable to assume that the observed
differences are independent of one another because
the initial conditions were chosen randomly. The
distributional assumptions are that the differences
have a normal distribution and that all the
differences come from the same distribution. The
former may not be true, even approximately,
because moisture related variables, such as
total liquid water, often exhibit strongly skewed
distributions. However, let us continue to assume
that the differences are normally distributed for
the purposes of this discussion. The second
distributional assumption, that the differences are
identically distributed, may not hold if we failed to
account for other sources of variation, such as the
annual cycle, in our experimental design. To avoid
such problems, the choice of initial conditions
should be constrained to one season or calendar
month, and one time of day.

Let di represent thei th realization of the change
in total liquid waterD. The null hypothesis to be
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tested is H0: µD = 0. The optimal test statistic for
this problem is

t = µ̂D

SD/
√

n
, (6.21)

wheren is the size of the sample of differences,
µ̂D =

∑n
i=1 di /n is the mean difference, and

S2
D =

∑n
i=1(di − µ̂D)

2/(n − 1) is the sample
variance of the observed differences. This statistic
has a t distribution with n − 1 degrees of
freedom under the null hypothesis.9 Thus the
paired difference test is conducted by computing
the differences, then computing (6.21) with the
sample moments, obtaining the appropriate critical
value from Appendix F and finally comparingt
with the critical value to make a decision.

The paired difference test is an example of a
one-samplet test. One-sample tests are used to test
hypotheses of the form H0: µX = c wherec is
a constant that is chosena priori. These tests are
performed by computing

t = µ̂X − c

SX/
√

n
(6.22)

and comparing with critical values fort(n− 1).

6.6.7 Auto-Correlation. As noted in [6.6.1], the
t test is not robust against departures from the
independence assumption. In particular, meteoro-
logical time seriesare generallyauto-correlated
if the time increment between observations is not
too large. Under these circumstances, at test such
as that based on (6.16) becomesliberal, that is,
it rejects the null hypothesis when it is true more
frequently than indicated by the significance level.

Intuitively, observations taken in an auto-
correlated sequence vary less quickly than ob-
servations obtained completely at random. An
auto-correlated series therefore contains less in-
formation about the population mean than a com-
pletely random sequence of the same length.
Consequently, the standard error ofµ̂X − µ̂Y is
larger for auto-correlated data than for indepen-
dent observations. However, the denominators of
t statistics, such as (6.16), estimate the standard
deviation of µ̂X − µ̂Y under the independence
assumption. Therefore the denominator in (6.16)
underestimates the variability of̂µX− µ̂Y with the
consequence that the absolute value oft tends to
be too large.

Resolution of this problem is non-trivial [454].
Heuristic arguments, such as that given above,

9There aren− 1 degrees of freedom because the deviations
di −µ̂D are elements of ann-dimensional random vector that is
constrained to vary within an(n−1)-dimensional vector space.

lead to a t test in which the denominator of
the t statistic is inflated by a factor related to
the time scales at which the time series varies.
The resulting statistic, detailed below, is compared
with critical values from at distribution with an
estimated number of degrees of freedom. This
approach, while not exact, has the advantages
that it is easy to use, easy to understand, and
asymptoticallyoptimal (i.e., it becomes optimal as
the sample size becomes infinitely large). It can
be used safely when samples are relatively large,
as defined below. When samples are not large the
‘Table-Look-Up’ test [6.6.9] should be employed.

The large sample difference of means test is
developed heuristically as follows. We assume
that the memory of the observed time series
is finite so that the full samples{X1, . . . ,XnX }
and {Y1, . . . ,YnY } contain subsets of indepen-
dent observations. For example, suppose that
{x1, . . . , x100} is a time series of 100 daily surface
temperature anomalies. Consecutive observations
are certainly highly correlated, but any two obser-
vations separated by 10 days or more are nearly
independent. Thus the sample contains a subset
of at least 11 roughly independent observations.
However, we do not throw away the other 89
observations. Instead, we attempt to estimate the
information content of the entire sample by deriv-
ing anequivalent sample size.

The measure of information used in the differ-
ence of means problem is one over the variance of
the sample mean. Thus the smaller the variance of
the sample mean, the more information the sample
contains about the unknown population mean.
The equivalent sample sizen′X is defined as the
number of independent random variables that are
needed to provide the same amount of information
about µX as the sample of dependent random
variables{X1, . . . ,XnX }. Equivalent sample size
n′Y is defined analogously.10 We anticipate that
n′X < nX and n′Y < nY when observations are
auto-correlated.11

This paradigm leads us to estimatorsn̂X and̂nY,
which replacen′X andn′Y in the ordinary difference
of means tests with equal (see [6.6.1]) or unequal

10Note that the definition of the equivalent sample size
depends upon the parameter that is being tested and the way
is which information is measured. The equivalent sample sizes
for an equality of variance test, for example, are different
from those for the equality of means tests. The measure of
information used here, the inverse of the variance of the sample
mean, is calledFisher’s information(see [92]).

11Strictly speaking, this happens when time series are
persistent, that is, when adjacent anomalies have the same sign.
It is possible to haven′X > nX andn′Y > nY when adjacent
anomalies tend to have opposite sign.
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(see [6.6.5]) variances. When the samples are large
enough,t statistics computed in this way with
(6.16) as

t ′ = µ̂X − µ̂Y

Sp

√
1

n̂′X
+ 1

n̂′Y

(6.23)

or with (6.19) as

t ′ = µ̂X − µ̂Y√
S2

X

n̂
′
X

+ S2
Y

n̂
′
Y

(6.24)

can be compared with critical values from the
t(̂n

′
X + n̂

′
Y − 2) or t(d̂ f ) distribution respectively

where, in the latter case,̂d f is computed with
(6.20) by substituting the equivalent sample size
estimates for the sample sizes themselves.

There are two problems left:

• estimating the equivalent sample size (see
[6.6.8]), and

• determining whether thet ′ in (6.23) or (6.24)
is distributed as a Student’st random variable
under the null hypothesis. Whenn′X andn′Y
are small (n′X + n′Y < 30 if t ′ is computed
with (6.23); n′X < 30 andn′Y < 30 if t ′
is computed with (6.24)), the distribution of
t ′ deviates markedly fromany t distribution
[363]. Thus thet test can not be used with
small equivalent sample sizes. An alternative
is described in [6.6.9].

While the discussion above has focused on the
difference of means test, the same considerations
apply to one-samplet tests such as the paired
difference test (cf. [6.6.6]).

6.6.8 The Definition and Estimation of the
Equivalent Sample Size. Let us assume that the
data are given with constant time stepsδ, such that
the i th samplexi is taken at timet = i δ. Then the
variance of the sample mean is

Var
(
X
) = σ 2/n′X, (6.25)

where

n′X =
nX

1+∑nX−1
k=1

(
1− k

nX

)
ρX(k)

, (6.26)

(see Section 17.1) andρX(k) is the auto-
correlationfunction

ρX(k) = 1

σ 2
Cov(Xi ,Xi+k)

(see Section 11.1). We will drop the subscript
‘ X’ for notational convenience in the rest of this
subsection.

 Sample Size n

Figure 6.11:The reject rate percentage of the
one-samplet test when the observations are auto-
correlated (see text). The ‘equivalent sample size’
n′ is given by (6.26) (thin curve) and is estimated
with (6.26) (thick curve).

We conducted a Monte Carlo experiment (cf.
[6.3.1]) with a one-samplet test to examine
how well it works when the equivalent sample
size n′ is determined by (6.26).Time seriesof
length n = 15,30,60. . . were generated by an
auto-regressive process of first orderwith α =
0.6 (see Chapter 10). Such processes have auto-
correlation functions of the formρ(k) = α|k|. If
we insert the equivalent sample size, as defined
by (6.26), into (6.22) and use a significance level
of 5%, we observe fewer rejections of the true
null hypothesis ‘H0: µ = 0’ (Figure 6.11) than
expected. The deviation from the nominal 5%
level is considerable whenn is less than 30. This
happens because the distribution oft ′ is not well
approximated by the distribution oft (n′) under H0.

Estimates ofn′ can be obtained either from
physical reasoning or by means of a statistical
estimator. Estimates based on physical reasoning
should state lower bounds forn′ because optimistic
estimates will result int ′-values that are frequently
too large and, consequently, cause more frequent
rejection of the null hypothesis when it is true than
indicated by the significance level.

Statistical estimators ofn′ use estimates of the
auto-correlation functionρ(k) in combination with
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(6.26). Various reasonable estimators ofn′ [363,
454] result int tests that tend to reject H0 more
frequently than specified by the significance level.
Estimation is discussed further in [17.1.3].

The Monte Carlo experiment described above
was repeated using this best estimatorn̂ ′ in place
of the known equivalent sample sizen′ (6.26).
Figure 6.11 shows that the test now rejects the true
null hypothesis more frequently than specified by
the significance level of 5%. We therefore suggest
that thet testnot be used withequivalent sample
sizes smaller than 30. Instead, we advise the use
of ‘Table-Look-Up test,’ described next, in such
predicaments.

6.6.9 The ‘Table-Look-Up Test.’ The ‘Table-
Look-Up test’ [454] is a small sample alternative
to the conventionalt test that avoids the difficulties
of estimating an equivalent sample size while
remaining as efficient as the optimal asymptotic
test when equivalent sample sizes are large.12

The Table-Look-Up test procedure is as follows.

• The paired difference (or one sample) case: to
test ‘H0: µ = µ0’ using a sample of sizenX

compute

t = (x− µ0)

SX/
√

nX
, (6.27)

where x is the sample mean andS2
X is the

sample variance.

Compute the sample lag-1 correlation coeffi-
cientα̂X using

α̂X =
∑nX

i=1 x′i x
′
i−1

(nx − 1)S2
X

(6.28)

where x′i = xi − µ̂X . Use Appendix H
to determine the critical value fort that is
appropriate for a sample of sizen with lag-1
correlation coefficient̂αX .

• The two sample case (assumingσX = σY

and that lag-1 correlationαX = αY): to test
‘H0: µy = µx ’ using X and Y samples of
sizenX andnY respectively, compute

t = x− y

Sp

√
1

nX
+ 1

nY

, (6.29)

12The Table-Look-Up test assumes that the sample(s) comes
from auto-regressive processes of order 1 (Chapter 10).
Departures from this assumption will compromise the test.
Wilks [423] suggests an alternative approach for situations
when the assumption does not hold.

wherex andy are sample means andS2
p is the

pooled sample variance (6.17). Compute the
pooled sample lag-1 correlation coefficientα̂
using

α̂ =
∑nX

i=2 x′i x
′
i−1+

∑nY
i=2 y′i y

′
i−1

(nX + nY − 2)S2
p

, (6.30)

wherex′i = xi − µ̂X and y′i = yi − µ̂Y.
Use Appendix H to determine the critical
value of t that is appropriate for a sample of
sizenX + nY, which has a lag-1 correlation
coefficient̂α.

6.6.10 The HotellingT2 test. The multivariate
version of thet test, which is used to test the null
hypothesis

H0: EµX = EµY, (6.31)

is called the HotellingT2 test. The assumptions
implicit in this parametric test are identical to
those required for thet test except that they
apply to vector, rather than scalar, realizations
of an experiment. It is necessary to make the
sampling assumption that the realizations of the
m-dimensional random vectorsEX and EY occur
independently of each other. It is also necessary
to make similar distributional assumptions: that
all observations in a sample come from the
same distribution and that those distributions are
multivariate normal. In addition, we also assume
that bothEX andEY have the same covariance matrix
Σ, so thatEX ∼ N ( EµX,Σ) and EY ∼ N ( EµY,Σ).

The covariance matrixΣ = (σi j ) is generally
not known and must be estimated from the data in
a manner analogous to (6.17):

σ̂ i j =
∑nX

k x′ikx′jk +
∑nY

k y′iky′jk
nX + nY − 2

, (6.32)

wherex′jk = x jk − µ̂X j andy′jk = y jk − µ̂Y j.
The optimal test statistic is given by

T2 = nX + nY −m− 1

m(nX + nY − 2)

(
1

nX
+ 1

nY

)
× ( ÊµX − ÊµY)

TΣ̂
−1
( ÊµX − ÊµY). (6.33)

This statistic measures the distance inm space
between the sample mean vectorsÊµX and ÊµY in
dimensionless units. Note the similarity to thet
statistic (6.16). In fact, whenm = 1, T2 = t2,
ensuring that both the HotellingT2 test and thet
test will make the same decision. Also note that
T2 is a scaled version of the Mahalanobis distance
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(6.8) that is computed with an estimate of the
covariance matrix.

T2 has theF distribution with(m,nX + nY −
m−1) degrees of freedom [280] when H0 is true.13

Thus the Hotelling test is conducted by comparing
T2 with critical values from this distribution.
Critical F values may be found in Appendix G.

When the covariance matrixΣ is known, the
Hotelling test reduces to theχ2 test (see [6.7.2]).
The test statistic is then given by

C2 = nX + nY

nXnY
( ÊµX − ÊµY)

TΣ−1( ÊµX − ÊµY),

(6.34)

and is compared with the critical values of theχ2

distribution withm degrees of freedom.14 Again,
note the scalar case analogy. Whenm = 1, C2

reduces toZ2 with Z ∼ N (0,1). Also note that
C2 is a scaled version of the Mahalanobis distance
D2 (6.8). Critical χ2 values may be found in
Appendix E.

6.6.11 The Mann–Whitney Test. Sometimes
it is not possible to make all the assumptions
required for a parametric test, so it may be
desirable to use a non-parametric test that can be
applied under a less restrictive set of assumptions.

The Mann–Whitney test (cf. [4.1.8]) is an ex-
ample of a non-parametric test of H0: µX = µY.
The same sampling assumption is required as
in the t test and it is also necessary to assume
that all observations in a sample come from the
same distribution, but the distributional assump-
tion itself is relaxed. Rather than specifying a
particular functional form (e.g., the normal distri-
bution), the Mann–Whitney test requires that the
density functions ofX − E(X) andY − E(Y) be
identical.

With these assumptions, the distribution of
any function of the nX + nY observations
x1, . . . , xnX , y1, . . . , ynY is independent of the
ordering of the samples under H0. The Mann–
Whitney test exploits this fact by examining the
positions of theX observations when the combined
sample is sorted in increasing order.

The samples are fully separated whenXk >

Y j , or vice versa, for allk = 1, . . . ,nX and

13The derivation of the distribution ofT2 follows that of
t closely. The statistic can be written as the ratio of two
independent quadratic forms that each have theχ2 distribution
under the H0. It follows thatT2 has anF distribution because
the latter is characterized as a ratio ofχ2 random variables
[2.7.10].

14Note the analogy withT2. Here the statistic consists of a
single quadratic form.

j = 1, . . . ,nY. Combinatorial arguments show
that the combined sample can be partitioned into
two groups of sizenX andnY in (nX+nY)!

nX !nY ! ways.
Thus the probability of observing fully separated
samples under H0 such that all observations in the
X sample are greater than all observations in theY
sample is nX !nY !

(nX+nY)!
. Similarly the probability that

xk > y j for all j and all but onek = 1, . . . ,nX is
nY/

(nX+nY)!
nX !nY ! .

These examples indicate that it makes sense
to define a test statistic based on the ordering of
the combined sample. To do so we introduce the
concept ofranksin the joint sample

Ez= (x1, . . . , xnx , y1, . . . , ynY )
T. (6.35)

Now let R1 be the rank ofx1 in Ez; that is, if x1
is the i th smallest observation inEz, then we set
R1 = i . Define R2, . . . , Rnx+ny similarly.15 The
test statistic is then defined to be the rank sum of
all X observations,

S=
nX∑
i=1

Ri . (6.36)

The distribution of S, under H0, is obtained
through combinatorial arguments [88]. Critical
valuesκ1−p̃ are tabulated in Appendix I. For large
samples sizes, approximate critical values for tests
at the(1− p̃)× 100% significance level are given
by [88] as

κp̃ =
nX(nX + nY + 1)

2
(6.37)

− Zp̃

√
nXnY(nX + nY + 1)

12
,

whereZp̃ is thep̃-quantile of the standard normal
distribution (Appendix D). A two-sided test of H0:
µx = µy versus Ha: µx 6= µy is performed at
the(1− p̃)× 100% significance level by rejecting
H0 when S < κ(1−p̃)/2 or S > Smax − κ(1−p̃)/2,
whereSmax = nx(nx + 2ny + 1)/2 is the largest
possible value thatS can take. A one-sided test of
H0: µx ≥ µy versus Ha: µx < µy is performed by
rejecting H0 whenS< κ(1−p̃).

The added flexibility of the Mann–Whitney
test compared with its conventional parametric
counterpart, thet test, comes at the cost of
slightly reduced efficiency when the observations
are normally distributed. Theasymptotic relative

15Of course, the ranks can be defined equally well in
ascending order so that the largest value receives the rank 1,
etc.
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efficiency16 of the Mann–Whitney test is 0.955
when the data are normally distributed. That means
that, asymptotically, thet test is able to achieve the
same power as the Mann–Whitney test using only
95.5% of the observations needed by the latter.
However, this disadvantage disappears for some
distributions other than the normal distribution.
The asymptotic relative efficiency is 1.0 when
the data come from the uniform distribution and
it is 1.5 if the data have the double exponential
distribution, indicating that thet test requires 1.5
times as many observations.

6.6.12 A Permutation Test. The following
test of H0: µX = µY, first proposed by Pitman
[314, 315, 316], can be applied to univariate as
well as multivariate problems. It also allows us
to relax the distributional assumption somewhat
further than the Mann–Whitney test allows. We
will need the standard sampling assumption (i.e.,
independence), the assumption that observations
are identically distributed within samples, and
a third assumption that distributions differ only
with respect to their expectations, if they differ at
all. Note that the sampling assumption is crucial.
In particular, the permutation test performs very
poorly when observations are serially correlated
[442].

Let us first consider the univariate case.
As in the Mann–Whitney test, letEz be the
vector of all X and Y observations:Ez =
(x1, . . . , xnX , y1, . . . , ynY )

T. Under the null hy-
pothesis, the distributions ofX andY are identical
and thus any statisticSof EZ has a distribution that
is independent of the ordering of the components
of EZ. That is, if π is a random permutation of
{1, . . . ,nX + nY}, thenS(EZ) has the same distri-
bution asS(EZπ ). Consequently, any arrangement
Ezπ of the observedEz is as likely under the null
hypothesis as any other. Hence the probability that
the observed test statisticS(Ez) takes a value in the
upper fifth percentile of values that can be taken by
S(Ezπ ) is exactly 5% under the null hypothesis.

In contrast, ordering becomes important under
the alternative hypothesis, where possible values
of S(Ezπ ) obtained via permutation are not equally
likely. The unpermuted vector precisely divides
the observations according to their population of

16The efficiency of two tests is measured by comparing the
sample sizes needed to achieve the same power at the same
significance level against the same alternative. The sample size
ratio often becomes independent of power, significance level,
and the particular alternative as one of the sample sizes tends
to infinity. When this happens, the limiting sample size ratio
is called theasymptotic relative efficiency(ARE). See Conover
[88] for more details.

origin, and consequentlyS(Ez) should lie at the
extremes of the collection ofS(Ezπ ) values.17

A test is therefore constructed by comparing
S(Ez) with the ensemble of values obtained by
evaluating S(Ezπ ) for all permutations π . If
the collection of permutations is very large,
the distribution of S(Ezπ ) may be estimated by
randomly selecting a subset of permutations.
For most applications a subset containing 1000
permutations will do.

To express the test mathematically, let5 be
the set of all permutationsπ . Then compute (or
estimate if5 is large)

H = |{π ∈ 5 : S(Ezπ ) > S(Ez)}|
|5| , (6.38)

where|A| denotes the number of entries in a set
A. Since H is an estimate of the probability of
observing a more extreme value of the test statistic
under the null hypothesis, we may reject H0 if H
is less than the specified significance level.

The permutation test approach is easily ex-
tended to multivariate problems [397]. One ap-
proach is to define a multivariate test statisticS′ in
terms of univariate test statisticsSj , j = 1, . . . ,m,
as

S′ =
m∑

j=1

|Sj |. (6.39)

The same procedure as outlined above is then
applied to S′ instead ofS. One should exercise
some caution with this expedient. For example,
the multivariate test that is obtained is not always
invariant [4.3.3] under linear transformation of the
m-dimensional field.

One drawback of the permutation test is that it
is not supported by a rich statistical theory. We do
know that permutation tests are asymptotically as
efficient as their parametric counterparts [274], but
we must rely on Monte Carlo methods to obtain
information about the small sample properties of
the test in specific situations.

6.7 Test of Variances

6.7.1 Overview. Until now our focus has been
on tests about the first moments (i.e., means) of
scalar and vector random variables. We briefly
describe a few ways in which to test hypotheses
about the second central moments (i.e., variances)
of scalar random variables in this section. Tests

17At least, this should be true ifS efficiently estimates
a monotone function of the difference between the two
populations.
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about the second central moments of random
vectors (i.e., covariance matrices) are beyond the
scope of this book.18

6.7.2 The χ2 Test. SupposeX1, . . . ,Xn are
iid random variables that represent a sample of
size n from the normal distribution. ThenC2 =
(n − 1)S2

X/σ
2
X has theχχχ2(n− 1) distribution (cf.

[2.7.8]).
The null hypothesis H0: σ 2

X = σ 2
o can then be

tested at the(1−p̃) significance level by computing
C2 = (n − 1)S2

X/σ
2

o and making decisions as
follows.

• Ha: σ 2
X < σ 2

o : reject H0 when C2 is less
than the(1 − p̃)-quantile of theχχχ2(n− 1)
distribution. Theχ2 distribution is partially
tabulated in Appendix E. For example, when
n = 10, we would reject H0 at the 5%
significance level whenC2 is less than 3.33.
The non-rejection region is [3.3,∞).
• Ha: σ 2

X 6= σ 2
o : reject H0 when C2 is less

than the((1−p̃)/2)-quantile of theχχχ2(n− 1)
distribution, or greater than its((1 + p̃)/2)-
quantile. Whenn = 10, the non-rejection
region for the 5% significance level test is
[2.70,19.0].

• Ha: σ 2
X > σ 2

o : reject H0 when C2 is
greater than thẽp-quantile of theχχχ2(n− 1)
distribution. When n = 10, the non-
rejection region for the 5% significance level
is [0,16.9].

Theχ2 test ismoresensitive to departures from
the normal distribution assumption than the tests
of the mean discussed in the previous section.
This sensitivity arises becauseC2 is a sum of
squared deviations. Data that are not completely
normal tend to have at least some deviations from
the sample mean that are larger than would be
observed in a completely normal sample. Because
these deviations are squared, they have a very
large effect on the value ofC2. Inferences are
consequently unreliable.

6.7.3 The F Test. The one sampleχ2 test
of the previous subsection has relatively limited
applications. On the other hand, there are many
problems in which it is necessary to decide
whether two samples came from populations with

18Interested readers can find entry points to literature on this
subject in, for example, Graybill [147], Johnson and Wichern
[197], Morrison [281], or Seber [342].

equal variances. For example, this is needed when
selecting a test for the equality of means (see
[6.6.1] and [6.6.5]). There are also a myriad of
climate analysis problems in which we want to
compare variances. For example, we may want
compare the variability of two simulated climates
on some time scale, the variability of the observed
climate with that of a simulated climate, or the
variability under different climatic regimes (e.g.,
warm versus cold ENSO events).

The standard procedure for testing H0: σ 2
X =

σ 2
Y is the F test. It can be applied when

we have two independent samplesX1, . . . ,XnX

and Y1, . . . ,YnY , each consisting of iid normal
random variables. Then

F = S2
X

S2
Y

(6.40)

has theF(nX − 1,nY − 1) distribution under the
null hypothesis [2.7.10]. Critical values of theF
distribution are tabulated in Appendix G. The test
is performed at the(1 − p̃) × 100% significance
level as follows.

• Ha: σ 2
X > σ 2

Y: reject H0 when f is greater
than thep̃-quantile of theF(nX − 1,nY − 1)
distribution. For example, whennX = 9 and
nY = 10, the non-rejection region for a test
conducted at the 10% significance level is
[0,2.47].

• Ha: σ 2
X 6= σ 2

Y: reject H0 when f is
less than the(1 − p̃)/2-quantile of the
F(nX − 1,nY − 1) distribution, or greater
than its ((1 + p̃)/2)-quantile. Note that
most tables do not list the lower tail
quantiles of the F distribution, because
when F ∼ F(nX − 1,nY − 1), then 1

F ∼
F(nY − 1,nX − 1). Thus the((1 − p̃)/2)-
quantile of F(nX − 1,nY − 1) is 1 over the
((1 + p̃)/2)-quantile of F(nY − 1,nX − 1).
WhennX = 9 andnY = 10, the non-rejection
region for a 10% significance level test is
[0.295,3.23].

Just as for theχ2 test, theF test is sensitive
to departures from the normal distribution. Also,
it is not robust against outlying observations
caused by, for example, observational or data
management errors. It is therefore useful to have
a non-parametric alternative even if the relative
efficiency of the test is low when data are normal.
A non-parametric test is discussed in the next
subsection.

The F test also does not perform as expected
when there is dependence within the samples.
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If the samples are time series, spectral analysis
methods (see Section 12.3) can be used to describe
the variability in the samples as functions of
time scale.F tests can then be used to compare
variability within the samples at various time
scales.

Finally, the F test is not particularly powerful.
For example, to reject H0 reliably whenσ 2

X =
2σ2

Y, say with power 95% in a 5% significance
level test, requires samples of sizenX =
nY ≈ 100. Since power can always be increased
somewhat at the cost of greater risk of false
rejection, F tests are often performed at the
10% significance level whereast tests are usually
performed at the 5% or 1% significance levels.

6.7.4 A Non-parametric Test of Dispersion.
There are several simple non-parametric tests of
equality of variance.19 We will describe two of
them here. In both cases, the standard sampling
assumptions are required. That is, it must be
possible to represent the samples by iid random
variables, and the samples must be independent of
each other. It is also necessary to assume that the
two populations have the same distribution when
they are standardized by subtracting the mean and
dividing by the standard deviation.

The first test is performed by converting
both samples into absolute deviations from the
respective sample means:

ui = |xi − x|, i = 1, . . . ,nX and

v j = |y j − y|, j = 1, . . . ,nY.

The combined samples of absolute deviations
u1, . . . ,unX , v1, . . . , vnY are then assigned ranks,
as in the Mann–Whitney test [6.6.11]. The sum of
the ranks

S=
nX∑
i=1

Ri (6.41)

is used as the test statistic. Critical values are
the same as for the Mann–Whitney test (see
Appendix I). This is an approximate test when
samples are small because ranked entities, the
absolute deviations, are not quite independent of
one another.20

The idea behind this simple test is that the
deviations in one sample will tend to be smaller
than deviations in the other when H0 is false,
resulting in either unusually small or large rank

19Strictly speaking, these are tests ofdispersionbecause they
are designed to look for differences in the spread of the samples.

20The deviations within a sample are dependent because they
sum to zero.

sums (6.41). It is clear that this test can never be
as powerful as the Mann–Whitney test because the
two samples of absolute deviations can never be
completely separated. Regardless of the variance,
both samples are likely to have some small
deviations near zero.

One way to improve the power of this test is
to focus more attention on the largest absolute
deviations. The second test, the squared-ranks test,
does this by using

T =
nX∑
i=1

R2
i (6.42)

as the test statistic instead of (6.41). Decisions are
made at the(1− p̃)× 100% significance level by
using the critical values in Appendix J as follows.

• H0: σ 2
X < σ 2

Y: reject whenT is unusually
small, that is, whenT is less than the(1 −
p̃)-quantile ofT . When nX = 7, nY = 8,
(1− p̃) = 0.05, we would reject whenT <

426.

• H0: σ 2
X 6= σ 2

Y: reject whenT is less than the
((1− p̃)/2)-quantile ofT , or greater than the
((1+ p̃)/2)-quantile. WhennX = 7, nY = 8,
and(1− p̃) = 0.05, reject whenT < 384 or
T > 935.

• Ha: σ 2
X > σ 2

Y: reject whenT is greater than
the p̃-quantile ofT . WhennX = 7, nY = 8
and(1− p̃)= 0.05, reject whenT > 896.

When nX or nY is greater than 10, the(1 −
p̃)-quantile ofT can be approximated by

T(1−p̃) =
nY(N + 1)(2N + 1)

6
(6.43)

− Zp̃

√
nXnY(N + 1)(2N + 1)(8N + 1)

180
,

where N = nX + nY and Zp̃ is the p̃-quantile
of the standard normal distribution (Appendix D).
Note that, as with the first non-parametric test of
the variance, this test is also an approximate test
when samples are small.

Even with the improved power, the squared-
ranks test is inefficient when the data are really
normal. Conover [88] notes that the test has
asymptotic relative efficiency 0.76 in this case (i.e.,
the F test with samples of size 760 will be as
efficient as the squared-ranks test is with samples
of size 1000). On the other hand, when the data
are actually distributed as the double exponential
distribution (a wide-tailed asymmetric distribution
that peaks sharply at the mean), the asymptotic
relative efficiency is 1.08.
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6.8 Field Significance Tests

6.8.1 Constructing Field Significance Tests
from Local Tests. We discussed the use of
a field of local test decisions for making a
global decision about a global null hypothesis in
[6.5.2]. We reconsider this problem here in more
generality.

Theglobal null hypothesisis HG
0 : ‘all local null

hypotheses are correct.’ We assume that all local
tests are conducted at the(1 − p̃) significance
level. The alternative hypothesis is that ‘at least
one local null hypothesis is incorrect.’ Note that
we must specify two significance levels:(1− p̃),
the significance level of the local test; and(1− ˜̃p),
the significance level of the global test. We will see
that ˜̃p can be chosen independently ofp̃. However,
the power of the global test is not independent of
the power of the local tests.

Let ED be anm-dimensional random vector of
binary random variablesDi that take values 0 or
1. Each of these random variables represents the
result of a local test. These binary random varia-
bles are identically distributed withP(Di = 1) =
1 − p̃ andP(Di = 0) = p̃ under the global null
hypothesis.

Now let test statisticS be the number of local
rejections, or formallyS= EDT ED. Under the global
null hypothesis,S ∼ B(m,1 − p̃) if local test
decisions are made independently of one another
[6.5.2]; unfortunately, this usually doesn’t happen.

Livezey and Chen [257] suggested several
solutions to this problem. One approach is to
reduce the number of degrees of freedom [6.8.2]
(similar to the modification of thet test when
the data are serially correlated [6.6.3]). Another
is to use a series of Monte Carlo experiments to
simulate the statistical properties of the random
variables that enter the local decisions [6.8.3].

6.8.2 Reduced Number of Spatial Degrees
of Freedom. In many applications the local
decisions are made on a regular grid so that each
point has approximately the same number of points
in its immediate neighbourhood. The observations
used to test a local hypothesis at a grid point
are often strongly correlated with those used at
nearby neighbours and roughly independent of
those at distant grid points. Then it may be
possible to select a subset of grid points so that
the observations at these grid points are mutually
independent.

Suppose there arem grid points in total and that
the size of the subset ism∗. Let ED be the vector of

all decisions and letED∗ be the vector of decisions
at the subset of points. The relative frequency of
rejections of local null hypotheses will, on average,
be about the same inED and in ED∗. That is,

ED∗T ED∗/m∗ ≈ EDT ED/m.

Independence ensures that

ED∗T ED∗/m∗ ∼ B(m∗, ˜̃p).
Thus the challenge is to selectm∗ in such a way
that the distribution ofEDT ED/m is approximately
that of ED∗T ED∗/m∗.

One way to determinem∗ is to use physical
reasoning. Usually this approach will lead to only
vague estimates, but often this approach does
yield upper limits onm∗. Another approach is to
compute the minimumm∗ for which HG

0 can be

rejected at the(1− ˜̃p) significance level. Clearly, if
m∗ > m, the global null hypothesis HG0 cannot be
rejected. See [6.8.4].

6.8.3 Livezey and Chen’s Example. Livezey
and Chen [257] describe an analysis of the
relationship between the Southern Oscillation, as
represented by an SO index, and the Northern
Hemisphere extratropical circulation, given by
gridded 700 hPa height fields poleward of 20◦N.
Correlations between the winter (DJF) mean SO
index and corresponding winter mean height
anomalies were estimated atm = 936 grid
points. The local null hypothesis Hj0 that the true
correlation at grid pointj is zero was tested at the
(1− p̃) = 5% level at each of the 936 grid points
using a method that accounts for serial correlation.
The local null hypothesis was rejected at 11.4%
of grid points—that is,EdTEd/m = 0.114. This
is substantially larger than the 5% frequency that
would be expected if all local null hypotheses were
correct.

Figure 6.12a illustrates the rejection frequency
ϕ = EdTEd/m required to reject the global null
hypothesis at a global 5% significance level as
a function of the number of independent spatial
degrees of freedomm∗. The rejection frequencyϕ
is given by

min
ϕ

m∗∑
j=ϕ·m∗

B(m∗,1− p̃)( j ) ≥ (1− ˜̃p).

We see that a local rejection rate ofϕ = 11.4%
supports rejection of the global null hypothesis in
fields that havem∗ = 52 or more spatial degrees of
freedom. However, seasonal mean 700 hPa height
is a very smooth field with very large spatial
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Figure 6.12:
a) Estimated percentage of rejected local null
hypotheses required to reject the global null
hypothesis (that all local null hypotheses are valid)
at the 5% level. From Livezey and Chen [257].
b) Livezey and Chen’s example [257]. Monte
Carlo estimate (200 trials) of the rateϕ of
erroneous rejections of local null hypothesis when
the global null hypothesis is true. The hatched area
marks the 10 largest randomSstatistics so that the
critical valueκp̂ is 12.5%. The value to be tested,
S= 11.4%, is marked by thelag-0arrow.

covariance structures, so it is unlikely that this field
contains as many as 52 spatial degrees of freedom.
Hence there is insufficient evidence to reject the
global null hypothesis.

Livezey and Chen [257] also describe an
attempt to use Monte Carlo methods to estimate
the distribution of S = EDTED/m under the
global null hypothesis. The authors conducted
the Monte Carlo experiment by replacing the
SO index time series with a random (‘white
noise’) time series. This ensured that all local
correlations were zero. The authors did not
simulate the 700 hPa height fields. Thus, the
reference distribution they obtained is conditional

upon the observed sequence of height fields.
The process of simulating the SO index and
computing the test statisticS was repeated 200
times. The resulting distribution function is shown
in Figure 6.12b. Note that 5% of all randomly
generatedSstatistics are greater than 12.5%. Thus
we again find that the global null hypothesis can
not be rejected at the 5% level.

6.9 Univariate Recurrence Analysis

6.9.0 Motivation. The t test was introduced in
Section 6.6 to test the null hypothesis, H0: µX =
µY, that a pair of univariate random variablesX
and Y have equal means. The power of the test
depends upon two factors. It increases when the
‘signal’ µY − µX increases, and when the sample
sizesnX and nY increase. This is illustrated in
Figure 6.3, where we displayed the signalsδ =
(µX − µY)/σ for which a test conducted at the
5% significance level has power 50% and 90%
given sample sizesnX = nY = n. Note that the
probability of rejecting H0 is 90% whenδ = 0.5
and n = 100, but that it is less than 50% when
n = 20.

More generally we find, for all significance
levels (1 − p̃) and all signalsδ 6= 0, that the
probability of rejecting H0 converges to 1 asn→
∞. Thus, paradoxically, poor scientists are less
likely to detect physically insignificant differences
than rich scientists (see [6.2.5]).

One solution to this problem is to use scientific
knowledge to identify the size of signal that is not
physically significant and then to derive a test that
rejects H0 only when there is evidence of a larger
signal. This is the idea behindrecurrence analysis.
We introduce the univariate concept [404] in this
section, and the multivariate generalization [452]
in Section 6.10.

Applications of the recurrence analysis include
[141, 175, 223, 404, 452].

6.9.1 Definition. Two random variablesX and
Y are said to be(q, p)-recurrent if

P
(
Y > Xq

) = p, (6.44)

where Xq is the qth quantile of the random
variableX.

In many climate modelling applicationsX rep-
resents thecontrol climate and Y represents a
climate disturbed by anomalous boundary condi-
tions or modified parameterizations of sub-grid
scale processes. The wordrecurrencerefers to the
probability p of observingY > Xq. The strength
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  Area q Area p

X q

Figure 6.13:Definition of (q, p)-recurrence: the
‘control’ represents the random variableX and
the ‘experimental’ the random variableY. The
size of the area hatched to the left isq, so that
P
(
X < Xq

) = q. The size of the area the hatched
to the right isp, and P

(
Y > Xq

) = p [404].

of the effect of the anomalous boundary conditions
or modified parameterizations is measured against
the reference valueq.

In many applicationsq = 50% so that the
reference level is the mean ofX. In that case we
simply speak ofp-recurrence.

6.9.2 Illustration. The idea of the(q, p)-
recurrence is illustrated in Figure 6.13, whereXq

represents a point on the right hand tail offX .
By definition, the proportion ofX realizations that
are less thanXq is q. This point also represents
a point on the left hand tail offY and, according
to (6.44), the proportion ofY realizations that are
greater thanXq is p. Thus the definition states that
two random variablesX andY are(q, p)-recurrent
if there is a point betweenfX and fY such that
proportionq of all X realizations lie to the left of
Xq and proportionp of all Y realizations lie to
the right of this point. Ifp andq are close to 1,
then the two random variables are almost perfectly
separated. On the other hand, if the distributions
are symmetrical andp = q = 0.5, then the means
are equal.

6.9.3 Classification. Another way to understand
the idea of (q, p)-recurrence is to think of a
classification problem. Let us assume that we
have a pair of random variablesX and Y that
are (q, p)-recurrent, and a realizationz that is
drawn from eitherX or Y. We want to determine

which population z was actually drawn from.
Furthermore we want to know the probability of
making an incorrect decision.

The decision algorithm is:

• ‘z is drawn fromX’ if z< Xq

• ‘z is drawn fromY’ if z≥ Xq

If z is really drawn fromX thenP
(
z< Xq

) = q
so that the probability of a correct decision isq in
this case. On the other hand, ifz is really drawn
from Y, then by (6.44)P

(
z> Xq

) = p so that
the probability of a correct decision isp. The
probabilities of incorrect decisions are 1− q and
1− p, respectively.

6.9.4 The Murray Valley Encephalitis Ex-
ample. Before we discuss mathematical aspects
of recurrence, we present a concrete example of a
recurrence analysis.

Between 1915 and 1984 there were seven
outbreaks ofMurray Valley encephalitis(MVE)
in the Murray Valley in southeast Australia.
The prevalence of MVE virus depends on the
abundance of mosquitos, which in turn depends
on climate. Nicholls [292] studied the relationship
between the appearance of MVE and the state of
the Southern Oscillation (see [1.2.2]), and found
that annual mean sea-level pressure at Darwin was
unusually low in all seven MVE years.

The frequency histograms of annually averaged
Darwin pressure in MVE and non-MVE years are
plotted in Figure 6.14. The random variablesX
(Darwin pressure conditional on the presence of
MVE), and Y (Darwin pressure conditional on
the absence of MVE) are highly recurrent, with
p = 95% andq = 86%. Clearly, the estimates of
p andq might change drastically when the sample
size increases, but the main conclusions, that the
two distributions are very well separated and that
the probability of misclassification is small, are not
likely to change.21

6.9.5 Non-uniqueness of the Numbersp and q.
The point of separationXq in Figure 6.13 may
be shifted; thus(q, p)-recurrence is equivalent
to (q′, p′)-recurrence for an infinite number of
pairs (q′, p′). In particular, there is always one
numberp′′ so that(q, p)-recurrence is equivalent
to (p′′, p′′)-recurrence.

21Note, however, that the relationship between the SO and
MVE outbreaks has changed since the discovery of the link
because precautionary measures are now taken to control
outbreaks when the SO index is low.
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Figure 6.14:Frequency distribution of annually
averaged (March to February) Darwin sea-level
pressure for seven years when Murray Valley
encephalitis (MVE) was reported and for 63 years
when no cases of MVE were reported. The two
distributions are estimated to be(86%,95%)-
recurrent.

If random variablesX and Y have identical
symmetrical distributions except for their means,
then (q, p)-recurrence is equivalent to(p,q)-
recurrence.

6.9.6 p-recurrence. Recall that p-recurrence
is synonymous with(0.5, p)-recurrence. Suppose
now that both random variablesX and Y are
normally distributed with meansµX andµY and
a common standard deviationσ . If X and Y are
p-recurrent (withp ≥ 0.50 so thatµX < µY),
then

p = P(Y > µX)

= 1− FN
(µX − µY

σ

)
= FN

(µY − µX

σ

)
, (6.45)

where FN is the distribution function of the
standard normal distributionN (0,1). Thus the
difference betweenX andY is p-recurrent when

µY − µX

σ
= Zp, (6.46)

whereZp = F−1
N (p) (see Appendix D).

A reasonable estimator ofp-recurrence can be
obtained from (6.45) by replacingµX, µY, andσ
with the corresponding estimatorsX, Y, and Sp,
where S2

p is the pooled sample variance (6.17).
Then

p̂ = FN
(Y − X

Sp

)
. (6.47)

6.9.7 Testing for (q, p)-recurrence. To test
that the response to experimental conditions is at
least (q, p)-recurrent, we assume that we have
nX realizationsx1, . . . , xnX of the control state
X, nY realizationsy1, . . . , ynY of the experimental
state Y, and that all realizations are mutually
statistically independent. The null hypothesis is
that X and Y are less than (q, p)-recurrent, that
is

H0: P
(
Y > Xq

)
< p. (6.48)

Two classes of tests are suggested in [404]:
one is aparametric testbased on the assumption
of normality and the other is anon-parametric
permutation test. We present the parametric test in
the next subsection.

6.9.8 A Parametric Test. To construct a
parametric test we adopt a statistical model for
the random variablesX andY, namely that both
random variables are normally distributed with
identical variancesσ 2. Using (6.46), we formulate
the null hypothesis H0 that the response is less than
p-recurrent as

H0:
µY − µX

σ
< Zp. (6.49)

If the null hypothesis is valid, the standard
t-statistic (6.15) has anon-centralt distribution
(see Pearson and Hartley [307]) withnX + nY − 2
degrees of freedom and anon-centrality parameter
1 such that

1 <
Zp√

1
nX
+ 1

nY

. (6.50)

Therefore, to test H0 we compute the usualt-
statistic (6.16)

t = Ȳ − X̄

Sp

√
1

nX
+ 1

nY

.

If 1 − p̃ is the acceptable risk of erroneously
rejecting the null hypothesis, thist-value is
compared with thẽp percentile,tnX+nY−2,1,p̃, of
the non-centralt distribution with(nX + nY − 2)



6.9: Univariate Recurrence Analysis 125

Figure 6.15:The cross-section of monthly mean
zonally averaged vertical ‘velocity’[ω] in a paired
AGCM experiment on the effect of the anomalous
SST conditions in June 1988. The contours lines
show the 11-sample difference between the ‘June
1988 SST anomaly’ run and the ‘control’ run
[398].
Top: The points for which the null hypothesis of
equal means can be rejected with a standardt
test [6.6.1] at the5% (light shading) or1% (dark
shading) significance level.
Bottom: Points at which the univariate estimate
of (0.5, p)-recurrence (6.47) is less than 20% or
greater than 80% are shaded.

degrees of freedom and non-centrality parameter
1 (6.50). These percentiles are given in [307]
and also in some statistical software libraries
(e.g., IMSL [193]). For large sample sizes, the
percentiles can be approximated by

tnX+nY−2,1,p̃ = 1+ Zp̃. (6.51)

6.9.9 (p, p)-recurrence. The multivariate gen-
eralization of the concept of recurrence in Sec-
tion 6.10 requires(p, p)-recurrence. Under the
conditions of [6.9.6], that is, both distributions are
normal with the same variance,(p, p)-recurrence
is equivalent to

µY − µX

σ
≥ 2Zp. (6.52)

To test the null hypothesis thatY andX are less
than (p, p)-recurrent, we proceed as in [6.9.8]

except that the non-centrality parameter1 in
(6.50) is replaced by

1 = 2Zp√
1

nX
+ 1

nY

. (6.53)

6.9.10 A Univariate Analysis: The Effect of
Cold Equatorial Pacific SSTs on the Zonally
Averaged Atmospheric Circulation. In June
1988, cold surface waters were observed in the
Eastern and Central Equatorial Pacific. This event
attracted interest in the scientific community
because of its timing (northern summer) and
strength (these were the coldest June conditions
in the last 60 years). A numerical experiment
was performed to quantify the effect of such
anomalous lower boundary conditions on the
atmospheric circulation. Two 11-month perpetual
July simulations were performed: once with
standard sea-surface temperatures and once with
the anomalous June 1988 SST distribution
superimposed (von Storch et al. [398]).

Monthly mean cross-sections of the zonally
averaged vertical ‘velocity’ [ω] obtained in the
two simulations were compared with univariate
recurrence analysis. The difference between the
mean [ω] cross-sections is shown in Figure 6.15.
Shading in the upper panel shows where the
difference of means is significantly different from
zero at the 5% (light) and 1% (dark) levels.
Clearly there is very strong evidence of change
in the mean Hadley circulation. On the other
hand, the lower panel in Figure 6.15 shows that
two [ω] distributions overlap substantially, even
in the tropics. Regions are shaded where the
response is more than 80%-recurrent or less than
20%-recurrent. There were no locations at which
the response to the anomalous SSTs was more
than 95%-recurrent or less than 5%-recurrent,
indicating that the anomalous SST does not excite
a response strong enough to eliminate the overlap
between the two density functions.

The physical message of the lower panel of
Figure 6.15 is that the inclusion of the anomalous
tropical SST markedly modifies theHadley cell
but that the atmospheric circulation poleward of,
say, 20◦ latitude is not affected by the anomalous
forcing.

In this case the upper panel gives roughly
the same message; there is not much difference
between locations where there are significant
differences (upper panel, Figure 6.15) and where
there is substantial recurrence. However, when
samples are larger, the estimated recurrence
generally gives a clearer indication of physically
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significant responses than the local significance
test, since the rate of rejection in the latter is
sensitive to sample size.

6.10 Multivariate Recurrence
Analysis

6.10.1 Motivation. We described univariate
recurrence analysis as a classification problem in
[6.9.3]. Specifically, if a realizationz is drawn
randomly fromX or Y, then the probability of
incorrectly determining the origin ofz is 1− p
whenX andY are(p, p)-recurrent.

Figure 6.16 illustrates two bivariate normal
distributions EX and EY with overlapping density
functions. We want to quantify this overlap in the
multivariate recurrence analysis, so we divide the
full two-dimensional plane into two disjoint sets
2X and2Y so that

P
( EX ∈ 2Y

) = P
( EY ∈ 2X

) = 1− p
P
( EX ∈ 2X

) = P
( EY ∈ 2Y

) = p.
(6.54)

The probability of a misclassification is then 1− p.
The sets2X and2Y are easily found whenEX

and EY are multivariate normal [2.8.9] and have
the same covariance matrixΣ. The solution in
our bivariate example is sketched in Figure 6.16
(bottom);2X lies above the straight line and2Y

below. In this example,p = 87.6%. In general,
whenEX andEY are of dimensionm,2X and2Y are
separated by an(m− 1)-dimensional hyper-plane.

We now sketch the basic ideas of multivariate
recurrence analysis. A more involved discussion
of this approach can be found in Zwiers and
von Storch [452]. An application can be found in
Hense et al. [175].

6.10.2 The Discrimination Function and the
Probability of Misclassification. The line (or
more generally, hyper-plane) in Figure 6.16
(bottom) that defines the sets2X and2Y is given
by Ez = W−1(0) whereW(·) is thediscrimination
function22

W(Ez) = EzTΣ−1( EµX − EµY) (6.55)

− 1

2
( EµX − EµY)

TΣ−1( EµX − EµY).

The sets2X and2Y are then given by

2X = W−1 ([0,+∞))
2Y = W−1 ((−∞,0)) . (6.56)

22The discrimination function is used inmultiple discrimi-
nant analysis(see Anderson [12], for example).

Figure 6.16: The density functionsfX and fY of
two bivariate normal random variablesEX and EY
that differ only in their mean values.
Top: Three-dimensional representation of
max(fX, fY).
Bottom: Contour lines of constant densities
max(fX, fY) in the two-dimensional plane.
The straight line separates the full spaces into
the two subsets2X and 2Y so probability of
misclassification is1− p = 12.4%.
From Zwiers and von Storch [452].

The discriminating function is used to identify
the source ofEz when it is drawn randomly from
either EX or EY. When W(Ez) ≥ 0, Ez is classified as
being drawn fromEX and vice versa whenW(Ez) is
negative. The probability of correctly classifyingEZ
is

P
( EY ∈ 2Y

) = P
( EX ∈ 2X

) = p

wherep is given by

p = FN (D/2) , (6.57)

andD is the Mahalanobis distance [6.5.4],

D2 = ( EµX − EµY)
TΣ−1( EµX − EµY). (6.58)

D is a dimensionless measure of the distance
between the means ofEX and EY.
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6.10.3 Definition of Multivariate (p, p)-
Recurrence. Let EX and EY be independent multi-
variate random vectors with identical covariance
matrices ΣX = ΣY = Σ and mean vectors
EµX and EµY that are separated by Mahalanobis
distanceD (6.58). Then the difference betweenEX
and EY is said to be(p, p)-recurrentwhen p =
FN (D/2) (6.57).

In contrast with the univariate definition, the
definition above is restricted to multivariate normal
distributions with identical covariance matrices.
The concept is not easily extended to other mul-
tivariate settings because, in general, derivation of
the surface that separates2X from 2Y becomes
intractible. For the same reason,(q, p)-recurrence
with p 6= q is also not defined.

6.10.4 Estimation of the Level of (p, p)-
recurrence. Zwiers and von Storch [452] con-
sidered several estimators of the level of(p, p)-
recurrence and found that an estimator originally
proposed by Okamoto [299, 300] worked well.
Hense et al. [175] suggested the following modi-
fied form of this estimator forp:

p̂ = 1− erf
(
− DS

2

)
(6.59)

+ fN (−DS/2)

nX + nY − 2

(DS

16

( (nX + nY − 1)2− 1

nXnY

)

−m−1

4DS

( (nX −3nY)(nX +nY −2)

nXnY
−D2

S

))
,

whereDS is the ‘shrunken’ Mahalanobis distance

D2
S =

nX + ny −m− 3

nX + nY − 2
D
6̂

(6.60)

D
6̂
= (Y − X)TΣ̂(X − Y), (6.61)

and fN is the standard normal density function.

6.10.5 Testing for(p, p)-recurrence. A para-
metric test of(p, p)-recurrence can be constructed
following the ideas of the parametric test of uni-
variate recurrence in [6.9.9]. The null hypothe-
sis H0 is again ‘EX and EY are less than(p, p)-
recurrent.’ H0 can be tested with HotellingT2

statistic [6.6.10]:

T2 = nX + nY −m− 1

m(nX + nY − 2)
D
6̂
. (6.62)

Under H0 T2 has a non-centralF distribution (see,
e.g., [307]) withm andnX + nY −m− 1 degrees
of freedom and non-centrality parameter

1 = nXnY

nX + nY
D, (6.63)

whereD = 2F−1
N (p) (6.57).
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7 Analysis of Atmospheric Circulation
Problems

7.0.0 Summary. In this chapter we present
examples of hypothesis tests in the contexts of
confirming, or validating, Atmospheric General
Circulation Models (AGCMs) (Section 7.1, see
also [1.2.7]) and the analysis of paired sensitivity
experiments (Section 7.2, see also [1.2.7]). Similar
applications in the literature include [105, 132,
134, 135, 161, 393]. See also Frankignoul’s review
of the topic [130], and therecurrence analysis
examples presented in Sections 6.9 and 6.10. An
application of the Hotelling test is described in
Section 7.3 and an example of the anthropogenic
CO2 signal is discussed in Section 7.4.

7.1 Validating a General Circulation
Model

7.1.1 The Problem. Climate models in gen-
eral, and AGCMs specifically, are mathematical
representations of the climate that are built from
first principles. On short time scales they simulate
the day-to-day variations in the weather, ideally
in such a way that the statistics of the observed
climate are reproduced when the model is run
for a long period of time. A careful strategy is
needed to determine, even partly, whether a model
has achieved this goal. The problem is complex
because, in principle, we would need to compare
the statistics of a state vector that characterizes
all aspects of the thermo- and hydrodynamics of
the atmosphere. The statistics should include time
averaged fields of various variables at various
levels, and temporal and spatial cross-covariances
of different variables on different scales.

It would be difficult, but not impossible, to
characterize the simulated climate in this way. On
the other hand, it simply cannot be done for the
observed climate because our observations are far
from complete. In reality, model validation efforts
must be restricted to an incomplete state vector that
represents only a few variables of interest.

In the following example the state vector is
only a single variable: the zonal distribution of
geopotential height at 500 hPa in the Northern
Hemisphere extratropics. The comparison is often
performed with a statistical test of the null
hypothesis that the observed and simulated vectors
have the same distribution.1 Thus, as we noted
in [6.9.1], given large enough samples we will
eventually discover that the simulated climate
is ‘significantly’2 different from that which is
observed because no model is perfect.3

That is, a fully satisfactory ‘verification’ or
‘validation’ is impossible with the hypothesis
testing paradigm. Are there more satisfying ways
to prove the ‘correctness’ of a model? Oreskes
et al. [301] argue that a positive answer can
be given only if the model describes a closed
sub-system of the full system, that is, a sub-system
with completely known ‘external’ forcings. The
atmosphere and the climate system, as a whole,
are not closed systems but open to various external
factors, such as variations in solar radiation,
volcanic eruptions, or the Milankovicz cycle. Even
if these external factors were known in detail,
the part of the climate system represented by an
AGCM cannot be viewed as a closed sub-system
because the atmosphere loses energy and moisture
into other parts of the system.

Sometimes, a possible alternative to the ‘hy-
pothesis testing’ strategy is to use the mod-
els as forecasting instruments, then assess their
ability to predict atmospheric variations (see
Chapter 18) correctly. Unfortunately, this ap-
proach is applicable only in cases when there

1The test may concentrate on a specific aspect of the
distributions, such as the means (Section 6.6) or variances
(Section 6.7), or it may be concerned with the whole
distribution ([5.2.3], [5.3.3] and Sections 6.9 and 6.10)

2Statistically, not necessarily physically, significant.
3One of the unavoidable errors is due to space-time

truncation that determines the modelled sub-space. The part of
the phase space that is disregarded by the truncation affects the
real system also in the resolved part of its phase space, but has
no impact on the model’s phase space.

129
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Figure 7.1: Sample mean (top) and standard
deviation (bottom) of the30◦N–60◦N meridional
average of 500 hPa height simulated in a GCM
(light lines), and derived from observations (heavy
lines) (cf. Figure 6.5) [397].

is predictive skill, as in case of short-term fore-
casts or in case of externally induced anoma-
lies (as the injection of volcanic aerosols). Also,
it is often impractical because we lack inde-
pendent observed data on the time scales of
interest.

Regardless of the validation strategy used,
it is always possible that the model verifies
correctly for the wrong reasons. For example,
Zwiers and Hamilton [447] showed that CCC
GCMI4 simulates the semi-diurnal thermal tide
very realistically. However, the tide in the observed
atmosphere is excited primarily by solar heating of
the stratosphere at levels well above the model’s
10 hPa ‘lid.’ The lid apparently allows standing
oscillations to develop from the weak solar heating
that takes place below 10 hPa.

In summary, there are strong limitations to
statistical model validation. Neither the testing
nor prediction approaches are fully satisfactory.
When we do satisfy ourselves that some aspect of
the distribution of the simulated climate matches
that which is observed, it then becomes necessary
to confirm that the same physical mechanisms
operate in both.

4The first GCM of the Canadian Climate Centre [53].

7.1.2 Example: Extratropical Geopotential
Height at 500 hPa. We return to an example
first described in [6.2.6], which dealt with January
mean 500 hPa heights, meridionally averaged
between 30◦N and 60◦N. In [6.2.6] we asked
whether the individual zonal distributions of
height, EX, simulated by a GCM were distributed
similarly to those observed. Here we use the
same model output to test the null hypothesis
that the means and variances of the simulated
zonal distribution are equal to those of the
observations [397].

The permutation test [6.6.12] is used with
statistic (6.36) to test the null hypothesis that the
means of the simulated and observed climates
are equal. The assumptions needed in this case
are (i) the observed and simulated samples
can be represented by iid random vectors
EX1, . . . , EXnX and EY1, . . . , EYnY , (ii) the samples
are mutually independent, and (iii) the variances
of the simulated meridional means are equal to
those of the observed means. Assumption (i)
may be violated for the observations since low
frequency interactions between the ocean and the
atmosphere, such as the Southern Oscillation, may
result in weak dependence between consecutive
January meridional means. This should not
cause major problems with the test procedure.
Departures from the third assumption are more
obvious, but fortunately Monte Carlo experiments
have shown that this violation does not lead to
strong biases in the risk of incorrectly rejecting the
null hypothesis.

The result of the test is that the equality of means
hypothesis can be rejected at a significance level of
less than 5%. This isn’t at all surprising since we
saw in [6.2.6] that six out of ten simulated monthly
means were not likely to have been observed in the
real climate. The observed and simulated sample
means are shown in the upper panel of Figure 7.1.

The permutation test can also be used to test the
null hypothesis of equal standard deviations, but
the data must first be centred. That is, observations
Exi and Eyj are replaced with the corresponding

deviationsExi − Ēx and Eyj − Ēy. Figure 7.1 (lower
panel) shows the model underestimates the natural
variability of the considered parameter.5

The major conclusions of this study [397] were
that the GCM suffered from systematic errors in
the mean distribution of 500 hPa height in the
extratropics and that theinterannualvariability of
monthly means was significantly underestimated.

5This is a malady shared by many models. See, for example,
Zwiers et al. [449]
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Figure 7.2:The DJF 1982/83 mean SST anomaly relative to the 1948–94 DJF mean in the tropical
Pacific. The SSTs are from the Hadley Centre GISST data set. Parker et al. [302]. Courtesy V. Kharin.

7.2 Analysis of a GCM Sensitivity
Experiment

7.2.1 Experimental Set-up. GCMs are very
important ‘lab tools’ in climate research because
they can be used to perform controlled experi-
ments that determine the atmospheric response to
variations in one external factor (say factor X)
while all other external factors are held fixed. Two
sets of experiments are usually performed: one
set with unalterednormal, or control, conditions,
and another set withanomalousconditions, in
which a specific external factor is changed, such
as the sea-surface temperature in a certain area, the
atmospheric load of aerosol, or the formulation of
a parameterization of the cloud-radiation interac-
tion. More complicated experimental designs can
be constructed to examine the combined effects of
variations in more than one external factor (see
Chapter 9; examples include Gough and Welch
[145] and Chapman et al. [79]).

The evaluation of such experiments may
be done by formulating and testing the null
hypothesis: ‘the change in factor X has no effect on
the state of the (modelled) atmosphere.’ Again, we
need to keep the limitation of the testing paradigm
in mind. Rejection implies that the response is
statisticallysignificant; physical insight is required
to ascertain that it isphysically significant as
well. Non-rejection may indicate that the change
has no effect, or simply that the experiment is
too small,6 and therefore that the signal remains
hidden in the noise. The remainder of this section
presents details of one of these paired sensitivity
experiments [386].

6That is, the simulated sample contains too few independent
realizations.

7.2.2 Example: The Effect of ENSO
Sea-surface Temperature Anomalies on
the Extratropical Atmospheric Flow.
The El Niño/Southern Oscillation (ENSO)
phenomenon is considered to be the strongest
climate variation on time scales of a few years
(for further details refer to the short description in
[1.2.2]). A significant feature of this phenomenon
is the appearance of anomalous sea-surface
temperatures on large spatial scales in the tropics,
which affects the overlying convective activity in
the atmosphere. The DJF mean SST anomaly for
the 1982/83 ENSO event is shown in Figure 7.2.
It is not immediately obvious how anomalous
temperatures at the lower boundary might affect
the overall circulation of the atmosphere. A large
body of literature has been published on this
subject, describing approaches that range from
theoretical considerations [185] to numerical
experiments [48, 51, 95, 146, 221, 244, 288].

The experiment was conducted by integrating
an atmospheric GCM twice under conditions that
were identical apart from the sea-surface temper-
ature distribution in the equatorial Pacific. One
integration, the ‘control’ run, used climatological
SST. In the other integration, an exaggerated El
Niño SST anomaly was superimposed onto the
climatological SST. The anomaly has a maximum
of about 4◦C and is centred in the equatorial
Central and Eastern Pacific. Both integrations were
performed in the perpetual January mode,7 with a

7The expressions ‘perpetual’ and ‘permanent January
mode’ refer to GCM experiments in which the solar radiation
and the lower boundary conditions, such as SST, are
kept constant to fixed January conditions—a design that
saves computer timeand produces many iid samples. This
experimental set-up introduces some systematic errors, mostly
related to hydrological processes such as the accumulation of
snow, when compared with runs done with a regular annual
cycle (see Zwiers and Boer [446]).
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Figure 7.3:GCM experiment on the extratropical
atmospheric response to tropical El Niño sea-
surface temperature anomalies. The variable
shown is the 500 hPa height ‘full signal,’ that is,
the ‘El Niño minus control’ difference field derived
from all samples. Units: dkm. From von Storch
[386].

spin-up period of 200 days and a sampling period
of 1200 days.8

Here, we consider the effect of the anomalous
boundary conditions on the tropospheric state
in the extratropical Northern Hemisphere, in
particular the monthly mean 500 hPa height. The
random variableEX is the January mean of this
field for the control run andEY is that for the
experimental run. The null hypothesis isE( EX) =
E( EY). The 1200 day sampling period is subdivided
as follows: the time series is broken into adjacent
40 day intervals; the first 10 days of each sub-
interval are disregarded and the remaining 30 days
are retained for analysis. The result is a collection
of 30 roughly independent Januaries for both the
control and experimental conditions. Note that a
10-day gap is sometimes not enough to ensure
independence.9

The ‘full’ signal, that is, the overall 500 hPa
height ‘El Niño minus control’ difference field,
is shown in Figure 7.3. The equality of means
hypothesis was tested with the permutation test
[6.6.12] after projecting the data onto a set of guess
patterns [6.5.6].

Three different sets of guess patterns were used.

8A ‘spin-up period’ is the time needed for a model to
travel through its phase space from the initial conditions to
quasi-equilibrium; that is, the time needed by the model to
‘forget’ the initial conditions.

9For example, when there is ‘blocking,’ the memory of the
atmosphere might be a few weeks.

1 EOFs as Guess Patterns
First, the eddy componentEz∗ of the 30◦N–
60◦N 500 hPa height meridional average
was considered.10 To reduce the number of
spatial degrees of freedom, the first five
Empirical Orthogonal Functions (EOFs, see
Chapter 13) of the control experiment were
used as guess patterns. TheEz∗-field of
each individual month was projected onto
these guess patterns, and the HotellingT2

statistic (6.33) was used in combination with
the permutation test to determine whether
the means of the first five EOF coefficients
changed significantly when the El Niño SST
anomaly was imposed. The result was that
it is highly unlikely (≤ 1% chance) that the
simulated differences between theEz∗-fields
in the control and experimental runs were
caused only by random variations. Therefore
the null hypothesis was rejected.

2 Splitting the GCM data to Obtain a Guess
Pattern
A more detailed analysis was performed
on specific aspects of the full Northern
Hemisphere 500 hPa height field. The
experiments were integrated over a fairly
long time in order to obtain a large number
of samples. It is therefore possible to split
the control and experimental samples into
two sub-samples of equal size. The first
sub-sample from each simulation was used
to estimate the signal. The second pair of
sub-samples was used to test the equality of
means hypothesis using the estimated signal
from the first pair of sub-samples as guess
patterns. Since only one guess pattern is used,
the number of spatial degrees of freedom is
reduced to one, and a univariate difference of
means test (6.29) may be used.

The difference was found to be significant
at much less than the 1% significance level.
The estimated signal, obtained by multiplying
the guess patterns by the change in the
mean coefficient (not shown) is very similar
to the full signal (Figure 7.3). A test was
also performed to see if there was a signal
orthogonal to the guess pattern (see [6.5.4]).
This was done using the EOF method
described above. The null hypothesis that a

10The eddy componentof a random fieldEZ is the deviation
from the zonal mean,EZ∗ = EZ−[ EZ], where [·] denotes the zonal

averaging operator. Here [EZ] = EZTE1/m, wherem is the number
of elements inEZ andE1 is them-dimensional vector of units. See
also [7.2.1].
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component of the signal lies in a direction
orthogonal to the guess pattern was not
rejected.

3 Observed Fields as Guess Patterns
The GCM experiment was conducted to sim-
ulate the atmospheric response to anoma-
lous SST conditions in the tropical Pacific.
Therefore, the January mean 500 hPa height
anomaly fields observed during three El Niño
events (1973, 1977, and 1983) were used as
guess patterns. A separate univariate test was
performed with each guess pattern.

The January 1973 guess pattern successfully
extracted part of the signal, although the
change in pattern coefficient was negative
rather than positive, as in the previous item.
The estimated signal, obtained by multiplying
the guess pattern with the change in its
coefficient (Figure 7.4, top), had about half of
the strength of the signal obtained by splitting
the GCM data. The most variance was
contained in a sector covering the Atlantic
and Eurasia. The part of the full signal that
appeared in the direction of the guess patterns
was actually weaker than the components that
were orthogonal to the guess pattern.

The January 1977 guess pattern successfully
captured a large fraction of the GCM
signal. There was strong evidence against
the null hypothesis, and the strength of the
projection was about 75% of the value found
through splitting the GCM data. The parallel
component (Figure 7.4, bottom) was very
similar to the full signal (Figure 7.3). The
orthogonal part of the full signal (not shown)
was still significantly nonzero.

The last guess pattern, January 1983, repre-
sented the observed atmospheric response to
the most intense ENSO event on record up
to 1997. Analysis of observational data has
shown that the January 1983 Northern Hemi-
sphere extratropical 500 hPa height field was
substantially different from ‘normal’ January
mean height fields [385]. None the less, this
field failed to capture the simulated ENSO
signal when it was used as a guess pattern. In
fact, the GCM output was almost orthogonal
to the January 1983 500 hPa height anomaly.

The major conclusion drawn from this statistical
analysis [386] was that the El Niño SST anomalies
excite a statistically significant response in the
extratropical atmospheric circulation. The model
simulated a response similar to the observed

Figure 7.4:GCM experiment on the extratropical
atmospheric response to tropical El Niño SST
anomalies. Statistically significant projections of
the full 500 hPa height signal (Figure 7.3) on the
January 1973 guess pattern (top: note that the
signal is almost zero in the Pacific sector, where the
El Niño related signal is expected to be strongest)
and on the January 1977 guess pattern (bottom).
Units: dkm. From von Storch [386].

circulation anomaly from January 1977, but
largely orthogonal to the observed January 1973
and 1983 anomalies.

7.3 Identification of a Signal in
Observed Data

7.3.1 General. Dramatic events sometimes
take place in the global environment, such as
the appearance of large-scale ENSO sea-surface
temperature anomalies of 1982/83 (Figure 7.2)
or the injection of large amounts of aerosols
into the stratosphere by an erupting volcano such
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as the Pinatubo in 1992 (see, e.g., McCormick,
Thomason, and Trepte [268] or Pudykiewicz and
Dastoor [324]). The large events can be viewed as
natural sensitivity experiments, so it is of interest
to know whether the state of the atmosphere
during, and after, the event is different from
that of the undisturbed, ‘normal’ climate. The
observations that represent the normal climate
are regarded as independent realizations of a
‘control’ climate state vectorEX. The observation
taken during the event of interest is labelled
Ey1, and the null hypothesis: ‘Ey1 is drawn
from EX’ is examined. If the null hypothesis is
rejected,Ey1 − Ēx is regarded as an informative,
but uncertain, estimate of the effect of the
event.11

7.3.2 The 1982/83 El Nĩno and its Impact on
the Extratropical Circulation. In Section 7.2
we described an analysis of a simulated response to
a prescribed tropical Pacific SST anomaly. In this
subsection we describe the analysis of observed
response.

Hense [174] examined monthly anomalies of
Northern Hemisphere stream function for the
period January 1982 to September 1983, a period
containing the largest ENSO event on record (until
1997). The monthly anomalies used in the study
were obtained by subtracting the 1967–81 mean
appropriate to the month from each monthly mean
in the 21-month study period. The covariance
structure varies with the time of year, so the
statistical analysis is done separately for each
calendar month.

As in [6.1.3], the null hypothesis for each of
the 21 months from January 1982 to September
1983 is that the respective monthly anomalyEy
is drawn from the random variableEX, where
EX represents the ‘normal’ monthly mean stream
function distribution appropriate to the month
in which Ey is observed. TheEX sample for a
given month of the year is taken to be the 15
monthly mean stream function fields observed for
that month between 1967 and 1981. The null
hypothesis is tested with HotellingT2 [6.6.10],
which means that a number of assumptions are
made implicitly. Specifically, it is assumed that
the monthly mean 500 hPa stream function is
multivariate normal, that the realizations for a

11If more than one event is examined, the observations from
the events are regarded as samples of another random variable
EY and the null hypothesis is H0: E( EX) = E( EY). If H 0 is
rejected, the differencēEy − Ēx is understood to be an estimate
of the mean response of the climate system to the external
events.

given month of the year are independent, that the
realizations during the 1967–81 period all come
from random vectors with the same distribution,
and that the covariance structure during the
1982/83 ENSO was the same as that during the
preceding 15 years. Clearly these assumptions are
not all satisfied. None the less, the analysis based
on this model is useful, even if it is not fully
precise.

The data were available on a 576 point grid. The
guess patterns used in this study are thesurface
spherical harmonics, written asPm

j (φ) cos(mλ)
and Pm

j (φ) sin(mλ), where φ is latitude, λ is
longitude, Pm

j is the correspondingassociated
Legendre polynomial, for j = 0,1, . . . ,∞
and m = 0, . . . , j [15]. The surface spherical
harmonics are orthonormal12 functions. The index
j specifies the spatial scale, that is, any two
surface spherical harmonics with the same index
j share the same spatial scale whereas a largerj
indicates a smaller scale. Only functions with odd
‘two-dimensional wavenumbers’m+ j are needed
to represent a hemispherical field. There is only
one function for each(m, j ) combination when
m = 0, but there are two functions, one displaced
zonally π

2m radians relative to the other, whenm is
nonzero. The cosine form of the(1,1) and(1,2)
spherical harmonics are shown in Figure 7.5.

A hierarchy [6.5.8] was chosen as shown in
Figure 7.6: the hierarchy withK = 1 element
contains only the functionP0

1 (φ); the hierarchy
with K = 3 contains that and the functions
P1

2 (φ) cos(λ)andP1
2 (φ) sin(λ)as well, and so on.

The hierarchy does not contain an element with
K = 2 guess patterns.

The projection of the full signalEy − Ēx onto a
subset ofK guess patterns represents a truncated
signal. The optimal signal is identified as the
truncated signal that goes with theK for which the
evidence against the equality of means hypothesis
is the strongest. Barnett et al. [22] call this
selection rule C.

The following results were obtained:

• Results for November 1982are shown in the
bottom panel of Figure 7.6. The statistic that
is displayed for each levelK of the hierarchy
is a scaled version of HotellingT2 (6.33) that

12Orthonormal means that the scalar product of any
two non-identical surface spherical harmonics is zero, and
that of a spherical harmonic with itself is one. In fact,

1
2π2

∫ 2π
0
∫ π
0 Pm

j (φ)(cos(mλ) + i sin(mλ))Pn
k (φ)(cos(nλ) −

i sin(nλ))dφdλ = δmnδ jk , whereδi l is one if i = l and zero
otherwise.
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Figure 7.5:Two surface spherical harmonics. The
upper panel represents a larger spatial scale than
the lower panel.
Top: P1

1 (φ) cos(λ). Bottom:P1
2 (φ) cos(λ).

is given by

D̂ 2
(Ey− Ēx) = K (nX + nY − 2)

nX + nY − K − 1

×
(

1

nX
+ 1

nY

)−1

T2,

where nX = 15 and nY = 1. The
critical values are those of theT2 statistic,
that is, they are upper tail quantiles of the
F(K ,nX + nY − K − 1) distribution, also
scaled by the same factor.

The null hypothesis can be rejected at the
5% significance level forK = 3, . . . ,8.
The evidence against H0 is strongest for
K = 3. The first conclusion is that
there is a significant signal in the data.
The second conclusion is that the projec-
tion of the full signal on the three first
guess patterns,P0

1 (φ), P1
2 (φ) cos(λ), and

P1
2 (φ) sin(λ), yields the optimal model in the

hierarchy.

• Results for All Months.The hierarchal testing
procedure was repeated in each of the 21
months from January 1982 to September
1983. The null hypothesis was rejected at
the 5% significance level or less for at least
one member of the hierarchy in every month
from July 1982 until September 1983. The
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Figure 7.6: Analysis of extratropical 500 hPa
height during the 1982/83 El Niño event [174].
Top: Hierarchy in the set of surface spherical
harmonics functions, used as guess patterns in
Section 7.3.
Bottom: Results for November 1982.

optimal signal was often found in theK =
3 hierarchy. The strongest signals, in terms
of significance, were found from September
1982 to June 1983.

A total of 21 tests were conducted and the
null hypothesis was rejected in 15. We would
expect only one or two rejections to occur at
the 5% significance level if H0 was correct
throughout the 21-month period, and if the
21 decisions are statistically independent of
one another (which they are not). Assuming



136 7: Analysis of Atmospheric Circulation Problems

that we have made the equivalent of seven
independent decisions, the probability of
making the reject decision under H0 15 or
more times in the 21 tests is well below 1%
[6.8.2].

The major conclusion of this study [174] is that
the Northern Hemisphere extratropical circulation
during the 1982–83 El Niño was substantially
different from the circulation during the preceding
15 years.

7.4 Detecting the ‘CO2 Signal’

7.4.1 A Perspective on Global Warming. The
prospect of man changing the world’s climate
by modifying the chemical composition of the
atmosphere was first discussed by Arrhenius [16]
in 1896. He argued that a change in the
atmospheric concentration of radiatively active
gases, such as a carbon dioxide, will cause a
change in the physical state of the atmosphere
in general and the near-surface temperature of
the globe in particular. Arrhenius’s result was
mostly of academic interest for many decades, but
since the late 1970s it has become one of the
top environmental topics. The scientific challenge
was, and is, to determine whether the changing
composition of the atmosphere will result in
physicallyor socially significantclimate changes.

Early climate model experiments indicated
large effects, which were not matched by the
observational record. These were ‘equilibrium’
experiments designed to estimate the effect of
doubling the atmosphere’s CO2 concentration;
they were typically performed with AGCMs that
were coupled to thermodynamic models of sea ice
and the upper (i.e., mixed layer) part of the global
oceans.13

More recent simulations14 have usedcoupled
climate system modelsthat incorporate an AGCM,
a dynamical ocean model, sometimes a dynamical
sea-ice component, and the effects of tropospheric
aerosols.15 The greenhouse gas and tropospheric
aerosol concentration in these experiments is
changed gradually in time to reflect the effects
of human activities on the environment. These
sophisticated simulations, performed at a number

13An equilibrium climate change experiment is described by
Boer et al. [52].

14See Gates et al. [138] and Kattenberg et al. [215] for an
overview.

15Such as SO4, which reflects sunlight and therefore cools
the climate, and black carbon, which absorbs sunlight and
therefore warms the climate.

of institutions, appear to agree broadly with
observed climate change and also agree broadly
on the size and distribution of future climate
change. None the less, these simulations are only
plausible scenarios for the future since many
aspects of the simulated system, such as the
low-frequency variability of the oceans and the
role of clouds in regulating climate, are still poorly
understood.

7.4.2 Methodological Considerations. As in
the preceding section, where we dealt with the
‘signal’ excited during an episode with large trop-
ical sea-surface temperature anomalies, the statis-
tical ‘climate change detection’ problem consists
of evaluating one event, say the latest record of
the global distribution of near-surface temperature,
in the context of the natural variability of near-
surface temperature. The problem is to determine
whether the recent warming is consistent with the
variations of temperature due to internal, and thus
undisturbed, dynamics.

The main methodological obstacle is the lack
of observations that sample the ‘control’ regime.
Most of the available instrumental record consists
of surface observations taken during the last
century or so. This record may be contaminated by
the greenhouse gas signal but, more importantly, it
is not large enough to provide us with a reliable
estimate of the natural variability of the climate
on the time scales on which the climate change
is expected to occur. In the next subsection we
summarize the approach to this problem developed
by Hegerl et al. [172].16

7.4.3 A Detection Strategy. The first problem
in developing a ‘detection strategy’ that aims to
identify the ‘greenhouse signal’ is to choose which
variable to exploit (such as sea-level pressure,
near-surface temperature, the vertical distribution
of moisture in the atmosphere, etc.). Whatever the
variable, it should satisfy the following criteria.

• There should be a long historical record of
the variable, containing observations with
wide spatial coverage that are made in
a consistent manner throughout the year.
The only data in the instrumental record

16There is an extensive literature on climate change
detection. Some additional important entry points to the recent
literature include Barnett and Schlesinger [23], Bell [38, 39],
Hasselmann [168], Hegerl et al. [172], Karoly et al. [214],
Mitchell et al. [279], North, Kim, and Shen [297], Parker et
al. [303], Santer et al. [339] and Stevens and North [359]. Santer
et al. [340] provide an extensive overview.
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that satisfy this criterion are rainfall, sea-
level pressure, near-surface temperature, and
sea-level observations taken during the last
hundred years or so. For example, Folland,
Karl, and Vinnikov [121] use afrozen grid
analysis to show that global annual mean
near-surface temperature can be reliably
estimated from about 1860 onwards.17 Proxy
data [3.1.10] hold promise for climate
change detection because they cover much
longer periods than the instrumental record.
However, proxy data are difficult to use
because the information they contain is often
specific to a particular region and time of year
(e.g., the growing season).

• The observational record should be homoge-
neous, and free of biases caused by changes
in the observing network configuration, the
instruments and their immediate physical
environment (see Figure 1.9), and observ-
ing practices. The three atmospheric data
records mentioned above have been made
somewhat homogeneous by means of labo-
rious ‘homogenization’ techniques (see, e.g.,
Jones [201], or Vincent [383]). Rainfall is
the least reliable variable in this respect.
Sea-level data are contaminated by land ris-
ing and sinking, among other processes (see
[3.2.2]).

• The ‘signal-to-noise’ ratio should be
large. For example, GCM experiments
indicate that sea-level pressure has
a much weaker signal-to-noise ratio
than screen temperature. See Barnett,
Schlesinger, and Jiang [24] for more
details.

• The variable should be well simulated
by climate models, for reasons explained
below. It is felt that current models do
not yet simulate precipitation or sea level
well.

Hegerl et al. therefore used the instrumental
near-surface temperature record as the basis for
their detection strategy. Jones et al. [202] [203]
have carefully compiled a widely used gridded (5◦
longitude × 5◦ latitude) near-surface temperature

17Folland et al. [121] compare global mean temperatures
time series computed from a number of observing networks
representing the distribution of observing stations at a number
of points in time. Shen, North, and Kim [349] and Zwiers and
Shen [451] use more rigorous arguments to come to the same
conclusion.
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Figure 7.7:Estimated annual mean near-surface
temperature expressed as anomalies relative to
the 1950–79 mean. From Nicholls et al. [294].
Courtesy P. Jones.

data set for 1855 onwards. The coverage increases
with time as more stations become available.

The ‘detection question’ is formulated as a
statistical testing problem. The null hypothesis
is that the ‘trend’ (Figure 7.7) found in the ob-
servational record stems from natural variability.
Physical reasoning, as well as results obtained
from recent ‘transient’ climate simulations [7.4.1],
indicate that rejection of this hypothesis will be
consistent with greenhouse gas induced climate
warming.

The methodical problems connected with this
test are as follows.

1 The state variable is a high-dimensional
vector. Before performing a test, the spatial
degrees of freedom have to be reduced
by projecting the raw data onto a guess
pattern [6.5.6]. Hegerl et al. [172] used data
from a climate model, which was forced
with increasing concentrations of greenhouse
gases, to build a simple guess pattern:
the simulated 100-year change in the near-
surface temperature.

We introduced an algorithm in [6.5.7] to
increase the power of a test by ‘rotating’
the guess pattern towards the anticipated
signal in such a way that the signal-to-
noise ratio is optimized. To achieve this
we must project the guess pattern, and the
observations, onto a low-dimensional vector
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Figure 7.8: Optimized guess pattern used by Hegerl et al. [172] to ‘detect’ the impact of an
anthropogenic greenhouse gas effect on recent 20-year near-surface temperature trends. The pattern
is taken from a ‘scenario’ run with a climate model that was forced with continuously increasing
greenhouse gas concentrations.

space that captures most of the climate’s
natural variability on decadal and longer time
scales. We also need an accurate estimate
of the covariance matrix of the natural
variability in this subspace. Hegerl et al.
chose to use the subspace spanned by the first
10 EOFs (see Chapter 13) of the ‘transient’
climate simulated by the model used to
produce the guess pattern.18 The covariance
matrix Σ needed for the optimization was
also estimated from this simulation.19 If
Ep is the raw guess pattern in the 10-
dimensional subspace, then the optimized
guess pattern Ep 0 is given by Σ−1 Ep .
Furthermore, if ETt represents the detection
variable at time t (i.e., observed near-
surface temperature projected onto the four-
dimensional subspace), then the optimized
detection variable is given by

α0(ETt ) = 〈 Ep 0, ETt 〉. (7.1)

Hegerl et al. [172] performed the analysis
with both the raw guess pattern and the
optimized guess pattern.20 We limit our

18The first 10 EOFs of the transient simulation were used
because they capture the guess pattern much more effectively
than the EOFs of the control simulation.

19We treatΣ as known since it was estimated from a very
long simulation.

20Also sometimes called a ‘fingerprint.’

report here to the improved results that were
obtained with the optimized pattern.

2 The observed data are not complete. Data
is missing sporadically in some 5◦ ×
5◦ boxes, and other boxes have extended
intervals of missing data. This means that
the scalar product cannot be used to project
the observed temperatures onto the guess
pattern. Instead, the projection is determined
by solving a least squares problem. Let
Ett = (t(1, t), . . . , t(10, t))T be the realized
projection at timet , let to(i, j, t) represent the
near-surface temperature observed at timet in
the (i, j )th 5◦ × 5◦ box, and letυk(i, j ), for
k = 1, . . . ,10 represent the 10 EOFs. Also,
let A(i, j ) be the area of the(i, j )th box. Then
Ett is found by minimizing∑∑(

to(i, j, t)− t̂o(i, j, t)
)2

A(i, j ),

where

t̂o(i, j, t) =
10∑

k=1

t(k, t)υk(i, j ),

and where the double sum is taken over those
grid boxes that contain data.21 Simulation

21For a more detailed representation of the problem of
determining EOF coefficients in case of gappy data, refer to
[13.2.8].
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experiments have shown that changes in data
density may cause inhomogeneities inα0(Et).
To limit this effect, Hegerl et al. used only
those grid boxes for which the record from
1949 onwards was complete. Therefore the
entire southern and northern polar regions and
the Southern Ocean are disregarded.

Figure 7.8 shows the optimized guess pattern
truncated to the area that has complete data
coverage for 1949 onwards.

3 The natural variability of the optimized
detection variable cannot be estimated from
the observations. The observed record is
contaminated by the presumed signal and the
data are correlated in time so that only a
few independent realizations of the ‘naturally
varying’ state variable are available.

There are, in principle, two ways to deal with
this problem. The first approach is to remove
the expected climate signal from the observed
record by constructing a linear model of the
form

T∗t = Tt − TCO2
t (7.2)

TCO2
t =

∫ ∞
0

S(1) ln
(C(t −1)

C(0)

)
d1.

HereTt is the observed temperature record,
TCO2

t is an estimate of the CO2 induced
temperature signal, andT∗t is the residual.
The variability of T∗t is assumed to be the
same as that of the undisturbed climate
system. The functionC(t) is the atmospheric
CO2-concentration at timet , and S(·) is
a transfer function. The variability of the
detection variable is then derived fromT∗
instead ofT.22

One problem with this approach is that it does
not eliminate the effects of serial correlation;
even without the signal it is difficult to
estimate the natural variability of the climate
on decadal and longer time scales from the
observed record.

Another problem with this approach, apart
from adopting the model (7.2), is that the
remaining variability also includes contri-
butions from other external factors such as
aerosol forcing caused by human pollution
and volcanos. While volcanos may be consid-
ered stationary in time, the effect of pollution

22Subsection 17.5.7 also deals with the problem of removing
a suspected signal from a time series.
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Figure 7.9:Time evolution of 20-year trends of the
optimized detection variableαo(Et) = 〈 Ep o,Et〉 for
near-surface temperature. Labels on the abscissa
identify the last year (1879 until 1994) of each
20-year period.
The solid line is derived from observed data
since 1860. The dotted line, labelled ‘EIN’, is
derived from 150 years of climate model output.
The climate model was forced with anomalous
radiative forcing corresponding to the observed
1935–85 greenhouse gas concentrations during
the first 50 years of the simulation. A scenario
(IPCC scenario A) was to prescribe greenhouse
gas concentrations from ‘1985’ onwards. Twenty-
year trends from the simulation (dashed curve) are
shown to compare the observed evolution with that
anticipated by a climate model.
The narrow shaded band, labelled ‘GFDL’, is an
estimate of the natural variability of the 20-year
trend derived from a 1000-year control simulation
(Manabe and Stouffer [266]). It should contain
the trend coefficient 95% of the time if there
is no trend. The wider band, labelled ‘obs’, is
derived from observations after an estimate of the
greenhouse gas (GHG) is removed. From Hegerl et
al. [172].

is not stationary since the concentration of
airborne pollutants increases substantially in
the latter part of the observed record.

To cope with this problem, the null hypothesis
should be reformulated to state that observed
variations are consistent with natural variabil-
ity originating from natural external proces-
ses as well as internal dynamical processes.
The anthropogenic aerosol effect probably
causes a cooling that counteracts the expected
greenhouse warming; the presence of this ef-
fect in the observed data inflates the estimate
of the variability and dampens the signal,
diminishing the overall power of the test.

The second approach is to consider the
output of ‘control’ climate model runs
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without any external forcing so that all
variability originates from internal dynamical
processes. This approach has the advantage
that, at least in principle, very long samples
can be created without inhomogeneities in
accuracy or varying spatial coverage. A major
disadvantage, though, is that the models
may not simulate the natural low-frequency
variability correctly.

Hegerl et al. used both approaches. In
two steps, 95% confidence intervals for
the natural variability of 20-year trends
in the optimized detection variable were
constructed from both observed anomalies
(7.2) and climate model output. In both
cases an auto-regressive process of order
1 was fitted to the optimal detection
variable.23 Monte Carlo simulations were

23An auto-regressive process of order 1 (an AR(1) process)
is written formally asXt = αXt+1 + Nt , whereNt is a series
of independent random variables (sometimes called ‘white
noise’). Chapters 10 and 11 explain AR(p) processes in some
detail.

then performed with the fitted auto-regressive
models to estimate the natural variability of
20-year trends in the optimized detection
variable.24 The test is eventually performed
by comparing recent 20-year trends with the
estimated 95% confidence intervals.

The result of the exercise is summarized in
Figure 7.9, which shows the time evolution of
20-year trends of the optimal detection variable
together with the 95% confidence intervals derived
from several sources. The latest trends do indeed
exceed the upper confidence limit, so we may
conclude that the prevailing trend is not likely to
be due to internal processes. This conclusion, of
course, depends crucially on the validity of the
natural variability estimates. For further reading on
climate change detection and attribution see Santer
et al. [340] and Zwiers [445].

24This procedure is closely related to the bootstrap
(Section 5.5).
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Fitting Statistical Models
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Overview
In this part of the book we introduce two classical, fully developed1 methods of inference: ‘regression’
and ‘analysis of variance’ (ANOVA). We do not expect that there will be significant changes in the
overall formulation of these techniques, but new applications and improved approaches for special cases
may emerge.

Both regression and ANOVA are methods for the estimation ofparametricmodels of the relationship
between related random variables, or between a random variable and one or more non-random external
factors. While regression techniques have been used almost from the beginning of quantitative climate
research in different degrees of complexity (see, e.g., Brückner [70]), ANOVA has only recently been
applied to climatic problems [441, 444].

The regression technique is introduced in detail and illustrated with several examples in Chapter 8.2

Regression is used to describe relationships that involve variables and factors measured on a continuous
scale. Examples of regression problems include modelling the trend in a time series by means of a
polynomial function of time (which would be a non-random external factor), or the description of the
link between two concurrent events, such as the width of a tree ring and the temperature, with the
purpose of constructing ‘best guesses’ of temperature in ancient times when no instrumental data are
available. Also, time-lagged events are linked through regression, such as the wind force in the German
Bight and the water level in Hamburg several hours later. The derived model is then used for storm surge
forecasts.

The reader may notice that climatologists often use the termspecifywhen they refer to regressed
values, as opposed to the termforecastcommonly used by statisticians. Neither word is perfect.
‘Forecast’ implies that there will be error in the estimated value, but sometimes has irrelevant time
connotations. ‘Specify’ eliminates the confusion about time but suggests that the estimate is highly
accurate. However, despite its inadequacies, we use ‘specify,’ except when discussing projections
forward in time, in which case we refer to forecasts.

The analysis of variancewas designed by R.A. Fisher for problems arising in agriculture. In his
words, ANOVA deals with ‘the separation of the variance ascribable to one group of causes from the
variance ascribable to other groups.’ Separation of variance is also often required in climate diagnostics.
A typical problem is to discriminate between the effect of internal and external processes on the global
mean temperature. In that case, an internal process might be the formation and decay of storms in
midlatitudes, while an external factor might be the stratospheric loading of volcanic aerosols. Another
typical application treats sea-surface variability on monthly and longer time scales as an external
process. In this case several independent climate simulations might be performed such that the same time
series of sea-surface temperatures is prescribed in each simulation. ANOVA methods are then used to
identify the simulated atmospheric variability that results from the prescribed sea-surface temperatures.
The ANOVA technique is explained in detail in Chapter 9 and its merits are demonstrated with examples.

1By ‘fully developed’ we mean that for each parameter involved there is at least an asymptotic distribution theory so hypothesis
tests and confidence intervals can be readily constructed.

2In fact, regression techniques appear throughout the book, as in Sections 14.3 and 14.4, which deal with Canonical Correlation
Analysis and Redundancy Analysis, respectively.
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8 Regression

8.1 Introduction

8.1.1 Outline. We start by describing methods
used to estimate and make inferences about
correlation coefficients. Then, we describe some
of the ideas that underly regression analysis,
methods in which the mean of aresponse(or
dependent) variable is described in terms of a
simple function of one or morepredictors (or
independent variables). The models we consider
are said to belinear because they are linear in
their unknown parameters. We describe a variety
of inferential methods and model diagnostics, and
consider the robustness of the estimators of the
model parameters.

A simple example is a naive model of climate
change in which global annual mean temperature
increases, on average, logarithmically with CO2
concentration:

Tglobe
year = a0+ a1 ln(cCO2)+ εyear. (8.1)

We know that global annual mean temperature
is subject to fluctuation induced by a variety
of physical processes whose collective effect
results in apparently stochastic behaviour. On
the other hand, CO2 concentration appears to
have only a minor stochastic component, at least
on interannual time scales, and can therefore
be considered to be deterministic to a first
approximation. The model proposes that global
annual mean temperature, denotedTglobe

year , is
trending upwards approximately logarithmically
as the CO2 concentration, denotedcCO2, increases.

It also proposes thatTglobe
year has a stochastic

component, which is represented by the noise
process{εyear}. There are two free parameters,a0
anda1, that must be estimated from the data. This
is something that is often (although not always
best) done using the method of least squares. Here
least squares estimation of the parameters is simple
because the model is linear in its parameters. If
inferences are to be made about the parameters
(e.g., tests of hypothesis or construction of
confidence intervals), then it is required that
(8.1) also include some sort of assumption about

the characteristics of the stochastic component,
typically that this component behaves as normally
distributed white noise. Other less restrictive
assumptions are possible, but they may require the
use of more sophisticated inference methods than
those described in this chapter.

After introducing simple linear models, our
discussion of regression goes on to consider
multivariate linear models and methods for model
selection. We close the chapter with two short
sections on model selection and some other related
topics, including nonlinear regression models. It
is worth repeating that statisticians distinguish
between linear and nonlinear models on the
basis of the model’s parameters, not on how the
predictors enter the model.

An example of a simple nonlinear model, which
may be better suited than (8.1) to the example
above, is

Tglobe
year = b0+ b1 ln(cCO2year+ b2)+ εyear.

Note that this model is nonlinear inb2.

8.1.2 The Statistical Setting. Most of the
discussion in this chapter takes place in the
context of normal random variables, not because
other types of data are uncommon, but because
it is relatively easy to introduce concepts in
this framework. Nevertheless, note that departures
from assumptions can affect the reliability of some
statistical analyses quite drastically.

8.1.3 Example: ENSO Indices. This example
was considered briefly in [1.2.2] and [2.8.8].
Wright [426] described a tropical Pacific sea-
surface temperature index that captures informa-
tion about ENSO that is very similar to the
information captured by the classical Southern
Oscillation Index (SOI) based on the difference
between mean sea-level pressure at Darwin and
Tahiti. Wright’s index is based on SSTs observed
east of the date line and roughly between 5◦N
and 10◦S. A scatter plot of the monthly mean
values of these indices for 1933–84 inclusive is

145
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Figure 8.1:Scatter plot of monthly values of the SO
index versus the SST index for 1933–84 inclusive.
Units: 0.1 mb (SOI),0.01◦C (SST Index).

shown in Figure 8.1, and their corresponding time
evolutions are shown in Figure 1.4. Both diagrams
show the strong tendency for the two indices to
co-vary; when the SOI is large and positive, the
tropical Pacific SSTs east of the date line also tend
to be large and positive. We return to this example
in Sections 8.2 and 8.3.

8.1.4 Example: Radiative Transfer Parame-
terization in a GCM. AGCMs use parame-
terizations to describe the effect of unresolved
sub-grid scale processes in terms of larger resolved
scale quantities [6.6.6]. One such process is the
transmission of short wave radiation (i.e., light)
through the atmosphere to the land surface, where
this energy is either reflected or converted into
other forms (such as latent and sensible heat). The
propagation of light through the atmosphere at a
specific location is strongly affected by factors
such as the three-dimensional structure of the
cloud field and the distribution of other materials,
such as aerosols that may reflect, refract, or absorb
light.

AGCMs need to know the grid box average of
light energy incident upon the ground (or passing
though an atmospheric layer). Radiation transfer
codes used in AGCMs estimate these averages
from other grid scale parameters that are simulated
by the model.

Barker [17] describes a radiative transfer
parameterization that requires the mean (τ ) and
standard deviation (στ ) of cloud optical depthτ
within the grid box as input.1 In contrast, the cloud

1Optical depth is a measure of opacity.

parameterizations used in GCMs can estimateτ

and Ac, the fraction of the grid box that is cloud
covered, but they are not able to estimateστ .
However, it turns out that the mean log cloud
optical depthln τ is closely related toστ . Thus
the radiative transfer calculation can be performed
once estimates ofτ and ln τ are available. The
latter can be obtained fromτ and Ac by means of
a simple regression model.

We use satellite data described by Barker,
Wielicki, and Parker [18] in Section 8.4 to
examine the observed relationship betweenln τ
and corresponding(τ , Ac) pairs. The data consists
of 45 estimates of(ln τ , τ , Ac) that were derived
from 45 ocean images taken by the Landsat
satellite. Each image covers an area of about
3400 km2. Figure 8.2 shows three of these images,
and Figure 8.3 shows the derived data. Note that
the relationship between̄τ andln τ is curvilinear
(Figure 8.3, left). Also, note that, even though there
are a substantial number of scenes that are fully
covered (i.e.,Ac = 1), this does not preclude
variability of ln τ .

8.2 Correlation

8.2.1 Covariance. The covariance between two
random variablesX andY is defined as

Cov(X, Y) = E((X − µX)(Y − µY)), (8.2)

whereµX andµY are the mean values ofX andY
respectively. (See also Section 2.8.)

Climatologists often interpret covariances in-
volving winds as transports [311]. For example,
Figure 8.4 displays the meridionaltransient eddy
transportof zonally averaged zonal momentum, as
simulated by a GCM in the December, January,
February (DJF) season. The ‘eddy component’
of any variable, here the wind, is the deviation
from the spatial mean, here the zonal mean. A
significant part of the variability in this component
stems from cyclones or ‘eddies.’ The ‘transient’
part of the wind statistic is the variability around
the time mean (the ‘stationary’ component). The
transient eddy transport is the zonally averaged
covariance between the space–time variable part
of, for instance, the zonal and meridional wind.

The following notation is often used by
climatologists. The eddy and transient components
of a field are indicated by superscripts ‘*’ and
‘ ′’ respectively. The time mean (equivalent to the
sample mean in this context) is denoted by an over-
bar, and square brackets denote the zonal average.
With this notation the meridional transient eddy
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Figure 8.2:Optical depth inferred from three0.83 µm Landsat images. The brightest pixels in these
images correspond to an optical depth of about 20. From Barker et al. [18].
Left: Scene A3. Overcast stratocumulus,Ac = 1.000andτ = 11.868.
Middle: Scene B2. Broken stratocumulus,Ac = 0.644andτ = 3.438.
Right: Scene C14. Scattered cumulus,Ac = 0.291andτ = 3.741.
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Figure 8.3:Left: Mean cloud optical depth (τ ) versus mean log cloud optical depth (ln τ ) for 45 Landsat
scenes.
Right: Fractional cloud cover (Ac) versus mean log cloud optical depth (ln τ ) for the same scenes. Data
courtesy of H. Barker.

transport of zonal momentum is formally given by[
u∗′v∗′

]
, whereu and v represent the zonal and

meridional wind components.2

When
[
u∗′v∗′

]
> 0 in the Northern

Hemisphere, as in Figure 8.4, then easterlyu
anomalies (u∗′ > 0) are usually connected
with northerly v anomalies (v∗′ > 0), and
westerly anomalies(u∗′ < 0) with southerly
anomalies (v∗′ < 0). The distribution in
Figure 8.4 represents a northward (poleward)

2The complete decomposition of thetotal transport is
[uv] = [u∗′v∗′]+ [ū∗v̄∗]+ [u]′[v]′ + [ūv̄]. The first two terms
represent the transport by transient and stationary eddies, and
the last two terms the transports by the transient and stationary
cells. For maps and further details, see Peixoto and Oort [311].

transport of zonal momentum. Poleward transport
of zonal momentum in the Southern Hemisphere
is indicated by negative covariances. Figure 8.4
illustrates that the transient eddies are a powerful
agent for exporting zonal momentum from the
tropical and subtropical latitudes polewards in both
hemispheres.

8.2.2 The Correlation Coefficient. The corre-
lation coefficient is given by

ρXY = E((X − µX)(Y − µY))

σXσY
,

where σX = √
Var(X) and σY is defined

analogously. Note thatρXY takes values in the
range [−1, 1].
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Figure 8.4:Zonally averaged covariance between
the ‘transient’ eddy components of the zonal and
meridional wind = ‘meridional transient eddy
transport of zonally averaged zonal momentum’
during DJF simulated by a GCM. Units:m2/s2.

As noted in Section 2.8, the correlation
coefficient measures the tendency ofX andY to
co-vary (see Example [2.8.12] and Figure 2.10);
the greater|ρ|, the greater the ability ofX to
specifyY.

Suppose thatX and Y are bivariate normally
distributed with meansµX andµY, variancesσ 2

X
andσ 2

Y , and correlation coefficientρXY. Their joint
density function is given by (2.35). Suppose also
that only X is observable and we want to find a
function, sayg(X), that specifies the value ofY
as accurately as possible on average. A reasonable
measure of accuracy is the mean squared error,
given by

E((Y − g(X))2). (8.3)

It can be shown that

g(X) = µY + σY

σX
ρXY(X − µX)

minimizes (8.3) wheng is linear in X and that
the mean squared error isσ 2

Y (1− ρ2
XY). To reduce

the mean squared error to less than 50% of the
variance ofY, it is necessary that|ρXY| > 1/

√
2.

That is,X representsat least 50% of the variance
of Y when|ρXY| > 1/

√
2. To reduce the root mean

squared error to less than 50% of the standard
deviation ofY it is necessary that|ρXY| >

√
3/2≈

0.87.
Using the estimated correlation̂ρ = 0.667

between Wright’s [426] monthly SST index and
the monthly SOI [8.1.4] we estimate that the mean
square error of the SO index is 58% of its variance

when using the monthly mean SST anomaly to
specify the SOI, or the root mean square error is
76% of the standard deviation. This is in general
agreement with the level of scatter displayed in
Figure 8.1.

Note that the mean squared error is zero when
ρXY = 1; that is, Y = µY + σY

σX
(X − µx)

with probability 1 whenρXY = 1. Also, note
that zero correlation is generally not the same as
independence (except whenX andY are normally
distributed, thenX andY are independent if and
only if ρXY = 0; see [2.8.14]).

8.2.3 Making Inferences about Correlations.
When the sample{(Xi ,Yi )

T : i = 1, . . . ,n}
consists of independent, identically distributed
random vectors of length two, a good estimator of
the correlation coefficientρXY is

ρ̂XY =
∑n

i=1(Xi − X)(Y i − Y)√∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y)2

. (8.4)

This is the maximum likelihood estimator [5.3.8]
when (X, Y) is bivariate normally distributed.
Furthermore, (8.4) is asymptotically normally
distributed with meanρXY and variance(1 −
ρ2

XY)
2/n. However, becausêρXY converges slowly

to its asymptotic distribution, this result is
generally not used to make inferences about
ρXY. Instead, inferences are based on Fisher’s
z-transform,

z= 1

2
ln

(
1+ ρ̂XY

1− ρ̂XY

)
, (8.5)

which converges quickly to the normal distribution

N
(

1
2 log

(
1+ρXY
1−ρXY

)
, 1

n−3

)
whenρXY is nonzero. It

is then easily demonstrated that an approximate
p̃× 100% confidence interval forρXY is given by

(tanh(zL), tanh(zU )) , (8.6)

where

zL = z− Z(1+p̃)/2/
√

n− 3

zU = z+ Z(1+p̃)/2/
√

n− 3,

and Z(1+p̃)/2 is the (1 + p̃)/2-quantile of the
standard normal distribution (see Appendix D).
David [100] (see also Pearson and Hartley [308])
gives tables for exact confidence intervals forρXY.

In the SOI examplêρSST,SO I = 0.667 and thus
z = 0.805. For(1 + p̃/2) = 0.05, Z(1+p̃)/2 =
1.96, so thatZL = 0.805 − 1.96/

√
621 =

0.727, assuming that each of the 52× 12 months
in the index series are independent. This latter
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assumption is, of course, invalid, but it serves
our pedagogical purposes at this point. Similarly,
ZU = 0.884. Finally, from (8.6) we obtain
(0.621,0.708) as the 95% confidence interval for
ρSST,SO I. This interval is almost symmetric about
ρ̂SST,SO I because the sample size is large; it will
be less symmetric for smaller samples. Note also
that this confidence interval is probably too narrow
because it does not account for dependence within
the data.

An approximate test of H0: ρXY = 0 can be
performed by computing

T = |ρ̂XY|
√

n− 2

1− ρ̂ 2
XY

(8.7)

and comparingT with critical values from thet
distribution with n − 2 degrees of freedom (see
Appendix F). The type of test, one sided or two
sided, is determined by the form of the alternative
hypothesis.

Confidence interval (8.6) and test (8.7) both
require the normal assumption. A non-parametric
approach based on ranks can be used when the
observations are thought not to be normal. The
sample{(Xi ,Yi ): i = 1, . . . ,n} is replaced by the
corresponding sample of ranks{(RXi ,RYi ) : i =
1, . . . ,n} whereRXi is the rank ofXi amongst the
Xs andRYi is defined similarly.3 The dependence
betweenX and Y is then estimated with the
Spearman rank correlation coefficient̂ρ S

XY

ρ̂ S
XY =

∑n
i=1 RXi RYi − N√(∑n

i=1R2
Xi
− N

)(∑n
i=1R2

Yi
− N

) (8.8)

where

N = n
(n+ 1

2

)2
.

This is just the ordinary sample correlation
coefficient4 (8.4) of the ranks. Note that−1 ≤
ρ̂ S

XY ≤ 1, that ρ̂ S
XY = +1 when the rank orders

of the two random variables are equal, and that
ρ̂ S

XY = −1 when the two rank orders are the
reverse of each other. Small sample critical values
for testing H0: ρXY = 0 with ρ̂ S

XY are given
in Appendix K. Approximate large sample (i.e.,
n > 30) critical values for testing H0 against Ha:
ρXY 6= 0 at the(1− p̃) × 100% significance level
are given by±Z(1+p̃)/2

√
n− 1 whereZ(1+p̃)/2 is

the ((1 + p̃)/2)-quantile of the standard normal

3If there are ties, the tied observations are assigned the
corresponding average rank.

4Also known asPearson’s r.

distribution. Critical values for one-sided tests are
obtained analogously.

In contrast to tests of the mean (see Section 6.6),
inference about the correlation coefficient seems to
be relatively weakly affected by serial correlation,
at least when correlations are small [442]. A
resampling scheme that further reduces the impact
of serial correlation on inferences made about the
correlation coefficient is described by [110].

8.2.4 More Interpretations of Correlation.
The correlation coefficient can also be interpreted
as a measure of the proportion of the variance of
one variable, sayY, that can be represented by
constructing a linear model of the dependence of
the mean ofY upon X. Assume that(X,Y) are
bivariate normally distributed with joint density
function fXY(x, y) given by (2.35). We factor
fXY(x, y) into the product of the density function
of Y conditional uponX = x and the marginal
density function ofX (see Sections 2.5 and 2.8) to
obtain

fY|X=x(y|X=x) = fXY(x, y)

fX(x)

= exp
(−(y− µY|X=x)

2/2σ 2
Y (1− ρ2

XY)
)√

2πσ 2
Y (1− ρ2

XY)

where

µY|X=x = µY − ρXY
σY

σX
(µX − x).

The variance ofY conditional uponX = x is
σ 2
Y (1− ρ2

XY), the same factor discovered in [8.2.2]
when we consideredX as a predictor ofY. The
conditional variance does not depend upon the
specific realized value ofX. The mean ofY varies
linearly with the realized value ofX when ρXY

is nonzero. Note that the mean of one of the
pair of variables is completely determined by the
realized value of the other. The squared correlation
coefficient only tells us the proportion of the
variance ofY that is attributable to knowledge of
the conditional mean.

Yet another way to view the relationship
betweenY andX is to writeY in the form

Y = a0+ a1X + E, (8.9)

whereE is independent ofX. In geometrical terms,
a realization of the pair(X,a0 + a1X) randomly
selects a point on one of the axes of the ellipse
depicted in Figure 2.10, andY is subsequently
determined by deviating vertically from the chosen
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point. By computing means and variances we
obtain

σ 2
E = σ 2

Y (1− ρ2
XY)

a1 = ρXY
σY

σX

a0 = µY − ρXY
σY

σX
µX .

The purpose of regression analysis, discussed
in the next section, is to diagnose relationships
such as (8.9) between a response (or dependent)
variable and one or more factors (or independent)
variables. As the derivation above showed, the
language used in many statistics textbooks can be
misleading. If the factors that affect the mean of
the response variable are determined externally to
the studied system, either by an experimenter (as
in a doubled CO2 experiment conducted with a
GCM) or by nature (e.g., by altering the climate’s
external forcing through the effects of volcanos),
then words such asdependentand independent
or responseand factor can be used to describe
relationships between variables. However, often in
climatology bothX and Y are responses of the
climate system to some other unobserved factor.
Then regression analysis can be used to document
the relationship between the means ofX and Y,
but it would be inappropriate to use language that
implies causality.

8.3 Fitting and Diagnosing Simple
Regression Models

Our purpose here is to describe the anatomy
of a simple linear regressionin which it is
postulated that the conditional mean of a response
variableY depends linearly upon a random factor
X (the arguments in the next few subsections
work equally well if this factor is deterministic).
Suppose that we haven pairs of observations
{(xi , yi ): i = 1, . . . ,n}, each representing the
realizations of a corresponding random variable
pair (Xi ,Yi ), all pairs being independent and
identically bivariate normally distributed.

8.3.1 Least Squares Estimate of a Simple
Linear Regression. Assume that the conditional
means satisfy

µYi |X=xi = a0+ a1xi

so that conditional uponXi = xi , thei th response
can be represented as a random variableYi such
that

Yi = a0+ a1xi + Ei . (8.10)

Following on from the discussion in Section 8.2,
the random variablesEi must be independent
normal random variables with mean zero and
variance

σ 2
E = σ 2

Y (1− ρ2
XY). (8.11)

The corresponding representation for the realized
value ofYi is

yi = a0+ a1xi + ei ,

where ei represents the realized value ofEi . If
we have estimateŝa0 and â1 of the unknown
coefficientsa0 and a1, estimates of the realized
errors (which are generally calledresiduals) are
given by

êi = yi − â0− â1xi . (8.12)

A reasonable strategy for estimatinga0 and a1
is to minimize some measure of the size of the
estimated errorŝei . While many metrics can be
used, the sum of squared errors

∑n
i=1 ê2

i is the
most common. The resulting estimators ofa0 and
a1 are calledleast squaresestimators. We will
see later that least squares estimators have some
potential pitfalls that may not always make them
the best choice. However, they are prominent in
the normal setup because of the tractability of their
distributional derivation, ease of interpretation,
and optimality within this particular restricted
parametric framework.

The least squares estimators ofa0 and a1 are
obtained as follows. The sum of squared errors is

SSE =
n∑

i=1

(yi − â0− â1xi )
2. (8.13)

Taking partial derivatives with respect to the
unknown parameterŝa0 and â1 and setting these
to zero yields the normal equations

n∑
i=1

(yi − â0− â1xi ) = 0 (8.14)

n∑
i=1

(yi − â0− â1xi )xi = 0. (8.15)

The normal equations have solutions

â0 = y− â1x (8.16)

â1 =
∑n

i=1 xi yi − nx y∑n
i=1 x2

i − nx2
. (8.17)

As will be shown in [8.3.20], an unbiased estimate
of σ 2

E (8.11) is given by

σ̂ 2
E =

SSE
n− 2

. (8.18)
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Returning to our SO example [8.1.3], the
parameter estimates obtained using (8.16)–(8.18)
areâ0 = −0.09, â1 = 0.15, and̂σE = 12.2. The
fitted line is shown as the upwards sloping line that
passes through the cloud of points in Figure 8.1,
and σ̂E is an estimate of the standard deviation
of the vertical scatter about the fitted line. Note
that the eye is not always a good judge of where
the least squares line should be placed; our initial
impression of Figure 8.1 is that the slope of the
fitted line is not steep enough.

8.3.2 Partitioning Variance. The slope esti-
mate (8.17) is often written

â1 = SXY

SXX
,

where

SXY =
n∑

i=1

(xi − x)(yi − y)

=
n∑

i=1

xi yi − nx y

and

SXX =
n∑

i=1

(xi − x)2

=
n∑

i=1

x2
i − nx2.

The sum of squared errors can be expressed
similarly as

SSE = SY Y− â1SXY,

where

SY Y =
n∑

i=1

(yi − y)2

=
n∑

i=1

y2
i − ny2.

SY Y is often called thetotal sum of squaresand
denotedSST . Be aware of the potential confusion
here between the common climatological practice
of referring to sea-surface temperature as SST and
the equally common statistical practice of referring
to the total sum of squares asSST . The quantity

SSR = â1SXY

is often called thesum of squares due to regression
and denotedSSR. It is easily verified thatSSR =

∑n
i=1(̂a0 + â1xi − y)2. The least squares fitting

process thus provides a partition of the total
variability into a component that is attributed to the
fitted line (SSR) and a component that is due to
departures from that line (SSE). That is,

SST = SSR+ SSE . (8.19)

In the SOI example, this partitioning of the total
sum of squares is

Source Sum of squares

Regression (SSR) 74 463.2
Error (SSE) 92 738.1

Total (SST ) 167 201.3

8.3.3 Coefficient of Multiple Determination.
An immediately available diagnostic of the ability
of the fitted line to explain variation in the data is
the coefficient of multiple determination, denoted
R2, given by

R2 = SSR/SST . (8.20)

The use of the phrasecoefficient of determination
to describe this number seems natural enough
because it is a measure of the extent to which
X determinesY. The adjectivemultiple is added
because in multiple regression (Section 8.4) this
number is a measure of the extent to which all
variables on the right hand side of the regression
equation determineY. While a useful diagnostic,
it is just one of several tools which should be used
to assess the utility and goodness-of-fit of a model.
R2 is discussed further in [8.3.12]. Additional
diagnostic tools are discussed in [8.3.13,14,16,18]
and [8.4.11].

In our SOI example,R2 = 0.445, meaning that
somewhat less then one-half of the total variability
in the SO index is represented by the SST index.
This is clearly in agreement with Figure 8.1 where
we see quite a bit of scatter about the fitted line.

8.3.4 The Relationship Between Least Squares
and Maximum Likelihood Estimators. When
the random variablesEi (8.10) are independent
and identically normally distributed, it is easy
to demonstrate that the least squares estimators
are also maximum likelihood estimators. Under
these conditions, the log-likelihood function
l (a0,a1|xi , yi ), for i = 1, . . . ,n, is given by

−2l (a0,a1|xi , yi ) = n log(2πσ 2
E )

+ 1

σ 2
E

n∑
i=1

(yi − a0− a1xi )
2.
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The likelihood estimators are chosen to max-
imize the likelihood, or equivalently the log-
likelihood, of the estimated errorsyi − a0 − a1xi .
Maximizing the log-likelihood with respect toa0
anda1 results in precisely the least squares estima-
tors. This means that least squares estimators have
the optimality properties of maximum likelihood
estimators (Section 5.3) when the normal distribu-
tional assumption is satisfied.

8.3.5 Properties. While the estimators (8.16),
(8.17), and (8.18) have been written in their
realized forms, they can also be considered as
random variables whose distribution is conditional
on the realized values ofX. We will briefly state
the distributional properties of these estimators.
The derivation of these properties is discussed in
[8.3.20].

1 â0, â1, andσ̂ 2
E are unbiased estimators ofa0,

a1, andσ 2
E respectively.

2 σ̂ 2
E is independent of̂a0 andâ1.

3 (n− 2)̂σ 2
E/σ

2
E ∼ χ2(n− 2).

4 â1 ∼ N (a1, (σ
2
E/SXX)

2).

5 â0 ∼ N (a0, (σ
2
E

∑n
i=1 x2

i /(nSXX))
2).

8.3.6 Inferential Methods. The distributional
properties stated above provide a number of
inferential results that are useful for interpreting
a fitted regression model. Bear in mind, however,
that inferences made in the following way may
be compromised if the assumptions embedded in
the procedures are violated. See [8.3.17] for more
discussion about this.

8.3.7 A Confidence Interval for the Slope
Parameter. A p̃× 100% confidence interval for
the slope of the regression line,a1, is given by(

â1−
t(1+p̃)/2 σ̂E√

SXX
, â1+

t(1+p̃)/2 σ̂E√
SXX

)
,

where t(1+p̃)/2 is the ((1 + p̃)/2)-quantile of the
t distribution withn − 2 degrees of freedom (see
Appendix F).

In our SOI examplen − 2 = 622, SXX =
3.320× 106 andσ̂E = 12.2. Therefore, assuming
that there is no dependence between observations
(an assumption we know to be false), the 95%
confidence interval for the slope of the fitted line
is (0.137,0.163). However, dependence between
observations causes the actual 95% confidence
interval fora1 to be wider.

8.3.8 Tests of the Slope Parameter.The null
hypothesis thata1 has a particular value, saya∗1,
can be tested by comparing

T = â1− a∗1
σ̂E/
√

SXX

against critical values from thet distribution with
n− 2 degrees of freedom. It is often of interest to
know whether or nota1 is significantly different
from zero, that is, whether or not there is a
regression relationship betweenX andY.

To test H0: a1 = 0 against Ha: a1 6= 0 in our
SOI example, we compute

t = â1

σ̂E/
√

SXX

= 0.15

12.2/
√

3.320× 106
= 22.4.

This realized value ofT is compared with
critical values fromt(622) and is found to be
significant at much less than the 0.1% level. The
effect of dependence between observations is,
generally, to increase the frequency with which
the null hypothesis is rejected when it is true,
that is, to decrease the apparent significance
level. Here it is certain that H0 is false, but
often when the evidence is more equivocal, it is
important to consider the effects of dependence
(see Section 6.6).

Another approach to testing whether or not
a regression relationship exists is based on the
observation that, whena1 = 0, the regression sum
of squaresSSR is an unbiased estimator of the
error variance which is distributedχχχ2(1) and is
independent of̂σ 2

E . (These results can be proved
using methods similar to that in [8.3.20].) Since
(n− 2)̂σ 2

E/σ
2
E is distributedχχχ2(n− 2), we obtain

that

F = SSR
σ̂ 2

E

∼ F(1,n− 2)

under the null hypothesis. Thus the test can be
conducted by comparingF with critical values
from Appendix G.

Because we have fitted a linear model that
depends upon only one factor, thet and F tests
are equivalent. In fact,F = T2, and the square of
a t random variable withn − 2 df is distributed
asF(1,n− 2). Thus identical decisions are made
provided that thet test is conducted as a two-sided
test.
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8.3.9 Inferences About the Intercept. A p̃ ×
100% confidence interval for the intercept of the
regression line,a0, has bounds given by

â0±
t(1+p̃)/2 σ̂E

√∑n
i=1 x2

i√
SXX

.

The null hypothesis that the intercept has a
particular value, saya∗0, can be tested by
comparing

T = â0− a∗0
σ̂E

√∑n
i=1 x2

i /nSXX

also against critical values from thet distribution
with n − 2 degrees of freedom (see Appendix F).
Settinga∗0 = 0 determines whether or not the fitted
line passes through the origin.

A test of the intercept is only of pedagogical
interest in the SOI example because both the SO
and SST indices are expressed as departures from
arbitrarily selected base period means. None the
less, to test H0: a0 = 0 against Ha: a0 6= 0 we
compute

t = â0

σ̂E

√∑n
i=1 x2

i /nSXX

= −0.09

12.2
√

3.322×106

624×3.320×106

= −0.184.

When this value ofT is compared with critical
values oft(622) we see that it is not significantly
different from zero. Accounting for dependence
further reduces the amplitude oft and therefore
does not affect our inference abouta0.

8.3.10 A Confidence Interval for the Mean of
the Response Variable. The conditional mean
µY|X=x of the response variableY for a realization
x of X is estimated from the fitted regression
equation as

µ̂Y|X=x = â0+ â1x.

By substituting for̂a0 with (8.16) we obtain

µ̂Y|X=x = y+ â1(x− x). (8.21)

Computing variances, we see that

σ 2
µ̂Y|X=x

= σ 2
E

(1

n
+ (x− x)2

SXX

)
. (8.22)

This can be derived by first substituting (8.17)
for â1 in (8.21), then substituting the model
(8.10) whereverYi appears, and finally computing
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Figure 8.5:A simple linear regression fitted by
ordinary least squares to 1933–84 monthly mean
SO and SST indices (see [8.1.3]). The pair of
curved lines closest to the regression line indicate,
at each point x, the upper and lower 95%
confidence bounds for the mean of the response
variable µY|X=x conditional uponX = x (see
[8.3.10]). The pair of more widely curved lines
indicates, at each pointx, the upper and lower
95% confidence bound for the response variable
Y conditional uponX = x (see [8.3.11]).

the variance of the resulting expression. A
corresponding estimate is obtained by substituting
σ̂ 2

E for σ 2
E . Now note that the estimate is

proportional to aχχχ2(n− 2) random variable and
that it is independent of̂µY|X=x, which is normally
distributed. Taking care to scale the normally
distributed andχ2 components correctly, we
finally obtain that

T = µ̂Y|X=x − µY|X=x

σ̂E

√
1
n + (x−x)2

SXX

is distributedt(n− 2). Thus ap̃×100% confidence
interval for the conditional mean atx has bounds

µ̂Y|X=x ± t(1+p̃)/2 σ̂E

√
1

n
+ (x− x)2

SXX
, (8.23)

where t(1+p̃/2) is the ((1 + p̃)/2)-quantile of
t(n− 2) (Appendix F).

An example of a fitted regression line and
the confidence bound curves defined by (8.23) is
illustrated in Figure 8.5. The pair of curves closest
to the regression line illustrates aseparate95%
confidence interval at eachx. The curves bound the
vertical interval at eachx that covers the regression
line 95% of the time on average. As mentioned
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Figure 8.6: This diagram illustrates the least
squares fit of a straight line to a sample of 100
observations generated from the modelY = 1+
0.1x2+ E whereE ∼ N (0,0.0052). Even though
R2 = 0.92, the model fits the data poorly.

previously, accounting for dependence would
increase the distance between the confidence
bound curves.

8.3.11 A Confidence Interval for the Response
Variable. While confidence interval (8.23) ac-
counts for uncertainty in our estimate of the
conditional mean, it does not indicate the range of
values of the response variable that is likely for a
given valuex of X. To solve this problem we need
to interpret the fitted regression equation, when
evaluated atx, as an estimate ofY rather than as
an estimate of the conditional meanµY|X=x. The
estimation (or specification) error in this context is

µY|X=x + E− µ̂Y|X=x.

SinceE is independent of̂µY|X=x, we see using
(8.22) that the variance of the estimation error is

σ 2
E

(
1+ 1

n
+ (x− x)2

SXX

)
.

Then, replacingσ 2
E with the estimator̂σ 2

E we
obtain the confidence interval forY with bounds

µ̂Y|X=x ± t(1+p̃)/2 σ̂E

√
1+ 1

n
+ (x− x)2

SXX

where t(1+p̃)/2 is the ((1 + p̃)/2)-quantile of
t(n− 2) (Appendix F).

The wider pair of curves in Figure 8.5 (they
really are very shallow hyperbolas) illustrates the
confidence bounds for the response variable (the

SO index) in our SOI example. Again, the exact
interpretation here hinges upon the independence
of observations. However, dependence has a
relatively minor effect on this particular inference
because the regression line itself is well estimated;
only the sampling variability of the regression line
is affected by dependence. Note also that in this
case the curvesdo notbound the region that will
simultaneously cover 95% of all possible values of
the response variable.

8.3.12 Diagnostics:R2. The inferential meth-
ods described above are based on the assumptions
that the conditional mean ofY given X = x is a
linear function ofx and that the errorsEi in model
(8.10) are iid normal.

We have already seen one diagnostic (8.20)

R2 = SSR/SST
associated with a fitted model. However,R2, the
proportion of variance in the response variable
that is explained by the fitted model, should not
be confused with the model’sgoodness-of-fit. The
correct interpretation ofR2 is that it is an estimate
of the model’s ability to specify unrealized values
of the response variableY.

A large R2 does not indicate that the model fits
well in a statistical sense (i.e., that inferences made
with the methods above are reliable). Figure 8.6
illustrates the least squares fit of a linear regression
model to data that closely approximate a quadratic.
The R2 for this fit is large (R2 = 0.92) but it
would not be correct to say that the fit is a good one
because the deviations from the fitted line display
systematic behaviour. In this case the assumption
that the errors are iid normal is not satisfied and
thus inferences are not likely to be reliable.

Neither does a smallR2 indicate that the model
fits poorly. Figure 8.7 illustrates a least squares
fit of a linear regression model to simulated data
from a linear model. TheR2 for this fit is only
moderately large (R2 = 0.51) but the deviations
from the fitted line do not show any kind of
systematic behaviour. It is likely that inferences
made in this case will be reliable even though the
model’s ability to specifyY from given values
of X is low. Despite the relatively lowR2, the
fitted regression linêµY|X=x = 1.0047+ 0.0972x
estimates the true conditional meanµY|X=x =
1+ 0.1xvery well.

While R2 summarizes well the extent to which
the fitted line specifies the realized valuesyi

of Y given the corresponding valuesxi of
X for i = 1, . . . ,n, it is well recognized
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Y = 1 + 0.1*X + noise
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Figure 8.7: This diagram illustrates the least
squares fit of a straight line to a sample of 100
observations generated from the modelY = 1+
0.1x + E whereE ∼ N (0,0.0252). Even though
R2 = 51%, the model fits the data well.

that R2 is an optimistic indicator of model
specification performance for unrealized values
of X (see, e.g., Davis [101]). Climatologists and
meteorologists call this phenomenonartificial
skill. The artificial skill arises because the fitted
model, as a consequence of the fitting process,
has adapted itself to the data. Cross-validation (see
Section 18.5) provides a more reliable means of
predicting future model performance.

8.3.13 Diagnostics: Using Scatter Plots.Some
fundamental tools in model diagnostics include
scatter plots of the standardized residualsêi /σ̂E

(see (8.18)) against the corresponding estimates
of the conditional mean (8.21), and scatter plots
of the absolute standardized residuals against the
estimates of the conditional mean.

Figure 8.6 illustrates a violation the assumption
that the conditional mean varies linearly withx.
This is revealed through systematic behaviour in
standardized residuals, as displayed in Figure 8.8.
This type of behaviour is generally easier to detect
in displays of the standardized residuals (upper
panel of Figure 8.8) than in displays of the absolute
standardized residuals (lower panel of Figure 8.8).
Other kinds of departures from the fitted model
are easier to detect in displays of the absolute
standardized residuals.

Figure 8.9 illustrates an example in which
the assumption that the errorsEi all have
common variance is violated. This is known
as heteroscedasticity. In this case error variance
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Figure 8.8:In the upper panel the standardized
residuals (departures from the fitted line divided
by σ̂E) are plotted as a function of the estimated
conditional mean̂µY|X=x for the fit displayed in
Figure 8.6. The absolute values of the residuals are
plotted in the lower panel.

appears to increase untilx = 0.5 and then
decrease again beyondx = 0.5. Heteroscedasticity
is generally easier to detect in scatter plots of
the absolute residuals. Heteroscedastic errors can
sometimes be dealt with by transforming the
data before fitting a regression model [8.6.2].
Other times it may be necessary to useweighted
regression techniques in which the influence of a
squared error in determining the fit is inversely
proportional to its variance (see Section 8.6 and
[104]).

Finally, Figure 8.10 results from a simulated
linear regression with two inserted errant obser-
vations. Attempts to detect these observations are
made by looking foroutliers, that is, residuals that
are greater in absolute value than the rest. As a
general rule, residuals more than three standard
deviations from the fitted line should be examined
for errors in the corresponding observations of
the response and factor variables. Outliers are
generally easier to detect using the plot of the
absolute residuals. However, they may not always
be easy to detect, especially when more than one
outlier is present in a sample. In this example,
the data were generated using the modelY =
1+0.1x+E, whereE is normally distributed noise
with mean zero and standard deviation 0.05, and
x varies between 0 and 1. The error atx = 0.5
was set to be 0.15 (3 standard deviations) and the
error atx = 0.95 was set to be−0.15. The outlier
at x = 0.5 is detected in our residual display, but
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Figure 8.9: A pair of scatter plots illustrating
heteroscedasticity. The data were generated from
Y = 1+0.1x+x(1−x)E, whereE ∼ N (0,0.12).
The upper panel shows 100 simulated data points
and the line fitted by least squares. The lower panel
displays the absolute standardized residuals as a
function of the fitted line.

that atx = 0.95 is hidden, for reasons discussed in
[8.3.18].

Studentized residuals, rather than standardized
residuals, are often used in diagnostic plots. A
studentized residual is obtained at pointxi by
fitting the regression model without the data
pair (xi , yi ), computing the difference between
yi and the estimate obtained from the fit, and
finally dividing this deviation by the estimate of
the standard error obtained from the fit. Outliers
hidden in ordinary residual plots often become
apparent in plots of studentized residuals because
they do not affect the fit of the model used to
estimate the studentized residual. Unfortunately,
studentized residuals fail to identify the hidden
outlier in Figure 8.10.

Diagnostic scatter plots of the residuals from the
fitted regression of the SO index on Wright’s SST
index are displayed in Figure 8.11. No evidence
of heteroscedasticity or systematic departure from
the fitted line is apparent. However, three outliers
can be observed, all of which are positive.
Only one deviation (occurring in February 1983)
corresponds to a known El Niño warm event.

8.3.14 Diagnostics: Probability Plots. As will
be discussed in [8.3.15], skewness of the residuals
(e.g., a tendency for there to be more residuals
of one sign than another) should not immediately
lead to the conclusion that all inferences about the
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Figure 8.10: A scatter plot illustrating data
generated fromY = 1 + 0.1x+ E whereE ∼
N (0,0.052). Two outliershave been inserted by
setting the realizations ofE at x = 0.5 and x =
0.95to 0.15 and−0.15respectively.

regression model are invalid. None the less, once it
has been determined that the model fits the data
reasonably well, it is still useful to examine the
residuals to see if there are gross departures from
the normal distribution assumption, which might
compromise the inferences. A useful diagnostic for
this purpose is anormal probability plot5 of the
(ordered) standardized residualsê(i |n)/σ̂E against
the((i − 0.5)/n)-quantiles of the standard normal
distribution.

As discussed in [3.1.3] and [4.2.2], such plots
are constructed by plotting the points

(
F−1
N

( i − 0.5

n

)
,

ê(i |n)
σ̂E

)
for i = 1, . . . ,n.

The points will lie on an approximately straight
line sloping upwards at a 45◦ angle when the
residuals are approximately normal with variance
σ̂ 2

E .

The probability plot for our SOI example is
shown in Figure 8.12. We see that the central
body of the distribution is very close to normal.
The diagram shows that the left hand tail of
the distribution is slightly narrower than that of
a normal distribution and the right hand tail is
slightly wider. The three outliers we identified
previously can be seen at the upper right hand

5Sometimes also calledqq plots, or quantile–quantile plots.
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Figure 8.11:Scatter plots illustrating the fit of the
regression of the SO index on the SST index. This
example is introduced in [8.1.3]. Three outliers,
occurring in March 1961, February 1978 and
February 1983 can be identified. In the upper
panel the absolute standardized residuals are
plotted against the estimated conditional mean.
They are plotted against time in the lower panel.

corner of the graph. In general, these residuals are
acceptably close to being normally distributed.

8.3.15 Why Use Least Squares?While we
have, on occasion, warned that inferences made
with least squares estimators may not be robust,
their widespread use is justified for more reasons
than just computational ease and the tractability
of inference when errors are independent and
normally distributed.

• As a consequence of the Gauss–Markov
Theorem (see [147, p. 219], or [197, p.
301]), least squares estimators of linear
model parameters have minimum variance
amongst all unbiased linear estimators as
long as the errors are independent and
identically distributed with zero mean and
constant finite variance. This is a relatively
strong reason to use least squares estimators,
despite the insistence that the estimators be
linear (i.e., that they be expressible as linear
combinations of the response variablesYi ),
because our ability to construct nonlinear
estimators is limited. This property of least
squares estimators does not persist if errors
do not have constant variance (see, e.g.,
Section 8.6, and [62, pp. 352–353]).
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Figure 8.12:A probability plot of the standardized
quantiles of the residuals from the regression of the
SO index on the SST index, against the quantiles of
the standard normal distribution.

• When the errorsEi are elements of a station-
ary time series, the least squares estimators
are still, under relatively broad conditions,
asymptotically the best (i.e., minimum vari-
ance) linear unbiased estimators of the regres-
sion parameters (see [323, pp. 588–595]).

However, be aware that even minor departures
from the normal distribution assumption can have
a detrimental effect on inferences made about the
error variance.

8.3.16 Diagnostics: Serial Correlation. While
the last item above reassures us that least squares
estimators can be consistent when errors are
dependent, it says nothing about the reliability
of inferences under dependence. Unfortunately,
the inference procedures outlined above are very
sensitive to departures from independence (see
Section 6.6; [62, p. 375]; and also [363], [442],
[454]).

The Durbin–Watson statistic (see [104], [107],
[108], and [109]), computed as

d =
∑n−1

i=1 (̂ei+1− êi )
2

SSE , (8.24)

is commonly used to detect serial correlation.
When errors have positive serial correlation, the
differences(̂ei+1− êi )

2 tend to be small compared
with those when errors are independent. Therefore
small values ofd (near zero) indicate positive
serial correlation. When errors are independent,
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we see from (8.24) that

d =
∑n−1

i=1 (̂ei+1− êi )
2

SSE

=
∑n−1

i=1 (̂e
2
i+1+ ê2

i − 2̂ei+1̂ei )

SSE
≈ SSE + SSE − 0

SSE = 2.

Hence values ofd near 2 are consistent with
independent errors. If the alternative hypothesis
is that the errors are negatively (rather than
positively) correlated, then the test statistic should
be 4− d.

Computation of the significance of the observed
d under the null hypothesis of independence is
somewhat involved. Durbin and Watson give a
range of critical values for samples of sizen ≤
100. The tabulated critical values consist of pairs
dL anddU such that H0 can always be rejected if
max(d, 4−d) < dL and H0 should not be rejected
if min(d, 4− d) > dH . Between these limits, the
determination of whether or notd is significantly
different from 2 depends on the specific values
xi , for i = 1, . . . ,n, taken by the independent
variable. Durbin and Watson [108, 109] describe
an approximation to the distribution ofd based
on the beta distribution that can be used with
moderate to large sample sizes when the test based
on the tabulated values is inconclusive or when the
sample is large.

A ‘rough-and-ready’ approach that can be used
when the samples are large is based on the
observation thatd = 2(1− ρ̂ε̂ε̂ (1)), wherêρε̂ε̂(1)
is the estimated lag-1 correlation coefficient of the
residuals. An approximate test can therefore be
performed by comparinĝρε̂ε̂(1)/

√
n with critical

values from the standard normal distribution
(Appendix D). If the null hypothesis can not be
rejected with this test, then it will also not be
rejected withd. On the other hand, if H0 is rejected
with this test, Durbin and Watson’s approximation
[108, 109] should be used to confirm that this
decision will stand when the details of the
independent variable (i.e., the valuesxi ) are taken
into account.

The value of the Durbin–Watson statistic in our
SOI example is 2.057, which means thatρ̂ε̂ε̂ (1)=
−0.0285. This value is not significantly different
from zero.

Another approach to testing for serial corre-
lation in the residuals is to perform aruns test
(see, e.g., Draper and Smith [104] or Lehmann
and D’Abrera [249]) to determine whether the
residuals change sign less frequently (i.e., there

is positive serial correlation) or more frequently
(negative serial correlation) than would be ex-
pected in a sequence of independent errors. The
test statistic used in the runs test, denotedU, is the
number of sign changes plus 1. Draper and Smith
[104, pp. 160–161] give tabulated critical values
when the number of residuals of both signs is small
(≤10). A normal approximation can be used when
samples are large. It can be shown that the mean
and variance ofU under H0 are

µU = 2n1n2

n1+ n2
+ 1

σ 2
U =

2n1n2(2n1n2− n1− n2)

(n1+ n2)2(n1+ n2− 1)
,

where n1 and n2 are the number of positive
and negative residuals. Then H0: no serial
correlation can be tested against Ha: positive
serial correlation by comparing (U − µU +
1
2)/σU against the lower tail critical values of the
standard normal distribution (Appendix D). Here
we are approximating a discrete distribution with
a continuous distribution; so the half that is added
is acontinuity correctionthat accounts for this. For
our SOI example, we haven1 = 295 andn2 = 329
so thatµU = 312.17 andσU = 12.44. We observe
u = 307, a value that is not significantly different
fromµU .

8.3.17 Are Least Squares Estimators Robust?
To understand the influence outliers have on least
squares estimates, think about the sample mean. A
positive outlier will increase the sample mean in
direct proportion to the size of the outlier. In fact,
there is no upper limit on the effect that can be
induced on the sample mean by an outlier. On the
other hand, the effect of an outlier on the sample
median is bounded; once the outlier becomes the
largest observation in the sample it has no further
influence on the median. Thus the sample median
and mean are examples of estimators that are
robust and not robust, respectively.

Least squares estimators are not robust to the
effects of outlying observations. Other fitting
methods (see [8.3.18]), such as robust M-
estimation (see, e.g., [154]) can be used, but at
the expense of computer time (perhaps not such
an issue these days), some loss of the rich body
of inferential methods available for least squares
estimators, and some loss of efficiency when errors
are actually iid normally distributed.
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8.3.18 Influence and Leverage: the Effects of
Outliers. In regression analysis, the effect of an
outlying realization ofY is also influenced by the
value ofX. One can think of the regression line as
a bar balanced on a pivot point at(x, y). An outlier
directly above (or below) the pivot point pulls the
bar up (or down) and has a relatively small effect
on the fitted conditional mean. An outlier near the
end of the bar has a very large influence on the
fitted line.

Suppose an outlying point(x, y) is located
above the fitted line and that the line passes
through (x, ŷ). Then a physical analogy for the
outlier’s effect is that it exerts an upwards force of
(y − ŷ)2 units on the line at a distancex − x units
from the pivot point of the bar. The farther from
the pivot point, the greater the ability of the outlier
to affect the fit, that is, the greater its ability to use
the line as alever. Hence the termleverage.

We can now understand why the relatively small
outlier in Figure 8.10 atx = 0.5 is easy to detect
while the relatively large outlier atx = 0.95 is not.
The outlier atx = 0.5 exerts little influence on the
fitted line. Thus the line has little opportunity to
‘adapt’ to this outlier, leaving the outlier plainly
visible above the fitted line. The large outlier at
x = 0.95 has much greater influence on the fitted
line, which ‘adapts’ well to this outlier, hiding its
presence.

Statisticians have devised a number of sophisti-
cated techniques for estimating the influence of an
individual observation. Without going into detail,
the idea behind these methods is that the influence
of an individual observation can be estimated by
fitting the model with, and without, that obser-
vation. The change in the fit, measured in some
objective manner, determines the influence of that
observation. See [41], [78], and [90] for details and
methods.

Bounded influence regression(M-estimation,
see [154])—of whichmedian absolute deviation
regression is a special case—has become a
popular way to protect against the effects of
influential outliers. Such techniques are now
generally available in statistical packages and
subroutine libraries. Two kinds of action are taken
to control the effects of outliers. First, the errors
êi (8.12) are weighted (see Section 8.6) so that
observations corresponding to outlying values of
the factorX receive less weight. Second, rather
than substituting the weighted errors into normal
equations (8.14) and (8.15) to obtain parameter
estimators,bounded errorsare substituted into the
equations. That is, the M-estimates are obtained by

solving equations of the form

n∑
i=1

9(̂ei ) = 0

n∑
i=1

9(̂ei )xi = 0,

where9(·) is a function that preserves the sign of
its argument but limits its magnitude. For example,
Huber [190] uses

9(t) =
 −c, t < c

t, |t | ≤ c
c, t > c.

8.3.19 Matrix-vector Formulation of Least
Squares Estimators. We have formulated the
least squares estimators for simple linear regres-
sion by basic brute force, but it is easier to form
estimators and derive distributional results for
multiple linear regression problems when matrix-
vector notation is used.

Let EY denote then-dimensional random vector
whosei th element isYi . LetX be then×2 matrix
that has units in the first column andxi as thei th
element of the second column. That is,

X =


1 x1
1 x2
...

...

1 xn

 .
Matrix X is called the design matrix. Let EE
denote then-dimensional random vector whosei th
element isEi , and letEa be the two-dimensional
vector whose elements area0 and a1. Then the
matrix-vector representation of (8.10) is

EY = X Ea+ EE. (8.25)

The least squares estimates are obtained by
choosingEa so that the squared length ofEE, given
by

SSE = EET EE = ( EY − X Ea)T( EY − X Ea), (8.26)

is minimized. Differentiating with respect toEa
(see, e.g., [148, pp. 350–360]), we obtain the
normal equations

2X T( EY − X Ea) = E0,
whereE0 is a two-dimensional vector of zeros. The
solutions of the normal equations are given by

Êa= (X TX )−1X T EY. (8.27)



160 8: Regression

Some simple algebra reveals that estimator (8.27)
is identical to estimators (8.16) and (8.17) derived
previously.

The sums of squares appearing in (8.19) are
also easily re-expressed in matrix-vector form.
Substituting (8.27) into (8.26) we obtain

SSE = EYT(I − X (X TX )−1X T) EY, (8.28)

whereI denotes then × n identity matrix. By
noting that

y = EYT


1/n
1/n
...

1/n


we obtain that the sum of squares due to
regression, given by

∑n
i=1(µ̂Y|X=x i

− y)2, can be
expressed as

SSR = EYT(X (X TX )−1X T − U) EY, (8.29)

whereU is ann× n matrix with each entry equal
to 1/n. The total sum of squares is given by

SST = EYT(I − U) EY. (8.30)

8.3.20 Distributional Results. Here we briefly
demonstrate how Properties 1–5 stated in [8.3.5]
are obtained and provide a geometrical inter-
pretation of the concept of degrees of freedom.
These ideas generalize easily to include regression
models that contain more than one factor.

Now suppose again that the errorsEi are iid
normally distributed with mean zero. ThenEY has
a multivariate normal distribution with meanX Ea
and covariance matrixσ 2

EI. It follows that Êa is
normally distributed with meanEa and covariance
matrixσ 2

E (X TX )−1 (see Section 2.8).
Next we demonstrate thatSSE/σ 2

E is indepen-
dent of̂Ea and distributedχχχ2(n− 2). Let Ek1 andEk2
be orthonormal vectors spanning the column space
of the design matrixX . ChooseEk3, . . . , Ekn so that
Ek1, Ek2, . . . , Ekn form a complete orthonormal basis
for Rn. Let EZ = KT EY whereK is the n × n
matrix that hasEk i as its i th column. Then, since
KTK = KKT = I, EY = KEZ. Now substituting for
EY in expression (8.26), we have

SSE = ( EY − X Ea)T( EY − X Ea)
= (KEZ − X Ea)T(KEZ − X Ea)
= (EZ −KTX Ea)T(EZ −KTX Ea).

Because the first two columns ofK span the
columns ofX , we have thatKTX is of the form

KTX =
( X ∗1
X ∗2

)
,

whereX ∗1 is a nonzero 2× 2 matrix andX ∗2 is the
(n − 2)× 2 matrix of zeros. ThereforeSSE is of
the form

SSE = (EZ1− X 1Ea)T(EZ1− X 1Ea)+ EZT
2
EZ2,

where EZ1 consists of the first two elements ofEZ
andEZ2 consists of the remaining(n−2) elements.
Upon minimization we see that

SSE = EZT
2
EZ2 =

n∑
i=3

Z i .

Now from the matrix-vector form of the regression
model we see that the elements ofEZ are
independent and have common varianceσ 2

E (the
covariance matrix of bothEY and K EY is σ 2

EI).
ThereforeSSE/σ 2

E is χχχ2(n− 2) distributed. Note
that n − 2 is the dimension of the sub-spacenot
spanned by the columns of the design matrix.
Moreover, becauseSSE depends only uponEZ2
and Êa depends only uponEZ1, we see thatSSE is
independent of̂Ea.

8.4 Multiple Regression

The simple linear regression model we have
examined up to this point, while enormously useful
in climatology and meteorology, has severely
limited flexibility. Many methods, such as the
MOS (model output statistics) andperfect prog
statistical forecast improvement procedures (see,
for example, Klein and Glahn [226], Klein [224],
Klein and Bloom [225], Brunet, Verret, and
Yacowar [71]), require the use of regression
models with more than one explanatory factor.

The working example we develop as we
progress through the section is the cloud param-
eterization example introduced in [8.1.4].

8.4.1 The Multiple Regression Model. A
multiple linear regression model expresses a
response variable as an error term plus a mean
that is conditional upon several factors. Suppose
we observe a response variableY and k factors
denoted by X1, . . . ,Xk that are thought to
affect the expected value ofY. These random
variables are all observedn times. The result
is a sample ofn (k + 1)-tuples represented
by random variables(Yi ,X1,i , . . . ,Xk,i ) whose
actual observed, or realized, values are represented
by (yi , x1,i , . . . , xk,i ), for i = 1, . . . ,n. The
multivariate version of (8.10) is given by

Yi = a0+
k∑

l=1

al xli + Ei , (8.31)
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where theEi , for i = 1, . . . ,n, are iid random
variables with mean zero. We usually assume that
these errors are normally distributed.

This model states that the mean ofY,
conditional upon the realized values of the factors
X j , can be expressed as a linear combination of the
factors. Thus the model is linear in its parameters.
However, the factors themselves can be nonlinear
functions of other variables. For example, the
model specifies a polynomial of orderk in X if
Xli = (Xi )

l .
The model we will fit to the Landsat data (cf.

[8.1.4]) has the form

ln τ = a0+ a1 ln(τ )+ a2Ac + E. (8.32)

The ln(τ ) term is used to account for the
curvilinear relationship betweenτ andln τ that is
apparent in Figure 8.3 (left). See also [8.6.2].

8.4.2 Matrix-vector Representation of the Mul-
tiple Linear Regression Model. The develop-
ment of least squares estimators and inferential
methods for multiple regression parallels that for
the simple linear regression model once the model
has been expressed in matrix-vector form.

As in [8.3.19], letEY represent then-dimensional
random vector whosei th element isYi . Define EE
similarly. Let the design matrixX be then×(k+1)
matrix given by

X =


1 x1,1 . . . xk,1
1 x1,2 . . . xk,2
...

...
...

1 x1,n . . . xk,n

 .
Let Ea be the(k+ 1)-dimensional vector consisting
of model parametersa0,a1, . . . ,ak. With this
notation, the matrix-vector representation of (8.31)
is identical to that of the simple linear regression
case given in (8.25), where we haveEY = X Ea+ EE.

The least squares estimator ofEa and the variance
componentsSST , SSR, andSSE are computed
as in (8.27)–(8.30).

The degrees of freedom for the variance
components are as follows:

Source Sum of Sq. df

Regression SSR d fR = k
Error SSE d fE = n− k− 1

Total SST d fT = n− 1

When model (8.32) is fitted to the Landsat data
described in [8.1.4], we obtain parameter estimates
â0 = −0.747,â1 = 0.794,â2 = 1.039 and̂σE =

0.233. The coefficient of multiple determination,
R2, is equal to 0.938, indicating thatτ and Ac

jointly represent about 94% of the variability in
ln τ in the data set. The total variability in the 45
ln τ values of the Landsat data set is partitioned by
the fitted model as follows:

Source Sum of Sq. df

Regression 34.705 2
Error 2.287 42

Total 36.992 44

The methods of [8.3.20] can be used to prove the
following properties, which form the basis of the
inference procedures used in multiple regression:

1 Êa is an unbiased estimate ofEa,

2 σ̂ 2
E = SSEd fE

is an unbiased estimate ofσ 2
E ,

3 Êa∼ N (Ea, σ 2
E (X TX )−1).

4 Êa is independent ofSSE .

5 SSE/σ 2
E ∼ χχχ2(d fE).

8.4.3 Multiple Regression Model Without an
Intercept. Sometimes it may be desirable to
force the fitted regression surface to pass through
the origin. In this case coefficienta0 in (8.31) is set
to zero and the column of 1s in the design matrix
is deleted. The least squares estimator is computed
as before by substituting the modified design
matrix into (8.27). The variance components are
computed using

SSR = EYT(X (X TX )−1X T) EY
SSE = EYT(I − X (X TX )−1X T) EY
SST = EYT EY.

The corresponding degrees of freedom are

Source Sum of Sq. df

Regression SSR d fR = k
Error SSE d fE = n− k

Total SST d fT = n

In particular, notice that there is one additional
degree of freedom for error because it was not
necessary to fit the intercept parameter.
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8.4.4 A Confidence Interval for the Mean of
the Response Variable. Let EX represent the(k+
1)-dimensional vectorEX = (1,X1, . . . ,Xk)

T. The
rows of the design matrix can be thought of as a
collection ofn realizations ofEX. From (8.31) we
see that the expected value ofY conditional upon
EX = Ex is given by

µ EY| EX=Ex = ExTEa,
which is estimated by

µ̂ EY| EX=Ex = ExT̂Ea.
Property 3 of [8.4.2] tells us that

µ̂ EY| EX=Ex ∼ N (ExTEa, σ2
E ExT(X TX )−1Ex).

Using properties 4 and 5 of [8.4.2] we obtain that

T =
µ̂ EY| EX=Ex − µEY| EX=Ex
σ̂E

√
ExT(X TX )−1Ex

∼ t(d fE).

Thus a p̃ × 100% confidence interval for the
conditional mean atEx has bounds

µ̂ EY| EX=Ex ± t(1+p̃)/2̂σE

√
ExT(X TX )−1Ex, (8.33)

wheret(1+p̃)/2 is the appropriate quantile of thet
distribution withd fE degrees of freedom obtained
from Appendix F. As for simple linear regression,
the true response surface (a plane) will be covered
by the range of hyper-surfaces described by this
expressioñp× 100% of the time.

8.4.5 A Confidence Interval for the Response
Variable. As with simple linear regression, ap̃×
100% confidence interval for the response variable
Y at EX = Ex is obtained by adding 1 to the quantity
under the radical sign in (8.33).

8.4.6 A Confidence Interval for Parameteral .
Let Eel be the(k+ 1)-dimensional vector

Eel = (δl ,0, δl ,1, . . . , δl ,k)T (8.34)

whereδl j = 1 if l = j andδl j = 0 otherwise. The
p̃× 100% confidence interval foral is obtained by
substitutingEel for Ex in (8.33).

The matrix(X TX )−1 for the Landsat data fitted
with model (8.32) is 0.1714 −0.0649 −0.0371
−0.0649 0.0842 −0.1409
−0.0371 −0.1409 0.4416

 . (8.35)

Therefore, the 95% confidence intervals for the
estimated parameters are

Parameter 95%Confidence Interval

a0 (−0.936,−0.557)
a1 (0.661, 0.927)
a2 (0.735, 1.343)

We see that the estimated value ofa2 is somewhat
less certain than that ofa0 and a1. However,
we can safely infer that all three parameters are
significantly different from zero. We should add
the caveat that these inferences are valid only if
our assumptions about the errors (i.e., that they are
iid normal) hold.

The parameter estimatorŝal are seldom inde-
pendent because(X TX )−1 is seldom a diagonal
matrix. Therefore multiplẽp × 100% confidence
intervals for, say,m different parametersdo not
constitute a joint̃pm×100% confidence region for
them parameters taken as a group (see [8.4.7]).6

Property 3 of [8.4.2] tells us that the covariance
matrix of Êa can be estimated witĥσ 2

E (X TX )−1.
The estimates for our example are:

Correlation â0 â1 â2

â0 1.000 −0.532 −0.135
â1 −0.532 1.000 −0.731
â2 −0.135 −0.731 1.000

8.4.7 Joint Confidence Regions for More Than
One Parameter. A joint p̃ × 100% confidence
region for p parametersal1, . . . ,al p can be
obtained as follows.

First, letU be the(k + 1)× p matrix that has
Eel j , whereEel j is given by (8.34), in columnj , for
j = 1, . . . , p. Then the vectorEas = UTEa contains
the p parameters of interest and is estimated by
Êas = U T̂Ea. Using Property 3 of [8.4.2] we see that
the estimator has a normal distribution given by

Êas ∼ N (UTEa, σ2
EUT(X TX )−1U)

(see [2.8.9]). Now let

V = [U T(X TX )−1U ]−1/2

so thatVTV = [U T(X TX )−1U ]−1, and defineEZ to
be thep-dimensional normal random vector

EZ = V (̂Eas− Eas).

6This type of rectangular region in parameter space is also
not a good way to construct a joint confidence region when
estimators are independent. Construction of a confidence region
should use the principle that any point in parameter space
outside the confidence region should be less likely given the
data than points inside the confidence region. For iid normal
data this means that the boundaries of confidence regions
should be ellipsoids. See [6.2.2] and Figure 6.16.
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Then

EZ ∼ N (E0, σ 2
EI),

whereI is the p× p identity matrix (see [2.8.9]).
Therefore

p

σ 2
E

(̂Eas− Eas)TVTV (̂Eas− Eas) ∼ χχχ2(p).

We now have the ingredients needed to
construct a simultaneous confidence region for
parametersal1, . . . ,al p . By Properties 4 and 5
of [8.4.2], the χχχ2(p) random variable above
is independent of theχχχ2(d fE) random variable
d fE
SSE
σ2

E
. Therefore, from (2.29), we see that

(̂Eas− EasT
)VTV (̂Eas− Eas)

σ̂ 2
E

∼ F(p,d fE).

Thus thẽp×100% confidence region, an ellipsoid,
is composed of all points in the(k+1)-dimensional
parameter space that satisfy the inequality

(̂Eas− Eas)TVTV (̂Eas− Eas)

σ̂ 2
E

< Fp̃, (8.36)

where Fp̃ is the p̃-quantile of theF distribution
with (p,d fE) df obtained from Appendix G.

Let us consider the problem of constructing
a joint p̃ confidence region for a subset of two
parameters,(a1, a2), in our Landsat example.
Proceeding as above, we have

VTV =
( 0 1 0

0 0 1

)
(X TX )−1

 0 0
1 0
0 1

−1

=
(

25.47 8.13
8.13 4.86

)
.

Expanding (8.36), we find that the points in the
joint p̃ confidence region for(a1, a2) satisfy

25.47(̂a1− a1)
2+ 2× 8.13(̂aa − a1)(̂a2− a2)

+ 4.86(̂a2− a2)
2 < Fp̃σ̂

2
E

whereFp̃ is thep̃-quantile ofF(2,42).
The 95% confidence region computed in this

way is displayed in Figure 8.13. The tilt of the
ellipse reflects the correlation betweenâ1 andâ2.
The point estimate is shown in the middle of
the ellipse. The dashed lines indicate the 95%
confidence intervals fora1 anda2 computed with
(8.33). Note that the rectangular region defined by
their intersection is substantially larger than the
region enclosed by the ellipse.
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Figure 8.13:The joint 95% confidence region for
the ln(τ ) and Ac coefficients of model (8.32).
The estimated coefficients are indicated by the
dot. The dashed lines indicate the individual 95%
confidence intervals computed as in (8.33).

8.4.8 Is There a Regression Relationship?
This question is answered by testing the null
hypothesis H0: a1 = . . . = ak = 0. We could
proceed as we did above when constructing the
joint confidence region by constructing a suitable
kernel matrix VTV and then developing a test
statistic of the form

F = Êa
TVTV Êa
σ̂ 2

E

, (8.37)

which is distributed F(d fR,d fE) under H0.
However, in this case there is an easier way. It can
be shown that (8.37) is also given by

F = SSR/d fR
SSE/d fE

,

which is easily computed as a byproduct of the
least squares fitting procedure. Large values of
F are evidence contrary to H0, so the test is
conducted at the(1− p̃)×100% significance level
by rejecting H0 when f > Fp̃, the p̃-quantile of
F(d fR,d fE).

We find f = 318.6 in our Landsat example, a
value that is significant at much less than the 0.1%
level.

8.4.9 Are all Parameters in a Subset Zero? We
could answer this question as well by constructing
a suitable kernelVTV and computing F as
in (8.37). Again, there is an easier and more
intuitively appealing answer.

Consider the following possible approach for
testing H0: al1 = · · · = al p = 0.
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• Fit the full regression model including the
p factorsXl1, . . . ,Xl p . Denote the resulting
regression and sum of squared errors as
SSRF and SSEF , respectively, where the
subscript F indicates that these variance
components were obtained by fitting the full
model.

• Fit the restrictedregression model specified
by the null hypothesis by excluding factors
Xl1, . . . ,Xl p from the design matrix. Denote
the resulting regression sum of squares as
SSRR.

• The increase in the regression sum of
squares that is obtained by adding factors
Xl1, . . . ,Xl p to the restricted model is given
by SSRF − SSRR. Under H0, [(SSRF −
SSRR)/σ

2
E ] ∼ χχχ2(p) and is independent of

SSEF . Thus, using property 5 of [8.4.2], we
obtain a test statistic

F = (SSRF − SSRR)/p

SSEF/d fEF

= (SSRF − SSRR)/p

σ̂ 2
E

that is distributedF(p,d fEF ) under H0. Here
d fEF is the degrees of freedom of the sum of
squared errors for the full regression.

The test is conducted at the(1 − p̃) × 100%
significance level by rejecting H0 when f > Fp̃,
thep̃-quantile ofF(p,d fE).

8.4.10 Diagnostics. We have two things in mind
when we think about the fit of the model. The
first is, how well does the model specify values
of Y from the factorsXl ? The coefficient of
multiple determinationR2 = SSRSST (see [8.3.12])
gives a quick but somewhat optimistic answer.
Use cross-validation (see Section 18.5) if it is
important to obtain a good estimate of future
model performance [18.5.2].

The second worry is whether or not inferences
are made reliably. Implicit in the discussion to
this point are the assumptions that the errors in
(8.25) are iid normally distributed and that the
full model adequately represents the conditional
mean ofY. Therefore the diagnostic procedures
discussed in Section 8.3 should be applied to
confirm that the distributional assumptions are as
close to being satisfied as possible and that the
inferences can be properly qualified. Scatter plots
(see [8.3.13]) of residuals should be examined for

evidence of outliers, heteroscedasticity, and lack-
of-fit. For multiple regression, residuals should
be plotted against the estimated conditional mean
(i.e., the fitted model)and against the values
of individual factors. Bear in mind that outliers
(see [8.3.13]) will be more difficult to detect
than in the case of simple linear regression.
Use objective methods for detecting influential
observations (see [8.3.18]) if at all possible. Use
probability plots (see [8.3.14]) to detect departures
from the assumption of a normal distribution. The
general considerations of [8.3.15] apply, so we
can proceed cautiously if the normal distribution
assumption is in doubt. When appropriate, use
the Durbin–Watson statistic (8.24) or runs test
to check for dependence amongst the errors (see
[8.3.16]).

We now briefly examine the fit of model (8.32)
to the Landsat data set described in [8.1.4].
Figure 8.14 shows studentized residuals plotted

against̂ln τ (right). The left hand panel shows one
outlier with undue influence on the fit. One effect
of this outlier, the extreme point in the lower left
corner of the right hand panel, is to shift the other
quantiles in the probability plot upwards, thereby
giving the impression that the upper tail of the
error distribution may be narrower than that of the
normal distribution.

Figure 8.15 shows the same diagnostics for
the fit that is obtained after removing the outlier
from the data set. The left hand panel shows
that there may still be one or two observations
that need investigation. Other diagnostics also
indicate that these observations, corresponding to
the two largest remaining studentized residuals,
are somewhat more influential than we might like.
The right hand panel shows improvement in the
distributional characteristics of the residuals after
removal of the outlier.

Removing the single outlier results in fairly
large changes to the fitted model. There is little
change in the estimated intercept (the new value of
â0 is −0.0748), but there are substantial changes
in the coefficients ofτ (̂a1 = 0.866) and Ac

(̂a2 = 0.866). Also,σ̂E is reduced to 0.208 and
R2 increases slightly to 95.2%, a further indication
that the fit is improved.7

7The outlying observation comes from a Landsat image
identified as sceneC4 by Barker et al. (see [18, Table 2]).
The image contains scattered cumulus clouds and appears to
have large mean optical depth relative to its fractional cloud
coverage. However, the image was taken when the solar zenith
angle was 68◦. Optical depth is difficult to estimate accurately
in this scene because of the oblique trajectory of light incident
on the clouds.
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Figure 8.14:Left: Absolute studentized residuals plotted against̂ln τ for the fit of the model (8.32) to the
Landsat data described in [8.1.4].
Right: A probability plot of the ordinary residualsln τ − l̂n τ .
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Figure 8.15:As Figure 8.14, except these diagrams illustrate the fit that is obtained when the large
outlier is removed.
Left: Absolute studentized residuals.
Right: Probability plot of ordinary residuals.

8.4.11 Multicolinearity. We have, by now,
learned to think of the factors in a multiple
regression as columns in the design matrix.
Two or more factors aremulticolinear when
the corresponding columns in the design matrix
point in similar directions inRn, that is, when
they are strongly correlated. Therefore, one
way to look for multicolinearity is simply to
study the correlation matrix of the non-constant
factors. Large correlations indicate potential
multicolinearity problems.

The effect of multicolinearity is to make the
matrix X TX nearly uninvertible, resulting in
highly variable parameter estimators (see Property
3 of [8.4.2]) and making it difficult to diagnose the
factors that are most important in specifyingY.

Parameter estimates are sensitive to small vari-
ations in the data when there is multicolinearity.

The sensitivity of the model is estimated from the
condition numberκ(X ) of the design matrixX ,
which is defined as the ratio between the largest
and smallest singular values ofX (see Appendix
B). A good introduction to the use ofκ(X ) for
detecting multicolinearity and strategies for coping
with estimator sensitivity are contained in [78,
pp. 138–144] (see also [104]). Some statistical
packages, such as SPlus [36], are able to produce
sensitivity estimates.

8.4.12 Ridge Regression. One way to cope with
multicolinearity is to remove redundant factors
from the model. However, this is not always
possible or desirable for either aesthetic or visual
reasons. In this caseridge regression(see, e.g.,
[104] or [420]) is an alternative. The idea is to
give up the unbiased property of least squares
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estimation in exchange for reduced estimator
uncertainty.

In ridge regression, constraints are implicitly
placed on the model parameters and the least
squares problem is then solved subject to those
constraints. These constraints result in a modified,
less variable, least squares estimator. First, note
that the ordinary least squares estimator (8.27) can
be written

Êa= PT3−1PX TEy,
where the columns ofP are the normalized
eigenvectors ofX TX and3 is the corresponding
diagonal matrix of eigenvalues. That is,X TX =
P3P. One form of ageneralized ridge regression
estimator, which conveys the general idea and the
source of the term ‘ridge,’ is given by

Êar idge = PT(3+D)−1PX TEy
whereD is a diagonal matrix of positive constants.
The effect of inflating the eigenvalues in this way
is to downplay the importance of the off-diagonal
elements ofX TX when this matrix is inverted.
The constants, are, of course not known. Ridge
regression algorithms use a variety of procedures
to choose appropriate constants for a given design
matrixX .

8.5 Model Selection

None of the inference methods described in
Sections 8.3 and 8.4 performs reliably if factors
are missing from the model. On the other hand,
if the model contains unnecessary factors it will
be unnecessarily complex and will specify more
poorly than it could otherwise. We therefore
briefly discuss methods helpful for developing
parsimoniousmodels. The main goal here is not so
much to specify accurately or estimate a complete
model, as it is to perform screening to discover
which factors contribute significantly to variation
in the response.

The primary screening principle we use is that
a variable should not be included in a model if
it does not significantly increase the regression
sum of squaresSSR. A careful and systematic
approach is needed because a test of an individual
parameter, which asks whether a specific factor
makes a significant contribution after accounting
for all other factors, may hide the importance of
that factor within a group of factors.

When the number of factors in a problem is
small it is usually possible to choose a suitable
model, as in the example above, using the tools of

[8.4.9]. However, in problems with a large number
of factors that are each potentially important for
representing the conditional mean of the response
variable, an automated procedure is needed.

8.5.1 Stepwise Regression: Introduction.
Stepwise regression is the iterative application of
forward selection and backward elimination steps.
We first describe these procedures and then return
to the subject of stepwise regression. However, we
need to introduce some additional notation before
delving into detail.

We use SSRl1,...,l p to represent the sum
of squares due to regression when thep
factorsXl1, . . . ,Xl p are included in the multiple
regression model. Similar notation is used for the
sum of squared errors. We useSSRl(p+1)|l l1,...,l p

to denote the increase in the regression sum of
squares that comes about by adding factorXl(p+1)

to the model. That is

SSRl(p+1)|l l1,...,l p

= SSRl1,...,l(p+1) − SSRl1,...,l p .

8.5.2 Forward Selection. Before any fitting is
done, a decision should be made about whether
or not to include an intercept in the model. If an
intercept is to be included, it should be included at
all steps of the forward selection procedure. The
steps are as follows.

1 Simple linear regression is performed with
each factor. The factorXl1 for which SSRl1
is greatest is selected as theinitial factor.

2 Search for factorXl2, l2 6∈ {l1}, for which
the incremental regression sum of squares
SSRl2|{l1} is greatest. The notation{l1}
denotes the list of previously selected factors
and l2 6∈ {l1} denotes any factor not in{l1}.
This list contains only the initial factor after
step 1 has been completed.

3 Test the hypothesis that inclusion ofXl2
significantly reduces the regression sum of
squares by computing

F = SSRl2|{l1}
(SSE {l1},l2)/(n′ − (1+ |{l1}|))

where n′ = n or n − 1 depending upon
whether or not the intercept is included, and
{l1} denotes the list of previously selected
factors.F is compared with the critical values
of F(1,n′ − (1+ |{l1}|)).



8.5: Model Selection 167

4 Stop at the previous iteration ifXl2 does not
significantly increase the regression sum of
squares. Otherwise, includeXl2 in the model
and repeat steps 2 and 3.

8.5.3 Backward Elimination. The backward
elimination procedure operates similarly to the
forward selection procedure.

1 Fit the full model.

2 Search for the factor that reduces the
regression sum of squares by the smallest
amount when it is removed from the model.

3 Conduct anF test to determine whether
this factor explains a significant amount of
variance in the presence of all other factors
remaining in the model at this point. Remove
the variable from the model if it does not
contribute significant variance.

4 Repeat steps 2 and 3 until no variable can be
removed from the model.

8.5.4 Stepwise Regression.The stepwise
regression procedure combines forward selection
with backward elimination. As forward selection
progresses, factors selected early on may become
redundant when related factors are selected during
later steps. Therefore, in stepwise regression,
backward elimination is performed after every
forward selection step to remove redundant
variables from the model. Forward regression and
backward elimination steps are repeated until no
further change can be made to the model.

8.5.5 All Subsets Regression.Another screen-
ing approach that has become feasible with in-
creased computing power is all subsets regression.
As the name suggests, the procedure fits all 2k

possible subsets of factors to the response variable.
The screening statisticCp

Cp{l1,...,l p} =
SSE {l1,...,l p}

σ̂ 2
E

− (n− 2p)

is computed for every model and a plot of points
(p,Cp{l1,...,l p}) is produced. Note that the error
variance estimate is generally obtained from the
full model. A model that fits well will have a
computedCp that lies close to theCp = p line.
This is therefore used as a guide for selecting
models that require more careful examination (see
[104] or [420] for details).

Alternatively, Akaike’s information criterion
(AIC) [6] could be used as the screening statistic.

The idea here is to choose the model that
minimizes the AIC criterion given by

AIC = −2l (̂al1, . . . , âl p)+ 2p

= n log(2πσ̂ 2
E )+

SSE {l1,...,l p}
σ̂ 2

E

+ 2p,

wherel (̂al1, . . . , âl p) is the log-likelihood function
(see [8.3.4]). That is, minimizingAIC is
equivalent to maximizing likelihood, but penalized
for the number of parameters in the model. As with
Cp, we use the best available estimate of the error
variance when computingAIC, the estimator of
σ 2

E obtained from the least squares fit of the full
model. Note the similarity betweenCp andAIC.

8.5.6 Numerical Forecast Improvement. One
meteorological application for screening regres-
sion techniques is in the development of statistical
procedures for improving numerical weather fore-
casts.8 Improvement is required because global,
and even regional, numerical forecast models do
not accurately represent sub-grid scale processes.
Statistical procedures attempt to exploit systematic
relationships between the large-scale flow of the
free atmosphere, which is both well observed and
well represented by numerical forecast models,
and local phenomena.

MOS procedures (see Glahn and Lowry [140]
or Klein and Glahn [226]) rely upon ‘specification
equations’ that describe statistical relationships
between numerical forecasts of atmospheric
conditions in the troposphere (i.e., model output)
and observed variables at specific points on the
surface, such as precipitation and temperature. The
primary tool used is multiple linear regression.
The advantage of MOS over perfect prog is that
it inherently corrects for forecast model biases in
both the mean and variance. A disadvantage of
MOS is that the specification equations need to
adapt constantly to the changing characteristics of
the numerical forecast model and its associated
data assimilation systems.

Perfect prog procedures (See Klein, Lewis, and
Enger [227], Brunet et al. [71]) are similar to MOS
procedures except that the specification equations
describe simultaneous relationships between the
analysed (as opposed to forecast) free atmosphere
and observed variables at specific points on the
surface. The resulting specification equations are
more stable than the MOS equations because the

8Many other techniques, such as cluster analysis [163, 115],
multiple discriminant analysis [267] and classification and
regression trees [63] are also used. See, for example, Yacowar
[435].
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data used to fit the equations are less affected by
periodic model changes. However, perfect prog
specification equations do not account for forecast
model biases. Statistical downscaling procedures
(see [97, 152, 252, 403]) that link regional and
local aspects of simulated climate change are a
variation of perfect prog.

Screening regression is strongly affected by the
artificial skill phenomenon discussed in [8.3.12]
and also [18.4.7] (see, e.g., Ross [332] or Unger
[377]) because these methods select a model from
a set of possible models that adapts most closely to
the data. Ross [332] citing Copas [91] and Miller
[278] points out that using the same sample to
select the model and estimate its coefficients is
‘overfitting’ and can lead to models that perform
very poorly on independent data. It may therefore
be wise to use three data sets in conjunction with
screening techniques; one with which to identify
the model, one with which to estimate coefficients,
and one for validation.

Small data sets often make this strategy
impossible to use. An alternative method for
estimating the skill of the model is cross-
validation, but Unger [377] demonstrates that
cross-validation does not provide reliable skill
estimates because of the way in which it interacts
with the screening methods. He proposes the
use of a method calledbi-directional retroactive
real-time (BRRT) validation instead. The idea is
that a substantial subset of recent data is withheld.
A screening technique is used to fit a model to
the earlier data (called the base data set). This
model is used to forecast the first observation in
the withheld set. It is then added to the base data
set and the process is repeated, thereby collecting
a set of verification statistics of the same size as
the withheld data set. More verification data are
collected by running the same process in reverse
(hence the term ‘bi-directional’). Unger finds that
BRRT gives reliable estimates of skill ‘when the
number of candidate predictors is low.’

8.6 Some Other Topics

8.6.1 Weighted Regression. The working
assumption to this point has been that the errors
Ei are normally distributed, independent, and
identically distributed. That is, the vector of
errors EE is jointly distributedN (E0, σ2

EI), where
I denotes then × n identity matrix. We noted
in [8.3.16] that departures from the independence
assumption lead to difficulties. If the errors are
not independent,EE ∼ N (E0,ΣEE), whereΣEE is

a non-diagonal covariance matrix. If there are
departures from the constant variance assumption
(heteroscedasticity; see [8.3.13]), then although
ΣEE may be diagonal, the elements on the diagonal
are not constant. In general, ordinary least squares
estimates are less than optimal (they are no longer
maximum likelihood estimates) wheneverΣEE 6=
σ 2

EI.
WhenΣEE is known, the optimality properties of

ordinary least squares estimators are restored by
solving thegeneralized normal equations. Instead
of minimizing ( EY − X Ea)T( EY − X Ea), we chooseEa
to minimize

( EY − X Ea)TΣ−1
EE ( EY − X Ea). (8.38)

The generalized least squares estimatorsare
therefore given by

Êa= (X TΣ−1
EE X )

−1X TΣ−1
EE
EY.

Weighted regression is the special case in
whichΣEE is diagonal. Then quadratic form (8.38)
reduces to

n∑
i=1

w2
i

(
Yi −

k∑
l=1

al xl

)2
,

where weightwi is proportional to 1/σEi .
Weighted regression is an option to consider

when errors are heteroscedastic, and transforma-
tion of the response variable [8.6.2] does not result
in a model with a reasonable physical interpre-
tation. Note that in order to perform weighted
regression it is only necessary to know the relative
sizes of the error variances, not the variances
themselves. Very good prior information about the
relative variances may be available from sampling
or physical considerations.

8.6.2 Transformations. Transformation of var-
iables can be used in several ways in regression
analysis. First, many models that appear to be
nonlinear in their parameters can easily be made
linear.

• Multiplicative models, such as

Y = a0xa1
1 xa2

2 xa3
3 E,

can be made linear by taking logarithms to
obtain

lnY = a′0+ a1 ln x1+ a2 ln x2

+ a3 ln x3+ E′.

Fitting can now proceed provided appropriate
assumptions can be made aboutE′ = ln E.
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• Reciprocal models, such as

Y = 1

a0+ a1x1+ E
,

can be made linear by inverting the dependent
variable to obtain

1

Y
= a0+ a1x1+ E.

• Bilinear models, such as

Y = a0x1

a1+ a2x2+ E
,

can be made linear by cross-multiplying to
obtain

x1

Y
= a1

a0
+ a2

a0
x2+ E′,

or by inversion to obtain

1

Y
= a1

a0

1

x1
+ a2

a0

x2

x1
+ E′

x1
,

whereE′ = E/a0. Least squares estimators
can then be obtained for the ratiosa1/a0
anda2/a0. The particular form that is chosen
depends upon whether or notx1 can become
zero, and whetherE/x1 better satisfies the
distributional assumptions needed to make
statistical inferences about the model thanE
itself.

• Many models can be made linear in
their parameters through a combination of
transformations. For example, a model of the
form

Y = 1

1+ a0xa1
1 E

can be re-expressed as

ln
( 1

Y
− 1

)
= a′0+ a1 ln x1+ E′.

Some models are intrinsically nonlinear and can
not be re-expressed in a way that is linear in the
parameters. For example, Xu and Randall [434]
propose the following parameterization for the
fraction CS of the sky in a GCM grid box that is
covered by stratiform clouds:

CS = r p
H (a− e−αq̄e), (8.39)

wherer H is relative humidity,q̄e is the large-scale
condensate (cloud water plus ice) mixing ratio, and

α = α0
(
(1− r H )q

∗)−γ , (8.40)

where q∗ is the water vapour mixing ratio.
Constantsp, α0, and γ are scalar parameters
that are estimated by fitting model (8.39, 8.40) to
the output from a high resolutioncloud ensemble
model(CEM); see, for example, Xu and Krueger
[433]. CEMs are used in the development of cloud
parameterizations because detailed observational
data on cloud fields are scarce.

A second reason for using transformations in
regression is to change the model so that it
better satisfies the assumptions necessary to make
inferences about the estimated parameters and
about unobserved values of the dependent variable.
For example, the heteroscedasticity displayed in
Figure 8.8 can be removed by fitting the model

Y
x(1− x)

= a0+ a1
1

1− x
+ E′

instead of

Y = a0+ a1x+ E.

Suitable variance stabilizing transforms are found
by physical reasoning and by plotting residuals
against the independent variables.

8.6.3 Nonlinear Regression. Many of the ideas
discussed in this chapter can be extended to
the fitting and analysis of intrinsically nonlinear
models such as (8.39, 8.40) provided it is possible
to assume that errors are iid and normally
distributed. Then a reasonable nonlinear regression
model for the conditional mean of the response
variable has the form

Yi = h(x1,i , . . . , xk,i |a1, . . . ,ap)+ Ei .

That is, the conditional mean of the response
variable is a functionh(·|·) of k factors that is
known up to the value ofp coefficients. Function
h is nonlinear in at least some of the unknown
coefficients. Parameters are estimated by using
function minimization techniques (such as the
method of steepest descent, see [322]) to minimize
the sum of squared errors

SSE =
n∑

i=1

(yi − h(x1,i , . . . , xk,i |a1, . . . ,ap))
2.

Approximate inferences are possible by linearizing
h about̂Ea. See Bates and Watts [35] or Draper and
Smith [104] for more details.
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9 Analysis of Variance

9.1 Introduction

In this chapter we describe some methods that
can be used to diagnose qualitative relationships
between a quantitative response variable, that is,
a variable measured on a continuous scale, and
one or more factors that are classified, perhaps
according to level, or perhaps only according to
their presence or absence.

Our purpose is to introduce only some of
the concepts ofexperimental designandanalysis
of variance (ANOVA). We illustrate the general
patterns of analysis and thought with these
methods using a couple of examples from the
climate literature. Our coverage of the subject is
necessarily far from complete. A more complete
treatment of the topic can be found in Box, Hunter,
and Hunter [59]. Cochran and Cox [87] provide
a classical treatment. Anderson and McLean [13]
provide a good description of ANOVA for non-
specialists.

9.1.1 Terminology and Purpose of Experimen-
tal Design. The classical setting for ANOVA and
experimental design methods is agricultural exper-
iments, so much of the associated terminology has
its roots in agriculture.

For example, a typical agricultural experiment
might be designed to determine the effect of
two factors, say, fertilizer (applied at one of
three different levels) and tillage (the land is
either tilled, or not tilled before seeding) on
crop yield. The experiment might be conducted
as afactorial experimentin which each possible
treatment combination is applied to a separate plot
of land according to an experimental design.

The simplest experimental design is acom-
pletely randomizeddesign in which treatment
combinations are randomly assigned to plots of
land (or more generally,experimental units: any-
thing to which treatments are applied). In experi-
ments withoutreplication, each treatment combi-
nation is applied exactly once. Thus in the simple
agricultural example introduced here, six plots of
land would be used. In experiments with replica-

tion, at least some of the treatment combinations
are applied more than once.

9.1.2 Experimental Designs in Climatology.
The experimental units are simulations in designed
experiments conducted with General Circulation
Models. Treatments applied to the simulations
could be various combinations of parameteriza-
tions of sub-grid scale processes, parameter values
for a given set of parameterizations (as in Gough
and Welch [145]), conditions imposed at the top
of the atmosphere (e.g., a rigid lid as opposed
to a sponge layer) or at the lower boundary
(e.g., to examine the model’s systematic response
to an imposed sea-surface temperature anomaly
such as the standard Rasmusson and Carpenter
El-Niño anomaly [330], as in Boer [51]), vertical
resolutions for a model, and so on.

Unfortunately, developers of GCMs have not
generally relied upon designed experiments to
differentiate objectively between treatments be-
cause GCM experimentation is quite expensive.
However, developers of models that are cheaper to
run (such as basin scale ocean models and sea-ice
models) have started to study their models objec-
tively through the use of designed experiments.
Gough and Welch [145], Chapman et al. [79], and
Bowman, Sacks, and Chang [58] are examples.
The Gough and Welch example is discussed in
Section 9.5.

9.1.3 Isolating External Sources of Variability.
A deficiency of the completely randomized design
is that variation in the response variable is induced
both by the treatments and by variations between
experimental units. In agricultural experiments,
variations might occur because the fertility is
not uniform from one plot to the next. In GCM
experiments, simulations might be conducted
with different computers, which, owing to the
peculiarities of a particular machine, leads to small
differences amongst simulated climates. In the
language of statisticians, the treatment effects are
confoundedwith the plot effects in the completely
randomized design.

171
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The ability to detect treatment effects can be en-
hanced if experimental designs are constructed that
reduce or eliminate external sources of variation.
One such design is therandomized complete block
design. In our pedagogical agricultural example,
we could split each plot into six sub-plots, then
randomly assign treatments to sub-plots with the
constraint that every treatment combination ap-
pears once within every plot. Presumably fertil-
ity is relatively uniform within each plot, so all
responses within a plot are subject to the same
variations induced by differences in plot fertility.

An extra factor, theblock (or plot) effect, is
effectively introduced into the experiment. When
the results of the experiment are subsequently
analysed using the methods of ANOVA, we will be
able to isolate variation in the data induced by the
blocks from variation induced by the treatments,
and therefore make better inferences about the
effect of the treatments.

9.1.4 Randomized Complete Block Climate
Experiments. Designed climate experiments,
because of their huge cost, might have to be run
on several computers, perhaps not all of the same
type. Different types of machines have different
schemes for representing real numbers, slightly
different implementations of intrinsic functions,
different numerical precisions, etc., resulting in
simulated climates that are slightly, but sometimes
detectably, different.

However, complete block experiments may
not be feasible as there may not be sufficient
computing resources available on a given machine
to replicate every treatment combination. It
may therefore be necessary to use another
design, such as afractional factorial design(see
Box et al. [59]) in which only some fraction
of treatment combinations is applied to the
simulations conducted on each computer. The
effects of some treatment combinations will be
confounded with the block effect in a fractional
design. The art of designing a fractional factorial
experiment depends primarily on making informed
choices about the effects that are likely to be small
enough to be safely confounded with the block
effect.

9.1.5 What is ANOVA and How is it
Different from Regression Analysis? There is
a very strong connection between the experimental
design and the subsequent analysis of variance
used to analyse the data generated by the
experiment. Formally, the models fitted using

ANOVA are regressions in which the factors on
the right hand side of the equation are indicator
variables. The choice of model is not very flexible
because the indicator variables are used to identify
the specific treatment and block combination
that resulted in each realization of the response
variable. Some terms in ANOVA models may be of
little direct interest to the analyst because they are
only present to account for the variation, such as
between block variation, that the experiment was
designed to isolate from the effects of interest.

Perhaps because of the limited flexibility in
the choice of model, the estimated values of
model coefficients are generally of less interest
than the partitioning of variability according to its
source and determining which sources contribute
significantly to the variation in the data obtained
from the experiment. The examples discussed
in this chapter show that this is also largely
true in climatological applications of ANOVA
methodology. The model coefficients or, at least,
the relationships between model coefficients, are
only of interest after it has been determined that
a factor has a significant effect on the response
variable. The specific value of the coefficient is
irrelevant in many problems because the factor
level may not have been measured quantitatively.
Even when the levels are known, values of the
response variable might only be available for a
few levels of a factor, making it inappropriate
to attempt to diagnose systematic relationships
between the factor and the mean of the response
variable.

9.1.6 Applications to Climatology. In the past,
it was relatively uncommon to apply ANOVA to
climatological and meteorological problems. This
is partly because our observational data do not
lend themselves well to analysis using methods
appropriate for designed experiments, and partly
because the cost of properly designed climate
model experiments was prohibitively high in the
past, although this situation is now changing.

We will describe applications of ANOVA
to the analysis of interannual variability in
an experiment consisting of multiple AMIP1

1The AMIP (Atmospheric Model Intercomparison Project)
encompasses most of the world’s climate modelling groups
(see Gates [137] for a description of the project and its
goals). All participants ran a standard 10-year atmospheric
simulation imposing observed 1979–88 monthly mean sea-
surface temperatures and sea-ice extents at the lower boundary.
Several groups, such as the Canadian Centre for Climate
Modelling and Analysis, ran multiple AMIP simulations from
randomly selected initial conditions.
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simulations conducted with the CCC GCMII
(see McFarlane et al. [270] for a description
of CCC GCMII; and see Zwiers [444, 449]
and Wang and Zwiers [414] for analysis of the
AMIP experiments).2 We will also describe an
application of so-calledspace filling experimental
designsto the problem of parameter specification
in a basin scale ocean model (Gough and Welch
[145]).

9.1.7 Outline. The models and methods used
in one way analysis of varianceare described in
Section 9.2. These are methods suitable for use
in simple experiments that intercompare the mean
responses to a number of different treatments,
or levels of one treatment. One way ANOVA
methods are also appropriate when it is necessary
to intercompare the means of two or more samples.

Both fixed and random effects models are
discussed in Section 9.2. Afixed effectsmodel
describes the effect of a treatment as a change
in the mean of the response variable. This is a
deterministic response to a treatment that can be
replicated from one realization of the experiment
to the next. Arandom effectsmodel describes the
effect of the treatment with a random variable, a
form of response that can not be replicated from
one experiment to the next. Methods of inference
are discussed for both types of one way model.
The relationship between ANOVA and regression
is described at the end of Section 9.2.

The models and methods used intwo way
analysis of varianceare described in Section 9.3.
These models are used to analyse experiments con-
ducted with randomized complete block designs
or completely randomized designs in which two
different kinds of treatment have been applied. The
discussion in this section is limited to fixed effects
models.

The Canadian Centre for Climate Modelling and
Analysis (CCCma) AMIP experiment is used as
a working example throughout Sections 9.2 and
9.3. This experiment is analysed in more detail in
Section 9.4 with a two way model containing a
mixture of fixed and random effects. An additional
example is discussed in Section 9.5, where we
describe Gough and Welch’s [145] use of space
filling designs to study the sensitivity of a basin
scale ocean GCM to its parameter settings.

2Several other analyses ofensemblesof climate variability
have recently appeared in the climate literature, including
Rowell [336], Rowell and Zwiers [337], Kumar et al. [232],
Folland and Rowell [123], Stern and Miyakoda [358], and
Anderson and Stern [11].

We complete this section by briefly introducing
the CCCma multiple AMIP simulations.

9.1.8 Example: Multiple AMIP Simulations.
AMIP is a Level 2 model intercomparison as
defined by the WGNE (Working Group on Numer-
ical Experimentation). The more primitive Level
1 intercomparisons apply common diagnostics to
climate simulations as available. At Level 2, sim-
ulations are conducted under standard conditions,
common diagnostics are computed, and validation
is made against a common data set. Level 3 encom-
passes Level 2 and also requires that models use a
common resolution and common subroutines.

An AMIP simulation (see Gates [137]) is a
10-year simulation conducted with an atmospheric
climate model in which the monthly mean sea-
surface temperatures and sea-ice boundaries are
prescribed to follow the January 1979 to December
1988 observations.

The CCCma AMIP simulations were conducted
with a spectral model ([270] and [52]) that operates
at ‘T32’ horizontal resolution (approximately
3.75◦ × 3.75◦), has 10 layers in the vertical,
and a 20-minute time step. The first simulation,
conducted on a Cray XMP, was initiated from
1 January 1979 FGGE (First GARP Global
Experiment [44]) conditions. Five additional
AMIP simulations, performed on a NEC SX/3,
were started from previously simulated 1 January
model states. These initial states were selected
from the control run at two-year intervals. Analysis
of the AMIP simulations begins in June of the first
simulated year. That is, the first five months of
each simulation is regarded as a ‘spin-up’ period
during which the model forgets about its initial
conditions, and slow (primarily land surface)
processes equilibrate with the imposed lower
boundary conditions. Because the atmosphere
forgets its initial state very quickly, the effect of
selecting different initial conditions is basically to
select independent realizations of the simulated
climate’s path through its phase space. For all
intents and purposes, these six simulations can be
regarded as having been initiated from randomly
selected initial states.

9.2 One Way Analysis of Variance

9.2.1 The One Way ANOVA Model. Suppose
that an experiment has been conducted that results
in J samples of sizen represented by random
variablesYi j , for i = 1, . . . ,n and j = 1, . . . , J.
The subscript j identifies the sample, and the
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subscripti identifies the element of the sample.
Assume that the sampling is done in such a way
that all random variables are independent, normal,
and have the same variance. Also assume that the
means are constant within samples. That is, in
samplej

E
(
Yi j
) = µ j

for all i = 1, . . . ,n, or equivalently that

E
(
Yi j
) = µ+ aj

for all i = 1, . . . ,n, whereµ is the overall mean
given by

µ = 1

J

J∑
j=1

µ j ,

andaj is the difference

aj = µ j − µ
between the expectation ofYi j and the overall
mean. The coefficientsaj are often called
treatment effects.

An appropriate statistical model for this type of
data is

Yi j = µ+ aj + Ei j , (9.1)

where the errorsEi j are iid zero mean normal
random variables with varianceσ 2

E (i.e., Ei j ∼
N (0, σ2

E )) and the coefficientsaj are constrained
to sum to zero.

9.2.2 Where Do the Data Come From? Data of
this sort might be a result of a planned experiment
that examined the effects ofJ treatments by
applying each treatment ton experimental units.
The experimenter would have made sure that the
experimental units(e.g., people, rats, plots of
land, climate simulations, etc.) were representative
of the population from which they were drawn
and that the treatments were applied to the
experimental units in random order.

However, data of this sort might also have
been obtained with somewhat less attention
to experimental design. Suppose, for example,
that we wish to use an ensemble of AMIP
simulations to determine whether the specified
sea-surface temperatures and sea-ice boundaries
have an effect on the interannual variability of
the simulated December, January, February (DJF)
climate. The 10-year AMIP period (January 1979
to December 1988) includes nine complete DJF
seasons. Each DJF season can be thought of as the

result of a different treatment (the specified sea-
surface temperature and sea-ice regime) applied
to a different experimental unit (a year in a
simulation). Because the AMIP simulations are
conducted with an atmospheric model, it seems
reasonable to assume that consecutive mean DJF
states simulated by the model are approximately
independent of each other. Thus a simulation can
be thought of as the outcome of a completely
randomized experiment in which each of theJ =
9 treatments is applied once. Each simulation in an
ensemble of AMIP simulations can be considered
a replication of the nine treatment experiment.
Because the AMIP simulations in the six member
CCCma ensemble were started from randomly
selected initial conditions, the replications can also
be assumed to be independent of one another.
Thus it appears that seasonal mean data from the
CCCma AMIP experiment can be analysed using
a one way ANOVA appropriate for data obtained
from a replicated completely randomized design
with J = 9 treatments andn = 6 replicates.

9.2.3 Partitioning Variance into Treatment
and Error Components. In regression analysis
(see Chapter 8) we started with a model such
as (9.1), developed parameter estimators, and
slowly proceeded towards an analysis of variance
that partitioned the total sum of squares into
regression and sum of squared errors. That
approach is also useful in analysis of variance
because it provides a direct means of obtaining
distributional properties for confidence intervals
and test statistics. However, here we use a more
intuitive approach to the analysis of variance that
begins with the partitioning of variability.

Before beginning, let us introduce a little
notation. Let

Y◦◦ = 1

n J

n∑
i=1

J∑
j=1

Yi j

be the mean of all the observations and let

Y◦ j = 1

n

n∑
i=1

Yi j

be the mean of all the observations that were
the result of thej th treatment. The ‘◦’ notation
indicates averaging over the missing subscript. By
substituting the model (9.1) into these expressions
and taking expectations, it is easily shown thatY◦◦
is an unbiased estimator ofµ and thatY◦ j is an
unbiased estimator ofµ+aj . ThereforeY◦ j −Y◦◦
is an unbiased estimator ofaj .
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The total sum of squaresSST , given by

SST =
n∑

i=1

J∑
j=1

(Yi j − Y◦◦)2,

can be partitioned as follows. First, subtract and
addY◦ j inside the squared difference to obtain

SST =
n∑

i=1

J∑
j=1

(
(Yi j − Y◦ j )+ (Y◦ j − Y◦◦)

)2
.

Then square and sum the individual terms to obtain

SST = n
J∑

j=1

(Y◦ j − Y◦◦)2

+
n∑

i=1

J∑
j=1

(Yi j − Y◦ j )
2

− 2
n∑

i=1

J∑
j=1

(Y◦ j − Y◦◦)(Yi j − Y◦ j ).

The sum of the cross-products is zero because∑n
i=1(Yi j − Y◦ j ) = 0 for eachj . Thus we have

SST = SSA+ SSE,
where

SSA = n
J∑

j=1

(Y◦ j − Y◦◦)2, (9.2)

and

SSE =
n∑

i=1

J∑
j=1

(Yi j − Y◦ j )
2.

SSA is often referred to as thetreatment sum
of squaresor thebetween blocks sum of squares.
SSE is referred to as thesum of squared errors
or within blocks sum of squares. The latter names
are particularly descriptive of the calculations that
were performed.

The treatment sum of squares is taken overJ
deviations that sum to zero, thus it hasJ − 1
degrees of freedom (df). The sum of squared errors
is taken overn J deviations such that deviations
within a particularblock (or sample) must sum to
zero. That is, the sum of squared errors is taken
over deviations that are subject toJ constraints.
Consequently,SSE has(n−1)J df. The total sum
of squares is summed overn J deviations which
are subject to only one constraint (i.e., that they
sum to zero) and therefore the total sum of squares
haven J−1 df. In summary, we have the following
partition of the total sum of squares and degrees of
freedom.

Source Sum of Squares df

Treatment SSA J − 1
Error SSE J(n− 1)

Total SST Jn− 1

9.2.4 Testing for a Treatment Effect. The
effect of the j th treatment is represented by
coefficientaj in model (9.1). Thus the no treatment
effect hypothesis can be expressed as

H0: a1 = · · · = aJ = 0, (9.3)

or, equivalently, as

H0:
J∑

j=1

a2
j = 0.

We wish to test H0 against the alternative
hypothesis that at least some of the coefficientsaj

are different from zero. That is, we test H0 against

Ha:
J∑

j=1

a2
j > 0.

We have already noted thatY◦ j − Y◦◦ is
an unbiased estimator ofaj , so it would seem
reasonable that a test of H0 should be based on
SSA, since it is proportional to the sum of squared
coefficient estimates. Therefore let us examine the
treatment sum of squaresSSA, given in (9.2),
more closely.

Substituting the model (9.1) into (9.2) we obtain

SSA = n
J∑

j=1

(µ+ aj + E◦ j − (µ+ E◦◦))2

= n
J∑

j=1

a2
j + n

J∑
j=1

(E◦ j − E◦◦)2. (9.4)

Now note that the second term in (9.4) estimates
(J − 1)σ 2

E . We can show this by means of (4.6)
after noting the following.

1 E◦ j is the average ofn iid errors that have
varianceσ 2

E . Therefore, using (4.4), we see
that the variance ofE◦ j is σ 2

E/n.

2 All errors Ei j are independent. Therefore
the within block mean errorsE◦ j are also
independent.

It follows that the expected value ofSSA is

E(SSA) = n
J∑

j=1

a2
j + (J − 1)σ 2

E . (9.5)
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Figure 9.1:The natural log of theF-ratios for
the year effect obtained from a one way analysis
of variance of DJF mean 850 hPa temperature
simulated in the six member ensemble of CCCma
AMIP simulations. The shading indicates ratios
that are significantly greater than 1 at the 10%
significance level.

Equation (9.5) shows thatSSA/(J − 1)
estimatesσ 2

E when H0 is true, and that it estimates
a number larger thanσ 2

E when H0 is false. It may
therefore be possible to construct a test of H0 if
another statistic can be found that estimates only
σ 2

E regardless of whether or not H0 is true. An
argument similar to the one we just completed
shows thatSSE/((n− 1)J) has this property.
Hence

F = SSA/(J − 1)

SSE/(J(n− 1))
(9.6)

may be a suitable statistic for testing H0.

In order to useF in a test we must find its
distribution under the null hypothesis. Methods
like those of [8.3.20] can be used to demonstrate
that

• SSA/σ 2
E ∼ χχχ2(J − 1), under H0,

• SSE/σ 2
E ∼ χχχ2((n− 1)J), and

• SSA is independent ofSSE .

Therefore, using [2.7.10], we find that

F ∼ F(J − 1, (n− 1)J)

under H0. Thus we finally obtain the result that
H0 can be tested at the(1− p̃) significance level
by comparingF computed from (9.6) against the
p̃-quantile of F(J − 1, (n− 1)J) obtained from
Appendix G.

9.2.5 Application of a One Way Fixed Effects
Model to the CCCma AMIP Experiment. The
results of the one way analysis of variance of DJF

mean 850 hPa temperature conducted with the six
member ensemble of CCCma AMIP simulations
are shown in Figure 9.1. In this case the variance
components andF-ratio were computed at every
point on the model’s grid.3 The F-ratio (9.6)
is plotted on a log scale in such a way that a
one contour increment indicates a factor of two
increase inf. The no treatment effect hypothesis is
rejected at the 10% significance level over 65.7%
of the globe. Experience with fields that have
spatial covariance structure similar to that of 850
hPa temperature indicates that this rejection rate is
certainly field significant (see Section 6.8).

Note that very largeF-ratios (i.e.,f > 8 or
ln(f) > 2.77) cover the entire tropical Pacific
and Indian Oceans. Significantly largeF-ratios are
also found over the North Pacific, the midlatitude
North and South Atlantic, and the southern Indian
Oceans.

9.2.6 The Proportion R2 of Variance Due to
Treatments. As in regression analysis (Chap-
ter 8) it is possible to compute acoefficient of
multiple determination

R2 = SSA/SST (9.7)

that diagnoses the proportion of the response
variable variance that is explained by the fitted
model. As with regression, this is a somewhat
optimistic estimate of the ability of the model to
specify the response given the treatment.

An adjustment that attempts to reduce the
tendency forR2 to be optimistic is derived as
follows. The expected value of the total sum of
squares is

E(SST ) = n
J∑

j=1

a2
j + (n J− 1)σ2

E .

Therefore the proportion of the expected total sum
of squares that is due to the treatments is

n
∑J

j=1 a2
j

n
∑J

j=1 a2
j + (n J− 1)σ2

E

. (9.8)

However, (9.5) shows that the numerator of (9.7)
is a biased estimator of the numerator of (9.8). We
therefore adjustSSA in (9.7) so that it becomes an

3Often, a pattern analysis approach (see Chapters 13-16)
provides richer and more insightful results. A pattern analysis
technique is used to obtain patterns representing the dominant
modes of variation. The fields are then projected onto these
patterns. Theloadings, or pattern coefficients, are subsequently
analysed in an ANOVA.
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.

Figure 9.2: The adjusted proportionR2
a of

the total (i.e., interannual plus intersimulation)
variance of DJF mean 850 hPa temperature that
is explained by the imposed lower boundary
conditions in the six member CCCma ensemble of
AMIP simulations. Shading indicates values ofR2

a
greater than 0.2.

unbiased estimator of the numerator in (9.8). The
resulting adjustedR2 is

R2
a=
SSA− (J−1)

J(n−1)SSE
SST .

Note that sampling variability occasionally causes
R2

a to be negative.

9.2.7 AMIP Example: Adjusted R2. The
spatial distribution ofR2

a for our AMIP example
is illustrated in Figure 9.2. Notice thatR2

a is large
primarily over the tropical oceans. Note also that
there is a one-to-one correspondence betweenR2

a
andF. In fact, we may write

R2
a =

F− 1

F+ J(n−1)
J−1

andF = 1+ J(n−1)
J−1 R2

a

1− R2
a

.

Thus both statistics convey the same information,
and critical values ofF are easily expressed as
critical values ofR2

a. None the less, the messages
conveyed by Figures 9.1 and 9.2 are not the same.
The latter gives a much clearer picture of the
physical relevance of the response to the forcing
imposed by the bottom boundary conditions.

9.2.8 A One Way Random Effects Model. The
one way model given by (9.1) and discussed above
regards the treatment effectsaj , for j = 1, . . . , J,
asfixed(non-random) effects that can be replicated
from one experiment to the next. However, it is
easy to conceive of experiments in which the
response to the treatments is random and therefore
can not be replicated from one experiment to
the next. Treatments that have this property add

variability to the response variable rather than
changing its mean. Their effect is modelled using
therandom effectsversion of (9.1), which is given
by

Yi j = µ+ A j + Ei j ,

where the errors are iidN (0, σ 2
E ) and the ‘random

effects’A j are iidN (0, σ 2
A). Random variablesA j

are assumed to be independent of the errors. With
these assumptions we see that

Yi j ∼ N (0, σ 2
A + σ 2

E ).

Rather than testing that the treatment changes
the mean of the response variable, we are now
interested in testing the null hypothesis that
the treatments do not induce between block (or
between sample) variability, that is,

H0: σ 2
A = 0. (9.9)

The statistic (9.6), used to test (9.3) in the fixed
effects case, is also used to test (9.9) in the
random effects case. The statistic also has the same
distribution under the null hypothesis.

The differences between the fixed and random
effects cases lie only in the interpretation of
the model and the treatment sum of squares.
The model tells us only that the treatments may
increase interblock (or intersample) variability.
The treatment sum of squares is an estimator of
this variability. In fact,

E(SSA/(J − 1)) = nσ 2
A + σ 2

E . (9.10)

9.2.9 R2 for Random Effects Models. When
random effects are assumed, we see from (9.10)
that the variance of the random treatment effect
can be estimated as [336]

σ̂ 2
A =

SSA/(J − 1)− SSE/(J(n− 1))

n
.

The proportion of variance of the response variable
that is caused by the treatment effects is therefore
estimated as

R′2 = σ̂ 2
A

σ̂ 2
A + σ̂ 2

E

=
SSA− (J−1)

J(n−1)SSE
SST − SSE/J

.

Note again that sampling variability may result in
negative estimates of̂σ 2

A , and henceR′2. Also,
there is again a one-to-one relationship between
R′2 andF. In this case

R′2 = F− 1

F+ (n− 1)
andF = 1+ (n− 1)R′2

a− R′2
.
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While the form of R′2 is similar to that of
the adjusted coefficient of determinationR2

a,
the interpretation is quite different because
specification is impossible in the random effects
setup. R′2 simply estimates the proportion of
variance that is induced by the ‘treatment’
variations.

9.2.10 Unequal Sample Sizes.Although exper-
iments may be planned so that all treatments are
replicated the same number of times, an experi-
ment often yields samples of unequal size. Also,
we must often adapt analysis of variance tech-
niques to data that were not originally gathered for
ANOVA purposes. We therefore briefly consider
one way models with unequal sample sizes:

Yi j = µ+ aj + Ei j

for i = 1, . . . ,nj , and j = 1, . . . , J.

As usual, we assume that errorsEi j are iid
N (0, σ2

E ). The treatment effects can be either fixed
or random. The number of replicates subjected to
treatmentj is denotedn j .

The total sum of squares can still be partitioned
into treatment and error components as in [9.2.3].
We have

SST =
J∑

j=1

n j∑
i=1

(Yi j − Y◦◦)2

SSA =
J∑

j=1

n j (Y◦ j − Y◦◦)2

SSE =
J∑

j=1

n j∑
i=1

(Yi j − Y◦ j )
2.

As in the equal sample size case,SSA andSSE
are statistically independent, and

SSE/σ 2
E ∼ χχχ2(N − J),

where

N =
J∑

j=1

n j .

A difficulty, however, is thatSSA/σ 2
E is not

distributedχχχ2(J − 1) under the null hypothesis
that there is no treatment effect, either fixed or
random. This violation of the usual distributional
theory occurs becauseSSA can not be rewritten as
a sum of(J−1) squared normal random variables
that all have the same variance. In this case the
block mean errorsE◦ j are independent, zero mean
normal random variables with varianceσ 2

E/n j .

Consequently, theF test conducted by compar-
ing

F = SSA/(J − 1)

SSE/(N − J)

against critical values fromF(J − 1,N − J)
is approximate rather than exact; the exact
significance level of the test will be somewhat
different from the specified significance level.
Another consequence of unequal sample sizes
is that thepower of the test (recall [6.2.1]) is
determined primarily by the size of the smallest
sample. Thus, even when the same total number
of experimental units are used, experiments
with unequal sample sizes are generally less
efficient than experiments with equal sample sizes.
However, if variations in sample size are not
enormous and all other assumptions implicit in
the analysis are satisfied, the loss of power and
precision usually do not pose a serious problem.

9.2.11 Relationships Between Treatments.We
now return to the fixed effects model of (9.1).
The only inferential consideration so far has been
whether the treatment effectsaj are jointly zero.
However, once this hypothesis has been rejected
one would like to extract additional information
from the data. Tools that can be used for this
purpose are calledlinear contrasts.

9.2.12 Linear Contrasts. Linear contrasts are
used to test hypotheses about specific relationships
between treatment means that may have arisen
from physical considerations. For example, the
AMIP period included the strongest El Niño event
on record (1982/83) and a relatively weak El Niño
event (1986/87). Thus we might ask, within the
confines of our one way setup, whether the mean
anomalous response to 1982/83 lower boundary
conditions is similar to the response to the 1986/87
lower boundary conditions.

These kinds of questions can be asked using
linear contrasts. Tests of simple contrasts, which
compare only two treatments or samples, are
similar to the tests employed incomposite analysis
(see Section 17.3). However, the tests of contrasts
may be more powerful than tests of composite
differences because the test of the contrast uses
more information about within sample variability.

A linear contrastis any linear combination of
the treatment (or sample) means

wc =
J∑

j=1

cjµ j
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for which
∑J

j=1 cj = 0. Questions such as that
discussed above are expressed as null hypotheses
about linear contrasts:

H0:
J∑

j=1

cjµ j = 0. (9.11)

In the AMIP example we might setcj = 0 for
all j except 1982/83, for which we might choose
c82/83 = 1, and 1986/87, for which we might
choosec86/87 = −1. This contrast would satisfy
the requirement that the coefficients sum to zero,
and the null hypothesis would read ‘the mean
response in 1982/83 is equal to that in 1986/87.’

9.2.13 Testing Linear Contrasts. The test of
the linear contrast is constructed in the now
familiar fashion. First, we construct an estimator
of the contrast

ŵc =
J∑

j=1

cj Y◦ j . (9.12)

We substitute the model (9.1) into (9.12), and
compute the expectation of̂w 2

c . We learn that

E
(
ŵ 2

c

) = ( J∑
j=1

cj aj

)2

+ σ 2
E

J∑
j=1

c2
j

n j
.

This suggests that a suitable test of (9.11) is based
on

F = ŵ 2
c

SSE
N−J

∑J
j=1

c2
j

n j

,

and that H0 should be rejected whenF is unusually
large. Next we show that̂wc and SSE are
independent. Then we argue that̂wc is normal
because it is a linear combination of normal
random variables. Also, the mean of̂wc is
zero under the null hypothesis, and therefore
the numerator ofF, when properly scaled, is
distributedχχχ2(1) under H0. Finally, we conclude
that F ∼ F(1, N − J) under H0. Thus the test
is conducted at the(1 − p̃) significance level by
comparing the computedf with the p̃-quantile of
F(1, N − J) (see Appendix G).

Note that the test of the linear contrast adapts
itself correctly to account for unequal sample
sizes, but the test for the treatment effect does not.

Note also that if two contrasts, saycj anddj , for
j = 1, . . . , J, areorthogonal, meaning that

J∑
j=1

cj dj

n j
= 0,

Figure 9.3: The natural log of the F-ratios
for the contrast comparing 1982/83 DJF 850
hPa temperature with 1986/87 DJF 850 hPa
temperature in the CCCma six run ensemble of
AMIP simulations. The shading indicates ratios
that are significantly greater than 1 at the 10%
significance level.

then the resulting tests are statistically indepen-
dent.

Finally note thatJ − 1 orthonormal contrasts
could be used to partition the treatment sum of
squares into(J−1) independent components, each
with one degree of freedom, and each independent
of the sum of squared errorsSSE .

9.2.14 The Response of the CCC GCMII
to the 1982/83 El Nĩno Using the Method
of Linear Contrasts. The F-ratios comparing
the mean response to the 1982/83 and 1986/87
boundary conditions are shown in Figure 9.3.F
is significantly greater than 1 over 34.9% of the
globe. The diagram shows that there are substantial
differences in the atmospheric response to the two
warm events in the tropical Pacific, the North
Pacific, and the South Atlantic. On the other hand,
the response to the two warm events is similar
over Africa and the Indian Ocean during DJF.
Larger differences evolve in subsequent seasons
reflecting the difference in the phasing of these two
events.4

9.2.15 Diagnostics. We have not concerned
ourselves much, to this point, with diagnostics of
the fitted model. Many of the diagnostics discussed
in connection with regression models (see [8.3.13]
and [8.3.14]) are useful here as well. In particular,
scatter plots of the residuals as a function of
the treatment are useful for detecting outliers

4The five-month running mean SO index reached a
minimum in January of 1983 and again in March or April of
1987.



180 9: Analysis of Variance

and changes in error variance between treatments.
Changes in variability from one treatment to the
next can also be conveniently tested withBartlett’s
test.

9.2.16 Bartlett’s Test. Suppose we haveJ
samples (or treatments) of possibly unequal sizes
n1, . . . ,nJ and we wish to test the null hypothesis
that all errors, either in the fixed or random effects
models, have the same variance. The alternative is
that at least one sample or treatment has a variance
that is different. That is, we wish to test

H0: σ 2
Ej
= σ 2

E for all j = 1, . . . , J

against the alternative that the variances are not
all equal. Here we useσ 2

Ej
to denote the variance

of the random variables that represent sample or
treatmentj . Let S2

1, . . . , S2
J be the corresponding

sample variances of the errors; that is,

S2
j =

n j∑
i=1

(Yi j − Y◦ j )
2/(n j − 1),

and letS2
p be the pooled estimate of the variances

given by

S2
p =

∑J
j=1(n j − 1)S2

j

N − J
= SSE

N − J
,

whereN =∑J
j=1 n j .

With this notation, Bartlett’s statistic is given by

B = Q
h
,

where

Q = (N − J) ln(S2
p)−

J∑
j=1

(n j − 1) ln(S2
j ),

and

h = 1+ 1

3(J − 1)

( J∑
j=1

1

(n j − 1)
− 1

(N − J)

)
.

StatisticB is approximately distributedχχχ2(J − 1)
under H0. Large values ofB are interpreted as
evidence that H0 is false. Therefore the test is
conducted at the(1 − p̃) significance level by
comparing the realized value ofB against the
p̃-quantiles ofχχχ2(J − 1) (see Appendix E).

9.2.17 Equivalent Representation of a One Way
ANOVA Model as a Regression Model. It may
be useful at this point to make the connection
between ANOVA and regression models. We
can write modelYi j = µ + aj + Ei j from
(9.1) in matrix vector form as follows. LetEY
be theN-dimensional random vector constructed
by concatenating theJ nj -dimensional vectors
(Y1, j ,Y2, j , . . . ,Yn j , j )

T, and defineEE similarly.

Let EA be the (k + 1)-dimensional vector of
parameters(µ,a1, . . . ,aJ)

T. Then, (9.1) can be
expressed as

EY = X EA + EE,
whereX is the N × (J + 1) design matrixgiven
by

X =



1 1 0 . . . 0
...

...
...

...

1 1 0 . . . 0

 n1 rows

1 0 1 . . . 0
...

...
...

...

1 0 1 . . . 0

 n2 rows

...
...

...
...

1 0 0 . . . 1
...

...
...

...

1 0 0 . . . 1

 nk rows


The normal equations that provide the least

squares estimators ofEA are given by

X TX EA = X EY. (9.13)

These equations have solutions given by

Êa= (X TX )−X T EY,
where(X TX )− denotes thegeneralizedinverse of
X TX (see Graybill [148]). The generalized inverse
is required becauseX TX is a non-invertible matrix
(the first column ofX is the sum of the remaining
J columns). In fact, solution (9.13) defines a
one-dimensional subspace of the parameter space
R(J+1) such that every point in the subspace
minimizes the sum of squared errors. We select
the solution of interest by imposing the constraint∑J

j=1 â j = 0. These solutions are given by

µ̂ = Y◦◦
â j = Y◦ j − Y◦◦, for j = 1, . . . , J.

It is easily shown that the regression sum
of squares is equal to the treatment sum of
squares derived above, and that the test of the
null hypothesis that there is not a regression
relationship [8.4.8] is equivalent to the test that
there is not a treatment effect [9.2.4].
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9.3 Two Way Analysis of Variance

We now extend the model discussed in Section 9.2
so that it is possible to account for the effects of
two treatments (if a completely randomized design
has been used) or the effects of a treatment and
a block (if a randomized block design has been
used).

The example we wish to keep in mind is
the CCCma AMIP experiment. Recall that we
have nine DJF seasons in each simulation, each
of which is subjected to a different ‘treatment’
(i.e., the sea-surface temperature and sea-ice
regime). The experiment is replicated six times
in six different simulations started from randomly
chosen initial conditions. We can think of the six
simulations as blocks.

9.3.1 The Two Way ANOVA Model—
Introduction. Suppose an experiment was
conducted that resulted in one outcome per
treatment or treatment/block combination. (The
language we use refers to treatments and blocks
because that coincides most closely with our
example.) Suppose thatI different treatments
were used, and that these were applied in random
order to I experimental units in J blocks.
We represent the resultingIJ outcomes of
the experiment with random variablesYi j , for
i = 1, . . . , I , and j = 1, . . . , J, which we assume
to be independent and normally distributed.

A fixed effectsmodel for data of this sort is the
two way model without interactiongiven by

Yi j = µ+ ai + bj + Ei j . (9.14)

The parameters are subject to the constraints

I∑
i=1

ai = 0 and
J∑

j=1

bj = 0.

The errors are assumed to be iidN (0, σ 2
E ).

An important, and limiting, aspect of this model
is that the treatment and block effects are assumed
to beadditive. This assumption may not be correct,
but we can not determine this with the limited
number of data that are available.

To test the additivity assumption it is necessary
to have data from a replicated experiment. If
a completely randomized design is used, every
treatment combination must be used more than
once. If a blocked design is used, each treatment
must be used within each block more than once.

The outcome of a replicated experiment is
represented by random variablesYi j l , for i =
1, . . . , I , j = 1, . . . , J, andl = 1, . . . ,ni j , which

we again assume to be independent and normally
distributed.

A fixed effectstwo way model with interaction
is given by

Yi j l = µ+ ai + bj + ci j + Ei j l . (9.15)

The parameters are subject to the constraints

I∑
i=1

ai =
J∑

j=1

bj = 0, and

J∑
j=1

ci j =
I∑

i=1

ci j = 0 for all i and j,

and the errors are assumed to be iidN (0, σ 2
E ).

In both experiments with and without replica-
tion, it is possible to construct models with some
or all of the effects treated as random effects. As
in [9.2.8], the test statistics used to test for block
and treatment effects are identical to the fixed
effects case, but the interpretation of the tests is
quite different. There are also differences in the
calculation of variance proportions.

We do not discuss random effects models in this
section, but a two way model with a combination
of fixed and random effects is discussed in detail in
Section 9.4 in the context of this chapter’s working
example.

9.3.2 Two Way Model Without Interaction.
In the setup of (9.14), the total sum of squares
is partitioned into treatment, block, and sum of
squared errors as

SST = SSA+ SSB + SSE,
where

SST =
I∑

i=1

J∑
j=1

(Yi j − Y◦◦)2,

SSA = J
I∑

i=1

(Yi ◦ − Y◦◦)2,

SSB = I
J∑

j=1

(Y◦ j − Y◦◦)2, (9.16)

SSE =
I∑

i=1

J∑
j=1

(Yi j − Yi ◦ − Y◦ j + Y◦◦)2.

Using methods similar to those in [9.2.4], the
following can be shown.

1 E(SSA) = J
∑I

i=1 a2
i + (I − 1)σ 2

E .
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2 If H0: a1 = · · · = aI = 0 is true, then
SSA/σ 2

E ∼ χχχ2(I − 1).

3 E(SSB) = I
∑J

j=1 b2
j + (J − 1)σ2

E .

4 If H0: b1 = · · · = bJ = 0 is true, then
SSB/σ 2

E ∼ χχχ2(J − 1).

5 E(SSE) = (I − 1)(J − 1)σ2
E .

6 SSE/σ 2
E ∼ χχχ2((I − 1)(J − 1)).

7 SSA, SSB, andSSE are independent.

It follows from items 1, 2, and 5–7 that the null
hypothesis of no treatment effect, that is,

H0: a1 = · · · = aI = 0,

can be tested against the alternative hypothesis that
there is a treatment effect by comparing

F = SSA/(I − 1)

SSE/((I − 1)(J − 1))

with F(I − 1, (I − 1)(J − 1)) critical values (see
Appendix G). Similarly, items 3–7 are used to
show that the no block effect null hypothesis, that
is,

H0: b1 = · · · = bJ = 0 (9.17)

can be tested against the alternative hypothesis that
there is a block effect by comparing

F = SSB/(J − 1)

SSE/((I − 1)(J − 1))

with F(J − 1, (I − 1)(J − 1)) critical values (see
Appendix G).

One possible reason for testing for a block effect
is to determine whether or not the block sum of
squares can be pooled with the sum of squared
errors. If this can be done, that is, if (9.17) is not
rejected, then the between blocks variation can be
used to improve the estimate of error variance and
hence increase the power of the test for treatment
effects. In this case we compute

F = SSA/(I − 1)

(SSB + SSE)/(I (J − 1))

and compare with critical values from
F(I − 1, I (J − 1)). It is easily shown that
this test is equivalent to the test for treatment
effects in the one way model with fixed effects
[9.2.4].

The interaction terms in (9.15) are confounded
with error when the experiment is not replicated.
Then the mean sum of squared errors,SSE/((I −
1)(J − 1)), is inflated by the interaction terms; it

estimates a number greater thanσ 2
E . The effect is

to reduce the power of the tests described above.
The linear contrast methodology described in

[9.2.12] and [9.2.13] naturally extends to the
two way case and is not detailed here. Both
the treatment and block sums of squares can
be partitioned into independent components if
needed.

Diagnostic opportunities for the two way model
without interaction are relatively limited because
of the relatively large number of fitted parameters
compared with the number of degrees of freedom
available for error. None the less, scatter plots of
estimated errors, plotted by treatment and block,
can be useful for identifying observations with
large influence.

9.3.3 Two Way ANOVA of the CCCma Multiple
AMIP Experiment. We now use the two way
model with I = 9 treatments andJ = 6
blocks. Because there is only one replication per
treatment/block combination, there are(I −1)(J−
1)= 40 df for error.

The F-ratios for the boundary forced effect
on 850 hPa DJF temperature (not shown) are
very similar to those computed using the one
way model. The small reduction in the number
of degrees of freedom available for error results
in a test that is slightly less powerful than in
the one way case. However, the estimate of error
variability is not contaminated by the confounding
block effect. The result is that the test for the
sea-surface temperature effect on 850 hPa DJF
temperature rejects the null hypothesis at the 10%
significance level over a slightly larger area (66.1%
of the globe).

TheF-ratios for the block effect on 850 hPa DJF
temperature are shown in Figure 9.4. TheF-ratio
exceeds the 10% critical value forF(5,40) over
about 13.1% of the globe. Previous experience
with field significance tests (see Section 6.8)
conducted with fields with comparable spatial
covariance structure suggests that this rate is not
significantly greater than 10%. However, the same
test conducted with 500 hPa DJF geopotential
(not shown) resulted in a rejection rate of 23%,
which is likely field significant. Therefore, while
a block, or run, effect is difficult to detect in
lower tropospheric temperature, it appears to be
detectable in the integrated temperature of the
lower half of the atmosphere.

The CCCma experiments were actually con-
ducted on two computers. One 10-year simula-
tion was conducted on a Cray-XMP while the
remaining five were conducted on a NEC SX/3.
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Figure 9.4:The natural log of theF-ratios for
the block or run effect in the CCCma AMIP
experiment. Each contour indicates a doubling of
the F-ratio. The shading indicates ratios that are
significantly greater than 1 at the 10% significance
level.

We label the Cray ‘block’ as block number 1. The
hypothesis that the block effect for the Cray was
equal to that for the NEC was tested with the
contrastc = (1,−0.2,−0.2,−0.2,−0.2,−0.2).
Specifically, the null hypothesis

H0:
J∑

j=1

cj bj = 0 (9.18)

was tested against the alternative that the contrast
is nonzero. The contrast was estimated by
computing

ŵc =
J∑

j=1

cj Y◦ j .

Under (9.18), the squared contrast has expectation

E
(
ŵ 2

c

) = ( J∑
j=1

cj bj

)2

+ σ
2
E

I

J∑
j=1

c2
j .

Therefore (9.18) can be tested by comparing

F = ŵ 2
c

SSE
I (I−1)(J−1)

∑J
j=1 c2

j

with critical values from F(1, (I − 1)(J − 1)).
We obtained a rejection rate of 18.1% when (9.18)
was tested in DJF 850 hPa temperature at the 10%
significance level (not shown).

We can test whether there is significant inter-run
variation that is orthogonal to contrast (9.18) by
computing

F =
SSB−I ŵ2

c/
∑J

j=1 c2
j

J−2
SSE

(I−1)(J−1)

and comparing F with critical values from
F(J − 2, (I − 1)(J − 1)). The null hypothesis
that there is additional inter-run variation not
explained by the computer change is rejected at the
10% significance level over 9.4% of the globe.

The run effect is observed much more strongly
in June, July, August (JJA) 500 hPa geopotential
for which (9.18) is rejected over 52% of the globe
(primarily in the tropics).

The differences between the Cray and NEC
simulations were not primarily due to the
differences between machines (see Zwiers [449]).5

It turns out, however, that the change in machine
type coincided with a change in the source
of initialization data. CCCma’s initialization
procedure diagnoses the atmospheric mass from
the initialization data. The model subsequently
conserves that mass for the duration of the
simulation. The resulting atmospheric mass for the
Cray simulation is equivalent to a global mean
surface pressure of 985.01 hPa. In contrast, the
masses diagnosed from the initial conditions used
for the NEC simulations varied between 984.55
and 984.58 hPa. This difference between the Cray
and NEC simulations, approximately 0.44 hPa,
corresponds to a change in 500 hPa geopotential
height in the tropics of about 3.5 m. The large,
and unexpected, block effect described above is
primarily the result of the change in the source
of initialization data. This example illustrates that
it is difficult to design an experiment so that
it excludes unwanted external variability, since
such variability often arrives from unanticipated
sources.

9.3.4 Two Way Model with Interaction. We
now briefly consider the two way fixed effects
model with interaction given by (9.15) in the
case in which each treatment or treatment/block
combination is replicatedn times. The calculation
of the variance components is easily extended
to the case in which each combination is
not replicated equally. However, the tests for
treatment, block, and interaction are then only
approximate (see [9.2.10]) if the corresponding
sum of squares has more than one df.

In the setup of (9.15) the total sum of squares is
partitioned into four independent components for
treatment, block, interaction, and error, as follows:

SST = SSA+ SSB + SSI + SSE, (9.19)

5Differences in the way in which the two machines
represented floating point numbers did lead to surface elevation
changes at three locations on the latitude row just north of the
equator, but these were not judged to be the cause of large-scale
effects in the tropical climate.
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where

SST =
I∑

i=1

J∑
j=1

n∑
l=1

(Yi j l − Y◦◦◦)2, (9.20)

SSA = n J
I∑

i=1

(Yi ◦◦ − Y◦◦◦)2, (9.21)

SSB = nI
J∑

j=1

(Y◦ j ◦ − Y◦◦◦)2, (9.22)

SSI = n
I∑

i=1

J∑
j=1

(Yi j ◦ − Yi ◦◦ − Y◦ j ◦ + Y◦◦◦)2,

(9.23)

SSE =
I∑

i=1

J∑
j=1

n∑
l=1

(Yi j l − Yi j ◦)2. (9.24)

Assuming fixed effects and iidN (0, σ2
E ) errors,

the following can be shown.

• E(SSA) = n J
∑I

i=1 a2
i + (I − 1)σ2

E .

• If H0: a1 = · · · = aI = 0 is true, then
SSA/σ 2

E ∼ χχχ2(I − 1).

• E(SSB) = nI
∑J

j=1 b2
j + (J − 1)σ2

E .

• If H0: b1 = · · · = bJ = 0 is true, then
SSB/σ 2

E ∼ χχχ2(J − 1).

• E(SSI) = n
∑I

i=1
∑J

j=1 c2
i j + (I − 1)(J −

1)σ2
E .

• If H0: c1,1 = · · · = cIJ = 0 is true, then
SSI/σ 2

E ∼ χχχ2((I − 1)(J − 1)).

• E(SSE) = IJ (n− 1)σ2
E .

• SSE/σ 2
E ∼ χχχ2(IJ (n− 1)).

• SSA, SSB, SSI, andSSE are independent.

Tests for treatment, block, and interaction effects
as well as tests of linear contrasts among
treatments, blocks, and interactions follow in the
usual way.

As in [9.3.2], the power of the test for treatment
effects can be enhanced if the block and/or
interaction sums of squares can be pooled with
the sum of squared errors. For example, if the
null hypothesis that there is no block/treatment
interaction is accepted, then an improved estimator

of σ 2
E that hasnIJ − (I + J − 1) df instead of

(n− 1)IJ df is given by

ˆ̂σ 2
E =

SSI + SSE
nIJ − (I + J − 1)

.

The effect of pooling interaction and sum of
squared errors (when it can be done) is particularly
dramatic if the number of replicates is small.

9.4 Two Way ANOVA with Mixed
Effects of the CCCma AMIP
Experiment

We continue the analysis of [9.3.3] by introducing
a two way model with interaction terms and a
mixture of fixed and random effects.

The data we use are monthly means of 850 hPa
temperature for December, January, and February
from which the annual cycle common to all
six simulations has been removed (see Zwiers
[444] for details of the procedure used). For each
DJF season we regard the three monthly means
obtained for the season as three replicates of the
treatment (i.e., sea-surface temperature) and block
(i.e., simulation) combination that corresponds to
that season. Although these replicates are not quite
independent of one another, we operate, for now,
as if they were.

9.4.1 The Model. The model we use to
represent this data is a two way model with
interaction in which some effects are fixed and
others are random. The model is given by

Yi j l = µ+ ai + B j + Ci j + Ei j l , (9.25)

where i = 1979, . . . ,1987 indicates the year of
the December month in each DJF season,j =
1, . . . ,6 indicates the member of the ensemble of
simulations,l = 1,2,3 indicates the ‘replicate’
(i.e., December, January or February).

We treat the year effectsai as fixed effects
because every simulation was forced with the
same sea-surface temperature and sea-ice record as
dictated by the AMIP protocol (see Gates [137]).
A fixed mean response to a given sea-surface
temperature and sea-ice regime is anticipated
in each simulation. This is not to say that
each simulation is identical, since low-frequency
variations from internal sources ensures that the
simulations are different. However, the fixed
sea-surface temperature and sea-ice signal are
assumed to induce the same amount of interannual
variability in each simulation.
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The block effectsB j are treated as random ef-
fects and assumed to be independently distributed
N (bj , σ

2
B ) where the fixed parts of the block

effects,bj , are constrained to sum to zero. That
is, we represent the block effect asB j = bj + B∗j
where theB∗j s are iidN (0, σ 2

B ). The idea is that the
fixed part of the block effect represents variation in
the simulation configuration (such as the source of
initialization data) and the random part represents
excess intersimulation variability caused by the
particular choice of initial conditions. Variations
in initial conditions might cause CCC GCMII to
produce simulations that occupy distinctly differ-
ent parts of the model’s phase space if the model
has more than one stable regime. Rejection of H0:
σ 2

B = 0 might be evidence of this. However, except
for the possibilities of this sort of chaotic be-
haviour and computing glitches, we do not expect
block effects to contribute significantly to total
variability. We will see below that it is possible to
separate the fixed and random components of the
block effects in model (9.25) provided additional
assumptions are made about the structure of the
fixed components.

The interaction effectsCi j are treated as pure
random effects and are assumed to be iidN (0, σ 2

C )

random variables that are independent of the
block effects. The interaction effects represent
interannual variations that are not common to all
runs. That is, this term in (9.25) represents the
effects of slow processes in the climate system that
do not evolve the same way in every simulation.
For example, CCC GCMII contains a simple
land surface processes model (see McFarlane et
al. [270]). The evolution of the soil moisture
field in this land surface model will certainly
be affected by the prescribed evolution of sea-
surface temperature and sea ice, but it will
not be completely determined by these forcings.
Therefore about 30% of the lower boundary of
the simulated climate evolves differently from
one simulation to the next. The effects of these
variations in the lower boundary over land, and
other slow variations generated internally by the
GCM, are not common to all simulations and will
therefore be reflected in the interaction term.

The noise termsEi j l represent the effects
of intra-seasonal variations caused by processes
(such as daily weather) that operate on shorter
than interannual time scales (see Zwiers [444]
and the discussion of potential predictability in
Section 17.2). We assume that the errors are
identically distributedN (0, σ 2

E ) and that they are
independent of the block and interaction effects.

There are certainly problems with this last
assumption that should make us cautious about the
subsequent inferences we make. For example, our
assumptions imply that the amount of variability
at high frequencies is not affected by either
the imposed sea-surface temperature and sea-
ice regime or by the state of slowly varying
internal processes. Also note that we were careful
not to make the assumption that the errors are
independent, because they are actually weakly
correlated within seasons. We therefore assume
only that errorsEi j l andEi ′ j ′l ′ are independent for
(i, j ) 6= (i ′, j ′). ErrorsEi j l andEi j l ′ for l 6= l ′ are
not assumed to be independent.

9.4.2 Partition of the Total Sum of Squares.
With all these assumptions, we are able to partition
the total sum of squares into treatment, block,
interaction, and error components as in [9.3.4] (see
(9.19)–(9.24)). Because model (9.25) has mixed
effects and some dependence amongst errors,
the interpretation of the variance components is
somewhat different from that in [9.3.4]. By taking
expectations and making arguments such as those
in [9.2.4] and [9.2.6] we obtain the following.

1 E(SSA) = n J
∑I

i=1 a2
i + n(I − 1)(σ 2

AB +
σ 2

Ēi j ◦
).

2 If H0: a1 = · · · = aI = 0 is true, then

SSA
n(σ 2

C + σ 2
Ēi j ◦

)
∼ χχχ2(I − 1).

3 E(SSB) = nI
∑J

j=1 b2
j + nI (J − 1)σ 2

B +
n(J − 1)(σ 2

C + σ 2
Ēi j ◦

).

4 If H0: b1 = · · · = bJ = σ 2
B = 0 is true, then

SSB
n(σ 2

C + σ 2
Ēi j ◦

)
∼ χχχ2(J − 1).

5 E(SSI) = n(I − 1)(J − 1)(σ 2
AB + σ 2

Ēi j ◦
).

6 If H0: σ 2
C = 0 is true, then

SSI
n(σ 2

C + σ 2
Ēi j ◦

)
∼ χχχ2((I − 1)(J − 1)).

7 SSA, SSB, SSI, andSSE are independent.

Here σ 2
Ēi j ◦

indicates the variance of the seasonal
mean error.
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9.4.3 Variance of the Seasonal Mean Error.
In our specific application, in whichn = 3, the
variance of the seasonal mean error is

σ 2
Ēi j ◦
= Var

(
Ei, j,1+ Ei, j,2+ Ei, j,3

3

)
= T0 σ

2
E/3,

whereσ 2
E/3 is the variance of the mean of three

iid errors andT0 is a factor that reflects how
the dependence between the errors inflates the
variance.T0 is called thedecorrelation time(see
Sections 17.1 and 17.2 for a detailed discussion of
the decorrelation time and its estimation). In this
case it is easily shown that

T0 = 1+ 2

3
(2ρ1+ ρ2), (9.26)

where ρ1 is the correlation between errors in
adjacent months, that is,

ρ1 = Cor
(
Ei, j,1,Ei, j,2

) = Cor
(
Ei, j,2,Ei, j,3

)
,

andρ2 is the correlation between errors separated
by a month, that is,

ρ2 = Cor
(
Ei, j,1,Ei, j,3

)
.

We will analyse the effect of the correlated errors
shortly.

9.4.4 Distribution of the Variance Components.
However, we first illustrate how items 1–7 in
[9.4.2] are obtained by considering items 1 and 2
in detail.

Recall from (9.21) that

SSA = n J
I∑

i=1

(Yi ◦◦ − Y◦◦◦)2.

The χ2 assertion (item 2) is verified by using
arguments similar to those in [8.3.20] to show that
(9.21) can be rewritten as a sum ofI − 1 squared
independent normal random variables with mean
zero. HenceSSA, when scaled by the variance
of these normal random variables, is distributed
χχχ2(I − 1).

The scaling variance (item 1) is obtained as
follows. Using model (9.25) we see that

Yi ◦◦ = µ+ ai + B◦ + Ci ◦ + Ei ◦◦
Y◦◦◦ = µ+ B◦ + C◦◦ + E◦◦◦

where the over-bar and◦ notation have the usual
meaning, given in [9.2.3]. Taking differences, we
see that

(Yi ◦◦ − Y◦◦◦) = ai + (Ci ◦ − C◦◦)
+ (Ei ◦◦ − E◦◦◦).

Squaring and summing, we obtain

SSA = n J
I∑

i=1

a2
i + n J

I∑
i=1

(Ci ◦ − C◦◦)2

+ n J
I∑

i=1

(Ei ◦◦ − E◦◦◦)2

+ cross-terms.

When taking expectations, we see that the
expected values of the cross-terms in this
expression are zero (some cross-terms are products
of independent, zero mean random variables;
others are products between constants and zero
mean random variables). Therefore, the expected
value ofSSA reduces to

E(SSA) = n J
I∑

i=1

a2
i

+ n JE
(∑I

i=1(Ci ◦ − C◦◦)2
)

+ n JE
(∑I

i=1(Ēi ◦◦ − Ē2◦◦◦)
)
.

Therefore, using (4.5) and (4.6), we see that

E(SSA) = n J
I∑

i=1

a2
i + n J(I − 1)σ2

C

+ n J(I − 1)σ2
Ēi ◦◦

.

Finally, we note thatσ 2
Ēi ◦◦
= σ 2

Ei j ◦/J. Assertion 1

follows.

9.4.5 Testing the Year Effect: Potential Pre-
dictability from External Sources. Items 1–7
in [9.4.2] provide us with sufficient information to
construct tests about year and block effects. As in
[9.2.5] and [9.3.3], a test of

H0: a1 = · · · = aI = 0 (9.27)

determines whether there is a detectable signal
attributable to the external boundary forcing. If
so, the climate may be predictable on seasonal
time scales because we believe the lower boundary
conditions (i.e., sea-surface temperature and sea-
ice extent) to be predictable on these time scales
due to the much large thermal inertia of the upper
ocean and cryosphere.

From items 1, 2, and 5–7 in [9.4.2] we see that
hypothesis (9.27) is tested against the alternative
that some of the year effects are nonzero by
comparing

F = SSA/(I − 1)

SSI/((I − 1)(J − 1))
(9.28)
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with critical values ofF(I − 1, (I − 1)(J − 1)).
Note that this F-ratio was also used to test
this hypothesis in the two way model without
interaction that was applied to the seasonal means
in [9.3.2] and [9.3.3]. The numerical values of
the ratios are also identical because only seasonal
means are used in the calculation of (9.28).

As reported in [9.3.3], there is a significant
sea-surface temperature effect. These effects are
potentially predictable(see Section 17.2 and also
[9.4.7–11]). Hindcast experiments (see Zwiers
[444]) demonstrate that in this case potential
predictability isactualpredictability.

9.4.6 Testing the Block Effect. Using items
3–7 in [9.4.2] we can construct a test of the null
hypothesis that there is not a block effect

H0: b1 = · · · = bJ = σ 2
B = 0 (9.29)

against the alternative hypothesis that there is
a block effect. This particular form of the null
hypothesis comes about because we assumed, in
[9.4.1], that the block (i.e., simulation) effect has
both a fixed and a random component. That is, we
assumed thatB j ∼ N (bj , σ

2
B ) with the constraint

that
∑J

j=1 bj = 0. The fixed and random
components are confounded in our experimental
design, so it is not possible to construct separate
tests aboutσB and thebj s without making further
assumptions about the fixed parts of the block
effect.

Hypothesis (9.29) is tested by comparing

F = SSB/(J − 1)

SSI/((I − 1)(J − 1))

againstF(J − 1, (I − 1)(J − 1)) critical values.
Again, the test is identical to that for block
effects reported in [9.3.3]. Figure 9.4 showed weak
evidence for a block effect, which appears to be
associated with a change in computing hardware
part way through the experiment.

Further dissection of the block effect is possible
if we assume that only the computer type and
source of initial data affect the fixed part of the
block effect (i.e., if we assumeb2 = · · · =
bJ).Then, using linear contrasts,SSB (9.24)
can be partitioned into statistically independent
components as:

SSB = SSBF + SSBR
where

SSBF = nI
J − 1

J

(
Ȳ1◦◦ − 1

J − 1

J∑
j=2

Ȳ j ◦◦
)2

SSBR = nI
J∑

j=2

(
Ȳ j ◦◦ − 1

J − 1

J∑
j=2

Ȳ j ◦◦
)2
.

SSBF is proportional to the squared difference
between the mean state simulated in the Cray
and the mean state simulated in the five NEC
simulations, andSSBR can be recognized as a
scaled estimate of the intersimulation variance
that is computed from those simulations that are
assumed to have the same configuration effects.

Taking expectations, we can show that

E(SSBR) = n(J − 2)
(

I σ 2
B + σ 2

C + σ 2
Ēi j ◦

)
and, using now familiar arguments, we can
demonstrate that H0: σ 2

B = 0 can be tested by
comparing

F = SSBR/(J − 2)

SSI/((I − 1)(J − 1))

with F(J − 2, (I − 1)(J − 1)) critical values. No
evidence was found to suggest thatσ 2

B > 0 in the
CCCma ensemble of AMIP simulations.

Again, taking expectations, it can be shown that

E(SSBF ) = n

(
I
(
b1− 1

J − 1

J∑
j=2

bj

)2

+ J − 1

J

(
I σ 2

B + σ 2
C + σ 2

Ēi j ◦

))
.

Thus, if H0: σ 2
B = 0 has not been rejected, the null

hypothesis that there is not a configuration effect
(H0: b1 = b2+···+bJ

J−1 ) can be tested by comparing

F = JSSBF/(J − 1)

SSI/((I − 1)(J − 1))

with critical values from F(1, (I − 1)(J − 1)).
When there is evidence thatσ 2

B > 0, the no
configuration effect hypothesis should be tested by
comparing

F = JSSBF/(J − 1)

SSBR/(J − 2)

with critical values fromF(1, J − 2). As noted
previously, there were significant configuration
effects in the CCCma AMIP ensemble.

9.4.7 Testing the Interaction Effect: Potential
Predictability from Internal Sources. The in-
teraction effects in this experiment are particularly
interesting because they represent slow, and hence
potentially predictable, processes in the simulated
climate of CCC GCMII that are internal to the
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climate system. An earlier investigation with the
predecessor model to CCC GCMII (see Zwiers
[440]) found evidence for such variations in a sim-
ulated climate when the sea-surface temperatures
and sea-ice boundaries follow a fixed annual cycle.

It will be necessary to account for the effects
of dependence within seasons to test the null
hypothesis

H0: σ 2
C = 0 (9.30)

that there are no interaction effects. It is easily
shown that the expected value of the sum of
squared errors in our application is given by

E(SSE) = IJ (3− T0)σ
2
E ,

whereT0 is given by (9.26). This is smaller than
the expected value ofSSE when errors are fully
independent and not a convenient quantity to use
in a test of (9.30). Item 5 in [9.4.2] indicates that a
suitable test statistic should be of the form

F = SSI/((I − 1)(J − 1))

n̂σ 2
Ēi j ◦

wheren̂σ 2
Ēi j ◦

is an estimator ofnσ 2
Ēi j ◦
= T0σ

2
E .

The distribution ofF under (9.30) is most easily
found if n̂σ 2

Ēi j ◦
is also independent ofSSI and

distributed as aχ2 random variable becauseF will
then beF distributed under H0.

9.4.8 A Rough and Ready Interaction Test.
Two solutions are available to the problem of
testing for interaction effects in the presence of
within season dependence.

A rough and ready solution is based on the
argument that the correlation within seasons is
small, and that it is negligible if monthly means
are separated by at least a month. We could
therefore drop the middle month in each season
when computingSSE and adjust the degrees of
freedom for error accordingly. That is, we compute

SSE∗ =
I∑

i=1

J∑
j=1

(
Yi, j,1− Yi, j,1+ Yi, j,3

2

)2

+
(

Yi, j,3− Yi, j,1+ Yi, j,3

2

)2

.

Each of theIJ terms in this sum consists of the
sum of two squared deviations that are constrained
to add to zero. Thus each term contributes only 1
df for a total of IJ df. The effect of within season
dependence can then be ignored and a test of (9.30)
can be conducted by comparing

F = SSI/((I − 1)(J − 1))

SSE∗/(IJ )

against F((I − 1)(J − 1), IJ ) critical values.
Note that (9.27) and (9.29) can still be tested with
the full data set.

Application of the ‘rough and ready’ method
to 850 hPa temperature from the six simulation
CCCma AMIP experiment demonstrates weak evi-
dence for interaction effects (the null hypothesis is
rejected over 14% of the globe). What makes the
result interesting is that most of these rejections
occur over land. They are apparently related to
land surface processes that evolve differently from
simulation to simulation. We return to the interac-
tion effects in this experiment in [9.4.11].

9.4.9 A More Refined Test for Interaction
Effects. The ‘rough and ready test’ is not
entirely satisfactory for a couple of reasons. An
aesthetic objection is that the problem of within
season dependence has been avoided rather than
solved. More troubling is the loss of one-third of
the data available for estimating error variability.
We therefore embark on a path that results in full
use of the data.

Our goal is to find factorsC andn∗ such that

A. C×SSE/(n∗ IJ ) is an approximately unbiased
estimator ofT0σ

2
E ,

B. C×SSE/(T0σ
2
E ) is approximately distributed

χχχ2(n∗ IJ ), and

C. C × SSE/(n∗ IJ ) is independent of variance
componentsSSA, SSB, andSSI.

As with T0, factors C and n∗ are implicitly
functions of the within season dependence.

Once these results are obtained, it is possible to
test (9.30) by comparing

F = SSI/((I − 1)(J − 1))

CSSE/(n∗ IJ ) (9.31)

with F((I − 1)(J − 1),n∗ IJ ) critical values.
Our first step in developing a test like (9.30) is

to note that, in our application,SSE containsIJ
statistically independent terms of the form

Si j =
3∑

l=1

(Ei j l − Ēi j ◦)2.

We find an approximating distribution for each
individualSi j . We then use this result together with
independence arguments to obtain itemsA–C in
order to test (9.30) using (9.31).

Zwiers [444], using a method similar to that
outlined in [8.3.20], shows thatSi j can be written

Si j = Z2
1+ Z2

2,
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where Z1 and Z2 are independent zero mean
normal random variables with variancesσ 2

Eλ1 and
σ 2

Eλ2, respectively. Parametersλ1 andλ2, which
characterize the within season dependence, are the
nonzero eigenvalues of the matrixATRA where
Ri j = ρ|i− j |, and

A = 1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 .
Hereρ0 = 1, ρ1 is the correlation betweenEi, j,l

andEi, j,l+1 for l = 1,2, andρ2 is the correlation
betweenEi, j,1 and Ei, j,3. The eigenvalues are
given by

λ1 = 1− ρ2

λ2 = 1− 4

3
ρ1+ 1

3
ρ2.

BecauseZ1 andZ2 do not generally have equal
variances, the exact distribution ofSi j is difficult
to find. In fact, the exact distribution can neither
be expressed analytically nor tabulated efficiently.
We therefore need to find an approximating
distribution.

It is reasonable to select theχ2 distribution
as the approximating distribution becauseSi j ∼
χχχ2(2) whenZ1 andZ2 have equal variances (i.e.,
when λ1 = λ2 = 1) and Si j ∼ χχχ2(1) when
one of the eigenvalues is zero.6 A χ2 distribution
with a fractional number of degrees of freedom
somewhere between these two extremes should
therefore work well. Thus we need to find a
constantc and equivalent degrees of freedomn∗
such thatcχχχ2(n∗) approximates the distribution of
Si j . We do this by matching the mean and variance
of Si j with that of acχχχ2(n∗) random variable.

If 4 is a cχχχ2(n∗) random variable, then the
mean and variance of4 are given by

E(4) = cn∗

Var(4) = 2c2n∗.

The mean and variance ofSi j are given by

E
(
Si j
) = σ 2

E (λ1+ λ2)

= 2σ 2
E (1−

2

3
ρ1− 1

3
ρ2)

Var
(
Si j
) = 2σ 4

E (λ
2
1+ λ2

2)

= 4σ 4
E (1−

4

3
ρ1+ 8

9
ρ2

1 −
2

3
ρ2

− 4

9
ρ1ρ2+ 5

9
ρ2

2).

6Recall that if Z1, . . . ,Zn are iid N (0, σ2), then
(
∑n

i=1 Z2
i )/σ

2 ∼ χχχ2(n).

Equating means and variances and solving forc
andn∗ yields

c = σ 2
E
λ2

1+ λ2
2

λ1+ λ2

n∗ = (λ1+ λ2)
2

λ2
1+ λ2

2

,

which, after substitution forλ1 andλ2, yields

c = 9− 12ρ1+ 8ρ2
1 − 6ρ2− 4ρ1ρ2+ 5ρ2

2

9− 6ρ1− 3ρ2

(9.32)

n∗ = 2(3− 2ρ1− ρ2)
2

9− 12ρ1+ 8ρ2
1 − 6ρ2− 4ρ1ρ2+ 5ρ2

2

.

(9.33)

We can check our work by testing these
expressions when within season errors are iid; that
is, whenρ1 = ρ2 = 0. We see we get the right
answers,c = 1 and n∗ = 2, by substituting
ρ1 = ρ2 = 0 into (9.32) and (9.33). When 1>
ρ1 > ρ2 ≥ 0, we see thatc ≤ 1 (as expected,
becauseλ1 ≤ 1 andλ2 ≤ 1) andn∗ ≤ 2.

Because the componentsSi j of SSE are
independent, (9.32) and (9.33) provide us with the
result that

SSE/c ∼ χχχ2(n∗ IJ ).

Therefore the constantC required by itemsA–C
above is given by

C = T0σ
2
E

c

= (3+ 4ρ1+ 2ρ2)(3− 2ρ1− ρ2)

9− 12ρ1+ 8ρ2
1 − 6ρ2− 4ρ1ρ2+ 5ρ2

2

.

(9.34)

In summary, we account for within sea-
son dependence in our test of H0 (9.30) by
computing F as in (9.31), and comparing
with F((I − 1)(J − 1),n∗ IJ ) critical values. The
‘shrinkage factor’C is given by (9.34). The ‘equiv-
alent degrees of freedom’ for the denominator are
n∗ IJ , wheren∗ is given by (9.33).

9.4.10 Estimating Within Season Dependence.
We need to know the within season correlationsρ1
andρ2 to perform the test derived above. Since we
do not know them, they must be estimated, and we
must be careful to do this in such a way that items
A–C are not seriously compromised.

Unfortunately,ρ1 andρ2 can not be estimated
directly from the monthly data because, in this
context, the usual estimator has extremely large
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bias and variability. Instead,ρ1 andρ2 are obtained
by fitting a parametric time seriesmodel (see
Chapter 10) to the daily data after they have been
adjusted for the annual cycle, and then inferringρ1
andρ2 from the fitted model.

Because the parameters of the fitted time series
model are estimated from a very large number
of days of data (4860 in case of the CCCma
AMIP experiment), they have very little sampling
variability. Consequently, the derived estimates of
ρ1 andρ2 also have very little sampling variability,
and therefore itemsA–C will not be seriously
compromised provided that the fitted time series
model fits the daily data well (see Zwiers [444] for
discussion).

The particular time series model used is the
auto-regressive model of order 1(10.3). With this
model it is assumed that day-to-day variations
within a season behave asred noise(see Sections
10.3 and 17.2). If we let{Wi j t : t = 1, . . . ,90}
represent the daily weather within seasoni of
simulation j after removal of the annual cycle,
then the red noise assumption states that

Cor
(
W i, j,t1,W i, j,t2

) = ρ|t2−t1|, (9.35)

whereρ is the correlation between, say, 850 hPa
temperature on adjacent days.

The monthly means, which are the object of our
study, are given by

Yi j l =
l30∑

t=(l−1)30+1

W i j t /30. (9.36)

Using (9.35) and (9.36) we obtain, after some
simplification, that

Var
(
Yi j l

) = σ 2
W

30

(
1+ 2

29∑
τ=1

(1− τ

30
)ρτ

)
(9.37)

and

Cov
(
Yi, j,l ,Yi, j,(l+k)

) = σ 2
Wρ

30(k−1)

30

×
(
ρ30+

29∑
τ=1

( τ
30
+
(
1− τ

30

)
ρ30

)
ρτ
)
.

(9.38)

Further simplification yields that, forρ < 0.9,

ρ1 ≈ ρ

302(1− ρ)2

ρ2 ≈ ρ31

302(1− ρ)2 .

It is reasonable to assume thatρ2 = 0, except when
ρ is large (ρ >0.9).
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Figure 9.5: Equivalent degrees of freedomn∗
displayed as a function of the lag-1 day correlation
when within season variations behave as red noise.
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Figure 9.6:Shrinkage factor for the unadjusted
F-ratio for interaction effects.

We substituted the exact expressions (9.37) and
(9.38) into (9.33) and evaluatedn∗ as a function
of ρ (see Figure 9.5). We see thatn∗ > 1.95 for
ρ < 0.9. This was expected becausen∗ = 2
in the absence of terms affected byρ2, which
becomes important only whenρ is very large.
Hence, the degrees of freedom of the test for
interaction effects need only be adjusted if day-to-
day dependence is very strong.

We also substituted the exact expressions (9.37)
and (9.38) into (9.34). The fraction 1/C, used
to shrink the unadjustedF-ratio for interaction
effects, is illustrated in Figure 9.6. The shrinkage
factor decreases slowly with increasingρ whenρ
is small, and drops very quickly asρ approaches
1. Whenρ = 0.9, it is necessary to shrink the
unadjustedF-ratio for interaction effects by a
factor of approximately 32%.
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Figure 9.7:Lag-1 day correlation for 850 hPa
DJF temperature in the CCCma six member
AMIP ensemble. Correlations greater than 0.4 are
shaded.

9.4.11 Results for the CCCma AMIP
Experiment. Estimates of lag-1 day correlation
ρ for DJF 850 hPa temperature computed from the
CCCma AMIP simulations using (9.37) and (9.38)
are shown in Figure 9.7. We see that the simulated
lower tropospheric temperature is generally most
persistent on a day-to-day time scale where there
is subsidence, and least persistent in the tropics
and in the extratropical storm tracks. Estimated
lag-1 day correlations range betweenρ̂ = 0.0765
and ρ̂ = 0.891. Corresponding values forC
(9.34) range between 1.005 and 1.409, and those
for n∗ range betweenn∗ = 2 and n∗ = 1.96.
The varying amounts of dependence result in
substantial spatial variation in the adjustment to
the F-ratio but almost no spatial variation in the
degrees of freedom of theF test for interaction
effects.

The adjustedF-ratios (9.31) required to test
H0 (9.30) are displayed in Figure 9.8. The null
hypothesis of the absence of the interaction
effect is rejected over 17.5% of the globe at
the 10% significance level. Experience suggests
that this rate of rejection is field significant.
The structure of this field ofF-ratios is very
similar to that obtained with the ‘rough-and-ready’
test, but the rate of rejection is higher because
all of the data are used, rather than only two-
thirds.

Figure 9.8 illustrates that the interaction effects
are confined primarily to locations over land.
As noted in [9.4.9], this suggests that land
surface properties do not evolve identically in
each AMIP simulation. The effects of slow
variations in soil moisture and surface albedo are
apparently detectable in the temperature of the
lower troposphere. These effects do not appear to
be detectable in the mean flow of the atmosphere as
represented by 500 hPa geopotential. In this case,

Figure 9.8:The natural log of theF-ratios for
the interaction effect for 850 hPa temperature in
the CCCma AMIP experiment using the variance
component adjustment method. Each contour
indicates a doubling of theF-ratio. The shading
indicates ratios which are significantly greater
than 1 at the 10% significance level.

the no interaction effect hypothesis is rejected at
the 10% significance level over only 12.4% of
the globe in DJF and there does not appear to
be a preferred location for the significantly large
F-ratios.

9.5 Tuning a Basin Scale Ocean
Model

9.5.1 Tuning an Ocean Model. We now briefly
describe a designed experiment of a different
sort. As discussed previously, geophysical models
use parameterizations to describe sub-grid scale
processes (see [6.6.6]). The sensitivity of such
a model to a small number of parameters
can be explored systematically with designed
experiments provided individual runs of the model
can be made at reasonable computational cost.
Even today, this constraint places fairly tight
bounds on the complexity of models that can
be studied in this way and ingenuity is required
to develop experimental designs that adequately
explore parameter space.

Gough and Welch [145] describe a study
of an isopycnal mixing parameterization in an
ocean general circulation model7 (OGCM) that
has seven adjustable parameters (diapycnal and
isopycnal diffusivity, vertical and horizontal eddy

7Isopycnal parameterizations represent mixing processes
on surfaces of constant density (isopycnals) and their
perpendiculars (diapycnals). Conventional parameterizations
(as in Bryan [72] and Cox [93]) represent these processes
on surfaces of constant height (horizontal levels) and their
perpendiculars.
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viscosity, horizontal background eddy diffusivity,
maximum allowable isopycnal slope, and peak
wind stress). Had they used a standard factorial
design (see [9.1.1]) with, say, three different
values of each parameter, it would have been
necessary to integrate the model 37 = 2187
times. Instead, they used a design called arandom
Latin hypercube(McKay, Conover, and Beckman
[271]) that enabled them to adequately explore the
model’s parameter space with just 51 runs.8 All
runs were 1500 years long and were started with
the ocean at rest.

The design employed by Gough and Welch
exploits the fact that OGCMs are fully determin-
istic and converge to a steady state at long times,
given a particular set of parameter values and no
random forcing. Thus the experimental outcomes
do not contain random noise in the conventional
sense. This means that stochastic variation can be
introduced into the response by means of the pa-
rameter settings, and subsequently that statistical
methods similar to multivariate regression analysis
(see Section 8.4) can be used to relate model
response to the settings (see Gough and Welch
[145, p. 782]).

The initial experiment performed by Gough and
Welch consisted of 26 simulations with parameter
settings selected as follows. A range of values
was identified for each parameter, which was
divided into 25 equal length intervals. The 26
values that delineate the boundaries of the intervals
were recorded. The first combination of parameter
settings was obtained by randomly selecting one
value from each of the seven sets of 26 values.
The second combination of parameter settings is
obtained by randomly selecting a value from each
of the 25 remaining values, and so on. The result
is a random Latin hypercube design with seven
treatments and 26 levels (values) of each treatment,
combined at random in such a way that every
level of every treatment occurs once in the 26
combinations of parameter settings. The objective
is to obtain uniform (but necessarily sparse)

8Similar studies have been performed with an ice model
[79] and a simplified atmospheric model [58].

coverage of the parameter space. One indicator
of success in this regard is low correlation
between the selected values of pairs of OGCM
parameters. The objective is not always achieved
with the randomization procedure because large
correlations can occur by chance. Iman and
Conover [192] describe a method for transforming
a given random Latin hypercube into one with
better correlation properties. Gough and Welch
used this method iteratively to improve their
experimental design.

A difficulty encountered by Gough and Welch
is that the parameter space for which the
OGCM converges to a steady state is not a
hypercube (i.e., a seven-dimensional rectangle).
In fact, four of the 26 runs displayed explosive
behaviour, and one evolved to an ‘unconverged’
oscillatory solution. The regression-like analysis
methods alluded to above were applied to the
21 successful runs to estimate the relationship
between the parameters and the response, but the
information that the experiment yielded was not
considered sufficient to ensure accuracy. Twenty-
five additional simulations were thus performed
using parameter settings selected to be distant from
the original 26 settings and also distant from one
another; 15 of these converged to a steady state.

The final collection of 36 simulations success-
fully captured most of the dependence between
the model’s steady state circulation and the seven
adjustable parameters. The resulting systematic
description of the dependence between model
outputs and parameter settings makes it easier to
tune the model to reproduce an observed circula-
tion feature. Gough and Welch were also able to
study the interaction between pairs of parameters.
For example, they found that diapycnal eddy
diffusivity modifies the effect that the maximum
allowable isopycnal slope has on the number of
ocean points at which convection occurs. They
thus demonstrated that this is a highly effective
means of systematically exploring an unknown
parameter space.
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Overview
In this part we deal withtime series analysis, that is, the statistical description of stochastic processes
and the use of sample time series for the identification of properties and the estimation of parameters.
The motivation for our non-conventional development of the subject is explained in Section 10.1.

We introduce the concept of a stochastic process and its realizations, called time series, in Chapter 10.
Special emphasis is placed upon auto-regressive processes since they may be interpreted as discretized
linear differential equations with random forcing. At this stage we do not concern ourselves with the
tools needed to characterize such processes, namely the covariance function and the spectrum. Instead
we use a non-conventional non-parametric characterization, based on the frequency distribution ofrun
length, that is, the duration of excursions above or below the mean. It allows us to intuitively examine
characteristic properties of stochastic processes, such as memory or quasi-oscillatory behaviour, without
using more complex mathematical tools such as the Fourier transform. Also, we differentiate between
the variability caused by the internal dynamics of the process and that caused by the driving noise.

The conventional parametric characterization of a stochastic process, in terms of the auto- or
cross-covariance function and the spectrum, is introduced in Chapter 11. While the concept of the
covariance function poses no special problems, that of the spectrum is more difficult. The spectrum
is often taken literally as the decomposition of a stochastic process into oscillations at a set of fixed
frequencies. This interpretation is only appropriate in certain limited circumstances when there are
good physical reasons to believe that the time series contains only a finite number of regular oscillatory
signals. In general, though, the process will also contain noise, in which case the spectrum can not
be interpreted as glibly. For example, the white noise process does not contain regular or oscillatory
features; thus the interpretation of its spectrum as the decomposition of the white noise into equally
importantoscillatorycomponents is misleading.

This part of the book is completed with Chapter 12, in which we describe techniques for inferring
information about the true covariance function and spectrum.
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10 Time Series and Stochastic Processes

10.1 General Discussion

10.1.1 The Role of Noise. This part of the
book deals with stochastic processes and their
realizations, time series. We begin with a general
discussion of some of the basic ideas and
pitfalls. The language and terminology we use is
necessarily vague; more precise definitions will
follow later in this chapter and in Chapters 11 and
12.

A time seriesXt often consists of two compo-
nents, a dynamically determined componentDt

and a stochastic componentNt , such that

Xt = Dt + Nt .

Sometimes the time evolution ofDt is independent
of the presence of the stochastic componentNt ; in
such cases the evolution ofDt is deterministic.1

Examples are externally forced oscillations such
as the tides or the annual cycle. At other times
the dynamically determined part depends on
the random component. Such processes become
deterministic when the stochastic component is
absent. When the stochastic component (ornoise)
is present, typical features, such as damped
oscillations, are masked and therefore not clearly
detectable. One goal of time series analysis
is to detect and describe the characteristics of
the dynamical component when the stochastic
component is present.

Figures 10.1 and 10.2 illustrate these concepts.
Figure 10.1 displays a purely deterministic
oscillation Dt , a realization of a white noise
processnt , and the sumDt+nt . The addition of the
noise introduces some uncertainty, but it does not
modify the period or phase of the oscillations. In
contrast, Figure 10.2 illustrates a damped system
in which Dt = αxt−1. Without noise(Nt = 0),
any nonzero value decays to zero in a characteristic
time. The addition of noise transforms this decay
into a stationary sequence of episodes (i.e.,runs)
during which Dt is continuously positive or

1We depart slightly from our standard notation by usingDt ,
the dynamical component, to represent both the deterministic
and stochastic forms.

Figure 10.1:A realization of a processXt = Dt +
Nt in which the dynamical componentDt is not
affected by the stochastic componentNt .
Top: A dynamical componentDt made up of two
oscillations.
Middle: A ‘white noise’ componentnt .
Bottom: The sum of both components.

negative. The distribution of the length of these
excursions is a characteristic of such processes.
When the dynamical component generates cyclical
features in the absence of noise, pieces of such
cyclical features will also be present when the
noise is turned on. However, the ‘period’ will
fluctuate, often around the period ofDt when noise
is absent, and the phase will vary unpredictably.
We refer to this asquasi-oscillatory behaviour.

The two types of stochastic processes differ
with respect to theirpredictability. Here, we
say a system is predictable at lead timeτ if
the conditional distribution ofXt+τ given Dt

is different from the unconditional distribution

197
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Figure 10.2:A realization of a processXt =
Dt +Nt for which the dynamical componentDt =
0.7Xt−1 is affected by the stochastic component
Nt .
Top: Evolution of the dynamical componentXt =
Dt from an arbitrary initial value when noise is
absent.
Middle: A ‘white noise’ componentNt .
Bottom: Evolution from an arbitrary initial value
when noise is present. The noise is the same as that
used in Figure 10.1.

of Xt+τ . In that sense, the case in which the
dynamical componentDt evolves independently
of the stochastic component exhibits unlimited
predictability. For example, the mean temperature
in Hamburg in the winter of 3130 will be lower
than the mean temperature in summer of that year.
However, the system is inherentlyunpredictable
beyond a certain time lag when the evolution of
the dynamical part depends on the noise.2

10.1.2 The Probabilistic Structure of Time
Series. We consider, for the moment, processes
in which the dynamical state is determined by
the history of the noise. To fully describe the
stochastic, or probabilistic, structure of such a
process it is necessary to specify joint density
functions f (Xt1,Xt2, . . . ,XtN ) for an arbitrary
number N of observing times and arbitrary

2Note that this statement is not related to ideas concerning
chaos or nonlinear dynamics in general.

times t1, . . . , tN . This is generally not practical.
Instead, the most important aspects of this
probabilistic structure are described with either
the auto-covariance functionor, equivalently, the
spectrum. Both descriptions require that we make
a stationarity assumption of some sort about the
stochastic process, that is, we need to assume that
the statistical properties of the process are not time
dependent.

The spectrum is the Fourier transform (see Ap-
pendix C) of the auto-covariance function. While
both functions contain the same information, the
spectrum is often more useful than the auto-
covariance function for inferring the nature of the
dynamical part of the process. In particular, the
presence of multiple quasi-oscillatory components
in a process causespeaksin the spectrum. The
frequency at which a peak occurs often corre-
sponds to that of a periodicity in the deterministic
component of the process, and the width of the
peak is representative of the damping rate.

The truth of this is difficult to deduce when
the spectrum is defined as the Fourier transform
of the auto-covariance function. Therefore con-
ventional approaches for introducing the spec-
trum use another avenue. They often start with
a representation of a stochastic process as the
inverse Fourier transform of a random complex
valued function (ormeasure) that is defined in
the frequency domain rather than the time domain
(i.e., the so-called Wiener spectral representation
of a stochastic process [229, 422]). The spectrum
is then defined as the expectation of the squared
modulus of the random spectral measure and,
finally, the auto-covariance function is shown to be
the inverse Fourier transform of the spectrum.

A difficulty with the conventional approach,
however, is that the dynamical aspects of the
studied process are obscured. Hence, here we use
a non-conventional time domain characterization
of stochastic processes. We return to more
conventional approaches in Chapters 11 and 12.

Another difficulty with the conventional ap-
proach concerns the way in which the spectrum
is estimated from a time series. Suppose that
the stochastic process is observed at timest =
0,1, . . . ,T and, for convenience, thatT is even.
Most spectral estimators use the Fourier expansion

xt =
T/2∑

k=−T/2

ake−i 2πkt

to represent the observed time series. When this
approximation is inverted, aline spectrum|ak|2,
for k = 0,±1, . . . ,T/2 is obtained that can be
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interpreted as a raw estimator of the spectrum.
This raw estimator is not generally very useful,
as is easily demonstrated by calculating it for
a white noise time series. The true spectrum
is flat (‘white’) but the raw estimate exhibits
many large peaks, which are not manifestations
of the ‘dynamics’ of the white noise process. In
fact, when the calculation is repeated for another
realization of the white noise process, peaks
appear at entirely different frequencies.3

The mathematical inconsistency is that the
trigonometric expansion is defined only for finite
time series and periodic infinite time series, but
stochastic processes are neither finite nor periodic.
Thus, the expansion does not converge as the
length of the time series increases. Note also that
a line spectrum is a discrete object, defined for
frequencies 0,1/T,2/T, . . . ,1/2. The spectrum
of the sampled stochastic process, on the other
hand, is continuous on the interval [0,1/2].

However, this approach can still be used to
construct consistent estimates of the spectrum,
provided it is done carefully. These are powerful
methods when properly applied, but misleading
conclusions about the spectrum are frequently
obtained when they are used naively.

10.1.3 Overview. In this chapter we first
introduce the concepts ofcharacteristic times
and stochastic processes(Section 10.2).Auto-
regressiveprocesses are the most widely used type
of stochastic process in climate research, since
they may be seen as approximations of ordinary
linear differential equations subject to stochastic
forcing (Section 10.3). As such they represent
an important special case of Hasselmann’s
‘Stochastic Climate Models’ (Section 10.4; [165]).

3This observation, and the realization that the spectral
analysis of a stochastic time series can not be done by simply
extending the time series periodically, are relatively recent
developments. Indeed, at the turn of the twentieth century
there was a frenzy of efforts to detect periodicities in all kinds
of data, particular weather-related data, at almost all possible
frequencies. Various climate forecast schemes were built on
this futile approach, some of which can still be found in the
literature.

The search for regular weather cycles resulted in a 1936
monograph that contained a four and half page list, entitled
‘Empirical periods derived from the examination of long series
of observations by arithmetic manipulation or by inspection,’
describing supposed periodicities varying from 1 to 260 years
in length (Shaw [347], pp. 320–325). In the light of our present
understanding of the climate system, this search seems rather
absurd, but modesty is advised. Modern workers also often
use allegedly ‘powerful,’ poorly understood techniques in order
to obtain ‘interesting’ results. Future climate researchers will
probably find some of our present activities just as absurd and
amusing as the search for periodicities.

Figure 10.3:A two-dimensional representation of
the MJO for 1986 [388].

In Section 10.5 we deal with two concepts of lesser
importance in climate research, namely the large
class of linear processes calledauto-regressive
moving average processesand a special class
of nonlinear processes calledregime-dependent
auto-regressive processes.

10.2 Basic Definitions and Examples

10.2.1 Introduction: Characteristic Times. A
time series is a finite sequence of real or complex
numbers or vectors that are ordered by an index
t and understood to be a realization of part of a
stochastic process. The index usually represents
time but could also represent some other non-
stochastic variable that imposes order on the
process, such as distance along a transect or depth
in an ice core. Figure 10.3 shows a pair of real
time series that jointly form a (bivariate) index
of the so-called Madden-and-Julian Oscillation
(MJO; [388], see [1.2.3], [15.2.4]). Both time
series exhibit the typical features of a process in
which the dynamical component is affected by
noise. In particular, the time series lack any strict
regularity; unlike time series of, for example, tidal
sea level, prediction at long lead times appears to
be impossible.

Despite the absence of strict periodicities, the
two time series do exhibit some regularities.
For example, the series exhibit ‘memory’ in
the sense that, if a series is positive, it will
tend to stay positive for some time. That is,
P(Xt+τ > 0|Xt > 0) > 0.5 for small values of
τ . However, for sufficiently large ‘lags’τ , we find
that knowledge of the sign ofXt does not inform
us about the sign ofXt+τ . Thus,

P
(
Xt+τ ′ > 0|Xt > 0

) = 0.5, (10.1)

for all τ ′ greater than some limitτ . The smallest
τ satisfying (10.1), labelledτM , is acharacteristic
timethat represents the time after which there is no
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forecast skill;4 τM is a measure of the ‘memory’ of
the stochastic process. Inspection of Figure 10.3
indicates thatτM is at least 10–20 days for both
time series.

There are various other ways to define
characteristic times, and [10.3.7] shows thatτM

is not particularly useful in many applications.
Another time scale is the average waiting time
between successive local minima or maxima. By
this measure, it would appear that both time
series in Figure 10.3 exhibitquasi-periodicityof
about 40 days. Note that, even though the quasi-
periodicities occur on a similar time scale, they
are shifted relative to each other. In the words
of spectral analysis, the two time series vary
coherentlyand are approximately 90◦ out-of-phase
on the time scale of the quasi-periodicity.

Two important goals of time series analysis are
to identify characteristic time scales in stochastic
processes, and to determine whether two time
series share common information.

In the following we consider exclusively time
series samples in discrete time. Also, for the sake
of brevity, the time step between two consecutive
data is arbitrarily set to 1.

10.2.2 Stochastic Processes.We have, so far,
used the expression ‘time series’ rather informally.
Time series may be seen as randomly selected
finite sections of infinitely long sequences of
random numbers. In that sense, a time series is a
random sampleof astochastic process, an ordered
set of random variablesXt indexed with an integer
t (which usually represents time).

In general, the stateXt of the process at any
specific timet depends on the state of the process
at all other ‘times’s. In particular, for any pair of
‘times’ (t, s), there is a bivariate density function
fts such that

P(Xt ∈ [a,b] andXs ∈ [c,d]) (10.2)

=
∫ b

a

∫ d

c
fts(x, y)dx dy.

The marginal density functions derived fromfts
(see [2.8.3]) are, of course, the density functions
of Xt andXs, given by

ft (x) =
∫ ∞
−∞

fts(x, y)dy

fs(y) =
∫ ∞
−∞

fts(x, y)dx.

4Note that the direction of the inequalities in (10.1) does not
affect the definition ofτM .

Random variablesXt and Xs are usually depen-
dent. This does not prevent the estimation of
process parameters, but it does compromise the
various interval estimation approaches discussed
in Section 5.4 because the dependence violates the
fundamental ‘iid’ assumption. Similarly, most hy-
pothesis testing procedures described in Chapter 6
no longer operate as specified when the data are
serially correlatedor otherwise dependent.

10.2.3 Example: White Noise. White noise, an
infinite sequence of zero mean iid normal random
variables, is the simplest example of a stochastic
process. Such processes contain no memory by
construction, that is, for everyt , elementXt is
independent of every other element in the process.
A realization of a white noise process is shown in
Figure 10.1.

The characteristic timeτM = 1, since for any
nonzeroτ (10.2)

P(Xt+τ > 0|Xt > 0) =∫∞
0

∫∞
0 fts(x, y)dx dy∫∞

0 ft (x)dx
=

∫∞
0 fN (x)dx× ∫∞0 fN (x)dx∫∞

0 fN (y)dy
= 0.5.

The probability of observing arun (i.e., a sequence
of consecutivexss of the same sign) of lengthL
beginning at an arbitrary timet is obtained from an
independence argument. Runs are observed when
−Xt−1, Xt , . . . ,Xt+L−1 and−Xt+L all have the
same sign. Therefore, since two signs are possible,

P(L = L) = 2× 2−(L+2) = 2−(L+1). (10.3)

Note that

P(L = 0) = 1− P(L > 0) = 1/2.

That is, there is probability 1/2 that a run does
not begin at timet . The probability of observing
a run of lengthL = L, given that a run begins
at time t , is 2−L . Thus the probability that a run
beginning at a given time will become exactly
L = 3 time units in length is 2−3 = 0.125. The
probability that the run will last at least three time
steps is

∑∞
L=3 2−L = 0.25. The corresponding

probabilities forL = 10 are only 0.01 and 0.02.

10.2.4 Definition: Stationary Processes. A
stochastic process{Xt : t ∈Z} is said to be
stationaryif all stochastic properties are indepen-
dent of indext .
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It follows that if {Xt } is stationary, then:

1 Xt has the same distribution functionF for
all t , and

2 for all t and s, the parameters of the joint
distribution function ofXt and Xs depend
only on|t − s|.

10.2.5 Weakly Stationary Processes.For most
purposes, the assumption of strict stationarity
can usually be replaced with the less stringent
assumption that the process isweakly stationary,
in which case

• the mean of the process,E(Xt ), is indepen-
dent of time, that is, the mean is constant, and

• the second momentsE(XsXt ) are a function
only of the time difference|t − s|.

A consequence of the last condition is that the
variance of the process, Var(Xt ), does not change
with time.

The two conditions required for weak station-
arity are less restrictive than the conditions enu-
merated in [10.2.4], and are often sufficient for
the methods used in climate research. Even so, the
weaker assumptions are often difficult to verify.
Provided there are not contradictory dynamical
arguments, it is generally assumed that the process
is weakly stationary.

10.2.6 Weakly Cyclo-stationary Processes.
The assumption that a process is stationary, or
weakly stationary, is clearly too restrictive to rep-
resent many climatological processes accurately.
Often we know that stochastic properties are linked
to an externally enforced deterministic cycle, such
as the annual cycle, the diurnal cycle, or the Mi-
lankovitch cycles. When we deal with variations
on time scales of months and years, the annual cy-
cle is important. For time scales of hours and days
the diurnal cycle is important. For variations on
time scales of thousands to hundreds of thousands
of years, the Milankovitch cycle will affect the data
significantly. We therefore consider processes with
the following properties.

1 The mean is a function of the time within the
external cycle, that is,E(Xt ) = µt |m, where
t |m = t mod L and L is the length of the
external cycle measured in units of observing
intervals.

2 E
(
(Xt − µt |m)(Xs− µs|m)

)
, the central sec-

ond moment, is a function only of the time
difference|t − s| and the phaset |m of the
external cycle.

1958-77

Year

Figure 10.4:1958–77 time series of monthly mean
atmospheric CO2 concentration measured at the
Mauna Loa Observatory in Hawaii.

We refer to processes with such properties as
weakly cyclo-stationary processes. It follows from
the second condition that the variance is also
a function of the time within the externally
determined cycle. Cyclo-stationary behaviour can
be seen in Figures 1.7, 1.8, and 10.4. Huang and
North [189] and Huang, Cho, and North [188]
describe cyclo-stationary processes and cyclo-
stationary spectral analysis in detail.

The conditions for weak cyclo-stationarity
parallel those for ordinary weak stationarity,
except that the parameters of interest are indexed
by the phase of the external cycle. Statistical
inference problems that can be solved for weakly
stationary processes can generally also be solved
for weakly cyclo-stationary processes. However,
the utility of these models is strongly constrained
by the very large demands they place on the
data sets used for parameter estimation. Cyclo-
stationary models generally have many more
parameters than their stationary counterparts and
all of these parameters must be estimated from the
available data.

10.2.7 Examples. SupposeXt is a stationary
process. If a lineartrend is added, the resulting
processYt = Xt + αt is no longer stationary:
its distribution function,FYt (y) = fX(y − αt),
depends ont .
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Figure 10.5: Scatter diagram of the bivariate
MJO index, in units of standard deviations. A
sub-segment of the full time series is shown in
Figure 10.3 [388].

If an oscillation is added to stationary process
Xt , the resulting processYt = Xt + cos(ωt)
is cyclo-stationaryand has distribution function
FYt (y) = FX(y− cos(ωt)).

A time series that exhibits both a trend and
a cyclo-stationary component is the famous CO2
concentration curve measured at Mauna Loa in
Hawaii. A segment of this series is shown in
Figure 10.4. Note that the trend is not strictly
linear; both the rate of change and the amplitude of
the annual cycle increase with time. The maximum
CO2 concentrations occur during northern winter,
and the minima during northern summer.

The time series displayed in Figure 10.3 are
approximately stationary with means near zero
and nearly equal variances. Ascatter diagram
illustrating the joint variation of the two time
series in units of standard deviations is plotted
in Figure 10.5. The time series appear to be
jointly normal. In particular, note that the points
are scattered symmetrically about the origin with
maximum density near the origin.

10.2.8 Example: A Random Walk and the
Long-range Transport of Pollutants. If Zt is
white noise, thenXt , given by

Xt =
t∑

j=1

Z j , (10.4)

is a non-stationary process. The first moment ofXt

is independent of time, but the variance increases
with time. In fact,

E(Xt ) = E
(∑t

j=1 Z j

)
=

t∑
j=1

E
(
Z j
) = 0,

and

Var(Xt ) = E
(
(
∑t

j=1 Z j )
2
)

=
t∑

j,k=1

E
(
Z j Zk

) = t∑
j=1

E
(
Z2

j

)
= tσ 2

Z .

This stochastic process, arandom walk, is
stationary with respect to the mean, but non-
stationary with respect to the variance.

This process describes the path of a particle
that experiences random displacements. If a large
number of such particles are considered, the centre
of gravity will not move, that is,E(Xt ) = 0, but the
scatter increases continuously. Thus the random
walk is sometimes a usefulstochastic modelfor
describing the transport of atmospheric or oceanic
tracers.

The movement of a particle, perhaps emitted
from a smoke stack, is determined by the deter-
ministic flow U and many small unpredictable
displacements. If the particle is located atR(t) at
time t , then its location at timet + 1 is given by
R(t + 1) = R(t) + U + Zt , whereZt represents
white noise, and its location at timet + l is given
by R(t + l ) = R(t) + lU +∑t+l−1

s=t Zs. If many
particles are ‘emitted’ and transported this way,
the time evolution of the concentration may be
modelled in three dimensions.

The result of such a simulation is shown in
Figure 10.6. The left hand panel displays a 24-hour
forecast of the 1000 hPa height field over Western
Europe. Note the cyclonic around the low over the
coast of Norway. A pollutant, SO2, was injected
into the simulated atmosphere at a constant rate
from a point source in east England. The right hand
panel displays the simulated SO2 distribution at
the end of the 24-hour period. Evidence of both
deterministic advection processes and random
diffusive processes can be seen.

10.2.9 Ergodicity. Unfortunately, stationarity,
or weak stationarity, alone is not enough to
ensure that the moments of a process can be
estimated from a single time series. Koopmans
[229] elegantly illustrates this with the following
example.
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 1000 hPa height 24 hours after initialization Concentration after 24 hours of emissions

Figure 10.6:Example of a simulation of long-range transport of air pollutants.
Left: Simulated 1000 hPa height field 24 hours after model initialization.
Right: Distribution of pollutant continuously emitted in east England after 24 hours.
From Lehmhaus et al. [250].

Consider a stochastic processXt such that each
realization is constant in time. That is, suppose
xt = a, wherea is a realization of an ordinary
random variableA. Every realization ofXt is thus
a line parallel to the time-axis. It is easily shown
that the processXt is weakly stationary; the mean
and variance of the process, which are equal to
E(A) and Var(A), respectively, are independent
of time and all covariances Cov(Xt ,Xs) are also
equal to Var(A) and hence independent of time.
However, the usual estimator of the process mean,
1
n

∑n
t=1 Xt = 1

n

∑n
t=1 A = A, does not converge

to the process mean,E(A), as the length of the
averaging interval increases. Since the individual
realizations of the process do not contain any
variability, a single realization of this process
does not provide sufficient information about
the process to construct consistent estimators of
process parameters.

Stochastic processes must beergodic as well
as stationary in order to ensure that individual
realizations of the process contain sufficient
information to produce consistent parameter
estimates. A technical description of ergodicity
is beyond the scope of this book (see, e.g.,
Brockwell and Davis [68], Koopmans [229]
or Hannan [157]). However, in loose terms,
ergodicity ensures that the time series varies
quickly enough in time that increasing amounts
of information about process parameters can be

obtained by extending the time series.5 Clearly
this does not happen in Koopmans’s example.
However, ergodicity is not generally a problem in
climate research.

10.3 Auto-regressive Processes

10.3.0 General. We will explore the properties
of auto-regressive processesin some detail in this
section. The collection of all weakly stationary
auto-regressive models forms a general purpose
class of parametric stochastic process models.
This class is not complete but, given any weakly
stationary ergodic process{Xt }, it is possible
to find an auto-regressive process{Yt } that
approximates{Xt } arbitrarily closely.

Auto-regressive processes are popular in cli-
mate research, mainly because they represent dis-
cretized versions of ordinary differential equa-
tions [10.3.1]. Conventional auto-regressive pro-
cesses operate with constant coefficients and gen-
erate weakly stationary time series. By allowing
the coefficients to vary periodically, the result-
ing time series become weakly cyclo-stationary.

5Another way of describing an ergodic process is to say that
it does not have excessively long memory. Thus the ergodic
property is often expressed in terms of a ‘mixing condition’
that involves the rate of decay of the auto-covariance function
with increasing lag. A typical mixing condition specifies that
the auto-covariance function should be absolutely summable.
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Such processes are calledseasonal auto-regressive
processes[10.3.8]. The name ‘auto-regressive’
indicates that the process evolves by regressing
past values towards the mean and then adding
noise.

The plan for the remainder of the section is as
follows. An ordinary auto-regressive (AR) process
is defined in [10.3.1] and its mean and variance are
derived in [10.3.2]. Some specific AR processes
are examined in [10.3.3,4], and the conditions
under which an AR process is stationary are
discussed in [10.3.5]. As noted above, AR
processes can be thought of as discretized
differential equations. We show, in [10.3.6], the
effect that the ‘dynamics’ of these processes
have on their time evolution. Next, we introduce
the notion in [10.3.7] that these processes have
a ‘memory’ that can be described in general
terms by a characteristic time. We generalize the
AR processes so that seasonal behaviour is also
accounted for in [10.3.8,9], and the concept is
extended to multivariate processes in [10.3.10].

Looking ahead, we will take a short excursion
into stochastic climate modelling in Section 10.4,
but will then return to the subject of parametric
stochastic models in Section 10.5 where we will
see that the class of AR models is one of three
more or less equivalent classes of models.

10.3.1 Definition: Auto-regressive Processes.
The dynamics of many physical processes can be
approximated by first- or second-order ordinary
linear differential equations, for example,

a2
d2x(t)

dt2
+ a1

dx(t)

dt
+ a0x(t) = z(t),

where z is some external forcing function.
Standard time discretization yields

a2(xt + xt−2− 2xt−1)

+ a1(xt − xt−1)+ a0xt = zt ,

or

xt = α1xt−1+ α2xt−2+ z′t . (10.5)

where

α1 = a1+ 2a2

a0+ a1+ a2

α2 = − a2

a0+ a1+ a2

z′t =
1

a0+ a1+ a2
zt .

If zt is a white noise process, then (10.5) defines a
second-order auto-regressive orAR(2) process.

An auto-regressive process of orderp, or an
AR(p) process, is generally defined as follows:

{Xt : t ∈ Z} is an auto-regressive process of order
p if there exist real constantsαk, k = 0, . . . , p,
with αp 6= 0 and a white noise process{Zt : t ∈ Z}
such that

Xt = α0+
p∑

k=1

αkXt−k + Zt . (10.6)

The most frequently encountered AR processes
are of first or second order; an AR(0) process is
white noise. Note thatXt is independent of the part
of {Zt } that is in the future, but that it is dependent
upon the parts of the noise process that are in the
present and the past.

10.3.2 Mean and Variance of an AR(p) Process.
Taking expectations on both sides of (10.6) we see
that

E(Xt ) = α0

1−∑p
k=1 αk

. (10.7)

If we setµ = E(Xt ), then (10.6) may be rewritten
as

Xt − µ =
p∑

k=1

αk (Xt−k − µ)+ Zt . (10.8)

The variance ofXt is obtained by multiplying both
sides of (10.8) withXt − µ, and again taking
expectations on both sides of the equation. We see
that

Var(Xt ) =
p∑

k=1

αkE((Xt − µ) (Xt−k − µ))

+ E((Xt − µ)Zt )

=
p∑

k=1

αkρkVar(Xt )+ Var(Zt ),

where

ρk = E((Xt−k − µ) (Xt − µ))
Var(Xt )

.

Thus,

Var(Xt ) = Var(Zt )

1−∑p
k=1 αkρk

. (10.9)

The functionρk, k = 0,±1, . . . is known as the
auto-correlation function(see Chapter 11).

We assume in the following, for convenience,
thatα0 = 0 so that E(Xt ) = µ = 0.
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Figure 10.7:240 time step realizations of AR(1)
processes withα1 = 0.3 (top) and0.9 (bottom).
Both processes are forced by unit variance
normally distributed white noise.

10.3.3 AR(1) Processes.AR(1) processes may
be understood as discretized first-order differential
equations. Such systems have only one degree
of freedom and are unable to oscillate when the
damping coefficient is positive. A nonzero value
xt at time t tends to be damped with an average
damping rate ofα1 per time step.6 Obviously
the system can only be stationary ifα1 < 1.7

Figure 10.7 shows realizations of AR(1) processes
with α1 = 0.3 and 0.9. The upper time series is
very noisy and usually changes sign within just a
few time steps; the lower one has markedly longer
‘memory’ and tends to keep the same sign for 10
and more consecutive time steps.

What is the variance of an AR(1) process?
Because of the independence ofXt−1 and the
driving noiseZt we find that

ρ1 = E(Xt−1Xt )

Var(Xt )
= α1

6Specifically,E
(
Xt+`|Xt = xt

) = α`1xt .
7The realizations of{Xt } grow explosively whenα1 > 1,

and the process withα1 = 1 behaves as a random walk (see
[10.2.8]).
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Figure 10.8: The frequency distribution of the
run lengthL as derived from100 000time step
random realizations of three AR(1) processesXt

with different process parametersα1.
50 095runs were found forα1 = 0,
40 280runs forα1 = 0.3,
14 375runs forα1 = 0.9.
The horizontal axis indicates the run lengthL.

and thus, using (10.9),

Var(Xt ) = σ 2
z

1− α2
1

. (10.10)

Thus, the variance of the process is a linear
function of the varianceσ 2

z of the ‘input’ noiseZt

and a nonlinear function of the memory parameter
α1. For processes with small memory, that is,α1 ≈
0, the variance ofXt is almost equal to the variance
of Zt . Whenα1 > 0, Var(Xt ) > Var(Zt ), and
whenα1 is almost 1, the variance ofXt becomes
very large. The variance of (10.9) is not defined
whenα1 = 1. Figure 10.7 neatly demonstrates that
the variance of an AR(1) process increases with the
process parameterα1.

Now recall the run length random variableL ,
discussed in [10.2.3]. We were able to derive the
distribution ofL analytically for white noise (i.e.,
α1 = 0). The derivation can not be repeated when
α1 6= 0 because then elements of the process
are serially correlated. We therefore estimated the
distribution ofL with a Monte Carlo experiment
(see Section 6.3). The experiment was conducted
by generating a time series of length 100 000 from
an AR(1) process. The runs of lengthL = L were
counted for eachL > 0. The result of this exercise
is shown in Figure 10.8.

Whenα1 = 0, the Monte Carlo result agrees
well with the analytical result (10.3) forL ≤ 10.
For larger run lengths, the relative uncertainty of
the estimate becomes large because so few runs
are observed. The frequency of short runs (e.g.,
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-0.80.9

Figure 10.9:240 time step realizations of an AR(2)
process withα1 = 0.9 andα2 = −0.8 and with
α1 = α2 = 0.3.

L = 1) decreases with increasingα1, while the
frequency of longer runs increases. For instance,
in the white noise case we expect one run in 1000
will be of length 10. In contrast, whenα1 = 0.3,
about four runs in 1000 are of length 10, and when
α1 = 0.9, this number increases to 20.

10.3.4 AR(2) Processes.AR(2) processes,
which represent discretized second-order linear
differential equations (see [10.3.1]), have two
degrees of freedom and can oscillate with one
preferred frequency (see also [11.1.8]). Finite
segments of realizations of two AR(2) processes
are shown in Figure 10.9. The time series with
(α1, α2) = (0.9,−0.8) exhibits clear quasi-
periodic behaviour with a period of about six
time steps. The other time series, with(α1, α2) =
(0.3,0.3), has behaviour comparable to that of an
AR(1) process with large memory. The diagram
hints that there may be a longer quasi-periodicity,
say of the order of 150 or more time steps.
However, we will see later that the(0.3,0.3)
process does not generate periodicities of any
kind.
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Figure 10.10:The frequency distribution of the
run lengthL as derived from100 000time step
random realizations of two AR(2) processesXt

with different process parameters(α1, α2). There
were 35 684 intervals for (α1, α2) = (0.3,0.3),
and 33 326runs for (α1, α2) = (0.9,−0.8). The
horizontal axis indicates the run lengthL.

When we repeated the Monte Carlo experiment
described above for the(0.9,−0.8)AR(2) process,
we observed 33 355 runs in a 100 000 time unit
simulation. The relative frequency distribution of
L that was obtained is shown in Figure 10.10. Note
that theL = 1 category is not the most frequent.
Instead, runs of lengthL = 3, comprising 44%
of all runs, are most common. This is consistent
with our perception that this process has a quasi-
periodicity of about six time units in length.

If the (0.9,−0.8)AR(2) process is truly quasi-
oscillatory with a period of approximately six time
steps, we should expect to frequently observe runs
of approximately three time units in length. We
therefore counted the number of times that a run
of length, say,L2 adjoined a run of lengthL1.
The results are given in Table 10.1. Note that
two consecutive runs tend to have joint length
L1 + L2 = 6 more often than would be expected
by chance. On the other hand, pairs of intervals
with L1 + L2 = 4,5 or more than 7 are under-
represented. Any two neighbouring intervals must
have different signs, by the definition ofL, so that
the (L1, L2) = (2,4) and (3,3) combinations
represent ‘quasi-oscillatory’ events in the time
series.

The time series generated with the parameter
combination (α1, α2) = (0.3,0.3) exhibits a
strange pattern of extended intervals with con-
tinuous sign reversals and prolonged persistence.
The reason for this pattern will become clear in
[10.3.6].
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L2 L1
1 1 2 3 4 5
1 571 1248 1523 917 334

351 23 −875 −31 108

2 1428 6418 3304 741
−282 −280 650 109

3 7341 5048 1081
783 −144 −153

4 846 418
−182 −70

5 59
0

Table 10.1:Absolute frequency with which a run
of lengthL1 is preceded or followed by a run of
length L2 in a 100 000 time unit simulation of
an AR(2) process with(α1, α2) = (0.9,−0.8).
The entries in italics display the deviation from
the expected cell frequency computed under the
assumption that consecutive run lengths are
independent.

10.3.5 Stationarity of AR Processes. The con-
ditions under which the AR processes of definition
[10.3.1] are stationary are not immediately obvi-
ous. Clearly, AR processes can be non-stationary.
An AR(1) process withα1 = 2 and µ = 0
initiated from a random variableX0 that has finite
variance is stationary with respect to the mean but
non-stationary with respect to variance. In this case
we note that, fort > 0,

Xt = 2tX0+
t∑

i=1

2t−i Zt−i+1

and therefore that

E(Xt ) = 2tE(X0) = 0 and

Var(Xt ) = 4tVar(X0)+
t∑

i=1

4t−i Var(Z)

= 4t

3

(
1− 1

4t

)
.

Thus the variance of this process grows at an
exponential rate.

The stationarity of an AR(p) process depends
entirely on the dynamical AR coefficientsαk, k 6=
0. In fact,

FMA(0.571,0)

NDJ(1.172,0)

ASO(1.436,-0.471)MJJ(1.032,-0368)

(0,1)

(2,-1)(-2,-1)

α

α

2

1

Figure 10.11:The triangle identifies the range
of parameters for which an AR(2) process
is stationary. The four points represent the
parameters of a seasonal AR(2) process used to
represent the SO index (see [10.3.7]). Processes
with parameters below the curve defined byα2

1 +
4α2 = 0 have quasi-oscillatory behaviour (see
[10.3.6]).

An AR(p) process with AR coefficientsαk, for k =
1, . . . , p, is stationary if and only if all roots of the
characteristic polynomial

p(y) = 1−
p∑

k=1

αkyk (10.11)

lie outside the circle|y| = 1.
Note that (10.11) hasp rootsyj , some of which are
real and others of which may appear in complex
conjugate pairs.

Thus the stationarity condition for an AR(1)
process is simply

|α1| < 1. (10.12)

Stationarity conditions are somewhat more in-
volved for an AR(2) process, where it is necessary
that

α2+ α1 < 1

α2− α1 < 1 (10.13)

|α2| < 1.

The region of admissible process parameters
defined by (10.13) consists of points(α1, α2) in the
two-dimensional plane that also lie in the triangle
depicted in Figure 10.11.

10.3.6 More about the Characteristic
Polynomial. Equation (10.11) has interesting
implications. Let yj , for j = 1, . . . , p, be the
roots of the characteristic polynomial p(y). Given
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a fixed j , set Xt−k, j = yk
j for k = 1, . . . , p.

Substitute these values into (10.6), disregard the
noise term, and recall that we have assumed
that α0 = 0. Then, using (10.11), we see
that Xt = y0

j = 1.8 That is, each rootyj

identifies a set of ‘typical initial conditions’
IC j = (Xt−1, j , . . . , Xt−p, j ) that lead toXt = 1
when the noiseZt is disregarded. Since these
‘initial conditions’ are linearly independent, any
set of states(Xt−1, . . . , Xt−p) can be represented
as a linear combination

∑p
j=1 β j IC j of the initial

states. In the absence of noise, the future evolution
of these states will be

Xt+τ =
p∑

j=1

β j y
−τ
j . (10.14)

Note that some of theXt−k, j s may be complex and
therefore will appear in conjugate complex pairs.
When this is true, the corresponding coefficients
β j will also appear as complex conjugate pairs.

When Xt is an AR(1) process and the noise is
absent,Xt−1 = 1/α1 is the only initial condition
that leads toXt = 1 in one time step.

In the case of an AR(2) process, the roots of the
characteristic polynomial (10.11) are

yj =
−α1− (−1) j

√
α2

1 + 4α2

2α2
, j = 1,2.

The roots are either both real or they are complex
conjugates.

Both roots arereal when α2
1 > −4α2. The

AR(2) process with(α1, α2) = (0.3,0.3) belongs
to this category. Its characteristic polynomial has
roots y1 = 1.39 andy2 = −2.39, and ‘typical
initial conditions,’ which lead toXt = 1, are
IC1 = (Xt−2,1, Xt−1,1) = (1.93,1.39) and
IC2 = (Xt−2,2, Xt−1,2) = (5.71,−2.39).

The first ‘mode,’ which is initiated byIC1, has a
damping rate ofXt−1,1/Xt−2,1 = Xt,1/Xt−1,1 =
1/y1 = 0.72. The time development initiated by
such an initial state is that of an exponential decay
with constant sign.

The second mode has a damping rate 1/|y2| =
0.42 and a clear tendency for perpetual sign
reversals.

These two modes underlie the ‘strange pattern’
of variation seen in Figure 10.9. There are some
periods when the process undergoes continual sign
reversals, and others when the system retains the
same sign. Change between the two regimes is
instigated by the noiseZt .

8Note that now we are neither dealing with the stochastic
processXt nor with a random realizationxt . We therefore use
the notationXt .
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Figure 10.12: Initial conditions at timesXt−2
and Xt−1 which lead an AR(2) process, with
parameters0.9 and −0.8, to Xt = 1, and their
future developmentXt+τ in the absence of noise.

The roots of the characteristic polynomial of an
AR(2) process are complex whenα2

1 < −4α2, and
can therefore be written in the form

yj = r · exp
(−(−1) j iφ

)
, j = 1,2. (10.15)

It is easily shown thatr = 1.11 andφ = π
3

when (α1, α2) = (0.9,−0.8). Since the process
parameters are real, (10.11) may be rewritten as

0 = 1− (α1Re(y)+ α2Re(y2))

= 1− (α1r cos(φ)+ α2r 2 cos(2φ))

and

0 = α1Im(y)+ α2Im(y2)

= α1r sin(φ)+ α2r 2 sin(2φ)

so that the two sets of ‘typical initial conditions’
that evolve intoXt = 1 are

IC j = (Xt−2, j , Xt−1, j )

with

Xt−2, j = r 2(cos(2φ)− (−1) j sin(2φ))

and

Xt−1, j = r (cos(φ)− (−1) j sin(φ)).

Thus (10.14) determines the future states as

Xt+τ,1 = r−τ (cos(τφ)+ sin(τφ))

and

Xt+τ,2 = r−τ (cos(τφ)− sin(τφ)).

The two sets of initial conditions (labelled ‘1’ and
‘2’) and the future evolution of the process without
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the noiseZt are plotted in Figure 10.12. We
see that the process generates damped oscillations
with a period of π

φ
= 6 time steps for arbitrary

nonzero initial conditions. The initial conditions
serve only to determine the phase and amplitude
of the oscillation.

The region of admissible process parameters
(10.13) for a stationary AR(2) process (see
Figure 10.11) can be split into two sub-regions. An
upper area, delimited byα2

1 + 4α2 > 0, indexes
AR(2) processes whose characteristic polynomials
have two real solutions and thus consist of two
non-oscillatory damped modes. The rest of the
parameter space, delimited by (10.13) and the
constraint α2

1 + 4α2 < 0, indexes processes
with characteristic polynomials that have a pair
of conjugate roots, and thus one quasi-oscillatory
mode.

10.3.7 Characteristic Time. What is the
characteristic time (10.1) of an AR(p) process?
According to (10.1), we must find a lagτM such
that auto-correlationsρXt ,Xt+τ vanish for lagsτ ≥
τM . In the case of an AR(1) process withµ = 0
we find

ρXt ,Xt+τ =
E(XtXt+τ )

Var(Xt )

= ατ1E(XtXt )

Var(Xt )

= ατ1 6= 0, (10.16)

for all lags τ . Thus τM = ∞ for an AR(1)
process. This statement holds for all AR processes.
Thus definition (10.1) is not useful for such
processes. We suggest an alternative definition in
Section 17.1.

10.3.8 Seasonal AR Processes.The ‘station-
ary’ AR(p) process defined by (10.6) can be
easily generalized toseasonalor cyclo-stationary
[10.2.5] AR(p) processes. However, before giving
a definition we need to establish some notation.
First, we assume that there exists an external
deterministic ‘cycle’ that is indexed by timeτ =
1, . . . , N. This index may count months within a
year or hours in a day. We then express an arbitrary
time as a pair(t, τ ), wheret counts repetitions of
the external cycle, so that(t, τ + N) ≡ (t + 1, τ ).
Then,{Xtτ : t ∈ Z, τ = 1, . . . , N} is said to be a
cyclo-stationary AR(p) processif

1 there are constantsαkτ , k = 0,1, . . . , p such
thatαk,τ+N = αkτ for all τ andαpτ 6= 0 for
someτ ,

2 there is a sequence of independent, zero mean
random variables{Ztτ : t ∈ Z, τ =
1, . . . , N} that have varianceσ 2

Zτ which
depends only onτ and such that the sequence
{Ztτ /σZτ : t ∈ Z, τ = 1, . . . , N} behaves as
white noise, and

3 Xtτ satisfies the difference equation

Xt,τ = α0,τ +
p∑

k=1

αkτXt,τ−k + Ztτ (10.17)

for all (t, τ ).

Such processes are able to exhibit cycles of
length N of the mean, the variance, and the
auto-covariance function.

Suppose, now, that a process satisfying (10.17)
is weakly cyclo-stationary. This means that the
process parameters are constrained in such a way
that all means, variances, and covariances exist.
This constraint, together with (10.17), is sufficient
to ensure that the mean and variance are only a
function ofτ and that the auto-covariance function
is only a function of the absolute time difference
and the location in the external cycle. With these
assumptions it is possible to derive the ‘seasonal
cycle’ of mean, variance and auto-covariance.

To illustrate, consider the calculation of the
annual cycle of the mean. We apply the expectation
operatorE(·) to (10.17) for allτ to obtain

µτ = α0,τ +
p∑

k=1

αkτµτ−k. (10.18)

This is a closed linear system since bothµτ
and αkτ are periodic inτ with period N. It can
therefore be re-expressed in matrix-vector form
and solved using standard techniques.

Calculation of the seasonal cycle of the variance
is more complicated. First, the past statesXt,τ−1,
Xt,τ−2, . . . in (10.18) are replaced with linear
combinations of previous states by recursive
application of (10.17). This recursion yields
an infinite series (an ‘infinite moving average
process’; see [10.5.2])

Xtτ = β0,τ +
∞∑
j=1

β j τZt,τ− j+1. (10.19)

The βs are functions of the seasonal AR(p)
parameters and the cyclo-stationarity conditions
alluded to above ensure that this sum converges
in a suitable manner. The noise contributions
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Ztτ have zero expectation and are mutually
independent so that

E(Xtτ ) = β0,τ (10.20)

Var(Xtτ ) =
∞∑
j=1

β2
j τ σ

τ− j+1
Z,τ− j+1.

10.3.9 Example: A Seasonal Model of the SST
Index of the Southern Oscillation. A seasonal
AR(2) process can be used to model the SST index
of the Southern Oscillation [453]. A segment of
the full monthly time series is shown in Figure 1.4
(dashed curve). The model was fitted to seasonal
means so that one ‘seasonal cycle’ comprisesN =
4 time steps, namely FMA, MJJ, ASO and NDJ.

The estimated process parametersα̂kτ and the
standard deviation of the driving noisêσZτ , which
fit the data best, are:

Season τ α̂0,τ α̂1,τ α̂2,τ σ̂Z,τ

FMA 0.39 0.571 0 0.332
MJJ −0.17 1.032 −0.368 0.374
ASO 2.55 1.436 −0.471 0.362
NDJ 3.56 1.172 0 0.271

When we examine the four sub-models for FMA,
MJJ, ASO, and NDJ separately using (10.13) to
determine whether they satisfy the stationarity
condition of an AR(2) process, we find that
the FMA, MJJ, and ASO processes satisfy the
condition but that the NDJ process lies outside
the ‘admissible’ triangle of Figure 10.11. The
transition from NDJ to FMA, withα̂1,FMA =
0.571, is connected with substantial damping. On
the other hand, the step from ASO to NDJ, with
α̂1,NDJ = 1.172, is associated with amplification
of the process. Despite this, the full process is
cyclo-stationary.

The estimated annual cycle of the means,µ̂Xτ ,
and standard deviations,̂σ Xτ , derived from the
fitted model are displayed in the following table:9

Season τ µ̂Xτ (◦C) σ̂ Xτ (◦C)
FMA 0.058 0.621
MJJ 0.033 0.554
ASO 0.046 0.743
NDJ 0.091 0.911

The overall mean value, as well as the expected
values for the four seasons, are slightly positive.
The standard deviation varies strongly with the
season. Maximum variability occurs in the season

9The estimated means are different from zero because the
seasonal AR process was fitted to anomalies computed relative
to a reference period that was shorter than the full record.

Figure 10.13:A 50-year random realization of
the seasonal AR(2) process which models the SST
index of the SO. Compare with Figure 1.4.

with the largest SST anomalies (NDJ); weakest
variability occurs in northern summer (MJJ). Note
that the NDJ variance is 2.7 times greater than the
MJJ variance.

A simulated 200 time step realization of the
fitted process is displayed in Figure 10.13. The
character of the time series is similar to that of
the original displayed in Figure 1.4. It resembles
the output of an ordinary AR(2) process with
frequent occurrences of positive (or negative)
anomalies extending over four and more seasons.
The preference for maxima to occur in NDJ
distinguishes the fitted process from an ordinary
AR(2) process. A non-seasonal process does not
have a preferred season for generating extremes.
This preference is indeed a characteristic feature
of the SO.

10.3.10 Bivariate and Multivariate AR Proces-
ses. The ‘univariate’ definition (10.6) or (10.8)
of an AR process can be easily generalized to a
multivariate setting. A sequence of`-dimensional
random vectors{ EXt : t ∈ Z} is said to be a
multivariate AR(p) processif EXt satisfies a vector
difference equation of the form

EXt = A0+
p∑

k=1

Ak EXt−k + EZt (10.21)

for all t where

1 A0 is an`-dimensional vector of constants,

2 Ak, for k = 1, . . . , p, are` × ` matrices of
constants such thatAp 6= 0, and

3 {EZt : t ∈ Z} is a sequence of iid zero mean
`-dimensional random vectors.
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Bivariate AR(p) processes that describe the
joint evolution of two processes and multivariate
AR(1) processes are of particular interest. For
example, a multivariate AR(1) process (i.e.,Ai =
0 for i ≥ 2) is fitted in Principal Oscillation
Patternanalysis (see Chapter 15).

10.4 Stochastic Climate Models

10.4.1 Historic Excursion. What are the
physical processes that excite slow climate
variations such as the Ice Ages, the Medieval
Warm Time, or the Little Ice Age? The
early scientific mainstream opinion was that
such variability stems exclusively from external
forcings, such as variations in the Earth’s orbital
parameters. It was argued that the weather
fluctuations were irrelevant because their influence
would diminish through the process of time
integration [see 10.4.2]. That is, short-term
statistical forcing was not believed to affect the
dynamics of systems that respond slowly to such
forcing. Hasselmann ([165]; see [10.4.3]) was
apparently the first to recognize the inconsistency
of this concept. He demonstrated that low-
frequency variability in systems like the climate
could simply be the integrated response of a
linear (or nonlinear) system forced by short-term
variations, such as those of the macroturbulent
atmospheric flow at midlatitudes. The success
of this proposal is demonstrated in [10.4.3] and
possible generalizations are briefly mentioned in
[10.4.4].

10.4.2 Statistical Dynamical Models. The
purpose ofStatistical Dynamical Models(SDM)
is to describe the behaviour of a ‘climate variable’
yt that varies on time scalesτY and has dynamics
that are described by a differential equation of the
form

dy

dt
= V(y, x)+ f. (10.22)

Herext is another climate variable that varies on a
much shorter time scaleτX . Generally,V is some
nonlinear function ofyt andxt , and f represents
external forcing.

Now let Aτ be an operator that averages a
climate variable over the time scaleτ . Because
τx ¿ τy, there is a time scaleτ ∗ such that

Aτ∗(x) ≈ constant
d Aτ∗(y)

dt
≈ dy

dt
.

Thus (10.22) may be reformulated as

dy

dt
= V∗(y)+ f ∗. (10.23)

The modified operatorV∗ includes the effect of av-
eraging and, in particular, the constant contribution
from the ‘fast’ componentx. The modified forcing
f ∗ represents the slow component of the forcing.

Equation (10.23) is a ‘dynamical’ model
because the dynamics are explicitly accounted
for by the function V∗. It is also called
a ‘statistical’ model because the averaging
operator has embedded the moments of the
noisy componentx into function V∗. However,
this nomenclature is somewhat misleading since
(10.23) does not contain random components, but
rather describes the deterministic evolution of the
moments of a random variable. Equation (10.23)
is fully deterministic and may, at least in principle,
be solved if adequate initial conditions and forcing
functions are available. Consequently, the study of
climate variability is reduced to the analysis of
the structure of the forcing functions. The system
(10.23) can generate many complicated modes of
variation if it is nonlinear. To understand such
a system it is necessary to identify a subspace
of the full phase space that contains the relevant
nonlinear dynamics.10

10.4.3 Stochastic Climate Models. Neither the
search for external forcing functions nor the search
for nonlinear sub-systems has been convincingly
successful in explaining the observed variability in
the climate system. Hasselmann [165] suggested
a third mechanism for generating low-frequency
variations in the system described by (10.22). This
concept,Stochastic Climate Modelling, is now
used widely.

Suppose the forcingf in (10.22) is zero and
consider the evolution of the system from an initial
value.

Early on, for 0 ≤ t < τY, one may assume
that V(yt , xt ) ≈ V(y0, xt ) so thatV acts only in
response to random variableXt . During this time
period

dYt

dt
= V(y0, xt ) (10.24)

behaves as a stochastic process, sayZt . Since
Xt varies on time scalesτX ¿ τY, the derived

10This is easier said than done. One possibility is to fit
Principal Interaction Patterns(see [15.1.6] and Hasselmann
[167]) to observed or simulated data. Regardless of the method
used, the investigator must have a clear understanding of the
dynamics of the studied process.
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processZt also varies on short time scales. After
discretization of (10.24) we find

Yt+1 = αYt + Zt (10.25)

with α = 1. Equation (10.25) describes a random
walk whenZt is a white noise process [10.2.6].
Thus, the system gains energy and the excursions
grow, even if, in an ensemble sense, the mean
solution is constant.

Later, whent ≥ τY, the operatorV does depend
on Yt . Since the trajectories of the system are
bounded, anegative feedbackmechanism must be
invoked. An approximation of the form

V(Yt ,Xt ) ≈ −βYt + Zt (10.26)

is often suitable. This leaves (10.25) unchanged
except that α = 1 − β. Equation (10.25)
now describes an AR(1) process. The stationarity
conditionα < 1 is obtained for sufficiently small
time steps.

We now return to (10.22) with f = 0,
except we consider a system that varies around
an equilibrium state. If we assume that the
disturbances are small, then the nonlinear operator
V can be linearized as

V(x, y) = vxx + vyy (10.27)

so that we again arrive at (10.25) withZt = vxXt .
In both of these cases, the full nonlinear system

can be approximated by a stationary AR process
as long as there is negative feedback. Section 10.3
shows that such systems possess substantial
low-frequency variations that are not related to
(deterministic) internal nonlinear dynamics or to
(also deterministic) external forcing. Instead, the
system is fully random: it is entirely driven by the
short-term fluctuating noiseXt .

10.4.4 Examples. Frankignoul, in two reviews
[129, 131], summarizes a number of applications
in which dynamical systems have been modelled
explicitly as stochastic climate models. Such
systems include the sea-surface temperature at
midlatitudes, and Arctic and Antarctic sea ice and
soil moisture.

For the midlatitude sea-surface temperature
(SST) the variabley is the SST and the variables
x that vary on short time scales are the air–sea
heat flux and the wind stress (Frankignoul and
Hasselmann [133]). The characteristic times are
τSST ≈ 6 monthsÀ τx ≈ 8 days. Similarly,
for Arctic sea ice extent (Lemke [251]), the low-
frequency variable is the sea-ice extent and the
short time scale variable representsweather noise.

      

Figure 10.14: Result of an extended Ocean
General Circulation Model experiment forced with
white noise freshwater fluxes.
Top: Net freshwater flux into the Southern Ocean.
Bottom: Mass transport through the Drake
Passage.
From Mikolajewicz and Maier-Reimer [276].

Mikolajewicz and Maier-Reimer [276] provide
a particularly convincing example without explic-
itly fitting a simple stochastic climate model. They
ran an Ocean General Circulation Model with up-
per boundary forcing consisting of constant wind
stress, and heat and freshwater fluxes. Additional
freshwater flux anomalies with characteristic time
τx ∼ 1 were also added (Figure 10.14, top).
These additional anomalies were white in time
and almost white in space. The ‘response,’ char-
acterized by the mass transport through the Drake
Passage, is dominated by low-frequency variations
with typical timesτy > 100 years (Figure 10.14,
bottom).11 Subsequent research has shown that
this result is at least partly an artifact of the model
and its boundary conditions. None the less, this ex-
ample effectively demonstrates that the dynamics
of a physical system can turn short-term stochastic
forcing into low-frequency climate variability.

Stochastic Climate Models can not be used to
reproduce a physical system in detail. Neverthe-
less, they are instrumental in the understanding
of the dynamics that prevail in complex general
circulation models or observations.

10.4.5 Generalizations. The main purpose of
the stochastic climate model is to explain fun-
damental dynamics from a zero-order approxi-
mation. Examples from various aspects of the
climate system support the general concept that

11See also Weaver and Hughes [418].
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short-term variations are a significant source of
low-frequency variability, although, of course, the
dynamics may be more complicated. The operator
V may have preferred time scales, nonlinearities,
complex feedbacks and resonances, requiring ap-
proximations other than (10.26) or (10.27). How-
ever, the principle will still be valid. Also, mul-
tivariate systems may be considered—we present
various examples of multivariate systems that are
successfully represented by multivariate AR(1)
processes when we introduce thePrincipal Oscil-
lation Patternsin Chapter 15.

10.5 Moving Average Processes and
Regime-dependent AR Processes

10.5.1 Overview. This section deals with some
topics that, up to now, have been only marginally
relevant to climate research applications. Some
readers might find it convenient to skip directly to
Chapter 11.

Auto-regressive processes are part of a larger
class of processes known asauto-regressive
moving average processesor ARMA processes.
These models, first made popular by Box and
Jenkins [60], are widely used in some parts of
geophysical science. We discuss them here for
completeness. We also briefly discussregime-
dependent auto-regressive processes, which are
nonlinear generalizations of the seasonal AR
processes.

We begin by defining a moving average process.

10.5.2 Definition: Moving Average Processes.
Moving average processes are a special class
of stochastic processes that have finite memory
τM . Such models represent physical systems that
integrate the effects of only the lastm encounters
with a random forcing mechanism. A processXt is
said to be amoving average processof order q, or
equivalently, an MA(q) process, if

Xt = µX + Zt +
q∑

l=1

βl Zt−l (10.28)

where

1 µX is the mean of the process,

2 β1, . . . , βq are constants such thatβq 6= 0,
and

3 {Zt : t ∈ Z} is a white noise process.

A moving average process is stationary with
meanµX and variance Var(Xt ) = Var(Zt )(1 +∑q

l=1 β
2
l ).

10.5.3 Infinite Moving Averages and Auto-
Regressions. It is useful, for technical reasons,
to be able to discuss infinite moving averages. A
processXt is said to be aninfinite moving average
processif

Xt = µX + Zt +
∞∑

l=1

βl Zt−l (10.29)

where

1 µX is the mean of the process,

2 {β j : j = 1,2, . . .} is a sequence of
coefficients such that

∑∞
j=1 |β j | <∞, and

3 {Zt : t ∈ Z} is a white noise process.

Infinite auto-regressions are defined similarly. A
processXt is said to be aninfinite auto-regressive
processif

Xt = α0+
∞∑

k=1

αkXt + Zt (10.30)

where

1 {αk : k = 0,1, . . .} is a sequence of
coefficients such that

∑∞
k=0 |αk| <∞, and

2 {Zt : t ∈ Z} is a white noise process.

10.5.4 Examples. Figure 10.15 shows finite
samples of two MA(q) processes withq = 2
and 10, respectively,µX = 0, and Var(Zt ) =
1. We have set all coefficientsβl = 1 so that
these MA(q) processes are running sums of length
q+1 of a white noise process. The variance of the
MA(q) process isq + 1. The longer the summing
interval for the ‘forcing’ processZt , the longer the
memory and the longer the typical excursions of
the ‘responding’ processXt from the mean.

What are the characteristic timesτM (10.1) for
the MA(q) processes in Figure 10.15? Note that

E(XtXt+τ )=
q∑

l ,m=0

βlβmE
(
Zt+i Zt+τ+ j

)
=
{∑q

l=0 βlβl−τVar(Z) |τ | ≤ q
0 |τ | > q.

Therefore, since we have implicitly assumed that
Zt (and henceXt ) is normally distributed, it
follows that P(Xt+τ > 0|xt > 0) = 0.5 for all
τ ≥ q + 1. Hence the characteristic time (10.1)
of an MA(q) process isτM = q + 1.
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Figure 10.15:Top: A 240 time step realization of
an MA(q) process withq = 2, µX = 0, and
βl = 1, for l = 1, . . . ,q.
Bottom: As top, exceptq = 10.

10.5.5 Auto-regressive Moving Average
Processes. An auto-regressive moving average
(ARMA) process of order (p,q) [60] is simply an
auto-regressive process of orderp (10.6) that is
forced by a zero mean moving average process of
orderq (10.28) instead of by white noise.

An ARMA( p,q) process is formally defined as
follows: Xt is said to be anauto-regressive moving
average process of order (p,q) if

(Xt − µX)−
p∑

i=1

αi Xt−i

= Zt +
q∑

j=1

β j Zt− j (10.31)

where

1 µX is the mean of the process,

2 α1, . . . , αp andβ1, . . . , βq are constants such
thatαp 6= 0 andβq 6= 0, and

3 {Zt : t ∈ Z} is a white noise process.

There is substantial overlap between the classes
of moving average, auto-regressive, and ARMA
models. In particular, it can be shown that

any weakly stationary ergodic process can be
approximated arbitrarily closely by any of the
three types of models. However, the ARMA
models can approximate the behaviour of a given
weakly stationary ergodic process to a specified
level of accuracy with fewer parameters that can
a pure AR or MA model. That is, they are more
parsimoniousthan their AR or MA counterparts.

The parsimony of the ARMA models is of some
practical significance when fitting models to a
finite data set because fewer parameters need to be
estimated from a limited data resource. However,
this comes at the cost of developing dynamical
models that are forced by stochastic processes
with memory. This may be desirable if specific
knowledge that can be used to choose the memory
of the forcing (i.e., order of the moving average)
appropriately is at hand. However, in the absence
of such knowledge, the analyst risks obscuring the
true dynamical nature of the process under study
by resorting to the more parsimonious statistical
model.

10.5.6 Invertible Linear Processes. All of the
models described in this section can be represented
formally in terms of abackward shift operator
B that acts on the time index of the stochastic
process. The operatorB is defined so that

B [Xt ] = Xt−1. (10.32)

AR, MA, and ARMA processes can all formally
be written in terms of the back shift operator.
Specifically, we define the auto-regressive operator
φ(B) as the polynomial

φ(B) = α0−
p∑

i=1

αi Bi (10.33)

and we define the moving average operatorθ(B)
as the polynomial

θ(B) = 1+
q∑

j=1

β j B j . (10.34)

AR, MA, and ARMA processes are then formally
stochastic processes that satisfy equations of the
form

φ(B)Xt = Zt (AR) (10.35)

Xt = θ(B)Zt (MA) (10.36)

φ(B)Xt = θ(B)Zt (ARMA), (10.37)

where{Zt : t ∈ Z} is a white noise process.
This formality is introduced to provide the tools

needed to briefly explore the connections between
AR and MA models.
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Consider an MA process represented with the
polynomial backshift operatorθ(B) as in (10.36).
Suppose now that there exists a power series

θ−1(B) = 1−
∞∑

i=1

β ′i Bi

such that the power seriesθ(B)θ−1(B) converges
to 1 for B in some region in the complex plane that
contains the unit circle. That is, all roots of the MA
backshift operatorθ(B) must lie outside the unit
circle. Then, the MA process can be ‘inverted’ to
produce an infinite auto-regressive process

θ−1(B)X′t = Zt (10.38)

or, equivalently

X′t −
∞∑

i=1

β ′i X
′
t−i = Zt . (10.39)

Given that the invertibility condition is satisfied,
the process defined by (10.39) is stochastically
indistinguishable from the process that satisfies
(10.36). Such a process is called aninvertible MA
process.

Note that the invertibility condition for MA pro-
cesses is analogous to the stationarity condition for
AR processes; both conditions can be expressed in
terms of the roots of the corresponding backshift
operator. As we have just argued, when the MA
backshift operator is invertible, the process can
be represented as an infinite AR process. On the
other hand, when the AR operator has all its roots
outside the unit circle, the process is stationary and
the AR operator can be inverted so that the process
can be represented as an infinite moving average.

A stationary AR process can therefore be ap-
proximated with arbitrary precision by truncating
its infinite MA representation at some suitable
point. Similarly, an invertible MA process can be

well approximated by a high order AR process.
Also, it is obvious that stationary and invertible
ARMA processes can be closely approximated by
either a high order AR or a high order MA process
simply by inverting and truncating the appropriate
backshift operator.

10.5.7 Regime-dependent Auto-regressive
Processes. Regime-dependent auto-regressive
processes, or ‘RAMs,’ are nonlinear AR processes
introduced into climate research by Zwiers and
von Storch [453].

The idea is that the dynamics of a stochastic
processXt are controlled by an external process
Y. The RAM has the form

Xt = α0,k +
p∑

i=1

αikXt− j + Ztk, (10.40)

wherek = 1, . . . , K identifies one ofK regimes.
Within each regime the process behaves as an
AR process of some order no greater thanp.
The dynamics in each regime are forced by their
own white noise process. The choice of regime
k at any given timet depends on the external
state variableY(t). The regimek is set tol when
Y(t) ∈ [Tl−1, Tl ]. The ‘thresholds’ are chosen
as part of the model fitting process. In principle,
other nonlinear dependencies ofk onY(t) could be
specified, but the above formulation is piecewise
linear, which makes the estimation easier.

A RAM was used to model the SST index of the
Southern Oscillation [453]. Two external factors
were analysed, namely the intensity of the Indian
monsoon, withK = 2, and the strength of the
Southwest Pacific circulation, withK = 3. It was
found that the probability of a warm or cold event
of the Southern Oscillation did indeed seem to
depend on the state of the external variableY(t).
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11 Parameters of Univariate and Bivariate
Time Series

Time series analysis deals with the estimation
of the characteristic properties and times of
stochastic processes. This can be achieved either
in the time domain by studying the auto-
covariance function, or in the frequency domain
by studying thespectrum. This chapter introduces
both approaches.1

11.1 The Auto-covariance Function

11.1.0 Complex and Real Time Series.Note
that, even though the auto-covariance and auto-
correlation functions of both real and complex-
valued time series are defined below, in this
chapter we generally limit ourselves to real time
series.

11.1.1 Definition. Let Xt be a real or complex-
valued stationary process with meanµ. Then

γ (τ) = E((Xt − µ)(Xt+τ − µ)∗
)

= Cov(Xt ,Xt+τ )

is called theauto-covariance functionof Xt , and
the normalized function,

ρ(τ) = γ (τ)

γ (0)

is called theauto-correlation functionof Xt . The
argumentτ is called thelag. Note that the auto-
correlation and auto-covariance functions have the
same shape but that they differ in their units;
the covarianceγ (τ) is expressed in the units of
X2

t while the correlationρ(τ) is expressed in
dimensionless units. When required for clarity,
we will identify the auto-covariance and auto-
correlation functions of processXt asγxx andρxx,
respectively.

1We recommend [60, 49, 68], and [195] for further reading
about the technical aspects of this subject.

11.1.2 Auto-correlation and Persistence Fore-
cast. The auto-correlation function can be inter-
preted as an indication of the skilfulness of the
persistence forecastof Xt+τ that is constructed
when an observationxt is ‘persisted’ τ time
steps into the future. In this contextρ(τ) is the
correlation between the forecast made at timet and
the verifying realization that is obtained lagτ time
steps later. The proportion of variance ‘explained’
by the persistence forecast isρ2(τ ).

As we saw in Chapter 10, a slowly varying time
series, that is, one with relatively long memory,
tends to retain anomalies of the same sign for
several time steps. Persistence forecasts made for
such a process are likely to be more successful
than those made for a process with short memory.
Thus we anticipate, and are soon able to show, that
the auto-correlation function of a long memory
process decays to zero more slowly than that of
a short memory process.

11.1.3 Examples. The auto-correlation function
of the Southern Oscillation Index, which is shown
in Figure 1.3 in [1.2.2], is positive for lags shorter
than 12 months and oscillates irregularly around
zero at longer lags. We will see later that these
irregular variations at large lags are typical of auto-
correlation function estimates. They are probably
the result of sampling variability and the true
auto-correlation function is likely to be zero at
large lags. Only the first part of the curve, in
which the correlation function estimates lie beyond
those levels that can be induced solely by sampling
variation, is of interest. Figure 1.3 shows us that
once a positive (or negative) SOI anomaly has
developed it will, on average, persist for up to 12
months.

The interpretation is similar ifXt is a complex-
valued process. For convenience, assume thatXt

has mean zero. Note that we may express the
auto-covariance function in polar coordinates as

γ (τ) = E(XtX∗t+τ
) = r (τ )eiφ(τ)

217
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where the amplituder (τ ) and phaseφ(τ) are
functions of the lagτ . Thus the productxtx∗t+τ
of two realizationsτ time steps apart, averaged
over many timest , will equal r (τ )eiφ(τ). This
tells us that, on average, a realxt is followed
τ time steps later by a complexxt+τ centred
on r (τ ) (cos(φ(τ))xt − i sin(φ(τ))xt ). That is the
persistent part ofXt follows a damped rotation in
the complex plane.

This behaviour is often seen in climate data.
An example is the estimated auto-correlation
function of the bivariate MJO index (Figure 10.3)
that is shown in Figure 11.1. Since Re(ρ̂(τ ))
is approximately zero at about lag-10 days, we
estimate that this bivariate index will rotate 90◦ to
the right in about 10 days on average. Similarly,
it will rotate about 180◦ in 22 days, and 270◦ in
37 days. The estimated auto-correlation function is
certainly contaminated by sampling variation after
about day 20 (see Section 12.1).

11.1.4 Properties of the Auto-correlation
Function. We note that the auto-correlation
function is symmetric about the origin,

ρ(τ) = ρ(−τ),
and that it does not take values outside the interval
[-1,1] (if Xt is real) or outside the unit circle (ifXt

is complex). That is,

|ρ(τ)| ≤ 1.

11.1.5 The Auto-correlation Function of White
Noise. Because the elements of white noise are
independent, it immediately follows that the auto-
correlation function is

ρ(τ) =
{

1 if τ = 0
0 otherwise.

11.1.6 The Yule–Walker Equations for an
AR( p) Process. If we multiply a zero mean
AR(p) processXt (10.6) by Xt−τ , for τ =
1, . . . , p,

XtXt−τ =
p∑

i=1

αi Xt−i Xt−τ + ZtXt−τ , (11.1)

and take expectations, we obtain a system of
equations

ΣpEαp = Eγp (11.2)

that are known as theYule–Walker equations. The
equation relates the auto-covariances

Eγp =
(
γ (1), γ (2), . . . , γ (p)

)T

Figure 11.1: The auto-correlation function of
a complex index of the Madden-and-Julian
Oscillation. The dots represent the estimated auto-
correlation function. The continuous line displays
the theoretical auto-correlation function of a fitted
complex AR(1) process. The real part of the auto-
correlation function is represented by the vertical
axis, and the imaginary part by the horizontal axis.
From von Storch and Baumhefner [388].

at lagsτ = 1, . . . , p to the process parameters

Eαp = (α1, α2, . . . , αp)
T

and the auto-covariancesγ (τ) at lags τ =
0, . . . , p− 1 through thep× p matrix

Σp =


γ (0) γ (1) . . . γ (p− 1)
γ (1) γ (0) . . . γ (p− 2)
...

...
. . .

...

γ (p− 1) γ (p− 2) . . . γ (0)

 .
This system of equations has two applications.
First, if γ (0), . . . , γ (p) are known (or have

been estimated from a time series), the parameters
of the AR(p) process can be determined (or
estimated) by solving (11.2) forEαp. Once the
parameters have been estimated, both the auto-
covariance function for lagsτ > p [11.1.7]
and the spectrum (Section 11.2) of the unknown
process can be estimated by the corresponding
characterizations of the fitted AR(p) process.

Second, if Eαp is known, then (11.2) can
be recast as a linear equation with unknowns
γ (1), . . . , γ (p), given the variance of the process
γ (0). Thus the Yule–Walker equations can be used
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to derive the firstp+1 elements 1, ρ(1), . . . , ρ(p)
of the auto-correlation function. The full auto-
covariance or auto-correlation function can now be
derived by recursively extending equations (11.2).
This is done by evaluating equation (11.1) forτ ≥
p and taking expectations to obtain

γ (τ) =
p∑

k=1

αkγ (k− τ)

and

ρ(τ) =
p∑

k=1

αkρ(k− τ). (11.3)

11.1.7 Auto-covariance and Auto-correlation
Functions of Some Low-order AR(p) Processes.

• p = 1:
The Yule–Walker equation (11.2) for an
AR(1) process is

α1γ (0) = γ (1).

Hence ρ(1) = α1. Applying (11.3)
recursively we see that

ρ(τ) = α|τ |1 . (11.4)

• p = 2:
The Yule–Walker equations (11.2) for an
AR(2) process are

α1γ (0)+ α2γ (1) = γ (1)

α1γ (1)+ α2γ (0) = γ (2).

Using the first equation, we see that

ρ(1) = α1

1− α2
. (11.5)

Recursion (11.3) can be used to extend the
auto-correlation function to higher lags. For
example, the auto-correlation at lag-2 is

ρ(2) = α2
1 − α2

2 + α2

1− α2
.

• p = 3:
The Yule–Walker equations (11.2) for an
AR(3) process are

α1γ (0)+ α2γ (1)+ α3γ (2) = γ (1)

α1γ (1)+ α2γ (0)+ α3γ (1) = γ (2)

α1γ (2)+ α2γ (1)+ α3γ (0) = γ (3).

Using the first two equations, we obtain

ρ(1) = α1+ α2α3

1− α2− α1α3− α2
3

ρ(2) = (α1+ α3)α1+ (1− α2)α2

1− α2− α1α3− α2
3

.

Recursion relationship (11.3) can again be
used to extendρ(τ) to longer lags.

• p ≥ 4:
The calculations required at higher orders
become increasingly laborious, but no more
complex.

Note that the auto-covariance function can
be obtained by using (10.9) to compute the
variance Var(Xt ) and then applying

γ (τ) = Var(Xt ) ρ(τ ).

11.1.8 Examples. We will now discuss the
auto-correlation functions of the processes that
were used as examples in [10.3.2]. Recall that
there are two AR(1) processes withα1 = 0.3
and 0.9, and two AR(2) processes with(α1, α2) =
(0.9,−0.8) and(0.3,0.3). Sample realizations of
these processes are shown in Figures 10.7 and
10.9.

The auto-correlation functions of the AR(1)
processes (Figure 11.2a) decrease monotonically.
The value of the auto-correlation function for
the α1 = 0.3 process is less than 0.5 for all
nonzero lags; thus the persistence forecast is able
to forecast less than 25% of process variance at any
lag. Whenα1 = 0.9, it takes five time steps for
the skill to fall below 25%; this process is much
more persistent than theα1 = 0.3 process. This is
consistent with the analysis of the distributions of
the run lengthL in [10.3.3].

The auto-correlation functions of the AR(2)
processes are shown in Figure 11.2b. The first
two auto-correlations of the(α1, α2) = (0.3,0.3)
process areρ(1) = ρ(2) = 0.43, and those for
the (α1, α2) = (0.9,−0.8) process areρ(1) =
0.5, ρ(2) = −0.35. In the (0.3,0.3) case
the auto-correlation function is always positive
and has a pattern similar to that of an AR(1)
process. The(0.9,−0.8) case reveals considerably
more structure. The main feature is a damped
‘periodicity’ of about six time steps in length. This
result is also consistent with the run length analysis
in [10.3.3].
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Figure 11.2:Auto-correlation functions of auto-
regressive processes.
a) Two AR(1) processes withα1 = 0.3 (hatched
bars) and 0.9 (solid bars).
b) Two AR(2) processes with(α1, α2) = (0.3, 0.3)
(hatched bars) and(0.9,−0.8) (solid bars).

11.1.9 The General Form of the Auto-
correlation Function of an AR( p) Process.
The auto-correlation function of a weakly station-
ary AR(p) process can be expressed as

ρ(τ) =
p∑

k=1

aky−|τ |k (11.6)

for all τ , where yk, k = 1, . . . , p, are the
roots of the characteristic polynomial (10.11),
φ(B) = 1 − ∑p

k=1 αk Bk (see, e.g., [195, 60]).
Since the characteristic polynomial can be factored
as a product of linear and quadratic functions,
the rootsyk are either real or come in complex
conjugate pairs. The constantsak can be derived
from the process parametersEαp. When yk is
real, the corresponding coefficientak is also real,
and when yk and yl are complex conjugates,
the corresponding coefficientsak and al are also
complex conjugates.

Regardless of whether the roots are real
or complex, the weak stationarity assumption
ensures that|yk| > 1 for all k (see [10.3.5]).
Thus each real root contributes a component to
the auto-correlation function (11.6) that decays

exponentially. Similarly, each pair of complex
conjugate roots contributes an exponentially
damped oscillation.

We now consider some specific cases.
First, supposeXt is a weakly stationary AR(1)

process. The characteristic polynomial isφ(B) =
1−α1B and the only root isy1 = (α1)

−1. Note that
|y1| > 1 since|α1| < 1. Thus the auto-correlation
function (11.6) consists of a single termρ(τ) =
a1(α1)

τ that decays exponentially. The constant
a1 = 1.

Now supposeXt is an AR(2) process. We saw
in [10.3.6] there are two types of AR(2) processes;
one has a pair of decaying modes, the other has a
single damped oscillatory mode. The first occurs
when α2

1 + 4α2 > 0, in which case (10.11)
has real rootsy1 and y2, and the auto-correlation
function (11.6) is the sum of two terms that decay
exponentially.

The (0.3,0.3) process (see [10.3.5]) belongs to
this class. The roots of its characteristic polyno-
mial arey1 = 1.39 andy2 = −2.39. They1-mode
has a monotonically decaying auto-correlation
function a1(y

−1
1 )|τ | = a1(0.72)|τ |. The y2-

mode has auto-correlation functiona2(y
−1
2 )|τ | =

a2(−0.42)|τ |, which decays even more quickly but
has alternating sign.

The constantsa1 and a2 can be calculated
from (11.5) and (11.6). Since

ρ(0) = 1= a1+ a2

ρ(1) = α1

1− α2
= a1y−1

1 + a2y−1
2 ,

it follows that

a1 =
ρ(1)− y−1

2

y−1
1 − y−1

2

, a2 =
y−1

1 − ρ(1)
y−1

1 − y−1
2

. (11.7)

In this example,a1 = 0.74 anda2 = 0.26.
When α2

1 + 4α2 < 0, equation (10.11) has
a pair of complex conjugate roots,y1 = y∗2 =
y. Consequently, for positiveτ , equation (11.6)
reduces to

ρ(τ) = a1y−τ + a∗2(y
∗)−τ ,

wherea1 = a∗2 = a. If we write y = reiφ , this
may be rewritten as

ρ(τ) = 2 Re(a) cos(τφ)− 2 Im(a) sin(τφ)

r τ
.

(11.8)

To determine the complex constanta we first
evaluate (11.8) atτ = 0 and obtain Re(a) = 1/2.
We then evaluate (11.8) atτ = 1 and obtain

ρ(1)= cos(φ)− 2 Im(a) sin(φ)

r



11.1: The Auto-covariance Function 221

so that

Im(a) = cos(φ)− r ρ(1)

2 sin(φ)
(11.9)

where ρ(1) is given by (11.5). Finally, we see
that the auto-correlation function (11.8) may be
rewritten as

ρ(τ) =
√

1+ 4 Im(a)2

r τ
cos(τφ + ψ)

with tan(ψ) = 2 Im(a). Note thatr = 1.12 and
φ ≈ π/3 in the (0.9,−0.8) example, so that
a = 0.5+ i 0.032 andψ ≈ −π/50.

In general, the auto-correlation function of an
AR(p) process is the sum of decaying exponentials
(one for every real root of the characteristic
polynomial) and damped oscillations (one for
every pair of complex conjugate roots of the
characteristic polynomial). Thus, the general auto-
correlation function has the form

ρ(τ) =
∑

i

ai

yτi
+
∑

k

ak
cos(τφk + ψk)

r τk
. (11.10)

We use this property in [11.2.7] when we discuss
the general form and interpretation of the spectrum
of an AR(p) process.

11.1.10 Uniqueness of the AR(p) Approxima-
tion to an Arbitrary Stationary Process. The
following theorem is useful when fitting an AR(p)
process to an observed time series.

Let Xt be a stationary process with auto-
correlation functionρ. For each p ≥ 0 there a
unique AR(p) processA pt with auto-correlation
functionρp such that

ρp(τ ) = ρ(τ) for all |τ | ≤ p. (11.11)

The parametersEαp = (αp,1, . . . , αp,p) of the
approximating process of orderp are recursively
related to those of the approximating process of
order p− 1 by

αp,k = α(p−1),k − αp,pα(p−1),(p−k) (11.12)

k = 1, . . . , p− 1

where

αp,p =
ρ(p)−∑p−1

k=1α(p−1),kρ(p− k)

1−∑p−1
k=1α(p−1),(p−k)ρ(p− k)

. (11.13)

The recursion is started by settingα1,1 = ρ(1).
A proof can be found in Appendix M.

11.1.11 The Partial Auto-correlation Function.
When Xt is a normal process,ατ,τ is called
the partial auto-correlation coefficientbetween
Xt and Xt−τ (see [60]). A useful property of
the partial auto-correlation functionis that ατ,τ
becomes zero forτ > p when Xt is an AR(p)
process. Thus an estimate ofατ,τ is often plotted
as a diagnostic to help identify the order of an AR
process.

11.1.12 What is the Partial Auto-correla-
tion Coefficient? Details. In technical terms,
the partial auto-correlation coefficientαp,p is
the correlation betweenXt and Xt−p when
Xt−1, . . . ,Xt−p+1 are held fixed. WhenXt is a
stationary normal process,

αp,p =
Cov

(
Xt ,Xt−p| EGt = Egt

)
σ f σb

where

σ 2
f = Var

(
Xt | EGt=Egt

)
σ 2

b = Var
(
Xt−p| EGt=Egt

)
,

and where, for notational convenience,EGt is
the (p − 1)-dimensional random vectorEGt =
(Xt−1, . . . ,Xt−p+1)

T. The value of this correla-
tion does not depend upon the specific realization
xt−1, . . . , xt−p+1 of Xt−1, . . . ,Xt−p+1.2

The easiest way to understand the partial
correlation coefficient is by means of an example.
Therefore supposeXt is a zero mean normal AR(1)
process with parameterα1. For an arbitrary timet ,
let Y1 = Xt+1, Y2 = Xt andY3 = Xt−1. These
random variables have variance-covariance matrix

Σ1,2,3 = σ 2
X

 1 α1 α2
1

α1 1 α1

α2
1 α1 1


which has inverse

Σ−1
1,2,3 =

1

σ 2
X(1− α2

1)

 1 −α1 0
−α1 1+ α2

1 −α1
0 −α1 1


Substituting into (2.34), we obtain the joint density
function for these three random variables:

f1,2,3(y1, y2, y3) = 1

(2πσ 2
X)

3/2

× e
− y2

1+(1+α2
1) y2

2+y2
3−2α1y1y2−2α1y2y3

2(1−α2
1)σ

2
X .

2In general, when the process is not normal, the value of
αp,p does depend upon the specific realization.
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To understand theα2,2 partial correlation coeffi-
cient, we now derive the joint density function
of Y1 and Y3 conditional uponY2. Recall from
[2.8.6] that

f1,3|2(y1, y3|y2) = f1,2,3(y1, y2, y3)

f2(y2)
.

But

f2(y2) = 1

(2πσ2
X)

1/2
e−y2

2/2σ2
X ,

therefore

f1,3|2(y1, y3|y2) = 1

2πσ2
X

× e
− y2

1+(1+α2
1) y2

2+y2
3−2α1y1y2−2α1y2y3−(1−α2

1) y2
2

2(1−α2
1)σ

2
X

= 1

2πσ2
X

e
− (y1−α1y2)

2+(y3−α1y2)
2

2σ2
X(1−α2

1) .

= 1

(2πσ2
X)

1/2
e
− (y1−α1y2)

2

2σ2
X(1−α2

1)

× 1

(2πσ2
X)

1/2
e
− (y3−α1y2)

2

2σ2
X(1−α2

1) (11.14)

= f1|2(y1|y2) f3|2(y3|y2).

Thus Y1 and Y3 are conditionally independent
[2.8.5], since the joint conditional density function
can be factored as the product of marginal con-
ditional density functions. Hence the conditional
correlation betweenY1 andY3 is also zero, which
is exactly what we obtain forα2,2 if we solve
(11.13) and (11.12) recursively.

Equation (11.14) is the key to understanding the
true meaning here. SinceXt is an AR(1) process,
α1Y2 = α1Xt is the best one-step ahead forecast
of Xt+1. Similarly, α1Xt is the best one-step back
‘forecast’ of Xt−1.3 Equation (11.14) shows that
f1,3|2 is the joint distribution of the one-step ahead
and one-step back forecast errors. If the process
was actually AR of orderp > 1, the error of
the one-step ahead forecast made only withXt

would still depend uponXt−1, and that of the
one-step back forecast made only withXt would
still depend uponXt+1. SinceXt−1 andXt+1 are
dependent, the errors would also be dependent and
factorization (11.14) would not be possible.

In general,ατ,τ is the correlation between the
error of a one-step ahead forecast ofXt made

3If Xt is an AR(1) process with parameterα1 then both
Xt − α1Xt−1 andXt − α1Xt+1 are white noise processes. To
confirm thatNt = Xt −α1Xt+1 is a white noise process, show
thatE(Nt Nt+τ ) = 0 for all τ 6= 0.

with Xt−1, . . . ,Xt−τ+1 and the error of a one-step
back forecast ofXt−τ made with the same random
variables. WhenXt is AR(p) and normal, these
errors become independent for lagsτ > p.

11.1.13 Auto-covariance Functions of Filtered
Series. An operator that replaces a processXt

with the process

Yt =
∞∑

k=−∞
akXt+k,

where
∑∞

k=−∞ |ak| < ∞, is called a linear
filter. Filters are used to remove, or isolate,
variation on certain time scales from a process (see
Section 17.5). The auto-covariance function of the
filtered process is

γyy(τ ) =
∞∑

k,l=−∞
aka∗l γxx(τ + k− l ). (11.15)

11.2 The Spectrum

11.2.0 General. The variance of a time
series{X1, X2, . . . , XT } of finite length may be
attributed to different time scales by expanding it
into a finite series of trigonometric functions4 (cf.
Equation (C.1))

Xt = A0+
(T−1)/2∑

k=1

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
.

(11.16)

Equation (11.16) distributes the variance in the
time series

1

T

T∑
t=1

(Xt − X)2 = 1

2

(T−1)/2∑
k=1

(
a2

k + b2
k

)
(11.17)

to the periodic components in the expansion shown
in (11.16). The elements(a2

k + b2
k) are collectively

referred to as theperiodogramof the finite time
series{X1, . . . , XT } when they are multiplied by
T/4 (cf. [12.3.1]).

Unfortunately, it is not readily apparent that the
expansion in (11.16) is related to the spectrum
of an infinite time series or a stationary process,
although this is true. We will see below that the
spectrum is a continuous function of frequency. In
contrast, the periodogram is always discrete.

It is important to note that our purpose in
this chapter is to describe the spectrum as a
characteristic of a stochastic process (hence the
use of the word ‘parameter’ in the title). Spectral
estimation is dealt with in Chapter 12.

4We have assumed, for mathematical convenience, thatT is
odd. The expansion is slightly more complex whenT is even.
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11.2.1 Definition of the Spectrum. LetXt be an
ergodic weakly stationary stochastic process with
auto-covariance functionγ (τ), τ = 0,±1, . . ..
Then thespectrum(or power spectrum) 0 of Xt is
the Fourier transform5 F of the auto-covariance
functionγ . That is

0(ω) = F {γ }(ω) (11.18)

=
∞∑

τ=−∞
γ (τ)e−2π i τω

for all ω ∈ [−1/2,1/2].

Note that sinceγ is an even function ofτ ,

0(ω) = γ (0)+ 2
∞∑
τ=1

γ (τ) cos(2πτω).

Note also that the spectrum and the auto-
covariance function areparametersof the stochas-
tic processXt . When the process parameters are
known (not estimated from data), the spectrum is
well-defined and not contaminated by any uncer-
tainty.

As is our practice with the auto-covariance and
auto-correlation functions, we will use the notation
0xx to identify 0 as the spectrum ofXt when
required by the context.

11.2.2 Properties.

1 The spectrum of a real-valued process is
symmetric. That is

0(−ω) = 0(ω).

2 The spectrum is continuous and differentiable
everywhere in the interval [−1/2,1/2].
Consequently

3
d

dω
0(ω)|ω=0 = 0.

4 The auto-covariance function can be recon-
structed from the spectrum by using the
inverse Fourier transform (C.6) to obtain

γ (τ) =
∫ 1

2

− 1
2

0(ω)e2iπωτ dω.

5Note the specific mathematical character of the discrete
Fourier transform. It operates on the set of infinite, summable,
real-valued series and generates complex-valued functions that
are defined on the real interval [−1/2,1/2]. See Appendix
C. For more reading about the Fourier transform see standard
textbooks, such as [195].

5 The spectrum describes the distribution of
variance across time scales. In particular,

Var(Xt ) = γ (0) = 2
∫ 1

2

0
0(ω)dω. (11.19)

6 The spectrum is a linear function of the
auto-covariance function. That is, ifγ is
decomposed into two functions,γ (τ) =
α1γ1(τ )+ α2γ2(τ ), then

0(ω) = α101(ω)+ α202(ω)

where0i = F {γi }.

11.2.3 Theorem: The Spectra of AR(p) and
MA( q) Processes.

1 The spectrum of an AR(p) process with
process parameters{α1, . . . , αp} and noise
variance Var(Zt ) = σ 2

Z is

0(ω) = σ 2
Z

|1−∑p
k=1 αke−2π ikω|2 . (11.20)

2 The spectrum of an MA(q) process with
process parameters{β1, . . . , βq} and noise
variance Var(Zt ) = σ 2

Z is

0(ω) = σ 2
Z |1+

q∑
l=1

βl e
−2π i lω|2. (11.21)

Proofs can be found in standard textbooks such as
[195] or [60].

11.2.4 The Spectrum of a White Noise Process.
The spectrum of a white noise processZt is
easily computed from (11.21). Sinceγ (0) = σ 2

Z
and γ (τ) = 0 for nonzeroτ , the spectrum is
independent ofω. That is

0Z(ω) = σ 2
Z for all ω ∈ [−1/2,1/2]. (11.22)

The spectrum is drawn as a horizontal line,
indicating that no time scale of variation is
preferred, hence the allusion to white light. This
agrees with the analysis of the run lengthL
discussed in [10.3.3].

11.2.5 The Spectrum of an AR(1) Process.
The power spectrum of an AR(1) process with
lag-1 correlation coefficientα1 is

0(ω) = σ 2
Z

|1− α1e−2π iω|2

= σ 2
Z

1+ α2
1 − 2α1 cos(2πω)

. (11.23)
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This spectrum has no extremes in the interior of
the interval [0,1/2] because, everywhere inside
the interval, the derivative

d

dω
0(ω) = −2α10(ω)

2 sin(2πω) 6= 0.

The sign of the derivative is determined byα1.
Thus the spectrum has a minimum at one end of
the interval [0,1/2] and a maximum at the other
end.

When α1 > 0, the ‘spectral peak’ is located
at frequencyω = 0. Such processes are often
referred to asred noise processes.

AR(1) processes withα1 < 0, which are
sometimes calledblue noise processes, are of little
practical importance in climate research because
they tend to change sign every time step. In most
climate research contexts, the observed process
evolves continuously. Thusα1 will be positive
given a sufficiently small time step.6

Figure 11.3 shows the spectra of the two ‘red’
AR(1) processes that were discussed in [10.3.3]
and [11.1.7]. Theα1 = 0.9 spectrum (right hand
axis in Figure 11.3a) is more energetic on long
time scales (ω−1 greater than approximately seven
time steps) than theα1 = 0.3 spectrum (left hand
axis in Figure 11.3a). At short time scales the
α1 = 0.3 process is somewhat more energetic.
This interpretation is consistent with the finding
that AR(1) processes with large lag-1 correlation
coefficients generate more long runs than those
with small lag-1 correlation coefficients, and vice
versa (see Figure 10.8).

11.2.6 The Spectrum of an AR(2) process.
The power spectrum of an AR(2) process with
parameters(α1, α2) (11.20) is given by

0(ω) = σ 2
Z

1+ α2
1 + α2

2 − 2g(ω)

where

g(ω) = α1(1− α2) cos(2πω)+ α2 cos(4πω).

Depending upon the parameters, this spectrum can
have a minimum or a maximum in the interior of
the interval [0,1/2]. Figure 11.3b displays spectra
of both types.

When its derivative is zero,0(ω) has a
maximum or minimum, and we note that0′(ω) =

6There are exceptions to this statement. For example, annual
layer thickness in ice cores can be modelled as ‘blue noise’ (see,
for example, Fisher et al. [118]).

Figure 11.3: Power spectra of various AR
processes. The left hand axis applies to spectra
labelled ‘L’ and the right hand axis applies to
those labelled ‘R.’
a) AR(1) processes withα1 = 0.3(L) andα1 = 0.9
(R),
b) AR(2) processes with(α1, α2) = (0.3,0.3) (L)
and(α1, α2) = (0.9,−0.8) (R).

0 wheneverg′(ω) = 0. By using the identity
sin(4πω)= 2 sin(2πω)cos(2πω), we find that

g′(ω) = −2πα1(1− α2) sin(2πω)

− 4πα2 sin(4πω)

= (−2π)sin(2πω)

× (α1(1− α2)+ 4α2 cos(2πω)
)
.

Since sin(2πω)6= 0 for all ω ∈ (0,1/2),0′(ω) =
0 when

cos(2πω)= −α1(1− α2)/(4α2). (11.24)

This last equation has a solutionω ∈ (0,1/2)
when |α1(1 − α2)| < 4|α2|. This solution
represents a spectral maximum whenα2 < 0 and
a spectral minimum whenα2 > 0.

Equation (11.24) has solutionsω ∈ (0,1/2) for
both spectra shown in Figure 11.3b. WhenEα =
(0.3,0.3), a minimum is located atω ≈ 0.28.
When Eα = (0.9,−0.8) a maximum occurs at
ω ≈ 0.17.
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11.2.7 The Spectrum of a Linearly Filtered Pro-
cess. We described the auto-covariance function
of a linearly filtered processYt =

∑
k akXt+k in

[11.1.13]. The spectrum of such a process is (see
(C.15, 11.15)):

0yy = |F {a}|20xx.

11.2.8 Interpretation: General. Literal inter-
pretation of equations (11.16, 11.17) leads to the
incorrect notion that all weakly stationary stochas-
tic processes can be represented as a combination
of a finite number of oscillating signals with
random amplitude and phase.

However, a special class of weakly stationary
processes that behave in just this way can
be constructed. An example of this type of
process is sea level measured at a given tide
gauge. These measurements contain a tide signal
made up of a (practically) finite number of
astronomically forced modes that is overlaid by
irregular variations excited by weather.

Such a process has infinitely long memory and
is not ergodic. Its auto-covariance function does
not go to zero for increasing lag but instead
becomes periodic at long lags. Therefore, the
Fourier transform of its auto-covariance function
does not exist and the process has no auto-
spectrum in the sense of definition [11.2.1]. A
different type of characteristic spectrum must be
defined for these processes, namely a discrete line
spectrum.7 We will discuss this type of process in
the next subsection.

Ergodic weakly stationary processes have finite
memory and summable auto-covariance functions
with defined Fourier transforms. Most time
series encountered in climate research are, to a
reasonable approximation, of this type, at least
after deterministic cycles such as the annual cycle
or the diurnal cycle have been subtracted. We
will discuss the interpretation of spectra of such
processes in [11.2.10].

The two concepts of the power and line
spectra can be formally unified by defining a
generalized Fourier transform. The discrete part
of the spectrum is then represented by Dirac

7Note that the expressionspectrumis used for a large variety
of mathematical objects. Examples include theeigenvalue
spectrumof an EOF analysis, the power spectrum, and the
line spectrum discussed here. Climatologists also usespatial
spectra that describe the distribution of energy to different
spatial scales. A common characteristic of these spectra is that
they are expressed as functions of a discrete or continuous set
of indices that are ordered on the basis of time scale (in case of
the power spectrum), relevance (eigenvalue spectrum), or other
meaningful criteria.

δ-functions, functions that are infinitely large at
the frequencies of the oscillations they represent
and zero everywhere else. By suitably generalizing
the definition of integration, theδ-function can
be given an intensity such that the integral over
the δ-function is equal to the variance of the
oscillation.

11.2.9 Interpretation: Periodic Weakly Sta-
tionary Processes.8 Suppose a periodic stochastic
processXt can be represented as

Xt =
n∑

j=−n

Z j e
2π iω j t + Nt , (11.25)

whereω j = 1/Tj , j = −n, . . . ,n, Tj ∈ Z
are fixed frequencies,Z j , j = −n, . . . ,n, are
complex random variables, andNt represents a
noise term that is independent of theZ j . For
simplicity we assume thatNt is white in time, but
this assumption is easily generalized.

What conditions must be placed on the
frequenciesω j and random variablesZ j to ensure
thatXt is real valued and weakly stationary?

To ensure thatXt is real for all t = 0,±1, . . .,
the frequenciesω j must be symmetric about zero
(i.e., ω− j = ω j ), and for every j = 1, . . . ,n,
random variablesZ− j and Z j must be complex
conjugates.

Two conditions must be satisfied to ensure weak
stationarity. First, the mean of the process,

µX = E(Xt ) =
n∑

j=−n

E
(
Z j
)
e2π iω j t + E(Nt )

should be independent of time. This means that
random variablesZ j , j = 1, . . . ,n, must have
mean zero.

Second, the auto-covariance function
E(Xt+τXt ) must be a function ofτ alone.
The auto-covariance function is given by

γ (τ) = E(Xt+τXt )

= δ0,τ σ
2
N +

n∑
j=−n

E
(|Z j |2

)
e2π iω j τ

+
n∑

j=−n

∑
k 6= j

(
E
(
Z j Z∗k

)
e2π iω j τ

)
× e2π i (ω j−ωk)t

for all t = 0,±1, . . ., whereδ0,τ = 1 if τ = 0, and
zero otherwise. Since the left hand side is constant
for all t , it follows that the random variablesZ j ,
j = 0,1, . . . ,n, must be uncorrelated.

8Following Koopmans [229].
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Consequently, periodic weakly stationary pro-
cesses (11.25) have periodic auto-covariance func-
tions of the form

γ (τ) =
n∑

j=−n

E
(|Z j |2

)
e2πiω j τ

= Var(Z0)+4
n∑

j=1

E
(|Z j |2

)
cos(2πωj τ).

for |τ | ≥ 1.
Hence, only very special weakly station-

ary stochastic processes can be represented
as a finite sum of discrete signals. In con-
trast with the ARMA processes described in
Sections 10.3 and 10.5, these processes have
periodic auto-covariance functions for which
limτ→∞

∑τ
`=0 γ (`)

2 = ∞. Therefore, the sum-
mation (11.18) does not converge and the spectrum
does not exist. In conceptual terms: the system has
infinitely long memory.

Even though the power spectrum does not exist,
we can define a spectrum that distributes the
variance ofNt with time scale in the usual way
and adds a specific amount of variance,E

(|Z j |2
)
,

at the discrete frequenciesω j , j = −k, . . . , k.
The discrete part of this spectrum is called aline
spectrum. As noted above, this kind of spectrum
can be given a density function interpretation by
resorting to Diracδ-functions.

11.2.10 Interpretation: Ergodic Weakly Sta-
tionary Processes. Processes with limited mem-
ory, that is,

lim
τ→∞

τ∑
`=0

γ (`)2 <∞,

can not be periodic in the sense of (11.25). A
specific amount of variability can not be attributed
to a specific frequency, otherwise we would again
have a process with a discrete periodic component
and infinite memory. Instead, variance is attributed
to time scale ranges or frequencyintervals. Given
two frequencies 0≤ ω1 < ω2 ≤ 1/2, we interpret∫ ω2

ω1

0(ω)dω

as the variability generated by the process in the
time scale range(1/ω2,1/ω1).

11.2.11 Interpretation: Spectra of AR Proces-
ses. In general, a peak in a spectrum indicates
only that more variability is concentrated at time
scales near that of the peak than at other time

scales. Peaks in the spectra of ergodic, weakly
stationary processes do not reflect the presence of
an oscillatory component in the system.

However, peaks in the spectra of AR processes
do indicate the presence of damped eigen-
oscillations in the system with eigenfrequencies
close to that of the peak.

To understand this, we return to (10.14),

Xt+τ =
p∑

j=1

β j y
−τ
j ,

which describes the evolution of an AR(p) process
Xt from a given stateXt−1, . . . , Xt−p when the
noise is turned off. The constantsβ j depend upon
the process parametersα1, . . . , αp and the initial
state Xt−1, . . . , Xt−p. The constantsyj are the
roots of the characteristic polynomial (10.11)

1−
p∑

k=1

αk Bk. (11.26)

Since there arep such roots, there arep sets of
initial statesIk = {Xt−1,k, . . . , Xt−p,k}, k =
1, . . . , p, for which β j = δ jk .9 It can be shown
that the initial states are given by

Xt−τ,k = yτ−1
k , τ = 1, . . . , p.

Hence each set of statesIk represents a finite
segment of a time series that is either a damped
oscillation (if there are a pair of complex conjugate
rootsyk) or simply decays exponentially (ifyk is a
real root). (See Figure 10.12.)

Equation (10.14) shows that the evolution of the
system in the absence of noise is determined by
the mixture of ‘initial states’Ik. In particular, if
the initial state is one of the decaying exponential,
or damped oscillatory, statesIk, it will stay in that
state and continue to display the same behaviour
in the future. In that sense, the roots of the
characteristic polynomial represent eigensolutions
of the system. However, since noise is continually
added to the system, we see variability on all time
scales. The eigenmodes of the system determine
the way in which the variability in the input noise
evolves into the future. When a sequences of states
evolves that is close to one of the eigenmodes
of the system, that mode tends to persist more
strongly than other sequences of states. These
preferences are, in turn, reflected in the tendency
for there to be more variance in some parts of the
spectrum than others.

9For details, refer to [10.3.5,6].
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We saw in [11.1.9] that the auto-covariance
function of the AR(p) process may be written as
(11.10)

ρ(τ) =
∑

i

ai

yτi
+
∑

k

ak
cos(τφk + ψk)

r τk

where the first sum is taken over the real roots
and the second is taken over the complex roots.
The complex rootsyk are expressed in polar
coordinates asyk = rkeiφk . Thus, the auto-
covariance function is a sum of auto-covariance
functions of AR(1) and AR(2) processes, which
correspond to the initial statesI j discussed above.

The spectrum of the AR(p) process is then the
Fourier transform of the sum of auto-covariance
functions, or, because of the linearity of the Fourier
transform, the sum of autospectra of AR(1) and
AR(2) processes. Thus, any peak in the spectrum
of the AR(p) process must originate from a peak
in an AR(2) spectrum, and we have seen that such
peaks just correspond to first-order approximations
of the eigen-oscillations of the AR(2) process (cf.
[10.3.5,6]).

Things are relatively clear in this context
because we have complete knowledge about the
process to guide us in the interpretation of the
spectrum. However, interpretation is much more
difficult when spectra are estimated from finite
time series. The estimates are uncertain because
they are affected by sampling variability. They are
also affected by the properties of the estimator
itself and the way in which those properties (such
as bias) are affected by the true spectrum. So we
must attempt to interpret a noisy version of the true
spectrum that is viewed through ‘rose coloured
glasses.’ Moreover, in practice cases this usually
must be done without complete knowledge of the
nature of the process that generated the spectrum.

11.2.12 Units. Suppose that the processXt

is expressed in, say, units ofA, and the time
incrementτ in units ofδ.

• The auto-covariance function is given in units
of A2.

• To have appropriate units in (11.19) we
multiply by a constant factor carrying the unit
1/δ in the definition of the Fourier transform
F so that the spectrum is expressed in units
of A2δ.

• The frequencyω is expressed in units of 1/δ.

If, for example, we consider a process that is given
in metres, with a time step of months, then the

Figure 11.4:Power spectra of the AR(1) processes
shown in Figure 11.3 displayed in log-log format.
Note that the derivative is zero at the origin.

spectral, or variance, density is expressed in units
of m2 × month, and the frequency in month−1.
A peak atω = 0.2/month represents a period of
1/ω = 5 months.

11.2.13 Plotting Formats. An important practi-
cal aspect of spectral analysis concerns the format
in which spectra are displayed. So far, we have
used the plain format with the frequencyω as the
abscissa and the spectral density as the ordinate.

The log-log presentation, in which the logarithm
of the frequency is plotted against the logarithm
of the spectral density, is another common display
format. Spectra displayed in this way look rather
different. This can be seen from Figure 11.4, which
shows the same AR(1) spectra as Figure 11.3 but
in log-log format. Note that both spectra become
‘white’ for frequencies close to the origin.

An advantage of this format for theoreticians is
that certain power laws, such as0(ω) ∼ ω−k,
appear as straight lines with a slope of−k. A
disadvantage with this format is that the area under
the curve as it is perceived by the eye is no longer
proportional to the variance. Also, the frequency
range that contains most of the variation is not
always readily identified.

Another alternative is to plotω0(ω) on a log-
log scale so that the units on the ordinate are
independent of time.

In any case, it is advisable to clarify the plotting
format and units of a spectrum before making
physical interpretations. Alleged inconsistencies
are sometimes entirely due to the use of different
display formats.
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11.3 The Cross-covariance Function

11.3.1 Definition. Let (Xt ,Yt ) represent a pair
of stochastic processes that are jointly weakly
stationary. Then thecross-covariance functionγxy

is given by

γxy(τ ) = E
(
(Xt − µX)(Yt+τ − µY)

∗)
whereµx is the mean ofXt andµy is the mean of
Yt .

Note that ifXt = Yt , then the cross-covariance
function is simply the auto-covariance function
γxx.

The cross-correlation functionρxy is the
normalized cross-covariance function

ρxy(τ ) = γxy(τ )

σXσY
, (11.27)

where σX and σY are the standard deviations√
γxx(0) and

√
γyy(0) of processes{Xt } and{Yt },

respectively.

11.3.2 Assumption. We list here the as-
sumptions that are needed to ensure that the
cross-correlation function exists and is absolutely
summable. Specifically, we assume that{(Xt ,Yt ) :
t ∈ Z} is an ergodic weakly stationary bivariate
process. Hence we have the following results.

• The meansµx and µy are independent of
time.

• The auto-covariance functionsγxx and γyy

depend only on the absolute time difference:

E
(
(Xt − µx)(Xs− µx)

) = γxx(|t − s|)
E
(
(Yt − µy)(Ys− µy)

) = γyy(|t − s|).

• The cross-covariance functionsγxy and γyx

depend only on the time difference:

E
(
(Xt − µx)(Ys− µy)

) = γxy(s− t)

E
(
(Yt − µy)(Xs− µx)

) = γyx(s− t).

Note that

γxy(τ ) = E
(
(Xt − µx)(Yt+τ − µx)

)
= E((Yt+τ − µx)(Xt − µx)

)
= γyx(−τ).

• The process has limited memory. That is, the
auto-covariance function

6(τ) =
(

γxx(τ ) γxy(τ )

γyx(−τ) γyy(τ )

)

of the bivariate process satisfies amixing
conditionsuch as

∞∑
τ=−∞

|γab(τ )| <∞

for ab= xx, xy, andyy.

11.3.3 Some Simple Examples.Let us consider
a few cases in whichYt is a simple function of a
zero mean weakly stationary processXt .

• SupposeYt is a multiple ofXt ,

Yt = αXt . (11.28)

Then, the cross-covariance function

γxy(τ ) = αγxx(τ ) (11.29)

is proportional to the auto-covariance func-
tion of Xt .

• We make equation (11.28) slightly more
complex by adding some independent white
noiseZt so that

Yt = αXt + Zt . (11.30)

The noise is assumed to be independent
of Xt+τ for all lags τ . Then the auto-
covariance function ofY and the cross-
covariance function ofX andY are

γyy(τ ) =
{
α2γxx(0)+ σ 2 if τ = 0
α2γxx(τ ) if τ 6= 0

γxy(τ ) = αγxx(τ ). (11.31)

Thus, the addition of the noise changes
the variance of processY but not its
auto-covariance or its cross-covariance with
processX. It does, however, change its auto-
correlation and its cross-correlation withX.

• Now supposeYt is obtained by shiftingXt by
a fixed lagζ ,

Yt = Xt+ζ . (11.32)

The resulting cross-covariance function is
a shifted version of the auto-covariance
function ofX,

γxy(τ ) = E
(
XtXt+ζ+τ

)
= γxx(ζ + τ). (11.33)
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• We could assume thatYt is the discretized
time derivative ofXt , such that

Yt = Xt − Xt−1 ≈ d

dt
Xt (11.34)

Then

γxy(τ ) = E(XtXt+τ − XtXt−1+τ )
= γxx(τ )− γxx(τ − 1) (11.35)

which one might loosely think of as

γxy ≈ d

dτ
γxx(τ ). (11.36)

Similarly,

γyy(τ ) = 2γxx(τ )

− (γxx(τ − 1)+ γxx(τ + 1)
)

≈ − d2

dτ2
γxx.

A model such as (11.34) is often appropriate
for conservative quantities. For example,
the atmospheric angular momentum (Y)
has time-variability that is determined by
the globally integrated torques (X). Thus,
the cross-covariance function between the
atmospheric angular momentum and the
torques is of the form (11.36).

• The last two examples are special cases of the
situation in whichYt is a (linearly) filtered
version ofXt . We showed in [11.1.13] that
the auto-covariance function of process

F(X)t =
∞∑

k=−∞
akXt+k (11.37)

is

γF(x),F(x) (τ ) =
∞∑

k,l=−∞
aka∗l γxx(τ − k+ l ).

(11.38)

Similarly, the cross-covariance function ofXt

andF(X)t is

γx,F(x)(τ ) =
∞∑

k=−∞
a∗kγxx(τ + k). (11.39)

Expressions (11.33) and (11.35, 11.36) are
special cases of (11.38, 11.39), which may be
re-expressed as

γx,F(x) = F (∗){γxx} (11.40)

γF(x),x = F (r ){γxx}
γF(x),F(x) = F (r ){F (∗){γxx}} (11.41)

by defining

F (∗){γ }(τ )=
∞∑

k=−∞
a∗kγ (τ + k)

F (r ){γ }(τ )=
∞∑

k=−∞
a−kγ (τ + k).

• Relationships (11.40, 11.41) can be general-
ized to two processesXt and Yt that are
passed through two linear filtersF and G
with coefficients ak and bk, k = −∞,∞,
respectively. Then

γF(x),G(y) = F (r ){G(∗){γxy}}.

11.3.4 Properties. We note the following.

1 The cross-covariance function is ‘Hermitian.’
That is,

γyx(τ ) = γ ∗xy(−τ). (11.42)

2 We have

|γxy(τ )| ≤
√
γxx(0)γyy(0). (11.43)

Therefore |ρxy(τ )| ≤ 1, where ρxy(τ )

is the cross-correlation function defined by
equation (11.27).

3 The cross-covariance function is bi-linear.
That is,

γαx,βy+z(τ ) = αβ∗γxy(τ )+ αγxz(τ )

(11.44)

for all processesX, Y, andZ.

11.3.5 Example: SST and SLP in the Tropics
and Extratropics. Frankignoul [131] estimated
cross-correlation functions for monthly means of
area averaged SST (St ) and turbulent heat flux
(Ht ) for different areas of the Atlantic Ocean.
Figure 11.5 shows the cross-correlation functions
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Figure 11.5:Estimated cross-correlation functions
ρhs for Ht , the monthly mean turbulent heat
flux into the atmosphere, andSt , the monthly
mean sea-surface temperature (SST), averaged
over different latitudinal bands in the Atlantic
ocean (top:26◦–30◦N, bottom: 2◦S–2◦N). The
SST leads for negative lagsτ . From Frankignoul
[131].

for a sub-tropical belt and the equatorial belt. The
lagged correlations are small in both cases.

The cross-correlation function in the subtropics
(top panel) is approximately anti-symmetric about
the origin. The negative cross-correlation atτ = 1
tells us that, on average, the SST is higher than
normal one monthafter a negative (downward
into the ocean) heat flux anomaly. Similarly, the
positive cross-correlation atτ = −1 indicates that
a positive SST anomaly usually precedes a positive
(upward into the atmosphere) heat flux anomaly.
This suggests that there is a typical sequence of
events of the form

· · ·Ht−1 < 0⇒ St > 0⇒

⇒ Ht+1 > 0⇒ St+2 < 0 · · ·
The two quantities apparently interact with each
other in such a way that an initial anomaly is
damped by means of anegative feedbackprocess
(see [11.3.11]).

The cross-correlation function of the equatorial
turbulent heat flux and SST (Figure 11.5, bottom)
is more symmetric with a maximum at lag zero.

The symmetry indicates thatHt and St+τ tend
to have the same sign for moderate lagsτ .
Such behaviour often indicates that both quantities
are forced by the same external mechanism
or are coupled together by apositive feedback
mechanism (see [11.3.11]).

11.3.6 Bivariate AR(1) Processes: Notation.
The next few subsections focus on the bivariate
auto-regressive processes of first order. For
convenience, we represent these processes in
matrix-vector notation as(

X
Y

)
t
= A

(
X
Y

)
t−1
+
(

N
M

)
t

(11.45)

where the coefficient matrixA is given by

A =
(
αxx αxy

αyx αyy

)
. (11.46)

We also use the corresponding component-wise
representation of (11.45)

Xt = αxxXt−1+ αxyYt−1+ Nt (11.47)

Yt = αyxXt−1+ αyyYt−1+M t , (11.48)

where it is convenient.
The two components of the driving noise,N and

M, are assumed to form a bivariate white noise
process. This means that the lagged covariances
and cross-covariances ofNt and M t are zero.
However, it is possible that the components of the
bivariate white noise processes are correlated at
zero lag (i.e.,γnm(0) 6= 0).

11.3.7 Bivariate AR(1) Process: Cross-
covariance Matrix. The variances γxx(0),
γyy(0) of the components of the bivariate process
and their lag zero cross-covarianceγxy(0)
are obtained by solving a 3× 3 system of
linear equations. These equations are derived
by squaring equations (11.47) and (11.48),
multiplying equations (11.47, 11.48) with each
other, and taking expectations to obtain

B

γxx(0)
γyy(0)
γxy(0)

=
 γnn(0)
γmm(0)
γnm(0)

 (11.49)

where

B = I −
 α2

xx α2
xy 2αxxαxy

α2
yx α2

yy 2αyxαyy

αxxαyx αxyαyy αxxαyy+αxyαyx


and I is the 3× 3 identity matrix. Thecross-
covariance matrixat nonzero lagτ ,

Σxy(τ ) =
(
γxx(τ ) γxy(τ )

γyx(τ ) γyy(τ )

)
,
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may be computed recursively as

Σxy(τ ) = AΣxy(τ − 1)

= AτΣxy(0). (11.50)

11.3.8 A POP10 Example. We now consider a
bivariate AR(1) process in which the coefficient
matrixA (11.46) is a rotation matrix

A = r

(
u −v
v u

)
(11.51)

with u2 + v2 = 1 and 0 ≤ r ≤ 1.11

The noise componentsN and M are assumed to
be uncorrelated and of equal variance. That is,
γnm(0) = 0 andγnn(0) = γmm(0) = σ 2

z . Thus the
lag zero covariance matrix for the POP coefficients
Xt andYt , which is obtained by solving (11.49),
satisfies

B

γxx(0)
γyy(0)
γxy(0)

=
σ 2

z

σ 2
z
0

 (11.52)

where

B = I − r 2

 u2 v2 −2uv
v2 u2 +2uv
uv −uv u2− v2

 .
Sinceγxx = γyy andu2 + v2 = 1, the solution of
equation (11.52) is

Σxy(0) = σ 2
z

1− r 2

(
1 0
0 1

)
.

To obtain the lagged cross-covariance matrix
Σxy(τ ) by means of equation (11.50), we need to
calculate the powersAτ . To do this we letη be the
angle for which

u = cos(2πη) and v = sin(2πη),

and then note that

Aτ = r |τ |
(

cos(2πτη) − sin(2πτη)
sin(2πτη) cos(2πτη)

)
.

Then

γxx(τ ) = γyy(τ ) = σ 2
z r |τ | cos(2πτη)

1− r 2

and

γxy(τ ) = γyx(−τ) = −σ
2
z r |τ | sin(2πτη)

1− r 2
.

10POPs are ‘Principal Oscillation Patterns’ (see Chapter 15).
Pairs of POP time coefficients are represented by a bivariate
AR(1) process with a rotation matrix such as (11.51).

11Note that except for its sign,v is completely determined by

u, and vice versa, i.e.,v = ±
√

1− u2.

Whenη is positive (or equivalently, whenv is
positive), the cross-covarianceγxy(τ ) is positive
for lags 0 < τ < 1/(2η) and negative for lags
−1/(2η) < τ < 0. Thus, although the variability
of the processes is uncorrelated at lag zero, the
correlation becomes positive whenXt leads Yt

(i.e., τ > 0) and negative whenXt lags Yt (i.e.,
τ < 0).

This interpretation can be verified by repeatedly
applying matrixA to vector(1,0)T. For example,
we see that

Aτ
(

1
0

)
= r τ

(
0
1

)
after τ = 1/(4η) applications. The information
that was contained inXt is transferred toYt+τ .
Thus,Xt leadsYt for positivevs. Furthermore, we
can interpret 1/η as a rotation ‘period’ andr as a
damping rate. Note thatτ = −1/ ln r applications
of A to a vector of length 1 will reduce its length
to 1/e. This characteristic time is referred to as the
e-folding time.

Auto- and cross-covariance functions for two
processes with rotation time 1/η ≈ 20 time
units are shown in Figure 11.6. In both processes,
X leads Y. The functions displayed in the left
panel belong to a process that is only weakly
damped. Itse-folding time−1/ ln r ≈ 100 time
units. Oscillatory behaviour is clearly apparent on
the 20-unit time scale. A large proportion of the
information that is carried by componentX (or Y)
is returned to that component in approximately 20
time steps.

In contrast, the functions displayed in the right
panel belong to a process that is strongly damped.
Its e-folding time−1/ ln r ≈ 1.4 time units. The
peak inγxy(τ ) that occurs forτ = 1, 2 indicates
that the process is attempting to convey some
information from the leading componentX to the
lagging componentY. However, because damping
is strong, not enough information is transferred to
initiate oscillatory behaviour.

The characteristics of two processes with a
much shorter rotation time of 1/η ≈ 3.2 time units
are shown in Figure 11.7. Again,X leadsY in both
processes. Thee-folding times for these processes
are 4.5 and 2.8 time units for left and right panels
respectively. The main difference between the two
processes is that the auto- and cross-covariance
functions decay more quickly in the right panel.
On average, information transfer in both processes
is sufficient for oscillatory behaviour to develop.

We will revisit these four examples in [11.4.6]
when we calculate the spectra of bivariate AR(1)
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Figure 11.6:Auto- and cross-covariance functionsγxx (solid) andγxy (dashed) for two bivariate AR(1)
processes with parameter matrix (11.51). The rotation time1/η is approximately 20 time units. The
e-folding times are approximately 100 time units (left) and 1.4 time units (right). The corresponding
power spectra are shown in Figure 11.10.
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Figure 11.7: As Figure 11.6, except the rotation time1/η is now approximately 3.2 time units. The
e-folding times are approximately 4.5 time units (left) and 2.8 time units (right). The corresponding
power spectra are shown in Figure 11.10.

processes that have rotation matrices as their
parameters.

11.3.9 Example: Cross-correlation Between an
AR(1) Process and its Driving Noise. The auto-
covariance function between an AR(1) process

Xt = α1Xt−1+ Zt (11.53)

and its driving white noiseZt can be quickly
calculated by replacing (11.53) with its infinite
moving average representation (see [10.5.2]) or
with the mechanics developed above.

The first step in the latter approach is to
represent (11.53) as bivariate AR(1) process
(11.45)(

X
Y

)
t
=
(
α1 1
0 0

)(
X
Y

)
t−1
+
(

N
M

)
t
,

whereNt = 0 andM t = Zt+1. Then,

ΣZ =
(

0 0
0 σ 2

z

)
,

whereσ 2
z = Var(Zt ). Using (11.49), we see that

the covariance matrixΣxy(0) satisfiesI −
 α2

1 1 2α1
0 0 0
0 0 0

γxx(0)
γyy(0)
γxy(0)

=
 0
σ 2

z
0


so that

Σxy(0)=
(
σ 2

x 0
0 σ 2

z

)
,

whereσ 2
x = σ 2

z /(1− α2
1). Next, we compute,

Aτ =
(
ατ1 ατ−1

1
0 0

)
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and finally use (11.50) to find that for positiveτ

γxx(τ ) = ατ1σ
2
x = σ 2

zα
τ
1/(1− α2

1) (11.54)

γxm(τ ) = ατ−1
1 σ 2

z , (11.55)

γmx(τ ) = 0. (11.56)

Equation (11.54) is the auto-covariance function
of AR(1) process (11.53) and it holds for all
τ . However, note that, sinceM t was defined as
Zt+1, equations (11.55, 11.56) describe the cross-
covariance function between the AR(1) process
and its driving noise one time step in the future.
Thus the cross-covariance function ofXt and Zt

are given by

γxz(τ ) = ατ1σ 2
z for τ ≥ 0, (11.57)

γxz(τ ) = γzx(−τ) = 0 for τ < 0. (11.58)

Note that γxz(τ ) is highly non-symmetric. It
is nonzero for allnon-negativelags τ , that is,
the currentXt value ‘remembers’ the preceding
and present noise with a memory that dims
exponentially. On the other hand,γxz(τ ) is zero for
all negative lags. HenceXt ‘knows’ nothing about
future noise.12

11.3.10 Pacific SST and SLP. The following
example, which is taken from Frankignoul and
Hasselmann [133], illustrates that (11.57, 11.58)
can be of some practical use.

Frankignoul and Hasselmann considered two
indices which are representative of the large-scale
monthly variability of sea-surface temperature
(SST) and sea-level air pressure (SLP) in the
North Pacific. The cross-correlation function
ρSST,SL P estimated from monthly mean data is
non-symmetrical with values that are essentially
zero for negative lags. Correlations for lags
between zero and about six months are positive
(Figure 11.8; closed dots connected by thin line
segments). A stochastic climate model,13 which
is slightly more complex than the simple AR(1)
process (11.53) withα1 = 5/6, was also used to
estimateρSST,SL P. The resulting cross-correlation
function (Figure 11.8; open dots connected by
heavy line segments) is similar to that computed
from the observations, and has structure similar
to that predicted by (11.57, 11.58). To a first-order
approximation, the North Pacific SST may be seen
as an integrated response to atmospheric forcing
which is independent of the SST variability.

12Some authors also use the terminnovationsto describe the
noise processes that force AR processes.

13This model is derived from a one-dimensional mixed layer
ocean model. See [10.4.3] for more discussion on stochastic
climate models.

0.6

0.4

0.2

0

-0.2

-12 -6 0 6 12

LAG (month)

C
R

O
S

S
C

O
R

R
E

L
A

T
IO

N

Figure 11.8:Estimated cross-correlation functions
ρSST,SL P between two monthly indices of the
dominant variability of SST and SLP over the
North Pacific. One estimate (closed dots connected
by a thin line) is estimated from data. A second
estimate (open dots connected by a heavy line)
is obtained from a stochastic climate model. The
SST leads for negative lags. From Frankignoul and
Hasselmann [133].

11.3.11 The Effect of Feedbacks. The contin-
uous version of an AR(1) process is a first-order
differential equation of the form14

∂Xt

∂t
= −λXt + Zt . (11.59)

Unfortunately, equation (11.59) is of limited
physical interest because the ‘forcing’Zt acts on
Xt without feedback. Frankignoul [128] added
such feedbacks by replacing (11.59) with a system
of two equations

∂Xt

∂t
= −λoXt + Zt + Nx

t (11.60)

Zt = λaXt + Nz
t (11.61)

with two white noise forcing termsNx
t and Nz

t .
For example, we could think of variableXt as
SST and variableZt as the turbulent heat flux
into the ocean (as in [11.3.4]). Then the change
in SST is influenced by its current state (i.e.,
memory, represented by the parameterλo >

0), by the instantaneous heat flux forcing, and
by some random variations. The heat flux, on
the other hand, depends on the current SST and
random noise induced by the turbulent flow of the
atmosphere.

The cross-correlation function betweenXt and
Zt depends on the value of the ‘feedback’
parameterλa. The following can be shown (cf.
[128]).

14We will avoid mathematical questions such as the
definition of continuous white noise. We use the continuous
representation for reasons of convenience, and to clarify the
underlying physics. In practice, the derivatives are replaced by
finite differences, and the problem of how to define continuous
noise, for example, disappears. A good introduction can be
found in Koopmans [229].
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• There is no feedback whenλa = 0. In this
case we get the result developed in [11.3.9]
and discussed in [11.3.10]. Cross-correlations
between SST and heat flux are zero for
negative lags and positive for lagsτ ≥ 0.

• There is anegative feedbackwhenλa < 0.
When the SST anomaly is positive (Xt > 0),
the anomalous heat flux is negative so that the
SST-tendency becomes negative (i.e.,∂Xt

∂t <

0) on average. The cross-correlation function
is anti-symmetric in this case.

• There is apositive feedbackwhenλa > 0, and
the cross-correlation function betweenXt and
Zt is positive everywhere with a maximum
near lag zero.

Thus the cross-covariance functions in Figure 11.5
suggest that, in the extratropics, the heat flux
(Z) drives the SST (X), which in turn exerts a
(small) negative feedback on the heat flux.15 In the
tropics the shape of the cross-correlation function
suggests that there is weak positive feedback.

11.3.12 Example: Ekman Veering at the
Bottom of the Ocean. Kundu [233] describes
an interesting application of acomplex cross-
correlation (at lag zero). Theoretical arguments
based on the Ekman theory for boundary layers
predict that the currents near the bottom of the
ocean will veer counter-clockwise in the Northern
Hemisphere (i.e., a current close to the bottom of
the ocean will be directed somewhat more to the
left than a current above).

Kundu [233] used a two-month long time
series of current data collected off the Oregon
(USA) coast to search for observational evidence
supporting the theory. Data from two current
meters moored 5 m and 20 m above the bottom
was first filtered to eliminate the effects of tidal
and inertial modes. The ‘veering angle’ was then
estimated from these data using three approaches.

1 The currents were averaged and the angle
spanned by the mean currents 5 m and
20 m above the bottom was computed. The
problem with this approach is that the mean
can be strongly influenced by a few large
events in the time series.

2 The angle between the currents was computed
at every observing time. These angles were

15Note, however, that the similarity of cross-correlation
functions is notproof that the proposed statistical model, say
(11.60, 11.61), is correct.

subsequently averaged. The disadvantage of
this approach is that weak currents are
associated with highly variable angles. Thus
the weak current events substantially increase
the uncertainty of the veering angle estimate.

3 The complex ‘correlation’16 between the two
complex random variablesXt = U5m(t) +
i V5m(t) andYt = U20m(t) + i V20m(t) was
estimated. For simplicity we assumeE(Xt ) =
E(Yt ) = 0. Then, the complex correlation is

ρ = E
(
XtY∗t

)
σxσy

,

where σ 2
x = E

(
XtX∗t

)
and σ 2

y is defined
similarly. The correlationρ is then written in
polar coordinates as

ρ = ei ξ R

σxσy
,

where ei ξ R is the complex covariance
E
(
XtY∗t

)
. The angleξ is used as an estimate

of the veering angle;R, σx, σy, and ξ
are estimated from the finite sample in the
usual manner by forming sums. Note that
estimate of the complex cross-covariance can
be written in the form

êi ξ R=
∑

j

ei ξ j Rj , (11.62)

where Rj is the productX j Y∗j expressed
in polar coordinate form. Thus, the veering
estimate obtained from (11.62) can be
interpreted as the mean of all observed angles
weighted by the strength of the instantaneous
flow.

Kundu [233] obtained veering estimates of 3◦
from the angle spanned by the mean currents, 7◦
from the average angle, and 6◦ from the complex
correlation.

11.4 The Cross-spectrum

11.4.0 General. The purpose of cross-spectral
analysis is to learn how the variability of two
time series is interrelated in thespectral domain—
that is, to determine the time scales on which
variability is related as well as the characteristics
of that covariation. Conceptually, we could split a

16Kundu did not really calculate the correlation; he did not
subtract the mean values.
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pair of time series into slowly and quickly varying
parts, say

Xt = X f
t + Xs

t

Yt = Y f
t + Ys

t ,

where f denotes thefast components, ands the
slowcomponents. We want to know, for example,
whether the slow components ofXt and Yt vary
together in some way. If at a certain timet there
is a ‘slow positive (negative) bump,’ is there a
characteristic time lagτ , such that, on average,
there will also be a ‘slow positive (negative) bump’
in Yt+τ? If so, the two slow components vary
‘coherently’ with a ‘phase lag’ ofτ/τs, whereτs
is the time scale of the slow variability.

Just as with spectral analysis [11.2.1], our
purpose in the next several subsections is to refine
these concepts in such a way that the nature of the
covariability of a process can be examined over a
continuum of time scales.

11.4.1 Definition: The Cross-spectrum. Let
Xt and Yt be two weakly stationary stochastic
processes with covariance functionsγxx and γyy,
and a cross-covariance functionγxy. Then the
cross-spectrum0xy is defined as the Fourier
transform ofγxy:

0xy(ω) = F
{
γxy
}
(ω)

=
∞∑

τ=−∞
γxy(τ )e

−2πi τω (11.63)

for all ω ∈ [−1/2,1/2].
The cross-spectrum is generally a complex-

valued function since the cross-covariance func-
tion is, in general, neither strictly symmetric nor
anti-symmetric.

The cross-spectrum can be represented in a
number of ways.

1 The cross-spectrum can be decomposed into
its real and imaginary parts as

0xy(ω) = 3xy(ω)+ i 9xy(ω).

The real and imaginary parts3xy and9xy

are called theco-spectrumand quadrature
spectrum17 respectively.

17Note that we define the quadrature spectrum as the
positive imaginary part of the cross-spectrum. It is also
sometimes defined as the negative imaginary part. This choice
is arbitrary, but may cause a great deal of confusion in the
definition of the frequency–wavenumber spectra, for example
(see Section 11.5).

2 The cross-spectrum can be written in polar
coordinates as

0xy(ω) = Axy(ω)ei 8xy(ω).

Then Axy and8xy are called theamplitude
spectrumand phase spectrumrespectively.
The amplitude spectrum is given by

Axy(ω) =
(
3xy(ω)

2+9xy(ω)
2)1/2.

The phase spectrum is given in three parts:

8xy(ω) = tan−1(9xy(ω)/3xy(ω)
)

(11.64)

when9xy(ω) 6= 0 and3xy(ω) 6= 0,

8xy(ω) =
{

0 if 3xy(ω) > 0
±π if 3xy(ω) < 0

(11.65)

when9xy(ω) = 0, and

8xy(ω) =
{

π/2 if 9xy(ω) > 0
−π/2 if 9xy(ω) < 0

(11.66)

when3xy(ω) = 0.

3 The (squared)coherency spectrum

κxy(ω) =
A2

xy(ω)

0xx(ω) 0yy(ω)
(11.67)

expresses the amplitude spectrum in dimen-
sionless units. It is formally similar to a con-
ventional (squared) correlation coefficient.

11.4.2 Some Properties of the Cross-spectrum.

1 The cross-spectrum is bilinear. That is, for
jointly weakly stationary processesXt , Yt ,
andZt , and arbitrary constantsα andβ,

0αx,βy+z(ω) = αβ∗0xy(ω)+ α0xz(ω).

This follows from the linearity of the Fourier
transformation and the bilinearity of the
cross-covariance function (11.44).

2 The cross-covariance function can be recov-
ered from the cross-spectrum by inverting the
Fourier transform (11.63)

γxy(τ ) =
∫ 1

2

− 1
2

0xy(ω)e
2iπτω dω.

3 It can be shown that

0≤ κxy(ω) ≤ 1.
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11.4.3 Properties of the Cross-spectrum of
Real Processes. Let Xt and Yt be a pair of
real-valued stochastic processes that are jointly
weakly stationary. Then the following additional
properties hold.

1 The co-spectrum is the Fourier transform of
the symmetric part of the cross-covariance
function,γ s

xy(τ ), and the quadrature spectrum
is the Fourier transform of the anti-symmetric
part of the cross-covariance function,γ a

xy(τ ).
That is,

3xy(ω) = γxy(0) (11.68)

+ 2
∞∑
τ=1

γ s
xy(τ ) cos(2πτω)

9xy(ω) = − 2
∞∑
τ=1

γ a
xy(τ ) sin(2πτω).

The symmetric and anti-symmetric parts of
the cross-covariance function are given by

γ s
xy(τ ) =

1

2

(
γxy(τ )+ γxy(−τ)

)
γ a

xy(τ ) =
1

2

(
γxy(τ )− γxy(−τ)

)
.

2 Therefore, the co-spectrum is symmetric

3xy(ω) = 3xy(−ω)
and the quadrature spectrum is
anti-symmetric

9xy(ω) = −9xy(−ω).
3 When the cross-covariance function is sym-

metric (i.e.,γxy = γyx), the quadrature and
phase spectra are zero for allω.

When the cross-covariance function is anti-
symmetric (i.e., γxy = −γyx), the co-
spectrum vanishes and the phase spectrum is
8xy(ω) = −π2 sgn(9xy(ω)), where sgn(·) is
the sign function.

4 The amplitude spectrum is positive and
symmetric, and the phase spectrum is anti-
symmetric, that is,

Axy(ω) = Axy(−ω) ≥ 0 (11.69)

8xy(ω) = −8xy(−ω).

5 It follows from (11.67) and (11.69) that the
coherency spectrum is symmetric,

κxy(ω) = κxy(−ω).

6 Sinceγyx(τ ) = γxy(−τ) (equation (11.42)),
we have

0yx(ω) = 0∗xy(ω), (11.70)

3yx(ω) = 3xy(ω)

9yx(ω) = −9xy(ω)

Ayx(ω) = Axy(ω)

8yx(ω) = −8xy(ω)

κyx(ω) = κyx(ω).

Thus it is sufficient to consider, and to plot, spectra
only for positiveω, if the processes are real.

11.4.4 Some Simple Examples.We described
the cross-covariance functions of a number of
simple processes in [11.3.3]. We present the cross-
spectra of these processes here.

• Yt = αXt . From (C.7) and becauseγαx,x =
αγxx (see (11.29)), the cross-spectrum is a
simple function of the spectrum ofX:

0xy(ω) = α0xx(ω) (11.71)

0yy(ω) = α20xx(ω)

3xy(ω) = α0xx(ω)

9xy(ω) = 0

Axy(ω) = α0xx(ω)

8xy(ω) = 0

κxy(ω) = 1.

These are intuitively reasonable results.
All events in the two time series occur
synchronously, thus the phase spectrum is
zero everywhere and the coherency spectrum
is one for allω.

• Recall that we also considered the slightly
more complex case in whichY is composed
of a scaled version ofX plus white noiseZ,
as

Yt = αXt + Zt .

Equations (11.30) and (11.31) show that the
cross-, co-, quadrature, amplitude, and phase
spectra are unaffected by the added noise.
However, the power spectrum ofY, and
therefore the coherency spectrum, do change.
Specifically,

0yy(ω) = α20xx(ω)+ σ 2
Z

κxy(ω) = α20xx(ω)

σ 2
Z + α20xx(ω)

< 1.
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The coherency is now less than 1 at all
time scales, indicating that knowledge of the
sequence of the events inX is no longer
enough to completely specify the sequence of
events inY. The impact of the noise is small
if its variance is small relative to that ofαXt

(and vice versa).

• When we shiftedXt by a fixed lagζ so that

Yt = Xt+ζ

we found (11.32) thatγxy(τ ) = γxx(ζ + τ).
Using (C.8), we find that

0xy(ω) = ei 2πζω0xx(ω) (11.72)

0yy(ω) = 0xx(ω)

3xy(ω) = cos(2πζω)0xx(ω)

9xy(ω) = sin(2πζω)0xx(ω)

Axy(ω) = 0xx(ω)

8xy(ω) = 2πζω

κxy(ω) = 1.

When we shiftXt a fixed number of lags we
obtain the same coherency spectrum as when
Xt is simply scaled. It is 1 for all time scales
meaning that the sequence of events inY is
completely determined byX. In contrast, the
phase spectrum has changed from being zero
for all ω to a linear function ofω. This type
of linear dependency is characteristic of shifts
that are independent of the time scale.

Note that if the processX lags the process
Y(i.e., if ζ > 0), then the phase spectrum8xy

is positivefor positive frequencies.18

• We also considered the first difference

Yt = Xt − Xt−1

that approximates a discretized time deriva-
tive. Recall from (11.35) that

γxy(τ ) = γxx(τ )− γxx(τ − 1)

γyy(τ ) = 2γxx(τ )

− (γxx(τ − 1)+ γxx(τ + 1).

18The definition of the phase is arbitrary to some extent, and
thus some care is needed. We say thatY leadsX when certain
‘events’ inY are followed by similar events inX at a later time
(i.e., Xt+ζ ≈ Yt ). With this definition, the phase difference
8yx is positive. At the same timeX lagsY, Xt ≈ Yt−ζ , and
the phase difference8xy is negative.

Figure 11.9:Spectra0xx and 0yy of an AR(1)
processXt with α = 0.3 and the differenced
processYt = Xt−Xt−1. Note that the differencing
acts as a high-pass filter.

Thus, again using (C.8),

0xy(ω) = (1− e−2π iω)0xx(ω) (11.73)

0yy(ω) = 2(1− cos(2πω))0xx(ω)

3xy(ω) = (1− cos(2πω))0xx(ω)

9xy(ω) = sin(2πω)0xx(ω)

A2
xy(ω) = 2(1− cos(2πω))0xx(ω)

2

= 0xx(ω)0yy(ω)

8xy(ω) = tan−1
( sin(2πω)

1− cos(2πω)

)
= tan−1 (cot(πω))

= π
(
ω − 1

2

)
≤ 0 forω ≥ 0

κxy(ω) = 1 forω 6= 0.

Several things can be noted here.

i) The coherency is 1 at all time scales except
0. This is reasonable since integration can
undo differentiation up to a constant.

ii) The spectrum of the differenced process
Y has more short time scale variability than
the spectrum of the original processX.
Indeed, differencing acts as a high-pass filter
that dampens long time scale variability and
eliminates the time mean (0yy(0) = 0). For
example, Figure 11.9 displays the spectrum of
an AR(1) processXt with α = 0.3 and that of
the differenced processYt = Xt − Xt−1. The
X-spectrum is ‘red’ with a maximum at zero
frequency whereas theY-spectrum is ‘blue’
with a maximum at frequency 1/2.
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iii) ‘Physical reasoning’ suggests that the
forcing should lead the response19 in the
sense that the phase lag8yx between the
‘forcing’ Y and the ‘response’X is π/2. This
is approximately the case for the long time
scales nearω = 0, since8xy(0) = −π/2.
The phase converges towards zero on shorter
time scales. This effect occurs because the
time derivative is only approximated by the
time difference, and the accuracy of this
approximation increases with the time scale.

• Now consider again process (11.37)

F(X)t =
∞∑

k=−∞
akXt+k.

which is obtained by passing a weakly
stationary stochastic process through a linear
filter. The cross-covariance function of the
two processesF(X)t andXt is (11.39)

γx,F(x)(τ ) =
∞∑

k=−∞
a∗kγxx(τ + k).

The cross-spectra are then (cf. (C.17))

0x,F(x)(ω) = F {a}∗(ω)0xx(ω)

0F(x),x(ω) = F {a}(ω)0xx(ω),
(11.74)

where F {a}(ω) is the Fourier transform
of the sequence of filter coefficients{ak :
k ∈ Z}. The examples discussed above and
in [11.4.3] can all be cast in a linear filter
format. In particular, note the following.

i) When Yt = αXt , the sequence of filter
coefficients area0 = α andak = 0 for k 6= 0.
ThusF {a}∗(ω) = ∑

k a∗ke2πikω = α for all
ω, and hence0xy(ω) = α0xx(ω).

ii) WhenYt = αXt+ζ , the filter is determined
by ak = 0 for all k 6= ζ , andaζ = 1. The
complex conjugate of the Fourier transform
of this series isF {a}∗(ω) = e2πi τω (cf.
(11.72)).

iii) When Yt = Xt − Xt−1, a0 = 1, a−1 =
−1, and ak = 0 for all k 6= 0,−1. The
complex conjugate of the Fourier transform
of this filter isF {a}∗(ω) = 1− e−2πiω (cf.
(11.73)).

19The ‘physical’ argument is as follows. Supposed X/dt =
Y whereY = Acos(ωt). ThenX = A/ω cos(ωt+8xy) where
8xy = −π2 .

• Finally, the cross-spectrum of two filtered
processesF(Xt ) andG(Yt ) is given by

0F(x)G(y) = F {a}0xyF {b}∗. (11.75)

11.4.5 The Spectrum of a Multivariate AR(p)
Process. The following general representation of
the spectrum of a multivariate AR(p) process will
be useful when describing the spectra of a bivariate
AR process. LetEXt be a weakly stationarỳ -
dimensional AR(p) process

EXt =
p∑

k=1

Ak EXt−k + EZt .

The ` × ` spectral matrix 0ExEx(ω) of EXt is
constructed by placing the power spectra of the
elements ofEXt on the diagonal and by placing
cross-spectra in the off-diagonal positions. Note
that for any two elementsXi t and X j t of EXt ,
0xi x j (ω) = 0∗x j xi

(ω) (see equation (11.70)). Thus
the matrix function0ExEx is Hermitian. It can be
shown (see Jenkins and Watts [195, p. 474]) that

0ExEx(ω) = B(ω)−10EzEz(ω)
(
B(ω)∗

)−1 (11.76)

where

B(ω) = I −
p∑

k=1

Akeik2πω

is the characteristic polynomial of the process
evaluated atei 2πω, I is the` × ` identity matrix,
and 0EzEz(ω) = ΣEz is the spectral matrix of the
multivariate white noise process that drivesEXt .
The ‘∗’ is used to denote the conjugate transpose
operation. We evaluate (11.76) for a bivariate
AR(1) process in the next subsection.

11.4.6 Cross-spectrum of a Bivariate AR(1)
Process. We assume, in the following, that the
bivariate AR(1) process(Xt ,Yt )

T (11.45) has been
transformed to coordinates in which the variance
covariance matrix of the driving noiseEZt has the
form

ΣEz = σ 2
(

1 0
0 b

)
.

For AR(1) processes, matrix functionB(ω) is
given by

B(ω) = I −Aζ
whereζ = ei 2πω. Thus, from (11.76), we see that
the spectral matrix of the process is given by

0ExEx(ω) =
σ 2

D2

(
I −A j ζ

)(1 0
0 b

) (
I −A j ζ

)∗
(11.77)
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where D is the modulus of the determinant ofB
(i.e., D = |det(B)|), andA j is the adjoint of the
coefficient matrix

A j =
(

αyy −αxy

−αyx αxx

)
.

After some manipulation, we find

D2 = 1+ (αxx + αyy)
2

+ (αxxαyy− αxyαyx)
2− 2(αxx + αyy)

× (1+ αxxαyy− αxyαyx) cos(2πω)

+ 2(αxxαyy− αxyαyx) cos(4πω).

The spectra are consequently derived from
equation (11.77) as

0xx(ω) = σ 2

D2

(
(1− αyyζ )(1− αyyζ

∗)

+ bα2
xyζ ζ

∗)
= σ 2

D2

(
1+ α2

yy+ bα2
xy

− 2αyy cos(2πω)
)
,

0yy(ω) = σ 2

D2

(
b+ bα2

xx + α2
yx

− 2bαxx cos(2πω)
)

and

0xy(ω) = σ 2

D2

(
αyxζ

∗(1− αyyζ )

+ b(1− αxxζ
∗)αxyζ

)
= σ 2

D2

(
αyxζ

∗ + bαxyζ

− (αyxαyy+ bαxxαxy)ζ ζ
∗)

= 3xy(ω)+ i 9xy(ω),

where the co-spectrum and quadrature spectrum
are given by

3xy(ω) = σ 2

D2

(
(bαxy+ αyx) cos(2πω)

− (αyxαyy+ bαxxαxy)
)

9xy(ω) = σ 2

D2
(bαxy− αyx) sin(2πω).

Note that, in all of these expressions,D2 is a
function ofω.

11.4.7 Cross-spectra of Some Special AR(1)
Processes. The spectra described above are
easily computed for a number of special AR(1)
processes, three of which are described by Luksch,
von Storch, and Hayashi [262]. These models are
briefly described here, and we revisit them in
[11.5.5], [11.5.8], and [11.5.11].

In the first of Luksch’s examples, the two
components of the AR(1) process are not
connected. Also, one process is red, and the other
is white. That is,

A =
(
α 0
0 0

)
.

ThenD2 = 1+ α2− 2α cos(2πω) and the spectra
are

0xx(ω) = σ 2/D2

= σ 2

1+ α2− 2α cos(2πω)
(11.78)

0yy(ω) = σ 2

D2
b
(
1+ α2− 2α cos(2πω)

)
= σ 2b. (11.79)

All other spectra, such as the cross-spectrum and
the coherency spectrum, are zero. The results
(11.78), (11.79) are, of course, identical to (11.22),
(11.23).

Luksch’s second example features two indepen-
dent AR(1) processes with the same parameter,
that is,

A =
(
α 0
0 α

)
,

and with noise forcing of equal variance (i.e.,b =
1). Then

D2 = 1+ 4α2+ α4− 4(1+ α2)α cos(2πω)

+ 2α2 cos(4πω)

=
(
1+ α2− 2α cos(2πω)

)2

and

0xx(ω) = σ 2

D2

(
1+ α2− 2α cos(2πω)

)
= σ 2

1+ α2− 2α cos(2πω)
= 0yy(ω).

This result is identical to (11.23) since the bivariate
process considered here is composed of two
independent but identical AR(1) processes.
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11.4.8 Cross-spectra for the POP Process.
Luksch’s third example is an AR(1) process with
a rotational parameter matrix and with noise
components of equal variance so thatb = 1. Recall
that a 2× 2 rotational parameter matrix has the
form

A = r

(
u −v
v u

)
(11.80)

whereu2+ v2 = 1 and 0< r < 1.
When matrix (11.80) is applied to a vector
Ea, it rotates that vector throughη radians into
Eb = AEa, where cos(2πη)= u. The rotated
vector is returned to its initial direction by applying
the matrix (11.80)T = 1/η times. When the
‘damping’ and the noise are switched off (i.e.,
r = 1 andσ = 0), the system oscillates with
period

T = 2π/cos−1(u)

or, equivalently, frequencyη = 1/T . Note that
η < 1/4 (and T > 4) when u is positive
and thatη > 1/4 (and T < 4) when u is
negative. The direction of rotation is determined
by v (see [11.4.9]).

The auto- and cross-covariance functions for
this process are given in [11.3.8]. The spectra are
given by

0xx(ω) = σ 2

D2

(
1+ r 2− 2ru cos(2πω)

)
= 0yy(ω)

3xy(ω) = 0 (11.81)

9xy(ω) = −2r vσ 2 sin(2πω)/D2

Axy(ω) = |9xy(ω)|

8xy(ω) =
 −π/2 if v < 0

π/2 if v > 0
undefined ifv = 0

κxy(ω) =
(

2r v sin(2πω)

1+ r 2− 2ru cos(2πω)

)2

,

where

D2 = 1+ 4r 2u2+ r 4− 4ru(1+ r 2) cos(2πω)

+2r 2 cos(4πω). (11.82)

The coherency spectrum has a maximum at

ω0 = 1

2π
cos−1

(
2ru

1+ r 2

)
.

The frequency with maximum coherency approxi-
mates the oscillation frequencyη. These frequen-
cies coincide exactly only whenu is zero. In
general, they are different because 2r/(1+r 2) < 1.

In practice, however, the oscillation frequencyη
is often diagnosed as the frequency with maximum
coherencyω0. For the POP-case we find

ω0 > η for u > 0 (η < 1/4)

ω0 < η for u < 0 (η > 1/4).

That is, the coherency maximum underestimates
the ‘deterministic period’T when the determinis-
tic frequency is low (i.e.,η < 1/4) and it overes-
timatesT for high deterministic frequencies. The
discrepancy between the deterministic period and
the frequency of maximum coherency increases as
the ‘damping’ coefficientr decreases. In the limit
asr tends to zero, the maximum of the coherency
spectrum (which is also decreasing in magnitude)
converges towards 1/4 independently of the value
of u.

Power and coherency spectra are shown in
Figure 11.10 for processes with a number of
combinations of r and u. Coherency spectra
(dashed curves) and power spectra (solid curves)
are displayed for processes with oscillation
frequenciesη = 0.050 (u = 0.95; top row) and
η = 0.315 (u= −0.4; bottom row). The location
of the deterministic periodη is indicated by the
vertical bar atη = (2π)−1 cos−1(u). The same
examples were discussed in [11.3.8].

Damping is almost absent in ther = 0.99,u =
0.95 case. The power spectrum has a pronounced
peak at η = cos(u)/2π and the coherency
spectrum peaks at about the same frequency.
Both processes have maximum ‘energy’ and vary
coherently at theT = 2π/cos−1(u) time scale.
The second example has the sameu and thus
has the same ‘period’ as the first case, namely
T ≈ 20. However, much more damping occurs
with r = 0.5. Neither spectrum has a maximum
at 2π/T . Instead the power spectrum is red with
a maximum at zero frequency, and the coherency
spectrum peaks, with a very small maximum, at
about 0.1. The strong damping almost obliterates
the connection between the two components of the
process.

The lower two panels display spectra for two
processes with a deterministic time scaleT ≈ 3.2
and slightly different damping rates. We see that
the power spectra are substantially affected by the
change in damping between the two processes but
that there are only subtle differences between the
coherency spectra. They show that the components
of these processes tend to vary coherently on a
wide range of time scales. Their maxima coincide
well with η in both cases, although agreement
is slightly better for the process with the lower
damping rate (r = 0.8).
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Figure 11.10:Power spectra0xx = 0yy (heavy line, left hand axis) and coherency spectraκxy (light
line, right hand axis) of four bivariate AR(1) processes with parameter matricesA given by (11.80). See
text for details.

11.4.9 The POP Process: The Role ofv.
Parameterv in the rotation matrixA (11.80)
determines the direction of rotation. Suppose, for
convenience, that there is no damping. When
v > 0, repeated application ofA smoothly
transforms the initial state(x, y) = (1,0) into
the state(x, y) = (0,1) in a quarter of a period
T . Continued application ofA then transforms
(x, y) = (0,1) into (x, y) = (−1,0) in the
next quarter period. Thus, for positive numbers
v, the system tends to create sequences in the
(X,Y)-space of the form

. . .→
(

1
0

)
→
(

0
1

)
→
(−1

0

)
→
(

0
−1

)
→
(

1
0

)
→
(

0
1

)
→ . . .

(11.83)

The sign of v does not affect the auto-
and coherency spectra shown in Figure 11.10.
However, the phase spectrum is affected. Whenv

is positive the phase spectrum (11.81) ispositive
(for positive frequenciesω), which is consistent
with the interpretation thatX leadsY.

The opposite interpretation holds whenv < 0:
X lagsY and the characteristic sequences are

. . .→
(

0
1

)
→
(

1
0

)
→
(

0
−1

)
→
(−1

0

)
→
(

0
1

)
→
(

1
0

)
→ . . .

(11.84)

These ideas resurface in the next section when we
deal witheastwardandwestward travelling waves.

11.5 Frequency–Wavenumber
Analysis

11.5.1 Introduction. Wave-like processes play
an important role in the dynamics of geophysical
fluids. Physical processes exhibit standing waves
with maxima, minima, and nodes at fixed
locations, propagating waves with wave crests
that move in space, and mixed forms that are a
combination of the two.

Waves are often readily described with trigono-
metric functions such that at any given timet the
wave field f (x, t) can be expanded into sines and
cosines as

f (x, t) =
∞∑

k=0

(
ckt cos

(2πkx

L

)
(11.85)

+ skt sin
(2πkx

L

))
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where L is some reference length such as the
circumference of Earth at a given latitude. The
coefficientsckt andskt are given by

ckt =
{∫ L

0 f (x, t)dx k = 0

2
∫ L

0 f (x, t) cos(2πkx
L )dx k> 0

skt =
{

0 k = 0
2
∫ L

0 f (x, t) sin(2πkx
L )dx k> 0.

Index k is known as thewavenumber. The time-
dependent coefficientsckt and skt sometimes
oscillate with a period that is conditional upon
the wavenumberk (e.g., Rossby waves). Functions
that relate the variation of the period with
the wavenumber are commonly referred to as
dispersion relations because they relate a spatial
scale, namelyL/k, to a time scale.

It is useful to look for dispersion relationships
in observed data, either to support a dynamical
theory that predicts dispersion relationships or as a
diagnostic that may ultimately lead to the detection
of wave-like dynamics.

Frequency–wavenumber analysis, orspace–
time spectral analysis, is a tool that can be used
to diagnose possible relationships between spatial
and time scales. The original concept, developed
by Deland [102] and Kao [211, 212], assumed
that the wave field evolved in a deterministic way.
Hayashi [169, 170] and Pratt [319] adapted the
method by accounting for the stochastic nature of
the analysed fields.

There are many examples of applications of
the frequency–wavenumber analysis. For example,
Hayashi and Golder [171] studied the Madden-
and-Julian Oscillation with this tool. Also, many
workers, including Fraedrich and coworkers [124,
126] and Speth, Madden, and others [353, 354,
419], have analysed the frequency-wavenumber
spectrum of the extratropical height field.

11.5.2 The Four Steps. Frequency-wavenum-
ber analysis is performed in four steps.

1 The field of interest is expanded into a series
of sine and cosine functions (11.85).

The field (e.g., an atmospheric process on
a latitude circle), is assumed to be spatially
periodic.

2 The bivariate time series, composed of
the time-dependent sine and cosine coeffi-
cientsckt andskt, is assumed to be a random
realization of a bivariate stochastic process.

The cross-spectrum of this process is esti-
mated.

3 The cross-spectrum is separated into compo-
nents representing the variance of eastward
and westward travelling waves.

The methods used to perform the separa-
tion are derived using heuristic arguments.20

The total variance is assumed to consist
of only ‘eastward’ and ‘westward travel-
ling’ variance. The total variance is split
up into equal contributions from eastward
and westward ‘travelling waves’ when the
processes are generated by white noise, or
by non-propagating features (see examples
in [11.5.5]). This seems reasonable when
there are standing features that can be thought
of as the sum of coherent waves that prop-
agate in opposite directions. However, one
might be skeptical about applying this ap-
proach to stochastic processes since white
noise, for example, does not contain ‘travel-
ling waves.’ We can live with these ambigui-
ties in the scientific lexicon if the limitations
are asserted and understood. However, use of
this slang without also presenting the caveats
leaves plenty of opportunity to misinterpret
results.

4 Additional heuristic arguments are used to
assign a part of the overall variance to
standing waves.

Pratt [319] interprets the modulus of the
difference between westward and eastward
travelling wave variance as ‘propagating var-
iance’ and labels the remainder as ‘standing
wave’ variance. With this interpretation, the
standing variance comprises all truly standing
waves plus all random fluctuations. Depend-
ing upon the sign of the difference between
the eastward and westward travelling wave
variance, the propagating variance is inter-
preted as being either purely ‘eastward’ or
‘westward’ variance.

Hayashi [170] attributes the coherent part
of the eastward and westward travelling
variance to standing waves. The incoherent
part is interpreted as eastward or westward
propagating variance. Thus the total variance
is split up into three compartments: stand-
ing waves, eastward propagating waves, and
westward propagating waves. The propagat-
ing variance is described by a two-sided

20The adjective ‘heuristic’ describes an argument that is not
rigorously logical or complete and may be supported by ad-hoc
assumptions.
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spectrum and the standing variance by a
one-sided spectrum.

Unfortunately, Hayashi’s partitioning of var-
iance from two sources, the sine and cosine
coefficient time series, into three components
is not well-defined mathematically. It is even
possible to obtain negative variances with this
partitioning under some conditions. There is
probably no universal method of partitioning
space–time variance into standing and propa-
gating components.

The expressionspace–time spectral analysis
indicates that the method requires a spectral
decomposition of the process in space, that is, the
calculation of the Fourier coefficientsckt andskt,
and a spectral decomposition of the temporal
co-variability of these coefficients. However, the
analysis is far from being symmetric in terms
of space and time. The spatial decomposition is
only geometrical in nature; there are no sampling
problems. The temporal decomposition, on the
other hand, is heavily loaded with sampling
problems and non-trivial assumptions, as we will
see in the following.

11.5.3 The Total Variance of the Waves. We
assume that the space–time stochastic process has
been been decomposed, by means of (11.85),
into sine and cosine coefficient stochastic proces-
ses Ckt and Skt. For convenience we will use
index k only when necessary for clarity. The
bivariate process formed by the sine and cosine
coefficients is denoted

EXt = (Ct ,St )
T. (11.86)

We also assume, for convenience, that the means of
the sine and cosine coefficient processes are zero
(i.e.,E(Ct ) = E(St ) = 0). Then, the total variance
of the space–time stochastic processF(x, t) at
spatial wavenumberk, sayσ 2

T , is

σ 2
T =

∫ L

0
Var

(
Ct cos(2πkx

L )+ St sin
(2πkx

L

))
dx

= E(C2
t

)∫ L

0
cos2(2πkx

L )dx

+ E(S2
t

)∫ L

0
sin2(2πkx

L )dx

+ 2E(CtSt )

∫ L

0
cos(2πkx

L ) sin(2πkx
L )dx

= Var(Ct )+ Var(St )

2
. (11.87)

Using (11.19), we see that the total variance21 at
wavenumberk can be re-expressed as

σ 2
T =

Var(Ct )+ Var(St )

2

= γcc(0)+ γss(0)

2
(11.88)

=
∫ 1

2

0
0cc(ω)+ 0ss(ω) dω.

11.5.4 The Variance of Eastward and West-
ward Propagating Waves. The next step is
to split the total variance given by (11.87) into
the contributions from eastward and westward
travelling waves, so that

σ 2
T = σ 2

E + σ 2
W,

where σ 2
E and σ 2

W represent the components
that propagate eastward (E) and westward (W)
respectively.

Formally, we write

σ 2
E = 1

2σ
2
T + R

σ 2
W = 1

2σ
2
T − R,

(11.89)

where R is currently unknown. What properties
shouldR have?

1 The westward and eastward variance should
be non-negative. Thus

|R| ≤ 1

2
σ 2

T .

2 If the bivariateEXt (11.86) contains no noise
and consists of a single, undamped, eastward
travelling wave, then all ofσ 2

T should be
attributed to the ‘eastward’ compartment.
That is, we would haveR= 1

2σ
2
T .

3 If EXt is such that the sequences of eastward
travelling waves are randomly overlaid by
noise, then only part ofσ 2

T should be
attributed to the eastward variance. The
remaining ‘unaccounted’ for variance should
be distributed evenly between the eastward
and westward component. In this caseR <
1
2σ

2
T .

4 If the components ofEXt vary in an unrelated
manner at all time scales, then there is no
preference for a direction andR= 0.

21The total variance in the field at wavenumberk is half of
the sum of the variances of the coefficients because of the way
in which coefficientsCt andSt are defined.
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Figure 11.11:A schematic diagram illustrating one
wavelength of a wave that travels eastward1/4 of
a wavelength everyζ time units.

One quantity that satisfies all of these requirements
is the integral of the quadrature spectrum over
negative frequencies,

R=
∫ 0

− 1
2

9cs(ω)dω. (11.90)

To motivate this choice forR, let us consider
what an eastward travelling wave is. Suppose that
the field f (x, t) consists of a pure cosine pattern
at time t and that, a short timeτ later, the cosine
pattern has been slightly damped and a weak sine
pattern has been added. The effect of adding the
sine pattern is that the crest of the wave moves
from thex = 0 location to some point to the right
of x = 0. If our conceptual diagram is oriented
with north at the top of the page, the wave will have
moved eastward during the interval. Eventually,
after a quarter of a period, the cosine pattern is
replaced by a sine pattern, and after half a period
the wave crest will be replaced by a trough.

When the process is stochastic, we can no longer
assume that the eastward movement is strictly
uniform or that a well-defined period exists.
However, if the waves tend to travel eastward,
a wave crest (in the form of a pure cosine; see
middle curve in Figure 11.11) will, on average,
be replaced by a pure sine after a characteristic
time ζ (upper curve in Figure 11.11). When there
are eastward propagating waves, a large positive
cosine coefficient at a given timet (the middle
curve, Figure 11.11, which is represented by
ct = 1 and st = 0) will tend to be followed
by a large positive sine coefficientζ time units
latter (upper curve, represented byct+ζ = 0
and st+ζ = 1), and will tend to have been
preceded by a large negative sine coefficientζ

time units earlier (lower curve, represented by

ct−ζ = 0 and st−ζ = −1). Thus, for small
values of τ , γcs(τ ) is positive andγcs(−τ) is
negative. For a sufficiently well-behaved process,
the quadrature spectrum9cs(ω) will be positive
for most negativeωs (cf. (11.68)) when there are
eastward travelling waves. ThereforeR is positive
andσ 2

E is greater thanσ 2
W (cf. (11.89)).

Similarly, when there are westward travelling
waves, negative sine functions will tend to replace
cosines so thatR is negative and the westward
travelling variance is larger than the eastward
travelling variance.

If the sine and cosine coefficient processes are
unrelated, then the quadrature spectrum is zero.
Thus equation (11.90) satisfies the requirements
listed above. The concept can be extended so
that the propagating variance can be attributed to
specific frequency ranges. To do that, we define the
frequency–wavenumber spectrumas

0
fw
cs (ω) = 0cc(ω)+ 0ss(ω)

2
−9cs(ω). (11.91)

This is a two-sided spectrum with different
densities for negative and positive frequencies.
Since∫ 1

2

0
0

fw
cs (ω)dω

= 1

2

∫ 1
2

0

0cc(ω)+ 0ss(ω)

2
dω −

∫ 1
2

0
9cs(ω)dω

= 1

2
σ 2

T +
∫ 0

− 1
2

9cs(ω)dω

= 1

2
σ 2

T + R

it follows from equations (11.89, 11.90) that

σ 2
E =

∫ 1
2

0
0

fw
cs (ω)dω

σ 2
W =

∫ 0

− 1
2

0
fw
cs (ω)dω.

Thus, negative frequencies represent westward
travelling waves, and positive frequencies east-
ward travelling waves.22

22Note that this convention depends upon the definitions of i)
the sign of the quadrature spectrum, ii) the variance of eastward
and westward travelling waves, iii)R, and iv) the frequency–
wavenumber spectrum. They are to some extent arbitrary.
Negative frequencies are associated with westward propagation
for the particular definitions used here. An advantage of this
convention is that the eastward travelling wave variance appears
on the right hand side of diagrams, and westward travelling
wave variance on the left (cf. Figure 11.12).
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11.5.5 Examples. We return to the three
bivariate AR(1) examples that were discussed
in [11.4.7,8]. The general representation used here
is(

C
S

)
t
= A

(
C
S

)
t−1
+ σ

(
1 0
0
√

b

)(
Zct

Zst

)
.

The first examplehas a simple AR(1) cosine
process and a white noise sine process. Thus

A =
(
α 0
0 0

)
.

We calculated the spectra needed to determine the
frequency–wavenumber spectrum in [11.4.7]. The
power spectrum ofC is a red spectrum (11.78), and
that ofS is white (11.79). The quadrature spectrum
is zero so the frequency–wavenumber spectrum,

0
fw
cs (ω) = σ 2

2

(
1

1+ α2− 2α cos(2πω)
+ b

)
,

(11.92)

is symmetric. Equal variance is attributed to
eastward and westward travelling features.

The second examplehas two unrelated red noise
processes with the same parameterα and forcing
noise of the same variance. That is

A =
(
α 0
0 α

)
andb = 1. The spectra needed to determine the
frequency–wavenumber spectrum were derived
in [11.4.7]. Since the quadrature spectrum is zero,
the frequency–wavenumber spectrum

0
fw
cs (ω) = 1

2
(0cc(ω)+ 0ss(ω)) = 0cc(ω)

is again symmetric. A preferred direction wave
propagation is not indicated.

The third example, with a rotational parameter
matrix

A = r

(
u −v
v u

)
,

is more interesting. In this case the frequency–
wavenumber spectrum

0
fw
cs (ω) = 0cc(ω) −9cs(ω)

= σ 2

D2

(
1+ r 2 (11.93)

− 2r (u cos(2πω)− v sin(2πω))
)

is not symmetric.23

23See [11.4.8] for the power and quadrature spectra.D2 is
given by (11.82).

Waves

Westward
Travelling
Waves

Eastward
Travelling

Figure 11.12: Frequency–wavenumber spectra
0

fw
cs of a bivariate process with a rotational

parameter matrix. The same examples are shown
as in Figure 11.10, namelyu = 0.95 and r =
0.99/0.50, andu = −0.4 and r = 0.8/0.7. It is
assumed thatv is negative. The ‘theoretical peak
frequencies’η = cos−1(u) = 0.315 and 0.05
are marked by thin vertical lines. Variance at
positive frequencies is interpreted as coming
from eastward travelling waves, and variance
at negative frequencies from westward travelling
waves. The right axis measures the spiky spectrum,
whereas the left axis is valid for the other three
spectra.

Depending upon the sign ofv, this process
exhibits a smooth transition either from a cosine
pattern to a sine pattern (eastward travelling
waves), or from a cosine pattern to an inverse
sine pattern (westward travelling waves). The
transition tends to occur inτ = 1

8π cos−1(u) time
steps. Sequence (11.83) shows that the eastward
motion (i.e., to the right) occurs whenv is
positive. Conversely, negativev is associated with
sequence (11.84) and westward motion.

Figure 11.12 shows frequency–wavenumber
spectra for examples with the combinations of
periods, represented byu, and damping ratesr
considered previously. This time we assumev is
negative, so we can expect westward propagation.
Indeed, we see that, except for the strongly damped
process (r = 0.5), most variance is ascribed to
westward travelling waves. The ‘theoretical’ peak
frequenciesη = 1

2π cos−1(u) are associated with
maxima in the spectra.

11.5.6 Example: A Two-sided Spectrum
of Travelling Wave Variance. Fraedrich and
Böttger [124] studied five years of daily Northern
Hemisphere winter 500 hPa geostrophic merid-
ional wind data that was derived from daily
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Figure 11.13: Two-sided spectra of travelling
wave variance of daily meridional geostrophic
wind during winter at 50◦N. The vertical
axis represents the zonal wavenumbersk =
0,1, . . . ,10. The time scale is given on the bottom
axis. The top axis gives the associated phase
velocity (see text).
From Fraedrich and B̈ottger [124].

geopotential analyses. They first calculated the
cosine and sine coefficients of the meridional wind
at 50◦N for spatial wavenumbersk, k = 0, . . . ,10.
Two-sided spectra of the travelling wave vari-
ance (11.91) (Figure 11.13) were estimated from
the cosine and sine coefficient time series.24

A few words are required about the presentation
in Figure 11.13. First, continuous contours are
used for clarity even though the frequency–
wavenumber spectrum is discrete ink. Also, for
each wavenumberk, period 1/ω can be interpreted
as aphase velocitythat expresses the rate at which
the wave crest moves. The lines of constant phase
velocities are indicated by tick marks on the upper
axis.

Most of the variance is attributed to zonal
wavenumbersk = 2, . . . ,7. The variance at
large scales (wavenumbersk = 2,3) is divided
equally between eastward and westward travelling
waves. Almost all smaller scale variability that is
characteristic for baroclinic dynamics (k ≥ 5) is
attributed to eastward travelling waves. A variance
maximum occurs along a line that corresponds
well with the theoretical dispersion line for Rossby
waves at 50◦N in a zonal mean flow of about
15 m/s [56].

11.5.7 Pratt’s Definition of Standing Wave Var-
iance Spectra. Pratt [319] tries to discriminate

24These spectral estimates are subject to uncertainty from a
number of sources, whose effects we ignore for the moment.
Spectral estimation is discussed in some detail in Sections 12.3
and 12.5.

between ‘propagating’ and ‘standing’ wave vari-
ance by arguing that a standing wave is the sum
of two waves of equal variance that propagate in
opposite directions. Motivated by this reasoning,
Pratt partitions the total varianceσ 2

T into two
symmetric spectra: one describing the distribution
of standing variance with time scale, the other
describing propagating variance. Since the spectra
are symmetric, they are defined so that the total
variance is ascribed to positive frequencies.

Thestanding wave variance spectrumis defined
as

0st
cs(ω) = 2 min

(
0

fw
cs (ω), 0

fw
cs (−ω)

)
. (11.94)

Note that0st
cs is symmetric inω.

The propagating wave variance spectrumis
defined as

0
pro
cs (ω) = max

(
0

p
cs(ω), 0

p
cs(−ω)

)
(11.95)

where

0
p
cs(ω) = 0 fw

cs (ω)− 1

2
0st

cs(ω).

This spectrum is also symmetric.
We can express these spectra in terms of

the power and quadrature spectra of the cosine
and sine coefficient processes by substituting
definition (11.91) of the frequency–wavenumber
spectrum into (11.94) and (11.95). We find that the
standing and propagating variance spectra can be
expressed as

0st
cs(ω) = 0cc(ω)+ 0ss(ω)− 2|9cs(ω)| (11.96)

and

0
pro
cs (ω) = 2|9cs(ω)| (11.97)

respectively.
Pratt uses the frequency–wavenumber spectrum

to label the propagating variance as eastward or
westward. If the frequency–wavenumber spectrum
assigns more variance to eastward than westward
travelling waves at a given frequency, the
propagating variance at that frequency is labelled
‘eastward,’ and vice versa. Equivalently, if the
quadrature spectrum at a given frequency is
positive, then the propagating variance in the
neighbourhood of that frequency is identified as
eastward.

The total standing wave varianceand the
total propagating wave varianceare the integrals
over all positive frequencies of the standing and
propagating variance spectra:

σ 2
st =

∫ 1
2

0
0st

cs(ω)dω

σ 2
pro =

∫ 1
2

0
0

pro
cs (ω)dω.
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By substituting equations (11.96) and (11.97) into
these expressions, we see that the sum of the
standing and propagating wave variance is the total
variance (11.88)

σ 2
T = σ 2

st + σ 2
pro.

While Pratt’s partitioning of variability is
intuitively pleasing, we should remember that it is
based on heuristic arguments. Therefore, as with
other aspects of the language used in frequency–
wavenumber analysis, the terms ‘standing and
propagating wave variance’ are an ambiguous
description of equations (11.94) and (11.95).
Literal interpretation of these quantities asthe
standing and propagating variance spectra can be
misleading.

11.5.8 Examples of Pratt’s Decomposition.
Recall again the three bivariate AR(1) exam-
ples developed by Ute Luksch (see [11.4.7,8]
and [11.5.5]). Since the quadrature spectrum is
zero in the first two examples, Pratt’s formalism
attributes all variance to standing waves. This
clearly makes sense in the first example because
the cosine coefficient varies dynamically and the
sine coefficient is white noise. Interpretation is a
little more difficult in the second example where
cosine and sine coefficients are independent, iden-
tically structured AR(1) processes.

The propagating and standing wave variance
spectra for Luksch’s third example, in which
the bivariate AR(1) processes have rotational
parameter matrices, are shown in Figure 11.14.
In all cases, most of the variance is attributed to
the propagating variance and only a small portion
is designated as standing variance. Except for
the u = 0.95, r = 0.5 process, the peaks in
the propagating spectra correspond well with the
theoretical rotation rate 2π/η (η is indicated by
the vertical line in the diagrams). As with the
coherency spectrum (see Figure 11.10), the peak in
the propagating spectrum whenu = 0.95,r = 0.5
occurs at a frequency greater thanη.

Note that negative values ofv were used
to compute Figure 11.14. Negativev results
in negative quadrature spectra (for positiveωs)
so that all propagating variance is attributed to
westward travelling waves.

11.5.9 Example [11.5.6] Revisited. Fraedrich
and B̈ottger [124] applied Pratt’s formalism to
time series of daily analysed 500 hPa geopotential
height during winter along the 50◦N latitude
circle. Most of the standing wave variance

u = 0.95

u = -0.4

Figure 11.14:Standing (dashed) and propagat-
ing (solid) variance spectra for a bivariate pro-
cess with rotational parameter matrix (cf. Fig-
ure 11.12). The ‘theoretical’ peak frequencyη =
1

2π cos−1(u) is represented by a vertical line.
Top: u = 0.95; r = 0.99 (left hand axis, the
propagating wave spectrum is scaled by a factor
of 0.01) andr = 0.5 (right hand axis).
Bottom: u = −0.4; r = 0.8, and r = 0.7. The
standing wave spectra can not be distinguished in
this diagram.

was estimated to occur on time scales longer
than 10 days with maximum variance for small
wavenumbers (Figure 11.15, top). The bulk of the
variance due to propagating waves, on the other
hand, was attributed to time scales of less than
10 days and baroclinic spatial scales. Almost all
variance was attributed to eastward propagating
variance (Figure 11.15, bottom). Fraedrich and
Böttger were able to relate dynamically the three
spectral maxima in Figure 11.13 to standing waves
or eastward propagating waves.

11.5.10 Hayashi’s Definition of Standing Wave
Variance. An alternative to Pratt’s approach was
offered by Hayashi [170], who defines a non-
symmetric spectrum for propagating variance, and
a symmetric spectrum for standing variance.
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In this formalism, the standing wave spectrum is
defined to be

0st
cs(ω) = C(ω)

√
0

fw
cs (ω)0

fw
cs (−ω)

with ‘coherency’

C2(ω) =
(
0cc(ω)− 0ss(ω))

2+ 4(3cs(ω)
)2(

0cc(ω)+ 0ss(ω))2− 4(9cs(ω)
)2 .

(11.98)

The propagating variance is then defined as the
remainder

0
pro
cs (ω) = 0 fw

cs (ω)− 1

2
0st

cs(|ω|). (11.99)

The total standing wave variance is defined as the
integral of the standing wave spectrum over the
positive frequencies:

σ 2
st =

∫ 1
2

0
0st

cs(ω)dω (11.100)

In contrast, the total propagating wave variance
is defined as the integral of the propagating wave
spectrum over all frequencies:

σ 2
pro =

∫ 1
2

− 1
2

0
pro
cs (ω)dω. (11.101)

Hayashi also devised a method for ascribing a
(spatial) phase to the standing wave variance at
frequencyω. For wavenumberk, the position of
the train of crests and troughs of this standing
wavenumber relative to the origin is given by

φk
cs(ω) =

1

2k
tan−1

(
23cs(ω)

0cc(ω)− 0ss(ω)

)
when both the numerator and the denomina-
tor are nonzero. When both are zero, the ‘co-
herency’ C(ω) (11.98) and the standing wave
variance are also zero, so the phase is meaningless.
When the denominator is zero (i.e.,0cc(ω) =
0ss(ω)) the phase is given by

φk
cs(ω) =

{
π
4k if 3xy(ω) > 0

− π
4k if 3xy(ω) < 0

and when the numerator is zero (i.e., when
3xy(ω) = 0), it is given by

φk
cs(ω) =

{
0 if 0cc(ω) > 0ss(ω)

π
2k if 0cc(ω) < 0ss(ω).

See [170] for details.

Figure 11.15:One-sided spectra of standing and
propagating wave variance (Pratt’s definition) of
500 hPa geopotential height during winter at50◦N
plotted as a function of zonal wavenumbersk =
1, . . . ,10 in the vertical and log ‘periods’ in the
horizontal.
Top: Propagating wave variance. Shading indi-
cates westward propagation.
Bottom: Standing wave variance.
From Fraedrich and B̈ottger [124].

We will see in the example below that Hayashi’s
method generally gives useful results. However,
from a strictly mathematical point of view, the
formalism is a not entirely satisfactory because it is
sometimes possible to obtain negative propagating
spectral densities (11.99).

11.5.11 Luksch’s Examples Revisited. To
illustrate Hayashi’s formalism we return once
more to the three examples described in [11.4.7,8],
[11.5.5], and [11.5.8].
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In the first example, the cosine coefficient
evolves as an AR(1) process with parameterα and
forcing with varianceσ 2, and the sine coefficient
evolves as white noise with variancebσ 2. Then
(cf. (11.92))

0
fw
cs (ω) = σ 2

2

( 1

D2
+ b

)
C(ω) = |1− bD2|

1+ bD2
,

with D2 = 1+α2−2α cos(2πω). D2 is symmetric
in ω so that

0st
cs(ω) = 0 fw

cs (ω)C(ω) = σ 2

2 D2
|1− bD2|.

The distribution of the total variance to
the standing wave, eastward, and westward
propagating components depends on the ra-
tio 0cc(ω)/0ss(ω) = bD2.

When 0cc(ω) = σ 2/D2 is greater than
0ss(ω) = σ 2b, that is, ifbD2 is less than 1, then

0st
cs(ω) =

σ 2

2 D2
(1− bD2)

0
pro
cs (ω) = bσ 2

φk
cs(ω) = 0.

The cosine series dominates the sine series in this
case, so setting the phase of the standing waves
to zero is reasonable. In the limit, whenb =
0, all the variance is attributed to standing wave
variance. Also, note that when the standing and
propagating spectra are integrated, as in equa-
tions (11.100, 11.101), the total propagating and
standing variance sums toσ 2

T . In the opposite case,
with the cosine coefficient spectrum smaller than
the sine coefficient spectrum, that is,bD2 is greater
than 1, we obtain

0st
cs(ω) =

σ 2

D2
(bD2− 1)

0
pro
cs (ω) = σ 2

D2

φk
cs(ω) =

π

2
.

This time the sine coefficient tends to be greater
than the cosine coefficient, and the standing wave’s
crest or trough is correctly placed atπ/2.

If the parameters of the process are such that
the cosine and sine spectra are equal at some
frequencyω0, that is,ω0 is a solution ofbD2 = 1,
then the standing wave spectral density becomes
zero atω0 and0 pro

cs (ω0) = 0 fw
cs (ω0) = bσ 2.

One final point for the example is that in all three
scenarios just discussed, the propagating variance

spectrum is an even function of frequency. Thus, in
keeping with the nature of the parameter matrixA,
variance has no preferred direction of propagation.

The second exampleconsisted of cosine and
sine coefficient processes generated by two in-
dependent AR(1) processes with identical AR
parameter and variance. Thus, the two spectra0cc

and 0ss are equal and the ‘coherency’C(ω)
vanishes so that the total variance is distributed
equally among the westward and eastward prop-
agating waves at all frequencies, as

0
pro
cs (ω) = 0 fw

cs (ω). (11.102)

The third exampleused a bivariate AR(1) pro-
cess with a rotation matrix as its parameter matrix
A. In the setup considered in [11.4.7], [11.5.5],
and [11.5.8], the white noise forcing parameterb
was set to 1, resulting in cosine and sine coefficient
processes of the same variance. In this case all
of the variance is again attributed to propagating
waves (11.102).

Whenb is not 1, the variances of the cosine and
sine coefficient processes are not equal and part
of the joint variance is attributed to standing wave
variance. In this case the frequency–wavenumber
spectrum (11.93) is given by (see Luksch et
al. [262] for details)

0
fw
cs (ω) = (1+ b)σ 2

2D2

×
(
1+ r 2− 2r (u cos(2πω)− v sin(2πω))

)
,

and the squared ‘coherency’ is

C(ω)2 =
(1− b

1+ b

)2

×
(
E − (r v)2)2+ 4

(
r v cos(2πω)− r 2uv

)2(
E + (r v)2)2− 4

(
r v sin(2πω)

)2
whereE = 1+ (ru)2− 2ru cos(2πω). The phase
(for b 6= 1) is

φk
cs(ω) =

1

2k
tan−1

(r v cos(2πω)− r 2uv

E − (r v)2
)
.

In this case, the positiveness of the propagating
variance densities (11.99) is no longer guaranteed.
For example, settingb = 0.1, ru = 0.5, r v =
−0.8 results in a small negative variance density
for the travelling waves at frequencyω = −0.17.

In summary, Hayashi’s formalism does gener-
ally yield reasonable results, but, as the previous
example illustrates, caution is advised.
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12 Estimating Covariance Functions and
Spectra

12.0.0 Overview. The purpose of this chapter
is to describe some of the methods used to
estimate the second moments, the auto- and cross-
covariance functions, and the power and cross-
spectra, of the weakly stationary ergodic processes
that were described in the previous two chapters. It
is not our intention to be exhaustive, but rather to
introduce some of the concepts associated with the
estimation problem. We leave it to the reader to
explore these concepts further in the sources that
we cite.

12.0.1 Parametric and Non-parametric Ap-
proaches. We will take one of two approaches
when inferring the properties of stochastic proces-
ses from limited observational evidence.

Parametric estimatorsassume that the observed
process is generated by a member of a spe-
cific class of processes, such as the class of
auto-regressive processes (AR processes; see Sec-
tion 10.3). Some parametric estimation techniques
further restrict the type of process considered by
adding distributional assumptions. For example, it
is often assumed that a process is normal, meaning
that all joint distributions of arbitrary numbers
of elementsXt1, . . . ,Xtn are multivariate normal.
The parameters of such a process are estimated
by finding the member of the class of models that
best fits the observational evidence. The fitting
methods, such as the method of moments, least
squares, or maximum likelihood estimation, are
the same as those used in other branches of statis-
tics. Once a model has been fitted, estimates of the
auto-covariance function and power spectrum are
obtained simply by deriving them from the fitted
process.

The fitting of auto-regressive models to ob-
served time series is discussed in Section 12.2.
Auto-regressive and maximum entropy spectral
estimation are briefly discussed in [12.3.19].

Non-parametric estimatorsmake fewer assump-
tions about the generating process. In fact, the

methods generally used in time series analysis
assume only ergodicity and weak stationarity.
Methods described in this chapter, aside from
methods that specifically assume a time-domain
model, are non-parametric.

Note that ‘non-parametric’ tends to have an
interpretation in time series analysis that is
different from that in other areas of statistics. In
other areas of statistics, non-parametric inference
methods often use exact distributional results that
are obtained through heavy reliance on sampling
assumptions, such as the assumption that the
observations are realizations of a collection of
independent and identically distributed random
variables. Time series statisticians must replace
the independence assumption with something
considerably weaker (e.g., weak stationarity and
ergodicity) and therefore can generally only appeal
to asymptotic theory when making inferences
about the characteristics of a stochastic process.

12.0.2 Outline. The second moments of an
ergodic weakly stationary process have equivalent
representations in the time (the auto-correlation
function) and frequency (the spectral density
functions) domains. We describe non-parametric
and parametric approaches to the estimation of the
auto-correlation function of a univariate process
in Sections 12.1 and 12.2, respectively. Estimation
of the corresponding spectral density function is
described in Section 12.3. In this case, most of our
effort is devoted to the non-parametric approach
(see [12.3.1–20]; we discuss the parametric
approach briefly in [12.3.21]) because the non-
parametric estimators can be coupled with an
effective asymptotic theory to make reliable
inferences about the spectrum. Similar tools
are not available with the parametric approach
to spectral estimation. The ideas discussed in
Sections 12.1 and 12.3 are extended to multivariate
processes in Section 12.4, where we briefly
describe a non-parametric estimator of the cross-
correlation function, and Section 12.5, where we

251
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describe non-parametric estimators of the cross-
spectral density functions.

12.1 Non-parametric Estimation of
the Auto-correlation Function

12.1.0 Outline. We begin by describing the
usual non-parametric product-moment estimator
of the auto-correlation function in [12.1.1]. The
bias and variance of this estimator are exam-
ined in [12.1.2], some examples are considered
in [12.1.3,4], and a simple test of the null hypoth-
esis that the observed process is white is described
in [12.1.5]. The partial auto-correlation function,
which is useful when fitting parametric models to
time series, is briefly described in [12.1.6,7].

Throughout this chapter we use the notation
x1, . . . , xT to represent a sample obtained by ob-
serving a single realization of an ergodic, weakly
stationary, stochastic process atT consecutive
times t0, t0 + 1, . . . , t0 + T − 1, beginning at
some arbitrary timet0. The corresponding random
variables will be denoted byX1, . . . ,XT . We will
also use the notationx′t = xt − x, t = 1, . . . ,T ,
to represent the time series of deviations from
the sample meanx = 1

T

∑T
t=1 xt , and we will

write X′t , t = 1, . . . ,T , and X to represent the
corresponding random variables.

12.1.1 Non-parametric Estimator. A non-
parametric estimator of the auto-correlation func-
tion ρ(τ) is given by

r (τ ) = c(τ )/c(0) (12.1)

wherec(τ ) is the sample auto-covariance function

c(τ ) = 1

T

T∑
t=|τ |+1

X′t−|τ |X
′
t . (12.2)

The sample auto-covariance function is set to zero
for |τ | ≥ T .

12.1.2 Properties of the Non-parametric
Estimator. Kendall (see Section 7.7 of [220])
shows that estimator (12.1) can have substantial
bias. In particular, ifXt is a white noise process,
the bias is

B
(
r (τ )

) ≈ −1

T
,

and whenXt is an AR(1) process with lag-1
correlation coefficientα1,

B
(
r (1)

) ≈ − 1

T
(1+ 4α1)

B
(
r (τ )

) ≈ − 1

T
(12.3)

×
(1+ α1

1− α1
(1− α|τ |1 )+ 3|τ|α|τ |1

)
|τ | > 1

Equation (12.1) is sometimes inflated by the
factor T/(T − |τ |) to adjust for bias, but this is
not generally considered helpful because it also
inflates the variability of the estimator (recall
[5.3.7] and Figure 5.3).

Bartlett [31], working under the assumption
that Xt is a stationary normal process, derived
a general asymptotic result about the variability
of r (τ ) that is useful for interpreting the sample
auto-covariance function. He showed that

Var
(
r (τ )

)≈
1

T

∞∑
`=−∞

(
ρ2(`)+ ρ(`+τ)ρ(`−τ)

− 4ρ(τ)ρ(`)ρ(`−τ)+ 2ρ2(`)ρ2(τ )
)
.

Thus, if there exists ap such thatρ(τ) is zero for
τ greater thanp, then

Var
(
r (τ )

) ≈ 1

T

(
1+ 2

p∑
`=1

ρ2(`)
)

(12.4)

for τ greater thanp. This result can be used
to conduct a rough and ready test of the null
hypothesis thatρ(τ) = 0 at each lagτ as follows.

1 Assume thatρ(`) is zero for` ≥ τ .

2 Substitute r (`), 1 ≤ ` < τ , into
approximation (12.4) to obtain̂σ 2

r (τ ), an
estimate of the variance ofr (τ ).

3 CompareZ = r (τ )/σ̂r (τ ) with the critical
values of the standard normal distribution
(Appendix D).

Summation (12.4) is usually truncated at a
‘reasonable’ number of lags, say 20–25.

We emphasize that this test is based on
asymptotic theory and thus is not exact. Also,
the user needs to be aware of the effects of
‘multiplicity.’ When the test is conducted at the 5%
significance level, rejection of the null hypothesis
should be expected at 5% of lags tested, even
when it is true at all lags. None the less, this test
does offer some guidance in the interpretation of
the auto-correlation function. Statistical packages
sometimes computêσ 2

r (τ ) for every τ > 0 and

display the approximate critical values±2̂σ 2
r (τ ) on

a graph ofr (τ ).
Bloomfield [49] points out a disadvantage of

analysing the correlation structure of a time
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series in the time domain (as opposed to in the
spectral domain, see Section 12.3): the estimated
auto-correlation function has complex correlation
structure of its own. Bartlett [31] derives the
asymptotic covariance between auto-correlation
function estimates at different lags and Box and
Jenkins [60] use this result to show that

Cov(r (τ ), r (τ + δ)) ≈ 1

T

∞∑
`=−∞

ρ(`)ρ(`+ δ).

If we have a process that is, for example, AR(1)
with parameterα1 > 0, this approximation gives

Cor(r (τ ), r (τ + δ)) ≈ αδ1

at large lagsτ . That is, the correlations between
the auto-correlation function estimates are roughly
similar to those of the process itself. Consequently,
when the process is persistent, the estimated
auto-correlation function will vary slowly around
zero even when the real auto-correlation function
has decayed away to zero, and we need to be
careful to avoid over-interpreting the estimated
auto-correlation function.

12.1.3 Example: Auto-correlation Function Es-
timates. Figure 12.1 shows some examples of
auto-correlation function estimates computed from
simulated time series of length 240. The function
displayed in the upper panel was computed from
time series generated from an AR(1) process with
parameterα1 = 0.9 (see [10.3.3]); that in the lower
panel was generated from an MA(10) process with
parametersβ1 = · · · = β10 = 1 (see [10.5.1]). The
two standard deviation critical values estimated
with (12.4) (assumingρ(τ) is zero for all nonzero
τ ) are also displayed.

As we would expect from an AR(1) process, the
estimated auto-correlation function in the upper
panel decays more or less exponentially until about
lag-15 and then varies randomly about zero at time
scales that are typical of an AR(1) process with
α1 = 0.9. As anticipated, the large lag behaviour
of the estimated auto-correlation function is quite
similar to that of the process itself (compare the
upper panel in Figure 12.1 with the time series
shown in the lower panel of Figure 10.7). Note
that the estimated auto-correlation function can
take large excursions from zero even when the real
auto-correlation function (not shown) is effectively
zero. Some of these excursions extend well beyond
the approximate critical values.
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Figure 12.1:Estimated auto-correlation functions
computed from time series of length 240. The
horizontal dashed lines indicate approximate
critical values for testing the null hypothesis that
ρ(τ) = 0 for all τ at the 5% significance level.
Top: Estimated auto-correlation function for a
time series generated from an AR(1) process with
α1 = 0.9.
Bottom: Estimated auto-correlation function for a
time series generated from an MA(10) process with
β1 = · · · = β10 = 1.

The sample auto-correlation function displayed
in the lower panel behaves somewhat differently.
It decays to zero in about 10 lags and then
varies about zero on a shorter time scale than the
auto-correlation function shown in the upper panel
(compare with the MA(10) time series shown in
the lower panel of Figure 10.15).

While the auto-correlation function estimates
are informative, it would be difficult to identify
precisely the order or type of the generating
process from only this display. We address the
problem of process identification more fully in
Section 12.2.

12.1.4 Example: Bias. An impression of the
bias of auto-correlation function estimator (12.1)
can be obtained from a small Monte Carlo
experiment (see Section 6.3). One thousand
samples of each lengthT = 15, 30, 60, and
120 were generated from AR(1) processes with
parametersα1 = 0.3, 0.6 and 0.9. Each time series
was used to estimate the auto-correlation function
at lag-1 and lag-10. The results are given in the
following tables.
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The lag-1 correlation
Sample length

α1 ρ(1) 15 30 60 120
0.3 0.3 0.16 0.23 0.27 0.28
0.6 0.6 0.36 0.47 0.54 0.57
0.9 0.9 0.54 0.72 0.81 0.86

The lag-10 correlation
Sample length

α1 ρ(10) 15 30 60 120
0.3 0.0 −0.06 −0.04 −0.03 −0.01
0.6 0.01 −0.07 −0.08 −0.05 −0.02
0.9 0.35 −0.15 −0.14 0.02 0.18

We see that the auto-correlation estimates are
negatively biased. The bias is small when the
true correlation is small but it is large when
the true correlation is large, especially when the
time series is short. The bias decreases slowly
with increasing sample size. Comparison with
Kendall’s approximation for the bias (12.3) shows
that the latter breaks down whenτ is large relative
to T , and also thatα1 affects the goodness of the
approximation.

The denominator in (12.1) is summed over more
products than the numerator, but this accounts
only for some of the bias. Inflating the estimated
correlations by multiplying withT/(T − |τ |) to
adjust for the difference in the number of products
summed does not eliminate the bias. Most of the
bias arises because it is necessary to remove the
sample mean when estimating the auto-covariance
function.

12.1.5 A Test for Serial Correlation. We
introduced the Durbin–Watson statistic (8.24)
in [8.3.16] as a regression diagnostic that is used to
check for serial correlation in regression residuals.
We mention it again here to remind readers that
it can be used in contexts other than the fitting of
regression models. The statistic

d =
∑T−1

t=1 (X
′
t+1− X′t )2∑T

t=1(X
′
t )

2

is essentially the sample variance of the first
differences of the times series divided by the
sample variance of the undifferenced time series.
Subsection [8.3.16] gives references for the
derivation of the distribution ofd under the
null hypothesis that the time series was obtained
from a white noise process. Samples taken from
white noise processes will have values ofd
near 2. Since first differencing filters out low-
frequency variability and enhances high-frequency

variability (cf. [11.4.4] and Figure 11.9), time
series from processes more persistent than white
noise will tend to have values ofd less than 2.
Samples from processes that have relatively more
high-frequency variability than white noise will
tend to have values ofd greater than 2.1

Bloomfield [49] interpretsd as an index of the
‘smoothness’ of the time series.

12.1.6 Estimating the Partial Auto-correlation
Function. The partial auto-correlation function
ατ,τ (see equation (11.13) in [11.1.10]) is
sometimes a useful aid for identifying the order
of AR model that reasonably approximates the
behaviour of a time series. In particular, ifXt is an
AR(p) process, thenατ,τ is zero for allτ greater
than p.

The partial auto-correlation function can be
estimated recursively by substituting the estimated
auto-correlation functionr (τ ) (12.1) into equa-
tions (11.12, 11.13). Box and Jenkins [60] note
that the recursion is sensitive to rounding errors,
particularly if the parameter estimates are near the
boundaries of the admissible region for weakly
stationary processes. Quenouille [326] showed that
if Xt is an AR(p) process, then

Var
(̂
ατ,τ

) ≈ 1

T
for τ > p. (12.5)

12.1.7 Example: Partial Auto-correlation Func-
tion Estimates. Partial auto-correlation function
estimates for the examples discussed in [12.1.3]
are displayed in Figure 12.2. The horizontal lines
depict the two standard deviation critical values
(12.5).

The estimated partial auto-correlation function
displayed in the upper panel is essentially zero
beyond lag-1, a characteristic that (correctly)
suggests that these time series came from an AR(1)
process.

In contrast, the estimated partial auto-
correlation shown in the lower panel is
significantly different from zero at lags 1, 2,
and 11. The estimate agrees quite well with the
theoretical partial auto-correlation function for the
MA(10) process that generated the data, which
has a sequence of damped peaks at lagsτ = 1, 11,
21, . . ..

1An AR(1) process with negative parameterα1 is an
example of a weakly stationary process with more high-
frequency variability than is expected in white noise. A time
series that has been differenced to remove trend will also show
excessive high-frequency variability.
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Figure 12.2: Estimated partial auto-correlation
functions computed from simulated time series of
length 240. Approximate critical values for testing
the null hypothesis thatαττ is zero (see equation
(12.5)) at the 5% significance level are shown as
dashed lines.
Top: Partial auto-correlation function estimated
from a time series generated from an AR(1) pro-
cess withα1 = 0.9.
Bottom: Partial auto-correlation function esti-
mated from a time series generated from an
MA(10) process withβ1 = · · · = β10 = 1.
The theoretical function is shown with solid dots
connected by broken lines.

12.2 Identifying and Fitting
Auto-regressive Models

12.2.0 Overview. We will describe two ap-
proaches that are frequently used to identify and
fit AR models to time series.

The Box–Jenkins method [60] is subjective
in nature. Diagnostic aids, such as plots of
the estimated auto-correlation function (cf. Sec-
tion 12.1) and partial auto-correlation function
(cf. [11.1.11]), and a practised eye, are used to
make a first guess at the order of AR model
to fit. The fitted model is then used to estimate
the noise time series that forced the observed
process, and the goodness-of-fit is determined
by examining the estimated noise process. This
process may be repeated several times, although
care must be taken not to overfit the time series by
choosing models with too many free parameters.
An advantage of this subjective approach is that
the analyst is closely involved with the data and is
therefore better able to judge the goodness-of-fit of
the model and the influence that idiosyncrasies in
the data have on the fit.

The other approach we will discuss uses one
of two objective order determining criteria (AIC,
developed by Akaike [6] and BIC, developed
by Swartz [360]; see [12.2.10,11]) to select the
model. These criteria use penalized measures of
the goodness-of-fit where the size of the penalty
depends upon the number of estimated parameters
in the model. The user’s connection with this
modelling process is not as close, and thus it
is possible that an inappropriate model is fitted
to a time series with some sort of pathological
behaviour. On the other hand, since these methods
are objective, they can be applied systematically
when careful hand fitting of AR models is
impractical.2

Both approaches require model fitting tools, a
topic we will not discuss exhaustively, although
[12.2.2] describes a couple common methods.
Topics that we do cover include the Yule–Walker
method and the method of maximum likelihood.

We assume, for now, that all processes are
ergodic and weakly stationary. Beran [45], Box
and Jenkins [60], Brockwell and Davis [68], and
Tong [367], amongst others, describe techniques
for identifying and fitting non-stationary and
long memory stationary processes. Huang and
North [189] and Polyak [318] are examples
of authors who describe the analysis of cyclo-
stationary processes in a climate research setting
(cf. [10.2.6]).

However, note that the non-stationary models
and methods described in the literature are often
most relevant in an econometric setting. For
example, Box and Jenkins [60] describe a class of
models calledauto-regressive integrated moving
average, or ARIMA, models. ARIMA processes
Xt are nonstationary stochastic processes that
become weakly stationary ARMA processes after
a differencing operator of some order has been
applied. That is, they are processes that have
backshift operator (cf. [10.5.5]) representation of
the form

φ(B)(1− B)dXt = θ(B)Zt (12.6)

where all the roots ofφ(B) lie outside the unit
circle. The operator(1 − B) represents the first
differencing operationXt − Xt−1. The simplest
model of this form is the random walk (cf.
equation (10.4) in [10.2.8]), which hasφ(B) =
θ(B) = 1 andd = 1. As with the random walk,
all ARIMA processes integrate noise without
forgetting any of its effects. The ARIMA class of

2For example, when fitting a univariate AR model at every
grid point of a time series of analysed fields, as in Trenberth
[369].
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models (12.6) is attractive because it provides a
method that can be used to deal with many types of
non-stationary behaviour (random walks, trends,
explosive growth, etc.) simply by repeatedly
applying the first differencing operator. Processes
that can be made stationary in this way are often
seen in the economic world (e.g., the accumulation
of money by a financial institution) but seldom
seen in the physical world except on short time
scales (e.g., the accumulation of precipitation over
short periods of time).

12.2.1 Making a First Guess of the Order. We
will illustrate the method used to make a first guess
of the order of the process with simulated time
series from known processes.

First we consider the examples presented
in [12.1.3] and [12.1.7].

Estimates of the full and partial auto-correlation
functions computed from two time series of
length 240 are shown in Figure 12.3. The
samples were taken from the AR(2) processes
with (α1, α2) = (0.9,−0.8) and (0.3,0.3)
that were discussed extensively in Chapters 10
and 11. The estimated auto-correlation functions
(upper panels) are similar to their theoretical
counterparts displayed in Figure 11.2b. The
random perturbations observed at large lags are
due to sampling variability.

Despite the similarity between the theoretical
and estimated functions, the generating processes
can not be unequivocally identified as AR(2)
processes. However, since the estimated partial
auto-correlation functions (lower panels) quickly
fall to zero after lag-2, the AR(2) model would be
a good first guess in both cases.

The second example we consider is a time series
of length 240 generated from an MA(10) process
with parametersβ1 = · · · = β10 = 1. The
full and partial auto-correlation function estimates
computed from this time series are displayed in the
lower panels of Figures 12.1 and 12.2.

This time series presents a greater challenge
than the examples discussed above. The full auto-
correlation function decays to zero more or less
exponentially, suggesting that the process may be a
low-order AR process. The partial auto-correlation
function decays to zero after two lags, suggesting
that the process is AR(2). However, there are
also partial auto-correlation estimates that are
significantly different from zero at lags 6, 10,
11, and 14. A skilled practitioner may suspect
the process to be a pure MA process because
the full auto-correlation function goes to zero
quickly and the partial auto-correlation function
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Figure 12.3:Estimated full (upper panels) and
partial (lower panels) auto-correlation functions
computed from time series of length 240 generated
from two AR(2) processes.

has rather complex behaviour. On the other hand,
our perception of Figures 12.1 and 12.2 is coloured
by our knowledge of the model that generated the
data. Making a correct first guess of the type and
order of model to fit is very difficult in this case.

12.2.2 Fitting AR Processes: the Yule–Walker
Method. We now restrict ourselves to AR
processes, both because the class of AR models
is as rich as the class of ARMA models3 and
because we do not wish to consider models whose
dynamics are forced by noise processes with
memory (cf. [10.5.4]).

The Yule–Walker estimates of the parameters
of an AR(p) process are obtained simply by
plugging values of the estimated auto-covariance
functionc(τ ) or auto-correlation functionr (τ ) into

3Note, however, that the AR approximation of a given
process may not be asparsimonious as an ARMA
approximation. See [10.5.4].
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the Yule–Walker equations (11.2) (see [11.1.6])
and solving the system for the unknown process
parameters. Thus the Yule–Walker estimates are
given by

Êα p = R−1(r (1), . . . , r (p))T
whereR is the p × p matrix with Ri j = r (|i −
j |) and Êα p is the vector of parameter estimates
(̂α1, . . . , α̂p)

T.
These parameter estimates can be used to

estimate the variance of the forcing noise, sayσ 2
Z ,

by computing

σ̂ 2
Z =

1

T

T∑
t=p+1

(x′t − α̂1x′t−1− · · · − α̂px′t−p)
2.

(12.7)

12.2.3 Example: Yule–Walker Estimates. The
Yule–Walker estimates of(α1, α2) computed
from the auto-correlation functions displayed in
Figure 12.3 and the corresponding estimates of the
noise variance are given in the following table.

Yule–Walker parameter estimates
and noise variance estimates

(0.9,−0.8) (0.3,0.3)
α̂1 0.868 0.358
α̂2 −0.784 0.308
σ̂ 2

Z 1.077 1.101

Both fitted models are close to those that generated
the data. The noise variance is only slightly
overestimated in both cases and the errors in the
parameter estimates are modest. The spectra of
the fitted processes also closely match those of
the generating processes. The first model has a
spectral maximum at a slightly higher frequency
(ω = 0.202; see [11.2.6] and (11.24)) than the
generating process (ω = 0.166). The second has a
spectral minimum atω = 0.282, which compares
well with ω = 0.278 for the generating process.

We conducted a small Monte Carlo experiment
to obtain an impression of how the bias varies
with sample size. One hundred samples of length
T = 15, 60, and 240 were generated from AR(2)
processes with parameters(α1, α2) = (0.9,−0.8)
and(0.3,0.3). Each sample was used to compute
Yule–Walker parameter estimates.

The results, given in the table below, show that
the bias is substantial when samples are very small.
The bias becomes modest for samples of moderate
length and, for these examples, becomes quite

small for samples of length 240.

The mean of 100
Yule–Walker parameter estimates

T (0.9,−0.8) (0.3,0.3)
15 (0.72,−0.63) (0.16,0.04)
60 (0.85,−0.75) (0.27,0.24)

240 (0.88,−0.78) (0.30,0.29)

Note that these results do not fully reflect the actual
properties of the Yule–Walker estimator in practice
because prior knowledge was used to choose the
order of AR process to fit.

12.2.4 Fitting AR Processes: Maximum Like-
lihood. Most statistical and scientific subroutine
packages include routines that compute maximum
likelihood estimates of AR (and ARMA) param-
eters. We therefore give a general description of
how these estimates are obtained in this subsec-
tion, and describe the estimation of their uncer-
tainty in [12.2.6]. In most climatological research
contexts, however, the Yule–Walker estimates pro-
vide close approximations to the exact maximum
likelihood estimates (MLEs). Maximum likeli-
hood estimation should be used when samples are
‘small’ or when the AR parameters are thought to
be close to the boundaries of the admissible region.
Even so, parameter estimates will be somewhat
biased, as discussed at the end of this subsection.

To simplify the discussion below we assume
that the observed process has zero mean. To keep
our notation fairly compact, we letExT be the
T-dimensional vector(x1, . . . , xT )

T that contains
the observed time series. Also, we letEXT be the
vector that contains the corresponding segment of
the stochastic process{Xt : t ∈ Z}. VectorsExp and
EX p are defined similarly.

Let {Xt : t ∈ Z} be a stationary, normally
distributed, AR(p) process that is forced by noise
with variance σ 2

Z and has parametersEαp =
(α1, . . . , αp)

T. Then the joint density function of
EXT is given by

f EXT
(ExT |Eαp, σZ) = |Mp|1/2 e−S(Eαp)/(2σ2

Z )

(2πσ 2
Z )

T/2

(12.8)

where

S(Eαp) = ExT
pMpExp

+
T∑

t=p+1

(xt − α1xt−1− · · · − αpxt−p)
2

Mp = Σ−1
p
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and whereΣp is the p× p matrix whose(i, j )th
element isγxx(|i − j |)/σ 2

Z . Note that the elements
ofMp are independent ofσ 2

Z since they describe
the auto-covariance function of an AR(p) process
forced with unit variance white noise.

The likelihood function (see [5.3.8]) is the
probability density (12.8)

L(Eαp, σZ |ExT ) = f (ExT |Eαp, σZ)

re-expressed as a function of the unknown
parameters for a fixed realizationExT of EXT .

With normal random variables it is easier to
work with the log-likelihood function because the
latter is essentially quadratic in the parameters.
Here, the log-likelihood is

l (Eαp, σZ |ExT ) = −T

2

(
ln(2π)+ ln σ 2

Z

)
+ 1

2
ln |Mp| − S(Eαp)

2σ2
Z

.

The constant ln(2π) is irrelevant to the derivation
of MLEs, so the log-likelihood function is usually
given as

l (Eαp, σZ |ExT ) = −
T ln σ 2

Z

2
+ ln |Mp|

2
− S(Eαp)

2σ2
Z

.

(12.9)

Maximum likelihood estimates are found by
setting the partial derivatives of (12.9) to zero.
Differentiating, we obtain

∂l

∂σZ
= − T

σZ
+ S(Eαp)

σ 3
Z

(12.10)

∂l

∂αk
= Mk + D1,k+1− 1

σ 2
Z

p∑
j=1

α j D j+1,k+1

for k = 1, . . . , p (12.11)

whereDi j is the sum

Di j = xi x j + · · · + xT+1− j xT+1−i

andMk is the partial derivative

Mk = ∂ ln |Mp|
2∂αk

. (12.12)

Equations (12.10) and (12.11) are not generally
used to compute maximum likelihood estimates
of the AR parameters because partial derivative
(12.12) is difficult to evaluate.

Instead, maximum likelihood estimates (MLEs)
are obtained by usingnonlinear numerical
minimization techniques to find the minimum of
−2l (Eαp, σZ |ExT ). Ingenious methods for evaluating
the log-likelihood method have been developed

so that the minimization can be done efficiently
(see Box and Jenkins [60, Chapter 7]; Ansley
and Kohn [14]; Kohn and Ansley [228]). Also,
it is difficult to constrain numerical minimization
methods to the admissible parameter region
for weakly stationary AR(p) processes. Thus
transformations are used to map the admissible
region onto the realp-dimensional vector space
(see, e.g., Jones [205]). These transformations
enforce stationarity in the fitted model by mapping
the boundaries of the admissible region to infinity.
Consequently, MLEs of AR parameters tend to
be negatively biased, particularly when the time
series comes from a process with parameters that
are close to the edge of the admissible region.
The next subsection shows, however, that the bias
of ML estimates is less than that of Yule–Walker
estimates.

12.2.5 Example: Maximum Likelihood Es-
timates. The MLEs corresponding to those
displayed in [12.2.3] are

(0.9,−0.8) (0.3,0.3)
α̂1 0.871 0.260
α̂2 −0.785 0.322
σ̂ 2

Z 0.967 1.103

Because samples are large, these estimates appear
to be only slightly different from the Yule–Walter
estimates.

However, MLEs are more than worth the effort
when samples are small. To illustrate, we repeated
the Monte Carlo experiment described in [12.2.3],
making ML estimates instead of Yule–Walker
estimates.

The mean of 100
ML parameter estimates

T (0.9,−0.8) (0.3,0.3)
15 (0.83,−0.73) (0.29,0.16)
60 (0.88,−0.78) (0.30,0.27)

240 (0.90,−0.80) (0.30,0.29)

Comparing the results in the above table with
those in [12.2.3], we see that the negative bias
of Yule–Walker estimates is reduced in all cases.
The reduction in bias is particularly dramatic when
samples are very small. In this case, the reduction
of bias does not come at the cost of increased
variability. The ML estimates have variance that is
comparable to that of the Yule–Walker estimates.
Again, be aware that these results do not fully
reflect the practical properties of the ML estimator
because we used prior knowledge to choose the
order of AR process to fit.
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12.2.6 Uncertainty of Maximum Likelihood
Parameter Estimates. Software that computes
MLEs also usually provides an estimate of
their uncertainty. These uncertainty estimates
are obtained through the use of large sample
theory that approximates distributions of the
AR parameter estimates (see, e.g., Box and
Jenkins [60, Appendix A7.5]). The final result, an
estimate of the variance-covariance matrix of the
MLEs, is

Σ̂ Êαp
= 1

T

σ̂ 2
Z

c(0)
R−1 (12.13)

wherêσ 2
Z is an estimate of the variance of the noise

process,4 c(0) is the sample variance (12.2) of the
time series,R is thep× p matrix that hasr (|i− j |)
as its (i, j )th element, andr (τ ) is the estimated
auto-correlation function (12.1).

12.2.7 Example: Uncertainty of MLEs. We
used (12.13) to estimate the standard errors and
correlation of the ML parameter estimates given
in [12.2.5]. We obtained

Σ̂ Êα2
= 0.040

(
1 −0.488

−0.488 1

)
for the sample from the process with(α1, α2) =
(0.9,−0.8) and

Σ̂ Êα2
= 0.061

(
1 −0.384

−0.384 1

)
for the sample from the process with(α1, α2) =
(0.3,0.3). Note that the elements ofÊα2, α̂1 andα̂2,
have the same estimated variance.

Approximate 95% confidence regions for
(α1, α2) can then be derived from these estimates
as follows. We assume that

Êα2 ∼ N (Eα2,Σ Êα2
).

Consequently

X = (̂Eα2− Eα2)
TΣ−1
Êα2
(̂Eα2− Eα2) ∼ χχχ2(2).

Thus an approximate 95% confidence region is
obtained by replacingΣ Êα2

with Σ̂ Êα2
and solving

(̂Eα2− Eα2)
TΣ̂
−1
Êα2
(̂Eα2− Eα2) = X0.95

where X0.95 is the 95% critical value ofχχχ2(2)
distribution (see Appendix E).

The resulting confidence regions are shown in
Figure 12.4. It is reasonable to believe that these

4This is usually provided by the ML estimation software,
but is usually also closely approximated by (12.7).
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Figure 12.4:Approximate 95% confidence regions
for (α1, α2) computed from samples of length 240
generated from AR(2) processes with(α1, α2) =
(0.9,−0.8) (solid ellipse) and (α1, α2) =
(0.3,0.3) (dashed ellipse). The triangle depicts
the right half of the admissible region for the
parameters of a stationary AR(2) process.

confidence intervals are approximately correct in
this case, since the samples are fairly large and
both ellipsoids lie well within the admissible
region for the parameters of an AR(2) process.

This is confirmed by extracting more informa-
tion from the Monte Carlo experiment described
in [12.2.5]. Each sample was used to estimate
the asymptotic standard errors ofα̂1 and α̂2 with
(12.13). The mean estimate is compared with the
actual variability of the 100 MLEs in the following
table.

The observed standard deviation of 100
ML parameter estimates compared with
the mean of 100 asymptotic estimates

(α1, α2) = (0.9,−0.8)
Observed std. dev. Mean

T α̂1 α̂2 estimate
15 0.22 0.18 0.16
60 0.087 0.078 0.080

240 0.044 0.042 0.039

(α1, α2) = (0.3,0.3)
Observed std. dev. Mean

T α̂1 α̂2 estimate
15 0.32 0.23 0.26
60 0.12 0.10 0.13

240 0.070 0.062 0.062

Only one column is used to describe the mean
asymptotic estimate of standard error since the
diagonal elements of̂Σ Êα2

are equal. The table
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shows that the large-sample theory standard
error estimator performs surprisingly well even
when samples are quite small.5 Comparable
performance can be expected when (12.13) is
applied to Yule–Walker parameter estimates.

12.2.8 Model Diagnostics. We have now
tentatively identified an AR model, estimated
its parameters and perhaps also constructed an
estimate of the uncertainty of the parameters with
(12.13). The next step is to determine whether the
model fits well. We give a very brief sketch here of
a few of the ideas involved. Box and Jenkins [60]
cover this topic in much more depth.

As with regression diagnostics (cf. [8.3.12–16]),
it is important to plot the time series itself and to
plot the estimate of the noise process

ẑt = x′t − α̂1x′t−1− · · · − α̂px′t−p (12.14)

t = p+ 1, . . . ,T.

These plots should be examined for trends,
periodicities, outliers, and other evidence that the
weak stationarity assumption has been violated.

It is also useful to overfit the model. If it is
possible to reduce substantially the estimated error
variance σ̂ 2

Z (12.7) or increase substantially the
log-likelihood (12.9) by adding additional lagged
terms to the AR model, then a higher-order model
should be considered.

The residualŝzt (12.14) should be examined
to check that they behave as white noise. They
will not, of course, do so exactly because the
residuals will only be asymptotically independent
of one another, even when the correct model
has been selected. None the less, it is useful to
compute and plot the auto-correlation function of
the estimated noise process. The standard errors
of these auto-correlations will be approximately
1/
√

T at large lags.
It is also sometimes useful to compute a

portmanteau lack-of-fit statisticsuch as

Q(K ) = (T − p)
K∑
τ=1

(
r ẑẑ(τ )

)2 (12.15)

to diagnose whether the firstK lags of the
auto-correlation function of the residuals jointly
estimate the zero function. Note thatp is the
order of the fitted model andr ẑẑ(τ ) is the
auto-correlation function of the estimated noise
process. It has been shown thatQ is distributed

5Note, however, that the Monte Carlo experiment is
conducted under ideal conditions: The process is normal and its
order is known. The performance in practice will not be quite
as good.

approximatelyχχχ2(K − p) when the correct model
has been selected,T is moderate to large, and
K is of moderate size relative toT . Statistical
packages such as S-Plus [78] sometimes plot
P(Q(k) > q(k)|H0) againstk for moderate values
of k as a diagnostic aid. Lack-of-fit is indicated
when these ‘p-values’ fall to near zero at some lag.

Are there hidden periodicities in the residuals
ẑt? Truly periodic behaviour is sometimes difficult
to detect in plots of the time series and the resid-
uals, although a plot of thenormalized cumulative
periodogramas a function of frequency is often
able to reveal such behaviour. Theperiodogram
(cf. [11.2.0] and Section 12.3) is the squared
modulus of the Fourier transform (11.16) of the
residuals

I (ω j ) = 2

T− p

(( T∑
t=p+1̂

zt cos(2πωj t)

)2

+
( T∑

t=p+1̂

zt sin(2πωj t)

)2)
(12.16)

computed at frequenciesω j = j/(T − p), j =
1, . . . , (T − p− 1)/2.6

The normalized cumulative periodogram is
computed fromI (ω j ) as

Q(ω j ) = 1

(T − p)̂σ 2
Z

j∑
i=1

I (ωi ),

where σ̂ 2
Z is the estimated variance (12.7) of

the forcing noise. When the correct model has
been chosen we expectQ(ω j ) to increase linearly
from 0 to 1 with increasingω j .7 Departures from
linearity indicate either the presence of discrete
periodic behaviour in̂zt (and henceZt ) that can
not be captured by an AR model, or the presence of
quasi-periodic behaviour that cannot be captured
by the chosen model. In the latter case, a higher-
order model may be indicated.

When̂zt is exactly white noise,8 then

K = max
j

[
max[|Q(ω j )−2ω j |, |Q(ω j )−2ω j−1|]

]
(12.17)

has the same distribution as the Kolmogorov-
Smirnov goodness-of-fit statistic (see [5.2.3]) for
the case in which the distribution is fully specified

6We have assumed, for convenience, thatT − p is odd.
7We will see in [12.3.6] that (12.16) is an estimate of the

autospectrum of̂zt . When ẑt is white, the expected value of
I (ω j ) is σ2

Z for all j .
8Even when the correct model has been chosen,ẑt behaves

as white noise only in the limit asT →∞.
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by the null hypothesis.9 Thus the critical value for
testing the null hypothesis that the spectrum ofẑt

is white at thep × 100% level isK p/

√
dT−1

2 ,
whereK p is given in the table below and where the
notationdx refers to the largest integer contained
in x.

Significance level K p

0.01 1.63
0.05 1.36
0.10 1.22
0.25 1.02

12.2.9 Example: Diagnostics. The first ex-
ample we consider is the time series of length 240
generated from an AR(2) process with parameters
(α1, α2) = (0.9,−0.8) (see also [12.2.1,3,5,7].
The full and partial auto-correlation function esti-
mates computed from this time series are shown
in Figure 12.3. Both functions show behaviour
characteristic of an AR(2) model, sop = 2 is a
good tentative choice.

Diagnostic plots of the residuals, the estimated
auto-correlation function of the residuals, and
the p-values of the portmanteau goodness-of-fit
statistic (12.15) are shown in Figure 12.5. These
plots confirm our tentative choice of model. The
auto-correlation function of the residuals (middle
panel) is essentially zero for nonzero lags, and all
p-values of the portmanteau statistic (lower panel)
are greater than the 5% critical value, which is
shown as a dashed line. The upper panel hints at
behaviour that might bear investigation if we had
fitted this model to real data; the variability of
the residuals fort = 2 to t ≈ 50 seems to be
somewhat less than that of subsequent residuals.
The cumulative periodogram of the residuals (not
shown) supports the hypothesis that the correct
model has been selected.

In our second example we deliberately fit
an AR(1) model to the AR(2) time series
to produce an extreme example of a set of
diagnostic plots (Figure 12.6) that show lack-
of-fit. The plot of the residuals reveals quasi-
periodic behaviour that has not been captured
by the fitted model. This is also revealed in the
auto-correlation function of the residuals. The
p-values of the portmanteau statistics (not shown)
are uniformly less than 0.05. In addition, the
cumulative periodogram (Figure 12.7) shows that

9We will see in [12.3.5–7] thatQ is the cumulative sum
of independent identically distributed random variables when
ẑt is white. The Kolmogorov-Smirnov statistics is written in
the same way as (12.17) except thatQ is replaced with the
empirical distribution function. The latter is also a cumulative
sum of independent identically distributed random variables.
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Figure 12.5: Plots diagnosing the goodness of a
maximum likelihood fit of an AR(2) model to a
time series of length 240 generated from and AR(2)
process with(α1, α2) = (0.9,−0.8).
Top: The residualŝzt .
Middle: The auto-correlation functionr ẑẑ(τ ) of the
residuals.
Bottom: p-values of the portmanteau statistic
q(k).

there is quasi-periodic variation at frequencies
roughly in the interval(0.1,0.2).

12.2.10 Objective Order Determination: AIC.
The Box–Jenkins method of model identification
and fitting is labour intensive: the investigator must
be actively (and skilfully) involved. This is a very
strong advantage, because such close interaction
with the data will help to identify problems with
lack-of-fit, but also a disadvantage because the
method can not be practically applied to the large
fields of time series often encountered in climate
research. Objective order determining criteria are



262 12: Estimating Covariance Functions and Spectra
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Figure 12.6:As Figure 12.5 except these plots
diagnose the lack-of-fit of an AR(1) model to the
AR(2) time series.
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Figure 12.7:The cumulative periodogram of the
residuals obtained by fitting an AR(1) model to a
time series of length 240 generated from an AR(2)
process with(α1, α2) = (0.9,−0.8). The dashed
lines indicate 5% critical values for testing that the
residuals are white.

used to circumvent this problem (see, e.g., Katz
[217]; Chu and Katz [85, 86]; Zwiers and von
Storch [453]; Zheng, Basher, and Thompson
[437]).

Two order determining criteria are commonly
used. TheAkaike information criterion(AIC; see

[6][7]) determines the order by minimizing

AICp = −2l (̂Eα p, σ̂Z |ExT )+ 2(p+ 1)

≈ T ln(̂σ 2
Z )+ 2(p+ 1)

where σ̂ 2
Z is the estimated noise variance (12.7).

In effect, the maximum log-likelihood obtained
by fitting a model of orderp is penalized by
subtracting the number of parameters that were
fitted. The order is chosen to be that which
minimizesAICp.

A heuristic way to understand how AIC works
is as follows. Suppose we have fitted a model of
order p + q and want to test the null hypothesis
H0: αp+1 = · · · = αp+q = 0, that the lastq AR
parameters are zero. H0 can be tested with the
likelihood ratio statistic

2δl = 2l (̂Eα p+q, σ̂Z |ExT )− 2l (̂Eα p, σ̂Z |ExT ),

which is asymptotically distributedχχχ2(q) under
the null hypothesis. ThusE(2δl ) ≈ 2q when H0 is
true. That is, if the true order of the AR process
is no greater thanp, then the expected change
between the log-likelihood of an AR(p) model
and an AR(p + q) model will be aboutq. The
penalty compensates for this apparent increase in
the log-likelihood.

However, the argument above also reveals a
difficulty with the AIC that has been pointed
out in the literature (see, e.g., Jones [204];
Katz [216]; Hurvich and Tsai [191]); the AIC
determined order is an inconsistent estimate of
the order of the process. Note that the variance
of δl , and hence of the AIC, does not decrease
with increasing sample size. Consequently, the
sampling variability of the AIC determined order
will not decrease with increasing sample size. In
fact, AIC tends to overestimate the order of the
process somewhat. However, these problems are
not serious in practice.

The following table gives AICs for AR models
of order 0–5 fitted with the Yule–Walker method
to our time series of length 240 generated from the
AR(2) process with(α1, α2) = (0.9,−0.8).

p versus AICp

p 0 1 2 3 4 5
AICp 313 250 23.9 25.8 26.5 28.5

The minimum AIC is indeed achieved by a model
of the correct order. The AIC is large for models
of order less than 2 and increases slowly withp
for models of order greater than 2.

We repeated this exercise 1000 times with time
series of each length 60, 120, and 240 generated
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from AR(2) processes with(α1, α2) = (0.9,−0.8)
and (0.3,0.3). The results are summarized in the
following table.

The frequency of AIC selected order
of 1000 AR(2) time series of length T

(α1, α2) = (0.9,−0.8)
Order

T 0 1 2 3 4 ≥ 5
60 0 0 736 143 46 75

120 0 0 744 120 57 79
240 0 0 742 116 62 80

(α1, α2) = (0.3,0.3)
Order

T 0 1 2 3 4 ≥ 5
60 60 220 505 101 55 59

120 1 41 715 105 58 80
240 0 1 717 111 61 111

AIC seldom underestimates the order of the pro-
cess for the larger sample sizes, at least for the
time series considered here. The tendency to over-
estimate the order appears to strengthen slightly
with increasing sample size. As anticipated, the
variability of the estimated order does not decrease
with increasing sample size.

12.2.11 Objective Order Determination: BIC.
The other order determining criterion that is often
used is theBayesian information criterion[360].
It is also developed around a test statistic, but
in a Bayesian rather than frequentist setting. The
statistic used in the development of the BIC is the
Bayes factorB(p+q),p that compares the evidence
for the model of orderp + q with that for the
model of order p. The Bayes factor is similar
to a likelihood ratio except that numerator and
denominator are average likelihoods integrated
relative to a prior distribution on the parameters of
the process. When the sample is large, the prior
distribution plays a relatively minor role in the
Bayes factor, and it can then be shown that

2 ln B(p+q),p ≈ 2δl − q ln(n).

The BIC is consequently defined as

BICp = −2l (̂Eα p, σ̂Z |ExT )+ (p+1) ln(n).

From our perspective, of course, the main
difference between the AIC and BIC is that the
penalty for using an extra parameter is much
greater with the latter. This penalty reflects a
fundamental difference between the ways in which
frequentists and Bayesians weigh evidence. These

differences are beyond the scope of this book.
Some readers may be interested in the highly
readable discussion of this subject by Raftery
[328] and discussants. Hannan [158] shows that
BIC is a consistent order determining criterion.10

The frequency of BIC selected order
of 1000 AR(2) time series of length T

(α1, α2) = (0.9,−0.8)
Order

T 0 1 2 3 4 ≥ 5
60 0 0 950 40 8 2

120 0 0 969 28 3 0
240 0 0 975 22 3 0

(α1, α2) = (0.3,0.3)
Order

T 0 1 2 3 4 ≥ 5
60 196 371 403 26 6 0

120 22 198 754 18 4 4
240 0 15 967 14 4 0

The Monte Carlo experiment described in
[12.2.10] was repeated using BIC. The results,
which are given in the table above, illustrate that
BIC tends to select more parsimonious models
(i.e., models with fewer parameters) than AIC. We
see that it generally identifies the correct order of
the process more accurately than AIC, and that
its skill improves with increasing sample size.
Overall, the BIC order estimates have much lower
bias and variability than their AIC counterparts.
We therefore recommend the use of BIC over AIC.

12.3 Estimating the Spectrum

12.3.0 Overview. We give a brief introduction to
the estimation of power spectra in this section. As
in many other parts of this book, our purpose is not
to be exhaustive but rather to give a flavour of the
reasoning and issues involved. Jenkins and Watts
[195] and Koopmans [229] give a much more
detailed and competent exposition than we do
here. Bloomfield [49] provides a very accessible
introduction to the subject.

The fundamental tool that we will use is
the periodogram.11 The connection between the
periodogram and the auto-covariance function,
the statistical properties of the periodogram, and
consequently the reasons for not using it as

10That is,E
(
( p̂B IC − p)2

)
→ 0 asT → ∞ where p̂B IC

is the order selected with BIC.
11We previously touched on the periodogram in [11.2.0] and

[12.2.8].
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an estimator of the autospectrum are discussed
first. However, we will see that, despite the
periodogram’s poor properties as a raw spectral
estimator, spectral estimators with much more
acceptable characteristics can be constructed from
the periodogram.

A pitfall that many have encountered is to
confuse harmonic analysis, the detection of
regular periodic signals, withspectral analysis,
the description of how variance is distributed as
a function of time scale in processes that do not
vary periodically. The potential for confusion is
clearly apparent from Shaw’s 1936 study [347]
that we cited in Chapter 10. The periodogram
does not have better properties when applied to
harmonic analysis than when applied to spectral
analysis, but it is truly useful as a tool for harmonic
analysis when the source of the periodicities is
clearly understood as in the analysis of tidal
variations (e.g., Zwiers and Hamilton [447]) or the
analysis of emissions from a rotating star (e.g.,
Bloomfield’s analysis of observations of a variable
star [49]).

An important historical note is that Slutsky
[351] was apparently suspicious of the way in
which some economic data were being analysed.
He showed that variance can be confined to a
narrow frequency band by passing white noise
through a series of summing filters

Yt = Zt + Zt−1

and differencing filters

Yt = Zt − Zt−1.

In fact, if white noise is passed throughm
summing filters andn differencing filters then
the output process can be shown to have spectral
density function

0yy(ω) = 2m+n+1(cosπω)2m(sinπω)2nσ 2
Z ,

which has a peak at

ω0 = cos−1
(

m− n

m+ n

)
.

In the limit, if m and n are allowed to increase
infinitely in such a way that(m − n)/(m + n)
tends to a constant, all the energy in the spectrum
is concentrated at a single frequency. Hence the
limiting process is a single sinusoid. We now
call this the Slutsky effect. Slutsky confirmed
the effect by means of a simulation. Koopmans
[229] points out that Slutsky’s result was seminal
in the development of ARMA models because
it illustrated a previously unknown mechanism

for generating quasi-periodic behaviour. The only
time series models known before this time were
combinations of simple, almost periodic functions
(such as (11.25)) and white noise residuals.

The plan for the remainder of this section is
as follows. We will explore the properties of
the periodogram in subsections [12.3.1–7]. Data
tapers, which are used to counteract problems that
arise when a process has a periodic component
or a spectrum with sharp peaks, are described
in [12.3.8]. Spectral estimators constructed from
the periodogram are covered in subsections
[12.3.9–19]. The ‘chunk’ estimator (which is also
sometimes referred to as the Bartlett estimator
[12.3.9,10]), is discussed first because it is
easily adapted to climate problems in which,
for example, a daily time series of length 90
days is observed at the same time every year.
We then go on to develop some ideas that will
help readers understand how spectral estimators
are constructed and interpreted. This is done in
subsections [12.3.11–18] by describing smoothed
periodogram estimators that are commonly used to
analyse time series that are contiguous in time (as
opposed to time series composed of a number of
disjoint chunks). Subsection [12.3.19] contains a
summary of spectral estimators constructed from
the periodogram. An example intercomparing
spectral estimators is presented in [12.3.20], and
an alternative approach to spectral estimation
is briefly discussed in [12.3.21]. The effects of
aliasingare discussed in [12.3.22].

12.3.1 The Periodogram. Let {x1, . . ., xT } be
a time series. Equation (C.1), which expands
{x1, . . . , xT } in terms of complex exponentials,
can be re-expressed in sine and cosine terms, as
in equation (11.16), as

xt = a0+
q∑

j=1

(
aj cos(2πωj t)+ bj sin(2πωj t)

)
,

(12.18)

whereq = dT
2 , ω j = j/ T , j = 1, . . . ,q, and the

notationdx indicates the largest integer contained
in x. The coefficients, given by equation (C.2), are

a0 = 1

T

T∑
t=1

xt (12.19)

and

aj = 2

T

T∑
t=1

xt cos(2πωj t) (12.20)

bj = 2

T

T∑
t=1

xt sin(2πωj t), (12.21)
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for j = 1, . . . ,q. Note that, for evenT ,

aq = 1

T

T∑
t=1

(−1)qxt , (12.22)

bq = 0. (12.23)

Thus the number of non-trivial coefficientsaj

and bj is always T . This is as it should be
since the Fourier transform is simply a coordinate
transformation in which information is neither lost
nor gained.12

The time series can be recovered by substituting
equations (12.19–12.22) into (12.18) and making
use of the following orthogonality properties of the
discretized sine and cosine functions:

a)
∑T

t=1 cos(2πωkt) cos(2πωl t) = T
2 δkl

b)
∑T

t=1 sin(2πωkt) sin(2πωl t) = T
2 δkl

c)
∑T

t=1 cos(2πωkt) sin(2πωl t) = 0,

whereδkl = 1 if k = l and 0 otherwise.
The periodogram is defined in terms of the

coefficientsaj andbj as

IT j = T

4
(a2

j + b2
j ) (12.24)

for j = −dT−1
2 , . . . , dT

2 . For negativej , aj =
a− j and bj = −b− j . We explicitly include the
subscriptT to indicate thatI is computed from a
time series of lengthT . The periodogram ordinates
IT j correspond to the Fourier frequenciesω j and
are sometimes referred to asintensities.

Note that the periodogram is symmetric in the
Fourier frequenciesω j (except forωq with even
T) just as the spectral density function0(ω)
is symmetric. In fact, we show in [12.3.6] that
the periodogram is an asymptotically unbiased
estimator of the spectral density. However, we first
examine some other properties of the periodogram.

12.3.2 The Periodogram Distributes the
Sample Variance. The intensities are interesting
since they partition thesample varianceinto q
components.

The argument goes as follows. Assume, for
simplicity, thatT is odd. Also assume that the time
seriesx1, . . . , xT was obtained by observing an
ergodic weakly stationary process. Then a natural,
but slightly biased, estimator of the variance ofXT

is

V̂ar(Xt ) = 1

T

T∑
t=1

(xt − x)2

12Note that equations (12.19)–(12.21) describe the Fourier
transform of the infinite time series{zt : t ∈ Z} defined by
zt = xt for t = 1, . . . , T andzt = 0 otherwise.

wherex is the sample mean. Now for notational
convenience, letcjt = cos(2πω j t) and define
sjt similarly. Then, by applying the orthogonality
properties of the discretized sine and cosine, we
obtain

TV̂ar(Xt ) =
∑

t (xt − a0)
2

=∑t

(∑
j aj cj t + bj sjt

)2
=∑t

(∑
j a2

j (cjt )
2+ b2

j (sjt )
2

+∑i 6= j ai bj cit sj t
)

=∑ j a2
j

∑
t (cjt )

2+∑ j b2
j

∑
t (sjt )

2+ 0

= T
2

∑
j (a

2
j + b2

j )

= 2
∑

j IT j .

Summations with respect toi and j are taken only
over i, j = 1, . . . ,q whereq = dT

2 .
Thus whenT is odd, the periodogram partitions

the sample variance intoq components as

V̂ar(Xt ) = 2

T

q∑
j=1

IT j .

WhenT is even, the decomposition is

V̂ar(Xt ) = 2

T

q−1∑
j=1

IT j + 1

T
IT q.

12.3.3 The Periodogram Carries the Same
Information as the Sample Auto-covariance
Function. The periodogram is the Fourier trans-
form of the estimated auto-covariance function
evaluated at the Fourier frequenciesω j .

To show this, it is convenient to replace the
sine and cosine transforms used above with the
complex exponential representation of the Fourier
transform:

IT j = T

4
|zT j |2

where

zT j = 2

T

T∑
t=1

xt e−2π i ω j t

= aj − i b j . (12.25)

With this representation, it is easily shown that
the periodogram (12.24) is the Fourier transform
of the estimated auto-covariance function (12.2).
First replacext in equations (12.25) withxt − x
and then substitute (12.25) into equation (12.24)
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to obtain

IT j = T

4
|zT j |2

= 1

T

(∑
t

(xt−x)e−2πiω j t
)

×
(∑

s

(xs−x)e+2πiω j s
)

=
T−1∑

τ=−(T−1)

1

T

( ∑
t−s=τ

(xt−x)(xs−x)
)

× e−2πiω j τ

=
∞∑

τ=−∞
c(τ )e−2π iω j τ . (12.26)

for nonzeroj and wherec(τ ) is zero for|τ | greater
thanT − 1.

12.3.4 The Covariance Structure of the Fourier
Coefficients ZT j . We next derive the covariance
structure of the Fourier coefficientsZT j . The
main result, (12.28), is used in [12.3.5,6] to show
that the periodogram ordinates are asymptotically
unbiased estimators of the spectral density and also
to show that they are asymptotically uncorrelated.

To simplify our derivation we will assume
that x1, . . . , xT come from a zero mean, ergodic,
weakly stationary process so that the auto-
covariance function can be estimated as

c(τ ) = 1

T

T∑
t=τ+1

xtxt−τ . (12.27)

The ergodicity assumption is particularly impor-
tant because it assures us that estimators such as
(12.27) are consistent.

Let E jk = E
(
ZT j Z∗T k

)
. The first step towards

understanding the structure of covarianceE jk is
to expand the random coefficientsZT j and then
exchange expectation and summation operators:

E jk = 4

T2
E
([∑

t Xt e−2πiω j t
]

× [∑s Xse2πiωks
])

= 4

T2

∑
t
∑

sE(XtXs)e−2πi (ω j t−ωks)

= 4

T2

∑
t
∑

s γ (t − s)e−2πi (ω j t−ωks).

The next step is to replaceγ (τ) with its Fourier
transform:

E jk = 4

T2

∑
t

∑
s

∫ 1
2

− 1
2

0(ω)e2πiω(t−s)

× e−2πi (ω j t−ωks) dω.
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Figure 12.8:Window functionHT (12.29) dis-
played forT = 10 (dashed curve) andT = 50
(solid curve).

Finally the summation and integration operations
are interchanged, and the summation is performed
to obtain

E jk = 4

T2

∫ 1
2

− 1
2

0(ω)HT (ω−ω j )e
(T+1)πi (ω−ω j )

× HT (ω−ωk)e−(T+1)πi (ω−ωk) dω

(12.28)

where

HT (ω) = sin(Tπω)/ sin(πω)

= e−(T+1)πiω/2
T∑

t=1

e2πiωt .

(12.29)

Equation (12.28) links the covariance structure
of the Fourier coefficientsZT j to the spectral
density function0(ω) of the process through the
window functionHT (ω) given by equation (12.29).
Figure 12.8 showsHT for T = 10 and T =
50. Note that, asT increases,HT develops into
a function with a narrow central spike of height
T and width 1/ T and with side lobes that are
separated by zeros at±1/T,±2/T, . . ..

12.3.5 The Periodogram Ordinates are Asymp-
totically Uncorrelated. For fixed j andk and in-
creasingT , the windowsHT (ω − ω j ) andHT (ω−
ωk) tend to narrow into adjacent spikes. Therefore,
since 0(ω) is continuous, we can approximate
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(12.28) for moderate to largeT , as

E jk = 4

T2
0

(
ω j + ωk

2

)
e(T+1)π i (ωk−ω j )

×
∫ 1

2

− 1
2

HT (ω−ω j )HT (ω−ωk)dω. (12.30)

Consequently,

E jk = E
(
ZT j Z∗T k

) ≈ 0 for j 6= k.

That is, the Fourier coefficients, and therefore
the periodogram ordinatesIT j , are approximately
uncorrelated.

12.3.6 What does the Periodogram Estimate?
Continuing on from (12.30), we see that

E
(|ZT j |2

) ≈ 4

T2
0(ω j )

∫ 1
2

− 1
2

HT (ω − ω j )
2 dω

= 4

T
0(ω j ).

Consequently

E
(
IT j
) ≈ 0(ω j ).

That is, the j th periodogram ordinateIT j is an
asymptotically unbiased estimator of the spectral
density at frequencyω j .13

12.3.7 The Distribution of the Periodogram.
We need to know the distribution of an estimator
to understand its properties and to use it for
making inferences about the true spectrum by
constructing confidence intervals and developing
testing procedures.

Initially, the periodogram would appear to be
a reasonable estimator of the spectrum, since
it is nearly unbiased and estimates at adjacent
frequencies are nearly uncorrelated. However, as
we have seen before, unbiasedness is only one
attribute of a good estimator. Efficiency and
consistency (i.e., low variance that decreases with
increasing sample size) are also very desirable
attributes. Unfortunately, the periodogram lacks
both of these properties.

When {Xt : t ∈ Z} is an ergodic, weakly
stationary process, the periodogram ordinates are
asymptotically proportional to independentχχχ2(2)

13WhenXt is a white noise process, it is easily shown that the
periodogram ordinateIT j is an unbiased estimator of0(ω j ) =
Var(Xt ), regardless of sample size.

random variables. In particular, it can be shown
(see, e.g., Brockwell and Davis [68, p. 347]) that

IT j ∼


0(0)χχχ2(1) j = 0

0(ω j )

2 χχχ2(2) 1≤ j ≤ dT−1
2

0(1/2)χχχ2(1) j = T
2 if T is even.

(12.31)

Equation (12.31) clearly illustrates why the
periodogram is such a poor spectral estimator.
Although it is asymptotically unbiased, it is not
consistent: its variance does not decrease with
increasing sample length.

This is illustrated in the upper two panels
of Figure 12.9, which shows two periodograms
computed from time series of lengthT = 120 and
T = 240 generated from a unit variance white
noise process. Both periodograms vary randomly
about the true spectrum. Both are equally rough
and have peaks scattered randomly amongst
the Fourier frequencies. Doubling the sample
length has not produced a smoother estimate
of the spectrum; rather, it has produced almost
independent spectral estimates at twice as many
frequencies. It is this property of the periodogram,
its ability to extract increasing amounts of roughly
independent information about the spectrum with
increasing sample length, that is exploited by
the spectral estimators described in the following
subsections.

The third panel in Figure 12.9 shows the
periodogram, computed from our now familiar
AR(2) time series, on thedecibel scale.14 The
amplitude of the variations in the periodogram
reflects the magnitude of the underlying spectrum,
but the periodogram itself is at best a poor
estimator of the spectrum.

One other comment about equation (12.31) is
in order. The statement forj = 0 applies in the
present circumstances because we assumed that
the process has mean zero and therefore did not
bother to remove the sample mean from the data.
In fact, the j = 0 statement means that, with the
assumptions we have made,

X ∼ N (0, 1
T 0(0)).

In general, the mean of a time series taken
from an ergodic weakly stationary process will
asymptotically be a normal random variable with
mean µX and variance 1

T 0(0). However, the
periodogram can not be used to estimate0(0).
Ordinarily IT,0 = 0, since the sample mean

14That is, we plotω j versus 10 log10(IT j ). See [11.2.13] for
a discussion of plotting formats.
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Figure 12.9:Periodograms computed from three
simulated time series. The dashed line shows the
true spectral density.
Top: The periodogram of a white noise time series
of lengthT = 120.
Middle: The periodogram of a white noise time
series of lengthT = 240.
Bottom: The periodogram of a time series of length
T = 240 generated from the AR(2) process with
(α1, α2) = (0.9,−0.8). For this panel only, the
periodogram is plotted on thedecibelscale (i.e.,
ω j versus10 log10(IT j )).

is subtracted from the time series before the
periodogram is computed. When this is not true,
IT,0 is completely confounded with the sample

mean sinceIT,0 = T X
2
. The zero frequency

periodogram ordinate is therefore useless as an
estimator of the variance of the sample mean.
Many people have considered the problem of
estimating the variance of the sample mean
including Madden [263], Thiébaux and Zwiers
[363], Zwiers and von Storch [454], and Wilks
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Figure 12.10:The periodogram of a time series of
length 240 generated from processYt = Xt +
10 sin(2π0.3162t+ 0.5763)whereXt is an AR(2)
process with(α1, α2) = (0.3,0.3). The continuous
part of the true spectrum ofYt is depicted by the
dashed curve. The true spectrum ofYt also has a
spectral line atω = 0.3162, which is not shown.

[423]. The problem is discussed in some detail in
Section 6.6.

12.3.8 Tapering the Data. While the peri-
odogram is asymptotically an unbiased estimate
of the spectral density, it can have poor bias
properties for finite samples if the spectrum is not
very smooth or if periodic components cause lines
in the spectrum (see [11.2.8]).

Equation (12.30) suggests how problems can
arise. It gives the expectation ofIT j as

E
(
IT j
) = 4

T2

∫ 1
2

− 1
2

HT (ω − ω j )
20(ω)dω.

(12.32)

When 0(ω) is not smooth or when the spectral
density has a line, there can be substantialvariance
leakagethrough the side lobes of spectral window
H2

T (see Figure 12.8).
The problem is illustrated in Figure 12.10. It

shows the periodogram of a time series of length
240 generated from process

Yt = Xt + 10 sin(2π0.3162t+ 0.5763)

where Xt is an AR(2) process with(α1, α2) =
(0.3,0.3). The spectral density function of process
Yt , which is depicted by the dashed curve, has a
spectral line at frequencyω = 0.3162. Instead
of being nearly unbiased as in Figure 12.9, the
periodogram now has substantial bias in a wide
band centred onω = 0.3162 which is caused
by variance leakage through the side lobes of the
spectral windowH2

T .
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Figure 12.11:Characteristics of some popular
data tapers.
Left: The box car (solid), Hanning (dots) and split
cosine bell (dashed) data windows for a time series
of lengthT = 50. The split cosine bell usesm =
T/4 so that 25% of the data are tapered at each
end of the time series.
Right: Corresponding window functions.

The problem is a side effect of the finite Fourier
transform, which essentially operates on an infinite
series that is abruptly ‘turned on’ att = 1 and
abruptly ‘turned off’ again beyondt = T . That
is, the observed time series can be thought of as
the product of the infinite series{xt : t ∈ Z} and a
data window

ht =
{

1 if 1 ≤ t ≤ T
0 otherwise.

This data window is sometimes called thebox
car taper. The result is that the periodogram is
an unbiased estimator of the convolution of the
true spectrum0(ω) with the square of the Fourier
transformHT of the data window (12.32). The data
window ht and corresponding spectral window
function H2

T are shown as the solid curves in
Figure 12.11.

The large side lobes ofH2
T can be reduced by

using a data window or data taper that turns on
and off more smoothly. Frequently used tapers are
the Hanningor cosine belltaper that has nonzero
weights

ht = 1

2

(
1− cos

( (2t − 1)π

T

))
, 1≤ t ≤ T,

and the split cosine bell that has weights

ht =



1
2

(
1− cos

(
(2t−1)π

2m

))
if 1 ≤ t ≤ m

1 if m+1≤ t ≤ T−m

1
2

(
1− cos

(
(2T−2t+1)π

m

))
if T−m+1≤ t ≤ T.

The number of non-unit weights 2m is typically
chosen so that 10%–20% of the data are tapered.
The window function corresponding to a data taper
{ht : t = 1, . . . , T} is15

H(ω) = e−(T+1)2π i /2
T∑

t=1

hte
2π i t .

The Hanning taper has very strongly reduced side
lobes (see Figure 12.11). The split cosine bell taper
has side lobes that are intermediate between those
of the box car and Hanning tapers.

Equation (12.32) shows us that tapering induces
bias in the periodogram if the weights are not
suitably normalized. Dividing the periodogram by

U2 = 1

T

T∑
t=1

h2
t (12.33)

ensures that the result is an approximately
unbiased estimator of the spectrum.

Split cosine bell tapers withm = T/4 and
T/2 were applied to the simulated data used
to produce Figure 12.10. The effectiveness of
tapering in reducing the effects of variance leakage
can be seen in Figure 12.12 where we show the
periodogram (scaled by 1/U2; see (12.33)) of the
tapered data. We see that spectral line appears as
a narrow peak with increasingm as the amount of
leakage decreases.

There are some costs to pay for reducing
variance leakage by means of tapering. Smooth
tapers have squared window functions with
wider central peaks than the box car taper (see
Figure 12.11). Thus, while contamination of the
periodogram from remote frequencies is reduced,
information from adjacent frequencies tends to
be ‘smeared’ together making it more difficult
to discriminate between adjacent spectral peaks
and lines in the sample spectrum. Also, while
the asymptotic properties of the periodogram
described above still hold, larger samples are
needed to achieve distributional approximations of
the same quality when the data are tapered.

15It is easily shown that the window function for the Hanning
taper is given byH H

T (ω) = (HT (ω − π/ T) + 2HT (ω) +
HT (ω+π/ T))/4. The Hanning taper is thus constructed so that
side lobes are destroyed by destructive interference. Bloomfield
[49] gives details.



270 12: Estimating Covariance Functions and Spectra

Frequency
0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

Frequency
0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
10

Figure 12.12: As Figure 12.10, except the
periodogram has been computed after tapering
with a split cosine bell.
Top:m= T/4.
Bottom:m= T/2.

12.3.9 The ‘Chunk’ Spectral Estimator:
General. A spectral estimator frequently used
in climatology is the ‘chunk’ estimator, first
described by Bartlett [33] in 1948.16 The idea
is to divide the time series into a number of
chunks of equal length, compute the periodogram
of each chunk, and then estimate the spectrum by
averaging the periodograms.

This estimator is frequently used in climatology
because of the cyclo-stationary nature of the
processes that are analysed. Typically, the annual
cycle is removed from daily observations and it
is then assumed that the remaining deviations are
roughly stationary within a given season (e.g.,
DJF).17 This yields one natural, disjoint chunk per
year, of about 90 days in length.

A pleasing property of the chunk estimator is
that its variance goes to zero as 1/m wherem is
the number of years in the data set.

A difficulty with the chunk estimator is that its
bias is determined by the chunk length. In fact,
the expectation of the chunk estimator is given
by equation (12.32) whenT is set to the chunk

16We use the expression ‘chunk’ estimator to avoid
confusion with another estimator (described in [12.3.16]) that
statisticians and statistical packages frequently refer to as the
Bartlett estimator.

17While this assumption is never strictly correct, it is often
accurate enough to allow use of the chunk estimator.

length. Since we generally have little control over
the chunk length in climatological applications,
little can be done to reduce bias. Fortunately, in
most applications the true spectrum is smooth and
bias is therefore not a big issue.

Variance leakage from spectral lines is a
potential problem in high-frequency data sets that
resolve, for example, the diurnal cycle or semi-
diurnal tidal signals. In this case each chunk can be
tapered (cf. [12.3.8]) separately to control variance
leakage, or, if the frequency and shape of the signal
are known, it can be removed before performing
the spectral analysis.

12.3.10 The ‘Chunk’ Spectral Estimator: De-
tails. We assume, for consistency with spectral
estimators described later in this section, that we
have a single, contiguous time seriesx1, . . . , xT of
lengthT . The chunk estimator is then computed as
follows.

1 Divide the time series intom chunks of length
M = d T

m.

2 Compute a periodogram

I (`)T j , j = 0, . . . ,q, q = dM
2

from each chunk̀ = 1, . . . ,m.

3 Estimate the spectrum by averaging the
periodograms:

0̂(ω j ) = 1

m

m∑
`=1

I (`)T j . (12.34)

The result is an estimator with approximately
2m degrees of freedom at each frequencyω j

(except 0 and 1/2). The estimate at each frequency
is representative of a spectralbandwidth of
approximately 1/M . Using (12.31), it is easily
shown that

0̂(ω j ) ∼


0(0)

m χχχ2(m) j =0

0(ω j )

2m χχχ2(2m) 1≤ j ≤dM−1
2

0(1/2)
m χχχ2(m) j = M

2 (M even).

(12.35)

This estimator can be made consistent and
asymptotically unbiased when the time series is
contiguous by ensuring that both the number of
chunksm and the chunk lengthM increase with
increasing sample length.

We can construct an asymptotic̃p × 100%
confidence interval (see Section 5.4) for0(ω j )
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from the chunk estimator as follows. Equation
(12.35) says that asymptotically

2m0̂(ω j )

0(ω j )
∼ χχχ2(2m).

Therefore

p̃ ≈ P
(
a ≤ 2m0̂(ω j )

0(ω j )
≤ b

)
(12.36)

= P
(2m0̂(ω j )

b
≤ 0(ω j ) ≤ 2m0̂(ω j )

a

)
where a and b are the (1 − p̃)/2 and (1 +
p̃)/2 critical values of theχχχ2(2m) distribution
(see Appendix E). The width of this interval can
be made independent of the spectral estimate
by taking logs. Re-expressed in this way, the
approximatẽp× 100% confidence interval is

log
(2m

b

)
+log

(
0̂(ω j )

)
(12.37)

≤ log
(
0(ω j )

) ≤ log
(2m

a

)
+log

(
0̂(ω j )

)
.

Remember that it is theend pointsof this interval
that are random. For every 100 independent
interval estimates that are made, the interval is
expected tocoverthe true parameter̃p×100 times,
on average.

12.3.11 The Daniell Spectral Estimator. We
develop a number ofsmoothed spectral estimators
in the following subsections and show how the user
can determine their properties by controlling either
aspectral windowor alag window. The estimators
are typically applied to contiguous time series, but
can also be applied to individual chunks and then
averaged, as with the chunk estimator. A summary
is available in [12.3.19].

The results of [12.3.7] suggest a natural way to
reduce the variance of the periodogram, namely
to smooth it, an idea that was first proposed
by Daniell [99]. The simplest of all smoothed
periodogram spectral estimators, which carries
Daniell’s name, is just a moving average of the
periodogram ordinatesIT j . Given an odd integer
n such that 1≤ n ≤ q, the Daniell estimator is18

0̂(ω j ) = 1

n

j+(n−1)/2∑
k= j−(n−1)/2

IT k. (12.38)

18The Daniell estimator is defined here as the average of an
odd number of periodogram ordinates. It can also be defined
as the average of an even number of periodogram ordinates,
in which case the estimates should be thought of as being
representative of the frequencies midway between adjacent
Fourier frequencies.

The asymptotic properties of the periodogram
can be extended to the Daniell estimator ifn is
small relative toT and if the spectral density
function is smooth enough so that it is roughly
constant in every frequency interval of length
n/ T . Under these conditions it can be shown that
the Daniell estimator has the following properties
for frequencies(n + 1)/2T ≤ ω j ≤ (2q −
n)/2T :19

1 The Daniell estimator is asymptotically
unbiased. That is,

E
(
0̂(ω j )

) ≈ 0(ω j ).

2 Var
(
0̂(ω j )

) ≈ (1/2n)
(
0(ω j )

)2
.

Therefore, the Daniell estimator can be made
consistent by lettingn tend to infinity asT
tends to infinity in such a way thatn/ T → 0.

3 Cov
(
0̂(ω j ), 0̂(ωk)

) ≈{ n−| j−k|
n2 0(ω j )0(ωk) | j − k| ≤ n

0 otherwise.

That is,0̂(ω j ) and0̂(ωk) are approximately
uncorrelated if frequenciesω j and ωk are
separated by abandwidthn/ T or more.

4 0̂(ω j ) ∼ 0(ω j )

2n
χχχ2(2n).

This last property allows us to construct
asymptotic confidence intervals for the spectral
density. Proceeding in the same way as we did with
the chunk estimator, the approximatep̃ × 100%
confidence interval for0(ω j ) is given by

log
(2n

b

)
+log(0̂(ω j ))

≤ log(0(ω j )) ≤ log
(2n

a

)
+log(0̂(ω j ))

where a and b are the (1 − p̃)/2 and (1 +
p̃/2) critical values of theχχχ2(2n) distribution (see
Appendix E).

12.3.12 Bias Versus Variance. Although the
Daniell estimator has nice asymptotic properties
(cf. [12.3.11]), tradeoffs must be made between
bias and variance (see [5.3.7] and Figure 5.3) when
samples are finite.

19Similar results can be obtained for frequenciesj/ T , j =
1, . . . , (n−1)/2 and j = ((2q−n+1)/2T), . . . ,q/ T , where
q = dT/2.
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Figure 12.13:Daniell estimates computed from the
periodogram in the lower panel of Figure 12.9
and plotted on the decibel scale. The cross in
the upper right corner indicates the width of the
95% confidence interval (vertical bar) and the
bandwidth (horizontal bar).

Figure 12.13 shows spectral estimates computed
from the periodogram displayed in the lower
panel of Figure 12.9 using the Daniell estimator
with n = 11, 21, and 41. The dashed curve
shows the spectral density that these estimators
are trying to approximate. The Daniell estimator
with n = 11, which has a bandwidth of about
0.046, is quite smooth in comparison with the
periodogram (Figure 12.9) and yet is nearly
unbiased. The true spectral density generally lies
within the approximate 95% confidence interval.
The estimators withn = 21 (bandwidth 0.088)
and n = 41 (bandwidth 0.17) do not capture
the spectral peak well because they smooth the
periodogram excessively.

There is not a correct choice of bandwidth.
In this example a bandwidth of 0.17 induces

substantial bias at frequencies near the spectral
peak by spreading and flattening the peak.
However, when the true spectrum has no large
peaks, a bandwidth this large may induce very
little bias. Since we generally know little about
the features of the true spectrum, balancing bias
and variance in spectral estimation is a matter of
subjective judgement.

12.3.13 An Alternative Representation of
the Daniell Spectral Estimator. The Daniell
estimator (cf. [12.3.9] and (12.38)) can be
re-expressed as the convolution between the
periodogram and a box car shapedspectral
window

0̂(ω j ) =
q∑

k=−q

WD(ωk − ω j ;n, T)IT k (12.39)

where the spectral window is given by

WD(ω;n, T) =
{

1
n if |ω| ≤ (n/2T)

0 otherwise.
(12.40)

We will see in the following subsections that other
smoothed periodogram spectral estimators can be
represented similarly.

The Daniell estimator can also be expressed
as the Fourier transform of the product of the
estimated auto-covariance functionc(τ ) and alag
window,wD(τ ;n, T):

0̂(ω j ) =
T−1∑

τ=−(T−1)

wD(τ ;n, T)c(τ )e−2πiω j τ . (12.41)

The lag window is derived as follows. Recall
from (12.26) that the periodogram is the Fourier
transform of the auto-covariance function. There-
fore, expanding (12.38) we obtain

0̂(ω j ) = 1

n

j+(n−1)/2∑
k= j−(n−1)/2

IT k

= 1

n

j+(n−1)/2∑
k= j−(n−1)/2

T−1∑
τ=−(T−1)

c(τ )e−2πiωkτ .

Then, rearranging the order of summation, we find

0̂(ω j ) =
T−1∑

τ=−(T−1)
c(τ )e−2πiω j τ

× 1

n

j+(n−1)/2∑
k= j−(n−1)/2

e−2πi (ωk−ω j )τ

=
T−1∑

τ=−(T−1)
c(τ )e−2πiω j τwD(τ ;n, T)
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Figure 12.14:The lag window for the Daniell
spectral estimator withn = 5.

where

wD(τ ;n, T) = 1

n

j+(n−1)/2∑
k= j−(n−1)/2

e−2π i (ωk−ω j )τ

≈ T

n

∫ n/2T

−n/2T
e−2π iωτ dω

= sin(πnτ/ T)

πnτ/ T
.

Thus the Daniell estimator has equivalent spec-
tral window (12.39) and lag window (12.41) rep-
resentations. Since the periodogram and estimated
auto-covariance function are a Fourier transform
pair, smoothing in the frequency domain is equiv-
alent to smoothing in the time domain. We will
see that the same is true for other smoothed
periodogram estimators as well.

The lag window representation (12.41) gives
us a somewhat different and useful perspective
on why the Daniell estimator has lower variance
than the periodogram. The lag window, shown in
Figure 12.14 forn = 5, decays to zero with
increasing lag so that contributions to Fourier
transform (12.41) from the large lag part of the
estimated auto-covariance are damped. Since we
expect the true auto-covariance function to decay
to zero at some lag, the window can be adjusted,
either in the spectral or time domains, to exclude
lags for which the true auto-covariance function is
expected to be zero. We can therefore avoid the
noise that is contributed by these lags.

12.3.14 The Rectangular Spectral Estimator.
This discussion motivates another simple, but
poor, spectral estimator. One simple way to
exclude the large lag part of the estimated auto-
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Figure 12.15:The spectral windowWR(ω;M, T)
that corresponds to the rectangular lag window
(12.42) with cutoffM = 5 for time series of length
T = 240.

covariance function is to use a rectangular lag
window

wR(τ ;M, T) =
{

1 if |τ | ≤ M

0 otherwise
(12.42)

that explicitly leaves out all estimated auto-
covariances beyond some predetermined lagM .
The corresponding spectral window, which is
shown in Figure 12.15 forM = 5, is

WR(ω;M, T) ≈ 2M

T

sin(2πωM)

2πωM
.

The resulting spectral estimator has equivalent
representations

0̂(ω j ) =
T−1∑

τ=−(T−1)

wR(τ ;n, T)c(τ )e−2π iω j τ (12.43)

and

0̂(ω j ) =
q∑

k=−q

WR(ωk − ω j )IT k. (12.44)

Unfortunately, this particular estimator has
some undesirable properties.

• First, the spectral window (see Figure 12.15)
has large side lobes that permit variance
leakage from frequencies far fromω j . Note
that this source of variance leakage is
different from that discussed in [12.3.8]; it
will occur whether or not the data have been
tapered. This problem exists to some extent
with all spectral estimators that are designed
with a truncated lag window.

• Second, the spectral window has negative
values at some frequencies. Consequently,
equation (12.43) or (12.44) can produce
negative spectral density estimates with some
realizations of the periodogram.
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Thus, the rectangular spectral estimator is best
avoided.

12.3.15 The Bartlett Spectral Estimator.
The chunk estimator is ‘almost’ a smoothed
periodogram estimator or, equivalently, a weighted
covariance estimator. When the time series is
contiguous, the chunk estimator can be modified
slightly to improve its properties and also
permit a smoothed periodogram or weighted
covariance representation. The resulting estimator
is commonly known as theBartlett spectral
estimator.

Let c`(τ ) be the auto-covariance function esti-
mate that is computed from thèth chunk. Then,
using equation (12.26), we can write estimator
(12.34) as the average of the Fourier transforms of
the estimated auto-covariance functions,

0̂(ω j ) = 1

m

m∑
`=1

M−1∑
τ=−(M−1)

c`(τ )e
−2πiω j τ .

By rearranging the order of summation, we find
that estimator (12.34) is the Fourier transform of
the average estimated auto-covariance function:

0̂(ω j ) =
M−1∑

τ=−(M−1)

c(τ )e−2πiω j τ . (12.45)

Note that

c(τ ) = 1

m

m∑
`=1

c`(τ )

= M − |τ |
M

1

m(M − |τ |)
m∑
`=1

Mc`(τ ).

(12.46)

Now assume, for convenience, thatXt is a
zero mean process so that the auto-covariance
function estimatec`(τ ) can be computed without
subtracting the chunk mean. Then it is easily
shown that

1

m(M − |τ |)
m∑
`=1

Mc`(τ ) (12.47)

is an unbiased estimate ofγ (τ). But, since
estimator (12.47) does not include all possible
productsXt Xt−|τ | that can be computed from the
full time series, it is not the most efficient unbiased
estimator ofγ (τ). It therefore makes sense to
replace estimator (12.47) with

T

T − |τ |c(τ )
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Figure 12.16:The spectral windowWB(ω;M, T)
that corresponds to the Bartlett lag window
(12.48) with cutoffM = 5 for time series of length
T = 240.

where c(τ ) is the auto-covariance function
estimate computed from the full time series. When
we do this, and then substitute back into equations
(12.46) and (12.45) we see that the ‘chunk’
estimator can be closely approximated as

0̂(ω j ) =
M−1∑

τ=−(M−1)

1− |τ |M

1− |τ |T
c(τ )e−2πiω j τ .

This weighted covariance spectral estimator,
which has lag window

w(τ ;M, T) =


1− |τ |M

1− |τ |T
if |τ | < M

0 otherwise,

is generally called the Bartlett estimator.
The Bartlett estimator, as it is usually computed

however (see, e.g., Jenkins and Watts [195]), uses
the slightly modified lag window

wB(τ ;M, T) =
{

1− |τ |M if |τ | < M

0 otherwise
(12.48)

since it is then possible to derive a closed
form representation for the corresponding spectral
window:

WB(ω;M, T) ≈ M

T

(sin(πωM)

πωM

)2
. (12.49)

This window is shown in Figure 12.16 forM = 5.
Note that this spectral window is wider than that
of the rectangular spectral estimator (Figure 12.15)
for the same lag-window cutoffM, but that the
side lobes are substantially reduced. The degrees
of freedom and bandwidth of this estimator are
given in [12.3.19].20

20Degrees of freedom and bandwidth are discussed in
[12.3.17].
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It should be noted that the Bartlett estimator
computed with (12.48) or (12.49) isnot the
‘chunk’ estimator described in [12.3.9,10]. The
present estimator has lower variance and greater
bandwidth (see [12.3.19]).

The main problem with the Bartlett estimator
is that the side lobes of its spectral window
(12.49) are quite substantial when compared
with those of an estimator such as the Parzen
estimator (discussed in [12.3.16]). The Bartlett
spectral window (see Figure 12.16) has peaks
at frequencies±3/2 M that are about 4% of
the height of the central peak. Therefore, since
the unsmoothed periodogram can vary randomly
across a couple of orders of magnitude, the Bartlett
estimator has the potential for significant unwanted
variance leakage.

12.3.16 The Parzen Spectral Estimator. An-
other popular smoothed periodogram spectral esti-
mator is the Parzen [305] spectral estimator. It has
lag window

wP(τ ;M, T) =



1− 6
( |τ |

M

)2+ 6
( |τ |

M

)3
if |τ | < M

2

2
(
1− |τ |M

)3
if M

2 ≤ |τ | ≤ M

0 otherwise.

(12.50)

and corresponding spectral window

WP(ω;M, T) ≈ 3M

4T

(sin(πωM/2)

πωM/2

)4
.

The primary advantage of this estimator over
the Bartlett estimator is that its spectral window
has virtually no side lobes (see Figure 12.17).
The Parzen estimator also has somewhat lower
variance than the Bartlett estimator for the same
lag cutoff, since its spectral window has a wider
central peak and thus more bandwidth. However,
for this same reason, its estimates also have
somewhat more bias when the spectrum varies
quickly relative to the bandwidth. This estimator
has a wider spectral peak than the Bartlett
estimator because the lag window places relatively
more weight on low lag covariances and less on
lags near the cutoff lagM .

12.3.17 Equivalent Degrees of Freedom and
Bandwidth of Smoothed Periodogram Spectral
Estimators. The bandwidth and degrees of
freedom of the Daniell estimator [12.3.11,13]
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Figure 12.17:The spectral windowWP(ω;M, T)
that corresponds to the Parzen lag window (12.50)
with cutoff M = 5 for time series of lengthT =
240.

were easily identified because this estimator places
equal weight on a fixed number of periodogram
ordinates that are asymptotically independent and
identically distributed asχχχ2(2) random variables.
However, other smoothed periodogram estimators,
such as the Bartlett estimator [12.3.15] and the
Parzen estimator [12.3.16] do not weight the
periodogram ordinates equally. Thus it is not quite
so easy to determine their bandwidth and degrees
of freedom.

Inferences about spectra estimated with a
general smoothed periodogram estimator are made
with the help of approximatingχ2 distributions.
That is, the equivalent degrees of freedomr
is found by matching the asymptotic mean and
variance of the spectral estimator with the mean
and variance of aχχχ2(r ) random variable.21

Standard texts, such as Koopmans [229] or
Priestley [323], give the equivalent degrees of
freedom of many smoothed periodogram spectral
estimators. The equivalent degrees of freedom for
the estimators we have described are given in
[12.3.19].

Once the equivalent degrees of freedom
have been determined, confidence intervals can
be computed using the method outlined in
[12.3.10,11].

The moment matching exercise described
above essentially identifies the Daniell spectral
estimator that is ‘equivalent’ to the smoothed
periodogram estimator. Thus, in addition to
identifying equivalent degrees of freedom, this
exercise also identifies anequivalent bandwidth,
namely that of the ‘equivalent’ Daniell estimator.
Therefore, when the smoothed periodogram
estimator hasr equivalent degrees of freedom, its
equivalent bandwidth isr/2T .

21This method of finding an approximating distribution is
also used in [9.4.9].
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12.3.18 Bias, Variance and Variance Leakage.
Again, we emphasize the point made in [12.3.12]
about the tradeoff that the practitioner must
make between bias and variance when estimating
spectra. It is always good to be aware of the
dichotomy

Low variance Low bias
m m

High bandwidth Low bandwidth
m m

High bias High variance

between bias and variance in spectral estimation.
However, its is also important to remember that
estimators with the same equivalent bandwidths
and degrees of freedom (see [12.3.19]) are not
created equal. These are asymptotic concepts that
hold in the limit as the sample length becomes
large and the equivalent bandwidth becomes small
enough so that the spectral density function is
approximately constant within any bandwidth.
Variance leakage, that is, the contamination
of the spectral estimate by contributions from
periodogram ordinates at frequencies far removed
from the frequency of interest, is also an important
consideration in selecting a good estimator when
samples are finite.

12.3.19 Summary. For easy reference, we
now briefly summarize the periodogram derived
spectral estimators described above.

The periodogram (see [12.3.1–7]) of a time
series of lengthT is defined as

IT j = T

4
|ZT j |2,

whereZT j is the Fourier transform

ZT j = 2

T

T∑
t=1

xt e
−2πiω j t

of the time series.
The ‘chunk’ spectral estimator is constructed

by dividing the time series intom chunks of
length M (see [12.3.9,10]), separately computing
the periodogram of each chunk, and then averaging
the periodograms. Because climate processes are
cyclo-stationary, many climate problems present
the practitioner with disjoint chunks of length one
season at yearly intervals such that it is possible
to assume that the process is roughly stationary
within chunks.

Smoothed periodogram spectral estimators (see
[12.3.11–18]) are computed from contiguous time

series. They can be represented as a discrete
convolution

0̂(ω j ) =
j+(n−1)/2∑

k= j−(n−1)/2

W(ωk − ω j )IT k

of the periodogram with a spectral windowW(ω),
and as the Fourier transform of the estimated auto-
covariance function weighted by a lag window
w(τ),

0̂(ω j ) =
T−1∑

τ=−(T−1)

w(τ)c(τ )e−2πiω j τ .

The spectral and lag windows form a Fourier
transform pair.

Note that the chunk estimator can be similarly
represented as either a discrete convolution or
as the Fourier transform of a windowed auto-
covariance function estimate. The convolution
form of the chunk spectral estimator is

0̂(ω j ) =
∑

k

WC(ωk − ω j )I Mk

where

WC(ω) =


1

m
ω = 0

0 otherwise

and whereI Mk is the mean of the periodograms
I (`)Mk computed from the individual chunks. The
Fourier transform form of the chunk estimator is

0̂(ω j ) =
M−1∑

τ=−(M−1)

wC(τ )c(τ )e
−2πiω j τ

where

wC(τ ) = 1 for |τ | ≤ M − 1

and c(τ ) is the mean of the auto-covariance
function estimatesc(`)(τ ) computed from the
individual chunks.

Asymptoticp̃× 100% confidence intervals (see
[12.3.10,11]) for the spectral density function have
the form

log
( r

br

)
+log

(
0̂(ω j )

) ≤ log
(
0(ω j )

)
≤ log

( r

ar

)
+log

(
0̂(ω j )

)
where ar and br are the (1 − p̃)/2 and (1 +
p̃)/2 critical values of theχχχ2(r ) distribution (see
Appendix E) andr is the equivalent degrees
of freedom (see [12.3.17]) of the periodogram
derived spectral estimator.
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Figure 12.18:Lag windows (left) and spectral
windows (right) for four periodogram derived
spectral estimators.
Solid:Chunk estimator withm= 11.
Short-dashed curve:Daniell estimator withn =
11. The chunk and Daniell spectral windows
coincide.
Medium-dashed curve:Bartlett estimator with
M = 32.
Long-dashed curve:Parzen estimator withM =
40.
All estimators have approximately 22 equivalent
degrees of freedom and an approximate bandwidth
of 0.047 when the times series is of lengthT =
240.

Periodogram derived spectral estimators also
have an equivalent bandwidth (see [12.3.17]) that
indicates, roughly, the width of the frequency
band of which an estimatê0(ω j ) is representative.
Estimates at frequencies separated by more
than an equivalent bandwidth are asymptotically
independent.

The spectral estimators we have discussed are
summarized below. In the following,m is the
number of chunks used by the chunk estimator,
M is either the length of a chunk or the cutoff
point of the Bartlett or Parzen lag windows,T is
the length of the time series andn is the number
of periodogram ordinates that are averaged to
produce the Daniell estimator.

Lag Windows w(τ)

• Chunk{
1 |τ | ≤ M − 1

0 otherwise

This lag window is applied to the average
of the auto-covariance function estimates
computed from the individual chunks.

• Daniell (n odd)

sin(πnτ/ T)

πnτ/ T

• Bartlett{
1− |τ |M |τ | < M

0 otherwise.

• Parzen
1− 6

( |τ |
M

)2+ 6
( |τ |

M

)3 |τ | < M

2

2
(
1− |τ |M

)3 M

2
≤ |τ | ≤ M

0 otherwise.

Examples are shown in the left hand panel of
Figure 12.18.

Spectral Windows W(ω)

• Chunk
1

m
ω = 0

0 otherwise.

• Daniell (n odd)
1

n
|ω| ≤ n

2T

0 otherwise.

• Bartlett

M

T

(sin(πωM)

πωM

)2
.

• Parzen

3M

4T

(sin(πωM/2)

πωM/2

)4
.

Examples are shown in the right hand panel of
Figure 12.18.

Equivalent Degrees of Freedom (EDF) and
Equivalent Bandwidth (EBW)

• The following table lists theEDF andEBW
for the various spectral estimators.
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Estimator EDF EBW

Chunk 2m 1/M
Daniell 2n n/ T
Bartlett 3T/M 1.5/M
Parzen 3.71T/M 1.86/M

The chunk estimator is generally suitable for
problems in which there is a natural chunk length.
However, if a contiguous time series is available,
the use of a smoothed periodogram estimator is
preferred because it better uses the information
contained in the time series. We have a slight
preference for the Daniell and Parzen estimators
over the Bartlett estimator, for which variance
leakage through side lobes is more of an issue.
The rectangular spectral estimator [12.3.14] isnot
recommendedbecause of the large negative side
lobes in its spectral window; this estimator was
described for pedagogical reasons.

If the spectrum is suspected to contain sharp
peaks, the data should also be tapered with a
data taper [12.3.8] to prevent contamination of the
smooth part of the spectrum by variance leakage
from the spectral peak.

Periodogram-based estimators have a number
of advantages that often make them superior
to other types of spectral estimators (see, e.g.,
[12.3.21], where we discuss maximum entropy
spectral estimators).

• They are non-parametric. The only assump-
tions required are that the process be ergodic
and weakly stationary. In addition, these es-
timators often make sense when the assump-
tions are violated, such as when the process
has a periodic component.

• A well-developed asymptotic theory supports
these estimators, and practical experience
shows that the asymptotic results generally
hold even for time series of moderate length.

• Properties of the spectral estimator, such as
the bandwidth and the spectral or lag window,
are easily tuned to the practitioner’s own
needs.

• There are many useful extensions of this
methodology that we have not been able to
discuss here in this short discourse.

12.3.20 Example. Spectral estimates, computed
from the periodogram shown in the lower
panel of Figure 12.9 with the four smoothed
periodogram estimators described above, are
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Figure 12.19:Spectral estimates (on the decibel
scale) computed from the AR(2) time series
whose periodogram is shown in lower panel of
Figure 12.9. The horizontal bar in the upper
left hand corner indicates the bandwidth. The
vertical bar indicates the width of the asymptotic
confidence interval. The dashed curve displays the
theoretical spectrum.

shown in Figure 12.19. The parameters of each of
the estimators has been chosen so that they have
bandwidth and degrees of freedom equivalent to
that of the Daniell estimator withn = 11. The
specifics of the estimators are:

Estimator n or M EBW EDF

Chunk 21 0.0476 22
Daniell 11 0.0458 22
Bartlett 32 0.0469 22
Parzen 40 0.0465 22

The Daniell estimate is shown in the upper
panel of Figure 12.13 together with two other
Daniell estimates that have greater bandwidth. The
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Chunk Estimate from Tapered Chunks
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Figure 12.20:As the top panel in Figure 12.19
except that the chunks were tapered with the cosine
bell data taper.

Chunk, Bartlett, and Daniell estimates are shown
in Figure 12.19.

Note that there is little difference between the
Daniell (upper panel of Figure 12.13), Bartlett,
and Parzen estimators. The effects induced by
the differences in window properties in this
example are much less severe than the effect of
oversmoothing the periodogram (Figure 12.13).
The appearance of the chunk estimate is different
from that of the other estimators because it only
has one value for every equivalent bandwidth.
The Daniell, Bartlett, and Parzen estimators are
defined at every Fourier frequency. However, only
points separated by at least one bandwidth can
be considered roughly independent. The chunk
estimator seems to have some difficulty with
variance leakage in this example; the peak appears
to be spreading slightly and the spectrum is
overestimated at high frequencies. This behaviour
is to be expected since the chunks are very short
(M = 21).

In this case one of the smoothed periodogram
estimators would definitely be preferred over the
chunk estimator. However, if for some physical
reason our sample consisted of disjoint junks
of length 21, we would have no choice but to
use the chunk estimator. In such circumstances
its properties can be improved somewhat by
using the cosine bell data taper [12.3.8]. The
difference between Figure 12.20 and the top panel
of Figure 12.19 gives an indication of the type of
improvement that can be obtained in this way.

12.3.21 Auto-Regressive Spectral Estimation
and Maximum Entropy. Two closely related
spectral estimation methods that are also occa-
sionally used in climatology aremaximum entropy

spectral estimationand auto-regressive spectral
estimation.

Auto-regressive spectral estimation(see, e.g.,
Parzen [306] or Akaike [4, 5]) is performed by:

• assuming that the process is ergodic and
weakly stationary,

• fitting an AR model of some orderp. The
order is chosen either objectively by means
of a criterion such as AIC [12.2.10] or BIC
[12.2.11], or subjectively using a procedure
such as the Box–Jenkins method [12.2.1,9],
and

• estimating the spectrum with the spectral
density

0̂(ω) = σ̂ 2
Z

|1−∑p
`=1 α̂`e

−2`π iω|2 (12.51)

of the fitted AR process where,̂α`, ` =
1, . . . , p, are the estimated AR parameters
andσ̂ 2

Z is the estimated noise variance.

The theoretical justification for AR spectral
estimation is that any ergodic weakly stationary
process can be approximated arbitrarily closely by
an AR process.

This approach to spectral estimation is attractive
because it describes the distribution of variance
with time scale using a model of the time series
that has a dynamical interpretation (cf [10.3.1]). It
also produces spectral estimates that are generally
smoother than those made by smoothing the
periodogram. Periodic features of the process can
be identified if the practitioner is willing to use AR
models of high enough order.22

On the other hand, interpretation of the
estimated spectrum is more difficult. Spectral
estimates at well separated frequencies may not
be approximately independent, as they are when
made with a smoothed periodogram estimator, and
confidence intervals are difficult to construct.

Maximum entropy spectral estimation(see
Burg [73, 74], Lacoss [239], Priestley [323])
is a particular form of AR-spectral estimation.
Suppose we have available estimated auto-
covariancesc(0), . . . , c(M). Then the maximum
entropy spectral estimator̂0(ω) is the non-
negative function that maximizes theentropy∫ 1

2

− 1
2

ln 0̂(ω)dω (12.52)

22Tillman et al. [366], for example, use models of
successively higher order to estimate the spectrum of a Martian
surface pressure time series.
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Maximum Entropy, M=2
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Figure 12.21:Maximum entropy estimates of an
AR(2) time series of length 240 plotted on the
decibel scale. The true spectrum is dashed.
Top:Using an AR(2) model.
Bottom:Using an AR(20) model.

subject to the constraint that∫ 1
2

− 1
2

0̂(ω)e2πiωτ dω = c(τ ) (12.53)

for τ = 0, . . . ,M . Lacoss [239] shows that (12.52)
and (12.53) have a unique solution that is given
by an AR-spectral estimator (12.51) in which an
AR-model of orderp = M is fitted using the Burg
procedure.23

Maximum entropy spectral estimates for our
familiar AR(2) time series are shown in Fig-
ure 12.21. The spectral estimate constructed with
M = 2 very closely approximates the true density,
but that constructed withM = 20 is considerably
noisier. Note that the spectral estimate can never
have more thanM/2 peaks when the spectrum
is estimated in this way. The exact number of
peaks will depend upon the mix of AR(1) and
AR(2) components in the AR model that is fitted.
The spectral estimate shown in the lower panel of
Figure 12.21 contains eight local peaks.

23The Burg procedure chooses the AR coefficients that
minimize the sum of the forward and backward forecast
squared errors (the ‘back’ forecast is described in [11.1.12]).
Priestley [323, pp. 604–606] shows that for contiguous time
series, the Burg estimates are precisely the Yule–Walker
estimates (cf. [12.2.2]).

12.3.22 Aliasing. The time series objects that
we have considered have a discrete time index,
but they presumably represent processes that take
place in continuous time. Do we need to worry
about how the sampling interval is chosen?

Some years ago, a 500 hPa height time series
was analysed at a tropical location. The time
series was obtained from a 20-year climate
simulation performed with an atmospheric General
Circulation Model. The model had been sampled
at 18-hour intervals because it was felt that this
would produce better long-term statistics than a
12- or 24-hour sampling interval. It was argued
that monthly and seasonal means would be more
representative of the diurnal cycle since the 18-
hour sampling strategy views the globe with the
sun in four different positions. When the spectrum
was analysed, a spectral line was discovered at
the highest resolved frequency, one cycle per
two observing times (36 hours). The source of
this line was not a physical process taking place
at the 36-hour time scale, but rather, one with
a characteristic period of 12 hours, namely the
solar–thermal tide.24 This oscillation has a 12-
hour period because the atmosphere is not deep
enough to propagate the fundamental diurnal wave
effectively.

The phenomenon that leads to the spectral
line at the half sampling interval frequency is
called aliasing; Figure 12.22 shows a schematic
example.25 The upper panel shows a wave with
period 41/3 (solid curve) that is sampled every
1 time intervals (1 = 11

2). The resulting time
series appears to contain a wave with period 41

(dashed curve). We say that the variation taking
place at frequency 3/(41) has beenaliasedonto
the 1/(41)frequency.

The highest frequency that can be resolved
with an observing interval of1 time units is
1/(21). The middle panel in Figure 12.22 shows
that frequencies greater than 1/(21) are, in
effect, folded back into the low frequency part of
the spectrum across the 1/(21) line. Frequency
1/(21) is called theNyquist folding frequency.
The solid curve in the bottom panel of Figure 12.22
shows the sum of the unaliased and aliased parts
of the spectrum. This distorted version of the
real spectrum is the function that a good spectral

24A subsequent GCM experiment with a one-hour save
interval showed that the model simulated the solar–thermal tide
well, but that it did so for the wrong physical reasons (Zwiers
and Hamilton [447]).

25Another example of aliasing is described by Bohle-
Carbonell [54] who demonstrates how a 14-day period appears
in daily Cuxhaven salinity measurements that are affected by
the M2 tide (12.5 hours).
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Aliasing Effect
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Figure 12.22: Top:This illustrates a wave of period
2 that is sampled once every 1.5 time intervals.
The resulting collection of observations is periodic
with period 6. This sampling scheme hasaliased
variation at frequencyω = 1/2 onto frequency
ω = 1/6.
Middle: This illustrates ‘folding’ of the spectral
density across the Nyquist folding frequency (ω =
1/3 in this example) onto frequencies less than the
Nyquist folding frequency. The solid curve is the
original spectrum and part that is folded back is
indicated by the dashed curve.
Bottom: The resulting aliased spectrum (solid
curve). The dashed curve indicates the real
spectrum.

estimator would be able to estimate from a time
series sampled every1 time intervals. A poor
choice of sampling interval can obviously lead to a
badly distorted spectrum and misleading physical
interpretation.

In the thermal tide example, we sample every
18 hours, resulting in a Nyquist folding frequency
of ω = 1/36 hours. Variation at shorter time
scales is folded accordion style onto the interval
betweenω = 0 and ω = 1/36 hours. Thus,
variation at frequencies betweenω = 1/36 hours
andω = 1/18 hours is folded onto frequencies
betweenω = 1/36 hours andω = 0 (i.e., 18-hour
variations are aliased to the mean). Variations

betweenω = 1/18 hours andω = 1/12 hours are
folded onto frequencies betweenω = 0 andω =
1/36 hours, and so on. The line in the unaliased
spectrum atω = 1/12 hours therefore appears at
the Nyquist folding frequency.

12.4 Estimating the Cross-correlation
Function

12.4.1 Estimating the Cross-covariance and
Cross-correlation Functions. Suppose that a
sample(xt , yt ), t = 1, . . . , T , is obtained from
an ergodic weakly stationary bivariate process
{(Xt ,Yt ) : t ∈ Z}. Then an estimator of the
cross-covariance functionγxy(τ ) is

cxy(τ ) = 1

T

T−τ∑
t=1

(xt − x)(yt+τ − y) for τ ≥0

= 1

T

T∑
t=τ+1

(xt − x)(yt+τ − y) for τ <0

= 0 for |τ | ≥ T, (12.54)

andγyx(τ ) is estimated bycxy(−τ).
As with the auto-covariance function (see

[12.1.1] and [12.1.2]), these estimates are some-
times inflated with a factorT/(T − |τ |). This
makes the estimator unbiased if the process has
zero mean and if the sample means are not sub-
tracted in (12.54). However, this practice also in-
flates the variability of the estimator, particularly at
large lags where the true cross-covariance function
is close to zero anyway, and it affects the properties
of weighted covariance spectral estimators (cf.
Section 12.3) by subtly changing the lag-window.

The cross-correlation function is estimated as

rxy(τ ) = cxy(τ )(
cxx(0)cyy(0)

)1/2 .
12.4.2 Properties of the Estimated Cross-corre-
lation Function. The types of problems that oc-
cur when estimating the auto-correlation function
also occur when estimating the cross-correlation
function (see the discussion in [12.1.2]). Bias is a
difficulty, particularly at large lags and when the
magnitude of the true cross-correlation is near 1.
As with the auto-correlation function, Bartlett [34]
also derived approximations for the covariance
between cross-correlation function estimates at
different lags (see Box and Jenkins [60, p. 376]).
Using this approximation, it can be shown that, if
ρxy(τ ) is zero for allτ outside some range of lags
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τ1 ≤ τ ≤ τ2, then

Var
(
rxy(τ )

) ≈ 1

T − |τ |
∞∑

`=−∞
ρxx(`)ρyy(`)

(12.55)

for all τ outside the range. This result, and
others similar to it that can be derived from
Bartlett’s approximation, can sometimes be used to
determine whether an estimated cross-correlation
cxy(τ ) is consistent with the null hypothesis that
γxy(τ ) is zero. This is done by performing an
appropriate test at the 5% significance level by
declaring inconsistency if|rxy(τ )| > 2s where
s2 is the estimated variance ofrxy obtained
by substituting the estimated auto-correlation
functions ofXt andYt into equation (12.55).26

12.5 Estimating the Cross-spectrum

12.5.0 Introduction. Our purpose in this section
is to give a brief introduction to cross-spectral
estimation. We will see that many of the intuitive
ideas developed in Section 12.3 naturally carry
over to the multivariate setting.

The procedure used for univariate spectral
analysis is also used here. We first describe the
multivariate extension of the periodogram, then
briefly describe the extension of the periodogram-
based spectral estimators. The basic approach is
to use periodogram averaging (i.e., chunks) or
smoothing to construct good estimates of the
cross-spectral density function or, equivalently,
the co- and quad-spectra. These estimates are
then used in the obvious way to estimate derived
quantities, such as the coherency and phase
spectra. Approximate confidence intervals are
presented for both.

The tradeoff between bias and variance (see
again Figure 5.3) is delicate in cross-spectral
analysis. As with univariate spectral analysis,
large equivalent bandwidth is associated with
low variance and (potentially) large bias. The
bias induced by excessive periodogram smoothing
can be quite misleading since large bandwidth
spectral estimators have the potential to shift
the location of peaks in the coherency spectrum.

26Note that this procedure may reject the null hypothesis
γxy(τ ) = 0 when it is true more or less frequently than
the nominal 5% significance level. The procedure uses an
approximation in which the true cross-correlation function has
been replaced with an estimate. Also, in most applications, the
estimated cross-correlation function is screened at many lagsτ .
Thus the effect ofmultiplicity (conducting many related tests at
a given significance level, cf. Section 6.8) must be accounted
for when interpreting the test results.

Also, as with univariate spectral analysis, small
equivalent bandwidth is associated with high
variance. But, in contrast with univariate spectral
estimators, insufficiently smoothed periodograms
tend to overestimate the coherency between time
series. Thus, in cross-spectral analysis one must
be careful to balance the smoothing, or reduction
of variance, against the biases that are associated
with too much smoothing. These problems cannot
be avoided by using the chunk estimator: the
use of many chunks that are excessively short
is equivalent to oversmoothing the periodogram
of a contiguous time series, and the use of
only a few chunks, each of moderate or greater
length, is equivalent to insufficiently smoothing
the periodogram.

12.5.1 Notation and Assumptions. Most of
the ideas discussed in this section apply equally
in bivariate and multivariate settings. However,
to keep concepts as concrete as possible, vector
quantities, such as the random vectorEX, will
generally only be two-dimensional and, unless
stated otherwise, matrices will be 2× 2.

The ‘∗’ operator will denote the conjugate
transpose when applied to a matrix or vector
quantity.

We will use the notationEXt or, more precisely,
{ EXt : t ∈ Z} to represent a bivariate stochastic
process, and we will identify the components of
EXt asXt andYt .

The same assumptions made aboutEXt in
Section 12.4 also apply here.

12.5.2 The Bivariate Periodogram. Let
Ex1, . . . , ExT be a time series of lengthT that is
observed from process{ EXt : t ∈ Z}.

The bivariate periodogramIT j is given by

IT j = (T/4)EZT j EZ∗T j (12.56)

for j = −q, . . . ,q, q = dT
2 where

EZT j = 2

T

T∑
t=1

EXt e
−2πiω j t . (12.57)

We will use notation such asZXT j and ZYT j

to identify the elements ofEZT j , and useIxxTj ,
IxyTj and I yyTj to identify the elements of the
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2× 2 bivariate periodogram matrixITj . As in the
univariate case, it is easily demonstrated that:

1 the bivariate periodogram distributes the total
lag zero sample covariance matrix:

Σ̂ EX, EX =
(

cxx(0) cxy(0)
cyx(0) cyy(0)

)
= 2

T

q∑
j=1

IT j ;

2 the estimated bivariate auto-covariance func-
tion

Σ̂(τ ) =
(

cxx(τ ) cxy(τ )

cyx(−τ) cyy(τ )

)
and the bivariate periodogram are a Fourier
transform pair.

12.5.3 Properties of the Bi-variate Periodo-
gram. The following are some of the properties
of the bivariate periodogram (12.56).

1 The bivariate periodogram is Hermitian, that
is,

IT j = I∗T j .

2 The bivariate periodogram ordinates are
asymptotically uncorrelated. This is proven
using an argument exactly analogous to that
in [12.3.5].

3 The bivariate periodogram ordinatesIT j are
asymptotically unbiased estimators of the
bivariate spectral density function(

0xx(ω j ) 0xy(ω j )

0∗xy(ω j ) 0yy(ω j )

)
evaluated at the Fourier frequenciesω j . The
argument is also analogous to that in [12.3.6].
In particular, thecross-periodogram

IxyT j =
T

4
ZxT j Z

∗
yT j

is an unbiased estimator of the cross-spectral
density0xy(ω j ).

We will see below, and in [12.5.4], thatIxyT j
is not a very good estimator of0xy(ω j ).

4 The variance of the real and imaginary parts
of the cross-periodogram can be approxi-
mated by (see Bloomfield [49, Section 9.4])

Var
(
Re(IxyT j )

) ≈
1
2

(
0xx(ω j )0yy(ω j )

+3xy(ω j )
2−9xy(ω j )

2
)
,

Var
(
Im(IxyT j )

) ≈
1
2

(
0xx(ω j )0yy(ω j )

−3xy(ω j )
2+9xy(ω j )

2
)
.

5 The co-variance between the real and
imaginary parts of the cross-periodogram can
be approximated by

Cov
(
Re(IxyT j ), Im(IxyT j )

) ≈
3xy(ω j )9xy(ω j ).

6 The real and imaginary parts of the cross-
periodogram are correlated with the peri-
odograms of theX andY components ofEX
(see Bloomfield [49] for details).

7 The periodograms of theX and Y compo-
nents ofEX are also correlated (see Bloomfield
[49] for details).

8 The bivariate periodogram ordinates have
a complex Wishart distribution that has
properties analogous to those of theχ2

distribution. The theory was developed by
Goodman [144]. See Brillinger [66] or
Brockwell and Davis [68] for details.

One reason the bivariate periodogram is not
a good spectral estimator is that, just as with
its univariate counterpart, its variability can not
be reduced by taking larger and larger samples.
Instead we end up with increasing numbers of
periodogram ordinates, all with approximately the
same information content. This is demonstrated by
items 4–8 above.

Another difficulty with the bivariate peri-
odogram is that it produces degenerate coherency
estimates. To see this, let us represent theX andY
components of Fourier transform (12.57) as

ZxT j = Ax j + i Bx j

ZyT j = Ay j + i By j .

Then

IxxT j =
T

4
(A2

x j + B2
x j )

IyyT j =
T

4
(A2

y j + B2
y j )

IxyT j =
T

4

(
Ax j Ay j + Bx j By j

+ i (Bx j Ay j − Ax j By j )
)
.

The resulting coherency estimate

κ̂xy(ω j ) =
|IxyT j |2

IxxT j IyyT j
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is easily shown to be unity at all Fourier
frequenciesω j .

Thus the bivariate periodogramcan not be
used to estimate the coherency spectrum directly,
even though the bivariate periodogram is itself an
asymptotically unbiased estimator of the cross-
spectral density function.27 This tells us that
if we want to estimate the coherency well,
we must construct cross-spectral estimators that
average across a number of nearly independent
realizations of the bivariate periodogram. The
chunk and smoothed periodogram estimators
discussed in Section 12.3 do exactly this. Also, it is
intuitive that a relatively large number of bivariate
periodogram ordinates need to be averaged to
overcome the bias induced by the degeneracy
of the individual bivariate periodogram ordinates.
Thus the art of cross-spectral estimation involves
trade offs between variance and at least two types
of bias.

12.5.4 Smoothed Periodogram Estimators.
Since the bivariate periodogram ordinates are
asymptotically independent, cross-periodogram-
based cross-spectral estimators are constructed
using chunk, or smoothing, techniques in the
same way that univariate spectral estimators are
constructed. Equivalent bandwidths and degrees
of freedom are also computed in exactly the
same way, and similar considerations are made for
the choice of spectral or lag-window. Goodman
[144] derived the asymptotic distribution of
periodogram-based bivariate spectral estimators.28

Goodman’s approximation is used to derive
confidence intervals for cross-spectral parameters
such as the coherency and phase (see, e.g.,
Koopmans [229], Hannan [157] or Brillinger [66]
and also [12.5.5,6]).

12.5.5 A Confidence Interval for the Coherency
Spectrum. The smoothed coherency spectrum

27This is not logically inconsistent. For example, suppose
that Z1 and Z2 are independent and identically distributed
complex random variables such thatZi ∼ ei 2πUi whereUi
is distributed uniformly on the interval [0,1). ThenZ1Z∗2 is
an unbiased estimator of the centre of the unit circle (i.e.,
E(Z1Z∗2) = 0) even though|Z1Z∗2| = 1. If we averaged across
a large sample, say{(z1,i , z2,i ): i = 1, . . . ,n} we would find

| 1n
∑n

i=1 z1,i z
∗
2,i | ≈ 0, even though|z1,i z

∗
2,i | = 1 for all i .

28This distribution, known as the complex Wishart distri-
bution, describes the behaviour of random 2× 2 Hermitian
matrices (see Brillinger [66] or Hannan [157]). It has a
property similar to that of theχ2 distribution: the sum of two
independent complex Wishart random matrices again has a
complex Wishart distribution.

can be thought of as a squared correlation
coefficient that depends upon frequency.

This is most easily appreciated by considering
the Daniell estimator, but the analogy applies
equally to the other spectral estimators summa-
rized in [12.3.19].

The Daniell cross-spectral estimator [12.3.11] is
given by

0̂xy(ω j ) = 1

n

j+(n−1)/2∑
k= j−(n−1)/2

IxyT k.

We can view 0̂xy(ω j ) as an estimate of the
(complex) covariance between processesX andY
at time scales betweenω−1

j+(n−1)/2 andω−1
j−(n−1)/2.

To appreciate this, we substitute equation (12.56)
for the cross-periodogram to obtain

0̂xy(ω j ) = T

4n

j+(n−1)/2∑
k= j−(n−1)/2

ZxT kZ
∗
yT k

.

Except for the factorT , this expression looks
just like an estimate of the (complex) covari-
ance between a pair of zero mean random var-
iables ZxT and ZyT that is computed from
a sample {(ZxT k,ZyT k): k = j − (n −
1)/2, . . . , j + (n − 1)/2}. This interpretation be-
comes even stronger when we assume that the
cross-spectral density function is constant in the
interval(ω j−(n−1)/2, ω j+(n−1)/2) because then the
random pairs(ZxT k, ZyT k) are approximately
independent and identically distributed.

We can estimate the correlation between the
X and Y processes in the frequency range
(ω j−(n−1)/2, ω j+(n−1)/2) by normalizinĝ0xy(ω j )

with estimates of the standard deviations of theX
andY in this frequency range. The latter are just
the square roots of the estimated auto-spectra ofX
andY. Thus we have

ρ̂xy(ω j ) = 0̂xy(ω j )(
0̂xx(ω j )0̂yy(ω j )

)1/2 .
Consequently the estimated coherency

κ̂xy(ω j ) = |ρ̂xy(ω j )|2

can be viewed as a measure of the squared
correlation, or proportion of common variance
that is shared byX and Y in the ω−1

j+(n−1)/2 to

ω−1
j−(n−1)/2 time scale range.
This interpretation of the coherency carries over

to other periodogram-based spectral estimators as
well and can be used to construct confidence
intervals.



12.5: Estimating the Cross-spectrum 285

Fisher’s z-transform was used in [8.2.3]
to construct confidence intervals for ordinary
correlation coefficients. The same method can
be used here for nonzeroκxy(ω j ). Fisher’s z-
transform (8.5) of the square root of the coherency,

1

2
ln

(
1+ κ̂xy(ω j )

1/2

1− κ̂xy(ω j )1/2

)
= tanh−1(̂κxy(ω j )

1
2 ),

is approximately normally distributed with mean
tanh−1(κxy(ω j )

1/2) and variance 1/r , where r
is the equivalent degrees of freedom of the
spectral estimator. Therefore approximatep̃ ×
100% confidence limits for the squared coherency
are(
tanh

(
tanh−1 (̂κxy(ω j )

1/2)± Z(1+p̃)/2√
r

))2
,

(12.58)

whereZ(1+p̃)/2 is the(1+ p̃)/2 critical value of the
standard normal distribution (Appendix D).29

The approximation that leads to interval (12.58)
breaks down whenκxy(ω j ) is zero. Then

(r/2− 1)̂κxy(ω j )

1− κ̂xy(ω j )

is approximately distributed as anF(2, r − 2)
random variable. Thus

H0: κxy(ω j ) = 0 versus Ha: κxy(ω j ) > 0

can be tested at the(1− p̃) × 100% significance
level by comparinĝκxy(ω j ) with

2Fp̃

r − 2+ 2Fp̃
, (12.59)

whereFp̃ is thep̃ critical value of theF(2, r − 2)
distribution (see Appendix G). Confidence in-
tervals should only be computed when the null
hypothesis thatκxy(ω j ) is zero is rejected.

12.5.6 A Confidence Interval for the Phase
Spectrum. Hannan [157, p. 257] shows that
approximatep̃ × 100% confidence limits for the
phase spectrum8xy are given by

8̂xy(ω j )± sin−1
(

t(1+p̃)/2

r − 2

(
(̂κxy(ω j ))

−1− 1
))

29Koopmans [229, p. 283] gives a slightly refined version
of this interval. He also points out that the quality of the
approximation depends upon the equivalent degrees of freedom
r and κxy(ω j ), and that it is best whenr > 40 and 0.4 <

κxy(ω j ) < 0.95. However, in our experience, interval (12.58)
gives useful, although perhaps not precise, information when
there are substantially fewer equivalent degrees of freedom.

where 8̂xy(ω j ) is the phase estimate obtained
by substituting a periodogram-based estimator
0̂xy(ω j ) of the cross-spectral density into equa-
tions (11.64)–(11.66),r is the equivalent degrees
of freedom of the spectral estimator, andt(1+p̃)/2
is the (1 + p̃)/2 critical value of thet(r − 2)
distribution (see Appendix F).

12.5.7 Bias in the Coherency and Phase
Spectra: An Example. We return to the prob-
lem of bias in the estimated coherency spectrum
because of the conflicting demands that good co-
herency estimates place on the spectral estimator.
In univariate spectral estimation, small numbers
of equivalent degrees of freedom are associated
with high variability and low bias. In cross-spectral
estimation, small numbers of degrees of freedom
are also associated with large positive bias in
coherency estimates, which arises from the de-
generacy of the coherence of the periodogram. In
addition, we will see that large equivalent band-
width leads to bias not only in the magnitude of
the coherency but also in the location of coherency
peaks.

We will use a time series generated from
a bivariate AR(1) process with a rotational
parameter matrix (11.51) to illustrate these
problems (cf. [11.3.8] and [11.4.8,9]). We generate
a sample of lengthT = 384 from the process with
r = 0.9 andu = 0.95. It has an e-folding time of
approximately 9.5 time units, a rotation frequency
η = 0.050 (approximately 20 time units) and there
is a peak in the coherency spectrum atω0 = 0.053
(approximately 18 time units).

Three Daniell cross-spectral estimates with
different amounts of smoothing are shown in
Figure 12.23. The left hand column, withn =
2, uses almost no smoothing. This is the cross-
spectral estimator that is obtained when adjacent
bivariate periodogram ordinates are averaged. The
upper panel shows the estimate of the spectrum
of the X component of the process on the
decibel scale. The true spectrum is indicated
by the long-dashed curve. The spectral estimate
is noisy, but otherwise satisfactory. Despite the
noise, the estimate conveys useful information
and gives us an indication of the shape of the
spectrum and the location of the spectral peak.
The middle panel shows the derived coherency
estimate (solid curve) and the true coherency
(long-dashed curve). Note that this estimate is
very noisy with many large spikes that grossly
overestimate the true coherency. It does not give
any useful information about the true coherency
spectrum, except to suggest that it is probably
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Figure 12.23:Cross-spectral estimates computed from a time series of lengthT = 384generated from
a bivariate AR(1) process with a rotational parameter matrix (11.51) (cf. [11.3.8] and [11.4.8,9]). The
columns contain Daniell estimates forn = 2, 16, and64, from the left.
Top row: The estimated spectrum of theX component of the process, in decibels. The dashed curve
indicates the true spectrum. The cross indicates the bandwidth (horizontal) and width of the 95%
confidence interval (vertical).
Middle row: The estimated coherency. The long-dashed curve indicates the true coherency spectrum.
The short-dashes indicate the critical value for the 5% significance level test of zero coherency.
Bottom row:The estimated phase. The dashed line indicates the true phase.

nonzero for frequencies in the interval(0.02,0.1).
The horizontal short-dashed line in this diagram
depicts the critical value from (12.59) for the
5% significance level test of the null hypothesis
that κxy(ω) = 0. Despite the noise and the
many large peaks, only a few coherency estimates
rise above the critical value. The bottom panel
displays the corresponding phase estimates (solid)
and true phase (horizontal long-dashed line). We
see that the phase is reasonably well estimated
in the same interval(0.02,0.1) in which we
have some indication that the true coherency is
nonzero. Elsewhere, the phase estimates are of no
value.

The centre column in Figure 12.23 shows the
Daniell cross-spectral estimate that is obtained
with a moderate amount of smoothing (n=
16,EDF = 32,EBW = 0.042). The spectral
density is well estimated. We now have a
reasonable indication of the shape of the coherence
spectrum although it is severely underestimated at
frequenciesω > 0.1. The peak in the estimated
coherence spectrum is located at a slightly higher
frequency than that in the true spectrum. The phase
is well estimated in the interval(0.02,0.2).

The right hand column of Figure 12.23
illustrates the effect of over-smoothing the
periodogram. We used the Daniell estimator with
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n = 64 (EDF = 128,EBW = 0.17). The
estimate of the spectral density at low frequencies
is now affected by the ‘peak spreading’ effect of
the smoothing. The coherence estimates are now
strongly affected by bias as well. The peak has
been shifted to the right and its magnitude has been
diminished. This estimate gives quite a distorted
view of the rotational properties of the sampled
process. However, the phase is surprisingly well
estimated over a wide frequency band.

12.5.8 Yet Another Source of Bias. Another
potential source of bias occurs when one time
series isdelayed relative to another. This may
happen in very simple ways, for example, by
shifting the time origin of one series relative to
another. For example, one could conceive of proxy
data derived from tree rings, varves, ice cores, etc.
in which time is measured relative to an uncertain
time origin. However, it may also happen in much
more complex ways, with delay occurring on some
time scales but not others.

Unrecognized delay can lead to severe under-
estimation of the cross-spectral density function
on the time scales at which delay occurs. One
might even be led to the false conclusion that two
strongly related time series are unrelated. This is
intuitively easy to understand if we think of a
weighted covariance spectral estimator with a lag
window that is zero beyond lagM . Imagine a pair
of strongly related processes in which the delay is
ζ . Cross-covariances at lags nearζ will be large
while those at other lags will be small. If the delay
ζ is greater thanM lags, the weighted covariance
estimator will entirely miss the contributions to
the cross-spectrum that are made by the large
cross-covariances near lagζ . When the delay is
the same at all time scales it may be possible to
correct this problem byaligning the components
of the observed time series (see the examples in
Jenkins and Watts [195, Sections 9.3.2 and 9.3.3],
and also Bloomfield [49, Section 9.6]). A simple,
but not very efficient, way to do this is to shift the
time origin of the delayed time series byζ time
units.30

To examine the effect of delay on the estimated

30When the delay is independent of frequency, alignment
is performed efficiently by estimating the delayζ from
the cross-correlation function and then multiplying the
cross-periodogramIxyT j by e−2π i ζω j before using it in
a periodogram-based spectral estimator. In general, when
the delay varies with time scale, simple alignment cannot
be used. Hannan and Thompson [159, 160] describe a
method for estimating frequency-dependent delay. See also
Bloomfield [49, pp. 228–231].

spectrum in some more detail, we consider a
bivariate processEXt with components that vary
similarly at time scalesω−1

b to ω−1
a . Suppose that

Yt leads Xt by ζ time intervals on these time
scales. Then

0xy(ω) ≈ e2π i ζω0xx(ω) for ω ∈ (ωa, ωb).

(12.60)

A very simple process of this type has

Yt = Xt+ζ

in which case approximation (12.60) holds for
all time scales (see equation (11.72) in [11.4.4]).
Generally, however, one process might lag or lead
the other over only some subset of time scales.

Suppose, for simplicity, that0xy is estimated
from a time series of lengthT using the Daniell
estimator with bandwidthn/ T . The estimator of
the cross-spectrum is

0̂xy(ω j ) = 1

n

j+(n−1)/2∑
k= j−(n−1)/2

(Ixy)T k.

The bivariate periodogram is an asymptotically
unbiased estimator of the cross-spectrum. Thus

E
(
IxyT k

) ≈ e2π i ζωk0xx(ωk)

for ωk ∈ (ωa, ωb). Assuming that0xx(ωk) is
approximately constant for theωks lying in a
bandwidth centred onω j , we then obtain

E
(
0̂xy(ω j )

) ≈ 0xx(ω j )

j+(n−1)/2∑
k= j−(n−1)/2

e2π i ζωk

n .

(12.61)

If the delay ζ is large (greater than about
1/EBW = T/n), the elements of the sum in
(12.61) describe points all around the unit circle
and consequently we have large bias with

|E(0̂xy(ω j )
)| ¿ |0xy(ω j )|

at frequencies in(ωa, ωb).
This type of bias affects both the estimated

coherency and phase spectra. The coherency
spectrum will be underestimated and we might
incorrectly conclude that the processesX andY are
uncorrelated at time scales betweenω−1

b andω−1
a .

The phase spectrum will be estimated incorrectly
and we may entirely miss the linear component
of the variation of phase with frequency (see
approximation (12.60)) that is induced by the
delay.
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Overview
A characteristic difficulty in climate research is the size of the phase space. It is practically infinite
in the case of the real system, and much smaller, though still very large, in the case of quasi-realistic
models, such as atmospheric or oceanic General Circulation Models. Thus observations or simulated
data sets,per se, are not always useful to the researcher who wants to know the dynamics controlling
the developments and relationships in the system. Statistical analysis becomes an indispensable tool
for helping the researcher to discriminate between a few dynamically significant components and the
majority of components that are irrelevant or, in terms of frequently used slang, of ‘second (or higher)
order’ for the problem at hand. The task of sorting out the first-order processes from myriads of
second-order processes makes statistical analysis in climate research different from both conventional
(mathematical) statistics and statistical mechanics. In mathematical statistics, problems are usually of
low dimension, and in statistical mechanics the phase space, though infinite, is isotropic or of some
simple structure. In climate problems, however, one has to expect different characteristics for each
different direction in phase space. The problem is to find the relevant directions.

In this part of the book, a number of linear techniques are introduced that attempt to identify
‘relevant’ components in phase space. We assume that these components take the form of characteristic
vectors, which can usually be represented by patterns (i.e., spatial distributions). These techniques are
often based on an eigenproblem, which arises naturally when maximizing some interesting squared
properties, for instance variance or correlation, under certain constraints. (The differentiation of the
squared property leads to the linear problem, with the eigenvalue originating from the addition of a
Lagrange multiplier.)

In Chapter 13 we begin with the problem of one random vector and its decomposition into its
Empirical Orthogonal Functions(EOFs). The EOFs are orthogonal spatial patterns that can be thought
of as empirically derived basis functions. The low-order EOFs can sometimes be interpreted as natural
modes of variation of the observed system. The time coefficients obtained by projecting the observed
field onto the EOFs are uncorrelated and represent the variability of the field efficiently. We also
introduce two related topics,Singular Systems AnalysisandRotated EOF Analysis.

In Chapter 14 we consider a pair of random vectors and we search for pairs of directions, or patterns,
that represent the strongestjoint patterns of variations. Techniques designed for this purpose include
Canonical Correlation Analysis, Maximum Covariance Analysis, andRedundancy Analysis.

Principal Oscillation Patterns(POPs; Chapter 15) are obtained by imposing a specific model for the
time evolution of a field. This technique is useful if the system under consideration has quasi-oscillatory
modes. POP analysis can be generalized to cyclo-stationary time series. The general concept ofstate
space modelsis briefly outlined in the last section of Chapter 15.

Another approach for analysing the time evolution patterns of variability is tocomplexifythe observed
field (Chapter 16). This can be done by assigning the observed field to the real part of the complexified
process and assigning the Hilbert transform of the observed field to the imaginary part. This approach
has been used widely in conjunction with EOF analysis, but can also be used with the techniques
introduced in Chapters 13–15.
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13 Empirical Orthogonal Functions

13.0.0 Overview. In this chapter we present a
multivariate analysis technique that is to derive the
dominant patterns of variability from a statistical
field (a random vector, usually indexed by location
in space). Principal Component Analysis, or
Empirical Orthogonal Function(EOF) Analysis as
it is called in the Earth Sciences, was described
by Pearson [309] in 1902 and by Hotelling [186]
in 1935. EOF analysis was introduced into
meteorology by Lorenz [259] in 1956.

Concepts in linear algebra that are needed to
read this chapter (linear bases, matrix properties,
eigenanalysis and singular value decomposition)
are offered in Appendix B. Empirical Orthogonal
Functions are formally defined in Section 13.1.
Techniques for estimating EOFs, eigenvalues, and
EOF coefficients are explained in Section 13.2. We
discuss the quality of estimates in Section 13.3.
Several EOF analyses of climate-related problems
are given as examples in Section 13.4.Rotated
EOFs1 are dealt with in Section 13.5. Finally, a
time series analysis technique calledSingular Sys-
tems Analysis, which uses the same mathematics
as EOF analysis, is introduced in Section 13.6.

An alternative introduction to EOFs is given by
von Storch [387].

13.0.1 Introductory Example:2 Daily Profile
of Geopotential Height at Berlin. To motivate
the concept of Empirical Orthogonal Functions
we consider a time series of daily geopotential
height profiles as obtained by radiosonde at Berlin
(Germany) (Fraedrich and D̈ummel [125]). A
total of 1080 observations are available in each
winter (NDJF) season: 120 days times 9 vertical
levels between 950 hPa and 300 hPa. Thus, in
a 20-year data set we have 21 600 observations
at our disposal to describe the statistics of the
geopotential height at Berlin in winter.

The mean state can be estimated by computing
the mean value at each level. But how should we
describe the variability? One way would be to

1A misnomer.
2The mathematics in this subsection are explained in more

detail in Sections 13.1 and 13.2.

compute the standard deviation at each level and
to plot it in the vertical. However such a profile
does not tell us how the variations are correlated in
the vertical. For example, are we likely to observe
a positive anomaly (i.e., a positive deviation from
the mean profile) at 300 hPa and at 950 hPa at the
same time?

EOF analysis is a technique that is used to
identify patterns of simultaneous variation. To
demonstrate the concept we letExt represent the
m = 9 level geopotential height profile observed
at timet . The mean profile is denoted bŷEµ and to
describe the variability we form theanomalies

Ex′t = Ext − Êµ.
These anomalies are thenexpandedinto a finite
series

Ex′t =
k∑

i=1

α̂i,t Êe i (13.1)

with time coefficientŝαi,t and fixedpatternŝEe i .
Equality is usually only possible whenk = m, but
the variance of the time coefficientŝαi,t usually
decreases quickly with increasing indexi , so that
good approximations are usually possible fork
much less thanm. The patterns are chosen to be
orthogonal so that optimal coefficientŝαi,t are
obtained by simply projecting the anomaliesEx′t
onto the patternŝEe i . Moreover, the patterns can be
specified such that theerror∑

t

(
Ex′t −

k∑
i=1

α̂i,t Êe i
)2

is minimal. The lag-0 sample cross-correlations of
the optimal time coefficients are all zero,∑

t

α̂i,t α̂ j,t = 0

for i 6= j . The patternŝEe j are estimatedEmpirical
Orthogonal Functions.3 The coefficientŝαi are the
EOF coefficients.4

3Note that the ‘functions’̂Ee k are reallyvectorsand not
functions.

4Statisticians refer to the EOF coefficients asprincipal
components.
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Figure 13.1:The first two EOFs, labelledz1 and
z2, of the daily geopotential height over Berlin in
winter. From Fraedrich and D̈ummel [125].

The analysis of daily Berlin radiosonde data
showed that only two patterns are required to
describe most of the variability in the observed
geopotential height profiles in winter (NDJF) as
well as in summer (MJJA). In winter, the first
EOF represents 91.2% of the variance (92.6%
in summer), and the second EOF represents an
additional 8.2% of the variance (7% in summer).5

The remaining seven EOFs, which together with
the first two EOFs span the full nine-dimensional
space, represent only 0.6% of the variance of the
height profiles (0.4% in summer). Thus, only two
coefficient time series are required to represent
the essential information in the time series of
geopotential height at the nine levels. Instead of
dealing with 1080 numbers per season, only 2×
120 = 240 are needed. This demonstrates one of
the advantages of EOFs, namely the ability to often
identify a small subspace that contains most of the
dynamics of the observed system.6

Another advantage is that the patterns can
sometimes be seen asmodes of variability.
In the present example the two patternsEe 1

and Ee 2 may be identified with the equivalent
barotropic mode and the first baroclinic mode of
the tropospheric circulation: The first patterns in
winter (Figure 13.1) as well as in summer have

5When we say that an expansionY ‘represents’p% of the
variance ofX, we mean that the variance ofY−X is (100−p)%
of the variance ofX. The word ‘explains’ is often used instead
of the word ‘represents’ in the literature. This is misleading
since nothing is explained causally; only part of the variability
of X has been described byY.

6The assumption that the subspace with maximum variance
coincides with the dynamically active subspace is arbitrary.
In general, it will not be valid and counter examples can
easily be constructed. However, in climate research, it is often
reasonable to make this assumption. An example demonstrating
the dynamical dominance of EOFs is given by Selten [343].

the same sign throughout the troposphere, that is,
they exhibit an equivalent barotropic structure. The
second EOF, however, changes sign in the middle
of the troposphere: it represents the first baroclinic
mode.7

13.0.2 ‘Complex’ EOFs. EOFs may be derived
from real- or complex-valued random vectors.
The latter results in complex-valued EOFs. The
‘Complex EOF Analysis’ (CEOF) described in
the climate literature (see [181]) is a special case
of the EOF analysis of complex random vectors.
The time order of the observations is important
for these ‘CEOFs,’ or ‘Frequency Domain EOFs,’
since they are the EOFs of a complexified time
series. In contrast, the time order of observations
is irrelevant in ordinary complex EOF analysis.
The original real-valued time series is made
complex by adding its Hilbert transform (see
Section 16.2) as the imaginary component. The
Hilbert transform can be thought of as the time
derivative of the original process so that the
EOF analysis of the complexified process reveals
properties of the variability of the state and its
change at the same time. To avoid confusion with
the ordinary complex EOF analysis we refer to
these EOFs asHilbert EOFs(see Section 16.3).

13.1 Definition of Empirical
Orthogonal Functions

13.1.1 Overview. EOFs are introduced formally
in this section as parameters of the distribution of
anm-dimensional random vectorEX.8 For the sake
of brevity we assumeEµ = 0. We first construct
the first EOF, which is the most powerful single
pattern in representing the variance ofEX. The
idea is easily generalized to several patterns and
in [13.1.3] the calculations are condensed into a
theorem.

13.1.2 The First EOF. The first step is to find
one ‘pattern’Ee 1, with ‖Ee 1‖ = 1, such that

ε1 = E
(
‖EX − 〈EX, Ee 1〉Ee 1‖2

)
(13.2)

is minimized.9 Equation (13.2) describes the
projection of the random vectorEX onto a one-
dimensional subspace spanned by the fixed vector

7A similar result for the vertical structure of the shelf ocean
has been reported by Kundu, Allen, and Smith [234].

8Mainly based on [392].
9‖·‖ denotes the vector norm, and〈·, ·〉 denotes the inner

product. Note that‖EX‖ = 〈 EX, EX〉. See Appendix B.
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Ee 1. Minimizing ε1 is equivalent to the maximizing
of the variance ofEX that is contained in this
subspace:

ε1 = E
(
‖EX‖2− 2〈 EX, Ee 1〉∗ EX†Ee 1

+ 〈EX, Ee 1〉∗〈 EX, Ee 1〉
)

= E(‖EX‖2− 〈EX, Ee 1〉∗〈 EX, Ee 1〉)
= Var( EX)− Var

(〈 EX, Ee 1〉),
where the variance of the random vectorEX is
defined to be the sum of variances of the elements
of EX.10 Note that

Var
(
〈 EX, Ee 1〉

)
= Ee 1†ΣEe 1,

where Σ is the covariance matrix ofEX. Then
minimization of equation (13.2), under the
constraint‖Ee 1‖ = 1, leads to

d

dEe 1

[−Ee 1†ΣEe 1+ λ (Ee 1†Ee 1− 1
)]

= 2ΣEe 1+ 2λEe 1 = 0

where λ is the Lagrange multiplier associated
with the constraint‖Ee 1‖ = 1.11 Thus, Ee 1 is
an eigenvector with a corresponding eigenvalue
λ, of the covariance matrixΣ. But Σ has m
eigenvectors. Therefore, to minimizeε1, we select
the eigenvector that maximizes

Var
(〈 EX, Ee 1〉) = Ee 1†ΣEe 1

= Ee 1†λEe 1 = λ.
Thusε1 is minimized whenEe 1 is an eigenvector of
Σ associated with its largest eigenvalueλ.12 This
‘pattern’ is the first EOF.13

13.1.3 More EOFs. Having found the first EOF,
we now repeat the exercise by finding the ‘pattern’
Ee 2 that minimizes

ε2 = E
(‖( EX − 〈EX, Ee 1〉Ee 1)− 〈EX, Ee 2〉Ee 2‖2)

subject to the constraint that‖Ee 2‖ = 1. The result
is thatEe 2 is the eigenvector ofΣ that corresponds

10That is, if EX has covariance matrixΣ, then we define

Var
(
EX
)
= tr(Σ).

11Graybill [148, Section 10.8], describes the differentiation
of quadratic forms.

12Recall (see Appendix B) that all eigenvalues of the
Hermitian matrixΣ= E( EX EX†) are real and non-negative.

13The pattern is unique up to sign ifΣ has only one
eigenvector that corresponds to eigenvalueλ. Otherwise, the
pattern can be any vector with unit norm that is spanned by the
eigenvectors corresponding toλ. In this case, the EOF is said to
bedegenerate. See Appendix B.

to its second largest eigenvalueλ2.14 This second
pattern is orthogonal to the first because the
eigenvectors of a Hermitian matrix are orthogonal
to one another.

13.1.4 Theorem. The following theorem results
from the analysis presented so far.

Let EX be anm-dimensional random vector with
mean Eµ and covariance matrixΣ. Let λ1 ≥
λ2 ≥ · · · ≥ λm be the eigenvalues ofΣ and
let Ee 1, . . . , Ee m be the corresponding eigenvectors
of unit length. SinceΣ is Hermitian, the
eigenvalues are non-negative and the eigenvectors
are orthogonal.

(i) The k eigenvectors that correspond to
λ1, . . . , λk minimize

εk = E
(‖( EX − Eµ)−∑k

i=1 〈 EX − Eµ, Ee i 〉Ee i ‖2).
(13.3)

(ii) εk = Var( EX)−
k∑

i=1

λi . (13.4)

(iii ) Var( EX) =
m∑

i=1

λi . (13.5)

The total variance ofEX is broken up intom
components. Each of these components is obtained
by projecting EX onto one of the EOFsEe i . The
variance contribution of thekth component to the
total variance

∑
j λ j is just λk. In relative terms,

the proportion of the total variance represented by
EOFk isλk/

∑
j λ j . This proportion may be given

as a percentage.
If the components are ordered by the size of the

eigenvalues then the first component is the most
important in representing variance, the second is
the second most important and so forth.

Equation (13.3) gives the mean squared error
εk that is incurred when approximating the
full m-dimensional random vectorEX in a k-
dimensional subspace spanned by the firstk EOFs.
The construction of the EOFs ensures that the
approximation is optimal; the use of any other
k-dimensional subspace will lead to mean squared
errors at least as large asεk.

13.1.5 Properties of the EOF Coefficients. The
EOF coefficients, orprincipal components,

αi = 〈EX, Ee i 〉 = EXTEe i∗ = Ee i † EX (13.6)

14Note thatλ1 = λ2 if Ee 1 is degenerate. In fact, ifλ1 hask
linearly independent eigenvectors, thenk of them eigenvalues
of Σ will be equal toλ.
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are uncorrelated, and hence independent whenEX
is multivariate normal. In fact, fori 6= j ,

Cov
(
αi , α j

)= E(〈( EX − Eµ), Ee i 〉〈( EX − Eµ), Ee j 〉∗)
= Ee i †E

(
( EX − Eµ)( EX − Eµ)†)Ee j

= Ee i †ΣEe j

= λ j Ee i †Ee j = 0

Therefore, the variance ofXk, the kth compo-
nent of EX, can also be decomposed into contribu-
tion from the individual EOFs as

Var(Xk) =
m∑

i=1

λi |ei
k|2. (13.7)

If the elements of EX represent locations in
space, the spatial distribution of variance can be
visualized by plotting Var(Xk) as a function of
location. Similarly, the variance contribution from
the i th EOF can be visualized by plottingλi |ei

k|2
or λi |ei

k|2/Var(Xk) as a function of location.

13.1.6 Interpretation. The bulk of the variance
of EX can often be represented by the first few
EOFs. If the original variable hasm components
the approximation ofEX by Eα = (α1, . . . , αk),
with k ¿ m, leads to a significant reduction of
the amount of data while retaining most of the
variance. It was shown in the introductory example
of Berlin geopotential height [13.0.2] that just two
EOFs represent almost all of the information in the
data set.

The physical interpretation of EOFs is limited
by a fundamental constraint. While it is often
possible to clearly associate the first EOF with
a known physical process, this is much more
difficult with the second (and higher-order) EOF
because it is constrained to be orthogonal to
the first EOF. However, real-world processes
do not need to have orthogonal patterns or
uncorrelated indices. In fact, the patterns that most
efficiently represent variance do not necessarily
have anything to do with the underlying dynamical
structure.

13.1.7 Vector Notation. The random vectorEX
may conveniently be written in vector notation by

EX = P Eα (13.8)

whereP is them×m matrix

P = (Ee 1|Ee 2| · · · |Ee m
)

(13.9)

that has EOFs in its columns, andEα is the m-
dimensional (column) vector of EOF coefficients

α1, . . . , αm. Because the EOFs are orthonormal,
the expression (13.8) may be inverted to obtain

Eα = P† EX, (13.10)

whereP† is the conjugate transpose ofP. Another
consequence of the orthonormality of the EOFs is
that

Σ = Cov(EX, EX)
= PCov(Eα, Eα)P†

= P3P†

where3 is the diagonalm× m matrix composed
of the eigenvalues ofΣ,

3 = diag(λ1, . . . , λm).

It therefore follows that

Var( EX) =
m∑

k=1

Var(Xk)

= tr(Σ)

= tr(P3P†)

= tr(3) =
m∑

k=1

λk.

It also follows that the eigenvalues are them
roots of themth degreecharacteristic polynomial
p6(λ) = det(Σ− λI), whereI is the m × m
identity matrix. In fact

p6(λ) = det(P3P†− λPP†)

= det
(
P(3− λI)P†)

= det(3− λI) =
m∏

i=1

(λi − λ). (13.11)

13.1.8 Degeneracy. As noted above, EOFs
are not uniquely determined. Ifλ◦ is a root of
multiplicity 1 of p6(λ) and Ee is a corresponding
(normalized) eigenvector, thenEe is unique up to
sign, and eitherEe or−Ee is chosen as the EOF that
corresponds toλ◦. On the other hand, ifλ◦ is a root
of multiplicity k, the solution space of

ΣEe = λ◦Ee
is of dimensionk. The solution space is uniquely
determined in the sense that it is orthogonal to
the space spanned by them − k eigenvectors of
Σ that correspond to eigenvaluesλi 6= λ◦. But
any orthonormal basisEe 1, . . . , Ee k for the solution
space can be used as EOFs. In this case the
EOFs are said to bedegenerate. (An example is
discussed in [13.1.9].)

Degeneracy can either be bad or good news. It is
bad news if the EOFs are estimated from a sample
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of iid realizations ofEX. Then degeneracy is mostly
a nuisance, because the patterns, which may
represent independent processes in the underlying
dynamics, can not be disentangled.

However, degeneracy may be good news if
the EOFs are estimates from a realization of a
stochastic processEXt . Suppose, for example, that
p6(λ) has a root of multiplicity 2. By construction,
the cross-correlation of the two corresponding
EOF coefficient time series will be zero at lag-0.
But this does not imply that the lagged cross-
correlations will be zero, and, in fact, they are often
nonzero. This means that a pair of EOFs and their
coefficient series could represent a signal that is
propagating in space.

The representation of such a spatially propagat-
ing signal requires two patterns whose coefficients
vary coherently and are 90◦ out-of-phase. The two
patterns representing a propagating signal are not
uniquely determined; indeed if any two patterns
represent the signal, then any linear combination
of the two do so as well. Therefore, degeneracy is
a necessary condition for the description of such
signals.

13.1.9 Examples. To demonstrate the mathe-
matics of EOF analysis and the phenomenon of
degeneracy we now consider the case of a random
vector

EX =
m∑

k=1

αk Ep k (13.12)

where coefficients αk are uncorrelated real
univariate random variables andEp 1, . . . , Ep m are
fixed orthonormal vectors. For simplicity we
assume that theαs have mean zero. Then the
covariance matrix ofEX is

Σ = E
((∑

k αk Ep k
)(∑

l αl Ep l
)T)

=
∑

j

Var
(
α j
) Ep j Ep j T

. (13.13)

It is easily verified that Var(αk) is an eigenvalue of
this covariance matrix with eigenvectorEp k:(∑

j

Var
(
α j
) Ep j Ep j T

)
Ep k = Var(αk) Ep k.

Thus, the chosen orthonormal vectors are the EOFs
of the random vector (13.12). The ordering is
determined by the variance of the uncorrelated
univariate random variablesαk.

The example has two merits. First it may be used
as a recipe for constructing random vectors with a
given EOF structure. To do so one has to select a

set of orthonormal vectors and associate them with
a set of uncorrelated random variables.

The example may also be used to demonstrate
the phenomenon of degeneracy. To do so, we
assume that allαs have variance 1. Then, the
EOFs are degenerate and may be replaced by any
other set of orthonormal vectors. One such set of
orthonormal vectors are the unit vectorsEu k with
a 1 in thekth row and zeros elsewhere. Then, the
representation (13.8), withP = ( Ep 1| · · · | Ep m), is
transformed as

EX = P Eα =
(
PPT

)
(P Eα) = U Eβ, (13.14)

where the new EOFs are the columns of

U = PPT = I = (Eu 1| · · · |Eu m)

and the EOF coefficients are given by

Eβ = P Eα.
These coefficients are uncorrelated as well because
of Var(αk) = 1 for all k:

Cov( Eβ, Eβ) = Cov(P Eα,P Eα)
= P Cov(α, α)PT

= PIPT = I.
Obviously, the only meaningful information the
EOF analysis offers in this case is that there is
no preferred direction in the phase space. The
only property that matters is the uniformity of the
variance in all directions.

13.1.10 Coordinate Transformations. Let us
consider twom-variate random vectorsEX and EZ
that are related to each other by

EZ = LEX (13.15)

whereL is an invertible matrix so thatEX = L−1EZ.
Both vectors represent the same information but
the data are given in different coordinates. The
covariance matrix ofEZ is

ΣZ Z = LΣX XL†, (13.16)

for L† the conjugate transpose ofL. Suppose the
transformation is orthogonal (i.e., L−1 = L†),
and also letλ be an eigenvalue ofΣXX and let
Ee X be the corresponding eigenvector. Then, since
ΣXXEe X = λEe X ,

ΣZ ZLEe X = LΣXXL†LEe X

= LΣXXEe X

= λLEe X .
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Thusλ is also an eigenvalue ofΣZ Z and the EOFs
of EZ are related to those ofEX through

Ee Z = LEe X . (13.17)

Thus eigenvectors are transformed (13.17) just as
a random vector is transformed (13.15).

Another consequence of using an orthogonal
transformation is that the EOF coefficients are
invariant. To see this, letPX be the matrix
composed of theEX-EOFs Ee X and letPZ the the
corresponding matrix ofEZ-EOFs. We see from
equation (13.17) that

PZ = LPX . (13.18)

Using equation (13.10) and transformation
(13.15), the vector ofEX-EOF coefficients

EαX = P†
X
EX = P†

XL
†EZ = (LP)†EZ = P†

Y
EZ

= EαZ

is seen to be equal to the vector ofEZ-
EOF coefficients. Thus the EOF coefficients are
invariant underorthogonal transformations. They
are generally not invariant under non-orthogonal
transformations. This becomes important when
different variables such as precipitation and
temperature are combined in a data vector. The
EOFs of such a random vector depend on the units
in which the variables are expressed.

A special case of transformation (13.15) occurs
when EX has already been transformed into EOF
coordinates using (13.10),

EZ = Eα = P† EX.
That is,L = P†. Using transformation (13.18), we
see that theEα-EOFs are

Pα = LP = P†P = I.
Thus, in the new coordinates the EOFs are unit
vectors. This fact may be used to test EOF
programs.

13.1.11 Further Aspects. Some other aspects of
EOFs are worth mentioning.

• Empirical Orthogonal Functions may be
generalized to continuous functions, in which
case they are known asKarhunen-Lòeve
functions. The standard inner product〈·, ·〉 is
replaced by an integral, and the eigenvalue
problem is no longer a matrix problem but
an operator problem. (See, e.g., North et al.
[296].)

• The EOFs of some random vectors or random
functions are given by sets of analytic
orthogonal functions. For instance, if the
covariance structure of a spatial process is
independent of the location, then the EOFs
on a continuous or regularly discretized
sphere (circle) are the spherical harmonics
(trigonometric functions). See North et
al. [296].

• The analysed vectorEX may be a combina-
tion of small vectors that are expressed on
different scales, such as temperature and pre-
cipitation or geopotential height at 700 and
200 hPa. Then the technique is sometimes
calledCombined Principal Component Anal-
ysis (see, e.g., Bretherton, Smith, and Wal-
lace [64]). Vector EX might also consist of
smaller vectors representing a single field
observed at different times, in which case
the technique is calledExtended EOF Anal-
ysis (EEOF; see Weare and Nasstrom [417])
or Multichannel Singular Spectrum Analysis
(MSSA; see Section 13.6).

• Any m-dimensional vectorEy can be projected
onto an EOFEe of EX by computing the
inner product〈Ey, Ee 〉. Vector Ey can then by
approximated byEy ≈∑k

i=1 〈Ey, Ee i 〉Ee i .

• Where are the units? When we expand the
random vectorEX into EOFs

EX ≈
k∑

i=1

αi Ee i (13.19)

with αi = 〈EX, Ee i 〉, where do we place the
units of EX on the right side of approximation
(13.19)? Formally the answer is that the
coefficients carry the units while the patterns
are dimensionless. However, in practice
approximation (13.19) is often replaced by

EX ≈
k∑

i=1

α+i Ee i+ (13.20)

with re-normalized coefficients

α+i =
1√
λi
αi (13.21)

and patterns

Ee i+ =
√
λi Ee i (13.22)
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so that Var
(
α+i
) = 1. The re-normalized

pattern then carries the units ofEX, and
represents a ‘typical’ anomaly pattern if we
regardα+i = ±1 as a ‘typical event’.

The decomposition of the local variance, as
given by equation (13.7), takes a particularly
simple form with this normalization, namely

Var(Xk) =
m∑

i=1

|ei+
k |2. (13.23)

Note that the coefficientα+i can be expressed
as

α+i =
1

λi
〈 EX, Ee i+〉. (13.24)

13.2 Estimation of Empirical
Orthogonal Functions

13.2.1 Outline. After having defined the
eigenvalues and EOFs of random vectorEX as
parameters that characterize its covariance matrix,
the question naturally arises as to how toestimate
these parameters from sample{Ex1, . . . , Exn} of
realizations ofEX. It turns out that useful estimators
may be defined by replacing the covariance matrix
Σ with the sample covariance matrix̂Σ and
by replacing the expectation operatorE(·) with
averaging over the sample. An important little
trick for reducing the amount of calculation
when the sample sizen is less than the
dimension ofEX (as is often true) is presented in
[13.2.5]. A computational alternative to solving
the eigenproblem is to perform a singular value
decomposition [13.2.8].

13.2.2 Strategies for Estimating EOFs. The
eigenvalues and EOFs are parameters that charac-
terize the covariance matrix of a random vector
EX. In practice, the distribution ofEX, and thus
the covariance matrixΣ and its eigenvalues and
eigenvectors, is unknown. They must therefore be
estimated from a finite sample{Ex1, . . . , Exn}.

There are two reasonable approaches for
estimation.

• Since the eigenvalues and EOFs characterize
the covariance matrixΣ of EX, one reasonable
approach is to estimate the covariance matrix
and then estimate the eigenvaluesλi and
eigenvectorsEe i with the eigenvaluesλ j

and the eigenvectorsEe j of the estimated
covariance matrix̂Σ.

• After [13.1.3] the EOFs form an orthonormal
set of vectors that is most efficient in
representing the variance ofEX (13.3). Thus
another reasonable approach is to use a set
of orthonormal vectors that represent as much
of the sample variance of the finite sample as
possible.

The two approaches are equivalent and lead to the
following.

13.2.3 Theorem. Let Σ̂ = 1
n

∑n
j=1(Ex j −

µ̂)(Ex j − µ̂)†, where † indicates the conjugate
transpose and̂µ = 1

n

∑n
j=1 Ex j , derived from a

sample{Ex1, . . . , Exn} be the estimated covariance
matrix ofn realizations ofEX. Let λ̂1 ≥ λ̂2 ≥ · · · ≥
λ̂m be the eigenvalues of̂Σ and let̂Ee 1, . . . , Êe m be
corresponding eigenvectors of unit length. SinceΣ̂
is Hermitian, the eigenvalues are non-negative and
the eigenvectors are orthogonal.

(i) The k eigenvectors that correspond to
λ̂1, . . . , λ̂k minimize

ε̂k =
n∑

j=1

∣∣∣Ex j −
k∑

i=1

〈Ex j , Êe i 〉̂Ee i
∣∣∣2. (13.25)

(ii) ε̂k = V̂ar( EX)−
k∑

j=1

λ̂ j . (13.26)

(iii ) V̂ar( EX) =
m∑

j=1

λ̂ j , (13.27)

whereV̂ar( EX) = tr(Σ̂).

13.2.4 The Estimated Covariance MatrixΣ̂.
The covariance between thej th andkth elements
of EX is estimated by

σ̂ jk = 1

n

n∑
i=1

(x j i − x j )(xki − xk),

wherex j i and xki are the j th andkth elements
of Exi . This sum of products can be expressed as
aquadratic form:15

Σ̂ = 1

n
X (I − 1

n
J )(I − 1

n
J )X † (13.28)

whereX is thedata matrix16

X =


x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xm1 xm2 . . . xmn

 , (13.29)

15A quadratic form is a matrix product of the formAA† or
A†A.

16Sometimes also called the design matrix.
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and X † is the conjugate transpose ofX , I is
the n × n identity matrix, andJ is the n × n
matrix composed entirely of units. Then columns
of them× n data matrixX are the sample vectors
Ex1, . . . , Exn; the rows mark them coordinates in
the original space. The matrix productXX † is a
square matrix even ifX is not.

13.2.5 Theorem. The following theorem is
often useful when computing eigenvalues and
eigenvectors [391].

Let A be anym × n matrix. If λ is a nonzero
eigenvalue of multiplicitys ofA†A with s linearly
independent eigenvectorsEe 1, . . . , Ee s, then λ is
also ans-fold eigenvalue ofAA† with s linearly
independent eigenvectorsAEe 1, . . . ,AEe s.

A proof is given in Appendix M.

13.2.6 Recipe. The message of Theorem
[13.2.5] is that the nonzero eigenvalues ofAA† are
identical to those ofA†A and that the eigenvectors
of the two matrices associated with nonzero
eigenvalues are related through a simple linear
relationship. Thus the following recipe may be
used to estimate EOFs.

• If the sample size,n, is larger than the
dimension of the problem,m, then the EOFs
are calculated directly as the normalized
eigenvectors of them × m matrix 1

nX (I −
1
nU)(I − 1

nU)X
†.

• If the sample size,n, is smaller than the
dimension of the problem,m, the EOFs
may be obtained by first calculating the
normalized eigenvectorsEg of the n × n
matrix 1

n(I − 1
nJ )X

†X (I − 1
nJ ) and then

computing the EOFs as

Ee = X (I − 1
nJ )Eg

‖X (I − 1
nJ )Eg‖

.

13.2.7 Properties of the Coefficients of the
Estimated EOFs. There are several properties
worth noting.

• As with the true EOFs, the estimated EOFs
span the full m-dimensional vector space.
Random vectorEX can therefore be expanded
in terms of the estimated EOFs asEX =∑m

j=1 α̂ j Ee j , where

α̂ j = 〈EX, Êe j 〉. (13.30)

• When EX is multivariate normal, the distri-
bution of Êα, where Êα is the m-dimensional
vector of EOF coefficientŝα j , conditional
upon the samples used to estimate the
EOFs is multivariate normal with mean
E (̂Eα|Ex1, . . . , Exm) = P̂† Eµ and covariance

matrix Cov(̂Eα, Êα|Ex1, . . . , Exm) = P̂†
ΣP̂. Ma-

trix P̂, which has Êe j in column j , is a
complicated function ofEx1, . . . , Exm.

• λ̂ j is the variance of the EOF coefficients
computed from the sample used to estimate
the EOFs. That is, if̂α j i = 〈EXi , Êe j 〉, then
1
n

∑n
i=1 |̂α j i − α̂ j |2 = λ̂ j .

Note that̂λ j has at least two interpretations
as a variance estimate. We could regardλ̂ j

as an estimate of the variance of the true
EOF coefficientα j = 〈EX, Ee j 〉 (see [13.3.3]).
Alternatively, we could view the estimated
EOFŝEe j as fixed, not quite optimal, proxies
for Ee j . Then λ̂ j could be viewed as an
estimator of the variance of̂αi = 〈EX, Êe j 〉
when Êe j is fixed (see [13.3.2]). These two
variances are not equal, although they become
asymptotically equivalent asn → ∞. Thus,
at least one of the interpretations makesλ̂ j a
biased estimator. In fact, they are both poor
estimators when the sample is small. In the
former case there is uncertainty because the
EOFs must be estimated. In the latter case
the EOFs are regarded as fixed, but there is
a bias because independent data are not used
to estimate Var(̂αi ). See also [13.3.2,3].

• The sample covariance of a pair of EOF
coefficients computed from the sample used
to estimate the EOFs is zero. That is,
1
n

∑n
i=1(̂α j i − α̂ j )(̂αki − α̂k)

∗ = 0 if j 6= k.

As with λ̂ j , the covariance has two interpre-
tations. It correctly estimates the covariance
of the true EOF coefficientsα j = 〈EX, Ee j 〉
andαk = 〈EX, Ee k〉. Alternatively, if we view
the estimated EOFŝEe j as being fixed, then it
incorrectly estimates Cov

(̂
α j , α̂k

)
. The latter,

the( j, k) element of̂P†
ΣP̂, can be substan-

tially different from zero if Êe j and Êe k are
computed from a small sample.

13.2.8 Gappy Data. Data are often incomplete,
that is, there are irregularly distributed gaps in
the data vectors caused by missing observations.
Estimated EOFs and EOF coefficients can be
derived in this case, but the procedure is slightly



13.3: Inference 301

different. Each element ofΣ is estimated by
forming sums of all available products

σ̂ i j = 1

|Ki ∩ K j |
∑

k∈Ki∩K j

(xki − µ̂i )(xk j − µ̂ j )
∗

(13.31)

where Ki = {k: component i of Exk is not
missing}, and wherêµi = 1

|Ki |
∑

k∈Ki
xki . The

estimated EOFs are then the eigenvectorsÊe i of
this covariance matrix estimate. The setKi ∩K j is
the set of all indices such thatxki andxk j are not
missing. The| · | notation is used to indicate the
size of the enclosed set.

The EOF coefficient̂αi of a gappy data vector
Ex can not be obtained as a simple dot product of
the gappy data vectorEx and the estimated EOF̂Ee i ,
as in equation (13.30), but a least squares estimate
can be obtained by choosinĝαi to minimize
‖Ex− α̂i Êe i ‖. The least square estimate is given by

α̂i =
∑

j∈K x j êi∗
j∑

j∈K |̂ei
j |2

(13.32)

wherex j andêi
j are the j th components ofx and

Ee i , respectively, and whereK = { j : x j is not
missing}. Note that equation (13.32) reduces to
α̂i = 〈Ex, Êe i 〉 when there are no gaps inx.

13.2.9 Computing Eigenvalues and Eigenvec-
tors. One approach to computing eigenvalues
and eigenvectors is to use a ‘canned’ eigen-
analysis routine such as those that are contained
in EISPACK [352], IMSL [193], or NAG [298].
Press et al. [322, p. 454] discuss the origins of
these routines and give further references.

An alternative approach uses Singular Value
Decomposition (Appendix B, and see also Press
et al. [322, pp. 51–63] and Kelly [218, 219]). The
SVD of the conjugate transpose of them × n
centreddata matrix

X ′ = X
(
I − 1

n
J
)
, (13.33)

whereX is given by equation (13.29),I is then×n
identity matrix, andJ is then× n matrix of units,
is

X ′† = USV†, (13.34)

whereU is n × m, S and V are eachm × m,
n is the sample size, andm is the dimension of

EX.17 SincenΣ̂ = X ′X ′†, we infer from equation
(B.6) that the right singular vectorsEv i are equal to
the estimated EOFŝEe i . The singular valuessi are
related to the estimated eigenvalues byλ̂i = 1

ns2
i .

The left singular vectorsEu i are given by (B.5)

Eu i = 1

si
X ′†Ev i . (13.35)

The kth column ofX ′ represents the vector of
deviationsExk − Êµ so that

ui
k =

1

si
(Exk − Êµ)†Ev i . (13.36)

Thus, ui
k is the i th normalized EOF coefficient

(13.21) of the anomaliesExk − Êµ. Note that
the sample variance of thei th normalized EOF
coefficient is

1

n

n∑
k=1

( 1

si
(Exk − Êµ)†̂Ee i

)
= 1

s2
i

V̂ar (̂αi )

(13.37)

= 1

s2
i

λ̂i = 1.

Note also that equations (13.35)–(13.37) are only
valid for those EOFs that correspond to nonzero
eigenvalues. The number of nonzero eigenvalues,
which is determined by the rank18 of the centred
data matrix, is no greater than min(m,n− 1).

Thus SVD extracts the same information from
the sample as a conventional EOF analysis.

13.3 Inference

13.3.1 General. We consider the reliability of
eigenvalues and EOF estimates in this section.
This is a somewhat different question from that
which users generally have in mind when they
enquire about the ‘significance’ of an EOF. The
null hypothesis that is usually implicit in the latter
is that the EOF in question describes only an aspect
of the covariance structure of the ‘noise’ in the
observed system, and the alternative hypothesis is
that the EOF also describes at least part of the
dynamics of the observed system. Unfortunately,
discrimination between ‘noise’ and ‘signal’ in

17We have implicitly assumed here thatm≤ n. The problem
is approached similarly whenm > n, except we begin by
obtaining the SVD ofX ′. Note also that in some textsU and
V aren × n andm× m orthogonal matrices respectively and
S is n × m. The singular values are placed in the diagonal
part of S and the rest of the matrix is zero. We use the
decomposition given in (13.34) because it is commonly used
in SVD subroutines (see, e.g., Press et al. [322]).

18The rank of a matrix is the dimension of the sub-space
spanned by the columns of that matrix.
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this way is fraught with difficulty. We discuss
this further in [13.3.4]. However, we first briefly
consider the variance of EOF coefficients in
[13.3.2] and the bias of eigenvalue estimates in
[13.3.3]. We consider the sampling error of the
EOFs themselves in [13.3.5,6].

13.3.2 The Variance of EOF Coefficients of
a Given Set of Estimated EOFs. Assume we
are given a set of eigenvalueŝλi and EOFŝEe i

that are derived from a finite sample{Ex1 . . . Exn}.
Then any random vectorEX can be represented
in the space spanned by these estimated EOFs
by using the transformation̂α = P† EX. The
transformed random variableŝαi = 〈EX, Êe i 〉 have
their own moments, such as variances Var(̂αi ) and
covariances Cov

(̂
αi , α̂ j

)
. In the following we view

the estimated EOFŝEe i as being ‘fixed’ (or frozen)
rather than random.

Intuitively one would hope that the variance of
α̂i is equal to that of the real EOF coefficientαi .
Unfortunately, this is not the case (see [13.2.6]).
Consider, for example, the first EOFEe 1 and the
corresponding EOF coefficientα1 = 〈EX, Êe 1〉. The
first EOF minimizes

ε1 = E
(
‖EX − 〈EX, Êe 1〉Ee 1‖2

)
.

ReplacingEe 1 with any other vector, such aŝEe 1,
increasesε1. Thus

Var( EX)− Var(α1)

= E
(
‖EX − 〈EX, Ee 1〉Ee 1‖2

)
< E

(
‖EX − 〈EX, Êe 1〉̂Ee 1‖2

)
= Var( EX)− Var(̂α1),

that is, Var(α1) > Var(̂α1). Similar arguments lead
to

• Var(̂αi ) < Var(αi ) for the first few
EOFs (those corresponding to the largest
eigenvalues).

Since the total variance Var( EX) =∑m
j=1 Var

(Ex j
)

is estimated with nearly zero

bias byV̂ar( EX) =∑m
j=1 λ̂ j , it follows that

• Var(̂αi ) > Var(αi ) for the last few EOFs.

Examples show that these deviations may be
considerable, in particular for small eigenvalues
[392].

13.3.3 The Bias in Estimating Eigenvalues. It
is natural to ask questions about the reliability
of eigenvalues and EOF estimates, such as the
extent to which the estimated patterns resemble
the true patterns and how close the estimated and
true eigenvalues are. These questions do not have
completely satisfactory answers, but there are a
number of potentially useful facts. One of these
facts is the following set of asymptotic formulae
that apply to eigenvalue estimates computed from
samples that can be represented byn independent
and identically distributed normal random vectors
(Lawley [245]):

E (̂λi ) = λi

1+ 1

n

m∑
j=1
j 6=i

λ j

λi − λ j

+O(n−2)

(13.38)

Var(̂λi ) =
2λ2

i

n

1− 1

n

m∑
j=1
j 6=i

(
λ j

λi − λ j

)2


+O(n−3). (13.39)

As usual, m is the dimension of the random
vectors. The symbolO(n−s) represents a term that
converges to zero asn→∞ at least as quickly as
n−s does.

By equations (13.38) and (13.39), the eigen-
value estimators are consistent:

lim
n→∞E

(
(̂λi − λi )

2
) = 0. (13.40)

However, something unwanted is hidden in
equation (13.38), namely that the estimators of
the largest and of the smallest eigenvalues are
biased. For the largest eigenvalues, almost all of
the denominators in equation (13.38) are positive
so that the entire sum is positive, that is,E (̂λi ) >

λi for large eigenvalues. Similarly,E (̂λi ) < λi for
the smallest eigenvalues.

Together with the results from [13.3.2] this
finding shows that

• for the largest eigenvaluesλi ,

E (̂λi ) > λi = Var(αi ) > Var(̂αi ), (13.41)

• for the smallest eigenvaluesλi ,

E (̂λi ) < λi = Var(αi ) < Var(̂αi ). (13.42)

Relations (13.41) and (13.42) illustrate that
we must be cautious when using estimated
eigenvalues. First, the estimates are biased: the
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large eigenvalues are overestimated and the small
ones are underestimated. More important, though,
is the inequalityE (̂λi ) 6= Var(̂αi ): The sample
eigenvaluêλ is a biased estimator of the variance
of α̂i = 〈EX, Êe i 〉, for any frozen set of
estimated EOFŝEe i . Similarly, Cov

(̂
αi , α̂ j

) 6=
Ĉov(̂αi , α̂ j ) = 0.

13.3.4 ‘Selection Rules.’ Many so-calledselec-
tion rules have been proposed that supposedly
separate the physically relevant EOFs from those
that are not.19 One popular procedure of this
type is ‘Rule N’ [321]. The basic supposition
is that the full phase space can be partitioned
into one subspace that contains only noise and
another that contains dynamical variations (or
‘signals’). It is assumed that the signal-subspace
is spanned by well-defined EOFs while those in
the noise-subspace are degenerate. Thus, the idea
is to attempt to identify the signal-subspace as the
space spanned by the EOFs that are associated with
large, well-separated eigenvalues.

The selection rules compare the eigenspec-
trum20 estimated from the sample with distribu-
tions of sample eigenspectra that are obtained
under the assumption that all or the smallestm̃
true eigenvalues are equal. The numberm̃ is either
specifieda priori or determined recursively. All
estimated eigenvalues that are larger than, say, the
95% percentile of the (marginal) distribution of the
reference ‘noise’ spectra, are identified as being
‘significant’ at the 5% level.

One problem with this approach is that this
selection rule is mistakenly understood to be a
statistical testof the null hypothesis that EOFs
Ee 1, . . . , Ee m̃, for m̃ < m, span noise against the
alternative hypothesis that they span the signal-
subspace. The connection between this alternative
and the determination of a ‘signal-subspace’ is
vague. Also, the approach sketched above does not
consider the reliability of the estimated patterns
since the selection rules are focused only on the
eigenvalues.

The other problem with the ‘selection rule’
approach is that there need not be any connection
between the shape of the eigenspectrum on the one
hand and the presence or absence of ‘dynamical
structure’ on the other. To illustrate, suppose that a
processEXt = EDt + ENt , containing both dynamical

19See, for example, Preisendorfer, Zwiers, and Barnett [321].
20An eigenspectrumis the distribution of variance (i.e.,

eigenvalues), with EOF index. The eigenspectrum is an
analogue of the power spectrum (see Section 11.2) since both
describe the distribution of variance across the coefficients of
orthonormal basis functions.

and noise components (recall [10.1.1]), has
eigenvaluesλ1, . . . , λm and EOFsEe 1, . . . , Ee m.
Now construct a multivariate white noiseEZt from
iid N (0, I) random vectors. Then the multivariate
white noise processEYt = P31/2EZt , which is
completely devoid of ‘dynamics,’ has the same
eigenvalues and eigenvectors asEXt . Thus we
cannot always diagnose dynamical structure from
the zero lag covariance structure of a process.21

Our recommendation is to avoid using selection
rules. We outline a better approach, based on
North’s Rule-of-Thumb, in the next subsection.

13.3.5 North’s Rule-of-Thumb. Using a scale
argument, North et al. [296] obtained an approx-
imation for the ‘typical’ error of the estimated
EOFs

1̂Ee i ≈
√

2

n

m∑
j=1
j 6=i

c

λ j − λi
Ee j (13.43)

where c is a constant andn is the number of
independentsamples. There are three things to
notice about this equation.

• The first-order error1̂Ee i is of the order of√
1
n . Thus convergence to zero is slow.

• The first-order error1̂Ee i is orthogonal to the
true EOFEe i .

• The estimate of thei th EOF Ee i is most
strongly contaminated by the patterns of
those other EOFsEe j that correspond to the
eigenvaluesλ j closest toλi . The smaller the
difference betweenλ j andλi , the more severe
the contamination.

Lawley’s formulae (13.38, 13.39) yield a first-
order approximation of the ‘typical error’ in̂λi :

1λi ≈
√

2

n
λi . (13.44)

Combining this with a simplified version of
approximation (13.44), North et al. [296] finally
obtain

1̂Ee i ≈ c′1λi

λ j − λi
Ee j (13.45)

where c′ is a constant andλ j is the the closest
eigenvalue toλi . North’s ‘Rule-of-Thumb’ follows
from approximation (13.45):‘If the sampling error

21We would need to also analyse at least part of the lagged
covariance structure ofEXt to reveal the ‘dynamics’ in this
example.
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Estimated (n=300) Estimated (n=1000 True

Figure 13.2:North et al.’s [296] illustration of North’s Rule-of-Thumb [13.3.5]. From [296].
Left: The first four true eigenvalues and EOFs.
Middle: Corresponding estimates obtained from a random sample of sizen = 300.
Right: As middle column, exceptn = 1000.

of a particular eigenvalue1λ is comparable to
or larger than the spacing betweenλ and a
neighbouring eigenvalue, then the sampling error
1Ee of the EOF will be comparable to the size of
the neighbouring EOF’.

13.3.6 North et al.’s Example. North et al.
[296] constructed a synthetic example in which
the first four eigenvalues are 14.0, 12.6, 10.7 and
10.4 to illustrate North’s Rule-of-Thumb [13.3.4].
The first four (true) EOFs are shown in the
left hand column of Figure 13.2. According to
approximation (13.44) the typical error for the
first four estimated eigenvalues is1λi ≈ ±1 for
n = 300 and1λi ≈ ±0.6 for n = 1000. Since
λ1 − λ2 = 1.4,λ2 − λ3 = 2 andλ3 − λ4 = 0.3,
one would expect the first two EOFs to bemixed22

whenn = 300 and the third and fourth EOF to be
mixed for bothn = 300 andn = 1000. That this is

22That is, we expect the first two EOFs to be a combination
of the EOFs that correspond to nearby eigenvalues.

a reasonable guess is demonstrated in the middle
and right hand columns of Figure 13.2, which
displays EOFs estimated from random samples of
sizen = 300 andn = 1000, respectively.

13.4 Examples

13.4.1 Overview. We will present two examples
of conventional EOF analysis in this section. This
first case, on the globally distributed SST, is most
straight forward. The second example involves a
data vector that is constructed by combining the
same variable at several levels in the vertical.

13.4.2 Monthly Mean Global Sea-surface
Temperature. The first two EOFs of monthly
mean sea-surface temperature (SST) of the global
ocean between 40◦S and 60◦N are shown in
Figure 13.3. They represent 27.1% and 7.9% of the
total variance, respectively.
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Figure 13.3: EOFs 1 (top) and 2 (bottom) of
monthly mean sea-surface temperature (SST).
Units: 10−2. Courtesy Xu.

The first EOF, which is concentrated on
the Pacific Ocean, represents ENSO. Its time
coefficient, shown as curve ‘D’ in Figure 13.4,
is highly correlated with the two Southern
Oscillation indices (Darwin minus Papeete SLP,
curve ‘E’, and SST area average, curve ‘F’)
introduced previously. The large ‘centre of action’
in the North Pacific represents the oceanic
response to anomalous extratropical winds which,
in turn, were excited by the anomalous tropical
state.

The second EOF of the SST field also involves
the tropical Pacific Ocean. The most prominent
feature is the narrow tongue of water in the eastern
and central equatorial Pacific with temperatures
that vary coherently. While the coefficient time
series (Figure 13.4, curve ‘A’) reflects ENSO
events (e.g., 1982/83) in part, the connection with
the SOI is not as clear as with the first EOF. The
coefficient appears to have a downward trend from
about 1976 onwards, which would correspond to
cooling in the eastern and central tropical Pacific
or warming elsewhere. It remains to determine
whether the trend is real, part of the global ocean’s
natural low-frequency variability, or just an artifact
of the way in which these data have been collected
and analysed.

13.4.3 Monthly Mean of Zonal Wind at Various
Levels. The next example is on the monthly
mean zonal wind in the troposphere (Xu, personal
communication). A joint analysis of the wind field
at the 850, 700, 500, 300 and 200 hPa levels
was performed. The size of the problem was kept

manageable by performing the analysis in two
steps. Separate EOF analyses were first performed
at each level. In each analysis, the coefficients
representing 90% of the variance were retained.
A combined vector, composed of EOF coefficients
selected for the five levels, is used as input for
the eventual EOF analysis of the three-dimensional
zonal wind field.

The first two EOFs are shown in Figure 13.5,
and their coefficient time series are shown as
traces ‘B’ and ‘C’ in Figure 13.4. The first EOF,
representing 11% of the total monthly variance,
is mostly barotropic, not only in the extratropics
but also in the tropics. Its coefficient time series
exhibits a trend parallel to that found in the
coefficient of the second SST EOF. The mean
westerly winds in the Southern Hemisphere were
analysed as being weaker in the 1970s than in the
mid 1980s (negative sign indicates easterly wind
anomalies). At the same time the mean low-level
easterlies along the equatorial Pacific were weaker
in the early 1970s and stronger in the mid 1980s
(positive anomalies represent anomalous westerly
winds). The results of the EOF analysis of the SST
in [13.4.2] are consistent with this representation:
The second SST EOF described an equatorial
Pacific that was warmer in the early 1970s and
cooler in the 1980s, a phenomenon that should
be accompanied by strengthening easterly trades
during this period.

Because independent analysis techniques are
used to derive the SST and zonal wind fields, we
can conclude that the trend found in both EOF
analyses is not due to data problems. However, it
is still not possible to determine whether the trend
originates from a natural low-frequency variation
or from some other cause.

13.5 Rotation of EOFs

13.5.1 Introduction. This section describes a
class of basis vector ‘rotation’ procedures that is
widely used in climate research. The procedures
are usually applied to EOFs in the hope that
the resulting ‘rotated EOFs’ can be more easily
interpreted than the EOFs themselves. The term
‘rotated EOFs’ is a mild misnomer that may lead
to confusion; ‘rotation’ transforms the Empirical
Orthogonal Function into anon-orthogonallinear
basis. Also, ‘rotation’ can be performed on any
linear basis, not just EOFs.

We will first explain the general idea and will
then describe ‘varimax’-rotation in some detail.
We use three examples to describe the merits
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Figure 13.4:EOF coefficients of monthly mean sea-surface temperature [13.4.2] (curves D and A),
monthly mean zonal wind [13.4.3] (curves B and C) and two Southern Oscillation indices [1.2.2] (curves
E and F). All data are normalized.
A: 2nd SST EOF coefficient. B: 1st zonal wind EOF coefficient.C: 2nd zonal wind EOF coefficient.D:
1st SST EOF coefficient.E: Darwin minus Papeete SLP index of the Southern Oscillation.F: SST index
of the Southern Oscillation.
Courtesy Xu.

of this procedure. The first of these examples is
on the successful and reproducible identification
of teleconnection patterns (cf. Section 17.4). The
second example deals with a case in which the
effect of the rotation is negligible. The third case
illustrates pathological behaviour by showing that
rotation sometimes splits features into different
patterns even though they are part of thesame
physical pattern.

13.5.2 The Concept of ‘Rotation.’ Having
used EOF analysis, or some other technique, to
identify a low-dimensional subspace that contains
a substantial fraction of the total variance, it is
sometimes of interest to look for a linear basis of
this subspace with specified properties, such as the
following.

• Basis vectors that contain simple geometrical
patterns. Simplicity could mean that the
patterns are confined regionally, or that the
patterns are composed of two regions, one

with large positive values and another with
large negative values.

• Basis vectors that have time coefficients with
specific types of behaviour, such as having
nonzero values only during some compact
time episodes.

Richman [331] lists five vague criteria for
simple structure and there are many proposals
of ‘simplicity’ functionals. The minimization of
these functionals is generally non-trivial since the
functionals are nonlinear. Numerical algorithms
used to obtain approximate solutions can only be
applied to bases of moderate size.

The results of a rotation exercise depend on the
number and length of the ‘input vectors’, and on
the measure of simplicity. Successful application
of the rotation technique requires some experience
and the novice may find Richman’s [331] review
paper on rotation useful. Interesting examples are
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Figure 13.5:First two EOFs of the tropospheric zonal wind between 45◦S and 45◦N, at 850, 700, 500,
300 and 200 hPa (from bottom to top). First EOF on the left, second on the right.
Courtesy Xu.

offered by Barnston and Livezey [27] and Chelliah
and Arkin [80], among many others.

The opinion in the community is divided on
the subject of rotation. Part of the community
advocates the use of rotation fervently, arguing that
it is a means with which to diagnose physically
meaningful, statistically stable patterns from data.
Several arguments are raised in favour of the
rotated EOFs.

• The technique produces compact patterns that
can be used for ‘regionalization,’ that is,
to divide an area in a limited number of
homogeneous sub-areas.

• Rotated EOFs are less sensitive to the
distribution of observing locations than
conventional EOFs.

• Rotated EOFs are often statistically more
stable then conventional EOFs (see, e.g.,
Cheng, Nitsche, and Wallace [82]). That is,
the sampling variance of rotated EOFs is
often less than that of the input vectors.

Others in the scientific community are less
convinced because of the heuristic arguments that

motivate the simplicity functionals, and thus the
heuristic basis for the interpretation of the result.
Jolliffe [198] lists four drawbacks of the routine
use of rotation, namely i) the arbitrary choice of
the rotation criterion, ii) the sensitivity of the result
to the normalization of the EOFs (see [13.5.3]),
iii) the need to redo the entire calculation if the
number of EOFs is changed (see [13.5.4]), and iv)
the loss of information about the dominant sources
of variation in the data.

13.5.3 The Mathematics of ‘Rotation.’ ‘Rota-
tion’ consists of the transformation of a set of
‘input vectors’P = ( Ep 1| · · · | Ep K ) into another
set of vectorsQ = (Eq 1| · · · |Eq K ) by means of an
invertible K × K matrixR = (ri j ):

Q = PR (13.46)

or, for each vectorEq i :

Eq i =
K∑

j=1

ri j Ep j . (13.47)

The matrixR is chosen from a class of matrices,
such as orthonormal matrices, subject to the
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constraint that a functionalV(Q) is minimized. An
example of such a functional is described in the
next subsection.

Under some conditions, operation (13.46) can
be viewed as a rotation of the ‘input vectors.’ Since
these are often the firstK EOFs, the resulting
vectorsEq i are called ‘rotated EOFs.’

When matrixR is orthonormal, the operation is
said to be an ‘orthonormal rotation’; otherwise it is
said to be ‘oblique.’

Now let EX be a random vector that takes values
in the space spanned by the input vectors. That is

EX = P Eα (13.48)

where Eα is a k-dimensional vector of random
expansion coefficients. Then, because of operation
(13.46)

EX = (PR)(R−1Eα) = Q Eβ (13.49)

where Eβ = R−1Eα is the k-dimensional vector
of random expansion coefficients for the rotated
patterns.

Let us assume for the following that the matrix
R is orthonormal so thatEβ = RTEα.23

• When the input vectors are orthogonal, the
scalar products between all possible pairs of
rotated vectors are given by the matrix

QTQ = RTPTPR = RTDR, (13.50)

whereD = ( Ep 1T Ep 1, . . . , Ep K T Ep K ). Thus
the rotated vectors are orthogonal only ifD =
I, or, in other words, if the input vectors are
normalized to unit length.

• Similarly, if the expansion coefficients of
the input vectors are pairwise uncorrelated,
so thatΣαα = diag(σ2

1 , . . . , σ
2
K ), then the

coefficients of the rotated patterns are also
pairwise uncorrelated only if coefficientsα j

have unit variance. Then

Σββ = Cov
(
RTEα,RTEα)

= RTΣααR. (13.51)

Equations (13.50) and (13.51) imply that rotated
patterns derived from normalized EOFs, as defined
in [13.1.2,3] so that Ep j = Ee j , are also
orthonormal, but their time coefficients are not
uncorrelated. If, on the other hand, the EOFs are

23All matrices and vectors in this section are assumed to
be real valued. Thus orthonormal matrices satisfyRRT =
RTR = I.

re-normalized as in equations (13.21) and (13.22)

so that Ep j = Ee j+ and Var
(
α+j
)
= 1, then the

rotated patterns are no longer orthogonal but the
coefficients remain pairwise uncorrelated.

Thus two important conclusions may be drawn.

• The result of the rotation exercise depends on
the lengths of the input vectors. Differently
scaled but directionally identical sets of
input vectors lead to sets of rotated patterns
that are directionally different from one
another. Jolliffe [199] demonstrates that the
differences can be large.

The rotated vectors are a function of the input
vectors rather than the space spanned by the
input vectors.

• After rotating EOF patterns, the new patterns
and coefficients are not orthogonal and
uncorrelated at the same time. When the
coefficients are uncorrelated, the patterns are
not orthogonal, and vice versa. Thus, the
percentage of variance represented by the
individual patterns is no longer additive.

13.5.4 The ‘Varimax’ Method. ‘Varimax’ is a
widely used orthonormal rotation that minimizes
the ‘simplicity’ functional

V(Eq 1, . . . , Eq K ) =
K∑

i=1

fV (Eq i ) (13.52)

where Eq i is given by equation (13.47) andfV is
defined by

fV (Eq ) = 1

m

m∑
i=1

(
qi

si

)4

− 1

m2

(
m∑

i=1

(
qi

si

)2
)
.

(13.53)

The constantssi are chosen by the user. The
raw varimax rotation is obtained whensi = 1,
i = 1, . . . ,K , and thenormal varimaxrotation
is obtained by settingsi =

∑K
j=1(p

j
i )

2. Another
option is to definesi as the standard deviation of
the i th component of

EX(K ) =
K∑

j=1

α j Ep j ,

which is the projection of the original full random
vector EX onto the subspace spanned by theK
vectors{ Ep 1 . . . Ep K }.

Note that fV (Eq ) (13.53) can be viewed as
the spatial variance of the normalized squares
(qi /si )

2. That is, fV (Eq ) measures the ‘weighted
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Figure 13.6:January (left) and July (right) versions of the North Atlantic Oscillation pattern derived by
Barnston and Livezey [27] by applying varimax rotation to the first 10 normalized EOFs of January and
July mean 700 hPa height, respectively. Courtesy R. Livezey.

square amplitude’ variance ofEq . Therefore,
minimizing function (13.52) is equivalent to
finding a matrixR such that the sum of the
total weighted square amplitude variance of theK
patterns(Eq 1| · · · |Eq k) = PR is minimized. See
Richman [331] for further details.

13.5.5 Example: Low-frequency Atmospheric
Circulation Patterns. Barnston and Livezey
[27] argued extensively that rotated EOF analy-
sis is a more effective tool for the analysis of
atmospheric circulation patterns than the ‘telecon-
nection’ analysis (Wallace and Gutzler [409]; see
also Section 17.4). They used a varimax rotation
of re-normalized EOFs (13.21, 13.22) to isolate
the dominant circulation patterns in the Northern
Hemisphere (NH) on the monthly time scale. The
EOFs used in the study were computed separately
for each month of the year from correlation ma-
trices derived from a 35-year data set of monthly
mean 700 hPa heights analysed on a 358-point
grid. The data set itself was carefully screened
to remove known analysis biases. Rotation was
performed on the first 10 EOFs in each month.
They represent about 80% of the total variance in
winter and 70% in summer.

The result of the exercise is an extensive
collection of NH circulation patterns. Barnston
and Livezey identified 13 patterns: nine cold
season patterns, two warm season patterns, and
two transition season patterns. Only one pattern,

the North Atlantic Oscillation (NAO, Figure 13.6)
is evident in every month of the year. Barnston and
Livezey estimate that it represents between 15.4%
(March) and 7.4% (October) of the total variance.
The NAO is the dominant circulation pattern in
the solstitial seasons (DJFM and MJJAS). The
NAO is characterized by a ‘high’ (this adjective is
arbitrary since the sign of the pattern is arbitrary)
that is centred, roughly, over Greenland and a low
pressure band to the south. Figure 13.6 displays
‘typical’ configurations in winter and summer. The
Greenland centre is located at about 70◦N and
40–60◦W in winter, and has a zero line at about
50◦N. This centre retreats northward in summer
and a second zero line appears at about 30–35◦N.

Another pattern extracted by Barnston and
Livezey that has been studied by many others
is the Pacific/North American (PNA) pattern
(Figure 13.7). The PNA is characterized by two
centres of the same sign over the Aleutian Islands
and the southeastern United States that flank a
centre of opposite sign located over western North
America. The PNA is evident in winter (December
to April) and again in September and October.
It is strongest in February when Barnston and
Livezey estimate that it represents 13.2% of the
total variance.

Even though the rotated EOFs appear to be
less prone to ‘mixing’ than ordinary EOFs, a
great deal of sampling variability still clouds the
patterns that are produced, and a considerable
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Figure 13.7:As Figure 13.6, except the February
Pacific/North American pattern is displayed.
Courtesy R. Livezey.

amount of skill and subjective judgement are
needed to classify and name the patterns. This is
amply illustrated by Barnston and Livezey [27],
who discuss the types of latitude they permitted
themselves in developing their classification. Their
illustration of six renditions of the NAO obtained
for different times of the year (we show two of
these in Figure 13.6; see Barnston and Livezey [27,
Figure 2]) demonstrates the kind of variability
that the analyst must be able to penetrate when
classifying estimated patterns.

13.5.6 Example: Atlantic Sea-Level Air
Pressure. In this subsection we consider the
EOFs and varimax-rotated EOFs of North Atlantic
monthly mean SLP in DJF.24

The first three EOFs of SLP (Figure 13.8, left
hand column) represent 41%, 26% and 9% of
the total variance, respectively. The first EOF has
almost uniform sign and exhibits one large feature.
The second and third EOFs have dipole structures
that reflect the constraint that the higher-order
EOFs must be orthogonal to the first EOF.

The EOFs of North Atlantic SLP have simple
structure, even without rotation. It is therefore
not surprising that the application of the varimax
rotation technique to these EOFs (Figure 13.8,

24The analysis presented here and in [13.5.7] were provided
by V. Kharin (personal communication). Note that all
eigenvalues, EOFs, and rotated EOFs presented here are
estimates.

middle and right hand columns) results in little
change.

• Figure 13.8 (middle column) displays the
result of the rotation usingK = 5 normalized
EOFs as input vectors. The rotated EOFs
represent 38%, 24% and 10% of the total
variance. Similar results are obtained when
K = 5 non-normalized EOFs are used (not
shown).

• The result of the rotation using the first
K = 10 non-normalizedEOFs is shown in
the right hand column of Figure 13.8. The
patterns represent 26%, 15%, and 13% of
the total variance, respectively. These patterns
deviate somewhat from those in the left hand
and middle columns of the diagram. They
are noisier than the other sets of patterns,
including the rotated patterns derived from
K = 10 normalized EOFs (not shown).

Intuitively this is what we expect since
the non-normalized patterns enter the
minimization functional with equal weights.
Thus the poorly estimated EOFs are as
influential as the well-estimated EOFs in
the determination of matrixR. In contrast,
normalization gives the well-estimated EOFs
relatively more influence on the form ofR.

The first rotated pattern represents less variance
than the first EOF, simply because the first
EOF was constructed to maximize the variance.
Higher-order rotated EOFs typically represent
more variance than the respective EOFs (see, e.g.,
Table 1 of Barnston and Livezey [27]).

In this example, little is gained by processing the
original EOF patterns with the varimax machinery.
The rotated EOFs become noisy when too many
non-normalized EOFs were used as input.

13.5.7 Example: North Atlantic Sea-surface
Temperature. The first three EOFs of the
monthly mean SST in DJF represent 26%, 17%
and 10% of the total variance, respectively
(Figure 13.9, left hand column). These EOFs do
not have simple structure. The first contains three
well-separated centres of location located in the
West Atlantic off the North American coast, south
of Greenland, and in the upwelling region off the
west coast of Africa.

Varimax rotation leads to a substantially
different distribution of variance between patterns
(Figure 13.9, middle and right hand columns).
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Figure 13.8:First three rotated and unrotated EOFs of North Atlantic SLP in winter. From top to bottom
j = 1, j = 2, j = 3. Courtesy V. Kharin.
Left column: Normalized EOFsEe j+.
Middle column: Rotated EOFs derived fromK = 5 normalized EOFs.
Right column: Rotated EOFs derived fromK = 10non-normalized EOFs.

• When the input isK = 5 normalized
EOFs (Figure 13.9, middle column) the three
centres of action in the first EOF are separated
and distributed to the first three rotated
patterns (which represent 21%, 16% and 15%
of the variance, respectively).

• When the input isK = 5 non-normalized
EOFs (i.e., all EOFs have unit length;
Figure 13.9, right hand column) the three
rotated EOFs represent about the same
percentage of variance, namely 15%, 15%
and 13%, respectively.25 Note that the
sequence of patterns is changed from that

25Note that the concept of degeneracy is irrelevant for rotated
EOFs, since degeneracy is immaterial for the minimization of
the functionalV .

obtained with the normalized EOFs (which
have unequal lengths). When more input
vectors are used, the rotated patterns become
noisier and represent less variance (not
shown).

We will revisit the analysis of North Atlantic
SST and SLP in [14.3.1]. There we will see that
the first two conventional EOFs of the North
Atlantic SST reflect two forcing mechanisms,
two characteristic variations in the large-scale
atmospheric state that are encoded in the first
two SLP EOFs shown in Figure 13.8. Thus, in
this case, the rotation makes interpretation more
difficult by masking the underlying physics (see
[14.3.2]).
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Figure 13.9: First three unrotated (left hand column) and rotated (middle and right hand columns)
EOFs of North Atlantic monthly mean SST in DJF. From top to bottom:j = 1, j = 2, j = 3. Courtesy
V. Kharin.
Left column: Normalized EOFsEe j+.
Middle column: Rotated EOFs derived fromK = 5 normalized EOFs.
Right column: Rotated EOFs derived fromK = 5 non-normalized EOFs.

13.5.8 Rotation: a Postscript. EOF rotation
is often useful, but it is not meant to be a
default operation after every EOF analysis. Instead
its use should be guided by the problem under
consideration.

Jolliffe [198] points out that rotation should be
used routinely for subsets of EOFs that have equal,
or near-equal, eigenvalues. The corresponding
EOFs are not well defined because of their
degeneracy (cf. [13.1.8]), and thus the patterns
contained by the degenerate EOFs may be
arbitrarily rotated within the space that they span.
The sensitivity of the rotation to the normalization
of the EOFs becomes less relevant since all
eigenvalues are similar.

13.6 Singular Systems Analysis and
Multichannel SSA

13.6.1 General. The Singular Systems Anal-
ysis (SSA; see Vautard, Yiou, and Ghil [381]
or Vautard [380]) and theMultichannel Singular
Spectrum Analysis(MSSA, see Plaut and Vau-
tard [317]) are time series analysis techniques
used to identify recurrent patterns in univariate
time series (SSA) and multivariate time series
(MSSA). Mathematically, SSA and MSSA are
variants of conventional EOF analysis, but the
application of the mathematics is markedly dif-
ferent. Vautard [380] reviews recent applications
of SSA and MSSA. Allen and colleagues [8, 9,
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10] have investigated various aspects of these
methods.

13.6.2 Singular Systems Analysis. Univariate
time seriesXt are considered in SSA. Anm-
dimensional vector time seriesEYt is derived from
Xt by setting:

EYt = (Xt ,Xt+1, . . . ,Xt+m−1)
T . (13.54)

A Singular Systems Analysisis an EOF analysis of
EYt .

The vector space occupied byEYt is called the
delay-coordinate space.

The (zero lag) covariance matrix ofEY, ΣY Y =
Cov

( EYt , EYt
)
, is aTöplitz matrix.26 Element( j, k)

of ΣY Y, say σ jk , is the covariance between the
j th element ofEYt (Xt+ j−1) and itskth element
Xt+k−1. Thus

σ jk = γxx(| j − k|),
whereγxx(·) is the auto-correlation function ofXt .
All off-diagonal elements ofΣY Y are identified
by |i − j | = τ and have the same valueγxx(τ ).
Thus, matrixΣY Y is band-structured and contains
all auto-covariances ofXt up to lagm − 1. The
covariance and correlation matrices ofEYt differ by
only a constant factor (1/σ 2

X). They therefore have
the same eigenvectors. The eigenvalues of the two
matrices differ by the same constant factor.

The eigenvectorsEe i of ΣY Y, sometimes called
time EOFs, are interpreted as a sequence in time.
Each eigenvectorEe i is a normalized sequence of
m time-ordered numbers,

Ee i =
(
ei

0, . . . ,e
i
m−1

)T
, (13.55)

that may be understood as a ‘typical’ sequence
of events. The orthogonality of the eigenvectors

in the delay-coordinate space,Ee j TEe k = δ jk ,
is equivalent to thetemporal orthogonalityof
any two typical sequences(ej

0, . . . ,e
j
m−1) and

(ek
0, . . . ,e

k
m−1):

m−1∑
i=0

ej
i ek

i = δ jk . (13.56)

The EOF coefficients

αk(t) = 〈Eyt , Ee k〉 =
m−1∑
i=0

Xt+i e
k
i (13.57)

26The elements on each diagonal of a Töplitz matrix are
equal. That is, ifA is an m × m matrix and if there are
constantsc(−(n−1)), . . . , c(n−1) such thatAi, j = cj−i , then
A is Töplitz. Graybill [148] describes some of their properties
(see Section 8.15).

are empirically determined averages (recall Sec-
tion 10.5) of lengthm. That is,αk(t) is afiltered27

version of the original time seriesXt , with filter
weights that are given by thekth eigenvector.
When Xt is dominated by high-frequency varia-
tions, the dominant eigenvectors will be high-pass
filters, and when most of the variance ofXt

is concentrated at low frequencies the dominant
eigenvectors will act as low-pass filters. The eigen-
vectors will generallynot form symmetric filters.
Thus we need to be aware that operation (13.57)
causes a frequency-dependent phase shift.

As with ordinary EOF analysis, SSA distributes
the total variance ofEYt to the m eigenvaluesλi .
The total variance ofEYt is equal tom times the
variance ofXt . Thus

m∑
i=1

λi = mVar(Xt ). (13.58)

The vector-matrix version of (13.57) is

Eα(t) = P EYt

where Eα(t) and P are defined in the usual
way. Thus the auto-correlation function of the
multivariate coefficient processEα(t) is related to
the auto-correlation function ofXt by

Σαα(τ ) = PΣY Y(τ )PT

whereΣY Y(τ ) is the matrix whose(i, j )th entry is
given by

[ΣY Y(τ )]i, j = γxx(τ + j − i ). (13.59)

Note that

Σαα(0) = 3 = diag(λ1, . . . , λm).

13.6.3 Reconstruction in the Time Domain.
Also, as with ordinary EOFs,

EYt =
m∑

i=1

αi (t)Ee i . (13.60)

Thus, using equation (13.60) to expand
EYt , EYt−1, . . . , EYt−m+1, we find that Xt

has m equivalent time expansions in them
‘SSA-signals’:

Xt =
m∑

i=1

αi (t)e
i
1

=
m∑

i=1

αi (t − 1)ei
2

... (13.61)

=
m∑

i=1

αi (t −m+ 1)ei
m.

27See Section 17.5.
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Each of these expansions distributes the variance
of the SSA-signals differently. In fact, using the
orthogonality of the EOF coefficients, it is easily
shown that

Var(Xt ) =
m∑

i=1

λi

(
ei

k

)2
(13.62)

for all k.28 If we consider the normalized
representation (13.22) we find that the SSA
patterns add to the same numbers:∑

i

(ei+
k )

2 = constant, (13.63)

for all lagsk.

13.6.4 Paired Eigenvectors and Oscillatory
Components. We now consider, briefly, time
series that contain an oscillatory component. For
simplicity, we suppose thatXt is pure cosine so
that

EYt = (Xt , . . . ,Xt+m−1)
T (13.64)

=
(

cos
(
2π t

m

)
, . . . , cos

(
2π t+m−1

m

))T
.

By equation (13.60), the time EOFs must be able
to represent this structure. Suppose one of the time
EOFs contains the cosine pattern, that is,

Ee i =
(
1,cos

(2π
m

)
, . . . , cos

(2π(m−1)
m

))T
.

Then EY0 = Ee i . However, one time step later, we
have

EY1 =
(
cos
(2π

m

)
, . . . , cos

(2π(m−1)
m

)
,1
)T

= cos
(2π

m

)(
1,cos

(2π
m

)
, . . . , cos

(2π(m−1)
m

))T

− sin
(2π

m

)(
0,sin

(2π
m

)
, . . . , sin

(2π(m−1)
m

))T

= cos
(2π

m

)Ee i − sin
(2π

m

)Ee j ,

where Ee j = (
0,sin

(2π
m

)
, . . . , sin

(2π(m−1)
m

))T is

another eigenvector ofEYt . At time t ,

EYt = cos
(2πt

m

)Ee i − sin
(2πt

m

)Ee j

= αi (t)Ee i + α j (t)Ee j

where αi (t) = cos
(2πt

m

)
and α j (t) =

sin
(2πt

m

)
. Note that both coefficients have the same

‘variance’ (i.e.,λi = λ j ), and that the coefficients
are 90◦ out-of-phase.

While the example is artificial, the properties of
the eigenvectors and coefficients above character-
ize what happens whenXt contains an oscillatory

28Note that (13.62) is just a special case of (13.7).
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Figure 13.10:The first four time EOFs of an AR(1)
process witha = 0.8 obtained using window
lengthm = 6. The patterns are normalized with
the square root of the eigenvalue.

signal. That is, we expect to find a pair of degener-
ate EOFs with coefficients that vary coherently and
are 90◦ out-of-phase with each other.29 The pair of
patterns and their coefficients may be written as
one complex pattern and one complex coefficient.

13.6.5 SSA of White Noise. A white noise
process{Xt } (see [10.2.3]) consists of a sequence
of independent, identically distributed random
variables. It has auto-covariance functionγxx(τ )

such thatγxx(0) = Var(Xt ) andγxx(τ ) = 0 for
nonzeroτ . Thus

ΣY Y = Var(Xt )I,
where EYt is the delay-coordinate space version of
Xt (13.58) andI is the m × m identity matrix.
Hence EYt has m eigenvaluesλi = Var(Xt )

and m degenerate eigenvectors. One possible
set of eigenvectors are the unit vectors,Ee i =
(0, . . . ,1, . . . ,0)with the 1 in thei th column.

13.6.6 SSA of Red Noise. Red noise proces-
ses30 have exponentially decaying auto-covariance
functionsγxx(τ ) = σ 2

Xa|τ |, whereσ 2
X = Var(Xt ).

Thus

ΣY Y = σ 2
X


1 a . . . am−1

a 1 . . . am−2

...
...

. . .
...

am−1 am−2 . . . 1

 .
29Compare with the discussion of complex POP coefficients

in Chapter 15.
30AR(1), or ‘red noise,’ processes were introduced in

[10.3.2]. They can be represented by a stochastic difference
equationXt = aXt−1 + Zt , whereZt is white noise. The
auto-covariance function was derived in [11.1.6]. We represent
the lag-1 correlation coefficient by ‘a’ instead of ‘α’ to avoid
confusion with our notation for the EOF coefficients.
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Figure 13.11:Eigenspectra obtained with window
length m = 6 for AR(1) processes witha =
0.99,0.90,0.80,0.60,0.40,0.20, and 0.05. The
spectra are normalized by the variance of the
process.

When m = 2, ΣY Y has eigenvalues(1 −
a) and (1 + a) and corresponding time EOFs
(1/
√

2,−1/
√

2)T and(1/
√

2,1/
√

2)T. The order
of the eigenvalues and EOFs depends upon the sign
of a. Given a specificwindow lengthm, the same
EOFs are obtained for all AR(1) processesXt .

The first four AR(1) time EOFs for window
length m = 6 are shown in Figure 13.10. The
patterns are multiplied by the square root of the
eigenvalue, as in equation (13.22). Thekth pattern
crosses the zero linek − 1 times. Thus, the
time EOFs are ordered by time scale, with most
variance contributed by the variability with longest
time scales.

One characteristic of the time EOFs is that no
two patterns have the same number of zeros. Thus
oscillatory behaviour, such as that described in
[13.6.4], is not possible. This is consistent with
the discussion in [11.1.2], when we also found
no indication of oscillatory behaviour in AR(1)
processes.

Figure 13.11 shows the eigenspectra of several
AR(1) processes for the same window length
m. The larger the ‘memory’a, the steeper the
spectrum. In the extreme case witha = 0.99,
almost all variance is contributed by the ‘almost
constant’ first time EOF. At the other end of the
memory scale (a = 0.05) all time EOFs contribute
about the same amount of variance.

13.6.7 SSA of an AR(2) process.An AR(2)
process has the form

Xt = a1Xt−1+ a2Xt−2+ Zt
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Figure 13.12:First six time EOFs of an AR(2)
process with Eα = (0.3,0.3) obtained using
window length m = 12. The patterns are
normalized with the square root of the eigenvalue.
The eigenvalues are given at the bottom.

[10.3.3]. The auto-covariance function is either the
sum of the auto-covariance functions of two red
noise processes (11.4), or it is a damped oscillatory
function (11.9) (for details, see [11.1.9]).

The process with coefficientsa1 = a2 =
0.3 was found to belong to the former ‘non-
oscillatory’ group. The first six time EOFs
obtained using window lengthm = 12 are
shown in Figure 13.12. Similar to the AR(1)
process, all eigenvectors have different patterns,
with thekth eigenvector having(k − 1) zeros. All
eigenvalues are well separated. Consistent with the
discussion in [11.1.7] and [11.2.6], an oscillatory
mode is not identified. Note the similarity between
the patterns in Figure 13.12 and the AR(1)
patterns shown in Figure 13.10. (The patterns in
Figure 13.12 are not sensitive to the choice of
m.)

The other AR(2) process considered previously
has α1 = 0.9, α2 = −0.8. This process has
oscillatory behaviour with a ‘period’ of 6 time
steps (see [10.3.3], [11.1.7] and [11.2.6]). The
time EOFs of this process, obtained using window
length m = 12, are shown in Figure 13.13. The
first two time EOFs are sinusoidal, with a period
of 6 time steps, and phase-shifted by 1 to 2 time
steps (a quarter of a period, 1.5 time steps, can
not be represented in time steps of 1). The two
time EOFs share similar eigenvalues (4.2 and 4.1)
and obviously represent an oscillatory mode as
described in [13.6.4]. The higher index time EOFs
are reminiscent of the time EOFs obtained for
AR(1) processes.
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Figure 13.13:First six time EOFs of an AR(2)
process withEa = (0.9,−0.8) obtained using
window length m = 12. The patterns are
normalized with the square root of the eigenvalue.
The eigenvalues are given at the bottom.

13.6.8 Multichannel Singular Spectrum
Analysis. MSSA (see Vautard [380]) differs
from SSA only in the dimension of the basic time
series, which is nowm′-dimensional rather than
one-dimensional. The derived random vectorEYt

is thereforemm′-dimensional. Thus MSSA isEx-
tended EOF analysis[13.1.8] in whichm consec-
utively observed fields are concatenated together.
The number of fieldsm is usually small compared
with the field dimensionm′ in EEOF analysis. The
opposite,m> m′, is often true in MSSA.

13.6.9 Estimation. We conclude with a brief
comment on the estimation of eigenvalues and
time EOFs in SSA. The same applies, by
extension, to the eigenvalues and space-time EOFs
in MSSA.

SSA is applied to a finite sample of observations
{x1, . . . , xn} with n À m by first forming EY-
vectors,

Ey1 = (x1, . . . , xm)
T

Ey2 = (x2, . . . , xm+1)
T

...

Eyn−m+1 = (xn−m+1, . . . , xn)
T.

Conventional EOF analysis is applied to the
resulting sample ofn − m + 1 EY-vectors. The
estimated eigenvalues and EOFs can be computed
from either the estimated covariance matrix ofEY
(see [13.2.4]) or by means of SVD (see [13.2.8]).

Note that neither North’s Rule-of-Thumb
[13.3.5] nor Lawley’s formulae (13.38, 13.39) can
be used to assess the reliability of the estimate
directly because consecutive realizations ofEYt

are auto-correlated (see (13.33)). The effects of
temporal dependence must be accounted for (see
Section 17.1) when using these tools.

Allen and co-workers [8, 9, 10] discuss the
problem of discriminating between noisy compo-
nents and truly oscillatory modes in detail.



14 Canonical Correlation Analysis

14.0.0 Overview. Just as EOF analysis (Chap-
ter 13) is used to study the variability of a random
vector EX, Canonical Correlation Analysis(CCA)
is used to study the correlation structure of a pair
of random vectorsEX and EY.

CCA and EOF analyses share similar objectives
and similar mathematics. One interpretation of the
first EOF Ee 1 of EX is that EXTEe 1 is the linear
combination of elements ofEX with the greatest
variance (subject to‖Ee 1‖ = 1). The second EOF
Ee 2 provides the linear combinationEXTEe 2 with
greatest variance that is uncorrelated withEXTEe 1,
and so on. The objective of CCA is to find a
pair of patterns Ef 1

X and Ef 1
Y (subject to‖ Ef 1

X ‖ =
‖ Ef 1

Y ‖ = 1) so that thecorrelationbetween linear
combinations EXT Ef 1

X and EYT Ef 1
Y is maximized.1

A second pair of patternsEf 2
X and Ef 2

Y is found
so that EXT Ef 2

X and EYT Ef 2
Y are the most strongly

correlated linear combinations ofEX and EY that are
not correlated withEXT Ef 1

X and EYT Ef 1
Y , and so on.

Canonical Correlation Analysis was first de-
scribed by Hotelling [187].

The ‘Canonical Correlation Patterns’ of a paired
random vector( EX, EY) are defined in Section 14.1,
and their estimation is described in Section 14.2.
Examples of some applications are given in
Section 14.3. A closely related technique, called
Redundancy Analysis, is described in Section 14.4.

14.0.1 Introductory Example: Large-scale
Temperature and SLP over Europe and Local
Weather Elements in Bern. Gyalistras et al.
[152] analysed the simultaneous variations of
the local climate in Bern (Switzerland) and the
troposphere over the North Atlantic in DJF. The
state of the local climate in a given season was
represented by a 17-dimensional random vectorEX
consisting of the number of days in the season
with at least 1 mm of precipitation, and the

1One could also chooseEf 1
X and Ef 1

Y to maximize

the covariance between EXT Ef 1
X and EYT Ef 1

Y . Climatologists
sometimes call thisSVD analysissince the patterns are
found by obtaining a singular value decomposition of the
cross-covariance matrix. See [14.1.7], Bretherton, Smith, and
Wallace [64] and Cherry [83].

seasonal means and daily standard deviations of
the daily mean, minimum, maximum, and range
of temperature, precipitation, wind speed, relative
humidity, and relative sunshine duration. The
large-scale state of the atmosphere was represented
by a vector EY consisting of the near-surface
temperature and sea-level pressure (SLP) fields
over Europe and the Northeast Atlantic Ocean.

CCA was used to analyse the joint variability of
EX andEY. As noted above, this technique finds pairs
of patterns such that the correlation between two
corresponding pattern coefficients is maximized.

The pair of patterns with the largest correlation
is shown in Figure 14.1. The two patterns, one of
which consists of two sub-patterns for the pressure
and temperature (Figure 14.1, top and middle),
have a meaningful physical interpretation. Below
normal temperatures in Bern are associated with
high pressure over the British Isles and below
normal temperatures in the rest of Europe since
the correlation between the local climate pattern
(bottom panel, Figure 14.1) and the tropospheric
pattern (top two panels, Figure 14.1) is negative.
Weakened westerly flow is associated with
reduced precipitation; the seasonal mean, standard
deviation, and number of ‘wet’ days all tend to be
below normal. The large-scale patterns have little
effect on wind speed and relative humidity.

The link between the two patterns in Figure 14.1
is strong. The correlation between the coefficient
time series (not shown) is−0.89, and the CCA
pattern represents a large proportion of the
variance of the local climate (Figure 14.2). More
than 50% of interannual variance of the seasonal
means of daily mean, minimum and maximum
temperature are represented by the first CCA pair.
They also represent almost 80% of the interannual
variance of DJF precipitation and about 75% of the
interannual variance of the number of ‘wet’ days.

14.1 Definition of Canonical
Correlation Patterns

14.1.1 One Pair of Patterns. Let us consider
an mX-dimensional random vectorEX and an

317
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Figure 14.1:First pair of canonical correlation
patterns of EY = (DJF mean SLP, DJF mean
temperature) and a vectorEX of DJF statistics of
local weather elements at Bern (Switzerland).
Top: The SLP part of the first canonical correlation
pattern for EY.
Middle: The near-surface temperature part of the
first canonical correlation pattern forEY.
Bottom: The canonical correlation pattern for the
local variable EX.
Note that the correlation between the correspond-
ing pattern coefficients is negative.
From Gyalistras et al. [152].

Figure 14.2: Percentage of year-to-year variance
of the local climate variables for Bern represented
by the first CCA pair.

mY-dimensional random vectorEY. We require an
mX-dimensional vectorEfX and anmY-dimensional
vector EfY such that the inner productsβX =
〈EX, EfX〉 and βY = 〈EY, EfY〉 have maximum
correlation. That is, we want to maximize

ρ = Cov
(
βX, βY

)√
Var

(
βX
)

Var
(
βY
) (14.1)

=
Ef T
X Cov

( EX, EY) EfY√
Var

(〈 EX, EfX〉)Var
(〈 EY, EfY〉) .

Note that if a pair of vectorsEfX and EfY maximizes
(14.1), then all vectorsαX EfX andαY EfY do the same
for any nonzeroαX andαY. Thus the patternsEfX
and EfY are subject to arbitrary normalization. In
particular, we can choose patterns such that

Var
(〈 EX, EfX〉) = Ef T

X ΣX X EfX = 1 (14.2)

Var
(〈 EY, EfY〉) = Ef T

Y ΣY Y EfY = 1, (14.3)

whereΣX X andΣY Y are the covariance matrices
of EX and EY. Then equation (14.1) can be rewritten
as

ρ = Ef T
X ΣXY EfY, (14.4)

whereΣXY is the cross-covariance matrix

ΣXY = E
(
( EX − EµX)( EY − EµY)

T
)
.
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Vectors EfX and EfY are found by maximizing

ε = Ef T
X ΣXY EfY + ζ( Ef T

X ΣX X EfX − 1)

+ η( Ef T
Y ΣY Y EfY − 1), (14.5)

whereζ and η are Lagrange multipliers that are
used to account for constraints (14.2) and (14.3).
Setting the partial derivatives ofε to zero, we
obtain

∂ε

∂ EfX
= ΣXY EfY + 2ζΣX X EfX = 0 (14.6)

so that

Σ−1
X XΣXY EfY = −2ζ EfX, (14.7)

and

∂ε

∂ EfY
= ΣT

XY
EfX + 2ηΣY Y EfY = 0, (14.8)

which is equivalent to

Σ−1
Y YΣT

XY
EfX = −2η EfY. (14.9)

Then (14.9) is substituted into (14.7) and vice
versa to obtain a pair of eigen-equations forEfX and
EfY:

Σ−1
X XΣXYΣ−1

Y YΣT
XY
EfX = 4ζη EfX (14.10)

Σ−1
Y YΣT

XYΣ−1
X XΣXY EfY = 4ζη EfY. (14.11)

An argument similar to that used to establish
Theorem [13.2.4] proves that the two matrices
share the same non-negative eigenvalues.2 The
eigenvectors of the two matrices are related to
each other through a simple equation: ifEfX is
a solution of equation (14.10), thenΣ−1

Y YΣT
XY
EfX

is a solution of equation (14.11), provided that
their joint eigenvalue is nonzero. Finally, equation
(14.4) is maximized by lettingEfX and EfY be the
solutions of equations (14.10) and (14.11) that
correspond to the largest eigenvalueλ = 4ζη.

Now that we have found the canonical random
variablesβX = 〈EX, EfX〉 andβY = 〈EY, EfY〉 that are
most strongly correlated, the natural next step is to
find the value ofρ. Using equations (14.4), (14.6),
(14.8), and (14.2), (14.3) in sequence, we find:

ρ2 = Ef T
X ΣXY EfY Ef T

Y ΣT
XY
EfX

= 4ηζ Ef T
X ΣX X EfX Ef T

Y ΣY Y EfY
= λ.

2Note that if EfX is a solution of equation

(14.10), then Σ
1/2
X X
EfX is an eigenvector of

(Σ
−1/2
X X )TΣXYΣ−1

Y YΣT
XYΣ

−1/2
X X . Similarly, Σ

1/2
Y Y
EfY is

an eigenvector of(Σ−1/2
Y Y )TΣT

XYΣ−1
X XΣXYΣ

−1/2
Y Y . Since

these are non-negative definite matrices, their eigenvalues are
real and non-negative.

Thus the correlation is the square root of the
eigenvalue that corresponds to eigenvectorsEfX and
EfY.3

14.1.2 More Pairs. The derivation detailed
above can now be repeated to obtainm =
min(mX,mY) pairs of patterns( Ef i

X ,
Ef i
Y ) and m

corresponding pairs of canonical variates4

βX
i = 〈EX, Ef i

X 〉 (14.12)

βY
i = 〈EY, Ef i

Y 〉 (14.13)

with correlation

ρi = Cov
(
βX

i , β
Y
i

) = √λi .

The patterns and canonical variates are indexed
in order of decreasing eigenvalueλi . Pairs of
canonical variates are uncorrelated. That is, for
i 6= j ,

Cov
(
βX

i , β
X
j

)
= Cov

(
βY

i , β
Y
j

)
= Cov

(
βX

i , β
Y
j

)
= 0.

14.1.3 The Canonical Correlation Patterns.
For simplicity, we assume in this subsection that
EX and EY are of the same dimensionm. Then
the canonical variatesEβ X = (βX

1 , . . . , β
X
m)

T and
Eβ Y = (βY

1 , . . . , β
Y
m)

T can be viewed as the result
of coordinate transforms that have been applied to
EX and EY.5 The transformations relateEβ X and Eβ Y

to EX and EY through unknown matricesF X and
FY:

EX = F X Eβ X

EY = FY Eβ Y.
(14.14)

To findF X , note that

Eβ X = (〈 EX, Ef 1
X 〉, . . . , 〈 EX, Ef m

X 〉)T
= fTX EX

3Note that the sign of the correlation is arbitrary sinceEfX
and EfY are determined uniquely only up to their signs.

4We assume that(Σ−1/2
X X )TΣXYΣ−1

Y YΣT
XYΣ

−1/2
X X (or,

equivalently, (Σ−1/2
Y Y )TΣT

XYΣ−1
X XΣXYΣ

−1/2
Y Y ) has m =

min(mX ,mY) distinct, nonzero eigenvalues. Eigenvalues of
multiplicity greater than one lead to degeneracy just as in
EOF analysis. Uncorrelated canonical variates can still be
constructed, but their interpretation is clouded by their non-
unique determination. Tools comparable to North’s Rule-of-
Thumb [13.3.5] are not yet developed for CCA. Note that
a pair of degenerate eigenvalues may be an indication of a
propagating pattern. See Chapter 15.

5The discussion in this subsection is easily generalized to
the case in whichEX and EY are not of the same dimension.
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wherefX is them×m matrix with eigenvectorEf i
X

in its i th column. Thus

Cov(EX, Eβ X) = Cov(EX, fTX EX)
= Cov(EX, EX)f X = ΣX XfX .

However, substituting equation (14.14) forEX, we
also have

Cov(EX, Eβ X) = Cov(FX Eβ X, Eβ X)

= F X Cov(Eβ X, Eβ X) = F X

since Cov(Eβ X, Eβ X) = I. Thus

F X = ΣX XfX (14.15)

and similarly

FY = ΣY YfY. (14.16)

The columns ofF X and FY, EFi
X and EFi

Y , are
called thecanonical correlation patterns.6 The
canonical variatesβX

i and βY
i are also often

calledcanonical correlation coordinates. Since the
canonical correlation coordinates are normalized
to unit variance, the canonical correlation patterns
are expressed in the units of the field they
represent, and they indicate the ‘typical’ strength
of the mode of covariation described by the
patterns.

While the matrix-vector representations ofEX
and EY in (14.14) are convenient for the derivation
of F X and FY, they are not very evocative.
Therefore, note that (14.14) can also be written as

EX =∑i β
X
i
EFi
X

EY =∑i β
Y
i
EFi
Y .

(14.17)

This allows us to see more clearly that (14.14)
describes an expansion ofEX and EY with respect to
their corresponding canonical correlation patterns.
It also suggests that it may be possible to
approximateEX andEY by truncating the summation
in (14.17).

14.1.4 Computational Aspects. Once we know
one set of vectors, sayEf i

X , all other vectors are
easily obtained through simple matrix operations.
Let us assume that we have the vectorsEf i

X .
Then (14.15) yields EFi

X . In [14.1.1] we noted
that Σ−1

Y YΣT
XY
Ef i
X is equal to Ef i

Y after suitable
normalization. Application of (14.16) gives the

6Note that neither the eigenvectorsEf i
X and Ef i

Y nor

the canonical correlation patternsEFi
X and EFi

Y are generally

orthogonal. However, the columns ofΣ
1/2
X XfX = Σ

−1/2
X X FX

andΣ
1/2
Y YfY = Σ

−1/2
Y Y FY are orthonormal.

last set of vectors, theEY-canonical correlation
patternsEFi

Y . It is therefore necessary to solve only
the smaller of the two eigenproblems (14.10) and
(14.11).

14.1.5 Coordinate Transformations. What
happens to the canonical correlation patterns and
correlations when coordinates are transformed
by an invertible matrixL through LEX= EZ?
For simplicity we assume random vectorEY is
unchanged.

To get the same maximum correlation (14.1), we
have to transform the patternsEf i

X with L−1,

Ef i
Z = (L−1)T Ef i

X . (14.18)

Thus the canonical correlation coordinatesβX
i =

〈 Ef i
Z ,
EZ〉 = 〈 Ef i

X ,
EX〉 are unaffected by the trans-

formation. Note that relation (14.18) can also be
obtained by verifying thatEf i

Z and Ef i
X are eigenvec-

tors of the CCA matricesΣZ Z−1ΣZYΣY Y−1ΣT
ZY

andΣX X−1ΣXYΣY Y−1ΣT
XY with the same eigen-

values.
The canonical correlation patternsEFi

X are
determined by the covariance matrix ofEX and the
Ef i
X -pattern (14.15). Therefore,

EFi
Z = ΣZ Z Ef i

Z

= LΣX XLT(L−1)T Ef i
X

= LΣX X Ef i
X

= L EFi
X . (14.19)

Thus the canonical correlation patterns are
transformed in the same way as the random vector
EX. We may conclude thatthe CCA is invariant
under coordinate transformations.

14.1.6 CCA after a Transformation to
EOF Coordinates. The CCA algebra becomes
considerably simpler if the data are transformed
into EOF space before the analysis (Barnett and
Preisendorfer [21]). Suppose that only the firstkX

andkY EOFs are retained, so that

EX ≈ ∑kX
i αX+

i Eei+
X

EY ≈ ∑kY
i αY+

i Eei+
Y ,

(14.20)

where we have used the renormalized versions
(13.20, 13.21) of the EOFs and their coefficients
α+i = (λi )

−1/2αi and Ee i+ = (λi )
1/2Ee i . The

CCA is then applied to the random vectorsEX′ =
(αX+

1 , . . . , αX+
kX
)T and EY′ = (αY+

1 , . . . , αY+
kY
)T.

An advantage of this approach is that it is
often possible to use only the first few EOFs.
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Discarding the high-index EOFs can reduce the
amount of noise in the problem by eliminating
poorly organized, small-scale features of the fields
involved.

Another advantage is that the algebra of the
problem is simplified sinceΣX′X′ andΣY′Y′ are
both identity matrices. Thus, according to equa-
tions (14.10, 14.11),Ef i

X′ and Ef i
Y′ are eigenvectors of

ΣX′Y′ΣT
X′Y′ and ΣT

X′Y′ΣX′Y′ respectively. Since
these are non-negative definite symmetric matri-
ces, the eigenvectors are orthogonal. Moreover,
the canonical correlation patternsEFi

X′ = Ef i
X′ and

EFi
Y′ = Ef i

Y′ .
A minor disadvantage is that the patterns are

given in the coordinates of the re-normalized
EOF space (14.20). To express the pattern in the
original coordinate space it is necessary to reverse
transformation (14.20) with (14.18) and (14.19):

Ef i
X =

∑kX
j=1(λ

X
j )

1/2( Ef i
X′) j Ee j

X

Ef i
Y =

∑kY
j=1(λ

Y
j )

1/2( Ef i
Y′) j Ee j

Y

EFi
X =

∑kX
j=1(λ

X
j )
−1/2( Ef i

X′) j Ee j
X

EFi
Y =

∑kY
j=1(λ

Y
j )
−1/2( Ef i

Y′) j Ee j
Y

(14.21)

where(·) j denotes thej th element of the vector
contained within the brackets. The canonical
correlation patterns are no longer orthogonal after
this backtransformation, and vectorsEf i and EFi

are no longer identical.7

14.1.7 Maximizing Covariance—the ‘SVD
Approach.’ Another way to identify pairs of
coupled patternsEp i

X and Ep i
Y in random fieldsEX

and EY is to search for orthonormal sets of vectors
such that the covariance between the expansion
coefficientsαX

i = 〈EX, Ep i
X〉 andαY

i = 〈EY, Ep i
Y〉,

Cov
(
αX

i , α
Y
i

) = ( Ep i
X)

TΣXY Ep i
Y, (14.22)

is maximized. Note that we explicitly require
orthonormal vectors so thatEX and EY can be
expanded asEX = ∑

αX
i Ep i

X and EY = ∑
αY

i Ep i
Y.

The solution of (14.22) is obtained as in [14.1.1]
by using Lagrange multipliers to enforce the
constraints( Ep i

X)
T Ep i

X = 1 and( Ep i
Y)

T Ep i
Y = 1. The

result is a system of equations,

ΣXY Ep i
Y = sX Ep i

X

ΣT
XY Ep i

X = sY Ep i
Y,

(14.23)

that can be solved by a singular value decompo-
sition (Appendix B). The same solution is obtained

7Note the similarity between this discussion and that in
[14.1.4].

by substituting the two equations into each other to
obtain

ΣXYΣT
XY Ep i

X = λi Ep i
X

ΣT
XYΣXY Ep i

Y = λi Ep i
Y,

where λi = sXsY. These equations share the
same eigenvaluesλi > 0, and their normalized
eigenvectors are related by

Ep i
Y =

ΣT
XY Ep i

X

‖ΣT
XY Ep i

X‖

Ep i
X =

ΣT
XY Ep i

Y

‖ΣT
XY Ep i

Y‖
.

It is easily shown that Cov
(
αX

i , α
Y
i

) = λ
1/2
i .

Thus the pair of patterns associated with the
largest eigenvalue maximizes the covariance.
The pair of patterns associated with the second
largest eigenvalue and orthogonal to the first pair
maximize the covariability that remains inEX −
αX

1 Ep 1
X and EY − αY

1 Ep 1
Y, and so on.

This method is often called ‘SVD’ analysis.
This wording is misleading because it mixes
the definition of a statistical parameter with the
algorithm used to calculate the parameter. These
patternscan be calculated by SVD but there are
other ways, such as conventional eigen-analysis,
to get the same information. PatternsEp i

X and
Ep i

Y are often called left and right singular
vectors. The nomenclature is again misleading
because the relevant property of these vectors
is that they maximize covariance. We therefore
call this methodMaximum Covariance Analysis
(MCA) and call the vectorsMaximum Covariance
Patterns.

Two properties of MCA are worth mentioning.

• MCA is invariant under coordinate transfor-
mation only if the transformation is orthog-
onal. The eigenvalues, and thus the degree of
covariability, change when the transformation
is non-orthonormal.

• MCA coefficientsαX
i and αX

j , i 6= j , are
generally correlated. They are uncorrelated
when ΣX X = σ 2

XI. This also applies to
EY-coefficients.

See Wallace, Smith, and Bretherton [411] for
examples.

14.1.8 Principal Prediction Patterns. Suppose
{EZt } is a multivariate time series and define

EXt = EZt and EYt = EZt+τ (14.24)
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for some positive lagτ . Application of the
CCA algorithm, with prior EOF truncation if the
dimension ofEZt is large, identifies patternsEFi

0 =EFi
X and EFi

τ = EFi
Y that tend to appear together,

that is, patterns with a fixed time lag in the same
variable. Thus the presence ofEFi

0 at a given time
indicates that it is likely that patternEFi

τ will
emergeτ time units later. Because of the properties
of CCA, patterns EFi

0 and EFi
τ depict the present

and future parts ofEZt that are most strongly
related. In other words, they are the best linearly
auto-predictable components inEZt .8 An example
is given in [14.3.7].

14.2 Estimating Canonical
Correlation Patterns

14.2.1 Estimation. Estimates of canonical
correlation patterns and coefficients are obtained
in the obvious way by replacingΣX X, ΣY Y,
and ΣXY with corresponding estimates. We
recommend that the problem be kept small
by approximating the data with truncated EOF
expansions (see [14.1.5] and also Bretherton et al.
[64]). This has the added benefit of eliminating
small-scale spatial noise.

14.2.2 Making Inferences. As noted previ-
ously, very little is known about the sampling
variability of the eigenvectors or canonical cor-
relation patterns. However, there are some useful
asymptotic results for making inferences about the
canonical correlations themselves.

Bartlett [32] proposed a test of the null
hypothesis H0: ρl+1 = · · · = ρm = 0 that
the last m − l canonical correlations are zero
when it is known that the first l are nonzero.
Here m = min(mX,mY). Bartlett’s test can be
used when the canonical correlations have been
estimated from a sample{(Ex1, Ey1), . . . , (Exn, Eyn)}
of independent realizations of random vectorsEX
and EY that are jointly multivariate normal. The test
statistic (Bartlett [32])

χ2 = −(n− 1− l − 1

2
(mX +mY + 1))

+
l∑

i=1

ρ̂ −2
i ln

( m∏
i=l+1

(1− ρ̂ 2
i )
)
, (14.25)

where ρ̂ i =
√
λ̂i , is approximately distributed

as χχχ2((mX − l )(mY − l )) under H0. The test is

8It seems that the idea was first suggested by Hasselmann
in an unpublished paper in 1983 but it was not pursued until
1996 [103].

performed at the(1 − p̃) × 100% significance
level by comparingχ2 (14.25) against thẽp-
quantile of the approximatingχ2 distribution (see
Appendix E).

Glynn and Muirhead [142] give a bias correction
for ρ̂ i and also give an expression for the
asymptotic variance of the corrected estimator
that is useful for constructing confidence intervals.
Using the Fisherz-transform (recall [8.2.3]),
Glynn and Muirhead show that if

θi − 1

2
ln
(1+ ρi

1− ρi

)
and zi = 1

2
ln
(1+ ρ̂ i

1− ρ̂ i

)
,

then the bias of

θ̂ i = zi − 1

2nρ̂ i

(
mX +mY − 2+ ρ̂ 2

i

+ 2(1− ρ̂ 2
i )

m∑
j=1;
j 6=i

ρ̂ 2
j

ρ̂ 2
i − ρ̂ 2

j

)

is approximatelyO(n−2) and

Var(θ̂ i ) = 1

n
+O(n−2).

Thus the bounds for an approximatep̃ × 100%
confidence interval forρi are given by

tanh(̂θ i ± z(1+p̃)/2/
√

n), (14.26)

where z(1+p̃)/2 is the (1 + p̃)/2-quantile of the
standard normal distribution (Appendix D). Muir-
head and Waternaux [282] show that asymptotic
statistics like equations (14.25, 14.26) are not par-
ticularly robust against departures from the mul-
tivariate normal assumption. Use of the bootstrap
(see Section 5.5) is probably the best practical
alternative when this is a concern.

One question rarely mentioned in the context
of CCA is the size of sample needed to make
good estimates and inferences. Thorndike [365,
pp. 183–184] suggests thatn > 10(mX +
mY) + 50 is a reasonable rule of thumb, and
argues thatn > (mX + mY)

2 + 50 may
be needed for some purposes. Our experience,
however, is that much smaller samples can provide
meaningful information about the first few patterns
and correlations. However, be aware that the
asymptotic results discussed above are not likely
to hold under these circumstances. The Monte
Carlo experiments discussed in the next subsection
give some further insight into what can be
accomplished with small samples.
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mode k = 20 n = 250

i ρ i
xy n = 50 100 500 1000 k = 10 30 50

1 0.69 0.96 0.83 0.70 0.69 0.68 0.71 0.74
2 0.60 0.92 0.76 0.59 0.58 0.58 0.61 0.65
3 0.37 0.79 0.51 0.33 0.31 0.30 0.36 0.43
4 0.11 0.54 0.28 0.10 0.09 0.06 0.16 0.27
5 0.07 0.46 0.23 0.08 0.06 0.03 0.13 0.25

Table 14.1:The means of 100 canonical correlation estimates computed from simulated samples ofn
pairs of 251-dimensional random fields (see text). For brevity, only five of the 10 canonical correlations
are listed. The true correlationsρ i

xy are given in the second column; the results obtained for variable
time series lengthsn, with an EOF truncation ofk = 20, are given in columns three to six. The effect of
including different numbers of EOFsk, using a fixed time series length ofn = 250, is listed in columns
seven to nine. From Borgert [55].

14.2.3 Monte Carlo Experiments. Borgert
[55] conducted a Monte Carlo study of the
performance of CCA on EOF truncated [14.1.6]
data. He simulated a pair of 251-point random
fields EX and EY that consisted of a random linear
combination of 10 pairs of patterns. Each pair
of patterns was multiplied by a pair of random
coefficients that were independent of all other
pairs of coefficients. Thus the random coefficients
are the true canonical variables. Each pair of
random coefficients was generated from a different
bivariate auto-regressive process. In this way the
cross-correlations between the pairs of canonical
variates, the true canonical correlations, were
known. Thus Borgert was able to simulate a pair of
random fields with known canonical correlations
and patterns.

Borgert used this tool to generate 100 inde-
pendent samples for a number of combinations
of sample sizen and EOF truncation pointk =
kX = kY. A canonical correlation analysis was
performed on each sample, and statistics assessing
the average quality of the CCA were gathered
for each combination ofn and k. He found
that the CCA was really able to identify the
correct pairs of patterns: the estimated patterns
were close to the prescribed patterns. However, as
exemplified in Table 14.1, there were considerable
biases in the estimated correlations if too many
EOFs were retained or if the time series were too
short.

Bretherton et al. [64] reviewed a number
of techniques for diagnosing coupled patterns
and intercomparing them in a series of small
Monte Carlo experiments. They found that CCA
with a priori EOF truncation and Maximum

Covariance Analysis were more robust than the
other techniques considered.

14.2.4 Irregularly Distributed Gaps in the
Data. One way to cope with missing data is to
fill the gaps by spatial or temporal interpolation.
However, this is unsatisfactory if more than just a
small amount of data is missing because we end
up trying to diagnose connections between real
data on the one hand and imputed data with much
lower information content on the other. A better
procedure is to use only the data that are actually
available. This can be achieved by the procedure
already outlined in [13.2.7]. The various matrices,
such asΣX X, are estimated by forming sums over
only the available pairs of observations (13.31):

σ̂ i j = 1

|Ki ∩ K j |
∑

k∈Ki∩K j

(xki − µ̂i )(xk j − µ̂ j )
∗

whereKi = {k: componenti of Exk is not missing},
the notation|·| indicates the number of elements in
a set, and̂µi = 1

|Ki |
∑

k∈Ki
xki . As with EOFs, the

calculation of the time coefficients can no longer
be done by means of the dot products (14.12)
and (14.13). Instead coefficients are determined by
least squares, as in equation (13.32).

14.3 Examples

14.3.0 Overview. We will present three exam-
ples in this section. The joint variability of a
pair of large-scale fields is examined for evidence
of a cause-and-effect relationship between the
occurrence of large-scale sea-level air pressure and
sea-surface temperatures anomalies in the North
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Atlantic [14.3.1,2]. In the second example, one of
the vector times series is again North Atlantic sea-
level pressure but the second ‘partner’ in the CCA
is a regional scale variable, namely, precipitation
on the Iberian Peninsula [14.3.3,4]. This example
is used to demonstratestatistical downscalingof
GCM output. The last example [14.3.5] illustrates
the Principal Prediction Patternsintroduced in
[14.1.7].

The literature also contains many other exam-
ples of applications of CCA. Bretherton et al. [64]
cite several studies, including classic papers by
Barnett and Preisendorfer [21], Nicholls [293] and
Barnston and colleagues [26, 28, 30, 346].

14.3.1 North Atlantic SLP and SST: Data and
Results. CCA is used to analyse the relationship
between EX = monthly mean sea-level pressure
(SLP) andEY = sea-surface temperature(SST) over
the North Atlantic in northern winter (DJF) (see
Zorita et al. [438] for details). The data are time
series of monthly means of SLP and SST on a grid
over the North Atlantic north of about 20◦N, for
DJF of 1950 to 1986. Anomalies were obtained
at each grid point by subtracting the long-term
monthly mean from the original values.

The coefficients of the first five EOFs of both
fields were retained for the subsequent CCA. They
represent 87% and 62% of the total variance
or SLP and SST respectively. To check the
sensitivity of the results to EOF truncation, the
same calculations were performed using five SLP
EOFs and either 10 or 15 SST EOFs (77% and
84%, respectively) and essentially the same results
were obtained.

The CCA yields two pairs of patterns that
describe the coherent variations of the SST and
SLP fields. The two patterns are dominant in
describing SLP and SST variance.

The first pair of patterns,EF1
SL P and EF1

SST,
which corresponds to a canonical correlation of
0.56, represents 21% of the variance of monthly
mean SLP and 19% of the variance of monthly
mean SST (Figure 1.13).9 The two patterns are
consistent with the hypothesis first suggested by
Bjerknes that atmospheric anomalies cause SST
anomalies. The main features of the SLP pattern
are a decrease of the westerly wind at about 50◦N,
and an anomalous cyclonic circulation centred at
40◦W and 30◦N.10 North of the cyclone, the

9We have dropped the ‘̂· ’ notation for now, but be aware
that the patterns are parameter estimates. The same applies to
canonical coordinate time series when they are discussed.

10We use the geostrophic wind relationship for the derivation
of approximate wind anomalies from pressure anomalies.

Figure 14.3:The second pair of canonical patterns
for monthly mean SLP and SST over the North
Atlantic in DJF. The dark shading on each pattern
identifies the main positive feature of the opposing
pattern.
Top: SLP, contour interval: 1 hPa,
Bottom: SST, contour interval: 0.1 K.
From Zorita et al. [438].

ocean surface is warmer than normal when the
westerly wind is reduced. West of the cyclone, just
downstream from the cold American continent, the
ocean is substantially cooled. The SST anomalies
off the African coast are a local response to
anomalous winds; coastal upwelling is reduced
when there are weaker than normal northerly
winds. In contrast, when the circulation produces
enhanced westerlies and anomalous anticyclonic
flow in the southern part of the area, opposite SST
anomalies are expected. The canonical correlation
coefficient time series also support the Bjerknes
hypothesis: the one month lag correlation is 0.65
when SLP leads SST but it is only 0.09 if SLP lags.

The coefficients of the second pair of pat-
terns, EF2

SL P and EF2
SST, have correlation 0.47

(Figure 14.3). The SLP pattern represents 31%
of the total variance and is similar to the first
SLP EOF (Figure 13.8), which is related to the
North Atlantic Oscillation (see also [13.5.5] and
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Figure 14.4: First pair of canonical correlation
patterns of the North Atlantic winter mean sea-
level pressureEY and a vectorEX of seasonal means
of precipitation at a number of Iberian locations
[403].

Figure 13.6). The structure of this pair of patterns
is also consistent with the Bjerknes hypothesis.
The one month lag correlation is 0.48 when SLP
leads and 0.03 when SLP lags.

14.3.2 North Atlantic SLP and SST: Discussion.
We described conventional and rotated EOF
analysis of the same data in [13.5.6,7]. The CCA of
SLP and SST suggests why rotation had a marked
effect on the SST EOFs but not on the SLP EOFs.
The coherent variations in the atmosphere (SLP)
are caused by large-scale internal atmospheric
processes so that the EOFs have a simple large-
scale structure. In case of the ocean (SST),
however, the coherent variations (EOFs) are the
oceanic response to the large-scale atmospheric
variations. This response really does not have
simple structure (recall our description in [14.3.3]
of the ocean’s response to NAO variations).

14.3.3 North Atlantic SLP and Iberian
Rainfall: Analysis and Historic Reconstruction.
In this example, winter (DJF) mean precipitation

from a number of rain gauges on the Iberian
Peninsula is related to the air-pressure field over
the North Atlantic (see [403] for details). CCA
was used to obtain a pair of canonical correlation
pattern estimatesEF1

SL P and EF1
pre (Figure 14.4), and

corresponding time seriesβSL P
1 (t) and β pre

1 (t)
of canonical variate estimates. These strongly
correlated modes of variation (the estimated
canonical correlation is 0.75) represent about
65% and 40% of the total variability of seasonal
mean SLP and Iberian Peninsula precipitation
respectively. The two patterns represent a simple
physical mechanism: whenEF1

SL P has a strong
positive coefficient, enhanced cyclonic circulation
advects more maritime air onto the Iberian
Peninsula so that precipitation in the mountainous
northwest region (EF1

pre) is increased.

Since the canonical correlation is large, the
results of the CCA can be used to forecast or
specify winter mean precipitation on the Iberian
peninsula from North Atlantic SLP. The first
step is to connectβ pre

1 (t) and βSL P
1 (t) with a

simple linear modelβ pre
1 (t) = aβSL P

1 (t) + ε.
Sinceβ pre

1 (t) andβSL P
1 (t) are normalized to unit

variance, the least squares estimate of coefficienta
is the canonical correlationρ1. Given a realization
of βSL P

1 (t), the canonical variate for precipitation
can be forecast aŝβ

pre
1 (t) = ρ1β

SL P
1 (t), and thus

the precipitation field is forecast as

ÊR = β̂ pre
1 (t) EF1

pre = ρ1β
SL P
1 (t) EF1

pre. (14.27)

Similarly, if several useful canonical correlation
patterns had been found, Iberian winter mean
precipitation could be forecast or specified as

ÊR =
k∑

i=1

ρiβ
SL P
i (t) EFi

pre.

The analysis described above was performed
with the 1950–80 segment of a data set that
extends back to 1901. Since the 1901–49 segment
is independent of that used to ‘train’ the model
(14.27), it can be used to validate the model.
Figure 14.5 shows both the specified and observed
winter mean rainfall averaged over all Iberian
stations for this period. The overall upward trend
and the low-frequency variations in observed
precipitation are well reproduced by the indirect
method indicating the usefulness of the technique
(14.27) as well as the reality of both the trend and
the variations in the Iberian winter precipitation.
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Figure 14.5: Five-year running mean of winter
mean rainfall averaged across Iberian rain
gauges. The solid curve is obtained from station
data, and the dotted curve is imputed from North
Atlantic SLP variations [403].

14.3.4 North Atlantic SLP and Iberian
Rainfall: Downscaling of GCM output. The
regression approach described above has an
interesting application in climate change studies.
GCMs are widely used to assess the impact
that increasing concentrations of greenhouse gases
might have on the climate system. But, because of
their resolution, GCMs do not represent the details
of regional climate change well. Theminimum
scalethat a GCM is able to resolve is the distance
between two neighbouring grid points whereas the
skilful scale is generally accepted to be four or
more grid lengths. The minimum scale in most
climate models in the mid 1990s is of the order
of 250–500 km so that the skilful scale is at least
1000–2000 km.

Thus the scales at which GCMs produce
useful information does not match the scale at
which many users, such as hydrologists, require
information. Statistical downscaling[403] is a
possible solution to this dilemma. The idea
is to build a statistical model from historical
observations that relates large-scale information
that can be well simulated by GCMs to the
desired regional scale information that can not be
simulated. These models are then applied to the
large-scale model output.

The following steps must be taken.

1 Identify a regional climate variableER of
interest.

2 Find a climate variableEL that

• controls ER in the sense that there is a

Figure 14.6:Downscaled and grid point response
of Iberian precipitation in a ‘2×CO2 experiment’
[403].

statistical relationship betweenER andEL of the
form

ER = G(EL, Eα)+ ε (14.28)

in which G(EL, Eα) represents a substantial
fraction of the total variance ofER. Vector Eα
contains parameters that can be used to adjust
the fit of (14.28).

• is reliably simulated in a climate model.

3 Use historical realizations(Er t ,Elt ) of ( ER, EL) to
estimateEα.

4 Validate the fitted model on independent
historical data or by cross-validation (see
[18.5.2]).

5 Apply the validated model to GCM simulated
realizations ofEL.

This is exactly the process that was followed
in the previous subsection. A model (14.27) was
constructed that related Iberian rainfallER to
North Atlantic SLP EL through a simple linear
functional. The adjustable parametersEα consisted
of the canonical correlation patternsEF1

pre and
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Figure 14.7: Principal Prediction Patterns EF1
0

(top) and EF1
1 with 1 = 3 days (bottom) for the

North Atlantic / European Sector daily winter SLP.
From Dorn and von Storch [103].

EF1
SL P and the canonical correlationρ1. These

parameters were estimated from 1950 to 1980
data. Observations before 1950 have been used to
validate the model.

Downscaling model (14.27) was applied to the
output of a ‘2×CO2’ experiment performed with
a GCM. Figure 14.6 compares the ‘downscaled’
response to doubled CO2 with the model’s grid
point response. The latter suggests that there will
be a marked decrease in precipitation over most
of the Peninsula whereas the downscaled response
is weakly positive. The downscaled response
is physically more reasonable than the direct
response of the model.

14.3.5 Principal Prediction Pattern of North
Atlantic / European SLP. Dorn and von
Storch [103] used the Principal Prediction Pattern
(PPP) analysis technique to study the synoptic
predictability of sea-level pressure (SLP) over the
eastern North Atlantic and Western Europe. This
particular field was used because a rich data set,
consisting of daily analysis since approximately
1900, was available for determining the skill of the
PPP model.

The PPP analysis was performed with daily
winter SLP maps for 1958–88. The dimensionality
of the problem was reduced by projecting the maps

onto the first eight EOFs of daily winter SLP.
Analyses were performed for lagsτ = 1, . . . ,5
days, but we discuss only theτ = 3 days results
below.

The first pair of PPPs is shown in Figure 14.7.
The patterns are normalized such that the variance
of the coefficient of EF1

0 is 1, and that of
the coefficient of EF1

3 is 1/
√
ρ1. With this

normalization, the coefficient for the regression
of the EF1

0 -coefficient on theEF1
3 -coefficient is the

identity. Also, the patterns are scaled so that if
the initial state is a multiple ofEF1

0 , then the best
predictor is the same multiple ofEF1

3 . Patterns
EF1
0 and EF1

3 are rather similar indicating that
the analysis has selected the regional SLP mode
that is most persistent on synoptic time scales.
The reduction of the magnitude by about 1/3
indicates that this persistence goes with some
damping. Thus, the forecast incorporated in this
pair of patterns implies constancy in the pattern,
but a reduction of the intensity, i.e., ‘damped
persistence’.

This statement also holds for the other patterns
and is further supported by comparing the
forecast skill, as given by the anomaly correlation
coefficient11 between the true SLP field and
the field predicted by either PPP or persistence
(Figure 14.8). The skill of the two forecast
schemes is practically identical and exhibits the
characteristic decay with increasing lag. Thus, the
PPP forecast is no more skilful than the simpler
‘competitor’ persistence.

However, the PPP forecast scheme should not
be dismissed out of hand. By conditioning on the
proportion of spatial variance represented byEF1

0 ,
the PPP forecast was found to be more skilful
when the proportion is large (Figure 14.8, bottom).
Thus the PPP scheme also gives a forecast of
forecast skill.

The utility of the PPP technique needs further
exploration and the user is advised to examine
all results obtained with this technique critically.
In particular, surprisingly good results may be
generated by using short time series or by failing
to adequately reduce the degrees of freedom of the
problem.

14.4 Redundancy Analysis

14.4.1 Introduction. So far, we have identified
pairs of patterns by maximizing the correlation

11This measure of skill is explained in detail in [18.2.9].
Roughly speaking, it is the mean spatial correlation between
the forecast and the verifying field.
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I

II

Figure 14.8:Anomaly correlation coefficient of
the PPP forecast (diamonds) and of persistence
(triangles).The vertical bars indicate±σ bands,
as estimated from all forecast prepared for
the winter days from 1900 until 1990. For
better readability, the numbers for the two
forecast schemes, persistence and PPP, are shifted
horizontally.
Top: For lagsτ = 1, . . . ,5days.
Bottom: For lag τ = 3 days. The anomaly
correlation coefficients were classified according
to the proportion of variance of the initial SLP
field described by the PPP (bottom). Class 1
contains cases with proportions in the range
[0.0,0.4], class 2 contains cases with proportions
in (0.4,0.5], and so on up to class 7, which
contains cases with proportions in(0.9,1].

between the corresponding pattern coefficients.
We then demonstrated how regression techniques
can be used to specify or forecast the value of
the pattern coefficients of one of the fields from
those of the other field. This regression problem is
generically non-symmetric because the objective is
to maximize the variance of the predictand that can
be represented. Properties of the predictor patterns,
such as the amount of variance they represent,
are irrelevant to the regression problem. Hence,
there is a mismatch between CCA, which treats
variables equally, and regression analysis, which
focuses primarily on the predictand.

The ‘redundancy analysis’ technique directly
addresses this problem by identifying patterns that

are strongly linked through a regression model.
Patterns are selected by maximizing predictand
variance. This technique was developed in the late
1970s but apparently has not been introduced in
climate research literature.

Here we present theredundancy analysisas
suggested by Tyler [376].Note that very little
experience has been collected with this technique
in the field of climate research. Therefore, the
technique should be applied with great care, and
results should be appraised critically.

14.4.2 Redundancy Index. Let us consider a
pair of random vectors( EX, EY) with dimensionsmX

andmY. Let us assume further that there is a linear
operator represented by amX × k matrixQk. How
much variance inEY can be accounted for by a
regression ofQT

k
EX on EY?12 We assume, without

loss of generality, that the expected value of both
EX and EY is zero.

The regression model that relatesQT
k
EX is given

by

EY = R(QT
k
EX) + Eε, (14.29)

where R is an mY × k matrix of regression
coefficients. The variance represented by(QT

k
EX)

is maximized when

R = ΣY,QX
(
ΣQX,QX

)−1
, (14.30)

where

ΣY,QX = Cov
( EY,QT

k
EX) = ΣY XQk

(14.31)

ΣQX,QX = QT
k ΣX XQk. (14.32)

Tyler [376] called the proportion of variance rep-
resented by the regression (14.29) theredundancy
indexand labelled it

R2( EY : QT
k
EX) = (14.33)

tr
(
Cov(EY, EY) − Cov(EY − ÊY, EY − ÊY))

tr
(
Cov(EY, EY))

where ÊY = R(QT
k
EX) is the estimated value of

EY. The motivation of this wording is that it is a
measure of howredundantthe information inEY is
if one already has the information provided byEX.

12The number of columns (patterns) inQk is smaller than
the dimension ofEX in most practical situations, so thatk < mX
or evenk ¿ mX . Thus, the operationEX → QT

k
EX represents a

reduction of the phase space ofEX, as in all the other cases we
have discussed in this and the previous chapter.
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The numerator is the trace (sum of main
diagonal elements) of the matrix

ΣY Y− (ΣY Y+ΣŶŶ − 2ΣYŶ)

= −RΣQX,QXRT + 2ΣY,QXRT.

Using (14.31)–(14.33), and simplifying, we find
that

R2( EY : QT
k
EX) = (14.34)

tr
(
ΣY XQk

(
QT

k ΣX XQk
)−1QT

k ΣXY
)

tr
(
ΣY Y

) .

14.4.3 Invariance of the Redundancy Index
to Linear Transformations. The redundancy
index has a number of interesting properties.
One of these is its invariance to orthonormal
transformations ofEY: if A is orthonormal, then

R2(A EY : QT
k
EX) = R2( EY : QT

k
EX). (14.35)

The significance of this property comes from
the fact that we may identify any orthonormal
transformation with a linear transformation that
conserves variance. Relationship (14.35) does
not hold for general non-singular matrices, in
particular not for transformations that change the
variance since the proportion of captured variance
changes when the variance ofEY is changed.

On the other hand, any square non-singular
matrix QmX used to transform the specifying
variable EX has also no effect on the redun-
dancy index. In that case,(QmX )

−1 exists and
(QT

mX
ΣX XQmX )

−1 = Q−1
mX

Σ−1
X X(QT

mX
)−1 in the

numerator of (14.34), so that

R2( EY : QT
mX
EX) = R2( EY : EX). (14.36)

The implication of (14.36) is that the coordinate
system in which the random vectorEX is given
does not matter, so long as it describes the same
linear space. This is a favourable property since
the information contained inEX aboutEY should not
depend on the specifics of the presentation ofEX,
such as the metric used to measure the components
of EX, or the order of its components.

However, if the linear transformationQk

maps themX-dimensional variableEX onto a k-
dimensional variableEX′k = QT

k
EX, the new variable

contains less information aboutEY, so that

R2( EY : EX′k) ≤ R2( EY : EX′k+1) (14.37)

≤ R2( EY : EX′mX
) = R2( EY : EX)

provided that ‘column spaces’13 of Qk,Qk+1, and
QmX are nested andQmX is invertible. If, for all
k,Qk+1 is constructed by adding a column toQk,
then inequality (14.37) simply reflects the fact that
the regression onEY hask predictors in the case of
EX′k, and the samek predictors plus one more in the

case ofEX′k+1.
For a given transformationQk, again only the

subspace spanned by the columns ofQk matters.
That is, for any invertiblek× k matrixL, we find

R2( EY : LT(QT
k
EX)) = R2( EY : QT

k
EX). (14.38)

Thus, the redundancy index for two variables
is a function of the subspace the variableEX is
projected upon, and the way in whichEY is scaled.

Since R2 does not depend on the specific
coordinates of the variableEX and EX′k, we may
assume that the columns ofQk are chosen to be
orthogonal with respect toEX; that is,

Eq kTΣX XEq j = 0 (14.39)

for anyk 6= j . Then

R2( EY : QT
k
EX) =

k∑
j=1

R2( EY : Eq j T EX), (14.40)

which may be seen as a special version of (14.37).
Note that (14.39) is fulfilled if the vectorsEq j are
the EOFs ofEX.

14.4.4 Redundancy Analysis. The theory
behind redundancy analysis, as put forward by
Tyler [376], confirms the existence of a non-
singular transformationB = (Eb1|Eb2| · · · |EbmX ) so
that the index of redundancy (i.e., the amount
of EY-variance explained through the regression
of BT

k
EX on EY) is maximized for anyk =

1, . . . ,min(mX,mY). Matrix Bk contains the first
k columns ofB.

Thus redundancy analysis determines thek-
dimensional subspace that allows for the most
efficient regression onEY. Since we are free to
choose the coordinates of this subspace, we may
use a linear basis withk orthogonal patterns that
satisfies (14.39), so that the redundancy index may
be expressed specifically as (14.40).

The following theorem identifies a second set of
patterns,A = (Ea1|Ea2| · · · |Eak), that represent an
orthogonal partitioning of the variance ofEY that
is accounted for by the regression ofEX on EY. More
specifically, the regression maps the subspace

13The column spaceof a matrix Q is the vector space
spanned by the columns ofQ.
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represented byEX′k onto the space spanned by the
first k columns ofA.

The following subsections describe the mathe-
matics required for the determination of matrices
A and B. The theorems are taken from Tyler’s
paper [376].

14.4.5 The Redundancy Analysis Transforma-
tions. For any random vectorsEY of dimension
mY and EX of dimensionmX , there exists an
orthonormal transformationA and a non-singular
transformationB such that

Cov(BT EX, BT EX) = I (14.41)

Cov(AT EY, BT EX) = D (14.42)

whereD is anmY×mX matrix with elementsdi j =
0 for i 6= j and diagonal elementsdj j =

√
λ j for

j ≤ min(mX,mY).
The proof, which is detailed in Appendix M,

revolves around two eigen-equations:

ΣY XΣ−1
X XΣXYEa j = λ j Ea j (14.43)

Σ−1
X XΣXYΣY XEb j = λ j Eb j . (14.44)

Both equations have the same positive eigenvalues
λ j , and the eigenvectorsEa j and Eb j belonging
to the same nonzero eigenvalueλ j are related
through

Eb j = 1√
λ j

Σ−1
X XΣXYEa j . (14.45)

The matricesA and B, which are composed
of eigenvectorsEa j and Eb j , respectively, are the
only matrices that satisfy the requirements of the
theorem.

From the computational point of view, it is
advisable to solve the eigenproblem with the
Hermitian matrix (14.43), then use the identity
(14.45). Since (14.43) is a Hermitian problem, all
eigenvectorsEa j are real valued, and since (14.45)
involves only real matrices, the ‘patterns’Eb j are
also real valued.

14.4.6 Theorem: Optimality of the Redundancy
Transformation. The significance of the redun-
dancy transformation originates from the follow-
ing theorem given by Tyler [376]:

The redundancy indexR2( EY : QT
k
EX) is maximized

by settingQk = Bk, whereBk is themx×k matrix
that contains thek eigenvectors satisfying (14.42)
that correspond to thek largest eigenvalues.

Note that the statement holds for allk ≤ mX . Thus,

among all possible single patternsEq , the eigen-
vector Eb1 belonging to the largest eigenvalue of
the matrixΣ−1

X XΣXYΣY X provides the maximum
information, in a linear sense, about the variance
of EY:

R2( EY : Eq T EX) ≤ R2( EY : Eb1T EX) (14.46)

for any mX-dimensional vectorEq . Moreover,
by equations (14.41) and (14.40), the index of
redundancy takes a particularly simple form,

R2( EY : BT
k ) =

k∑
j=1

R2( EY : Eb j T EX). (14.47)

Also, note that inequality (14.46) may be
generalized to

k∑
j=1

R2( EY : Eq j T EX) ≤
k∑

j=1

R2( EY : Eb j T EX)

(14.48)

for any set of vectorsEq 1, . . . , Eq k.

14.4.7 The Role of Matrix A. Since B =
(Eb1| · · · |EbmX ) is non-singular, random vectorEX
can be expanded in the usual manner as

EX =
mX∑
j=1

( EXTEb j ) Ep j , (14.49)

where theadjoint patternsP = ( Ep 1| · · · | Ep mX )

are given byPT = B−1. When re-expressed in
matrix-vector form, equation (14.49) simply reads
as

EX = PBT EX.
Similarly, sinceA is orthonormal, the part ofEY
that can be represented byEX, that is, ÊY, can be
expanded as

ÊY = AAT ÊY =
∑

j

( ÊYTEa j )Ea j . (14.50)

When we regressEY on EX, we find that ÊY =
ΣY XΣ−1

X X
EX. Thus the expansion coefficients in

(14.50), the elements ofAT ÊY, are given by

AT ÊY = ATΣY XΣ−1
X X
EX.

Now, from equations (14.41) and (14.42) we have
thatΣ−1

X X = BBT andATΣY XB = D. Thus

AT ÊY = ATΣY XBBT EX = DBT EX.
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Hence the expansion coefficients in (14.50) are
given by

ÊYTEa j = √λ j EXTEb j . (14.51)

Considering both (14.49) and (14.50), we
see that the regression maps variations in the
amplitude ofEX patternsEp j onto variations in the

amplitude of ÊY patternsEa j . On average,EY j =√
λ j Ea j when EX j = Ep j (cf. (14.49) and (14.51)).

It is easily shown that the patterns themselves are
related by14

AD = ΣY XΣ−1
X XP.

That is, theEX-patterns are transformed into scaled

versions of the ÊY patterns by the regression
operator.

Thus, redundancy analysis offers a number of
useful insights. First, it helps us to identify an
efficient way of specifying a maximum of variance
in one random vector from the information
provided by another vector. It also guides us
in finding those components of the specifying
variable that contain the most information about
the variable to be specified. Finally, it offers pairs
of patterns that are mapped onto each other. If we
observe the patternEp j in the specifying field, then
the likelihood of observing patternEa j in the field
to be specified is increased.

If we consider the fullEX-space, we find that

ΣŶŶ = ΣY XΣ−1
X XΣXY. (14.52)

When comparing this expression with the eigen-
problem (14.43), it becomes obvious that theEa-

vectors are the EOFs of̂EY. Thus theEa1 coefficient
accounts for the largest amount ofÊY variance (i.e.,
λ1), Ea2 accounts for the second largest amount of
varianceλ2, and so on. The total variance of the

regressed vector̂EY is
∑

j λ j . SinceΣYŶ = ΣŶŶ,
we have

R2( EY : ÊY) = R2( EY : EX)
= tr(ΣŶŶ)

tr(ΣY Y)
=

∑
j λ j

tr(ΣY Y)
. (14.53)

When we truncate (14.49) to thek components of
EX that carry the most information aboutEY, we find
that

R2( EY : ÊY) = R2( EY : BT
k
EX) =

∑k
j=1 λ j

tr(ΣY Y)
.

14The proof is straightforward:
RP = ΣY XΣ−1

X X(B
T)−1 = ΣY XΣ−1

X XΣX XB =
ΣY XB = AD.

14.4.8 Comparison with CCA. Let us now
consider the special case in whichΣX X andΣY Y

are both identity matrices. ThenB andP are also
identity matrices, and the regressed patternsEa,

the EOFs ÊY, are the eigenvectors ofΣY XΣXY.
That is,EX provides the most information about the
component ofEY that lies in theEa1 direction, where
Ea1 is the first eigenvector ofΣY XΣXY. The best
predictor of this component isEXTΣXYEa1.

When we perform CCA on the same system we
must solve the paired eigenvalue problem

ΣXYΣY X EfX = λ EfX
ΣY XΣXY EfY = λ EfY.

The first pair of eigenvectors of this system is
given by EfX = ΣXYEa1, and EfY = Ea1, indicating
that EXTΣXYEa1 is the EX-component most strongly
correlated withEYTEa1.

Thus redundancy analysis and CCA are equiva-
lent in this special case: both identify the sameEX
and EY directions.

In general, however, the methods are not
equivalent. Redundancy analysis finds the best
predicted (or specified) components ofEY by
finding the eigenvectorsEa of

ΣY XΣ−1
X XΣXY

and then finding the patternsEp of EX-variations
that carry this information. CCA, on the other
hand, finds the most strongly correlated compo-
nents ofEY by finding the eigenvectorsΣ−1/2

Y Y
EfY of

(Σ−1/2
Y Y )TΣY XΣ−1

X XΣXYΣ−1/2
Y Y .

That is, CCA does redundancy analysis onEY ′ =
(Σ−1/2

Y Y )T EY, the random vector that is obtained
by projecting EY onto its EOFs and scaling each
component by its standard deviation. We can
therefore anticipate that the two techniques will
produce similar results ifEY is projected onto a
small number of EOFs with similar eigenvalues.

14.4.9 Example: Interdecadal Variability of
Intramonthly Percentiles of Significant ‘Brent’
Wave Height. We now describe an application
in which we use redundancy analysis to specify
monthly wave height statistics at the Brent oil
field, located northeast of Scotland in the North
Atlantic at (61◦N, 1.5◦E). Wave height (sea state)
data are available from visual assessments made
on ships of opportunity, at light houses, from
wave rider buoys, and shipborne instruments at
ocean weather stations. Also, wave height maps
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Figure 14.9: First two monthly mean air-
pressure anomaly distributionŝEpk identified in a
redundancy analysis as being most strongly linked
to simultaneous variations of the intramonthly
percentiles of significant wave height in the Brent
oil field (61◦N, 1.5◦E; northeast of Scotland).

have been constructed from wind analyses for
the purpose of ship routing (Bouws et al. [57]).
These data are sparse and suffer from various
inhomogeneities. Also, the records are generally
too short to allow an assessment of changes during
the past century.

Thus, observational data alone do not contain
sufficient information about the interdecadal
variability of wave statistics. One solution is a
combined statistical/dynamical reconstruction of
the past that uses a dynamical wave model. The
model is forced with recent wind data that are
believed to be fairly reliable and not strongly
affected by improving analysis techniques.15 The
wave heights derived from the hindcast simulation
are treated as observations and are used to
build a statistical model linking the wave heights
to surface air pressure. Finally, the resulting

15Note that the homogeneity of weather maps and
their surface winds is difficult to assess. Analysis system
improvements can introduce artificial signals, such as
increasing frequencies of extreme events, into the hindcast.
Improved analyses procedures, be it more or better observations
or more intelligently designed dynamical and statistical
analysis tools, lead to the emergence of more details in weather
maps and, therefore, larger extremes.

Wave height percentile
50% 80% 90%

Êa1 −81 −107 −114
Êa2 32 2 −25

Table 14.2: The vectors Êak of anomalous
intramonthly percentiles of significant wave height
are given as rows in the following table. Units: cm.

statistical model is fed with the observed air
pressure from the beginning of the century
onward, thereby producing a plausible estimate of
wave height statistics for the entire century. The
statistical model is presented below.

In this case we bring together ‘apples’ and
‘oranges’, that is, two vector quantities that are
not directly linked. One vector time series,EXt ,
represents the winter (DJF) monthly mean surface
air-pressure distributions in the North Atlantic.
The other vector time series,EYt , is a three-
dimensional random vector consisting of the 50th,
80th, and 90th percentiles of theintramonthly
distributions of significant wave height16 in the
Brent oil field at (61◦N, 1.5◦E). Both vector
time series are assumed to be centred, so that the
air-pressure values and percentiles are deviations
from their respective long-term means.

The monthly mean of North Atlantic SLP is
indirectly linked to the intramonthly percentiles,
since storms affect both the monthly mean air-
pressure distribution and the distribution of wave
heights within a month at a specific location. Of
course, the storm activity may also be seen as
being conditioned by the monthly mean state.

The daily wave height data are taken from a 40-
year ‘hindcast’ simulation (G̈unther et al. [153]).
The following analysis assumes that the hindcasts
and windfield analyses both represent the real
world well enough for statistical relationships
between the wave and wind fields on the monthly
time scale to be reliably diagnosed.

A redundancy analysis of the two vector time
series is performed to detect the dominant coupled
anomaly patterns in the mean air pressure and
in the intramonthly wave height percentiles. The
SLP patternŝEp1 and Êp2 are shown in Figure 14.9
and the corresponding intramonthly percentiles
Êa1 and Êa2 are listed in Table 14.2. The time
coefficients are normalized to unit variance so that

16Significant wave height is a physical parameter that
describes the wave field on the sea surface. The word
‘significant’ does not imply a significance test in this context.
See [3.2.4].
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Figure 14.10:Reconstructed (dashed line) and
hindcasted (continuous line; 1955–94) anomalies
of the 90th percentile of significant wave height at
in the Brent oil field. Units: m.

the three components of̂Eak may be interpreted
as typical anomalies that occur when the pressure
field anomalies are given by1√

λk
Êpk.

The patternEa1 accounts for 94% of the variance
of EY, andEa2 for 5%. The correlation between the
coefficient time series of the first pair of vectors
is 0.84 while that between the second pair is only
0.08. Thus, the first pair establishes a regression
representingR2( EY : BT

1
EX) = 94%× 0.842 =

66% of the variance ofEY, whereas the second pair
represents only 5%× 0.082 < 0.1% of variance.
Thus the redundancy index fork = 1 (0.66) can
not be usefully increased by adding a second vecor.

The first air-pressure pattern is closely related
to the North Atlantic Oscillation (see [13.5.5]
and Figure 13.6). A weakening of the NAO is
associated with a decrease in all three intramonthly
percentiles of significant wave height. In effect,
this pattern describes a shift of the intramonthly
distribution towards smaller waves.

The second pattern describes a mean south-
easterly flow across the northern North Sea. The
50th percentile of the significant wave heights is
increased by 32 cm, while the 90th percentile is
reduced by 25 cm. Thus there is a tendency for
the wave height distribution to be widened when
pressure anomaly pattern̂Ep2 prevails. The re-
versed pattern goes with a narrowed intramonthly
distribution of wave heights. This pair of patterns
accounts for only 5% of the predictable wave
height variance.

The regression model incorporated in the
redundancy analysis was used to estimate the time
series of the percentiles of significant wave height
in the Brent oil field from the observed monthly
mean air pressure anomaly fields between 1899
and 1994. The last 40 years may be compared
with the hindcast data, whereas the first 50 years
represent our best guess and can not be verified at
this time. The 90th percentiles of the reconstructed
wave height time series for 1899–94 and the
corresponding hindcasted time series for 1955–94
are shown in Figure 14.10. The link appears to be
strong, as is demonstrated by the correlations and
the proportion of described variance, during the
overlapping period:

Wave height percentile
50% 80% 90%

Correlation 0.83 0.82 0.77
Described variance 0.70 0.66 0.60

The amount of percentile variance represented by
the SLP patterns is consistent with the redundancy
index (14.53), which has value 0.66. As with all
regression models, the variance of the estimator is
smaller than the variance of the original variable.
This makes sense, since the details of the wave
action in a month are not completely determined
by the monthly mean air-pressure field. It is also
affected by variations in surface wind that occur
on shorter time scales.
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15 POP Analysis

15.0.1 Summary. The Principal Oscillation
Pattern (POP) analysis is a linear multivariate
technique used to empirically infer the character-
istics of the space-time variations of a complex
system in a high-dimensional space [167, 389].
The basic approach is to identify and fit a linear
low-order system with a few free parameters. The
space-time characteristics of the fitted system are
then assured to be representative of the full system.

This chapter is organized as follows. POPs
are introduced as normal modes of a discretized
linear system in Section 15.1. Three POP analyses
are given in Section 15.2. Since a POP analysis
includes the fitting of a time series model to
data, the POP approach has predictive potential
(Section 15.3). Cyclo-stationary POP analysis is
explained in Section 15.4. Another generalization,
the Hilbert or ‘complex’ POPs, is introduced
briefly in [16.3.15].

POP models may also be viewed as simplified
state space models. Such models, and in particular
the Principal Interaction Pattern (PIP) ansatz1

(Hasselmann [167]), are a fairly general approach
which allow for a large variety of complex
scenarios. The merits and limitations of this ansatz
are discussed in Section 15.5.

15.0.2 Applications of POP Analysis. POP
analysis is a tool [136] that is now routinely used to
diagnose the space-time variability of the climate
system. Processes that have been analysed with
POPs include the Madden-and-Julian Oscillation
(MJO; also called the 30–60 day oscillation) [388,
389, 399, 401], oceanic variability [275, 421], the
stratospheric Quasi-Biennial Oscillation (QBO)
[431], the El Nĩno/Southern Oscillation (ENSO)
phenomenon [20, 50, 75, 242, 243, 429, 430,
432], and others, tropospheric baroclinic waves
[341], and low-frequency variability in the coupled
atmosphere–ocean system [431].

1The word ‘ansatz’ is causing some confusion in the
scientific community. In contrast with meteorologists and
statisticians, theoretical physicists and non-statistical applied
mathematicians are generally acquainted with this word. It is
of German origin and means an ‘educated guess’ that may or
may not lead to a successful line of analysis.

The POP method is not useful in all applica-
tions. If the analysed vector time series exhibits
strongly nonlinear behaviour, as in, for example,
the day-to-day weather variability in the extrat-
ropical atmospheric flow, a POP analysis will not
be useful because a low-dimensional linear sub-
system does not control a significant portion of the
variability. The POP method will be useful if there
are a priori indications that the processes under
consideration are linear to first approximation.

15.1 Principal Oscillation Patterns

15.1.1 Normal Modes. The normal modes of a
discretized real linear system

EXt+1 = A EXt (15.1)

are the eigenvectorsEp of the matrix A. In
general,A is not symmetric and some or all of
its eigenvaluesλ and eigenvectorsEp are complex.
However, sinceA is a real matrix, the complex
conjugatesλ∗ and Ep ∗ are also eigenvalues and
eigenvectors ofA.

The eigenvectors ofA form a linear basis when
all of its eigenvalues are nonzero. Thus any state
EX may be uniquely expressed in terms of the
eigenvectors as

EX =
∑

j

zj Ep j (15.2)

where the pattern coefficientszj are given by
the inner product of EX with the normalized
eigenvectorsEp j

a of AT.2

2The eigenvectors ofA are linearly independent if all of the
eigenvalues ofA are distinct. Making this assumption, it is then
easily shown thatAT has the same eigenvalues asA, and that

the eigenvectorsEp j
a of AT are columns of a matrix(P−1)T,

where the columns ofP are the eigenvectors ofA. ThenEX can

be expanded asEX =∑ j zj Ep j , wherezj = Ep j
a

T EX, because∑
j

zj Ep j =
∑

j

Ep j T
a EX Ep j

=
(∑

j

Ep j Ep j T
a

)
EX = P

(
(P−1)T

)T EX = EX.
The eigenvectorsEp j

a are calledadjoint patterns.

335
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Inserting (15.2) into (15.1), we find that
the coupled system (15.1) becomes uncoupled,
yieldingm single equations,3

zt+1 Ep = λzt Ep (15.3)

wherem is the dimension of the processEXt . Thus,
if z0 = 1,

zt Ep = λt Ep . (15.4)

Now let EPt be the vector

EPt = zt Ep + z∗t Ep ∗. (15.5)

Then

EPt = zr
t Ep r + zi

t Ep i (15.6)

where zr
t = 2Re{zt }, zi

t = −2Im{zt }, Ep r =
Re{ Ep }, and Ep i = Im{ Ep }. Whenz0 = 1, we find,
by substituting (15.4) into (15.6), that

Ep0 = Ep r

Ept = ξ t(cos(ηt) Ep r − sin(ηt) Ep i
)

(15.7)

whereξ andη satisfyλ = ξe−iη.
The geometrical and physical interpretation of

(15.6) and (15.7) is as follows. Whenλ is complex,
the corresponding eigenvectorEp is also complex,
and (λ∗, Ep ∗) is also an eigenvalue/eigenvector
pair. Thus the sum (15.5) describes two of the
terms in expansion (15.2). Equation (15.6) shows
that this sum is real and that it describes variations
in a two-dimensional subspace of the fullm-
dimensional space that is spanned by the real and
imaginary parts ofEp . Equation (15.7) shows how
system (15.1) evolves if its initial state isEp r . If
ξ = 1, then patternEp r evolves into pattern− Ep i

in π/(2η) time steps, then evolves to pattern− Ep r

at timeπ/η, and eventually returns to patternEp r

in periodT = 2π/η. Schematically,

· · · → Ep r →−Ep i →−Ep r → Ep i → Ep r → · · ·
(15.8)

In the real world,ξ < 1 (otherwise (15.1) would
describe explosive behaviour; see below). Thus
the amplitude of the sequence of patterns decays
exponentially in time with ane-folding timeτ =
−1/ ln(ξ) so thatEpt of (15.7) evolves as the spiral
displayed in Figure 15.1.

Note that any eigenvectorEp is determined up to
a complex scalarα. To make things unique up to
sign, one can chooseα in such a way thatEp r and
Ep i are orthogonal and‖ Ep r ‖ ≥ ‖ Ep i ‖.

The modes may be represented either by the two
patternsEp r and Ep i , or by plots of the localwave

3Indices are dropped in the following for convenience.

Figure 15.1: Schematic diagram of the time
evolution of POP coefficientszt with an initial
valuez0 = (zr , zi ) = (0,1). The rotation time is
slightly more than eight time steps. Thee-folding
timeτ is indicated by the large open circle [400].

amplitudepattern EA2 defined byA2
j = (pr

j )
2 +

(pi
j )

2, j = 1, . . . ,m, and the localrelative phase

pattern Eψ defined byψ j = tan−1(pi
j /pr

j ), j =
1, . . . ,m (Figure 15.2a). The evolution depicted
by (15.8) can describe a travelling wave form.
For example, if we re-expressEp r and Ep i as
functions of a location vectorEr , it may turn out
that Ep i is just a translated version ofEp r (i.e.,
that pi (Er ) = pr (Er − Er◦) for some displacement
Er◦). If so, evolution (15.8) describes a wave
train that propagates in theEr◦ direction and has
wavelength 4‖Er◦‖2. Amphidromal (rotating) wave
forms (Figure 15.2b) can also be represented by
(15.8).

15.1.2 POPs. The only information used so
far is the existence of linear equation (15.1) and
the assumption that coefficient matrixA has no
repeated eigenvalues. No assumption was made
about the origins of this matrix. In dynamical
theory, equations such as (15.1) arise from
linearized and discretized differential equations. In
POP analysis, the state vectorEX is assumed to
satisfy a stochastic difference equation of the form

EXt+1 = A EXt + noise (15.9)

Multiplying (15.9) on the right hand side byEXT
t

and taking expectations leads to

A = E( EXt+1 EXT
t

)(
E( EXt EXT

t )
)−1

. (15.10)

The normalized eigenvectors of (15.10) are
called Principal Oscillation Patterns, and the
coefficientsz are calledPOP coefficients. Their
time evolution is given by (15.3), except that it is
forced by noise:

zt+1 = λzt + noise. (15.11)
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Figure 15.2: Schematic examples representing a complex-valued POPEp = Ep r + i Ep i with their
imaginary and real parts partsEp i (top) and Ep r (middle). The corresponding phase(ψ) and amplitude
A are shown in the bottom panel.
a) A linearly propagating wave is shown. If the initial state of the system isEP = Ep i (top), then its state
a quarter of a period later will beEP = Ep r (middle). The wave propagates to the right with a constant
phase speed (bottom), and the amplitude is constant along horizontal lines with maximum values in the
centre.
b) A clockwise rotating wave is displayed. The evolution of the top pattern to the middle pattern takes
one-quarter of a period. The amplitude (bottom) is zero in the centre, and the lines of constant amplitude
form concentric circles around the centre. From [389].

The stationarity of (15.11) requires|λ| < 1 (see
(10.12)).

15.1.3 Transformation of Coordinates. Sup-
pose the original time seriesEXt is transformed
into another time seriesEYt by means ofEYt =

LEXt with an invertible matrixL. The eigenvalues
are unchanged by the transform. The eigenvectors
transform asEX, and the adjoints are transformed
by (L−1)T, as

EpY = L EpX

EpaY = (L−1)T EpaX.
(15.12)
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The POP coefficients are unaffected by the
transformation because

( EpaY)
T EY = ( EpaX)

TL−1LEX = ( EpaX)
T EX.

15.1.4 Estimating POPs. In practice, when
only a finite time seriesEx1, . . . , Exn is available,A
is estimated by first computing the sample lag-1
covariance matrix

Σ̂1 = 1

n

∑
t

(Ext+1− Ex)(Ext − Ex)T

and the sample covariance matrix

Σ̂0 = 1

n

∑
t

(Ext − Ex)(Ext − Ex)T

and then forming

Â = Σ̂1Σ̂
−1
0 . (15.13)

The eigenvalues of this matrix always satisfy|λ| <
1 (i.e.,ξ < 1).

In many applications the data are first subjected
to a truncated EOF expansion to reduce the number
of spatial degrees of freedom. POP analysis is then
applied to the vector of the first EOF coefficients.4

A positive byproduct of this procedure is that noisy
components can be excluded from the analysis.
Also, the sample covariance matrix̂Σ0 is made
diagonal.

It is often best to time-filter the data prior to the
POP analysis if there is prior information that the
expected signal is located in a certain frequency
band. A somewhat milder way to focus on selected
time scales is to derive the EOFs from time-filtered
data, but to project the unfiltered data onto these
EOFs. Note that the resulting sample covariance
matrix is no longer diagonal.

Criteria for distinguishing between POPs that
contain useful information and those that reflect
primarily sample effects are given in [389]. The
most important rule-of-thumb is related to the
cross-spectrum of the POP coefficientszr andzi :
The coefficient time series should vary coherently
and be 90◦ out-of-phase in the neighbourhood of
the POP frequencyη.

15.1.5 Estimating POP Coefficients. Two
approaches can be used to estimate the POP
coefficientszt . The straightforward approach is to

• compute the eigenvectorŝEp of Â, (15.1),

4Note, however, that there is a small cost. The results of such
a POP analysis will generally change if the data are transformed
to another coordinate system since EOFs are invariant only
under orthonormal transformations.

• form P̂ = ( Êp 1| · · · |̂ Ep m), and

• compute the matrix of adjoint patternŝPa =
(P̂−1

)T.

However, becausêA is subject to some sampling
variability, this approach will produce some POPs
(those with near-zero eigenvalues and poorly
organized spatial structure) that reflect mostly
noise. These noisy POPs affect all of the adjoint

patterns through the computation ofP̂−1
.

The solution to this problem is to add subjective
judgement to the POP ansatz by using experience
and physical knowledge to identify the POPs that
are related to the dynamics of the system. The
coefficients and adjoint patterns of theseuseful
POPs can be estimated by least squares, essentially
by assuming that the eigenvalues of the other POPs
are zero.

Suppose, for simplicity, that there is only one
useful POP. Then the POP coefficient can be
estimated by minimizing

‖Ext − ẑr
t Êp r − ẑi

t Êp i ‖2 (15.14)

if Ep is complex, or

‖Ext − zt Êp ‖2 (15.15)

if Ep is real. The solution of (15.14) is(̂
zr

t

ẑi
t

)
=
(
Êp r T Êp r Êp r T Êp i

Êp r T Êp i Êp i T Êp i

)−1( Êp r T

Êp i T

)
Ext

(15.16)

and that of (15.15) is

ẑt = Êp
TExt

Êp T Êp . (15.17)

Note that (15.16) can be written in terms of
estimated adjoint patterns as

ẑt = Êp T
a Ext

where Êpa = Êp r
a + i Êp i

a,(
Êp r T

a

Êp i T

a

)
= κ

(
Êp i T Êp i − Êp r T Êp i

− Êp r T Êp i Êp r T Êp r

)(
Êp r T

Êp i T

)

and κ = (
( Êp r T Êp r )( Êp i T Êp i ) − ( Êp r T Êp i )2

)−1.
Equation (15.17) can also be interpreted as a
projection onto an estimated adjoint pattern. When
there are two or more useful POPs, the coefficients
are estimatedsimultaneouslyby minimizing

‖Ext −
∑

j ẑ j t Ep j ‖2

where the sum is taken over the useful POPs.
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15.1.6 Associated Correlation Patterns. The
POP coefficients can often be regarded as anindex
of some process, such as the MJO or ENSO. It is
then often desirable to be able to relate the index to
other fields. This can be achieved by means of the
associated correlation patterns[389] discussed in
[17.3.4]. The MJO is presented as an example in
[17.3.5].

15.1.7 POPs and Hilbert EOFs. The POP
method is an approach for identifying modal
structures in a vector time series that has been
demonstrated to work well in real applications.
There are certainly other techniques that can be
used successfully for similar purposes. An alter-
native isHilbert Empirical Orthogonal Function
analysis [19, 408].5 The Hilbert EOFs of a fieldEXt

are EOFs of the complex vector field that hasEXt as
its real part and the Hilbert transform ofEXt as its
imaginary part.6

The main differences between Hilbert EOFs and
POPs are that Hilbert EOFs are orthogonal and
they maximize explained variance. The proportion
of variance represented by the POP is not optimal,
and it must be diagnosed from the POP coefficients
after the POP analysis has been completed.
Another difference is that the period ande-folding
time (i.e., damping rate) are not an immediate
result of the Hilbert EOF analysis; they must
be derived empirically from the Hilbert EOF
coefficient time series. The POPs, on the other
hand, are constructed to satisfy a dynamical
equation, and the characteristic times are an output
of the analysis. A third difference is that the
POP coefficientszt are not pairwise orthogonal.
This makes the mathematics less elegant, but it is
not a physical drawback because there is usually
no reason to assume that different geophysical
processes are stochastically independent of each
other.

15.1.8 POPs as Multivariate Spectral Analysis.
The power spectrum of the POP coefficients,
0zz(ω), is determined by the eigenvalueλ and the
power spectrum0nn(ω) of the noise:

0zz(ω) = 0nn(ω)

|eiω − λ|2 . (15.18)

Assume thatλ = ξe−iη and that the noise is
approximately white, that is,0nn(ω) ≈ constant.

5Hilbert EOFsare frequently referred to asComplexEOFs
in the climate literature. However, the term ‘complex EOFs’ is
a misnomer (see [16.1.1]).

6For details, see Section 16.2.

Then the power spectrum ofzt has a single
maximum at frequencyω = η that is different
from zero whenλ is complex. The width of the
spectral peak is determined byη. As ξ becomes
smaller, the spectrum becomes broader (in the
limit as ξ → 0, the spectrum becomes white).

Thus, the POP analysis yields a multivariate
AR spectral analysis of a vector time series [167].
A first attempt to simultaneously derive several
signals with different spectra from a high-
dimensional data set was made by Xu [431]. For
a more complete discussion of the POP technique
as a type of multivariate spectral analysis, refer to
J. von Storch [405].

15.2 Examples

15.2.1 Overview. Three examples of POP
analysis are presented in this section. The purpose
of the first example, which is of the tropospheric
baroclinic waves [341], is to demonstrate the
normal mode interpretation of the POPs. The best
defined POP coincides, to good approximation,
with the most unstable modes obtained from a
conventional stability analysis of the linearized
dynamical equations. The other two examples
show that the POP analysis can detect signals
in different situations. A joint POP analysis of
tropospheric and stratospheric data [430] identifies
two independent modes with similar time scales,
the Southern Oscillation (SO) and the Quasi-
Biennial Oscillation (QBO). A POP analysis of
the Madden-and-Julian Oscillation (MJO; [401]),
shows that its signal has a well-defined signature
all along the equator. We will see that this is a very
robust signal. It is possible to detect the signal in
data that are restricted to 90◦ subsectors on the
equator, and in two-year sub-samples of the full
five-year data set.

15.2.2 Tropospheric Rossby Waves, from POP
and Stability Analyses. POPs can be seen as
empirical estimates of the normal modes of a
linear approximation to a dynamical system. The
estimated normal modes are the eigenvectors of a
matrixÂ (15.13). An alternative to estimatingA is
to derive it by linearizing the dynamical equation
that governs the system. The eigenmodes of the
linearized system can then be computed directly.

Schnur et al. [341] compared these two
approaches in the context of the tropospheric
baroclinic waves that are responsible for much
of the high-frequency atmospheric variability
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Figure 15.3: Baroclinic waves: The Northern Hemisphere zonal wavenumber 8 POP. This mode
represents 54% of the total zonal wavenumber 8 variance in the 3–25 day time scale. The oscillation
period is 4 days and thee-folding time is 8.6 days. The amplitudeAr and Ai (bottom) and phaseE4r

and E4i (top) of the real and imaginary parts of the POP are shown (see text). From Schnur et al. [341].

Figure 15.4:Baroclinic waves: The coefficient time seriesẑr (dashed) and̂zi (solid) of the POP shown
in Figure 15.3. From Schnur et al. [341].

in midlatitudes. A POP analysis of twice-daily
geopotential heights at various tropospheric levels
and a conventional linear stability analysis of
the quasi-geostrophic vorticity equation were
compared. Both analyses are expected to detect
signals that propagate more or less zonally on

a symmetric mean state. Such waves can be
represented in a semi-spectral form as

9(θ, φ, z, t) = 91(φ, z, t) cos(kθ)

+92(φ, z, t) sin(kθ) (15.19)

where θ is longitude,φ is latitude,z represents
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height, andk is the zonal wavenumber. Note that
(15.19) can be re-expressed as

9(θ, φ, z, t) = Re
((
91(φ, z, t)+ i92(φ, z, t)

)
× e−ikθ )

= Re
(
A(φ, z, t)e−i (kθ−4(φ,z,t)))

(15.20)

whereA(φ, z, t) and4(φ, z, t) are the amplitude
and phase of zonal wavenumberk. This represen-
tation will be used in the diagrams.

A separate POP analysis was performed for each
wavenumberk on the random vector composed
of trigonometric coefficients91 and 92 of
geopotential height at all latitudes and heights. The
system matrixA of (15.1) was estimated from
winter (DJF) observations for 1984/85 through
1986/87.

The data were band-pass filtered to remove
variability on time scales shorter than 3 days and
longer than 25 days. Also, the dimensionality of
the problem was reduced by using a truncated EOF
expansion. The first 18 EOFs, which represent
more than 95% of the total variance for each
wavenumber, were retained.

Here we discuss only the POP obtained for
Northern Hemisphere wavenumber 8. The POP
represents 54% of the wavenumber 8 variance, has
a period of 4.0 days, and ane-folding time of time
8.1 days. Note that the decay time is sensitive to
the type of time-filter.

Since the state vectorEXt consists of the sine and
cosine coefficients of zonal wavenumber 8, both
the real and the imaginary part of the complex
POP, Ep = Ep r + i Ep i , must also be interpreted
as vectors of sine and cosine coefficients. These,
in turn, can be represented as amplitude patterns
Ar and Ai composed of amplitudesAr (φ, z) and
Ai (φ, z), respectively, and corresponding phase
patternsE4r and E4i . These patterns are shown in
Figure 15.3 as height-latitudinal distributions. The
amplitude fields EAr and EAi are almost identical,
and the phase distributionE4r is shifted 90◦
eastward relative toE4i at those latitudes where
the amplitudes are large. We therefore conclude
that the diagnosed POP describes an eastward
travelling pattern.

The estimated coefficient time seriesẑr
t and ẑi

t
vary coherently, witĥzr

t lagging ẑi
t by one or

two days (Figure 15.4). This visual interpretation
is substantiated by the cross-spectral analysis7

of the two coefficient time series (Figure 15.5).

7Spectral and cross-spectral estimation techniques are
described in Sections 12.3 and 12.5.

10 %

 1 %
  5 % 

Figure 15.5: Baroclinic waves: Cross-spectral
analysis of the POP coefficient time series shown
in Figure 15.4. The vertical dashed line marks the
POP periodT . The horizontal dashed lines in the
coherence plot (bottom) depict critical values for
tests of no coherence null hypothesis at the 10%,
5%, and 1% significance levels. From Schnur et
al. [341].

The maximum variance is found in the three-
to five-day time scale, the phase difference is
uniformly 90◦, as it should be, and the coherence
is high in the neighbourhood of the POP period of
four days.

The system matrixA in (15.1) can also be
obtained from theoretical considerations. Schnur
et al. [341] did this by using a standard
perturbation analysis to linearize the quasi-
geostrophic vorticity equation on a sphere around
the observed zonally averaged mean winter state.
The linearized system was then discretized. The
resulting system equation for the streamfunction
9 was expressed in the form of (15.1) by using
representation (15.19) for the streamfunction9 for
each wavenumberk and forming the (unknown)
state vectorEX from91and92 as above.

The resulting system matrixA has complex
eigenvectorsEq = Eq r + i Eq i . The complex
eigenvalue that is connected with the patternEq can
be written asλ = ξe−iη, whereT = 2π/η is the
period of a cyclical sequence like (15.8) involving
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the real and imaginary parts ofEq , and where
the value of ξ determines whether the system
amplifies or damps these oscillations. Thus, as
with POP analysis, the normal modes represent
propagating waves. The phase direction depends
on the eigenvalue.

However, there are also important differences
between the POP and perturbation analysis
techniques. We mentioned that POP analysis of
stationary data yields eigenvalues|λ| < 1.
POP analysis based on the estimated matrixA
preferentially ‘sees’ oscillations in their mature
state (i.e., when noise is comparatively small
and when there is damping by nonlinear and
other processes). In contrast, the system matrixA
obtained from perturbation analysis describes the
early evolution of small deviations from a specified
basic state. This system will amplify many of
these initial perturbations, and these are in fact
the solutions that are of interest. Thus it is the
modes with eigenvalues|λ| ≥ 1 that describe
the growing oscillations that the POP analysis
eventually detects.

Just as with POPs, bothEq r and Eq i can be
represented by amplitude and phase patterns.
However, since the system matrix depends only on
a zonally averaged basic state, the solutions must
be invariant with respect to zonal rotation (unlike
the POPs). It can therefore be shown thatEq r and
Eq i have equal amplitude and that the phase ofEq i

is just that ofEq r shifted by−90◦. That is, Eq i is
redundant.

The most unstable normal mode (i.e., with the
greatest eigenvalue|λ| ≥ 1) obtained for Northern
Hemisphere wavenumber 8 has a period of 3.9
days. This is an eastward propagating growing
mode that increases amplitudee-fold in 2.2 days.

The amplitude patternEAr (Figure 15.6) of this
normal mode is almost identical to the amplitude
patterns of the POP shown in Figure 15.3. The
normal mode has a large maximum near the
surface at 40◦N because the perturbation analysis
did not account for friction. The phase patternE4r

differs from the POP phasesE4i = E4r − π/2 by
only a constant angle.

In summary, POP analysis, which estimates
the system matrix from observations, finds
modes similar to those found by conventional
perturbation analysis, which obtains the matrix
from first-principle dynamical reasoning.

15.2.3 The Southern Oscillation and the Quasi-
Biennial Oscillation. In this subsection we
describe how POP analysis was used by Xu [430]
to examine two oscillations in the tropical

hPa Amplitude

hPa Phase

North Latitude

North Latitude

Figure 15.6:Baroclinic waves: The amplitude and
phase of the fastest growing Northern Hemisphere
zonal wavenumber 8 normal mode. The mode
was obtained from a perturbation analysis of the
discretized quasi-geostrophic vorticity equation
linearized about the observed zonal mean state in
Northern winter. The amplitude growse-fold in 2.2
days, and the period is 3.9 days. From Schnur et al.
[341].

atmosphere with similar oscillation period: the
stratosphericQuasi-Biennial Oscillation(QBO)
and the tropospheric Southern Oscillation (SO).

The QBO can be observed in the stratospheric
equatorial zonal wind with time series available
at six stratospheric levels. POP analysis was
performed on deviations from the long-term mean.
No time-filtering was done for this data set.

Monthly mean anomalies of the 10 m zonal
wind along the equator between 50◦E and 80◦W
and of the equatorial sea-surface temperature
(SST) anomalies are used to describe the SO
signal. These data were low-pass filtered to remove
variability on time scales shorter than 15 months.

The three equatorial data sets, stratospheric
wind, zonal surface wind, and SST, were subjected
to a joint POP analysis. The three components
were normalized so that they contributed equal
amounts of variance to the combined data set.
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Figure 15.7:QBO and SO: Two POPs obtained
from a joint POP analysis of zonal 10 m wind, SST,
and stratospheric zonal wind. The real part of each
POP (light curve) is labelledp2 and the imaginary
part (heavy curve),p1. From Xu [430].
Top: The 28-month mode representing the Quasi-
Biennial Oscillation (QBO),
Bottom: The 30-month mode representing the
Southern Oscillation (SO).

Two significant POP pairs were found, one with
an oscillation period of 28 months, and the other
with a period of 45 months. Cross-spectral analysis
of the POP coefficients (not shown) indicates that
the 28-month period is reliably estimated, but that
the period of the ‘45-month’ POP is overestimated.
A more realistic estimate of its oscillation period
is approximately 30 months. The two modes are
shown in Figure 15.7.

The first mode (Figure 15.7, upper panel) carries
useful information only in the stratosphere where
it represents the downward propagation of a
signal from the upper stratosphere to the lower
stratosphere over a 14-month period. The POP
coefficient time series oscillates regularly (not
shown), and occupies a torus-shaped region in
phase space (Figure 15.8, top).

The second mode, on the other hand, only
carries useful information at the surface in the SST
and 10 m zonal wind. It describes a 10 m wind
signal that propagates eastward from the Indian
Ocean into the Pacific, and an almost stationary
feature of SST variability. The POP coefficient
time series sometimes oscillate regularly, and the
occurrence of El Nĩno and La Nĩna events coincide

Figure 15.8:QBO and SO: scatter plots of the
complex POP coefficients associated with the
patterns shown in Figure 15.7. From Xu [430].
Top: The coefficients of the QBO mode.
Bottom: The coefficients of the SO mode.

with the oscillatory intervals. When the Southern
Oscillation is quiet, the POP coefficients are small
and noisy. The POP coefficients have a unimodal
distribution in phase space (Figure 15.8, bottom).

These modes represent the QBO and the SO,
respectively. They are essentially uncorrelated.

15.2.4 The Madden-and-Julian Oscillation:
Sensitivity to Analysis Time-interval and Anal-
ysis Area. The Madden-and-Julian Oscillation
(MJO), also known as the tropical 30–60 day oscil-
lation, is particularly well represented in equatorial
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tropospheric velocity potential. This subsection
describes a POP analysis of five years NMC8–
analysed 200 hPa velocity potential from which
the annual cycle was removed. The data cover the
period May 1984 to April 1989.

Six POP analyses were performed in total on
various subsets of the data (see [401]). Two
analyses, ‘A’ and ‘B’, use data along the entire
equator. ‘A’ uses a two-year subset and ‘B’ uses the
whole five-year data set. Four additional analyses,
labelled ‘C’ to ‘F’, use spatial subsets of the data
that extend over the full five years. ‘C’ uses data
between 0◦ and 90◦W, ‘D’ uses data from 90◦W
to the date line, and so on.

One physically important POP was identified in
each of the six analyses. The POPs from analyses
‘B’ to ‘F’ were rotated so that theirEp r patterns
match that obtained from analysis ‘A’ as closely as
possible.9

The POP obtained in the ‘A’-analysis has a
period of 44 days, and ane-folding time of 13
days (about 30% of the period). The squared
coherency of the POP coefficients is larger than
68% on time scales between 20 and 50 days
with a maximum value of 96% at 50 days. The
real and imaginary parts of the POP are shown
as solid lines in Figure 15.9a. They are zonal
wavenumber 1 type patterns with one minimum
and one maximum. The two patterns are about 90◦
out-of-phase, indicating eastward propagation of
the signal. The trough and the crest do not move
at a constant rate.

The pattern in Figure 15.9a is very robust: the
extra three years of data in the ‘B’ analysis (dashed
curve) resulted in very little change.

Data in adjacent 90◦ sectors were considered
in analyses ‘C’ to ‘F’. The 90◦-sector patterns
resemble the full 360◦ patterns (Figure 15.9b)
closely. ThêEp r patterns appear to match their ‘A’
counterpart somewhat better than theÊp i patterns
because the rotation was optimized on the former.

The e-folding times in the 90◦ sectors are
considerably smaller than in ‘A’ and ‘B’. This
difference is reasonable, since the POPs describe a
global, travelling feature. Thus the memory in the
system is retained for a longer time in the full 360◦
circle than in the 90◦ sectors. Interestingly, the
damping time in the eastern hemisphere (7 days)
is about double that in the western hemisphere
(4 days). This finding is consistent with the

8National Meteorological Center.
9That is,̂Ep = Êp r+i Êp i was multiplied byei θ for a suitably

chosenθ . This is acceptable since eigenvectorÊp of Â can be
uniquely determined only up to a factorei θ .

Figure 15.9: MJO: The real (labelled p1)
and imaginary (labelledp2) POPs of equatorial
200 mb velocity potential. From von Storch and Xu
[401].
a) Analysis of equatorial data from a two-year
subset (analysis ‘A’; solid line) and from the
complete five-year data set (analysis ‘B’; dashed
line).
b) The ‘C’ to ‘F’ analyses for90◦-sectors along the
equator. The real patterns are plotted with a solid
line, and the imaginary patterns with a dashed
line. Patterns from analysis ‘A’ are shown in dots
for comparison.

observation that the 30- to 60-day oscillation is
markedly stronger in the eastern hemisphere.

The differences in the periods in the four
90◦ sectors are consistent with the variable
longitudinal phase speed of the MJO. The 30–60
day waves travel most slowly in the 90◦E to 180◦
sector: the period in this sector was found to be
62 days. The waves travel most quickly, and the
period is shortest (33 days), in the 180◦ to 90◦W
sector. The average period for analyses ‘C’ to ‘F’
is 45 days, which is nearly identical to the value
obtained in analyses ‘A’ and ‘B’. Thus ‘C’ to
‘F’ further emphasize the robustness of the MJO
signal extracted using the POP method.
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15.3 POPs as a Predictive Tool

15.3.1 The POP forecast technique. Fore-
casting is a natural part of the POP ansatz (see, e.g.,
[432, 429, 401]), because the POP coefficient time
series evolve similarly to AR(1) processes (i.e.,
as in (15.11)). Assuming that the forcing noise in
(15.11) is white, the optimal lag-τ forecast ofzt+τ
from zt is given by

ẑ F
t+τ = ξτe−i 2πτ

T zt (15.21)

where T = 2π/η is the period of the POP
and ξ = |λ|. Equation (15.21) describes a
damped persistence forecast in the complex plane
(Figure 15.1) which corresponds to a damped
propagating mode in physical space. Forecasts
are made by identifying the current state of the
POP coefficient process and then applying (15.21).
Depending upon whether the practitioner thinks
a mature or growing oscillatory mode has been
detected, the forecast will either be a damped
persistence forecast (i.e.,ξ = |λ| < 1 in (15.21))
or a persistence forecast in terms of amplitude (i.e.,
ξ = 1 in (15.21)). These forecasts will have some
skill at short leads, but at longer lead times the
built-in linearity of the POP analysis, as well as the
unpredictable noise, will result in a deterioration of
forecast skill.

A basic limitation of POP forecasts is that,
although they can predict the regularly changing
phase of the oscillation, they cannot predict an
intensification of amplitude. However, a phase
forecast is valuable even if the amplitude is not
well predicted.

Forecasting is complicated by the substantial
amount of noise in the analysed field, resulting
in estimates of the POP coefficient that may not
be very reliable on a given day. Thus some sort
of ‘initialization’ is necessary. ‘Time filtering’
initialization [432] uses a one-sided digital filter
to suppress variance on short time scales before
estimating the POP coefficient in the usual way.
‘Time averaging’ initialization begins with direct
estimates of the POP coefficients realized at the
last few time steps, saŷzt , ẑt−1, . . . , ẑt−τ . Then
(15.21) is used to produce a one-lag ahead forecast
ẑ F1

t of ẑt from ẑt−1, a two-lag forecast̂zF2
t of ẑt

from ẑt−2, and so on. Finally, an improved esti-
mate ofzt is obtained by computing a weighted av-
erage of̂zt , ẑ

F1
t , . . . , ẑFτ

t . More weight is given to
the recent information than the older information.

Small POP coefficients that move irregularly in
the two-dimensional phase space indicate that the
process represented by the POP is not active, in
which case it is reasonable not to rely on the formal

POP forecast. An appropriate POP forecast in this
case is that the system will stay in its ‘quiet phase.’

15.3.2 Measures of Skill. The quality of
the POP forecasts can be determined with the
correlation skill scoreρτ (18.3) and the root mean
square errorSτ (18.1)10

ρτ =
Cov

(̂
zFτ

t , ẑt
)√

Var
(̂
zFτ

t
)
Var

(̂
zt
) (15.22)

Sτ =
√
E
(|̂zFτ

t − ẑt |
)
, (15.23)

where, as above,̂zFτ
t is the (complex) forecast of

zt made at timet − τ , and̂zt is the estimated state
at time t that is used to verify the forecast. Note
that the diagnosed forecast skill depends upon the
skill of both ẑ Fτ and̂zt as estimators ofzt .

The correlation skill scoreρτ is an indicator
only of phase errors since it is insensitive to
amplitude errors. This makesρτ a suitable skill
score for POP forecasts since we anticipate that
most of their utility lies in the phase component.
The mean squared errorSτ , which is sensitive to
both phase and amplitude errors, tends to be less
flattering of POP forecasts.

The skill of the POP forecast is put in
perspective by comparing with the skill of
the persistence forecast̂z Pτ

t = ẑt−τ , which
freezes patterns in time and space. As shown by
(15.21), persistence and POP forecasts are close
neighbours in the hierarchy of forecast schemes.
Thus comparison of their skills is well justified.

15.3.3 Example: The Madden-and-Julian
Oscillation. The skill of the POP forecasts of
the MJO (see [15.2.4]) was examined in [388,
401]. The forecasts were initialized with the ‘time
averaging’ technique using information from days
0 through−4 (i.e., l = 4; see [15.3.1]). The POP
amplitude|zt | was predicted by persistence (i.e.,
ξ = 1 in (15.21)).

Individual forecasts are presented asharmonic
dials that display the evolution of the POP
coefficients before and after the forecast date, and
the forecast itself. Two cases are considered: 30
January 1985 and 1 December 1988. Dynamical
forecasts, produced with the NCAR CCM, were
also made for a number of cases.11

10See [18.2.3] for details about these measures of forecast
skill.

11The dynamical model was used to forecast 15 cases.
According to the correlation skill score, the POP forecasts
outperformed the dynamical forecasts in these cases (see
Figure 18.8 and [18.4.4]).
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a) b)

Figure 15.10: MJO: Forecasts of the POP coefficientzt . The forecasts are presented in the
two-dimensional POP-coefficient plane with thex-axis representing thezr -coefficient, and they-axis
thezi -coefficient. The POP forecast model (15.21) implies a trajectory that rotates clockwise.
The dashed line that connects the open circles represents the observed evolution, the solid line that
connects the solid circles represents a dynamical forecast, and the POP forecast is given by the crosses.
From von Storch and Baumhefner [388].
a) Initialized 30 January 1985.
b) Initialized 1 December 1988.

Figure 15.10a shows the predicted and analysed
evolution for 30 days beginning on 30 January
1985. The MJO evolved smoothly, with a
clockwise rotation in the POP coefficient plane,
until about 25 February. It reversed direction after
that day. Both the POP forecast and the NCAR
CCM forecast are skilful in predicting the regular
evolution in the first 25 days, but they fail to predict
the phase reversal on 25 February.

Figure 15.10b shows the less successful forecast
of 1 December 1988. The MJO POP coefficient
was small at the time of initialization and remained
so. The velocity potential field did not contain a
well-defined wavenumber 1 pattern, and thus the
failure of both forecasts is not unexpected.

The correlation skill score,ρτ , and the root
mean square error,Sτ , derived from a large
(n ≈ 1500) ensemble of forecast experiments
are shown in Figure 15.11 for the POP scheme
and for persistence. Persistence is more skilful
than the POP forecast during the first 2 days, but
rapidly loses skill at longer leads. Persistence has
a minimum in ρτ at about 20 days, consistent
with the 30–60 day period of the MJO. The mean

squared error,Sτ , reaches its saturation level at
about the same time. The skill of the POP forecast
decreases more slowly with time, reaching a value
of 0.5 at a lead of 9 days. Also note that the
mean squared error of the POP forecast has not yet
reached saturation at a 24-day lead.

15.4 Cyclo-stationary POP Analysis

The POP analysis described in Section 15.1
assumes temporal stationarity while observed
processes are oftencyclo-stationary, that is, the
first and second moments depend on an external
cycle, such as the annual cycle. In this section
we present a generalization of the conventional
POP analysis that explicitly accounts for this
non-stationarity.12

12Cyclo-stationary POP analysis was first suggested by
Klaus Hasselmann in an unpublished manuscript in 1985.
Two groups, namely Maria Ortiz and her colleagues at the
University of Alcala in Spain and Benno Blumenthal from
the Lamont Doherty Geological Observatory in Palisades,
New York, showed how to implement the cyclo-stationary
POP analysis independently in 1989/1990. Only Blumenthal
published his results [50].
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Figure 15.11:MJO: Skill scores of POP (solid) and
persistence (dashed) forecasts of the MJO. From
von Storch and Xu [401].
a) Correlation skill (15.22),ρτ .
b) Root mean square error (15.23),Sτ .

15.4.1 Definition. Assume that time is given
by a pair of integers(t, τ ), where t counts the
cycles (e.g., annual cycle), andτ indicates the
‘seasonal date’ (e.g., months), or time steps within
a cycle. Assume that a cycle hasn time steps so
thatτ = 1, . . . ,n. Note that(t,n+1) = (t +1,1)
or, generally,(t, τ + n) = (t + 1, τ ). As with
ordinary POP analysis, we then assume that the
cyclo-stationary process can be approximated by

EXt,τ+1 = Aτ EXt,τ + noise (15.24)

where EXt,τ+n = EXt+1,τ and Aτ+n = Aτ .
Substituting (15.24) into itselfn consecutive times,

we find

EXt+1,τ = Bτ EXt,τ + noise (15.25)

where

Bτ =
n∏

s=1

Aτ+s−1 (15.26)

and where the noise in (15.25) is a moving average
of n consecutive noise terms from (15.24) (recall
[10.5.5]). We assume that thisintegratednoise is
white on the inter-cycle time scale.

A conventional POP analysis can be applied
to each of then models described by (15.25).
This results inn collections of eigenvectorsEp τ

and eigenvaluesλτ that are obtained from then
eigenproblems

Bτ Ep τ = λτ Ep τ . (15.27)

As usual, all eigenvectors are normalized to
unit length. Note that the eigenvaluesλτ are
independent ofτ , because

Bτ Ep τ = λτ Ep τ

⇔ Aτ+nBτ Ep τ = λτAτ+n Ep τ

⇔ Bτ+1
(
Aτ Ep τ

) = λτ
(
Aτ Ep τ

)
.

The last step is a consequence of (15.26) and the
periodicity ofAτ .

Thus we now have a recursive relationship that
can generate eigenvectors for alln eigenproblems
by solving only the first problem. That is,Aτ Ep τ is
an eigenvector ofBτ+1 when Ep τ is an eigenvector
of Bτ . These eigenvectors are unique up to
multiplication by a complex constant.13 If we now
normalizeEp 1 to unit length and set

Ep τ+1 = (r−1
τ eiφ)Aτ Ep τ (15.28)

whererτ = ‖Aτ Ep τ‖, φ = η/n, andη satisfies
λτ = λ = ξe−1η, then the resulting eigenvectors
will be unique up to multiplication by a factorei θ ,
and will be periodic (i.e.,Ep τ+n = Ep τ ). Thus the
cyclo-stationary POP is damped by the factorξ
and rotated by an angle−η in one cycle.

The cyclo-stationary POP coefficients evolve in
time as a cyclo-stationary auto-regression that is
similar to the auto-regression (15.10) that applies
to ordinary POP coefficients. Specifically,

zt,τ+1 = rτe
−iφzt,τ + noise. (15.29)

13We assume throughout thatBτ , τ = 1, . . . , n, (and hence
Aτ ) are non-singular and that all eigenvalues ofBτ are distinct.
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Figure 15.12:ENSO: Amplitudes obtained in the
conventional and cyclo-stationary POP analyses
of equatorial 10 m wind and sea-surface tempera-
ture. Bars labelled ‘J’, ‘F’, etc., indicate the ampli-
tudes obtained from the cyclo-stationary analysis
in January, February, etc. The bar labelled ‘J–D’
is the amplitude obtained from the conventional
analysis.

Substituting (15.29) into itselfn times, we obtain
a conventional auto-regression

zt+1,τ =
( n∏

s=1

rτ+s+1

)
e−iηzt,τ + noise

= λzt,τ + noise

for POP coefficients at one cycle increments that is
consistent with model (15.25).

The time coefficients at a given timet may be
obtained by projecting the full fieldEXt,τ onto the
respective adjointEp τ

a or by using a least square
approximation similar to (15.14) and (15.15). The
adjoint patternsEp τ

a and Ep τ+1
a are related to each

other through a simple formula similar to (15.28):

Ep τ
a = r−1

τ eiφAT
τ Ep τ+1

a . (15.30)

The cyclo-stationary system matricesAτ can be
estimated with (15.6) for eachτ = 1, . . . ,n as

Âτ = Σ̂τ,1Σ̂
−1
τ,0,

whereΣ̂τ,1 is the estimated lag-1 cross-covariance
matrix betweenEXt,τ and EXt,τ+1, andΣ̂τ,0 is the
estimated covariance matrix ofEXt,τ .

15.4.2 Example: The Southern Oscillation.
Time series of surface wind and SST along the
equator between 50◦E and 80◦W (described in
[15.2.2]) are good candidates for a cyclo-stationary
POP analysis because the Southern Oscillation
is known to be phase-locked to the annual
cycle [330]. Monthly anomalies are analysed so
thatn = 12. The data are time-filtered to suppress
the month-to-month variability. A conventional
POP analysis was performed for comparison.

Both analyses identified a single dominant
POP with comparable periods (31 months for
the cyclo-stationary analysis, 34 months for the
conventional analysis). The mode identified in the
conventional analysis is similar to the ENSO mode
described in [15.2.3] (see Figure 15.7, bottom, and
Figure 15.8b).

The amplitude,rτ , exhibits a marked annual
cycle (Figure 15.12) which is strongly non-
sinusoidal. Amplification takes place from April
to September, with a maximum in June. The
process is damped from October to March, with
a minimum in February. Note that the amplitude
increases from minimum to maximum in only four
months, but then it takes eight months to return
to minimum. The annually averaged amplitude is
almost identical to the amplitude obtained in the
conventional analysis.

The zonal wind patterns (Figure 15.13, left
column) show eastward progression of the main
centre of action with the annual cycle. The
imaginary component is strongest during the first
half of the year whereas the real component is
strongest during the second half.

The imaginary part of the SST patterns
(Figure 15.13, top right) has substantial amplitude
in the Indian Ocean and East Pacific in northern
winter, but not at other times of year. In contrast,
the real component (Figure 15.13, bottom right)
has large amplitude (at least 0.2) throughout the
year in the East Pacific that coincides with large
amplitudes of opposite sign in the West Pacific.
The signal in the real pattern is strongest in the East
Pacific in northern fall.

The average of these cyclo-stationary modes
is similar to the pattern obtained from the
conventional POP analysis described in [15.2.3]
(Figure 15.8, bottom).

Note that the wind data were normalized
into unit variance before the POP analysis. To
transform the patterns to meaningful physical
units, the wind patterns (Figure 15.13, left)
must be multiplied by 0.45 times the standard
deviations of the POP coefficients (Figure 15.14).
Similarly, typical SST amplitudes are obtained
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Figure 15.13:ENSO: Cyclo-stationary POPs analysed from a combined normalized zonal wind/SST
data set. The horizontal axis represents the longitude along the equator, and the vertical axis the annual
cycle of the patterns.
Top row: Imaginary part. Bottom row: Real part.

N

Figure 15.14:ENSO: Annual cycle of the variance
of the cyclo-stationary POP-coefficients. (Solid:
imaginary component; hatched: real component.)

by multiplying the patterns (Figure 15.13, right)
by 0.60 times the standard deviation of the POP
coefficients.

Note that the variance of the POP coefficients
has a marked annual cycle (Figure 15.14). The
annual average is about five. Both components
have maximum variability in northern autumn, but
they are not phased identically. Also, note that the

variance extremes are delayed relative to those of
the amplitudes.

As with conventional POPs, it is possible to
build scenarios that describe the ‘typical’ evolution
of the field from a given initial state. Suppose that
a field EX is well represented by a cyclo-stationary
POP and that the initial state at timeτ in the cycle
is

Ex0,τ ≈ 2 Re(z0,τ Ep τ ).

Then its future stateδ time units later is given by

Ex0,τ+δ ≈ 2 Re
(
z0,τ Ep τ+δ

δ∏
s=1

rτ+se
−iη/n

)
+ noise.

This yields a typical evolution in time fromEx0,τ
when the noise is set to zero.

Figure 15.15 shows the typical evolution of
equatorial zonal 10 m wind (left panel) and
SST (right panel) when the initial state is given
by the imaginary part of the cyclo-stationary
POP in January. The diagram illustrates that,
depending upon the sign, a La Niña or El Nĩno
typically evolves from the January state depicted
in Figure 15.13 (top row).
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Figure 15.15:ENSO: ‘Typical’ evolution of SST and zonal wind from a prescribed initial state. The
horizontal axes represent the longitudinal position, and the vertical axis represents time over 24 months
(time increasing downwards). The imaginary component of the POP (see Figure 15.13, top row) in
January is the initial state.

15.5 State Space Models

15.5.1 Overview. We have described POPs as
eigenmodes of an empirically determined system
matrix. However, POPs can be placed in a much
more general setting as members of the class of
state space models. We will explain this concept
in the next subsection, briefly describe its merits,
and introduce thePrincipal Interaction Patterns
(PIPs).

While the general idea is ubiquitous in climate
research, specific attempts to explicitly and
objectively determine reduced phase spaces have
been made only recently. So far, these attempts
have dealt with simplified systems and have
mostly addressed the complicated methodical and
conceptual aspects of the problem; there is still a
way to go until these techniques will be applied
routinely by researchers trying to understand
the dynamics of the real ocean and the real
atmosphere. This field is certainly a frontier
of climate research, and we may expect new
developments in the future.

15.5.2 State Space Models.A complex
dynamical system with anm-dimensional state
vector EXt can often be approximated as being
driven by a simpler dynamical system with a state
vector EZt of dimensionk < m. Mathematically,
such processes can be approximated by a state
space model. These models consist of a discrete (or

continuous)system equationfor the k dynamical
variablesEZ = (Z1, . . . ,Zk)

T,

EZt+1 = FD(EZt , Eα, t)+ noise (15.31)

and an observation equationfor the observed
variablesEX = (X1, . . . ,Xm)

T,

EXt = PT EZt + noise
= ∑k

j=1 Zt, j Epj + noise.
(15.32)

OperatorFD represents a class of models that
may be nonlinear in the dynamical variablesEZt

and depends on a set of free parametersEα =
(α1, α2, . . .).

Matrix P generally has many more columns
(m) than rows (k). The system equations (15.31)
therefore describe a dynamical system in a smaller
phase space than the space that containsEXt . Ideally
in applications, a reduced system governed by the
same dynamics as the full system can be identified.

The advantage of such low-order systems over
the original high-dimensional system is, at least
in theory, that the low-order system is easier
to ‘understand.’ Experience, however, suggests
that the system state vector must have very low
dimension if the dynamics are to be analytically
tractable.

15.5.3 State Space Models as Conceptual Tools
and as Numerical Approximations. One appli-
cation of the state space models is the conceptu-
alization of hypotheses without determining the
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unknown parametersEα andP. Indeed, almost all
dynamical reasoning can be expressed as a state
space model. For example, the barotropic vorticity
equation may be seen as a state space model in
which the system state vector evolves in a space
that excludes a large class of waves. Time series
models, such as the Box–Jenkins ARMA models
described in [10.5.5,6] can also be expressed in
state space model form.14

In other applications, attempts are made to actu-
ally determine the underlying dynamical variables
EZt and the unknown parametersEα for a given class
of dynamical operatorsF . ThePrincipal Interac-
tion Patternansatz proposed by Hasselmann [167]
is probably the most general formalization of this
type (see [15.5.4] below).

The noise term in (15.31) is often disregarded
in nonlinear dynamical analyses. However, dis-
regarding the noise in low-order systems (k <

10) usually changes the dynamics of the system
significantly since the low-order system is a closed
system without noise. However, components of the
climate system, such as the tropical troposphere or
the thermohaline circulation in the ocean, are never
closed; they continuously respond to ‘noise’ from
other parts of the climate system, hence the noise
term in (15.31). It is doubtful if the fundamental
assumption, namely that the low-order system is
governed by the same dynamics as the full system,
is satisfied when the noise is turned off.

15.5.4 Principal Interaction Patterns. Since
k ≤ m, the time coefficientsZt, j of a patternEpj

at a time t are not uniquely determined byEXt .
Thus the time coefficients are determined by least
squares as

EZt = (PTP)−1PT EXt . (15.33)

When fitting the state space model from equa-
tions (15.31) and (15.32) to a time series, the
following must be specified: the class of models
F , the patternsP, the free parametersα and the
dimension of the reduced systemk. The class of
modelsF , must be selecteda priori on the basis

of physical reasoning. The numberk might also
be specifieda priori. The parametersα and the
patternsP are fitted simultaneously to a time series
by minimizing the mean square errorε[P ; Eα]
of the approximation of the (discretized) time
derivative of the observationsEX by the state space
model:

ε[P ; Eα] = E
(
‖ EXt+1− EXt −

P(F [ EZt , Eα, t ] − EZt ) ‖2
)
. (15.34)

The patternsP that minimize (15.34) are called
Principal Interaction Patterns(PIPs) [167]. If only
a finite time series of observationsEX is available,
the expectationE(·) is replaced by a summation
over time.

In general, minimization of (15.34) does not
result in a unique solution. In particular, ifL
is any non-singular matrix, and ifP minimizes
(15.34), then the set of patternsP ′ = PL will
also minimize (15.34) as long as the corresponding
model F ′ = L−1F belongs to thea priori
specified class of models. This problem may be
solved by imposing a constraint. For example, one
might require that the linear term in the Taylor
expansion ofF is a diagonal matrix.

Successful applications of the PIP idea to dy-
namical systems with different degrees of com-
plexity have been presented by Achatz and col-
leagues [1, 2], Kwasniok [236, 237], and Sel-
ten [345, 344].

15.5.5 POPs as Simplified PIPs. The Principal
Oscillation Patterns can be understood as a kind
of simplified Principal Interaction Patterns. For
that assumem = n. Then, the patternsP span
the full EX-space, and their choice does not affect
ε[P ; Eα]. Also, letF be a linear modelF [ EZt , Eα] =
AEZt , where the parametersEα are the entries ofA.
Then the dynamical equation (15.31) is identical
to (15.10). The constraint mentioned above results
in PIPs (of the admittedly simplified state space
model) that are given by the eigenvectors ofA.

14See, for example, Priestley [323, Section 10.4.4].
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16 Complex Eigentechniques

16.1 Introduction

16.1.1 Modelling the State and the ‘Momen-
tum.’ The purpose of EOF analysis (Chapter 13) is
simply to identify patterns that efficiently charac-
terize variations in the current ‘state’ or ‘location’
of a vector field EX. Consequently, the technique
completely ignores the time evolution of the anal-
ysed field.

POP analysis (Chapter 15) accounts for patterns
that evolve in time by representing the observed
field as a vector AR(1) process, so that information
about the present state is transferred to the next
state. Such a system can describe oscillatory
behaviour since anym-dimensional system of
first-order difference equations is equivalent to one
mth order difference equation.

A generalization of this approach is to model
not only the ‘state’ EXt but also an indicator
of its tendency δ EXt (Wallace and Dickinson
[408]). Such an approach is related to the
Hamiltonian principle in mechanics that the future
of a system is described by a set of first-order
differential equations for the location (state) and
the momentum.

The Hilbert transformEXH
t (see Section 16.2) is

a reasonable measure of ‘momentum’δ EXt when
variations inEXt are confined to a relatively narrow
time scale. Then the conventional eigentechniques,
such as EOFs and POPs, are applied to the
complexified time seriesEXt + i EXH

t .

16.1.2 Confusing Names. There is some
confusion in the literature about what to call the
EOFs or POPs of the complexified process.

The EOFs of the complexified process are
sometimes called ‘frequency domain EOFs’ or
‘FDEOFs’, since they may be understood as
eigenvectors of the cross-spectral matrix averaged
over some frequency interval (see below). When
applied to narrowly band-pass filtered data this
name makes sense, but the technique may also be
used for broad-band features.

The term ‘complex EOFs’ or ‘CEOFs’ is also
sometimes used to refer to the EOFs ofEXt + i EXH

t ,

but this usage is ambiguous since it also applies
to the eigenvectors of any general complex vector
process. Similar ambiguity occurs when the POPs
of the complexified process are called ‘Complex
POPs’ or ‘CPOPs’ (see, e.g., Bürger [75]).

Therefore, for conceptual clarity, we revive a
suggestion first made by Rasmusson et al. [329]
in 1981; we refer to the EOFs of the complexified
process asHilbert EOFs, and to the corresponding
POPs asHilbert POPs.1

16.1.3 Outlook. The Hilbert transform is
introduced in Section 16.2 and we define the
Hilbert EOFsin Section 16.3, where we also deal
briefly with Hilbert POPs.

Canonical Correlation Analysis, rotated EOFs,
redundancy analysis, and other pattern analysis
techniques can all be extended to complexified
processes. Attempts in this respect are currently
underway, but no applications seem to have been
published in the geophysical literature so far.2

16.2 Hilbert Transform

16.2.1 Motivation and Heuristic Introduction.
If Xt is a real time series with Fourier
decomposition

Xt =
∑
ω

ζ(ω)e−2πi ωt (16.1)

then itsHilbert transformis

XH
t =

∑
ω

ζH(ω)e−2πi ωt (16.2)

whereζH(ω) is defined to be

ζH(ω) =
{

i ζ(ω) for ω ≤ 0
−i ζ(ω) for ω > 0.

(16.3)

The Hilbert transformXH is identical to original
time seriesXt except for aπ/2 phase-shift ofξ

1Rasmusson et al. [329] used the expression ‘Hilbert
Singular Decomposition’ (HSD).

2Brillinger [66] deals with the CCA of complexified
processes, and Horel [181] discusses rotated Hilbert EOFs.

353
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Figure 16.1:A schematic illustration of the effect
of the Hilbert transform. The solid curves depict
the input time series, and the dashed curves depict
the corresponding Hilbert transforms. After Horel
[181, Fig. 1, p. 1662].

that is performed separately at each frequencyω.
For instance, if

Xt = 2 cos(2πω0t) (16.4)

for some fixedω0, thenζ(±ω0) = 1, ζH(±ω0) =
∓i , and

XH
t = −2 sin(2πω0t). (16.5)

That is, the Hilbert transform shiftsXt a quarter of
a period to the right. Another interpretation, in this
example, is thatXH

t provides information about the
rate of change ofXt at timet .

To illustrate, Figure 16.1 depicts two idealized
input time series and their Hilbert transforms.
If the input is monochromatic, the transform
produces the same output, only advanced by a
quarter period. When the input is not monochro-
matic, there is a quarter period advance at ev-
ery frequency, with the result that the Hilbert
transform can appear to be quite different from
the input. For example, ifXt is the rectangular
phase function, the Hilbert transform will have
spikes at the beginning and end of the pulse.
This is because the decomposition of the pulse
function into trigonometric components requires
contributions from many components, and each of
the components is shifted by its own quarter of
a period. This example indicates that the Hilbert
transform can only be interpreted as a ‘time rate
of change’ when most of the variability ofXt is
confined to a relatively narrow frequency band.

The Hilbert transform is used to augment the
information contained in a vector time series by
adding information about its future behaviour. This
is accomplished by combining the original vector

time seriesEXt and its Hilbert transformEXH
t into a

new complex vector time series

EYt = EXt + i EXH
t . (16.6)

Conventional techniques, such as EOFs or POPs
(see Sections 16.3 and 16.2) are then applied to
these ‘complexified’ time series (16.6).

We complete this section by introducing the
Hilbert transform in mathematically rigorous
terms and describing its estimation. The ‘Hilbert
EOFs’ and ‘Hilbert POPs’ will be introduced in
Section 16.3 and the former will be discussed in
terms of examples.

16.2.2 Derivation of the Hilbert Transform.
The motivation behind the Hilbert EOF and POP
analysis is the creation of a processXH

t that is
something like ‘momentum’. Physical arguments
tell us that the ‘momentum’ processXH

t should be
related to the original process through a linear filter
operator, that is,

XH
t =

∞∑
δ=−∞

hδXt+δ. (16.7)

Also it should be out-of-phase byπ/2 for all
frequenciesω with the ‘change’XH

t leading the
‘state’Xt , that is,

8xHx(ω) = π/2 forω > 0. (16.8)

To construct the filter (16.7) we note that
the cross-spectrum (11.74) betweenXH

t and Xt

satisfies

0xHx(ω) = H(ω)0xx(ω). (16.9)

Since the autospectrum0xx is real, the phase
spectrum satisfies (16.8) if and only ifH(ω) is
imaginary and anti-symmetric, with a negative
imaginary component for positive frequencies, as
in

H(ω) =
{ −i for ω > 0

i for ω < 0.
(16.10)

Thus

|H(ω)| = 1

0xHxH(ω) = 0xx(ω) (16.11)

Var
(
XH
) = Var(X) (16.12)

and

9xHx(ω) =
{
−0xx(ω) for ω ≥ 0

0xx(ω) for ω < 0

3xHx(ω) = 0. (16.13)
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Note also that

κxHx(ω) = 1 for allω 6= 0.

That is, there is perfect coherence betweenXt and
its Hilbert transform at all nonzero frequencies.
This is as it should be sinceXH

t is just a phase-
shifted version ofXt at each frequency.

So far we have defined the Hilbert transform in
the frequency domain. To obtain the filter in the
time domain we use the following theorem from
Brillinger [66, pp. 31,395]:

If Xt is a stationary multivariate process with
absolutely summable auto-covariance function
γxx, then the process

Yt = lim
T→∞

YT
t (16.14)

where

YT
t =

T∑
δ=−T

hδXt−δ (16.15)

and

hδ =
∫ 1

2

− 1
2

H(ω)e2π i δω dω (16.16)

exists and has finite variance.
The application of (16.16) to (16.10) yields

(cf. Rasmusson et al. [329])

hδ =
{

2
δπ

if δ is odd
0 if δ is even.

(16.17)

Note thathδ ≤ 0 for negativeδ and
∑
δ hδ = 0 so

that the time mean ofXH
t is zero.

Thus, the Hilbert transformXH
t in the time

domainof a stationary processXt is

XH
t =

∞∑
δ=0

2

(2δ + 1)π

(
Xt+2δ+1− Xt−(2δ+1)

)
.

(16.18)

Note that the series in (16.18) doesnot converge
for sine time functions and other non-stationary
time series because their auto-covariance functions
are not absolutely summable.

16.2.3 Examples: The Hilbert Transform of AR
Processes. We now apply the Hilbert transform
to the AR(1) and AR(2) processes discussed in
Chapter 11.

Figure 16.2 displays realizations of AR(1)
processes withα1 = 0.9 andα1 = 0.3 and their
Hilbert transforms (using (16.15) andT = 20).
Since AR(1) processes have a red spectrum and no
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Figure 16.2: Realizations of AR(1) processes
(solid) with α1 = 0.9 (top) and α2 = 0.3
(bottom) and their Hilbert transformsXH

t (dashed)
computed with (16.15) andT = 20.

preferred frequency, the connection between the
input and its Hilbert transform is rather loose. The
Hilbert transforms lead the input series. Visually,
the lead seems to be longer whenα1 = 0.9 than
whenα1 = 0.3. This impression is substantiated
by the cross-covariance between the input time
series and its Hilbert transform (Figure 16.3).
Maximum cross-correlations for the short memory
process are obtained for lag-1, while the long
memory process exhibits almost uniform lag
correlations for a wide range of lags.

There is a more rigid link between the input and
its Hilbert transform when the input is the AR(2)
process withα1 = 0.9 andα2 = −0.8, which
is shown in Figure 16.4. This process is quasi-
oscillatory with a period of about 6 time steps
(cf. [10.3.4–6], [11.1.7] and [11.2.6]). Since this
process has a preferred frequency, the phase shift
between the Hilbert transform and the input series
is about 1.5 time steps. Large Hilbert transform
values regularly precede large changes of the input
series, confirming the interpretation of the Hilbert
transform as the ‘momentum’ of the input process.
This impression is further substantiated by the
lagged cross-covariance function (Figure 16.3),
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Figure 16.3:Cross-correlation functions between
the input series and corresponding Hilbert
transform shown in Figures 16.2 and 16.4. The
cross-covariance functions have been estimated
from finite time series.

Figure 16.4:A realization of an AR(2) process
(solid) with Eα = (0.9,−0.8) and its Hilbert
transformXH

t (dashed) computed with (16.15) and
T = 20.

which has a maximum at lags-1 and 2, a zero at
lag-3, a negative minimum at lag-5, and so forth.

The results are virtually unchanged if a longer
filter window with T > 20 is used.

16.2.4 Estimating the Hilbert Transform from
a Finite Time Series. Two different approaches
may be used to estimate the Hilbert transform of a
finite time series (cf. Barnett [19]).

In the time domain we can use the approximate
filter (16.15) with some finiteT . Obviously the
first and lastT values of the Hilbert transform are
not as well estimated since the filter length must
either be reduced, or filter (16.15) must be used in
an asymmetric manner.

The Hilbert transforms displayed in Figures
16.2 and 16.4 were derived in this way, but

end-effects can not be seen because the middle of
a longer time series is shown.

The filter lengthT is determined by iteratively
increasingT until there is little change in the
estimated transform.

An alternative approach is to re-express the
finite time series{x1, . . . , xn} in its trigonometric
expansion (see [12.3.1] and (C.1))

xt =
∑

k

ak cos
(2πkt

n

)
+ bk sin

(2πkt

n

)
(16.19)

and then estimatingXH
t with

x̂H
t =

∑
k

ak cos
(2πkt

n
+ π

2

)
(16.20)

+ bk sin
(2πkt

n
+ π

2

)
=
∑

k

bk cos
(2πkt

n

)
− ak sin

(2πkt

n

)
.

This estimate matches equations (16.4) and (16.5).
The frequency domain approach has two

advantages over the time domain approach. First,
it is not necessary to choose the filter lengthT .
Second, it appears that data near the endpoints
need not be treated specially. Thus the frequency
domain approach seems to be more robust than
the time domain approach. However, this is
not really the case. The trigonometric expansion
(16.19) implicitly assumes that the discrete finite
time series represents one chunk of a periodic
process with periodn + 1. This is generally
not the case. The numbers{x1, x2, . . .} are not
a smooth continuation of{. . . , xn−1, xn}, and the
shift (16.20) of the entire non-periodic time series
transports the ‘discontinuity’ into the middle of
the transformed time series. The problem will be
more severe for shorter time series and longer time
scales. As in spectral analysis, the problem can be
reduced by using a data taper (cf. [12.3.8]).

Again, we advise making plots of the input
time series together with the estimated Hilbert
transform to ensure that there are no unpleasant
surprises.

16.2.5 Properties of the Hilbert Transformed
Process. The cross-covariance function between
a process and its Hilbert transform is anti-
symmetric since their co-spectrum vanishes (cf.
(16.13, 11.68));

γxHx(δ) = −γxxH(δ), (16.21)
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and in particular

γxHx(0) = 0. (16.22)

Thus, the process and its Hilbert transform are
uncorrelated at lag zero.

When the Hilbert transform is applied twice,
then the original time series appears with reversed
sign:

(XH)Ht = −Xt . (16.23)

Also, the Hilbert transform is a linear operation.
Thus

(X + βY)Ht = XH
t + βYH

t . (16.24)

The relationship between a process and its
Hilbert transformed process, as represented by the
covariance matrix or the spectrum, is described
in [16.2.7]. This relationship will be used in
Section 16.3. We briefly introduce the spectral
matrix next.

16.2.6 The Spectral Matrix of a Random
Vector. In Section 11.4 we defined the cross-
spectrum of two processesX1t and X2t as
the Fourier transform of their cross-covariance
function. We now generalize these definitions to
vector random variables.

The lag covariance matrix of anm-dimensional
random vectorEXt = (X1t , . . . ,Xmt)

T is them×m
matrix

Σxx(τ ) = E
(( EXt − E( EXt )

)( EXt+τ − E( EXt+τ )
)†)
.

The spectrum of the vector process is defined as
the Fourier transform of the lag covariance matrix

Γxx(ω) =
∞∑

τ=−∞
Σxx(τ )e

−2π iωτ (16.25)

or, in short,

Γxx = F {Σxx}. (16.26)

The complexm × m matrix Γxx is called the
spectral matrix. The element in thej th row and
l th column is the cross-spectrum0x j xl between the

j th and thel th components ofEX. Thus the matrix
is Hermitian, that is,Γ†

xx(ω) = Γxx(ω), and its
main diagonal contains the autospectra0xkxk(ω).

The lag covariance matrix can be recovered
from the spectral matrix by inverting the Fourier
transform. Thus

Σxx(τ ) =
∫ 1

2

− 1
2

Γxx(ω)e
2π i τω dω (16.27)

and in particular, the covariance matrix is given by

Σxx(0) = Σxx =
∫ 1

2

− 1
2

Γxx(ω)dω (16.28)

= 2
∫ 1

2

0
3xx(ω)dω

where the co-spectrum matrix3xx(ω) is the
real part of the spectral matrix. Similarly, the
quadrature spectrum matrix9Ex is the imaginary
part of the spectral matrix (see [11.4.1]).

It follows from (16.28) that the conventional
EOFs are the eigenvectors of the co-spectrum
matrix of the processEX.

When two different random vectorsEX and
EY with dimensionsmx and my are considered,
then the rectangularmx × my cross-covariance
matrix Σxy =

(
Cov

(
X j ,Yk

))
jk describes the

covariability of the two vectors. Themx × my

matrix of Fourier transforms of the entries in the
cross-covariance matrix is known as the cross-
spectral matrix and denoted byΓxy.

16.2.7 Hilbert Transform and the Spectral
Matrix. The covariance matrix of the Hilbert
transform is equal to the covariance matrix of
the original process. This follows directly from
(16.11) and (16.28).

We saw in [16.2.2] that the Hilbert transform
may be viewed as a linear filterh. It therefore
follows from (11.74) that the cross-spectral matrix
betweenEXt and EYt is given by

ΓxHx(ω) = F {h}(ω)Γxx(ω) (16.29)

= H(ω)[Λxx + i Ψxx](ω)

=
{
(Ψxx − i Λxx)(ω) if ω > 0

(Ψxx + i Λxx)(ω) if ω < 0.

Therefore

ΣxHx = −ΣxxH = 2
∫ 1

2

0
Ψxx(ω)dω. (16.30)

16.3 Complex and Hilbert EOFs

16.3.1 Outline. EOFs were defined in Chap-
ter 13 not only for real vectorsEX but also for
complex random vectorsEY (although we showed
examples only for real vectors).3 In this section
we introduce the Hilbert EOFs that are a special
case of complex EOFs, that is, EOFs derived

3Here we useEY to denote complex vectors and reserveEX
for real vectors.
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from complex random vectors. We first review the
concept of complex EOFs in [16.3.2–4].

The straightforward way to define Hilbert EOFs
is to complexify a random vector by adding
its Hilbert transform as an artificial imaginary
component. Then the Hilbert EOFs are simply the
complex EOFs of this complexified random vector.
This is discussed in [16.3.6]. The direct approach
is useful when most of the variability is confined
to a relatively narrow frequency. When this is not
the case, the approach described in [16.3.7] may
be useful. It involves computing eigenvectors from
the spectral matrix after it has been averaged over
a frequency band. Some computational aspects of
complex EOF analysis are explored in [16.3.8,9]
and examples are presented in [16.3.10,11]. Their
interpretation and estimation is briefly considered
in [16.3.12,13] and a further example is presented
in [16.3.15].

16.3.2 Reminder: Complex EOFs. We know
from the conventional EOF analysis, (Chapter 13)
that the eigenvectorsEe k of the covariance matrix
Σyy of a complex random vectorEY form a basis
such thatEYt can be expanded as

EYt =
∑

k

αk(t)Ee k (16.31)

with the ‘principal components’

αk(t) = 〈EYt , Ee k〉 = Y†
t Ee k. (16.32)

The basis is ‘optimal’ in the sense that, for every
K = 1, . . . ,m, the expected error

εK =
∥∥∥ EYt −

K∑
k=1

αk(t)Ee k
∥∥∥2

= Var( EY) −
K∑

k=1

λk (16.33)

is smaller for the EOFs than for any other basis.
The complex EOFs may be displayed as

a pair of patterns, representing the real and
imaginary componentsEek

R and Eek
I . An alternative

representation uses polar coordinates:

ek
j = Ak

j exp
(
i φk

j

)
(16.34)

for each componentj = 1, . . . ,m of the m-
dimensional vectorEe k. Thus, thekth complex
EOF may also be plotted as a pattern of two-
dimensional vectors, with vector ofAk

j and angle

φk
j plotted at each point in much the same way

that we plot the vector wind. Note that complex
eigenvectors are unique only up to a constantEe i ξ

whereξ is an arbitrary angle. Thus the anglesφk
j

may be expressed relative to anya priori specified
angle.

This ambiguity with respect to the angle
of complex EOFs may be used to rotate the
EOFs in the complex domain so that either the
imaginary and the real parts of each EOF are

orthogonal (i.e.,Eek
R

TEek
I = 0), or the real and

imaginary components of the EOF coefficients are
uncorrelated (i.e., Cov(Re(αk), Im(αk)) = 0).

The complex EOF coefficient may be written in
polar coordinates as

αk(t) = ak(t)exp
(
iψk(t)

)
(16.35)

The part of the field orsignalthat is represented by
thekth EOF at timet is given by

αk(t)Ee k = ak(t) EAkexp
(
(iψk(t)+ Eφk)

)
where EAk is the vector of amplitudes
(Ak

1, . . . , Ak
m)

T and Eφk is the corresponding
vector of angles(φk

1, . . . , φ
k
m)

T. Thus the spatial
distribution of a signalαk(t)Ee k at a given timet
is obtained by rotating the elements of vectorEe k

through a common angleψk(t) and scaling the
elements with a common factorak(t).

The eigenvalues obtained in an EOF analysis
indicate the variance of the input vector that is
carried by the corresponding principal component
(EOF coefficient). This statement is also valid for
complex input vectorsEY. However, no general
statement can be made about the amount of
variance that is represented by just the real or
imaginary part of the principal component.4

We present an example of a complex EOF
analysis in the next subsection.

16.3.3 An Example of a Complex EOF
Analysis: An Analysis of Velocities and Wind
Stress Currents at a Coastal Mooring. Several
moored sensors were used in an observational
campaign to measure surface variables such as
wind stress and sub-surface variables in the Santa
Barbara channel of the coast of California. The
observational campaign extended over 60 days,
during which velocities were recorded every 7.5
min at five depths and wind stress was recorded
hourly at two neighbouring locations (see Brink
and Muench [67]). Figure 16.5 shows the mooring
location, the mean wind stress vectors, and the
mean current vectors. The wind stress is directed

4For example, it is easy to construct a complex random
vector that has a first complex EOFEe 1 such that Var(Re(α1)) =
0.
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Figure 16.5: Mean and first complex EOF of
currents (solid arrows; depth in metres given by
numbers) at a mooring in the Santa Barbara
Channel and wind stress at neighbouring buoys
(labelled S and C). The mean state is the time
average of the currents and the wind stress, and
the first complex EOF was calculated separately
for the wind stress and for the currents.
The mooring is located at the origin of the ‘mean
state’ vector bundle. The EOF vector bundle is
drawn at another point for convenience.
Adapted from Brink and Muench [67].

towards the southeast on average. Consistent
with Ekman theory, the near-surface currents are
southerly (i.e., to the right of the mean wind stress)
and deeper currents, between 20 m and the bottom
at about 60 m, are northerly.

Brink and Muench [67] performed separate
complex EOF analyses for the horizontal velocities
at five depths and for the wind stress at two
locations. If U j and V j are the zonal and
meridional velocities at depthj , then the complex
random vector is EX = U j + i V j , where
EU = (U1, . . . ,U5)

T and EV = (V1, . . . ,V5)
T.

The two-dimensional complex wind stress vector
is constructed similarly from the zonal and
meridional components of the wind stress at the
two locations.

The first complex EOFs of the velocity vectors
and of the two wind stress vectors are also shown
in Figure 16.5 as a vector bundle in the upper right

hand corner. As mentioned above, complex EOFs
have arbitrary base angles. Thus the orientation
of the velocity and wind stress EOFs was chosen
to maximize the correlation (0.62) between the
corresponding EOF coefficients.

The first velocity CEOF consists of a rather
uniform set of anomalies even though the mean
state varies considerably with depth in terms
of speed and direction. The most important
pattern of current variability is characterised by
a maximum current speed anomaly at the surface
and counterclockwise veering with increasing
depth. Thus positive current anomalies near
the surface tend to be associated with weaker
anomalies at depths related to the left of the
near-surface anomaly.

The first CEOF of the wind stress indicates that
it varies very similarly at the two locations. Current
anomalies near the surface tend to lie to the right
of the wind stress anomalies, and those at greater
depths tend to lie to the left.

16.3.4 Complex EOF Analysis and Propagating
Waves. Horel [181] points out that under
special circumstances, such as waves associated
with out-of-phase zonal and meridional currents,
propagating oscillating signals may be identified
through a complex EOF analysis by attributing the
zonal current to the real part of a complex vector
field, and the meridional current to the imaginary
part. Studies pursuing this idea are listed by Horel
[181]. In general, though, such an approach is
unable to detect propagating signals.

16.3.5 EOFs of the Complexified Process.We
now consider the complexified process

EY = EX + i EXH (16.36)

where EXH is the Hilbert transform (16.2) ofEX.
Without loss of generality, we can assume that
the process has zero mean, and we find that
(cf. (16.30))

Σyy = E
(
( EXt + i EXH

t )(
EXt + i EXH

t )
†
)

= 2Σxx + i (ΣxHx −ΣxxH)

= 2
(
Σxx + i ΣxHx

)
. (16.37)

This is a Hermitian matrix and therefore has a set
of orthogonal complex eigenvectorsEe k with real
non-negative eigenvaluesλk. These eigenvectors
are said to be theHilbert EOFsof the processEX.

The principal components (or EOF coefficients,
cf. (16.32)) of the Hilbert EOFs have special
properties. If we write the Hilbert EOFs as
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Ee k = Eek
R+ i Eek

I , then the EOF coefficient may be
expanded as

αk(t) = ( EXt )
TEek

R+ ( EXH
t )

TEek
I (16.38)

+ i
(
( EXt )

TEek
I − ( EXH

t )
TEek

R

)
.

Then, if we take the Hilbert transform of the EOF
coefficients themselves, we see that

(αk(t))
H = −iαk(t) (16.39)

(a proof is given in Appendix M). Thus, the
Hilbert transform of the EOF coefficient is just
the untransformed coefficient rotated 90◦ in the
complex domain. It therefore follows that the
real and imaginary parts of the complex EOF
coefficients are related through their Hilbert
transforms by

Re(αk(t)) = −
(
Im(αk(t))

)H (16.40)

Im(αk(t)) =
(
Re(αk(t))

)H
, (16.41)

and that their variances are equal:

Var(Im(αk)) = Var(Re(αk)). (16.42)

The EOF expansion (16.31) of the complexified
process (16.36) also has special properties.
ExpandingEYt as

EYt =
∑

k

EYk
t ,

where EYk
t = αk(t)Ee k, and equating with the real

and imaginary parts of (16.36), we find that

EXt =
∑

k

Re(EYk
t ) (16.43)

EXH
t =

∑
k

Im( EYk
t ) =

∑
k

(
Re(EYk

t )
)H
.

Thus the real and imaginary parts of the
complexified process (16.36) have the same
Hilbert EOF expansion. This is easily confirmed
with (16.40) and (16.41) by noting that

Re(EYk
t ) = Re

(
αk(t)

)Eek
R− Im

(
αk(t)

)Eek
I

(16.44)

Im( EYk
t ) = Re

(
αk(t)

)Eek
I + Im

(
αk(t)

)Eek
R

= (
Re
(
αk(t)

)Eek
R− Im

(
αk(t)

)Eek
I

)H
= (

Re(EYk
t )
)H

It follows, therefore, that the Hilbert EOF
represents equal amounts of variance in the input
time series and its Hilbert transform.

16.3.6 The Spectral Matrix of the Complexified
Process. Equation (16.37), together with (16.28)
and (16.30), tell us that the covariance matrix of
the complexified process equals the integral of the
spectral matrix ofEX over allpositivefrequencies:

Σyy = 4
∫ 1

2

0
Γxx(ω)dω (16.45)

whereEY is the complexified process (16.36). Thus,
the Hilbert EOFs are not only the eigenvectors
of the covariance matrix of the complexified
process, but also the eigenvectors of the frequency
integrated spectral matrix of processEX.5

16.3.7 Frequency Domain EOFs. The Hilbert
EOFs can be interpreted as characteristic patterns
of the spectral matrix ofEX when the variability of
the process is confined to a narrow frequency band
ω0± δω. In that case

Σyy ∝ Γxx(ω0) (16.46)

and the Hilbert EOFs are the eigenvectors of the
spectral matrix at frequencyω0. It is therefore
natural to extend the Hilbert EOF analysis to the
frequency domain by applying it to the spectral
matrix Γxx(ω) so that the characteristic modes of
variation can be identified for arbitrary time scales
ω−1 whereω ∈ [0,1/2].

16.3.8 Equivalence of Complex and Real
Eigenproblems. The real and imaginary parts
of the Hilbert EOFs are related to the cross-
covariances between the components of the input
vector and its Hilbert transform. This relationship
is easier to see when the eigenproblem is
expressed in real terms. We therefore describe
the corresponding real eigenproblem here, and
then return to the role of the cross-covariances in
[16.3.9].

It is easily shown thatEe k = Eek
R + i Eek

I is
an eigenvector of the complex Hermitian matrix
Σyy = ΣR + i ΣI with eigenvalueλk if and only
if Ee k satisfies the real eigen-equation(

ΣR −ΣI

ΣI ΣR

)( Eek
R

Eek
I

)
= λk

(
Eek

R

Eek
I

)
. (16.47)

5Note that Γxx(ω) is only integrated overpositive
frequencies. WhenΓxx(ω) is integrated over both positive and
negative frequencies, the contribution from the anti-symmetric
quadrature spectrum is cancelled and we arrive at the real
covariance matrix and the conventional EOFs since

Σxx =
∫ 1

2

− 1
2

Γxx(ω)dω = 2
∫ 1

2

0
Λxx(ω)dω.
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The eigenvectors ofΣyy are orthogonal and are
ordinarily chosen with unit length so that

〈Ee k, Ee j 〉 = (Ee k)†Ee j = δkl . (16.48)

In real terms, equation (16.48) reads

(Eek
R)

TEe j
R + (Eek

I )
TEe j

I = δkl

(Eek
R)

TEe j
I − (Eek

I )
TEe j

R = 0.
(16.49)

The complex eigenproblemΣyyEe k = λkEe k has
m real eigenvalues andm complex eigenvectors
Ee k. The real eigenproblem (16.47) has 2m real
eigenvaluesλ1, λ1, . . . , λm, λm, whereλ1, . . . , λm

are the eigenvalues of the complex eigenproblem.
The corresponding set of 2m eigenvectors is given
by{(Eek

R
Eek

I

)
,

(−Eek
I
Eek

R

)
: k = 1, . . . ,m

}
.

Equation (16.49) can be used to verify that these
vectors are orthonormal.

16.3.9 Real Eigenproblems for the Determina-
tion of Hilbert EOFs. We may use the result
of the preceding subsection to characterize the
frequency domain EOFs as eigenvectors of a real,
frequency-integrated matrix. Let

∫
Γxx denote the

integral of the spectral matrix over a frequency
bandω0± δω:∫

Γxx =
∫ ω0+δω

ω0−δω
Γxx(ω)dω.

The complexm×m matrix
∫

Γxx corresponds to
the 2m× 2m real matrix( ∫

Λxx −
∫

Ψxx∫
Ψxx

∫
Λxx

)
. (16.50)

where
∫

Λxx and
∫

Ψxx are the corresponding
integratedm × m co-spectrum and quadrature
spectrum matrices. The frequency bandω0 ± δω
could encompass all or part of [0,1/2].

Equation (16.37) shows that there is also a real
2m× 2m real counterpart to them× m complex
covariance matrix Σyy of the complexified
process:(

Σxx −ΣxHx
ΣxHx Σxx

)
. (16.51)

Thus we see that both the Hilbert and frequency
domain EOFs depend upon the cross-covariances
of the input series and its Hilbert transform.

16.3.10 Example: Several Uncorrelated Proces-
ses. What are the Hilbert EOFs of a stationary
processEXt = (X1t , . . . ,Xmt)

T such that the cross-
covariance function (and thus quadrature spectra)
between any two components is zero? Under these
circumstances the complex covariance matrixΣyy

equals twice the real covariance matrixΣxx. Thus
the conventional EOFs are also the Hilbert EOFs.6

What are the coefficients of the Hilbert EOFs
in this case? If we assume that the Hilbert EOFs
Ee c have been normalized so that they equal
the conventional EOFsEer , then the coefficient
αc of the Hilbert EOF Ee c is the dot product
of the complexified processEX + i EXH with the
conventional real EOFEer :

αc = 〈EX, Eer 〉 − i 〈 EXH, Eer 〉
= αr − iαr H

where αr = 〈EX, Eer 〉 is the conventional EOF
coefficient.

In summary, Hilbert EOF analysis has no
advantages over the conventional EOF analysis
when EXt consists of uncorrelated processes. Note
also that neither of these approaches can provide
information that is useful for characterizing the
temporal correlation of the time series that
compriseEXt .

16.3.11 Example: The POP Case.Another
situation occurs when the two processes are linked
through a lag relationship. A prototype of this
situation is the bivariate POP case discussed in
[11.3.8] and [11.4.10]. We will consider a bivariate
AR(1) process (cf. (11.45)) of the form

EXt = r

(
u −v
v u

)
EXt−1+ EZt

where|r | < 1, u2 + v2 = 1, andEZt is a bivariate
white noise process with covariance matrix

Σzz= σ 2
(

1 0
0 1

)
.

The system generates oscillatory behaviour with
X1t leadingX2t whenv is positive. Note also that
processesX1t andX2t are uncorrelated at lag zero.
In fact,

Σxx(0) = σ 2

1− r 2

(
1 0
0 1

)
.

6But note that Hilbert EOFs may be multiplied by
any complex number whereas ordinary EOFs may only be
multiplied by real numbers.
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Therefore, the conventional EOFsEe k of EXt are
degenerate; specific choices ofEe k are the two unit
vectors(0,1)T and(1,0)T (cf. [13.1.9]).7

Recalling equation (11.81), we find that the
spectral matrix ofEXt is

Γxx(ω) =
(
011(ω) 012(ω)

021(ω) 022(ω)

)
=
(

011(ω) i912(ω)

−i 912(ω) 011(ω)

)
.

The Hilbert EOFs are the solutions of the
eigenproblem(∫ 1

2

0
Γxx(ω)dω

)
Ee k = λkEe k. (16.52)

The eigenvalues are

λ1 =
∫ 1

2
0

(
011(ω)−912(ω)

)
dω

λ2 =
∫ 1

2
0

(
011(ω)+912(ω)

)
dω,

(16.53)

and the corresponding eigenvectors are

Ee 1 =
(

1
i

)
andEe 2 =

(
1
−i

)
. (16.54)

The larger of the two eigenvalues isλ1 since912
is negative for positivev.

Note that the Hilbert EOFs are markedly
different from the conventional EOFs.

The time coefficientsαk of the Hilbert EOFs are

α1 = ( EXt + i EXH
t )

†Ee 1

= X1t + XH
2t + i (X2t − XH

1t)

= X1t + XH
2t − i (X2t + XH

1t)
H (16.55)

which is consistent with equations (16.40) and
(16.41). Similarly

α2 = X1t − XH
2t + i (X2t − XH

1t)
H.

The ‘signal’ represented by the first Hilbert EOF
is

α1Ee 1 = Re(α1Ee 1)+ i Im(α1Ee 1)

where

Re(α1Ee 1) =
(

X1t + XH
2t

(X1t + XH
2t)

H

)
(16.56)

and

Im(α1Ee 1) =
(−(X1t + XH

2t)
H

X1t + XH
2t

)
7This example is easily generalized to the case in which the

noise components are correlated: thenΣxx(0) = 1
1−r 2 Σzz,

and the conventional EOFs ofEXt coincide with those ofEZt .

so that, consistent with (16.41),(
Im(α1Ee 1)

)H = Re(α1Ee 1). (16.57)

For the second EOF we find

Re(α2Ee 2) =
(

X1t − XH
2t

(X1t − XH
2t)

H

)
(16.58)

and

Im(α2Ee 2) =
(
(X1t − XH

2t)
H

−(X1t − XH
2t)

)
.

Thus, for both ‘signal’ time series, the second
element is the Hilbert transform of the first.

We showed in [11.4.11] that the specific
system considered here tends to form ‘typical’Ext

sequences of the type (11.83),

· · · →
(

1
0

)
→
(

0
1

)
→
(−1

0

)
→
(

0
−1

)
→
(

1
0

)
→
(

0
1

)
→ · · ·

(16.59)

when v is positive (cf. Figure 15.1). Therefore,
since these are oscillatory processes, it is
reasonable to interpret the Hilbert transform as
a rate of change. Our system tends to generate
ExH

t -sequences identical to (16.59) but shifted in
time by a quarter of a period so thatExt =
(1,0)T and ExH

t = (0,1)T appear together. (The
‘change’EXH

t leads the ‘state’EXt .) The ‘state’ of the
second component equals the ‘change’ of the first
component, and the ‘state’ of the first component
is the reversed ‘change’ of the second.

The two ‘signals’ represented by the two
Hilbert EOFs, (16.56) and (16.58), may then be
characterized by sequences of the type (16.59) as
well. The sequence (16.59) implies

XH
2 ≈ X1 (16.60)

so that

Re(α1Ee 1) ≈ 2

(
X1

XH
1

)
(16.61)

and

Re(α2Ee 2) ≈
(

0
0

)
. (16.62)

Thus the first Hilbert EOF describes the dominant
rotational behaviour of the system whereas the
second Hilbert EOF represents just the ‘residual’
which is small.

Note that this interpretation is independent of
the frequency interval used to form the integrals
in (16.52) and (16.53).
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16.3.12 Interpretation of Hilbert EOFs. The
heuristic argument of the previous subsection is
generally used to interpret the outcome of a Hilbert
EOF analysis. Its validity depends crucially on the
validity of (16.60), which is by no means a trivial
assumption as demonstrated by the AR examples
studied in [16.2.3].

There are no generally applicable techniques
for deciding whether an estimated Hilbert EOF
describes a real oscillatory signal. Prudence is
clearly advisable. If possible, the data should be
divided into ‘learning’ and ‘validation’ subsets so
that phase relationships identified in the learning
data set can be verified independently in the
validation data set.

16.3.13 Estimating Hilbert EOFs. The two
different definitions of Hilbert EOFs, either
directly by means of the covariance matrix of the
complexified process or by means of the frequency
integrated spectral matrix, provide two different
approaches for estimating the Hilbert EOFs.

The estimation can be done in the time domain,
in which case the Hilbert transform is first
estimated. This can be done either with the
truncated time domain filter (16.18) or by a Fourier
decomposition and phase-shifted reconstruction
(see [16.2.4]). Then the complex covariance matrix
is computed in the usual manner by computing

1

n

n∑
t=1

(Ex′j + i (̂Ex′t )H
)(Ex j + i (̂Ex′t )H

)† (16.63)

where Ex1, . . . , Exn form a sample of sizen
and Ex′1, . . . , Ex′n are deviations from the sample
mean. Finally, the eigenvectors of this matrix are
determined.

Estimation can also be done in the frequency
domain. First the width 2δω and the centreω0 of
the frequency band of interest are selected. Next,
an estimate of the spectral matrix with equivalent
bandwidth 2δω is constructed (see Section 12.3
for a description of spectral estimation). This
estimator is evaluated at frequencyω0, and
eigenvectors are found.

For the estimation in the frequency domain the
spectral matrix is estimated for all frequenciesω ≥
0 in the frequency band of interest, and then the
spectral matrices are summed.

16.3.14 Applications of Hilbert EOF Analysis.
Hilbert EOF analysis has been pursued extensively
in climate research, for instance by Barnett [19]
who pioneered this technique, Wallace and
Dickinson [408], Brillinger [66], Rasmusson et

al. [329], Horel [181], Wang and Mooers [413],
Johnson and McPhaden [196], Trenberth and
Shin [373], just to mention a few.

16.3.15 Example: Tropical Pacific Sea-surface
Temperatures. We now describe a Hilbert EOF
analysis of monthly mean SST anomalies in the
tropical Pacific Ocean between 20◦S and 20◦N.
The data used in this example were obtained from
COADS (Woodruff et al. [425]) and cover the
period 1951–90.

The annual cycle was removed by subtracting
the 40-year mean for each month of the year and
variations on time scales shorter than a year were
removed by low-pass filtering the anomalies from
the annual cycle. The filtered time series was then
Hilbert transformed (16.19, 16.20). Finally, the
covariance matrix of the complexified process was
estimated with equation (16.63). The eigenvectors
of this matrix are the estimated Hilbert EOFs.

The dominant Hilbert EOF, which represents
40% of the variance of both the filtered SST
anomalies and the filtered complexified process,
is shown in Figure 16.6. The real part, shown
in the upper panel, depicts the mature phase of
El Niño when the corresponding EOF coefficient,
α̂1(t), is real and positive. It also approximates the
mature phase of La Niña when̂α1(t) is real and
negative. The imaginary part of the first Hilbert
EOF, shown in the lower panel, depicts a transition
phase between the warm El Niño and the cool
La Niña.

The time series of complex time coefficients of
the first Hilbert EOF is shown in Figure 16.7. The
imaginary part, given by the dashed curve, is the
Hilbert transform of the real part (recall (16.42)).
By focusing on the 1982/83 El Niño event, we
can see that the Hilbert transform can indeed be
interpreted as a crude derivative: the imaginary
part is positive until the warm event peaks in late
1982/early 1983 and then becomes negative as the
event fades.

Figure 16.8 shows the same time series in polar
coordinate form. The upper panel displays the
amplitude of the EOF coefficient as a function
of time, and the lower panel displays the phase
in radians. We see that the complex coefficient
tends to rotate in a clockwise direction, but not
at uniform speed. The amplitude varies irregularly
in time. Each ‘sawtooth’ in the lower panel
of Figure 16.8 depicts one ENSO-like cycle. It
begins with the cold version of Figure 16.6a,
then rotates to the warm version in Figure 16.6b
with weak warm anomalies over most of the
tropical Pacific one-quarter of a period later. This



364 16: Complex Eigentechniques

Figure 16.6:The first Hilbert EOF of low-pass filtered tropical Pacific sea-surface temperatures.
Courtesy E. Zorita. a) Real part (top). b) Imaginary part (bottom).

is followed by the mature warm phase (positive
version of Figure 16.6a) halfway through the cycle
and weak negative SST anomalies (Figure 16.6b)
three-quarters of the way through the cycle. The
cycle is completed with the mature cold phase
(Figure 16.6a multiplied by−1).

It is clear from Figure 16.8b that there is
significant variability in the length of an ENSO
cycle. The vertical lines in Figure 16.8 give the
approximate time of warm events (short dashes)
and cold events (long dashes) as identified by
Kiladis and Diaz [222]. Warm events tend to
occur within one radian of zero phase while cold
events tend to occur 180◦ later. The amplitude is
often, but not always, large when a warm or cold
event is identified, perhaps because there is large
variability from event to event in the precise spatial
structure of the SST anomalies.

In summary, the Hilbert EOF analysis of the
filtered SST anomalies captures the essential
features of ENSO. We have found a pair of patterns
that depict a substantial fraction of the ENSO
cycle. The length of the cycle varies from 2 to
11 years, with a mean of about 4.5 years. Within
cycles, the progression between warm and cold
phases is irregular.

1950 1960 1970 1980 1990

-1
0

1
2

Figure 16.7: The time series of complex time
coefficients of the first Hilbert EOF of low-pass
filtered tropical Pacific SST anomalies. Units:◦C.

16.3.16 Hilbert POPs. When the POP analysis
(see Chapter 15) is applied to the complexified
process, complex patterns are derived. As with
the Hilbert EOF, these may be interpreted as
specifying the ‘state’ and the ‘rate of change’
of the process. B̈urger [75] has pioneered this
technique and offers as an example the analysis of
El Niño/Southern Oscillation in terms of monthly
SST along the equatorial Pacific.
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Figure 16.8:As Figure 16.7, except in polar-coordinate form.
a) Amplitude (top). Units:◦C. b) Phase (bottom). Units: radians.
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369

Overview
The last part of the book features aspects of applications of statistical concepts that are specific to
climate research and, with the exception of a section on time filters, are usually not found in other fields
of statistical applications.

Chapter 17 contains those aspects that could not be logically included in the more systematically
designed earlier parts of the book. In fact, many concepts in Chapter 17 overlap with material presented
earlier. The so-called decorrelation time is related to the distribution of mean values calculated from
serially correlated data; the potential predictability may be considered a special variant of ANOVA;
teleconnections are a special representation of spatial correlations; associated correlation patterns are an
offspring of regression analysis. We tried, however, to write this chapter such that the material may be
understood without in-depth study of the previous chapters.

Most of the techniques in Chapter 17 were developed by climatologists while struggling with
specific problems; as such, many of them are based on ad-hoc heuristic ideas with interpretations
that may or may not hold in real world situations. We have presented two cases of such heuristically
motived approaches, namely the frequency–wavenumber analysis and the quadrature EOFs. A typical
case to this end is ‘potential predictability.’ We try to clarify the methodical basis of the various
techniques, so that the reader may use them in a more objective manner without using tacitly inadequate
intuitive interpretations (such as the misconception that the decorrelation time is the time between two
independent observations).

Chapter 18 describes a classical problem in meteorology, namely a variety of techniques designed to
measure the relative advantages and disadvantages of (weather) forecasts.
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17 Specific Statistical Concepts in Climate
Research

17.0.0 Overview. In this chapter we review
several additional topics that are important in
atmospheric, oceanic or other geo-environmental
sciences. These topics are as follows.

In Section 17.1 we discuss the ‘decorrelation
time’, a concept that is often misunderstood, be-
cause of its confusing name. The term suggests
that it is aphysicaltime scale that represents the
interval between consecutive, uncorrelated obser-
vations. In fact, it is a statistical measure that
compares the information content of correlated ob-
servations with that of uncorrelated observations.
If a sample ofn′ uncorrelated observations gives a
particular amount of informationabout the popu-
lation meanthenn = n′ × ‘decorrelation time’ is
the number of correlated observations required to
obtain the same amount of information about the
population mean. Similarly, other ‘decorrelation
times’ can be derived for other parameters such
as the population variance or the lag-1 correlation
(cf. Trenberth [368]) by comparing the information
contained about the parameters in samples of
independent and dependent observations. Not only
is the nomenclature confusing, but its meaning is
highly dependent upon the parameter of interest.

We describe a concept called potential pre-
dictability in Section 17.2. Measures of potential
predictability determine whether the variation in
seasonal mean climate variables is caused by
anything other than daily weather variations. If
seasonal means have more variance than can be
accounted for by weather noise, then part of the
seasonal mean variance may be predictable from
slowly varying external sources.

Processes, such as El Niño/Southern Oscillation
or the Madden-and-Julian Oscillation, are often
described by anindex. It is therefore often of
interest to describe how field variables, such as
the sea-surface temperature distribution or the
oceanic ‘meridional overturning stream function’,1

evolve with the indexed process (Section 17.3).
Two techniques are frequently used: ‘regression’

1A measure of the strength of the deep ocean circulation.

or ‘associated correlation pattern’ analysis and
‘composite pattern’ or ‘epoch’ analysis.

A popular and simple method for identifying
dynamical links between well-separated areas is
‘teleconnection’ analysis (Section 17.4), which is
essentially the mapping of fields of correlations.

Digital filters (Section 17.5) are tools that can be
used to remove variation on time scales unrelated
to the phenomenon under study. This is useful
because the climate varies on many time scales,
from day-to-day weather variability to the ‘slow’
variations connected with the coming and going
of the Ice Ages. Depending upon the researcher’s
goals, much of the variability in the observed
record may be regarded as ‘noise’ that obscures the
‘signal’ of interest. Filters can remove much of this
noise.

17.1 The Decorrelation Time

17.1.1 Motivation and Definition. We defined
the characteristic timeτM in [10.2.1] as the time
that is required for a system to forget its current
state. This has meaning for some processes, such
as MA(q) processes (cf. [10.5.2]) for whichτM =
q, but not for others, such as AR(p) processes, for
which τM = ∞.

In this section we introduce another ‘character-
istic time,’ labelledτD. The basic idea originates
from the observation that the mean ofn iid random
variablesX1, . . . ,Xn has variance

Var
(
X
) = σ 2

X

n
, (17.1)

while the mean ofn identically distributed but
correlated random variables has variance

Var
(
X
) = σ 2

X

n′
(17.2)

where n′ 6= n depends upon the correlations
betweenX1, . . . ,Xn. We call n′ the equivalent

371
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sample size.2 The decorrelation time is then
defined as

τD = lim
n→∞

n

n′
. (17.3)

We will show in [17.1.2] that

n′ = n

1+ 2
∑n−1

k=1

(
1− k

n

)
ρ(k)

(17.4)

τD = 1+ 2
∞∑

k=1

ρ(k), (17.5)

whereρ(·) is the auto-correlation function ofXt .
The decorrelation time defined in (17.5)

is dimensionless since the time increment is
implicitly assumed to be dimensionless. A proper
dimensional definition would be

τ̃D = (1t)τD (17.6)

where1t is the time increment.
Equation (17.5) is the appropriate definition

of decorrelation time when we use the sample
mean to make inferences about the population
mean. However, its arbitrariness in defining a
characteristic time scalebecomes obvious when
we reformulate our problem by replacing themean
in (17.2) with, for instance, thevariance or the
correlationof two processesXt andYt . When this
is done, the appropriate characteristic times are
given by (Trenberth [368])

τ = 1+ 2
∞∑

k=1

ρ2(k) (17.7)

and

τ = 1+ 2
∞∑

k=1

ρX(k)ρY(k) (17.8)

respectively. Thus the definition of the character-
istic time is strongly dependent on thestatistical
problem under consideration.In general, these
numbers do not correspond directly to the im-
portant physical time scales of the process under
study.

17.1.2 Calculation of theτD. We now prove
(17.4) by deriving Var

(
X
)
. Without loss of

generality we assume thatE(Xt ) = 0 so that
Var(Xt ) = E

(
X2

t

)
. Then, for an arbitrary timet ,

E
(
X

2) = 1

n2

n−1∑
i, j=0

E
(
Xt+i Xt+ j

)
2See also [6.6.8], where this number comes up in the context

of testing hypotheses about the mean.

= 1

n2

n−1∑
i, j=0

γ (i − j ) (17.9)

= 1

n

n−1∑
k=−n+1

(
1− |k|

n

)
γ (k).

The last expression is obtained by gathering terms
in (17.9) with identical differencesi − j . Equation
(17.5) follows by taking the limit asn→∞.3

17.1.3 Estimation of the Decorrelation Time.
A straightforward way to estimaten′ is to
substitute the estimated auto-correlation function
directly into (17.4). Another approach is to fit
an AR(p) model to the data and then use
the derived auto-correlation function correlation
function in (17.4). A third approach is based on
the observation that

Var
(
X
) = 0xx(0)

n

in the limit as n → ∞, where0xx(ω) is the
spectral density function ofXt . Therefore

n′ ≈ σ 2
X

0xx(0)
n

and

τD ≈ 0xx(0)

σ 2
X

.

Thus τD can also be estimated by estimating the
spectral density at frequency zero.4

Thiébaux and Zwiers [363] examined various
approaches and found that the truen′ values are
difficult to estimate accurately. In particular, the
first approach performed very poorly. The second
approach (see also Zwiers and von Storch [454])
is the best of the three methods when samples are
large, and the spectral approach produces better
estimates when the samples are moderate to small.

Prior knowledge can sometimes be used to
improve the estimate ofn′. For example, we know
that n′ < n when the observed process is ‘red’

3To be precise we must assume that the auto-correlation
function is absolutely summable. This is frequently called a
‘mixing condition’ in the time series literature (see [10.3.0] and
also texts such as [323] or [66]).

4The usual approach is to use a good spectral estimator
(cf. Section 10.3) to estimate the spectral density at a frequency
near zero and then toextrapolate this estimate toω =
0. Madden [263] calls this the ‘low-frequency white noise’
extension of the estimated spectral density. This approach
works because the spectral density functions of many weakly
stationary ergodic processes are continuous and symmetric
about the origin, and therefore have zero slope at the origin.
These processes are approximately white at long time scales.
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because then0xx(0) > σ2
X , as in the top panel

of Figure 17.1. Thus it would be reasonable to
truncate any estimatên ′ > n to n. Similarly, we
know that n′ > n when the observed process
is ‘blue’ as in the lower panel of Figure 17.1.5

Knowledge that the process tends to oscillate near
a given frequency in the interior of the frequency
interval (0,1/2) is less useful for isolating the
possible range of values forn′ because we then can
not be sure about whether0xx(0)/σ2

X < 1.

17.1.4 The Decorrelation Time of AR(p)
Processes. The decorrelation times for AR(p)
processes withp = 0,1 and 2 are easily computed.

• For p = 0, the ‘white noise’ process without
any memory, the auto-correlation function
ρ(k) is zero for nonzerok so that

τD = 1. (17.10)

• For an AR(1) process the decorrelation time
is

τD = 1+ 2
∞∑

k=1

αk
1

= 1+ α1

1− α1
. (17.11)

The decorrelation time for the two ‘red’ noise
examples discussed in Chapters 10 and 11 are
τD = 1.9 forα1 = 0.3 andτd = 19 forα1 =
0.9. Note that limα1→+1 τD = +∞. That is,
the decorrelation time becomes infinite when
the process becomes non-stationary.

• Recall from [11.1.9] that the auto-correlation
function of an AR(2) process can take one of
two different forms, depending upon whether
the characteristic polynomial (10.11) has real
or complex roots.

When (10.11) has real rootsy1 and y2, the
auto-correlation function is given by

ρ(k) = a1y−|k|1 + a2y−|k|2 ,

wherea1 and a2 are given by (11.7). Then,
since the decorrelation time is linear inρ, we
have

τD = a1
y1+ 1

y1− 1
+ a2

y2+ 1

y2− 1
.

5‘Blue’ noise processes tend to oscillate about the mean
more frequently than white noise processes, so they produce
observations that ‘bracket’ the mean much more quickly than
‘white’ or ‘red’ noise processes. Intuitively, then, it makes sense
thatn′ > n.

0.5

Red

Blue

0
Frequency

Figure 17.1:A schematic illustration of the spectra
of ‘red’ and ‘blue’ noise processes. The horizontal
line indicates the variance of the process. The ‘red’
process hasn′ < n andτD > 1. The ‘blue’ process
hasn′ > n andτD < 1.

The AR(2) process withα1 = α2 = 0.3 is
of this type. It hasy1 = 1.39, y2 = −2.39,
a1 = 0.74, anda2 = 0.26. ThusτD =
4.53+ 0.11= 4.64.

When (10.11) has complex roots, the auto-
correlation function is of the form

ρ(k) =
√

1+ 4 Im(a)2

r k
cos(kφ + ψ)

where constantsa, r, φ andψ are determined
as in [11.1.9]. The corresponding decorrela-
tion time is

τD = 1+ 2
√

1+ 4 Im(a)2
∞∑

k=1

cos(kφ + ψ)
r k

.

The AR(2) process with (α1, α2) =
(0.9,−0.8) has a = 0.5 − i 0.032,
r = 1.12, φ ≈ π/3, andψ ≈ −π/50
so thatτD = 0.33.

17.1.5 The ‘Decorrelation Time’: a ‘Character-
istic Time Scale?’

We now briefly discuss the extent to which
τD can be interpreted as a physical time scale in
AR(p) processes.

• The decorrelation time (17.10) for an AR(0)
process makes physical sense since these
processes are devoid of temporal continuity.

• Decorrelation time (17.11) has a reasonable
physical interpretation as an indicator of the



374 17: Specific Statistical Concepts

‘memory’ or persistence of AR(1) proces-
ses with positiveα1 (i.e., τD > 1). Tren-
berth [369] calls it a ‘persistence time scale’
and maps it for the Southern Hemisphere
geopotential height field. Processes with neg-
ative α1 are the ultimate weakly stationary
‘oscillatory’ processes because they tend to
change sign at every time step. ThusτD is
less than 1 even though the auto-correlation
‘envelope’ |ρ(k)| decays at the same rate as
that of an AR(1) process with coefficient|α1|.
Thus a reasonable indicator of memory or
persistence that applies to all AR(1) processes
is

τ ′D =
1+ |α1|
1− |α1|

=
{
τD if α1 > 0
τ−1

D if α1 < 0.

• Similar difficulties occur with oscillatory
AR(2) processes since the decorrelation time
tends to be smaller than that indicated
by the decay of the correlation envelope√

1+ 4 Im(a)2r−k. In this case, a better
indicator of physical memory is

τ ′D = 1+ 2
√

1+ 4 Im(a)2
∞∑

k=1

r−k

= 2r
√

1+ 4 Im(a)2+ r − 1

r − 1

where a and r are defined as before. The
AR(2) process with(α1, α2) = (0.9,−0.8)
hasτD = 0.33 andτ ′D ≈ 20.

• We showed in [11.1.9] that the auto-
correlation function of an AR(p) process
can be decomposed into a sum of decaying
persistent and oscillatory terms. As above, a
meaningful indicator of physical memory can
be obtained by summing the envelope that
contains all of these terms.

In summary,τD must be interpreted carefully.
It represents a physical time scale only when
the auto-correlation function coincides with the
‘auto-correlation envelope’, as it does in white
noise processes.6

17.1.6 The Dependence of the Decorrelation
Time on the Time Increment. If

Xt = α1Xt−1+ Zt (17.12)

6But see the caveat discussed in the next subsection.

Figure 17.2:The dependency of the dimensional
decorrelation timeτ̃D,k on the time incrementk
and on the coefficientα.

is an AR(1) process with a unit time increment,
then we can construct other AR(1) processes with
k unit time increments by noting that

Xt = αk
1Xt−k + Z′t (17.13)

where Z′t =
∑k−1

l=0 α
l
1Zt−l . The corresponding

dimensional decorrelation times (17.6) are

τ̃D,1 = 1+ α1

1− α1

τ̃D,k = k
1+ αk

1

1− αk
1

.

Thus τ̃D,k ≥ k for all k when α1 ≥ 0.
That means that the decorrelation time is at least
as long as the time increment. In the case of
white noise, withα1 = 0, the decorrelation
time is always equal to the time increment. Some
dimensional decorrelation times are plotted in
Figure 17.2. The longer the time increment, the
larger the decorrelation time. Note thatτ̃D,k = k
for sufficiently large time increments. For small
α1-values, such asα1 = 0.5, τ̃D,k = k for k ≥ 5.
If α1 = 0.8 thenτ̃D,1 = 9, τ̃D,11 = 13.1 and
τ̃D,21 = 21.4. Thus the decorrelation time of an
α1 = 0.8 process is 9 days or 21 days depending
on whether we sample the process once a day or
once every 21 days.

We conclude that the specific value of the
decorrelation time may not be very informative.
However, comparison between time series with the
same sampling interval helps us identify which
processed have larger memory.

17.2 Potential Predictability

17.2.1 Concept of ‘Potential Predictability.’It is
generally accepted that the skill of the short-term
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‘climate’ forecasts7 derives primarily from the
persistence of the atmosphere’s lower boundary
conditions. Thus thepotential for short-term
climate predictability, orpotential predictability,
is often estimated using a time-domain analysis
of variance technique. This technique assumes
that variations in, say, seasonal mean sea-level
pressure arise from two sources: one source
represents the effect of the daily weather variations
and the other reflects the effect of presumably
unrelated processes, such as tropical sea-surface
temperature or the presence of volcanic aerosols
in the atmosphere. Variation from the first source
is known to be unpredictable for lead times
of more than, say, 10 days, but the second
source is thought to be predictable, at least
in principle. Madden [263] first described a
time domain ANOVA technique for diagnosing
potential predictability in 1976. His technique
tries to infer from time series the strength of
the predictable contribution without identifying
its dynamical source. The statistical aspects were
further elaborated by Zwiers [440]. See also
Zwiers et al. [449] and [9.4.7–11].

17.2.2 Formal Definition of Potential Pre-
dictability. 8 The following statistical model is
used in the analysis of potential predictability. The
variable, say the temperature,Tt , is assumed to be
the sum of two independent processesTS andTF :

Tt = TS
t + TF

t . (17.14)

Furthermore,TS is assumed to vary slowly, and
TF quickly. The latter is sometimes assumed to be
a red noise process (e.g., see [9.4.10] and [449]).
We also assume that the averaging timeτ is short
relative to the characteristic time for the slow
process so that

T
τ

t = TS
t + T

F
t

τ
, (17.15)

whereX
τ

indicates averaging over an interval of
length τ . Thus theτ -mean of Tt is controlled
by two mechanisms: the slow processTS and
the integrated fast processTF . In terms of the
temperature example, we would typically setτ to
90 days, interpretTF as the weather noise, and
assume thatTS is the slow variability from the

7That is, forecasts of the monthly or seasonal mean
conditions made at leads of up to about a year.

8The methods described here are appropriate for quantita-
tive values that vary continuously in time, such as near-surface
temperature or sea-level pressure. Wang and Zwiers [414]
describe methods suitable for use with quantities that vary
episodically, such as precipitation.

atmosphere’s lower boundary and other sources
not related to the weather variability.

Since TS and TF are assumed to be inde-
pendent, the variance of theτ -mean ofTt may
be separated into a part reflecting the integrated
weather noise and another part stemming from the
low-frequency process(es):

Var
(
Tt
τ ) = Var

(
TS

t

)+ Var
(
TF

t

τ )
. (17.16)

Since the weather fluctuations are ‘unpredictable’
on time scales of the order ofτ , only that
part of theτ -mean ofTt accounted for by the
slow process is potentially predictable. Thus a
reasonable measure of the relative importance of
the potentially predictable component in (17.15) is
the variance ratio

Sτ =
Var

(
Tt
τ )

Var
(
TF

t

τ ) . (17.17)

A variance ratio Sτ = 1 indicates that all
low-frequency variability originates from weather
noise whereasSτ > 1 indicates thatTt

τ
contains

more variability than can be explained by weather
noise alone. Hence there is the potential to forecast
some of the variance ofTt

τ
.

17.2.3 Estimating the Variance Ratio Sτ .
The numerator and denominator of variance
ratio Sτ (17.17) are estimated separately. We
assume that we have a sample{t jk : j =
1, . . . ,n; k = 1, . . . , τ } that consists ofn
chunks ofτ consecutive observations. In typical
applications, each chunk is a daily time series
observed over a season, say DJF, and different
chunks represent different years. Ordinarily, the
annual cycle is removed so that, to first order,
the chunks can be assumed to be independent
realizations of a weakly stationary time series of
lengthτ .

The ‘inter-chunk’ variability is used to estimate

the variance of theτ -means ofT, Var
(
Tt
τ
)
. A

‘chunk-mean’

t j
τ = 1

τ

τ∑
k=1

t jk (17.18)

is first computed from each chunk, and these,
in turn, are used to estimate the ‘inter-chunk’
variance

V̂ar
(
Tt
τ ) = 1

n− 1

n∑
j=1

(
t j
τ − t◦

τ )2
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where

t◦
τ = 1

n

n∑
j=1

t j
τ
.

The next step is to understand the properties
of this estimator. Our assumptions about model

(17.15) can be used to show that̂Var
(
Tt
τ
)

is an

unbiased estimate of the sum of the variances of
the slow processTS

t and the integrated fast process

TF
t

τ
. That is,

E
(
V̂ar

(
Tt
τ )) = Var(TS

t )+ Var(TF
t

τ
).

If we also make the distributional assumptions that

TS
t andTF

t

τ
are normal,9 then we can also show

that

(n− 1)V̂ar
(
Tt
τ )

∼ (
Var(TS

t )+ Var(TF
t

τ
)
)
χχχ2(n− 1).

To test the null hypothesis that potential
predictability is absent (i.e., to test H0: Sτ = 1
or, equivalently, H0: Var(TS

t ) = 0), it is necessary
to obtain a statistically independent estimator of
V̂ar

(
Tt
τ )

. This is done by using the ‘intra-chunk’
variationst′jk = t jk − t j

τ
to infer theinter-chunk

variance ofTF
t

τ
.

Several methods can be used to infer Var
(
TF

t

τ )
from the intra-chunk variations. One approach is
based on the observation that

Var
(
TF

t

τ ) = 1

τ ′
Var

(
TF

t

)
where τ ′ is the ‘equivalent chunk length’. Thus

Var
(
TF

t

τ)
can be estimated as

V̂ar
(
TF

t

τ) = 1

τ̂ ′
V̂ar

(
TF

t

)
where

V̂ar
(
TF

t

) = 1

n(τ − 1)

n∑
j=1

τ∑
k=1

(t′jk)
2

and τ ′ is estimated by using one of the methods
discussed in [17.1.3]. A suitable method is to

1 compute a ‘pooled’ estimate of the intra-
chunk auto-correlation function

ρ̂(l ) =
∑n

j=1
∑τ−l

k=1 t′jk t′j (k+l )∑n
j=1

∑τ
k=1(t

′
jk)

2
,

9The Central Limit Theorem [2.7.5] often ensures thatTF
t
τ

is close to normal.

2 fit a low-order AR model using the Yule–
Walker method [12.2.2]. The order can be de-
termined either from physical considerations
or by means of an objective criterion such as
the AIC [12.2.10] or BIC [12.2.11], and

3 substitute the auto-correlation function de-
rived from the fitted AR model into (17.4) to
obtainτ̂ ′.

The problem with this approach is that the
distributional properties of

V̂ar
(
TF

t

τ ) = 1

τ̂ ′
V̂ar

(
TF

t

)
(17.19)

are not well known.
An alternative approach is based on the

observation that

Var
(
TF

t

τ ) ≈ 1

τ
0F F (0),

where 0F F (ω) is the spectral density function
of the weather noise. As discussed in [17.1.3],
0F F (0) can be estimated by assuming that
the spectrum is white near the origin. Thus a

reasonable estimator of Var
(
TF

t

τ )
is

V̂ar
(
TF

t

τ ) = 1

τ
0̂F F

(1

τ

)
where 0̂F F (1/τ) is the chunk estimator of
0F F (1/τ) (see [12.3.9,10]). An advantage of
this approach is that the asymptotic distributional

properties ofV̂ar
(
TF

t

τ )
are well known. In fact,

asymptotically

2nV̂ar
(
TF

t

τ ) ∼ Var
(
TF

t

τ )
χχχ2(2n).

See Madden [263] and Zwiers [440] for more
discussion.

17.2.4 Testing the Null HypothesisH0: Sτ = 1.
Now that we have estimates of Var(Tt

τ
) and

Var(TF
t

τ
), we can estimateSτ with

Ŝτ =
V̂ar

(
Tt
τ )

V̂ar
(
TF

t

τ ) (17.20)

and use Ŝτ to test H0: Sτ = 1. The test
is performed at the(1 − p̃) significance level
by rejecting H0 when Ŝτ is greater than the
appropriate critical valueSτ,p̃.

The method used to estimate the variance of
the integrated weather noise affects the choice of
critical value. When the spectral approach is used,
the numerator and denominator are asymptotically
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proportional to independentχ2 random variables
under H0 with τ − 1 and 2n degrees of freedom
respectively. ThuŝSτ ∼ F(τ − 1,2n) under H0 so
that Sτ,p̃ is the p̃-quantile of theF distribution
with τ − 1 and 2n degrees of freedom (Appendix
G). This test will be nearly unbiased (i.e., it will
operate at the specified significance level) when
the weather noise spectrum has a moderate peak or
trough at zero frequency. It will tend to be liberal
(i.e., reject H0 more frequently than specified)
when0F F (ω) has a strong peak at zero frequency
because the extrapolation of spectral estimate at
frequency 1/τ to frequency zero will negatively

bias the estimate of Var(TF
t

τ
). This results in

Ŝτ -values that tend to be slightly larger than 1
under H0. The opposite happens when0F F (ω) has
a strong trough at the zero frequency.

It is more difficult to determine an appropriate
critical value for Ŝτ when the ‘equivalent chunk
length’ approach is used. One solution is to argue
that both estimates in (17.19) have little sampling
variability since they are obtained from a large
number (τn) of deviations t′jk . This reasoning
allows us to ignore uncertainty in the denominator
of (17.20), with the result that the test can be
conducted by comparing(τ−1)Ŝτ withχχχ2(τ − 1)
critical values (Appendix E). The resulting test
will tend to be liberal because the variability

in V̂ar
(
TF

t

τ )
has been ignored. It may also be

adversely affected by bias in this estimator. A
better approach is to estimate the distribution
of Ŝτ under H0 by applying the moving blocks
bootstrapping procedure (cf. [5.5.3]) to the
deviationst′jk . An example can be found in [414].

17.2.5 Example. Zwiers [440] analysed the
potential predictability of the climate simulated by
a GCM in a 20-year run. Sea-surface temperature
and sea ice were specified from the same
climatological annual cycle in each of the 20
years. Land surface conditions (snow cover, and
soil temperature, moisture content and albedo)
were computed interactively. Except for these
land surface processes, the only other source of
interannual variability in the GCM simulation is
‘internal’ variability.

Daily surface air pressure was gathered into 20
chunks, one for each DJF season. Thust j

τ
is the

DJF-mean of surfaced pressure during thej th DJF
season at each grid point. The interannual variance
of these seasonal means is the estimated ‘inter-
chunk’ variance that constitutes the numerator of
Ŝτ (17.20). The spectral approach was used to
obtain the ‘intra-chunk’ variance. The resulting

Figure 17.3:Horizontal distribution of the esti-
mated ŜDJ F potential predictability ratios ob-
tained from a 20-year run with an atmospheric
GCM. Stippled areas mark grid points where the
local null hypothesis of no potential predictability
is rejected at the 5% significance level. Hatched
areas represent regions where thêSDJ F-ratios
have values in the lower 5%-tail of the respective
F distribution. From [440].

F test was performed independently at the 5%
significance level at each of the 2080 grid points.
As a guide to interpretation, a rejection rate of
approximately 10% would be field significant at
the 5% significance level in a field with 100 spatial
degrees of freedom (cf. [6.8.3] and Figure 6.12).

The results are shown in Figure 17.3. Several
things can be noticed.

• The variance ratiôSDJ F is of the order 2 over
large areas, particularly in the tropics and
in the Southern Hemisphere, suggesting that
only half of the interannual variability may
be the integrated effect of weather variability.
The local null hypothesis of no potential
predictability is rejected at about 40% of
all grid points making it unlikely that all
rejections are due to chance.

• There are other areas in which the variance
ratio ŜDJ F is less than 1. Although puzzling
at first glance, this is consistent with
our model (17.14) since it is a natural
consequence of the sampling variability of
ŜDJ F. The number of grid points with
ŜDJ F ratios in the lower 5% tail of theF
distribution is about 5%, indicating that our
basic assumptions, which lead us to theF
distribution, are approximately correct.

Further analysis indicated that the largeŜDJ F-
values were not related to the surface hydrology,
soil moisture, and snow cover terms in the GCM.
The potential predictability in this simulated
climate seems to arise from the occurrence of
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Figure 17.4:Same as Figure 17.3 but for the SON
season. From [440].

a single large anomaly extending over a period
of about a season, during which atmospheric
mass is systematically shifted from the tropics to
the high latitudes of the Southern Hemisphere.
Such large extended anomalies have also been
observed in other climate simulations and in the
real atmosphere.

The same potential predictability analysis was
conducted in other seasons. The SON (September-
October-November) map is shown in Figure 17.4.
In this season the areas witĥSSO N in the upper
5% tail of the F distribution are small and the
‘significant areas’ cover roughly 5% of the globe.
Thus the data do not contradict the null hypothesis
of no potential predictability.

17.3 Composites and Associated
Correlation Patterns

17.3.1 Introduction. An important part of
climate research deals with the identification,
description and understanding ofprocesses, such
as the El Nĩno/Southern Oscillation (ENSO) or the
Madden-and-Julian Oscillation (MJO). Univariate
and bivariate indices are frequently used to identify
and characterize such signals.

For example, many aspects of the temporal
behaviour of ENSO are captured by the conven-
tional Southern Oscillation Index, the surface air-
pressure difference between Darwin (Australia)
and Papeete (Tahiti) (see Figure 1.2). Wright [427]
found that many, roughly equivalent, ENSO in-
dices can be defined (see, for example, Figure 1.4,
which displays the SOI and a related tropical
Pacific SST index).

Another example is the MJO. In this case a
bivariate index is required to capture information
about the propagating feature of this process.
One such bivariate index, derived through a POP
analysis, is shown in Figure 10.3.

Further insight into the way a signal is expressed
in other variables can often be obtained with
composite analysis10 (discussed in [17.3.2,3])
and associated correlationor regressionpatterns
[17.3.4,5].

In the following we assume that we have either
a univariate indexzt or a bivariate indexEzt =
(z1t, z2t)

T. The variable in which we want to
identify the signal represented by the index is
labelledEVt .

17.3.2 Composites. The general idea is to form
sets2 of the indexEz and to estimate the expected
value of EV conditional onEz ∈ 2. Formally, the
compositeEV2 is given by

EV2 = E
( EVt |Ezt ∈ 2

)
. (17.21)

In practice, the expectation operator in (17.21) is
replaced by a sum to obtain anestimateof the
composite

ÊV2 = 1

k

k∑
j=1

Evt j (17.22)

where the sum is taken over the observing times
t1, . . . , tk for whichEzt j ∈ 2.

There are several things to note about this
approach.

• It does not make any specific assumptions
about the link betweenEZ and EV. This link
may be linear or nonlinear.

• The basic idea with composites is to construct
‘typical’ states ofEV conditional on the value
of the external index. It achieves this goal in
the sense that we obtain estimates of the mean
state. However, there may be considerable
variability around each composite, and thus
the composite may not be representative of
the typical state ofEV when EZ ∈ 2 (recall the
discussion in [1.2.1]).

• One way to determine whether aspects of the
signal captured byEZ are expressed inEV is to
test null hypotheses of the form

H0: EV21 = EV22 (17.23)

for appropriately chosen disjoint subsets21
and 22. This is often done with one of
the difference of means tests discussed in
Section 6.6. An example is given in the next
subsection.

10Composite analysis is also sometimes calledepoch
analysis.
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Figure 17.5: Composite analysis of the lati-
tude/height distribution of the zonal wind in JJA
averaged between60◦E and 90◦E longitude as
simulated in a 20-year integration with an AGCM.
The difference between the six cases with strongest
Southeast Asian monsoon precipitation signal and
the six cases with weakest precipitation is shown.
Local t tests were performed to test the stability
of the difference. Rejection of the local zero differ-
ence null hypothesis at the 5% significance level is
indicated by cross-hatching. From [443].

17.3.3 Examples of Composite Analyses.We
will discuss two examples in this subsection.
The first example, from [443], deals with a
univariate index and demonstrates a test of the
null hypothesis (17.23). The second example, from
[389], is on the oscillatory MJO and features eight
different composites which supposedly represent
canonical sequences of events.

Zwiers [443] analysed the variability of the
Asian summer monsoon simulated in a 20-year
GCM experiment. The study included a Canonical
Correlation Analysis (CCA, see Chapter 14) of
the surface heat flux on the Tibetan Plateau and
rainfall over Southeast Asia.11 The CCA exercise
produced a univariate indexzt that represented
a significant part of the simulated interannual
variability of the monsoon rainfall. Since 20 years
were simulated, a sample of 20 indicesz1, . . . , z20
were available.

A composite analysis was performed to deter-
mine whether large-scale circulation changes that
are associated with the monsoon in the real atmos-
phere also occur in the model.12 Thus EV was set to
the latitude/height distribution of the zonal wind
averaged between 60◦E and 90◦W longitude. Two

11Heating of the Tibetan Plateau is thought to influence the
strength of the Asian summer monsoon.

12The westerly zonal jet shifts northward and an easterly jet
develops to the south at the onset of the Asian summer monsoon
in response to the heating of the Tibetan Plateau.

Figure 17.6:Division of the two-dimensional plane
containing the bivariate MJO indexEZ into nine
sectors. The composite sets2 j are labelledK j .
RealizationsEz that fall into the inner white region,
such as the short heavy vector, are not classified.
Realizations that fall into the outer shaded sectors
are classified as belonging to classesK1 to K8.

sets2i and 2r , representing ‘intensified’ and
‘reduced’ Southeast Asian rainfall, were formed:
2r consisted of the six smallest values ofzt ,
and2i the six largest. The estimated composite

differencêEV2i − ÊV2r is shown in Figure 17.5.

The circulation differences seen in Figure 17.5
are similar to differences between weak and strong
monsoon years seen in the real atmosphere. The
t test indicates that the upper tropospheric anti-
cyclonic flow resulting from heating of the Tibetan
Plateau is significantly stronger in strong monsoon
years than in weak monsoon years. At the same
time we also see some evidence of a significantly
enhanced Somali jet near the near the surface
between 20◦N and 25◦N. Thus all three centres
with statistically significant wind changes are part
of the same physical signal.

von Storch et al. [389] derived composites from
an extended GCM simulation that are supposedly
representative of different parts of the lifecycle of
the MJO. The two-dimensional plane that contains
the bivariate MJO indexEz (see Figure 10.3
and [17.2.4]) was divided into nine regions (see
Figure 10.5 and the sketch in Figure 17.6). The
‘inner circle’ set, which covers all indices with
small amplitudes (i.e.,|z|2 = (z1)

2 + (z2)
2 < Ls)

is disregarded in the analysis. The remaining eight
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Figure 17.7:The composite mean tropical velocity

potential anomalieŝEVk j derived from MJO indices
Ez ∈ K j . From [389].

sectors, which each represent a 45◦ segment, are
labelledK1, . . . , K8.

Composite means of tropical velocity potential
anomalies at 200 hPa were computed for each
sector (Figure 17.7). All eight composites exhibit a
zonal wavenumber 1 pattern with maximum values
on the equator.

The POP model from which the index was
derived shows that the index tends to rotate
counterclockwise in the two-dimensional plane (as
indicated by the circular arrow in Figure 17.6).
We may therefore interpret the composites as a
sequence of patterns that appear consecutively in
time. The main features propagate eastward, and
intensification occurs whenever a maximum or
minimum enters a region with active convection.

Note that compositêEVK2 is almost a mirror image

of ÊVK6.

17.3.4 Associated Correlation Patterns. Com-
posite analysis is ‘non-parametric’ in the sense that
no assumption is made about the structure of the
connection between the indexEZt and the analysed
vector variable EVt . The ‘associated correlation
pattern’ approach, on the other hand, is based on

a linear statistical model which relates the index or
indiceszi,t with the vector variableEVt :

EVt =
∑

i

z̃i,t Eq i + noise, (17.24)

where EVt usually represents anomalies (i.e.,
E( EVt ) = 0), andz̃i is usually anormalizedindex
given byz̃= (z−µz)/σz. PatternsEq i usually carry
the same units asEVt because of the normalization
of the index time series̃zi,t .

We now briefly discuss the one and two index
versions of (17.24).

Only one patternEq = Eq 1 is obtained when a
single index,zt = z′t , is used. This pattern is often
called the ‘regression pattern’ for obvious reasons.
Then

EVt = z̃t Eq + noise. (17.25)

The interpretation ofEq is that we observe pattern
Eq , on average, wheñz= 1 and−Eq whenz̃= −1.
More precisely, (17.25) says that

E
( EVt |z̃= α

) = αEq (17.26)

for any numberα, provided that the noise has mean
zero.

PatternEq must be estimated from data. This can
be done by minimizing the expected mean squared
error,

ε = E(‖EVt − z̃Eq ‖2), (17.27)

that is, by finding the vectorEq such that

∂ε

∂ Eq = 0. (17.28)

By differentiating, we find thatEq satisfies

−2E
(
z̃t EVt

)+ 2E
(
z̃2

t

)Eq = 0.

SinceE
(
z̃2

t

) = Var
(
z̃
) = 1, the solution of (17.28)

is given by

Eq = Cov
(
z̃t , EVt

)
. (17.29)

Thus the associated correlation patternEq
consists of the regressions between the index time
series and the components of the analysed vector
time series.

Two patterns are obtained whenEZt is a
bivariate index. Such indices arise naturally in
many circumstances, including POP analysis (see
[17.1.8] and Figure 10.3) and complex EOF
analysis (see Chapter 16). WhenEZt = (Ez1t, Ez2t)

T,
equation (17.24) takes the form

EVt = z̃1t Eq 1+ z̃2t Eq 2+ noise. (17.30)
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This model states that the conditional mean ofEVt

is given by

E
( EVt |z̃1 = α, z̃2 = β

) = αEq 1+ β Eq 2. (17.31)

The interpretation is thatEVt = Eq 1, on average,
when z̃1 = 1 and z̃2 = 0, and thatEVt = Eq 2,
on average, wheñz1 = 0 andz̃2 = 1. However,
individual realizationsEvt may differ substantially
from these long-term mean states.

Theassociated correlation patternsEq 1 and Eq 2

are derived by minimizing the expected mean
squared error,

ε = E(‖EVt − z̃1t Eq 1− z̃2t Eq 2‖2), (17.32)

that is,Eq 1 andEq 2 are the solutions of

∂ε

∂ Eq 1
= ∂ε

∂ Eq 2
= 0.

By differentiating and taking expectations we find(
σ 2

1 σ12

σ12 σ 2
2

)(
(Eq 1)T

(Eq 2)T

)
=
(
(Eσ1v)

T

(Eσ2v)
T

)
(17.33)

where σ 2
1 = Var

(
z̃1
)
, σ 2

2 = Var
(
z̃2
)
, σ12 =

Cov
(
z̃1, z̃2

)
, Eσ1v = Cov

(
z̃1, EVt

)
, and Eσ2v =

Cov
(
z̃2, EVt

)
. Equation (17.33) has solution

Eq 1 = σ 2
2 Eσ1v − σ12Eσ2v

σ 2
1σ

2
2 − σ 2

12

(17.34)

Eq 2 = σ 2
1 Eσ2v − σ12Eσ1v

σ 2
1σ

2
2 − σ 2

12

. (17.35)

The relative importance of associated correla-
tion patterns can be measured by the ‘proportion of
variance’ they represent, either locally or in total.
The proportion of the total variance represented by
the patterns is given by

r 2
v|z =

E( EVT
t
EVt )− ε

E( EVT
t
EVt )

whereε is given by (17.27) or (17.32). Locally, the
proportion is given by

r 2
v|z, j =

E(V2
j t )− ε j

E(V2
j t )

,

where V j t is the j th element of EVt and ε j is
the local version ofε.13 The last representation is
useful because it can be displayed as a function of
location.

13Note that both (17.27) and (17.32) can be easily re-
expressed asε =∑ j ε j .

.

Figure 17.8:Map of correlations between annual
mean sea-level pressure at a point (‘Darwin’) over
north Australia with annual mean SLP everywhere
else on the globe. The data are taken from a 47-
year GCM experiment with prescribed observed
sea-surface temperatures.

17.3.5 Examples. We now consider two exam-
ples: one with a univariate Southern Oscillation
index and the other with a bivariate MJO index.

In the first example,Zt is the annual mean
sea-level pressure near Darwin, Australia, in a
47-year GCM simulation in which SST and sea-ice
observations are prescribed from observations.
The Darwin pressure index is a widely used
ENSO index that carries information similar to the
standard SOI [426]. The fieldEVt in this example is
the corresponding annual mean sea-level pressure.
The associated correlation pattern that is obtained
is shown in Figure 17.8. As expected, sea-
level pressure variations occur coherently over
broad regions, and variations in the eastern
tropical Pacific are opposite in sign to those
occurring over the western tropical Pacific. The
present diagram compares favourably with similar
diagrams computed from observations. See, for
example, Peixoto and Oort [311, p. 492], or
Trenberth and Shea [372].14

Our second example uses the same bivariate
MJO index (Figure 10.3) employed in the
composite analysis of [17.3.3] (Figure 17.7).
The estimated associated correlation patterns are
shown in Figure 17.9 [389]. As explained in
Section 15.1, the two POP coefficients(z1

t , z
2
t )

tend to have quasi-oscillatory variations of the type

· · · → (0,1)→ (1,0)→ (0,−1)→
(−1,0)→ (0,1)→ · · · .

At the same time, theEV field tends to evolve as

· · · → Eq 2→ Eq 1→−Eq 2→−Eq 1→ Eq 2→ · · · .
14See also Berlage [46], who published a similar diagram in

1957.
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Figure 17.9:The associated correlation patterns
ÊVK j of tropical velocity potential anomalies
derived from MJO indicesEz. Compare with the
composites shown in Figure 17.7. From [389].

Thus the patterns in Figure 17.9 provide the same
information as the composites in Figure 17.7.
The signal has a zonal wavenumber 1 structure
that propagates eastward around the world. The
oscillation is most energetic when the ‘wave
crest’ (or ‘valley’) is positioned over the Maritime
Continent.

A significant conclusion from the discussions
here and in [17.3.3] is that both techniques provide
useful information. The associated correlation
pattern technique is superior in the MJO case
since fewer parameters must be estimated from the
available data (specifically, two patterns instead of
eight patterns).

17.4 Teleconnections

17.4.1 Example: 500 hPa Geopotential Height.
A classical method for exploring the spatial struc-
ture of climate variability is to compute cross-
correlations between a variable at a fixed location
and the same or another variable elsewhere. The
resulting map of cross-correlation coefficients is
called a teleconnectionpattern. When the same
variable is considered at two nearby locations, the
correlation will tend to be large and positive (com-
pare with the argument in [1.2.2]). Sometimes
variables at two well-separated locations are also
highly—often negatively—correlated.15

We demonstrate with DJF monthly mean
500 hPa geopotential height from an ensemble
of six 10-year GCM simulations. The SST
and sea-ice extent were specified from 1979–
88 observations so the simulated atmosphere
experienced realistic lower boundary variations
(see [444]).

15The most prominent example of such ateleconnectionis
theSouthern Oscillationdiscussed in [1.2.2].

Figure 17.10: Top: The correlation between
DJF monthly mean 500 hPa geopotential height
simulated by a GCM at (50◦N, 90◦W) and all
other points in the model’s grid.
Bottom: As top, except the reference point is
located at (2◦N, 90◦W).

The upper panel in Figure 17.10 shows
teleconnections for a fixed point located over Lake
Superior. The main feature is an arched wave
train that extends from the eastern Pacific, across
North America, and into the western Atlantic.
The decorrelation length scale, which is of the
order of 3000 km, compared well with that of the
observations (see, for example, Thiébaux [361],
Fraedrich et al. [127], and Figure 2.8). This length
scale is typical of that of teleconnection patterns
that can be computed for other locations in the
midlatitudes of both hemispheres.

In contrast, the lower panel of Figure 17.10
displays the teleconnection map that is obtained
for a reference point off the coast of Peru at
approximately 2◦N, 90◦W. Here we see that the
entire simulated tropical 500 hPa geopotential
height field varies more or less in unison on the
monthly time scale. Much the same pattern can be
obtained for virtually any reference point near the
equator.16 Also note the model’s relatively weak
rendition of the Pacific/North American pattern
(cf. [13.5.5] and Figure 13.7).

In the following we will present an approach
that is used to screen large data sets for such
teleconnections systematically. It was pioneered

16Tropical geopotential height variations are small, and
primarily reflect variations in the temperature of the lower
tropical troposphere.
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by Wallace and Gutzler [409] and Horel and Wal-
lace [182]. See also the review by Navarra [290],
the example discussed in [2.8.8], and Figure 2.8.

17.4.2 The Wallace and Gutzler Approach.
Let EX represent a gridded data variable, such
as SLP or 500 hPa geopotential height, and let
Rxx be the corresponding matrix of estimated
cross-correlations. Thej th column ofRxx, Êρ j ,
contains the estimated cross-correlations between
X j and EX. Thus, if EX is m-dimensional,Rxx

can be shown asm maps. All maps have unit
value at the base pointj , and for most variables
they will have relatively large positive values in a
neighbourhood of the base point. Points that are
outside the ‘region of influence’ of the base point
are not considered interesting. Such correlation
maps are calledteleconnection patterns.

In the next subsection we will present some
results from Wallace and Gutzler’s [409] original
analysis, and then define a measure of the strength
of the teleconnections in [17.4.4].

17.4.3 The PNA, WA, WP, EA, and EU-Family
of Teleconnections. We briefly discussed Wal-
lace and Gutzler’s [409] identification of charac-
teristic patterns of the month-to-month variability
of winter 500 hPa height in [3.1.6]. Five ‘sig-
nificant’17 correlation maps with sequences of
large positive and negativecentres of actionwere
found. These patterns, called the Eastern Atlantic
(EA), Pacific/North American (PNA), Eurasian
(EU), West Pacific (WP), and West Atlantic (WA)
patterns, are shown in Figure 3.9.

The locations of maxima and minima of
a teleconnection pattern (i.e., the centres of
action) can be used to define time-dependent
teleconnection indices. Wallace and Gutzler define
such an index as a weighted sum of the heights at
the centres of action. In the PNA case, the centres
of action are located at (20◦N, 160◦W), (55◦N,
115◦W), (45◦N, 165◦W) and (30◦N, 85◦W). The
first two points are associated with maxima and the
last two with minima. Thus the contribution from
the last two centres of action in thePNA indexis

17Wallace and Gutzler use the word ‘significant’ in a
somewhat pragmatic sense. They split the data set into two
subsets, and used one subset to establish the teleconnection
patterns and the second subset to assess (successfully) the
stability of the patterns. In this way they determined a rule-
of-thumb that correlations|ρ̂| > 0.75 should be reproducible
in samples of size 15. Reproducibility is a stronger criterion
that statistical significance since|ρ̂| > 0.5 is sufficient to
reject H0: ρ 6= 0 at approximately the 5% significance level
(see [8.2.3] and David [100]). Wallace and Gutzler also found
consistent patterns with an EOF analysis (see Chapter 13).

negatively weighted:

PNA = 1

4

(
z20◦N,160◦W − z45◦N,165◦W

+ z55◦N,115◦W − z30◦N,85◦W
)
(17.36)

wherez is 500 hPa geopotential height. Similar in-
dices are obtained for the other four teleconnection
patterns.

Such indices may be used to derive composites
[17.3.2] or associated correlation patterns [17.3.4],
to monitor the strength of a teleconnection, or
they can be fed into predictive schemes. Also
the correlationbetweenteleconnections can be
quantified. Wallace and Gutzler found moderate
correlations between patterns with spatial overlap
and small correlations between patterns with little
or no spatial overlap.

The teleconnections patterns depend somewhat
on the choice of the base point. The base point
for the PNA pattern shown in the upper panel of
Figure 3.9 was (45◦N, 165◦W). Similar patterns
are obtained if another centre of action, (20◦N,
160◦W), (55◦N, 115◦W), or (30◦N, 85◦W), is
used as the base point.

Figure 17.11:Teleconnectivity map of 500 hPa
height in northern winter. From [409].

17.4.4 The ‘Teleconnectivity.’ A typical feature
of teleconnection maps is the presence of large
negativecorrelations. It therefore makes sense to
define the ‘teleconnectivity’Tj of a base pointj
as the maximum of allnegative correlations:

Tj = −min
j
ρ̂ i j . (17.37)
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Tj can then be plotted as a spatial distribution;
Wallace and Gutzler’s example is shown as
Figure 17.11. We occasionally find that the
maxima in the teleconnectivity map are connected
by a common point, that is, thatTj andTk obtain
their values from ρ̂l j and ρ̂lk for a common
point l . These conditions, which hint at physical
relationships, can be displayed with arrows as in
Figure 17.11.

17.4.5 Generalizations. The basic idea of
mapping correlations between one variable at a
base pointand another variable at many other
geographically distributed points can be applied
to any two climate variables. Indeed the square
correlation matrix R can be replaced with a
rectangularcross-correlation matrixRzx. Also,
the variables may be lagged relative to each other
so that the cross-correlation matrix is really a
laggedcross-correlation matrix (see, for example,
Horel and Wallace [182], who correlated the
Southern Oscillation Index with 500 hPa height
throughout the Northern Hemisphere).

Thus the basic idea is very general and can
be applied in many different settings. A key
limitation, however, is that the method can only
be used to diagnose linear relationships. The
term ‘teleconnection’ is usually reserved for cases
in which a correlation (rather than a cross-
correlation) matrix is analysed.

Teleconnection patterns are closely related to
associated correlation patterns derived for a single
index ([17.3.4]). If we normalize the base point
time series̃zt , then the teleconnection is a pointi
given by Cov(z̃t ,Xi t )/σXit (cf. equation (17.29)).

17.4.6 Assessing ‘Significance.’ As with EOFs
and other patterns, there is a tendency to
confuse physical and statistical significance of
teleconnection patterns. In general, the patterns
are worthy of physical interpretation when the
basic structure is not strongly affected by sampling
variability (i.e., when there is reproducibility).

The best way to assess reproducibility is to
ensure that the pattern reappears in independent
data sets and with other analysis techniques.
Wallace and Gutzler used this approach by
keeping part of the data to assess the stability
of their patterns in a second step. Barnston
and Livezey [27] subsequently reproduced the
results of Wallace and Gutzler using rotated EOFs
(Section 13.5). There is little doubt of the reality
of the teleconnections discussed so far.

0 50 100 150 200
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Figure 17.12:A realization of an AR(1) time series
with lag-1 correlation coefficientα1 = 0.9 (solid
curve), and its 11-term running mean (dashed
curve).

Another way to assess reproducibility is to test
H0: ρ = 0 at every point in a teleconnection
map (methods are described in [8.2.3]). The
‘field significance’ of the resulting map of
reject decisions can then be assessed using the
techniques described in Section 6.8 (see also the
related discussion in [6.5.2]). Note that the local
rejection rate will tend to be greater than the
nominal level (often 5%) because correlations near
the base point will be large. Care must be exercised
to account for this phenomenon when determining
whether H0 can be rejected globally. Note also
that this problem is amplified in teleconnection
analysis because many maps are screened. Despite
these difficulties, local significance tests are useful
because they identify important features in the
teleconnection maps.

17.5 Time Filters

17.5.0 General. We have often used the concept
that the variability of a time series may be caused
by different processes that are characterised by
their ‘time scales’. It is therefore useful to split a
time series into certain components, such as

Tt = TF
t + TS

t (17.38)

whereTF andTS represent stationary components
with ‘fast’ and ‘slow’ variability, respectively. The
time filtersdescribed in this section are designed
for this purpose.

17.5.1 Time Filters—Concepts. One of the
simplest filtering operations is to smooth a
time series by computing itsrunning mean.
For example, Figure 17.12 shows smoothed and
unsmoothed versions of an AR(1) time series with
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α1 = 0.9. The smoothed version (dashed curve) is
given by

yt = 1

11

5∑
k=−5

xt+k. (17.39)

The large, slow variations remain but the small,
fast variations have almost been eliminated.

Running mean (17.39) is an example of adigital
filter given by

Yt =
K∑

k=−K

akXt+k, (17.40)

where {a−K , . . . ,aK } is a set of 2K + 1
real weights. The weights can be tailored so
that the filter retains variation on long, short,
or intermediate time scales. Filters with these
characteristics are known aslow-, high-, andband-
passfilters.

Suppose now that we have a digital filter of
the form (17.40). It is then easily shown that the
spectral density function of theoutputEYt is related
to that of theinput EXt by

0yy(ω) = |c(ω)|20xx(ω) (17.41)

wherec(ω) is thefrequency response function

c(ω) =
K∑

k=−K

ake2π ikω (17.42)

of the filter. This can be proved as follows.
Beginning with (11.8), we express the spectral
density function of Yt in terms of its auto-
covariance function:

0yy(ω) =
∞∑

τ=−∞
γyy(τ )e

2π i τω. (17.43)

But the auto-covariance function of the output is
related to that of the input by

γyy(τ ) = Cov

( K∑
k=−K

akXt+k,

K∑
l=−K

al Xt+τ−l

)

=
K∑

k=−K

K∑
l=−K

akal Cov(Xt+k,Xt+τ−l )

=
K∑

k=−K

K∑
l=−K

akalγxx(τ − l + k).

(17.44)

Substituting (17.44) into (17.43), and changing the
order of summation, we find

0yy(ω) =
K∑

k=−K

K∑
l=−K

akal

∞∑
τ=−∞

e−2π i τω

× γxx(τ − l + k)

=
K∑

k=−K

ake2π ikω
K∑

l=−K

al e
−2π i lω

∞∑
τ=−∞

e−2π i (τ−l+k)γxx(τ − l + k)

= |c(ω)|20xx(ω),

thus proving (17.41) and (17.42).
Now suppose the input contains a monochroma-

tic signal, say cos(2πωt), and that the purpose of
the filtering is to isolate this signal. Certainly we do
not want the filter to shift the signal’s phase. That
is, if cos(2πωt) is input to the filter, we require that
the output be of the formr cos(2πωt). Substituting

cos(2πωt) = 1

2

(
e2π iωt + e−2π iωt)

into (17.40) we find

K∑
k=−K

ak cos
(
2πω(t + k)

)
= 1

2

K∑
k=−K

ak
(
e2π iω(t+k) + e−2π iω(t+k))

= 1

2

(
e2π iωt c(ω)+ e−2π iωt c∗(ω)

)
.

The latter is again a zero phase cosine
c(ω) cos(2πωt) only when c(ω) is real. Thus
the weightsak must be symmetric ink, that is,
ak = a−k. Therefore

c(ω) = a0+ 2
K∑

k=1

ak cos(2πkω). (17.45)

A final detail that is important in some
applications is that it may be necessary to preserve
the time average of the input, in which case the
weights should also be constrained so thatc(0) =
a0 + 2

∑K
k=1 ak = 1. On the other hand, the time

average (i.e., the zero frequency component) of the
input can be removed by selecting weights such
thatc(0) = 0.

The remainder of this section is laid out as
follows. We explore the so-called ‘(1-2-1)-filter’
and further examine the running mean filter in
[17.5.2]. Then, in [17.5.3], we consider the effect
of adding filters, and applying them in sequence.
The latter is a technique that is frequently
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Figure 17.13:Response functions of a number of
simple filters. The abscissa is the frequencyω ∈
[0,1/2].
a) The plain low-pass (1-2-1)-filterA, the squared
(1-2-1)-filterA ·A, the high-pass ‘1-(1-2-1)’-filter
1−A and the band-pass filter4×A · (1−A).
b) Low-pass running mean filters with K = 2, 3,
and 7.

used to construct a complex filter with desirable
properties from simple building blocks such as
the (1-2-1)-filter. This approach is discussed in
[17.5.4]. Specific filters that are frequently used
in atmospheric science are discussed in [17.5.5],
some examples are mentioned in [17.5.6], and we
wind up the section by describing a technique that
can be used to custom design filters. For further
reading, see standard texts such as Brockwell
and Davis [68], Jenkins and Watts [195], or
Koopmans [229].

17.5.2 The (1-2-1)-Filter and the ‘Running
Mean’ Filter. These two symmetric filters
are simple tools for suppressing high-frequency
variability. They preserve the mean since their
weights add to 1.

The filter with weights

ak =


1
2 for k = 0
1
4 for k = 1

0 for k ≥ 2

(17.46)

is named the ‘(1-2-1)-filter’ since two units are
given to the central weight whereas only one unit is
given to each of the two outer weights. This filter
may be seen as an ‘integrator’ since the integral∫ 2

0 f (t)dt can be approximated as∫ 2

0
f (t)dt ≈ 1

2

( f (0)+ f (1)

2
+ f (1)+ f (2)

2

)
= a1 f (0)+ a0 f (1)+ a1 f (2).

The response function, shown in Figure 17.13a,
decreases smoothly from 1 atω = 0 to zero at
ω = 1/2. The ‘half-power’ point at which the
spectral density of the output is half of that of the
input (i.e.,|c(ω)|2 = 1/2) occurs atω ≈ 0.18.

The running mean filters, such as (17.39), have
weights

ak =
{ 1

2K+1 for k ≤ K
0 for k > K .

(17.47)

The response functions for the three running mean
filters with K = 2, 3, and 7 are shown in
Figure 17.13b. Note that the frequency response
functions have strong side lobes and zeros at
frequencies j

2K+1, j = 1, . . . ,K . The running
mean filter suppresses all oscillatory components
with wavelengths such that the ‘filter length’
2K + 1 is an integer multiple of the wavelength.
Residual amounts of all other waves remain after
averaging because the running mean does not
‘sample’ the positive and negative halves of these
waves symmetrically.

From (17.41) we see that the side lobes in
Figure 17.13b have a significant effect on the
spectral density of the output of the running mean
filter. For example, if weakly persistent red noise
were input into the five-term running mean filter,
the output might appear to have a broad spectral
peak nearω = 0.3.

17.5.3 Combining Filters. LetA andB be two
filters with weightsak andbk, respectively. Then,
if Xt is an input series, we denote the output by

[A(X)]t =
∑

k

akXt+k

[B(X)]t =
∑

k

bkXt+k.
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The corresponding response functions are denoted
by cA andcB. The weighted sumαA+βB is again
a filter with weightsαak + βbk and

[(αA+ βB) (X)]t = α [A(X)]t + β [B(X)]t .

Since filtering is a linear operation, linearly
combining output from two filters is equivalent
to passing the input through the combined filter.
Similarly, the response function of the combined
filter is the linear combination of response
functions:

cαA+βB(ω) = α cA(ω)+ β cB(ω).

In particular, suppose that A is a low-pass filter,
that is, a filter designed to remove high-frequency
variations. Also, suppose that B is the ‘do nothing’
filter that leaves the input unchanged. Filter B has
weights b0 = 1 and bk = 0 for k 6= 0, and
is denotedB = 1. A high-passfilter C can be
constructed from A and B by settingα = −1
andβ = 1 to obtainC = 1 − A with weights
c0 = 1− a0 andck = 1− ak for k 6= 0. Note that
if cA(0) = 1, thenc1−A(0) = 0, in which case the
output of the high-pass filter has time mean zero.

The convolution filterA · B is constructed by
applying filters A and B in sequence:

[{A · B}(X)]t = [A(B(X))]t .

The filter weightspk of the productP = A ·B are
given by the convolution

pk =
∑

l

al bk−l (17.48)

and the response function is the product of the
response functions ofA andB:

cAB(ω) = cA(ω)cB(ω). (17.49)

Thus convolution in the time domain is equal to
multiplication in the frequency domain (and vice
versa).

Since a filter is uniquely determined by its
response function (17.49) proves that the sequence
of the application of the two filters is irrelevant.
That is,

A · B = B ·A. (17.50)

17.5.4 Further Simple Filters. The results
of the preceding subsection may be used to
construct other simple filters from the (1-2-1)-filter
([17.5.2]).

The plain (1-2-1)-filter may be applied re-
peatedly to suppress the high-frequency variabil-
ity more efficiently. For example, the response

function of the (1-2-1)·(1-2-1)-filter is shown in
Figure 17.13a. Using (17.48), we see that the filter
weightspk of A ·A are:

pk =


a2

0 + 2a2
1 = 3

8 for k = 0

a−1a0+ a0a1 = 1
4 for |k| = 1

a−1a1 = 1
16 for |k| = 2

0 otherwise.

A high-pass filter can be derived from the
(1-2-1)-filter by forming the filter 1− (1-2-1). Its
response function is a mirror image of the response
function of the low-pass filter (Figure 17.13a) and
its weights are

bk =


1
2 for k = 0

−1
4 for |k| = 1

0 otherwise.

Finally, a band-pass filterB may be obtained
by combining the (1-2-1)-filterA with the 1−
(1-2-1)-filter 1−A and settingB = 4 ·A(1−A).
The response functioncA(ω)c1−A(ω) has zeros at
both ends of the frequency interval [0,1/2] and a
maximum atω = 0.25. The factor 4 was chosen to
ensure that the filter does not attenuate variability
at its point of peak response (Figure 17.13a). This
filter has weights

bk =


1
2 for k = 0

0 for |k| = 1

−1
4 for |k| = 2

0 otherwise.

17.5.5 Some Filters That Discriminate Between
Time Scales. The simple filters discussed up
to this point do not have particularly desirable
properties. The (1-2-1)-filter and its relatives ‘cut
off’ slowly by gradually changing the attenuation
of variance with frequency. The running-mean
filter also cuts off slowly, but it also has large
sidelobes that allow variance leakage from high
frequencies.

In contrast, the ideal low-pass filter has a box-
car shaped frequency response function that cuts
off sharply at a prescribed cut-off frequency (see
Figure 17.14). Unfortunately, the ideal digital filter
can not actually be used because it has infinitely
many nonzero weights. The ideal low-pass filter
has frequency response functionc(ω) = 1 for
|ω| ≤ ω0 and c(ω) = 0 elsewhere. It has
weightsa0 = 2ω0 and ak = 1

π |k| sin(2π |k|ω0)

for |k| > 0. Simply truncating the weights at
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Blackmon’s filters Filters for daily data Wallace et al.’s filters
1 low-pass band-pass high-pass low-pass band-pass ≤ 10days ≤ 5 days

0 0.09747 0.27769 0.47626 0.21196 0.45221 0.82119 0.66850
1 0.09547 0.14335 −0.31860 0.19744 −0.07287 −0.16871 −0.27390
2 0.08963 −0.10201 0.01975 0.15769 −0.28851 -0.14062 −0.13432
3 0.08049 −0.19477 0.10098 0.10288 0.09733 −0.10059 0.00000
4 0.06883 −0.09233 −0.01860 0.04625 0.03951 −0.05682 0.06204
5 0.05564 0.02830 −0.05468 0.0 0.02833 −0.01752 0.04669
6 0.04196 0.04193 0.01678−0.02820 0.03316 0.01118 0.00000
7 0.02882 0.00335 0.03331−0.03684 −0.07089 0.02646 −0.02810
8 0.01707 0.00411 −0.01445 −0.03003 −0.00227 0.02906 −0.02194
9 0.00734 0.03281 −0.02073 −0.01518 0.00302 0.02250 0.00000
10 0.0 0.03043 0.01179 −0.0 0.00708 0.01163 0.02193
11 −0.00488 −0.00200 0.01257 — — 0.00101 0.00965
12 −0.00748 −0.01917 −0.00900 — — −0.00624 0.00000
13 −0.00818 −0.00967 −0.00715 — — −0.00903 −0.00461
14 −0.00749 −0.00013 0.00627 — — −0.00801 −0.00274
15 −0.00596 -0.00304 0.00362 — — −0.00491 0.00000

Table 17.1:Digital filters designed to extract variability on specific time scales. The filters are symmetric
(i.e.,ak = a−k).
Blackmon’s [47] filters for separating low-frequency, baroclinic, and high-frequency time scales from
12-hourly data are listed in columns 2 to 4. The response functions are shown in Figure 17.15.
Two additional filters are listed in columns 5 and 6.
Wallace et al.’s [410] high-pass filters are listed in columns 7 and 8. The response functions are shown
in Figure 17.17.

a fixed lagK does not yield a particularly ideal
filter. As illustrated in Figure 17.14, this results
in a filter with frequency response function that
has large Gibbsian overshoots and side lobes.18

The solution to this problem is to strive for
a frequency response function shape that does
not cut off as abruptly as the ‘ideal’ filter.
In this way, excellent digital filters can be
constructed by carefully selecting a finite number
of weights.

A set of three such filters designed by Blackmon
[47] for the twice-daily data that are often used
in atmospheric science. The low-pass filter in this
set suppresses variability related to day-to-day
weather events and keeps variability on time scales
of weeks (such as ‘blocking’ events). The band-
pass filter extracts variability in the baroclinic
time scale (approximately 2.25 to 5 days), and
the high-pass filter retains only variability on the
one- to two-day time scale (see below for the exact
definition).19

18This problem is similar to the one that motivates the use of
data tapers. (cf. [12.3.8]).

19These filters are applied in [3.1.6].
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Figure 17.14:The frequency response function of
the ideal low-pass filter (dashed curve) and the
filter obtained by truncating the weights of the
ideal filter at K = 7.

Blackmon’s filters have 2K + 1 = 31 weights,
which are listed in Table 17.1. The response
functions are plotted in Figure 17.15.

Another pair of filters designed to retain low-
frequency and baroclinic variability in daily data
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Figure 17.15: The response function of Black-
mon’s filters (Table 17.1, columns 2 to 4).

Figure 17.16: Two filters for isolating low-
frequency and baroclinic variations for daily data
(Table 17.1, columns 5 and 6).

are also given in Table 17.1. The response
functions are shown in Figure 17.16.

A further pair of high-pass filters, from Wallace
et al. [410], are listed in Table 17.1 and shown in
Figure 17.17. When applied to daily observations
the cut-offs are approximately 5 and 10 days.

17.5.6 Examples. Several examples of applica-
tions of filters similar to those described above
are discussed in Section 3.1. The day-to-day vari-
ability of DJF 500 hPa height is separated into
threetime windowsby means of Blackmon’s filters
(Figure 17.15) in [3.1.5], and the Northern Hemi-
spheric distributions of the variances attributed to
the three windows are shown in Figure 3.8. The
skewness of the low-pass filtered 500 hPa height
and its relationship to the location of the storm-
tracks is discussed in [3.1.8] (see Figure 3.11).

Figure 17.17:Wallace et al.’s high-pass filters
(Table 17.1, columns 7 and 8).

17.5.7 Construction of Filters. Representation
(17.42) of the response function may be used to
choose filter weights so that the resulting response
function c(ω) closely approximates a specified
form c̃(ω). The weights for a specified filter length
2K + 1 are obtained by minimizing

ε =
∫ 1

2

− 1
2

(
c(ω)− c̃(ω)

)2
dω

=
∫ 1

2

− 1
2

(
a0+ 2

K∑
k=1

ak cos(2πkω)− c̃(ω)

)2

dω.

Taking derivatives with respect toa0 andak, and
setting the derivatives to zero, we find

ak =
∫ 1

2

− 1
2

c̃(ω) cos(2πkω)dω

for all k. Thus the ‘optimal’ filter with 2K + 1
weights is formed simply by truncating the Fourier
transform of c̃(ω). However, as we saw above,
the ‘optimal’ 2K + 1 weight filter may have
undesirable properties, such as large side lobes, if
c̃(ω) has discontinuous low-order derivatives. The
‘best’ 2K+1 weight filter will be found by striving
for a response functioñc(ω) that varies smoothly
with ω for all ω ∈ [−1/2,1/2].

A strategy that results in good filters is to
taper the weights of the optimal filter that is
obtained by truncating the Fourier transform of
c̃(ω) with a Hanning taper (see [12.3.8]). For
example, consider a low-pass filter with cut-off
frequencyω0. The ‘optimal’ 2K + 1 weight filter
has weightsa0 = 2ω0 andak = 1

π |k| sin(2π |k|ω0)

for 0 < |k| ≤ K . The variance leakage problems
associated with this filter are largely eliminated
when these weights are tapered with factorshk =
1
2(1+ cos(π |k|/(K + 1)) and then renormalized.
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Figure 17.18:Low-pass filters with cut-off fre-
quencyω0 = 0.1 with 11, 21, 41 and 81 weights
(i.e., K = 5, 10, 20, and 40) constructed by
tapering the weights of the ideal low-pass filter.

The resulting low-pass filter shuts off smoothly
with increasing frequency. The amplitude of the
variations at frequencyω0 are attentuated by 50%
with the result that only 25% of the variance at this
frequency is passed by the filter. The sharpness of
the cut-off is determined by the number of weights.
Figure 17.18 displays the response function for
filters with cut-off frequencyω0 = 0.1 and 11, 21,
41 and 81 weights (i.e.,K = 5, 10, 20, and 40).



18 Forecast Quality Evaluation

18.0.1 Summary. Here we continue a discus-
sion that we began in [1.2.4], by extending our
treatment of some aspects of the art of forecast
evaluation.1 We describe statistics that can be used
to assess theskill of categorical and quantitative
forecasts in Sections 18.1 and 18.2.2 The utility
of the correlation skill score is discussed by il-
lustrating that it can be interpreted as a summary
statistic that describes properties of the probability
distribution of future states conditional upon the
forecast. The Murphy–Epstein decomposition is
used to explain the relationships between com-
monly used skill scores (Section 18.3). Some of
the common pitfalls in forecast evaluation prob-
lems are discussed in Section 18.4.

18.0.2 The Ingredients of a Forecast. In this
section, we consider the problem of quantifying
the skill of a forecast such as that of monthly
mean temperature at a certain location. We use the
symbolsFτ (t) to denote the forecast for the timet
with a lead time ofτ (e.g., in units of months) and
P(t) to denote the verifying observations, or the
predictandat timet . We generally omit the suffix
(t) and the indexτ in our notation unless they are
needed for clarity.

Note that in some applications there may be
substantial differences betweenP and the true
observations. These differences might arise from
biases induced by analysis systems or from errors
induced by observing systems. An example of the
latter are the various biases that are inherent in the
many different rain gauge designs used throughout
the world [247]. We ignore these biases in this

1This chapter is based in part on Livezey [255], Murphy
and Epstein [285] and Stanski, Wilson, and Burrows [355]. For
further reading, we also recommend Murphy and Daan [284],
Murphy and Winkler [286], Murphy, Brown, and Chen [283],
Barnston [25] and Livezey [256].

2We call these statisticsskill scoresfor convenience. We
use the phrase ‘skill score’ somewhat less formally than is
dictated by statistical convention, where this expression is
limited to statistics that have a specific functional form, such
as the Heidke skill score (18.1) and the Brier skill score (18.5).
These formal scores compare the actual rate of success with the
success rate of a reference forecast.

chapter and assume thatP represents the true
verifying observations.

The method used to produce the forecast is
not important in the context of this chapter.
The forecast may have been produced using a
sophisticated dynamical model, but it may also
have been based on a coin tossing procedure. The
information used to produce a forecast, called the
predictor, is also not relevant here.

A forecast must be precise in time and space.
That is, the timet for which the forecastFτ (t)
is issued must be clearly stated and it must
correspond precisely with the timet of the
verifying analysisP(t). Thus, statements of the
form ‘there will be a thunderstorm at the end of
August’ do not qualify as a forecast.

18.0.3 Forecasts and Random Variables. In
this chapter, both the predictandP and the
forecast F are treated as random variables.
An actual predictand, or actual observation, is
denotedp, that is, as a realization of the random
variable P. Accordingly, a single forecast is
denotedf.

Skill parametersthat measure the ensemble
quality of forecasting system are parameters that
characterize some aspect of the distribution of
the bivariate random variable(F, P). In practice,
where a skill parameter is derived from a finite
number of forecasts, the skill is an estimate of
the true unknown parameter. Therefore, forecast
skill evaluation can be thought of as a form of
parameter estimation (see Chapter 5), even though
the problem of forecast skill evaluation is generally
not considered as such by the practitioners of the
parameter estimation art.

18.0.4 Categorical and Quantitative Forecasts.
We restrict ourselves to examples in which the
forecastF and the predictandP are either both
quantitative (i.e., a number such as ‘13◦C’) or
categorical statements (such as ‘warmer than nor-
mal’). If the forecast is categorical, we require that
the category boundaries (‘normal’) are unequiv-
ocally defined. We will not discussprobabilistic

391
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Verifying Forecast
analysis above below normal

above normal paa pba pP
a

below normal pab pbb pP
b

pF
a pF

b 1

Table 18.1:An illustration of a2× 2 contingency
table used to summarize the performance of a
categorical forecasting system.

forecasts such as ‘The chance of precipitation
tomorrow is 70%.’ We begin by discussing cat-
egorical forecasts in Section 18.1. Quantitative
forecasts are discussed in Section 18.2.

18.1 The Skill of Categorical
Forecasts

18.1.1 Categorical Forecasts. Categorical fore-
casts are often made in two or three (or more)
classes, such asabove normal,near normaland
below normal, that are clearly defined in terms of
a priori specified threshold values. For example,
two-class forecasts often specify eitherabove nor-
mal or below normal, where the thresholdnormal
is the long-term mean of the predicted parameter.
The outcome of a two-class categorical forecasting
scheme can be summarized in a 2× 2 contingency
table(see Table 18.1).

The entries in the table are defined as follows.
The probability that the forecastF and the
predictandP jointly fall in the above normal
category ispaa. Similarly, pab is the probability
that the forecast falls into theabove normalnormal
category and the predictand falls into thebelow
normal category. Probabilitiespba and pbb are
defined analogously.

The marginal probability distribution (cf.
[2.3.12]) of the forecastF is given by

pF
a = P(F = above normal) = paa+ pab

pF
b = P(F = below normal) = pbb+ pba.

The marginal probability distribution for the
predictandP are defined similarly.

18.1.2 The Heidke Skill Score. A useful
measure of the skill of a two-class categorical

forecasting scheme is theHeidke skill score
(Heidke [173]), which is given by

S= pC − pE

1− pE
(18.1)

where pC is the probability of a correct forecast,
given by

pC = paa+ pbb,

and pE is the probability of a correct forecast
when the forecast carries no information about
the subsequent observation (a ‘random forecast’).
We obtain a random forecast whenF and P are
independent, and therefore find that

pE = pP
a pF

a + pP
b pF

b .

If above normaland below normalclasses are
equally likely for bothF and P, then pE = 0.5
becausepF

a = pF
b = pP

a = pP
b = 0.5. On the

other hand, the two classes may not be equally
likely. For example, we might havepF

a = pP
a =

0.6 and pF
b = pP

b = 0.4. Then pE = 0.42 +
0.62 = 0.52.

It is easily demonstrated that the skillS of a
random forecast is zero and that the skill of a
perfect forecast (i.e.,pC = 1) is 1. If there is
perfectreversereliability, that is, every forecast is
wrong, thenpC = 0 and S = −pE/(1 − pE).
In this case we obtainS = −1 if both classes are
equally likely forF andP.

When sample sizes are finite, the Heidke skill
score (18.1) is often written as

S= np̂C − np̂E

n− np̂E
(18.2)

wheren is the number of(F,P) realizations in the
sample, and the hat notation, as usual, indicates
that the probability is estimated. In this expression,
np̂C is the number of correct forecasts andnp̂E

is an estimate of the expected number of correct
random forecasts.

The Heidke skill score may be extended
to categorical forecasts with more than two
categories. Many other useful skill scores for
categorical forecasts may also be defined (see,
for example, Stanski et al. [355]). Also, the term
pE in (18.1), which represents the probability
of correct random forecasts, may be replaced by
the probability of a correct forecast produced by
any other reference forecasting system (such as
persistence, in which the class the predictand will
occupy at the next verifying time is forecast to be
the class currently occupied by the predictand).
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18.1.3 Example: The Old Farmer’s Almanac.
The following example is taken from Walsh and
Allen [412] who evaluated five years of regular
monthly mean temperature forecasts for the USA
issued byThe Old Farmer’s Almanac[364]. The
success rate for temperature was 50.7%. The
corresponding rate for precipitation was 51.9%.
The Old Farmer’s Almanac’s forecasts have some
skill, with S = 7/500 = 0.014 for temperature
andS= 0.038 for precipitation, if we assume that
the monthly means have symmetric distributions.
However, the distributions are actually somewhat
skewed: there are fewer (but larger) above-
normal temperature extremes than below-normal
extremes. If we assume thatpF

a = pP
a = 0.45 for

temperature, thenpE = 0.452 + 0.552 = 0.505,
so that the actual skill of the Almanac is

S = (pC − pE)/(1− pE)

= (0.507− 0.505)/(1− 0.505) = 4× 10−3.

Similarly, if pF
a = pP

a = 0.60 for precipitation,
then pE = 0.52 and

S = 0.519− 0.520

1− 0.520
= −2× 10−3.

Apparently the skill of theFarmer’s Almanacis
no greater than that of a forecast constructed by
drawing random numbers from slightly skewed
distributions.

18.1.4 Mixing Forecasts of Unequal Skill.
Let us now consider a hypothetical forecasting
scheme that operates throughout the year. During
winter, the scheme produces random forecasts so
that the number of correct forecasts in winter is
pCw = pEw andSw is zero. In summer, however,
the scheme is better than chance and produces
forecasts for whichpCs = 1.5pEs. Then Ss =
(pCs − pEs)/(1− pEs) = 0.5. For simplicity, we
assume thatpEw = pEs and that the number of
winter and summer forecasts are equal. Then, over
summer and winter, the Heidke skill scoreSw+s is
larger than the winter score and smaller than the
summer score:

Sw+s =
1
2(pCw + pCs)− pEw

1− pE2

= 0.25.

Thus, if we add random forecasts to a set of
skilful forecasts, the overall skill score will be
lowered. If we avoid making forecasts when the
forecast scheme is unable to use the information
contained in the predictor, the skill score will be
enhanced.

18.1.5 The Skill Score is Subject to Sampling
Variation. The Heidke skill score (18.1) is a
one number summary of the forecasting scheme
performance relative to a competing reference
scheme. As noted in [18.0.3], the forecast and
predictand should be viewed as a (hopefully)
correlated pair of random variables(F,P) and
the skill scoreSF P should properly be viewed as
an estimator of some characteristic of the joint
distribution ofF andP. One might therefore ask
how accurate this estimate is. One might also
ask what the likelihood is of obtaining a positive
realization of the skill score from a finite sample
of random forecasts. There are no general answers
to these questions. Radok [327] however, has
suggested an estimate of the sampling error of the
Heidke score.Monte Carlotechniques might also
be helpful for making inferences about the skill
parameter (see Section 6.3).

18.1.6 Example: Prediction of Snowfall in
Ontario. Burrows [76] designed a forecast
scheme to predict ‘lake-effect’ snowfall for a
number of stations leeward of Lake Huron in
Ontario, Canada. The predictors were designed to
be useful when the synoptic situation is favourable
for the occurrence of lake-effect snow and the only
cases considered were those in which the weather
map forecast a synoptic situation conducive
to lake-effect snow. Categorical forecasts were
prepared at 28 stations. Five categories were used,
with F andP defined as follows:

Category Snow amount
(F andP) (cm)

1 [0,trace]
2 (trace,5]
3 (5,12.5]
4 (12.5,22.5]
5 > 22.5

Figure 18.1 shows a typical field of predictandP
(snow amount category actually observed) and the
corresponding field of forecasts. An asterisk in the
forecast field indicates that a forecast was not made
at that location. The overall performance of the
forecasting scheme is summarized in Table 18.2.

Burrows [76] rated a forecast that was one
category different from the predictand (i.e.,
|p− f| = 1) a better forecast than a forecast which
was two categories different (i.e.,|p− f| = 2) and
so on. Entries on the diagonals in Table 18.2 were
therefore weighted depending upon the value of
|p− f|. Counts in the table for which|P− F| =
k were multiplied by γk = 1 − k/4. The
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Figure 18.1:An example of a categorical forecast
of snow amount at 28 stations in southern Ontario
leeward of Lake Huron. The observed snow
category (see text) is shown in the top panel. The
corresponding forecasts are shown in the lower
panel. From Burrows [76].

weighted counts were then totalled for the entire
table and used as a measure, saysb, of the
number of ‘correct’ forecasts. A similar measure
of the number of ‘correct’ random forecasts was
computed by estimating the entries of Table 18.2
under the assumption thatF andPare independent.
The estimated distribution of random counts was
obtained by multiplying the row total by the
column total and dividing by the table total (130).
Burrows then weighted and summed the entries in
this new table as before to produce a corresponding
measure, saysrandom

b , of the number of ‘correct’

Forecast
Observed 1 2 3 4 5

1 14 13 1 1 0 29
2 12 26 14 2 0 54
3 2 12 14 5 5 38
4 0 2 4 2 1 9
5 0 0 0 0 0 0

28 53 33 10 6 130

Table 18.2:A 5×5 contingency table summarizing
the performance of a lake-effect snow forecasting
scheme. From Burrows [76].

forecasts expected by chance. Finally, a skill score
analogous to the Heidke score was computed as

SB =
sb − srandom

b

n− srandom
b

,

where n is the total number of forecasts made.
Note that if we setγ0 to 1 and γk to zero for
nonzerok, then SB reduces to the Heidke skill
score (18.1). Like the Heidke score,SB is zero for
random forecasts and 1 for perfect forecasts.

TheSB value for Table 18.2 is 33%. The finding
that the forecasts are skilful is also supported by
two other skill scores computed by Burrows.

The critical success indexis defined for each
categoryk = 1, . . . ,5 as the ratio of number of
occasionsCk on which f = p = k and the sum
of number of occasions on which eitherp = k
or f = k minus Ck. This index is 33% fork =
0, 32% for k = 1, 25% for k = 2, 12% for
k = 3, and 0% fork = 4. The critical success
ratio for categoryk is simply an estimate of
the probability of forecast conditional upon either
forecasting or observing categoryk. The critical
skill index can be compared with that expected
under no skill by recomputing the contingency
table under the assumption of independence. The
corresponding critical success indices expected for
random forecasts are 12% fork = 0, 26% for
k = 1, 16% fork = 2, 4%, fork = 3, and 0%
and fork = 4.

Theprobability of detection (POD)is defined as
the ratio of

∑
k Ck divided by the number of all

forecastsT . In this case, the POD is 56/130 =
43%. The probability of detection is simply the
probability of making a correct forecast. The
estimated POD for a random forecast is 30% in
this case.
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18.1.7 Comments. The skill scoreSB intro-
duced in [18.1.6] is a modified Heidke score.
Barnston [25] points out that the original Heidke
score has two undesirable properties. First, the
Heidke score increases as the number of categories
decreases. For example, for a broad range of mod-
erately skilful forecast sets, the two-class Heidke
skill score will be about double the five-class score.
Second, if the reference forecast is the random
forecast, and if classes are not observed (or fore-
cast) with equal frequency, then the Heidke skill
score is notequitable. That is, the Heidke score
will favour a biased forecast unfairly. An example
of this property is given in [18.4.2]. Barnston [25],
and also Ward and Folland [415] designed modi-
fied Heidke skill scores that are independent of the
number of classes and equitable.

18.2 The Skill of Quantitative
Forecasts

18.2.1 Forecast and Predictand as Bivariate
Random Variable. As we noted in [18.0.3], the
forecast/predictand pair(F,P) form a bivariate
random variable with a joint density functionfF P.
The conditional density functionsfF |P=p and
fP|F= f tell us something about the performance of
the forecast. (For a detailed discussion see Murphy
and Winkler [286] and Murphy et al. [283].)

First, one would hope thatE(F|P= p) = p
and thatE(P|F = f) = f. That is, the mean of all
forecastsF, given a predictandP= p, isp, and, the
mean of all predictandsP is f when averaged over
all occasions whenF= f. If the former condition
is satisfied, the forecast is calledconditionally
unbiased.

The conditional variances Var(F|P= p) and
Var(P|F = f) are ideally small.

Note that the forecastF and the predictandP can
be statistically associated. Let us choosea andb so
that

E
(
(F− (a+ bP))2

)
is minimized. The lineα + βP is the regression of
F on P. Two necessary conditions for the forecast
to be unbiased are thata is zero andb is 1 such
that the regression line is the 45◦ diagonal in the
two-dimensional(F,P)-plane.

18.2.2 Joint distributions. The joint (F,P)-
density may be crudely estimated by plotting a
scatter diagram, in which each realization(f,p)
is marked by a dot. Alternatively one could group
all realizations(f,p) into small boxes and display

Figure 18.2: Estimated joint distributions of
forecasts and observations (F,P). All data are
collected into bins of5◦F × 5◦F. Values for f
= p are indicated by open circles to facilitate
identification. From Murphy et al. [283].

the number of entries per box. An example of
such a diagram is shown in Figure 18.2 (Murphy
et al. [283]). The forecast is for temperature for
Minneapolis (Minnesota) at a 24-hour lead during
winter. Forecasts of ‘correct’ or ‘near correct’ are
marked by open circles. The maximum density
estimate usually lies on the diagonalf = p, but for
forecastsF ≤ 28◦F the corresponding observed
temperatures tend to be systematically lower than
the forecast by a few degrees. The conditional
standard deviations of the forecast errors are of
the order of 5◦F, and forecast errors larger than
20◦F never occur. Very little can be learned about
the skill of forecasts below 8◦F and above 48◦F
because of poor sampling.

An example of an estimated conditional
distribution fP|F= f is the estimated distribution of
Minneapolis temperature observationsP given the
forecastF = f, which is shown in the upper panel
of Figure 18.3. The 10%, 25%, 50%, 75%, and
90% quantiles of the observations are derived and
plotted for each 5◦F bin of the forecast. Ideally,
the solid curve, representing the conditional 50%
quantile, will lie on the diagonal. This is not so.
In particular, the mean observed temperature is
about 3◦F lower when temperatures below 20◦F
are forecast. When temperatures below 12◦F are
forecast, about 75% of observations are actually
less than the forecast. The typical forecast error is
generally independent of the forecast itself.

Estimates of the density function of the forecast
conditional upon a fixed observed temperaturep
(i.e., f̂ f |P=p) are displayed in the lower panel
of Figure 18.3 forp = 24◦F, 25◦F, 34◦F. The
two conditional F distributions for p = 14◦F
and p = 25◦F are almost symmetric, but since
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Figure 18.3: Estimated conditional probability
density functions of the Minneapolis temperature
forecast. From Murphy et al. [283].
Top: Quantiles of the distribution of the predictand
P conditional on the forecastF = f. The frequency
of the forecasts is also shown so that the credibility
of the conditional quantiles can be judged.
Bottom: Distribution of the forecastF conditional
on the value of the predictand forP= 14◦F, 25◦F,
34◦ F. The ‘p( f |x)’ in the diagram is Murphy’s
notation for the conditional probability density
function fF |P=p.

E(F|P= 14◦F) > 14◦F, it is evident that the
forecast is biased.

18.2.3 Skill Scores. Several measures are
frequently used to describe the skill of quantitative
forecasts. These measures include thecorrelation
skill score, themean squared error, theBrier skill
scoreand theproportion of explained variance.3

The correlation between the forecastF and the
verifying observationP is called thecorrelation
skill scoreand is given by

ρF P = Cov(F,P)√
Var(F)Var(P)

. (18.3)

3A more complex measure of skill than those defined here
is the ‘linear error in the probability space’ (LEPS) score
introduced by Ward and Folland [415].

The mean squared erroris the expected (i.e.,
long-term average) squared error which is defined
by

S2
F P = E

(
(F− P)2

)
. (18.4)

TheBrier skill scoreis a measure of the skill of
the forecastF relative to a reference forecastR of
the same predictandP. The comparison is made on
the basis of the mean square error of the individual
forecasts. The Brier score is given by

BF RP = 1− S2
F P

S2
RP

= S2
RP− S2

F P

S2
RP

. (18.5)

The proportion of explained varianceis the
percentage ofP-variance that is explained byF,

R2
F P =

Var(P)− Var(F− P)
Var(P)

(18.6)

= 1− Var(F− P)
Var(P)

.

18.2.4 Skill Score Ranges. For a perfect
forecast, that is,F = P, the correlation skill score
ρF P is 1, the mean squared errorS2

F P is zero and
the percentage of explained varianceR2

F P is 100%.
If F is the climatological forecast (i.e.,F =
E(P)), thenρF P and R2

F P are zero andS2
F P =

Var(P).
If F is a random forecast, with the same

mean and variance asP then ρF P is zero and
S2

F P = Var(F− P) = Var(F) + Var(P) =
2Var(P). The explained variance isR2

F P = 1 −
2Var(P)/Var(P) = −1.

Thus, the skill scoresρF P and R2
F P are

constructed so that they have value 1 for a perfect
forecast and zero or less than zero for trivial
reference forecasts.

18.2.5 Skill Score Characteristics. The corre-
lation skill score is insensitive to some types of
systematic error. In particular, skill is not affected
if the forecasts contain a constant bias or if the
amplitude of two differ by a constant factor. That
is, for two forecastsF andG = aF + b for some
constantsa and b, then F and G have the same
correlation skill score. On the other hand, mean
squared error is very sensitive to such systematic
errors. The results of many years of weather fore-
casting have shown that the mean squared error
favours forecasting schemes that avoid extremes
and tend not to deviate greatly from climatology
(because the penalty grows as thesquareof the
error [179]).
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18.2.6 Correlation Skill Score and Probability
Statements. Some appreciation for the interpre-
tation of the correlation skill score can be obtained
from the following thought exercise, which is
based on the usual normal assumptions.4 Suppose
that we are given a pair of realizationsf and
p for the forecast and the verifying observation.
Then the correlation skill score may be used to
derive statements about the probability thatP ≥ p
conditional onF ≥ f, for anyp andf. We assume
thatE(F) = E(P) and that we are somehow able to
identify, or reliably estimate, the covariance matrix

Σ =
(
σ 2

F γ

γ σ 2
P

)
of the bivariate random variable(F,P). For
simplicity we assume thatE(P) (and thusE(F))
is zero.

Let us first considerp = 0 andf = 0. Then the
probability of observing non-negativeP given that
non-negativeF was predicted is theconditional
probability

P(P≥ 0|F ≥ 0)

= P(P≥ 0 andF ≥ 0)

P(F ≥ 0)
(18.7)

=
∫∞

0

∫∞
0 f( f, p)d f dp∫∞
0 f( f )d f

.

Now let A = 1/
√

1− γ 2. Then

P(P≥ 0 andF ≥ 0) = (18.8)

A

2πσFσP

∫ ∞
0

∫ ∞
0

exp

{
− A2

2
×((

f

σF

)2

+
(

p

σP

)2

− 2γ f p

σFσP

)}
dp d f.

Now, note that the exponentiated quadratic form in
(18.8) may be written

A2

2

(( f

σF

)2+
( p

σP

)2− 2γ f p

σFσP

)
= A2

2

(
(1− γ 2)

( f

σF

)2
)

+ A2

2σ 2
P

(
p− σP

σF

γ f

(σP/A)

)2

.

4We assume that forecastF and observationP are jointly
normal.

We may therefore write equation (18.8) as

P(P≥ 0 andF ≥ 0) = (18.9)∫ ∞
0

g( f ;0, σ 2
F )

×
∫ ∞

0
g

(
p;
(σP

σF

)
γ f,

(σP

A

)2
)

dp d f.

In this last expression g( f ;0, σ 2
F ) represents

the normal probability density function
with mean 0 and varianceσ 2

F . Similarly,
g(p; (σP/σF )γ f, (σP/A)2) represents the
normal probability density function with mean
(σP/σF )γ f which depends upon the realized
value of the forecastF = f and varianceσ 2

P/A2,
which is the conditional variance ofP given
F = f.5 Finally, substituting (18.9) into (18.7), we
obtain

P(P≥ 0|F ≥ 0) = (18.10)∫∞
0 g( f ;0, σ 2

F )
∫∞

0 g
(
p; σP

σF
γ f, ( σP

A )
2
)

dp d f∫∞
0 g( f ;0, σ 2

F )d f
.

The last formula becomes simpler if the forecast
F and the predictandP are normalized so that
σF = σP = 1. Then the covarianceγ becomes
the correlationρF P and

P(P≥ 0|F ≥ 0) (18.11)

=
∫∞

0 g( f ;0,1) ∫∞0 g
(
p; ρ f, (1− ρ2)

)
dp d f∫∞

0 fN ( f ;0,1)d f

= 2
∫ ∞

0
g( f ;0,1)

∫ ∞
0

g(p; ρ f, (1− ρ2))dp d f.

Similar expressions forP(P> p|F > f) are easily
obtained. In fact,

P(P≥ p|F ≥ f) (18.12)

=
∫∞

f g( f ;0,1) ∫∞p g
(
p; ρ f, (1− ρ2)

)
dp d f∫∞

f fN ( f ;0,1)d f
.

Appendix L contains these probabilities for a
few values ofρ, p andf for the caseσF = σP =
1. However, for most practical purposes, equation
(18.12) must be calculated manually.

We can use equations (18.11) and (18.12)
to make the following general deductions about
forecast skill in terms of the correlation skill score
when F and P are jointly normal with the same
means and variances.

• If ρ = 0 then NP(ρ f,
√

1− ρ2 ) =
NP(0,1). Therefore the inner integral

5This same decomposition has been encountered in [2.8.6]
and in Section 8.2.
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in (18.11) is 0.5 and consequently
P(P≥ 0|F≥ 0) = 0.5. That is, a forecast
which has a correlation skill score of zero is
no more skilful than a toss of a coin.

• If ρ is positive, then for all positiveF we
have

∫∞
0 g

(
p; ρ f, (1 − ρ2)

)
dp > 1/2 and

thereforeP(P≥ 0|F≥ 0) > 1/2.

• Similarly P(P≥ 0|F≥ 0) < 1/2 if ρ is
negative.

A positive correlation skill scoreρ indicates that
the forecast is useful, whereas a negative score
indicates that the forecast with reversed sign has
some skill.

Note that this exercise may be interpreted as
the transformation of a quantitative forecast into
a categorical forecast.

18.2.7 Conditional Moments. Using
(2.36, 2.37) we see that

E(P|F= f) = E(P)+ γ

σ 2
F

(f − E(F))

= a+ bf (18.13)

Var(P|F= f) = σ 2
P −

γ 2

σ 2
F

. (18.14)

The conditional expectation consists of a constant
term a and a termbf that is linear in f. The
conditional variance is independent off.6

The moments of the forecastF conditional on
the observationp may be derived.

18.2.8 Improvement of a Quantitative Forecast.
Any forecastF can be improved statistically if
we have access to a large sample of previous
forecasts ft and corresponding predictandspt .
This improvement can be obtained by regressing
the predictand on the forecast using a simple
linear regression model of the form suggested by
equation (18.13). Least squares estimators of a
bias correction̂a and an amplitude correction̂b
are obtained in the familiar way. We will assume
that the forecasts are already unbiased, so thatâ
is approximately zero, even though bias correction
does not affect the correlation skill score.

The outcome of the exercise might be an
amplitude correction b̂ = 1 so that an
improved forecast, saỹF, is given by F̃ =
F. In this case nothing is gained. The tools
of Chapter 8 show us that for large samples

6See also Section 8.2.

b̂ ≈ Cov(F,P)/Var(F). Thus, asymptotically, the
improved forecast scheme is given by

F̃ = ρF P
σP

σF
F (18.15)

and the proportion of the variance ofP that is
explained bỹF is

Var(P)− Var
(
P− F̃

)
Var(P)

= ρ2
F P.

The proportion of variance explained by the
improved forecast is given by the squared
correlation skill score.

In contrast, when Var(P) = Var(F), the pro-
portion of variance explained by the unimproved
forecast,R2

F P, is (18.6)

R2
F P =

Var(P)− Var(F− P)
Var(P)

= 2ρF P − 1. (18.16)

The improved forecast is always more skilful
than the unimproved forecast under these circum-
stances ifρF P is less than 1.

18.2.9 Comparing a Predicted Field and its
Predictand. So far we have considered the
prediction of a single number. Evaluation of such
a forecast requires many samples in order to
estimate the skill scores in [18.2.3]. When we
have a vector or field of forecasts, the skill of a
given forecast can be estimated using scores such
as theanomaly correlation coefficientρA

F P(t) or
the mean squared errorS2

F P(t) which measure
the similarity of two fields relative to a given
climatologyC.

SupposeEfτ (t) is a forecast of a field, say
Southern Hemisphere 500 mb height, for the time
t preparedτ days in advance, and suppose that the
predictandEp(t) is the analysis of that field on the
dayt . Let EC be the observed long-term mean field.
Then the anomaly fields,

Ef′τ (t) = Efτ (t)− EC and Ep′(t) = Ep(t)− EC,
are compared using the anomaly correlation,

ρA
F P(t)=

〈(Ef′τ−〈Ef′τ 〉)(Ep′−〈Ep′〉)〉√
〈(Ef′τ−〈Ef′τ 〉)2〉〈(Ep′−〈Ep′〉)2〉

, (18.17)

where the notation〈·〉 denotes an area weighted
mean. The time argument(t) has been suppressed
on the right hand side of (18.17) for convenience.

The mean squared error is computed similarly
as

(SA
F P)

2(t) = 〈(Ep
′(t)−Ef′τ (t))2〉
〈E1〉 . (18.18)
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The quantity in the denominator is the sum of the
area weights.

Note that both the anomaly correlation coeffi-
cient and the mean squared error are defined for
an individual forecast. Therefore, an annual cycle
of these scores can be calculated, and the grad-
ual improvement of weather forecast models can
be monitored by these measures. An interesting
aspect of these scores is that forecasts can be
stratified by their success. Thus it may be possible
to understand empirically why some forecasts are
more successful than others.

18.2.10 Example: US NMC Weather Fore-
casts. Branstator [61] and Kalnay, Kanamitsu,
and Baker [209] analysed the quality of the op-
erational forecasts prepared by the US National
Meteorological Center (US NMC). Both consid-
ered the Northern Hemisphere 500 mb height field,
and monitored the forecast performance using the
anomaly correlation coefficientsρA

F P.
Branstator evaluated three-day forecasts for 11

winters (defined as November to March–NDJFM)
from 1974 to 1985. Time series ofρA

F P are shown
in Figure 18.4 for three winters, 1974/75, 1978/79,
and 1982/83. We see that the anomaly skill
score of the forecasts gradually improved, from
approximately 0.65 in 1974/75, to approximately
0.75 in 1978/79 and 0.80 in the winter 1982/83.
However, the anomaly correlation skill score
shows a remarkable variability within a winter.
There are periods (e.g., mid January 1978 to
mid February 1978) when the forecast scores
are consistently better than during other periods
(e.g., after mid February 1978). It is not clear
if these variations tell us something about the
numerical weather prediction model (i.e., that the
model scores better with certain initial states than
with others), or if they tell us something about
variations in thepredictability of the atmospheric
circulation.7

The distribution ofρA
F P, shown in Figure 18.5

for the first six winters and the last five winters,
is clearly not normal. The skill varies between
0.5 and 0.9 during first six winters, and it varies
between 0.65 and 0.95 during the last five winters.

Kalnay et al. [209] calculated the DJF seasonal
mean anomaly correlation coefficient forlagsfrom
1 to 10 days (Figure 18.6) for the period 1981/82
to 1989/90. The curves lie above the magical 60%

7Branstator [61] performed a spectral analysis of the skill
score time series and found ared power spectrum, similar
to that of the (predicted) height field. He suggested that this
similarity could indicate that the swings in the skill score reflect
the varying predictability of the atmosphere.

Figure 18.4:Daily time series of the anomaly
correlation coefficientρA

F P of three-day forecasts
of Northern Hemisphere 500 mb height field
prepared by the US National Meteorological
Center during the winters of 1974/75, 1978/79 and
1982/83. Winter is defined as the November to
March cold season. From Branstator [61].

line (see [18.3.5]) for about 4.5 days in the early
1980s. By the end of the decade, the skill curves
stayed above this skill threshold for about 7 days.
Figure 18.6 is a representation of forecast skill
which is typically used by operational weather
forecast centres to document their progress. We
return to this example in [18.4.5].

18.3 The Murphy–Epstein
Decomposition

18.3.1 Introduction. In this Section we intro-
duce theMurphy–Epsteindecomposition of the



400 18: Forecast Quality Evaluation

Figure 18.5: Frequency distributions of the
anomaly correlation coefficientρA

F P of three-day
forecasts of Northern Hemisphere 500 mb height
field prepared by the US National Meteorological
Center during the winters of 1974/75 to 1979/80
and during the winters 1980/81 to 1984/85. Winter
is defined as the November to March cold season.
From Branstator [61].

Brier skill score [285]. This decomposition pro-
vides useful insights into the interpretation of the
Brier skill score and both the time and anomaly
correlation skill scores. The Murphy–Epstein de-
composition will not be used subsequently in this
book so readers may feel free to skip this section.

Suppose that a set ofn forecastsFi and n
predictandsPi are available for the verification of
forecasts. Usually the indexi refers either to time
or to space. In the former case the indexi refers
to different times, so thatPi is a predictand such
as temperature observed at a fixed location at time
t = i . In the latter case the indexi refers to a
locationx, so thatPi represents the predictand at
a fixed time at locationx = i . We can use the
Murphy–Epstein decomposition of the Brier skill
score in both cases.

18.3.2 The Correlation Decomposition. Let C
be any reference climatology. If the forecasts are
indexed by the time (i.e.,t = i ), this referenceC
is the (constant) long-term mean so thatC = E(P).
If the index refers to space (i.e.,x = i ), thenC is
the long-term mean field at the locationx, that is,
Cx = E(Px). In either case, we useF′ = F − C

Figure 18.6:Seasonal mean anomaly correlation
coefficientsρA

F P for 1- to 10-day lead forecasts
of the Northern Hemisphere 500 mb height field
prepared by the US National Meteorological
Center during the winters (DJF) of 1981/82 to
1989/90. Operational weather forecasters usually
consider 60% as a threshold for useful forecasts.
From Kalnay et al. [209].

and P′ = P − C to represent the corresponding
anomalies.

If forecasts are verified over time at a fixed
location (i.e.,t = i ) we find that the mean squared
error and correlation skill scores (18.3, 18.4) are
given by

S2
F P = E

(
(F− P)2

) = E((F′ − P′)2
)

ρF P =
E
(
F′P′

)√
Var

(
P′
)
Var

(
F′
)

If forecasts are verified across space at a fixed time
(i.e., x = i ) then the mean squared error and the
anomaly correlation coefficient (18.17) (the timet
is omitted) are

(SA)2F P = 〈(F′x−P′x)
2〉

ρA
F P =

〈(F′x−〈F′〉)(P′x−〈P′〉)〉√〈(P′x−〈P′〉)2〉〈(Fx−〈F′〉)2〉
where〈F′〉 and〈P′〉 represent the spatial means.

The derivation of the Murphy–Epstein decom-
position is formally carried out for thet = i
case, but it can be done in the same way for the
x = i case. To accomplish this the correlation
skill scoreρF P must be replaced by the anomaly
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correlation coefficientρA
F P and theE(·)-operator

has to be replaced by the spatial averaging operator
〈·〉. Some of the terms in the decomposition vanish
in the t = i case but have been retained because
they are needed for thex = i case.

By simultaneously adding and subtracting
E
(
P′
)

andE
(
F′
)

to the mean square errorS2
F P we

find, after some algebraic manipulation, that

S2
P F = Var

(
P′
)+ Var

(
F′
)

(18.19)

− 2Cov
(
P′,F′

)+ [E(P′)− E(F′)]2 .
If we replaceF with C in this formula we find

S2
PC = Var

(
P′
)+ E(P′)2 (18.20)

simply becauseC′ = 0. Finally, after some further
manipulation, we see that the Brier skill score may
be expressed as

BFC P = A2− B2− D2+ E2

1+ E2
(18.21)

where

A = ρP F , B = ρP F − σF ′

σP′

D = E
(
P′
)− E(F′)
σP′

, and E = E
(
P′
)

σP′
.

Decomposition (18.21) is the Murphy–Epstein
decomposition of the Brier skill score.

The first termA2 in (18.21) is the correlation
skill score squared.

To understand the second termB2 we will
assume thatP′ and F′ are jointly normal so that
we can use (18.13) and write the expected value of
P′ conditional onF′ = f′ as

E
(
P′|F′ = f′

) = a+ bf′. (18.22)

We see from (18.13) thatρP F = (σF ′/σP′)b so
that

B2 = ((b− 1)(σF ′/σP′)
)2
.

This term vanishes only ifb = 1, that is,
if the forecasts are not systematically biased.8

Murphy and Epstein [285] call this term the
conditional biasbecause it reflects the extent to
which the mean observationE

(
P′
)

(conditional
upon a forecastf′) reflects that forecast.

The third term in (18.21)D2 vanishes only if
E
(
F′
) = E(P′). This term therefore represents

the unconditional biasof the forecast. If (18.22)
holds thenE

(
P′
) = a + bE

(
F′
)
, so that for

an unconditionally unbiased forecasta = (1 −
8Note thatb = 1 does not implyσF ′ = σP′ but rather that

σF < σP if ρP F < 1.

b)E
(
F′
)
. In the special case ofa = 0 andE

(
F′
) =

E
(
P′
) 6= 0 we findb = 1 and therefore that the

forecast is not only unconditionally unbiased but
also conditionally unbiased.

18.3.3 Forecasts of the Same Predictands at
Different Times. In the t = i case, whenFt

is a series of forecasts of the same predictandPt

at various timest , C is taken as the climatology
of that predictand and thusC = E(P). Therefore,
becauseE

(
P′
) = 0, we have

BFC P = (18.23)

ρ2
P′F ′ −

(
ρP′F ′ − σF ′

σP′

)2

−
(
E
(
F′
)

σP′

)2

and

S2
PC = Var(P). (18.24)

If F′ is unconditionally unbiased thenE
(
F′
)

is
zero and we find the Brier skill score is identical
to the proportion of explained varianceR2

F P
(18.6). Even when this happens we still have (see
equation(18.16))

BFC P < ρ2
P′F ′ . (18.25)

Thus we see that, as a general rule, the correlation
skill score overestimates the ‘true’ forecast skill.
This is why the correlation skill should generally
be regarded as a measure ofpotential skill; it
only represents the actual skill if the forecast is
unbiased. In this case the Brier skill score, the
squared correlation skill and the proportion of
explained variance are equivalent.

18.3.4 Forecasts of Different Predictands at the
Same Time. In the x = i case the reference
forecast is climatologyC so that the unconditional
bias represents the error in predicting the spatial
mean. This bias might be large if the forecast
region is small. Murphy and Epstein [285]
computed the relative contributions of the terms
in the Murphy–Epstein decomposition to the Brier
skill score for a series of medium range forecasts
prepared by the US National Meteorological
Center (NMC) in the mid 1980s.

18.3.5 The Correlation Skill Score and
the Mean Squared Error. Equation (18.19)
provides a decomposition of the mean square
error [286]. We will assume that the forecastF
is unconditionally unbiased (i.e.,E

(
F′
) = E(P′))

so that the last term in (18.19) vanishes, and now
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Figure 18.7: The root of the mean squared
error SF P, labelled ‘RMSE,’ is displayed as a
function of the correlation skill scoreρF P for
the two cases discussed in [18.3.5]. Curve ‘A’
illustrates the case in which the forecast and the
observations have the same expected value and the
same variance. Curve ‘B’ holds for the improved
forecast [18.2.7]. From Barnston [25].

consider two cases (Barnston [25]). First, suppose
Var

(
F′
) = Var

(
P′
)
. Then

S2
P F = 2Var

(
P′
)− 2ρF PVar

(
P′
)

= 2Var
(
P′
)
(1− ρF P).

The relationship between the correlationρF P

and the mean square errorS2
P F is illustrated in

Figure 18.7 as curve ‘A.’ When the correlation is
zero then the mean square error is 2Var

(
P′
)
, which

is twice the expected error of the climatology
forecast. When the correlation is negative, the
mean square error becomes even larger than twice
that of the climatology forecast.

Second, suppose the improved forecast [18.2.7]
is F̃′ = bF′, where b = ρF Pσp/σ f , and
suppose also thatE

(
F′
) = E(P′) = 0. Then the

improved forecast̃F′ is unconditionally unbiased
(i.e., E (̃F′) = E(P′)) and it is also conditionally
unbiased because

σF̃
σP
= ρF̃ P. Thus (18.19)

simplifies to

S2
PF̃
= Var

(
P′
)
(1− σ 2

F P).

The resulting relationship between the correlation
and the mean squared error is shown as curve ‘B’
in Figure 18.7. The improved forecast always has
mean squared error that is less than, or in the case
of zero correlation equal to, that of the climatology
forecast.

18.3.6 Correlation Skill Score Thresholds at
which the Brier Skill Score Becomes Positive.
If we accept the notion that the Brier skill score
as the best indicator of the presence or absence
of skill relative to a reference forecast, we can
derive a threshold for the correlation skill score (in
the t = i case) and for the anomaly correlation
coefficient (in thex = i case) at which the
Brier score becomes positive [285]. To derive the
threshold we assume thatF is an unconditionally
unbiased forecast ofP, thatE

(
P′
)

= 0, and that
Var

(
F′
)

= Var
(
P′
)
. Then, for thet = i case, (18.21)

becomes

BFC P = A2− B2 = ρ2
F P − (ρF P − 1)2

= 2ρF P − 1

so that

BFC P ≥ 0⇔ ρF P ≥ 0.5. (18.26)

Similarly, for thex = i case,

BFC P ≥ 0⇔ ρA
F P ≥ 0.5. (18.27)

The experience of several decades of opera-
tional weather forecasting has led weather fore-
casters to use a larger threshold for the anomaly
correlation coefficient, namely 0.6. This choice is
based on the subjective assessment that a predicted
field with ρA

F P ≥ 0.6 bears sufficient resemblance
to the observed field for the forecast to be of use to
at least some users of the forecast product.

18.4 Issues in the Evaluation of
Forecast Skill

18.4.1 The Reference Forecast.A forecasting
scheme can not be accepted as being useful if it
yields skill scores that can be obtained by means of
less sophisticated forecasting procedures. That is,
any forecasting scheme must be compared against
a reference forecastwhich is easier to prepare than
the forecast under consideration.

Some standard reference forecasts are:

• the random forecast,F, which is simply a
random variable with the same statistical
properties as the predictandP;

• thepersistence forecastFτ (t) = P(t − τ);

• the damped persistence forecastFτ (t) =
ξτP(t − τ) with 0< ξ < 1 andE(P) = 0;

• theclimatological forecastFτ (t) = C.
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Forecast
Observation Tornado No Tornado

Tornado 28 23
No Tornado 72 2680

Table 18.3:Finley’s [116] success in predicting
tornados.

Another reference forecast which is suitable for
quasi-cyclic processes is thePOP forecast(see
Section 15.3).

The Heidke skill score of a categorical forecast
(as defined in [18.1.1]) uses the random forecast
as its reference. The Heidke score can be modified
to assess skill relative to another reference forecast
by definingpE in (18.1) as the success rate of this
other reference (see [18.1.2]).

We illustrate the idea of a reference forecast
with the following examples.

18.4.2 Example: The Old Farmer’s Almanac.
We again consider the forecasts of monthly
mean temperature and precipitation issued by
the Old Farmer’s Almanac[364] (see [18.2.3]).
Because the forecasting algorithm used by theOld
Farmer’s Almanacis unpublished the complexity
of the procedure is unknown. We might therefore
ask if there exists a trivial forecasting scheme
which would do better than theOld Farmer’s
Almanac. The answer is yes. The constant forecast
F = above normalhas better skill than the
Old Farmer’s Almanacfor both precipitation and
temperature.

In the case of temperature, we havepF
a = 1,

pP
a = 0.55, pF

b = 0 andpP
b = 0.45 so thatpC =

(1×0.55+0×0.45), pE = 0.505 and consequently
S= (0.55− 0.505)/(1− 0.505) = 9.1× 10−2. In
contrast, we showed in [18.1.3] that the skill of the
Old Farmer’s Almanacis only 4× 10−3.

For precipitation, the constant ‘below normal’
forecast yieldspF

a = 0, pP
a = 0.40, pF

b = 1
and pP

b = 0.60 so thatC = 0.60 × T and
S = (0.60− 0.52)/0.48 = 0.16. This is much
larger than theAlmanac’s skill of −2× 10−3.

This example illustrates that the Heidke skill
score is inequitable [18.1.7]. In these examples
two competing forecasts, both of which are
statistically independent of the predictand, have
different Heidke skill scores.

18.4.3 Example: Finley’s Tornado Forecast.
In the late nineteenth century, Finley [116] (see
also Stanski, Wilson, and Burrows [355]) prepared

three months of daily forecasts for 18 US districts
east of the Rocky Mountains which predicted
whether conditions would be favourable for the
development of tornados. Daily weather maps
served as the predictor. A total ofn = 2803
forecasts were prepared. Tornado were observed
on 51 of these occasions. The 2× 2 contingency
table describing the results of Finley’s efforts is
given in Table 18.3.

The number of correct forecasts, orhits, was
C = 2708 whereas the number of expected
random hits would be(512 + 26802)/T = 2703.
Thus, the Heidke skill score (18.2) is

(C − E)/(T − E) = 5.6%.

Is there a simple reference forecast which
does better? Consider the constant ‘no tornado’
forecast. Then the number of hits is equal to the
number of occasions with no tornado (i.e.,C =
2752) and the Heidke skill score is 49/105= 48%.
Thus, the verdict of the Heidke skill score is to
abandon Finley’s forecast and to use the trivial
competitorF= ‘no tornado’ instead.

But is that a fair answer? The ‘no tornado’
forecast would have afalse alarm rateof zero,
but it would not have warned of any tornados.
Finley, on the other hand, had a false alarm rate
of 72/(72+ 28) = 72%, but correctly warned of
a tornado on 28/(28+ 23) = 55% of all tornado
days.

What see then is that there are no universal
rules that can be used to judge the performance of
each and every forecast. Each case must be judged
separately while keeping in mind the various
pitfalls.

18.4.4 Example: The Madden-and-Julian
Oscillation. We evaluate the outcome of two
series of forecasts of an index of the Madden-
and-Julian Oscillation using the correlation skill
score ρ. Forecasts were prepared from 15 sets
of initial conditions with the POP method9 and
with a dynamical forecast model. The correlation
skill score was calculated for the two forecasting
schemes for various temporallagsτ (Figure 18.8).
In these experiments the POP forecast scores
better than the sophisticated dynamical model.
Therefore the substantial computational cost of the
dynamical model is not rewarded with increased
forecast skill in this particular case. (See also
[15.3.3].)

9POP is an abbreviation forPrincipal Oscillation Pattern.
See sec. 15.3.
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Figure 18.8:The correlation skill scoresρτ of
two sets of forecasts of an index of the Madden-
and-Julian Oscillation. Both series are constructed
from 15 trials using the same initial conditions.
One series (solid) was prepared with the POP
method [15.3.3], the other with a dynamical
forecast model (dashed). From [388].

18.4.5 Example: The Skill of Weather Predic-
tion. In [18.2.8] we examined the performance
of the operational weather forecasts of the US Na-
tional Meteorological Center, and displayed a plot
of winter mean anomaly correlation coefficients
from from Kalnay et al. [209]. They compared
the operational forecast against the persistence
forecast. The lead time beyond which the skill of
the forecasts fall below the 60% threshold (see
[18.3.5]) is shown in Figure 18.9 for both the
operational and the persistence forecasts. Clearly,
the operational forecast outperforms persistence.
Also, the diagram shows that the improvement in
the operational forecasts after 1985 is not due to
increased persistence of the Northern Hemisphere
circulation.

18.4.6 Effect of Trends. Many meteorological
time series exhibit atrend on decadal and longer
time scales. That is, the series contains either
a deterministic or a low-frequency component.
These trends reflect a variety of processes, both
natural and anthropogenic origins.10

The definition of a (trivial) reference forecast
may become difficult in the presence of a trend.
The skill of the persistence forecast is generally not
affected much by a trend because the amplitudes
of trends are generally small relative to the natural
variability of the forecasted process. On the other
hand, the climatological forecast might become

10For a short discussion of processes potentially responsible
for trends, see [1.2.3].

Figure 18.9:The average lead time, in days, at
which the winter (DJF) mean anomaly correlation
coefficient ρA

F P of the forecasts of Northern
Hemisphere 500 mb height field fall below
60%. The boxes indicate that the average lead
time of forecasts prepared by the US National
Meteorological Center during the winters (DJF) of
1981/82 to 1989/90 falls below 60%. The triangles
indicate the corresponding average lead time for
persistence forecasts. From Kalnay et al. [209].

useless because the climatology may no longer
be the mean value of the present observations.
The random forecast is undefined simply because
the statistical parametersE(P) and Var(P) have
become moving targets.

Livezey [255] presents an interesting and
convincing example of a forecasting scheme
whose reputed merits were entirely due to the
systematic exploitation of the urbanization effect
[1.2.3]. Several of the scores introduced in this
chapter sometimes exhibit pathological behaviour
if sufficient care is not exercised in designing the
forecast evaluation.

18.4.7 Artificial skill. Skill scores should be
constructed so that they give an unbiased view
of the true utility of the forecasting scheme. This
requirement is violated when statistical forecast
schemes are built if the same data are used to
develop the scheme and evaluate its skill. Quite
often, the statistical forecast model is fitted to the
data by maximizing a skill score or a quantity, such
as mean squared error, that is related to a skill
score. If the sample size is small, or if the number
of parameters fitted to the data is large relative
to the sample size, the skill score is artificially
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enhanced because in such circumstances the fitted
model is able toadapt itself to the available data.
The sample used to fit the model is often called
thetraining sample. The estimate of skill obtained
from the training sample is called thehindcast
skill. The hindcast skill is always somewhat greater
than the forecast skill, and this optimistic bias in
estimated skill is calledartificial skill.

Techniques, such ascross-validation(see Sec-
tion 18.5) andbootstrapping(see Section 5.5) can
sometimes be used to provide good estimates of
the forecast skill.

A notoriously efficient manner in which to
introduce artificial skill into (time series) forecast
models is to time-filter the analysed data in
order to suppress high-frequency variations, and
to fit and verify the forecast model against these
smoothed observations. The time filtering makes
future information about the predictand available
at the time of the forecast; in a real-time setup this
future information would not be available.

18.4.8 Skill Scores Derived from Non-
Randomly Chosen Subsets. In real applications
the skill score is derived from a finite ensemble of
forecasts. These ensembles can usually be thought
of as random samples representative of the process
being forecast. For example, an ensemble might
consist of all cases during a certain time period.
The ensemble is sometimes also sub-sampled
using criteria available at forecast time in order
to make inferences about forecast skill under
prescribed conditions (an example can be found in
[18.1.6]). Both of these approaches to estimating
skill are perfectly legitimate.

On the other hand, it is somewhat misleading
to sub-sample an ensemble using criteria that are
available only at verification (rather than forecast)
time. An example of such a criterion is the strength
of the predictand. This type of sub-sampling
criterion automatically enhances the correlation
skill scoreρF P and the proportion of explained
varianceR2

F P (cf. [18.1.4]).
To demonstrate this, we consider thex = i case

and a forecast of the formF = P+ N whereN is
random error independent ofP. Then

ρF P =
√

V/(V + N)

R2
F P = 1− (N/V)

S2
F P = N,

where V = Var(P) and N = Var(N). If
we calculate the skill scores for the subset of
forecasts for which|P| ≥ p̃ we find with Ṽ =

Var(P|P> p̃) > V ,

ρ̃F P =
√

Ṽ/(Ṽ + N) > ρF P

R̃2
F P = 1− (N/Ṽ) > R2

F P

S̃2
F P = N = SF P.

18.5 Cross-validation

18.5.1 General. It is generally desirable to
be able to estimate the skill of a forecast or
specification model before it is actually applied.11

However, skill estimates that are obtained from the
data used to identify and fit the model tend to be
overly optimistic (see Davis [101]) because the
fitting process, by definition, chooses parameters
that ‘adapt’ the model to the data as closely as
possible. This phenomenon, called artificial skill,
is of particular concern in small samples.12

One simple way to avoid the artificial skill effect
is to divide the data into ‘learning’ and ‘validation’
data sets; the model is fitted to the learning
data and tested on the independent information
contained in the validation subset. However, the
data sets in which artificial predictability is
particularly troublesome are not large enough to
use this strategy effectively. These samples are
too small to withhold a substantial fraction of
the sample for validation, but if only a few
observations are withheld, validation can not be
performed effectively.

18.5.2 Cross-validation. Cross-validation
avoids the difficulty described above, in essence,
by making all of the data available for validation.
The procedure is simple to apply provided that
the model fitting can be automated. The first step
is to withhold a small part of the sample. For
example, one might withhold 1 or 2 years of
data when building a model for seasonal climate
forecasting from a 45-year data base. The model
is fitted to the data that is retained and is used
to make forecasts or specifications of the data
that are withheld. These steps are performed
separately, either until no new verification data
sets can be selected or until there are enough
forecast/verification or specification/verification
pairs to estimate skill accurately. See Michaelson

11A forecast model is used to extrapolate into the future;
specification models are used to estimate present or past
unobserved values.

12Small is a relative term in this context. The reliability of
an internal estimate of skill increases with sample size but
decreases with the number of free parameters in the fitted
model.
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[273] (and also Barnston [25] and the references
therein) for more information.

18.5.3 Some Cautions. Care must be taken
to ensure that the information used to fit the
model in each cross-validation step is completely
independent of the information that is withheld for
the validation data. Barnston and van den Dool
[29] and van den Dool [379] document problems
that can occur when there is dependence between
the two samples.

Avoiding dependence is more difficult than it
sounds. If the data are serially correlated it may
be necessary to separate the learning data from the
validation data in every cross-validation iteration
by a buffer of observations that is long enough
to ensure that the learning and validation data
are statistically independent. Even when serial
correlation is not a problem, there are still a

variety ways in which the model fitted to the
learning data can be influenced by the information
in the validation data. For example, in many
analyses the annual mean is first estimated and
removed, and models are subsequently fitted to
the anomalies that remain. If cross-validation is
performed by repeatedly dividing the anomalies
into learning and verification subsets, the model
fitted to the learning subset will also ‘learn’
about the verification subset because the sum
of anomalies across both subsets is constrained
to total zero. The distortion in skill estimates
that are caused by this kind of geometrical
dependence can be large when the validation
subsets are small.13 It is therefore imperative
that the entire process that turns data into
a fitted model, including the calculation of
climatologies, anomalies, and so on, be cross-
validated.

13When the validation subset is of size 1, which is often the
case, the validation anomaly is completely determined by the
sum of anomalies in the learning subset.
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A Notation

Throughout this book we use the following notation.

• Real- and complex-valued univariate random variables are given as bold-faced upper-case letters,
such asA or X.

• A random sample of sizen from a univariate population is generally represented by a collection of
independent and identically distributed (iid) random variables{X1, . . . ,Xn}.
• Thekth order statistic (see [2.6.9]) is denoted byX(k|n).

• Vector random variables are given as bold-faced upper-case letters with a vector on top, for
example, EA or EX. The components of a vector are labelled by subscripts, for instanceEX =
(X1, . . . ,Xm)

T, wherem is the length of the vector.

• A random sample of sizen from a multivariate population is generally represented by a collection
of iid random vectors{ EX1, . . . , EXn}. Thekth element ofEX j is identified asEX jk , EX j,k, or sometimes
( EX j )k.

• Univariate stochastic processes in discrete time are identified by{Xt : t ∈ Z} or sometimes simply
as{Xt }. Multivariate stochastic processes are denoted analogously.

• Realizations of a random variable, for example,B or EB, are denoted by bold faced lower case
letters, such asb or Eb.

• Matrices are denoted with calligraphic letters, such asA orX . An m× n matrix hasm rows andn
columns. The matrix element in thei th row and thej th column is denotedai j .

• Sets of numbers or vectors are denoted by upper case Greek characters, such as2.

• Statistical parameters are denoted by lower case Greek characters, such asθ or α, or upper case
letters in italics, such asT .

• Estimated statistical parameters are denoted with a ‘·̂ ’, as in θ̂ or T̂ .

• Definitions are stated initalics. When new expressions are introduced, they are often written in
italics or enclosed in quotation marks.

• Footnotes contain additional comments that are not important for the development of the arguments
or concepts. They are sometimes used to explain expressions that may be unknown to some readers.
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Special Conventions

• The sample space is given byS. Subsets ofS (i.e., events) are indicated by upper case italics, such
asA or B.

• The probability of an eventA ∈ S is given byP(A).

• Sample sizes are usually denoted byn and the dimension of a vector bym.

• We use the notationfX to represent the probability function or the probability density function of
a continuous random variableX. Likewise, the distribution function is given byFX .

• A vertical bar ‘|’ is used to denote conditioning, as inP(A|B) or fX|Y(x|Y = y).

• The expectation operator, applied to a random variableX, is indicated byE(X).

• Averaging in time or over a sample is indicated by a horizontal over-bar, as inx = 1
n

∑n
i=1 xi .

• The covariance matrix of a random vectorEX is represented byΣ or Σxx. The covariance between
vector elementsXi andX j is denotedσi j .

• The cross-covariance matrix between random vectorsEX and EY is denotedΣxy.

• Correlation is denoted byρ. Estimated correlations are denoted byρ̂ or r .

• Lags in time are denoted byτ .

• The auto-covariance function of a weakly stationary time series{Xt : t ∈ Z} is denotedγ (τ) or
γxx(τ ). The corresponding estimator is denotedγ̂ (τ ), γ̂ xx(τ ), or sometimescxx(τ ).

• The cross-covariance function of a weakly stationary bivariate time series{(Xt , Yt )
T : t ∈ Z} is

denotedγxy(τ ). The corresponding estimator is denotedγ̂ xy(τ ) or cxy(τ ).

• The spectral density function of a weakly stationary time series{Xt : t ∈ Z} is denoted0(ω) or
0xx(τ ). The cross-spectral density density function of a weakly stationary bi-variate time series
{(Xt , Yt )

T : t ∈ Z} is denoted0xy(ω). 3xy(ω) and9xy(ω) denote the co- and quadrature
spectra;Axy(ω) and8xy(ω) denote the amplitude and phase spectra;κxy(ω) denotes the (squared)
coefficiency spectrum.

• The symbolsµx and Eµx are reserved for ensemble mean values of a random variableX and a
random vectorEX respectively. Subscript ‘x’ will often be omitted for convenience.

• The symbolσ represents a standard deviation, its squareσ 2 is a variance. If required for clarity, the
name of the random variable is added as a subscript, for example,σx denotes the standard deviation
of X.

• We write X ∼ N (µ, σ 2) if X is normally distributed with meanµ and varianceσ 2 (see [2.7.3]
and Appendix D). We writeX ∼ B(n, p) and say discrete random variableX has a binomial
distribution whenX is the number of successes inn independent Bernoulli trials with probabilityp
of success on any trial (see [2.2.2]). We writeX ∼ χχχ2(k) if X has aχ2 distribution withk degrees
of freedom (see [2.6.8] and Appendix E). Similarly, we writeX ∼ t(k) if X has at distribution
with k degrees of freedom (see [2.6.8] and Appendix F). We indicate thatX has anF distribution
with k andl degrees of freedom by writingF(k, l ) (see [2.6.10] and Appendix G).

Because of their historical background, the normal distribution and thet distribution are often
called theGaussian distributionandStudent’st distribution, respectively. To preserve simplicity
and clarity in our notation, we do not use these expressions.

• Geographical latitude and longitude are denoted(λ, φ). The vertical coordinate is labelledz or p.

• The symbolλ is also used to identify eigenvalues.
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• The size of a confidence interval is denoted asp̃× 100%, wherẽp is a probability between 0 and 1
(a typical value is 0.95). Significance levels are denoted as(1− p̃)× 100%.

Mathematical Operators

• Thecomplex conjugateof a complex numberx is indicated with a star:x∗.

• Thetranspose of a matrixA or a vectorEx is denoted with a superscript T:AT or ExT.

• The complex conjugateof a complex matrixC or vector Ec is denotedC∗ or Ec∗. The conjugate
transpose operation is indicated byC † or Ec†.

• Thedot product(also scalar or inner product) of two vectorsEa andEb is given by:〈Ea, Eb〉 = EaTEb∗ =
Eb†Ea =∑i ai b∗i .

• Thenorm of a vectorEa is given by‖Ea‖ = √〈Ea, Ea〉 .
• Thesign operatoris given by sgn(x) = −1 if x < 0 and sgn(x) = 1 if x ≥ 0.

• The symbol
( p

q
)

represents p!
q!(p−q)! for integersp,q with p ≥ q, where 0! = 1 and p! =

1× 2× · · · × p.

• TheFourier transformF is an operator that operates on seriesst with
∑∞

t=−∞ |st | <∞, such that
F {s}(ω) = ∑∞

t=−∞ ste−i 2π tω. The result of the Fourier transform,F {s}, is a complex function
defined on the real interval [−1

2,
1
2]. See also Appendix C.

A brief summary of some essentials about linear bases, eigenvalues, and eigenvectors can be found in
Appendix B.

Abbreviations and Technical Expressions

Frequently used abbreviations include:

• AGCM, or simply GCM: (Atmospheric) General Circulation Model. These are detailed models that
describe the atmosphere’s fluid- and thermodynamics; its transport and conversion of moisture; its
radiative properties; and its interaction with the land, water, and ice surfaces of the planet. Most
models include at least a crude interactive land surface processes model. In addition, some AGCMs
are coupled to thermodynamic models of sea ice and the mixed layer of the ocean, while others have
been coupled to fully dynamic Ocean GCMs (OGCMs). AGCMs, OGCMs, and coupled GCMs are
essential tools of climate research.

• AIC: Akaike information Criterion.

• ARMA: auto-regressive moving average.

• BIC: Bayesian information Criterion.

• CCA: Canonical Correlation Analysis. See Chapter 14.

• DJF, MAM, JJA and SON: December-January-February, March-April-May, etc.

• EBW: equivalent bandwidth

• EDF: equivalent degrees of freedom.

• EEOF or simply EOF: (Extended) Empirical Orthogonal Function. See Chapter 13.
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• MCA: Maximum Covariance Analysis. See [14.1.7].

• MJO: Madden-and-Julian Oscillation. See footnote 10 in [1.2.3].

• MLE: Maximum Likelihood Estimator.

• MOS: model output statistics.

• MSSA: Multichannel Singular Spectrum Analysis.

• NAO: North Atlantic Oscillation.

• PIP: Principal Interaction Pattern.

• PNA: Pacific–North American pattern. See [13.5.5] and Section 17.4.

• POP: Principal Oscillation Pattern. See Chapter 15.

• QBO: Quasi-Biennial Oscillation.

• SLP: sea-level pressure.

• SO and ENSO: Southern Oscillation and El Niño/Southern Oscillation. See footnote 1.2 in [1.2.2]
for a short description.

• SOI: Southern Oscillation Index, defined as the pressure difference between Darwin (Australia)
and Papeete (Tahiti). An index defined by sea-surface temperature anomalies in the Central Pacific
is sometimes used as an alternative SOI, and is called the ‘SST index.’ See Figure 1.3.

• SVD: Singular Value Decomposition. See Appendix B.

• SST: sea-surface temperature.

• UTC is time independent of time zone: ‘Universal Time Co-ordinated.’

The word ‘zonal’ denotes the east–west direction, and thezonal windis the eastward component of
the wind. Similarly, ‘meridional’ indicates the north–south direction, and themeridional windis the
northward component of the wind.



B Elements of Linear Analysis

In this subsection we briefly review some basic concepts of linear algebra, particularly linear bases and
eigenvalues and eigenvectors. The notation used is described in Appendix A.

Eigenvalues and Eigenvectors

Let A be anm× m matrix. A real or complex numberλ is said to be aneigenvalueof A if there is a
nonzerom-dimensional vectorEe such that

AEe = λEe . (B.1)

Vector Ee is said to be a (right)eigenvectorof A.1 Eigenvectors are not uniquely determined; since it is
clear that, ifEe is an eigenvector ofA, thenαEe is also for any numberα. However, when an eigenvector
is simple (i.e., any other eigenvector with the same eigenvalue is a scalar multiple of this eigenvector),
then it uniquely determines a direction in them-dimensional vector space.

It is possible that a real matrixA has a complex eigenvalueλ. Then, the eigenvectorEe is also complex
(otherwiseAEe ∈ Rm but λEe∈ Cm). BecauseA = A∗, the complex conjugate eigenvalueλ∗ is an
eigenvalue of the real matrixA as well, with eigenvectorEe ∗:

AEe ∗ = A∗Ee ∗ = (AEe )∗ = (λEe )∗ = λ∗Ee ∗.

A square matrixA is said to beHermitianif A† = A, whereA† is the conjugate transpose ofA. Real
Hermitian matrices aresymmetric. Hermitian matrices have real eigenvalues only.

One eigenvalue may have several linearly independent eigenvectorsEe i . In that case the eigenvectors
are said to bedegeneratesince their directions are no longer uniquely determined. The simplest example
of a matrix with degenerate eigenvectors is the identity matrix. It has only one eigenvalueλ = 1, which
hasm linearly independent eigenvectorsEe i = (0, . . . ,0,1,0, . . . ,0)T with a unit in thei th position. In
general, whenλ is a degenerate eigenvalue with linearly independent eigenvectorsEe i , i = 1, . . . ,mλ,
any linear combination

∑
i αi Ee i is also an eigenvector with eigenvalueλ. Note that a given eigenvector

is associated with only one eigenvalue.

Bases

A collection of vectors{Ee 1, . . . , Ee m} is said to be alinear basisfor anm-dimensional vector spaceV if
for any vectorEa ∈ V there exist coefficientsαi , i = 1, . . . ,m, such thatEa = ∑i αi Ee i . An orthogonal
basis is a linear basis consisting of vectorsEe i that are mutually orthogonal, that is,〈Ee i , Ee j 〉 = 0 if i 6= j .
The set of vectors is calledorthonormalif ‖Ee i ‖ = 1 for all i = 1, . . . ,m.

1A nonzerom-dimensional vectorEf is said to be a left eigenvector ofA if Ef TA = λ Ef T for some nonzeroλ. The left
eigenvectors ofA are right eigenvectors ofAT, and vice versa. We use the termeigenvectorto denote a right eigenvector.
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Orthonormal Transformations

If {Ee 1, . . . , Ee m} is an orthonormal basis andEy =∑i αi Ee i , then

〈Ey, Ee j 〉 =
∑

i

αi 〈Ee i , Ee j 〉 = α j (B.2)

Ey =
∑

i

〈Ey, Ee i 〉Ee i . (B.3)

Equation (B.3) describes a transformation from standard coordinates(y1, . . . , ym)
T to a new set of

coordinates(〈Ey, Ee 1〉, . . . , 〈Ey, Ee m〉)T.
Continue to assume that{Ee 1, . . . , Ee m} is an orthonormal basis. The expectationE

( EY) of a random
vector EY in standard coordinates transforms in the same way as the coordinates:

E
(〈 EY, Ee j 〉) = 〈E( EY), Ee j 〉.

The covariance matrix ofEY, with respect to the standard coordinates,

Σ = E(( EY − µy)( EY − µy)
†
)
,

is related to the covariance matrixΣ′ of the transformed vector(〈 EY, Ee 1〉, . . . , 〈 EY, Ee m〉)T through

Σ′ = P†ΣP

whereP† is the conjugate transpose ofP and the columns ofP are them vectorsEe 1, . . . , Ee m. Note
that, since the basis is orthonormal,P†P = PP† = I. The trace of the covariance matrix (i.e., the sum
of the variances of all components) is invariant under the transformation (B.2):∑

j

σ 2
Y j
= tr(P†ΣP) = tr(Σ) = tr(PP†Σ) = tr(Σ′) =

∑
j

σ 2
α j

whereα j = 〈Y, Ee j 〉.

Square Root of a Positive Definite Symmetric Matrix

The square root of a positive definite symmetric matrixΣ is given byΣ1/2 = 31/2PT, whereP is
an orthonormal matrix of eigenvectors ofΣ, 3 = diag(λ1, . . . , λm) is the corresponding diagonal
matrix of eigenvalues, and31/2 = diag(λ1/21 , . . . , λ

1/2
m ). Then Σ = (Σ1/2)TΣ1/2. The inverse

square root ofΣ is given byΣ−1/2 = P3−1/2, where3−1/2 = diag(λ−1/2
1 , . . . , λ

−1/2
m ). Note that

Σ1/2Σ−1/2 = Σ−1/2Σ1/2 = I and thatΣ−1 = Σ−1/2(Σ−1/2)T. See Graybill [148] for more details.

Normal and Orthonormal Matrices

A normal matrixis a square matrixA for whichA†A = AA†, whereA† is the conjugate transpose of
A. Normal matrices are special because they havem eigenvectors that form a linear basis for the vector
space. Note that Hermitian matrices are normal.

An orthonormal matrixis a square matrixA such that its conjugate transposeA† is its inverse, that
is,AA† = A†A = I.
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Singular Value Decomposition2

Any m× n matrixA can be given aSingular Value Decomposition(SVD)

A = USV† (B.4)

whereU is m× n, S is n× n, V is n× n, andV† is the conjugate transpose ofV. The first min(m,n)
columns ofU and V are orthonormal vectors of dimensionn and m and are calledleft and right
singular vectors, respectively. MatrixS is a diagonal matrix with non-negative elementssii = si ,
i = 1, . . . ,min(m,n), calledsingular values. All other elements ofS are zero.

Whenm≥ n:

• U†U = In, whereIn is then× n identity matrix,

• V†V = VV† = In,

• S = diag(s1, . . . , sn).

Note that

A†U = VSU†U = VS
AV = USV†V = US. (B.5)

Therefore

AA†U = USV†VS = US2

A†AV = VSU†US = VS2.
(B.6)

That is, the columns ofV are the eigenvectors ofA†A, the squares of the singular valuessi are
the eigenvalues ofA†A, and the columns ofU are the eigenvectors ofAA† that correspond to these
eigenvalues.

Whenm< n:
A similar singular value decomposition can be constructed whenm< n. We first write

A† = U ′S ′V ′†

whereU ′ is n×m, S ′ is m×m, andV ′ is m×m, all with properties as described above. Thus

A = V ′S ′U ′†.
Now construct anm× n matrixU = (V ′|E0 · · · E0) by addingn−m columns of zeros toV ′, construct an
n× n matrixS by placingS ′ in the upper left corner and padding the rest of the matrix with zeros, and
construct ann×n matrixV = (U ′|Eg1 · · · Egn−m), whereEg1, . . . , Egn−m are chosen so that the columns of
V form an orthonormal basis for then-dimensional vector space. Then we again have a decomposition
in the form of equation (B.4) that has properties analogous to those described for them≥ n case.

The algorithms in theNumerical Recipes[322] or other software libraries can be used to perform an
SVD, or first solve one of the eigen-equations (B.6) and then calculate the other set of singular vectors
from (B.5). Navarra [290] points out that the first approach is numerically more robust than the second.

An interesting byproduct of this subsection is that the eigenvectors and eigenvalues of a matrix of the
form AA† may be derived through an SVD of the matrixA. When estimatingEmpirical Orthogonal
Functions(see Section 13.3), the eigenvalues of the estimated covariance matrix must be calculated.
This estimated covariance matrix can be written as1

nXX
†, whereX is anm× n matrix with m the

dimension of the random vector andn the number of realizations of the vector in the sample. The
columns ofX consist of deviations from the vector of sample means.

2See also Navarra’s summary [290] or Golub and van Loan’s [143] detailed presentation of the topic .



C Fourier Analysis and Fourier Transform

Fourier Analysis and Fourier Transform

Fourier analysis and the Fourier transform are mathematically different and can not be applied to the
same objects. The two approaches should not be confused.

Fourier analysisis a geometrical concept. It offers two equivalent (i.e., isomorphic) descriptions of a
discrete or continuousperiodicfunction.

• In case of discrete functions(X0, . . . , XT−1) with XT = X0 and T even, the trigonometric
expansion is

Xt =
n−1∑

k=−n

akei 2πkt/T (C.1)

for t = 0, . . . ,T − 1, and the coefficients are given by

ak = 1

T

T−1∑
t=0

Xte
−i 2πkt/T (C.2)

for k = −n, . . . ,n− 1. A similar formula holds for oddT .

• Very similar formulae hold for continuous periodic functions, namely

Xt =
∞∑

k=−∞
akei 2πkt/T (C.3)

for t ∈ [0, T ], with coefficients

ak = 1

T

∫ T

0
Xte
−i 2πkt/T dt (C.4)

for k = 0,±1,±2, . . . ,±∞.

Note that Fourieranalysiscan not be applied to a summable function, such as the auto-covariance
function, since such a function cannotbeperiodic.

TheFourier transformis a mapping from a set of discrete, summable series to the set of real functions
defined on the interval [−12, 1

2]. The auto-covariance function is summable in all ordinary cases, but
stationary time series arenot summable. Ifs is such a summable discrete series, then its Fourier
transformF {s} is a function that, for any realω ∈ [− 1

2,
1
2], takes the value

F {s}(ω) =
∞∑

j=−∞
sj e
−i 2πωj . (C.5)
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The variableω is usually named ‘frequency’. The Fourier transform mapping is invertible,

sj =
∫ 1

2

− 1
2

F {s}(ω)ei 2πω j dω, (C.6)

so that the infinite seriess and the functionF {s} are isomorphic and represent the same information.
Note that a Fouriertransformcan not be obtained for aperiodicfunction.
The definition of the Fourier transform is arbitrary in detail. In the present definition there no minus

sign in the exponent of the ‘reconstruction’ equation (C.6). One could insert a minus sign in equation
(C.6), but then the minus in the ‘decomposition’ equation (C.5) must be removed.

Some Properties of the Fourier Transform

The following computational rules are easily derived from the definition of the Fourier transform.

• The Fourier transform is linear, that is, iff andg are summable series and ifα is a real number,
then:

F {α f + g} = αF { f } + F {g}. (C.7)

If we denote the shift operator with the superscriptτ so that f τt = ft+τ and the reversal operator
with superscriptr so that f r

t = f−t , then

F { f τ }(ω) = e2π i τωF { f }(ω)
F { f r }(ω) = F { f }(−ω) = F { f }∗(ω). (C.8)

• The Fourier transform of a symmetric series (ft = f−t ) is real, and that of an anti-symmetric series
is imaginary.

• Every real or complex seriesft may be decomposed into a symmetric partf s
t = 1

2( ft + f−t ) and
an anti-symmetric partf a

t = 1
2( ft − f−t ). Then, using equation (C.7),

F { f } = F { f s} + F { f a} (C.9)

or, with the finding that the Fourier transform of a symmetric series is real and that of an
anti-symmetric series is imaginary,

Re(F { f }) = F { f s} (C.10)

i Im (F { f }) = F { f a}. (C.11)

• The Fourier transform of a real symmetric series is symmetric, that is,

F { f s}(ω) = F { f s}(−ω) (C.12)

and that of a real anti-symmetric series is anti-symmetric

F { f a}(ω) = −F { f a}(−ω). (C.13)

• If ft is an absolutely summable series and

F( f )t =
∞∑

k=−∞
ak ft+k (C.14)
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whereak is also absolutely summable, then, using equation (C.7) and operation (C.8),

F {F( f )}(ω) =
∞∑

k=−∞
akF

{
f k
}
(ω) =

∑
k

ake2πi τωF { f }(ω) = F {ar }(ω) · F { f }(ω). (C.15)

Similarly

F {Fr ( f )} = F {a} · F { f } (C.16)

F {F∗( f )} = F {a}∗ · F { f }, (C.17)

whereFr ( f )t =
∑

a−k ft+k andF∗( f )t =
∑

a∗k ft+k.

Operator (C.14), which transforms the seriesft into F( f )t , is called alinear filter. Mathematically
it takes the form of aconvolution. Equations (C.15), (C.16), and (C.17)) state that a convolution ‘in
the time domain’ becomes a multiplication ‘in the frequency domain’.



D Normal Density and Cumulative
Distribution Function

Values of the standard normal distributionN (µ, σ 2) with meanµ = 0 and varianceσ 2 = 1. The
density function fN (z) is given by equation (2.25) and the exact cumulative distribution function
FN (z) =

∫ z
−∞ fN (x)dx is given by equation (2.26). The column labelledF∗N (z) contains the

approximated cumulative distribution function given by the right hand side of equation (2.27).

z fN (z) FN (z) F∗N (z) z fN (z) FN (z) F∗N (z) z fN (z) FN (z) F∗N (z)

−3.00 0.004 0.001 0.001−2.00 0.054 0.023 0.020−1.00 0.242 0.159 0.156
−2.95 0.005 0.002 0.001−1.95 0.060 0.026 0.023−0.95 0.254 0.171 0.169
−2.90 0.006 0.002 0.001−1.90 0.066 0.029 0.026−0.90 0.266 0.184 0.182
−2.85 0.007 0.002 0.001−1.85 0.072 0.032 0.029−0.85 0.278 0.198 0.196
−2.80 0.008 0.003 0.002−1.80 0.079 0.036 0.033−0.80 0.290 0.212 0.210

−2.75 0.009 0.003 0.002−1.75 0.086 0.040 0.037−0.75 0.301 0.227 0.225
−2.70 0.010 0.003 0.002−1.70 0.094 0.045 0.041−0.70 0.312 0.242 0.241
−2.65 0.012 0.004 0.003−1.65 0.102 0.049 0.046−0.65 0.323 0.258 0.257
−2.60 0.014 0.005 0.003−1.60 0.111 0.055 0.051−0.60 0.333 0.274 0.273
−2.55 0.016 0.005 0.004−1.55 0.120 0.061 0.057−0.55 0.343 0.291 0.290

−2.50 0.018 0.006 0.005−1.50 0.130 0.067 0.063−0.50 0.352 0.308 0.308
−2.45 0.020 0.007 0.005−1.45 0.139 0.073 0.070−0.45 0.361 0.326 0.326
−2.40 0.022 0.008 0.006−1.40 0.150 0.081 0.078−0.40 0.368 0.345 0.344
−2.35 0.025 0.009 0.007−1.35 0.160 0.088 0.085−0.35 0.375 0.363 0.363
−2.30 0.028 0.011 0.009−1.30 0.171 0.097 0.094−0.30 0.381 0.382 0.382

−2.25 0.032 0.012 0.010−1.25 0.183 0.106 0.103−0.25 0.387 0.401 0.401
−2.20 0.036 0.014 0.011−1.20 0.194 0.115 0.112−0.20 0.391 0.421 0.421
−2.15 0.040 0.016 0.013−1.15 0.206 0.125 0.122−0.15 0.395 0.440 0.440
−2.10 0.044 0.018 0.015−1.10 0.218 0.136 0.133−0.10 0.397 0.460 0.460
−2.05 0.049 0.020 0.017−1.05 0.230 0.147 0.145−0.05 0.398 0.480 0.480

−2.00 0.054 0.023 0.020−1.00 0.242 0.159 0.156 0.00 0.399 0.500 0.500

419



420 Appendix D: Normal Density and Cumulative Distribution Function

z fN (z) FN (z) F∗N (z) z fN (z) FN (z) F∗N (z) z fN (z) FN (z) F∗N (z)

0.00 0.399 0.500 0.500 1.00 0.242 0.841 0.844 2.00 0.054 0.977 0.980
0.05 0.398 0.520 0.520 1.05 0.230 0.853 0.855 2.05 0.049 0.980 0.983
0.10 0.397 0.540 0.540 1.10 0.218 0.864 0.867 2.10 0.044 0.982 0.985
0.15 0.395 0.560 0.560 1.15 0.206 0.875 0.878 2.15 0.040 0.984 0.987
0.20 0.391 0.579 0.579 1.20 0.194 0.885 0.888 2.20 0.036 0.986 0.989

0.25 0.387 0.599 0.599 1.25 0.183 0.894 0.897 2.25 0.032 0.988 0.990
0.30 0.381 0.618 0.618 1.30 0.171 0.903 0.906 2.30 0.028 0.989 0.991
0.35 0.375 0.637 0.637 1.35 0.160 0.912 0.915 2.35 0.025 0.991 0.993
0.40 0.368 0.655 0.656 1.40 0.150 0.919 0.922 2.40 0.022 0.992 0.994
0.45 0.361 0.674 0.674 1.45 0.139 0.927 0.930 2.45 0.020 0.993 0.995

0.50 0.352 0.692 0.692 1.50 0.130 0.933 0.937 2.50 0.018 0.994 0.995
0.55 0.343 0.709 0.710 1.55 0.120 0.939 0.943 2.55 0.016 0.995 0.996
0.60 0.333 0.726 0.727 1.60 0.111 0.945 0.949 2.60 0.014 0.995 0.997
0.65 0.323 0.742 0.743 1.65 0.102 0.951 0.954 2.65 0.012 0.996 0.997
0.70 0.312 0.758 0.759 1.70 0.094 0.955 0.959 2.70 0.010 0.997 0.998

0.75 0.301 0.773 0.775 1.75 0.086 0.960 0.963 2.75 0.009 0.997 0.998
0.80 0.290 0.788 0.790 1.80 0.079 0.964 0.967 2.80 0.008 0.997 0.998
0.85 0.278 0.802 0.804 1.85 0.072 0.968 0.971 2.85 0.007 0.998 0.999
0.90 0.266 0.816 0.818 1.90 0.066 0.971 0.974 2.90 0.006 0.998 0.999
0.95 0.254 0.829 0.831 1.95 0.060 0.974 0.977 2.95 0.005 0.998 0.999

1.00 0.242 0.841 0.844 2.00 0.054 0.977 0.980 3.00 0.004 0.999 0.999

The following table lists the upper tail critical values of the standard normal distribution commonly
used in tests of hypothesis. These values are the solutions ofp̃ = FN (z). Lower tail critical values are
given byZp̃ = −Z1−p̃.

p̃ 0.900 0.950 0.975 0.990 0.995 0.999

Zp̃ 1.282 1.645 1.960 2.326 2.576 3.080



E The χ2 Distribution

The following tables list selected critical values of theχ2 distribution withk degrees of freedom, that
is, the solutionx of

p̃=
∫ x

−∞
t (k−2)/2e−t/2

0(k/2)2k/2
dt

where0 denotes the Gamma function. Theχ2 distribution is discussed in [2.7.8]. Examples ofχχχ2(k)
distributions are plotted in Figure 2.5.

Degrees of freedom

p̃ 1 2 3 4 5 6 7 8 9 10

0.005 0.0000393 0.0100 0.0717 0.207 0.412 0.676 0.989 1.34 1.73 2.16
0.010 0.000157 0.0201 0.115 0.297 0.554 0.872 1.24 1.65 2.09 2.56
0.025 0.000982 0.0506 0.216 0.484 0.831 1.24 1.69 2.18 2.70 3.25
0.050 0.00393 0.103 0.352 0.711 1.15 1.64 2.17 2.73 3.33 3.94
0.100 0.0158 0.211 0.584 1.06 1.61 2.20 2.83 3.49 4.17 4.87

0.250 0.102 0.575 1.21 1.92 2.67 3.45 4.25 5.07 5.90 6.74
0.500 0.455 1.39 2.37 3.36 4.35 5.35 6.35 7.34 8.34 9.34
0.750 1.32 2.77 4.11 5.39 6.63 7.84 9.04 10.2 11.4 12.5
0.900 2.71 4.61 6.25 7.78 9.24 10.6 12.0 13.4 14.7 16.0
0.950 3.84 5.99 7.81 9.49 11.1 12.6 14.1 15.5 16.9 18.3

0.975 5.02 7.38 9.35 11.1 12.8 14.4 16.0 17.5 19.0 20.5
0.990 6.63 9.21 11.3 13.3 15.1 16.8 18.5 20.1 21.7 23.2
0.995 7.88 10.6 12.8 14.9 16.7 18.5 20.3 22.0 23.6 25.2
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422 Appendix E: Theχ2 Distribution

Degrees of freedom

p̃ 11 12 13 14 15 16 17 18 19 20

0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43
0.010 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59
0.050 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 10.1 10.9
0.100 5.58 6.30 7.04 7.79 8.55 9.31 10.1 10.9 11.7 12.4

0.250 7.58 8.44 9.30 10.2 11.0 11.9 12.8 13.7 14.6 15.5
0.500 10.3 11.3 12.3 13.3 14.3 15.3 16.3 17.3 18.3 19.3
0.750 13.7 14.8 16.0 17.1 18.2 19.4 20.5 21.6 22.7 23.8
0.900 17.3 18.5 19.8 21.1 22.3 23.5 24.8 26.0 27.2 28.4
0.950 19.7 21.0 22.4 23.7 25.0 26.3 27.6 28.9 30.1 31.4

0.975 21.9 23.3 24.7 26.1 27.5 28.8 30.2 31.5 32.9 34.2
0.990 24.7 26.2 27.7 29.1 30.6 32.0 33.4 34.8 36.2 37.6
0.995 26.8 28.3 29.8 31.3 32.8 34.3 35.7 37.2 38.6 40.0

Degrees of freedom

p̃ 21 22 23 24 25 26 27 28 29 30

0.005 8.03 8.64 9.26 9.89 10.5 11.2 11.8 12.5 13.1 13.8
0.010 8.90 9.54 10.2 10.9 11.5 12.2 12.9 13.6 14.3 15.0
0.025 10.3 11.0 11.7 12.4 13.1 13.8 14.6 15.3 16.0 16.8
0.050 11.6 12.3 13.1 13.8 14.6 15.4 16.2 16.9 17.7 18.5
0.100 13.2 14.0 14.8 15.7 16.5 17.3 18.1 18.9 19.8 20.6

0.250 16.3 17.2 18.1 19.0 19.9 20.8 21.7 22.7 23.6 24.5
0.500 20.3 21.3 22.3 23.3 24.3 25.3 26.3 27.3 28.3 29.3
0.750 24.9 26.0 27.1 28.2 29.3 30.4 31.5 32.6 33.7 34.8
0.900 29.6 30.8 32.0 33.2 34.4 35.6 36.7 37.9 39.1 40.3
0.950 32.7 33.9 35.2 36.4 37.7 38.9 40.1 41.3 42.6 43.8

0.975 35.5 36.8 38.1 39.4 40.6 41.9 43.2 44.5 45.7 47.0
0.990 38.9 40.3 41.6 43.0 44.3 45.6 47.0 48.3 49.6 50.9
0.995 41.4 42.8 44.2 45.6 46.9 48.3 49.6 51.0 52.3 53.7



F Student’s t Distribution

The following tables list the upper tail critical values of thet distribution withk degrees of freedom,
that is, the solutionx of

p̃=
∫ x

−∞
0((k+ 1)/2)(1+ t2/k)−(k+1)/2

√
kπ 0(k/2)

dt.

The t(k) distribution is discussed in [2.7.9]. Examples oft(k) distributions are plotted in Figure 2.6.
Lower tail critical values are given bytp̃ = −t1−p̃.

p̃

d f 0.750 0.900 0.950 0.975 0.990 0.995 0.999

1 1.000 3.078 6.314 12.706 31.821 63.657 318.313
2 0.816 1.886 2.920 4.303 6.965 9.925 22.327
3 0.765 1.638 2.353 3.182 4.541 5.841 10.214
4 0.741 1.533 2.132 2.776 3.747 4.604 7.173
5 0.727 1.476 2.015 2.571 3.365 4.032 5.893

6 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 1.372 1.812 2.228 2.764 3.169 4.144

11 0.697 1.363 1.796 2.201 2.718 3.106 4.025
12 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.692 1.345 1.761 2.145 2.624 2.977 3.787
15 0.691 1.341 1.753 2.131 2.602 2.947 3.733

16 0.690 1.337 1.746 2.120 2.583 2.921 3.686
17 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.688 1.328 1.729 2.093 2.539 2.861 3.579
20 0.687 1.325 1.725 2.086 2.528 2.845 3.552

21 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.685 1.319 1.714 2.069 2.500 2.807 3.485
24 0.685 1.318 1.711 2.064 2.492 2.797 3.467
25 0.684 1.316 1.708 2.060 2.485 2.787 3.450

26 0.684 1.315 1.706 2.056 2.479 2.779 3.435
27 0.684 1.314 1.703 2.052 2.473 2.771 3.421
28 0.683 1.313 1.701 2.048 2.467 2.763 3.408
29 0.683 1.311 1.699 2.045 2.462 2.756 3.396
30 0.683 1.310 1.697 2.042 2.457 2.750 3.385

423



G The F Distribution

The following tables list upper tail critical values of theF(k, l ) distribution forp̃= 0.90, 0.95, and 0.99.
Lower tail critical values can be obtained by noting that ifFp̃ is thep̃-quantile of theF(k, l ) distribution,
then 1/Fp̃ is the(1− p̃)-quantile of theF(l , k) distribution.

The F(k, l ) distribution is discussed in [2.7.10]. Examples ofF(k, l ) distributions are plotted in
Figure 2.7.

424



Appendix G: TheF Distribution 425

90% quantiles of F(k, l )

k

l 1 2 3 4 5 6 7 8 9 10

1 39.86 49.50 53.59 55.84 57.24 58.20 58.91 59.44 59.86 60.19
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42
10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.01 1.98
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
29 2.89 2.50 2.28 2.15 2.06 1.99 1.94 1.89 1.86 1.83
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.78 1.74 1.71
120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60
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90% quantiles of F(k, l )

k

l 12 15 20 24 30 40 50 60 120 ∞

1 60.71 61.22 61.74 62.00 62.26 62.53 62.69 62.79 63.06 63.33
2 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.49
3 5.22 5.20 5.18 5.18 5.17 5.16 5.16 5.15 5.14 5.13
4 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.76
5 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.12 3.11

6 2.90 2.87 2.84 2.82 2.80 2.78 2.77 2.76 2.74 2.72
7 2.67 2.63 2.59 2.58 2.56 2.54 2.52 2.51 2.49 2.47
8 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.29
9 2.38 2.34 2.30 2.28 2.25 2.23 2.22 2.21 2.18 2.16
10 2.28 2.24 2.20 2.18 2.16 2.13 2.12 2.11 2.08 2.05

11 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 1.97
12 2.15 2.10 2.06 2.04 2.01 1.99 1.97 1.96 1.93 1.90
13 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.85
14 2.05 2.01 1.96 1.94 1.91 1.89 1.87 1.86 1.83 1.80
15 2.02 1.97 1.92 1.90 1.87 1.85 1.83 1.82 1.79 1.76

16 1.99 1.94 1.89 1.87 1.84 1.81 1.79 1.78 1.75 1.72
17 1.96 1.91 1.86 1.84 1.81 1.78 1.76 1.75 1.72 1.69
18 1.93 1.89 1.84 1.81 1.78 1.75 1.74 1.72 1.69 1.68
19 1.91 1.86 1.81 1.79 1.76 1.73 1.71 1.70 1.67 1.63
20 1.89 1.84 1.79 1.77 1.74 1.71 1.69 1.68 1.64 1.61

21 1.87 1.83 1.78 1.75 1.72 1.69 1.67 1.66 1.62 1.59
22 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.60 1.57
23 1.84 1.80 1.74 1.72 1.69 1.66 1.64 1.62 1.59 1.55
24 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.57 1.53
25 1.82 1.77 1.72 1.69 1.66 1.63 1.61 1.59 1.56 1.52

26 1.81 1.76 1.71 1.68 1.65 1.61 1.60 1.58 1.54 1.50
27 1.80 1.75 1.70 1.67 1.64 1.60 1.58 1.57 1.53 1.49
28 1.79 1.74 1.69 1.66 1.63 1.59 1.57 1.56 1.52 1.48
29 1.78 1.73 1.68 1.65 1.62 1.58 1.56 1.55 1.51 1.47
30 1.77 1.72 1.67 1.64 1.61 1.57 1.55 1.54 1.50 1.46

40 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.42 1.38
60 1.66 1.60 1.54 1.51 1.48 1.44 1.41 1.40 1.35 1.29
120 1.60 1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.26 1.19
∞ 1.55 1.49 1.42 1.38 1.34 1.30 1.28 1.24 1.17 1.00
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95% quantiles of F(k, l )

k

l 1 2 3 4 5 6 7 8 9 10

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.32 3.47 3.07 2.84 2.69 2.57 2.49 2.42 2.37 2.32
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 2.00
120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
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95% quantiles of F(k, l )

k

l 12 15 20 24 30 40 50 60 120 ∞

1 243.9 245.9 248.0 249.1 250.1 251.1 251.8 252.2 253.3 254.3
2 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.48 19.49 19.50
3 8.74 8.70 8.66 8.64 8.62 8.59 8.58 8.57 8.55 8.53
4 5.91 5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.63
5 4.68 4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.40 4.36

6 4.00 3.94 3.87 3.84 3.81 3.77 3.75 3.74 3.70 3.67
7 3.57 3.51 3.44 3.41 3.38 3.34 3.32 3.30 3.27 3.23
8 3.28 3.22 3.15 3.12 3.08 3.04 3.02 3.01 2.97 2.93
9 3.07 3.01 2.94 2.90 2.86 2.83 2.80 2.79 2.75 2.71
10 2.91 2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.58 2.54

11 2.79 2.72 2.65 2.61 2.57 2.53 2.51 2.49 2.45 2.40
12 2.69 2.62 2.54 2.51 2.47 2.43 2.40 2.38 2.34 2.30
13 2.60 2.53 2.46 2.42 2.38 2.34 2.31 2.30 2.25 2.21
14 2.53 2.46 2.39 2.35 2.31 2.27 2.24 2.22 2.18 2.13
15 2.48 2.40 2.33 2.29 2.25 2.20 2.18 2.16 2.11 2.07

16 2.42 2.35 2.28 2.24 2.19 2.15 2.12 2.11 2.06 2.01
17 2.38 2.31 2.23 2.19 2.15 2.10 2.08 2.06 2.01 1.96
18 2.34 2.27 2.19 2.15 2.11 2.06 2.04 2.02 1.97 1.92
19 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.93 1.88
20 2.28 2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.90 1.84

21 2.25 2.18 2.10 2.06 2.01 1.96 1.94 1.92 1.87 1.81
22 2.23 2.15 2.07 2.03 1.98 1.94 1.91 1.89 1.84 1.78
23 2.20 2.13 2.05 2.01 1.96 1.91 1.89 1.86 1.81 1.76
24 2.18 2.11 2.03 1.98 1.94 1.89 1.86 1.84 1.79 1.73
25 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82 1.77 1.71

26 2.15 2.07 1.99 1.95 1.90 1.85 1.82 1.80 1.75 1.69
27 2.13 2.06 1.97 1.93 1.88 1.84 1.81 1.79 1.73 1.67
28 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.71 1.65
29 2.10 2.03 1.94 1.90 1.85 1.81 1.78 1.75 1.70 1.64
30 2.09 2.01 1.93 1.89 1.84 1.79 1.76 1.74 1.68 1.62

40 2.00 1.92 1.84 1.79 1.74 1.69 1.66 1.64 1.58 1.51
60 1.92 1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.47 1.39
120 1.83 1.75 1.66 1.61 1.55 1.50 1.46 1.43 1.35 1.25
∞ 1.75 1.67 1.57 1.52 1.46 1.39 1.38 1.32 1.22 1.00
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99% quantiles of F(k, l )

k

l 1 2 3 4 5 6 7 8 9 10

1 4052. 4999.5 5403. 5625. 5764. 5859. 5928. 5982. 6022. 6056.
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32
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99% quantiles of F(k, l )

k

l 12 15 20 24 30 40 50 60 120 ∞

1 6106. 6157. 6209. 6235. 6261. 6287. 6303. 6313. 6339. 6366.
2 99.4 99.43 99.45 99.46 99.47 99.47 99.48 99.48 99.49 99.50
3 27.1 26.87 26.69 26.60 26.50 26.41 26.35 26.32 26.22 26.13
4 14.4 14.20 14.02 13.93 13.84 13.75 13.69 13.65 13.56 13.46
5 9.89 9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.11 9.02

6 7.72 7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.97 6.88
7 6.47 6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.74 5.65
8 5.67 5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.95 4.86
9 5.11 4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.40 4.31
10 4.71 4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.00 3.91

11 4.40 4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.69 3.60
12 4.16 4.01 3.86 3.78 3.70 3.62 3.57 3.54 3.45 3.36
13 3.96 3.82 3.66 3.59 3.51 3.43 3.38 3.34 3.25 3.17
14 3.80 3.66 3.51 3.43 3.35 3.27 3.22 3.18 3.09 3.00
15 3.67 3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.96 2.87

16 3.55 3.41 3.26 3.18 3.10 3.02 2.97 2.93 2.84 2.75
17 3.46 3.31 3.16 3.08 3.00 2.92 2.87 2.83 2.75 2.65
18 3.37 3.23 3.08 3.00 2.92 2.84 2.78 2.75 2.66 2.57
19 3.30 3.15 3.00 2.92 2.84 2.76 2.71 2.67 2.58 2.49
20 3.23 3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.52 2.42

21 3.17 3.03 2.88 2.80 2.72 2.64 2.59 2.55 2.46 2.36
22 3.12 2.98 2.83 2.75 2.67 2.58 2.53 2.50 2.40 2.31
23 3.07 2.93 2.78 2.70 2.62 2.54 2.49 2.45 2.35 2.26
24 3.03 2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.31 2.21
25 2.99 2.85 2.70 2.62 2.54 2.45 2.40 2.36 2.27 2.17

26 2.96 2.81 2.66 2.59 2.50 2.42 2.36 2.33 2.23 2.13
27 2.93 2.78 2.63 2.55 2.47 2.38 2.33 2.29 2.20 2.10
28 2.90 2.75 2.60 2.52 2.44 2.35 2.30 2.26 2.17 2.06
29 2.87 2.73 2.57 2.49 2.41 2.33 2.27 2.23 2.14 2.03
30 2.84 2.70 2.55 2.47 2.39 2.30 2.25 2.21 2.11 2.01

40 2.66 2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.92 1.80
60 2.50 2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.73 1.60
120 2.34 2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.53 1.38
∞ 2.18 2.04 1.88 1.79 1.70 1.59 1.56 1.47 1.32 1.00



H Table-Look-Up Test

The following tables are for use with the ‘Table-Look-Up test’ of equality of means when observations
are serially correlated (see [6.6.9]). Critical levels are listed for one- and two-sided tests at the
significance level given in each heading. The numberα is the estimatedlag-1 correlation;n is the
sample size. Dashes indicate that sample correlations of that particular magnitude were not observed
in the simulations used to create the table. Note that the table was constructed by means of Monte
Carlo simulation (see Zwiers and von Storch [454]) and thus its entries are subject to some sampling
variability.
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Table-Look-Up test: critical values

Significance level: 20% for a two-sided test
10% for a one-sided test

n

α 10 15 20 25 30 45 60 75 90 120 180 240

−0.35 2.30 — — — — — — — — — — —
−0.30 2.34 1.87 — — — — — — — — — —
−0.25 2.41 1.88 1.70 — — — — — — — — —
−0.20 2.46 1.92 1.71 1.62 1.54 — — — — — — —
−0.15 2.52 1.99 1.75 1.64 1.55 1.45— — — — — —

−0.10 2.61 2.04 1.80 1.67 1.59 1.47 1.44 1.42 1.39 1.38 — —
−0.05 2.67 2.09 1.84 1.68 1.64 1.50 1.47 1.44 1.39 1.39 1.36 1.33

0.00 2.75 2.18 1.88 1.72 1.66 1.53 1.49 1.46 1.43 1.40 1.38 1.35
0.05 2.82 2.26 1.97 1.79 1.71 1.60 1.55 1.47 1.50 1.46 1.43 1.42
0.10 2.94 2.35 2.08 1.87 1.76 1.64 1.58 1.55 1.50 1.48 1.46 1.40

0.15 3.10 2.48 2.18 1.96 1.82 1.70 1.66 1.60 1.58 1.57 1.53 1.51
0.20 3.23 2.59 2.27 2.08 1.91 1.77 1.70 1.66 1.64 1.63 1.59 1.57
0.25 3.36 2.75 2.42 2.22 2.05 1.87 1.78 1.75 1.77 1.69 1.69 1.70
0.30 3.48 2.96 2.57 2.36 2.22 1.96 1.91 1.91 1.86 1.86 1.79 1.77
0.35 3.61 3.20 2.79 2.56 2.38 2.12 2.02 2.03 1.96 1.88 1.92 1.90

0.40 3.77 3.46 3.02 2.74 2.61 2.31 2.22 2.13 2.11 2.07 2.00 2.02
0.45 3.95 3.66 3.38 3.05 2.79 2.55 2.36 2.25 2.23 2.19 2.14 2.13
0.50 4.13 3.92 3.71 3.41 3.24 2.73 2.57 2.47 2.46 2.39 2.31 2.30
0.55 4.27 4.23 4.13 3.77 3.55 3.03 2.86 2.65 2.61 2.56 2.50 2.43
0.60 4.45 4.59 4.47 4.26 3.94 3.45 3.14 3.03 2.83 2.75 2.65 2.72

0.65 4.55 4.83 4.85 4.72 4.49 3.89 3.60 3.26 3.16 3.02 2.91 2.94
0.70 4.56 5.17 5.37 5.28 5.25 4.49 4.01 3.74 3.59 3.36 3.27 3.33
0.75 — 5.37 5.71 5.82 5.85 5.35 4.91 4.40 4.14 3.92 3.69 3.55
0.80 — — 5.99 6.49 6.49 6.42 6.00 5.51 5.18 4.67 4.28 4.25
0.85 — — — 6.66 7.26 7.82 7.33 7.28 6.76 6.09 5.41 5.05

0.90 — — — — 7.31 8.77 9.47 9.45 9.01 8.59 7.55 6.97
0.95 — — — — — — 9.93 10.7 11.3 13.2 13.3 12.5

(α = estimated lag-1 correlation;n = sample size)
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Table-Look-Up test: critical values

Significance level: 10% for a two-sided test
5% for a one-sided test

n

α 10 15 20 25 30 45 60 75 90 120 180 240

−0.35 3.46 — — — — — — — — — — —
−0.30 3.55 2.57 — — — — — — — — — —
−0.25 3.68 2.59 2.26 — — — — — — — — —
−0.20 3.80 2.66 2.28 2.15 2.03 — — — — — — —
−0.15 3.85 2.76 2.35 2.17 2.04 1.89— — — — — —

−0.10 4.03 2.89 2.44 2.22 2.09 1.92 1.85 1.83 1.81 1.78 — —
−0.05 4.21 2.98 2.52 2.24 2.13 1.96 1.90 1.88 1.81 1.80 1.73 1.72

0.00 4.34 3.15 2.59 2.31 2.18 2.02 1.92 1.89 1.84 1.83 1.75 1.74
0.05 4.48 3.30 2.76 2.40 2.26 2.09 1.98 1.89 1.94 1.86 1.84 1.84
0.10 4.75 3.47 2.88 2.56 2.38 2.15 2.07 2.01 1.96 1.91 1.89 1.85

0.15 5.07 3.71 3.06 2.69 2.43 2.24 2.14 2.09 2.04 2.02 1.96 1.96
0.20 5.27 3.96 3.26 2.85 2.58 2.33 2.21 2.17 2.14 2.12 2.05 2.03
0.25 5.42 4.25 3.63 3.07 2.79 2.48 2.35 2.28 2.29 2.21 2.19 2.20
0.30 5.63 4.60 3.82 3.32 3.07 2.66 2.53 2.51 2.42 2.37 2.33 2.26
0.35 5.90 5.10 4.20 3.72 3.35 2.85 2.63 2.65 2.56 2.47 2.44 2.43

0.40 6.17 5.56 4.74 4.07 3.67 3.11 2.94 2.81 2.76 2.68 2.56 2.56
0.45 6.44 5.60 5.28 4.59 4.09 3.53 3.19 2.97 2.94 2.84 2.79 2.76
0.50 6.80 6.54 5.93 5.23 4.80 3.79 3.52 3.26 3.19 3.11 3.02 2.95
0.55 7.00 6.93 6.64 5.96 5.31 4.39 3.85 3.52 3.49 3.33 3.25 3.13
0.60 7.15 7.45 7.36 6.96 6.14 5.05 4.29 4.10 3.76 3.61 3.44 3.54

0.65 7.20 7.91 8.03 7.67 7.15 5.80 5.03 4.49 4.24 4.06 3.79 3.78
0.70 7.21 8.39 8.70 8.72 8.50 6.87 5.74 5.30 4.85 4.53 4.34 4.21
0.75 — 8.57 9.13 9.44 9.22 8.43 7.19 6.43 5.80 5.23 4.89 4.67
0.80 — — 9.65 10.3 10.5 10.4 9.11 8.28 7.64 6.55 5.79 5.50
0.85 — — 9.67 10.4 11.4 12.8 11.8 11.4 10.3 9.02 7.40 6.72

0.90 — — — — 11.4 13.8 14.4 14.9 14.9 13.4 10.9 9.58
0.95 — — — — — — 14.9 16.4 17.3 20.3 20.7 19.8

(α = estimated lag-1 correlation;n = sample size)
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Table-Look-Up test: critical values

Significance level: 5% for a two-sided test
2.5% for a one-sided test

n

α 10 15 20 25 30 45 60 75 90 120 180 240

−0.35 5.18 — — — — — — — — — — —
−0.30 5.32 3.44 — — — — — — — — — —
−0.25 5.56 3.47 2.84 — — — — — — — — —
−0.20 5.71 3.61 2.86 2.65 2.50 — — — — — — —
−0.15 5.76 3.75 2.98 2.70 2.50 2.34— — — — — —

−0.10 6.25 3.88 3.11 2.76 2.56 2.34 2.22 2.23 2.19 2.10 — —
−0.05 6.48 4.05 3.19 2.81 2.62 2.40 2.28 2.28 2.19 2.12 2.08 2.05

0.00 6.75 4.44 3.34 2.90 2.71 2.46 2.33 2.28 2.31 2.19 2.11 2.20
0.05 7.17 4.68 3.59 3.05 2.82 2.53 2.37 2.31 2.31 2.25 2.18 2.20
0.10 7.49 5.16 3.82 3.29 2.99 2.65 2.53 2.42 2.34 2.32 2.21 2.21

0.15 7.91 5.55 4.15 3.55 3.12 2.77 2.63 2.52 2.46 2.43 2.38 2.35
0.20 8.38 6.00 4.61 3.74 3.34 2.89 2.70 2.64 2.60 2.59 2.45 2.43
0.25 8.52 6.50 5.20 4.13 3.52 3.07 2.89 2.78 2.76 2.69 2.66 2.66
0.30 8.81 7.17 5.57 4.52 4.05 3.32 3.10 3.05 2.91 2.86 2.76 2.70
0.35 9.11 7.93 6.25 5.23 4.48 3.60 3.28 3.21 3.11 2.92 2.93 3.00

0.40 9.55 8.74 7.19 5.88 5.05 3.96 3.61 3.45 3.34 3.28 3.13 3.11
0.45 9.91 9.36 8.25 6.72 5.92 4.50 3.95 3.75 3.51 3.48 3.36 3.29
0.50 10.4 9.84 9.10 8.00 7.01 4.99 4.36 3.97 3.90 3.78 3.70 3.54
0.55 10.6 10.6 10.2 9.21 7.79 5.82 5.04 4.41 4.28 4.09 4.00 3.85
0.60 10.7 11.2 11.4 11.0 9.22 6.98 5.49 5.31 4.69 4.47 4.18 4.25

0.65 10.6 12.1 12.1 11.9 11.0 8.33 6.68 5.81 5.36 5.04 4.67 4.57
0.70 10.6 12.5 13.2 13.5 13.0 10.1 8.20 7.07 6.25 5.71 5.25 5.04
0.75 — 12.3 13.8 14.2 14.2 13.1 10.7 9.12 7.77 6.58 5.98 5.62
0.80 — — 14.2 15.2 15.6 15.2 13.6 12.1 11.0 8.60 7.22 6.64
0.85 — — — 15.1 16.5 18.8 17.3 16.9 15.4 12.9 9.50 8.37

0.90 — — — — 16.5 20.0 21.2 22.0 21.2 20.0 15.1 12.6
0.95 — — — — — — 20.9 23.4 24.3 27.4 28.8 29.5

(α = estimated lag-1 correlation;n = sample size)
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Table-Look-Up test: critical values

Significance level: 2% for a two-sided test
1% for a one-sided test

n

α 10 15 20 25 30 45 60 75 90 120 180 240

−0.35 8.76 — — — — — — — — — — —
−0.30 9.03 5.02 — — — — — — — — — —
−0.25 9.26 5.12 3.80 — — — — — — — — —
−0.20 9.98 5.43 3.89 3.34 3.07 — — — — — — —
−0.15 10.1 5.67 4.03 3.42 3.10 2.79— — — — — —

−0.10 10.9 5.87 4.21 3.52 3.19 2.82 2.68 2.68 2.63 2.51 — —
−0.05 11.1 6.49 4.38 3.67 3.30 2.97 2.77 2.69 2.61 2.51 2.52 2.45

0.00 11.9 7.35 4.71 3.91 3.44 3.04 2.85 2.76 2.69 2.61 2.50 2.41
0.05 12.4 7.97 5.30 4.07 3.60 3.08 2.89 2.82 2.76 2.69 2.61 2.59
0.10 12.8 8.92 5.72 4.49 3.95 3.28 3.03 2.88 2.78 2.71 2.66 2.64

0.15 14.0 10.1 6.51 4.78 4.26 3.45 3.24 3.08 3.01 2.92 2.83 2.86
0.20 14.6 10.5 7.18 5.28 4.40 3.60 3.39 3.19 3.06 3.09 2.94 2.96
0.25 14.7 11.1 8.59 6.16 4.81 3.81 3.55 3.43 3.27 3.21 3.19 3.23
0.30 15.2 12.8 8.94 6.88 5.68 4.26 3.97 3.72 3.57 3.42 3.31 3.21
0.35 15.4 13.7 10.5 8.26 6.58 4.70 4.05 3.99 3.82 3.51 3.49 3.56

0.40 15.7 14.9 12.8 9.54 7.85 5.26 4.60 4.37 4.07 3.85 3.84 3.79
0.45 16.4 16.3 14.9 11.4 8.92 6.32 5.14 4.73 4.33 4.28 4.07 3.92
0.50 17.1 17.4 16.3 13.8 11.4 6.99 5.81 5.18 4.79 4.58 4.39 4.35
0.55 16.9 17.9 17.3 15.6 12.6 8.73 6.91 5.65 5.34 5.05 4.85 4.57
0.60 17.2 18.6 18.7 18.9 14.8 10.6 7.53 6.78 5.94 5.63 4.94 5.10

0.65 16.9 19.8 19.2 20.6 18.9 14.2 10.1 7.76 7.05 6.24 5.62 5.37
0.70 16.9 19.3 21.3 22.0 22.2 17.6 12.4 9.77 8.35 7.32 6.51 6.12
0.75 — 18.8 21.4 22.1 23.0 21.9 18.1 14.2 11.0 8.56 7.64 6.98
0.80 — — 20.7 22.9 24.6 24.6 21.3 20.0 16.6 12.6 9.15 8.18
0.85 — — — 22.7 25.1 28.6 28.4 30.3 24.6 19.1 12.9 11.1

0.90 — — — — 25.0 27.9 31.0 33.7 33.1 31.1 23.8 17.8
0.95 — — — — — — 29.7 32.2 33.4 37.4 42.3 45.8

(α = estimated lag-1 correlation;n = sample size)
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Table-Look-Up test: critical values

Significance level: 1% for a two-sided test
0.5% for a one-sided test

n

α 10 15 20 25 30 45 60 75 90 120 180 240

−0.35 13.0 — — — — — — — — — — —
−0.30 13.3 6.82 — — — — — — — — — —
−0.25 14.0 7.01 4.70 — — — — — — — — —
−0.20 15.1 7.42 4.83 3.87 3.58 — — — — — — —
−0.15 15.5 7.70 5.12 3.98 3.58 3.20— — — — — —

−0.10 16.2 8.41 5.26 4.16 3.69 3.23 3.02 2.96 2.97 2.82 — —
−0.05 16.2 9.41 5.45 4.47 3.80 3.34 3.20 2.98 2.94 2.83 2.80 2.79

0.00 18.0 10.6 5.91 4.77 4.01 3.48 3.24 3.05 2.99 2.93 2.82 2.67
0.05 19.0 11.6 7.22 5.11 4.21 3.56 3.20 3.20 3.13 3.00 2.92 2.88
0.10 19.2 13.7 8.28 5.80 4.77 3.66 3.43 3.31 3.16 2.99 2.95 2.93

0.15 20.5 14.9 9.44 6.20 5.27 3.96 3.66 3.44 3.37 3.30 3.16 3.13
0.20 20.6 15.5 11.0 7.08 5.37 4.25 3.93 3.60 3.47 3.55 3.29 3.28
0.25 20.5 16.6 12.1 8.80 6.17 4.43 4.04 3.85 3.70 3.65 3.50 3.49
0.30 21.2 18.4 12.7 10.1 7.51 5.25 4.57 4.29 3.93 3.95 3.76 3.59
0.35 21.5 19.8 15.9 12.0 8.80 5.71 4.63 4.50 4.26 3.89 3.90 3.93

0.40 21.8 20.9 19.7 14.1 11.3 6.32 5.44 4.96 4.58 4.36 4.25 4.22
0.45 22.3 23.0 23.0 17.6 13.6 7.65 6.20 5.49 4.92 4.83 4.61 4.41
0.50 23.3 23.7 24.9 19.6 16.4 9.56 7.13 6.00 5.49 5.17 4.90 4.75
0.55 23.3 25.0 25.7 22.6 19.2 12.0 8.75 6.60 6.25 5.82 5.56 5.07
0.60 22.9 25.9 26.3 26.1 22.0 14.5 9.83 8.50 7.01 6.43 5.63 5.62

0.65 22.1 26.8 26.3 28.6 27.6 20.6 14.4 9.76 8.43 7.29 6.43 5.88
0.70 22.0 26.3 27.8 30.8 30.4 26.5 17.8 12.8 10.7 8.69 7.72 7.09
0.75 — 24.3 27.3 29.9 29.7 29.8 25.0 20.6 14.1 10.6 8.97 7.96
0.80 — — 26.8 29.8 31.3 33.5 32.0 28.5 26.8 15.7 10.7 9.92
0.85 — — — 29.3 30.9 36.3 38.4 41.2 35.1 26.5 15.8 13.2

0.90 — — — — 30.8 33.8 39.1 42.9 42.9 41.1 35.8 21.4
0.95 — — — — — — 37.6 39.5 41.4 46.3 54.3 61.5

(α = estimated lag-1 correlation;n = sample size)



I Critical Values for the Mann–Whitney
Test

The following tables are for use with the non-parametric ‘Mann–Whitney test’ for the comparison of the
meansµX andµY of two independent random variablesX andY (see [6.6.11]). The null hypothesis is
either two-sided, H0: µX = µY, or one-sided, H0: µX ≥ µY. The distributions ofX andY are assumed
to be identical apart from their means. Samples{x1, . . . , xnX } and{y1, . . . , ynY } are assumed to consist
of nX andnY independent realizations ofX andY, respectively.

The test statistic S is the sum of the ranks ofx1, . . . , xnX in the combined sample
{x1, . . . , xnX , y1, . . . , ynY }. The j th observationx j has rankRj = k if it is the kth smallest observation
in the combined sample. With this definition,S=∑nX

j=1 Rj .
The following tables give critical thresholdsκp̃ for testing

• the two-sided null hypothesis at the(1− p̃)× 100% significance level; H0: µX = µY is rejected
whenS< κ(1−p̃)/2 or S> Smax− κ(1+p̃)/2, or

• the one-sided null hypothesis at the(1− p̃)/2× 100% significance level; H0: µX ≥ µY is rejected
whenS< κ1−p̃.

The maximum possible value ofS is Smax= nX(nX + 2nY + 1)/2. The smallest possible value ofS is
nX(nX + 1)/2.

Critical values appropriate for one- and two-sided tests at a variety of significance levels are listed.
The critical values were determined by Monte Carlo simulation, with 10 000 independent trials for each
combination ofnX andnY. The sample values for each trial were generated from theU(0,1)distribution.
Asterisks indicate that the null hypothesis can never be rejected with the given combination of sample
sizes and significance level.

For large sample sizes, the approximation (6.37)

κp̃ ≈ nX(nX + nY + 1)/2− Zα
√

nXnY(nX + nY + 1)/12

is useful, whereZα is theα-quantile of the normal distribution (for numerical values see Appendix D)
with α = p̃ in the case of the one-sided test andα = (1+ p̃)/2 in the case of the two-sided test.
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438 Appendix I: Mann–Whitney Test

Significance level: 20% for a two-sided test
10% for a one-sided test

nY

nX 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 * * 4 4 5 5 5 6 6 7 7 8 8 9
3 * 7 8 8 9 10 11 12 12 13 14 15 16 16
4 * 11 12 13 15 16 17 18 19 21 22 23 24 26
5 * 17 18 20 21 23 24 26 28 29 31 33 34 36
6 * 23 25 27 29 31 33 35 37 39 41 43 45 47
7 * 30 33 35 37 40 42 45 47 50 52 54 57 60
8 * 39 42 44 47 50 53 55 59 61 64 67 70 73
9 46 48 51 55 58 61 64 67 71 74 77 81 84 88

10 56 59 62 66 69 73 77 80 84 88 92 95 99 103
11 67 70 74 78 82 86 90 94 99 103 107 111 115 119
12 79 82 87 91 96 100 105 109 114 118 123 128 132 137
13 92 96 101 105 110 115 120 125 130 135 140 146 150 155
14 106 110 116 121 126 131 137 142 147 153 159 164 169 175
15 121 126 131 137 143 148 154 160 166 172 177 183 190 195
16 137 142 148 154 160 166 173 179 185 192 198 204 210 217
17 154 160 166 173 179 186 192 199 206 212 219 226 233 240
18 172 178 185 192 199 205 213 220 227 234 242 249 256 263
19 191 198 205 212 219 227 234 242 249 257 265 272 280 288
20 212 218 226 233 241 249 256 264 273 280 289 297 305 313
21 233 239 247 255 263 272 280 288 297 305 315 323 331 339
22 255 262 270 279 287 296 305 313 322 332 340 348 358 367
23 278 285 294 303 312 321 330 339 349 358 368 377 386 395
24 302 310 319 328 338 347 356 367 376 386 396 406 416 425
25 327 335 345 354 364 374 384 394 404 414 425 436 445 456
26 353 362 372 382 392 402 412 423 433 444 456 466 477 488
27 380 389 399 410 421 431 442 454 464 475 486 498 509 521
28 408 418 428 439 450 462 473 485 496 507 519 530 542 554
29 438 447 458 469 480 492 504 516 528 540 552 564 576 587
30 468 478 489 500 513 524 536 548 562 573 587 599 611 623
31 499 509 521 533 545 558 570 582 595 609 622 634 647 660
32 531 542 554 566 579 592 605 618 631 643 658 670 685 698
33 564 574 588 601 613 627 640 654 667 681 695 709 722 737
34 598 609 622 636 649 663 676 690 705 720 733 748 762 776
35 633 645 658 672 686 700 714 728 743 757 772 787 802 817
36 669 682 695 709 723 738 753 767 783 798 813 828 843 858
37 706 719 732 748 762 777 792 807 822 839 854 869 885 900
38 744 757 772 787 801 817 832 849 864 881 896 912 928 945
39 784 797 811 827 842 858 874 890 906 923 940 956 972 990
40 823 837 853 868 884 901 917 933 950 967 985 1000 1018 1036
41 865 878 894 911 927 943 960 977 995 1012 1029 1046 1064 1081
42 907 921 937 954 971 988 1005 1022 1040 1058 1076 1094 1110 1128
43 950 964 981 998 1015 1032 1050 1068 1085 1104 1122 1141 1159 1178
44 994 1010 1026 1043 1062 1078 1096 1116 1134 1152 1171 1190 1208 1226
45 1039 1054 1072 1089 1108 1126 1144 1163 1182 1201 1220 1239 1258 1279
46 1085 1100 1119 1137 1155 1174 1193 1211 1231 1251 1270 1288 1310 1329
47 1132 1148 1166 1185 1204 1222 1242 1261 1283 1302 1321 1340 1362 1382
48 1180 1196 1215 1234 1253 1273 1293 1313 1333 1353 1373 1393 1414 1437
49 1229 1246 1265 1284 1304 1324 1344 1365 1385 1407 1426 1447 1468 1490
50 1280 1296 1315 1335 1356 1377 1397 1418 1439 1459 1483 1503 1524 1545



Appendix I: Mann–Whitney Test 439

Significance level: 10% for a two-sided test
5% for a one-sided test

nY

nX 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 * * * * 4 4 4 5 5 5 5 6 6 7
3 * * 7 7 8 9 9 10 11 11 12 12 13 14
4 * * 11 12 13 14 15 16 17 18 19 20 21 22
5 * 16 17 18 20 21 22 24 25 26 28 29 31 32
6 * 22 24 25 27 29 30 32 34 36 38 39 41 43
7 * 29 31 33 35 37 40 42 44 46 48 50 53 55
8 * 38 40 42 45 47 50 52 55 57 60 63 65 68
9 * 47 49 52 55 58 61 64 67 70 73 76 79 82

10 * 57 60 63 66 70 73 76 80 83 87 90 93 97
11 * 68 72 75 79 83 86 90 94 98 102 105 110 113
12 * 81 84 88 92 96 100 105 109 113 117 121 126 130
13 * 94 98 102 107 111 116 120 125 129 134 139 144 148
14 * 109 113 117 122 127 132 137 142 147 152 157 162 167
15 * 124 129 134 138 144 149 154 160 165 170 176 182 187
16 * 140 145 150 156 162 167 173 179 185 190 197 202 208
17 * 157 163 168 174 181 187 193 199 205 211 218 224 231
18 * 176 182 187 194 200 207 213 220 227 233 240 247 254
19 * 195 201 208 214 221 228 235 242 249 256 263 271 277
20 211 215 222 229 236 243 250 257 266 272 280 288 296 303
21 232 237 243 251 258 266 273 281 289 297 305 313 321 329
22 254 259 266 274 282 289 298 306 314 324 330 339 348 356
23 277 282 290 298 306 314 323 332 340 349 358 367 376 384
24 301 307 315 323 332 340 349 358 368 376 385 395 404 413
25 326 332 340 349 358 367 376 385 395 404 414 425 434 444
26 352 358 367 376 385 395 404 414 424 434 444 455 464 475
27 379 385 394 404 413 424 434 444 454 465 475 486 497 508
28 407 414 423 433 443 454 465 475 486 496 508 518 529 541
29 436 443 453 463 473 484 495 507 518 529 540 552 563 573
30 466 473 483 494 506 516 527 539 551 562 574 586 598 609
31 497 505 515 527 538 549 561 572 584 597 609 621 633 646
32 529 537 548 559 571 583 595 608 620 631 645 657 672 682
33 562 570 582 594 605 618 630 642 655 668 682 695 707 721
34 596 605 616 628 640 653 666 678 694 707 719 732 746 761
35 631 640 652 665 677 690 703 716 731 744 758 772 787 801
36 667 676 689 701 715 728 742 755 770 785 798 813 827 841
37 704 714 726 740 753 767 781 795 810 825 840 853 868 884
38 742 752 765 779 793 807 821 836 851 867 882 896 911 928
39 781 791 805 818 833 848 862 878 893 909 924 940 955 973
40 821 832 845 860 874 889 905 919 936 952 970 983 1001 1018
41 863 873 887 902 916 932 949 964 980 996 1014 1029 1046 1063
42 905 915 930 945 961 976 992 1008 1025 1043 1060 1077 1092 1110
43 948 959 973 989 1004 1020 1037 1054 1071 1089 1105 1123 1142 1158
44 992 1003 1018 1034 1051 1067 1084 1102 1118 1136 1155 1172 1189 1206
45 1037 1048 1064 1079 1097 1115 1131 1149 1167 1185 1203 1221 1240 1258
46 1083 1094 1110 1127 1144 1161 1180 1197 1215 1234 1254 1270 1291 1310
47 1130 1142 1158 1175 1193 1210 1229 1247 1267 1286 1302 1321 1341 1361
48 1178 1190 1206 1224 1242 1260 1279 1298 1318 1335 1355 1375 1393 1414
49 1227 1240 1256 1274 1292 1311 1329 1350 1369 1390 1407 1428 1448 1468
50 1277 1290 1306 1325 1343 1363 1382 1402 1421 1441 1463 1483 1503 1523



440 Appendix I: Mann–Whitney Test

Significance level: 5% for a two-sided test
2.5% for a one-sided test

nY

nX 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 * * * * * * * 4 4 4 4 5 5 5
3 * * * * 7 8 8 9 9 10 10 10 11 12
4 * * * 11 12 13 14 14 15 16 17 18 19 20
5 * * 16 17 18 19 21 22 23 24 26 27 28 29
6 * * 23 24 25 27 28 30 32 33 35 36 38 40
7 * * 30 32 34 35 37 39 41 43 45 47 49 51
8 * 37 39 41 43 45 47 49 52 54 57 59 61 64
9 * 46 48 51 53 55 58 61 63 66 69 71 74 77

10 * 56 58 61 64 67 70 73 76 79 82 85 89 92
11 * 67 70 73 76 80 83 87 90 93 97 100 104 107
12 * 80 82 86 90 93 97 101 105 108 112 117 120 124
13 * 93 96 100 104 108 112 116 120 125 129 133 137 142
14 * 107 111 115 119 123 128 133 137 142 146 151 156 161
15 * 122 126 131 135 141 145 150 155 159 165 169 176 180
16 * 138 143 147 153 158 163 168 174 179 185 190 195 201
17 * 156 160 165 171 176 182 187 194 199 205 211 217 223
18 * 174 179 184 190 196 202 208 215 220 227 232 240 245
19 * 193 198 204 210 216 222 229 236 242 249 256 263 269
20 * 213 219 225 232 238 244 252 259 266 273 280 287 295
21 * 235 240 247 253 261 268 275 283 289 297 305 312 321
22 * 257 263 270 277 284 292 299 307 316 323 330 339 347
23 * 280 287 294 301 309 317 325 333 342 350 358 366 374
24 * 304 311 318 327 335 343 352 360 368 377 387 395 403
25 * 330 337 345 352 361 370 378 387 396 405 415 424 433
26 * 356 363 371 380 389 398 407 416 426 435 444 454 464
27 * 383 390 399 408 417 427 437 447 456 466 476 487 496
28 * 411 419 428 438 448 457 468 477 487 497 507 519 529
29 * 441 448 458 468 478 488 499 509 519 530 541 553 561
30 * 471 479 489 499 509 520 530 542 552 564 575 587 597
31 * 502 511 521 531 541 553 563 575 586 599 610 622 634
32 * 534 544 553 564 575 587 599 610 621 634 645 659 671
33 * 567 577 588 598 610 622 634 645 657 671 684 695 709
34 * 601 611 622 634 645 657 669 683 696 708 720 733 747
35 * 637 647 658 670 682 695 707 721 732 746 759 774 787
36 * 673 683 695 707 720 732 746 760 773 787 800 814 827
37 * 711 720 733 745 758 772 785 799 814 827 840 855 870
38 * 748 759 772 786 798 813 826 840 854 870 882 897 913
39 * 787 799 811 825 839 852 867 882 897 911 925 940 958
40 * 828 840 853 866 880 895 908 924 940 956 969 987 1003
41 862 869 880 894 908 923 939 953 967 984 1000 1014 1031 1047
42 904 911 924 938 952 966 982 996 1012 1030 1045 1063 1077 1093
43 947 955 967 980 996 1011 1027 1041 1059 1075 1091 1108 1126 1142
44 991 999 1011 1026 1042 1057 1073 1090 1105 1123 1141 1157 1173 1191
45 1036 1043 1057 1071 1088 1105 1120 1136 1154 1171 1188 1205 1224 1241
46 1082 1090 1103 1119 1134 1151 1168 1185 1203 1220 1239 1254 1273 1292
47 1129 1137 1151 1167 1183 1200 1218 1234 1252 1272 1287 1305 1324 1344
48 1177 1186 1199 1215 1232 1250 1267 1285 1304 1319 1340 1358 1376 1395
49 1226 1235 1249 1265 1282 1300 1316 1337 1354 1374 1391 1410 1431 1450
50 1276 1285 1299 1316 1334 1351 1369 1388 1406 1426 1447 1465 1485 1504



Appendix I: Mann–Whitney Test 441

Significance level: 2% for a two-sided test
1% for a one-sided test

nY

nX 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 * * * * * * * * * * * * 4 4
3 * * * * * * 7 7 8 8 8 9 9 10
4 * * * * 11 12 12 13 14 14 15 16 16 17
5 * * * 16 17 18 19 20 20 21 23 23 24 26
6 * * * 23 24 25 26 27 29 30 31 33 34 36
7 * * 29 30 32 33 35 36 38 40 41 43 45 47
8 * * 37 39 41 42 45 46 48 50 52 54 56 59
9 * * 47 49 51 53 55 57 60 62 65 67 69 72

10 * * 57 59 61 64 67 69 72 75 78 80 84 86
11 * * 68 71 74 77 79 83 86 89 92 95 98 101
12 * * 81 83 86 90 93 96 100 103 107 110 114 118
13 * 92 94 97 101 104 108 111 115 119 123 127 130 135
14 * 106 108 112 116 119 123 127 132 136 141 144 149 153
15 * 121 124 127 132 137 140 144 150 154 158 162 168 172
16 * 137 140 144 148 153 157 163 168 173 178 183 187 193
17 * 154 158 162 167 172 177 181 188 193 197 203 209 214
18 * 172 176 180 186 190 197 202 208 213 218 225 232 236
19 * 191 195 200 206 212 217 222 229 236 241 248 254 259
20 * 212 216 221 227 233 238 245 252 258 264 271 278 285
21 * 233 237 243 248 255 262 268 275 280 289 296 302 309
22 * 255 259 266 272 278 286 292 299 308 315 320 329 336
23 * 278 283 289 296 303 310 318 325 333 341 349 356 363
24 * 302 307 314 321 328 336 344 352 359 367 375 383 390
25 * 327 333 340 346 354 363 370 377 387 395 404 413 420
26 * 353 359 365 374 382 390 399 408 417 425 433 443 452
27 * 380 387 394 402 410 419 427 437 446 455 465 475 482
28 * 409 415 422 431 441 449 459 468 476 486 497 506 517
29 * 438 444 453 462 470 480 489 498 509 519 528 539 548
30 * 468 475 483 492 502 511 521 531 542 552 563 573 584
31 * 499 507 515 524 533 544 554 565 576 587 598 609 620
32 * 531 539 547 557 567 578 589 599 610 620 631 644 656
33 * 564 571 581 590 602 613 623 635 646 658 669 680 693
34 * 599 606 616 626 636 648 659 671 684 694 707 718 731
35 * 634 642 652 662 673 685 696 707 720 733 745 760 771
36 * 670 678 688 699 712 722 735 748 759 773 785 798 813
37 * 707 716 726 738 750 762 774 787 802 815 827 840 776
38 * 745 754 764 777 788 804 815 827 841 856 868 882 897
39 * 784 793 804 817 829 840 856 869 884 896 910 925 938
40 * 824 834 845 858 870 884 896 910 927 941 954 970 984
41 * 866 874 887 900 913 927 941 955 969 984 998 1014 1029
42 * 908 918 931 943 956 970 985 999 1015 1029 1047 1059 1074
43 * 951 961 972 986 1001 1015 1028 1044 1059 1074 1091 1109 1125
44 * 995 1005 1017 1032 1046 1061 1077 1092 1107 1123 1141 1155 1172
45 * 1040 1050 1062 1077 1093 1108 1122 1138 1156 1172 1187 1206 1221
46 * 1086 1097 1110 1124 1140 1154 1170 1189 1203 1220 1236 1254 1272
47 * 1133 1145 1158 1173 1189 1205 1221 1237 1255 1271 1286 1305 1325
48 * 1181 1193 1206 1221 1238 1254 1270 1289 1304 1322 1338 1356 1375
49 * 1231 1242 1256 1271 1287 1303 1321 1340 1356 1373 1391 1410 1430
50 * 1281 1291 1307 1322 1338 1355 1371 1390 1409 1426 1445 1465 1485



442 Appendix I: Mann–Whitney Test

Significance level: 0.2% for a two-sided test
0.1% for a one-sided test

nY

nX 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 * * * * * * * * * * * * * *
3 * * * * * * * * * * * * * *
4 * * * * * * * * 11 11 11 12 12 12
5 * * * * * * * 16 16 17 18 18 19 20
6 * * * * * * 22 23 24 25 25 27 27 29
7 * * * * * 29 31 31 32 33 36 35 37 38
8 * * * * 37 38 40 41 42 43 45 46 48 49
9 * * * * 47 48 51 50 54 54 57 57 60 62

10 * * * 56 57 59 61 62 63 67 68 71 73 74
11 * * * 67 68 71 73 75 76 80 81 84 87 89
12 * * * 79 81 84 85 88 91 94 97 98 102 105
13 * * * 92 94 97 100 103 106 109 110 114 118 121
14 * * * 107 109 112 115 118 122 124 129 133 134 138
15 * * * 122 126 129 131 134 139 144 147 147 153 157
16 * * 137 139 142 145 147 153 155 162 165 168 172 178
17 * * 154 157 160 163 168 170 177 181 182 189 192 199
18 * * 172 174 177 183 186 190 197 201 203 209 214 221
19 * * 191 195 197 201 206 210 215 221 227 232 235 242
20 * * 211 214 219 223 228 232 239 241 249 253 261 266
21 * * 233 236 239 244 249 254 259 262 271 279 283 293
22 * * 255 258 262 268 274 277 286 294 297 303 306 316
23 * * 278 283 285 292 298 303 308 315 320 327 334 342
24 * * 303 306 311 315 322 327 336 343 347 353 361 365
25 * * 328 331 336 343 350 355 361 369 375 383 392 396
26 * * 354 357 363 369 375 382 392 398 405 413 420 424
27 * * 381 385 390 396 404 409 418 427 433 445 452 455
28 * * 409 414 420 428 434 442 450 453 460 474 484 488
29 * * 437 444 448 454 464 469 480 489 495 499 513 520
30 * * 468 473 480 488 492 503 511 521 532 543 546 549
31 * * 500 505 510 517 530 537 546 553 564 574 579 591
32 * * 531 536 543 554 560 569 577 588 597 605 620 626
33 * * 565 570 578 584 596 600 614 624 632 642 653 662
34 * * 599 606 610 623 631 637 651 661 670 680 687 700
35 * * 634 639 647 655 662 677 684 697 701 717 728 734
36 * * 670 676 685 697 704 711 725 733 748 761 764 785
37 * * 707 715 722 732 744 753 762 773 784 796 809 823
38 * * 746 753 762 773 781 794 802 818 825 836 850 865
39 * * 785 792 801 810 821 832 845 852 866 883 894 899
40 * * 825 831 841 853 867 871 886 899 912 923 939 944
41 * 862 865 874 884 891 905 918 927 941 957 966 979 996
42 * 904 909 917 926 937 949 957 971 987 997 1016 1024 1039
43 * 947 953 959 969 980 991 1002 1017 1033 1040 1055 1074 1089
44 * 991 996 1003 1016 1024 1040 1050 1066 1079 1090 1105 1122 1137
45 * 1036 1040 1049 1058 1071 1083 1095 1113 1123 1137 1153 1172 1183
46 * 1082 1087 1095 1106 1116 1129 1141 1155 1173 1186 1198 1219 1232
47 * 1129 1134 1143 1156 1168 1180 1195 1207 1220 1242 1250 1270 1284
48 * 1177 1183 1191 1202 1217 1231 1247 1259 1273 1284 1304 1310 1332
49 * 1226 1231 1240 1251 1264 1277 1290 1311 1327 1334 1356 1375 1386
50 * 1276 1282 1291 1304 1316 1327 1340 1359 1373 1391 1409 1423 1445



J Quantiles of the Squared-ranks Test
Statistic

Critical values for the sum of squared-ranks test for the comparison of two variances (see [6.7.4])
computed from samples of sizenX andnY. The test statistic isT = ∑nX

i=1 R2
i , whereRi is the rank

of |xi − x| amongst the combined sample of absolute deviations

{|x1− x|, . . . , |xnX − x|, |y1− y|, . . . , |ynY − y|}.
WhennX or nY is greater than 10, the(1− p̃)-critical values can be approximated by

T(1−p̃) =
nY(N + 1)(2N + 1)

6
− Zp̃

√
nXnY(N + 1)(2N + 1)(8N + 1)

180
.

whereZp̃ is thep̃-quantile of the standard normal distribution (Appendix D). After Conover [88, Table
A9, pp. 454–455].
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444 Appendix J: Quantiles of the Squared-ranks Test Statistic

nX

nY p 3 4 5 6 7 8 9 10

0.005 14 14 14 14 14 14 21 21
0.010 14 14 14 14 21 21 26 26
0.025 14 14 21 26 29 30 35 41
0.050 21 21 26 30 38 42 49 54
0.100 26 29 35 42 50 59 69 77

3
0.900 65 90 117 149 182 221 260 305
0.950 70 101 129 161 197 238 285 333
0.975 77 110 138 170 213 257 308 362
0.990 77 110 149 194 230 285 329 394
0.995 77 110 149 194 245 302 346 413

0.005 30 30 30 39 39 46 50 54
0.010 30 30 39 46 50 51 62 66
0.025 30 39 50 54 63 71 78 90
0.050 39 50 57 66 78 90 102 114
0.100 50 62 71 85 99 114 130 149

4
0.900 111 142 182 222 270 321 375 435
0.950 119 154 197 246 294 350 413 476
0.975 126 165 206 255 311 374 439 510
0.990 126 174 219 270 334 401 470 545
0.995 126 174 230 281 351 414 494 567

0.005 55 55 66 75 79 88 99 110
0.010 55 66 75 82 90 103 115 127
0.025 66 79 88 100 114 130 145 162
0.050 75 88 103 120 135 155 175 195
0.100 87 103 121 142 163 187 212 239

5
0.900 169 214 264 319 379 445 514 591
0.950 178 228 282 342 410 479 558 639
0.975 183 235 297 363 433 508 592 680
0.990 190 246 310 382 459 543 631 727
0.995 190 255 319 391 478 559 654 754

0.005 91 104 115 124 136 152 167 182
0.010 91 115 124 139 155 175 191 210
0.025 115 130 143 164 184 208 231 255
0.050 124 139 164 187 211 239 268 299
0.100 136 163 187 215 247 280 315 352

6
0.900 243 300 364 435 511 592 679 772
0.950 255 319 386 463 545 634 730 831
0.975 259 331 406 486 574 670 771 880
0.990 271 339 424 511 607 706 817 935
0.995 271 346 431 526 624 731 847 970



Appendix J: Quantiles of the Squared-ranks Test Statistic 445

nX

nY p 3 4 5 6 7 8 9 10

0.005 140 155 172 195 212 235 257 280
0.010 155 172 191 212 236 260 287 315
0.025 172 195 217 245 274 305 338 372
0.050 188 212 240 274 308 344 384 425
0.100 203 236 271 308 350 394 440 489

7
0.900 335 407 487 572 665 764 871 984
0.950 347 428 515 608 707 814 929 1051
0.975 356 443 536 635 741 856 979 1108
0.990 364 456 560 664 779 900 1032 1172
0.995 371 467 571 683 803 929 1067 1212

0.005 204 236 260 284 311 340 368 401
0.010 221 249 276 309 340 372 408 445
0.025 249 276 311 345 384 425 468 513
0.050 268 300 340 381 426 473 524 576
0.100 285 329 374 423 476 531 590 652

8
0.900 447 536 632 735 846 965 1091 1224
0.950 464 560 664 776 896 1023 1159 1303
0.975 476 579 689 807 935 1071 1215 1368
0.990 485 599 716 840 980 1124 1277 1442
0.995 492 604 731 863 1005 1156 1319 1489

0.005 304 325 361 393 429 466 508 549
0.010 321 349 384 423 464 508 553 601
0.025 342 380 423 469 517 570 624 682
0.050 365 406 457 510 567 626 689 755
0.100 390 444 501 561 625 694 766 843

9
0.900 581 689 803 925 1056 1195 1343 1498
0.950 601 717 840 972 1112 1261 1420 1587
0.975 615 741 870 1009 1158 1317 1485 1662
0.990 624 757 900 1049 1209 1377 1556 1745
0.995 629 769 916 1073 1239 1417 1601 1798

0.005 406 448 486 526 573 620 672 725
0.010 425 470 513 561 613 667 725 785
0.025 457 505 560 616 677 741 808 879
0.050 486 539 601 665 734 806 883 963
0.100 514 580 649 724 801 885 972 1064

10
0.900 742 866 1001 1144 1296 1457 1627 1806
0.950 765 901 1045 1197 1360 1533 1715 1907
0.975 778 925 1078 1241 1413 1596 1788 1991
0.990 793 949 1113 1286 1470 1664 1869 2085
0.995 798 961 1130 1314 1505 1708 1921 2145



K Quantiles of the Spearman Rank
Correlation Coefficient

Critical values for a non-parametric test at the(1− p̃)× 100% significance level of the null hypothesis
that two random variables are uncorrelated using the Spearman rank correlation coefficient (8.8) (see
[8.2.3]). Approximate quantiles forn > 30 are given byZp̃/

√
n− 1, whereZp̃ is the corresponding

quantile of the standard normal distribution (see Appendix D). After Conover [88, Table A10, p. 456].

p

n 0.900 0.950 0.975 0.990 0.995 0.999

4 0.8000 0.8000 — — — —
5 0.7000 0.8000 0.9000 0.9000 — —
6 0.6000 0.7714 0.8286 0.8857 0.9429 —
7 0.5357 0.6789 0.7450 0.8571 0.8929 0.9643
8 0.5000 0.6190 0.7143 0.8095 0.8571 0.8929
9 0.4667 0.5833 0.6833 0.7667 0.5167 0.9000

10 0.4424 0.5515 0.6364 0.7333 0.7818 0.8667
11 0.4182 0.5273 0.6091 0.7000 0.7455 0.8364
12 0.3986 0.4965 0.5804 0.6713 0.7273 0.8182
13 0.3791 0.4780 0.5549 0.6429 0.6978 0.7912
14 0.3626 0.4593 0.5341 0.6220 0.6747 0.7670
15 0.3500 0.4429 0.5179 0.6000 0.6536 0.7464
16 0.3382 0.4265 0.5000 0.5824 0.6324 0.7265
17 0.3260 0.4118 0.4853 0.5637 0.6152 0.7083
18 0.3148 0.3994 0.4716 0.5480 0.5975 0.6904
19 0.3070 0.3895 0.4579 0.5333 0.5825 0.6737
20 0.2977 0.3789 0.4451 0.5203 0.5684 0.6586
21 0.2909 0.3688 0.4351 0.5078 0.5545 0.6455
22 0.2829 0.3597 0.4241 0.4963 0.5426 0.6318
23 0.2767 0.3518 0.4150 0.4852 0.5306 0.6186
24 0.2704 0.3435 0.4061 0.4748 0.5200 0.6070
25 0.2646 0.3362 0.3977 0.4654 0.5100 0.5962
26 0.2588 0.3299 0.3894 0.4564 0.5002 0.5856
27 0.2540 0.3236 0.3822 0.4481 0.4915 0.5757
28 0.2490 0.3175 0.3749 0.4401 0.4828 0.5660
29 0.2443 0.3113 0.3685 0.4320 0.4744 0.5567
30 0.2400 0.3059 0.3620 0.4251 0.4665 0.5479
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In [18.2.6], we derived an expression for the probability of a future eventP conditional on a forecastF.
Here we present tables of these conditional probabilitiesP(P> p | F > f) for various correlationsρF P

and for various numbersp andf. It is assumed that both the forecastF and the verifying analysisP have
been normalized so that they are distributed as standard normal random variables. The headline in each
table gives the value ofp.

P(P> 0 | F > f)
P(P≥ 0) = 0.50

ρ

f 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30 0.20 0.10

0.0 0.91 0.87 0.83 0.81 0.78 0.76 0.74 0.71 0.70 0.68 0.66 0.64 0.61 0.57 0.54
0.2 0.96 0.92 0.88 0.85 0.82 0.80 0.77 0.75 0.72 0.70 0.68 0.66 0.62 0.58 0.55
0.4 0.99 0.95 0.92 0.89 0.86 0.83 0.81 0.78 0.75 0.73 0.71 0.68 0.64 0.60 0.55
0.6 1.00 0.98 0.95 0.92 0.89 0.87 0.84 0.81 0.78 0.76 0.73 0.71 0.66 0.61 0.56
0.8 1.00 0.99 0.97 0.95 0.92 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.67 0.62 0.56

1.0 1.00 1.00 0.99 0.97 0.95 0.92 0.90 0.87 0.84 0.81 0.78 0.75 0.69 0.63 0.57
1.2 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.89 0.86 0.84 0.80 0.77 0.71 0.64 0.58
1.4 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.91 0.89 0.86 0.83 0.80 0.73 0.66 0.58
1.6 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.93 0.91 0.88 0.85 0.82 0.74 0.67 0.59
1.8 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.90 0.87 0.84 0.76 0.68 0.60

2.0 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.89 0.85 0.78 0.69 0.60
2.2 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.90 0.87 0.80 0.71 0.61
2.4 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.89 0.81 0.72 0.62
2.6 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.90 0.83 0.73 0.62
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P(P> 0.5 | F > f)
P(P≥ 0.5) = 0.31

ρ

f 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30 0.20 0.10

0.0 0.63 0.61 0.59 0.57 0.55 0.53 0.51 0.50 0.48 0.46 0.45 0.43 0.40 0.37 0.35
0.2 0.72 0.69 0.66 0.63 0.60 0.58 0.56 0.53 0.51 0.49 0.47 0.46 0.42 0.38 0.35
0.4 0.82 0.77 0.73 0.69 0.66 0.63 0.60 0.57 0.55 0.52 0.50 0.48 0.44 0.40 0.36
0.6 0.91 0.84 0.79 0.75 0.71 0.68 0.64 0.61 0.58 0.56 0.53 0.50 0.45 0.41 0.36
0.8 0.96 0.91 0.85 0.81 0.77 0.73 0.69 0.66 0.62 0.59 0.56 0.53 0.47 0.42 0.37

1.0 0.99 0.95 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.63 0.59 0.56 0.49 0.43 0.37
1.2 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.51 0.44 0.38
1.4 1.00 0.99 0.97 0.94 0.90 0.86 0.82 0.78 0.74 0.69 0.65 0.61 0.53 0.46 0.39
1.6 1.00 1.00 0.98 0.96 0.93 0.89 0.85 0.81 0.77 0.73 0.68 0.64 0.55 0.47 0.39
1.8 1.00 1.00 0.99 0.98 0.95 0.92 0.89 0.85 0.80 0.76 0.71 0.67 0.58 0.49 0.40

2.0 1.00 1.00 1.00 0.99 0.97 0.94 0.91 0.88 0.83 0.79 0.74 0.70 0.60 0.50 0.41
2.2 1.00 1.00 1.00 0.99 0.98 0.96 0.93 0.90 0.86 0.82 0.77 0.72 0.62 0.51 0.41
2.4 1.00 1.00 1.00 1.0 0.99 0.97 0.95 0.92 0.89 0.84 0.80 0.75 0.64 0.53 0.42
2.6 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.94 0.91 0.87 0.82 0.77 0.66 0.54 0.43

P(P> 1.0 | F > f)
P(P≥ 1.0) = 0.16

ρ

f 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30 0.20 0.10

0.0 0.33 0.33 0.32 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.22 0.20 0.18
0.2 0.39 0.39 0.38 0.36 0.35 0.34 0.33 0.31 0.30 0.29 0.27 0.26 0.24 0.21 0.19
0.4 0.47 0.46 0.44 0.42 0.40 0.38 0.36 0.35 0.33 0.31 0.30 0.28 0.25 0.22 0.19
0.6 0.58 0.55 0.51 0.48 0.46 0.43 0.41 0.38 0.36 0.34 0.32 0.30 0.26 0.23 0.20
0.8 0.70 0.64 0.60 0.56 0.52 0.48 0.45 0.42 0.40 0.37 0.35 0.32 0.28 0.24 0.20

1.0 0.82 0.74 0.68 0.63 0.58 0.54 0.50 0.47 0.44 0.40 0.38 0.35 0.30 0.25 0.20
1.2 0.92 0.83 0.76 0.70 0.65 0.60 0.56 0.52 0.48 0.44 0.41 0.37 0.31 0.26 0.21
1.4 0.97 0.90 0.83 0.77 0.71 0.66 0.61 0.56 0.52 0.48 0.44 0.40 0.33 0.27 0.21
1.6 0.99 0.95 0.89 0.83 0.77 0.72 0.66 0.61 0.56 0.52 0.47 0.43 0.35 0.28 0.22
1.8 1.00 0.98 0.93 0.88 0.83 0.77 0.71 0.66 0.61 0.55 0.51 0.46 0.37 0.29 0.22

2.0 1.00 0.99 0.96 0.92 0.87 0.82 0.76 0.71 0.65 0.59 0.54 0.49 0.39 0.31 0.23
2.2 1.00 1.00 0.98 0.95 0.91 0.86 0.81 0.75 0.69 0.63 0.58 0.52 0.41 0.32 0.23
2.4 1.00 1.00 0.99 0.97 0.94 0.90 0.85 0.79 0.73 0.67 0.61 0.55 0.44 0.33 0.24
2.6 1.00 1.00 1.00 0.98 0.96 0.92 0.88 0.83 0.77 0.71 0.64 0.58 0.46 0.34 0.25
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P(P> 1.5 | F > f)
P(P≥ 1.5) = 0.0.7

ρ

f 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30 0.20 0.10

0.0 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.11 0.10 0.09 0.08
0.2 0.17 0.17 0.17 0.16 0.16 0.16 0.15 0.15 0.14 0.13 0.13 0.12 0.11 0.10 0.08
0.4 0.20 0.20 0.20 0.19 0.19 0.18 0.17 0.17 0.16 0.15 0.14 0.13 0.12 0.10 0.08
0.6 0.26 0.25 0.24 0.24 0.22 0.21 0.20 0.19 0.18 0.17 0.16 0.15 0.13 0.11 0.09
0.8 0.33 0.32 0.30 0.29 0.27 0.25 0.23 0.22 0.20 0.19 0.17 0.16 0.13 0.11 0.09

1.0 0.43 0.40 0.37 0.35 0.32 0.30 0.27 0.25 0.23 0.21 0.19 0.18 0.15 0.12 0.09
1.2 0.56 0.51 0.46 0.42 0.38 0.35 0.32 0.29 0.26 0.24 0.22 0.20 0.16 0.12 0.09
1.4 0.71 0.62 0.55 0.50 0.45 0.40 0.37 0.33 0.30 0.27 0.24 0.22 0.17 0.13 0.10
1.6 0.84 0.73 0.65 0.58 0.52 0.47 0.42 0.38 0.34 0.30 0.27 0.24 0.18 0.14 0.10
1.8 0.93 0.83 0.74 0.66 0.59 0.53 0.47 0.42 0.38 0.33 0.30 0.26 0.20 0.15 0.10

2.0 0.98 0.90 0.82 0.74 0.66 0.60 0.53 0.47 0.42 0.37 0.33 0.28 0.21 0.15 0.11
2.2 0.99 0.95 0.88 0.81 0.73 0.66 0.59 0.53 0.47 0.41 0.36 0.31 0.23 0.16 0.11
2.4 1.00 0.98 0.93 0.87 0.79 0.72 0.65 0.58 0.51 0.45 0.39 0.34 0.25 0.17 0.11
2.6 1.00 0.99 0.96 0.91 0.85 0.78 0.70 0.63 0.56 0.49 0.43 0.37 0.26 0.18 0.12

P(P> 2.0 | F > f)
P(P≥ 2.0) = 0.02

ρ

f 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30 0.20 0.10

0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03
0.2 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.03
0.4 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.03
0.6 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.05 0.04 0.03
0.8 0.11 0.11 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.06 0.05 0.04 0.03

1.0 0.15 0.15 0.15 0.14 0.13 0.12 0.11 0.10 0.10 0.09 0.08 0.07 0.06 0.04 0.03
1.2 0.21 0.20 0.19 0.18 0.16 0.15 0.14 0.13 0.11 0.10 0.09 0.08 0.06 0.05 0.03
1.4 0.29 0.27 0.25 0.23 0.21 0.19 0.17 0.15 0.13 0.12 0.11 0.09 0.07 0.05 0.04
1.6 0.41 0.37 0.33 0.29 0.26 0.23 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04
1.8 0.57 0.48 0.42 0.36 0.32 0.28 0.24 0.21 0.19 0.16 0.14 0.12 0.09 0.06 0.04

2.0 0.73 0.61 0.52 0.45 0.39 0.34 0.29 0.25 0.22 0.19 0.16 0.13 0.09 0.06 0.04
2.2 0.86 0.73 0.62 0.53 0.46 0.40 0.34 0.29 0.25 0.21 0.18 0.15 0.10 0.07 0.04
2.4 0.94 0.83 0.72 0.62 0.54 0.46 0.40 0.34 0.29 0.24 0.20 0.17 0.11 0.07 0.04
2.6 0.98 0.90 0.81 0.71 0.62 0.53 0.46 0.39 0.33 0.28 0.23 0.19 0.12 0.08 0.04
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P(P> 2.5 | F > f)
P(P≥ 2.5) = 0.01

ρ

f 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.30 0.20 0.10

0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.6 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.8 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01

1.0 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.01
1.2 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.01 0.01
1.4 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.02 0.02 0.01
1.6 0.12 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.05 0.04 0.04 0.03 0.02 0.01
1.8 0.18 0.17 0.16 0.14 0.12 0.11 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

2.0 0.28 0.25 0.22 0.19 0.16 0.14 0.12 0.10 0.09 0.07 0.06 0.05 0.03 0.02 0.01
2.2 0.42 0.35 0.29 0.25 0.21 0.18 0.15 0.13 0.10 0.09 0.07 0.06 0.04 0.02 0.01
2.4 0.59 0.47 0.39 0.32 0.27 0.22 0.19 0.15 0.13 0.10 0.08 0.07 0.04 0.02 0.01
2.6 0.76 0.60 0.49 0.41 0.34 0.28 0.23 0.19 0.15 0.12 0.10 0.08 0.05 0.03 0.01



M Some Proofs of Theorems and Equations

In this Appendix we have put together the proofs of some theorems given in main part of this monograph.
The proofs will be of little interest for most readers, and they are given here for the sake of completeness.

Proof of Theorem [11.1.10]

The existence and uniqueness of an AR(p) process that satisfies (11.11) are results of the invertibility of
the matrixL p[ Eγ ] used with the Yule–Walker equations (11.2).

For the proof of the recursive formulae (11.12, 11.13) we resort to the technique of ‘complete
induction.’ In the first step we show that (11.13) holds forp = 1 and 2, and that (11.12) holds forp = 2.
In the second step, the ‘induction step,’ we show that we may infer from the validity of (11.13, 11.12)
for k ≤ p the validity of (11.13, 11.12) fork = p+ 1.

For p = 1 the trivial solution of the Yule–Walker equations isα1
1 = ρ(1)/ρ(0)which is (11.13) for

p = 1 with ρ1(1)= ρ(1) after (11.11). Forp = 2 the Yule–Walker equations are

α2
1 + ρ2(1)α

2
2 = ρ1(1) (M.1)

ρ2(1)α
2
1 + α2

2 = ρ2(2). (M.2)

If we insert into (M.1)α1
1 = ρ(1)we findα2

1 = α1
1−α2

2α
1
1 which is just the equation (11.12) forp = 2.

From (M.2) we infer the validity of (M.3) forp = 2.
In the ‘induction step’ we show that we solve the Yule–Walker equationsL p+1(Eα p+1) = Eγp+1 with

the process parametersEα p+1 as inferred through (11.12) and (11.13) from the set of process parameters
Eα p, which satisfy the Yule–Walker equationsL p(Eα p) = Eγp. After division withγ (0) these Yule–Walker
equations are written in terms of the auto-correlation functionρ as

p∑
k=1

α
p
k ρ(k− j )− ρ( j ) = 0, (M.3)

for j = 1 . . . p. After replacement ofj by p− j and relabellingp+ 1− i = k and the exploitation of
ρ(i ) = ρ(−i ):

p∑
i=1

α
p
p−i ρ(i − j )− ρ(p+ 1− j ) = 0.

After multiplication withα p+1
p+1 6= 0 and subtraction of (M.3):

0 =
p∑

k=1

α
p
k ρ(k− j )− ρ( j )− α p+1

p+1

[
p∑

i=1

α
p
p−i ρ(i − j )− ρ(p+ 1− j )

]

=
p∑

k=1

[
α

p
k − α p+1

p+1α
p
p−k

]
ρ(k− j )+ α p+1

p+1ρ(p+ 1− j )− ρ( j )

the application of (11.12) yields the firstj . . . p lines of the Yule–Walker equationsL p+1[Eα p+1] =
Eγp+1:

p∑
k=1

α
p+1
k ρ(k− j )+ α p+1

p+1ρ(p+ 1− j ) = ρ( j ).
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To get the last line of the Yule–Walker equations, with row indexp+ 1, (11.13) is rewritten such that

α
p+1
p+1

[
1−

p∑
k=1

α
p
p+1−kρ(p+ 1− k)

]
+

p∑
k=1

α
p
k ρ(p+ 1− k) = ρ(p+ 1).

Then

p∑
k=1

[
α

p
k − α p+1

p+1α
p
p+1−k

]
ρ(p+ 1− k)+ α p+1

p+1ρ(0)= ρ(p+ 1)

so that, by means of (11.12),

p∑
k=1

α
p+1
k ρ(k− (p+ 1))+ α p+1

p+1ρ(p+ 1− (p+ 1))= ρ(p+ 1),

which is just the(p+ 1)th line of the Yule–Walker equations for the AR(p+ 1) process.

Proof of [13.2.5]

Let us assumeX T∗X Ee = λEe . Then

λX Ee = X (X T∗X )Ee = (XX T∗)(X Ee )
that is,X Ee is an eigenvector ofXX T∗ if X Ee 6= 0.X Ee = 0 would implyX T∗X Ee = 0 and thusλEe = 0
contradicting the assumption ofλ 6= 0.

Let us now assume thatEe k andEe j are two linearly independent eigenvectors to the same eigenvalue.
Then it has to be shown thatX Ee k andX Ee j , j 6= k are linearly independent as well. Ifα j , αk are two
numbers withαkX Ee k+α jX Ee j = 0, then 0= αkX T∗X Ee k+α jX T∗X Ee j = λ(αkEe k+α j Ee j ) since both
eigenvectors belong to the same eigenvalue. Sinceλ 6= 0 : αkEe j + α j Ee j = 0. Since two eigenvectors
Ee k and Ee j are linearly independent it follows thatαk = α j = 0 so thatX Ee k andX Ee j are linearly
independent.

Proof of Theorem [14.4.5]

We first restate the theorem:For any random vectorsEY of dimensionmY and EX of dimensionmX , there
exists an orthonormal transformationA and a non-singular transformationB such that

ΣB X,B X = I (M.4)

ΣAY,B X = D (M.5)

whereD is anmY×mX matrix for which all entries are zero except for non-negative diagonal elements
dj j =

√
λ j , j ≤ min(mX,mY).

The theorem is proved in two steps. First, we derive two eigen-equations for the matricesA andB
and a linear link between these two matrices as necessary conditions. In the second step, we show that
the solutions of the eigen-equations satisfy equations (M.4)(M.5).

Let us assume that we have determined two matricesA andB that satisfy the theorem. Then equations
(M.5)(M.4) may be rewritten as

ATΣY XB = D (M.6)

Σ−1
X X = BBT. (M.7)

Multiplying (M.6) with itself leads to

ATΣY XBBTΣXYA = ATΣXYΣ−1
X XΣXYA = DDT (M.8)
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whereDDT is a diagonalmY ×mY matrix with positive entriesd2
j j = λ j , j = min(mX,mY). SinceA

is orthonormal, we can multiply (M.8) on the left byA to obtain the first eigen-equation

ΣXYΣ−1
X XΣXYA = ADDT. (M.9)

That is, the columns ofA satisfy (14.43)

ΣY XΣ−1
X XΣXYEa j = λ j Ea j . (M.10)

Equation (M.10) has min(mX,mY) positive eigenvaluesλ j = d2
j j . Beginning again with the transpose

of (M.6), we find

BTΣXYAATΣY XB = BTΣXYΣY XB = DTD. (M.11)

Re-expressing (M.7) asBT = B−1Σ−1
X X and substitutingBT into (M.11), we obtain the second

eigen-equation

Σ−1
X XΣXYΣY XB = DTDB.

That is, the columns ofB satisfy (14.44)

Σ−1
X XΣXYΣY XEb j = λ j Eb j . (M.12)

This completes the first part of the proof.
We now define matricesA and B as the matrices of eigenvectors ofΣY XΣ−1

X XΣXY and
Σ−1

X XΣXYΣY X, respectively, and show thatA andB satisfy the requirements of the theorem.

SinceΣX X is positive-definite symmetric, it may be written asΣX X = (Σ1/2
X X)

TΣ1/2
X X (see Appendix

B). Thus, vectorEb solves (M.12) with eigenvalueλ if and only if

Ec = Σ1/2
X X
Eb (M.13)

solves the eigen-equation

[CTC]Ec = λEc (M.14)

where

C = ΣY XΣ−1/2
X X . (M.15)

Since CTC is Hermitian, all of its eigenvalues are non-negative reals, and it hasmX orthonormal
eigenvectors. Thus, eigenproblem (M.12) hasmX linearly independent solutionsEb j = Σ−1/2

X X Ec j that
satisfy (M.4):

(Ebi )TΣX XEb j = (Eci )T(Σ−1/2
X X )TΣX XΣ−1/2

X X Ec j = δi j .
The eigenproblem (M.10) may be written as

[CCT]Ea = λEa, (M.16)

which has the same eigenvalues asCTC (see Theorem [13.2.5]). IfEc is an eigenvector ofCTC with
eigenvalueλ, then

Ea = 1√
λ
CEc (M.17)

is an eigenvector ofCCT with the same eigenvalue.
It remains to be shown that these vectors fulfil (M.5). Letr be the number of eigenvectors ofCTC and

CCT that correspond to nonzero eigenvalues. For all indicesj andi ≤ r , we find that

(Ea i )TΣY XEb j =
( 1√

λi
CEcr

)T
ΣY X

(
Σ−1/2

X X Ec j

= 1√
λi
(Eci )TCTΣXYΣ−1/2

X X Ec j

= 1√
λi
(Eci )TCTCEc j = √λ j δi j .
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Wheni > r

(Ea i )TΣY XEb j = (Ea i )TCEc j = 0

because(Ea i )TC = E0. We can show this by contradiction. Suppose(Ea i )T 6= E0. Then we would have
(Ea i )TCCTEa i = ‖(Ea i )TC‖ > 0, which implies thatCCTEa i 6= E0. But this contradicts the fact thatEa i

belongs to a zero eigenvalue ofCCT. This therefore completes the proof that matricesA andB satisfy
(M.5).

Proof of Equation (16.39)

We prove here equation (16.39), which states that the Hilbert transform of the complex EOF coefficient
α = ( EX + i EXH)† is equal to the coefficient itself multiplied by−i . First note that, ifY = X + i XH,
then by (16.23) and (16.24)

YH = (X + i XH)H = xH − i X = (−i )(X + i XH) = −i Y. (M.18)

By repeatedly using (M.18), we infer that

[YH]∗ = [(−i )Y]∗ = i Y∗ = i /(−i )[Y∗]H = −[Y∗]H.

Then, with (M.18), we have

αH = [ EY† Ep ]H = [ EY†]H Ep = −[ EYH]† Ep = [i EY] † Ep = (−i ) EY† Ep = −iα.



References

[1] U. Achatz and G. Schmitz. On the closure problem in
the reduction of complex atmospheric models by PIPs
and EOFs: A comparison for the case of a two-layer
model with zonally symmetric forcing.J. Atmos. Sci.,
54:2452–2474, 1997.

[2] U. Achatz, G. Schmitz, and K.-M. Greisiger. Principal
interaction patterns in baroclinic wave life cycles.J.
Atmos. Sci., 52:3201–3213, 1995.

[3] A. Adebar.Die Welt n̈ordlich und s̈udlich der Elbe.
Ekelacker-Verlag, Baikal-Ḧull, 1992.
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(1-2-1)-filter, 387–389
and the running mean filter, 386

abbreviations, 411
acceptance region, 100
admissible process parameter, 207, 209, 259
AGCM, seeAtmospheric General Circulation

Model
AIC, 167, 261–263
air–sea interaction, 11, 28, 212
Akaike information criterion, 167, 261–263
Akaike, H., 261–263, 279
aliasing, 280–281
alternative hypothesis, 97, 99–101, 105, 108,

110, 121
amplitude spectrum, 235, 236
analysis

composite pattern, 378
confirmatory, 69–70, 107
exploratory, 69, 107
frequency–wavenumber, 241–249

analysis of variance,seeANOVA
Anderson–Darling test, 81
annual cycle, 6, 201
anomalous boundary condition, 108, 123
anomaly correlation coefficient, 327, 398–399
ANOVA, 171–174, 176, 178, 180–182

block effects, 187
diagnostics, 179
fixed effects, 173, 177
interaction effect, 187, 188
one way, 173–180

fixed effects, 173
random effects, 177
regression representation, 180

random effects, 173, 177
treatment effects, 186
two way, 181–191

example, 182–183
mixed effects, 184–185
with interaction, 181, 183–185
without interaction, 181–182

unequal samples, 178
within block dependence, 187, 188

ansatz, 335
Antarctic sea ice, 66, 212

AR parameters
confidence regions, 259
maximum likelihood estimator of, 258

AR(p) process, 203–215, 218, 220, 223, 373,
451

and MA(q) process, 214–215
associated, 221
bivariate, 210–211
coefficient, 207
cyclo-stationary, 209
decorrelation time of, 373–374
definition, 204
infinite order, 213
invertible, 214–215
mean of, 204
multivariate, 210–211, 238
regime-dependent, 199, 215
seasonal, 209
stationarity of, 206–207
variance of, 204

AR(1) process, 205–209, 212, 219, 220, 232,
239, 240, 373, 374

bivariate, 230, 238, 245, 247, 361
Hilbert transform of, 355–356
multivariate, 213
power spectrum of, 223–224
SSA of, 314–315
variance of, 205
Yule–Walker equation for, 219

AR(2) process, 204, 206, 219, 220
Hilbert transform of, 355–356
oscillatory behaviour, 315
power spectrum of, 224
seasonal, 210
SSA of, 315
Yule–Walker equations for, 219

AR(3) process, 219
Arctic sea ice, 66–67, 212
ARIMA process, 255
ARMA( p,q) process, 199, 214
Arrhenius, S.A., 136
artificial skill, 155, 168, 404–405

and cross-validation, 405–406
associated correlation pattern analysis, 339,

371, 378, 380–381
examples, 381–382

469
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asymptotic relative efficiency, 117–118, 120
asymptotically unbiased estimator, 86–87
Atlantic Ocean, 229

air–sea interaction, 11–12
SLP, 310, 324–327
SST, 310–311, 324–325
wave height, 331–333
winter mean westerly flow, 27–29

Atmospheric General Circulation Model
(AGCM), 411

experiment, 12–15
intercomparison, 12–15
radiative transfer, 146
sensitivity experiments, 12–15
validation, 12–15, 103, 129–130

Atmospheric Model Intercomparison Project
(AMIP), 52, 172, 173, 177, 179, 181,
182, 184

CCCma multiple simulations, 173
sign test example, 104

auto-correlation, 114–115
auto-correlation envelope, 374
auto-correlation function, 115, 204, 217–221,

223, 251–257, 259–261, 281, 313,
372–374, 376, 451

estimator of, 252
asymptotic correlation of, 253
asymptotic variance of, 252

example, 6
partial, 254

auto-correlation function of
SOI, 217

auto-covariance function, 198, 203, 217–219,
222, 223, 225–229, 232, 233, 251,
252, 254, 256, 258, 263, 265, 266,
272–274, 276, 277, 281, 283, 315,
355, 385, 410, 416

estimator of, 252, 266
auto-regressive integrated moving average

process, 255
auto-regressive moving average process, 214
auto-regressive process,seeAR(p) process

backward elimination, 166–167
backward shift operator, 214
Baltic sea ice conditions, 27–29
band-pass filter, 387, 388
Barnett, T.P., 356
Barnston, A.G., 309, 391, 395, 402
baroclinic mode, 294
baroclinic scale, 61
baroclinic time scale, 388
baroclinic variability, 58–60, 389
baroclinic waves, 339–342
Bartlett spectral estimator, 274–275

versus chunk estimator, 274
versus Parzen’s estimator, 275

Bartlett’s test, 180
statistic, 180, 322

Bartlett, M.S., 252, 270, 274
basis, 413–414
Bayes factor, 263
Bayesian information criterion, 263
Bayesian statistics, ix

versus frequentist, 74
Beaufort Sea, 67
Behrens–Fisher problem, 113
Bell, T., 111
Berlin, Germany, 293
Bern, Switzerland, 317
Bernoulli random variables, 88
Bernoulli trials, 20, 410
best linear unbiased estimators, 157
bias, 84, 85, 99

correction, 87–88
of empirical distribution function, 85
of estimated canonical correlation, 322
of estimated eigenvalues, 302–303
of estimator, 84, 85
of estimator of correlation coefficient, 86
of estimator of L-moment, 86
of multivariate mean, 85
negative, 85
positive, 84
of sample covariance matrix, 85
of sample mean, 85
of sample variance, 85, 86
of Yule–Walker estimates, 258

BIC, 263
bimodality

Hansen and Sutera’s, 61–62
binomial distribution, 24–25, 104, 109, 410

example, 24–25
MLE of parameter of, 88
Poisson approximation, 25

binomial experiments, 20
binomial random variable, 24
bivariate normal density function, 100
bivariate normal distribution, 41, 43–44
Blackmon, M., 388
block effect, 183
Bloomfield, P., 252
blue noise process, 224
Blumenthal, B., 347
bootstrap, 93–94

moving blocks, 94
sample, 94

bootstrapped confidence interval, 93
bootstrapped variance estimate, 93–94
Box–Jenkins method, 255
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Box–Jenkins process, 199, 214
Branstator, G.W., 399
Brent, Scotland, 331
Brier skill score, 396, 400–402
Brier, G.W., 396
Bruce, J., 46
Burg, J.K., 279
Burrows, W.R., 393
Butterfly Effect, 2
Bürger, G., 364

canonical correlation
confidence interval for, 322
estimated, bias of, 322
estimator of, 322

Canonical Correlation Analysis (CCA), 6, 12,
291, 317–333, 353, 411

examples, 317, 323–327
transformation to EOF coordinates,

320–321
versus Redundancy Analysis, 331

canonical correlation coordinates, 320
Canonical Correlation Patterns (CCPs), 71,

319–320
definition, 317–319
estimator of, 322–323
under coordinate transformations, 320

categorical forecast, 9, 24
boundaries, 391
skill of, 392–395

CCA, seeCanonical Correlation Analysis
CCP,seeCanonical Correlation Patterns
Central Limit Theorem, 34–35, 54, 56, 77, 104
centre of action, 61, 383
CEOF

analysis example, 358–359
versus Hilbert EOF, 353

CEOFs, 358
chaos, 198
chaotic model of the climate, 2
chaotic systems, 1
characteristic patterns, 10
characteristic polynomial, 296
characteristic time, 2, 199, 200, 204, 209, 212,

213, 231
characteristic time scale, 372
Chervin, R.M., 20
χ2 distribution,alsoχ2(k), 36, 38, 42, 93,

100, 110, 113, 117, 119, 189, 283,
284, 410, 421

critical values, 420–422
χ2 test, 119
classification, 123
climate

statistical description, 1–2

climate change, 28, 48
climate index, 10
Climate of the Twentieth Century (C20C), 52
climate research

typical problems and concepts, 2–15
climate system, 1, 29–30
climatological forecast, 396, 402
cloud parameterization, 169
CO2 doubling experiment, 48–49, 72
co-spectrum, 235, 357
coefficient of multiple determination, 151,

154–155, 164, 176
coefficient of variation, 32
coherency spectrum, 235

bias, 285
confidence interval, 284
interpretation as correlation, 284
test, 285

coin tossing experiment, 19
combinations, 20, 411
Combined Principal Component Analysis, 298
complete induction, 451
complex conjugate, 411
complex EOF

versus Hilbert EOF, 339
complex EOFs, 294, 358

analysis example, 358–359
versus Hilbert EOF, 353

complex Wishart distribution, 284
complexified process, 353–354

EOF of, 359–360
spectral matrix of, 360

complexified time series, 353
composite, 378
composite analysis, 178
composite pattern analysis, 371, 378

example, 379–380
Comprehensive Ocean Atmosphere Data Set

(COADS), 56
condition number, 165
conditional distribution, 27–28, 39, 44–45
conditional mean, 150
conditional probability, 21

density function, 39
confidence interval, 70, 90–93, 102, 411

bootstrapped, 93
for canonical correlation, 322
for coherency spectrum, 284
for correlation coefficient, 148
for intercept of a regression line, 152–153
for mean, 92
for mean of response variable, 153–154,

162
for phase spectrum, 285
for random variable, 90–91
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for regression coefficient, 162
for response variable, 154, 162
for slope of a regression line, 152
for variance, 93

confidence level, 90
confidence region, 91

for multiple regression parameters,
162–163

confirmatory analysis, 69, 107
observational record, 69–70
simulated data, 70

Conover, W.J., 81
consistency, 86–87
consistent estimator, 86–87
contingency table, 392
continuous random variable, 21, 29–30
continuous random variables

central moments, 32
contrasts

linear, 178–179
orthogonal, 179

control climate, 122
control run, 48, 108
convective rain, 54
convergence, 46
convolution, 418
Cook, N.J., 47
correlation, 4, 84, 97, 317, 410

and independence, 44
complex, 234
definition, 40
estimator of, 84
serial, 5, 6, 79, 200
spatial, 6
temporal, 200

correlation coefficient, 147–148
bias of estimator, 86
other interpretations, 149–150
Pearson’sr , 149
Spearman rank, 149, 446
variance of, 86

correlation envelope, 374
correlation matrix, 39–41
correlation skill score, 10, 346, 396, 397
covariance, 146–147, 317

estimator of, 83
covariance matrix, 39–41, 44, 83, 297, 410

MLE of, 89–90
sample, 83

bias of, 85
covariance structure, 90, 108, 266
coverage, 90
Cp, 167
Cramer–von Mises test, 81
critical values, 91

cross-correlation, 6, 40
cross-correlation function, 228–230, 233, 234,

251, 281, 282, 287
estimator of, 281

cross-correlation matrix, 384
cross-covariance function, 228, 229, 233–236,

238, 251, 281, 355, 357, 361, 410
estimator of, 281

cross-covariance matrix, 44, 230, 410
cross-periodogram, 283
cross-spectral analysis, 11, 234
cross-spectral matrix, 357
cross-spectrum, 234–241, 357

estimator of, 284
cross-validation, 155, 164, 405–406
cumulative distribution function (cdf), 30–31,

81
cyclo-stationarity, 6–9
cyclo-stationary process, 75, 347

auto-regressive, 209
example, 201–202
weak, 201

daily maximum temperature, 48
Daley, R., 3
damped persistence forecast, 402
damping rate, 205, 231
Daniell spectral estimator, 271
Daniell, P.J., 271
Darwin, Australia, 6, 123
data matrix, 299
data taper, 268, 269, 278, 279

box car, 269
cosine bell, 269
Hanning, 269
split cosine bell, 269

data window, 268, 269
decibel scale, 267
decision, 123
decorrelation time, 51, 186, 371–374
degeneracy, 297, 311, 312
degenerate, 413
degrees of freedom (df), 36–38, 112

geometrical interpretation, 160
reduced, 110, 121

Deland, R.J., 242
delay, 287
delay-coordinate space, 313
density estimator

kernel, 80
density function, 200
depth of the snow layer, 66
design matrix, 159, 161, 180
diapycnal, 191
digital filter, 371, 385
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discrete multivariate distribution, 26–29
discrete random variables, 21

examples, 23
discrimination function, 126
dispersion, 23
dispersion relation, 242
distribution

binomial, 24–25, 88, 410
bivariate normal, 41, 43–44, 126
χ2, 36–37, 420–422
conditional, 27–28, 39, 44–45
discrete multivariate, 26–29
double exponential, 32
exponential, 38
extreme value, 45–50
F , 37–38, 424–430
Gumbel (EV-I), 46, 49
leptokurtic, 32
log-normal, 35–36
marginal, 27, 39
multinomial, 26
multivariate normal, 41–42
normal, 34
Pearson types I–III, 46
platykurtic, 32
Poisson, 25–26
skewed, 32
standard normal, 35, 419–420
symmetric, 32
t , 37, 423
uniform, 23, 32, 33

distribution function, 21–22, 410
cumulative, 81
empirical, 81
estimator of, 82
properties, 22

distribution function of
continuous random variable, 30
discrete random variable, 22

distributional assumption, 75, 112, 117
diurnal cycle, 201
DJF, 411
dot product,seescalar product
double exponential distribution, 32
downscaling, 168, 326
Drake Passage, 212
Durbin and Watson’s approximation, 158
Durbin–Watson statistic, 157–158, 254

e-folding time, 231, 336
Eastern Atlantic (EA) Pattern, 59, 60, 383
eddy component, 132
efficiency of a test, 99, 101
Efron, B., 87
eigenanalysis, 293

eigenspectrum, 303
eigentechniques, 10
eigenvalue, 300, 410, 413

computing, 301
estimated, bias of, 302–303
estimation of, 316
MLE of, 89–90

eigenvectors, 300, 313, 413
computing, 301
degenerate, and SSA, 314
MLE of, 89–90

Ekman veering, 234
El Niño, 6, 13, 14, 80, 131–136, 156, 178, 179,

343, 350, 363
ellipsoid, 100
El Niño / Southern Oscillation (ENSO), 6, 131,

335, 364, 371, 378, 412
El Niño/Southern Oscillation (ENSO), 145,

179, 348, 349
empirical distribution function, 56, 81

bias of, 85
variance of, 86

Empirical Orthogonal Functions (EOFs), 3, 6,
10, 11, 62, 110, 291, 293, 317, 411,
415

and coordinate transformations, 297–299
and gappy data, 300–301
coefficients, 62, 293, 295–296
complex, 294
of complexified process, 359–360
definition, 294–295
degeneracy of, 296–297
estimated, coefficients of, 300
estimated, error of, 303–304
estimation of, 299–300
example, 293–294, 297
Hilbert, 294
MLE of, 89–90
notation, 296
rotated, 61, 305–312
selection rules, 303

energy-balance model, 2
engine intake temperature, 64
ENSO year, 8
entropy, 279
EOF analysis, 6, 10, 317

examples, 11, 304–305, 309–311
EOF rotation, 306–307

atmospheric circulation pattern example,
309–310

mathematics of, 307–308
oblique, 308
orthonormal, 308
SLP example, 310
SST example, 310–311
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use of, 311–312
varimax method, 308–309

epoch analysis,seecomposite pattern analysis
Epstein, E.S., 391, 399
equality of variances

Bartlett’s test, 180
equivalent chunk length, 376
equivalent sample size, 114–116, 372
ergodic process, 75
ergodicity, 29, 202–203
error

root mean square, 346
type I and type II, 14, 73, 100

error function, 34
estimation, 69–71, 79

interval, 71
point, 71
theory, 79

estimator, 70, 79, 80
asymptotically unbiased, 86–87
bias of, 84, 85
consistent, 86–87
dumb, 79
efficient, 84
generalized least squares, 168
jackknifed, 87
least squares, 161
maximum likelihood,seeMLE
mean squared error of, 84, 87
non-parametric, 251
parametric, 251
properties, 84
unbiased, 84
variance of, 86

estimator of
AR(p) process, 257
auto-correlation function, 252

partial, 254
auto-covariance function, 266
Canonical Correlation Patterns, 322–323
correlation, 84
correlation coefficient

bias of, 86
covariance, 83
cross-correlation function, 281
cross-covariance function, 281
cross-spectrum, 284
distribution function, 81, 82
eigenvalues, 316
EOFs, 300
estimator variance, 88
interval, 90
j th moment, 83
L-moment, 84, 86

bias of, 86

level of (p, p)-recurrence, 127
mean, 82–83
POP coefficients, 338
POPs, 338
probability, 80
probability density function, 80–81
variance, 83

Eurasian (EU) Pattern, 59, 60, 383
EV-I distribution,seeGumbel distribution
event, 30

complement, 20
compound, 19
simple, 19

events
independent, 21
mutually exclusive, 21
union, 21

expectation, 22, 31, 410
and averages, 31
and random vectors, 39

expected value, 22
experimental design, 171

completely randomized, 171
factorial, 171
fractional factorial, 172
random Latin hypercube, 192
randomized complete block, 172
space filling, 173

experimental run, 108
experimental unit, 171
experiments, 19, 69
exploratory analysis, 69, 107
exponential distribution, 38, 47, 49, 118, 120

and the Poisson process, 38
cdf of, 38
density function, 38
example, 38

Extended EOF analysis, 298, 316
extreme precipitation, 46
extreme value analysis, 32, 45–50

data gathering, 45–46
example, 48–49
model fitting, 47–48
model identification, 46–47
peaks-over-threshold approach, 25–26, 49
return values, 48

extreme wind speed, 46

F distribution,also F(k, l ), 36–38, 78, 117,
119, 163, 377, 378, 395, 410

critical values, 424–430
non-central, 127

F ratio, 78
F test, 119–120, 178
factorial experiment, 171
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false alarm rate, 403
FDEOF, 353
feedback, 233

negative, 230
positive, 230

field significance test, 14–15, 99, 121–122, 176
Finley’s tornado forecast, 403
Finley, J.P., 403
First GARP Global Experiment (FGGE), 69,

173
first moment,seemean
Fisher’s information, 114
Fisher, R.A., 88, 143
Folland, C., 395, 396
forecast

categorical, 9, 24, 391–395
climatological, 402
conditionally unbiased, 395
damped persistence, 402
persistence, 402, 404
POP technique, 345, 403
probabilistic, 392
quantitative, 391, 395–399
random reference forecast, 402
reference, 402, 403
tornado, 403
unbiased, 395

forecast skill, 391
annual cycle of skill scores, 399
anomaly correlation coefficient, 327,

398–399
artificial, 404–406
conditional bias, 401
LEPS score, 396
mean squared error, 396, 398–399, 401
Murphy–Epstein decomposition, 400
of POP forecast, 345
proportion of explained variance, 396
unconditional bias, 401

forecast verification
West Glacier rainfall example, 24, 26

forward selection, 166–167
Fourier analysis, 416–417
Fourier coefficients

covariance structure of, 266
Fourier transform, 198, 223, 235, 276, 411,

416–417
properties, 417–418

Fraedrich, K., 41, 242, 245, 293
Fram Strait, 67
Frankignoul, C., 111, 212, 233
freeboard, 65, 66
frequency domain, 217
Frequency Domain EOF, 294
frequency domain EOF, 353

frequency histogram, 80–81
frequency–wavenumber analysis, 241–242

examples, 245–246
Hayashi’s standing wave variance,

247–249
Pratt’s standing wave variance, 246–247
the steps, 242–243
travelling wave variance, 245–246
variance of the waves, 243–244

frequency–wavenumber spectrum, 244
frequentist statistics versus Bayesian, 74
freshwater flux anomalies, 212

gappy data, 63, 138–139, 300–301, 323
Gaussian distribution,seenormal distribution
General Circulation Model (GCM), 12, 48, 50,

70, 72, 123, 129, 411
and confirmatory analysis, 70
artifact of, 70
downscaling the response, 326–327
experiment, 108, 125

perpetual mode, 131
spin-up period, 131

intercomparison, 108
sensitivity experiment, 108
validation, 20, 103, 129–130

generalized normal equations, 168
geopotential height, 3, 32
geostatistics, ix
geostrophic wind, 56
global null hypothesis, 108, 109, 121, 122
global test, 109, 121
global warming, 9, 48–49

detecting the greenhouse signal, 136–140
Goodman, N.R., 284
goodness-of-fit, 81
goodness-of-fit statistic, 81
goodness-of-fit test, 81–82
grid point tests, 14
gridded data, 52
guess pattern, 110, 132–133

hierarchies, 111
optimal, 110
rotated, 137–138

Gumbel (EV-I) distribution, 46, 49
density function, 49
return values, 49

Gumbel, E.J., 46, 49
Gutzler, D., 60, 383
Gyalistras, D., 318

Hadley cell, 6, 125
Hannan, E.J., 285
Hanning data taper, 268, 269
Hannoscḧock, G., 111
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harmonic analysis, 264
Hartley, H.O., 82
Hasselmann, K., 110, 211, 212, 233, 322, 347,

352
Hayashi, Y., 242, 247, 248
Hegerl, G.C., 111
Heidke skill score, 392, 395, 403
Heidke, P., 392
Hense, A., 127, 134
Hermitian matrices, 413
heteroscedasticity, 155, 168, 169
heuristic argument, 242
high-pass filter, 237, 313, 387, 388
Hilbert EOFs, 294, 353, 357–360

and POPs, 339
versus complex EOFs, 339

Hilbert POP, 353
Hilbert Singular Decomposition, 353
Hilbert transform, 294, 353, 355

derivation, 354–355
estimating from time series, 356
examples, 355–356
properties, 356–357

Hildebrandson, H.H., 5
hindcast skill, 405
histogram, 80, 123
Hoeffding, W., 84
Hollingsworth, K.A., 396
Hosking, J.M.R., 33, 47, 84
Hosking,J.M.R., 48
Hotelling T2 statistic, 127
Hotelling T2 test, 109, 116–117
hypothesis testing, 69, 71–72, 97–99

data collection models, 75–76
efficiency of the test, 101
example, 72–73
ingredients, 99–100
interpreting the result, 73–74
introduction, 14
non-rejection region, 100–101

with Ha, 101
power of the test, 72, 74, 100
risk, 100
statistical model, 72

Iberian peninsula, 13
ice

age of, 65
concentration, 65, 66
draft, 65
thickness, 65, 66

Ice Age, 211
iid, 29, 75, 79, 200
independence

of data, 107–108

independent
events, 21
random variables, 28–29, 39, 42, 44

independent and identically distributed,seeiid
index, 378
Indian monsoon, 215
inference, 69, 79
inflation, 281
influence, 158–159
inhomogeneity, 9
initial condition, 208
innovation, 233
integrated response, 211
intensity, 25
interannual variability, 3
interarrival time, 20, 54
interval estimation, 90
interval estimator,seeconfidence interval
intramonthly distribution, 332
invertible

AR(p) process, 214–215
linear process, 214–215
MA(q) process, 214–215

isopycnal, 191

jackknife bias correction, 87–88
JJA, 411
jointly independent, 39
j th moment

estimator of, 83

Kalnay, E., 399, 404
Kao, S.K., 242
Karhunen-Lòeve, 298
Karl, T., 8
Kolmogorov–Smirnov test, 81
Koopmans, L.H., 203
kriging, ix
Kundu, P.K., 234
kurtosis, 32

L-coefficient of variation, 33
L-kurtosis, 33
L-moments, 32–33, 47, 48, 84

estimator of, 84, 86
bias of, 86

L-skewness, 33
Labitzke and van Loon hypothesis, 106
Labitzke, K., 106
lag, 217
lag covariance matrix, 357
lag window, 272, 276

rectangular, 273
truncated, 273

Lagrange multiplier, 295, 319
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lake-effect snowfall, 393
large-scale rain, 54
latitude, 410
law of large numbers,seeCentral Limit

Theorem, 4
Lawley, N.D., 302
La Niña, 6
lead, 66
Leadbetter, M.R., 46
least squares, 251
least squares estimation, 145, 150–151, 159,

161
and MLE, 151–152
and outliers, 158–159
and serial correlation, 157–158
matrix-vector formulation, 159–160
robustness, 158

Leck, Germany, 62
Lemke, P., 212
length scale, 51
leverage, 159
likelihood, 19, 34, 39, 47
likelihood function, 88, 89
likelihood ratio statistic, 262
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Mann–Whitney test, 73, 117–118

critical values, 437–443
marginal density function, 200
marginal distribution, 27, 39, 44
marginal probability distribution, 27
matrix
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Old Farmer’s Almanac, 9, 393, 403
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phase spectrum, 235
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cyclo-stationary, 346–350
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cyclo-stationary, 348
estimator of, 338
power spectrum of, 339
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skill of, 345

POP index, 105
POP process, 241, 361–362
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power spectrum of
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principal axis, 43
principal components,seeEOF coefficients
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principle of invariance, 77
probabilistic forecast, 392
probability, 19, 410
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conditional, 21
estimator of, 80
measure, 30
of an event, 20
rules, 20
theory, 19–21

probability density function (pdf), 30
estimator of, 80–81
joint, 39

probability distribution, 22
probability function, 21–22
probability plot, 54, 82, 156–157
process

auto-regressive,seeAR(p) process
cyclo-stationary, 75
ergodic, 75
moving average,seeMA(q) process
non-stationary, 202
stationary, 75

definition, 200–201
stochastic, 200

example, 200
weakly cyclo-stationary, 201
weakly stationary, 201

propagating wave variance spectrum, 246
proxy data, 62–63
Pugachev, V.S., 89

(q, p)-recurrence, 122–124
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test for, 124–125

qq plots, 156
quadrature spectrum, 235, 357
quantile, 7, 31, 122

upper, 48
quantitative forecast, 391, 396

skill of, 395–399
Quasi-Biennial Oscillation (QBO), 107, 339
quasi-oscillatory behaviour, 197
quasi-periodicity, 200, 206

R2, 151, 154–155, 164, 176–178
RAM, seeAR(p) process, regime-dependent
random field, 4
random forecast, 402
random sample, 200, 409
random variables, 21, 409

bivariate, 230
confidence intervals for, 90–91
continuous, 21, 29–38
degenerate, 22
discrete, 21
expected value, 22
functions of, 22
independent, 28–29, 39

multivariate, 293
realizations, 21
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random vectors, 23, 409
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discrete, 26
expectation, 39

random walk, 202, 212
rank, 73, 437

of a matrix, 301
rare event, 25
raw varimax, 308
realization, 21
recurrence, 125
recurrence analysis, 98, 99

classification, 126
discrimination function, 126
multivariate, 126–127
univariate, 122–126

recurrence level, 15
red noise, 190

SSA of, 314–315
red noise process, 224
redundancy analysis, 291, 327–331, 353

example, 331–333
transformations, 330
versus CCA, 331

redundancy index, 328–329
under transformations, 329

reference forecast, 402, 403
regionalization, 1, 307
regression, 145

all subsets, 167
backward elimination, 167
bounded influence, 159
forward selection, 166–167
multiple linear, 160

matrix-vector representation, 161
no intercept, 161

nonlinear, 169
partitioning variance, 151
screening, 166
simple linear, 150
stepwise, 166–167
test for, 163
test of a subset of parameters, 163
weighted, 168

regression analysis, 371, 378
regression diagnostics, 155, 164, 165
regression pattern, 380
relative frequency distribution, 80
relative likelihood, 19
relative phase, 336
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residuals, 150



INDEX 481

return value, 48
Richman, M.B., 306
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risk, 100
robust method, 74
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robustness of least squares estimators, 158
Rossby wave, 242, 246
rotated EOF, 61, 353
rotation matrix, 231, 240
running mean filter, 386
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runs test for serial correlation, 158
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sample correlation, 84
sample covariance matrix, 83, 85

bias of, 85
sample mean, 22, 76–77, 82

bias of, 85
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variance of, 86

sample median, 158
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sample variance, 77, 265

bias of, 85, 86
mean squared error of, 87
variance of, 86

sampling, 74
sampling assumptions, 75, 79, 80
sampling distribution, 36–38
scalar product, 411
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baroclinic, 61
planetary, 61

scale parameter, 32, 91
scatter diagram, 202
scatter plot, 155, 164

example, 146
scientific slang, 69
screening regression, 166
sea-level pressure,seeSLP, 51
sea-surface temperature,seeSST
seasonal AR(p) process, 209
second moment,seevariance
selection rules, 303
sensitivity experiment, 108
serial correlation, 5, 79, 92, 200

and least squares estimation, 157–158
shape parameter, 32, 33
Shawinigan, Quebec, Canada, 9
Shen, S., 75

Sherbrooke, Quebec, Canada, 9
shift operator, 417
sign operator, 411
sign test, 103–104
signal-to-noise ratio, 111
significance, 15, 74

physical, 97, 102–103, 384
statistical, 97, 102–103

significance level, 14, 72, 74, 99–101
versus confidence level, 74

significant wave height, 332
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simple random sample, 74
simplicity functionals, 306
Singular Systems Analysis (SSA), 291, 293,

312–313
estimation of eigenvalues, 316
estimation of time EOFs, 316

singular value, 415
Singular Value Decomposition (SVD), 301,

321, 415
skewness, 32
skilful scale, 326
skill, 391
skill parameters, 391
skill score, 9, 391

equitable, 395
inequitable, 403

SLP, 12, 51
Pacific, 233

Slutsky effect, 264
Slutsky, E., 264
snow drop, 62
snow layer, 65
solar cycle, 106
SON, 411
Southern Oscillation (SO), 5–8, 11, 71, 121,

215, 306, 339, 342, 343, 348, 382,
412

and Murray Valley Encephalitis, 123
auto-correlation function, 217
empirical distribution function of, 81, 82
index of, 5–7, 10, 71, 81, 145, 217, 305,

384, 412
SST index of, 40, 210, 215
Wright’s index, 145

space–time spectral analysis,see
frequency–wavenumber analysis

spatial correlation, 6, 108
spatial covariance structure, 176
spatial scale, 242
spatial variability, 3
Spearman rank correlation coefficient

quantiles of, 446
specification equations, 167
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spectral analysis, 200
spectral density

asymptotically unbiased estimator of, 267
spectral domain, 234
spectral estimator

auto-regressive, 279
bandwidth, 270, 271
Bartlett, 274–275, 277, 278
chunk, 270, 276–278
confidence interval, 270, 276
Daniell, 271, 272, 277, 278
degrees of freedom, 270
equivalent bandwidth, 275, 277
equivalent degrees of freedom, 275, 276
maximum entropy, 279
Parzen, 275, 277, 278
smoothed periodogram, 271, 272, 276
weighted covariance, 274

spectral matrix, 238, 357
and the Hilbert transform, 357

spectral matrix of
complexified process, 360

spectral window, 272, 276
rectangular, 272

spectrum, 198, 222, 223, 225
two-sided, 245

spectrum of eigenvalues, 315
Speth, P., 242
squared coherence, 235
squared-ranks test, 120

critical values, 443–445
SSA of

AR(2) process, 315
red noise, 314–315
white noise, 314

SST, 12, 304
Pacific, 125, 233

SST index, 8, 40, 71, 210, 215, 412
standard deviation, 23, 32, 410

pooled estimate, 112
standard normal conditions, 76
standard normal distribution, 35

cdf of, 35
table of values, 419–420

standardized residual, 155
standing wave variance spectrum, 246
state space model, 291, 350, 352
station data, 52
stationarity, 6–9
stationary normal process, 252
stationary process, 75

definition, 200–201
example, 201–202
weak, 201

statistic, 76

Durbin–Watson, 157–158
goodness-of-fit, 81
Lilliefors test, 82

Statistical Dynamical Models, 211
statistical forecast improvement, 398
statistical hypothesis testing, 71
statistical inference, 69, 79, 106–107
statistical model, ix
statistical significance, 15
statistical test, 303
step function, 81

random, 80
Stephens, M.A., 81
stepwise regression, 166–167
stochastic climate model, 2, 199, 211–213

example, 212
stochastic process, 197, 199–200

example, 200
parsimonious model, 214

stormtrack, 41, 60
stratosphere, 106
Student’st distribution,seet distribution
studentized residuals, 156
sub-sampling, 79
sub-surface temperature, 63
sufficient statistic, 104
sum of squares

between blocks, 175
error, 150, 151, 160, 161, 175
regression, 151, 160, 161
total, 151, 160, 161

partition of, 185
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within blocks, 175

surface wind, 56
SVD analysis, 317, 321
Swartz, G., 263
system equation, 350

t distribution,also t(k), 37, 92
critical values, 423
non-central, 124

t distribution,alsot(k), 36, 37, 77, 78,
112–115, 124, 149, 152, 153, 162,
410, 423

t statistic, 77–78, 92, 112
t test, 102, 111–118, 120–122, 125, 152
Table-Look-Up test, 116

critical values, 431–436
teleconnection, 371
teleconnection analysis, 382–383

Wallace and Gutzler approach, 383
teleconnection map, 41

base point, 41, 59, 60, 383, 384
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teleconnection pattern, 41, 59, 60, 306, 309,
382–383

teleconnectivity, 383
temperature trend, 9
temporal correlation, 200
test

Anderson–Darling, 81
Bartlett’s, 180
Cramer–von Mises, 81
difference of means, 111–112
field significance, 121–122
global, 109, 121
goodness-of-fit, 81–82
Hotelling T2, 109, 116–117
of intercept of a regression line, 152–153
Kolmogorov–Smirnov, 81
Lilliefors, 82
of linear contrasts, 179, 183
local, 121
Mann–Whitney, 117–118, 437–443
of the mean, 111–118

multivariate, 109
multivariate, 108–111
non-parametric, 117–118

of dispersion, 120
paired difference, 113–114
parametric, 111, 124–125
permutation, 109, 118
of regression, 163
runs, for serial correlation, 158
of slope of a regression line, 152
squared-ranks, 120, 443–445
of subset of regression parameters, 163
Table-Look-Up, 116, 431–436
of variance, 118–120

test statistic, 99, 103
difference of means, 112
Mahalanobis, 110
rank sum, 117
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time domain, 217
time EOF, 313–316
time filter, 41

(1-2-1), 386–389
band-pass, 388
digital, 371, 385
high-pass, 237, 388
linear, 222, 225, 238
low-pass, 388

time scale, 51, 242
time series, 114, 197, 199, 217

aligning the components, 287
analysis, 195
complex, 217
order determining criteria, 261–263

real, 217
sampling, and aliasing, 280–281

time-slice experiment, 72
tornado forecast, 403
tracer, 202
training sample, 405
trajectory, 1
transformation of variables, 168–169
transformations, 414
transient eddy transport, 146
transports, 146
transpose of a matrix, 411
travelling wave, 242, 243
trend, 143, 201, 202
tropical storm, 105
troposphere, 106
turbulent heat flux, 230
two-class forecast, 392
two-sided spectrum, 244, 245
type I and type II errors, 14, 73, 100
Töplitz matrix, 313

U statistic, 84
unbiased estimator, 84
uniform distribution,alsoU(a,b), 23, 32–34,
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univariate confidence band, 103
univariate recurrence analysis, 122–126

example, 125–126
univariate test statistic, 118
urbanization, 9
UTC, 412

validation
bi-directional retroactive real-time, 168

van Loon, H., 106
variance, 22–23, 32, 410

asymptotic, 77, 86, 252
bootstrapped estimate of, 93
of coefficients of estimated EOFs, 302
confidence interval for, 93
of correlation coefficient, 86
of empirical distribution function, 86
of estimator, 86

estimate of, 88
MLE of, 89
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properties, 23
sample, 77
of sample mean, 86
of sample variance, 86
of seasonal mean error, 186
standing wave, 247

variance components, 161
variance estimate
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auto-correlation function of, 218
spectrum of, 223
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