
I I I f I I I I I I I I I I I I I I I I I 





SPACECRAFT 

ATTITUDE DETERMINATION 

AND 

CONTROL 

Edited by 

JAMES R. WERTZ 

Microcosm Inc., Torrance, CA 

.Written by 

Members of the Technical Staff 
Attitude Systems Operation 

Computer Sciences Corporation 

Preparation of this material was supported by the Attitude Determ~tion and Control Section. 
Goddard Space Flight Center. National Aeronautics and Space Administration under Contract No. 
NAS 5·\1999 and by.the System Sciences Division. Computer Sciences Corporation. 

KLUWER ACADEMIC PUBLISHERS 
DORDRECHT I BOSTON I LONDON 

. ... ._-- -------------_._j 



Ubruy of Consress Cataloging in Publication Data 

Computer Sciences Corporation. Attitude Systems Operation. 
Spacecraft attitude detcrmination and control. 

(Astrophysics and space science library; v. 73) 
'Contract no. NAS 5-11999.' 
Bibliography: p. 
Includes index. 
1. Space vehicles-Attitude control systems. 2. Space vehicles-Guidance 

systems. I. Wertz, James R. n. Titlc. III. Series. 
TL3260.C65 1978 62"9.47'42 78-23657 
ISBN 90-277-0959-9 
ISBN 90-277-1204-2 (pbk.) 

Published by Kluwer Academic Publishers, 
P.O. Box 17, 3300 AA Dordrecht. The Netherlands. 

Kluwer Academic Publishers incorporates 
. the publishing programmes of 

D. Reidel, MartinusNijhoff, Dr W. Junk and MTP Press. 

Sold and distributed in the U.S.A. and Canada 
by Kluwer Academic Publishers. 

101 Philip Drive, Norwell, MA 02061, U.S.A. 

In all other countries, sold and distributed 
by Kluwer Academic Publishers Group, 

P.O. Box 322, 3300 AH Dordrecht. The Netherlands. 

Preparation of this material was supported by the Attitude Determination and Control Section, 
Goddard Space Flight Center, National Aeronautics and Space Administration under Contract 

No. NAS 5-11999 and by the System Sciences Division, Computer Sciences Corporation. 

(Reprbued1980,1984,1985,1986,1988,1990) 

All Rights Reserved 
Copyright @ 1978 by Kluwer Academic Publishers . 

No part of the material protected by this copyright notice may be reproduced or 
utilized in any form or by any means, electronic or mechanical, 

including photocopying, recording or by any information storage and 
retrieval system, without written permission from the copyright owner. 



UST OF CONTRIBUTING AUTIIORS 

All the authors are members of the technical staff in the Attitude Systems 
Operation, System Sciences Division, Computer Sciences Corporation. Sections 
written by each author are in brackets. 

John Aie/1o-B.S. (Astronomy), Villanova University [5.2, Appendix GJ . 
Jawaid Bashir-Ph.D. (Aerospace Engineering), M.S. (Electrical Engineering), Uni

versity of Colorado; B.S. (Electrical Engineering), Kara<;hi University, Pak
istan [18.1] 

Robert M. Beiud-M.S. (Mathematics), B.S. (Physics), Auburn University [16.3J 

Bruce T. Blaylock-M.S. (Chemistry), University of Virginia; B.S. (Chemistry), 
Eastern Montana College [6.3) 

Lily C. Chen-'-Ph.D. (Physics), University of Wisconsin, Madison; M.S. (Physics), 
University of Cincinnati; B.S. (Physics), National Taiwan University [7.1, 11.3, 
11.4, 1I.5, Chapter IOJ 

Roger M. Dal'is-M.S: (Mechanical Engineering), Northeastern University; B.S. 
(Mechanical Engineering), University of Connecticut [16.4) 

Demosthenes Diaietis-Ph.D. (Physics), University of Rochester; B.Sc. (Physics), 
University of Athens, Greece [16.4] 

Lawrence Fallon, Ill-Ph.D., M.S. (Materials Science), University of Virginia; B.S. 
(Engineering Physics), Loyola College [6.4, 6.5, 7.6, 7.8, 13.4, 13.5, 21.3, 
Appendix 0] 

B. L. Gmnbhir-Ph.D. (Physics), University of Maryland; M.Sc. (Physics), B.Sc. 
(Physics, Mathematics, English), Punjab University, India [6 . .1, 19.1J 

David M. Gottlieb-Ph.D. (Astronomy), University of Maryland; B.A. (Mathema
tics), Johns Hopkins University [5.3, 5.6, 7.7] 

Mihaly G. Grell-M.S. (Physics), University of Sciences,. Budapest [19.2J 

Dale Headrick-Ph.D., M.S. (Physics), Yale University; B.S. (Physics) Louisiana 
State University [6.6, 18.2, 19.4] 

Steven G. Hotovy-Ph.D. (Mathematics), University of Colorado; B.S. (Mathema
tics), University of Notre Dame [7.2, 13.2, 13.3] 

James S. Legg. Jr.-M.S. (Physics), University of North Carolina; A.B. (Physics, 
Mathematics), Washington and Lee University [8.1,8.3,8.4, 9.IJ 

Gerald M. Lerner-Ph.D. (Physics), Uni~ersity of Maryland; B.A. (Physics), Johns 
Hopkins University [6.1,6.2,6.9, 7.1, 7.5, 9.2, 9.3, 12.2, 12.3, 18.1, 18.3, 19.5, 
Appendix F] . 

Menachem Levittis-Ph.D. (Physics), University of Virginia; B.S. (Physics), t,lni-
versity of Portland [7.3, 17.3) . 

K. Liu-B.S. (Physics), National Taiwan University [4.3] 



LIST OF CONTRIBUTING AUTHORS 

F. L. Mtukley-Ph.D. (Physics), University of California, Berkeley; B.E.P. (Engi
neering Physics), Cornell University [7.4, 7.9: 12.1, 15.2, 16.1, 16.2, 17.1, 
Appendix CJ 

Praful/ll K. Murll-Ph.D., M.S. (Electrical Engineering), University of Maryland; 
B.Tech. (Electrical Engineering), Indian Institute of Technology, India [6.9) 

Jtmet Niblack-M.A. (Mathematics), University of Texas; B.A. (Mathematics), 
Florida State University [8.2) 

Miclulel Plett-Ph.D. (Physics), University of Virginia; B.S. (Physics), University of 
Cincinnati [5.1, 16.3, Appendix H) 

PIIIlI V. Rigterinlc-Ph.D. (Astronomy), University of Pennsylvania; B.A. 
(Mathematics), Carleton College [13.4) 

John N. Rowe-Ph.D., M.S. (Electrical Engineering), pennsylvania State Univer
sity; M.A. (Physics), Western Michigan University; B.A. (Physics), Oakland 
University, Michigan [4.4, 5.4, 5.5) 

Amok K. &.relUl-M.S. (Aerospace Engineering), Virginia Polytechnic Institute 
and State University; B.E. (Mechanical Engineering), Jadavpur Univer
sity, India [18.4, Appendix I) 

Myron A. Shear-M.S. (Physics), University of Illinois; B.A. (Physics, Chemistry), 
Harvard University [20.1, 20.3, 21.1) 

Malcolm D. Shuster-Ph.D. (Physics), University of Maryland; S.B. (Physics), 
Massachusetts Institute of Technology [19.2) 

Peter M. Smith-Ph.D. (Chemistry), Georgetown University; M.Sc. (Spectroscopy), 
B.Sc. (Chemistry), Manchester University, Eng!and [11.1, 11.2, 21.4) 

Des R. Sood-D. Eng. Sc.(Mechanical Engineering), Columbia University; M.S. 
(Mechanical Engineering), Roorkee University, India; B.S. (Mechanical En
gineering), Delhi University, India [6.7, 19.1) 

C. B. Spence, Jr.-Ph.D., M.S. (Physics), College of William and Mary; B.S. 
(Physics), University of Richmond [17.1, 17.2} , 

Conrad R. Sturch-Ph.D. (Astronomy), University of California, Berkeley; M.S., 
B.A. (Physics), Miami University, Ohio [Appendix J) 

G)'tmendrll K. Tandon-Ph.D. (Physics), Yale University; M.Sc. (Electronics), B.Sc. 
(Physics, Mathematics), Allahabad University, India [17.4, 21.2, Appendix E) 

Vincent H. Tllte-M.S., B.S. (Aerospace Engineering), Pennsylvania State Univer
sity (15.3] 

James R. Wem-Ph.D. (Physics), University of Texas, Austin; S.B. (Physics), 
Massachusetts Institute of Technology [4.1, 4.2, 9.4, 11.3, 11.4, 11.5, 13.1, 15.1; 
Chapters 1,2,3, 10, 14,22; Appendices A, B, K, L, M] 

Robert S. WiIIiIIms-Ph.D. (Physics), University of Maryland; B.S. (PhysiCs), 
California Institute of Technology (6.8, 7.10, 19.3] 

KII)' Yong-Ph.D., M.S. (Mechanical Engineering), Rensselaer Polytechnic Insti
tute; B.S. (Mechanical Engineering), National Cheng-K\lllg University, Tai
wan. [5.2] 



FOREWORD 

Roger D. Werking 
Head, Attitude Determination and Control Section 
National Aeronautics and Space Administration/ 

Goddard Space Flight Center 

Extensive work has been done for many years in the areas of attitude 
determination, attitude prediction, and attitude control. During this time, it has 
been difficult to obtain reference material that provided a comprehensive overview 
of attitude support activities. This lack of reference material has made it difficult 
for those not intimately involved in attitude functions to become acquainted with 
the ideas and activities which are essential to understanding the various aspects of 
spacecraft attitude support. As a result, I felt the need for a document which could 
be used by a variety of persons to obtain an understanding of the work which has 
been done in support of spacecraft attitude objectives. It is believed that this book, 
prepared by the Computer Sciences Corporation under the able direction of Dr. 
James Wertz, provides this type of reference. 

This book can serve as a reference for individuals involved in mission planning, 
attitude determination, and attitude dynamics; an introductory textbook for stu
dents and professionals starting in this field; an information source for experimen
ters or others involved in spacecraft-related work who nee(l information on 
spacecraft orientation and how it is determined, but who have neither the time nor 
the resources to pursue the varied literature on this subject; and a tool for 
encouraging those who could expand this discipline to do so, because much 
remains to be done to satisfy future needs. 

The primary purpose of this book is to provide short descriptions of various 
aspects of attitude determination, prediction, and control with emphasis on the 
ground support which presently must be provided. The initial chapters provide the 
necessary background and describe environment models and spacecraft attitude 
hardware. The a~thors then present the fundamentals that are essential to a basic 
understanding of the activities in this area as well as night-proven concepts which 
can be used as a basis for operational state-of-the-art activities or as a stepping 
stone to improved processes. In a limited fashion, Chapter 22 presents future 
activities which affect or are a part of spacecraft attitude support. It is ~ot the 
intention of this book to advance the state of the art but rather to call attention to 
the work that has been done in the successful support of spacecraft attitude 
requirements and to stimulate future thinking. 



PREI<'ACE 

The purpose of ·this book is to summarize the ideas, data, and analytic 
techniques needed for spacecraft attitude determination and control in a form that 
is readable to someone with little or no previous background in this specific area. It 
has been prepared for those who have a physics or engineering background and 
therefore are familiar with the elementary aspects of Newtonian mechanics, vector 
algebra, and calculus. Summaries of pertinent facts in other area.s are presented 
without proof. 

This material has been prepared by 35 members of the technical staff of the 
Attitude Systems Operation of the System Sciences Division of Computer Sciences 
Corporation (Csq for the Attitude Determination and Control Section of NASA's 
Goddard Space Flight Center. It necessarily reflects our experience in this area and 
therefore is concerned primarily with unmanned, Earth-orbiting spacecraft. None
theless, the basic principles are sufficiently broad to be applicable to nearly any 
spacecraft. 

Chapters 1,2,3, 10, and 15 provide introductory material at a more qualitative 
level than that of the other chapters. The suggested order of reading depends on 
the background and interest of the reader: 

I. Those who are primarily concerned with mission planning and analysis and 
who would like a general overview should read Chapters 1,2, 3, 10, 15, and 22. 

2. Those who are primarly interested in attitude determination should read 
Chapters I and 2, Sections 3.1 through 3.3, Chapter 10, Appendices A and B, and 
Chapters II through 14. 

3. Those who are primarily interested in attitude dynamics and control should 
read Chapters I and 2, Sections 3.1 through 3:3 and 12.1, Chapters 15 through 19, 
lj,lld Appendices C through H. 

4. Those who are primarily interested in the space environment, attitude 
hardware, and data acquisition should read Chapters I through 9 and Appendices 
G through J. 

5. Those who are primarily interested in the development of mission related 
software should read Chapters 1 and 2, Sections 3.1 through 3.3, Chapters 20 and 
21. Chapters 8 and 9, Sections Il.l and 1l.2, and Chapters 12, 4, 5, and 7. 

The International System of Units is used throughout the book and a detailed 
list of conversion factors is given in Appendix K. Because nearly all numerical 
work is now done with computers or hand calculators, all constants are given to 
essentially their full available accuracy. Acronyms have generally been avoided, 
except for spacecraft names. The full spacecraft names are listed in Appendix I, 
which alsO provides across-referenced list of the attitude hardware used on various 
spacecraft, including all those used as examples throughout the text. 

Because much of the material presented here has not appeared in the open 
literature, many of the references are to corporate or government documents of 
limited circulation. To improve the exchange of information, Computer Sciences 
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PREFACE ix 

Corporation reports referenced herein are available for interlibrary loan through 
your librarian by writing to: 

Head Librarian 
Technical Information Center 
Computer Sciences Corporation 
8728 Colesville Road 
Silver Spring, MD 20910 

Standard computer subroutines for attitude analysis cited throughout the book are 
available from: 

COSMIC 
Barrow Hall 
University of Georgia 
Athens, GA 30601 

by asking for Program Number GSC12421, Attitude Determination and Control 
Utilities. Each of these subroutines is briefly described in Section 20.3. 

The preparation of this book was a cooperative effort on the part of many 
individuals. It is a pleasure to acknowledge the help of Robert Coady, Roger 
Werking, and Richard Nankervis of NASA's Goddard Space Flight Center, who 
initiated and supported this project. At Computer Sciences Corporation, direction, 
support, and help were provided by Richard Taylor, David Stewart, Michael Plett, 
and Gerald Lerner. In addition to the authors, who provided extensive review of 
each other's sections, particularly helpful reviews were provided by Peter Batay
Csorba, Stanley Brown, Charles Gray, Lawrence Gunshol, William Hogan, Whit
tak Huang, James Keat, Anne L~ng, J. A. Massart, Donald Novak, Franklin 
VanLandingham, Donna Walter, and Chao Yang. Considerable assistance in 
obtaining reference material was supplied by Gloria Urban and the staff of the 
CSC Technical Information Center. Jo Border and the CSC Publications Depart
ment supplied a consistently high quality of support in editing. composition, and 
graphics. Jerry Greeson and the Graphics Department staff prepared nearly aU of 
the 450 illustrations in the book. Figures 17-4, 18-19, and 19-15 are reproduced by 
permission of the American Institute of Aeronautics and Astronautics. Anne Smith 
edited the final version of the manuscript and Julie Langston, the publications 
editor for the manuscript, did an outstanding and professional job of translating 
multiple early drafts into grammatical English, handling the numerous details of 
producing a finished manuscript, and preparing the final layout. 

Silver Spring, Maryland 
July 1978 

James R. Wertz 



x 

STANDARD NOTATION 

Standard notation developed in the first three chapters and used throughout 
the remainder of tit is book is given below. Unfortunately, notation, coordinate 
systems, and even definitions are frequently used differently for different 
spacecraft. The definition of attitude and the orientation of the roll, pitch, and yaw 
axes vary more than most quantities. 

Alphabets and Type Styles 

All arc lengths are lowercase Greek, 8 

~ll rotation angles are uppercase Greek, A 

These are not exclusive because common usage may require Greek characters for 
some nonangular measure. 
All n-vectors are bold face, E or x. All quaternions are boldface italics, q. Boldface 
is used exclusively for vectors, quaternions, or the identity matrix, 1. 

Points on the sky are labeled with uppercase italic Roman, E. Antipodal points (the 
antipode is the point 180 deg away from a given point) have a ~ 1 superscript, E -I. 

VectOB and Matrices 

The treatment of vectors is illustrated by the Sun vector: 

S 
S-I 

~ 
S 
lSI or S 

point on the celestial sphere in the direction of the Sun 
point on-the celestial sphere opposite the direction of the Sun 
vector from spacecraft to Sun 
unit vector from the spacecraft toward ~he Sun 
magnitude of the Sun vector. S is used if there is no possibility of 
ambiguity. Otherwise lSI is used 
either the ith component of the Sun vector or an arbitrary component 
of the Sun vector 

Both uppercase and lowercase letters will be used for vectors. Matrices will be 
represented by uppercase Roman letters with the following notation; 

M or [Mij] 
det M or IMijl 
M- 1 

MT 
My 

1 
I 

matrix or second-rank tensor 
determinant of M 
inverse of M 
transpose of M 
either an arbitrary component of M or the component in the ith 
row,jth column 
identity matrix 
moment of inertia tensor 



STANDARD NOTATION 

Coordinate Systems 

Spacecraft-Centered Celestial Coordinates: 

a right ascension 
6 declination 

Body-Fixed Coordinates for Spinning Spacecraft: 

q, 
>. 

or 9 

azimuth 
elevation 
coelevation (measured from the spin axis) 

xi 

No standard definitions apply for body-fixed coordinates for three-axis stabilized 

:~:;:~ Yaw: ---~ 
Pitch axis, P, toward n~gati.:ve ~rbit normal~ .te 
Yaw axis; Y, toward the nadir l s.,) Y' 
Roll axis, R, such that R=Pxy -' 
Unfortunately, the roll, pitch, and yaw axes do not have generally accepted 
meanings in spaceflight. Usage depends on the context. 

~, roll angle, measured about R 
~p pitch angle, measured about P 
~ yaw angle, measured about Y 

Positive roll, pitch, and yaw are right-handed rotations about their respective axes. 

Standard Symbols 

The letter "t" in all forms (Roman, Greek, uppercase, and lowercase) is used 
only for time or time intervals, except that superscript T is used to indicate the 
transpose of a matrix. 

Orbital elements: 

a semimajor axis 
e eccentricity 

inclination 
'" argument of perigee 
D right ascension of the ascending node 
Mo mean anomaly at epoch 
To epoch time 
P orbital period 



xii STANDARD NOTATION 

Vectors: 

L angular momentum 
N torque 
B magnetic field 
E nadir vector 
S Sun vector 
A attitude vector 
" horizon crossing vector; "/ and "0 for in-crossing and out-crossing 
'" angular velocity vector 
x m-dimensional state vector 
y n-dimensional observation vector 

;4ngles: 

fi Sun angle = Sun/attitude angular separation 
1/ Nadir angle = Earth center/attitude angular separation 
<}) Rotation angle from the Sun to the center of the Earth about the attiutde 
l/; Sun/Earth center angular separation 

Astronomical Symbols: 

ffi Earth 
(=) Sun 
'Y' Vernal Equinox 

Additional astronomical symbols are defined in Fig. 3-10. 

Miscellaneous 

Il indicates an arbitrary interval, as Ilt = /2 - t I 

8 indicates an infinitesimal interval in which first-order approximations 
may be used, as L=Lo+N8t 

A dot over any symbol indicates dffferentiation with respect to time, i.e., 
x= dx/dt. 

The Kronecker Delta, 8;, is defined as 

8;= I for i=j 

8;=0 for i.p j 

The Dirac delta function, 8D (x - xo), is defined by 

8~(x-xo)=O for x.p Xo 



xiii 

TABLE OF CONTENTS 

List of Contributing Authors v 
Foreword vii 
Preface viii 
Standard Notation x 

PART I-BACKGROUND 

1. INTRODUCTION I 
I.l Representative Mission Profile 3 
1.2 Representative Examples of A Ititude Determination and Control 10 
1.3 Methods of Altitude Determination and Control 16 
1.4 Time Measurements 18 

2. ATTITUDE GEOMETRY 22 
2.1 The Spacecraft-Centered Celestial Sphere 22 
2.2 Coordinate Systems 24 
2.3 Elementary Spherical Geometry 31 

3. SUMMARY OF ORBIT PROPERTIES AND TERMINOLOGY 36 
3.1 Keplerian Orbits 36 
3.2 Planetary and Lunar Orbits 48 
3.3 Spacecraft Orbits 52 
3.4 Orbit Perturbations 62 
3.5 Viewing and Lighting Conditions 71 

4. MODELING THE EARTH 82 
4.1 Appearance of the Earth at Visual Wa.velengths 83 
4.2 Appearance of the Earth at Infrared Wavelengths 90 
4.3 Earth Oblateness Modeling 98 
4.4 Modeling the Structure of the Upper Atmosphere 106 

5. MODELING THE SPACE ENVIRONMENT 113 
5.1 The Earth's MagnetiC Field 113 
5.2 The Earth's Gravitational Field 123 
5.3 Solar Radiation and the Solar Wind 129 
5.4 Modeling the Position of the Spacecraft 132 
5.5 Modeling; the Positions of the Sun, Moon, and Planets 138 
5.6 Modeling Stellar Positions and Characteristit;s 143 

PART U-ATIlTUDE HARDWARE AND DATA ACQUlSmON 

6. ATTITUDE HARDWARE 155 
6.1 Sun Sensors 155 -
6.2 Horizon Sensors 166 
6.3 Magnetometers 180 
6.4 Star Sensors 184 



XIV TABLE OF CONTENTS 

6.5 Gyroscopes 196 
6.6 Momentum and Reaction Wheels 201 
6.7 Magnetic Coils 204 
6.8 Gas Jets 206 
6.9 Onboard Computers 210 

7. MATHEMATICAL MODELS OF ATTITUDE HARDWARE 217 
7.1 Sun Sensor Models 218 
7.2 Horizon Sensor Models 230 
7.3 Sun Sensor/Horizon Sensor Rotation Angle Models 237 
7.4 Modeling Sensor Electronics 242 
7.5 Magnetometer Models 249 
7.6 Star Sensor Models 254 
7.7 Star Identification Techniques 259 
7.8 Gyroscope Models 266 
7.9 Reaction Wheel Models 270 
7.10 Modeling Gas Jet Control Systems 272 

8. DATA TRANSMISSION AND PREPROCESSING 278 
8.1 Data Transmission 278 
8.2 Spacecraft Telemetry 293 
8.3 Time Tagging 298 
8.4 Telemetry Processors 304 

9. DATA VALIDATION AND ADJUSTMENT 310 
9.1 Validation of Discrete Telemetry Data 312 
9.2 Data Validation and Smoothing 315 
9.3 Scalar Checking 328 
9.4 Data Selection Requiring Attitude Information 334 

PART III-ATTITUDE DETERMINA nON 

10. GEOMETRICAL BASIS OF ATTITUDE DETERMINATION 343 
10.1 Single-Axis Attitude 344 
10.2 Arc-Length Measurements 346 
10.3 Rotation Angle Measurements 349 
10.4 Correlation Angles 353 
10.5 Compound Measurements-Sun to Earth Horizon Crossing 

Rotation Angle 357 
10.6 Three-Axis Attitude 359 

11. SINGLE-AXIS ATTITUDE DETERMINATION METHODS 362 
11.1 Methods for Spinning Spacecraft 363 
11.2 Solution Averaging 370 
11.3 Single-Axis Attitude Determination Accuracy 373 
11.4 Geometrical Limitations on Single-AXis Attitude Accuracy 389 
11.5 Attitude Uncertainty Due to Systematic Errors 402 



,.. 

TABLE OF CONTENTS XV 

12. THREE-AXIS AITITUDE DETERMINATION METHODS 410 
12.1 Parameterization of the Attitude 410 
12.2 Three-Axis Attitude Determination 420 
12.3 Covariance Analysis 429 

13. STATE ESTIMATION ATTITUDE DETERMINATION METHODS 436 
13.1 Deterministic Versus State Estimation Attitude Methods 436 
13.2 State Vectors 438 
13.3 Observation Models 443 
13.4 Introduction to Estimation Theory 447 
13.5 Recursive Least-Squares Estimators and Kalman Filters 459 

14. EVALUATION AND USE OF STATE ESTIMATORS 471 
14.1 Prelaunch Evaluation of State Estimators 471 
14.2 Operational Bias Determination 473 
14.3 Limitations on State Vector Observability 476 

PART IV-AlJ"ITUDE DYNAMICS AND CONTROL 

15. INTRODUCTION TO ATTITUDE DYNAMICS AND CONTROL 487 
15.1 Torque-Free Motion 487 
15.2 Response to Torques ·498 
15.3 Introduction to Attitude Control 502 

16. A TIITUDE DYNAMICS 510 
16.1 Equations of Motion 510 
16.2 Motion of a Rigid Spacecraft 523 
16.3 Spacecraft Nutation 534 
16.4 Flexible Spacecraft Dynamics 548 

17. A TIITUDE PREDICTION 558 
17.1 Attitude Propagation 558 
17.2 Environmental Torques 566 
17.3 Modeling Internal Torques 576 
17.4 Modeling Torques Due to Orbit Maneuvers 580 

IS. A TIITUDE STABILIZATION 588 
18.1 Automatic Feedback Control 588 
IS.2 Momentum and Reaction Wheels 600 
IS.3 Autonomous Attitude Stabiliza!io!, Systems 604 
IS.4 Nutation and Libration Damping 625 

19. A TIITUDE MANEUVER CONTROL 636 
19.J Spin Axis Magnetic Coil Maneuvers 636 
19.2 Spin Plane Magnetic Coil Maneuvers 642 
19.3 Gas Jet Maneuvers 649 
19.4 Inertial Guidance Maneuvers 655 
19.5 Attitude AcqUisition 661 



xvi TABLE OF CONTENTS 

PART V-MISSION SUPPORT 

20. SOFTWARE SYSTEM DEVELOPMENT 681 
20.1 Safeguards Appropriate for Mission Support Software 681 
20.2 Use of Graphic Support Systems 686 
20.3 Utility Subroutines 690 

21. SOFTWARE SYSTEM STRUCTURE 696 
21.1 General Structure for Attitude Software Systems 696 
21.2 Communications Technology Satellite Attitude Support System 700 
21.3 Star Sensor Attitude Determination System 703 
21.4 A ttitude Data Simulators 709 

22. DISCUSSION 714 

PART VI-APPENDICES 

APPENDIX A-SPHERICAL GEOMETRY 727 
APPENDIX B-CONSTRUCTION OF GLOBAL GEOMETRY PLOTS 737 
APPENDIX C-MATRIX AND VECTOR ALGEBRA 744 
APPENDIX D-QUATERNIONS 758 
APPENDIX E-COORDINATE TRANSFORMATIONS 760 
APPENDIX F-THE LAPLACE TRANSFORM 767 
APPENDIX G-SPHERICAL HARMONICS 775 
APPENDIX H-MAGNETIC FIELD MODELS 779 
APPENDIX I-SPACECRAFT ATTITUDE DETE.RMINATION 

AND CONTROL SYSTEMS 787 
APPENDIX J -TIME MEASUREMENT SYSTEMS 798 
APPENDIX K-METRIC CONVERSION FACTORS 807 
APPENDIX L-SOLAR SYSTEM CONSTANTS 814 
APPENDIX M-FUNDAMENTAL PHYSICAL CONSTANTS 826 
Index 830 



PART I 

BACKGROUND 



CONTENTS 

PART I 

BACKGROUND 
Chapler 

Introduction 

2 Attitude Geometry 22 

3 Summary of Orbit Properties and 
Terminology 36 

4 Modeling the Earth 82 

5 Modeling the Space Environment 113 



CHAPTER 1 

INTRODUCTION 

1.1 Representative Mission Proftle 
1.2 Representative Examples of Attitude Determination and 

Control 
Spin Stabilized Spacecraft, Three-Axis Stabilized Space· 
craft, Attitude Maneuver Using Gas Jets 

1.3 Methods of Attitude Determination and Control 
1.4 Time Measurements 

James R. Wertz 

The attitude of a spacecraft is its orientation in space. This book is concerned 
with all aspects of spacecraft attitude-how it is determined, how it is controlled, 
and how its future motion is predicted. We describe simple procedures for estimat
ing the attitude -and sophisticated methods used to obtain the maximum accuracy 
from a given set of data. In this chapter, we introduce the basic terminology and 
provide an overview of the attitude determination and control processes and their 
place in the overall space mission. 

The motion of a rigid spacecraft is specified by its position, velocity, attitude, 
and attitude motion. The first two quantities describe the translational motion of 
the center of mass of the spacecraft and are the subject of what is variously called 
celestial mechanics, orbit determination, or space navigation, depending on the aspect 
of the problem that is emphasized. The latter two quantities describe the rotational 
motion of the body of the spacecraft about the center of mass and are the subject 
of this book. Although knowledge of the spacecraft orbit frequently is required to 
perform attitude determination and control functions, the process of orbit de
termination or orbit maneuver analysis is outside the scope of this book. In general, 
orbit and attitude are interdependent. For example, in a low altitude Earth orbit, 
the attitude will affect the atmospheric drag which will affect the orbit; the orbit 
determines the spacecraft position which determines both the atmospheric density 
and the magnetic field strength which will, in tum, affect the attitude. However, we 
will normally ignore this dynamical coupling and assume that the time history of 
the spacecraft position is known and has been supplied by some process external to 
the attitude determination and control system. A brief summary of spacecraft orbit 
properties and terminology is given in Chapter 3. 

One distinction between orbit and attitude problems is in their historical 
development. Predicting the orbital motion of celestial objects is one of the oldest 
sciences and was the initial motivation for much of Newton's work. Thus, although 
the space age has brought with it vast new areas of orbit analysis, a large body of 
theory directly related to celestial mechanics has· existed for several centuries. In 
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contrast, although some of the techniques are old, most of the advances in attitude 
determination and control have occurred since the launch of Sputnik on October 4, 
1957.* The result of this is that relatively little information is recorded in books or 
other coordinated, comprehensive reference sources. The language of attitude 
determination and control is still evolving and many of the technical terms do not 
have universally accepted meanings. One purpose of this book is to codify the 
definitions of terms as they are commonly used and to eliminate some inconsisten-
cies in their use. . 

Attitude analysis may be divided into determination, prediction, and control. 
Attitude determination is the process of computing the orientation of the spacecraft 
relative to either an inertial reference or some object of interest, such as the Earth. 
This typically involves several types of sensors on each spacecraft and sophisticated 
data processing procedures. The accuracy limit is usually determined by a com
bination of processing procedures and spacecraft hardware. 

Attitude prediction is the process of forecasting the future orientation of the 
spacecraft by using dynamical models to extrapolate the attitude history. Here the 
limiting features are the knowledge of the applied and environmental torques and 
the accuracy of the mathematical model of spacecraft dynamics and hardware. 

Attitude control is the process of orienting the spacecraft in a specified, 
predetermined direction. It consists of two areas-attitude stabilization, which is the 
process of maintaining an existing orientation, and attitude maneuver control, which 
is the process of controlling the reorientation of the spacecraft from one attitude to 
another. The two areas are not totally distinct, however. For example, we speak of 
stabilizing a spacecraft with one axis toward the Earth, which implies a continuous 
change in its inertial orientation. The limiting factor for attitude control is typically 
the performance of the maneuver hardware and the control electronics, although 
with autonomous control ~ystems, it may be the accuracy of orbit or attitude 
information. 

Some form of attitude determination and control is required for nearly all 
spacecraft. For engineering or flight-related functions, attitude determination is 
required. only to provide a reference for control. Attitude control is required to 
avoid solar or atmospheric damage to sensitive components, to control heat 
dissipation, to point directional antennas and solar panels (for power generation), 
and to orient rockets used for orbit maneuvers. Typically, the attitude control 
accuracy necessary for engineering functions is on the order of I deg. Attitude 
requirements for the spacecraft payload are more varied and often more stringent 
than the engineering requirements. Payload requirements, such as telescope or 
antenna orientations, may involve attitude determination, attitude control, or both. 
A~titude constraints are most severe when they are· the iirniting factor in experi
mental accuracy or when it is desired to reduce the attitude uncertainty to a level 
such that it is not a factor in payload operation. These requirements may demand 
accuracy down to a fraction of an arc-second (I arc-second equals 1/3600 deg). 

-No science is without antecedents. Much background in this area comes from attitude determination 
and control for earlier airplanes and rockets. In addition, it has been understood since Newton's time 
that the attitude of the Moon was probably "gravity-gradient stabilized, .. i.e., locked into its rotation 
period by the torque resulting from the tidal forces of the Earth on the Moon. 
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A convenient method for categorizing spacecraft is the procedure by which 
they are stabilized. The simplest procedw"e is to spin the spacecraft. The angular 
momentum of a spin-stabilized spacecraft will remain approximately fixed in 
inertial" space for extended periods, because exteOlal torques which affect it are 
extremely small in most cases. However, the rotational orientation of the spacecraft 
about the spin axis is not controlled in such a system. If the orientation of three 
mutually perpendicular spacecraft axes must be controlled, then the spacecraft is 
three-axis stabilized. In this case, some form of active control is usually required 
because environmental torques, although small, will normally cauSe the spacecraft 
orientation to drift slowly. (However, environmental torques can be stabilizing in 
some circumstances.) Three-axis stabilized spacecraft may be either nons pinning 
(fixed in inertial space) or fixed relative to a possibly rotating reference frame, as 
occurs for an Earth satellite which maintains one face toward the Earth and 
therefore is spinning at one rotation per orbit. Many missions consist of some 
phases in which the spacecraft is spin stabilized and some phases in which it is 
three-axis stabilized. Some spacecraft have multiple components, some of which are 
spinning and some of which are three-axis stabilized. 

1.1 Representative Mission Profile 

In this section we describe the profile of a typical space mission to illustrate 
the attitude determination and control process and to relate this process to the 
overall mission requirements. There is no single profile characteristic of all space 
missions. However, most missions have in common three more or less distinct 
phases: (I) launch, consisting of the activities from lift-off until the end of powered 
flight in a preliminary Earth orbit; (2) acquisition, consisting of orbit and attitude 
maneuvers and hardware checkout; and (3) mission operations, consisting of carry
ing out the normal activities for which the flight is intended . 

. Launch is the most distinct and well-defined phase and is normally carried out 
and controlled primarily by personnel concerned with the rocket launch vehicle 
and who will not be involved in subsequent mission operations. A limited number 
of launch vehicles are in use. For the United States, these range from the four-stage 
Scout, which is capable of orbiting a payload of about 100 kg to the three-stage 
Saturn V, capable of putting 100,000 kg in low-Earth orbit. (See, for example, 
Glasstone (1965), von Braun and Ordway (1975), or the excellent nontechnical book 
by Clarke (1968).) One of the most common launch vehicles for Earth-orbiting 
spacecraft is the Delta, which has launched over 100 spacecraft and has low-orbit 
payload capabilities of 240 kg to 1900 kg, depending on the rocket configuration. 
For future launches, the Space Shuttle will be the most common, though not 
exclusive, vehicle. 

Launch sites are similarly limited. For the United States, most launches for 
equatorial orbits occur from the Eastern Test Range at Cape Canaveral, Florida, or 
for polar orbits from the Western Test Range at Vandenberg Air Force Base, 
California. Some tests and launches of very small vehicles are conducted at White 
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Sands, New Mexico. and Wallops Island. Virginia.· For the Soviet Union, the 
launch sites are Tyuratan. 370 km southwest of Baykonur for major manned and 
planetary flights;· Plesetsk. north of Moscow for military and some operational and 
scientific launches; and Kapustin Yar. near the Caspian Sea for small launches and 
tests. (For discussions of Soviet space programs, see most issues of the British 
journal Spaceflight or the comprehensive Senate report for the 92nd Congress 
[1971].) 

Once powered flight has ended· and the spacecraft has separated from most of 
the launch vehicle, the acquisition phase of. maneuvers and testing begins. (The 
final launch stage may be left attached to the spacecraft for later maneuvers using 
the final stage control hardware and fuel. An Agena upper stage, a rocket which 
may be restarted in space, is frequently used for such maneuvers.) The acquisition 
phase can last from a few minutes to several months and may be defined 
differently depending on the particular aspect of the mission that is involved. For 
example, for someone concerned primarily with the operation of communications 
hardware, testing and maneuvering may last only a brief period. with "normal" 
operations beginning well before experiments or operational equipment have been 
thoroughly tested. Normally, the major portion of the attitude analysis for any 
mission is concerned with various aspects of the acquisition phase, as described in 
the example below.· 

Finally, onc~ the proper orbit and attitude have been obtained and the 
hardware has been tested, the mission operations phase, in which the spacecraft 
carries out its basic purpose, is initiated. At this stage, attitude determination and 
control becomes, or should become, a routine process. On complex missions, such 
as lunar or planetary explorations, the acquisition phase may be repeated at various 
intervals as new hardware or new conditions are introduced. 

We will illustrate the above phases and the role of the attitude determination 
and control process by describing the flight of the Communications Technology 
Satellite, CTS, launched aboard a Delta 2914 launch vehicle (Fig. 1-1) from the 
Eastern Test Range at 23:28 UT (18:28 EST) January 17, 1976.t (Evening or night 
launches are preferred to avoid evaporation of rocket fuel while sitting on the 
launch pad.) CTS was ajoint project of the United States and Canada in which the 
Canadian Department of Communications built and operated the spacecraft and 
the United States National Aeronautics and Space Administration, NASA, pro
vided the Ii lUnch vehicle, launch facilities, and operational support through the 
acquisition phase of the mission. The purpose of the mission was to conduct 
various communications experiments, primarily as a high-power television relay 
from portable transmitters operating at a frequency of 14 GHz to low-cost 12-GHz 
receivers. The spacecraft was placed in synchronous orbit, i.e., at an altitude 
corresponding to an orbital period of 24 hours, so as to remain approximately 

-Occasionally, U.S. spacecraft are launched from non-American sites. For example, the Small 
Astronomy SaWllite-l (SAS<I), also called Uhuru after the Swahili word for freedom, was launched from 
the Italian SaIl MfUCO Platform, similar to an oil exploration platform, off the coast of Kenya. This was 
done to avoid the van Allen radiation belts. 
tSee Section 1.4 for an explanation of "UT," or Universal TlDle. 
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Fig. 1·1. Lift-Off of a Della 2914 Launch Vehicle From the Eastern Test Range al Cape Canaveral, 
Florida. (Conditions for the launch of the Synchronous Meteorological Satellite shown here 
were essentially identical with those for the CiS lauDch which occurred after dark.) 
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stationary over the equator at 1140 West longitude. This location permitted 
'television transmissions to remote regions of both Canada and Alaska. 

The mass of the CTS spacecraft was 676 kg at lift-off, of which approximately 
340 kg was in the weight of a rocket motor, called the apogee boost motor, required 
for an orbit maneuver during the acquisition phase. As shown in Fig. 1-2, the 
spacecraft is approximately cylindrical, 1.88 m high and 1.83 m in diameter. The 
main operating power is supplied by two extendable solar arrays, each 6.20 m long 
and 1.30 ni wide, with a mass of 15 kg and a power output of 600 watts per array. 
CTS has a total of II attitude sensors·: 4 u$ed exclusively during the acquisition 
phase when the spacecraft was spin stabilized, 2 used during the operations phase 
when the spacecraft was three-axis stabilized, and 5 used for the transition from 
spinning to nonspinning. In addition to the large apogee boost motor used during 
the acquisition phase, the spacecraft includes 18 small rocket motors (2 "high 
thrust" and 16."low thrust") for orbit and attitude maneuvers. 

Fig. 1-2. crs Spac:ec:raft During the Mission Operations Phase 

As shown in Fig. 1-3, ers was launched into an initial 1 85-km.parking orbIt. It. 
maintained this orbit for approximately 15 minutes until the spacecraft was over 
the equator, at which time the third stage was reignited and the spacecraft Was 
injected into an elliptical transfer orbit which had its low point, or perigee, at the 
parking orbit altitude and its high point, or apogee, just above the synchronous 

-In addition to the II sensors, 3 gyroscopes were used to sense the rate of change of the attitude. 
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altitude of 35,860 km. (See Chapter 3 for a general discussion of orbits and orbit 
terminology.) Before injection, which marked the end of the launch phase, the 
spacecraft was controlled by the launch control team at the launch site. Subsequent 
to injection, the acquisition phase began and control of the spacecraft was trans
ferred to the Operations Control Center at NASA's Goddard Space Flight Center 
in Greenbelt, Maryland. 

Fig. 1-3. CTS Orbit Maneuvers. (Orbit and Earth drawn to same scale; see text for explanation.) 

The purposes of the transfer orbit were to move the spacecraft to synchr0110US 
altitude so that the large apogee boost motor could be fired to change the orbit to 
an approximately circular, synchronous one, as shown in Fig. 1-3, and to control 
the timing of this apogee motor firing. The smaller motors could then be used for 
various orbit and attitude refinements. Because the apogee motor was fixed in the 
spacecraft, it was necessary to reorient the entire spacecraft such that the motor 
firing would provide the proper orbit change. Thus, the principal activity during 
the transfer orbit was to determine the attitude, test and calibrate (if needed) the 
attitude sensors, reorient the spacecraft to the proper apogee motor firing attitude, 
and make fine adjustments and measurements as needed to ensure that the proper 
attitude had been obtained. To carry out this sequence and to provide for proper 
positioning in the synchronous orbit, the spacecrilft remained in \he transfer orbit 
for 6-1/2 orbits, or about 3 days. 

While in the transfer orbit, the spacecraft was spin stabilized at approximately 
60 rpm. Two Sun sensors and two Earth horizon sensors were used for attitude 
determination with an accuracy requirement of I deg for apogee motor firing. The 
two high-thrust rocket motors were used to reorient the spacecraft spin axis by 
about 225 deg from its initial orientation (as it left the third stage of the launch 
vehicle) to the apogee motor firing attitude. A maneuver of more than 180 deg was 
required to avoid lowenng perigee (the minimum altitude point) in the transfer 
orbit due to the translational thrust of the maneuver jets. 

The apogee motor firing changed the orbit to nearly circular and changed the 
period to approximately 23 hours 15 minuteS so that the spacecraft would drift 
slowly westward relative to the Earth's surface. A series of orbit adjustments made 
the period nearly identical with the Earth's rotation period when the spacecraft was 
over the desired longitude. During this, s"tation acquisition phase, the principal 
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attitude requirement was to bring the attitude to orbit normal (i.e., perpendicular to 
the orbit plane) after the apogee motor firing and to maintain it there for orbit 
maneuvering using the two high-thrust jets. The station acquisition sequence 
required a total of five progressively smaIler orbit maneuvers carried out over a 
period of 9 days after apogee motor firing. 

After station acquisition, control of the spacecraft was transferred to the 
Canadian Research Council, which conducted a major attitude maneuver sequence 
to transform the spacecraft from a spin-stabilized mode to a three-axis-stabilized, 
Earth-pointing mode [Bassett, 1976]. This was the most complex attitude maneuver 
conducted during the mission and consisted of a 2-day sequence of operations 
divided into 39 specific events. During this phase, attitude determination input was 
changed from the four sensors previously mentioned to five Sun sensors and two 
Earth sensors designed for use during the acquisition phase. The set of 16 
low-thrust jets was used to despin the spacecraft and to control it in the nonspin
ning mode. Additional control was supplied by a spinning flywheel, which was 
used to reorient the spacecraft about the wheel axis by changing the relative 
angular momentum of the wheel and the spacecraft body. The major,events in the 
maneuver sequence were: despin of the spacecraft, 'maneuver of the spacecraft to 
bring the Sun to its desired position in the control system field of view, deployment 
of the solar arrays, spinup of the flywheel, rotation of the spacecraft about the line 
to the Sun to orient the flywheel axis perpendicular to the orbit plane, and a series 
"of rotations to achieve the final three-axis attitude with the Earth i~ the center of 
the Earth sensor field of view. 

Completion of the attitude maneuvers ended the ac.quisition phase of the 
ini~ion. After further hardware checks, normal mission operations were initiated. 
During the planned 2-year life of the spacecraft, the attitude control system will" be 
used to maintain the attitude within 0.1 deg of its nominal orientation. The major 
factor in mission lifetime is the consumption of fuel for attitude stabilization, 
although orbit drift, possible mechanical failure, and power loss due to radiation 
damage to the solar cells ~ay also affect the useful life of CTS. 

Three Major Changes Whiclt Will Affect Future Mission Profiles. During the 
decade of the I 980s, three major spaceflight changes are anticipated which wiIl 
affect the representative mission profile just described: (I) launch and, for some 
spacecraft, recovery via the Space Shuttle; (2) increased use of onboard processing 
for attitude determination and control; and (3) major advances in tracking and 
spacecraft-to-ground communications via the Tracking and Data Relay Satellite 
System, TDRSS, and the Global Positioning System, GPS. The effect of these and 
unforeseen developments on attitude determination and control hardware and 
procedures cannot be predicted with precision. It is nevertheless important to 
consider the probable or possible direction of future developments.· " 

The principal effect of th~ Space Shuttle relative to attitude determination and 
control will be to decrease the cost of near-Earth payloads and increase their 
numbers. Increased shuttle capacity, relative to expendable launch vehicles. will 

• For an extended discussion of long-term space developments, see the Future Space Programs rePort of 
the 94th Congress (1975) and the NASA Outlook for Space series [1976a, I 976bl, 
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allow heavier and more extensive hardware than previously used. Th~ potential 
cargo mass for various shuttle orbits is shown 10 Fig. 1-4. As transportation costs 
decrease and the number of active payloads increases, new methods will be "needed 
to reduce the cost of attitude determination and control. At present, the most likely 
procedures to achieve this are (I) increased autonomy with up to 3 days of 
automatic control without ground support; (2) decreased hardware redundancy, 
since recoverable payloads will shift cost effectiveness; and (3) standardization of 
attitude hardware and, possibly, suppOrting software: Proc~ures for handling the 
increased data volume from the greater number of spacecraft "will also be impor
tant. The development of routine processing procedures which, unlike most present 
systems, do not require operator interverition, will probably be required. 
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Fig. 1-4. Cargo Mass as a Function of Orbit Altitude and Inclination for the Space Shuttle. See 
Chapter 3 for defmition of orbit parameters. (Data courtesy NASA Public Affairs Office.) 

The increased use of processing on board the spacecraft will not substantially 
affect the analysis described in this volume, since the analytic techniques do not 
generally depend on the physical location of the processor. However, elimination of 
complex communication links will eliminate a major source of data irregularities. 
In addition, the more limited size of onboard computers will place greater emphasis 
on reducing storage and computational requirements for attitude analysis. This 
suggests a possible dichotomy of functions in which sophisticated ground-based 
software will carry out inflight calibration and bias determination and send the 
resulting critical parameters back to the spacecraft for onboard processing of 
normal operating data. 

The Global Positioning System, also known as NAVSTAR,will use a network 
of 24 satellites for terrestrial, missile, and satellite navigation. Each GPS satellite 
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will broadcast its ephemeris and the time, which will allow a GPS receiver to 
determine its own position from simultaneous observations of any four GPS 
satellites. The objp.ctive of the system is to provide all users with a positional 
accuracy of 20 m (either on the ground or in space), a velocity ~ccuracy of 0.06 
mIs, and a time accurate to 10 ns. Users with appropriate decoding equipment can 
obtain twice the accuracy in position and velocity. Finally, the Tracking and Data 
Relay Satellite System, by. which operational satellites will communicate with the 
ground via geostationary satellites, has the potential for providing increased data 
coverage over that presently available. (See Section 8.1 for a more detailed 
discussion of TDRSS.) However, the use -of TDRSS will require at\itude prediction 
several days in advance to schedule intersatellite communications. The implications 
for attitude research and development of these potential changes in future mission 
profiles are discussed in more detail in Chapter 22. 

1.2 Representative Examples of Attitude Determination and Control 

the goal of attitude determination is to determine the orientation of the 
spacecraft relative to either an inertial reference frame or some specific object of 
interest, such as the Earth. To do this, we must have available one or more 
reference vectors, i.e., unit vectors in known directions relative to the spacecraft. 
(Recall that for attitude determination we are interested only in the orientation of 
the spacecraft and not its position; therefore, the magnitud~ of the reference vector 
is of no interest except as a. possible check on our calculation.) Commonly used 
reference vectors are the Earth's magnetic field, and unit vectors in the direction of 
the .. Sun, a known star, or the center of the Earth. 

Given a reference vector, an attitude sensor measures the orientation of that 
vector (or some function of the vector) in the frame of reference of the spacecraft. 
Having done this for two or more vectors, We may compute the orientation of the 
spacecraft relative to these vectors, with some possible ambiguity. To clarify this 
process, we will give two specific examples of attitude determination processes and 
one example of the use·of reference vectors in attitude control. 

Although we will present only a single attitude determination method for each 
situation, most real spacecraft, such as the crs example, have redundant sensors 
that can be used in various combinations in the case of sensor or electronic failure. 
In addition, although the examples are representative of several series of spacecraft, 
the actual hardware used, and the procedures by which it is used, are normally 
designed to meet the specific requirements of each individual mission and differ 
from mission to mission. However, individual missions within a series-such as the 
Synchronous Meteorological Satellite-l and -2 or the Atmosphere Explorer-3, -4, 
and -5 spacecraft-will frequently have identical hardware. 

1.2.1 SPIn StabUlzed Spacecraft 

Our first example of the attitude determination process is the case of the crs 
spllcecraft in its transfer orbit as described above. Because the purpose of attitude 
d~tion in the transfer orbit is to support an orbit maneuver and the nozzle 
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of the apogee boost motor is aligned with the spacecraft spin axis, we are interested 
in the orientation of the spin axis in inertial space. 

As shown in Fig. 1-5, two types of attitude sensors are available. (fwo sensors 
of each type were used, primarily for redundancy, but also to provide attitude 
information at different times.) The digital Sun. sensor uses a narrow slit and a 
pattern of photosensitive rectangles to measure the Sun angle, p, or the angle 
between the spin axis and the Sun. The Sun angle is a known function of the 
rectangles within the instrument on which sunlight falls. The second attitude sensor 
is an Earth horizon telescope. The telescope has a narrow field ·of view; as the 
spacecraft spins, this field of view sweeps out a cone in the sky, as shown in Fig. 
1-6. When the sensor scans from space onto the illuminated disk of the Earth it 
senses a rapid change in the light intensity and produces a pulse. A second pulse is 
produced when the sensor leaves the Earth. These pulses, produ(:ed as the sensor 
crosses the Earth horizons: are called in-triggering and out-triggering, or Earth-in 
and Earth-out, respectively. 

Fig. 1·5. Schematic of crs Spa<:ecraft Showing Spinning Mode Attitude Determination Hardware 

Fig. 1-6. Detection of the Earth by a Horizon Scanner 

-I 
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The time between the in- and out-triggerings, together with the spin period of 
the satellite and the known size of the Earth, indicate how far above or below the 
center of the Earth the sensor is scanning. This permits computation of the nadir 
angle, or the angle between the spin axis attitude and the vector from the spacecraft 
to the center of the Earth, called the nadir vector. 

We know the vector from the spacecraft to the Sun and have measured the 
angle betWeen the Sun and the spin axis. Therefore, in inertial space, the spin axis 
must lie somewhere on a cone centered on the Sun with a radius equal to the 
measured Sun angle. This cone about the Sun in inertial space is called the Sun 
cone. By a similar argument, the nadir angle measurement implies that the spin axis 
must lie somewhere on the nadir cone, or the cone in inertial spac~ centered on the 
Earth's center with a radius equal to the nadir angle. The Sun and nadir cones are 
illustrated in Fig. 1-7. Because the spin axis must lie on both cones, it must lie at 
one of the two intersections. The choice of which intersection may be based on a 
third measurement or on a previous estimate as to the probable orientation of the 
spacecraft. The latter method is commonly used because, as a practical matter, the 
06entation of the spacecraft is almost never totaily unknown. 

Figure 1-7 also indicates the problems that are characteristic of attitude 
determination and which will be discussed throughout this book. For example, the 
Itttitude will be poorly determined if the Sun vector and nadir vector are both in 
the same direction or in opposite directions. It is also possible that because of 
ur-avoidable measurement errors, the two cones will not intersect. Even if they 
intersect but are very nearly tangent to each other, a small error in either 
measurement means a large shift in the position of the attitude and, therefore, the 
uncertainty in the calculated position of the attitude is large. 

It is convenient to think of the attitude and attitude measuremen~ in terms of 
cones and cone intersections. However, some fundamental types of measurements 
are not equivalent to cone angles. Although we will always be interested in the 
intersection of cone-like figures, (i.e., figures that come to a point at the spacecraft), 
these figures will not always have the simple, circular cross section of the Sun cone 
or the nadir cone. (See Section 10.3.) 

Fig. 1-7. Attitude SolutioDS at Intersection of Sun and Nadir Cones 

I; 
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1.2.2 Three-Axis Stabilized Spacecraft. 

Both the Sun sensor and the horizon sensor described above depend on the 
rotation of the spacecraft to scan the sky to find the Sun and the Earth. On 
three-axis stabilized spacecraft, this scanning motion is not available without the 
addition of moving parts, which are subject to wear and mechanical failure. Thus, 
we would like to have detectors that could sense the orientation of reference 
vectors over large portions of the sky without the sensor itself moving. 

One such sensor is the two-axis Sun sensor, or solid angle Sun sensor, which is 
equivalent to two of the spinning Sun sensors described above mounted perpen
dicular to each olher, as shown in Fig. 1-8. The two Sun angle measurements from 
the two axes fix the orientation of the Sun in the spacecraft frame of ·reference. 
However, this does not fix the orientation of the spacecraft in inertial space, since 
the spacecraft is free to rotate about the vector to the Sun. That is, no information 
exists iri the Sun measurements about how the spacecraft is oriented "around" the 
Sun vector, Thus, one other measurement is required to unambiguously specify the 
spacecraft orientation. 
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Fig. 1-8. Two-Axis Sun Sensor as Combination of Two One-Axis Sensors 

A second reference vector commonly used on three-axis stabilized spacecraft is 
the Earth's magnetic field. Three mutually perpendicular magnetometers measure 
the three components of the Earth's magnetic field vector. * These three measure
ments may be combined to give the two components of the direction of the 
magnetic field in the- spacecraft reference frame and the magnitude of the field, 
which can then be used as a check on the measurement accuracy. As with the Sun 
measurement, the magnetic field measurement does not determine the orientation 
of the spacecraft "around" the magnetic fieid vector. 

°In its attitude acquisition phase. the CTS spacecraft used two-axis Sun sensors but not magnetometers 
because at synchronous altitudes the Earth's magnetic field was too weak and too poorly known to 
provide a good attitude reference. . 
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Neither the Sun measurement nor the magnetic field measurement is alone 
sufficient to determine the inertial attitude of the spacecraft. However, as long as 
the Sun vector and the magnetic field vector are not parallel, the two pairs of 
measurements may be combined to determine the spacecraft orientation. Actually, 
the problem is overdetermined, since there are four independent measurements 
(two components each of the Sun vector and the magnetic field vector) and only 
three measurements are required to fix the orientation of the spacecraft in inertial 
space. For example, we could use two components to fix the orientation of the Sun 
in spacecraft coordinates and then use a third measurement to specify the rotation 
of the spacecraft about the Sun vector, thus fixing the spacecraft's orient,tion 
completely. We may see explicitly the redundant information by noting that 
measuring the position of both the Sun vector and the magnetic field vector allows 
us to calculate the angle between these two vectors in the spacecraft frame of 
reference. However, this angle is already known because the position of both 
vectors in inertial space is known and the angle between them does not depend on 
the frame of reference that is used. 

1.2.3 Attitude Maneuver Using Gas Jets 

. Having seen representative examples of how the attitude is determined, we will 
present one example of how attitude control maneuvers are performed to reorient 
the spacecraft from one attitude to another. Specifically, we will use the Sun vector 
as an attitude reference and gas jets to provide the torque to reorient the spin ~s 
of a spin-stabilized spacecraft. . 

The reorientation control hardware is shown in Fig. 1-9. There are four Sun 
sensors, each with a fan-shaped field of view, which produce a pulse as the Sun 
crosses their field of view. There are two gas jets that point in opposite directions, 
which are located on the opposite sides of the spacecraft and fire simultaneously. 
Uecause the two jets provide an equal force in opposite directions, there is no net 
effect on the motion of the center of mass of the spacecraft, i.e., its orbit remains 
unchanged. However, the jets will provide a torque in the direction shown which 
will change the direction,or precess, the angular momentum vector. Note that this 
definition of precession as the change in direction of the angular momentum vector 
differs from that normally used in physics. 

If the two jets fire continuously, the net torque integrated over a spin period is 
zero and the spacecraft axis will simply wobble about a position near its initial 
position. Therefore, the Sun sensors are used to pulse the jets, or to tum them on 
and off so that they only fire during one-quarter of each spin period. The choice of 
Sun sensors which tum the jets on and off determines the direction of the 
precession relative to the Sun. If sensors A and B tum the jet on and off, 
respectively (abbreviated A/B), then, as shown in Fig. 1-10, jet I will be 45 deg 
past the Sun when it starts and 135 deg past the Sun when it stops. The average 
position of the jet during firing will be 90 deg past the Sun and the average motion 
of the spacecraft angular momentum vector will be directly toward the Sun. The 
four combinations A/B, B/C, C/D, and D/ A will precess the spacecraft spin axis 
in four different directions relative to the Sun cone, as shown in Fig. -I-II. 
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Fig. 1·9. Representative Control Hardware Orientation. (Note that the exhaust from jet 1 is down
ward and from jet 2 is upward.) 

Combinations A/B and C/D precess the spin axis perpendicular to the Sun con~ 
either directly toward or away from the Sun. Combinations B/C and D/A precess 
the spin axis along the Sun cone either to the left or to the right relative to the-Sun. 

We can get from any initial position to any final position by combining one 
maneuver toward or away from the Sun and one maneuver to the right or the left. 
However, not all spin axis paths across the sky are equally acceptable. Most 
missions have a variety of mission altitude constraints, which require that the 
orientation of the spacecraft always meet specific conditions. For example, it may 
be required that so.1ar panels remain pointed within 30 deg of the Sun, that an 
antenna remain pointed within 40 deg of the Earth, that accurate attitude de
termination be possible throughout the maneuver. or that sensitive equipment 
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Fig. 1·10. Attitude Maneuver G~metry for Sensors A ~ B and Jetl of Fig. 1-9 
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Fig. I-II. Direction of Motion of the Spin Axis Relative to the Sun Cone for Triggering by the Four 
Possible Sun Sensor Combinations of Fig. 1-9 

never be pointed such that it might look directly at the Sun. A control strategy is a 
procedure by which desired maneuvers can be carried out without violating mission 
constraints. A significant part of attitude control analysis is devoted to trying to 
find the best control strategy for a particular attitude maneuver. 

1.3 Methods of Attitude Determination and Control 

Having seen how the attitude determination and control process works, we 
summarize in this section the commonly used reference vectors and control torques 
and the disturbance torques which cause the spacecraft to drift. Table I-I lists the 
various reference sources commonly used for attitude determination. Basically, two 
alternatives exist: we may either m~asure the attitude with respect to some external 
reference vector (the first four items in the table) or we may- measure the 
centrifugal acceleration (the last item listed) tei determine the change in the 
orientation. The latter is referred to as inertial guidance and is done by gyroscopes 
or accelerometers. For space flight, the main problem with inertial guidance is that 
it depends on integrating small changes in the attitude to propagate the orientation 
in inertial space from some known initial value. Therefore, small errors accumulate, 
and periodic updates based on some external reference source are required. One 
such combination is the use of gyroscopes and star sensors. The efficient use of star 
sensors typically requires a fairly accurate initial attitude estimate which is then 
refined by the star sensor data. When a spacecraft undergoes a maneuver from one 
orientation to another, the gyroscopes provide an accurate measure of the change 
in orientation and a good initial estimate of the new attitude. This estimate is then 
refined Using the star sensor data. The refined attitude is used both as a measure of 
the true spacecraft orientation and to update the gyroscopes to eliminate accumu
lated errors since the previous update. 

In general, the strain and torque on spacecraft are several orders of magnitude 
less in the space environment than they would be at the Earth's surface. Neverthe
less, torques that perturb the attitude do exist. The major environmental· torques 

i i 
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Table I-I. Attitude Determination Reference Sources 

REFERENCE AOVANT4GI!S 

SUN BRIGHT. UNAMBIGUOUS. LIM POWEA ANO WEIGMT •. 
USUALLY MUST 8E ItNOllN FOR SOLAR CELLS AJID 
EOUJPMfNT PFH)TECTtON 

EARTH, OR OTHER CENTRAL . ALWAYS AVAILABLE 'OR MARBY SPACfCRAFT. 
BODY BRIGHT; LARGELY UJirtAM8lGUOUSCllAY BI MOON 

tJIf1'EA'IREJiIICII; NECESSARY FOR MANY TYPES 01 
SlIIISOR AND ANTENNA COVERAGE. ANAL "'SIS 
RElATfVlL" EASV 

MAGNETIC FtELD ICONOMtCAl. LOW POWeR REOUJREMENTS: 
ALWAYS AVAILABLE FOR LOWoAt.TITUDE SPACE· 
CRAfT 

aT ARS IINCLUDING DISTANT HIGH ACCURACY 1- to-3 OIG), AYAILABLE ANY· 
PLANETS' WHERE INSKV; ESSENTlALLY ORBIT INDEPENDENT. 

EXCEPT fOR VElOCtTY ABERRATION 

INERTIAL SPACE (GYRO- REOUIRES NO EXTERNAL S£NSORS. ORB.T INOE· 
SCOPfS; ACCELEROMETERS) PENDENT; "luH ACCURACY FOR LU ... TeD Ttaa 

rNTERVALS: E A$'L Y DONE m4B0ARO 

MAY NOT 81 VISlBU OUAfJIG PARTS Of ORBIT 
AROUND LARGI CENTRAL BODY; IIZ·DEG 
ANGULAR OJAMITER fVll!WlO fRQIIIAATMI 
U_n5 ACCURACY TO -. ARC MlJIUTE 

TVPICALL Y REQUtRIS SCAN MOTION TO SENSE 
HORIZON. SlNSORS MUST 81 PHOnCTID FAOM 
SUN: RESOLUTION LIM'TED TO - 0 • D£G 
'BltAus!! OF HORIZON O("'IIiTlON;OABIT AND 
ATTITUDE STRONGLY COUPLED 

POOR RESOLUTION t> 0.5 DIG'; GOOD ONLY 
JllEAR EARTH-LtMITIO BY '":'LDSTRINGTH 
A"O IiIItODfUNG ACCURACY;OR8!T AND AT· 
'ITUDE STRONGLY COUPLED. SPACliCRAFT 
MUST BI MAGNETICALLY CUAN lOR I,.. LIGHT 
CALiBAATlQNAEOUIREDtSE"'SlTlYE TO BtASl!S 

SENSORS KEAYY, COMPL~X,AND eXPENSIVE; 
,'O!NTlFtCATION QJt STARS'OR MIlL T,PLE 
TARGET SENSORS lSCoMPUX AND TIME 
CONSUMING; SENSORS NEI D PROTICTION 
FROM SUN. DOUBLE AND MUl TJPLE STARS 
CAUSE PROBLUIS. USUALLY AE.QUlRE SECOND 
ATTITUDE SYSTEM FOR INITIAL An'TUDE 
ISTIMATES 

S£NSESCHANGI I" ORIENTATION ONLY-NO 
ABSOLUTE MlASURaMENT;SU8.JI!CT TO 
CAlF T. SENSORS HAVE AAPIOL Y MOVING PARTS 
SUBJECT TO_AM AND FRICTION; RIlATIVELY 
HIGH POWER AND LARGE MASS 
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that affect the attitude, as listed in Table 1-2, are aerodynamic torque caused by 
the rapid spacecraft motion through the tenuous upper atmosphere;gravity
gradient torque due to the small difference in gravitational attraction from one end 
of the spacecraft to· the other (the same differential force which produces tides); 
magnetic torque due to the interaction between the spacecraft magnetic field 
(including induced magnetism from the surrounding field) and the Earth's mag
netic field; and solar radiation torque due to both the electromagnetic radiation 
and particles radiating outward from the Sun. Early investigators felt that 
micrometeorites might also supply a significant source of torque. However, this has 
beeJ'l. found negligible relative to the other torques, except perhaps in some 
l;ln~xplored regions of the solar system; such as inside the rings of Saturn. 

The relative strengths of the various torques will depend on both the 
. spacecraft environment and the form and structure of the spacecraft itself. None
theless, because of the form of the distance dependence of the environmental 
torques, the space environment for any specific spacecraft may be divided into 

Table 1-2. Environmental Disturbance Torques 

SOUACI! 
DEPENOENCE ON DISTANCe REGION OF SPACE WHERE 

FROM£AATH DOMINANT-

AERODYNAMIC .- ALTITUDES 8ELOII-600_ 

MAGNETIC 11,3 J- 5OO_TO-3i ...... ; f 
GRAVITY GRADIENT ,,,3 II.E __ OUT 10 ABOUT SYNCHRONOUS AL nTUDE) 

SOLAR RADIATION INDEPENDENT INTERPLANETARY SPACE ABOVI SYNCHRONOUS 
ALTITUDE 

MICROMETEORITES LARGeLY INDEPENDENT; HIGH CONCENTRATION NORMALLY NEGLIGlBLI";IIAY BE IMPORTANT IN 
IN SOld REGIONS Of THE SOLAR 8YSTEJI SOME SMALL ReolONS UNTERIOR OP SA1'URN1I 

RINGS' 

-ALTITUDES LISTED ARE ONLY REPRESEtlTATIVE; THE SPECIPIC ALTlTUDES AT WHICH VARIOUS TORQUES DOMINATE ARE HIGHLY 
SPACECRAFT DEPENDENT. • 
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three regions where different forces dominate. Close to the Earth, aerodynamic 
torque will always be the largest. Because this falls off exponentially with distance 
from the Earth, magnetic and gravity-gradient torques will eventually become more 
important. Because both of these have the same functional dependence on dis
tance, the relative strength between the two will depend on the structure of the 
individual spacecraft; either may be dominant. Finally, solar radiation torque, due 
to both radiation pressure and differential heating, will dominate throughout the 
interplanetary medium. 

Internal torques may also affect the attitude of the spacecraft. This .. y 
include seemingly small items such as fuel redistribution or tape recorders turning 
on and off. The internal torques can become very important, and even dominate 
the attitude motion, when the spacecraft structure itself is flexible. The role of 
flexible spacecraft dynamics is much more important in spacecraft than would be 
the case on Earth where flexible structures tend to be tom apart by the strong 
environmental torques. For example, the small environmental torques permit 
spacecraft to have wire booms over 100 m long, which causes the flexibility of the 
booms to dominate the attitude dynamics. 

Because torques exist throughout the spacecraft environment, some procedure 
is necessary for attitude stabilization and control. Spacecraft may be stabilized by 
either (I) the spacecraft's angular momentum (spin stabilized); (2) its response to 
environmental torques, such as gravity-gradient stabilization; or (3) active control, 
using hardware such as gas jets, reaction wheels, or electromagnets. Table 1-3 lists 
the methods of passive stabilization which require no power consumption or 
external control. Table 1-4 lists the commonly used methods of active control which 
may -be used for either maneuver control or active stabilization. In general, active 
methods of control are more accurate, faster, more flexible, and can be adjusted to 
meet the needs of the mission. However, active control typically requires a" power 
sOl,lrce and complex logic and may require ground control and the use of spacecraft 
consumables (materials, such as jet fuel, which are brought from the ground and 
which cannot be replaced once they have been used). For those systems which use 
consumables, a major constraint on attitude control strategies is to use them as 
efficiently as possible. 

1.4 11me Measurements 

Fundamental to--both attitude and orbit calc,ulations is the measurement of 
time and time intervals. Unfortunately, a variety of time systems are in use and 
sorting them out can cause considerable confusion. A technical discussion of time 
systems needed for precise computational work is given in Appendix J. In this 
section, we summarize aspects that are essential to the interpretation of attitude 
data. 

Two basic types of time measurements are used in attitude work: (I) time 
intervals between two events, such as the spacecraft spin period or the length of 
time a sensor sees the Earth; and (2) absolute times, or calendar limes, of specific 
events, such as the time associated with some particular spacecraft sensing. Of 
course, calendar time is simply a time interval for which the beginning event is an 
agreed standard. 
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Table 1-3. Passive Stabilization Methods (i.e., those requiring no consumption of spacecraft power or 
generation of commands) 

METHOD ADVANTAGES 

SPIN STABILIZED SfIllPLI.IFFECTJVE NEARLY ANY'Y'IH£RE IN ANY 
ORII!NTATION. MA'"TAINSORIENTATION IN INEATIAL 
&PAC!! 

(iRAVITY.QRADIENTSTABILlZlD IllAINTAINSSTABU ORIENTATfONRELATfVE TO 
Cl!NTAALBOoY. NOTSU8JECT TO DECA,Y OR DRfFT 
DUE TO ENVIRONMENTAL TORQUES UNLESS ENVIRON· 
MENT CHANGES 

SOLAR RADIATION STABILIzeD CONVENIENT FOR POWER GENERATION BY SOLAR 
CELLS OR SOLAR STUDIES 

DlSADVANTAGIS 

CENTRIFUGAL FORCI RtOUtRESSTRUCTURAl 
STABILIT" ANDSOIII1! AIQIDlTY;ANSORS 
AND ANn~CANNOT GENIRALlY R£IIAIN 
POINTED AT A SPECIFIC INERTIAL TARGlT; 
WOBBLE INUTATION' rf NOT PA(tPERLY BAL· 
ANelO. DRIPT DUE TO ENYIROI'GIItENTAL 
TOROUES 

UMIUD TO • OR 2 POSSIBLE ORIENTATraNS; EF. 
FECTIVE ONLY NEAR MASSIVE CENTRAL BODY 
IE .G.,I AATH, MOON. ETC ... REQUmES LONG 
BOOMS OR iflONGATED MASS DlSTRrBUTlON; 
$l.IBJ!CT TOWOBBU tLIBRA1'IOIIII'.CONTROL 
LdanO TO .... DEG-PROBLEM OJ: THERMAL 
GRADIENTS ACROSS BOOM 

LIMITED TOMJGM-ALTITlfDE OR INTERPLANE· 
TARY ORBITS. LIMITED ORrI~TATIONS AL· 
LOWED 

AERODYNAMIC 5T ABILIZED 

MAGNETIC STABILIZED WITH 
PERMANENT MAGNET 

f.snClAL.PVRPOSE METHODS - HIGHLY MISSION AND STRUCTURE DEPENDENT} lIN ALL OF THEIR CHARACTERISTJCS ' 

Table 1-4. Active Methods of Stabilization and Control 

METHOD 

GAS JETS 

MAGNETIC IELECTROMAGNETS) 

REACTION WHEELS-

ALTERNATIVE THRUSTERS: JON 
OR El.ECTRIC 

ADVANTAGES 

FLEXIBLE AND FAST; USED tN ANY ENVIRONMENT. 
POWERFUL 

USUALLY lOW POWER. MAY 8£ DONE WITHOUT USING 
CONSUMABLES BY USE 01' SOlAR POWER 

PARTICULARl Y GOOD FOR VARIABLE SPIN RATE CON. 
TROl.; PAST. FLEXIBLE. PRECISE ATTnUOE CONTROL 
AND/OR STABILIZATION 

DlSADVANTAGIS 

uses CONSUMABLE IFUEL) WITH UII1TED 
SUPPLY AVAILABLE DUE TO FUEL WEIGHT; TOO 
P(JW£RFUL FOR SOME APPLICATIONS bA_ 
RELATIVELY COARSE CONTROU;COIIIPLEX AND 
EXPENSIV! PLUMBING SU1UI!CT TO FAILURE 

SLOW. NEAR EARTH ClNL Y; APPUCA8IUTY 
LIMITED BY DIRECTlDl'I OF THE EXTERNAL 
MAGNETIC F'ElLD; COARSE C1)toITROL ONLY 
IBECAUSE OP MAGNETIC FiElD MODEL UN
CERTAINTIES AND LOJirfG TIME CONSTANTS. 

REQUIRes RAPIDLY MOVING PARTSWMICH 
IMPLIES PROBLEMS OF SUPPOPT AND FRIC
TION. MAY N!lD5eCOND CONTROLSYSTEU 
TO CONTROL OV&RAU ANGUlAA IIIOMI!NTUM 

''"MOMENTUM DUMPlNG"IIN RESPONSe TO 
CUMUl.ATlVE CHANGES BY ENVIRONMENTAl 
TORQUES. EXPENSIVE 

{

PRtMARIL Y SPECIAL PURPQS£··LESS EXPERIENCE WITH THESE THAN WITN THOSE } 
LlSTIlD ABOVE; CHARACTERISTICS ARE HIGHLY MlSSIOI'II OEPeNDENT;SOME 

ACTIVE SOLAR. AERODYNAMlC. SYSTEMS MAY SEE MORE USE IN THE FUTURE AS FURTKEA EXPERIENCE IS GAINED 
OR GAAVITYGAADIENT ___ J..... _______________________________ ..J 

°R£J:ERS TO ANV Dl!VrcE THAT MAY BE USED IN A PROCESS TO EXCHANGE ANGULAR MOMENTUM WITH THE SPACECRAFT BODY. 

Calendar tillie in the usual form of date and time is used only for input and 
output, since arithmetic is cumbersome in months, days, hours, minutes, and 
seconds. Nonetheless, this is used for most human interaction with attitude systems 
because it is the system with which we are most familiar. Problems arise even with 
date and time systems, since time zones are different throughout the world and 
spacecraft operations involve a worldwide network. The uniformly adopted solu
tion to this problem is to use the local time corresponding to 0 deg longitude as the 
standard. absolute time for events anywhere in the world or in space. This is 
referred to as Universal Time (UT), .Greenwich Mean Time (GMT), or Zulu (Z), all 
of which are equivalent for the practical purposes of data interpretation. The name 
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Greenwich Mean Time is used because 0 deg longitude is defined as going through 
the site of the former Royal Greenwich Observatory in metropolitan London. 
Eastern Standard Time in the United States is obtained by subtracting 5 hours 
from the Universal Time. 

Because calendar time is inconvenient for computations. we would like an 
absolute time that is a continuous count of time units from some arbitrary 
reference. The ,time interval between any two events may then be found by simply 
subtracting the absolute time of the first event from that of the second event. The 
universally adopted solution for astronomical problems is the Julian day, a con
tinuous count of the num~r of days since noon (12:00 U1) on January I. 4713 
BC. This strange starting point was suggested by an Italian scholar of Greek and 
Hebrew, Joseph Scaliger, in 1582, as the beginning of the current Julian period of 
7980 years. This period is the product of three numbers: the solar cycle, or the 
interval at which all dates recur on the same days of the week (28 years); the lunar 
cycle containing an integral number of lunar months (19 years); and the indiction, 
or the tax periodintroduced by the emperor Constantine in 313 AD (15 years). The 
last time that these started together was 4713 BC and the next time will be 3267 
AD. Scaliger was interested in reducing the astronomical dating problems 
associated with calendar reforms of his time and his proposal had the convenient 
selling point that it predated the ecclesiastically approved date of creation, October 
4, 4004 BC. The Julian day was named after Scaliger's father, Julius Caeser 
Scaliger, and was not associated with the Julian calendar that had been in use for 
some centuries. 

Tabulations of the current Julian date may be found in nearly any astronomi
cal ephemeris or almanac. A particularly clever procedure for finding the Julian 
date, or J D, associated with any current year (I), month (J), and the day of the 
month (K), is given by Fliegel and Van F1andern [1968] as a FORTRAN arith-
1lletic statement using FORTRAN ,integer arithmetic: 

JD= K-32075 + 1461 * (1+4800+ (J -14)/12)/4 

+367*(J -2-(J'-14)/lh 12)/12 

-3*«/+4900+(J-14)/12)/100)/4 

For example, December 25, 1981 (/= 1981, J= 12, K=25) is JD 2,444,964.* 
The Julian date presents minor problems for space applications. It begins at • j 

noon Universal Time, rather than 0 hours Universal Time' and the extra digits 
required for the early starting date limit the precision of times in computer storage. I ' 
However, no generally accepted substitute exists, and the Julian day remains the 
only unambiguous continuous time measurement for general use. 

For internat computer calculations, the problem of ambiguity does not arise 
and several systems are used. The Julian Day for Space, or J DS, is defined as 
JD-2,436,099.5. This system starts at 0 hours UT (rather than noon), September 
17, 1957, which is the first Julian day divisible by 100 prior to the launch of the first 

• Note that in FORTRAN integer arltbmCtie, multiplication and division are performed left to right, the 
magnitude of the result is truncated to the lower integer value after each operation, and -2/12 is 
truncated to O. 
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manmade satellite by the Soviet Union on October 4. 1957. This system is used 
internally in NASA orbit programs, with time measured in seconds rather than 
days. (Measuring all times and time intervals in seconds is convenient for computer 
use because the large numbers involved do not pose a problem.) The European 
Space Operations Center uses the Modified Julian Day, which starts at 0 hours UT. 
January I, 1950. Attitude determination programs at NASA's Goddard Space 
Flight Center measure time intervals in seconds from 0 hours UT, September I, 
1957. Unfortunately, the origin of this particular system appears to have been lost 
in antiquity. 
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CHAPTER 2 

ATfITUDE GEOMETRY 

2.1 The Spac:ecraft-Centered Celes~ Sphere 
2.2 Coordinate Systems 

I'roperties 0/ Coordinate Systems on the Celestial Sphere, 
Spocerra/t-Centered Coordinate Systems. 
NonspacerraJt-Centered Coordinate Systems. Parallax 

2.3 Elementary Spherical Geometry 

JatIU!S R. Wertt 

This chapter introduces the idea of attitude determination and control as a 
geometrical problem on the two-dimensional celestial sphere, describes the most 
common attitude coordinate systems, and summarizes geometry on the celestial 
sphere. 

2.1 The Spacecraft-Centered Celestial Sphere 

Recall that the spacecraft attitude is its orientation relative to the Sun, the 
Earth, or the stars regardless of the distances to these various objects. To think in 
terms of direction only, it is convenient to form a mental construct of a sphere of 
unit radius centered on the spacecraft, called the spacecraft-centered celestial sphere, 
which is illustrated in Fig. 2-1. A point on the sphere represents a direction in 
space. For example, in Fig. 2-1, the points S, E, and A are the directions of the 
center of the Sun, the center of the disk of the Earth (called the nadir or subsatellite 
po~nt), and the spacecraft attitude, Tespectively, as viewed from the spacecraft. The 
points E and S on the sphere are both a unit distance from the spacecraft, although 
the real distance to the Sun and the Earth is vastly different in most cases. Point A 
corresponds to the direction of a specific spacecraft axis which has no distance 
associated with it. 

As standard notation throughout this book, we represent points on the 
celestial sphere by uppercase italic Roman letters. Points on the sky diametrically 
opposite a given direction have a .. - I" superscript and are called theantipoinl 
when speaking of a point on the sphere or the negative axis when speaking of the 
direction of an axis or vector. Thus, S -I is the antisolar point and A - I is the 
negative attitude axis. The antinadir, E -I, or direction opposite the center of the 
Earth, is called the zenith. After Fig. 2-2, the spacecraft at the center of the sphere 
and the lines from the center to the surface of the sphere will be omitted and we 

. will speak of geometry on the celestial sphere. 
A great circle on the celestial sphere is any circle that divides the sphere into 

two equal hemispheres. Ariy other circle on the celestial sphere is called a small 
circle. A portion of a great circle is called an are, or an arc segment. The arc 
segments connecting points A, S, and E on Fig. 2-1 form a spherical triangle on the 

,. ! 
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Fig. 2-1. Spacecraft-Centered Celestial Sphere and Standard Notation for the Sun, Earth, and Atti
tude and the Angles Between Them 

celestial sphere. We· will discuss the properties of great circles and spherical 
triangles in more detail in Section 2.3. 

Linear measure, such as metres, has no meaning on the celestial sphere_ In 
general, there are only three types of measurements on the celestial sphere-arc 
length, rotation angle, and solid angle-and it is important to recognize the 
distinction between them. The lengths of the sides of a spherical triangle (P, '11, and 
'" in Fig. 2-1) are arc length measurements (or angular separations), measured in 
degrees or radians. The terms Sun angle and nadir angle (and symbols p and '11) are 
used for the arc lengths from the attitude to the Sun and to the center of the Earth, 
respectively. The angle at which two arc segments intersect (cI>, 1:, or A in the 
spherical triangle of Fig. 2-1) is called a rotation angle and is also measured in 
degrees or radians. Although arc lengths and rotation angles are measured in the 
same units, they are different types of quantities and are not interchangeable. 
Throughout this book, arc lengths will be represented by lowercase Greek letters 
and rotation angles by uppercase Greek letters. The area of the spherical triangle 
measured on the curved surface of the unit sphere is an example of the third tYPe 
of measurement, the so/idallgle. Solid angles are measured in square degrees or 
steradians and will be represented by uppercase Greek letters. Appendix A gives 
area formulas for most common shapes on the celestial sphere. 

An alternative procedure for thinking of angular measure. is in terms of lines 
and planes from the spacecraft to distant objects. Thus the term cone angle is 
frequently used for arc length, since the angular radius of a cone about a central 
axis is an arc length measurement. Similarly, the term dihedral angle (the angle 
between two planes) is frequently used for rotation angle, since, for example, the 
rotation angle cI> is also the angle between the spacecraft-Sun-attitude plane and the 
spacecraft-nadir-attitude plane. 
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Finally, it is important to recognize that arc length on the celestial sphere 
measures the angular separation between two objects as seen from the spacecraft. 
Thus, the arc length from the Sun to the Earth,1/;, is the angular separation in the 
sky between these two objects. For convenience in thinking of angular separation, 
note that 1 deg (1°) is approximately the angular diameter of a dime at a distance 
of 1 m; 1 minute of arc (l' = 1/ 60th of 1°) is the angular diameter of a dime at 60 
m; and I second of arc (I" = I / 60th of I') is the angular diameter of a dime at 3.6 
km. The angular diameter of both the Moon and the Sun as seen from the Earth is 

about 1/2 deg. 

2.2 Coordinate Systems 

To make measurements on the celestial sphere. it is convenient to use a 
spherical coordinate system. The general properties of any such system are dis
cussed in Section 2.2.1, and specific examples of the most common spherical and 
rectangular systems used in practice are discussed in Sections 2.2.2 and 2.2.3. The 
spherical coordinates are defined in terms of the unit celestial sphere. All of these 
may be transformed into three-dimensional coordinates by the addition of a third 
variable, r, the distance from the center of the coordinate system to the point in 

question. 

2.2.1 Properties of Coordinate Systems on the Celestial Sphere 

_ The spherical coordinate systems normally used for spacecraft have a number 
of properties in common. These are illustrated in Fig. 2-2 for the spacecraft
centered celestial sphere described above. Each spherical coordinate syst~m has 
two poles diametrically opposite each other on the celestial sphere and an equator, 
or great circle, halfway between the poles. The great circles through the poles and 
perpendicular to the equator are called meridians and the small circles a fixed 
distance above or below the equator are called parallels. 

Fig. 2-2. Spacecrafl-Centered Coordinate Systems 
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, 
) . The position of any point on the sphere is given in terms of two components 

equivalent to latitude and longitude on the surface of the Earth. The arc length 
distance above .or below the equator is called the latitude or elevation component. 
The angular distance around the equator between the meridian passing through a 
particular·point and an arbitrary reference meridian, ·or prime meridian, is known as 
the longitude or azimuth component. For example, the reference meridian for 
longitude on the st,Jrface of the Earth is the one passing through the center of the 
former Royal Greenwich Observatory in London. Thus, we may define the posi
tions of the points PI and P2 in terms of azimuth, cfJ, and elevation, A, as: 

PI =(cfJl,AI)=(75°,35°) 

P2 = (cfJ2,A2) = (345°, -10°) 

Note that in most spherical coordinate systems, the azimuth coordinate is mea
sured from 0 deg to 360 deg and the elevation component is measured from + 90 
deg to -90 deg. The intersection of the reference meridian and the equator in any 
system is called the reference point and has coordinates (0°,0°). 

Several properties of spherical coordinate systems are shown in Fig. 2-2. For 
example, a degree of elevation is a degree of arc length in that the angular 
separation between two points on the same meridian is just the difference between 
the elevation of the two points. Thus, PJ at (75°,60°) is 25° from PI' However, 
I-deg separation in azimuth will be less than I deg of are, except along the equator. 
Point P4 at (50°,35°) is less than 25 deg in arc length from PI' Specific equations 
fbr the angular distance along a parallel or between two arbitrary points are given 
in Appendix A (Eqs. (A-I), (A-4), and (A-5». In using these equations, a parallel at 
elevation A is a small circle of angular radius 90° -IAI. The distortion in the 
azimuth component becomes particularly strong near the pole of any coordinate 
system. At either pole, the azimuth is undefined. 

An alternative procedure for specifying the position of a point on the celestial 
sphere involves three components of a vector of unit length from the center of the 
sphere to the point on the surface of the sphere. Ordinarily, the x,y, and z axes of 
such a rectangular coordinate system are defined such that the z axis is towar~ the 
+ 9O-deg pole of the spherical coordinate system, the x axis is toward the reference 
point, and the y axis is chosen perpendicular to x and z such that the coordinate 
system is right handed (i.e., for unit vectors along the x,y, and z axes, z=iXY). A 
summary of vector notation used in this book is given in the Preface and the 
. coordinate transformations between spherical and rectangular coordinate systems 
·oare given in Appendix.E. Of course, only two of the three components of the unit 
vector are independent, since the length (but not the sign) of the third component 
is determined by requiring that the magnitude of the vector be I. This constraint on 
the magnitude is a convenient check that any unit vector has been correctly 
calculated. 

In principle, either spherical or rectangular coordinates can be used for any 
application. In practice, however, each system has advantages in specific circum
stances. In general, computer calculations in long programs should be done in 
rectangular coordiilates because there are fewer trigonometric functions to evaluate 
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and these are relatively time consuming for the computer. Carrying the thjrd 
component around is conveniently done in computer arrays. However, most input 
and output and most data intended for people to read are in spherical coordinates, 
since the geometrical relationships are usually clearer when visualized in tenus of a 
coordinate picture similar to Fig. 2-2. For calculations external to the computer or 
in short computer runs, spherical coordinates give less likelihood of error because 
the quantities involved are more easily visualized. Many geometrical theorems, 
such.as those in Chapter. II, .are more easily done in spherical geometry than in 
vector geometry, although either system may be better for any specific problem. 

Any spherical coordinate system (or its rectangular equivalent) is fully speci
fied by indicating the positive pole and the choice of either reference meridian or 
reference point at the intersection of the reference meridian and the equator. On 
the surface of a sphere, the choice of poles and prime meridian is arbitrary, a,.d 
imy point on the sphere may be used as the pole for a spherical coordinate system. 
For the Earth, a system defined by the Earth's rotation axis is the most convenient. 
However, for the sky as viewed by the spacecraft, a variety of alternative 
coordinate systems are convenient for various uses, as described below. 

2.2.2 Spacecraft-Centered Coordinate Systems 

The three basic types of coordinate systems centered on the spacecraft are 
those fixed relative to the body of the spacecraft, those fixed in inertial space, and 
those defined relative to the orbit and not fixed relative to either the spacecraft or 
inertial space. 

Spacecraft-Fixed Coordinates. Coordinate systems fixed in the spacecraft are 
used to define the orientation of attitude determination and control hardware and 
are the systems in which attitude measurements are made. Throughout this book, 
spacecraft-fixed spherical coordinates will use ell for the azimuth component and A 
for the elevation. Alternatively, 8 will be used for the coelevation; that is, 8 =90

0

-

A. For spinning spacecraft, the positive pole of the coordinate system will be the 
positive spin vector, unless otherwise specified. The reference meridian is taken as 
passing through an arbitrary reference point on the spin plane which is the equator 
of the coordinate system. The three components of a rectangular spacecraft fixed 
coordinate system will be represented by x, y, and z, with the relation between 
spherical and rectangular coordinates as defined in Section 2.2.1. For three-axis 
stabilized (nonspinniilg) spacecraft, no standard orientation is defined. For atti
tude-sensing hardware, it is the orientation of the field of view of the hardware in 
the spacecraft system that is important, no; the location of the hardware within the 
spacecraft. 

Inertial Coordinates. The most common inertial coordinate system is the 
system of celestial coordinates defined relative to the rotation axis of the Earth, as 
shown in Fig. 2-3. Recall that the spacecraft is at the center of the sphere in Fig. 
2-3. The axis of the spacecraft-centered celestial coordinate system joining the 
north and south celestial poles is defined as parallel to the rotation axis of the 
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Fig. 2·3. Celestial Coordinates 

Earth. Thus, the north celestial pole is approximately 1 deg from the bright star 
Polaris, the Pole Star. To fully define the coordinate system, we must also define 
the reference meridian or reference point. The point on the celestial equator chosen 
as the reference is the point where the ecliptic, or plane of the Earth's orbit about 
the Sun (see Chapter 3), crosses the equator going from south to north, known as 
the vernal equinox. This is the direction parallel to the line from the center of the 
Earth to the Sun on the first day of spring. 

Unfortunately, the celestial coordinate system is not truly inertial in that it is 
not fixed relative to the mean positions of the stars in the vicinity of the Sun. The 
gravitational force of the Moon and the Sun on the Earth's equatorial bulge causes 
a torque which results in the slow rotation of the Earth's spin axis about the ecliptic 
pole, taking 26,000 years for one complete period for the motion of the axis. This 
phenomenon is known as the precession of the equinoxes, since it results in the 
vernal equinox sliding along the ecliptic relative to the fixed stars at the rate of 
approximately 50 sec of arc per year. When the zodiacal constellations were given 
their present names several thousand years ago, the vernal equinox was in the 
constellation of Aries, the Ram. Thus, the zodiacal symbol for the Ram, ~ is used 
astronomically for the vernal equinox, which is also called the First Point of Aries. 

s Since that time, the vernal equinox has moved through the constellation of Pisces 
and is now entering Aquarius, bringing the dawn of the zodiacal "Age of 

n Aquarius." The other intersection of the ecliptic and the equator is called the 
e autumnal equinox and is represented by the zodiacal symbol f~r Libra. (See Fig. 

3-10.) 

The importance of the precession of the equinoxes is that it causes a slow 
le change iB the celestial coordinates of "fIXed" objects, such as stars, which must be 
lS taken into account for accurate determination of orientation. Thus, celestial 
.g. coordinates require that a date be attached in order to accurately define the 
he position of the vernal equinox. The most commonly used systems are 1950 
he coordinates, 2000 coordinates, and true of date, or rOD. The latter coordinates are 
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defined at the epoch time of the orbit and are commonly used in spacecraft work. 
where the small corrections required to maintain TOD coordinates are con
veniently done with standard computer subroutines.· (See subroutine EQUIN in 
Section 20.3.) 

The elevation or latitude component of celestial coordinates is universally 
known as the declination. 8. Similarly. the azimuth component is known as right 
ascension • . a. Although right' ascension is measured' in degrees in all spacecraft 
work, in most astronomical tables it is measured in hours, minutes, and seconds 
where I hour= 15 deg, 1 min= 1/6Oth hour = 1/4 deg, and I sec = 1/60th min= 
O.OO4I666 •.. deg. Each of these measurements corresponds .0 the amount of 
rotation of the Earth in that period of time. Note that minutes and S"econds of right 
ascension are not equivalent to minutes and seconds of are, even along the equator. 

Although celestial coordinates are the most widely used, several other inertial 
coordinate systems are used for special purposes. These systems are summarized in 
Table 2-1. 

Orbit-Defined Coordinates. The I, b, n system of coordinates is a system for 
which the plane of the spacecraft orbit is the equatorial plane of the coordinate 
system. The I axis is parallel to the line from the center of the Earth to the 
ascending nodet of the spacecraft orbit, the n axis is parallel to the orbit normal, 
i.e., perpendicul!lr to t!te orbit plane, and the b axis is such that for unit vectors 
along the axes, b=nxi. The I,b,n system would be inertial if the spacecraft orbit 
were fixed in inertial space. In fact, perturbations on the orbit due to nonspheridty 
of the central body, gravitational attractions of other bodies, etc., cause the orbit to 
rotate slowly as described in Section 3.4, so the [,b,n system is not absolutely 
inertial. .' .. 

Lastly, we define a system of coordinates that maintain their orientation 
relative to the Earth as the spacecraft moves in its orbit. These coordinate~ are 

Table 2-1 •. Common Inertial Coordinate Systems 

SYSrEM eQUATORIAL REFERENCE AZIMUTH ELEVATION 
PL.ANI! POINT COORDINATE COORDINATE 

Cl!LESTlAL lOR CELESTIAL EQUATOR V£ANAL EQUINOX 1'1'1 RIGHT ASCENSION I<>l DECUNATION la' 
EQUATOR' IPARALLEL TO I!ARTIt"S 

EOUATOR' 

ECLIPTIC ECLIPTIC IPLANI! 01' THE VERNAL EQUINOX IT' CELESTIAL LONGITUDE CELESTIA~ LATtTUDE 
I!ARTIt"S ORBITI 

GALACTIC ADOPTED PLANE OF THE ADOPTED DIRECTION OF GALACTIC LONGITUDE GALACTIC LATITUDE 
GALAXY· THE GALACTIC CENTER-

-In addition to the mean motion due to precession, the Earth's true spin axis wobbles with an 
amplitude of 9.2 an: seconds (0.0026 deg) and a period of 19 years due to the changing inertial 
orientation of the Moon's orbiL roD c:oorctinates are updated to the epoc:h time using the true 
prcc:essional motion. U the c:oordinates are updated using the mean prec:essional motion. they are 
referred to as Mean of DtIU. or MOD. 
tpor a definition of asc:ending node and other orbit parameters, see Chapter 3. 

. , 
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known as roll, pitch, and yaw or RPY, and are illustrated in Fig. 2-4. In this system, 
the yaw axis is directed toward the nadir (i.e., toward the center of the Earth), the 
pitch axis is direc-ted toward the negative orbit normal, and the roll axis is 
perpendi~ular to_the other two such that unit vectors along the three axes have the 
relation R=pxY.Thus, in a circular orbit, the roll axis will be along the velocity 
vector. The roll, pitch, and yaw angles (~r'~ , and €y) are defined as right-handed 
rotations about their respective axes. Therefore, for a spacecraft in a circular orbit 
and an observer on the spacecraft facing in the direction of motion with the Ea .... th 
below, a positive pitch rotation brings the nose of the spacecraft upward, positive 
yaw moves it to the right, and positive roll rotates the spacecraft clockwise. The 
RPY system is most commonly used for Earth-oriented spacecraft. Caution: The 
preceding definition will be used throughout this book. However, individual spacecraft 
ordinarily define RPY systems unique to that spacecraft and may eve" define them os 
spacecraft-fixed coordinates rather than orbit-defined coordinates. Therefore, when 
reading other material, it is important to know precisely how roll, pitch, and yaw are 
being defined. 

Fig. 24. Roll, Pitch, and Yaw (RPY) Coordinates 

2.2.3 Nonspacecraft-Centered Coordinate Systems 

For attitude work, the most important coordinate systems are all centered on 
the spacecraft. However, occasionally the use of nonspacecraft-centered 
coordinates is convenient, primarily as a means of obtaining reference vectors such 
as the magnetic field vector or position vectors to objects seen by the spacecraft. 
Thus, orbit work is ordinarily done in geocentric inertial coordinates, equivalent to 
the celestial coordinates defined above, except that the center of the coordinate 
system is at the center of the Earth. The position vector of the Earth in spacecraft
centered celestial coordinates is just the negative of the position vector of the 
spacecraft in geocentric inertial coordinates. Similarly, the positions of the planets 
within the solar system are ordinarily calculated in heliocentric coordinates, or 
coordinates centered on the Sun. Heliocentric longitude and latitude are defined 
relative to the ecliptic plane and the vernal equinox as references. Selenocentric 
coordinates are used for spacecraft in lunar orbit and are the same as celestial 
coordinates except that they are centered on the Moon; that is, the vernal equinox 
and the celestial equator are used as references. 



30 ATTITUDE GEOMETRY 2.2 

In some cases. such as analysis of the Earth's magnetic or gravitational field. 
we may wish to associate a vector with each point in a spherical coordinate system. 
To do this it is convenient to define at each point in space an orthogonal 
coordinate system whose three axes are each parallel to the change in one of the 
three spherical coordinates. as illustrated in Fig. 2-5. Such systems are called local 
horizontal coordinates or local tangent coordinates. since the reference plane at any 
point is always tangent to the sphere centered on the origin of the system and 
passing through the pc.int in question. If the components of the global spherical 
coordinate system are r. A. and", (the radius, elevation, and azimuth. respectively). 
then at any point in space, the three reference axes of the local horizontal system 
are: north axis (N) in the direction of increasing A. east axis (E) in the direction of 
increasing "', and zenith axis (Z) in the direction of increasing r. South (S). west 
(W). and nadir (n) are used for the negatives of the three axes. Thus. the names for 
the axes would-correspond to the usual definitions of the four directions, the zenith. 
and nadir on the surface of a spherical Earth. Within the local horizontal 
coordinate system. the reference plane is the N-S-E- W plane and the reference 
direction of 0 azimuth is north. Elevation is used for the angular height above the 
reference plane (i.e .• toward the zenith). and azimuth is used for the rotation angle 
in the reference plane measured from north toward east. 

z 

z 
z 

"
Fig. 2-S. Local Horizontal Coordinates 

2.2.4 Parallax 

Parallax .is the shift in the direction of a nearby object when the observer 
moves. as illustrated in Fig. 2-6 for the case of the Sun shifting its position relative 
to the background of the fixed stars.· (The amount of parallax for a normal 
spacecraft orbit is exaggerated in Fig. 2-6.) There is no parallax due to. the shift of 
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the center of a coordinate system from one place to another, because the axes are 
moved parallel to themselves and are defined as maintaining fixed directions in 
space rather than pointing toward a real object, with the exception of the roll, 
pitch, yaw coordinates. For example, the pole-to-pole axis of spacecraft-centered 
celestial coordinates is parallel to the Earth's axis. 

In prin~ple, there is a very small parallax because attitude sensors are not 
mounted precisely at the center of the spacecraft. In practice, this shift is totally 
negligible. For· example, the shift in the position of the Earth's horizon 200 km 
away for an instrument offset of I m is I arc sec or 3 X 10-4 deg. Therefore, for 
atti~ude-sensing hardware, the orientation of the field of view of the hardware in 
the spacecraft system is normally important, but the location of the -hardware 
within the spacecraft is not. 

Two types of parallax can be important in some circumstances. Solar parallax 
is the shift in the direction of the Sun as an Earth satellite moves in its orbit. (This 
definition differs from that used in Earth-based astJl)nomy.) The amount of shift as 
the satellite moves the full diameter of its orbit perpendicular to the direction of the 
Sun (as illustrated in· Fig. 2-6) is 0.005 deg in low Earth orbit, 0.032 deg at 

* B' --. ------ .... 
SOLAR PAR:.::-l __ ---o 

* ._------ SUN --.---* A' 

BACKGROUND 
STARS 

A 

B 

Fig. 2-6. Solar parallax. A' and B' are the apparent positions of the Sun among the background stars 
when the satellite is at A and B. respectively. The amount of shift is greatly exaggerated. 

synchronous altitude, and 0.29 deg at the distance of the Moon. Of course, these 
shifts are superimposed on the approximately I-deg-per-day apparent motion of 
the Sun due to the motion of the Earth in its orbit. Finally, stellar parallax is the 
shift in the direction of very nearby stars (other than the Sun) due to the orbital 
motion of the Earth about the Sun. Note: Stellar parallaxes are quoted as the shift 
in the direction of a star due to the motion of the observer (perpendicular to the 
direction of the star) of I AU, or the radius of the Earth's orbit. Therefore, the 
maximum shift in stellar direction for an Earth satellite for I year will be twice the 
stellar parallax. The largest stellar parallax is 0.76" = 2 X 10-4 deg for the Sun's 
nearest neighbor, Alpha Centauri. Thus, stellar parallaxes are only of interest for 
very accurate star sensor work. 

2.3 Elementary Spherical Geometry 

I This section gives a brief introduction to geometry on the surface of a sphere. 
f Appendix A contains a more complete collection of formulas than is presented 
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bere, including a discussion of differential spberical geometry, which is useful in 
analy'tic work. 

Recall that a great circle on a sphere is any circle which divides the sphere into 
two equal hemispheres. All other circles are known as small circles. Great circles 
are analogous to straight lines in plane geometry in that they have three funda
mental properties on a spherical surface: (I) tbe shortest distance between two 
points is an arc of a great circle; (2) a great circle is uniquely determined by any 
two points not 180 deg apart; and (3) great circles are produced by parallel 
propagation on the surface of a spbere. Parallel propagation means that if we take 
a straight line on any infinitesimally small region of the spbere and continually 
extend it parallel to itself in small steps, we will generate a great circle. Spberical 
triangles and other spberical polygons are constructed from the arcs of great 
circles. 

A fundamental difference between plane and spherical geometry is that on the 
sphere all great circles eventually intersect. In particular, if we are given a great 
circle and construct two great circles perpendicular to it (at any distance apart), 
then these two great circles will intersect exactly 90 deg from the first circle. This is 
easily seen from Fig. 2-7 by thinking of the first circle as tbe equator and the 
second two as any two meridians. Of course, any great circle may be taken as the 
equator of a coordinate system. 

Fig. 2-7. Intersection of Meridians To Form a Spherical Triangle 

A second fundamental difference between spherical and plane geometry 
involves the sum of the angles of a triangle .. The sum of the angles of a plane 
triangle always equals 180 deg. lIowever, for any spherical triangle, the sum, l:, of 
the rotation angles formed by the intersecting arcs is always greater tban 180 deg., 
Specifically, the quantity (l:-1800), known as the spherical excess, is directly 
proportional to the area of a spherical triangle. For example, consider the spherical 
triangle formed by the equator and two meridians in Fig. 2-7. Because the two 
angles at the equator are both right angles, tbe rotation angle at tbe pole, q" 

between the two meridians is equal to the spherical excess. Clearly, the area of the 
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spherical triangle formed is directly proportional to the rotation angle at the pole. 
Although more difficult to demonstrate, this theorem is true for any spherical 
triangle. 

Because the surface of a sphere is uniformly curved, we may choose any great 
circle as the equator of a coordinate system for carrying out geometrical calcula- ; 
tions. For the same reason, all the rules of symmetry apply to figures drawn on the 
sphere. For example, any figure may be reflected about a great circle to produce an 
identical figure on the other side, except that the reflection will have "right" and 
"left" interchanged just as in geometrical reflections about a· straight line on a 
plane or physical reflections in a mirror. In addition to symmetry, aU the rules of 
plane geometry hold for any infinitesimally small region on the surface of a sphere. 
For example, if two great circles intersect, the sum of any two adjacent rotation 
angles at the intersection is 180 deg, as it is for straight lines intersecting in a plane. 
(Appendix A discusses infinitesimal spherical triangles in detail.) . 

The fundamental figure for computations in spherical geometry is the spheri
cal triangle, illustrated in Fig. 2-8. RecaJI from Section 2.1 that lowercase Greek 
letters are used for the·arc length sides of a spherical triangle and uppercase Greek 
letters are used for the rotation angles. In spherical geometry, any three com
ponents, including the three rotation angles, determine a spherical triangle, 
although in so~e cases two triangle solutions may exist. Given any three com
ponents, Appendix A presents formulas for determining the remaining com
ponents. 

B 

Fig. 2-8. Notation for a General Spherical Triangle 

The relations between sides and angles in plane trigonometry do not hold in 
spherical trigonometry. (In any infinitesimal region of the sphere, plane geometry is. 
applicable.) However, three fundamental relations do hold among the components 
of any spherical triangle. Using the notation of Fig. 2-8, these are: . 

The law of sines, 

sinO sin>. sin", 
sine = sinA = sine) 

The law of cosines for sides, 

cos IJ = cos >. cos. + sin>. sin", cos e 

(2-1) 

(2-2) 

-~- I 
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The law Of cosines for angles, 

cos9= -cosAcos~+sinAsin~cos(J (2-3) 

. The rules of spherical trigonometry are considerably simplified in the special 
cases of right and quadrantal triangles. A right spherical triangle is one in which one 
of the rotation angles is 90 deg. A quadrantal spherical triangle is one in which one 
of the sides is 90 deg. In both cases, the relations between the five remaining sides 
and angles are given by a set of rules developed by John Napier, a 16th-century 
Scottish mathematician. These are presented in Appendix A. Napier's Rules and the 
laws of sines and cosines are particularly useful in altitude analysis and frequently 
prooide simpler, exact analytic expressions than are available from plane geometry 
app,,?ximations. Napier's Rules may be derived from the law of cosines or may be 
used to derive it. 

As an illustration of the application of spherical geometry, consider the 
problem illU9trated in Fig. 2-9. Here, five solid-angle Sun sensors (also called 
two-axis sensors; see Section 6.1), A-E, are arranged with the optical axis of one 
toward each pole of a suitably defined coordinate system and the three others 
equally spaced around the equator. The problem is to determine the maximum 
angle'that a point on the sphere can be from the axis of the closest Sun sensor. By 
symmetry, one such farthest point must lie along the meridian half way between C 
and D. Further, it must lie along the meridian at a point, P, such that YI = Y2 = Y3' 
(If, for exainple, Y. were greater than Y2' the point could be moved away from A 
and the distance from the nearest sensor would be increased.) Because:YI=Y2=Y' 
the triangIe APD is isosceles and, therefore, f l=f2=f. Because the sensors are 
symmetrically placed about A, fl =3600 /6=60°. Because 1/1 is 90 deg, we now 
know three components of sphericaltriangIe APD and the quantity of interest, y, 
can be found by several methods. With no further analysis, we may go directly to 
Table A-I in Appendix A for a triangle with two angIes and the included side 
known to obtain: 

where S} is defined by 

tanS} = tanfl cos 1/1 (2-4) 

In this case, the equation cannot be evaluated dIrectly, since cosl/l=O and tanl/l 
=+00 . 

. Alternatively, we may apply the law of cosines for sides to APD to obtain 

cosy. = cos Y2 cos 1/1 + sinY2 sin 1/1 cos fJ 

Because YI=Y2 and 1/1=90°, this reduces to 

cosy = siny cosf 

coty=cosf 

(2-5) 

(2-6) 

We may also create a right spherical triangle by constructing the perpendicular 
bisector of arc AD which will pass through P, since APD is an isosceles triangIe 
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Fig. 2-9. Example of Sun Sensor Geometry 

and must be symmetric. Then, from Napier's rules for right spherical triangles 
(Appendix A), we obtain for the hypotenuse, 12 

sin(90° - r J) = tan( '" /2)tan(90° - '12) (2-7) 

or, since (+/2)=45°, 

coty=cosr 

Finally, we may also solve the problem by recognizing immediately that APD 
is a quadrantal triangle and using Napier's rules for quadrantal triangles (Appendix 
A) to obtain directly 

sin r J = tan r 2tan(90° - 12) 

cot'1=cosr (2-8) 

Because r=60°, '1=arccot(O.5)=63.42°. (This suggests why the field of view of 
solid angle Sun sensors is often approximately a circle of 64-deg radius.) This 
analysis remains valid for -a Sun sensor -at each pole and any number of sensors 
(greater than I) uniformly distributed about the equator. Thus, with a total of six 
sensors, four are distributed along the equator, r=4So, and y=arccot/i =54.73°. 



CHAPTER 3 

SUMMARY OF ORBIT PROPERTIES AND TERMINOLOGY 

3.1 Keplerian Orbits 
3.2 Planetary and Lunar Orbits 
3.3 Spacecraft Orbits 
3.4 Orbit Perturbations 
3.S Viewing and Lighting Conditions 

James R. Wertz 

This chapter provides background information and defines the terminology 
used in orbit analysis and mission planning. Approximate expressions, appropriate 
for hand calculation, are provided and motivated' so far as possible. Many general 
technical works are widely available in the areas of celestial mechanics and orbit 
analysis; among the more popular are Baker (1967), Baker and Makemson (1967), 
Battin [19641 Escobal (1965), Herrick [1971), Kaplan (1976), McCuskey [1963], Roy 
[1965J, Ruppe [1966J, and Thomson [1%3). 

In contrast with the approximate formulae presented in this chapter, the 
precise specification of the past or future position of spacecraft or celestial objects 
is done by means of a numerical table, or ephemeris, listing the position at regular 
intervals. Ephemerides of solar system objects in the form of printed tables are 
provided in annual editions of the American Ephemeris and Nautical Almanac and 
i.ts British equivalent, the Astronomical Ephemeris; versions for computer use are 
provided on magnetic tape by the Jet Propulsion Laboratory. Both of these sources 
of definitive information are described in Section 5.5. Definitive spacecraft orbits 
are normally provided only on magnetic tape or disk and are discussed in Section 
5.4. 

3.1 Keplerian Orbits 

Predicting the motion of the Sun, Moon, and planets was a major part of the 
scientific revolution of the Sixteenth and Seventeenth centuries. Galileo's discovery 
of the satellites of Jupiter in 1610 provided a break with Aristotelian science and a 
strong argument for Copernicus' heliocentric theory. Dani$h astronomer Tycho 
Brahe determined the positions of the planets to about 1 minute of arc (1/60 deg) 
and the length of the year to about 1 second with the unaided eye. Tycho's German 
assistant, Johannes Kepler, used these precise observations to derive empirically 
the rules of planetary motion which would later be justified by Newton. 

It was the search for the underlying cause of the motion of celestial objects 
that motivated much of Newton's development of mechanics. In 1665, he deter
mined that if gravity were an inverse square force it could account both for objects 
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faIling at the Earth's surface and for the motion of the Moon. However, the 
detailed theory was not published by Newton until 1687 (Philosophiae Naturalis 
Principia Mathematica). A major cause of this 22-year delay was Newton's inability 
to show that spherically symmetric objects (e.g., the Earth) behave gravitationally 
as though all the mass were concentrated at the center, the proofof which required 
the development of the calculus. Thus, the nearly spherically symmetric planets 
followed very closely Newton's law of universal gravitation: 

F= -(GMmj?-)r (3-1) 

where F is the force between two objects of mass m and M, r is the vector between 
them, and G is Newton's constant of gravitation. Accurate orbit work includes the 
effect of the nonspherical symmetry of the Earth, perturbations due to third bodies, 
and nongravitational forces, but nearly all the basic foundations of orbit theory are 
direct extrapolations of Newton's work as foreseen by Newton himself.- When 
gravity is the only force, the orbit defined by two interacting objects is completely 
determined by their relative position and velocity. In addition, two spherically 
symmetric masses intetacting gravitationally must remain in the plane defined by 
their relative velocity and position because the forces are central and there is no 
force to move them out of this plane. 

U sing gravitational theory and his laws of mechanics, Newton was able to 
derive Kepler's thI:ee laws of planetary motion. These laws apply to any two point 
masses (or, equivalently, spherically symmetric objects) moving under their mutual 
gravitational attraction. Kepler's laws, in the form derived by Newton, are as 
follows: 

Kepler's First Law: If two objects in space interact graoitationallj, each will 
describe an orbit that is a conic section with the center of moss at one focus. If the 
bodies are permanently associated, their· orbits will be ellipses; if they are not 
permanently associated, their orbits will be hyperbolas. 

Kepler's Second Law: If two objects in space' interact graoitationally (whether or 
not they move in closed elliptical orbits), a line joining them sweeps out equal areas in 
equal intervals of time. 

Kepler's Third Law: If two objects in space reooloe around each other due to 
their mutual graoitational attraction, the sum of their masses multiplied by the square 
of their period of mutual revolution is proportional to the cube of the mean distance 
between them; that is, 

(3-2) 

where P is their mutual period of revolution, a is the mean distance between them, m 
and M are the two masses, and G is Newton's graoitational constant. 

• The theory of relativity plays a very minor role in the orbits of planets (principaUy Merc:uI)') and 
spacecraft designed specifically to test the theory. For practical purposes, relativistic effects may be 
totally ignored. 
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The more massive of the two objects, M, is called the primary and the other 
object is called the secondary, or satellile. The barycenler is the location of the 
center of mass between the two objects. Kepler's empirical relations presented in 
two works in 1609 and 1619 were essentially the same except that the constant of 
proportionality in the third law was obtained empirically and the shape of the 
orbits specified in the first law was an ellipse (one of the four possible conic 
sections) because his experience was limited to the planets. 

In 1673, Christian Huygens introduced the quantity !mV2, which he called the 
vis viva or "living force," to explain the motion of the compound pendulum. The 
concept was further developed by Gottfried Leibnitz in terms of "living" and 
"dead" (i.e., static) forces. Application of this kinetic energy theory to celestial 
mechanics leads to the fourth fundamental relationship for two objects rotating 
under their mutual gravitational attraction, the vis viva equation: 

(3-3) 

where r is the instantaneous separation of the objects and V is the magnitude of 
their relative velocity. For some time there was a bitter controversy between the 
followers of Huygens-Leibnitz. who believed that Fl1x=a(tmV2) was the correct 
measure of the effect of a force, F, and the followers of Galileo-Newton, who 
believed that Fl1t=l1(mV) was the proper measure. The controversy was resolved 
in 1743 when Jean D'Alembert published his Traite de Dynamique, which showed 
that both measures were correct and that they were not equivalent. (For a 
disc~ion of this controversy see, for example, Girvin [I948J or Dugas [1955J.) 

Kepler's First Law. Kepler's First Law states that the orbits of celestial 
objects are conic sections i.e., figures produced by the intersection of a plane and a 
cone (Fig. 3-1), or any quadratic fUnction in a plane. If the objects are permanently 
associated, this figure will be an ellipse, as shown in Fig. 3-2. Geometrically, an 
ellipse is. defined by two points known as foci; the ellipse is then the locus of all 
points such that the sum of the distances from each point on the ellipse to the two 
foci is 2a, where a is called the semimajor axis and is half the long axis of the 
ellipse;. The semimajor axis is also the mean distance between the focus and the 
boundary of the ellipse and is often listed this way in tables of orbit parameters. In 
Fig. 3-2, the quantity c is half the distance between the foci, and the semiminor 
axis, b, is half the short axis of the ellipse. One of the foci is the barycenter of the 
two objects; the other Jocus is of only geometric interest and is an empty point in 
space. 

The shape of an ellipse is uniquely specified by a single parameter, such as the 
ratio of the semimajorand semiminor axes. The parameter normally used to 
specify this shape is the' eccentricity, e, defined as the ratioc/a=(a2-b11/ 2/a. 
The eccentricity also serves as a convenient ratio to define and parameterize all the -
conic sections. Specifically, e=O for a circle; O<e< I for an ellipse; e= I for a 
parabola; and e> I for a hyperbola. In the last caSe, the nearest point on the curve 
to the focus is between the focus and the center of the two branches of the. 

.}~ -, 
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HYPERBOLA 

Fig. 3-1. The four conic sections result from the intersection of a plane and a right circular cone. Two 
special cases occur when the angle between the plane and the axis of the cone is either 90 deg 
(resulting in a circle) or equal 10 the angular radius of the cone (resulting in a parabola). 

SEMIMINOR 
AXIS 

b 

CENTE R OF MASS a 

IBARYCENTER 

--~----~F~OC~US~------~-+~--------~~~==~-; ___ 

Fig. 3-2. Geometry of an Ellipse With Eccentricity e=t:/a=O.6 
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hyperbola. These four classes of curves are illustrated in Fig. 3-3, and their 
properties are summarized at the end of this section.· 

Both the circle and parabola represent special cases of. the infinite range of 
possible eccentricities and therefore will never occur in nature. Orbits of objects 
which are gravitationally bound will be elliptical and orbitS of objects which are 
not bound will be hyperbolic. Thus, an object. approaching a planet from "in
finity," such as a spacecraft approaching Mars, must necessarily travel on a 
hyperbolic trajectory relative to the planet and will swing past the planet and 
recede to infinity, unless some nongravitational force (a rocket firing or a collision 
with the planet) intervenes. Similarly, a rocket with insufficient energy to escape a 
planet must travel in an elliptical orbit in the absence of nongravitational forces. 
Because the ellipse is a closed curve, the rocket will eventually return to the point 
in space at which the engine last fired. 
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Fig. 3-3. Four Possible Conic Sections. The circle and parabola have uniquely defined shapes, but 
there is a continuous range of shapes (determinpd by the eccentricity) for the ellipse and 
hyperbola. 

Kepler's Second Law. As shown in Fig. 3-4, Kepler's Second Law is a 
restatement of the conservation of angular momentum. The angular momentum is 
proportional to the magnitude of the radius vector, r, multiplied by the perpen
dicular component of the velocity, V.!.' In any infinitesimal time interval, 81, the 
area swept out by a line joining the barycenter and the satellite will be ! V.!. r81. 

• Alternatively, we may define a conic section as the·locus of an points which maintain a fixed ratio 
between the distance to the focus and the perpendicular distance to a fixed line called the directrix. The 
directrix is perpendicular to the major axis of any conic section. The ratio of the distance to the focus 
and to the directrix is the eccentricity, e. 
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Fig. 3-4. Kepler's Second Law. Because the three shaded areas are equal, the times required for the 
sateUite to cross eacbarea are equal. The area swept out is directly proportional to both the 
time interval and the angular momentum. 

Hence, the area swept out per unit time is proportional to the angular momentum 
per unit mass which is a constant. 

Kepler's Third Law. Kepler's Third Law applies only to elJiptical orbits and 
relates the orbital period to the semimajor axis. In the case of Earth satellites, and 
very nearly in the case of the planets orbiting the Sun, we may ignore the mass of 
the secondary and write: 

a3 = [G(M+m)/4'1T2]p2~(GMj4'1T2)P2 

(3-4) 

The values of p.: GM for the major objects in the solar system are given in 
Appendix L. Note that p. can be measured with considerable precision by 
astronomical observations. However, the values of M are limited by the accuracy 
of G to about 0.06%. (This is the most poorly known of the fundamental physical 
constants.) Therefore, the use of G is normally avoided and calculations are best 
done in terms of p. and the ratio of the masses of solar system objects. 

As long as the mass of the secondary is small, such that Eq. (3-4) holds, then 
the constant of proportionality in Kepler's Third Law may be evaluated directly 
from existing orbiting objects. For example, the astronomical unit, or A U, is a unit 
of length equal to the semimajor axis of the Earth's orbit about the Sun; thus, in 
units of years and AU, p.j4'1T2= I for the Sun and; therefore; a3 = p2 in units of 
astronomical units and years for the planets and any other satellites of the Sun. 

Kepler's laws and the vis viva equation are independent of the properties of 
small orbiting objects. This is very different from the case of electrical or magnetic 
forces and is one of the foundations of the theory of general relativity. On a less 
SUbtle level, this independence is also responsible for th~ phenomenon of "weight-
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lessness" in space. Thus, if two objects, such as an astronaut and his spacecraft, are 
initially in the same orbit, they will remain in the same orbit and stay adjacent even 
mough they have very different physical properties and are unconnected. 

Vis Viva Equation." If we again assume that the mass of the secondary is 
small, the vis viva equation may be rewritten as 

V2=GM(~-~) 

1 V2- GM = - J!:... = E (3~5) 
2 r 2a-

where E is the total energy per unit mass (kinetic plus" potential) of the orbiting 
object. Thus, the semimajor axis is a function only of the total energy. Because the 
potential energy is a function only of position, the semimajor axis for a satellite 
launched at any point in space will be a function only of the launch velocity and 
~ot the direction of launch. (The shape and orientation of the orbit will, of course, 
depend on the launch direction.) The orbit is hyperbolic if E > 0 and elliptical if 
E < O. The special case between these, zero total energy, is an orbit with infinite 
semimajor axis; the velocity in this case is called the parabolic velocity, or velocity of 
escape, V". At any distance, R, from the center of a spherica!ly symmetric object we 
have 

(3;:6> 
A satellite launched with this velocity in any direction will not return, assuming 
thalthere are no other forces. " 

The vis viva equation may be used to obtain two other velocities of particular 
interest. If R == a, "then 

(3-7) 

is the circular velocity, or the velocity needed -for a circular orbit of radius R. 
Finally, in a hyperbolic, orbit, 

(3-8) 

is the hyperbolic velocity, or the velocity of an object infinitely far away from the 
primary. Here V is the instantaneous velocity in the hyperbolic orbit at arbitrary 
distance R from the center of the massive object. 

Orbit Terminology. For either hyperbolic or elliptical orbits, the perifocus is 
the point on the orbit where the secondary is closest to the barycenter. As shown in 
Fig. 3-5, the perifocal distance, or the linear separation between the barycenter and 
the perifocus, is (a - c)= a(l-' e) for an elliptical orbit of semimajor axis, a, and 
eccentricity, e. Unfortunately, the terminology here is both well established and 
awkward because different words are used for the point of closest approach to 
different primaries. Thus, we have perihelion (closest approach to the Sun), perigee 
(closest approach to the Earth), pericynthiane or perilune (closest approach to the 
Moon), and even periostron (closest approach of the two stars in a binary pair). 
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Fig. 3-5. Orbit Terminology for an Elliptical Orbit. The orbit is tilted with respect to the plane of the 
paper such that the dashed segment is below the paper; the plane of the paper is the 
reference plane. 

Perihelion and perifocus are measured from the center of mass, but perigee 
height, frequently shortened to "perigee" in common usage, is measured from the 
surface of the Earth. (See Fig. 3-6.) This terminology arises because we are 
interested primarily in the height above the surface for low-altitude spacecraft. The 
most unambiguous procedure i~ to use perigee height or perigee altitude whenever 
the distance is being measured from the surface;· however, this is not always done. 

Fig. 3-6. Definition of Perigee Height and Apogee Height 

-Throughout this book when discussing distances relative to the ~ we use "height" exclusively for 
distances measured from the Earth's surface; e.g., "apogee height." "perigee height, " or "height of the atmosphere." 
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In elliptical, orbits, the most distant point from the primary is called the 
apofocus; the apofocal distance is c+a. Again, the words aphelion, apolune, and 
apogee or apogee height are used, the latter being measured from the Earth's 
surface. The straight line connecting apogee. perigee, and the two foci is called the 
line of apsides. If h" hA' and RIB are the perigee height, apogee height, and radius of 
the Earth, respectively, then for an Earth satellite, 

(3-9) 

To define an orbit fully we need to specify not only its size and shape, but also the 
orientation of the orbit plane in space. (See Fig. 3-7.) The inclination, i, is the angle 
between the orbit plane and a reference plane, which also contains the barycenter. 
The most .commonly used reference planes are the equatorial plane (the plane of 
the Earth's equator)'for Earth satellites and the plane of the Earth's orbit about the 
Sun, called the ecliptic. 

APOGEE 

PLANE OF EARTH'S 
EOUATOR 

Fig. 3-7. Keplerian Orbital Elements. cy> marks the direction of the 'Vernal Equinox. D is measured in 
the plane of the Earth's equator, and Col is measured in the orbit plane. 

The intersection of the orbit plane and the reference plane through the center 
of mass is the line of nodes. For an Earth satellite, the ascending node is the point in 
its orbit where a satellite crosses the equatorial plane going from south, to north. 
The descending node is the point where it crosses the equatorial plane from north to 
south. Thus, in. Fig. 3-5, if the plane of the paper is the reference plane and the 
dashed part of the orbit is below the paper, then the nodes are as illustrated. 

To define fully the orbital plane of a satellite we need to specify both its 
inclination and its eastwest orientation. The latter is defined by the right ascension 
of the ascending node, 0, or the angle in the equatorial plane measured eastward 
from the vernal equinox to the ascending node of the orbit. (The vernal equinox is 
the ascending node of the Earth's orbit about the Sun.) The rotation of the orbit 



;lin 

Iter 
tin 
rth. 
1 to 
the 

1 its 

3.1 KEPLERIAN ORBITS 45 

within the orbital plane is defined by the argument of perigee, '"', or the angle at the 
barycenter measured in the orbital plane' in the direction of the satelIite;s motion 
from the ascending node to perigee. 

Finally, we need some method to specify' where a satellite is in its orbit. The 
true anomaly, P, is the angle measured at the barycenter between the perigee point 
and the satellite. The mean anomaly, M, is 360· (I!.I/ P) deg, where P is the orbital 
period and I!.t is the time since perigee passage of the satellite; thus, M = P for a 
satellite in a circular orbit. The mean anomaly at any time is a trivial calculation 
and of no physical interest. The quantity of real interest is the true anomaly, which 
is difficult to calculate. The eccentric anomaly, E, is introduced as an intermediate 
variable relating the other two. E is the angle measured at the center of the orbit 
between perigee and the projection (as shown in Fig. 3-8) of the satellite onto a 
circular orbit with the same semimajor axis. 

LOCATION OF SATELLITE 

PERIFOCUS 

Fig. 3·8. Definition of True Anomaly, P, and Ec:centric Anomaly, E. The outer figure is a circle with 
radius equal to the semimajor axis. 

The mean and eccentric anomalies are related by Kepler's equation- (not 
related to Kepler's Laws): 

M=E-esinE (3-lOa) 

where e is the eccentricity. E is then related to p by Gauss' Equation: 

tan-=-- tan-( P) (l+e)1/2 (E) 
2 l-e 2 (3-10b) 

lSion • According to Watson 11958], Joseph Legrange showed in Ina thai the solution to Kepler's Equation 
vard could be written as a series expansion in Bessel runctions, although the modern name and notation was 
)x is not applied until after the detailed explanations of Friedrich Wilhelm Bessel in 1824. 

)rbit 



46 SUMMARY OF ORBIT PRO,ERllES AND TERMINOLOGY 3.1 

(E/2) and (,,/2) are used because these quantities are always in the same quadrant. 
For small eccentriciti~, " may be expressed directly as a function of M by 
expanding in a power series in e to yield: 

"~M+2esinM+ ~e2sin2M+e(e3) (3-11) 

Ruppe [1966] gives several convenient series expansions for anomalies and other 
orbit parameters. 

The elements of an orbit are the parameters needed to fully specify the motion 
of a satellite. There are several alternative ways in which this can be done. Table 
3-1 and Fig. 3-7 show the classicai elements or Keplerian elements for an Earth 
satellite. (Planetary elements are slightly different and are defined in Section. 3.2.) 
Elements are defined at some reference time or epoch because they are slowly 
changing with time as described in Section 3.4. Thesemimajor axis and eccentricity 
define the size and shape of the orbit. The inclination and right asceAsion of the 
ascending node define the orbit plane. The rotation of the orbit within the plane 
(i.e., the orientation of the line of apsides) is defined by the argument of perigee. 
Finally, the mean anomaly specifies (via Kepler's and Gauss' equations) the 
position of the satellite in its orbit at the epoch time. 

Table 3-1. Classical Elements for an Earth Satellite 

QUANTITY SPeCtFIED SYMBOL DEFlNmON SPECIAL CASES BY 

REFERENCE TIME EPOCH TO TtME FOR WHICH ELEMENTS ARE 
SPECIFIED 

SIZE -sEMlMAJOR AXIS . HALF THE LONG AXIS OF THE - ELLIPSE 

S>tI"'E ECCENTRICITY . DISTANCE FROM CENTER OF EL- •• 0 FOR A CIRCULAR ORBIT 
UPSE TO FOCUS DIVIDED BY SEMI-
UAJOR AXIS; DIMENSIONLESS RATIO 

ORBIT { lNCUNATION I ANGLE B£TWEEN ORBIT PLANE AND I-OFCA EQUATORIALORB.T 
EARTH'S EQUATORIAL PLANE 1- 90 DEG FOR POLAR ORBIT 

PLANE RIGHT ASCENSION n ANGLE MEASURED AT THS CENTER n .. OWHEN THE ASCENDING NODE 
OF THE ASCEND- OF THE EARTH IN THE eQUATORIAL tS AT THE VERNAL EQUINOX 
INONOD! PLANE FROM THE VERNAL EQUINOx 

EASTWARD TO THE ASCENDING 
NODE II.E •• THE POrNT AS WHICH THE 
SATELLITE CROSSES THE EOUATOR 
GOING FROM SOUTH TO NORTH) 

ORIENTATION Of ARGUMENT 01' w ANGLE MEASURED AT THE CENTER WD OOR 180 DEG WHEN PEAIGEf 
ORBIT IN THE PERIGEE OF THE EARTH IN THE ORBIT IS OVER THE EQUATOR 
PLANE PLANE FROM THe ASCeNDiNG 

NODE TO PERIGEE ICLOSEST AP· 
PROACH OF THE SATELLITE TO 
THE EARTH) MEASURED IN THE 
=i~ON OF THE SATELLfTE:S 

LOCATJON OF THE MeAN ANOMALY "0 360°. 4tJP WHERE P lS THE PERtOD ....,. OWHEN THE EPOCH TIME IS 
SATELLITE IN ITS AT EPOCH AND At IS THE TIME DIFfERENCe PERI~EE 
ORBIT 8£1WEEN THe EPOCH AND THE 

LAST PERIGEE PASSAGE BEFORE 
EPOCH 

The Keplerian elements are not always the best choice. For a hyperbolic orbit, 
the semimajor axis is undefined and is replaced by the areal velocity, or the area per 
unit time swept out by a line joining the satellite and the planet (i.e., the angular 
momentum per unit mass). In-addition, perigee (and, therefore, Co) and M) is poorly 
defined for nearly circular orbits and the line of nodes (and n) is poorly defined for 
orbits wi\h near zero inclination. In these cases, alternative parameters and calcula
tion procedures are sometimes used for specifying orbits. 

Finally, mean orbital elements given in most general-purpose tables define the 
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average motion over some span of time. For precise calculations, it is preferable to 
use osculating elements, which are the elements of a true KepleriaJi orbit instan· 
taneously tangent to the real orbit. Thus, the osculating elements will fluctuate 
continuously as various forces (e.g., aerodynamic drag, multiple body interactions, 
or non spherically symmetric mass distributions) alter the classical shape defined by 
Kepler's Laws. 

Summary. Keplerian orbits are not sufficiently accurate for spacecraft 
ephemerides or for attitude calculations which require a precise knowledge of the 
position of the spacecraft; however, they are accurate enough to estimate the 
overall mission characteristics (such as period or altitude) in most regions of space. 
Table 3-2 summarizes the properties of Keplerian orbits. The normal procedure for 
adding additional detail to orbit analysis is to treat orbits as Keplerian with 
additional perturbations produced by any of the various interactions which may be 
important. Approximations for the most important perturbations are discussed in 
Section 3.4. Ephemerides based on detailed orbit analysis are described in Sections 
5.4 and 5.5. 

Table 3-2. Properties of Keplerian Orbits 

QUANTln' CIA .... ELLJPSE PARABOl.A HYP&RIIOUI 

DEFINING PARAMETERS •• Sl!.MIIIA.IOR AXIS •• SEMIMAJOR AllIS II· PERIFOCAL DISTAJiCa •• SEIIITRANSVERSI AXIS 
-RADIUS b" se .. MlrrmR AXIS b" SEMJalllJUBATir AXIS 

PARAMETRIC EQUATlON .2 • .,2 •• 2 .2 .,2 
.2.4qy 

.2 .,2 -.--1 ---. .' b' • 2 b2 

ECCENTRIClTY,_ .-0 ... ,r.r:::;'J,. 0<_< 1 ." •• ~ •• >1 

PERIFOCAL OfSTANCE. q ... ..... 1.-.) . .. ...... -" 
VELOCITY. V,ATDI$. y2 .0/. v ••• ~_;) y2 '201, y2··e·;) 
T ANCE FROM FOCUS., 

TOTAL ENERGY PeR T.E.--.!.<o T.E.--!..<O T.I.-O 'T.I .• !.;>O 
UNrT MASS. T.E. .. .. .. 
MEAN ANGULAR • • .J;iiI n • .r.w n.J; •• .r.w 
UOTION,n 

PERIOO.P P-'bl" p .. 2_/,. p •• p •• 

_LV UNDEfiNED ECCIENTR~ ANOIIAL Y. E PAAA8OL1C ANOMALY. D HYPER80UC AlmllALY. F 

TAN~)·(::r T .... m TAN~)' rM;. T~1'e~:r TANM(i) 
MIAN AtlOMALY. UNDEflNlD M-E-aSINE 11_"". !D3 "'-.SDlHP-f 
~1IiI"lt-TO)MODULO • .... 
DtSTAHCE FROM pocus, , .. f -a4'1 ... COSI!. '-Q+ !r/ '· ... COSM'·-n ( ,.. ) • , .. --, •• cos. 

tdll4tar; 0 ,; •• .J;;"Slt.' ,,·.J;D " .• J;_, 

AREAL VELOCITY. 

~ .. .!.,'l~ ~.!J; ~.! J.I1--" ~ • .r,;;;; ~.!J;jT-;j .. 2 .. dO 2 .. 2 dO .. • 
-•• GIl IS THE GRAvtTATIONALCClNSTANT OF TM& CRNTAAL 8ODY~.1S TMIl1'RUl:ANOMALY.AND ••• (t-TiIS TtG __ NIOIIALY.WMiRt t .. nea 
1'lMI OF OBS£RVAnON. T lS TH& TOIl OP PERIFOCAL PASSAGI.ANDit IS THE UIAII ANGULAR..na::.. SIll MERRICK",.,1. JOR ~ IJOAMULAS 
AND A DISCUSSION AND umNG OP TERMINOLOGY AND NOTATION. sal PIG. 3-3.OR DEPbIIITIONSOP. MOb. 
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3.2 Planetary and Lunar Orbits 

Orbits of the natural objects in the solar system exhibit considerable regular
ity; with the exception of cometary orbits, they are nearly circular, coplanar, and 
regularly spaced.· Although perturbations due to third bodies must be taken into 
account for computing definitive planetary ephemerides (Section 5.5), the descrip
tion of the orbits in terms of Keplerian elements adequately describes most orbital 
characteristics. The position of the center of mass of the solar system relative to the 
Sun depends on the relative orientation of the planets, but is typically one solar 
radius from the center of the Sun in the general direction of Jupiter. Thus, for most 
purposes we regard the Sun as the center of mass of the solar system and, therefore, 
as at one focus for all planetary orbits. 

To define the Keplerian elements for the orbits of either planets or in
terplanetary spacecraft, we must establish a reference plane through the Sun. The 
standard plane chosen Jor this is the ecliptiC, or the plane of the Earth's orbit about 
the Sun. This plane is inclined to the Earth's equatorial plane by about 23.44 deg, 
an angle known as the obliquity of the ecliptic. The intersection of the plane of the 
ecliptic and the plane of the Earth's equator define two opposite directions in space 
known as the vernal and autumnal equinoxes. represented by the symbols cy> and :!l::. 
respectively. The vernal equinox, the direction of the Sun (viewed from the center 
of the Earth) as it crosses the equatorial plane from south to north, serves as the 
reference direction for coordinate systems using either the equatorial or ecliptic 
plane. Perturbative forces on the Earth cause the rotational axis of the Earth to 
move in a cone of 23.44-deg radius about a vector perpendicular to the ecliptic 
plane; this precession of the equinoxes has a period of about 25,700 years. The effect 
of .this precession on coordinate systems is described in Section 2.2.2. 

Because the Earth's orbit is not perfectly Keplerian, and because of the drift of 
the vernal equinox, the orbital peri.od of the Earth about the Sun depends on how it 
is measured. The sidereal year, about 365.26 days, is the period of revolution of the 
Earth relative to the fixed stars. The tropical year is the Earth's period relative to 
the vernal equinox and is about 20 minutes shorter than the sidereal year; this is 
the basis of the civil calendar, since, for calendar purposes, we are interested in the 
seasons which are determined by the position of the Sun relative to the Earth's 
equatorial plane. Finally, the anomalistic year, 5 minutes longer than the sidereal 
year, is the period of the Earth relative to perihelion.t Recall that perihelion is the 
perifocal point when the Sun is the primary. This shift in the inertial position of 
perihelion is due to perturbative forces of the other planets. 

The orbital elements of the planets and other solar system objects are 
analogous to the Earth satellite elements defined in Table 3-1, with the Earth's 
equatorial plane replaced by the ecliptic plane. Thus, the semimajor axis and 
eccentricity retain the same definitions. The inclination of planetary orbits is 

• This section descn"bes qualitative characteristics of planetary orbits. For detailed numerical infonna
tion, see Appendix I-
t For a 9l0re extended discussion of time measurement systems and precise numerical values, see 
Appendix J. 
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measured relative to the ecliptic. The longitude of the ascending node, O. is the angle 
from the vernal equinox to the ascending node of the planet's orbit measured 
eastward along the ecliptic plane. The argument of perihelion, "', is the angle from 
the ascending node to perihelion measured along the planet's orbit in the direction 
of its motion. In some tables, '" is replaced by the longitude of perihelion. (;)=",+0; 
note that this. is not a true angular measure because", and 0 are measured in 
different planes. Finally, the mean anomaly of satellite orbits is replaced by the 
time of perihelion passage, T, which is one of the times (usually the most recent) 

. when the planet was at perihelion. Numerical values for the planetary or~ital 
eleme'nts are given in Appendix L. 

Planetary orbits within the Solar System are fairly uniform in both shape and 
orientation; with the exception of Pluto and Mercury, the orbital inclinations are 
all less than 3.5 deg and the eccentricities are less than 0.1. The semimajor axes of 
the planetary orbits are also nearly regular and are approximately given by an 
empirical relation known as Bode's Law, in which the semimajor axes of the planets 
and asteroid belt in AU are approximately 0.4, 0.7, 1.0, 1.6,2.8, 5.2, etc. 

For both interplanetary spacecraft and for determining the visual brightness of 
the planets as seen by Earth-orbiting spacecraft, we are interested in the orientation 
of the planets relative to the Earth as well as their orientation relative to the fixed 
stars. The various geometrical orientations of the planets relative to the observer 
and the Sun are called planetary configurations or aspects and are defined iii" Fig. 
3-9. An inferior planet is one with an orbit closer to the Sun than the observer and 
a superior planet is one farther from the Sun than the observer. Conjunction and 
opposition occur when the planet and the Sun are in the same and opposite 
directions, respectively;· "the same direction" throughout this discussion is in 
terms of the relative planet-observer orientation around the ecliptic, regardless of 
the distance above or below the ecliptic plane. Thus, a full moon occurs when the 
Moon is at opposition. Conjunction and opposition may also be applied to two 

OPPOSITION 

la) A SUPERIOR PLANEt (b) AN INFERIOR PLANET 

Fig. 3-9. Planetary Configurations. (a) for a superior planet, (b) for an inferior planet.. 

• Syzygy, an astronomical contnbution to crossword puzzles, refers to either conjunction or opposition, 
i.e~ when the planet, the Sun, and the obsen.:er lie on a straight line. 
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planets; for example, Mars and Jupiter are in conjunction for a particular observer 
if both planets are in the same direction from the observer. (If only one planet is 
mentioned, the implied second object is the Sun; ""Mars is at opposition" means 
that Mars and the Sun are in opposition.) For an inferior planet, inferior conjunction 
occurs when the planet is between the Earth and the Sun and superior conjunction 
occurs when the Sun is between the Earth and the planet Elongation is the angular 
separation between a planet and the Sun measured in the plane of the ecliptic. A 
superior planet will be brightest near opposition and an inferior planet will be 
brightest near greatest elongation, when it is at the farthest angular separation from 
the Sun. Quadrature occurs when the Sun/observer/planet angle is 90 deg. In 
astronomical tables, the standard symbols defined in Fig. 3-10 are frequently used 
for the various aspects of the planets. For example, r::J'9 T1 is read ""Venus and 
Saturn in conjunction." A discussion of visual magnitUde and other optical aspects 
of the planets relevant to attitude work is presented in Section 3.5. 
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Fig. 3-10. Standard Astronomical Symoo 

The interval between successive oppositions of a superior planet or successive 
iiuerior conjunctions of an inferior planet is known as the synodiC period, S. The 

,relation between the synodic period and the sidereal period, P,relative to the fixed 
stars is shown in Fig. 3-11. If PI and P 2 are the periods of the inner and outer 
planets respectively, then, in general: ' 

(3-12) 

For an observer on the Earth, if S and P are both exprer~d in years, then fo;- d 

superior planet the average synodic period is given by 

S-I=I-P-I (3-13) 

and for an inferior planet by 

(3-14) 

Thus, for Mars, opposition will occur approximately every 780 days. Because 
planetary orbits are not circular, the actual synodic periods vary by several weeks. 
Recent and future oppositions of Mars are listed in Table 3-3.· Note that the 
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Fig. 3-11. Determining the Synodic: Period (see text for explanation) 
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synodic period is longest for Mars and Venus (780 and 584 days), shortest for 
Mercury (116 days), and approaches I year for the other planets. 

Planetary configurations are important for interplanetary flight as well as for 
observations because they define the opportunities for planetary travel. For ex
ample, as shown in Section 3.3, trips to Mars along a minimum energy trajectory 
will leave the ~ about 97 days before opposition and arrive-at Mars about 162 
days after opposition, although various. factors may cause the actual flight times, 
particularly the arrival time, to vary by several weeks. Because an opposition of 
Mars occurred on December 15, 1975, we would expect flights to leave Earth on 
about September 10, 1975, and arrive at Mars on about May 27, 1976. The two 
spacecraft flown during this launch opportunity, Viking I and II, were launched on 
August 20 and September 9. 1975, and arrived at Mars on June 19 and August 7. 
1976. . 

The orbits of the natural satellites of the solar system are generally less 
uniform than the orbits of the planets, primarily because perturbations cause 
substantial variations in satellite orbits. For example, the perigee location for the 
Moon makes one complete revolution about the Moon's orbit in only 8.85 years 
and the line of nodes rotates fully around the orbit in 18.6 years. Thus, in analogy 

Table 3-3. Oppositions of Mars 

DATE VISUAL 
DATE VISUAL DATE VISUAL MAG. MAG. MAG. 

MAY 31.1969 -2.0 FEBRUARY 26. 1980 -0.& NOV,EMBER 27, 1B9D -I.B 
AUGUST 10. 1971 -2.7 MARCH 31, 1882 -1.1 JANUARY 7, 1993 -1.2 
OCTOBER 26. 1973 -2.2 MAY 11,1_ -1.7 FEBRUARY 12,1895 -1.0 
DECEMBER 15. 1975 -1.5 JULY 10, 1B88 -2.4 MARCH 17, 1997 -1.1 
JANUARY 22, 1978 -1.1 SEPTEMBER 28, lB88 -2.5 APRIL 24, 1999 -1_4 
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with the various types of years, the month is defined in several ways, depending on 
the measurement reference. For most purposes, the fundamental intervals are: the 
sidereal month relative to the fixed stars, about 27.32.days; the synodic month from 
new moon to new moon, about 29.53 days; and the nodica/ or draconic month from 
node to node, about 27.21 days. Other periods are listed in Appendix L. Section 5.5 
gives an algebraic approximation which may be used to model the position of the 
Moon, as seen from the Earth, to within about 0.25 deg. 

3.3 Spacecraft Orbits 
Vehicles or objects launched into space are categorized by their orbit. Ballistic 

missiles and sounding rockets travel in elliptical orbits which intersect the surface of 
the Earth; this is frequently called a ballistic trajectory because it is also the path of 
a bullet or cannon shell. The ballistic missile and sounding rocket are distinguished 
by their function-a missile is used to strike some specific target, whereas a 
sounding rocket is used to make measurements in or above the Earth's atmosphere. 
A sounding rocket may either impact the surface, bum up in the atmosphere, or be 
recovered by parachute. 

Any object which travels in an elliptical orbit around a planet is called a 
satellite of that planet. The semimajor axis of a satellite orbit must be at least as 
large as the radius of the planet, whereas the semimajor axis for a sounding rocket 
may be as small as approximately half the radius of the planet.· Because the total 
energy of a spacecraft depends only on the semimajcr axis, the energy of a 
sounding rocket is normally, though not necessarily, much less than that of an 
Earth satellite. However, sounding rockets and ballistic missiles frequently reach 
altitudes well above those of low-Earth satellites because they travel in very 
elongated elliptical orbits. 

If the velocity of an object is greater than the escape velocity of a planet, it will 
be an interplanetary probe traveling in a hyperbolic trajectory relative to the planet 
and, after it has left the vicinity of the planet, traveling in an elliptical orbit about 
the Sun. Finally, if an object attains a velocity greater than the Sun's escape 
velocity, it will be an interstellar probe. Pioneer 10, swinging past Jupiter in 
December 1973, gained sufficient energy in the encounter (as described later in this 
section) to become the first' manmade interstellar: probe. 

All known satellites or probes are assigned an international designation by the 
World Warning Agency on behalf of the Committee on Space Research, COSPAR, 
of the United Nations. These designations are of the form 1983-140, where the 
first number is the year of launch, the second number is a sequential numbering of 
launches in that year, and the letter identifies each of the separate objects launched 
by a single vehicle. Thus, the docking module for the first Apollo-Soyuz flight, 
object 1975-66C, was the third component of the 66th launch in 1975. 

In addition to the international designation, most satellites are assigned a 

• Assume all the mass of the Earth is concentrated at its center and a high platform is built to the 
former location of New York City. An object dropped from the platform will not go all the way to the 
former location of Australia, but will swing very rapidly around the central mass (with perigee 
essentially at the center) and return to apogee at the platform tip. (Use Eq. (3-3) with V=O.) Therefore. 
the ~r axis will be about half the radius of the Earth and the total energy will be a factor of two 
less than that for a circular orbit at the Earth's surface. 

I 
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name by the launching agency. For NASA, spacecraft in a series are given a letter 
designation prior to launch, which is changed to a number after a successful 
launch. Thus, the second Synchronous Meteorological Satellite was SMS-B prior to 
launch and SMS-2 after being successfully placed in orbit. Because of launch 
failures or out-of-sequence launches, the lettering and numbering schemes do not 
always follow the pattern A= I, B=2, etc. For example, in the Interplanetary 
Monitoring Platform series. IMP-B failed on launch, IMP-E was put into a lunar 
orbit and given another name, and IMP~H and -I were launched in reverse order; 
thus, IMP-I became IMP-6 and IMP-H became IMP-7. Satellites may also be 
assigned numbers in different series; IMP-6 was also Explorer-43 and IMP-7 was 
Explorer-47. 

The trajectory of a spacecraft is its path through space. If this path is closed 
(i.e., elliptical) then the trajectory is an orbit. Thus, correct usage wouldj~fer to a 
satellite in an elliptical orbit or a spacecraft or probe on a hyperbolic irajectory. 
Althougl- this distinction is maintained at times, orbit and trajectory are oCten used 
interchangeably. For satellites it is frequently convenient to number the orbits, so 
that one may refer to ~'a maneuver on the sixth orbit." In standard NASA practice, 
that portion of the orbit preceding the first ascending node is referred to as orbit 0 
or revolution 0; orbit 1 or revolution 1 goes from the first ascending node to the 
second ascending node, etc. Note that revolution refers to one object moving about 
another in an orbit, whereas rotation refers to an object spinning about an axis; 

When spacecraft are launched by a multistage vehicle, the initial stages will be 
fired and subsequently jettisoned; however, the final stage may remain inactive and 
attached to the spacecraft during a coaslingphose orparking orbit. The final stage.is 
then ignited or reignited to inject or place the spacecraft into its proper or~l_* As 
defined in Chapter I, a mission orbit is one in which a satellite will be conducting 
normal operations. A transfer orbit is one which is used to maneuver a spacecraft 
from one orbit to another, as in the case of the Apollo transfer orbit to the Moon 
or the Apollo Command Module transfer orbit back to Earth. 

A satellite which revolves about the Earth in the same direction that the planet 
rotates on its axis is in a prograde or direct orbit; if it revolves in a direction 
opposite to the rotation, the orbit is retrograde. As shown in Fig. 3-12, the 
inclination of an Earth-satellite orbit is measured from east toward north; there
fore, the inclination of a prograde satellite is less than 90 deg and the inclination of 
a retrograde satellite is greater than 90 deg. In a polar orbit, ;=90 deg. Most 
satellites are launched in a prograde direction because the rotational velocity of the 
Earth provides a part of the orbital velocity. Although this effect is not large (0.46 
km/sec for the Earth's rotational velocity at the equator, compared with a circular 
velocity of 7.91 km/sec), the available energy is typically the limiting feature in a 
space mission. Thus; all factors which change the energy which must be supplied 
by rockets are important. 

• Only a limited number of upper stages are capable of being reignited. Among these are the' Agena 
used for unmanned spacecraft and the Service Propulsion System from the Apollo program, both of 
which use hypergolic fuel which ignites when the two fuel components come in contacL The largest 
reignitable American rocket currently planned is the Space Shuttle, which has three engines with a '9ta1 
vacuum thrust of about 6.3 x 10' N (20% of that of the Saturn V fITSt stage) from a hydrogen/oxygen 
system . 
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Fig. 3-12. Inclination, i, for Prograde and Retrograde Orbits. Satellite is moving from south to north. 

From Kepler's Third Law, the period, P, of an Earth satellite depends only on 
the mean altitude (see Eqs. (3-4) and (3-9»; that is, 

p2= (4'IT2 I 1')(Re+ hpl2+ hAI2)3 

(3-15a) 

or, equivalently, 

P=(4'IT2a3 I l'i/2 

= 1.658 668 x 1O-4a3/2 (3-15b) 

where hp, hA' and a are the perigee and apogee heights, and semimajor axis, 
. r~pectively, in kilometres and P is in minutes. The velocity, V, at any point 
depends on both the instantaneous altitude and the semimajor axis: 

V2=1'(_2 __ !) 
Re+h a 

= 398,600.5 [ 6378.~4+h - ~ ] (3-16) 

where h is the instantaneous altitude, a is the semimajor axis in kilometres, and V is 
the velocity in kilometres per second. We may also use the vis viva equation to 
determine the energy per unit mass which must be supplied to reach a given 
altitude, starting at rest on the Earth's equator. For a circular orbit at altitude h, 
Eq. (3-5) may be reformulated to yield: 

I' vi I' 
AE=- 2(Re +h) -T+ Re 

L993003 X IOu 
= -. (6378.14+h) + 6.23866 x 10

7 (3-17) 

where Ve is the rotational velocity at the Earth's surface, h is in kilometres, and AE 
is the energy increase required in Joules per kilogram. Appendix M tabulates the 
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period, velocity, energy required, and size of the Earth's disk as a function of 
altitude for Earth-orbiting satellites. 

At an altitude of 35,786 km, the period of a satellite equals the sidereal 
rotation period of the Earth. (The sidereal period, or period relative to the stars, is 4 
minutes less than the mean period of rotation with respect to the Sun (24 hours) 
because in I day the Sun has moved about I deg farther along the ecliptic and the 
Earth must rotate slightly more than 360 deg to follow the Sun.) Spacecraft at this 
mean altitude are called synchronous satellites because a O-deg inc;ination satellite 
at this altitude will remain over the same location on the Earth's equator. A 
synchronous satellite in a circular orbit at nonzero inclination travels in a figure 
"8" relative to the surface of the Earth. _,,-

Thus far, we have been concerned with two-body Keplerian orbits: However, 
there is a simple class of three-body orbits. known as Lagrange point orbits,· which 
is of particular interest to spaceflight. As shown in Fig. 3-13, the Lagrange points, or 
fibration points, for two celestial bodies in mutu&1 revolution, such as the Earth and 
the Moon, are the five points such that an object placed at one of them will remain' 
there. The three Lagrange points on the Earth-Moon line are positions of unstable 
equilibrium; i.e., any small change causes the object to drift away. However, L4 
and Ls, which form equilateral triangles with the Earth and the Moon in the plane 
of the Moon's orbit, are positions of stable equilibrium. A satellite placed near Pte 
Lagrange point (with an appropriate velocity) remains in essentially the same 
position relative to the Earth and the Moon. Because of the stability of Lagrange 
point orbits about L4 and Ls, they have been proposed as one possible location for 
permanent colonies in space [q'NeiJI, 1975]. As a natural example of this 
phenomenon, the Trojan asteroids are a group of 14 known asteroids which have 
collected at the stable Lagrange points of the Jupiter-Sun system. 
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Fig. 3-13. Lagrange Points of the Earth-Moon System 

-Named after the 18th-Centwy French mathematician and astronomer Joseph Lagrange. 
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Orbit Maneuvers. A significant portion of spacenight analysis is concerned 
with orbit maneuvers and optimal methods of changing orbits. Normally we wish 
to minimize the energy which must be. supplied or, equivalently, the velocity 
change, t:. V, required to go from one orbit to another. There are two basic types of 
maneuvers: in-plane maneuvers, which do not affect the plane of the spacecraft 
orbit and out-oj-plane or plane change maneuvers, which change the orbital plane. 
Because t~e spacecraft velocity vector is in the orbit plane, any component of the 
rocket thrust normal to the plane of the orbit will have only a small effect on the 
magnitude of the velocity and, therefore, on the total energy and semimajor axis. If 
we wish to obtain a specified Semimajor axis with a minimum expenditure of 
energy, then plane changes should be minimized. 

The principal orbit characteristic relevant for in-plane maneuvers is that the 
semimajor axis depends only on the. total energy. Therefore, the most efficient way 
to change th~ semimajor axis and ~aise or lower the spacecraft is to change only the 
magnitude of the velocity by firing the rocket either parallel or antiparallel to the 
velocity vector. If we wish to transfer between two circular orbits (for example, to 
travel from the Earth to Mars or from low Earth to synchronous orbit), then we 
start at the lower orbit and fire the rocket so that the propellent is expelled in the 
direction opposite the. velocity vector, as illustrated in Fig. 3-14. For a minimum 
energy expenditure, the semimajor axis of the transfer· orbit should be such that its 
apofocus is at the radius of the larger orbit. Such an elliptical orbit with perifocus 
at the smaller orbit and apofocus at the larger orbit is called a Hohmann transfer 
ellipse and is the minimum energy path between the orbits, either from the smaller 
to the larger or the larger to the smaller. The Hohmann transfer ellipse is tangent to 
both the inner and outer orbits. 

Fig. 3-14. Hohmann Transfer Ellipse. Note that direction of thrust is opposite the direction propellant 
is expelled. 
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Figure 3-14 shows that minimum energy maneuvers between orbits start 180 
deg away from the desired end location relative to the central body. If subscripts I, 
2, and H denote the two circular orbits and the Hobmann transfer ellipse, 
respectively, then, from Fig. 3-14, the semimajor ax~ are related by: 

1 
aH =I(a)+a2) (3-18) 

from which the period, PH' and the transfer time, T=O.5PH, may be calculated 
from Kepler's Third Law. Alternatively, if P)-:::::P2' then we may. use the approxima
tion: 

T'-(tPH), ~t[ (P,;p,), - I~(P,-P,), 1 

= 2~ [(p)+P2)2+2P)P2] (3-19) 

From the first form above, it is clear that tbe transfer time is somewhat less than 
half the mean period of the two orbits. The Hohmann transfer time from low-Earth 
orbit to synchronous altitude is 5.23 hours and to the orbit of the Moon it is 4.97 
days; for these large differences in period, Eq. (3-19) overestimates the time by 4% 
and 11%, respectively. . 

Also of interest is the velocity change, f:! V, required to change from a circular 
orbit to a Hohmann transfer ellipse, or vice versa. This may be obtained directly 
from the vis viva equation as: 

IAVI ={i V2 - I _ ... r;
aj aH V~ (3-20) 

where aj may be either a) or a2• (In the case of a Hohmann transfer leaving or 
approaching a planet or other massive object, If:! VI is the hyperbolic velocity of the 
spacecraft relative to the planet.) Values of the transfer time and velocity change 
required for trips between the orbits of the planets are given in Table L-IO. 

As an example of a Hohmann transfer, we consider a flight from the Earth to 
Mars for which the Hohmann transfer time is 259 days. (The approximation of Eq. 
(3-19) is in error by less than 0.1%.) As shown in Fig. 3-15, the spacecraft will move 
180 deg in true anomaly in 259 days to meet Mars at point C'. The Earth will have 
moved (259/365) of an orbit or 255 deg in true anomaly. Thus, the Earth will be 
255-180=75 deg ahead of Mars when the spacecraft arrives. From Table L-I, we 
find that the mean daily motion in true anomaly of the Earth is 0.462 deg/day 
faster than that of Mars. Thus, opposition Occurred 162 days (=75 deg/(0.462 
deg/ day» before arrival when both planets and the Sun were on a straight line. 
This fixes the mission timing relative to the synodic period of the Earth and Mars. 
We conclude that flights to Mars should leave Earth 259-162=97 days before an 
opposition of Mars and arrive at their destination 162 days after opposition. Actual 
flight times will differ from this estimate by several weeks due to the noncoplanar, 
noncircular orbits of the Earth and Mars. 
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PATH OF 
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3.3 

Fig. 3-IS. HohmaDn Orbit to Mars. Letters indicate the positions of the Earth and Mars at launch (A, 
A'), at opposition 97 days after launch (B, B'), and at arriva1259 days after launch (C, C'). 

To calculate the energy and velocity changes required for a Mars trip, we must 
further specify the initial conditions because it will be necessary to account for the 
gravitational attraction of the planets themselves. We assume that we wish to leave 
from the surface of the Earth and enter a circular orbit just above the surface of 
Mars. From Tables L-ll and L-1O (or Eqs. (3-6) and (3-20», the escape velocity of 
the Earth is 11.18 km/sec and the .hyperbolic velocity necessary to achieve a 
Hohmann transfer orbit to Mars is 2.9 km/sec. Therefore, a Mars probe requires 
an initial energy change of 0.5 x 11.182+0.5X2.~=66.70 MJ/kg. (This may be 
supplied, for example, by either one velocity change of 11.55 km/sec (=(2x 
66.7)I/~ or, less efficiently, by an initial velocity change of 11.18 km/sec and a 
second change of 2.9 km/sec after the. spacecraft has left the vicinity of the Earth.) 
From Table L-1O or Eq. (3-20), we find that the spacecraft approaches Mars with a 
hyperbolic velocity of 2.6 km/sec or a total energy per unit mass of +3.38 MJ/kg 
relative to Mars. From energy conservation, the velocity as the spacecraft passes 
near the surface will be (2E+2p./ R)I/2=(2E+2 Vc~I/2, where E is the total energy 
per unit mass, Vc is the circular velocity of Mars, or 3.55 km/sec from Table L-l1, 
and p. and R are the gravitational constant and radius of Mars. Thus, the velocity 
near the surface of Mars will be (2x3.38+2x3.S5~1/2=5.65 km/sec and a 
velocity change of 5.65-3.55=2.10 km/sec will put the spacecraft into a circular 
orbit just above the surface ·of Mars. Without this velocity change, the spacecraft 
would follow. a hyperbolic trajectory away from Mars and return to an elliptical 
orbit about the Sun. Similarly, a velocity change of 2.10 km/sec is required to 

. return the spacecraft to a Hohmann trajectory back to Earth. 
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An analysis similar to that described above applies to elliptical orbits.as weD 
as circular orbits. Thus, raising or lowering the apogee height is done most 
efficiently by firing the propellent antiparallel or parallel to the direction of motion 
when the spacecraft is at perigee. Similarly, perigee height is adjusted by maneuvers 
at apogee. 

In general, plane change maneuvers are more complex than transfer maneu
vers within the orbital plane. However, some general· characteristics of plane 
change maneuvers may· be determined from the orbital properties described in 
Section 3.1. Any change in the orbital plane requires a velocity change perpendicu
lar to the initial orbital plane. Because the orbital l>lane is defined by the velocity 
vector and the radius vector from the primary to the spacecraft, the general effect 
of any instantaneous plane change maneuver is to rotate the orbital plane about 
the radius vector from the primary to the spacecraft. The amount of this rotation is 
defined in Fig. 3-16 .. From the figure, we see that a given velocity change provides 
the maximum orbital rotation when the component, Vi.L' of the initial spacecraft 
velocity perpendicular to the radius vector is a minimum. By Kepler's Second Law 
(Conservation of Angular Momentum), this occurs at apogee. Of course, the initial 
and final orbital planes must contain the radius vector to the spacecraft at the time 
of the maneuver. Therefore, a single impulse maneuver (i.e., one which is nearly 
instantaneous) must occur whenever the spacecraft lies at the intersection of the 
initial and final orbital planes. 

RADIUS VECTOR 0 
(OUT OF PAPER) 

Fig. 3-16. Rotation, 9, of the Orbit Due to Velocity Change ~ Y. D is measured in the plane of the 
paper which is perpendicular to the radius vector, Y,=initial velocity, '1=fmal velocity • .1 
indicates components perpendicular to the radius vector. 

The most straightforward plane change is a change in the inclination of an 
orbit A plane change maneuver performed when the spacecraft is at ascending or 
descending node will rotate the orbit about the line of nodes, thus changing the 
inclination without changing the right ascension of the ascending node (except for 
possibly interchanging the ascending and descending nodes). It is possible for a 
maneuver at this location to change only the inclination and not affect any of the 
other orbital elements. It can be shown that inclination changes are most efficiently 
done when the spacecraft is on the line of nodes. (See, for example, Ruppe [1966].) 
Maneuvers that change the ascending node but not the inclination or other 
parameters must be made at one of the two locations which the initial and final 
orbits have in common. 

Most orbit maneuvers require the expenditure of rocket fuel or other 
spacecraft consumables to make significant modifications in the spacecraft orbit. 
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However. in gravity assist trajectories or flyby trajectories. the orbital velocity of a 
planet is used to change the spacecraft orbit. On a hyperbolic trajectory. a 
spacecraft will approach and leave the planet at the same speed relative to the 
planet but in a different direction. Thus. the interaction with the planet is an elastic 
collision analogous to a baseball and bat and can be used to provide additional 
energy to a spacecraft. If a spacecraft approaches a planet at 5 km/sec relative to 
the planet. and leaves at 5 km/sec at an angle of 90 deg relative to incoming 
velocity vector. it will undergo a velocity change of 5V2 ~7.07 km/sec. 

The magnitude of the velocity change, !J. V, that will be produced in a flyby 
trajectory is a function of the lurn angle, 1/1, between the two asymptotes of the 
hyperbola (see Fig. 3-3): that is, 

I!J.VI =2 Vhsin(1/I/2) (3-21) 

where Vh is the hyperbolic velocity. By manipulating the equations for a hyperbola 
(see Table 3-2), we find 

sin(1/I/2)= 1/ e (3-22) 

where e is the eccentricity. This may also be expressed in a form more convenient 
for analysis as: 

( 
V;q)-I 

sin(1/I/2)= I + ~ (3-23) 

where q is the perifocal distance or distance of closest approach to the planet and 
/L= GM. Table 3-4 lists the values of .the turn angle and velocity change assuming 
that the hyperbolic velocity is the velocity of approach for a spacecraft in a 
Hohmann transfer orbit as given in Table L-2. A Venus gravity assist trajectory 
was used by Mariner 10 to explore Mercury. However, Jupiter is the most efficient 
planet in providing large velocity changes. Jupiter flybys can be used in several 
ways-to give a spacecraft sufficient added energy to become an interstellar probe 
(Pioneer 10), to reduce -the transit time to the onter planets (Pioneer II and the 
1977 Jupiter-Saturn mission), to obtain a large velocity component perpendicular 
to the plane of the ecliptic in order to explore the space "above" or "below" the 
solar system (also Pioneer II), or to reduce the spacecraft velocity perpendicular to 
the direction of the Sun (and, therefore, the spacecraft's angular momentum) in 
order to approach the Sun. 

Injection Conditions. The Keplerian orbit of a spacecraft is determined 
entirely by its position and velo«<ity at anyone time. This is of relatively little 
interest for practical orbit determination because position and velocity are not 
nOimally observed directly. However, determining the Keplerian elements from 
position and velocity is convenient for a variety of analytic studies involving the 
effect of injection conditions or orbit maneuvers or the determination of approxi
mate elements from data in ephemerides. Thus, we will assume that we are given 
the radius ve~tor, R, from the center of the Earth to the spacecraft and the velocity 
vector, V, at some time, I. We wish to determine the Keplerian elements, a, e, i, w, 
n, and M. These computations are performed by subroutine ELEM described in 
Section -20.3. . . 
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Table 3-4. Representative Tum Angle, V, and Veloc:ity Change, !iV, for Flyby Missions to the Planets. 
The assumed hyperbolic veloc:ity, V". is velocity of approach for a Hohmann transfer orbit 
(from Table L-2). Rp is the radius of the planet and q is the perifoc:al distance or distance of 
closest approach. 

q=Rp 
q=2Rp q= 10Rp 

ASSUMED 'GRAZING) 
PLANET VII ... 14VI ... 14VI ... 14V' Ikm/"",,) 'dog) 'km/"",,) 'dog) Ikm/"",) 'dog) IkmI"",) 

MERCURY 9.6 10.2 1.7 5.4 0.9 tt~ 0.2 
VENUS 2.1 123 '4.8 104 4.2 .~ 7..3 
MARS 2.6 at 3.4 68 2.5 18 0.8 
JUPITER 5.6 159 11.0 150 10.8 116 9.6 
SATURN 6.4 146 10.3 133 9.9 B6 1.4 
URANUS 4.7 132 8.8 114 7.9 61 4.8 
NEPTUNE 4.1 141 7.7 127 7.3 78 5.1 

" 
r.-::-. 

PLUTO 3.7 65 4.0 '18 3.0 12 0.8 r 

The orbit plane is that defined by Rand V. Thus, the orbit normal vector, N, 
is 

N = (R X V)/IR.x VI (3-24) 

Let the inertial coordinate axes be defined by i in the direction of the vernal 
equinox, z in the direction normal to the Earth's equator, and y such that the 
coordinate system is orthonormal an~ right-handed. Then, the inclination is given 
by 

i = arc cos(N ·.z) 

and the right ascension of the ascending node by 

(3-26) 

The vector in the direction of the ascending node is O=zXN. The semi
major axis is determined by the vis viva equation as: 

a=(~ _ :2fJ (3-27) 

where p. = GM and a negative value of a corresponds to a hyperbolic trajectory. 
The period for elliptical orbits is then obtained from Kepler's Third Law as: 

p = V4'112a3/ p. (3-28) 

If we def!ne the heading or flight path angle, /3, by 

/3 =90° -arccosi·y (3-29) 

then the eccentricity, e, and the true anomaly, ;" are given by (see, for example, 
Thomson [1963D: 
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(3-30) 

(RV2
/ p.)sinfJcosfJ 

tanJl = -'-----'-----
(RV2/ p.)coslfJ - I 

(3-31) 

Note -that the heading is the angle by which the velocity vector deviates from 
being perpendicular to the radius vector. From Eq. (3-31), or the properties of an 
ellipse, a heading of 0 deg implies that the spacecraft is at either apogee or perigee. 
The argument of perigee, c.J, may be obtained from the true anomaly by 

c.J= arc cos(o· R)- JI (3-32) 

where the first term on the ri,*t is)n !he range 0 deg to 180 deg if (OxR).N>O 
and ISO deg to 360 deg if (0 X R)· N < O. Finally, the mean anomaly may be 
obtained directly from Kepler's and Gauss' equations 

M=E-esinE (3-33) 
where 

( E) (I e)I/2 (JI) 
tan "2 = I +e tan "2 (3-34) 

It is clear from the foregoing principles that injection involving a substantial 
change in the semimajor axis win normally occur at apogee or perigee (fJ = 0 deg) 
and that changes in the inclination will normally occur at either the ascending or 
the descending node. 

3.4 Orbit Perturbations 

Real orbits never follow Kepler's Laws precisely, although at times they may 
come very close. The Keplerian elements of an orbit provide a convenient analytic 
approxinUttion to the true orbit; in contrast, a definitive orbit is the best estimate 
that can be obtained with all of the available data on the actual path of a satellite. 
Because c1osed-:-form analytic solutions are almost never available for real orbit 
problems with multiple forces, definitive orbits are generated numerically based on 
both orbit theory and observations of the spacecraft Thus, definitive orbits are 
only generated for times that have past, although the information from a definitive 
orbit is frequently extrapolated into the future to produce a predicted orbit. 

A reference orbit is a relatively simple, precisely defined orbit (usually, though 
not necessarily, Keplerian) which is used as an initial approximation for the 
spacecraft motion. Orbit perturbations are tlte deviations of the true orbit from the 
reference orbit and may be classified according to specific causes, e.g., perturba
tions due to the Earth's oblateness, atmospheric drag, or the gravitational force of 
the Moon. In this section, we list the possible causes of orbit perturbations, 
describe qualitatively tIle effects of the various perturbations, and, where possible, 
provide formulae to determine the approximate effect of specific perturbations. 
Methods for the numerical treatment of perturbations may be found in the 
references at the end of the chapter. 
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Effects which modify simple Keplerian orbits may be divided into four classes: 
nongravitational forces, third-body interactions, nonspherical mass distributions, 
and relativistic mechanics. The first two effects ~ay dominate the motion of a 
spacecraft, as in satellite reentry into the atmosphere or motion about one of the 
stable Lagrange points. Although the effects of nonspherical mass distributions 
never dominate spacecraft motion, they provide, the major perturbation, relative to 
Keplerian orbits, for most intermediate altitude satellites, i.e., those above where 
the atmosphere plays an important role and below where effects due to the Moon 
and the Sun become important. As indicated previously, relativistic mechanics may 
be completely neglected in most applications. The largest orbit perturbation in the 
solar system due to'general relativity is the rotation of the perihelion of Mercury's 
orbit in the orbit plane by about 0.012 deg/century or 3x IO-s deg/orbit. 
Although a shift of this amount is measurable, it is well below the magnitude of the 
other effects which we will consider. . 

Although the relative importance of the three significant groups of perturba
tions will depend on the construction of the spacecraft, the details of its orbit, and 
even the level of solar activity·, the' general effect of perturbing forces is clear. 
Atmospheric effects dominate the perturbing forces at altitudes below about 100 
km and produce significant long-term perturbations on satellite orbits up to 
altitudes of about 1000 km. The major effect resulting from the nonsphericaJ 
symmetry of tlie Earth is due to the Earth's oblateness, which changes- the 
gravitational potential by about 0.1% in the vicinity of the Earth. The ratio of the 
gravitational potential of the Moon to that of the Earth is 0.02% near th.e Earth's 
surface. As the satellite's altitude increases, the effect of oblateness decreases and 
the effect of the Moon increases; the magnitude of their effect on the gravitational 
potential is the same at about 8000 km altitude. Lunar and solar perturbations are 
generally negligible at altitudes below about 700 km. (See Section 52.) 

Nongravltational Forces. For near-Earth spacecraft, the principal nongravita
tional force is aerodynamic: drag. Drag is a retarding force due to atmospheric 
friction and is in the direction opposite the spacecraft velocity vector. (If there is 
any component of the force perpendicular to the velocity vector, it is called lift.) In 
an elliptical,orbit, drag is most important at perigee because the density of the 
Earth's atmosphere, to which the drag is proportional, decreases exponentially with 
altitude. (See Section 4.4 for a discussion of atmosphere models.) Because drag 
forces are tangent to the orbit, opposite to the velocity, and applied near perigee, 
the qualitative effects of drag are similar to an impulsive in-plane transfer 
maneuver performed at perigee, as discussed in Section 3.3. As the drag slows the 
spacecraft at each perigee passage, the apogee height and, consequently, the 
semimajor axis and eccentricity are reduced. The perigee height imd argument of 
perigee wiD remain approximately the same. In addition, neither the node nor the 
indination will be affected, because the force is within the orbit plane (ignoring the 
small effect due to the rotation of the atmosphere). 

• The level of solar activity significantly affects both the atmospheric density at spacecraft altitudes and 
the structure of the geomagnetic field. See Sections 4.4 and S.I. . 
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The general process of reducing the total energy and lowering apogee by 
atmospheric drag is called orbital decay. The orbital lifetime of a satellite is the time 
from launch until it penetrates deeply into the atmosphere such that the spacecraft 
either burns up or falls to the surface. Figure 3-17 gives the approximate lifetime of 
a satellite as a function of perigee height, hp, and eccentricity, e. The ordinate in the' 
figure is the estimated number, N, of orbit revolutions in the satellite lifetime 
divided by the ballistic coefficient, m/(CDA), where m is the mass of the satellite 
and A is its cross-sectional area perpendicular to· the velocity vector. The drag 
coefficient, CD' is a dimensionless number, usually between 1 and 2·. The ballistic 
coefficient is a measure of the ability of the spacecraft to overcome air resistance. 
For typical spacecraft, it ranges from 25 to 100 kg/m2. Given the value of N from 
Fig. 3-17, the satellite lifetime L, can be calculated directly from the period, P, or 
from the perigee height, hp, and eccentricity, e, by: 

[

4'112 (hp + RfD )3]1/2 
L=NP=N -

P.fD 1-e 

(
6378.14+h )3/2 

~I.I5185xlO-7XNX l-e p (3-35) 

where ~ is in kilometres and L is in days. For example, a satellite with a ballistic 
coefficient of 80 kg/m2 in a circular orbit at an altitude of 500 km (e=O, hp=500) 
has a value of N/SO from Fig. 3-11 of approximately 140; this gives an estimated 
lifetime of 11,000 revolutions (=80x 140) or about 720 days. All formulas or 
graphs for spacecraft lifetimes are approximations, since the atmospheric density 
nuctuates considerably. For example, at 800 km, the density can nuctuate by a 
factor of 3 to 7 due to solar activity [Roy, 1965]. Most lifetime estimates are in 
error by at least 10%. Simplified relations, such as that of Fig. 3-17, may be in error 
by 50%. 

In addition to atmospheric drag, other nongravitational forces acting on a 
spacecraft are (1) drag due to induced eddy currents in the spacecraft interacting 
with the Earth's magnetic field, (2) drag due to the solar wind (Section 5.3) and 
micrometeoroids (interplanetary dust particles), and (3) solar radiation pressure. 
The first two effects are very small and are normally ignored. Solar radiation 
pressure can be important for some satellites, particularly those with large solar 
panels. For most satellites, the direction of the solar radiation force will be nearly 
radial away from the Sunt , although it is theoretically possible to build a solar 
"sail" which can tack in much the same fashion as a sailboat. The magnitude of the 
force, F R' is given by: 

\FR\=KAP (3-36) 

• If DO measured drag coefficient is available, CD = 2 is a good estimate for satellites whose dimensions 
are large relative to the mean free path of atmoSpheric molecules. 
t For a spherical object, there wiD be a slight preferential scattering of light in the direction of the 
object's.motion, which wiD produce an effective drag. While this Poynting-Robertson effect is unimpor
tailt for spacec:raft,it causes interplanetary met!=Oroids up to I em in diameter to spiral into the Sun 
within about 20 million years from an initial distance of I AU. 
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Fig. 3-17. Approximate Lifetimes for Earth Satellites. See text for explanation {adapted from 
Kendrick (1961]). 

where P is the momentum flux from the Sun (4.4 X 10-6 kg·m- l ·s-2, as discussed 
in Section 5.3), A is the cross-sectional area of the spacecraft perpendicular to the 
sunline, and K is a dimensionless constant in the range 0 <; K <; 2; K < 1 for 
translucent material, K = 1 for perfectly absorbent material (black body), and K = 2 
for material reflecting all light directly back toward the Sun. Echo J, a 6O-kg, 
30-m-diameter balloon satellite, was launched into a circular orbit at an altitude of 
1600 km; however, solar radiation pressure reduced perigee to 1000 km at times 
[Glasstone, 1965). 

Nonspherlcal Mass Distribution. For near-Earth satellites above several 
hundred kilometres, the major source of perturbations is the nonspherical shape of 
the Earth. This shape approximates an oblate spheroid which would be formed by 
a rotating fluid. Thus, the major correction for the nonspherical Earth is for the 
oblateness with much smaller corrections for the deviations from an oblate shape. 
(See Sections 4.3 and 5.2.) 

The oblateness corrections for the Earth are grouped into three catagories. All 
of the instantaneous, or osculating, orbital elements undergo short period ooriations 
in which they fluctuate with true anomaly as the spacecraft moves in its orbiL For 
three of the six elements (a, e, and i), these short period variations average to zero 
Over an orbit; the other three elements ·undergo cumulative secular variations in 
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which the average value of the parameters changes monotonically. It is the secular 
variations that are of primary interest in following the gross motion of the satellite. 

Because the gravitational force is conservative, the total energy and the mean 
values of the semimajor axis, the apogee and perigee heights, and, consequently, 
the eccentricity do Itot change due to oblateness. To understand the physical cause 
of the secular variations which occur in other elements, it is convenient to think of 
the Earth as a point mass and a ring of unifonn density in the equatorial plane 
representing the Earth's equatorial bulge. The easiest perturbation to visualize is 
the rotation of the orbit plane. Figure 3-18 shows the direction of the orbital 
angular momentum for a satellite in a prograde orbit. When the satellite is south of 
the equator, the average torque, N=rxF, due to the pull, F, of the Earth's 
equatorial bulge produces a westward torque. The average perturbing force north 
of the equator also produces a westward torque, causing the angular momentum 
vector and t~ orbit plane to rotate westward without changing the inclination. 
This motion of the line of nodes opposite the direction of rotation of the satellite is 
called regression of the nodes. 

The other major oblateness perturbation is a motion of the line of apsides. 
Consider first the case of a satellite with zero inclination. In the equatorial plane, 
the gravitational force from a ring of mass (i.e., the equatorial bulge) is larger than 
if all of the mass were concentrated at the center. As shown in Fig. 3-19(a), this 
added force causes the orbit to curve more strongly, that is, the angular velocity of 
the satellite about the Earth will be increased. Thus, as shown in Fig. 3-19(b), each 
successive apogee and perigee will occur farther around than formerly and the line 
of apsides rotates in the direction of the satellite's motion. 

For a satellite over either of the Earth's poles, the distance to the Earth's 
equator is greater than the distance to the center of the Earth. Therefore, the 
gravitational force due to the equatorial bulge is less than it would be if the mass of 
the bulge were at the Earth's center. The smaller force causes the orbit to curve 

ORBITAL 
ANGULAR 

MOMENTUM 
VECTOR 

TORQUE UNTO E9 
PAPER' 

MEAN PERTURBATIVEI· 
FORCE WHEN 
SATELLITE IS 

BELOW EQUATOR 

SATELLITE ORBIT_ 

I 
MEAN PERTURBATIVE 

FORCE WHEN 
SATELLITE IS ABOVE 

EOUATOR 

EQUATOR 

Fig. 3-18. Regression of Nodes Due to the Earth's Oblateness 

"'.-

.1 



I 
r 
s 
11 

~ 
k. 
is 

s. 

~'s 
be 
;of 
ve 

3.4 

CENTER 
OF MASS 

• 

ORBIT PERTURBATIONS 

KEPLERIAN ORBIT 

/ 
/ ,,/' ORBIT DUE TO 

1 
STRONGER 

,/ / CENTRAL FORCE 
~ / 

~ /' . 
.--::. ~:;..--' ....,.., ORBIT DUE TO 

- ...... WEAKER CENTRAL 
FORCE 

67 

101 EFFECT OF NONPOINT MASS FORCES (hI PERIGEE ADVANCE FROM AN EOUATORIAL ORBIT 

Fig. 3-19. Motion of the Lines of Apsides Due to the Earth's Oblateness 

less, which causes the line of apsides to rotate opposite the direction of motion 
while the satellite is over the pole. In a polar orbit (i=90 deg), a satellite spends 
part of the time over the equator wh~re the gravitational force is larger than the 
mean and part of the time over the poles where it is smaller. It can be shown that 
for polar orbits the net -effect is rotation of the line of apsides opposite the direction 
of motion, although the rate of rotation is less than for equatorial orbits. 

As described in Section 5.2 and Appendix G, the oblateness of the Earth is 
treated analyticl:\l1y by expanding the gravitational potential in a series of spherical 
harmonics. The first term in the expansion provides the force resulting from a point 
mass. The second term, called 12 perturbations (from the second or 12 coefficient in 
the expansion), represents the modification to the mean force due to the oblateness 
of the Earth. Higher order terms represent effects due to the deviation of the shape 
of the Earth from a simple ellipsoid. Values of the principal coefficients are given 
in Appendix L; additional coefficients are given by Allen [1973]. 

The rate of change of the orbital elements arising from the 12 perturbation is 
conveniently expressed in terms of the mean angular motion, n, equal to the rate of 
change of mean anomaly (see, for example, Roy [1965D: 

dM [ 3 (Rf&)2 -J/2( 3 )] n=dT=no 1+2"12 a (l-e2) 1-2"sin2; 

where the nominal mean angular motion, no> is given from Table 3-2 by 

The anomalistic peri04 (i.e., perigee to perigee) is 

P..,=2'1T/n 

and the mean anomaly at time t is 

(3-37) 

(3-38) 

(3-39) 

(3-40) 

where Mo is the mean anomaly at the epoch to- Note that the mean anomaly is 
measured relative to the moving perigee. Each of these equations reduces to the 
nonperturbed form when 12 ;:: o. 
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When only the secular variations due to the J 2 term are considered, the right 
ascension of the ascending node at time 1 is given by: 

dU 
U=Uo+ Tt(/- to) (3-4la) 

3 (RffJ)2 -2 =UO-'2J2n a (l-e2) (cosi)(/-/o) 

l"::::Uo- ~J2r,;: R~a-7/2(1- e2) -2(coSi)(/- (0)+ <9 (J1) 

=Uo- 2.06414 X 1014a-1/ 2(1- e2) -2(cOSi)(/- 1
0
)+ <9,(J1) 

(3-4lb) 

(3-4lc) 

(3-41 d) 

where (/- to> is in days, U is in degrees, a is the semimajor axis in kilometres, e is 
the eccentricity, ; is the inclination, and Uo is U at the epoch time to' In the final 
two forms above, n is approximated by no> which may produce an error as large as 
0.1% in the dUjdl term. 

If the product of the three terms in a, e, and i in Eq. (3-4ld) has the value 
-4.1131 X to-IS km- 7

/ 2, the rotation rate of the node will be =0.9856 degjday or 
I rotation per year. Such an orbit is called Sun synchronous because the orientation 
of the orbit plane will remain nearly fixed relative to the Sun as the Earth moves in 
its orbit, Thus, the sp~cecraft will continuously view the surface of the Earth at the 
same local time at any given latitude. For any satellite in a circular orbit, the local 
mean time·, T, at which the satellite is over latitude A is given by (see Appendix J 
and Eq. (A-6»: 

T= I~ [ -a.+U+arcsin( ~~ )] + 12 

I [ 360 . (tanA)] l"::::l5. - 365.24 AD+U+arcsm tan; + 12 (3-42) 

where a.. is the right ascension of the mean Sun·, U is the right ascension of the 
ascending node of the orbit, i is the orbital inclination, AD is the number of days 
from the vernal equinox to the time U is evaluated, the angular quantities in square 
brackets are in degrees, and T is in hours. For Sun-synchronous orbits, as - U is 
constant. For the orbit to be Sun synchronous, dUjdl must be positive and i must 
be greater than 90 deg; that is, it must be a retrograde orbit. Such orbits are 
particularly convenient for surveying the Earth's surface or looking for changes in 
surface features because the lighting conditions will be nearly the same each time a 
region is surveyed; however, the lighting conditions change slowly because of the 
seasonal north-south motion of the Sun. Table 3-5 lists the critical properties of 
Sun-synchronous orbits. 

Finally, the secular '{ariation in the argument of perigee, '"', when the Earth's 
oblateness is taken into account is given by: 

~ 
"'="'0+ -(/- to) dt 

• See Appendix J for discussion of time systems and the definition of "mean Sun." 

(3-43a) 
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Table 3-S. Properties of Sun Synchronous Orbits (e=eccentriclty, ;=inclinalion, h,=perigee beight, 
h,A = apogee height, ; > 90 deg indicates retrograde .orbit.) 

.-0 
e~O.1 

MEAN 
ALTITUDE i i b p hA (KMI 

(DEGI (DEGI 
IKMI (KM) 

0 95_ 

200 96.33 

400 97.03 

BOO 97.79 

Boo 98.60 98.43 82 11118 

1000 99.48 89.28 262 1738 

2000 104.89 104.59 1162 2838 

3000 112.41 111.84 2OB2 3938 

4000 122.93 122.19 29B2 5038 

6000 138.60 137.32 38B2 8138 

6974 180.00 168.65 4738 7209 

3 .( REB )2 -2( 5 ) ="'0+ '2/2n ~ (1- el) 2- '2 sin, (/- 10) (3-43b) 

~"'o+ f/2v,& R~a-7/2(1_ el) -2(2_ ~ sin2;)(/- 10)+l9 (Ii) (3-43c) 

="'0+ 2.06474x 1014a-7/2(1_ e2) -i( 2- ~ sin2; )(/- 10)+ e (Ii) (3-43d) 

where the units and variables are the same as those in Eq. (3-41) and "'0 is the value 
of '" at epoch 10, For an equatorial orbit, the line of apsides will rotate in the 
direction of motion and for a polar orbit it will rotate opposite the direction of 
motion. At ;=;063.435 deg, 2- !sin2;=O, and the line of apsides does not rotate. 

Third-Body Interactions. Perturbations due to the oblateness of the Earth 
become less important with increasing distance from the Earth. However, as the 
distance from the Earth increases, perturbations from the gravitational force of the 
Moon and the Sun become more importanL Such third-body interactions are the 
source of the major orbital perturbations for interplanetary flight and, as is clear 
from the discussion of Lagrange point orbits in Section 3.3, dominate the motion 
entirely in some circumstances. Unfortunately, the problem of three interacting 
gravitational objects is intractable; even series expansions for small perturbations 
from Keplerian orbits generally have very small radii of convergence. A wide 
variety of special cases and approximation methods have been studied and are 
discussed in the references for this chapter. In practice, most work involving 
significant third-body interactions is done by numerical iIitegration of the equa
tions of motion. 

To determine when simple two-body solutions are appropriate, it is convenient 
to divide space into approximate regions, called spheres of influence, in which 
various orbital solutions arc nearly valid. Specifically, consider the case shown in 
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Fig. 3-20 of a spacecraft of negligible mass moving in the vicinity of two masses, m 
and M, where M»m. There exists an approximately spherical Region I of radius 
RI about m such that within this region the perturbing force due to M is less than { 
tjmes the force due to m, where {« I is a parameter chosen to reflect the desired 
accuracy. Within Region I, the motion will be approximately that of a satellite in a 
Keplerian orbit about m. Similarly, there exists a Region III outside a sphere of 
radius Rz centered on m, such that outside this sphere the perturbing force due to 
m is less than { times the force due to M. Thus, in Region III the motion will ~ 
approximately that of a satellite in a Keplerian orbit about M. Within Region II, 
between RI and R2, the gravitational force from both objects is significant. 

REGION III 

+.----------r--~----~~ 
EAATH(MJ 

REGION III 

Fig. 3-20. Spheres of Influence About the Moon for £=0.01. In Region I, orbits are approximately 
Keplerian about the Moon; in Region m, they are approximately Keplerian about the 
Earth • 

. Simplifications such as the sphere of influence· are no~ precise because the 
boundaries of the regions are rather arbitrarily defined and are not exactly 
spherical, and the magnitude of the perturbations within any of the regions is 
difficult to estimate. Nonetheless, it is a convenient concept for estimating where 
Keplerian orbits are valid. Approximate formulas for the radii Rr and Rz are given 
by (see, for example, Roy (1965D: 

1. Region 1/11 Boundary: 

'fl'=Rl[ (S_IR1)Z - ;z ] 
RI~( fl'/2)1/3S for ({I') 1/3« I (3-44) 

2. Region II/III Boundary: 

f/p."=(S-R) ---. 2( 1 I) 
2 Rf S2 

R (
-2+-./1 +f./I' ) 

2~ S 
f/I' 

for {/ 1'» I (3-45) 
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where p. = m / M« I, S is the separation between m and !4, and (<< 1 is the ratio of 
the perturbing force to the central force. Values of RI and R2 for the various 
Sun-planet systems for (=0.01 are given in Table 3-6. For the Earth-Moon system, 
the radii about the Moon for (=0.01 are R, = 14,900 km and R2 = 189,000 km, as 
shown in Fig. 3-20. 

Table 3-6. Spheres of Influence for the Planets Relative to the Sun for ~ = 0.01. (See text for 
explanation.) 

PLANET R, R2 
PLANET R, R2 C106 KMI 1106 KMI 

110BKMI noBKMI 

MERCURY 0.0&44 0.234 SATURN 16 160 
VENUS 0.249 1.64 URANUS 17 170 
EARTH 0.371 2.1>2 NEPTUNE 29 280 
MARS 0.267 1.26 PLUTO 30 
JUPITER 13.1 103 

3.5 Vie~ng and Lighting Conditions 

The previous sections have been concerned with orbit kinematics and dyna
mics and with the general problem of determining the relative position of-the 
spacecraft and other celestial objects. In this section, we assume that these 
quantities are known and consider the viewing and lighting conditions for planets 
and natural and artificial satellites. We also discuss the apparent brightness of 
objects as observed from space. 

The geometry of viewing and lighting conditions for either natural or artificial 
satellites is shown in Fig. 3-21. Transit and occultation refer to the relative 
orientations of a planet, a satellite, and an observer. Transit occurs when a satellite 

......... ........ 

--

---- ---
IN THIS AEGlON 

S4TELLITliSlESPAIITIAL 
SOLAR ECLIfS£ 

TOTAL ECLIPSE 

......... 

IN THIS REGJOJe 
SATElLITE SH5 
ANNULAR SOLAR 

ECLIPSII 

Fig. 3-21. Definition of Viewing Conditions for Satellite. Sun, planet, observer, and orbit are aU in the 
plane of the paper. 
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passes in front of the disk of a planet as seen by the observer. Occultation occurs 
when the satellite passes behind the disk of the planet and is occulted or blocked 
from the observer's view. 

Eclipses are the phenomena of transits and occultations relative to the Sun. An 
eclipse of the Sun is a transit of an object in front of the Sun, blocking all or a 
. significant part of the Sun's radiation from the observer. An eclipse of any other 
object (e.g .. an eclipse of the Moon) is an occultation of that object by another 
object relative to the Sun. Because the Sun is the largest.object in the solar system, 
the shadows of aU the planets and natural satellites are shaped as shown in Fig. 
3-21. The umbTa,or shadow cone, is the conical region opposite the direction of the 
Sun in which the disk of the Sun is completely blocked from view by the disk of the 
planet. Outside the umbra is the penumbra, where a portion of the disk of the Sun is 
blocked from view and, therefore, where the illumination on objects is reduced. 

Unfortunately, the terminology of eclipses depends on. whether the observer is 
thought of as being on the object which is entering the shadow or viewing the event 
from elsewhere. If the observer enters the shadow, the Sun is partially or wholly 
blocked from view and the event is refer~ed to as an eclipse of the Sun or solar 
eclipse (Fig. 3-22). A total solar eclipse, which is frequently shortened to just eclipse 

(a) DEFINITIONS Ib) PARTIAL SOLAR ECLIPSE Id TOTAL SOLAR ECLIPSE lei) ANNULAR SOLAR ECLIPSE 

Fig. 3-22. Solar Eclipse Geometry 

in spaceflight applications, occurs when the observer enters the umbra. If the 
observer is farther from the planet than the length of the shadow cone and enters 
the cone formed by the extension' of the shadow cone through its apex, the observer 
will see an annular eclipse in which an annulus or ring of the bright solar disk is 
visible surrounding the disk of the planet. If the observer is within the penumbra, 
but outside the umbra, the observer will see a portion of the Sun's disk blocked by 
the planet and a partial eclipse of the Sun occurs. 

If the observer is viewing the event from somewhere other than on the satellite 
being eclipsed, the event is called an eclipse of the satellite. A total eclipse of the 
satellite occurs when the entire satellite' enters the umbra and a partial eclipse 
occurs when part of an extended satellite (such as the Moon) enters the umbra. If 
the satellite enters the penumbra only, the event is referred to as· a penumbral 
eclipse. Thus, a total eclipse of the Moon to an observer on the Earth is a total solar 
eclipse to a lunar observer and a penumbral eclipse of a satellite to an observer on 
db: Eatthis a partial eclipse of the Sun to an observer on the satellite. 

Conditions for Transit and Occultation. Let X be a vector from the observer 
to the satellite, P be a vector from the observer to the center of the planet, and Rp 
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be the radius of the planet. The angular radius, PP' of the planet as seen by the 
observer is 

Pp = arc sin( Rp/ P) (3-46) 

The satellite will be in transit, that is, in front of the disk of the planet, whenever: 

and 
pp>arccos(P.X)} . . . 

. TranSIt CondItIons 
X<P 

(3-47) 

The satellite will be in occultation, that is, behind the disk of the planet, whenever 

-. pp>arccos(P.X)} 
and Occultation Conditions 

X>P 
(3-48) 

To apply Eqs. (3-47) and (3-48) to the entire orbit of a satellite, we must 
determine the sateJlite position vector and test it against the transit and occultation 
equations at many places around the orbit. Therefore, it is convenient to determine 
from general orbital parameters those orbits for which transit and occultation· 
necessarily occur and those for which they cannot occur. We assume that the 
position of the observer remains fixed. If either transit or occultation occurs, it will 
be in progress when the angular separation between the spacecraft and the planet is 
a minimum. (See Fig. 3-23.) Therefore, the minimum angular separation between 
the planet and the spacecraft determines whether transit or occultation will occur. 

In general, it is possible for either transit or occultation to occur in an orbit 
without. the other. However, if the orbit is circular and transit occurs, then 
occultation must also. This is clear from Fig. 3-23, which shows the general 
appearance of a circular orbit viewed from nearby and out of the orbit plane. Point 
A is the closest point on the orbit to the observer and point B is the farthest point 
from the observer. If point A is in front of the disk, then point B is necessarily 
behind the disk. 

Fig. 3-23. Appearance of a Cin:uitu Orbit Viewed Obliquely From Near Point A 
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For a noncircular orbit, the ·smallest minimum angular separation between the 
spacecraft and the planet win occur when perifocus is at B. As shown in Fig. 3-24, 
let Dp be the perifocal distance and fJ be the angular separatioJ'l between thf! 
spacecraft and the planet when perifocus is at B. Then: 

tan fJ =( P+~COSi )Sini (3-49) 

wherc i is the angle between the orbit plane and P, the vector from the observer to 
the center of the planet·, ; may be determined from 

cosi=IPXNI (3-50) 

where N is the unit vector normal to the orbit plane. Neither transit nor occultation 
will occur if P > Pp (condition 1). 

SATELLITE 
ORBIT PLANE 

Fig. 3-24. Geometry for Calculation of TrBIlSit and Occultation Limits . 

The largest minimum angular separation for a given i occurs when apofocus is 
at B. If P' is the angular separation when apofocus is at B, and DA is the apofocal 
distance, then 

tanfJ' = ( P+ :~COSi )sini (3-51) 

If fJ' <pp (condition 2), then occultation of the satellite will occur, but transit may 
or may not occur. Finally, let a be the angular separation between the. center of the 
planet and the spacecraft at A when apofocus is at A. Then a is given by 

( 
DA ) .. 

tana= PD. SIn I 
- ACOS I 

(3-52) 

-In 8Stronomic:al usage, the inclination, i, is normally defm.ed as the complement of the angle defined 
here. 
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Both transit and occultation must occur during the orbit if a <P
p 

and P > DA cos; 
(comlition 3). If none of the above three sets of conditions are fulfilled, then 
whether transit or occultation occurs depends on both the eccentricity of the orbit 
and the orientation of the observer relative to the line of apsides. 

, Eclipse Conditions. To determine the conditions under which eclipses occur, 
we first determine the length, C, and angular radius, P~, of the shadow cone for any 
of the planets or natural satellites. (See Fig. 3-25.) Let S be the distance from the 
planet to the Sun, .Rp be the radius of the planet, R. be the radius of the 
photosphere (i.e., the visible surface) of the Sun, and C be measured from the 
center of the planet to the apex of the shadow cone. Then, 

RpS 
C= p~~ (R.-Rp) 

and 

(R -R) 
Pc = arcsin • S P 

~arcsin( i) (3-54) 

SUN 

Fig. 3-25. Variables for Eclipse Geometry 

For the Earth, the size of the shadow cone for its mean distance from the Sun 
is c= 1.385 X IW Ion and Pc =0.264°. Fvr the Moon, the mean size is C= 
3.75 X 10

5 
km and Pc = 0.266°. The length of the shadow cone for the Moon is just 

less than the seniimajor axis of the Moon's orbit of 3.84 X lOS km. Therefore, 
eclipses of the Sun seen on the Earth are frequently annular eclipses, and when 
they are total eclipses they are seen over a very narrow band on the Earth because 
the maximum radius of the Moon's shadow cone at the distance of the Earth's 
surface is 135 km. 

The presence of an atmosphere on some planets and the non-negJible radius of 
the natural satellites may be taken into account by adjusting the radius of the 
planet, as will be discussed later. Initially, we will assume that there are no 
atmospheric effects and that we are concerned with eclipses seen by objects of 
neglible size, such as spacecraft. The conditions for the satellite to see a total 
eclipse of the Sun are exactly those for a transit of the satellite as viewed from the 
apex of the shadow cone. Similarly, tile conditions for spacecraft to see a partial 
eclipse are nearly the same as those for occultation of the spacecraft viewed from a 
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point iri the direction of the Sun equidistant from the planet as the apex of the 
shadow cone. 

To develop specific eclipse conditions, let Ds be the vector froIJI the spacecraft 
to the Sun and let Dp be the vector from the spacecraft to the center of the planet. 
Three quantities of interest are the angular radius of the Sun, Ps' the angular radius 
of the planet, P"~ and. the angular separation, 0, between the Sun and planet as 
viewed by the spacecraft, as shown in Fig. 3-22(a). These are given by: 

ps=arcsin(Rs / Ds) 

pp=arcsin(Rp/ Dp) 

O=arccos(Ds·Dp} 

The necessary and sufficient eclipse conditions are 
1. Partial Eclipse: 

Ds>S and Pp +Ps>9>lpp -Psl 

2. Total Eclipse: 

S < Ds < S + C and Pp - Ps > 9 

3. Annular Eclipse: 

S+C<Ds and pp -Ps>9 

These eclipses are ill~trated in Fig. 3-22 . 

(3-55) 

(3-56) 

(3-57) 

(3-56) 

(3-57) 

(3-58) 

. The surface brightness of the Sun is nearly uniform over the surface of the 
disk. Therefore, the intensity, I, of the illumination on the spacecraft during a 
partial or an annular eclipse is directly proportional to the area of the solar disk 
which can be seen by the spacecraft. These relations may be obtained directly from 
Appendix A as: 

1. Partial Eclipse 

10 [ (COSPp - cos Pscos 8 ) 
10 - 1= (1 ) 'IT-cospsarccos . . . 0 

'IT - cos Ps SID PsSID 

2. Annular Eclipse 

( 

I-COS Pp ) 
1 -1=1 

o 0 I-cosps 

(3-59) 

(3-60) 

where 10 is the fully illuminated intensity, and the inverse trigonometric functions 
in Eq. (3-59) are expressed in radians. 



) 

) 

n 
, I 

~) 

~ns 

VIEWING AND LIGHTING CONDITIONS n 
The effect of a planetary atmosphere is difficult to compute analytically 

because the atmosphere absorbs light, scatters it in all directions, and refracts it 
into the shadow cone. Close to the surface of the Earth, only a small fraction of the 
incident light is transmitted entirely through the ,atmosphere. Thus, the major 
effects are an increase in the size of the shadow and a general lightening of the 
entire umbra due to scattering. The scattering ,becomes very apparent in some 
eclipses of the Moon, as seen from Earth when the Moon takes on a dull copper 
color due to refracted and scattered light. The darkness of individual lunar eclipses 
is noticeably affected by cloud patterns and weather conditions along the boundary 
of the Earth where light is being scattered into the umbra. The atmosphere of the 
Earth increases the size of the Earth's shadow by about 2% at the distance of the 
Moon over the size the shadow would be expected to have from purely geometrical 
Considerations. (See Supplement to the Astronautical Ephemeris and the American 
Ephemeris and Nautical Alma(lac [1961].) Some ambiguity exists in such measure
ments because the boundary of the umbra is diffuse rather than sharp. If the entire 
2% at the Moon's distance is attributed to an increase in the effective linear radius 
of the Earth, this increase corresponds to about 90 km. 

In considering the general appearance of the solar system as seen by a 
spacecraft, we may be interested in eclipses of the' natural satellites as well as 
eclipses of spacecraft. In the case of natural satellites, the large diameter of the 
satellite will have a considerable effect on the occurrence of eclipses. This may be 
taken into account easily by changing the effective linear diameter of the planet. 
Let Rp be the radius of the planet, Rm be the radius of the natural satellite, and 
define the effective planetary radii ReI == Rp + Rm and Re2 == ~ - Rm. Then, when 
the center of the Satellite is within the shadow formed by an object of radius ReI' at 
least part of the real satellite is within the real shadow cone. Similarly, when the 
center of the satellite is within the shadow cqne defined by an object of radius Re2, 
then all of the real satellite is within the real shadow cone; this is referred to as a 
total eclipse of the satellite when seen from another location. This procedure of 
using effective radii ignores a correction term comparable to the angular radius of 
the satellite at the distance of the Sun. 

We may use Eqs. (3-49) through (3-52) to determine the conditions on a 
satellite orbit such that eclipses will a1WJlYs occur or never occur. Let Dp be the 
perifocal distance, DA be the apofocal diStance, i be the angle between the vector to 
the Sun and the satellite orbit plane, and C and Pt: be defined by Eqs. (3-53) and 
(3-54). We define y and 8 by: 

tan y =( C ~ .)sini 
- pCOSI 

(3-61) 

tan8=( C~~:COSi )sini (3-62) 

An eclipse will not occur in any orbit for which y > Pc. An eclipse will always occur 
in an orbit for which 8 < Pt:. 

Planetary and Satellite Magnitudes. The magnitude, m, of an object is a 
logarithmic measure of its brightness or flux density, F, defined by m'smo-2.5 log 
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F, where 1110 is a scale constant. Two objects of magnitude difference t::.m differ in 
intensity by a factor of eVIOO )11m~2.5111m with smaller numbers corresponding to 
brighter objects; e.g., a star of magnitude -I is 100 times brighter than a star of 
magnitude +4. As discussed in detail in Section 5.6, the magnitude of an object 
depends on the spectral region over which the intensity is measured. In this section, 
we are concerned only with the visual magnitude, V, which has its peak sensitivity 
at about 0.55 p.m. 

Let S be the distance of an object from the Sun in Astronomical Units (AU), r 
be the distance of the object from the observer in AU, ~ be the phase angle at the 
object between the Sun and the observer, and P (0 be the ratio of the brightness of 
the object at phase ~ to its brightness at zero phase (i.e., fully illuminated). Because 
the brightness falls off as S - 2 and r - 2, the visual magnitude as a function of ~ and 
r times S is given by: 

V(rS,~= V(I,0)+510g(rS)-2.5logP(~) 

= V(I,O) + 510gr+ 510gS - 2.5logP(~ (3-63) 

where V(I,O) is the visual magnitude at opposition relative to the observer· (i.e., 
~=O) and at a distance such that rS= l. Note that P(O is independent of distance 
only as long as the observer is sufficiently far from the object that he is seeing 
nearly half of the object at anyone time; for example, for a low-Earth satellite, the 
illuminated fraction of the area seen by the satellite depends both on the phase and 
the satellite altitude. 

If the mean visual magnitude, V 0> at opposition to the Earth is the known 
qu~ntity, then 

V(I,O)= Vo-510g[D(D-I)] (3-64) 

where D is the mean distance of the object from the Sun in AU. Values of Vo and 
1'(1,0) for the Moon and planets are tabulated in Table L-3. 

For the planets, or other objects for which Vo or V(I,O) is known, the major 
difficulty is in determining the phase law, pm. Unfortunately, there is no theoreti
cal model which is thought to predict P(O accurately for the various phases of the 
planets. Thus, the best phase law information is empirically determined and, for the 
superior planets, only a limited range of phases around ~=O are observed from the 
Earth. Although no method is completely satisfactory, the three most convenient 
methods for predicting the phase law for an object are: (I) assume that the 
intensity is proportional to the observed illuminated area, that is, P(O=O.5(l + 
cosO; (2) for objects similar in structure to the Moon, assume that the Moon's 
phase law, which is tabulated numerically in Table L-9, holds; or (3) for the 
planets, assume that the phase dependence of the magnitude for small ~ is of the 
form V= Vo+Q,~, where the empirical coefficients a, are given in Table L-3. For 
Saturn, the magnitude depends strongly on the orientation of the observer relative 

• Equation (3.:fi3) holds only for objects which shine by reflected sunlight. Additional terms are needed 
if lighting is generated inte1'nal1y or by planetary reflections. See Section 5.6 for a discussion of stellar 
magnitudes. 
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t(} the ring system. Because the ring system is inclined to the ecliptic, the orienta
,tion of the rings relative to the Earth changes cyclically with a period equal to the 
period of revolution of Saturn, or about 30 years (Allen [1913D. Additional 
iDformation on planetary photometry and eclipses is given by Kuiper and Middle- , 
hurst [1961] and Link [1969]. . 

For objects for which no a priori magnitude is known, but which shine by 
reflected sunlight, we may estimate V(I,O) from the relation: 

V(I,O)= V0 -510gRp -2.510gg 

= -26.14-5IogRp -2.510gg (3-65) 

where V0 is the visual magnitude of the SUD at I AU, Rp is the radius of the object 
in AU, and g is the geometric albedo or the ratio of the brightness of the object to 
that of a perfectly diffusing disk of the same apparent size at €=O.For the planets, 
g ranges from 0.10 for Mercury to 0.57 for Uranus; it is about 037 for the Earth, 
although it is a function of both weather and season. Table L-3 lists the Bond 
albedo, A, o,f the planets, which is the ratio of total light reflected from an object to 
the total light incident on it. The Bond and geometric albedos are related by 

A =gq (3-66) 
where 

q=.2 fo'" P(€)sin€d€ (3-61) 

where pm is the phase law. The quantity q represents the reflection of the object at 
different phase angles and has the following values for.simple objects: q= 1.00 for a 
perfectly diffusing disk; q= 1.50 for a perfectly diffusing (Lambert) sphere; q=2.00 
for an object for which the magnitude is proportional to the illuminated area; and 
q=4.00 for a metallic reflecting sphere. For the planets, q ranges from 0.58 for 
Mercury to about 1.6 for Jupiter, Saturn, Uranus, and Neptune. 

As an example of the computation of magnitudes, we calculate the visual 
magnitude as seen from Earth of the S-IVB (the third stage of the Saturn V rocket) 
during the first manned flight to the Moon, Apollo 8. The S-IVB which orbited the 
Moon with the Command and Service modules and several miscellaneous panels, 
was a white-painted cylinder approximately 7 m in diamter and 18 m long. We 
assume that the overall Bond albedo was 0.8 because it was nearly all white paint, 
that q= 1.5 corresponding to a diffuse sphere, and that Rp=6 m=4X 10- 11 AU, 
corresponding to the radius of a sphere of the same cross section as the S-IVB 
viewed from the side. Therefore, the geometric albedo is 0.8/1.5::::::0.5. From Eq. 
(3-65), we calculate V(I,O) as V(I,O)= -26.7+52.0+0.7= +26.0. 

During the time of the Apollo 8 flight, the angle at the BarJh between the 
spacecraft and the Sun was about 60 deg; therefore, €:::::: 120 deg.l.f,,~iVe assume that 
the intensity is proportional to the illuminated area, then P';'O.5(1 + cos 120°)= 
0.25. Setting S= I AU and r= 100,000 km=6.7x 10-4 AU for observations. made 
en route, we find from Eq. (3-63) that the visual magnitUde will be approximately 
v= +26.0-15.9+ 1.5= ::::::+ 12. Thus, the S-IVBshould be about magnitude 
+ 12 at 100,000 km, dropping to magnitude + 14.5 at the distance of the Moon. 
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The observed magnitudes are in general agreement with this [Liemohn, 1969], 
although in practice the actual brightness fluctuates by several magnitudes because 
of the changing cross section seen by the observers, bright specular reflections from 
windows or other shiny surfaces, and light scattered by exhaust gases during orbit 
maneuvers. 

The visibility of bOth natural and artificial satellites is a function of both the 
magnitude of the object itself and. its contrast with its surroundings. As illustrated 
in Fig. 3-26, spacecraft which are orbiting planets are most easily seen when the 
subsatellite region is in darkness but the spacecraft itself is still in sunlight. Thus, 
Earth satellites are best seen just after sunset or just before sunrise. Spacecraft 
orbiting the Moon have the greatest opportunity of being seen when they are not 
over the disk of the Moon or when they are near the terminator (the boundary 
between the illuminated and unilluminated portions) above the dark surface of the 
Moon as seen by the observer. 

SUN • 

SATELLITE 
ORBIT 

SATELLITE OVER 
ILLUMINATEO 

---
SATELLITE 
IN ECLIPSE 

_____ ~N~~A_ 

----~VIEWINGCONDI::: -
SATELLITE IN SUNLIGHT 
OVER DARK SURFACE 

Fig. 3-26. Best viewing conditions for satellite (either from planet's surface or space) occur when the 
satellite is in sunlight over unilluminated surface. 
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CHAPTER 4 

MODELING lHE EARlH 

4.1 Appearance of the Earth at Visual Wavelengths 
4.2 Appearance of the Earth at Infrared Wavelengths 
4.3 Earth Oblateness Modeling 
4.4 Modeling the Structure of the UPfCr Atmosphere 

Summary of the Upper A.tmosphere Structure, Models of 
the Upper A.tmosphere 

The two most commonly used attitude reference sources are the Earth and the 
Sun. For the purpose of attitude determination, the Sun is normally taken as a 
point source of light or as a uniformly illuminated disk. In contrast, the Earth as 
seen from nearby space has a relatively complex appearance, at least some aspects 
of which must be modeled for accurate attitude determination. 

The surface of the Earth is in thermodynamic equilibrium with its surround
ings in that the total energy received from the Sun approximately equals the total 
energy which the Earth radiates into space.· If this were not the case, the Earth 
would either heat up or cool down until the radiated energy balanced the energy 
input. Table 4-1 shows the global average radiation for the Earth from meteorologi
cal satellite measurements. 

Table 4-1. Radiation Balance of the Earth-Atmosphere System (Data from Lyle, et aI., (1971).) 

GLOBAL AVERAGE 

RAOIATION 

DEC.-FEB. MM.-MAY JUN.-AUG. SEP.-NOV. ANNUAL 
AVERAGE 

INCIDENT SOLAR RADIATION IWnrl 356 349 342 349 349 

ABSORBED SOLAR RADIATION IWnrl 244 244 268 26. 2411 

REFLECTED SOLAR RADIATION IW1M2, "2 '05 84 BB 100 

PLANETARY ALBEDO 0.31 0.30 0.2& 0.2B 0.29 

EMlnED INFRARED RADIATION rwfliZ, 223 230 230 237 230 

-They are not exactly equal because some energy goes into chemical bonds and some additional energy 
is supplied by radioactivity and by thermal cooling of the Earth's interior. For the Earth, the heat flow 
from the interinr is approximately 0.004'10 of the energy received from the Sun. 
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The albedo of an object is the fraction of the incident energy that is reflected 
back into space. (The word is also used for the reflected radiation itself.) The 
'Earth's albedo is approximately 0.30, although it fluctuates considerably because 
clouds and ice reflect more light than the land or water surface. The spectral 

. characteristics of the reflected radiation are approximately the same as the incident 
radiation. (See. the solar radiation discussion in Section 5.3.) Thus, the Earth's 
albedo is most intenSe in the visual region of the spectrum, i.e., the region to which 
the human eye is sensitive; from about 0.4 to 0.7 I'm wavelength. The appearance 
of the Earth in the visible spectrum is described in Section 4.1. 

Sensors operating in the visible region are called albedo sensors, or visible light 
sensors. The principal advantage of this spectral region is that the intensity is 

. greatest here. For attitude sensing, however, a significant disadvantage is the strong 
variation in albedo---from 0.05 for some soil- and vegetation-covered surfaces to 
over 0.80 for some types of snow and ice or clouds [Lyle, et 01., 1971]. 

The incident energy which is not reflected from the Earth is transformed into 
heat and reradiated back into space with a black body spectrum characteristic of 
the temperature. The Earth's mean surface temperature of approximately 2900 K 
corresponds to a peak intensity of emitted radiation of about IO I'm in the infrared 
region of the spectrum. Section 4.2.describes the appearance of the Earth in this 
sPectral region. The mlliqJldvantage of using this emitted, or thermal, radiatiol!. for 
attitude determin!ltf~n is:i:hat the intensity is much more uniformly distributed over 
the disk of the Eli1th. 

In both Sections 4.1 and 4.2 the Earth is assumed to be spherical. Section: 4.3 
then describes the oblateness of the Earth and oblateness modeling techniques. 
Finally, Section 4.4 describes the structure of the upper atmosphere, which is the 
major source of environmental torque for low-altitude spacecraft. 

4.1 Appearance of the Earth at Visual Wavelengths 

James R. Wertz 

Figure 4-1, taken by the SMS-l spacecraft in July 1974, shows the appearance 
of the Earth in the visual region of the spectrum. The location directly beneath the 
spacecraft is called the subsatellite point· on the Earth or the nadir direction as 
viewed from the satellite. The subsatellite point for Fig. 4-1 was on the equator at 
about 50 deg West longitude, on the coast of northern Brazil. Thus, the equator 
runs through the center of the picture approximately parallel to the lower edge. The 
outline of the eastern shore of South America is at the center and northern Africa 
and Spain are visible in the upper right. Cuba and Florida are on either side of a 
narrow cloud bank in the upper left. 

rgy °The term subsatellite point may be applied to two distinct points on the Earth's surface: (I) the point 
low for which the satellite and the center of the Earth are in opposite directions, or (2) the point from wllich 

a line to the satellite is perpendicu1ar to the oblate surface of the Earth. We wiD use the fJl'Sl defmition 
lIDless otherwise stated. 
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Fig. 4-1. Earth in the Visible Region of the Spectrum. Photograph taken by SMS-1 at 17:40 UT, July 
14, 1974, from synchronous altitude. (Courtesy SMS Project Office. NASA. See text for 
description.) 

At the time that the photograph was taken, the Sun was directly overhead at 
the subsolar point at approximately 85° West longitude, 20° 'North latitude,near the 
western tip of Cuba. If the satellite is far from the Earth relative to the Earth's size, 
and if we think of the Earth as a mirror rather than as a diffuse object, then the 
reflection of the Sun would appear at a point midway· between the subsatellite 
point and the subsolar point. This specular reflection is responsible for the 
indistinct bright region (about 3 em in diameter) along the northern coast of South 
America, where the boundaries between land, water, and clouds are difficult to 
distinguish. During the course of 24 hours, the subsolar point remains,at nearly the 
same latitude but rotates through 360 deg in longitude. Thus, the north polar 
regions are continuously illuminated and the south polar regions are continuously 
dark. The situation is reversed when the Sun crosses the equator in late September. 

The terminator is the boundary between day and night on a planet or a 
planetary satellite and is approximately a great circle 90 deg from the subsolar 
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point. This is the fuzzy right-hand edge in Fig. 4-1. Because the principal require
ment for attitude sensing is to trigger on a well-defined boundary. the very poor 
definition of the terminator is the best reason for not using visual sensors for 
,attitude determination. However. terminator modelinJt is required for several 
, purposes, as discussed below. 

In contrast to the terminator, the lit horizon, i.e .• the illuminated edge of the 
Earth as seen by the'spacecraft, provides a sharp boundary which is often used as 
an attitude reference. In most attitude systems, this boundary is modeled as a step 
in the intensity at the surface of the Earth. Although atmospheric effects will 
produce some uncertainty in this boundary, these effects have normally been 
obscured by other measurement errors and limited sensor resolution. (See, for 
example, Werking, et al., [1974].) 

To determine the brightness of the Earth, a convenient approximation is to 
ignore variations in th~ albedo and to think of the Earth as a uniform, diffuse, 
reflecting, Lambert sphere (i.e .• like a white basketball). In this case, the intensity at 
any point on the surface as viewed by the spacecraft is a function only of the zenith 
angle of the Sun at that point on the surface of the Earth. The zenith angle. 9. is the 
angle between the sunline and the zenith, or the point directly overhead (opposite 
the'direction of the center of the Earth). Thus. the brightness density. d, or the 
reflected intensity per unit solid angle is 

(4-1) 

where do is the brightness density at the subsolar point. In this model, the reflected 
intensity is a maximum at the subsolar point and drops off toward the terminator. 
Note that d does not depend on either the angle at which the surface is viewed or 
the· distance between the viewer and the object. As we approach any planet from 
space, the intensity per steradian remains constant and the integrated intensity over 
the planet becomes greater only because the planet subtends a larger solid angle. 
(This effect is familiar to photographers on Earth. Camera light settings depend on 
the intensity and position of the light source, not on how close the camera is.) 

If we assume that the Earth is spherical, then calculation of the size of the 
Earth and the portion of the Earth viewed by the spacecraft are as shown in Fig. 
4-2. Here, p is the angular radius of the Earth as seen by the spacecraft and A is the 
angular radius, as seen from the center of the Earth, of the circular segment of the 
Earth viewed by the spacecraft. By inspection, 

R. 
sinp=cosA= --

R.+h 

(4-2) 

where h is the height of the spacecraft above the surface and R. is the radius of the 
Earth. ' 

We may use the same ge0n:tetry to find the.-direction to any point, P, on the 
surface of the Earth as viewed by the spacecraft. By symmetry, the azimuthal 
orientation of P about the subsateUite point will be the same whether measured 

"1 
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Fig. 4-2. Calculation of the Size of the Earth and Portion of the Earth Viewed, as Seen by a Spacecraft 

from the satellite or the surface of the Earth. The coordinates p' and 'A' are related 
by: 

R$sinA' 
tan p' = -:----:0=-___ ----,,-

R$ + h - R$cos'A' 

sin p sin 'A' 
1- sinpcos'A' (4-3) 

Equation (4-3) was used to construct Figs. 4-3 and 4-4, which show the distortion 
of the Earth as viewed from space and the path of scan lines of three spacecraft 
sensors, shown as dashed lines in the two figures. Figure 4-3 illustrates a globe of 
the Earth showing the portion of the surface viewed by a spacecraft at a height, h, 
of 987 km over the equator at 70° West longitude such that 'A=30° and p=600 • 

Figure 4-4 shows the celestial sphere as seen by th~ spacecraft, including the visible 
. features on the Earth's surface. The spacecraft attitude is toward the north celestial 
pole with sensors mounted at 40 deg, 60 deg, and 80 deg relative to the attitude; the 
arrows indicate the direction of scan. Note, particularly, t1!e shape of the ground 
track of the sensors and the shape of the Earth meridians and parallels of latitude 
as seen by the spacecraft. 

Modeling the Terminator. For the purpose of attitude determination and 
control, the most important feature of the Earth in the visible region of the 
spectrum is the terminator. Although the terminator is not normally used as a 
primary reference for attitude. determination, it may be necessary to model the 
location of the terminator as seen from space for several reasons: (I) to verify 
coarse attitude or to determine the azimuthal orientation about the nadir (both 
were done for RAE-2 [Werking, elol., 1974; Lerner, elol., 1975D, (2) to determine 
the general level of illumination as it affects various attitude sensors (such as star 
cameras), and (3) to eliminate spurious horizon crossings due to sensor triggerings 
on the terminator. Section 9.3 includes a detailed discussion of tests for the 
identification of horizon crossings in attitude data. 
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Fig. 4-3. Globe of the Earth Showing Portion of the Earth Viewed by a Spacecraft at h=987 km. See 
also Fig. 6-29. 

Fig. 4-4. Celestial Sphere as Viewed by the Spacecraft Showing Distortion in the Appearance of the 
Portion of the Earth Viewed. Same parameters and horizon as shown in Fig. 4-3. Note the 
distortion in features and right/left reversal. See text for explanation. 

The very poor definition of the terminator is due to three effects: (1) the 
gradual decrease in overall illumination with increasing solar zenith angle, (2) the 
extreme albedo variations between clouds and the planetary surface, and (3) the 
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finite angular diameter of the Sun. We define the dark angle, E, as the angle at the 
center of a planet from the antisolar point to the point at which a ray from the 
upper limb of the Sun is tangent to the surface of the planet, as shown in Fig. 4-5. 
The dark angle, E, differs from 90 deg by three small correction terms: 

E = 900 + P£ - Ps - a (4-4) 

where P£ .is the angular radius of the planet as seen from the Sun (i.e., the 
displacement of the center of the Sun as seen by an observer at the terminator,· 
relative to an observer at the center of the planet), Ps is the angular radius of the 
Sun as seen from the planet, and a is the atmospheric refraction for an apparent 
zenith angle of 90 deg. P£ is only 0.002 deg for the Earth and Ps is 0.267 deg at the 

TO SUN UPPER 
LIMB 

TO SUN LOWER 
LIMB 

.~.~-----------+------~------------+J~N~~ 
PLANET 
CENTER 

Fig. 4-5. Dark Angle of a Planet, t Showing the Effects of Atm.ospheric Refraction and Finite Size of 
the Disk of the Sun 

Earth's mean distance of 1.0 AU. Atmospheric refraction is a strong function of 
zenith angle near the horizon. (For example, at sunset, the lower limb of the Sun is 
refracted upward more than the upper limb, producing the appearance of an oblate 
Sun.) For the Earth, this function is well known. (See, for example, Allen [1973].) 
At an apparent zenith angle of 90 deg, 0(760 mm Ug, 10 deg C) is 0.590 deg. Thus, 
for th~ Earth, 

(£::::::900 +0.0020 -0.2670 -0.5900 

::::::89.15 0 

For the Moon,. PM is negligible, Ps has the same average value as for the Earth, and" 
0=:0. Therefore, 
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Ii, and 

! (4-6) 
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The fraction, Is, of the area of a planet from which at least some portion of the Sun 
can be seen is given by (see Eq. (A-12» 

Is =0.5(1 +cosQ 

= 0.507 for the Earth 

= 0.503 for the Moon (4-7) 

At best, the expressions for € are average values. The correction terms are normally 
dominated by local effects such as terrain (e.g., valleys where sunset is early and 
mountains where it is late) and albedo variations depending on both the nature of 
Ihe surface and the local weather. 

In order to model the position of the terminator as seen by the spacecraft, let 
A€ be the correction terms in the dark angle, ~=90° -~; let p be the angular 
radius of the central body as seen by the spacecraft; and let 1/1' == 1800 

- a +~, 
where a is the angle at the center of the planet between the Sun and the spacecraft. 
t/I' differs from 1/1, the angular sep!lrationbetween the planet and the Sun as seen by 
the spacecraft, by two small correction terms, ~ + (, where ( is, the angle between 
Ihe planet and the spacecraft as viewed from the Sun. Then the following equations 
hold: . 

1/I'<p planet fully dark (4.-8) 

p< 1/1' < 180° -p planet partially illuminated, terminator visible (4-9) 

1/1' > 180° -p planetfully illuminated (4-10) 

If Ihe terminator is visible, then Eq. (4-3) may be used to construct the terminator 
'on the celestial sphere, as shown iii Fig. 4-6. In general, the terminator as seen by 
Ihe spacecraft is neither a portion of a small circle nor a portion of an ellipse. The 
minimum angle from the center of the disk of the planet to the terminator as seen 

Fig. 4-6. Terminator Geometry. A' is negative when the pJaqet is less than half lit, as shown. 

/1 

! 

'"I 
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from the center of the Earth is A' = !/I' - 90°, where A' is positive when the planet is 
more than half lit and negative when the planet is less than half lit. This angle as 
seen from the spacecraft, p', may be obtained directly from Eq. (4-3) as 

( 
sinpcos!/l' ) 

p' = arc tan I . . .r,' + SlDpSlD 'I' 
(4-11) 

We define the phase fraction~ P, as the illuminated fraction of the angular 
diameter of the planet perpendicular to the terminator as seen by the spacecraft. 
Then 

(4-12) 

The orientation of the cusp, i.e., the intersection of the terminator and the 
horizon as seen by the spacecraft, may be constructed geometrically as follows: 
Construct the small circle, T, of radius ~ centered on the Sun, and the small circle, 
L, of radius (90° - p), centered on the disk of the planet. Then the two great circles 
connecting the center of the planet to the two intersections of T and L cross the 
horizon of the disk of the planet at the cusps, with the proper horizon crossing 
chosen by inspection. 

4.2 Appearance of the Earth at Infrared Wavelengths 

james R. Wertz 

As indicated at the beginning of Chapter 4, infrared radiation from the Earth 
is thermal radiation from both the surface and the atmosphere resulting from the 
heat generated by the absorption of sunlight. Figure 4-7, taken by the SMS-I 
spacecraft at 14:00 UT, November 18, 1974, shows the Earth in the infrared region 
of the spectrum from 10.5 JLm to 17.6 JLm. The subsatelIite point is near the equator 
at approximately 285 deg East longitude, near the point where the borders of Peru, 
Ecuador, and Colombia meet. Geographic features are difficult to distinguish in 
the infrared. The western shore of South America runs vertically down the center 
of the bottom half of the photograph. Northwest Africa is the well-defined region 
on the right-hand edge and the Great Lakes are clearly visible 1.2 cm from the top 
of the photograph. 

Two general characteristics of the infrared radiation can be seen by comparing 
Figs. 4-7 and 4-1: (1) the intensity variations are much less thanin the visual, and 
(2) bright and dark areas are reversed relative to the visual. At the time the 
photograph was taken, the terminator was about 2 cm from the left-hand edge of 
the photograph; that is, roughly 85% of the visible area is in sunlight and the 
left-hand' 15% is in darkness. The terminator, which dominated the visible 
photograph, ~ invisible in the infrared because the Earth's temperature decreases 
only slightly overnight (relative to absolute zero), with little effect on the infrared 
thermal radiation. In general, the rapid time fluctuation of the visual radiation is 
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Fig. 4-7. The Earth in the Infrared Region of the Spei:trnm. Photograpb taken by SMS-I at 14:00 UT, 
November 18, 1974. (Courtesy SMS Project Offic:e, NASA.) 

smoothed by the absorption and gradual reradiation process. Results from the 
analysis of spacecraft data by Lyle, et al., [1971] indicate variations in the albedo 
between 0.10 and 0.80 and infrared variations over the more limited range of 105 to 
350 W 1m2

• Similarly, the maximum diurnal infrared variation is only ± 15%. Table 
4-1 at the beginning of the chapter shows that global averages for each season vary 
from the annual mean by 10% in reflected radiation and 3% in emitted radiation. 

Regions which reflect the most solar radiation (clouds and ice) are brightest in 
the visual region. However, because they absorb less energy, they are cooler and 
radiate less in the infrared. Thus, in contrast to the visual region, the cooler cloud 
tops and polar caps are dark in the infrared and the warmer, dark-colored, 
vegetation-covered surfaces are light. . 

The spectral energy distribution of the emitted infrared radiation is affected by 
the temperature and, more importantly for the Earth, by the chemical composition 
of the atmosphere. Figure 4-8 shows the average spectral distribution over midlati
tude oceans (solid line) compared with various black body spectra (dashed line). 
Note the strong absorption bands due to COlt 0 3 (ozone), and H

2
0. In each of 

these bands radiation is being absorbed and isotropically reemitted by atmospheric 
molecules. Thus, at these wavelengths it is the atmosphere above the surface which 
is being viewed. 
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8 I. 

WAVELENGTH !pm) 

Fig. 4-8. SpectJal Distribution of Thermal Emission From the Earth Over MidJatitude Oceans. 
(Adapted from Lyle [197IJ.) . 

For attitude work, we would like to use a spectral region for which the Earth 
has a uniform intensity. The considerable fluctuations in the II- to 14-p.m window
can ~ seen inFig. 4-7. Similarly, the H20 band intensity near 7p.m depends on the 
strongly varying H20 density in the atmosphere. The CO2 band provides a more 
uniform distribution than the H20 bands [Dodgen and Curfman; 1 969J. This 
spectral region has been used for horizon attitude sensors for a variety of missions, 

. such as SMS/GOES, crs, AE, and SIRIO, and is proposed for missions requiring 
precise horizon definition, such as HCMM, SEASA T, DE, and MAGSAT. 

]be Appearance of the Earth's Horizon at 14.0 to 16.31'ID. To effectively use 
the infrared radiation from the CO2 band at 14.0 to 16.3 I'm for attitude determina
tion, we need to model the appearance of the Earth's horizon in this spectral 
region. Although several analytical models of varying complexity have been de
veloped [Bates, et aI., 1967; Thomas, et al., 1967a; Thomas, 1967b; Weiss, 1972; 
Langmaier~ 1972; Howard, et aI., 1965], the results of only one extended experi
ment are available in the open literature. These are from Project Scanner, carried 
out by NASA's Langley Research Center specifically for the study of iilfrared 
horizon profiles [McKee, et aI., 1968; Whitman, et til., 1968]. Project SCanner 
consisted of two suborbital rocket flights on August 16 and December 10, 1966, 

I and associated meteorological'measurements. Both rockets were launched fr~ 
Wallops Island, Va., to peak altitudes of 620 and 709 km, respectively. Horizon 
measurements for both flights covered a latitude range of 10° to 60° North from 
approximately the northern coast of South America to central Hudson Bay. 

", 
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figure.4-9 shows the average radiance profiles for the two flights. The vertical 
bars are the I-a standard deviations, due primarily to latitude variations, which 

8 ..-ER 

---f, , 
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TANGENT HEIGHT ban) 

Fig. 4-9. Average of AD Measured Radiance Profiles From Project Scanner in the 14.0-/1lD to 16.3-/1lD 
c~ Band. (Adapted from Whitman, et al .. (19681.) The sensor triggers after reaching a 
preset level of integrated radiance, as shown by the shaded a.~~ 

were particularly large in the winter flighL The horizontal coordinate is the tangent 
height or the minimum altitude above the surface of the Earth for an unrefracted 
light ray coming from behind the Earth through the CO2 layer to the spacecraft, as 
shown in Fig. 4-10. Thus, the tangent height is the apparent height (at the horiion) 
from which the radiation is coming. From Fig. 4-9 it is clear that horizon scanners 
sensitive to the CO2 band radiation should indicate the presence of the Earth or 
trigger in the general range of 30 to 50 km above the surface. 

Fig. 4-10. Defmition of Tangent Height, h. h' is an example of negative tangent height. 
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To determine the specific altitude at which a given sensor wiD trigger and thus 
signal the presence of the horizon, we define the locator as the position on the 
radiance curve at which the sensor will trigger. The choice of a locator depends on 
both the stability with which it defines a located horizon (i.e., tangent height) and 
on the electronic processes available to implement the locating procedure. (See 
Sec:ion 6.2.) The field of view of a horizon telescope is typically much wider than 
the atmospheric band over which the radiance goes from near zero to its peak 
value. Therefore, the locator is normally defined as a function of the integrated 
radiance above various tangent heights, as shown in Fig. 4-10. The two most 
common locators are: (I) a fixed value of the integrated radiance or (2) a fixed 
percentage of the peak radiance seen by the sensor after it has crossed onto the 
disk of the Earth. Based on a theoretical analysis, the percentage of peak locator is 
the more accurate of the two [Dodgen and Curfman, 1 969J. However, because of 
the complex structure of the horizon profiles, the electronic signal processing 
technique may be as important as the choice of locator. (See, for example, Wei~ 
(1972].) 

The radiance profile for the Earth's horizon depends primarily on the effective 
temperature, the effective pressure, and the optical depth, with temperature fluctua
tions being the most important factor [Whitman, et al., 1968). Temperatures at the 
altitude of the top of the CO2 layer are governed primarily by'latitude, season, and 
local upper-atmosphere weather conditions. Because of the very limited amount of 
data, accurate statistics do not exist on the variability of the heilWt of the CO2 layer 
or the temperature in the 30- to 50-km altitude range. Figute 4-11 shows the effect 
of seasonal and latitudinal variations in the Project Scanner data and one example 
(subfigures (a) and (b» of longitudinal variations. Note that temperature changes 
affect the radiance profile most strongly at the peak radiance levels below about 30 
km. Thus, in Fig. 4-11, there is greater uniformity in the lower tail than in the peak 
level. ' 

Because temperature variations appear to be the prime determinant of changes 
in the radiation intensity in the CO2 band, it is of interest to examine the degree of 
nonuniformity in upper atmosphere temperature profiles. Derived temperature 
profiles for the Project Scanner wint'!r flight are shown in Fig. 4-12 for a vertical 
cross section covering the latitude range of the horizon scanner data and in Fig. 
4-13 for a horizontal cross section at an altitude of 42 km. The approximate 
boundary of the measured data profiles is also shown in Fig. 4-13. The 42-km 
profile of Fig. 4-13 goes through the center of a warm pocket over White Sands, 
New Mexico, .and has more horizontal variability than the other altitude profiles 
which were plotted over the range of 30 to 54 km in 4-km intervals. The 
temperature profiles for the summer flight were generally more uniform, with less 
than SOK variation over the range of the horizon scanner data at an altitude of 40 
km. 

The most striking feature of Figs. 4-12 and 4-13 is the strong horizontal 
temperature gradient generally running north/south, but with substantial east/ 
west components in some locations. The large horizontal temperature gradient has 
two major analytic consequences: (I) it implies a substantial geographical or 
weather dependence of the radiance profiles and (2) when horizontal temperature 
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Fig. 4-11. Averaged Radiance Profiles for Several Locations From Project Scimner. Solid line is 
winter flight; dashed line is summer flight. (Adapted from Whitman, el aI., [1968).} 

gradients are large, the analytic techniques used to predict radiance profiles for 
attitude sensing are inadequate [Whitman, et al., 1 968). The analytic techniques 
used to date employ a shell model for the atmosphere in which the temperature is a 
function only of the altitude. Because anyone scan line from a spacecraft to the 
hOrizon covers a wide geographic area, a strong horizontal temperature variation 
violates a basic assumption of the model. Note that although the temperature 
strongly affects the height of the CO2 layer, the top of the CO2 layer does not fall at 
any specific temperature level. 

Figure 4-14 shows the tangent height at which a sensor would trigger based on 
three different locators and on analytiC horizon profiles. Note that the locator for 
Fig. 4-14(a) is a constant radiance level and not a constant integrated radiance. On 
each figure, the solid line is the mean triggering height and the dashed line is the 
I-a standard deviation. The normalized locator of Fig. 4-14(c) is better than either. 
constant radiance locator of Figs. 4-14(a) and (b). However, the analytic modeling· 
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Fig. 4-12. Vertical Temperature Cross Section for Winter Project Scanner Flight. (Adapted from 
Whitman, et m., (1968}.) 

Fig. 4-13. Horizontal Temperature Cross Section at 42 km for Wmter Project Scanner Flight. 
(Adapted from Whitman,. et m., (1968).) 
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procedure does n~t work well for real conditions with horizontal t~perature 
gradients; these IDlght be expected to have an effect on the peak radmnce and, 
therefore, on the normalization process. 
'{!~ In SUmmaI)', relatively little real data has been analyzed to determine the 
appearance of the Earth's horizon in the 14.0- to 16.3-l'm CO2 band. For a fixed 
radiance level lotator, systematic latitudinal variations of II km in the triggering 
height occur during ~e winter with random I-a fluctuations of ,± 5.5 km (numeri
cal values in this paragraph are from Dodgen and Curfman, [1969].) Variations 
appear to be significantly less during the summer. For a fixed mtegrated radiance 
locator the winter lati,tudinal variations were 6 km with random I-a fluctuations of 
3.5 Ion. For a locator normalized relative to the peak radiance, the winter 
latitudinal variation in the mean triggering height was reduced to about 4 km, but 
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Fig. 4-14. Located Horizon Altitude for Analytic Models of 14.0 pm to 16.3 pm ~ Band Radiation 
(Adapted from Dodgen' and Curfman. (1969).) 
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the I-CJ random fluctuations were only reduced to about 3 km.* These results do 
not take into account variations due to horizontal temperature gradients. The CO2 
band has been found to be more stable than the H20 band, but variations at the 
level of several kilometres are a function of the local meteorology. The need for 
additional analysis of real data is clearly indicated. 

4.3 Earth Oblateness Modeling 

K.Uu 

In Sections 4.1 and 4.2, we assumed that the Earth was spherical and discussed 
its appearance primarily from an optical point of view. In this section, we are 
concemed.with the geometrical shape of the Earth. The Earth is basically an oblate 
spheroid as a result of combined centrifugal and gravitational forces. This is a form 
generally assumed by a rotating fluid mass in equilibrium. (See Section 5.2 for a 
description of the Earth's gravitational potential.) 

As shown in Table 4-2, the surface of the Earth may be modeled by any of a 

Table 4-2. Comparison of Models of the Shape of the Earth 

REFERENCE SURFACE DEVIATION FROM REFERENCE SPHEROID' 

SPHERE OF RADIUS· 6.31B.14 km OAT EQUATOR TO-21.38 km AT PoLE 

REFERENCE SPHEROID -
ELLIPSOID WITH ELLIPTICAL AT EQUATOR, Rma,,-Rmin '" 0.10 km 
CROSS SECTION ON EQUATOR (Rmax AT 160°.340° EAST LONGITUDE) 

SPHEROID DEFINED BY FOURTH OAT EOUATOR AND POLE TO ·0.OO5km 
ORDER HARMONICS (SEE SEC· AT 45° LATITUDE 
TION5.2) 

GEOID la MEAN SEA LEVELl +O.D80 km NEAR NEW GUINEA TO 
-0.110 km IN INDIAN OCEAN" 

TOPOLOGICAL SURFACE (i ••.• +B.B km (MT. EVEREST) TO -0.4 km (DEAD 
REAL SURFACEI SEA) 

CO2 LAYER IN ATMOSPHERE ~+~~: ~1~~~tTOR TO - +30 km AT 

• BASED ON EQUATORIAL RADIUS OF 6.31B.14O km AND FLATTENING, 
f D 11298.267, AS AOOPTED BY THE IAU (TABLE L·31 IN 1976 • 

•• FOR A DETAILED MAP OF THIS DEVIATION. SEE FIG. 6-8. 

t ACTUAL VALUES DEPEND ON HOW THE LAYER IS SENSED AND LOCAL 
WEATHER. SEE SECTION 4.2. 

• Studies by Phenneger. et aI., (1977a, 1977b) for the SEASAT mission indil:atci 3-a random horizon 
radiance variations for a percentage-of-peak locator of approximately ±O.l deg. At the SEASAT 
altitude of 77S kill. this corresponds to a triggering level variation of ± 7 km. 
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. series of increasingly complex surfaces. Although a simple spherical model is useful 
i tKt estimation, it is inadequate for most attitude analysis of real spacecraft data. 

Tht basic model for most attitude work is the arbitrarily defined reference spheroid, 
-&bich is an ellipse rotated about its minor axis to represent the flattening of the 
Ellrth. The ellipse is defined by the Earth's equatorial radius, .RED~6378.140 km, 
~d the ellipticity or flattening, . 

R -fS, 
f ~ ED ~O.OO335281 = 1/298.257 (4.13) 

~~ere R, is the polar radius of the Earth. These numerical values are those adopted 
bY the International Astronomical Union in 1976 [Muller and Jappel, 1977] and will 
be:used throughout the book, except in cases such as Vanguard units (Appendix K) or 
~agnetic field models (Appendix H) where different values are a part of 
standard numerical mO,dels. 

At NASA's Goddard Space Flight Center, a common expression used· in 
attitude work for the radius of the Earth at latitude, A, is: 

(4-14) 

where the terms in f, h, and k account for the flattening. the height of the 
atmosphere (for IR sensors which trigger on the atmosphere), and seasonal or other 
latitudinal variations in the atmosphere height. 

A second more complex surface than the reference spheroid is obtained by 
eXpanding the Earth's gravitational potential in sphericaJ harmonics and retaining 
only terms up to fourth. order~ It can be shown that this and a suitably defined 
reference spheroid are identical up to the second power of the flattening. A much 
more complex surface is the equipotential surface of the Earth's gravitational field, 
known as the geoid or mean sea level, which has many local irregularities due to the 
Earth's nonuniform mass distribution. The difference in elevation between the 
geoid and a reference spheroid is known as the geoid height and is shown in Fig. 
5-8. Because of its mathematical simplicity, we will use the reference spheroid of 
Eq. (4-13) as the shape of the Earth throughout the rest of this section. 

The Shape of the Earth as Seen From Space. The Earth's shape as viewed 
from space is defined by the Earth's horizon as seen from the position of the 
observer. The horizon is the point where the observer's line of sight is tangent to the 
Earth's surface or perpendicular to the' surface nonnaI. The spheroidal surface of 
the Earth is expressed in geocentric coordinates by 

(4-15) 
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where a is the equatorial radius and c is the polar radius. This can be rewritten as 

(4-16) 

where f is the flattening. The normal to the surface is given by the gradient of Eq. 
(4-16), that is, 

(4-17) 

. If P (u,c,w) and R (x,y,z) represent the location of an observer and a point 
on the horizon, respectively, the vector from the observer to the horizon or the 

,horizon vector, H (Fig. 4-15), is given by 

x 

H=(x-u)i+(y-v)y+(z-w)i (4-18) 
z 

OBSERVER 
, (U,.,w) 

.... +---y 

r"l+y2~ 8
2 

It -f12 
EARTH'S SURFACE 

FJS. 4-15: Geometry of the Horizon Vector, If. and Surface Normal; N,for an Oblate Earth 

BecauSe·R is a horizon point, H must be perpendicular to N; that is, 

N'H=O (4-19) 
or 

. z(z-w) 
x(x-u)+y(y-v)i- 2 =0 

(I-f) 

. Rearranging terms, this becOmes 

( , U')2 ( 0 )2 ( Z - ~ r ( u )2 ( 0 )2 ( ; r 
~-2" + y-2" + (1-f)2 = 2" + 2" +-(1-_-f)"72 (4-20) 
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which is the equation for a spheroid of ellipticity I centered at (u/2,v/2. w/2). We 
can this the horizon spheroid or horizon surface because it contains all possible 
horizon points (x,y,z) for an observer at (u,v,w) looking at a spheroidal Earth of 
eUipticity I and variable sizes. The three principal axes of the horizon spheroid are 
parallel to those of the Earth spheroid. The intersection of the two surfaces i.s the 
Earth's horizon, as shown in Fig. 4-16. By substituting Eq. (4-16) into Eq. (4-20), 
we obtain 

wz 2 ux+vy+ =a 
(I-Ii (4-21) 

It Equation (4-21) defines a plane, called the horizon plane, and in this plane the locus 
Ie of the observed horizon is an ellipse. The normal to the horizon plane is in the 

direction of (u,t),w/(I-!f), or (cos"cos+, cos"sin+, sin"/(I-!f), where" apd 
I) ~ are the geocentric latitude and longitude, respectively, of the observers position. 

' .. 

9) 

0) 

~----~----~--------~~-+y 

Fig. 4-16. Meridian Cross Section of the Earth Showing the Horizon Spheroid and the Horizon P1ane. 
(In this figure. the observer is in yz plane.) 

The normal to the horizon plane depends only on the angular position of the 
observer. Thus, as the observer moves along a fixed nadir· direction, he sees a set 
of parallel horizon planes. As shown in Fig. 4-17, when the observer is on the 
Earth's surface (point A), the horizon plane is just the tangent plane at that point. 
As the observer moves to a distance, d, from the center of the Earth (point B), the 
parallel horizon plane will intersect the nadir line at a distance 

(4-22) 

• Nadir h! re means toward the Earth's center. 
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Fig. 4-17. Meridian Cross Section of the Earth Showing Parallel Horizon Planes. (In this figure, the 
observer is in yz plane.) 

from the Earth's center, where R is the distance from the Earth's center to point A 
. (the subobseroer or subsatellite point). R is given by: 

a(l-f) 
R = -;=.======= 

';1-(2- f)fcos2A 
(4-23) 

The horizon plane will approach the center of the Earth as the observer approaches 
infinity. Note that the nadir line passes through the center of the horizon ellipse. 

To find the shape of the horizon ellipse or, equivalently, the shape of the Earth 
as seen by the observer, it is convenie~t t9 solve AEqs. (4-161and (4-21) in the local 
tangent coordinate system defined by N, E, and Z through P, as shown in Fig. 3-6. 
It can be shown that the angular radius of the Earth or the horizon of the Earth is 
given by 

(4-24) 

where A is the geocentric latitude of the observer's position and d and R are the 
distances from the center of the Earth to the observer and the subobserver point, 
respectively. As shown in Fig. 4-18, 'I' is the azimuth angle of the horizon vector, 
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fig. 4-18. The Shape of the Oblate Earth as Seen From 200 km Above the Earth's Surface at 45 deg 
Geocentric Latitude. The natlening factor used is 100 times larger than the true value. 

H, in local tangent coordinates and p is the angle between the nadir vector and the 
horizon vector. When J=O, that is, when the Earth is spherical, Eq. (4-24) reduces 
to 

p=arcsin(aJ d) (4-25) 

as expected. 
Figure 4-18 shows an example of the shape of the Earth as seen by an observer 

at 45-deg geocentric latitude and a dist!lnce of 200 km above the Earth's surface. 
To make the oblateness effect noticeable, a flattening factor ]00 times larger than 
the true value was used. Table 4-3 compares the angular radius of the Earth for 
spheroidal and spherical Earth models. 

Table 4·3. Angular Radius of the Earth From the Spheroidal Model at an Altitude of 200 km and 
Geocentric Latitude of 45 deg. Equation (4-24) and the following parameters WeAl used: 
a=6,378.14 km, /=0.00335281, d=a+200 km. The angular radius of a spherical Earth of 
radius a is Pa = 75.8353 deg. 

>I> p p-p. + p P -P, 
IDEGI IDEGI IDEGI (DEGI (OEGI (DEGI 

90 15.2786 -0.5867 15 15.52n -0.3081 
75 15.2863 -0.5490 30 75.5664 -0.2689 
60 15.3085 -0.5268 45 75.5980 -0.2373 
45 15.3430 -0.4923 60 75.62D8 -0.2145 
30 15.3861 -0.4429 75 75.6346 -0.2001 
15 15.4338 -0.4015 90 75.6392 -0.1861 
0 15.4821 -0.3532 

Procedure for Finding the Horizon Crossing Vector. A frequent calculation 
required for attitude analysis is the determination of the horizon crossing vector, H, 
as seen by a sensor with a conical field of view. Any point on the horizon lies at the 

"I 
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intersection of the horizon and Earth spheroids. To find the two particular horizon 
points where a sensor first and last senses the Earth, a third surface is needed. If 
the Sun angle and the Sun-to-Earth rotation angle are available (Eq. (7-57», that 
surface may be provided by 

(4-26) 

where S is the unit Sun vector and 1/IH is the angle between the Sun vector and the 
horizon vector. Alternatively, if !in iterative procedure is used to find the spacecraft 
attitude, the attitude vector, A, combined with the knowledge of the sensor 
mounting angle, y, generates the surface of a cone defined by 

A.H=cosy (4-27) 

The horizon-in and -out vectors are obtained by simultaneously solving Eqs. 
(4-16), (4-20) or (4-21), and (4-26) or (4-27). For a slit horizon sensor, Eqs. (4-26) 
and (4-27) are replaced by 

(4-28) 

and 

A·N= +sin9 (4-29) 

respectively, where N is defined by Eq. (4-17), 1/IN is the angle between the S:~n 
vector and the slit plane normal vector at the horizon crossing, and 9 is the 
rotation angle between a spacecraft body meridian and the plane of the horizon 
sensor slit. The upper and lower signs on the right hand side of Eqs. (4-28) and 
(4-29) are for the horizon-in and -out crossings, respectively. In general, these 
simultaneous equations cannot be solved analytically and numerical methods are 
needed. 

For example, a linear, iterative method can be used to solve Eqs. (4-16), (4-21), 
and (4-27). Equation (4-27) can be written as . 

(4-30) 

where 

H= [x2+ y2+Z2_2(ux+ vy+ wz)+ u2+ v2+ W2]1/2 

is the length o! the horizon vector, H, and aI' Q2' and a3 are the rectangular 
components of A. Assuming first that H is a constant, then we have two linear and 
one quadratic equation and (x,y,z) can be determined analytically by expressing 
them in the form 

x;=./;(H) (4-31 ) 

(4-32) 
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and 

(4-33) 

where i,j, and k can be 1.2. and 3 and (x.,x2,X3)=(X,y,z). 
Equations (4-31) through (4-33) can then be used to do the iteration. A good 

initial estimate of x;'s can be found by assuming a spherical Earth and calculating 
t's using the above three equations with 
./ 

The Effect of Earth Oblateness on Attitude Sensor Data and Solutions. One 
of the fundamental types of attitude measurements is the rotation angle measure
ment. such as the Sun-to-Earth horizon crossing or the Earth width (i.e., the 
rotation angle between two horizon crossings). Clearly, the time and location of the 
horizon triggering depend on the shape of the Earth as seen from the spacecraft. 
The effect of the oblateness of the Earth on the rotation angle measurements is a 
function of the spacecraft position and attitude and the sensor mounting angle. 

Table 4-4 gives the difference in Earth width and nadir angles as computed for 
spheroidal and spherical Earth models. Therefore, this difference is approximately 
the error that would result from using a spherical Earth to model horizon sensor 
measurements. In these examples. the effect of oblateness tends to be greater when 
the spacecraft is at higher geocentric latitudes. However. with the same latitude and 
sensor mounting angle, the effect is not necessarily smaller when the spacecraft is 

Table 4-4. Error in Nadir Angle (111) and Earth Width (11 W) in Degrees Due to Unmodeled 
Oblateness. Based on circular orbit and aititude at orbit normal. 

INCLINATION, . ..l.NO SUBSATElllTE LATITUDE," INCLINATION,I, AND SUBSATEllIT£ LATITUDE,). 
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PARAM-
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." 45" ,.get 
(OEG! 

~l"·oo ), fJ 0" 1)'''45'' l "'0" ). .. 0" )." 4S" ). .. 0" )..45" ). .. 90" )."45" l" 9O~ 

--
SENSOR MOUNTING ANGl E • 30 DEG SENSOR MOUNTING ANGLE $OEG 

"w 0162 o t02 238 0041 1.60 311 00007 0048 0.742 0091 0.7&6 139 
h·~m 
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I- • 800km 

'" Don 0040 0.340 0004 O.t52 0.291 0_ 0394 '" 07" 1.7> .64 
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SENSOR \SCAN MljES EARiH 

0.023 0035 "0.019 0041 0·024 0002 
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.... 0028 O~J ' 106 0018 0_ 
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at higher altitudes. If the Earth-width and Sun angle measurements are used to 
calculate the attitude, the resufting discrepancy in attitude using the spherical 
model will be at least as large as the deviation in the nadir angle, which is 
significant in certain geometric situations. If the Sun angle is combined with a 
horizon crossing measurement, the problem becomes more complicated because 
the relative position of the Sun plays an important role. 

4.4 Modeling the Structure of the Upper Atmosphere 

John N. Rowe 

The effect of the atmosphere on sensor triggerings was discussed in Sections 
4.1 and 4.2. In this section, we are primarily concerned with the atmosphere as it 
affects the spacecraft orbit and attitude. For additional information on the Earth's 
atmosphere, see, for example, Craig [1965] or Ratcliffe [1960J. An interesting 
historical reference is Mitra [1952]. Summary atmospheric density tables are given 
in Appendix L. 

The accuracy of upper atmosphere model densities in current atmospheric 
models is about ± 50%, and may be much worse in some regions, such as near an 
altitude of 120 km where there are few measurements. In addition, the upper 
atmosphere density is strongly affected by the solar flux in the extreme ultraviolet, 
and this flux varies with the level of solar activity (see Section 5.3). This level is not 
entirely predictable, so that predicted densities will have more uncertainty than will 
historical densities. 

4.4.1 Summary of the Upper Atmosphere Structure 

The independent variable in describing the mean structure of the atmosphere 
is the altitude. Figure 4-19 shows the mean temperature distribution between the 
ground and 500 km. The nomenclature used to describe various regions of the 
atmosphere is based on the temperature profile, as indicated in the figure. The 
elevated temperature between the tropopause and the meso pause is due to the 
absorption of ultraviolet light at wavelengths from O.2-0.3#Lm by ozone, and the 
increase in temperature above 100 km is due to absorption of extreme ultraviolet 
light at wavelength from 0.2#Lm down to X-rays by nitrogen and oxygen. Eventu
ally, the heat conductivity becomes so large that an isothermal region called the 
exosphere is formed. The temperature in this region is called the exospheric 
temperature, T flO' 

Above about 1500 km, the ionized component of the atmosphere becomes 
predominant; this region is called the magnetosphere, and its outer boundary is the 
magneto pause. The magnetopause is formed by the interaction of the solar wind 
with the Earth's magnetic field (see Section 5.1), and lies at a distance of about IO 
Earth radii on the day side and at least 80 Earth radii on the night side. 

The total atmospheric density is of prime interest for spacecraft. Figure 4-20 



·4 

to 
:al 
is 
a 

Ise 

ons 
s it 
th's 
ling 
ven 

.eric 
ran 
'per 
olet, 
: riot 
will 

)here 
n the 
f the 
The 

, the 
d the 
violet· 
'entu-
:d the 
pheric 

comes 
is the 

, wind 
out 10 

'e 4-20 

4.4 MODELING THE STRUCfURE OF THE UPPER ATMOSPHERE 101 
.... 
450 EXOSPHERE 

.... 
350 

300 

'50 
E)COSPHERIC TE~RATUAE IT_I 

, .. :..=.==+====- TURBOPAUSE MESOPAUSE 

MESOSPHERE .. STRATOPAUSE 

STRATosPHERE 
TROPOPAUSE 

o ~ _ 300 .... .... .... _ .... .... ~ 

KINETIC TEMPERATURE fKJ 

Fig. 4-19. Mean Atmospheric Temperature as a Function of Altitude 

shows a profile of the mean density between 25 and lOOO km. The gross exponen
tial behavior of the density is due to hydrostatic eqUilibrium. in which the pressure 
and density at any height are determined by the weight of aU the air above that 
height. In this case, both the pressure and density vary as exp( - mgz / kT) where z 
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is the altitude. The quantity kT / mg is known as the scale height, where m is the 
. molecular weight, g is the acceleration due to gravity, T is the temperature, and k is 
Boltzmann's constant. )n the altitude region below the turbo pause (about 100 km), 
the atmosphere is dominated by turbulence (sometimes called eddy diffusion). 
which causes mixing. In a mixed atmosphere, the density of each constituent is a 
constant fraction of the total density (independent of altitude), and the density falls 
off with a scale height characteristic of the mean molecular weight of all the 
component gases. Above the turbopause, turbulence ceasl.~ and each constituent 
diffuses according to its own scale height, resulting in what is known as diffusive 
separation. The lighter gases, of course, have the larger scale heights and become a 
larger fraction of the total composition with increasing altitude, resulting in the 
change in the slope of the total density curve. 

The major atmospheric constituents below 1000 km are 02' N2, 0. and He. 
Representative minor constituents in this altitude range and above the turbopause 
are °3, CO2, H20, NO, electrons, and positive and negative ions. Table 4-5 gives 
the atmospheric composition in the turbulent region, showing only those con
stituents which are mixed. The most important minor constituent for attitude 
determination is CO2 because of the infrared radiation described in Section 4.2. 
CO2 is believed to be mixed [Hays and Olivero, 1970) up to the turbopause. Above 
the turbopause the CO2 density is determined by both diffusion and chemical 
reactions. 

Chemistry is a factor in controlling the densities of some atmospheric con
stituents. Reactions between the various constituents are called photochemical 
because they. are generally induced or catalyzed by sunlight. Many minor con
stituents are controlled by photochemistry rather than by diffusion, and their 
profiles do not at all resemble diffusive profiles. 

The type of flow encountered by a space vehicle, and hence the characteristics 
of the forces on it (Section 17.2), are controlled to some extent by the Knudsen 
number, which is approximately the ratio of a typical dimension of the spacecraft to 
the average mean free path, I, of the atmospheric molecules. The mean free path 

Table 4-5. Composition of the Atmosphere Below the Turbopause 

FRACTION BY 
CONSTITUENT VOLUME 

MOLECULAR NITROGEN 0.78084 

MOLECULAR OXYGEN 0209476 

ARGON 0.00934 

CARBON PIOXIDE 0.000314 

HELIUM 0.00000524 

KRYPTON 0.00000114 
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may be estimated from 

l=~ 
no 

where n is the number density of the atmosphere and 0 is a collisional cross section. 
Figure 4-21 shows a mean free path profile calculated from the mean density 
profile in Fig. 4-20 and an assumed cross section of 3 x 10- 19 m2• 

The subject of structural variations in the atmosphere is complex and not fully 
understood. Variations in the density may be divided into six types: Diurnal, 
27-day, seasonal-latitudinal, semiannual, II-year, and geomagnetic. Diurnal varia
tions are those related to local time, or, more generally, to the zenith angle of the 
Sun. The 27-day variation is a result of the rotation of the Sun, and the II-year 
variation is a result of the II-year cycle of solar activity. Geomagnetic variations 
are due to short-term changes in solar activity (as a result of a flare, for example). 
The .. variations in the Earth's magnetic field are used as a measure of this type of 
solar activity: The semiannual and seasonal-latitudinal variations are only partially 
solar related and are not well understood. In the thermosphere, the II-year 
variation in density is the largest, amounting to order-of-magnitude fluctuations at 
350 km. The 27-day and semiannual variations cause density fluctuations by a 
factor of perhaps 2 or 3, and the other types cause smaller ones. At lower altitudes, 
the seasonal-latitudinal variations become predominant. Various parameters are 
used to describe the variations in the atmosphere, in particular, geQmagnetic 
activity indices and solar activity indices. These are tabulated in the Solar
Geophysical Data series published monthly by the National Oceanic and Atmos
pheric Administration. 

4.4.2 Models of the Upper Atmosphere 

Models of the. atmosphere may be based on either empirical or theoretical 
work. Real models are a combination of both types, because there generally is 
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insufficient data for a purely empirical model and because the physical processes 
are not wen enough understood to construct an entirely theoretical modeL A 
number of published models are appropriate for attitude use. Those published 
under the auspices of the Committee on Space ReSearch of the International 
Council of Scientific Unions (COSPAR) find wide use in atmospheric science and 
should be considered first. The current version is the COSPAR International 
Reference Atmosphere 1972 [1972) (known as ClRA 72). The ClRA 72 model covers 
the altitude range of 25 km to 2500 km, and includes detailed modeling of the 
variations mentioned in the previous section. The model below 110 km is the work 
of Groves [1970), and the model above 90 km, the area of primary interest for 
spacecraft, is the work of Jacchia [1971). 

The Jacchia portion of the model, called 171, is characterized by constant 
temperature and density at 90 km, analytical temperature profiles (the independeJ)t 
variable being exospheric temperature) and an analytical, fixed, mean molecular 
weight profile between 90 and 105 km. The density is determined by integration of 
the static (i.e., time independent) diffusion equations from the lower boundary at 
90 km up to 2500 km. The variations in the atmosphere are introduced primarily 
via the exospheric temperature. This model was constructed to minimize residuals 
between the density predictions of the model and the densities determined from 
analysis of the effects of atmospheric drag on the orbits of many satellites. 

Earlier Jacchia versions of 1970 [Jacchia, 1970) and 1964 [Jacchia, 1964) have 
been used as the basis for some analytical models, in particular those of Roberts 
[1971) and Weidner, et 01., [1969). The latter is known as the NASA Monograph 
model. Following Walker (1965), Roberts modified Jacchia's temperature profiles 
So that the diffusion equations would become exact differentials, giving an analyti
cal expression for the density. The resurting densities differ from 170 by less than 5 
percent and are thus adequate for attitude work. The NASA monograph model is 
similar to Roberts model but is based, instead, on J64. The significant difference 
between 170 and CIRA 72 is in the 0/02 ratios; there are only small changes in 
the total density, so that the Roberts model is a reasonable approximation of CIRA 
72. Note that Jacchia made some changes in the formulation of the variations, so 
that the same procedures are not followed between 170 and CIRA 72. In the J64 
model, the lower boundary was taken at 120 km, and thus the densities below 150 
km and perhaps below 200 km are erroneous. 

Other models of interest include CIRA 65 [1965), the U.S. Standard At
mosphere, 1962 [1962) and supplements, 1966 [1966), and the U.S. Standard 
Atmosphere, 1976 [1976]. CIRA 65 is based on Harris and Priester (1962). This is a 
time-dependent diffusion model which is better in principle than a static diffusion 
model but worse in practice because of the volume of tables necessary to describe 
the results. In addition, the tables are given for only one latitude, and there is no 
simple way to account for the variations, as is done in ClRA 72. The U.S. Standard 
atmospheres 1962 and 1976 are mean atmospheres only, and the supplement of 
1966 basically J64, and thus suffer from the defect of too high a lower boundary 
altitude. 
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CHAPTERS 

MODELING THE SPACE ENVIRONMENT 

5.1 The Earth's Magnetic Field 
5.2 The Earth's Gravitational Field 
5.3 Solar Radiation and The Solar Wind 

Solar Radiation, The $olar Wind 
5.4 Modeling the Position of the Spacecraft 
55 Modeling the Positions of the Sun, Moon, and Planets 
5.6 Modeling Stellar Positions and Characteristics 

Star Catalog Data Required for Attitude Determination, 
Existing Star Catalogs, Generating a Core Catalog 

Chapter 4 described models of the appearance, shape, and atmosphere of the 
Earth. This chapter is concerned with modeling properties of the spacecraft 
environment that are relevant to attitude determination and control. Sections 5.1 
and 5.2 describe the magnetic and gravitational fields of the Earth, although many 
of the modeling procedures can be extended to other planets as well. Section 5.3 
discusses the interplanetary medium known as the solar wind. The remaining three 
sections discuss models of the position of various objects needed for attitude 
determination-the spacecraft itself. the Sun, the Moon, the planets, and the stars. 

S.l The Earth's Magnetic Field 

Michllel Plett 

Although the general characteristics of the Earth's magnetic field have been 
known for centuries, the first systematic study of the field was initiated by the 
German mathematician and physicist Karl Gauss· in the early part of the 
nineteenth century. Since that time. a great deal 0f data has been accumulated, 
much of it as a result of spacecraft measurements during the 1960s. Although this 
body of data has served to increase our ability to accurately describe the field, it 
has not yet provided the key to the physical processes which produce it or perturb 
it. Thus, in this section we will describe the observed phenomena and, wherever 
possible, provide plausible arguments for their existence, 

The Main Field. The Earth's magnetic field is predominantly that of a 
magnetic dipole such as that produced by a sphere of uniform magnetization or a 
current loop. The strength of the dipole was 7.96 x 1015 Wb'm in 1975. The 
"south" end of the dipole was in the northern hemisphere at 78.60° N la'titude and 
289.55° E longi'tude and drifting westward at about 0.014 deg/year. The dipole 
strength is decreasing by 0.05%/year. This secular drift implies a possible field 
reversal in several thousand years. There is ambiguous evidence of several reversals 

• Among his many contributions, Gauss was also the fust to apply least-squares analysis to the problem 
\ of orbit determination. 
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in the past with time scales of 70,000 to 100,000 years between reversals [Haymes, 
1971]. 

The plane perpendicular to the Earth-centered dipole is called the magnetic 
equator. The field is weakest there, being about 3 X l(f nT at the surface of the 
Earth. Figure 5-1 shows the variation in the dipole field strength- as a function of 
altitude at the magnetic equator. The field strength increases by a factor of two as 
the magnetic latitude increases from 0 deg to 90 deg, as shown in Fig. 5-2. At the 
geomagnetic equator, the field is horizontal relative to the Earth's surface. At a 
geomagnetic latitude of about 27 deg, the field is 45 deg down from horizontal. 
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Fig. 5-1. Earth's Magnetic Field Intensity at the Magnetic Equator as a Function of Altitude 
(Adapted from Schalkowsky and Harris [I969D 
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Fig. 5-2. Relative Intensity of the Earth's Magnetic Field as a Function of Magnetic Latitude 
(Adapted from Scbalkowsky and Harris (1969D 
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5.1 THE EARTH'S MAGNETIC FIELD 115 

Plots of the field strength for various altitudes are given in Figs. 5-3 and 5-4. Note 
that as the altitude increases, the contours become more regular and begin to 
resemble a dipole field more closely. 

The . low in magnetic intensity at about 25°S, 45°W (called the Brazilian 
Anomaly) together with the high at about lOoN, 1000E implies that the center of 
the magnetic dipole is offset from the Earth's center. In 1975, the eccentric dipole 
was offset 474.2 km in the direction of 19,5ON, 146.9°E (J. Bartels, 1936]. The 
eccentric dipole is moving outward at 2.4 km/year, westward at 0.19 deg/year and 
northward at 0.23 deg/year. The eccentric nature of the dipole can be described 
mathematical1y as a quadrupole distribution of magnetization. The maximum 
deviations of the centered dipole model and the quadrupole model from the actual 
field of the Earth are shown in Fig. 5-5. 

The fact that the field rotates with the Earth is a clear indication that the field 
originates within the Earth. A coherent dipole field of this nature can be produced 
either by a uniformly magnetized sphere or by a current loop. However. calcula
tions of the magnetization required lead to values much higher than those observed 
in the Earth's crust. Magnetization deeper than the crust is unlikely because the 
Curie point (i.e., the temperature at which a magnetized material loses its magneti
zation) of iron is reached only 20 km below the Earth's surface (Haymes, 1971). 

An alternative theory postulates a dynamo effect in the outer core of the Earth 
driven by thermal convection currents (Garland, 1971]. Basical1y, a dynamo is a 
conductor driven in a magnetic field such that it acts to sustain that field. The 
theory has been refined to include a primary current which produces the dipole, 

GEOGRAPHIC LONGITUDE 

.titude Fig. 5·3. Total Magnetic Field Intensity at the Earth's Surface (in pT Epoch 1965) (From Hanis and 
Lyle (1969» 
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plus secondary currents or whirlpools near the core-mantle boundary which pro
duce local dipoles. These secondary dipoles are then superimposed to produce the 
observed multipole nature of the field, as well as local anomalies, which are large 
surface areas where the magnetic field deviates appreciably from the dipole field. 
The creation and decay of the whirlpools may cause the secular drift. Another 
theory of the secular drift is that the core is rotating more slowly than the mantle 
a~ld crust. . 

Although the exact nature of the field generator is unknown, the fact that it is 
internal suggests that the field can be conveniently described as a solution to a 
boundary value problem. The lack of surface electric currents implies that outside 
the Earth, the magnetic field, 8, has zero curl, 

VxB=O (5-1) 

which means that the field can be expressed as the gradient of a scalar potential, V 

B=-VV 

The absence of magnetic monopoles implies 

V·B=O 

Substituting Eq. (5-2) into Eq. (5-3) yields Laplace's equation: 

V2V=O 

(5-2) 

(5-3) 

(5-4) 

which, because of the spherical nature of the boundary at the Earth's surface, has a 
solution conveniently expressed in spherical harmonics as 

k ( n+l n 
V(r,O,IP) = a ~ .;.) ~ (g:,cosmlP+ h:,sinmlP)P:'(O) 

nCJ 1 mCiO 

. (5-5) 

where Q is the equatorial radius of the Earth; g:' and h"m are called Gaussian 
coefficients; r, 0, and IP are the geocentric distance, coelevation. and east longitude 
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from Greenwich; and P;:(8) are the associated Legrendre functions. (See Appen
dix G for a further discussion of spherical harmonics.) The n = I terms are called 
dipole; the n=2, quadrupole; the n=3, octupole. The actual calculation of B from 
Eqs. (5-5) and (5-2) is explained in detail in Appendix H. 

To use Eq. (5-5) to calculate the field at any point, the Gaussian coefficients 
must be known. It is the object of theories, such as the core-dynamo theory, to 
calculate them; however, success has been severely limited. The alternative is to 
determine the Gaussian coefficients empirically by doing a least-squares fit to 
magnetic field data using the coefficients as fitting parameters. Data consisting of 
both magnitude and direction is obtained from a series of magnetic observatories. 
Unfortunately, these observatories are not distributed uniformly so that the data is 
sparse in some regions of the Earth. More uniformly distributed data is obtained 
from field magnitude measurements made by satellites. Although there are some 
theoretical arguments that obtaining coefficients by simply fitting field magnitudes 
is an ambiguous process [Stem, 1975], it appears to work quite well in practice 
[Cain, 1970]. 

One set of Gaussian coefficients to degree 8 (n in Eq. (5-5» and order 8 (m in 
Eq. (5-5», comprises the International Geomagnetic Reference Field (IGRF (1975)) 
[Leaton, 1976] and is given in Appendix H. The field model includes the 
first-order time derivatives of the coefficients in an attempt to describe the secular 
variation. Because of lhe lack of adequate data over a long enough period of time, 
the accuracy of this (or any) field model will degrade with time. In fact, the IGRF 
(1975) is an update of IGRF (1965) [Cain and Cain, 1971]. The IGRF (1965) 
should be used for the period 1955-1975 and the IGRF (1975) should be used for 
the period 1975-1980. The maximum and root-mean-square (RMS) errors in the 
field magnitude based on IGRF (1965) are given in Table 5-1 for 1975. 

The estimated growth of the errors presented in the table was a factor of two 
from 1970 to 1975. The errors in direction (i.e., in components of the field) are 
more difficult to estimate but should not be more 'than a factor of two greater than 
the magnitude data shown in Table 5-1. One value in Table 5-1 was verified by 
GEOS-3 data taken in a polar orbit at an altitude of 840 km [Coriell, 1975]. 

Substitution of the magnetic field potential in Eq. (5-5) into Eq. (5-2) will show 
that the strength of the dipole field decreases with the inverse cube of the distance 
from the center of the dipole, and that the quadrupole decreases with the inverse 
fourth power. Higher degree multipoles decrease even more rapidly. Thus, at the 

Table 5-1. Errors in the Field Magnitude Derived From the IGRF (1965) for 1975 (From Trombka 
and Cam [I974D 

DISTANCE FROM DIPOLE FIELD- MAXIMUM ERROR AMSERROR EARTH CENTER 
IEAATHAADIII MAGNITUDE Inn InT) Inn 

l/sURFACE) 30.800 940 280 

1.07 1445 KIIII ALTITUDE) 25.1110 540 180 

2 3.8S0 34 18 
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5.1 THE EARTH'S MAGNETIC FIELD 119 

high al titudes attained by some satellites, it is frequently possible to use a reduced 
degree of expansion in the field model. Omitting higher multipoles permits reduc-
tions in computation time. An estimate of the error resulting from this truncation 
can be obtained by comparing the full field model with its truncated forms, as 
shown in Tables 5-2 and 5-3. The choice of degree should be based on the accuracy 
of the model in Table 5-1 and on the strength of the perturbations of the main field 
discussed below. For a given altitude, those truncation errors to the left of the 
heavy line in Table 5-2 exceed the errors in the field model itself. Generally, 

Table 5-2. Field Truncation Errors (n1) Using the IGRF (1965) (From Trombka and Cain (1974D 

OlGREE 
ALTITUDE 

"DIPOLE. t> (QUADRUPOl E 3 4 " 6 1 

I 
SURFACE 
IR. t EARTH 
RADIUS) 

MAXIMUM 2Il2>O , ..... 8125 3452 ISlg B5B 288 
OMS 10231 694. lSI' 1640 ... 5 384 129 

ltIOKM ABOVE 

SURfACE 
MAXIMUM 16361 10844 6UO 2440 1244 !164 169 
OMS 8281 5431 "64 1 nl 081 .40 81 

R_7EARTH 

RAon 
MAXIMUM 94& 369 "" 22 • • 
RMS SOl ,., 53 11 3 · 

R_3EARTH 

RADII 
MAXIMUM 169 41 I. 1 
RMS .. 25 • 

R_4EARTH 

RADII 
MAXIMUM .. 11 • 
RMS 30 • 

•• LESS THAN ONE "T. 

Table 5-3, Angular Errors (deg) Using Truncations or the IGRF (1965) (From Trombka and Cain 
(I 974D 

DEGREE 
ALTITUDE 

'.DlPOLE. ~ (QUADRUPOLE 3 4 • 8 1 

SURFACE 
IA-l EARTH 
RADJUSI 

MAXIMUM 32 2'1 8 " 2 1 0.0 
RMS 10 1 • 2 1 0.' 0.2 

3DOKMABOVE 
SURFACE 

MAXIMUM 29 ,. 1 • 2 0.8 0.3 
RMS I. 7 3 1.3 o.a 0.3 o.t 

R-2EARTH 
RADII. 

MAXIMUM 10 • 1 0.3 
RMS 4 2 0.' . . · 

R· lEARTH 
RAOII: 

MAXIMUM 6 2 0.3 · · RMS 2 0.7 0.1 . · · 
R •• EARTH 
RADII 

"'AXIMUM • 1 0.1 · - 1,1 0.' . . · · 
•• lIESS THAN 0.1 CEQ. 

L 
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beyond 4 Earth radii and especially beyond synchronous altitude, 6.6 Earth radii, 
the perturbations are sufficiently large to render the harmonic expansion model 
invalid. 

Perturbations to the Main Field. The primary source of geomagnetic field 
perturbations is the Sun. The Sun constantly emits a neutral plasma called the solar 
wind, described in Section 5.3. The action of the solar wind is to distort the Earth's 
field at high altitudes (8 to 10 Earth radii) so that the multipole description of Eq. 
(5-5) is no longer valid at those altitudes. Because the plasma is highly conductive, 
it will not allow the Earth's field to enter it. Thus, the plasma compresses the field 
ahead of it until the plasma energy density equals the magnetic field energy density 
at a distance of about 10 Earth radii [Haymes, 1971). At that point, the plasma 
breaks up so that some of the charged particles are trapped in the magnetic field. 
Other particles slip around the field and drag the field lines along as they pass the 
Earth, as shown schematically in Fig. 5-6. 

A shock front, similar to a sonic boom, occurs where the solar wind first 
strikes the geomagnetic field because the solar wind is moving faster than the field 
can respond [Haymes, 1971). Just beyond the shock front is a region of magnetic 
turbulence called the magnetosheath. It is characterized by rapidly fluctuating field 
strengths and directions [Harris and Lyle, 1969). Within the magnetosphere, the 
field is primarily due to geologic causes; outside, the field is due largely to the solar 
wind and its interaction with the geomagnetic field. The boundary between the 
magnetosheath and the magnetosphere is called the magneto pause. The region 
behind the Earth relative to the Sun, where the geomagnetic field lines first fail to 
close because they are being dragged along by the plasma, is called the cusp region. 
)t occurs at a distance of 8 to 16 Earth radii and :t 25 deg geomagnetic latitude 
[Harris and Lyle, 1969). That part of the geomagnetic field which is carried by the 
plasma is called the magnetotail. Its extent is not known, but it has been observed 
by Pioneer VII at 1000 Earth radii [Harris and Lyle, 1969). The plane which 
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separates the incoming field lines from the outgoing field lines is called the neutral 

sheet. . . 
. Although the solar wind is fairly constant, it is frequently augmented by 

energetic bursts of plasma emitted by solar flares. When this plasma encounters the 
geomagnetic field, it compresses the field further giving a rise in field intensity on 

. the surface of the Earth. This rise, called sudden commencement, initiates what is 
referred to as a magnetic storm (Haymes, 1971]. The initial phase has a typical 
strength of 50 nT and lasts for about I hour. During particularly strong storms, the 
magnetopause can be compressed to below synchronous altitude. ~fter compress
ing the field. the plasma burst injects more charged particles into the geomagnetic 
field. These particles spiral around the field lines in a northsouth direction, 
reversing direction ("'mirroring") at those locations where their velocity is perpen-

. dicular to the field line, usually at high latitudes. They will also drift in an eastwest 
direction, thus developing a ring current at 3 to 5 Earth radii whose magnetic field 
(up to -400 n1) opposes the geomagnetic field. This phenomenon causes the main 
phase of the ~agn~tic storms which lasts for a few hours until the charged particles 
start to escape from the magnetic entrapment through collisions with the at
Illosphere. The initial recovery to about 150 nT then takes from 6 hours to 2 days. 
The field fully recovers in several days. 

These phenomena are summarized in Fig. 5-7, which shows the general 
characteristics of a magnetic storm. The graph, as well as the foregoing discussion, 
is an oversimplification. Although a storm is observed simultaneously throughout 
the.world, its characteristics will be different for observers at different latitudes. 
The, largest storm effects occur in the auroral zones which are 5 deg either side of 

i 67 deg geomagnetic latitude. At that latitude, .,1e disturbance can exceed 2000 nT. 
The amplitude decreases rapidly with latitude to about 250 nT at 30 deg latitude 
and increases to several hundred nT at the equator. At the higher latitudes, the 
storm is characteristically much more irregular than that shown in Fig. 5-7 
IChernosky, Fougere, and Hutchinson, 1965]. 
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The frequency of the storms is somewhat correlated with Sun-spot activity, 
since flares are usually associated with Sun spots [Haymes, 1971]. Thus, a storm 
may recur after 27 days (the length of a solar rotation) and the overall activity 
tends to follow the II-year solar cycle. Stornis are also more frequent near the 
equinoxes, possibly because at approximately those times, the position of the Earth 
is at the highest solar latitude (about 7 deg). Sun spots appear most frequently 
between the solar latitudes of 5 deg and 40 deg on both sides of the equator. They 
appear first at the higher solar latitudes at the beginning of a solar cycle. 

The geomagnetic field is monitored continuously at a series of stations called 
magnetiC observatories. They report observed magnetic activity, such as storms, as 
an index, K, which is the deviation of the most disturbed component of the field 
from the average quiet-day value [Chernosky, Fougere, and Hutchinson, 1965]. The 
K scale is quasi-logarithmic with K = 0, quiet, and K = 9, the largest disturbance the 
station is likely to see. The value of K is averaged and reported for every 3 hours. 
The values of K for 12 selected stations are corrected for the station's geomagnetic 
latitude (since activity is latitude dependent) and then averaged to produce the 
planetary index, Kp' The indices are published each month in the Journal of 
Geophysical Research. The value of Kp is a good indicator of the level of magnetic 
storms and is therefore an indication of the deviation of the geomagnetic field from 
the model in Eq. (5-5). The 3-hourly planetary index can be roughly (10%) 
converted to the linear 3-hourly planetary amplitude, or by: 

ap =exp«Kp + 1.6)/1.75) (5-6) 

The value of a
p 

is scaled such that at 50 deg geomagnetic latitude and a deviation 
o~ 500 nT at K=9, the field deviation AB= IBdislurbed- Bquicll is 

ABR::.2ap (5-7) 

For other latitudes, ap is scaled by dividing the lower limit of AB for K = 9 by 250. 
Thus, at a higher latitude for which AB= 1000 nT corresponds to K=9, 

ABR::.4a
p 

(5-8) 

Although Kp is a measure of geomagnetic activity, it is ultimately a measure of 
solar activity. In fact, it has been found empirically that the velocity of the solar 
wind can be derived from Kp by: 

v = 8.44 ~ Kp + 330 

where v is in kilometres per second and ~Kp is the sum over the eight values of Kp 
for the day [Haymes, 1971]. Similarly, the interplanetary magnetic field is 
generated by the Sun, and it has been shown empirically that the interplanetary 
field is approximately 

Kp =0.3B±'O.2 

'where B is the magnitude of the interplanetary field in nT [Haymes, 1971]. 
. The Sun'is also responsible for the diurnal variation of the geomagnetic field, ,', , 
Solar electromagnetic radiation ionizes some atmospheric atoms and molecules' 
an altitude of roughly 100 km, producing tlie E-layer of the ionosphere. The 
gravitational field then exerts a tidal force causing the ions and electrons to 
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The interaction of the charged particles with the geomagnetic field produces a 
rather complex current system which creates a magnetic field. The effect is most 
pronounced on the day side of the Earth, since it is dependent on the ion density of 
the E-Iayer. On solar quie~ days, this· field causes a deviation from the internal field 
of 20-40 nT in the middle latitude regions and can' cause deviations of 100-200 nT 
near the magnetic equator [Harris and Lyle, 1969]. At each magnetic observatory, 
the daily magnetic variations for the five quietest days are averaged together to 
produce the quiet day solar variation,. S • This variation is subtracted from the 
actual variations befpre generating Kp. The Moon also exerts daily tidal forces 
which lead to quiet-d~y variations abOut 1/30 of that due to the Sun [Harris and 
Lyle, 1%9}. 

There are two other current systems of some importance: the polar electrojet 
and the equatorial electro jet. The polar electro jet is an intense ionospheric current 
that flows westward at an altitude about 100 km in the auroral zone. Changes in 
the electro jet can cause negative excursions (called bays) as great as 2000 nT and 
are typically about 1000 to 1500 nT at the Earth's surface. The excursions can last 
from 0.5 to 2 hours. Like magnetic storms, auroral activity has a 27-day periodicity 
and reaches a maximum at the equinoxes [Harris and Lyle, 1969J. The equatorial 
electro jet is an intense,west-to-east current in the. sunlit ionosphere. It is partly 
responsible for the high intensity of the magnetic storms. It produces a 220 nT 
discontinuity in the total field between 96- and 130-km altitude. At 400 km, the 
field is 30 to 40 nT at longitudes across South America and 10 to 20 nT elsewhere 
[Zmuda, 1973]. 

5.2 The Earth's Gravitational Field 

John AieHo 
Kay Yong 

Two point masses, M and m, separated by a vector distance r, attract each 
other with a force given by Newton's law of gravitation as 

F GMmA =--r ,.,. (5-11) 

where G is the gravitational constant (see Appendix M). If MIDis the mass of the 
Earth and m is the mass of the body whose motion we wish to follow, then it is 
convenient to define the geocentric gravitational constant, ILID' and the Earth 
gravitational potential; U, by: 

ILID=GMID 

. GMID U=--
r 

(5-12) 

(5-13) 

From Eqs. (5-12) and (5-13), Eq. (5:11) may be rewritten as the gradient of a scalar 
potential: 

ILlDm A 

F=---r ,.,. 
=-mVU (5-14) 
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where r is the unit vector from the Earth's center to the body (assumed to be a 
point mass). A gravitational potential satisfying Eq. (5-14) may always be found 
due to the conservative nature of the gravitational field. 

By extending the single point mass, m, to a collection of point masses, the 
gravitational potential at a point outside a continuous mass distribution over a 
finite volume can be defined. For example, consider a solid body of density p, 
situated in a rectangular coordinate system with the mass elements coordinates 
denoted by (E, 1f, n and the point coordinates denoted by (x,y,z). The gravitational 
potential at the point, P=(x,y,z), due to the body can be written as [Battin. 1963) 

111 
p(E,1f,n 

U(x,y,z) = - G dEtJr,dr 
( 1/ r [(x-E)2+(Y-1f)2+(z-n2f /2 (5-15) 

Successive applications of Gauss' law and the divergence theorein show that U 
satisfies Poisson's equation, 

(5-16) 

which, in the region exterior to the body (i.e., where p=O), reduces to Laplace's 
equation: 

(5-17) 

Because of the spherical symmetry of most astronomical objects, it is con
venient to write Eq. (5-15) in the spherical coordinate system (r, 9, q,). In this case, 
solutions to Eq. (5-17) may be written in terms of spherical harmonics as described 
in Appendix G. Specifically, U for the Earth can be expressed in the convenient 
forin 

#Le 
U= - -r- + B(r,8,4» (5-18) 

where B(r,8,4» is the appropriate spherical harmonic expansion to correct the 
gravitational potential for the Earth's nonsymmetric mass distribution. B(r,8,4» 
may be written explicitly· as [Meirovitch, 1970; Escobal, 1965) 

B(r,8,4»= #Lre { ~2 [ ( Rre ) nJnP nO(cos8) 

+ m~1 (Rre f(Cnmcosm4>+Snmsinm4»Pnm(COS8)]} (5-19) 

Here, Re is the radius of the Earth, I n are zonal harmonic coefficients, Pn•m are 
Legendre polynomials, and Cnin and Snm are tesseral harmonic coefficients for 
n +- m and sectoral harmonic coefficients for n = m (see Appendix G). 

In Eq. (5-19), we see that the zonal harmonics depend only on latitude, not on 
longitude. These terms are a consequence of the Earth's oblateness. The tesseral 

-Note that the n=O term is written explicitly in Eq. (5-18) as - 1119 ,and that the n= 1 term is absent 
r 

due to the origin of the coordinate system being coincident with the Earth's center of mass. 
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harmonics represent longitudinal variations in the Earth's shape. Although gener
ally smaller than zonal terms, tesseral components become important in the case of 
geosynchronous spacecraft because the satellite remains nearly fixed relative to the 
Earth; consequently, longitudinal variations do not average to zero over a long 
period of time. For most satellites other than geosynchronous ones, the assumption 
of axial symmetry of the Earth is usually valid, and only the zonal harmonic 
corrections are needed. Thus, the expression for the gravitational potential of the 
Earth can be approximated as 

(5-20) 

The zonal harmonics are a major cause of perturbations for Earth-orbiting 
spacecraft, being the primary source of changes in orbital period, longitude of the 
ascending node, and argument of perigee (Section 3.4). 

The gravitational potential of Eq.(5-18), when combined with the potential 
due to the angular momentum of the Earth's rotation, describes a mathematical 
model or reference figure for the shape of the Earth, known as the geoid or mean 
sea level. The geoid is a surface coincident with the average sea level (i.e., less 
meteorological and tidal effects) over the globe or in an imaginary channel cut in 
the continents. A number of measurement techniques have been used [King-Hele, 
1976] to map the geoid, including satellite-ta-satellite tracking, in which a geo
synchronous satellite measures the relative velocity of a lower orbiting satellite; 
radar altimetry from satellites; and laser ranging to reflectors both on satellites and 
the Moon. The last method has been the most accurate. 

Figure 5-8 illustrates the geOid height or deviation of the geoid from a reference 

Fig. 5-8. Geoid Heights From Goddard Earth Model-8 (GEM-8). COntours pre at IO-m intervals. 
(From Wagner, et a/., (1976D. 
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spheroid of flattening 1/298.255 and semimajor axis of 6378.145 km* as given by 
the Goddard Earth Model-8 (GEM-8) [Wagner, el 01 .• 1976]. Particularly notice
able is the variation from 77 m above the geoid near New Guinea to 105 m below 
in the Indian Ocean. 

The accuracy of the potential function, i.e., the number of terms included in 
the infinite spherical harmonic series, has a greater effect on orbital dynamics than 
on attitude dynamics. For analysis of gravity-gradient torques on spacecraft. 
inclusion of the J2 term in the harmonic series is normally sufficient because of the 
uncertainties in other environmental disturbance torques. For practical purposes, 
the point mass potential function, Eq. (5-14), is adequate for spinning satellites or 
those with only short appendages. Table 5-4 lists the differential acceleration, 
da/dr = - 2p./ r3, experienced by these satellites for various altitudes. 

'fable 5-4. Differential Acceleration. Il.Q/1 br Point Mass Gravitational Field (Il.Q=Q2- QI is the 
difference in acceleration between points PI and P2 whose distances from the center of the 
massive object are'l and'2 and /='2-'1·) 

DISTANCE FROM AoI.lm' ... 2'm! 
CENTER OF 
OBJECTlkmI MOON EARTH SUN 

2.000 .,23.,0-6 - -
B._ 3,74010-8 3J14. ,O-e -
8.000 1.92010.-8 I.6S. ,O-e -

20,000 1.23.,0-9 9.96. ,O-e -
40.000 1.63. to-1O 1.26. IO-e -
ItI' 9.80. '0-12 7.97.,0-10 -
106 9.80.,0-.5 7.970,0-13 2.65.,0":7 

107 - 7!J7. '0-18 2.65 .,0-10 

108 - - 2.65.,0-13 

'M • ,,:/-., IS THE DIFFERENCE IN ACCELERATION 8£1WEEN POINTS., AND.2 _OSE 

DISTANCES FROM THE CENTER OF THE MASSIVE OBJECT ARE" AND'2 AND Q e '2-"" 

For gravity-gradient or three-axis-stabilized satellites with long, flexible ap
pendages, the Jz effect becomes significant in overall· attitude motion. For example, 
consider the potential function for the Earth written as 

GM Ua -r- [Uo+ UJa + UJs + UJ. + ... ] (5-21) 

where 

UJ , =( 7 rJ2!-(3Cos1fJ-l) 

UJs =(-~ r J3t( coslQ- tc.oso) 

• See Section 4.3 for definition of various reference surfaces. 
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The values for each of these terms are compared in Table 5-5 for 9 = 90 deg. where 
it is seen that although UJ is large compared with UJ and UJ , it is only about 

2 ,. 

0.05% the value of Uo-· Moreover, the importance of zonal harmonic corrections 

Table 5-5. Comparison of VarioUs Zonal Harmonic Terms iD the Expansion for the Earth's Gravita
tional Potential Over the Equator 

ALTITUDE liM u
J4 

, 
Uo U.., u

J3 CitY) c!ta02/SEc2, 
0 62._ I 0.64.,0-3 0 -0..69.,0-8 

200 60.596 1 0.81.,0-3 0 -on_ 10-8 

!lOG 57.l1!12 1 0 .... 10-3 0 -0 .... 10-8 

1,000 54.1125 1 0.40 x 10-3 0 -0.33.,0-1 

2,000 47.&16 1 0.3,.,0-3 0 -0.20.,0-8 

10,000 24.337 1 0.82.,0-4 0 -o.4&.,D-8 

36.000' 9.401 1 0.13 a 10"" 0 -0.30.,0- 11 

'AI'PROltIMATEL Y GEOSYNCHRONOUS OA8IT. 

beco1.1es less significant at higher altitudes. When the spacecraft is in an almost 
geosynchronous orbit, the inclusion of lunar and solar attractions may become 
more important than the spherical harmonic correction, as shown in Table 5-6, 

Table 5-6. Ac:celer:ltion Due to Gravity With Lunar and Solar Corrections for Earth. Moon, and Sun 
iD SYZYID'· . 

HEIGHT DEARTH 
I6aMOONI I6aSUNI 

IKMI 
+ - + -

100 9.498 1.091.'0-6 ,.,5.,0-6 5.,3,.,0-4 5.138.,0-4 

600 8.426 ,.,6.,0-6 1.22.,0-6 5.447.,0-4 5.454.,0-4 

2.000 5.678 1.40 It 10-6 1.49 It 10-6 6.634 It 10-4 6.646.,0-4 

10.000 1.466 2.66.,0-6 3.112.,0-6 ,.296.,0-3 ,.300.,0-3 

35.766 0.2242 6.23.,0-5 8.68.,0-6 3.326 It 10-3 3.356.,0-3 

100.000 0.0J52 ,.28.,0-5 3.112.,0-5 8.342.,0-3 8.522.,0-3 

"THE ACCELERATION DUE TO GRAVITY WITH LUNAR AND SOLAR CORRECTIONS FOR EARTH. 
MOON, AND SUN IN SYZYGY IS 

WHERE r D HEIGHT IKMI 

• Values of the major spherical harmonic coefficients for the Earth are given iD Table L·S. 
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For attitude dynamics, the following gravitational potential function is norm
ally sufficient for the computation of gravity-gradient torques: 

Vp = _ P.fD + 'iJ2 P.fD ( RfD )2[ (r3P)2 - .! 1 
rp 2 rp rp rp. 3 

(S-22) 

where fp is the vector from the center of the Earth to the point P, f3p is the 
component of fp parallel to the Earth's spin axis, and RfD is the equatorial radius of 
the Earth. . 

The gravitational potential given by Eq. (5-22) can be expanded in Taylor 
series aboufthe center of mass of the spacecraft to give 

(S-23) 

Therefore, the gravitational acceleration at point rp is 

d\ 
g =-=-VU =-VV +[G]·(f -f) l' dt2 pee p 

=ge + [ G]-(fe -fp) (S-24) 

where Ve is a constant; rp and fe are the position. vectors of an arbitrary point and 
the center of mass of .the spacecraft, respectively, in geocentric coordinates; and 
ge= - V Ve is the gravitational acceleration of the center of mass, Specifically, 

(5-25) 

where 8 is a unit vector in the direction of increasing deClination, 8 is the 
declin .. tion, cOS-I(r3e/re), and [G) is the gravity-gradient tensor with components 

aVe 
G··=--

':I ar;earjc (5-26) 

The gravity-gradient tensor is important for attitude work; explicit expressions for 
the components are . 

GII~ :; [1-3( r:: f]+1J2 :; (~~ f{ 1-5[ C:ee r +C; Y] 
+ 3SC:: f (r:: y} (S-27) 

G22 = :; [1-3(r;Y]+1J2 ~;(~~ f{ l-S[(rr~)\(:~r] 
+3S( ~e y( r:ee y} 
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G = G = _ 3 /LED ( ric )( T2t:) + 1J /LED (RED )2{ _ 5( rlc)( T2C) 
12 21 3 r r 2 2 3 . r r r rt: c t: Tt:. t: t: t: 

+3S( ;t:<)( rr:)( r; f} 
G23= G32 = -3 :; C::)( r~t:)+ tJ2 ':; ( ~~ r { -5C~ )C:: ) 

+3S'( rr~)( ;:)( ~c f} 
The gravity-gradient matrix becomes particularly useful for spacecraft that have 
long appendages or that are highly asymmetrical. 

For a spacecraft in a high-altitude orbit, the J 1. term may be less important 
than the lunar and solar perturbations which are included in the equation of 
motion of a satellite [Escobal, 1965; Battin, 1963] as follows: 

dd~ =-VU-GMM(r:v - r!M)_GMS(r!V - r:s) 
t rMV rEM rsv rES 

(S-28) 

.26) where the subscripts M, S, E, and V denote Moon, Sun, Earth, and spacecraft, 
respectively, and rMv is the vector from the Moon to the spacecraft. 

; for 

i I 

:5-27) 

5.3 Solar Radiation and The Solar Wind 

David M. Gonlkb 

Solar radiation includes all the electromagnetic waves emitted by the Sun, from 
X-rays to radio waves. Solar wind is the particulate radiation expelled from the Sun 
and consists mainly of ionized nuclei and electrons. Both solar radiation and solar 
wind may produce torques which affect the spacecraft attitude. The charged 
particles and the magnetic field embedded in the solar wind may also affect sensor 
performance or ground-spacecraft communication. 

For most applications, torques due to solar radiation pressure will be much 
larger than those due to the solar wind. Torque is proportional to the momentum 

(momentum per unit area per unit time), and the solar radiation momentum 
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flux is two to three orders of magnitude greater than that of the solar wind. 
Furthermore, the solar wind does not penetrate the Earth's magnetopause (see 
Section 5.1) except in the vicinity of the magnetic poles. 

5.3.1 Solar Radiation 

The mean solar energy flux integrated over all wavelengths is proportional to 
the inverse square of the distance from the Sun. To within 0.3%, the mean 
integrated energy flux at the Earth's position is given by: 

F = 1358 W/m2 
~ 1.0004+0.0334cosD (5-29) 

where 1358 W 1m2 is the mean flux at I AU, and the denominator is a correction 
for the true Earth distance. D is the "phase" of year, measured from July 4, the day 
of Earth aphelion [Smith and Gottlieb, 1974). This is equivalent to a mean 
momentum flux of 4.4XlO- 6 kg·m- l ·s-2• Variations in this flux from this 
formula are always less than 0.5%. Solar radiation is largely emitted in the visible 
and near-infrared portions of the spectrum, as shown in Fig. 5-9. Note that the 
three curves coincide for waveleongths longer than 14 nm. 
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Fig. S-9. Solar Energy Flux at 1 AU in the Ecliptic Plane (From Smith and Gottlieb [1974D 

5.3.1 The Solar WInd 

The solar wind ° was first postulated to explain the aurorae, geomagnetic 
disturbances, and the bending of comet tails, and was first observed directly by the 
Russian Luna 2 spacecraft in 1959 and Explorer 10 in 1961. The solar wind is 
coronal gas ejected from the Sun by a process that "can be deduced only by true 
believers, usually with a parental relationship to one of the competing ideas or 
models" (Hundhausen, 1972). Its composition is typical of that of the corona, 
meaning that the relative abundance of elements is essentially solar, with hydrogen 
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dominating, helium being second most common, and all other elements two or 
more orders of magnitude less abundant. For a table of solar abundances. see 
Allen (1973). The solar wind is ionized virtually completely at least to a distance of 
5 AU or more, with the ionization state of the elements being those that would be 
expected from a 1.5 X 10' oK gas (i.e., nearly all electrons with binding energies less 
than 130 eV are stripped from their nuclei). Table 5-7 lists some properties of the 
"quiet" solar wind at I AU in the ecliptic plane. 

Table 5-7. Properties of the Quiet Solar Wind at 1 AU in the Ecliptic Plane (Adapted from 
Hundhausen and Wolfe (1972» 

PROPERTY VALUE PROPERTY VALUE 

MEAN VELOCITY IN THE 3.0- 3.s x105nn."' MEAN PROTON TEMPERATURE 4. 104 oK 
eCLIPTIC 

1.8 x 104 mi·' TYPICAL MAGNETIC FIE LO hT 
TYPICAL NONRAOIAL 

2.3. 10~9kg_m·'.i2 VE LOCITY IN THE ECLIPTIC MEAN MOMEIIITUM FLUX 

1.8 x 104 ms-' 
DENSITY IN THE ECLIPTIC 

MEAN VELOCITY PERPEN-
7.9.,0.12 kg. m-' . .-2 DlCULAR TO THE ECLIPTIC TYPICAL NONRAOIAL COM· 

PROTON DENSITY • 8.7 x 106 m-3 PONENT OF MOMENTUM FLUX 
DENSITY IN THE ECLIPTIC 

ELECTRON OENSlTY 7.9.,0·'2kgo""'.,' 1.5 x ,r!'°K MEAN MOMENTUM FLUX 
ME AN EL ECTRON DENSITY PERPENDICULAR 
TEMPERATURE TO THE ECLIPTIC 

Variations from the quiet solar wind values occur frequently. Figure 5-10 
shows observed solar wind velocity distributions as observed by the Veta 3 
spacecraft from 1965 to 1967. Other parameters listed in Table 5-7 probably vary, 
but the correlation of their variation with velocity is poorly known. One explana
tion of the variations is the sporadic occurrence of "high velocity strealDS" in the 
solar wind. The velocity increases over the period of a day to typically 6.5 X lOS 
mis, and then declines over several days. High densities occur for the first day, 
followed by several days of abnormally low densities. The temperatures vary 
proportionally to the velocity. The direction of the wind moves west of radial up to 
about 8 deg near maximum velocity after being east of radial the same amount at 
the leading edge of the stream [Hundhausen, 1972J. 

High-velocity streams are associated with energetic solar storms, but the exact' 
relationship is unknown. These must be regarded as unpredictable at this time. The 
solar wind appears to be split in regions (sectors), which may be connected with the 
high-velocity stream phenomenon. These sectors, ~ch 30 to ISO deg across, are 

250 350 460 5&0 650 750 

VELOCITY IKMlSEC) 

Fig. 5-10. Observed Solar Wind Velocity Distribution as Recorded by Vela 3 Spaccc:raft 
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best defined by the alternating direction of the interplanetary magnetic field within 
them, as shown in Fig. 5-11. The sector structure lasts for several months. 

Data on the solar wind at distances other than 1 AU in the ecliptic plane is 
sparse. Pioneers to and II, which took measurements of solar wind velocity from I 
to 5 AU, found that the mean velocity was essentially constant and that the 
velocity variation decreased with increasing distance [Collard and Wolfe, 1974). 
Nothing is known about the solar wind outside the ecliptic plane. 

---. MAGNETIC~'ELD OtR£CTION 

---. SECTOR BOUNDARY 

Fig. 5-11. Sector. BouDdaries and the Direc:ti9D of the Interplanetary Magnetic: Field (Adapted from 
Harris and Lyle (1969D 

5.4 Modeling the Position of the Spacecraft 

John N. Rowe 

To deten'nine attitude reference vectors for nearby celestial objects such as the 
Sun. th~ Earth, or other planets, it is necessary to have an accurate model of the 
position of the spacecraft itself. In this section. we discuss both definitive orbits as 
they are generated at NASA's Goddard Spa~ Flight Center and a simple orbit 
generator using the basic equations presented in Chapter 3. The latter method is 
satisfactory for most aspects of prelaunch attitude analysis and for generating 
simulated data. However, the analysis of real spacecraft data generally requires use 
of the ephemeris files generated by one of the much more sophisticated orbit 
programs. 

The orbit of a spacecraft is determined from observations of its position or its 
distance and radial velOcity at different points in its orbit; distance and radial 
velocity are the most commonly used and are often referred to as range and range 
rate, respectively. Because six element& are to be determined, at least six pieces of 
information are required. This means pairs of right ascension and declination or 
pairs of distance and radial velocity at a minimum of three points in the orbit. 
Usually such data is obtained at more than three points, and a differential 
correction procedure (see Chapter 13) is used to estimate the elements. 
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Spacecraft Ephemeris Files. When the position of the space<:raft is needed for 
attitude determination. it is normally obtained from files generated by numerical 
integration incorporating all significant forces. This is accomplished at Goddard 
Space Flight Center using the Goddard Trajectory Determination System (GTDS), 
a detailed discussion of which is beyond the scope of this book. (See Capellari,el 
01., (1976].) 

GTDS generates two types of files. One type is the multilevel direct access or 
ORBIT file, which contains the spacecraft acceleration from whi.ch ·the position 
and velocity may be recovered. This file is read with the standard utility routine 
GETHDR (Section 20.3). Table 5-8 shows the contents of the two header records 
and Table 5-9 shows the contents of the data file. The header information is 
returned in arrays HDR and IHDR of GETHDR according to the following 
scheme: bytes 1 through 608 of header 1 and bytes I through 608 of header 2 are 
returned in that order in HDR; bytes 609 through 1092 of header I and bytes 609. 
through 1092 of header 2 are returned in that order in IHDR. 

The second type of GTDS file is the sequential EPHEM file, which contains 
the spacecraft position and velocity at regular time intervals. The position and 

Table 5·8. Goddard Space flight Center ORBIT File Header Records. Contents of bytes marked 
"intem~1 use" are given by Cappellari. et aI .• (1976) and Zavaleta, et aI., [1975J • 
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velocity for intermediate times are obtained with a six-point interpolation proce
dure using the standard routine ROITAP (Section 20.3). Table 5-10 shows the 
header, data, and trailer records of an EPHEM file. Note that the file is in units of 
864 sec and 1()4 km, whereas the output position and vel9City from ROITAP are in 
units of 6378.166 km and 7.90538916 km/sec (these are known as Vanguard units; 
see Appendix K). . 

A similar file is anticipated for payloads flown on the space shuttle. The 
shuttle orbit.information will be given as a series of position and >velocity vectors in 
geocentric celestial coordinates (mean of 1950). 

Table 5-9. Goddard Space Flight Center ORBIT File Data Record 

IIYT£II NAME DESCRIPTION BYTES NAME DESCRIPTION 

'-8 TN TfII£ OF nTH tLASTl ACCELERA· 393-<0'6 SXlIII I- 1.3; 
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XDIi F~ f.!"I! REGULARIZED F'LE 417-!rt69S XVDDIK).J' IC. II I, 11; I .. 1.3;J" 1,20 
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5691-6176 SVlIU' .-'.3;J .. ,;'20 
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SATELUTE ACCELERATION ACCELERATION PARTIALS 
vaCTGRS ikmI-.2. 

8"'-6658 SV2U •• " .-1.3:J.'1.2D 
28'-368 TOOl", "Dl.11 seCOND SUM MATRICES POR 

TIME REGULARIZATION ARRA'" ACCELERATlON PARTIALS 
GPTlIIBIad _7 __ 

NBRSEC SECTION N'uueER 
369-392 extlll .-t.3: 

FIRST SUM VECTOR OF SATELUTE 
ACCeLERATIONS 

NOn: THIS FORMAT APPUES TOALL RECORDS EJCC&PT THE FIRST ANO THE SECOND. THE BLOCK SIZE FOR A FILE WITH NO PARTIALS 
IS 1092. THE BLOCK Size OF A FILE WITH PARnALStS 66BO. A DATA RECORD WHEN NO PARTIALS ARE PRESENT IS 4208YTES 

•. LONG: THIS RECORD CONSlSTSOF BYTE. LOCAnQNS 1-416 AND 6657-6660. 

Orbit Generators. Orbit generators may be classified as those which use 
Kepler's equation to determine position and velocity, and those which integrate the 
equations of motion directly using models of the forces. Only the former are 
discussed here and only elliptical orbits are considered. Recall from Chapter 3 that 
Kepler's equation relates, for an eliptic orbit, the mean anomaly,· M, at some time, 
t, to the eccentric anomaly, E, at the same time by 

M=E-esinE (5-30) 

where e is the eccentricity. If to is the epoch time of the ele~ents, then the mean 
anomaly at time t is found from the mean anomaly at epoch by 

M= Mo+n(t- to)' (5-31) 

where n=2w/period is the mean motion. The utility routine ORBGEN (Section 
20.3) solves Kepler's equation numerically to find E at any time before or after the 
epoch using an iterative solution .to Eq. (5-30) (obtained using Newton's method). 
Successive estimates of E are given by 

M+esin(Ej_I)-Ej_1 
Ej=E1_ 1+ 1- (E) . ecos i_I 

• Angles are expressed in radians throughout this section. 

(5-32) 
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Table S-IO. Goddard Space Flight Center EPHEM File Format 
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where the starting value Eo= M. (Note that if M is identically 0, this method will 
fail; the solution in this case is trivial, that is, M = 0 implies E = 0.) In routine 
ORBGEN, the iteration proceeds until either the correction term is less than 
I x 10- 8 or until 25 iterations have occurred. Once the eccentric anomaly is found; 
the true anomaly, P, and the distance, r, may be found from (see Chapter 3): 

(1- e2)1/2sinE 
sin(p)= 1 E -ecos 

cos(E)- e 
cos(v)= 1- ecosE 

r=a(l-ecosE) 

(5-33) 

(5-34) 

(5-35) 

Equations (5-33) through (5-35) thus give the position of the spacecraft in the 
orbit plane. We need to take into account the orientation.of the orbit in spa-ce to 
find the position relative to an inertial system. Use of the spherical triangles shown 
in Figure 5-12 gives 

x = r[ cos(w + p)cos(D) - sin(w+ v)sin(D)cos(i)] (5-36) 

y = r[ cos( w + P )sin(D) + sin( w + v )cos(~)cos( i)] 
z = r[ sin(w + v}sin(i)] 

(5-37) 

(5-38) 
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Fig. 5-12. DefJDing the Orientation of an Orbit in Space. (See also Fig. 3-7.) 

5.4 

where n, (0), and; are the longitude of the ascending node, the argument of perigee, 
and the inclination; and x, y, and z are resolved in the coordinate system in which 
the elements are defined. It is possible to use Eqs. (5-33) and (5-34) to remove the 
explicit true anomaly dependence in Eqs. (5-36) through (5-38) and thus compute 
the position directly. 

The velocity at time t may be found by applying the chain rule to Eqs. (5-36l 
through (5-38). Thus. for example. 

(5-39) 

where (0), n. and ; are assumed constant. The quantity dE/dt may be found by 
differentiating Kepler's equation to obtain 

so 

dM dE dE -' =--ecos(E)-
dt dt dt 

dE ( I )dM 
Tt= l-ecosE dt 

The equations for the velocity are as follows: 

dxna 
-d =-[b/2cosE-a/,sinE] t r 

i, = "; [bm2cosE - am,sinE]' 

dz na [ . ] dt ~ 7 bn2cosE-an,smE 

where b= a(I':-' e2)'/2 

I, =cosncos(o)-sinnsin(o)cosi 

m, =sinUcos(o)+cosUsin(o)cosi 

(5-40) 

(5-41) 

(5-42) 

(5-43) 

(5-44) 
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nl =sinwsini 

12 = - cos Sl sin w - sin Sl coswcosi 

m2 = - sin Slsinw + cosSl COSw cos i 

n2=coswsini 
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The above procedure is not coordinate-system-dependent; that is, the position and 
velocity will be in whatever coordinate system the elements of the orbit are defined. 
For Earth-orbiting spacecraft, the elements are usually given in geocentric inertial 
coordinates, whereas for interplanetary orbits, the elements are usually given in 
heliocentric coordinates (see Section 2.2). 

The simple two-body orbit generator described above may be modified to take 
into account noncentralforces (or forces from a third body). The procedure, which 
is known as the method of general perturbations (Section 5.5), is to obtain series 
solutions to the equations of motion in the form of perturbations to the orbit 
elements. These elements then become functions of time, and the method outlined 
above for solving Kepler's equation is applied with different elements each time the 
position is to be calculated. (Some simple results of general perturbations, in 
showing the effect of the oblateness of the Earth on the orbit of an Earth satellite, 
are given in Section 3.4, Eqs. (3-37), (3-38), (342), and (343).) Increasingly 
accurate descriptions of the actual motion of a spacecraft can be obtained by 
including an increasing number of perturbation terms (both periodic and- secular). 
This forms the basis of the Brouwer method, which is a detailed application of the 
theory of general perturbations to the motion of artificial Earth satellites. 

A simpler, more direct approach to the detailed calculation of orbits is to 
integrate the equations of motion directly, given the initial conditions. This is 
known as the method of special perturbations (Section 5.5). Models of all forces 
which are expected to be significant are iJ}cluded. Two commonly used integration 
schemes are those of Cowell (integration in rectangular coordinates) and Encke 
(calculation of an osculating conic section for which integration gives the 
differences between the real coordinates and the coordinates given by the conic 
section). Methods of this type are used in GTDS. 

Utility and Accuracy of Two-Body Orbit Generators. The question arises as to 
the utility and accuracy of simple two-body orbit generators. Some comparisons, 
using as a reference an integration model from GTDS incorporating Sun, Moon, 
Earth harmonics, atmospheric drag, and solar radiation pressure are shown in 
Table 5-11. The references in Table 5-11 to "error with and without perturbations" 
refer to the inclusion in the two-body generator of the secular .perturbations in the 
right ascension of the ascending node, the argument of perigee, and the mean 
motion due to the second-order gravitational harmonics of -the Earth. (These are 
the J 2 perturbations discussed in Chapter 3.) 

The near-circular orbits with moderate inclination and altitudes (cases I and 
2) show improvement by including the perturbation. The highly elliptical orbit 
(case 4) and the low-altitude, high-inclination orbit (case 3) show no pronounced 
effect from including the perturbation (slight degradation in case 3 and slight 
improvement in case 4) and the absolute errors are large. The study also indicated 
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Table S-II. Comparison of Simple Two-Body Orbit Generators. (From Shear (1977]; see text for 
discussion.) 
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that with the perturbation, the position errors are almost entirely in track; without 
the perturbation, the out-of~plane error becomes significant, especially for cases I 
and 3. 

'A second study was performed by Legg and Hotovy [1977] for an orbit similar 
in size and shape to that of case I (e=O.OOI, a=6928 km) but with an inclinati~n 
of 97.8 deg. This study showed the major perturbations to be due to J2, but that 
imp~ementing' only the secular component resulted in a significant degradation in 
accuracy. (The maximum absolute errors for two orbits without perturbations were 
on the order of 6 deg in position and 8 km in distance.) 

The above studies are not sufficient to establish general recommendations for 
whether or not to include the secular perturbations in simple orbit generators. In 
view of the overall large error in these .generators, there seems to be no point in 
including the perturbations unless a study indicates they are useful in a particular 
situation. The use of simple orbit generators is limited mainly to two situations: (I) 
when the orbit is so poorly known that the error contributed by the orbit generator 
is not a limitation (such as during an immediate postlaunch period); and (2) for 
simulations or analysis when the two-body position is in effect the true position. 
Even in this case, however, excessive extrapolation may result in the generation of 
an unrealistic position. 

s.s ModeUng the Positions of the Sun, Moon, and Planets 

JohnN.Rowe 

To use the Sun, the Moon, or the major planets in the solar system as 
reference vectors for attitude determination, it is necessary to model the changing 
positions of these objects. The accuracy of such modeling should be such that 
attitude accuracy is not limited by the ephemeris accuracy; i.e., the uncertainty in 
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the reference vectors should contribute a negligibie fraction of the allowable 
attitude uncertainty. Uncertainty in the reference vectors arises from two sources: 
uncertainty in the position of the spacecraft as described in the previous section, 
and uncertainty in the position of the reference objects themselves. The error in 
modeling the positions of the solar system bodies using the complete theories 
described below is typically on the order of 0.1 arc-sec (see, for example, [Clem
ence, 1961D; this quantity is limited mainly by the error in the observations used to 
compute the model parameters·. 

The orbits of the major planets and the Moon are nearly circular. They are 
characterized by small eccentricity (the largest being about 0.2 for Mercury) and 
small inclination to the ecliptic (the largest being about 7 deg, again for Mercury). 
General characteristics of planetary orbits are discussed in Section 3.2 and tables of 
orbital elements are given in Appendix L. 

The basic problem to be solved is the same as that discussed in Section 5.4 for 
the orbital motion of spacecraft, except that in the present case the body in 
question may not necessarily be treated as a point of negligible mass. Two 
approaches have been adopted to the modeling of the motions of bodies in the 
solar system. These are the method of general perturbations and the method of special 
perturbationst [Danby, 1962]. In the former, the motion of the body is obtained 
from series solutions to the differential equations of motion. These solutions-·a~e 
expressed in closed form and typically involve power series in the time to give the 
mean motion, along with trigonometric series which provide corrections to the 
mean motion. The arguments of these correction terms are linear combinations of 
quantities relating to the mean motipn, with amplitudes that are either constant or 
are slowly varying functions of time. The method of special perturbations uses a 
direct numerical solution of the equations of motion. The result is a series of state 
vectors at different times; there is no closed-form expression that can be used to 
compute directly the locations of the bodies. . 

Both of the above methods are used in the computation of ephemeris informa
tion. The locations of the inner planets (Mercury, Venus, Earth, and Mars) are 
usually computed using general perturbations because, for these objects, the 
Sun-planet interaction is closely described by two-body solutions. The locations of 
the five outer planets are computed using special perturbations because the 
two-body approximation is less valid. Historically, the motion of the Moon has 
been computed by general perturbations yielding a quite complex solution, involv
ing over 1600 periodic terms. However, a preliminary theory of special perturba
tions for the Moon has been published [Garthwaite, et al., 1970]. 

The primary sources for background information on ephemerides of solar 
system bodies and for tabular ephemerides are the American EphemeriS and 
Nautical Almanac:j: and the corresponding Explanatory Supplement to the Ephemeris 

-In some cases, spacecraft orbital data hits provided positions much better than this. The mean residual 
in the position of the center of mass of Mars is currendy on the order of 100 In, or about 10-4 arc: sec: at 
closest approach to the Earth [Standish, 1975). Similar work has been done for tl)e Moon [Garthwaite, el 
al., 1970). 
t An illuminating nonmathematical discussion of both methods is given by Clemence, el aI •• [1960). 
'Published annually in the United States by the U.s. Government Printing Office and in the United 
Kingdom by H. M. Stationery Office under the tide The AslronomiClll Ephemeris. 
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[H. M. Nautical Almanac Office, 1961]. The ephemerides in the American 
Ephemeris are based on the work of Newcomb [1898] for the inner planets. on 
Eckert, et 01., [1951) for the outer planets, and on Brown (1919) for the Moon. 
Details on these sources, modifications to them, and further references may be 
found in the Explanatory Supplement. 

The information in the American Ephemeris is given in the form of printed 
tables and therefore is not well suited to computer use. This defect is remedied by 
the JPL magnetic tapes (see, for example, Devine (1967)) produced and periodically 
updated by the Jet Propulsion Laboratory of Pasadena, California, primarily for 
the support of deep space and planetary probes. The JPL tapes give planetary 
ephemeris information in a form suitable for computer use. The information is 
derived from numerical integration of the equations of motion between various 
epochs. These epochs are chosen to minimize the least-squares deviation between 
the calculated positions and "source positions"; these source positions are deter
mined from the theories used in the American Ephemeris, except for the lunar 
ephemeris, which is computed directly from the theory of general perturbations. 
The JPL ephemeris data consists of the position and velocity in rectangular, 
heliocentric coordinates for Mercury, Venus, the Moon, the Earth-Moon bary
center, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto; these are referred to the 
mean equator and equinox of 1950.0. A routine for reading these tapes to obtain 
Sun and Moon positions (RJPL T) is described in Section 20.3. 

The JPL ephemeris tapes are still not especially convenient because of the high 
computer input/output time required to extract the needed information. For this 
reason, an adaptation of the JPL tapes on disk storage is used at Goddard Space 
Flight Center [Armstrong, et 01., 1973); these are referred to as the Solar-Lunar
Planetary (SLP) files and are accessed with routine SUNRD (Section 20.3). The 
information on the SLP files is in the form of Chebyshev polynomial coefficients 
valid for intervals of time. The size of these intervals is a function of the speed of 
ihe bod"y. The. SLP files also contain coefficients allowing transformations between 
mean equator and equinox of 1950.0 and true eqliator and equinox of date. 
SUNRD, however, returns only the solar, lunar, and planetary position informa
tion. 

Algebraic Approximations. The accuracy of the complete ephemeris solutions 
is not always necessary in attitude analysis, and tapes and files are not always 
available. In fact, fairly simple closed-form expressions may be obtained for the 
motion of the solar system bodies. The simplest approximation is to consider the 
mean motion only. This is equivalent to taking two-body solutions with circular 
orbits. This approximation will give, in most cases, errors in excess of 1 deg. 

A more accurate approximation is to consider two-body solut~ons with ec
centric orbits. The small eccentricities of the orbits under consideration allow the 
use of a series solution to Kepler's equation, known as the equation of the center. In 
this approach, the true anomaly, P, is expressed in terms of the mean anomaly, M, 
by 

i= 1,2,3, ... (5-45) 

Alternatively, Keplerian. orbital elements (Section 3.1) may be used with an orbit 
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generator, such as ORBGEN (Section 20.3). This approach will give errors welI 
below I deg for the inner planets and the Sun (over a period of years), but in excess 
of I deg for the Moon. For the outer planets, osculating elements at particular 
epochs may be used with an orbit generator to obtain accuracy better than I deg, 
even for periods of several years on either side of the epoch. Additional accuracy 
may be obtained by including selected terms from the method of general perturba
tions. In the case of the Moon, the use of about 20 periodic terms wilI result in 
errors below 0.25 deg. The remainder of this section outlines the algorithms that 
can be used. Routines which implement these algorithms (SUN IX, SMPOS, and 
PLANET) are described in Section 20.3. 

The mean motion of the Sun is given in the American Ephemeris as: 

L=279. °696678 +0.9856473354(d) +2.267 X 1O-13(d2~ 

M0 =358. °475845 + 0.985600267(d)- I.l2x 10- 13(02)-7>< JO-20(d3) 

e=0.016751 (5-46) 

where L is the mean longitude of the Sun, measured in the ecliptic from the mean 
equinox of date; M0 is the mean anomaly of the Sun; e is the. eccentricity of the 
Earth's orbit; and d is the number of ephemeris days since 1900 January 0, 12h 
Ephemeris Time· (Julian date 2,415,020). . 

For most attitude work, the number of ephemeris days may be assumed equal' 
to the number of Julian days, and the reduction of universal time to Ephemeris 
Time may be omitted. (See Appendix J for a discussion of time systems.) In 
addition, the terms in d 2 and d 3 may be omitted. A correction ilL is applied to the 
mean longitude to find the true longitude, and to the mean anomaly to find the 
true anomaly. The first two terms in the series for ilL, as given by Newcomb [1898], 
are 

ilL = I. °918sin(M01+0. °02sin(2M0> (5-47) 

The above is used in SMPOS and SUN IX. The distance, R, from the Earth to the 
Sun may be found from the following relationship between the distance and the 
true anomaly, v: 

1.495 X 10"(1- e2) 
R= km 

I +ecosp (5-48) 

The mean motion of the Moon, as described in the American Ephemeris, is given by 

Lm =270°.434164+ 13.1763965268(d)-8.5X JO-13(d2)+3.9X JO-20(d3) 

f'= 334°.329356+.1 I 14040803(d)-7.739x JO-12(d2)-2.6X JO-19(d3) 

n=259°.183275-.0529539222(d)+ 1.557x JO-12(d2)+5X JO-20(d3) 

D=350°.737486+ 12.I907491914(d)-1.076X JO-12(d2)+3.9X JO-20(d3) 

;=5°.145396374 (5-49) 

-That is, 12b Ephemeris Time on December 31, 1899. 
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where L", is the mean longitude of the Moon, measured in the ecliptic from the 
mean equinox of date to the mean ascending node, and then along the orbit; r' is 
the mean longitude of the Moon's perigee. measured as above; Sl is the longitude of 
the mean asceLding node of the lunar orbit,' measured in the ecliptic from the mean 
equinox of date; D == Lm - L is the mean elongation of the Moon from the Sun; 
and ; is the inclination of the lunar orbit to the ecliptic. Again. the terms in d 2 and 
d 3 may be neglecied. 

The corrections, 6L"", to the mean longitude are given by Brown [1919] in the 
form: 

(5-50) 

where h. h'. g;. and g; are integer constants. The true longitude is obtained 
by adding the sum of the 6L"" to Lm' The constants in Eq. (5-50) are given in 

Table 5-12. Periodic Terms for Calculating the Longitude of the Moon 

I A; 
IDEGI 

'I fi II; iii 

1 +6,289 1 0 I) 0 

2 -1.274 1 0 0 -2 

3 +0._ 0 0 0 2 

4 -0.213 2 0 0 0 

& -0,1811 0 1 0 0 

6 -0.114 0 0 2 0 

7 -0.059 2 0 0 -2 

8 -0.057 1 1 0 -2 

9 -0.053 1 0 0 +2 

10 -0._ 0 I 0 -2 

11 +0.041 , -, 0 0 

'2 -0._ 0 0 0 , 

Table 5-12 for the 12 terms used'in SMPOS. The distance R from the Earth to the 
Moon is determined from the lunar parallax. P, as 

R = 63~8.388 km 
smP 

(5-51) 

Brown gives a cosine series for P with the same arguments as for 6L"". The terms 
used in SMPOS are given in Table 5-13. " 

The positions of the planets may be calculated using mean elements for the 
inner pianets and osculating elements for the outer planets. Subroutine PLANET 
uses elements for December 19, 1974, as given in Appendix L. The positions from 
PLANET are within 0.02 deg for times within 2 years of the epoch and are within.~" 
0.1 deg for times within 6 or 7 years of the epoch. These elements should be,: 
updated periodically by consulting a current American Ephemeris. 

5 

I' 
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Table 5-13. Periodic Terms for Calculating the Lunar Parallax 

, "; 
IARC-SEC) " fi 9, vi 

, 3422.7 0 0 0 0 

2 '86.5398 1 0 0 0 

3 34.3'17 , 0 0 -2 

• 28.2373 0 0 0 2 

5 10.1657 2 0 0 0 

6 3.0861 , 0 0 2 

7 '.9'76 0 , 0 -2 

8 1.4437 , 1 0 -2 

9 1.1628 1 -, 0 0 

5.6 Modeling Stellar Positions and Characteristics 

David M. Gottlieb 

The value of using star observations for attitude determination lies in the high 
degree of accuracy that can be obtained. This accuracy derives from the point 
source nature of stars. Identifying observations with catalogued stars is, however, 
difficult (see Section 7.7). To alleviate star identification problems, and to obtain' as 
much precision as possible from available star data, it is crucial to have an accurate 
and complete star catalog. 

5.6.1 Star Catalog Data Required for Atthude Determination 

Each star in any catalog used for attitude determination should have an 
identifying number to facilitate checkout of computer software and to aid the 
investigation of anomalous results. Unfortunately, there are many identification 
systems in use and few catalogs cross-reference more than one or two of them. 
Four major systems are in common use: 

BD / CD / CPD. The most widely used and extensive system, generated from 
three positional catalogs: the Bonner Ourchmusterung (BO) [Argelander, 1859-
1862 and SchOnfeld, 1886), the Cordoba Ourchmusterung (CD) [Thome, 1892-
1914 and Perrine, 1932), and the Cape Photographic Ourchmusterung (CPO) 
(Gill and Kapteyn, 1896-1900). Unfortunately, regions of the sky covered by 
these systems overlap, resulting in non unique numbers. 
HD. The Henry Draper number [Cannon, 1918-1924), also widely used. 
Because the catalog is virtually complete to eighth visual magnitude, most stars 
visible to present star sensors have HO numbers. 
HR. Number from the Catalog of Bright Stars [Hoffieit, 1964), frequently 
cross-referenced in the literature. However, few stars dimmer than sixth visual 
magnitude have HR numbers. 
SA O. The Smithsonian Astrophysical Observatory. number [Smithsonian Insti
tute, 1971), relatively new and used principally in the SAO catalog itself. It 
covers approximately as many stars as the HO, but it is seldom cross
referenced. 
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All catalogs also contain star positions, given as right ascension and declination at 
some epoch. The accuracy of the stated catalog position depends on the accuracy 
of the original observation and the time between the epoch of observation and the 
epoch of the catalog position. Star positions reported in the SAO or AGK-3 
[Astronomisches Rechen Institut, 1975] catalogs are accurate to approximately I 
arc-sec. For about 2% of the stars brighter than eighth magnitude, and 15% from 
eighth to ninth magnitude, only the nineteenth-century HD positions exist with 
typical inaccuracies of I arc-min (one standard deviation) in both right ascension 
and declination. 

Because star catalogs give positions at an epoch (typically 1900.0 to 1950.0) 
that differs from the time of the spacecraft observations, the star positions must be 
updated to the observation time. Corrections are usually required for the precession 
of the equinoxes (Section 2.2) and the proper motion, or space motion, of each 
individual star. Proper motion can be applied linearly for periods of several 
hundred years when the rates are available in the star catalog. For 95% of the stars 
brighter than ninth magnitUde, proper motion is less than 10 arc-sec per century, 
and for 99.9%, it is less than I arc-min. 

An additional correction may be required for aberration-the apparent shift in 
the position of a star caused by the motion of the spacecraft. ~ll,~ original 
observation of aberration by Astronomer Royal Bradley in 1728 was one of the 
first confirmations of Roemer's postulate that the speed of light was finite. For 
Earth-orbiting spacecraft, the motion of the Earth around the Sun causes a 
maximum aberration of about 20 arc-sec; the motion of the spacecraft about the 
Earth accounts for less than 5 arc-sec of additional aberration. The aberration, !J.IJ, 
may be computed from the spacecraft velocity relative to the Sun, v, by: 

M= l1sinlJ (5-52) 
c 

where c is the speed of light and IJ is the angular separation between v and the star 
vector, s. The star appears shifted toward v in the 'v-s plane. . 

Star intensity is included in most catalogs and is measured by magnitude, 2 

logarithmic quantity defined by m = - 2.5 log (F) + ma. where mo is constant and J 
is the brightness or flux density. Note that brightness decreases as magnitud. 
increases. Magnitudes are usually reported in one of two systems. The UB' 
(Ultraviolet, Blue, Visual) system of Johnson and Morgan [l953J is the mor 
modern and accurate of the two. Commonly, only the V magnitude and sometime 
the B magnitude are available. Figure 5-13 defines these magnitudes in terms c 
sensitivity versus wavelength. Some catalogs list V and the difference, B - V. Th 
second system is Ute photographic-photovisual magnitude used in the Henr 
Draper Catalog [1918-1924J. These are more frequently available, but are far Ie! 
accurate than the UBV system. No sensitivity-wavelength plots exist for them. 
only photographic and photoVisual magnitudes are available for a star, these ca 
be used analogously for B and V, respectively. 

Observed B and V magnitudes have errors of about 0.02 magnitude (or 
standard deviation). Only about 20% of the stars brighter than eighth magnituc 
have observed B and V magnitudes, and very few fainter than eighth magnitud 
Photographic and photovisual magnitudes are uncertain to about 0.3 and C 
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Fig: 5-13. Curves Defining B and V Magnitude Scales 

magnitude. respectively. Conversion of these to B and V adds an additional error 
of 0.1 magnitude. Because sensor responses do not normally coincide with the 
wavelength sensitivities of either B or V magnitudes. some combination of these 
will be required to accurately represent star magnitudes on an instrumental scale 
(see Section 7.6). 
.. Because star sensors detect light from the entire segment of the sky covered by 
'.their apertures, an additional requirement for modeling stellar magnitudes is the 
integrated intensity of faint background stars. Table 5-14 summarizes mean star 
densities and background level for the entire sky and for regions near the galactic 
·plane. The background level is the integrated contribution of all stars fainter than 
.the limiting magnitude, expressed in terms of stars of brightness equal to the 
limiting magnitude per square degree. Only 0.5% of the stars in the sky brighter 
than ninth magnitude have magnitudes known to vary with time by more than 0.1 
'magnitude. Some catalogs flag these stars and give values of the maximum and 
minimum magnitude to be expected. Brighter stars are more likely to be known 
variables, because dimmer ones are not observed as frequently. 

Finally, those components of a multiple star system which are separated by 
about 1 to 5 arc-min may cause misidentifications and position errors. Many star 

Table 5-14. Star Densities (Adapted from Allen [1913D 
AVERAGE REGION NEAR AVERAGE ReGlON N£AA WHOLE 

LIMITING THI! GALACTIC POLE TME QALACTlC PLANE SKY 
VISUAL M£ANNU¥BER MEANNUMSER MAGNITUDE BACKGROUND BACI(.GRQUNO TOTAL IIUMBfR OF STARS lEvn- OF STARS lEVEL" OF STARS PER SQUARE DEG PER SQUARE DEG 

3.' .. ..,. 0.10 .... . ... '87 

4.' .... ." .. ,. "' .. ... 
0.' 0.020 052 .- 0.' .... 
8.0 0.003 '.20 .. "" 12.9 51 .. 

7.0' 0.18 258 0.69 28.8 ..... 
8.' .... '.40 .... .. .. 44700 

·VALUES ARE STARS OF THf UMITING MAGNITUOE PER SQUARE DIG. 
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catalogs identify these multiple stars and give their separations. Optical doubles 
which appear close together in the sky but are not physically associated cause the 
same difficulty. About 50% of stars brighter than ninth magnitude have another 
star brighter than ninth magnitude within 0.2 deg, and about 90% have one within 
0.35 deg. 

5.6.2 Existing Star Catalogs 

The discussion here is limited to the three catalogs· that are most useful for 
attitude determination: The Catalog of Bright Stars [Hoffleit, 1964], the 
Smithsonian Astrophysical Observatory .Catalog [5.6-8), and the SKYMAP Catalog 
(Gottlieb, 5.6-17]. Each exists on magnetic tape and in printed versions. 

The Catalog of Bright Stars. The Catalog of Bright Stars contains approxi
mately 9100 stars to visual magnitude 7.0 an.d is complete to visual magnitude 6.0. 
The HR number (the sequential index for· the catalog), the HD number, the 
BD/CD/CPD number, and the star name (number or Greek letter and constella
tion) are given for each star when available. State-of-the-art· right ascensions and 
declinations are given in epochs 1900.0 and 2000.0 .. Position errors are not avail
able. Proper motion and precession are given per hundred years. 

The Catalog of Bright Stars gives V and B - V magnitudes, which are slightly 
out of date, with about 50% of the star magnitudes quoted actually being the old 
and inaccurate photovisual magnitudes instead of V. Those stars having photovi
sual..magnitudes are flagged. The B- V values are accurate, but additional magni
tudes are now available which are not included in the catalog. Some spectral types 
are given, and these can be used to compute a B magnitude if only V is given as 
described by Gottlieb [1969]. 

The following multiple star data are given where applicable: separation, 
difference in magnitude between the brightest and second brightest component, 
and the number of components. An indication of whether each star is variable or 
not is given, but no other variability data is available on the tape versions. An 
appendix to the printed version lists the type of variable and the period. 

Smithsonian Astropbysical Observatory Catalog (SAO). The SAO contains 
almost 260,000 stars down to about tenth visual magnitude, and is over 98% 
complete to 8.0 visual magnitude. The SAO was created by merging a number of 
existing PQsitional catalogs. It was designed to have at least four stars per square 
degree everywhere in the sky regardless of magnitude; therefore, the effective 
limiting magriitud.e of the catalog varies across the sky. The catalog gives SAO and 
DD/CD/CPD numbers. The absence of HD numbers is a serious limitation to the 
user who wishes to cross-reference SAO stars to other catalogs. 

The SAO gives state-of-the-art right ascensions ~nd declinations, epoch 1950.0. 
Errors in the position are quoted for each star. These errors average about 0.5 
arc-sec at epoch 1950.0 [Smithsonian Institute, 1971). Proper motion per year is 
listed. Precession is not given. Only photographic-photovisual magnitudes are 

• "State-of·the·art" means values which are as accurate as possible given the current data. Some 
catalogs are compiled with older data. 
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cited; these are accurate to about 0.5 magnitude. Some HD spectral types are 
quoted; however, like the magnitudes, the quality is poor. The SA 0 is not primari~~' 
a magnitude catalog and should not be used as one. No multiple star or variable star 
data are available. 

SKYMAP Catalog. The SKYMAP Catalog was prepared in 1975 specifically 
Cor attitude determination purposes. It contains approximately 255,000 stars down 
to 10.0 visual magnitude and is 90% to 100% complete to 9.0 magnitude, V or B, 
whichever is the Cainter. It is impossible to establish the completeness level more 
accurately than this without extensive observational surveys. The catalog contains 
HR, HD, SAO, BD/CD/CPD numbers and star names. SKYMAP numbers are 
also assigned. 

State-or-the-art right ascensions and declinations are given at epoch 2000.0. 
Errors in position are quoted. Positions and errors in position were taken Crom the 
SAO catalog or the AGK-3 [Astronomisches Rechen Institut, 1975] when available 
(accuracy, about I arc-sec), and from the HD (accuracy, 35 arc-sec) for most of the 
remainder. Proper motion (also frorii'the SAO) is given per year, and the sum of 
proper motion and precession is quoted per hundred years. Nearest neighbor 
computations, epoch 2000.0, including both multiple stars and optical double stars, 
are given for a variety of limiting magnitudes and magnitude diCferences. 

State-oC-the-art values of V and B were taken from Blanco, et al., [1968] and 
Mermilliod [1973] (accuracy, 0.02 magnitude) or converted from photographic and 
photovisual magnitudes (accuracy, 0.15 magnitude) [Gottlieb, 1978 (in press)]. 
State-of-the-art spectral types were taken from Jaschek, et al., tJ964] or converted 
from HD spectral types [Gottlieb]. For multiple stars, the separation between the 
brightest and second brightest component, the difference in magnitude, and the 
year of observation are given. Variable star data include the type of variable, the 
magnitude range, the epoch, and the period. Other data include the reddening 
index and the U (ultraviolet) magnitude. 

5.6.3 Generating a Core Catalog 

For many automated computational functions, it is convenient to maintain a 
rapid access core catalog consisting of only those portions of the star catalog that 
may be required during a single program run. To reduce the time needed to create 
such a core catalog, it is appropriate to presort the whole sky master catalog into 
smaller regions, or zones, so that only a limited number of zones must be searched 
to generate anyone core catalog. 

A technique that divides the sky into zones that overlap in right ascension and 
declination by 50% (Fig. 5-13) was used for SAS-3 and HEAO-I, and is planned for 
HEAO-B and MAGSAT [Gottlieb, 1978 (in press)]. The use of overlapping zones 
has the advantage that the entire sensor field of view will always lie entirely in a 
single zone, provided the zone size has been chosen to be at least twice the 
diameter of the sensor field of view. This simplifies specification of the z~nes 
required to' generate the core catalog. Zone overlapping has the disadvantage that a 
single star appears in up to four zones. This redundancy increases the size of the 
presorted catalog with an attendant increase in read time and storage requirements. 
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In the system illustrated in Fig. 5-14, zones adjacent in right ascension have the 
same declination limit and overlap in right ascension in the manner: 0 to \0 deg. 5 
to 15 deg, 10 to 20 deg, 15 to 25 deg. etc. To prevent some of the redundant storage 
of data, stars can be stored in ··half zones" (0 to 5 deg, 5 to \0 deg. \0 to 15 deg), 
which can then be merged computationally to simulate an original zone. Using this 
technique, no overlap in right ascension is required. A similar procedure does not 
work for declination overlap because the right ascension boundaries of two zones 
adjacent in declination will generally not align. 

It _. __ 

,,--11 __ _ 

22-

Fig. 5-14. Zone Overlap 

Once the sky has been divided into zones, it is a simple matter to sort the 
whole-sky data base into these zones. The choice of zones to be read to create a 
.specific core catalog is then determined by the directions to which the optical axis 
of the sensor will point during the program run. The opticc.l axis pointings can be 
defined in several ways: 
1. For three-axis stabilized spacecraft, a series of expected pointings will be 

known a priori or the analysis program must obtain a rough attitude each time 
a new pointing is reached. 

2. For spinning spacecraft, the path the optical axis takes during one spacecraft 
rotation can be represented ~ a sequence of discrete pointings, ( degrees apart, 

. as given by: 

O. = (cos 'Pjsin 1, sin 'Pjsin 1, cos 1) 

. I 360osin1 
1= , ... , 

( 

where O. is the optical axis in inertial coordinates, O. is the optical axis in ,.';:" ... ' ..... 
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spacecraft coordinates, [A] is the coordinate transformation matrix or attitude 
matrix (see Section 11.3), and y is the angle between the spacecraft spin axis 
and the sensor optical axis. 

3. For slowly spinning spacecraft, the interval of "nalysis may be less than one 
spacecraft rotation, and a portion of the optical path defined above may 
suffice. 

Once the optical axis pointings have been defined, the zone center nearest to each 
OJ can be computed. This procedure yields a list of the zones that must be read to 
generate the core catalog. However, not every star in every selected zone need go 
into the core catalog because some will lie outside the sensofJ~ld of view; To store 
a minimum of stars in the core catalog, an augmented field-of-view size -may be 
specified such that only those stars falling within this field will appear in the core 
catalog. The augmented field-of-view radius, p, should be the sum of (1) the radius 
of the smallest circle that can be circumscribed about the field of view; (2) the 
maximum anticipated error in the attitude relative to the sensor optical axis; (3) the 
maximum expected precession and nutation amplitudes; and (4) the maximum 
expected secular motion of the optical axis during the interval of analysis fora 
pointed spacecraft, or the maximum expected secular motion of the spin axis for a 
spinning spacecraft. To build a core catalog, each star in each selected zone is 
examined and included in the catalog if it lies within the augmented field of vIew of 
an optical axis pointing. For nonspinning spacecraft, a star is included if 

where S is the s!ar unit vector. For a spinning spacecraft, a star is included in the 
core catalog if 

'1- p<;; cos-I(IS'ZI) <: y+p 

where Z is the spacecraft spin axis unit vector. 
Although the core catalog is already limited to only those stars that might be 

required, it may still be too large to read each time an observation is- to be 
identified. A rapid way of finding the desired star in the catalog is to compute 
catalog star longitudes, it .. , defined in Fig. 5-15. The longitudes of all stars in the 
core catalog can be computed (see Appendix C or subroutine VPHASE in Section 
20.3) and the core catalog sorted in order of increasing longitude. A cross-reference 
table can then be created such that the ith position in the table refers to the first 
star with longitude greater than c·; deg. where C is any desired constant. There
fore, to identify a specific observation it is sufficient to search longitudes in the 
range 

where ito is the estimated longitude of the observation and ('I' is the maximum 
in expected error in the longitude. 
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Fig. 5-15. Inertial Coordinate System for Defining Star Longitudes (For nonspinning spacecraft, a 
suitable reference axis must be selected to take the place of the spin axis.) 
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CHAPTER 6 

AlTITUDE HARDWARE 

6.1 Sun Sensors 
Analog Sensors, Sun Presence Detectors, Digital Sensors, 
Fme Sun SellSOf's 

6.2 Horizon Sensors 
Sensor Components. Horizon Sensor Systems 

6.3 Magnetometers 
6.4 Star Sensors 

ChJeroiew of Star Sensor Hardware, BBRC CS-IOJ V-Slit 
Star Scanner for OSO-8, 
BBRC CT401 Fvced-Head Star Tracker 

6.5 Gyroscopes 
Rote Gyros, Rate-Integrating Gyros, Control Moment Gyros 

6.6 Momentum and Reaction Wheels 
6.7 Magnetic Coils 
6.8 Gas Jets 
6.9 Onboard Computers 

In this chapter we describe representative examples of spacecraft hardware 
used for both attitude determination and attitude cOJ)trol. Extensive hardware 
experimentation has taken place over the 20-year history of spaceflight. Although 
this experimentation and development is still continuing, a variety of basic func
tional types of attitude hardware have emerged. This chapter describes the physical 
characteristics and operating principles of a variety of sensors. The mathematical 
models associated with these sensors are presented in Chapter 7. Additional 
summaries of attitude hardware are given by Fontana, et al., [1974}, Hatcher [1967J, 
and Schmidtbauer, et al., [1973}. A summary of attitude hardware for specific 
spacecraft is given in Appendix I. 

6.1 Snn Sensors 

Gerald M. Leme, 

Sun sensors are the most widely used sensor type; one or more varieties have 
flown on nearly every satellite. The Sun sensor owes its versatility to several 
factors. Unlike the Earth, the angular radius of the Sun is nearly orbit independent 
and sufficiently small (0.267 deg at I AU) that for most applications a point-source 
approximation is valid. This simplifies both sensor design and attitude determina
tion algorithms. The Sun is sufficiently bright to permit the use of simple, reliable 
equipment without discriminating among sources and with minimal power re
quirements. Many missions have solar experiments, most have Sun-related thermal 

':;-t' •• 
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constraints, and nearly all require the Sun for power.· Consequently, missions are 
concerned with the orientation .and time evolution of the Sun vector in body 
coordinates. Attitude control systems are frequently based on the use of a Sun 
reference pulse for thruster firings, or, more generally, whenever phase-angle 
information is required. Sun sensors are also used to protect sensitive equipment 
such as star trackers, to provide a reference for onboard attitude control, and to 
position so.Iar power arrays. 

The wide range of Sun sensor applications has led to the development of 
numerous sensor types with fields of view (FOY) ranging from. several square 
arc-minutes (10-1 sr) to 128 by 128 deg (approximately 'IT sr) and'resolutions of 
several degrees to less than an arc-second. The three basic classes of Sun sensors 
are analog sensors, which have an output signal that is Ii continuous function of the 
Sun angle and is usually monotonic; Sun presence sensors, which provide a constant 
output signal whenever the Sun is in the FOV; and digital sensors, which provide an 
encoded, discrete output which is a function of the Sun angle. A summary of 
sensor types manufactured by the Adcole Corporation is presented in Table 6-1. 

6.1.1 Analog Sensors 

Analog sensors are frequently called cosine detectors because a common type 
is based on the sinusoidal variation of the output current of a silicon solar cell with 
Sun angle as shown in Fig. 6-1. Specifically, the energy flux, E, through a surface 
of area dA with unit normal 0 is 

E=P·odA (6-1) 

where P is the Poynting vector, which gives the direction and magnitude of energy 
flow for electromagnetic radiation. Thus, the energy deposited in a photocell and, 
consequently, the output current, I, is proportional to the cosine of the angle of 
incidence of the solar radiation. 

1(9)= I (O)cos9 (6-2) 

Small transmission losses due to Fresnel reflection, the effective photocell area, and 
angle-dependent reflection at the air-cell interface are omitted from the simple 
model given by Eq. (6-2). 

SUN 

Fig. 6-1. Cosine Detector Sun Sensor 

• Spacecraft t.hat do not use solar power include the Pioneer missions, which use nuclear power because . 
of the 1/ r2 decrease in solar flux with distance from the SUD. 
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Apertures are used to limit the FOV of an analog sensor, and the cosine 
detectors used to position solar angle generally have conical FOVs. A group of 
cosine detectors, or eyes, each with a limited FOV, can provide intermediate 
accuracy over a wide angular range. as shown in Figs. 6-2 and 6-3. 

SENSOR 2 
FOV 

REFERENCE 
AXIS 

PHOTOCEll FOR 
DETECTOR 1 

Fig. 6-2. Orientation of Two Cosine Detec:tors To Provide Sun Angle Measurements Over a Wide 
Angular Range . -

-180 

OUTPUT 
CURRENT 

110 1110 

SUN ANGLE FROM REFERENCE AXIS 

Fig. 6-3. Summed Output From the Two Cosine Detectors When the Sun Is in the Plane Containing 
the Reference Axis and the Normal to the Detectors. The dashed lines give the output from 
each sensor; the soUd line is the summed output. 

A second analog sensor type uses a bar or mask to shadow a portion of one or 
more photocells. Different configurations can yield a one-axis sensor (Fig. 6-4) or a 
two-axls sensor (Fig. 6-5) with varying FOVs and resolution. The two-axis sensor 
shown is similar to that flown onHEAO-1 [Gray, et al., 1976]" 

-1 9 

1"'1" 1 / / 1 I 1 'i 
./11 1 11 1 . 

DETECTOR 2 DETECTOR 1 

Fig. 6-4. One-Axis Mask Sun Detector [Koso and Kollodge, 1969) 
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SUNLIGHT 

Fig. 6-5. Two-Axis Mask Sun Detector (Schmidtbauer. et al .. 1973). The sunline is normal to the 
aperture plate if the output of all four solar cells is equal. 

6.1.2 Sun Presence Detectors 

Sun presence detectors are used to protect instrumentation, to activate hard
ware, and to position the spacecraft or experiments. Ideally, Sun presence detectors 
provide a step function response that indicates when the Sun is within the FOY of 
the detector. For example, the shadow bar detector shown in Fig. 6-6 has a steep 
output slope and, consequently, a limited FOY and a I-are-minute accuracy. The 
sensor mass is less than 200 g. 

The critical angle prism illustrated in Fig. 6-7(a) is based on Snell's law, 
nsinO=sinO'. Consider radiation incident normal to the base of an isosceles 
triangular prism with index of refraction n, and base angle y, such that nsiny= 1. 
The angle of the refracted radiation is 0' = 90°, and the total output current from 
the photocells will be zero. N on-normal incidence will yield current in the detector . 
for which 0' < 90°. Figure 6-7(b) illustrates the total transmission for near normal 
incidence. 

Another type of highly accurate null detector is illustrated in Fig. 6-8. The 
sensor optics are such that a null Sun angle will center the Sun image at the top of 
the wedge and mirrors on the side of the wedge will reflect radiation to yield a 
current balance in the photocells. 

Spinning spacecraft frequently employ one or more Sun-presence detectors 
composed of two slits and a photocell, as 'shown in Fig. 6-9. Whenever the Sun lies 

SUNLIGHT ==+ . f-PHOTO CELLS 

J'lTT'" 
SHADOW r::R 1 

SHADED REGION 

Fig. 6-6. Shadow Bar Sun Sensor With Steep Output Slope (Schmidtbauer. el al., 1973) 
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tARC.sECONDS' 

(.) PRUiM G£OMETAY (b) (RELATIVE TRANSMISSlON AS A FUNCTION OF ANGLE) 

IKOSO AND KOLlOOGE, '9691 

Fig. 6-7. Critical Angle Prism Sun Sensor 

ON AXIS OFF AXIS 

SATUftA TEO REGION 

WEDGE 

Ia) OPTICAL sYuEM (b) IMAGE POSITION RELAnve TO MASK. 

Fig. 6-8. Fine Sun Sensor (Schmidtbauer, et aJ., 1973J 

PHOTOCELL ON BOTTOM 
"v' CBENEATH RETICLE SLIT) 

Fig. 6-9. Two-Slit Sun Presence Detector 

6.1 
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in the plane formed by the entrance and reticle slits and makes an angle with the 
normal to the sensor face of less than a specified limit (typically 32 or 64 deg), the 
photocell will indicate Sun presence. When two such sensors are placed in a V 
configuration, usually with one sensor entrance slit parallel to the spin axis, the 
time between Sun pulses is a measure of the Sun angle. as illustrated in Fig. 6-10 
(see also Section 7.1). 

w 
~ 

C> 
Z .. 
z 
iil 

40 

60 

80 

100 w6t I> SPIN ANGLE (DEGREES' 

120 

140 

Fig. 6-10. Sun Angle as a Function of Spin Angle for Typical Solar V-Beam Sensor With 4S-Deg Till 
Angle Between Slits 

6.1.3 Digital Sensors 

A common digital Sun sensor for spinning spacecraft consists of the two basic 
components, command and measurement, as illustrated in Fig. 6-11.· The com
mand component is the same as the Sun presence detector shown in Fig. 6-9. 

Fig. 6-11. Basic One-Axis Digital Sensor Components 

• The discussion in this section is based on sensors manufactured by the Adcole Corporation and flOWJl 
on a variety of spacecraft. Table 6-1 summarizes the physical data for these sensors. 
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Because the nominal FOV for Adcole sensors is limited to ± 64 deg. full 18O-deg 
coverage is accomplished by mounting two or more sensor units with overlapping 
FOVs as shown in Fig. 6-12. 

COMMAND 
COMPONENT 

MEASUREMENT 
COMPONENT 

Fig. 6-12. Two One-Axis Sun Sensors for Spinning Spacecraft With 180-Deg FOV (Adcole Model 
17083.) 

The measurement component generates an output which is a digital represen
tation of the angle between the sunline and the normal to the sensor face when the 
Sun is in the FOV of the command component, as shown in Fig. 6-13. The 
measurement component illustrated in Fig. 6-14 is a composite (similar to that 
flown on Nimbus-6, Adcole model 17032) that shows most of the features of 
interest. The Sun image is refracted by a material of index of refraction, n, which 
may be unity, and illuminates a pattern of slits. The slits are divided into a series of 
rows With a photocell beneath each row. Four classes of rows are illustrated: (I) an 
automatic threshold adjust (ATA), (2) a sign bit, (3) encoded bits (Gray code, 
described below, is shown), and (4) fine bits. 

SPACECRAFT 

COMMAND COMPONENT 
FIELD OF VIEW 

Fig. 6-13. Sun Sensor Command Component Field of View for Spinning Spacecraft 
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SLAIIOF 
INDEX OF 

REFRACTION 
n 

COARSE ANGt.E ELECTRONICS 

Fig. ~14. Detail of Sun Sensor Measurement Component 
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v 

Because the photocell voltage is proportional to cos 8(8=Sun angle), a fixed 
threshold is inadequate for determining the voltage at which a .bit is turned on. This 
is compensated for by use of the AT A slit, which is half the width of the other slits. 
Consequently, the ATA photocell output is half that from any other fully lit 
photocell independent of 8 as long as the Sun image is narrower than any reticle 
slit. A bit is turned "on" if its photocell voltage is greater than the AT A photocell 
voltage and, ·consequently, "on" denotes that a reticle slit is more than half 
illuminated (independent of the Sun angle). 

The sign bit or most significant bit deteJ1lljnes which side of the sensor the Sun 
is on. The encoded bits provide a discrete measure of the linear displacement of the 
Sun image relative to the sensor center line or null. Several codes are used in 
Adcole sensors, including V-brush and Gray [Susskind, I 958J. Gray code, named 
after the inventor, is the most widely used and is compared with a binary code in 
Table 6-2 and Fig. 6-15. The advantage of a Gray code may be seen by comparing 
the binary and Gray codes for a Sun angle near -16 deg. As the Sun angle 
decreases across the transition, the binary code changes from -001111 to -010000 
and the Gray code from -)01000 to -111000. Thus, five binary bitS change but 
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Table 6-2. Gray-to-Binary Conversion. The most significant bit is the same in either binary or Gray 
code. Each succeeding binary bit is the complement of the corresponding Gray bit if the 
preceding binary bit is I OT is the same if the preceding binary bit is o. (See Section 8.4 for 
conversion algorithm.) 

DECIMAL BINARY GRAY DECIMAL BINARY GRAY 

0 0 0 11 1011 tHO 

1 1 1 12 1100 1010 

2 10 11 13 1101 1011 

3 11 ,. I. 1110 1001 

4 100 110 IS 1111 1000 

S 101 111 I. 10000 11000 

6 110 101 17 10001 11001 

7 111 100 18 10010 UOlt 

• 1000 1100 " 1001' 11010 

• 1001 1101 20 10100 11110 

10 1010 1111 21 10101 11111 

only one Gray bit changes. By inspection, the Gray code is .an equidistant code. 
That is, one and only one bit changes for each unit distance whereas one or more 
binary bits change for the same unit distance. Because some imperfection in the 
reticle pattern is inevitable and a transition may occur while the photocell is being 
interrogated for transmission, the possible decoded angles for a binary code near 
-16.could range from -0 to -16, whereas for a Gray code, only -16 or -15 is 
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Fig. 6-15. Gray and Binary Coded Reticle Patterns for a ±64-Deg FOV Digital Sun Sensor With a 
I-Deg Least Significant Bit 
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possible. Algorithms for converting between Gray and binary codes are given in 
Section S.4. 

The calibration of the encoded bits is verified by plotting the output from each 
photocell versus Sun angle, as shown in Fig. 6-16 for the two least significant bits 
(LSBs). Note that the envelope of the sinusoidal output of both bits is roughly 
proportional to cos IJ and the AT A output fonows the envelope with half the 
amplitude. A characteristic of the Gray code is that the peak output of one bit 
corresponds to alternate minima of the next lesser bit. The angular error at a bit 
on-off transition is tyPically half the LSB. 

ATA 

_640 +640 

81T2 

-64 o +64 

SUN ANGLE IN DEGREES 

Fig. 6-16. Plot of the Output From Representative Photocells Versus SUD Angle for AcIcole Digital 
Sun Sensors 

The fine bits in Fig. 6-14 are used by an interpolation circuit ,to provide 
increased resolution. Straightforward addition of enc.oded rows to the pattern is not 
possible because the O.53-deg angular diameter of the Sun from near the Earth 
would blur the output from adjacent bits. This effectively limits Gray' code 
transitions to a 1/2-deg LSB. By combining the output of 2 or 3 offset LSB 
patterns in an interpolation circuit, 1/4-· or l/S-deg transitions are obtained. 

Two-axis sensors consist of two measurement components mounted at right 
angles, yielding a 64- by 64-deg or 128- by 12S-deg FOV as shown in Fig. 6-17. Full 
4'11 sr coverage for the two-axis sensors is obtained by use of five or more 128- by 
128-deg sensors. (See Sections 2.1 and 7.1.) Onboard logic for selecting and 
telemetering data from the illuminated Sun sensor in multisensor configurations is 
based on monitoring the output of the AT A photocell and selecting the sensor with 

Ith a the highest output signal (effectively the smallest angle relative to the optical null 
or boresight angle). 
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Fig. 6-17. Reticle and Photoc:eU Assemblies for Two-Axis Sun Sensor. Illustration represents.a 
1/2-Deg LSB, Adcole Model 16764. (Information courtesy of Adcole Corporation.) 

6.1.4 Fine Sun Sensors 

Increasingly stringent attitude accuracy requirements, such as for IUE. MAG
SAT, or SMM, imply Sun sensor absolute accuracies of several arc-minutes to 5 
arc-seconds and even better relative accuracies. Resolutions of less than 1/8-deg 
LSD, the practical limit of the device shown in Fig. 6-14, to an LSD of 0.1 
arc-second can be achieved by electronically combining the output current from 
four offset photocells beneath a reticle pattern as shown in Fig. 6-18. The SMM 
fine Sun sensor, shown here, consists of an entrance slit composed of 72 pairs of 
alternately opaque and transparent rectangles of equal width (0.064 mm); a 1.5-cm 
spacer; an exit slit c~mposed of four offset reticle patterns, each with 68 alternately 
opaque-transparent rectangle pairs; and four photocells, one beneath each pattern 
[Adcole, 1977]. The entrance and exit slits are separated by a vacuum to reduce the 
effect. of spectral dispersion on the accuracy. 

The Sun sensor output is periodic, with a period which can be adjusted to meet 
the accuracy and FOV requirements, e.g., a 2-deg period for SEASA T with a 
±32-deg FOV and a l-deg period for SMM with a ±2-deg FOV. The fine Sun 
sensor is combined with a digi.~ Sun sensor to resolve ambiguities in the output 
angle. Two sensors are mounted perpendicular to one another for two-axis output. 
The sensor operation is described more fully in Section 7.1. 

. 6.2 Horizon Sensors 

Gerald M. Lerner 

Th~ orientation of spacecraft relative to the Earth is of obvious importance to 
space navigation and to communications, weather, and Earth resources satellite 
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Fig. 6-18. Solar Maximum Mission Experimental Sun Sensor. [Adcole, 1971]. 

payloads. To a near-Earth satellite, the Earth is the second brightest celestial object 
and covers up to 40% of the sky. The Earth presents an extended target to a sensor 
(3.9 sr at a 500-km altitude) compared with the generally valid point· source 
approximations employed for the Sun (7x lO-s sr) and stars.· Consequently, 
detecting only the presence of the Earth is normally insufficient for even crude 
attitude determination and nearly all sensors are designed to locate the Earth's 
horizon. (The detection of the presence of small planetary bodies, such as the 
Moon from a near-Earth orbit, is, however, sufficient for coarse attitude determina
tion.) Horizon sensors are the principal means for directly determining the orienta
tion of the spacecraft with respect to the Earth. They have been employed on 
aircraft and were used on the first U.S. manned flights in the Mercury and Gemini 
programs [Hatcher, 1967]. In this section we describe the requirements imposed on 
horizon sensors, outline the characteristics of several generic types, and describe 
the operating principles of horizon sensor systems in common use. 

As described in Chapter 4, the location of the horizon is poorly defined for a 
body possessing an atmosphere because of the gradual decrease in radiated 
intensity away from the true or hard horizon of the solid surface. However, even a 
body possessing no atmosphere, such as the Moon, poses a horizon sensor design 
problem due to variations in the radiated intensity., To illustrate an extreme case, a 
detector triggering on the lunar horizon in the 14- to 35-p'-m infrared spectral region 

• Betelgeuse, the star with the largest angular radius, subtends 6x 10- 14 sr. 
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will experience fiftyfold variations in radiance (1200 K to 3900 K) between il
luminated and unilluminated horizons. As illustrated in Fig. 6-19, if the radiation 
integrated over half the sensor field of view (FOV) is just above threshold at a cold 
Moon, the horizon location error at a hot Moon is half the sensor FOV because the 
sensor would then trigger at the edge of the FOV. Lowering the threshold or 
decreasing the sensor FOV may not be possible because of the low intensity of 
emitted radiation relative to noise for practical detectors.~Thus, for the iunar 
horizon, a different choice of spectral region (the visible) is frequently employed to 
provide a sufficient radiation intensity with a small FOV. 

Earth resources, communications, and weather satellites typically require 
pointing accuracies of 0.05 deg -to less than a minute of are, which is beyond the 
state of the art for horizon sensors. However, Earth-oriented spacecraft frequently 
employ autonomous attitude control systems based on error signals from horizon 
sensors with accuracy requireme~ts of 0.5 to I deg. Thus, although payload 
requirements may not be met by current horizon detectors, control requiremeI)ts 
are easily met, and significant cost savings may -be realized by increasing the 
accuracy of horizon sensors to meet payload and control accuracy requirements 
simultaneously and thereby avoid the necessity of flying star sensors. 

In Chapter 4, we showed that the position of the Earth's horizon is least 
ambiguous in the spectral region near 151'm in the infrared. Most horizon sensors 
now exploit the narrow 14- to 16-l'm CO2 band. Use of the infrared spectral band 
avoids the large attitude errors encountered on Mercury, Gemini, and 000 due to 
spurious triggerings of visible light (albedo) horizon sensors off high-altitude c1mids 
[Hatcher, I 967J. In addition, the operation of an infrared horizon sensor is 
_ u."affected by night or by the presence of the terminator. Infrared detectors are less 
susceptible to sunlight reflected by the spacecraft than are visible light detectors 
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Fig. 6-19. Horizon Location Errors Due to Radiance Variations 
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and therefore avoid reflection problems such as those encountered on RAE-2 
(Werking, et al., 1974). Sun interference problems are also reduced in the infrared 
where the solar intensity is only 400 times that of the Earth, compared with 30,000 
in the visible (Trudeau, et al., 1970). However, albedo sensors have some advan
tages over the infrared sensors, including lower cost, faster response time 
(microseconds for the photodiode employed by visible sensors versus milliseconds 
for the thermistor employed by many infrared sensors), and higher signal-te-noise 
ratio because the radiated intensity is highest in the visible (see Section 4.1). 

Attitude acquisition (see Section 19.5) frequently requires horizon detection far 
from the nominal mission orbit and attitude. Consequently, sensor versatility is a 
common design requirement. Wide FOY detectors, such as the two-axis Sun 
sensors described in Section 6.1. cannot accurately define the horizon of the large, 
relatively dim Earth. Consequently. horizon sensors frequently employ some means 
to scan the celestial sphere with a small, typically 2- by 2-deg FOY. 

Finally, Sun rejection capability is important for horizon sensors, particularly 
for those used for onboard control. Redundant sensors or optical systems are used 
to provide Sun rejection by comparing the output of spatially displaced optical 
systems. Alternatively, Sun rejection may be based on a priori knowledge of the 
Sun position, the sensor output pUlsewidth or intensity, or the output of special
purpose Sun sensors. 

6.2.1 Sensor Components 

Most horizon sensors consist of four basic components: a scanning mechanism, 
an optical system, a radiance detector. and signal processing electronics. They are 
normally categorized by the scanning mechanism or the method used to search the 
celestial sphere. Several methods are employed, the simplest of which is to rigidly 
attach the sensor to the body of a spinning spacecraft. For such body-mounted 
horizon sensors fixed at a selected angle relative to the spin axis. the FOY is 
typically a small circle or square of about 2-deg diameter, although a sensor 
consisting of two fan-shaped slits. 1- by 120-deg, was flown on the COS-B and 
lSEE-2 [Massart. 1974; Wetmore. et al., 1976]. Wheel-mounted horizon sensors are 
similar to body-mounted sensors except that they are attached to the momentum 
wheel of a spacecraft and the wheel, rather than the spacecraft, provides the 
scanning motion. 

In contrast to the wheel-mounted horizon sensor, Scanwheels, a registered 
trademark of Ithaco, Inc., are integrated systems consisting of a momentum wheel, 
a horizon sensor, and electronics which may be used for both attitude determina
tion and control (these are discussed further in Section 6.2.2). For spacecraft for 
which the angular momentum of a wheel-mounted sensor or Scanwheel is undesir
able, designs employing a slowly rotating turret, such as the panoramic attitude 
sensor (PAS) flown on IUE and the ISEE-I; a rotating mirror, such as the 
nons pinning Earth sensor assembly flown on ers;* or counterrotating scanwheels or 
wheel-mounted horizon sensors with zero net angular momentum may be used. For 
all horizon sensors, the sensor mounting angle, ,"(, is defined as the angle between 
the spin and optical axes. 

• The original PAS flown OD RAE-2 also employed a rotating mirror. 

II! 
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The optical system of a horizon sensor consists of a filter to limit the observed 
spectral band and a lens to focus the target image on the radiance detector. Optical 
system components depend greatly on sensor design. In many cases, rotating 
mirrors or prisms are incorporated into the optical system to provide the scanning 
mechanism. The spectral sensitivity characteristics of the proposed SEASA T in
frared Scanwheels built by Ithaco are ilIus~rated in Fig. 6-20. 
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Fig. 6-20. SEASAT-A Scanwheel Optics Spectral Sensitivity. Optical system includes a window, an 
optical wedge, and a bolometer. (Courtesy of Ithaca Corporation.) 

Radiance detectors used to detect the presence of a horizon may be classified 
by their region of spectral sensitivity. A pholodiode, illustrated in Fig. 6-21, consists 
of a P-N junction operated under reverse bias. Light faDing on the photodiode 
increases the number of electrons and holes in the junction region, thereby 
increasing the leakage current, iF [Ryder, 1967J. Photodiodeshave a peak sensitivity 
in the near infrared at about 1.2 pm for germanium and 0.8 pm for silicon. (The 
visible spectrum extends from about 0.4 to 0.7 pm.) 

N 

rJU~ON 

- + -++++ ---+- -+++++ ,... 
==~+-+ -+++++ r----. ==+-=: -+++++ 

hhli!+ 

Fig. 6-21. Typical Photodiode Schematic 
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Detectors which respond to the longer wavelengths of infrared blackbody 
radiation are based on the operating principles of the thermistor, thermocouple, or 
pyroelectric crystal [Barnes Engineering Co., 1976J. A bolometer is a very sensitive 
resistance thermometer, or thermistor, used to detect infrared radiation. Thermis
tors consist of fused conglomerates, or sinlers, of. manganese, cobalt, and ~ickel 
oxide formed into flakes, typically 0.5 mm by 0.5 mm by to I'm thick, bonded to a 
heat-dissipating substrate or heat sink. Impinging radiation heats the flake and 
alters the resistance, typically by 3.5%;oK, which is sensed by conversion to a 
voltage and amplification. When radiation is removed from the flake, its tempera
ture returns to that of the heat sink with a time constant depending on the thermal 
conductance of the flake-substrate bond. A typical time constant is 3 ms. Bolome
ters are able to sense temperature changes of O.OOloK due to radiation despite 
ambient temperature changes four orders of magnitude greater [Astheimer, 1 976J. 
The minute temperature change is observed by modulating the incoming radiation 
by, for example, scannmg across the target, and thereby removing the effect of 
ambient temperature changes on the output voltage by capacitance coupling to the 
amplifier. 

A bolometer may have either one or two flakes in the focal plane of the optical 
system. The two flakes of a dual-flake system detect radiance originating from 
different regions of the celestial sphere. Consequently, the two output signals may 
be combined in an electronic AND circuit to provide Sun rejection if the separa
tion between the flakes is such that the Sun cannot be seen by hQth flakes 
simultaneously. Thermistors are often immersed in or surrounded by a germanium 
lens (transparent to infrared radiation) to increase the intensity of radiation at the 
thermistor. 

A thermopile consists of a string of thermocouple junctions connected in series. 
Each thermocouple consists of a hot junction and a cold junction. The hot 
junctions are insulated from a heat sink and coated with a blackening agent to 
reduce reflection. The cold junctions are connected directly to a heat sink. When 
exposed to impinging infrared radiation, the hot junction is heated and yields a 
measurable output voltage. Thermocouple junctions commonly use bismuth and 
antimony. Thermopile detectors are simple, requiring minimal electronics and no 
moving parts; however, they suffer from a slow response time and are used only in 
nonscanning systems. 

Pyroelectric detectors consist of a thin crystal slab, such as triglycine sulfate, 
sandwiched between two electrodes. Impinging radiation raises the temperature of 
the crystal, causes s~ntaneous charge polarization of the crystal material, and 
yields a measurable potential difference across the electrodes. Pyroelectric detec
tors may be used in scanning systems because they are fast and have a high 
signal-to-noise ratio with no low-frequency noise. 

The output from a scanning horizon sensor is a measure of the time between 
the sensing of a reference direction and the electronic pulse generated when the 
radiance detector output reaches or falls below a selected threshold. The reference 
direction for a body-mounted sensor is generally a Sun pulse from a separate 
sensor, whereas wheel-mounted sensors typically use a·magnetic pickoff fixed in 
the. body. If the detector output is increasing across the threshold,· the pulse 

"' 
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corresponds to a dark-to-light transition or acquisition of signal (AOS). If the 
detector output is decreasing across the threshold, the pulse corresponds to a 
light-to-dark transition or loss of signal (LOS). The AOS and LOS pulses are also 
referred to as in-crossings and out-crossings, or in-triggering and out-triggering, 
respectively. 

Various electronic systems provide the reference 10 AOS lime (1/= IAOS-/REF)' 
the reference to LOS time (to = tLOS - t REF), the Earthwidlh (Iw= tLOS - tAOS>' and 
the reference to midsc.an time· (tM=«tLOS+tAOs>/2-/REF)' The percentage of the 
scan period that the radiance is above threshold is the duty eye/e. Figure 6-22 
illustrates the various possible outputs. Knowledge of the scan rate or duty cycle 
allows the conversion from time to angle either onboard or on the ground. As 
described in Sections 4.1, 7.2, and 7.3, the horizon crossing times depend on the 
sensor field of view, the radiance profile of the scanned body, the transfer function, 
and the locator. The transfer function relates the radiation pulse incident on the 
detector to the electronic output of the horizon sensor. The transfer function 
includes the thermal response time of the detector and time constants associated 
with pulse amplification and shaping. Typically, sensors are designed and 
calibrated such that the system output may be used directly for attitude control 
and determination within a specified accuracy under normal conditions. The 
electronic technique used to define the threshold for horizon detection, called the 
locator, can significantly affect the overall attitude accuracy of the system. Many 
locators have been studied [Thomas, 1967] and two are widely used: the fixed 
threshold locator specifies the observed detector output which defines the horizon; 
the fixed percentage of maximum output or normalized locator redefines the 
threshold for each scan period as a fixed percentage of the maximum output 
encountered by an earlier scan. Better results are obtained with the normalized 
threshold locator because it is less sensitive tv seasonal or geographical variations 
in radiance (see Section 4.2 for specific radiance profiles of the Earth). A slightly 
modified locator has been proposed for SEASA T which continuously resets the 
threshold to 40% of the mean detector output observed on the Earth between 5 and 
11 deg from the located horizon. The thresholds for AOS and LOS are determined 
independently. 
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-The negative of the reference to midscan time is the split-ta-index time. 
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6.2.2 Horizon Sensor Systems 

The simplest horizon sensor system is a body-mounted horizon sensor sensitive 
to visible light. Such a system consists of an aperture .and lens to define the field of 
view and a photodiode to indicate the presence. of a lit body. Body-mounted 
sensors are cheap and reliable and have been used on IMP; slightly more complex 
versions, sensitive to the infrared spectrum, have been used on AE, SMS/GOES, 
CTS, and SIRIO. A body-mounted infrared sensor is shown in Fig. 6-23. Body
mounted sensors are suitable only for spinning spacecraft and their fixed mounting 
angle makes target acquisition a substantial problem for many missions. In this 
subsection we describe. the operating principles of several more versatile sensor 
systems that have been used operationally. 

Fig. 6-23. Body Mounted Horizon Sensor Used on the crs SpacecrafL (Photo courtesy of Barnes 
Engineering Co.) 

Panoramic Attitude Sensor (PAS). The PAS, flown on IUE and ISEE-I and 
planned for ISEE-C, is manufactured by the Ball Brothers Research Corporation 
and is a modification of the original design flown on RAE-2. The PAS is among 
the most versatile of all horizon scanners because of its ability to use either an 
internal scanning motion or the spacecraft rotation with a variable sensor mount
ing angle which may be controlled by ground command. Thus, the PAS may detect 
both the Earth and the Moon for virtually any attitude and central-body geometry. 
A slit Sun sensor and a visual wavelength telescope, both employing photodiode 
detectors, are included in the PAS assembly, as illustrated in Figs. 6-24 and 6-25. 
The telescope has an O.71-deg FOV diameter, and its optical axis may assume any 
of 512 discrete positions with a specified positional accuracy of O~I deg. The PAS 
functions as a variable-angle body-mounted sensor when the spacecraft is spinning 
about an axis parallel to the X axis in Fig. 6-24. Outputs from the system in this 
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Fig. 6-24. Panoramic Attitude Sensor. (Photo courtesy of Ball Brothers Research Corporation.)'! 
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Fig. 6-25. Cutaway View of a Panoramic Attitude Sensor 
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spherical mode are the times from the Sun pulse to AOS and LOS. The threshold 
for detection is specified as 0.1 times the maximurri lunar radiance, which corre
sponds to a first- or third-quarter Moon as viewed from the vicinity of the Earth; 

When tJ:te spacecraft is despun, the scanning motion in the planar mode is 
accomplished by rapidly stepping the turret. VarioUs commands are available to 
control the operation of the PAS in both the spherical and the planar modes. The 
turret can be commanded to step continuously in either direction, to reverse 
directions at specified limit angles, or to inhibit stepping altogether. The detector 
records and stores, in a series of registers, the encoded steps at each dark-ta-light or 
light-to-dark transition. The telescope is barned to prevent detection of the Sun at 
separation angles between the telescope axis and the Sun of 12 deg or more. 

Nonspinnlng Earth Sensor Assembly (NESA). The NESA, built by TRW for 
the synchronous orbit ers and the ATS-6 spacecraf~ consists of two independent 
infrared sensors that scan across the Earth, measuring rotation angleS to define the 
spacecraft attitude relative to the Earth from syn~hronous altitude. The detector 
senses radiation in the 13.5- to 25- p.m spectral band and uses a fixed percentage of 
maximum' output locator. A small Sun detector is located near the infrared 
telescope to identify intrusion of the Sun in the FOV. This sensor consists of a 
small mirror, two fixed mechanical apertures, and a silicon photodiode detector. 
The Sun detector FOV is concentric with, but larger than, the infrared detector 
FOV. 

The sensor geometry near the mission attitude (pitch = roll = 0) is shown in Fig. 
6-26 with the spacecraft Z axis in the nadir direction. A scanning field of view, 
approximately in the spacecraft X-Z or Y-Z plane, is created by oscillating a 
beryllium mirror at 4.4 Hz. The scan plane is tilted 3.5 deg so that, for the mission 
attitude, the scan paths are slightly offset from the Earth center. The sensor 
geometry is chosen such that either the north-south (NS) ~r east-west (EW) scanner 
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Fig. 6-26. Nonspinning Earth Sensor AsseIilbly. View from Earth toward spacecraft at synchronous 
altitude. . 
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provides the angular error about both the pitch and roll axes. For the EW scanner, 
pitch is measured using a binary up-down counter to accumulate encoder pulses 
from the scan mirror. Encoder pulses a·re counted during the time an Earth 
radiance signal is present with the direction of count reversed when the scan 
crosses the spacecraft pitch axis. When the scan is centered, the up count and the 
down count are equal and a zero count or null pointing angle is obtained. Roll is 
measured by comparing the total number of encoder pulses with a nominal value 
corresponding to the expected Earth width at zero roll angle and synchronous 
altitude. For the NS scanner, the pitch and roll angIe computations are reversed. 
Thus, the system provides redundant output over a ±2.82-deg linear range. The 
specified sensor accuracy is 0.05 deg with a O.OI-deg least significant bit. In the 
mission mode. the NESA provides error signals to an autonomous control system. 
During the ers attitude acquisition phase (Section 19.5), the NESA data were 
available over an approximate 26-deg by 26-deg field of view, although most of the 
data provided pitch and roll quadrant information only. 

Scanwheels. Integral horizon scanner/momentum wheel systems; similar to 
the SAS-3 design manufactured by the Ithaco Corporation and illustrated in Figs. 
6-27 and 6-28, have flown on numerous spacecraft including ERTS, NIMBUS, and 
SAS-3 and are proposed for HCMM, SEASAT, SAGE and MAGSA T. The 
flywheel and attached prism rotate at a variable rate, generally near 1600 rpm, 
providing both angular momentum and a conical scan about the flywheel axis. 
Radiation originating at an angle defined by the prism passes through a germanium 

Fig. 6-27. Ithaco Scanwbccl Showing Rotating Components With Cover and Germanium Window 
Removed. Compare with Fig. 6-28. (Courtesy of Ithaco Corporation,) 
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Fig. 6-28. SAS-3 Type B Scanwheel. Shading indicates rotating components consisting of flywheel and 
prism assembly; (Courtesy of Ithaco Corporation.) 

window (to define the optical passband) and is focused on a thermistor fixed in the 
spacecraft body. A magnetic reference slug, located on the flywheel. provides a 
reference pulse when it is sensed by a body-mounted magnetic pickup each 
revolution. The Scanwheel electronics measure the duty cycle before and after the 
reference pulse. Scanwheel and similar systems have .been the subject of detailed 
analysis by Wertz, et 01., [1975], Hotovy, et 01., (1976]. and Nutt, et 01 .• (1978). 
Table 6-3 summarizes the physical characteristics of scanwheel systems. 

Two Scanwheel configurations are commonly flown. Use of a single scanwheel 
on SAS-3 and HCMM yields a dual-spin spacecraft with the horizon sensor 
scanning at a fixed mounting angle relative to the wheel axis. Dual Scanwheel 
systems, illustrated in Fig. 6-29. can provide momentum about two axes; their 

Table 6-3. Scanwheel and Wheel-Mounted Horizon Sensor Systems 
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Fig. 6-29. SEASAT Scanwheel Configuration. (Compare with Fig. 4-3.) 

6.2 

attitude control properties are described in Section 18.3. Attitude accuracy and 
reliability is increased by dual scanner systems; in particular, and attitude accuracy 
about the velocity vector,or roll axis, is improved by using the difference between 
the two observed duty cycles, which is less sensitive to attitude variations than the 
individual scanner duty cycle measurements. 

Slit Sensors. Slit sensors of a much different design than the narrow field-of
view detectors described earlier in this section were flown on the spinning 
spacecraft COS-B, ISEE-2, and SIRIO. The unit used on COS-B and ISEE-2 is 
called an attitude sensor unit, or ASU, and consists of two 120-deg by I-deg slits 
[Massart, 1974]. The complete sensor system consists of two ASUs, mounted on 
COS-B as shown in Figure 6-30. On ISEE-2, both ASUs were mounted with the 
same orientation, similar to lthat of the unit on the right-hand side of Fig. 6-30 
[Wetmore, et al., 1976]. A cylindrical lens focuses radiation on a photodiode*, 
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Fig. 6-30. Slit Sensor Configuration for CO$-B 

• A thermistor bolometer with a 14- to 16-"m optical passband was used for SIRIO. 
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yielding a pulse which is identified by the sensor electronics. The sensor dis
criminates between Sun and Earth or Moon pulses and measures the time 
differences, or rotation angles, between transits of the Sun and Earth by each slit as 
illustrated in Fig. 6-31. COS-B and ISEE-2 did not fly separate Sun angle sensors, 
because the Sun angle can be computed from the time difference between the Sun 
transit of the meridian and inclined slits. as described in Section 7.1. 

Fig. 6-31. Sun and Earth Measurement Geometry for COS-B Slit Horizon Sensors 

The primary advantage of the ASU is that wide angle coverage can be 
obtained by a single sensor with no moving parts and no complex commanding 
logic as is required for the PAS. In addition, a single ASU provides Sun angle. 
nadir angle, and multiple Sun/Earth rotation angle measurements. However, the 
ASU has a lower sensitivity to the Earth and the Moon and more complex signal 
processing electronics than does the PAS. Section 22.1 contains a further discussion 
of the relative advantages of slit sensors and 'other sensor types . 

Other Systems. . Many systems have been designed for specific mission condi
tions and thereby achieve increased accuracy and simplicity at the cost of reduced 

... 

Ib' 

'-_~ TRACK OSOLLATION 

HORIZON 

----t.=NCE P.OFIL~ 

~ I . FIEL[).QF·VIEW DITHER 

,. 
, 

JLJLJL 
lei 

GENERATED WAVE TRAIN 

- -- ....... .. , FALS£ FALSE TAU! 

Fig. 6-32. Moving Edge Tracker Horizon Sensor [Schwartz, I966J 
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versatility. These systems operate over a narrow range of orbits and attitudes and 
include moving and static edge trackers and radiometric balance systems. The 
moving edge tracker, illustrated in Fig. 6-32, has been used on 000 and Gemini. 
Four oscillating detectors dither across the horizon edge and generate a train of 
nearly rectangular pulses, as shown in Fig. 6-32(b) and (c). The spacing and width 
of the pulses vary depending on the null error or the position of-the detector 
relative to the horizon. As will be shown in Section 6.3, the second harmonic of the 
detector output is related to the null error. 

The moving edge tracker uses a feedback system to null the second harmonic 
or attitude error. For earth trackers, irregularities in the atmosphere composition or 
temperature can· generate false structure, as shown in Fig. 6-32( d), and an er
roneous second harmonic in the tracker output (Schwartz, 1966). The Gemini 
V-edge trackers experienced track loss at sunrise and sunset (Hatcher. 1967]. 

The static Earth sensor flown on Symphonie at synchronous altitude used an 
array of thermopiles configured as shown in Fig. 6-33(a) (Ebel, 1975). The 
difference in the output between opposite thermopiles provided a measure of the 
attitude error. Eight thermopiles, rather than four, were used to provide re
dundancy and Sun discrimination. Radiometric balance systems, illustrated in Fig. 
6-33(b), are similar to the static edge tracker except that a wide field-of-view sensor 
is employed. Such systems work well if the target radiance is uniform. An accurate 
radiometric balance sensor, manufactured by Quantic, is used on ERTSjLAND
SAT to provide O.l-deg accuracy (General Electric Space Systems, 1971). 

SENSORb FOV 

SOUTH d 

tal ARRANGEMENT OF THERMOPILES Of $VMPHONIE STATIC fbi RADIOMETRIC BALANCE HORIZON SENSOR USED FOR 
EAATH SENSOR . ERTS/LANDSAT 

Fig. 6-33. Static Earth Sensors 

6.3 Magnetometers 

Bruce T. Blaylock, 
Magnetometers are widely used as spacecraft attitude sensors for a variety of . 

reasons: they are vector sensors, providing both the direction and magnitude of the' 
magnetic field; they are reliable, lightweight, and have . low power requirements; 
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6.3 MAGNETOMETERS 181 

they operate over a wide temperature range;· and they have no· moving parts. 
However, magnetometers .are not accurate inertial attitude sensors because the 
magnetic field is not completely known and the models used to predict the 
magnetic field direction and magnitude at the spacecraft's position are subject to 
relatively substantial errors, as discussed in Section 5.1. Furthermore, because the 
Earth's magnetic field strength decreases with distance from the Earth as I I r3, 
residual spacecraft magnetic biases eventually dominate the total magnetic field 
measurement, generally limiting the use of magnetometers to spacecraft below lOOO 
km; however, attitude magnetometers were flown successfully on RAE-I at an 
altitude of 5875 km. 

As illustrated in Fig. 6-34, magnetometers consist of two parts: a magnetic 
sensor and an electronics unit that transforms the sensor measurement into a usable 
format. Magnetic field sensors are divided into two main categories: quantum 
magnetometers, which utilize fundamental atomic properties such as Zeeman split
ting or nuclear magnetic resonance; and induction magnetometers, which are based 

,-- - - ;-N;;~;;S;- - - - -,-- - -;l;-T~N~~I;- - - --, 
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I I 
I I 
I I 
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: I 
I 
I 
I 
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Fig. 6-34. Generalized Magnetometer Block Diagram 

on Faraday's Law of Magnetic Inductance. Faraday's law is the observation that 
an electromotive force (EMF), E, is induced in a conducting coil placed in a 
time-varying magnetic flux, dcI>Bldt, such that the line integral of E along the coil 
is 

V=~E.dl= _ dcI>B 
':Y dt (6-3) 

The two types of induction magnetometers are search-coli and fluxgate mag
netometers. In a search-coil magnetometer, a solenoidal coil of N turns surrounds a 
ferromagnetic core with magnetic permeability p., and cross-sectional area A. The 
EMF induced in the coil when placed in a magnetic field produces a voltage, V, 
given by 

V=fE.dl= -ANp.(dB .l/dt) (6-4) 

where B 1. is the field component along the solenoid axis. The output voltage is 

"I 
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clearly time dependent and can be rewritten for a coil rotating at a fixed frequency, 
f=w/2'IT, about an inertially fixed axis normal to a constant field Bo as 

V(I)=-ANp.Bocoswl (6-5) 

Search-coil magnetometers based on the. above principle are used mainly on 
spin-stabilized spacecraft to provide precise phase information. Because the search 
coil is sensitive only to variations in the component of the field along the solenoid 
axis, any spacecraft precession or nutation will greatly complicate the interpreta
tion of data [Sonett, 1963]. 

The second type of magnetic induction device is the f1uxgale magnetometer, 
illustrated in Fig. 6-35. The primary coil with leads PI and P2 is used to alternately 
drive the two saturable cores SCI and SC2 to states of opposite saturation. The 
presence of any ambient magnetic field may then be observed as the second 
harmonic of the current induced in the secondary coil with leads SI and S2. The 
purpose of the two saturable cores wound in opposite directions is to cause the 
secondary coil to be insensitive to the primary frequency. Other geometries used to 
achieve primary and secondary decoupling utilize helical and toroidal cores. 

Fig. 6-35. Dual-Core Fluxgate Magnetometers With Primary and Secondary Induction Coils. 
(Adapted From Geyger (1964).) 

The functional operation of a f1uxgate magnetometer is illustrated in Fig. 6-36. 
If the voltage across the primary coil has a triangular waveform of frequency 2 'IT / T 
and the amplitude of the resultant magnetic intensity is-HD,'then the core elements 
saturate at a flux density of ± Bs, when the magnetic intensity reaches ± H c. The 
net magnetic intensity is displaced from zero by the ambient magnetic intensity, 
AB. The secondary coil will experience an indl,U:ed EMF, Vs' while the core 
elements are being switched or the magnetic flux density is being gated from one 
saturated state to the other (hence the name fluxgate). Vs consists of a train of 
pulses of width K\ T, separated by time intervals K2 Tor (1- K2) T where 

(6-6) 

The ambient magnetic intensity may then be derived from the pulse spacing in 
the fourth graph of Fig. 6-36 as 

(6-7) 
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To model the response of the magnetometer electronics. Vs is expressed in a 
Fourier series as 

·vr~7\ / 
HYSTERESIS 

CURVE 

Fig. 6-36. Operating Principles of Fluxgate Magnetometers 

(6-8) 

In the absence of an external magnetic field (i.e., 4H = 0), then K2 = 1/2 and 
the bracketed term in Eq. (6-8) becomes 

[1-COS(mT)]={+2} for{n=I,3,5, ... } (6-9) o n=0,2,4p .. 

Equations (6-8) and (6-9) imply that even harmonics of the primary frequency 
can occur only in the presence of an external magnetic field. The ratio of the 
second harmonic to the first is 

r={ I-exp[ -i2'71'(1-4H/HD )] x[ Si~2'71'K.]} 
. l-exp[ -i7r(I-4H/HD )] 2sJD'7I'K. (6-10) 
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For tlH«HiJ and Hc«Ho. then K.«I and 

1-I+isin(2'ITL1H/Ho) .L1H 
r~ =1-'11' 

1+I-isin('ITL1H/Ho) Ho 
(6-11) 

This means that the second harmonic is ± 90 deg out of phase with the primary. 
The sign of the second harmonic gives the sense of L1H relative to the core axis and 
the amplitude is proportional to L1H / H o' The fluxgate external magl)etic field 
measurement may be degraded if the sensor electronics cannot produce a primary 
waveform free of the second harmonic or if residual spacecraft biases are present. 
A list of operating specifications for several fluxgate magnetometers is given in 
Table 6-4. 

Magnetometers in the second broad category are termed "quantum" devices 
because they utilize fundamental atomic properties in the measurement of mag
netic field direction and magnitude. Quantum sensors have been used for experi
mental field measurements onboard several spacecraft. However, because of weight 
and power requirements they are not appropriate as attitude sensors on small 
spacecraft. 

The simplest of the quantum devices is the proton precession magnetometer. If 
a hydrogenous sample is placed in a strong magnetic field, it will exhibit a weak 
magnetic field after the strong field is removed. Further, the induced magnetic field 
will precess about any external field, H, with the Larmor frequency, YpIHI, where Yp 
is the gyromagnetic ratio [Grivet and Mainer, 1967]. Measurement of the resulting 
precessional frequency then gives a precise measure of the magnitude of the 
external magnetic field; however. because the magnetic, field direction is unobserv
able:' proton precession magnetometers are not used as attitude sensors. 

A second type of quantum magnetometer relies on a process called optical 
pumping, which was first reported by Dehmelt [1957]. Magnetometers based on 
optical pumping have a light source producing an intense collimated beam of 
resonance radiation, a circular polarizer, an absQrpti~n cell containing the vapor to 
be optically pumped, a radio frequency coil to produce. resonance in the pumped 
vapor, and a photocell to monitor the transmission of light [Bloom, 1962]. These 
optically pumped magnetometers measure ambient magnetic fields as a compli
cated function of the vapor transparency. Rubidium. cesium, and helium have been 
used as the optically pumped gas [Slocum and Reilly, 1963]. Optically pumped 
magnetometers provide botl- magnetic field direction and magnitude and are 
generally used as research magnetometers. A rubidium vapor' magnetometer with a 
range of 15000 nT to 64000 nT and a sensitivity of ±2 nT was flown onboard 
OGO-II. It weighed 4.4 kg and required 8 W of power for operation. of which 6 W 
were required for the lamp alone [Farthing and Folz, 1967]. The high weight and 

_.power requirements normally prohibit the use of these magnetometers as attitude 
instruments. 

6.4 Star Sensors 

Lawrence Fallon. III 

Star sensors measure star coordinates in the spacecraft frame and provide 
attitude information when these observed coordinates are compared with known 
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Table 6-4. Operating Specifications of Fluxgate Magnetometers Manufactured by the Schonstedt Instrument Company (1989) 

MOOELNUMBER Output FIELORANGE /I ZEROAELO SENSmVlTY ORTHOGONAUTY INPUT CURRENT SIZE (em) WEIGHT (gms) 
(+J..) AXES OUTPUT (measured elTDr) VOLTAGE (mA) Sensorleleo. Sen60rlelec. 

SAM-63COS, 12, 22 Analog 100,000 nT 3 O.OV+J..5mV 10.Omvl1oo nT '17 degrees (24-33) 40@28 580 312 
(MMS, SOlAR MAX. LANDSAT) 2.5V+J..5mV 2.5 mVll00 nT 1.210 705 

SAM-83c-7 DIgI1eI 55,ooonT 3 (+J..)215nT 430nT '17 degrees +5VOC 303@5 580 453 . 
(lRAS) perLSB &28VOC 24@28 1,778 1,359 

SAM-63C-9 Analog loo,ooonT 3 2.SV+I-5mV 2.5 mVlloo nT '17 degrees (24·32) 42@28 580 338 
(SPACE TELESCOPE) 1.210 714 

SAM·83B·12 Analog 40,000 nT 3 2.5V+I-5mV 6.3mVl1oo nT '17 degrees (16:20) 46@18 580 465 V> 
-I 

(SAN MARCO C/O) 1.210 m > 
'" 

SAM-83C-13, 23 Analog 55,000 nT 3 8.980 V 4.55 mVll00 nT '19 degrees (24-33) 4O@28 580 255 V> m 
(CLASSIAEO) (+1-) 13 mV 1,210 551 Z 

V> 
0 

SAM-83c-15 Analog 6O,ooonT 3 O.OV+J..5mV 18.7 mVll00 nT -09 degrees (24-33) 42@28 580 312 '" (ORO) 1.210 705 
V'J 

SAM-83c-20 Analog 6O,ooonT 3 2.SV+J..5mV 4.17 mVlloo nT '12 degrees (24·33) 4O@28 580 312 
. (CCRES) 10,ooonT 2.5V+J..5mV 25mVI1oonT 1,210 890 

SAM-83C-24 Analog 6O,ooonT 3 O.OV+J..5mV 16.7 mVI100 nT o()8degrees (21·32) 45@28 164 381 
(POlAR BEAR) 2.5V+J..5mV 4.2 mVlloo nT 1,210 746 

SAM-83C-28 Analog loo,ooonT 3 O.OV+l-5mV 10.0 mVI100 nT '13degrees (20-24) 35@22 580 312 
(TOPEX) 2.5V+l-5mV 2.55 mYl100 nT 1,210 705 

SAM-83C-28 0IgI1eI l,ooonT 3 (+J..)2,O nT 0.0305 nT '12degrees (29-43) 55@29V 832 340 
(GOES) perLSB 121@43 3,651 2,313 

SAM-83C-3O Analog 8O,ooonT 3 2.SOOV 4.17 mVI100 nT '10 degrees (23-35) 42@28 580 310 
(MECBISS • BRAZIL) &3O,ooonT (+J..)5mV 8,24 mVll00 nT 1,210 761 

00 
VI 
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star directions obtained from a star catalog. In general, star sensors are the most 
accurate of attitude sensors, achieving accuracies to the arc-second range. This 
impressive capability is not provided without considerable cost, however. Star 
sensors are heavy, expensive, and require more power than most other attitude 
sensors. In addition, computer software requirements are extensive, because meas
urements must be preprocessed and identified before attitudes can be calculated 
(see Sections 7.7 and 21.3). Star sensors also suffer from both occultation and 
interference from the Sun, the Earth, and other bright sources. In spite of these 
disadvantages, the accuracy and versatility of star sensors have led to applications 
in a variety of different spacecraft attitude environments. This section presents an 
overview of the operation and construction of star sensors and detailed descriptions 
of two representative sensors: the V slit Star Scanner used on the OSO-8 mission 
and the Fixed Head Star Tracker used on the SAS-3 and HEAO-l missions and 
planned for HEAO-C and MAGSA T. 

6.4.1 Ove"iew of Star Sensor Hardware 

Star sensing and tracking devices can be divided into three major classes: star 
scanners, which use the spacecraft rotation to provide the searching and sensing 
function; gimba/ed star trackers, which search out and acquire· stars using mechani
cal action; and fixed head star trackers, which have electronic searching and 
tracking capabilities over a limited field of view. Sensors iIi each of these classes 
usually consist of the following components, as illustrated in Fig. 6-37 for a V slit 
star scanner: a Sun shade; an optical system; an image definition device which 
deJines the region of the field of view that is visible to the detector; the detector; 
and an electronics assembly. In addition, gimbaled star trackers have gimbal 
mounts for angular positioning. 

Stray light is a major problem with star sensors. Thus, an effective Sun shade is 
critical to star sensor performance. Carefully designed light baffles are usually 
employed to minimize exposure of the optical system to sunlight and light scattered 
by dust particles, jet exhaust, .and portions of the spacecraft itself. Even with a 
well-designed Sun shade, star sensors are typically inoperable within 30 to 60 deg 
of the Sun. 

The star sensor optical system consists of a lens which projects an image of the . 
star field onto the focal plane. The image definition device selects a portion of the 
star field image in the sensor's field of view (FOV) which will be visible to the 

OPTICAL SYSTEM 

RETICLE 
STRAY LIGHT SHIELD 

Fig. 6-37. Simplified Diagram of a V Slit Star Sensor 
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detector. This portion is known as the instantaneous field of view (IFOV). The image 
definition device may be' either a reticle consisting of one or more transparent slits 
etched on an otherwise opaque plate, or an image dissector tube in which the IFOV 
electronically scans the FOV. The detector transforms the optical signal (i.e., 
whatever light is not blocked by the image definition device) into an electrical 
signal. The most frequently used detector is a photomultiplier. Solid-state detectors 
are also commonly employed, but they are usually noisier than photomultipliers. 
Finally, the electronics assembly filters the amplified signal received from the 
photomultiplier and performs many functions specific to the particular star sensor. 

Star scanners used 'on spinning spacecraft are the simplest of all star sensors 
because they have no moving parts. The image definition device employed by this 
type of sensor consists of a slit configuration, such as the V slit arrangement shown 
in Fig. 6-37. The spacecraft rotation causes the sensor to scan the celestial sphere. 
As the star image on the focal plane passes a slit, the star is sensed by the detector. 
If the amplified optical signal passed from the detector to the electronics assembly 
is above a threshold value, then a pulse is generated by the electronics signifying 
the star's presence. The accuracy of this sensor is related to the width of the slits 
and is typically on the order of 0.5 to 30 arc-minutes, although more accura te 
models exist. Star scanners have been used successfully on several missions, 
including the OSO and SAS series. Table 6-5 lists the characteristics of several 
typical star scanners. The OSO-8 star scanner is further described in Section '6.4.2. 

The interpretation of star scanner measurements becomes increasingly difficult 
as spacecraft motion <,leviates from a non-nutating, uniformly spinning rigid body. 
For example, data from the SAS-3 star scanner is useful only during the constant 
spin rate portions of the mission. The nominal spin rate at I rpo (approximately 
0.07 degl.YfC) is at ~he lower range fo~ successful interpre~tio~ of star scanner 
data. Pro&J\:ms of nOise and the generation of f.alse star crossmg SIgnals are greater 
at this spin rate than at 2 or 3 rpo. Interpretation of the SAS-3 star scanner data is 
virtually impossible during the portion of the mission when the spin rate changes 
rapidly. 

Gimbaled star trackers, illustrated in Fig. 6-38, are commonly used when the 
spacecraft must operate at a variety of attitudes. This type of tracker has a very 

Table 6-5. Parameters for Representative Star Scanners 

seNSOR 

APPLIEP PHYSICS LABORATORY· 
STAR St'SOA FOR SAS 1. 2. AND 3 

B8Rc6~103 STAR SCANNER FOR OSO-, 
BBRCS. CS-20t STAR SCANNER 

HONEYWELL SPARS STAR SIiNSOR 

HONEYftELL BLOCK 5D/DMSP 
STRAPDOWN ST Aft SCANNER 

1 FOUNTAIN. t972 

2 WETMORE •• t .... '874 

3 RCA. 1975 

DET1!CTOR CONFIGURATION 
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PHOTo. v 
MULTIPLUiR 
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(SILICON) 

SOLID STATE S-SLIT 
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small optical FOV (usually less than I deg). The gimbal mounts, however, give the 
sensor a much larger effective FOV. The coarse-alignment star trackers on OAO, 
for example, were gimbaled to cover an area with a 43-deg half-cone angle [NASA, 
1970]. Gimbaled star trackers normally operate on a relatively small number of 
target stars (e.g., 38 for the OAO trackers). 

Many different kinds of image definition devices are used in gimbaled star 
trackers tQ determine the position of the star with respect to the center, or nul/, 
position in the small FOV. The electronics assembly causes the gimbals to move so 
that the star image remains centered in the small FOV. The star's position is" then 
given by the gimbal angle readout positions. Some image-definition devices employ 
an optical or electronic scan of the small FOV to provide star position information. 
For example, small FOV image dissector tubes may perform this function. Another 
type of scanning device is an optical wedge-slit system. A rotating optical wedge 
causes the star image to be deflected past an L-shaped slit. As the wedge rotates, 
the image of the star follows a circular path over the L slit. The optical wedge is 
designed so that the radius of the circle grows as the star image diverges from the 
null position. The electronics assembly determines the" position of the star with 

OPTICS AM> 
. IMAGE DEFINITION 

DETECTOR AND 
ELECTRONICS 

ANGLE 
£NCODERSAND 

SERVOS 

Fig. 6-38. Gimbaled Star Tracker 

respect to null by comparing the time difference between slit crossings and the 
rotation phase of the optical wedge. 

One type of gimbaled star tracker does not use an image definition device at 
all, but rather reflects a defocused star image onto four photomultipliers in a 
square array. The star's position is determined by comparing the output signals of 
the four photomultipliers. This system has the advantage of simplicity. However. it 
suffers from disadvantages: temperature variations and changes in 'photomultiplier 
characteristics due to aging" may introduce systematic biases; nonuniform 
background light or the presence of a second star within the small FOV causes 
serious errors. 

Errors in determining the star position with respect to null and gimbal angle 
readout errors affect the overall gimbaled star tracker's accuracy. Typical accura
cies range from I to 60 arc-seconds, excluding tracker misalignment. A major 
disadvantage of gimbaled star trackers is that the mechanical action of the gimbals 
reduces their long-term reliability. In addition. the gimbal mount assembly is 
frequently large and heavy. 
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Spacecraft which maintain an inertially fixed direction commonly employ 
gimbaJed star trackers which have a uniqUe target star. The positions of Polaris and 
Canopus near the north celestial and south ecliptic poles, respectively, make these 
two stars particularly useful. The location of Canopus makes it especially useful as 
a reference direction for determining the rotation about the sunline. A Sun/Cano
pus ·attitude reference system has been used for Mariner, Surveyer, and Lunar 
Orbiter [NASA, 1970). The Polaris tracker used on ATS-6 (Moore and Prensky, 
1974] was adapted from a Canopus tracker. A serious disadvantage of unique star 
trackers is that they may occasionally track either the wrong star or particles 
scattering stray light, such as paint chips from the spacecraft 

Fixed-head star trackers use an electronic scan to search their field of view and 
acquire stars. They are generally smaller and lighter than gimbaled star trackers 
and have no moving parts. The image definition device used by fixed-head star 
trackers is usually an image dissector, although vidicons have been used and 
recently developed image detecting charge coupled devices (CCD) are showing 
promise. A charge coupled device star tracker is essentially an optical system 
combined with a digitally scanned array of photosensitive elements whose output is 
fed to a microprocessor. Such a tracker oPerates by integrating a charge pattern 
corresponding to the image of the star field on the focal plane of the optical 
system. The charge pattern is then read out seriaUy line by line to an analog-to
digital converter and then to a microprocessor. Star trackers incorporating·this 
technology have been built by the Jet PropUlsion Laboratory (Salmon and Goss, 
1976]. 

A typical fixed-head star tracker using an image dissector tube is shown in Fig. 
6-39. The photocathode contains the star-field image created by the optical system. 
An electron replica of this image is deflected past a fixed receiving aperture by the 
magnetic deflecting coils. This aperture defipes a small IFOV (usuany in the 
arc-minute range) on the photocathode and hence on the star-field image. 
Although this aperture does not move in the dissector tube, the IFOV scans across 
the fixed image as the current through the deflection ·coils is varied. An image 
dissector searches its FOV for stars by moving the IFOV in a search pattern, such 
as a right-to-Ieft staircase-retrace pattern as described in Section 6.4.3, or a 
center-to-edge rosette pattern. When the detector finds a visual signal above a 
threshold value, the electronics assembly engages a;.:!rack pattern. The IFOV then 
moves in a small figure-eight or square pattern so that the electronics assembly can 
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Fig. 6-39. Cutaway Diagram of Image Di~tor Tube Star Sensor 
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locate the center of the star image. The IFOV will either remain in the track 
pattern until the star is lost, or it will automatically resume searching after a 
predetermined time interval (depending on mission requirements and sensor 
electronics). 

If a photomultiplier is placed after the receiving aperture of the image 
dissector in a fixed-head star tracker, the instrument is referred to as an (lna/og 
image dissector. Alternatively, if a photoelectron counter is used, the instrument is 
called a photon counting image dissector. The characteristics of several fixed-head 
star trackers using mage dissectors are listed in Table 6-6. 

Table 6-6. Fixed-Head Star Trackers Using Image Dissectors 

SENSITIVITY CALIBRATED 
(VISUAL ACCURACY. to REFER· 

SENSOR DETECTOR TYPE MAGNITUDE' FOV IDEGJ IARC-SEct ENCE 

BBRC FINE ERROR SENSOR IIUEI PHOTO· .,4 TO +1 VARIABLE WITHIN ,2 2~ 
MULTIPLIER 16 ARC-MIN CIRCLE 

~. 

BBRe CT40t FixED HEA[.J STAR PHOTO t6.50R 8 Bya dO 
TRACKER ISAS-3. HEAO-II MULTIPLIER BRIGHTER 

B8RC CT411 LARGE FOV 51 AR PHOTO· +3 TO-1 tOBY 10 ,60 
TRACKER (SPACE SHUTTLE ORsnER' MULTIPLIER 

HONEYWELL PHOTON COUNTING PHOTO· +DOR 2 BY 2 ~1.S 

STAR TRACKER (HEAO-B) ELECTRON BRIGHTER 
COUNTER 

I 

TRW PADS TRACKER PHOTO- ·'00R , BY 1 !1,5 4 
MULTIPLIER BRIGHTER 

ADAMS. 1974 3 TSAO AND WOLLMAN. 1976 

CLEAVINGER AND MAYER. 1976 4 GATES AND McALOON. 1976 

... Image dissectors are subject to errors from stray electric and magnetic fields. 
Electric and transverse magnetic field effects can be reduced by shielding. How
ever, it is more difficult to shield against axial magnetic fields. Errors due to these 
effects become significant in the outer regions of a large FOV image dissector. 
Correction procedures to remove these effects as well as temperature effects are 
described in Section 7.7. Image dissectors have the advantages of high sensitivity. 
low noise, and relative mechanical ruggedness. 

The choices of field-of-view size and star magnitude sensitivity for any star 
sensor generally depend. on the attitude accuracy requirements. A small FOV 
tracker can provide more accurate star positions than can a larger FOV tracker 
with comparable components. However, a small FOV tracker must be sensitive to 
dimmer stars to ensure that enough stars are visible to it. Use of a larger FOV 
demands extensive prelaunch ground calibration for temperature, distortion, and 
magnetic effects, as well as postlaunch preprocessing of data to correct for these 
effects. 

6.4.2 BBRC CS-I03 V-Slh Star Scanner for OSO-8 

As an example of a star scanning sensor we will describe the CS-103 V -slit star 
scanner built for OSO-8 by the Ball Brothers Research Corporation (BBRC). It is 
designed to provide spacecraft attitudes accurate to ± 0.1 deg at a nomimal spin 
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rate of 6± 1 rpm. The star scanner, shown in Fig. 6-40, is oriented such that as the 
spacecraft rotates, the scanner's FOV sweeps a 100deg band in the sky with a 
half-cone angle of 53 deg about the spin axis. The scanner generates two pulses 
each time its FOV sweeps past a star that is brighter than the preselected level. 

Fig. 640. CS-I03 Star Scanner. (Photo ~urtesy of Ball Brothers Research Corpomtion.) 

Thus, during spacecraft rotation, the sensor generates a series of pulse pairs 
corresponding to the bright stars that pass through its field of view. Characteristics 
of the CS-I03 are summarized in Table 6-7. 

Table 6-7. BBRC CS-I03 Star Scanner Characteristics 

CHARACTERISTIC VALUE 

VERTICAL FIELD OF VIEW ,5DEG 

HORIZONTAL FIELD OF VIEW '2.6DEG 

WIDTH OF EACH SLIT lEG 0.0380EG 

DETECTABLE STAR RANGE -2.0 TO +3.5 MAGNITUDE 
!SELECTABLE GAIN THRESHOLDS 
+1.75 TO +3.5 IN 0.2I>-MAGNITUDE STEPS) 

MAXIMUM EQUIVALENT +3.6 MAGNITUDE 
BACKGROUND 

TOTAL POWER CONSUMPTION 1.89W 

ACCURACY ITWO AXES) .0. I DEG 130) 
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The sensor lens assembly focuses the light from stars within its field on an 
opaque quartz reticle with a V-shaped slit etched in its surface (see Fig. 6-41). As 
the lens assembly sweeps past a star. the photomultiplier produces a pulse at the 
crossing of each leg. of the V slit. The crossing time of the first leg (which is 
vertical) is proportional to the star's azimuth angle. The elapsed time between the 
crossing of the first leg and the second slanted leg is a function of the star's 
elevation in the spacecraft coordinate system. This procedure is essentially the 
same as that used in the V-slit Sun and Earth sensors described in Sections 6.1 and 
6.2. 

OPTICAL 
AXIS 

ELEVATION 
SLIT WINDOW 

s· 

I 
~I+-;::- 0.036" 

__ --..;.·..!!II . 

10" 

AZIMUTH 
SLITWlNOOW 

Fig. 6-41. V-Slit Sensor Reticle Configuration Showing Field of View With Respect to Optical Axis 

The star scanner level detector receives the star pulses and excludes those 
whose magnitudes are dimmer than. the selected threshold. This prevents overload
ing of the data handling system due to clusters <if dim stars or background noise. 
The level detector may be commanded to any of eight detecting thresholds (from 
+ 3.5 my to + 1.75 ffiy in 0.25-ffiy increments). 

The elec~ronic processor generates a 24-bit word for each star encountered. 
This 24-bit word consists of 14 azimuth bits denoting the time at which the leading 
slit was transited. 1 flag bit indicating if ~ree or more. pulses were encountered 

. within the maximum azimuth time of 250 ms. and 9 bits representing the. time 
between the pulses from the vertical and slanted slits. At 6 rpm. the 250-ms time 
interval corresponds to an angular separation of approximately 9 deg between the 
two pulses. The transit times are counted with a 1600-Hz clock which is periodi
cally resynchronized to the spacecraft clock. 

The star sensor electronics generate a limited number of false sighlings which 
do not correspond to valid star transits. These false sightings arise from photomul
tiplier and electronics noise. Because they occur in a random fashion. discrimina
tion from valid star transmits may be readily accomplished. 
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6.4.3 BBRC cr -401 Fixed-Head Star Tracker 

As an example of the fixed·nead star tracker, we will describe the Cf-40I, 
manufactured by BBRC and s~own in Fig. 6-42. The Cf -4QI has flown on the 
SAS-3 and HEAO-l missions and is scheduled for HEAO-C and MAGSAT. 
Schematically, the tracker is similar to the instrument shown in Fig. 6-39. The 
specified accuracy of the tracker over its 8- by 8-deg field of view is ± 3 
arc-minutes without calibration, or ± to arc-seconds after applying corrections for 
electro-optical distortion, temperature, ambient magnetic field, and star intensity 
obtained from preflight calibration. Because this instrument is capable of observing 
several stars within a relatively short period of time, it is frequently called a star 
camera. 

Fig. 6-42. BBRC cr -401 Fixed-Head Star Tracker. (Photo courtesy of BaD Brothers Research 
Corporation.) 

The tracker has four commandable thresholds corresponding to selection of 
stars brighter than approximately + 3.0, + 4.0, + 5.0, and + 6.5 Illy. These settings 
add to the flexibility of the instrument, because it can be used both for coarse 
attitude determination or attitude acquisition when set at + 3.0 Illy or for fine 
attitude determination when set at +6.5 Illy. (As discussed in Section 7.7, many 
fewer stars are measured at + 3.0 mv than at 6.5 Illy, which permits star identifica
tion with a coarse a priori attitude.) A 9- by 9-arc-minute receiving aperture 
(IFOV) scans the 8- by 8-deg FOV using the search pattern shown in Fig. 6-43. The 
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FOV scan continues until a star is found which exceeds the threshold level. When 
this occurs, the current scan line is completed, and the track pattern shown in Fig. 
6-44 begins. A feedback system in the electronics assembly centers the track 
pattern on the star image. Two-axis star positioJ:l signals are determined by the 
electronics assembly from the rising and falling edges of the star image.· These 
signals, u and v, determine the tangent plane coordinates of the star, as explained 
in Section 7.6. As a star moves in the FOV due to attitude changes, the track 
pattern follows and remains centered on the star image. Tracking of the same star 
continues until the tracker is commanded to return to. the search mode. the star 
signal drops below the threshold, or the star leaves the FOV. 

Figure 6-44 .shows the electronic sampling procedure used in the track mode. 
As the IFOV is deflected past the star image, a video signal is produced. When this 
signal exceeds and then falls below the threshold level, two pulses for each axis are 
generated by the electronics. These pulses correspond to the position of the IFOV 
during the leading and trailing edge crossings. The electronics combines these 
signals to determine the position of the star image in the FOV. These star position 
signals are then used to keep the track pattern centered ovel the star image. Star 
coordinates on both axes are updated every 100 ms. The resulting data samples are 
filtered through an RC filter with a time constant of approximately 450 ms. If 
significant motion of the star image with respect to the previo~sly sampled position 
occurs, major tracking problems will result. For example, the CT -401 may fail to 
track stars moving faster than approximately 0.6 deg/sec in the FOV. 

When the search mode resumes, the v coordinate for the beginning of the new 
search line will be the v coordinate of the star which was last tracked, plus a small 
increment (0.4 deg) to avoid retracking the same star. If this would place the 
aperture beyond the edge of the FOV, the search pattern returns to the start 
position. The starting u coordinate is at the beginning of a new line. 

SEARCH 

c:===========~~- PATTERN BEGINS 

M 
START~ 1: 

\.. TRACK 
PATTERN 

A P~rmrm,WJ;WhWhWhWhWhWhWhWh~~-- MOUNTING 
'" BRACKET 

"""J?). 
LOOKING ''OuT'' AT THE SKY 

Fig. 6-43. BBRe CT-401 Star Tracker Search and Track Mode Patterns 
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INSTANTANEOUS 
FOV 

W 
STAR 

IMAGE 

0 

Tl~ I T 
I I MOTION IN ON~ II€] DlREcnONOf 

IFOVACROSS 
STAR IMAGE 

,T 
I 

o[D I I 

I I 
I 
I 

SIGNAL CORRlSPOHDINC 
TO Ifav LOCATION 

VIDEO SIGNAL 

LEADING EDGE PULSE 

TRAILING EDGE PULSE 

Fig. 6-44. BBRC cr -401 Star Tracker Sampling Sequence in the Track Mode 

The initiate search command can be used to vary the style of operation. If the 
tracker is frequently commanded to resume search, it operates more like a star 
"mapper" than a "tracker." If it is commanded only infrequently, it operates more 
like a "tracker." A bright object sensor and shutter mechanism protect the image 
dissector from excess energy from the Sun, the Moon, or the lit Earth. The sensor 
will close the tracker's shutter when a bright object approaches the FOV. This 
occurs for the Cf-401 when the Sun lies within 42 deg of the FOV optical axis. 
Additional output signals from the tracker include indication for search or track 
mode, a bright-object sensor ON or OFF, a high-voltage monitor, and a tempera
ture monitor. The temperature monitor can be used to correct the star position 
coordinates for t~mperature effects, as described in Section 7.6. Additional details 
concerning the Cf-4Ol tracker are given by Cleavinger and Mayer [1976] and 
Gottlieb, et ai., (1976). 
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65 Gyroscopes 

Lawrence FaHon.11I 

A gyroscope, or gyro, is any instrument which uses a rapidly spinning mass to 
sense and respond to c:;hanges in the inertial orientation of its spin axis. Three basic 
types of gyroscopes are used on spacecraft: rate gyros (RGs) and rate-integrating 
gyros (RIGs) are attitude sensors used to measure changes in the spacecraft 
orientation; control moment gyros (CMGs) are used to generate control torques to 
change and maintain the spacecraft's orientation. 

Rate gyros measure spacecraft angular rates and are frequently part of a 
feedback system for either spin rate control or attitude stabilization. The angular 
rate outputs from RGs may also be integrated by an onboard computer to provide 
an estimate of spacecraft attitude displacement from some initial reference. Rate
integrating gyros measure spacecraft angular displacements directly. In some appli
cations, the RIG output consists of the total spacecraft rotation from an inertial 
reference. In other cases, output consists of the .amount of incremental rotation 
during small time intervals. An accurate measure of the total attitude displacement 
may then be obtained by integrating the average angular rates constructed from the 
incremental displacements. Average angular rates constructed in this manner may 
also be used for spin rate control or stabilization via a feedback system. RIGs are 
generally more accurate than RGs wben used for either of these procedures. They 
are usually much more expensive, however. 

Control moment gyros are no~ attitude sensors like RGs or RIGs, but are used 
to generate attitude control torques in response to onboard or ground command. 
They operate much like reaction wheels (Section 6.6) except that their spin axis is 
gimbaled. Torques are generated by commanding a gimbal rotation and thereby 
changing the spin axis orientation. CMGs may be used in conjunction with RGs or 
RIGs and an onboard computer as components of an attitude determination and 
control system. Because of their expense and weight, CMGs are used only on large 
spacecraft. 

All gyros have the basic construction geometry shown in Fig. 6-45. The 
angular momentum vector of an RG or an RIG is fixed in magnitude and parallel 
to the gyro's spin axis. Because this vector maintains its inertial orientation in the 
absence of applied torques, spacecraft motion about the gyro's input axis causes the 
gimbal supporting the spin axis to precess about the output axis, or gimbal rotation 
axis. The output of an RG or an RIG is obtained from the motion of the gimbal. A 
CMG operates essentially in· the reverse manner. A commanded displacement of 
the gimbal and the resultant change in the angular momentum vector causes a 
control torque about the gyro's input axis. 

The example shown ·in Fig. 6-45 is a single-degree-of-freedom, or SDOF, gyro 
because the spin axis is supported by only one gimbal, and the gyro is thus 
sensitive in only one direction. In many applications the spin axis is also supported 
by a second gimbal, resulting in a 2-degree-of1reedom, or TDOF, gyro. Two or 
more TDOF gyros or three or more SooF gyros may be used to provide sensing or 
control about all three axes. For example, a configuration of four RIGs, referred to 
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Fig. 6-45. Single-Degn:e-of-Freedom Gyroscope CoDStruction Geometry 
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as an Inertial Rijerence Assembly, or IRA, is.used for HEAO-I attitude determina
tion and spin rate·control. The input axes of these gyros are oriented so that any 
combination of three gyros will provide complete three-axis information. The extra 
gyro is included for redundancy. The IRA proposed for SMM will consist of three 
TDOF RIGs. A configuration of three TDOF CMGs, shown in Fig. 6-46, .was used 
in the Skylab attitude control system. 

OUTER GIMBAL TORQUE R 

ZCONTAOL MOMENT J 
GYRO MOUNTING PLANE 

OUTER GIMBAL 
TORQUER 

OUTER GIMBAL 
~R 

Y CONTROL MOMENT GYRO 
MOUNTING PLANE 

Fig. 6-46. Configuration of Skylab's Control Moment GyroS 

6.5.1 Rate Gyros 

The output of a rate gyro is obtained by measuring the rotation of the gimbal 
about the output axis. The excursion of the rate gyro's gimbal is inhibited by 
viscous damping and a spring restraint. where the spring constant is chosen to be 
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large compared with the damping effects. The relationship between the rate about 
the input axis and the angular displacement, 0, about the output axis may be 
derived by examining the total angular momentum, H, of the gyro system: 

(6-12) 

where L= LS is the angular momentum of. the rotor, 10 is the moment of inertia of 
the gimbal system about the output axis, 0 is a unit vector in the direction of the 
gyro's output axis, and S is a unit vector in the direction of the gyro's spin axis. 
Newton's laws applied.t0 the. gyro ~ystem, Whose angular velocity relative to an 
inertial system is Co) = Co)/I + "'00 + "'sS, yields the following (see Section 16.1): 

~ (dH) (dH) ~ Torques = - = - +",xH 
dt Inertial dt Gyro 

(6-13) 

where "'I' "'0' and "'s are angular velosity components along the gyro's input, 
output, and spin axes, respectively, and I is a unit vector in the direction of the 
gyro's input axis. 

The torque on the single-degree-of-freedom gyro is the sum of restoring and 
viscous damping terms, 

~ Torques = - (KO + D8 )C> 

Substitution of Eqs. (6-12) and (6-14) into (6-13) yields 

109+ D8+ KO-"'IL =0 

(6-14) 

(6-15) 

for the component along the 0 axis, where "'/ is the angular velocity component 
along the gyro's input axis. The steady-state solution to Eq. (6-15), (i.e., 8=9=0) is 

(6-16) 

The output of an RG is thus proportional to the spacecraft angular rate about the 
input axis. 

Rate gyros are the simplest and the least expensive gyros. Their accuracy is 
generally suitable for spin rate· control in a feedback system, but their integrated 
output requires frequent correction for precise attitude determination using other 
sensors such as Sun sensors or star trackers (Section 21.3). Errors in RG output art 
generally caused by nonlinearity, drift, and hysteresis. In addition, input accelera
tions may affect their accuracy if the gimbal is not perfectly balanced. 

An improvement over the conventional rate gyro is the closed-loop rate gyro, in 
which an electromagnetic torque rebalance system reduces gimbal angular ex
cursions by about three orders of magnitude. The gyro output is then derived from 
the current required to. main.tain the gimbal at the null (i.e., zero deflection) 
position. The restricted gimbal deflection improves linearity and reduces drift rate 
instability. Some characteristics of representative closed-loop rate gyros manufac
tured by· the Bendix Corporation are listed .in Table 6-8. Descriptions of several 
other types of rate gyros are given by Schimdtbauer, et al., [1973]. Additional 
details concerning the operation of rate' gyros are given by Greensite [1970] and 
Thomson [1963]. 
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Table 6-8. Characteristics of Representative Closed-Loop Rate Gyros (Source: Bendix Corporation) 

OfARACTE R 1ST Ie VALUE 

SIZE -7.8.a3.oa4.8CM 

WEIGHT 0.34 KG 

ANGULAR MOMENTUM 15.000.30.000 OR 
60.000 GM ·car/sEC 

MAXIMUM GIMBAL DISPLACEMENT ,0.60EG 

INPUT RATE RANGE (FULL SCALE) 5 TO 1.000 DEGISEC 

GYRO OUTP.UT IFULL SCALE) t10VOlTS 

TEMPERATURE SENSITIVITY <O.II2!,.t'K 

LINEAR lTV 0.5~ FULL SCALE TO \I SCALE 
~ FULL SCALE FROM \I TO FULL SCALE 

RESOLUTION < 0.01 DEGISEC 

HYSTERESIS < 0.01~ FULL SCALE 

LINEAR AceE LERATION SENSITIVITY < 0.03 DEGISEC/G 

6.5.2 Rate-Integrating Gyros 

Because of its high accuracy and low drift, the rate-integrating gyro is the type 
most often used in spacecraft attitude sensing. The gimbal is mounted·so that its 
motion is essentially frictionless and without spring restraint. It is usually a sealed 
cylinder which is immersed or floated in a fluid. The spin axis in the cylinder is 
generally supported by either gas or ball bearings. Because the viscous damping 
and spring constants are both small, the steady-state solution to Eq. (6-15) indicates 
that an RIG's output (i.e., the rotation of the gimbal about the gyro's output axis) 
is proportional to the spacecraft's angular displacement about its input axis. 

In practical applications, gimbal motion is usually limited to a few degrees. 
Two different procedures are frequently used to measure larger angles and to 
improve accuracy when measuring smaller angles. In the first method, the gyro is 
mounted on a platform which is rotated in a closed-loop system using the gimbal 
motion signal to maintain the gimbal position near the zero point. The gyro's 
output is then proportional to the rotation of the platform which, in turn, is 
proportional to the rotation of the spacecraft about the input axis. Alternatively, 
the gyro can be fixed in the spacecraft with the gimbal torqued magnetically using 
a closed-loop system to maintain its deflection near null. As is done for similar 
RGs, the gyro's output is derived from the torque current, which is proportional to 
the spacecraft rotation. Such a gyro is referred to as a strapdown torque rebalanced 
RIG. The torque current may be either analog or pulsed. Pulsed torquing has 
gained in popularity because of its utility in computer applications. The torque 
current from either type of torque rebalanced gyro may be differenced after small 
time intervals before being output, so that the resultant gyro output during anyone 
of these small time intervals is proportional to the differential spacecraft rotation 
and, thus, to the average spacecraft velocity during the Interval. An RIG operating 
in this way is referred to as a rate-integrating gyro in the rate mode. 
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The principal source of error in an RIG is drift rate instability. The systematic 
errors of drift, input axis misalignment, and scale factor error can be modeled and 
corrected for as described in Section 7.7. In torque rebalanced RIGs with floated 
gimbals, the component of drift instability caused by thermal effects is minimized 
by automatically controlled heaters. Most of the residual drift instability normally 
results from random null shifts in the torque rebalance control loop. A short-term 
component of this instability, referred to as random drift, can be related to float 
torque noise (i.e., noise in the torque applied to the floated gimbal). Similarly, a 
random walk compocent, referred to as drift rate ramp, can be related to float 
torque derivative noise. The effects of both of these noise sources on the un
certainty in gyro outputs can be modeled so that spacecraft attitude error can be 
predicted (Section 7.7). Occasionally, however, fluctuations in the spacecraft vol
tage or changes in the magnetic environment cause systematic null shifts, which are 
difficult or impossible to model. In many cases, use of a regulated gyro power 
supply reduces the voltage fluctuation effects, although the cost of the gyro 
package is considerably increased. 

Additional information concerning RIGs is given by Schimdtbauer, et 01., 
(1973]; Greensite [1970]; Thomson [1963]; and Scott and Carroll (1969]. Table 6-9 
lists the characteristics of typical RIGs manufactured by Bendix and Honeywell. 

Table 6-9. Characteristics of Representative Rate-Integrating Gyros (Source: Bendi.< Corporation I\.Ild 
Honeywell, Inc.) . 

VOLUME OPERATING 
RANDOM INPUT ANGULAR 

GYRO DIAMETER. WEIGHT 
POWER 

DRIFT RANGE MOMENTUM 
.. LENGTH 'KG) 

!W) 
I. IDEO/SEC) IGM CM'ISEC) 

ICM) IDEGIHR) 

HONEYWELL GG 334 RIG (SDOF) • .89 0." 11 MAX 0.003 : $.6 185,000 
11.94 

BENDIX 64 RIG ISDOF) 0.35 0.17 8-16 0.006 ~ 2,5 430,000 
'FOR IUE AND HEAO-ll 27 .... 

6.5.3 Control Moment Gyros 

A control moment gyro's angular momentum is due to the rotor which is 
spinning about the spin axis with a constant angular rate. Because the spin axis is 
gimbaled, a commanded gimbal rotation causes the direction of the angular 
momentum vector to change, thus creating a control torque parallel to the output 
axis. The magnitude of this torque depends upon the speed of the rotor and the 
gimbal rotation rate. Because gimbal excursion is often limited by position stops 
and gimbal rotation rates must not exceed specified maximum values, a partition
ing of torque components among several CMGs is often required (Chubb, et 01., 
1975; Coon and Irby 1976]. Occasionally, however, undesirable momentum con
figurations will result, and momentum dumping using an auxiliary control system 
(such as gas thrusters) becomes necessary (Section 6.6). The characteristics of 
several Bendix CMGs are listed in Table 6-10. 
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Table 6-10. Characteristics of Representative Control Moment Gyros (Source: Bendix Corporation) 

ROTOR ANGULAR MAXIMUM 
GtMBAL MAXIMUM 

MODEL WEIGHT 
SPf€.O -.!NTUM OUTPUT 

fREEDOM GIMBAL ~PPROXIMAn 
IKel TORQUE" RATE S.lt 

IRPIIAI (KG· ,.2fS) IN M) IDEGI 
IOEGIS£C) 

BENDIX DOUBLE 2<13 4.000 TO 1400-4100 231 UNLIMITED • II MCIA 
GIMBAL MA-2ODD l2,000 30 SPHERE 

BENDIX OOUBLE '90 ',000 3'00 '65 .SO • 'OMOIA 
GIMBAL MA-23OD , '15 1 SPHERiE 
fOR SK"LAB 

BENDIX SINGLE 66 7,850 
__ "100 

680 ! '10 "3 CYLINDER 
GIMBAL MA-SOD AC 0.51 MOlAMX 

0.81 M lONG 

BENDIX SINGLE 11 8,000 1 '40 UNLIMITED "411 CYLINDEA 
GIMBAL MA-S-lCO-l 02!iMOIAMX 

07&MlONG 

6.6 Momentum and Reaction Wheels 

Dale Headrick 

Devices for the storage of angular momentum, sometimes called simply 
momentum in attitude work, are used on spacecraft for several purposes: to add 
stability against disturbance torques, to provide a variable momentum to allow 
operation at I rpo for Earth-oriented missions, to absorb cyclic torques, and to 
transfer momentum to the satellite body for the execution of slewing maneuvers. 
These devices depend on the momentum of a spinning wheel, h= /CiJ, where / is the 
moment of inertia about the rotation axis and CiJ is the angular velocity. (See 
Sections 11.1 and 16.1.) Unfortunately, the terminology of momentum wheels in 
the literature is not uniform. We adopt the following: 

Flywheel, or inertia wheel, is any rotating wheel or disk used to store or transfer 
momentum. It refers to the wheel itself, exclusive of electronics or other associated 
devices. 

Momentum wheel is a flywheel designed to operate at a biased, or nonzero, 
momentum. It provides a variable-momentum storage capability about its rotation 
axis, which is usually fixed in the vehicle. 

Reaction wheel is a flywheel with a vehicle-fixed axis designed to operate at 
zero bias. 

Momentum wheel assembly consists of the flywheel and its associated parts: 
is bearings, torque motors, tachometers, other sensing devices, caging devices for 
is launch, and control electronics. 
lr Control moment gyro (CMG). or gyrotorquer, consists of a single- or a double-
Jt gimbaled wheel spinning at a constant rate. The gimbal rings allow control of the 
le direction of the flywheel momentum vector in the spacecraft body. The CMG is 
)s discussed in Section 6.5. 
n-

I., Single Momentum Wheel. The capacity of a typical momentum wheel varies 
n- from 0.4 to 40 kg·m2/s. Because the same momentum can be achieved with a 
m small, high-speed flywheel as with a large low-speed one, design tradeoffs generally 
of favor the smaller wheel because of size and weight. The high-speed wheel has the 

disadvantage of greater wear on the bearings, which may shorten its lifetime. As 
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described in Section 6.2, horizon scanners have been incorporated as an integral 
part of the momentum wheel assembly on several spacecraft. A momentum 
wheel-horizon scanner combination is shown in Figs. 6-27 and 6-28. Typical values 
of momentum wheel parameters are given in Table 6-11. 

Table 6-11. Typical Values of Momentum Wheel Parameters 

MANUFAC· MASS 
MOMENT Of SPEEO ANGULAR 

TURER SPAC£CAAF~ UtGI I~ERTIA RANGE ,~ .. ~~~~, IKG·,.7) IRPM, 

APL ~!s~;3} 3.18 0.0115 2000 2.41 @ 2000 RPM 

BENDIX ATS 884 0....., :1450 .1.52 fij) 12&0 RPM 
NIMBUS 2.36 0.0034 :1400 0.447 Ii) 1250 RPM 
OAOSERIES 5.13 0.0297 , 900 2.79@900RPM 

ITHACO ~~~~T~,~~;6} 3.72 0 ..... 600-2000 1.49@ 2000 RPM 

SAS-3 } HC_ 6.71 O.02n 1000-2000 5.69@ 2000 RPM 
SEASAT 

RCA AE SERIES 18.68 3.4604 95-392 128.o3@ 353.32 RPM 
ITOSSERIES 14.43 120-160 

SPERRY HEAO-B 13.38 0.1913 ,2000 40.071 @2OOO RPM 

Torque motors, used to transfer momentum between the wheel and the 
spacecraft body, may be of two types: an AC two-phase induction motor or a DC 
brushless motor. Because the AC motor requires no brushes or sliprings, it has high 
reliability and' a long lifetime, but also low efficiency, low torque, and a high 
operating speed. The high-speed motor requires use of a gearing system, with 
associated friction and backlash problems. By comparison, DC motors are efficient 
and provide high torque at low speed, thus allowing direct drive without gearing . 
• The. conventional brush commutators are normally replaced with electronic or 
brushless commutation. 

Because of evaporation, bearings have a lubrication problem when the seal is 
exposed to the space environment. Low vapor pressure oils and labyrinthine seals 
have been used, for example, on the Atmosphere Explorer series. Also, dry 
lubricants, such as Teflon® compounds, have been used on spacecraft, such as 
SAS-I, although Teflon may deform under impact during launch. With sma)) 
momentum wheels, completely sealed -systems can be used. With reaction wheels, 
which may go through the zero-speed region, special care must be taken to 
minimize static friction (often called stiction). Recent work has been done on 
prototype magnetic suspension systems which have the potential of avoiding wear 
altogether [Sabnis, et al., 1974]. . 

Tachometers, which measure the wheel speed, often consist of a wheel
mounted magnet and a fixed sensor, such as a simple pickoff coil. The pulse train 
can be converted to a DC voltage for use as a controlling error signal for either a 
constant speed or a commanded variable-speed mode. Another type, the DC 
tachometer, uses the back electromotive force (emf) generated by 'the armature 
winding to produce an analog voltage proportional to the rotational speed. Optical 
encoders are also used with light-emitting diodes. 

Dual-Spin Spacecraft. A dual-spin spacecraft is one which has two sections 
with different spin rates. It usually consists of a despun section and a flywheel. The 
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dual-spin OSO spacecraft are somewhat different, however, with a despun "sail" 
section containing Sun-pointed instruments, while a "wheel" section, rotating from 
6 to 30 rpm, provides angular momentum and the requisite stability. Because the 
wheel section contains experiments and requires three-axis attitude determination, 
it is considerably more elaborate than a typical momentum wheel. 

Momentum' wheels may be operated at either a constant or a variable speed 
and are used to control the spin rate and attitude about the wheel axis. The former 
application is less common and generally is used only on satellites such as GEOS-3, 
where a large gravity-gradient restoring torque (see Sections 17.2, 18.5, and 19.5) is 
available about the wheel axis. 

A momentum bias design is common for dual-spin Earth-orbiting spacecraft, in 
which a momentum wheel is mounted along the pitch axis, which is controlled to 
orbit normal. This allows the instruments to scan over the Earth. For example, the 
AE series was designed to operate with a nominal angular momentum of 125 
kg· m2 

/ s with a wheel capacity which allows operation of the body either despun at 
I rpo or spinning at 4 rpm. An integral wheel horizon scanner provides information 
for closed-loop pitch control and open-loop roll/yaw control using magnetic coils. 
The SAS-3 spacecraft uses its momentum wheel in several different operational 
modes: spin rate control mode using gyro rate sensing, Earth-oriented mode using 
horizon scanner pitch data, and a three-axis stabilized mode using star camera .~ata 
for pitch control [Mobley, et al., 1974]. . 

Practical problems which should be considered in the design of mpmentum 
wheel systems include bearing noise, quantization, jitter, variation of the bearing 
friction with temperature, offset of the wheel axis from the body principal axis, and 
nutation. Difficulties have been experienced on the AE series in dissipating 
nutation with a distributive damper. It is suspected that a mechanism such as 
standing wave patterns reduced the effectiveness of the fluid-loop damper. Control 
system problems may occur, especially in switching from the spinning to the 
despun mode, where there may be difficulty in achieving pitch lock if the body rate 
is too high. 

Multiple Reaction Wheels. Because reaction wheels are operated with nomin
ally zero momentum, they are used primarily for absorbing cyclic torques and 
temporarily storing momentum from the body during slew, or reorientation, 
maneuvers. However, the secular disturbance torques, which are about the same 
magnitude as the cyclic terms, would eventually saturate the momentum storage 
capacity. Therefore, provision is made for periodic momentum dumping through 
external torques produced by gas jets or magnetic coils. (These are differentiated 
from internal torques due to sources such as torque motors and bearings which do 
not change the total angular momentum of the system.) 

Normally, three reaction wheels are used to control Ii vehicle, with the wheel 
axes aligned with the body principal axes; a redundant fourth wheel is also 
common. A redundant fourth skewed wheel bas been flown on IUE and the MMS 
series as a provision against failure of one of the orthogonal wheels [NASA, 1974 
and 1975]. Also, a nonorthogonal four-wheel configuration has been designed for 
HEAO-B [Rose and Hoffman, 1976]. . 
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6.7 Magnetic Coils 

6.7 

B. L. Gambhir 
DesR.Sood 

Magnetic coils, or electromagnets, are used to generate magnetic dipole 
moments for attitude and angular momentum control. They are also used to 
compensate for residual spacecraft biases and to counteract attitude drift due to 
environmental disturbance torques. 

Consider a single, plane, wire loop enclosing an area, A, through which a 
current, I, is flowing (see Fig. 6-47). Then the magnetic m~ment, m, is given by 

m=IAn (6-17) 

where n is a unit vector normal to the plane of the loop. The positive sense of the 
magnetic moment is determined by the right-hand rule; that is, the direction of !he 
magnetic moment is the direction of the thumb of the right hand when the fingers 
of the right hand are cupped in the direction of the electric current in the loop. For 
a coil of N turns, the principle of superposition gives 

m=NIAn (6-18) 

m 

Fig. 647. Magnetic Moment Due to a Current Loop 

The magnetiC dipole moment depends on the material enclosed by the current
carrying coil and is given by 

d=p.m (6-19) 

where p. is the permeability of the core material. In SI units, the permeability of 
free space, 1'0> has the value 47TX 10-7 Nj A2 (see Appendix K). Thus, for a coil or 
an electromagnet enclosing a plane area, A, the magnetic dipole moment is given 
by . 

d=p.(NI)An (6-20)· j ... 

It is apparent from Eq. (6-20) that to generate a requisite amount of dipole,;:~ 
parameters such as core material, p.; coil configuration, N and A; and the current;; 
level, I, must be appropria~ely selected. The selection is dictated by mission <ir' 
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requirements and is influenced by considerations such as weight, power consump
tion, and bulk. 

The choice of the core material is the most important design parameter. 
Ferromagnetic materials, such as Permalloy (7S% nickel, 22% iron), and Permendur 
(50% cobalt, 50% iron) have very high permeabilities and, when used as core 
materials, lead to a substantial reduction in power consumption as weD as bulk. 
However, ferromagnetic materials have magnetization curves which saturate al 
relatively low values of applied magnetic field intensity and exhibit both nonlinear
ity and hysteresis. Moreover, in ferromagnetic materials, penneability is a function 
of the magnitude of the magnetic field intensity. (See, for example, Jackson [1965].) 
Consequently, with ferromagnetic cores, it is difficult to predict accurately the 
magnetic 4ipole moment and, hence, they have been· very infrequently used. 
Magnetic coils on most satellites have "air" cores. 

The material of the current-carrying element is chosen on the basis of weight 
and ability to dissipate the heat generated by the current without an adverse impact 
on the electrical properties. For example, SAS-3 used coils wound with no. IS 
aluminum magnet wire of L02-mm diameter. Table 6-12 summarizes pertinent 
information concerning the spin axis magnetic coils flown on some representative 
missions. 

Table 6-12. Characteristics of Spin Axis Magnetic Coils on Representative Missions. See Appendix I 
for mission details. 

sPACECRAFT MAXIMUM ~:~~ :"FE.~t~:,~ ANGULAR 
SPACECRAFT MOMENTUM OIPOLE 24 AIm NORMAL REMARKS 

(kg."",2 0
'·', 

(W.rn) TO THE SPIN AXIS 
ldeg/..,.... 

SAS-3 4._ 6.28.,0.5 69.3 COILCONSlSTS OF 2&0 TURNS. MAX._ 
CURRENT IS 0.8 A AND MAXIMUM POWER 
CONSUMI'TION IS 10 W 

~8 342.8 5.33.,0.5 0.15 COIL CONSISTS OF 380 TURNS. MAXIMUM 
CURRENT IS 0.076 A 

AE-3 127.7 2.94·'0-4 11.3 TWO COILS; EACH HAS 500 TURNS. MAXI-
MUM POWER CONSUMFTION IS 12 W 

Accurate prediction of the magnetic control torques requires that the coils be 
supplied with a constant current. Control of the coil current is necessary for two. 
reasons: the supply voltage may fluctuate considerably (± 30% from nominal for 
some missions), and tile resistance of the current-carrying element changes with 
temperature. 

Figure 6-48 shows the electronic system used to drive tIl~ spin axis coil of tile 
SAS-3 spacecraft [Mobley, et al., 1974J. The current in. tile coil is controlled in 
closed-loop fashion by sensing the voltage drop across tile feedback· resistor, ~. 
Bidirectional operation is achieved by. coil current reversal tIlrough tile use of a 
remote operated latching-type "sense" switching relay. On SAS-3, the spin axis coil 
served a dual purpose: when the power to tile constant current source was turned 
off, the coil was automatically switched to tile "trim" system to generate a small 
magnetic dipole to counteract tile spin axis attitude drifL 
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_v 

Fig. 6-48. Constant Current Source Used for SAS-3 Magnetic Coil 

6.8 Gas Jets 

Robert S. Wi/Iiams 

All jets or thrusters produce thrust by expelling propellant in the opposite 
direction. The resultant torques and forces are used for five principal spacecraft 
f)lnctions: (1) to control attitude, (2) to control spin rate, (3) to control nutation, (4) 
to control the speed of momentum wheels, and (5) to adjust orbits. Gas jets 
produce thrust by a collective acceleration of propellant molecules, with the energy 
coming from either a chemical reaction or thermodynamic expansion, whereas !on 
jets accelerat~ individual ionized molecules electrodynamically, ·with the energy 
,ultimately coming from solar cells or self-contained electric generators. Gas jets are 
widely used, whereas ion jets are not yet developed enough for spacecraft use. 
Schmidtbauer, et 01., (1973] provide a survey of all types; Junge and Sprengel 
{l973], Pye [1973], LeG rives and Labbe (1973] and Vondra and Thomassen (1974] 
. describe work on ion thrusters which may lead to flight-qualified units. A hybrid 
flight-qualified unit in which solid Teflon®is vaporized by a high-voltage electric 
discharge is described by Au and Baumgarth [1974]. Gas jet hardware and 
applications to attitude control are discussed here, mathematical models in Sections 
7.10 and 17.4, and control laws in Section 19.3. 

Gas jets are classified as hot gas when the energy is derived from a chemical,?' 
reaction or cold gas when it is derived from the latent heat bf a phase change, or:,ji;t', 
from the work of compression if no phase change is involved. Hot-gas jeiS t,? 
generally produce a higher thrust level (> 5 N) and a greater totalimf1lA:se or time· 
integral of the force. Cold-gas systems operate more consistently, particularly when 
the system is operated in a pulsed mode, because there is no chemical reaction 
which must reach steady state. The lower thrust levels (;$1 N) of cold-gas systems, . 
may facilitate more precise control than would be available with·a high-thrUSt.': 
system. ". '., 

Hot-gas systems may be either bipropellant or monopropellant. Fuel and O;d_i: 
dizer are stored separately in a bipropellant system; very high thrust levels 
N) can be obtained, but the complexity of a two-component system is justified 
when these thrust . levels are required. Monopropellant systems use a catalyst 
less frequently. Wigh temperature to promote decomposition of a single ' 
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which is commonly hydrazine (N2HJ or hydrogen peroxide (H20~. Hydrazine 
with catalytic decomposition is the most frequently used hot-gas monopropellant 
system on spacecraft supported by Goddard Space Flight Center. The problem of 
consistency, mentioned above, manifests itself in two ways. First, the thrust is 
below n(lminal f(lr the initial few sec(lnds (If firing because the reaction rate is 
below the steady-state value until the catalyst bed reaches operating temperature. 
Second, the thrust profile, or time dependence of thrust, changes as a function of 
total thruster firing time; this is significant when a long series of short pulses is 
executed, because the thrust profile for the later, pulses will differ from that for the 
earlier pulses. The latter problem has been ascribed by Holcomb, et al., (1976] to 
aniline impurities in the grade of hydrazine usually used as fuel. Murch, et al., 
(1976], Pugmire and O'Connor (1976], and Grabbi and Murch (1976] describe the 
development of electrothermal thrusters in which decomposition of the hydrazine is 
initiated at a heated surface within the thruster; these thrusters reportedly function 
consistently. with a well-defined thrust profile, over a wide range of pulsewidths 
and total bum times. Variable thrust profiles can be modeled as described in 
Section 19.3, but the models are more complicated and are probably less accurate 
than those for consistently reproducible thrust profiles. 

In near-Earth orbits, either jets Or magnetic coils (Section 6.1) can be used for 
many of the same purposes. The control laws for jets (Section 19.3) are simpler 
than those for coils (Sections 19.1 and 19.2), primarily because jets produce larger 
torques. The magnetic. torque produced by a coil depends on the local magnetic 
field, which varies as the spacecraft moves in its orbit; a coil command frequently 
must extend over a large fraction of an orbit or over several orbits to achieve the 
desired results. The propellant supply required for jets is the major limitation on 
their use; a fuel budget is an important part of mission planning for any system 
using jets. Other considerations are the overall weight of the system and the need to 
position thrusters where the exhaust will not impinge on the spacecraft The latter 
consideration is especially important when hydrazine is used. because the exhaust 
contains ammonia, which is corrosive. The only magnetic fields associated with 
gas-jet systems are th,ose generated by the solenoid valves; these will generally be 
smaller than those associated with magnetic control coils, but may be significant in 
some cases if experiments on the spacecraft are adversely affected by stray fields. 

In more distant orbits (certainly beyond geosynchronous altitude), jets are the 
only practical means of interchanging momentum with· the environment High
thrust or total impUlse requirements may indicate a hot-gas system. Otherwise, the 
cold-gas system may be favored because hydrazine freezes at about 0° C and may 
require heaters if lower temperatures will be encountered during the mission. 
Specific components may affect the relative system reliability; for example, hydra
zine systems use tank diaphragms to separate the propellant from the pressurizing 
agent and also require a catalyst or beater to initiate decomposition; cold-gas 
system's may have a pressure regulator between the tank and the thruster. 

IUE Hydrazlne System. As a representative hot-gas attitude control system, 
we describe the Hydrazine Auxiliary Propulsion System manufactured by 'the 
Hamilton-Standard division of United Technologies for the International Ultra~ 
violet Explorer (IUE) spacecraft [Sansevero and Simmons 1975]. The IUE 
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spacecraft will perform measurements of ultraviolet spectra of stars from a geo
synchronous orbit. The hydrazine system will be used for attitude. spin rate, and 
nutation control in the transfer orbit and for orbit adjustments and momentum
wheel speed control thereafter. A hydrazine system is needed to meet total impulse 
requirements over the 3- to 5- year mission lifetime. The plume, or envelope of the 
thruster exhaust, has been analyzed to determine whether ammonia i~ likely to 
condense on the telescope optics; this was found not to be a problem. 

Figure 6-49 shows the IUE hydrazine system, which was designed for as
sembly as' a complete unit to be attached subsequently to the spacecraft. The 
octagonal framework is approximately 137 cm between opposite faces. Four 
thrusters are mounted on the octagonal faces; two of these can be seen on the 
leftmost face in Fig. 6-49. Eight additional thrusters are mounted in two clusters of 
four thrusters each; one cluster is suspended from the octagonal face closest to the 
camera, the other from the opposite face. Each cluster contains two large thrusters, 
each generating about 20 N, which are used for attitude and nutation control and 
orbit adjustments. The two small thrusters in each cluster and the four body
mounted thrusters each generate about 0.4 N for spin rate control and momentum 
unloading. 

Fig. 6-49. Hydrazine System for the IUE Spacecraft. (Photo courtesy of Hamilton-Standard Division 
of United Technologies Corp.) . 
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Spherical fuel tanks are mounted in six of the eight bays. A diaphragm in each 
tank separates the nitrogen pressurizing gas from the hydrazine fuel. Opposite 
tanks are connected in pairs to minimize imbalance as fuel is consumed. Fuel flows 
through one filter and two latch valves between the tanks and thruster assemblies. 
Pressure transducers located between the filters and latch valves allow the amount 
of fuel remaining in each pair of tanks to be estimated. 

As shown in Fig. 6-50, all lines are interconnected between latch valves to 
minimize the effect of a valve failure. Fuel lines from the spacecraft body to the 
suspended clusters are heated to prevent freezing. The thrusters are also provided 
with heaters to maintain the proper operating temperature, which is measured by 
thermocouples on each thruster. An additional filter and solenoid valve is 
associated with each thruster. In operation, latch valves are open and the system is 
controlled with the solenoid valves on selected thrusters. 

The system as built weighs almost 25 kg without fuel. The fuel budget for the 
mission is about 12 kg; During the mission, thrusters will be operated with firing 
times as short as 0.1 sec during attitude maneuvers and as long as several minutes 
during spin rate changes or orbit maneuvers. 

FINAL filTERS 

SOLENOID VALVES 

o 4-N THRUSTERS 

Fig. 6-50. IUE Hydrazine System Schematic Diagram. (Adapted from Sansevero 11975).) 

Other Representative Systems. Most cold-gas systems are functionally similar 
to the IUE system; The major differences are that the propellant is stored as a 
liquid above the critical pressure and is self-pressurizing. Heaters are not required 
because the propellant is a gas at low pressure at any temperature likely. to be 
encountered in operation. Pressure regulators are usually used to control propellant 
flow rate. 

The OSO series of Earth-orbiting spacecraft combines a cold-gas system with 
magnetic coils. The coils are usually used for attitude control. The gas jets are used 
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for occasional rapid maneuvers which cannot be performed with the coils and for 
correcting secular angular momentum changes caused by gravity-gradient and 
residual· magnetic torques. 

The RAE-2 spacecraft, placed in lunar orbit in 1973, carried both a hydrazine 
hot-gas system for orbit corrections and a Freon®cold-gas system for attitude and 
spin rate control. Although single systems can be designed to perform all three 
functions, the RAE-2 mission required the ejection of the orbit-correction system 
before all attitude and spin rate control functions were completed. The impulse 
potential of a hot-gas system was required for the orbit changes, but a simpler 
cold-gas system sufficed for the other requirements. 

The ISEE-I and -2 spacecraft were placed simultaneously in an orbit with an 
apogee of about 22 Earth radii on October 22, 1977, to study the interaction of the 
solar wind with the magnetosphere. Attitude control is used to maintain the spin 
axes at the North Ecliptic Pole; spin rate control is needed to maintain a constant 
spin rate; and orbit maneuvers are performed to maintain the desired distance 
between the two spacecraft. The estimated total impulse requirements for all three 
functions over the 3-year mission lifetime can be met with a Freon® cold-gas 
system. 

6.9 Onboard Computers 

Gerald M. Lerner 
Prafulla K. Misra 

.. In general, onboard attitude control is obtained by combining onboard sensors 
and torquers through a control law (Chapter 18), or control strategy, which is 
implemented via analog logic or a digital computer. Because attitude control 
systems are normally chosen for reliability and cost, control laws which are easily 
implemented through analog logic have been widely used. Sensors such as analog 
Sun sensors (Section 6.1), and wheel-mounted horizon sensors (Section 6.2), are 
well suited for such applications because the sensor output is simply related to an 
angle which is to be·controlled. Reaction wheels, momentum wheels (Section 6.6). 
or jets (Section 6.8) are preferred torquing devices because in many applications 
there is a simple relationship between attitude errors and the appropriate torque 
commands. In addition, magnetic torquers (Sec'tion 6.7) are often used in conjunc
tion with a magnetometer. 

Increasingly stringent spacecraft attitude conJrol and autonomy requirements 
(Chapter 22) have resulted in the need for onboard computers (OBCs) or digital 
processors. Digital processors afford several advantages over analog systems 
[Schmidtbauer et al., 1973J, including the capability of processing complex types of 
data-such as star tracker, gyroscope, or digital Sun sensor data-and of modify
ing programmed control laws via ground command. 

In an attempt to standardize flight hardware, NASA's Goddard Space Flight 
Center is developing the NASA Standard Spacecraft Computer NSSC, which was 
derived from the OAO-3 onboard computer and is similar to that of IUE. The 
NSSC-I will be flown on the Solar Maximum Mission (SMM) and on subsequent 



6.9 ONBOARD COMPUTERS 2)1 

flights in the Multi-mission Modular Spacecraft series. A second, larger version, the 
NSSC-II, will be used for Spacelab payloads and the Space Telescope. The specifica
tions for the NSSC-I, NSSC-II, and HEAO digital processor are shown in Table 
6-13. Timing estimates for the NSSC-I and NSSC-II .are given in Table 6-14. 

Table 6-13. Specifications for the NASA Standard Spacecraft Computers NSSC-I and NSSC-IJ and 
the HEAO Digital Processor 

PARAMETER - " NSSC-'* NSSC-II 

POWER (W) 38 MAXIMUM 16 STANDBY) t30 TO 242t 

MASSIKg) 8.4 8.3 (32K BYTE' 

VOLUME ILITERS. 9.4 8.4 

WORD LENGTH IBITS. 19 9. 16. 32. OR 64 

NUMBER OF INSTRUCTIONS &5 171 

MEMORY 6K WORD MODULES TO 64K 16K BYTES" (EXPANDABLE 
WORDS t32K NOMINAU·· BY 18K INCREMENTS. 

-WITH 32K WORDS OF MEMORV. 

""EACH 8K WORD MODULE IS DIVIDED INTO lWO 4K WORD LOGICAL BANKS. 

'DEPENDING ON CONFIGURATION. 

tfUIT BYTES. 

Table 6-14. Timing Estimates for NSSC-I and NSSC-II 

SlNGU PRECISION DOUBLE PReCISION 

OPERAnON 
.... .... 

NSSC-t. NSSC-n·· NSSC-t" NSSC-n-· 

AODISUBTRACT 18 1.7 &:1183 2 

MULTIPLY 57 8.3 ... "'6 
DIVIDE .. 16.8 .... M.8 

SlNIUCOSINE 371 - 1600 -
SGUARliROOl ... - 3I3Il -.. .. ... ...., 

-ESTIMATES INCLUDE A LOAD AND STmtl! IINJCH REQUIRE ABOUT 13 JolS; 
MULTIPLY OR DIVIDE BY POWERSOP 2TAKESAPPRQXIMATILYONE.TENTM 
THE NOMINAL MULTIPLICATION TIME. 

··&STtlllATESARE FOR REGISTER·TO-REGISTER ONLY. 

HEAD 
DIGITAL 

PROCESSOR 

16 

4.5 

2A 

16 

42 

BKWORDS 

NSSC-I. This computer uses IS-bit words and fixed point, two's complement 
arithmetic. A 55-instruction set is available with a basic cycle time of 1.25 p.s and a 
5-ILS requirement for an add operation. (These values are still uncertain and may be 
revised in subsequent versions of the computer.) A detailed description of the 
instruction set is given by Merwarth [1976]. 

A set of mathematical subroutines for the NSSC-I has been designed to 
provide elementary IS- and 36-bit operations [DeMott, 1976]. Timing estimates for 
these are given in Table 6-14. The efficiency of coding the NSSC-I is limited 
because it has 'only three registers: an accumulator and an extended accumulator 
(which are combined into a double-length register for products and dividends in 
multiplication and division) and one index register. A further complicatioll is 

"introduced by the small word size ~hich allows only 12 bits for operand addresses 
in instructions. The NSSC-I therefore uses a page register to specify the logical 
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bank, or 212 =4096 word- region, from which the operand is to be retrieved. 
Loading, reloading, and (especially) saving and restoring the page register is 
cumbersome, so NSSC-I programs can address directly only 4096 words of data 
and only data defined within the independently assembled module which addresses 
iL 

An interrupt system provides 16 hardware interrupts and one programmable 
interrupt. Input and output are provided from 16 devices [Merwarth, 1976}. The 
onboard computer transmits data to the ground at the rate of one word per 
telemetry frame (see Chapter 8) and receives commands at the rate of 2000 bits per 
second (a 48-bit command every 24 ms). Memory dump, via S-band, is available at 
32,OOO'bits per second. 

Memory for the NSSC-I is expandable in 8192 word modules to a maximum 
of 8 modules. Hardware protection against changing data or instructions within 
selected address limits is provided. The proposed memory layout for MMS is 
shown in Fig. 6-51. A flight executive is used to schedule the various tasks of the 
onboard computer. These tasks include high-priority attitude control operations 
(probably every 128 ms for SMM) in addition to low-priority housekeeping 
functions. The latter include performing functions normally provided by analog 
devices such as thermostats and other spacecraft hardware. 

o 28671 32768 t--I MNK,--+---r-----t--"'-----t-=----;----t-----t----I ~----1K8 1 

STORED 
Q)MMANDS 

STATUS EXECUTIVE AND 
BUFFER STORED COM

MAND PROCESSOR 

SUBSYSTEM FUNCTIONS 
ACS 
POWER 
THERMAL 

OBSERVATORY SAFETY 
OBSERVATORY OPERATIONS 
MISSION-UNIQUE FUNCTIONS 

, 
SPARE 

Fig. 6-51. NSSC-I Memory Layout for the MMS Spaceaaft. The MMS attitude control system core 
requirements are 10 K to 16 K words of program and data storage; 10 to 1000 stars at 4 
words per star; and 100 to 3000 words for 72 hours of ephemeris data 

NSSC-II. This computer is a microprogrammed general-purpose computer 
that is compatible with the standard instruction set of IBM S/360 ground-based 
computer systems [NASA, 1977]. The machine microcode implements a total of 
171 instructions including 16-, 32-, and 64-bit fixed-point and 32-bit floating point 
instructions. In addition, the design accommodates 512 words of microcode 
memory capacity for special instructions or 'routmes programmed or specified by 
the user. The semiconductor memory is expandable in 16 K-byte (8-bit byte) 
increments. 

The NSSC-I1 uses 8-, 16-, 32- or 64-bit ftxed-point data words at the user's 
option. The basic cycle time for the machine is 440 ns. The system lias 16 general 
registers. The word size allows 20-bit operand addresses in instructions; thus, 
NSSC-II programs can address directly up to I M-by!e words of data. 

HEAO Computer. The digital processor employed for the HEAO spacecraft 
will process gyroscope data and compute jet commands (every 320 ms) for 

• Eighteen-bit words. 

.'.'.'r' 

·1 , 
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HEAO-l and -C and will process both gyroscope and star tracker data to compute 
jet commands for HEAO-B (Hoffman, 1976]. The specifications for the HEAO 
digital processor are given in Table 6-13. 
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Horizon Sensor Geol7U!try. Nadir Yector Projection MOfkI 
for Body-Mounted Sensor. Central Body Widlh MOfkI, 
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Calibration of Vector Magnetometers. Magnetometer· 
Bioses 

7.6 Star Sensor Models 
Star Scanner Measurements, Image Dissector Tube Star 
Meosurements. MOfkling Sensor Intensity Response 
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Direct Match Technique. Angu/Qr Separation Match 
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7.8 Gyroscope Models 
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Anguhlr Velocity. Calculation of Estimated Anguhlr Ve
Wcity From the Gyro Measuremenl3, Modeling Gyro Noise 
Effects 

7.9 Reaction Wheel Models 
7.10· Modeling Gas-Jet Control Systems 

Chapter 6 described the physical properties of representative examples of 
attitude hardware. However, to use sensor output or to predict control performance 
we need specific mathematical models of the hardware and its output. Various 
models encountered at NASA's Goddard Space Flight Center are presented in this 
chapter. 

The hardware and its mathematical model should be thought of as distinct 
entities. It is possible for the hardware to be refined or modified without requiring 
a change in the mathematical formulation. Similarly, it is possible to refine or 
improve the mathematical model even though the hardware has not changed. For 
example, the horizon sensor models in Section 7.2 implicitly assunie that the sensor 
responds instantaneously to a change in int~sity as the sensor scans the sky. This 
concept was used for spacecraft supported at Goddard Space Flight Center prior to 
the launch of SMS-2 in February 1975. With the rather good data from SMS-2 it 
became apparent that the anomalous behavior of the data when the scan crossed 
only a small segment of the Earth could most easily be explained in terms of the 
rmite resPQnse time of the sensor electronics. The mathematical model of the 
sensor electroniCS presented in Section 7.3 was subsequently developed and greatly 
improved our understanding of the data. Thus, the continuing development of both 
hardware and mathematical models can proceed at least somewhat independently. 
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7.1 Sun Sensor Models 

7.1 

Li/yC. Chen 
GerllllJ M. Lerner 

In this section, we will derive general expressions for data reduction and 
simulation for two classes of Sun sensors: slit sensors for which the measurement is 
the fraction of the spin period required for the Sun image to traverse a slit pattern, 
and digital sensors for which the measurement is the linear deflection of the image 
of a narrow slit upon traversing a refractive medium. 

7.1.1 V-Slit Sensors 

A V-slit Sun sensor used for spinning spacecraft normally contains two plane 
field (PF) sensors making an angle 80 with respect to each other. Each PF sensor 
has a planar field of view (FOV). Thus, the projection of the FOV onto the celestial 
sphere is a segment of a great circle. The sensor provides an event pulse whenever 
the FOV crosses the Sun. Therefore, the Sun angle, jJ, can be obtained directly 
from the measurements of (0), the spin rate, and 111, the time interval between the 
two Sun-sighting events from the two PF sensors. 

Nominal Case. In the nominal case, one of the PF sensors (PF-l) is parallel 
to the spacecraft spin axis and the other (PF-2) is inclined at an angle 90 to PF-I, as 
shown in Fig. 7-1. The two sensor FOVs nominally intersect the spin equator at the 
~me point. In Fig. 7-1, A is the spin axis and S is the Sun. The great circle SB is 

Fig. 1-1. V-Slit Sun Sensor Nominal Geometry 

,I 

i~ 
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the FOV of PF-I when it senses the Sun, and the great circles AC and SC are the 
FOVs of PF-I and PF-2, respectively, when P-E,.2 senses the Sun. The arc length, 
""I!J.t, between B and C is the rotation angle between the two Sun-sighting events, 
where"" is the spin rate and I!J.t is the time interval. By a direct application of 
Napier's rules (Appendix A) to the right spbericaltriangle SBC, we obtain 

tan 90 
tanfJ= sin""I!J.t (1-1) 

For data simulation, the inverse expression for I!J.t is 

(7-2) 

MisalIgnment Considerations. Three kinds of sensor misa1ignment are poss
ible. A separation misalignment is an error in the angular separation such that 
9=80 +M. For this type of error, both Eqs. (7-1) and (7-2) hold· by simply 
replacing 80 with 80 + 1!J.9. 

An elevation misalignment occurs when PF-I is not parallel to the spacecraft 
spin axis but rather makes an angle, E, with the spin axis, as shown in Fig. 7-2. Note 
that the great circle SB no longer passes through A but rather makes an angle E 

with great circle AB. 90 is still the angle between the two PF sensors; therefore SC 
makes an angle 90 + E with A C. The arc length, 41, between Band D is the angular 
shift of the Sun-sighting events due to the elevation misalignment, E. By applying 
relation (7-1) to the two spherical triangles SDB and SDC, we obtain 

tau tan(90+E) 
tan a = -- = (7-3) 

P. sin 41 sin(4I+""I!J.t) 

Fig. 7-2. V-Slit Sun SensOr Geometry With Eevation Misalignment 
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Eliminating + from Eq. (7-3), we have 

[ 
tan(90+£)-tan£COS(o)dt]2 

tan2P' = . + tan2£ 
• sln(o)dt 

For small £, we may keep only the first-order terms in £, so that 

'tan(90+ £)- £coswdt 
tan P • .:..o = --=--=----,si,..:n~w-:d-t---

7.1 

(7-4) 

(7-5) 

Finally, an azimuth misalignment occurs when the two FOV intersections with 
the spin equator ~e separated by an angle 8 in the spin plane, as shown in Fig. 7-3. 
Due to the azimuth miSalignment, 8, the actual rotation angle between the two 
Sun-sighting events is BD rather than Be. Comparing Fig. 7-3 with Figs. 7-1 and 
1-2, it is clear that all of the previously derived equations are still valid if (o)dt is 
replaced with (o)dt-8. Thus, from Eq. (7-1), with only the azimuth misalignment 
we have 

tan 00 
tanp' = ----=-

Ii sin( (o)dt - 8) 

. Fig. 7-3. V·Slit Sun Sensor Geomeby With Azimuth Misalignment 

(7-6) 

With all possible misalignments, the general expression for the Sun angle can 
be obtained by replacing 00 with 90 + dO and (o)dt with (o)dt - 8 in Eq. (7-4). That is, 

2 [tan(00+d9+£)-tan£COS(Wdt- 8) ]2 2 
tan'P4B .. 8= . (A ~) + tan £ • SID (o)ut-u 

(7-7) 

."" 

i 
" 

I, 

<' 
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'-For simulation, the inverse expression for III as a function of P and the misalign-
ment angles is 

cos«(.;IA/-8)= ~ [b+Vb2.....,ac ] 

where a = tan2fJ 
b =tan(tan(90 +1l9+() 
c = tan2(90 + 1l9+ ()+tan2

£ - tan2p 

7.1.2 Digital Sensors. 

As indicated in Section 6.1, one- and two-axis digital sensors are closely 
related, the former consisting of a command component (A) and a measurement 
component (B) and the latter consisting of two Gray-coded measurement com
ponents (A and B) as shown schematically in Fig. 7-4. 

Y. 

BUT • 

Fig. 7-4. Defmition of Two-Axis Sun Sensor Reference Axes 

Alignment of Digital Sensors. The alignment of digital sensors consists of two 
distinct processes. Internal alignment is performed by the sensor manufacturer to 
ensure that the sensor slits, the Gray-coded reticle patterns, and the alignment 
mirror form a self-consistent unit. External alignment of the sensor unit relative to 
the spacecraft attitude reference axes is performed by the spacecraft manufacturer. 
In this section, we will model only the external alignment and assume that there are 
no errors in the internal alignment. 

The alignment mirror is used to orient the sensor boresight. The remaining 
alignment parameter is the rotation of the sensor about the boresight axis. For 
single-axis sensors, the command component entrance slit is generally paraDe] to 
the spacecr.aft spin axis. In most cases, two-axis sensors are mounted such that 
either the A or the B measurement slit is parallel to the spacecraft X- Y plane (see 
Fig. 7-5). 

We define the sensor Z axis, Zs, as the outward normal of the plane 
containing the alignment mirror and the entrance slits of both components. The 
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Fig. 7-5. Orientation of Digital Sun Sensors 

Zs-axis is the sensor boresight and is the optical null of. both the A andB 
components. The Xs and Ys sensor axes are perpendicular to Zs as defined in Fig. 
7-4 and Table 7-1. Note that some of the internal alignment parameters could be 
modeled by treating two-axis sensors as two independently aiigned one-axis sen
sors, although we will not use that model here. 

The orientation of a one-axis sensor with boresight located at (q.' =q.+ 6q.,6~), 
misaligned slightly from the nominal location of (q.,O), and rotated throu~ the 
angle &/I about the boresight, is shown in Fig. 7-5. The transformation which 
rotates a vector from sensor to spacecraft coordinates may be expressed as the 
transpose of a 3-2-3 Euler rotation with angles 91=q.', 92=90o-6~, and 93 =81/1,. 
where 8~ 8q., and &/I are small misalignment angles IUld the O-deg nominal value of 

Table 7-1. Defmition of Reference Axes for Digital Sensor.s 

AXIS ONE-AXIS MODELS TWO·AxtS MODELS 

Zs NORMAL TO THE PLANE CONTAINING COMMAND AND NORMAL TO THE PLANE CONTAINING THE'" AND B 
MEASUREMENT SLITS. IT IS ALSO THE OPTICAL NULL SLITS. IT IS ALSO THE OPTICAL NULL OF BOTH 
OF BOTH COMPONENTS COMPONENTS 

X. PARALLEL TO COMMAND SLIT. POSITIVE SENSE DEFINED PARALLEL TO THE MEASUREMENT SLIT OF COMPI)NENT A. 
a~ THE OUTPUT OF THE DETECTOR 8£NEATH THE GRAY. POSITIVE SENSE DEFINED BY OUTPUT OF .COMPONENT 8 
CODED RETICLE. SUN ANGLE IS MEASURED ALONG THE 
"sAXIS 

Vs PARALLEL TO THE MEASUREMENT SLIT PARALLEL TO THE MEASUREMENT SLIT OF COMPONENT 8. 
POSITIVE SENSE DEFINED TO COMPLETE RIGHT·HANDED 
ORTHOGONAL SYSTEM ANO CONSiSTENT WITH OUTPUT OF 
COMPONENT A. NOTe THAT THE LArrEA REQUIREMENT 

·OEPENDS ON THE INTERNAL SENSOR ALIGNMENT AND MAY 
REQUIRE INVERTING THE SIGN OF THE A COMPONENT 
OUTPUT 

*BA is positive if the boresight is above the spacecraft X-YpJane; &f is a positive rotation of the sensor 
about the boresight. . 
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0
3 

is chosen so that the sensor output is positive toward the + Z-axis. Using Table 
E-l, we obtain the small angle approximation for the rotation matrix, 

[

BACOSt[{ - &[!sinq,' 
ASSI = BAsiJl~' + &[!cosq,' 

-1 

-sinq,' 
cosq,' 

6l/I 

COS~'] 
sinq,' 

871. 
(7-8) 

The orientation of a two-axis sensor with boresight located at (~,A) may be 
expressed similarly as the transpose of a 3-2-3 Euler rotation with. angles 91 =q" 
82 = 90° - A, and 0] = 90° + &[!, where &[! is a small misalignment angie about the 
boresight. Using Table E-! we obtain the small angle approximation for the 
rotation matrix, 

[ 

- sinq,- &[!sinAcosq, 
Ass2= cosq,- &[!sinAsinq, 

&[!COSA 

&[! sin q, - sin A cos q, 
- ~cos~-sinAsin~ 

cosA 

COSq,COSA] 
sin q, cos A 

sin A 
(7-9) 

Note that in the example shown, slit A is nominally parallel to the spacecraft X- Y 
plane and the spacecraft Z-axis is in the sensor Y-Z plane. 

One-Axis Digital Sensor. The geometry of a ray incident on a block of 
material with index of refraction n is illustrated in. Fig. 7-6. Snell's law relating" the 
angle of incidence, 0, and the angle of refraction, 0', is 

nsinO' = sinO (1-10) 

where the index of refraction of space is unity. The detectors' beneath the reticle 
pattern of the sensor YI('!ld a signed, digitized 'output, N, proportional to the 
deflection, x, such that 

x=kN (1-11) 

where k is the reticle step size. From Eq. (7-10) and simple trigonometry, we have 

sin8=nsinO'= nkH (7-12) 
[(kNi+ h2f/2 

GRAY·ENCODED 
RETICLE PATTERN 

T 
h 

~ 

Fig. 7·6. One·Axis SUD Sensor Optics 
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Expanding in a trigonometric series in ~ = x / h = kN / h« I and retaining terms 
through £5, we obtain 

(7-13) 

where 8 is in radians. A design goal of digital sensors is a linear relation between 
the sensor. output, N, and the measured angle. For a material with n~{3, the term 
dependent on £3 becomes negligible, yielding the approximate result 

8~nkN/h (7-14) 

A further useful simplification results if the reticle geometry is chosen such that 
I 80nk/(71-h) = 1. In this case, (J~N where (J is now expressed in degrees. 

When the Sun angle measurement, 8, is made, the Sun vector in sensor 
reference coordinates is (-sinO,O,cos(J)T. In spacecraft coordinates, the Sun vector 
is 

V a=Assl [ -~n8 1 
coso 

(7-15) 

from which the azimuth and elevation of the Sun in spacecraft coordinates may be 
computed. 

Two-Axis Digital Sensors. The derivation of the data reduction equations for 
two-axis Adcole sensors is analogous to that for the single-axis sensors [Adcole, 
1975]. The geometry is shown in Fig. 7-7. Note that OZs is the optical null (or 
boresight) of both the A and B sensors. The refracted ray (OP') is deflected by the 
slab with index of refraction n and strikes the Gray-coded rear reticle at P' with 
coordinates (b,a). Application of Snell's law yields 

sin(J= n sinO' 

q,=q,' (7-16) 

By analogy with Eq. (7-11), the output of the A and B components denoted by 
NA and NB, respectively, is converted to a displacement by 

a= km(NA - 2m
-

I +0.5) 

(7-17) 

NA and NB are unsigned decimal equivalents of the m-bit Gray-coded sensor 
output and km is a sensor constant. (See Table 7-2 for representative values of the 
sensor constants.) The form of Eq. (1-11), particularly the addition of 0.5 to NA 
and N B, is a consequence of the Adcole alignment and calibration procedure. 

Right triangles ~O' P' and O'Q' P' yield the relations 

q,=q,'=ATAN2 (a,b) (7-18) 

d (a 2+b2)1/2 
tan 8' = - = ..:.-----'--

h h 
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Fig. 7-7. Two-Axis Sun Sensor Optics 
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where the FORTRAN function ATAN2 is used in Eq. (7-18) to resolve the 
quadrant ambiglJity. 'If we substitute Eq. (7-16) into (7-19), and rearrange terms, we 
~ . 

11= arctan <90° 
{ 

n(a2+b2)1/2 } 

[h2-(n2-1)(a2+ b2) f/2 (7-20) 

The angles CfI and 11 are the azimuth and coelevation, respectively, of the Sun 
vector in sensor coordinates which have the positive pole along the sensor boresight 
and the reference meridian along the + Xs axis. The Sun vector may be trans
formed into spacecraft Coordinates by using Eq. (7-9). Two-axis digital Sun sensor 
data are commonly reparameterized in terms of the angles between the projections 
of the sunline on the Ys-Zs and Xs-Zs planeS and the Zs-axis, as illustrated in Figs. 
7-8 and 7-9. The angles a and !l are rotations about the - Xs and Y .. axes, 
respectively, given by 

where 

tan!l=tanl1cos+=nb/ R 

tana=tanl1sin~=na/ R (7-21) 

(7-22) 

The specified field of view of the . Adcole two-axis sensor is "square" as 
illustrated in Fig. 7-9 for a 128- by 128-deg sensor. The effective FOV is often 
considered circular with radius 64 deg because this is the maximum angle of 
incidence which guarantees valid sensor data (i.e ... sufficient intensity) independent 
of +. For Sun angles near the "comers" of the FOV,. ~= ±45 or ± 135, valid sensor 
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SUNLINE ON THE 
XS-ZS .. LANE 

Fig. 1-8. Two-Axis Digital Sun Sensor Reference Angles 

7.1 

data are obtained for 9 up to 71 deg.* In Section.2.3, we proved that five two-angle 
sensors may be dispersed to provide 4'IT sr coverage with a maximum 9 angle of 
63.5 deg. We now see that this result is valid for two-axis digital sensors independ
ent of sensor alignment about the boresight. For an 8-bit sensor with n = 1.4553, the 
coordinates of various grid points within the FOV, expressed as (NA, NB), are 
shown in Fig. 7-9. For n -I: I. lines of constant a or p are not lines of constant NA 
or NB and, in particular. the grid point corresponding to [a,p)=[64°, 0°) is (255, 
127.5) and [64°, 64°) is (226, 226). The boresight is at the center of the four grid 
points (127, 127), (127, 128). (128, 127) and (128, 128). Because of the refractive 
sensor medium, a ray normal to the boresigbt at 9=90 deg and q,=45 deg will 

Fig. 1-9. Two-Axis Digital Sun Sensor Field of View. See text for explanation of cootdinates. 

-From Eq; (1-21), we have +=45 deg and /1=64 deg; hence, tanB=tan/1/cos45°=tan64° /cos45° or 
1-10.91 deg. 
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reach the reticle pattern (with zero intensity) and fall at (236, 236). Sensor data with 
grid points corresponding to 9 > 90 deg are necessarily anomalous and an applica
tion of Eqs. (7-17) and (7-22) to such data would yield R2<O. . 

To simulate data, we must solve for NA, NB,.and the selected sensor in terms 
of the Sun vector in sensor coordinates, 

(7-23) 

where VB andvss are the Sun vector in spacecraft and sensor coordinates, 
respectively. Using Eqs. (7-21), (7-22) and Fig. 7-8, we obtain the result, 

where 

a= Ysyl/2 

b=Xsy l/2 

y= [h2 /(n2- X;- Yi)] ~O 

Finally, the sensor output is 

NA =INT(a/k",+2"'-I) 

NB= INT( b / k", + 2"'-1) 

(7-24) 

(7-25) 

(7-26) 

where INT(x) is the integral part of x and NA and /'VB are Gray coded by the 
reticle pattern. The Sun is visible to a specific sensor (although the intensity may be 
below the ATA threshold) if both y and Zs are positive. The selected sensor for 
multisensor configurations is determined by the ATA output, i.e., the sensor with 
the largest (positive) Zs. 

For state estimation, the digital sensor angular outputs may be computed 
using Eqs. (7-26) but the sensor identification for multisensor. configurations. cannot 
be reliably predicted. The actual sensor selected is a function of the precise 
threshold settings whenever the Sun is near the Earth's horizon or is between the 
fields of view of adjacent sensors. Sensor identification should be used merely to 
validate sensor data for state estimation. 

Fine Sun Sensors. The operation of the fine Sun sensor described in Section 
6.1 is illustrated in Fig. 7-10 (compare with Fig. 6-9). In the figure, the horizontal 
axis has been expanded to illustrate the effect of the 32-arc-minute angular diameter 
of the Sun (from near the Earth), which requires the use of an analog sensor rather 
than a finely gridded digital sensor. Incident sunlight falling on the entrance slits 
with spacing s produces the photocell current show schematically in Fig. 7-IO(d). 
The nearly sinusoidal output signal is a consequence of the Sun's finite size. If four 
reticle patterns are offset by 9/4 the photocell current, I, beneath each pattern may 
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be written as a function of x = 2'11w / S where lIT = ttan a. I is the distance between 
the two reticle patterns, and a is the Sun angle. I is given by 

(0) 

fb) 

I. = f(2'11W/ s) 

12= f(2'11W/s+'II/2) 

13 =f(2'11w/s + '11) 

14 = f(2'11W / S + 3'11/2) 

Ie) 

PHOTOCELL 
OUTPUT 

CURRENT 
fix) 

Id) 

(7-21) 

x-

Fig. 7-10. Schematic Representation of Fine Sun Sensor Photocell Output Current. Rays c:oming from 
different directions represent light from opposite sides of the Sun. (The angular spread of 
these rays is greatly exaggerated.) 

where angles are measured in radians. The fine Sun sensor electronics forms the 
quantity arctany=arctan[(/. -: 13)/(/2-/4»)' which is related to the Sun angle by 

arctany= 2'111 tan a + small error-term 
S 

(1-28) 

Equatio~ (7-28) may be derived as follows. The function f(x) is periodic with 
period s and has a maximum at x 1::0 '11/2. Because f(x) is symmetric about x = '11/2. 
it may be expanded in a Fourier eosine series as [Markley. 1977): 

f(x) = 00+ o.cos(x- '11/2)+ 02cos(2x - '11) + 03cos(3x- 3'11 /2)+ ... 

(1-29) 

The fme Sun sensor electronics forms the quantities 1.-/3,/2-/4.y=(/. -IJ 
/(12-14), and arctany, which are approximated as follows: 

1.-/3 =0.[ sinx-sin(x + '11) ] -02[ cos2x-cos(2x + 2'11) ] 

- °3[sin3x-sin(3x+3'11)] + ... 

=2a.sinx[ 1- 03(4cos2x-I)/ 0.] + ... (1-30a) 
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12 - 14=2a)cosx[ 1+ a3(4coslx-3)/ ar] + ... 

y~tanx[ 1-4a3(2cos2x-I)/ad =tanx[ 1-4a3cos2x/ad 

Equation (7-3Oc) can be rewritten in the more convenient form 

arctany= x-arctan( 
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(7-3Ob) 

(7-3Oc) 

(7-3Od) 

where ( is a small error term, by taking the tangent of both sides of the above 
equation, and using the trigonometric identity 

tan(a+ b)= (tana± tanb)/(1 + tan a tan b) 

to obtain 
(tanx- ()j(l + (tanx)= tanx- (I + tan2x) + e «(2) 

Comparing this result with Eq. (7-3Oc) to obtain (, we have 

arc tany~x - arc tan( a3sin4x/ a)~x - a3sin4x / a) 

For small w= ttana, we obtain 

2'IT1 a3 • (8'ITltana) arctany= -tana- -SID 
s a) s 

which is the desired result. 

(7-31a) 

(7-31b) 

(7-32) 

(7-33) 

Thus, if the photocell output is adequately represented by the first three terms 
of a Fourier cosine series, the output of the fine Sun sensor electronics, arctany, is 
given by a term proportional to the tangent of the incident angle, a, plus a 
sinusoidal error term. 

In practice, the inverse of Eq. (7-33) is required for sensor data processing. The 
digital sensor output, NA, is related to the analog output by . 

arctany= k)(NA)+ k2 

where k) and k2 are sensor constants. Equation (7-33) can be rewritten as 

s a3 s . (8'IT1 ) tana=-2 (k)NA+k2)+--2 SID -tana 
'ITt a) 'lT1 s 

Defining the sensor constants 
A)=sk2/2'IT1 

A2=sk)/2'ITt 

A3=sa3/2'ITla) 

then successive approximations, a(n>, to a are given by 

tana(o>=A)+A2NA 

tana<n+J)=tana(n>+A3sin( 8;' tana(n» 

or, to the same order as Eq. (7-33), 

tana~A) + A2NA + A)5in(A4NA + A,} 

(7-34) 

(7-35) 

. (7-36a) 

(7-36b) 

(7-36<:) 

(7-37a) 

(7-37b) 

(7-37c) 
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For IUE, the sensor output is encoded into 14-bit (~16.383) words and the 
± 32-deg field of view is measured with a 14 arc-second least significant bit. The 
transfer function is as follows [Adcole, 1917J: 

a =ao+arctan[A. + AzNA + A3sin(A4NA + As)+ A 6sin(A ,NA + As)] 

. P = Po + arctan [ B. + BzN B + B3sin( B4N B + Bs) + B6sin( B,N B + B8)] (7-38) 

where NA and NB denote the digitized sensor output; the parameters Ai' Bi• ao. 
and Po are obtained by ground calibration; ~nd a and P are defined in Fig. 7-8. 

The parameters defining the slab thickneSS, index of refraction. alignment, and 
resolution vary depending on the sensor model and specific calibration. Table 7-2 
lists values which are representative and convenient for simulation and error 
analysis. (See also Table 6-1.) 

Table 7-2. Representative Constanls for Digital Sun Sensors Manufactured by the Adcole Corporation 

I'ROP£ATY SYMBOL VAlUE 

TRANSFER FUNCTIONS 6 AND s-
INDEX OF REFRACTION n 1.4553 

SlAB THICKNESS h ._CM 
RESOLUTION a-BIT MODEU • 0..00&985 CU/UNIT 

RUO\.UT1ON f8.BlT MODEU • O.OfJ349lS CMIUNIT 

"'DEL 18:916r' (lUI. " .... BlT OUTPUT) 

CALIBRATION CONSyAN1S A,.B, -, ... ,.-
~ .. 7.6278 X 10-5 

":!-"e.II:J. Be ~10-4 

A •• B. 0.703125' DEG/CX)UNT 

A,.B7 1.40625tl DEGlQ)UNT 

"e."&- "5' Be ARBITRARY. 0 TO 360 DEG· 

ALIGNMENT ANGLES ..... '. <G.IDEQ 

-SEE TABLE &-1 

'CORRESPONDS TO 32 OSCILLATION PERIODS OVER THE t32-0EG FIELD Of View 

"CORRESPONDS TO 84 OSCILLATION PERIODS OVER THE *32-0EG FIELDOF VIEW. 

7.2 Horizon Sensor Models 

Steven G. Hotovy 

In this section, we provide several observation models for any sensor which 
scans the celestial sphere in a small circle and is sensitive to the presence of 
electfomagneticradiation from a body in its field of view. Such sensors, described 
in Section 6.2, may be divided into three categories: 

1. Body-Mounted Sensor (BHS)-a visual or infrared telescope fixed on the 
body of a spinning spacecraft 

2. Panoramic Scanner (PS)-a visual scanner operating in the scan mode on a 
despun spacecraft 

3. Wheel-Mounted Sensor (WHS)-an infrared scanner consisting of a 
bolometer .attached to the body of the spacecraft into which the field of view of a 
lens or mirror mounted on a rapidly spinning wheel is reflected 
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7.2.1 Horizon Sensor Geometry 

Figure 7- I I ~epicts the movement of t~e optical axis of a BHS sensor as the 
spacecraft spins. A is the spin axis attitude, X is a reference point in the spacecraft 
body, clip is the azimuth, and YN is the nomipal coelevation of the sensor optical 
axis in body coordinates. As the optical axis, P, sweeps through the sky, the sensor 
detects an in-crossing, (entrance of the central body into the sensor field of view) at 
time 1/ at the point H/=P(I/). At some later time, to, it will detect an oul-cross~ng 
(dt;parture of the central body from the sensor field of view) at the point "0 
=P(lo}· 

Fig. 7-11. Horizon Sensor Geometry 

The same geometry app'lies to a wheel-mounted scanner,with some change in 
interpretation. In this case, A is the spin axis of the wheel and X is some reference 
vector in the spacecraft body which lies in the plane of th.e wheel. As the mirror 
rotates, the sensor detects an in-crossing and an out-crossing as before. However, 
for a wheel-mounted sensor, a magnetic pickup is mounted on the body. of the 
spacecraft at some. index point and a magnet is mounted on the wheel. These are 
used to measure the time of one complete revolution of the wheel. As a result, a 
wheel-mount~d sensor can tpeasure the central body width, {l, equal to the rotation' 
angie about A from H/ to "0' In addition, it can measure the splil-Io-index lime, 
Is/, the time between the detection of the midscan of the central object, 0.5(/

0
+1/), 

and the detection of the magnet by the magnetic pickup, '1ntII~; that is 

's/= 11ntII~ -0.5(10 + '/) 
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7.2.2 Nadir Vector Projection Model for Body-Mounted Sensor 

The nadir vector projection model for a BHS is 

E·P-cosp=O (7-39) 

where P is the unit vector along the line of sight of the sensor, E is the nadir vector 
to the central body, and p is the app'arent angular radius of the central body as 
seen from the satellite. The value of E· P will oscillate sinusoidally approximately 
once per spacecraft rotation as P sweeps through the sky. The value of E·P-cosp 
will be zero when the angle between E and P is equal to the apparent angular 
radius of the cent~1 body, i.e., at horizon crossing times when P = H/ or Ho . 

The values of E and p may be determined from an ephemeris, which provides 
the spacecraft-ta-central body vector, E. If we assume that the central body is a 
sphere, then p satisfies 

. 1/2 
cOsp=(E2- Rl) / E (7-40) 

where RE is the radius of the central body. If the central body is the Earth, 
oblateness may be considered (procedures for modeling an oblate central body are 
discussed in Section 4.3), in which case RE in Eq. (110) is latitude dependent. 

To evaluate Eq. (7-39), it is necessary to express P in inertial coordinates. This 
expression· is given in terms of the sensor location in the spacecraft frame a.ld the 
spacecraft orientation in inertial space. For this model, we assume that tbe 
spacecraft has an inertially fixed spin axis and is spinning at a constant rate (i.e., 
.nu.tation, coning, precession, and spin rate variations are assumed to be negligible). 
The pertinent parameters are the initi~l phase of the spacecraft «1>0 at time 10 ; the 
spin rate, w; and the spin axis vector, A. The phase at a time 1 is, then, 

«I>'=~O+W(/- (0) (7-41) 

The position of the center line of sight in spacecraft coordinates is 

Psc= [:~:::~::;l 
cosy 

(7-42) 

where Y=YN+!::.Y is the true mounting angle. 
The attitude matrix, B(/), for a spinning spacecraft at time 1 is given by (see 

Section 12.2 and Appendix E) 

I 
B(I)= (2 2\1/2 

AI +A Z) 

AzA3COS~, + A Isin«l>, 

- AzA 3sin «1>, + A ICOS «1>, 

Az(Af+Ai)I/2 

-(A:+ADCOScl»'j 

(A:+ADsincl», (7-43) 

A3(A:+Ai)I/2 

,. ~ 
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where A=(A"A2,A3)T, the spin axis unit vector, is now expressed in inertial 
coordinates and ~, is as in Eq. (7-41). Thus, the location of the line of sight of the 
sensor at time t in inertial coordinates is 

. T' 
P(/)=.B (/)Psc (7-44) 

This is then substituted into Eq. (7-39). This model is not valid in the case of 
terminator crossings for a visible light sensor; thus, terminator rejection is required. 

7.2.3 Central Body Width Model 

In the case of valid in- and out-crossings from a BHS or a PS, we may develop 
a model incorporating both crossing times II and to' This model is 

(7-45) 

where w is the body rate (again assumed to be constant), n is the number of 
complete spacecraft rotations between II and to' and Sl is the central body width (in 
degrees), which can be calculated as follows. 

Applying the law of cosines to spherical triangle AEH in Fig. 7-11, we obtain 

" ( Sl) cosp=cosycos1J+smysm1Jcos "2 (7:46) 

which becomes, upon solving for ~, 

n-2 (COSP-cosYCOS1J ) 
~,- arccos '. 

smysm1J (7-47) 

Here y = YN +t:.y, where /1y is a fixed mounting angle bias. A fixed bias can 
similarly be included in p. 

When other effects (such as oblateness or height of the CO
2 

layer) are 
considered, the expression for ~ becomes 

Sl-arccos " + arccos .. 
_ (COSPI-cosYCOS1J) (COSPo-cosYCOS1J ) 

smy sm1J smyslD1J (7-48) 

where PI and Po are the effective scan-in and scan-out radii of the central body, 
including all correction factors to the nominal radius . 

. For a WHS, the central body width can often be obtained directly from 
telemetry data. The scanners aboard SMS-I and -2 and AE-3; -4, and -5, for 
example, provided the Earth-in and -out times, tl and 1

0
, and the wheel speed, w. 

From Eq. (7-45), we have 

(7-49) 

On other spacecraft (SAS-3, for example), the telemetry data consisted of a voltage 
which was converted to an Earth width, Sl, from a calibration curve. 

The assumptions and limitations for the nadir vector projection model hold 
true for the central body width model as well. In addition, we must assume that the 
orbital motion of the spacecraft is negligible between in- and out-crossings. This 
effect is more troublesome for BHSs and PSs than for WHSs because wheel rates 
are generally much faster than spacecraft body rates. 
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Knowledge of n permits the calculation of the nadir angle, .". Equation (1-46) 
leads to a quadratic equation in cos." with solutions 

cosycosp± k(cos1.y+ k2-co$lp)I/2 
cos." = 

cos'-y+k2 

k=sinycos(n/2) (1-50) 

Because both solutions are geometrically meaningful, more information, such 
as an a priori attitude estimate, is needed to resolve the ambiguity. Once it has been 
resolved, however, we know that the spin axis of the spacecraft (or of the wheel in 
the case of a WHS) lies on the cone in inertial space centered on E and of radius .". 

7.l.4 Split Angle Model for Wheel-Horizon Scanner 

As mentioned previously, a wheel-mounted scanner provides two readings that 
are not aVailable from a body-mounted sensor: the wheel rate, "'w. and the 
split-to-index time, IS,. These can be combined to determine the azimuth, a, of the 
magnetic pick-off relative to the midscan of the central body. As shown in Fig. 
1;12, we have 

(1-51) 

where l1a is the azimuthal misalignment of the pickoff from Its nominal value. This 
can be combined with the spin axis attitude to determine the three-axis attitude of 
the spacecraft, since the spin angle model specifies the azimuthal orientation of the 
'spaCecraft body about the wheel spin axis. 

Fig. 7-12. Geometry of Split Angle Model 

7.2.5 Biases 

The model developed above may not accurately explain sensor behavior 
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because of the presence of additional sensor biases.· For example, there may be an 
azimuthal mounting angle bias, 4~, due to either a mounting misalignment or 
incorrectly calibrated sensor electronics. (See Section 7A.) This bias can be added 
to the nadir vector projection model by replacing ~~ with ~p+4~ in Eqs. (7-42) 
and (7-44). If this bias is due to sensor electronics, it may tie appropriate to use 
separate in- and out-crossing biases, 4./ and 4~o, since the electronic response 
may be different in these two cases. This may be incorporated into the central 
body-width model by changing Eq. (1-45) to 

(7-52) 

Another possible bias is a systematic variation, 4p, in the angular radius of the 
central body. This may be caused by a genuine uncertainty in the size of the 
effective triggering radius of the central body itself, or, more likely, may reflect the 
sensor triggering performance as shown in Fig. 7-13. Under nominal circumstances, 
we assume that the FOV of the sensor is circular and that the sensor will register an 

I : 
;TRtGGERS EARLY( 

f Ii 
BY THIS AMOuNT I ,-, 

I 

ItJJ 0BJASADDIIDT01lII 
AIIGULAA RADlUSw 
tKI CI."'RAL BODY --Fig. 7-13. Bias on Angular Radius of the Central Body 

in- or out-crossing when the central body occupies SO percent of the FOV. 
However, if the se~1.' triggers at some value other than SO percent, the effective 
size of the central body changes. In Fig. 7-13, the horizon sensor triggers when the 
central body occupies only about 10 percent of the FOV.This means that the 
apparent size of the central body is greater than the actual size. Note that 4p is 
independent of the path of the sensor across the central body, although the 

• Each of the biases descnDed here has been found to have a signifiCllDt effect on real data lor some 
missions. 
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difference in triggering times will vary with the path. This effect can be added to 
the nadir vector projection and central body width models by replacing p with 
p+4p in Eqs. (7-39), (7-46) through (7-48), and (7-50). 

Finally, for a WHS, the optical axis of the bolometer (see Section 6.2) 
mounted on the body' may be misaligned relative to the spin axis of the wheel. This 
results in a sinusoidal oscillation of the central body width data with a frequency 
equal to the body spin rate relative to the central body. This phenomenon was first 
observed on the AE-3 spacecraft [Wertz, el al., 1915}. The phase and amplitude of 
the; oscillation will depend on the phase and amplitude of the bolometer misalign
ment, as shown in Fig. 7-14. Here, S is the spin axis of the wheel; B J and Bl are the 
positions of the bolometer optical axis at times 1\ and 12; HI and Ho. are the in
and out-crossings of the bolometer at time !i and MI and M~ are the~ positions of 
the mirror normal at these times. Figure 7-14 show~ that th~ bolometer 2 Earth 
width, which is the rotation angle about the spin axis from M I , to M 0,' is greater 

Fig. 7-14. Bolometer Offset Model Geometry 

than tItat from bolometer 1. The nadir angle/Earth width model, Eq. (7-50), can be 
changed to reflect a bolometer offset, although the derivation of this new model is 
not straightforward [Wertz, el al., 1975; Liu and Wertz, 1974}. The model is 

cosp = coso (cos y COS1J + sin ysin 11 cosL,) 

+ sino {[ sin ycosll + (1,- cos y)sin1J cosL, ]cos( B - L,) - sin 11 cos B } (7-53a) 

cos p = cos o( cos y cos 1J + sin y sin 1J cos Lo) 

+sino {[ sinycos1J + (l-cosy)sin1J cos Lo]cos(B + Lo) - sin1J cosB } (7-53b) 

where 0 is the offset angle between the bolometer and the spin axes, B is the 
rotation angle about the spin axis from the bolometer axis to the nadir vector, LJ is 

i ~-

; 'I 
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the rotation angle about the spin axis from the Earth-in to the nadir vector, and Lo 
is the rotation angle about the spin axis from the nadir vector to the Earth-out. 
Thus, 

and 
(7-54) 

(7-55) 

where Ww is the wheel rate, Ws is the body spin rate, and .s is the phase of the 
bolometer offset. For a fixed bolometer position, the four unknowns in these 
equations are "I, LI , Lo' and B. Equations (7-54) and (7-55) determine Band Lo in 
terms of LI , and these are substituted into Eq. (7-53), whereupon "I and LI are 
solved for, usually in an iterative fashion. Alternatively, for a fixed spacecraft 
attitude, the observed WHS data may be used to compute the bolometer offset 
parameters a and 4»s (Liu and Wertz [I974D. 

7.3 Sun Sensor/Horizon Sensor Rotation Angle Models 

Mf!1UIChem Levilas 

In this section, we describe observation models for the following Sun.sen
sor /horizon sensor rotation angle measurements: Sun-to-Earth-in, Sun-ta-Earth
out, and Sun-ta-Earth-midscan. Related azimuth biases are discussed for body
mounted horizon sensors and panoramic scanners (Section 6.2). For additional 
modeling procedures, see Joseph, el 01., [1975]. In every case, the observable 
quantity is a time difference, Ill. For the Sun-to-Earth-in model, IlI=II-l

s
, where 

II is the horizon-in crossing time and Is is the Sun sighting time. (Note that these 
times are measured by different sensors at different orientations in the spacecraft.) 
For the Sun-to-Earth-out and the Sun~tq-Earth-midscan models, 'I is replaced by 
the horizon-out crossing time, 10 , and the midscan crossing time, 1m = 1/2(11 + 10)' 
respectively. 

The relevant geometry for the Sun-to-Earth-in model is shown in Fig. 7-15. We 
assume that the Earth is spherical; that the spin rate, w, is constant; and that there 
is no nutation. Therefore, the total rotation angle change between Is and II is 
W(II-ls)=w'lltl and the observation model is 

Ilc[= !(4)>I-4>>H+3600n) (7-56) 
w 

Here 4»/ is the rotation angle from the Sun, S, to the horizon in-crossing, HI; 4»H is 
the azimuthal mounting angle between the Sun sensor and the horizon sensor 
onboard the spacecraft; and n"" ± I, or 0.4»1 can be calculated from 

4»1=arctan[. • A'(~~H/~ • ) 
S·H/-(S·A)(H/'A) 

where A is the spin axis attitude, S is the Sun unit vector, a.nd HI is a unit vectO! 
along the horizon sensor line of sight at the time t= II' Here A is assumed known, S 
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Fig. 7.1S. GeometJy for Sun Sensor/Horizon Sensor Rotation Angle Model 

is provided by an epbemeris (Section 5.5) evaluated at 1= Is' and H, is calculated 
below. . . 

~uation (7.S7a) is derived as fonowa: Let 5, and it, be the normalized componenlS 01.5 
and H, in ,the spin plane. i.e., the plane whose nolmal isA. TheIl 

S, ... [S-(S.A)A)/IS-(S·A)AI 

and 

Performing the clot product of ii, and 5,. we obtain the foBowing expression for cos.,: 

(7-S7b) 

where Ds and DB are the sJen~tol\ in the expressions for S, and iI,. respec:tively. Using a 
different manipulation of H" S,. and A, we obtain the fonowing expression for sin.,: 

(7.S7c) 

Equation (7·S7a) is Illen obtained by dividing Eq. (7.~7c) by Eq. (7·S7b). • 
'[he unit vector H, is calculated as fonows: Let M be a unit vector perpendicular to both A 

and Eo Then 

M-lxE/sin1/ 

where • ." is th~ angle betw. A aJH\ E (the nadir angle). Let N be a unit vec~r ~lJIC!Idicular to 
1/0$ E and M. Then.Eo M, and N form an orthonol1llfl triad such that N=ExM. Because 
E.H,=cosP, where P tS the ~gular !"dius of the Earth, H, can be written as 

iI,=cospi:+sinp(MsinA+NcosA) 

, 
i· 
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where A is a phase angle which can be delermined from the dot product between A and H,. This 
is done as follows: If y is the horizon sensor mounting angle. then 

H,· A=cosy=cospi:· A+sinpN· A cos A 

which simplifies to 

cos y = COSpCOS1J + sinpsin 1J cos A (7-SBa) 

or 

cosy-coSpcos1J 
cosJ\= . . (7-S8b) 

StnpS1D1J 

and 

(7,S8c) 

Because Eq. (7-58a) is the law of cosines applied to the spherical triangle AEH, in Fig. 7-15. the 
phase angle 4 must _be the rotation angle about E between A and H,. ~e to our choice of the 
unit v~ctors M and N. the n~gative sign in Eq. (7-S8c) is associated with H, and the positive sign 
with Ho. The nadir vector E is determined from the spacecraft ephemeris. 

For the Sun-to-Earth-out and Sun-to-Earth-midscan models, the procedure is 
ident~cal with that for the Sun to Earth-in model,.except that the quanti~es 11»/' II' 
~nd H/ are replaced everywhere by II»Q, to' .and Ho or by II»m' 1m. and Hm. Here. 
Hm is a unit vector in the direction of H/+Ho. ~I can also be calculated directly, 
using the following relation (see Fig. 7-1S): 

(7-S9a) 

An expression for II»m is obtained by applying the law of cosines to triangle SAE in 
Fig. 7-5, yielding COS1f=cOS1Jcosp+sin1Jsinpcosll»m which becomes, upon solving 
for 11»£, 

'" _ [ COS1f-COS1)COSP ] 
'I'm - arccos .. Q 

sm1)sm,.., 
(7-S9b) 

An expression for the Earth width, n, is obtained analogously from triangle HIAE: 

0-2 [ COSP-COS1)COSY] 
~,- arccos .. 

Stn1)sm'Y 
(7-S9c) 

The quantities 1), P, and 1f are computed from ephemerides evaluated at the proper 
times. 

Figure 7-16 shows the relevant geometry when biaseS in the orientation of both 
sensors are included and the horizon sensor is assumed to have a fixed mounting 
angle, -yo In Fig. 7-16, PM is the measured Sun angle, P is the true Sun angle, and (s 
and flP are the inclination and elevation biases which cause the difference between 
PM and p. flll»s is the resulting rotation angle bias. Similarly, 'YN is the nominal 
mounting angle of the horizon senspr line of sight, relative to the spin axis; fly is 
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the difference. Y- YN' between YN and the true mounting angle. y; tJ.cf)H is a 
constant bias on cf)H' the nominal azimuthal mounting angle difference between the 
sensors; Pc is the computed angular radius of the Earth; arid tJ.p is a fixed angular 

Fig. 7-16. :~:1 of Sun Sensor Biases on GeometJy for Sun Sensor/Horizon Sensor Rotation Angle ; 

bjas on Pc. resulting primarily from a constant bias on the triggering threshold of 
the horizon sensor (see Sections 6.2 and 7.2). 

In terms of the above quantities, the observation model becomes 

where 

cf) = cf)( A, S, E,pc. tJ.p,tJ.y) 

tJ.cf)s = tJ.cf)s( PM.tJ.P,ES) = tJ.cf)s( p, ES) 

and tJ.cf)H and cf)H are constants. E is the unit nadir vector. 

(7-60) 

It remains to express cf) and tJ.cf)s in terms of their arguments. For the.case of 
tbe Sun-to-Earth-in model, cf)=cf)/ and is again calculated from Eq. (7-57) or Eq. 
(7-59), in which p and yare replaced everywhere by Pc+tJ.p and yN+tJ.y, 
respectively. tJ.cf)s is calculated, by applying Napier's rules for right spherical 
triangles to the lower triangle associated with the Sun sensor in Fig. 7-16, yielding: 

sin tJ.cf) s = tan(90° - P )tan [ 90° - (90° - ES) ] 

which simplifies to 

(7-61) 

" 
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: ' where p is computed from 

I --, 

p= arccos(A· S) (7-62) 

Here, A is the known attilude, and S is determined from an ephemeris and is 
evaluated at 1= Is. Note that this description of horizon sensor biases is valid only 
for horizon sensors with fixed mounting angles, y. 

In the case of panoramic scanners, the nominal mounting angle, YN' varies by 
fixed increments (Section 6.2) in a plane inclined at an angle (H· to its nominal 
orientation, as shown in Fig. 7-17 for the case of the Earth-in models. Thus,!ly and 
y, the true mounting angle, are related to the other quantities as follows: 

cosY=COS(HCOS(YN+!ly) (7-63) 

Fig. 1·11. Effect of Horizon Sensor Biases on Geometry for Sun Sensor/Horizon Sensor Rotation 
Angle Model 

The observation model is again described by Eq. (7-60), in which eI> and !ll are 
replaced by eI>1 and !l//" !leI>s and eI>H are as before, but now eI>r depends on (H 

(through y) in addition to the other biases, and !leI>H is defined by 

!leI> H = !leI> HM -!leI> HR (7-64) 

where !leI>HM is a constant azimuth bias on the horizon sensor mounting angle, and 
!leI>HR is an additional horizon sensor rotation angle bias caused by (H and fly as 
shown in Fig. 7-17. 

!leI>HR is calculated by applying Napier's rules for right spherical triangles to 
the lower triangle associated with the horizon sensor in Fig. 7-17 to obtain 

sin [90° -(90° - (H)] =~n(!leI>H)tan[9O° -(900 
- YN-!ly)] 

", 
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which simplifies to 

[ 
sin(H ] 

ll~HR=arctan ( .. ) 
tan YN+~Y 

(7-65) 

All of the above applies also to the Sun-to-Earth-out andSun-to-Earth-midscan 
mod<;.ls, where ~/' II' and HI are replaced everywhere by ~o' 10 , and Ho or ~m' ' m , 

and Hm, as before. 
From Fig. 7-17 we see that the geometrical relationship between ll~s,llP, and 

(s is identical with that between ll~H,lly, and (H' The practical difference is that P 
can be found directly from Eq. (7-62), whereas 'I cannot and therefore must be 
expressed in terms of 'IN' lly, and (H' It is the independent knowledge of 13 which 
makes it possible to eliminate llP from the expressions for ~ and ll~s' Once (s is 
found, llP can be computed from Pm' 13, and (s' 

The expression on the right side of Eq. (7-60) is a complicated function of the 
following biases: (S' (H,lly,llp, and ll~HM' The values of the valjous coefficients in 
that expression depend on the numerical values of the attitude A and the time. To 
determine the above biases, at least five independent equations are necessary, 
although the numerical solutions of such a system would generally not be unique. 
Such equations can be obtained by taking measurements at various attitudes and 
times. When reasonable initial estimates are available, ambiguities can generally be 
resolved and satisfactory solutions obtained. 

7.4 Modeling Sensor Electronics 

F. L. Markley 

7.4.1 Theory 

In the previous three sections, ideal mathematical models have been con- ": 
structed for Sun sensor and horizon sensor systems. Effects of electronics signal 
processing on the sensor outputs have been considered only in an ad hoc fashion 
(e.g., the azimuth biases and central body angular radius biases introduced in 
Section 7.2). In this section we consider the electronics signal processing systems 
from a more fundamental viewpoint. For a large class of such systems, which we 
shall assume to include all cases of interest to us, the output signal, So(I), is related 
to the input, S/( I), by 

) 

So(I)= L: h(t.I')S/(I')dl' (7-66)[ 

where h(I,t') is called the impulse response junclion of the system. A system that 
obeys Eq.(7-66) is called a linear syslem, because the respOnse of such a system to 
the linear input combination SI = S/\ + SI2 is the output So = So \ + S02' where So \ 
is related to SII by Eq. (7-66) and; similarly, for S02 and S/2' Extensive literature 
exists on the subjec~ of linear systems. See, for example, Schwarz and Friedland 
[1965]. Kaplan [1962], or Hale [1973]. 

.i 
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If the input to a linear system is the unit impulse function or the Dirac delta 
junction (see the Preface), 

then the output is 

So(I)=h(t,to) 

which is why h is called the impulse response junclion. A linear system is time 
invariant if the impulse response depends only on the time elapsed since the 
application of the input impulse, and not otherwise on the input time. That is,· 

h( 1,1') = h(t - 1') (7-67) 

For a time-invariant linear system, the input/output relation resulting from com
bining Eqs. (7-66) and (7-67) is 

(7-68) 

Any integral of the form 

is called a convoluliQn integral [Schwarz and Friedland, 1%5; Kaplan, 1962; Hale, 
1973; Churchill, 1972]. Comparison with Eq. (7-68) shows that the output signal of 
a linear, time-invariant system is given by the convolution iniegral of the input 
signal and the impulse response function. This property will be used shortly. 

It is often convenient to work in the frequency domain rather than the time 
domain. The Fourier transform, X(w), of a function X(t) is defined by 

x (w)= L: X(t)e-i""dt 

The inverse transformation is given by [Churchill, 1972) 

I foo -X(t)= -2 X (w)e;""dw 
7T -00 

(7-69) 

(7-70) 

The convolution Iheorem [Churchill, 1972] states that the Fourier transforms of 
functions obeying the convolution relation Eq. (7-68) obey the product relation 

(7-71) 

-This equation means that the function h(I,t') depends only on the difference 1- t. and can be written 
as a function of that single variable. aearly. the two functions in Eq. (1-67) must be different 
mathematically, but confusion should not result from using the same symbol for them. . 

A linear system is causal if the output at time 1 depends only on the input at times t;;; I; that is, if 

h(I,I')=O for all t> 1 

All the systems we consider (m particular, that defmed by the transfer function of Eq. (1-78» are causal, 
and the infinite upper limit of aD t' integrals can be replaced by t. 
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The simplicity of Eq. (7-71) as compared with Eq. (7-68) explains the usefulness of 
analysis in terms of frequency dependence rather than time dependence. Finally, 
the transfer function 

H(;w)=h (w) (7-72) 

is often used in place of hew) to specify response characteristics of a linear system. 

7.4.2 Example: IR Horizon Sensor 

As an example of the application of sensor electronics modeling, we shall 
consider the· performance of the infrared horizon sensors on the Synchronous 
Meteorological Satellite-2, SMS-2, launched in February 1975 [Philco-Ford, 1971; 
Chen and Wertz, 1975). The input to the sensor electronics system is the intensity 
of infrared radiation in the 14-161Lm wavelength range falling on the sensor. If we 
assume that the sensor has uniform sensitivity over its field of view and that the 
Earth is a uniformly bright disk (a good approximation for this wavelength range, 
as discussed in Section 4.2), then the input signal is proportional to the overlap area 
on the celestial sphere between the sensor field of view and the Earth disk. 

The sensor field of view is nominally square, 1.1 deg on a side [Philco-Ford, 
1971), but for simplicity we model it as a circle with an angular radius of £=0.62 
deg to give the same sensor area. We ignore the oblateness of the Earth (shown in 
Section 4.3 to be a reasonable approximation) and treat the Earth disk as a circle of 
radius p=8.6 deg, the appropriate value for the SMS-2 drift orbit [Chen and Wertz, 
1915). Then the input signal is given by a constant, K, times the overlap area 
between two small circles on the celestial sphere as shown in Fig. 7-18. Using Eq. 
(A-14) for the area and the notation of Fig. 7-18, we have 

Fig. 7-18. Earth Sensor Geometry 
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=2K '1T-cosparccos .. -cos(arccos .. [ (
COS(-cospcosa) (COSP-cos(cosa) 

smpsma sm(sma 

( 
cosa-cos(COS P )] 

-arccos .. , 
slDump 

= Min[2'IT(1 -cosp),2'1T(1 ,..-COS()], (7.73) 

where Min denotes the lesser of the two function values in the brackets. This 
function is rather intractable mathematically, so we prefer to work with its 
derivative: 

dSI ' , 1/2 I da 
-d = -2K(I-cos2a-cos2p-cos2(+2cosacospcos() -.- -d ' 

t sma t 

Ip-(I<a<p+( 
= O. otherwise 

(7-74a) 

(7-74b) 

Because the angular radii of the sensor field of view and of the Earth disk, ( 
and p, are constant, the only time dependence in SI is through the time dependence 
of a(t), the arc-length distance between the centers of the small circles. The horizon 
sensors on SMS-2 are rigidly mounted on the spacecraft; the motion of their fields 
of view is due to the spacecraft's spin. Let A in Fig. 7-18 be the spacecraft spin axis, 
and let the sensor mounting angle and nadir angle be denoted by y and "', 
respectively, Then the law of cosines applied to spherical triangle AEO gives 

cos a (I) = cos." cosy + sin." sin y cos 4>( t) (7-75) 

Differentiating Eq. (7-75) gives 

] da sin." sin y sin (» d(» 
--= - (7-76) 
sina dt I-cosla dt 

S~bstituting Eqs. (7-75) and (7-76) into Eqs. (7-73) and (7-74) gives S/ and dSIIdt 
as functions of the rotation angle, 4>. These functions are plotted in Figs. 7-19(a,b) 
and 7-20(a,b) for, .,,=81 deg and .,,=78 deg, respectively, and for y=86 deg, the 
mounting angle for the SMS-2 primary Earth sensor [Chen and Wertz, 1975J. The 
points where the center of the sensor field of view crosses the edge of the Earth 
disk are indicated by (»/ and 4>0 on the figures. 

The calculation of the output signal requires a numerical integration of Eq. 
(7-68) or its equivalent. Substituting Eq. (7-70) with X=h, and Eq. (7-72) into 
Eq. (7-70), and then integrating by parts [so we can use Eq. (7-74) rather than Eq. 
~~~~ , 

• A horizon scanner actually makes repeated scans of the Earth, so dS,/dt is a rather complicated 
function. We shall include only one Earth scan in the integral; this is a good approximation if the 
transfer function is such that the output signal from one Earth scan has decreased to a negligible value 
before the next scan, as is the case for this example. With this approximation, the integrated part 01 the 
integration by parts vanishes at infinite time. The quantity in brackets in Eq. (7.77b) is that integral of 
the quantity in brackets in Eq. (7-77a) that ~ fmite at ",=0. 
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(7-77a) 

(7-77b) 

The spin rate,d.Jdt, of SMS-2 was taken to be 600 deg/sec which is close to the 
measured value [Chen and Wertz, 1975]. 

The SMS-2 Earth sensor transfer function is [Philco-Ford, 1971] 
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where Tb = 1.8 ms= detector cutoff 
TJ = 80 ms=preamplifier lower cutoff 
T2 = 0.238 ms = preamplifier upper cutoff 
T)= 2.66 ms=main amplifier lower cutoff 
T4 = 0.560 ms = main amplifier upper cutoff 
Ts= 80 ms=output transformer lower cutoff 

247 
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For this transfer function. the quantity inside the brackets in Eq. (7-77b) can be 
evaluated in closed form by the method of residues [Churchill, 1972). The t' 
integral in Eq. (7-77b) is then evaluated numerically with dSddl given by Eqs., 
(7-74) through (7-76). The output signals, So' for 11=81 deg and 78 deg are plotted 
in Fig. 7-19(c) and 7-20(c), respectively. They resemble the curves of dSddl to 
some extent, but the peaks are broadened and time delayed, the positive and 
negative peaks have unequal height, and So does not return to zero between the 
peaks in the cases where dSddl does. Thus, the electronics acts something like a 
differentiating circuit. although its response is quite a bit more difficult to 
characterize completely. ' 

The telemetry signal from the SMS-2 horizon sensor is not the output signal. 
So, of the sensor electronics, but rather the time intervals from Sun sightings to 
~arth-in and -out crossings. The latter times are determined by onboard threshold 
detection logic [Philco-Ford, 1971). A negative edge peak detector measures the 
amplitude of the negative peak of So and holds it in the form of a direct-current 
voltage. The Earth-in crossing is specified as the point where the positive pulse 
reaches 50 ± 5% of the magnitude of the savedtpeak voltage, and the ,Earth-out 
crossing is specified to be where the negative peak voltage is 60 ± 5% of the peak. 
These points are indicated by ~~ and ~~ on Figs. 7-19«(:) and 7-20(c); and the 
apparent Earth center, defined as the midpoint between ~~ and ~~, is indicated by 
«I»~. Note that «I»~ is displaced from the true Earth center, «1»=0. Figure 7-21(a) 
shows «I»~ and «I»~ as a function of nadir angle, 11, plotted at O.l-deg intervals. This 
figure also includes a curve showing the rotation angles at which the center of the 
sensor field of view crosses the Earth's horizon, corrected by a constant offset so 
that the points fall on this curve for large Earth scan widths (the offset is equal to 
the value of «I»~ at large Earth widths). The deviation of the two curves at the left of 
the figure indicates that modeling i!{ sensor electronic effects as a fixed bias on the 
angular radius of the Earth, as discussed in Section 7.2, fails at small Earth widths. 
Figure 7-21(b) is similar to Fig. 7-21(a) except that it was calculated with 15% and 
25% threshold levels for Earth-in and Earth-out times, respectively. The deviations 
at small Earth widths are exaggerated at these threshold levels, as compared with 
the nominal levels shown in Fig. 7-21(a). Figure 7-22 shows actual Earth-in and 
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-out data from SMS-2, which is further described in Section 9.4. The slope of the 
ellipse is due to orbit~i motion effects and is excluded from this section because it 
is not important for-- our purposes. What is important is the deviation of the 
theoretical and experimental points at sma)) Earth widths. called the pagoda effect 
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Fig. 7-22. Actual Earth-In and -Oul Data as a Function of Time (SMS-2 Data) 

because of the characte.ristic shape of the Earth-out curve [Chen and Wertz, 1975]. 
The similarity between Figs. 7-21(b) and 7-22 indicates that a more sophisticated 
treatment of sensor electronics than customarily used in attitude systems may lead 
to an understanding of the pagoda effect and other related anomalies. 

7.s Magnetometer Models 

Gerald M. Lemer 

This section develops the models used to decode data from fJuxgate magne
tometers described in Section 6.3 for use in attitude determination algorithms. 
Equations are included to encode magnetometer data for simulation. 

The basic measurement provided by a single-axis fJuxgate magnetometer is a 
voltage, V, related to the component of the local field, H, along the input axis, ii, 
by 

V=a(iI'H)+ Vo (7-79) 

~ where a is the magnetometer scale factor, Vo is the magnetometer bias, and H is the 
net local magnetic intensity in body coordinates. The output voltage passes through 

81 an analog-tn-digital converter for transmission, yielding a discrete output 

1S-2 Nv= Int{ c[ a(iI· H)+ Vol +0.5} (7-80) 
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where Int(x) is the integral part of x and c is the analog-to-digital scale factor. 
An alternative system provides a zero-crossing measurement in which a telem

etry flag is set when the magnetometer output voltage changes sign. This type of 
output is used by spinning spacecraft to provide phase information for either 
attitude determination or control. The flag generally is set and time-tagged in the 
first telemetry frame following a change in sign. 

Vector magnetometer systems consist of three mutually orthogonal, single-axis 
fluxgate magnetometers. The system can be packaged as a single unit mounted· 
within the spacecraft or attached to a boom, or as separate units dispersed about 
the spacecraft (for example, on extendable paddles). 

The remainder of this section is concerned primarily with vector magnetome
ters. The models developed are independent of the specific geometry; however, 
probable biases are highly dependent on both packaging and location within the 
spacecraft. A magnetometer located at the end of a long boom is unlikely to be 
exposed to internal magnetic fields but may be misaligned relative to the 
spacecraft. The opposite is likely to be true for a magnetometer located within the 
spacecraft interior. In a system consisting of three separate units (particularly units 
dispersed on extendable hardware) individual units may not be mutually ortho
gonal and units may be misaligned relative to the spacecraft reference axes. 

7 ,S.l Calibration of Vector Magnetometers 

By analogy with Eq. (7-79), the output of a vector magnetometer system is 

V=AH+ Vo (7-81) 

",here the components of V are the outputs of the three units, A isa 3-by-3 matrix, 
including both scale factor and alignment data, and Vo is the magnetometer bias 
voltage. Magnetic testing is performed by placing the spacecraft in a Helmholtz 
coil and measuring the magnetometer response, V, to a systematically varied 
external field, H. A least-squares fit of the data to Eq. (7-81) yields the 12 
parameters, A and V 0' which define the magnetometer calibration. The analog 
output, V, is passed through an analog-to-digital converter to provide the digitized 
output 

[

Int(CI VI +0.5)] 
N v= Int(c2V2+0.S) 

Int(c3 V)+0.5) 

(7-82) 

where cl ' cZ' and C3 are the analog-to-digital conversion factors. 
The matrix A in Eq. (7-81) is diagonal if the three magnetometer input axes 

are colinear with the spacecraft reference axes and crosstalk is absent. Crosstalk 
refers to induced magnetic fields normal to an applied field caused by ferromag
netic material or currents in the magnetometer and associated electronics. If 
crosstalk is absent and the three magnetometer units are mutually orthogonal, then 
A can be diagonalized by a similarity transformation (see Appendix C). This would 
imply a cohereni misalignment of an orthogonal magnetometer package relative to 
the spacecraft reference axes. In practice, crosstalk, internal misalignment, and 
external misalignment cannot be separated and for the remainder of this section we 
will assume that A is not'diagonal. 
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Equation (7-81) may be inverted and combined with Eq. (7-82t!0 yield the 
best estimate of the external magnetic intensity in body coordinates, H, 

(7-83) 

(7-84) 

where e = (e I +e2 + el}/3 is the mean analog-to-digital scale factor. The com
ponents of the matrix B are 

where 

and i is 1,2, or 3. 

Q;=c/(c;d; ) 

b;=cVOi/dl 

(7-85) 

(7-86) 

(7-87) 

(7-88) 

Note that Eq. (7-84) is a linear function of the magnetometer output and is 
thus analogous to the gyroscope model described in Section 7.8. Equation (7-84) 
assumes that matrix B has a unique inverse (see Appendix q and requires that no 
two magnetometer input axes be collinear. 

Matrix B defines the effective (not necessarily physical) orientation of the 
single-axis magnetometers relative to the spacecraft reference axes.· Thus, the 
effective coelevation, 01, and azimuth, ~;, of the ith magnetometer are 

0i = arc cos(B,~) 

cf>i= arctan(B12/ BIl ) (7-89) 

7.5.2 Magnetometer Blasest 

Sources of the bias term, Yo> in Eq. (7-83) include magnetic fields generated by 
spacecraft electronics and electromagnetic torquing. coils, and residual magnetic 
fields caused by, for example, permanent magnets induced in ferromagnetic space
craft components. It is important to distinguish between the sources of mag
netometer bias and of magnetic dipole' torque on the spacecraft. Although both are 
manifestatipns of uncompensated spacecraft magnetism, a unique relation between 
the two cannot be derived. The magnetic induction, BC(x), due to all the localized 

• This is a heuristic definition which ignores crosstalk and assumes that misalignment is the source of 
off -diagonal terms in .4. 
t Much of this development follows the formulation of Jackson (19631 where more complete derivations 
can be found. 
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current distributions, J(x), contained within the spacecraft can be expressed as the 
curl of a vector potential, 8"(x)=nXA(x), where the vector potential, A(x), is 
[Jackson, 1963J, 

!Lo J(x') d3x' 
A(x)= 4'ITJ Ix-x'i 

Equation (7-90) may be expressed as a multipole expansion using 

_1_=1+ x·x' + ... 
Ix-x'i x x3 

to yield the components of A(x), 

A;(x) = :; [ ~ f J;(x') d3x' + :3 X· f J;(x')x' dlx' + ... ] 

(7-90) 

(7-91) 

(7-92) 

For a localized steady-state current distribution, the volume integral of J is zero 
because n· J = o. Therefore, the first term, which is analogous to the monopole term 
in electrostatics, is also zero. Manipulation of the lowest order (in 1/ x) nonvanish
ing term in Eq. (7-92) can be shown [Jackson, 1963) to yield 

(7-93a) 

and therefore 

where 

m= i J x'XJ(x')d3x' (7-94) 

is the magnetic moment of the current distribution J. 
The total force on a current distribution,J, in an external field, B, is 

F= J J(x)XB(x)d3x (7-95) 

and the total torque is 

N= J xX (J(x)X B(x»dlx (7-96) 

For B constant over the dimensions of the current distribution the net force, F, 
van~shes and Eq. (7~96) may be reformulated as 

N = m X B(O) (7-97) 

The difference between the magnetometer bias and residual spacecraft dipole 
torque can now be seen froiD Eqs. (7-93b) and (7-97). A magnetometer bias is a 
measure of BC-(x) in the near field and terms of all order in x contribute because the 
magnetometer may be in close proximity to magnetic material. However, the 
residual dipole torque results only from the interaction of the dipole term with the 
environment because the higher order multipoles do not contribute to the torque. 
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Magnetometer biases will be induced by magnetic coils used for spacecraft 
attitude control. These biases may be lessened by winding small coils near the 
magnetometer in series with the larger control coils to produce a near zero net field 
independent of the coil current. 

To simulate magnetometer biases for prelaunch analysis, or to remove mag
netometer biases for postlaunch processing, the field of an electromagnet (see 
Section 6.1) may be computed as follows. The magnetic induction of a coil with 
dipole m and radjus a is given by Jackson (1963) as 

where 

Br = rs~O :0 (sinOA.) 

I a 
Bg = - -; ar (rA.) 

B.=O 

. mILo [(2-k
2
)K(k)-2E(k)] 

A.(r,O)= I 2 2 
'1/'2a(a2+r2+2arsinO) I k 

(7-98) 

(7-99) 

K and E are complete elliptic integrals of the first and second kinds with argument 

k = [ 4ar sin 0 ] 1/2 (7-100) 
a2+ r2+ 2ar sin 0 

Figure 7-23 defines the.relevant geometry. For small k 2, Eq. (7-99) becomes 

ILofTIT sin 0 
A.(r,9)= (7-101) 

COILOF 
RAOIUS 

lIN 
XV PLAN! 

x 

4'1/'(a2 + ,z+2arsinO)3/
2 

B. 

~~~--------~-------+y 

Fig. 7-23. Geometry of Magnetic Dipole Field From a Current Loop 
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and the field is 

and' 

iJoI" (202 + 2r2 + or sin 0 ) 
B, = -4-cosO ' 

'11 (a2+r2+2arsinO)S/2 

lim B,= iJoI" cosO /(2'11r3) 
(0/,)->0 

(7-102) 

(7-103) 

(7-104) 

(7-105) 

The elliptic integrals may be computed analytically [Abramowitz and Stegun. 1964] 
or numerically using subroutines CEll and CEL2 in the IBM Scientific Subroutine 
Package [I 968). 

7.6 Star Sensor Models 

Lawrence FaRon, III 

This section describes the mathematical relationships between star sensor 
measurements and catalog star positions (Section 5.6) for the slit- and image 
djssector-type sensors described in Section 6.4. Sensor response to star magnitudes 
is also discussed. Because of the close interaction between the interpretation of star 
sensor measurements. spacecraft dynamics models. and attitude determination 
techniques, we will refer to material in Sections 16.2 and 17.1. 

7.6.1 Star ~ner Measurements 

Star scanners, or slit star sensors, use a photomultiplier and electronic as
sembly to detect stars crossing a slit configuration. The exact form of the scanner 
measurements will depend on the particular type of instrument being used (Section 
6.4). In general, however, scanner output will consist of a series of times corres
ponding to star crossings with detected intensity greater than a specified threshold. 
or a series of detected intensities from which crossing times may be deduced. The 
matheinati~l model for star scanner measurements presented in this section 
follows the analysis of Grosch, et 01., (1969) and Paulson, et 01., [I969}. 

Consider a transparent slit etched on an otherwise opaque plate in the focal 
plane of a s~ scanner optical system. If a slit is a straight line segment and the 
optical system is free of distortion, then a plane, known as the slit plane. is defined 
which contains the slit and' t~e optical center of the lens. A distant bright point 
source, e.g., a star, will be sensed by a detector behind the slit. if and only if it lies 
in the slit plane .. The instant the star crosses this plane is called the transit time. 

At any star transit time, 
(7-106) 
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where Ii is the unit vector normal to the slit plane and S is the unit vector in the 
direction of the star. This equation holds for each star encountered as the 
spacecraft scans the celestial sphere. This results in the set of conditions 

(7-107) 

The spacecraft three-axis attitude at any' one instant is defined by three 
independent angJes. Equation (7-101), however, provides only one condition at 
each star transit time. To provide the additional information, the equations of 
motion of the spacecraft may be used to obtain a time-dependent characterization 
of the attitude~ which involves just a few parameters. Alternatively, an attitude time 
history may be provided by a system of gyros. This attitude model or history, 
described further in Section 17.1, may then be used to internally couple the 
cpnditions in Eq. (7-'101). In addition, if more than one slit is employed, each star 
will yield two spatially independent measurements. The additional information per 
star which is gained from· a multislit system may be exploited to reduce the number 
of required stellar targets or to increase the data sampling rate. 

The normal vector of the jth sli!, nj , is fixed in spacecraft body coordinates. 
The star vector in body coordinates, S, is related by the spacecraft attitude matrix, 
A, to the star vector, SI, fixed in inertial space by 

S=A(t)S1 

Therefore, Eq. (7-107) may be rewritten 

- -I D/A (tj)Sj =0 

(7~108) 

(7-109) 

This set of equations may be used with the attitude model to identify observed 
stars, as described in Section 7.7. After star identification, these equations may be 
used to refine attitude model parameters as described in Chapter 3. 

In some cases, the relationship between slit geometry and the attitude model 
allows considerable simplification of Eq. (7-109). For example, consider the UN" 
slit sensor, lis shown in Fig. 7-24, mounted on a uniformly spinning satellite in a 
torque-free environment (Section 16.2). As the satellite spins, transit pulses will be 
generated at times I., t2, and t3 by a star passing the three slits. 

If the satellite's spin rate is assumed constant and nutation is negJected 
between times t. and t3, the star's elevation, ", in the spacecraft frame is constant 
between I. and t3. Using Napier's Rules, this angJe may be calculated as 

[ ( t2-/.)] tan("-6)=tanfsin ! -0.5+ 1
3
'-/. (7-110) 

where !, f, and 6 are defined in Fig. 7-24. If ." is the azimuth of the first slit in the 
spacecraft body frame, the observed star unit vector at time t. in the spacecraft 
body frame is given by 

(7-111) 
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Fig. 7-24. N-8lit Star Sensor Geometry. N slit shown is larger than actual size. 

At I j = ,), Eq. (7-108) may be replaced by 

8(1)= A (1)81 (7-112) 

This equation may be used for observation identification and attitude model 
refiI)ement instead of Eq. (7-109). 

7.6.1 Image Dissector Tube Star Measurements 

Image dissector tube star sensors, such as the Ball BrothersCT -401 Fixed 
Head Star Tracker used on the SAS-3 and HEAO-I missions (Section 6.4), measure 
two coordinates U and V, as shown in Fig. 7-25, which are ideally proportional to 
the position of the observed star's image on the sensor's focal plane. 

FOCAL PLANE 

---------------
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Fig. 7-25. Image Dissector-Type Star Sensor Geometry 
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l, The line of sight of the star's image on the focal plane is located using the 
angles !f> and ~, which are defined with respect to the sensor's reference frame, as 
shown in Fig. 7-25. ~ is the elevation of the image from the X

S5
- y .... plane and q, is 

the angle between the negative Y •• axis and the projection of the image line of sight 
onto the Xss: Y .... plane. Figure 7-26 ilJustrates the use of these angles to locate the 
unit vector,_S .... , of the star corresponding to the image on the focal plane. The com-
ponents of S .. in the sensor's reference frame in terms of q, and ~ are 

S .... = [ ~:~:~:~~~ 1 (1-113) 
-S1D~ 

From Fig. 7-25, the relationship between q, and ~ and the coordinates U and V 
is 

tanq,= UII 
tan A = ( VI f)cosq, 

where I is the focal length of the lens. 

(7-114) 

Fig. 7-26. Star Position on Spacecraft-Centered Celestial Sphere Showing Positive Sense of .,. and A 
Measurements 

Because image dissector tube sensors are subject to optical and electronic 
distortion, temperature, magnetic, and star intensity effects, the simple re
lationships in Eq. (7-114) are not precise. Gates and McAloon [1976], Oeavinger 
and Mayer [1976] and Gray, et al., [1976] describe the calculation of q, and A from 
U and V using an empirical model based on laboratory calibrations. The following 
series for the computation of q, and A takes into account optical and electronic 
distortion and temperature effects. 
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41= Co+ CIU+ C2V+ C3U
2+ C4UV+ CSV

2+ C6U3 

+ C7U
2V+ C8UV2+ C9V

J (7-]]5) 

A=DO+ Dlu+ D2v+ D3U2 + D4uv+ DSv
2+ D6UJ 

+ D7U2V+ D8uv2+ D9V3 

where U = U / j, v = V / f, and the coefficients C and D are temperature dependent. 
The magnitudes of magnetic and star intensity effects vary depending on the 
particular sensor being used. For the Ball Brothers star trackers used on HEAO-I, 
magnetic effects are approximately 0 to 20 arc-sec, depending on the magnetic field 
strength and the star position in the field of view. Intensity effects are approxi
mately 0 to 45 arc-sec, depending on the star magnitude and the position in the 
field of view. Algorithms for the calculation of corrections to 41 and A due to these 
effects are discussed by Gray et 0/., [1976}. 

The obs!rved star unit vector Sss' calculated from Eq. (7-113), is related to a 
unit vector, SI, in the rectangular celestial frame by 

S =MASI 
5S 

(7-]]6) 

where A is the spacecraft attitude matrix and M is the transformation matrix from 
the spacecraft body frame to the star sensor reference frame. 

7.6.3 Modeling Sensor Intensity Response 

In general, a star sensor's spectral response is such that neither the visual, V, 
nor the blue, B, star magnitudes defined in Section 5.6 accurately corresponds to 
the magnitude measured by the sensor. Instrumenta/ star magnitudes, that is, 
magnitudes which take into account the spectral response characteristics of the 
sensor, must be calculated for each sensor to create a star catalog which contains a 
minimum of stars but'includes all of those that the sensor is likely to observe. 
Instrumental magnitudes are also necessary for modeling the output of sensors 
which provide intensity measurements. 

A system for computing instrumental magnitudes has been proposed by 
Gottlieb [1977J for the SAS-3 and HEAO-l star trackers. The instrumental magni
tude, m

l
, is modeled as a linear combination of the V and B magnitudes 

(7-117) 

where h is a constant between 0 and 1. This constant may be determined by 
comparing the laboratory-measured wavelength response of the sensor and the 
wavelength sensitivities of the B and V magnitudes given in Section 5.6. An 
experimental value for h may be obtained by varying h until the observed 
distribution of instrumental magnitudes best matches a theoretical distribution of 
stellar magnitudes or until a sharp sensor magnitude limit is obtained. 

Several slit and imagtJ dissector sensors provide an output signal which is 
related to the intensity of the detected star. This measurement, I, is related to the 
star's instrumental magnitude by 

loglol = CI + Dlml 

>', 
, I, 

",', 

. i 
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where CJ and DJ are sensor-dependent coefficients obtained from laboratory 
calibration. See Section 5.6 for a further discussion of stellar magnitudes. 

7.7 Star Identification Tedmiques-

David M. Gottlieb 

Star identification refers to the process used to associate sensor observations 
with stars in a star catalog. Because the sensor observations can be related to a 
spacecraft reference frame, and the star catalog gives star positions in an inertial 
frame of celestial coordinates (CC), this identification allows computation of the 
spacecraft attitude. 

The process of star identification usually begins with the transfonnation of the 
sensor observations to a frame that is as close as possible to celestial coordinates, 
called the estimated CC frame. This permits the identification algorithm to operate 
with the smallest possible error window, thereby reducing misidentifications and 
ambiguities. If the initial attitude estimate is poor or if an inaccurate model of -
spacecraft motion is used, the estimated CC frame may be very far from the true 
CC frame; this would normally be the case, for example, during attitude acquisi
tion. When the model of the spacecraft motion is poor, the estimated frame may 
also be seriously distorted; in other words, the angular distance between observa
tions in the estimated frame may differ significantly from the angular distance 
between the corresponding catalog stars in an undistorted frame. This greatly 
complicates the star identification process, and may even make it impossible. 

In this section we discuss four types of star identification algorithms: direct 
match, angular separation match, phase match, and discrete attitude variation. The 
direct match technique matches each observation with a catalog star lying within a 
specified tolerance of its position. This requires that the estimated coordinate frame 
be very close to the true coordinate frame. Onboard processors use this technique 
whenever a good guess of the attitude is available (e.g., HEAO-I; see Gray, et al., 
[1976]. The angular separation technique matches angular distances between obser
vations with angular distances between catalog stars and is used when the observa
tions are in a frame that is only slightly distorted but the initial attitude estimate is 
not sufficiently accurate to pennit the use of the direct match technique. SAS-3, 
where the motion model is sometimes inaccurate and the initial attitude poorly 
known, uses this technique [Berg, et a/., 1974]. The phase "atch technique is a 
one-dimensional version of the angular separation match. Known star azimuths· 
are compared with observed star longitudes as the phase between the estimated and 
true frames is stepped through 360 deg. This may be used when the observations
are in a frame that is only slightly distorted and when the spin axis of the 
spacecraft is well known but the phase angle about the spin axis is poorly known. 
HEAO-l used a-phase match for its original attitude acquisition [Gray, et 0/., 1976]. 
Finally, the discrete attitude variation technique, appropriate when everything else 
fails, uses the direct match or angular separation technique, as the initial attitude 
and motion parameters are stepped through various values in their possible range . 

• Azimuth will be \lsed to mean the longitude of the observation in the es~ted CC frame. 
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In discussing the above methods, we will use the following definitions and 
assumptions. 

Distortion. If the estimated CC frame is severely distorted, star identification 
will be difficult or impossible because the distortion causes the need for large error 
windows, which causes an excessive number of field stars (random catalog stars 
located close. to the observed star) to invade the windows. Sometimes the interval 
of analysis can be shortened to alleviate this problem. 

Scores. The result of any attempted identification procedure can be reduced 
to a numerical score, such as the total number· of unambiguous matches attained by 
the direct match technique. The identification is accepted if the score is sufficiently 
high. Alternatively, a number of attempts, exhausting a complete set of possible 
values of some parameter(s), can be made, and the one yielding the highest score 
accepted. 

Coordinate Frame. We assume here that the observations are transformed to 
an estimated ·CC frame, but the star catalog could be transformed into an 
estimated sensor frame instead. Normally, the technique that requires fewer trans
formations would be the most advantageous. 

Multidimensional Matches. If a sensor also observes something other than 
star position (brightness, for example), a multidimensional match on position and 
the other observed variable can be performed. This increases the power of any 
technique. 

Related Problems. The problem of star identification is quite distinct from 
the apparently related problems of pattern matching such as those encountered by 
Earth resources satellites or by character scanning. For these', the search is for some 
specific set of patterns. In contrast, star identification presents an ever-changing set 
of search. patterns, distinct for each point on the sky. 

7.7.1 Direct Match Technique 
The direct match technique matches an observation in the estimated CC frame 

with catalog stars lying sufficiently close to it. For this to succeed, the identification 
window must be smalrenough to avoid the incursion of too many field stars. This 
means that the initial attitude estimate and model of. spacecraft motion must be 
accurate. An observation is matched with a catalog star if 

d(O',S)<f (7-118) 

where d(O',S) is the angular ~istance between 0', the observation unit vector in 
the estimated CC frame, and S, the catalog star unit vector in the true CC frame; 
and f is the error window radius. 

After checking an observation against all possible catalog stars, one of three 
outcomes is possible: no identification (no catalog star within the error window), an 
ambiguous identification (two or more catalog stars within the error window), or a 
unique identification of the observation with exactly one catalog star. In the last 
caSe, the identification is hopefully a correct identification; if, however, the observa
tion is not in the star catalog or lies outside the error window, it is a misidentifica
tion. Misidentifications, even in small numbers, can cause some attitude solution 
techniques to diverge. Therefore, care must be exercised to keep' the proportion of 

! .~ , 
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misidentifications small enough for the attitude solution technique employed. The 
score for a direct match technique can be either the number of stars identified or 
the percentage identified. In either case. a match is successful if the score is 
sufficiently high. 

Because of its simplicity. the direct match technique may be statistically 
analyzed using a Poisson distribution. The fraction of correct identifications is 

qhexp(-E) 

where 
E= I +2'11p(l-coSE) (7-119) 

where q is the probability that the correct star is in the star catalog. and is equal to 
the catalog completeness fraction for objects detectable by the sensor. as discussed 
in Section 5.~; p is the density of detectable stars in the region of observati9n 
brighter than the sensOr detection limits, expressed in stars per steradian; andh is 
the probability that an observation lies inside the window. The probability. h. is a 
function of both window size and the error distribution function. Because this last 
must include sensor etrors, data processing inaccuracies and star catalog position 
errors, it is very sensor dependent. Frequently, errors follow a Gaussian distribu
tion with some known or estimatable standard deviation. Note that E in Eq. 
(7-119) is one plus the expectation value for the number of stars to be found within 
the window. (See ~. (A-12), Appendix A.)" 

The fraction of no identifications is: 

(] - qh)exp( ~ E) 

The fraction of misidentifications is 

(1- qh)Eexp( - E) 

(7-120) 

(7-]21) 

The fraction of ambiguous identifications is the sum of the fraction of cases 
where the correct star and one or more field stars are in the Window. and the 
fraction of cases where the correct star is not in the winJow but two or more field 
stars are 

[I-exp(- E)]qh+ [1-(1 + E)exp( - E))(I-qh) (7-122) 

The four probabilities given above can be used to optimize the choice of the 
window size, (. To do so, note that both nonidentifications and ambiguous 
identifications are normally dropped from consideration. by identification 
algorithms. Misidentifications, even in small numbers, may cailse erroneous results 
and should be minimized. However, too small a choice for ( may result in an 
insufficient· number of correct identifications. The optimum value of the window 
size is the one that produces the desired tradeoff between the number of correct 
identifications and the number of misidentifications. To illustrate this point, 
consider the following example, which is similar to the performance of HEAO-I. 

We assume that the limiting magnitude of the sensor is 7.5 visual (Y). At this 
limit, the star catalog is estimated to be 98% complete. Hence. q=0.98~ Near the 
galactic plane, the star density to 7.5 V is approximately I star/de': (from Table 
5-14). Hence, p=3.3x lW stars/sr. We model h as a hyperbolic function of the 
expected error, a, such that at a=O,h=l; at a=oo. h=O; and at a=(a) (the 
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mean expected error), h=0.5. Thus, h=f/«(+(a» for a window of radius (. 
Assigning a value of 0.05 deg to (a), we use Eqs. (7-119) to (7-122) to compute the 
probability of each direct match outcome as a function of f. Table 7-3 presents the 
results. Note that as f is increased, the probability of a.correct identification rises 
steadily until f~2(a). The increase then slows, reaching a maximum at f~4(Q\), 
after which the probability of a correct identification declines due to an increase in 
the probability of an ambiguous identification. The probability of a misidentifica-. 
tion also rises with increasing f. Therefore, the optimum choice of ( would be 
f:$4(a). The more important it is to avoid misidentifications, or the smaller the 
fraction o( observations that must be identified for the proper functioning of the 
rest of the algorithm, the smaller f shOUld be. 

Table 7-3. Probability of Dim:t Match Outcomes for Limiting Visual Magnitude 7.5. 98% Catalog 
Completeness, and Stars in the Galactic Plane. (See text for explanation.) 

PROBABILITY Of 

• h 
IDEGl tDEGJ CORRECT NO AMBIGUOUS 

IDENTifiCATION IDENTIFICATION MISIDENTIFICATION IDENTIFICATION 

0.005 0.091 0.089 D.9H < 0.000' < 0.0001 

0.020 0.286 0.280 0.119 0.009 0.0003 

0.040 0.444 0.433 0.562 0.0021 OJ)021 

0.0lI0 0.548 0.529 0.460 0.0050 0.0059 

0.080 0.615 0.591 0_ 0.0075 0.0118 

0.'00 O.~J 0.634 0336 00100 0.0198 

0.160 0._ 0.687 0.248 0.0162 0.0493 

0.200 O.BOO 0.697 0.192 00214 0.09(1'1 

0.250 0.833 0.683 0.153 0.0251 0.1384 

0.350 0.875 0.619 0.'03 00286 02493 

7.7.2 Angular Separation Match Technique 

The angular separation match technique matches angular distances between 
observations with angular distances between catalog stars. For this technique to 
work, the estimated CC frame must· be sufficiently undistorted. That is, the 
spacecraft motion must be sufficiently well modeled such that 

Id(O;,02)-:d(01,02)1«1L (7-123) 

holds for enough observat!.ons, whe!e 0 1 and O2 are unit vectors for two stars in 
the true CC frame and 0; and 0; are the corresponding unit vectors in the 
estimate CC frame .. 1L is an error allowance for the inaccuracies of observation and 
the distortion of the estimated CC frame. 

In addition, t4e number o,f candidates, or catalog stars which could possibly 
be identified with an observation, must be manageable. Because candidates are 
chosen for their proximity to the observation, the initial attitude estimates must be 
sufficiently accurate so that the number of catalog stars within the candidate search 
window is not so large as to impose storage or processing time problems; i.e., 

(7-124) 

Z4 
- :" 
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holds for sufficiently few catalog stars, where ( is the radius of the candidate search 
window. Experience with the SAS-3 spacecraft suggests that an average of two or 
three candidates per observation is satisfactory. However, if this number -exceeds 
five to ten, ambiguities and misidentifications may lead to an insufficient number 
of correct unambiguous identifications. 

The simplest angular separation match is a pairwise match between just two 
observations. This is done by picking two observations with ,!nit vectors O~ and O2 
in the estimated CC frame. The candidate catalog stars for O~ are those that meet 
the requirement 

d(O~,S)« 

The candidatesJor O;.are similarly selected. A match exists and O~ and 0; 
are associated with 8 1 and 8 2, respectively, provided that 

(7-125) 

If this condition is met by more than one pair of catalog stars, the match is 
ambiguous. 

Polygon matches can help resolve ambiguities and generally increase the 
reliability of the star identification. This technique consists of selecting a set of N 
observations (N > 2). Each pair of observations can be matched with catalog· stars 
as above. The polygon match is considered successful when each pairwise distance 
match is successful and when the catalog star associated with each observation is 
the same for all pairwise distance matches involving that observation. An alterna
tive approach is to form m vectors containing the distances between all pairs of 
observations, where m=(f)= N·(N -1)/2. For example, for N=4, the m vector for 
observations I, 2, 3, and 4 would be 

[ d(0~,02),d(0~,0;),d(0~,0~),d(02,0;),d(02,0~).d(0;,0~)r 
A successful match occurs when the observation m vector is sufficiently close to the 
m vector of distances between four catalog stars. The disadvantages of the polygon 
match are that it requires more data than a pairwise distance match and that the 
computation time is longer. In the most efficient models, the computation time will 
increase approximately as N 2

• 

The angular separation match technique is difficult to analyze statistically; this 
makes the choice of ( and J.L more difficult than for the direct match method. ( 
must be large enough to allow for the error in the initial attitude estimate plus the 
error caused by inaccuracies in the motion model. For SAS-3, (=5 deg gave 
satisfactory results. J.L need only be large enough to allow for the distortion caused 
by the motion model inaccuracy. It should be set to the maximum anticipat~d error 
in attitude at the end of the interval of analysis, assuming that the initial attitude 
was perfect. If p. is too large, ambiguous identifications and misidentifications will 
arise; if it is too small, no identification will be possible. The analyst must choose p. 
on the basis of the data accuracy and previous experience with the particular 
algorithm. 
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7.73 Phase Match Technique 

The phase match technique computes a phase angle about a known spin axis 
by matching observation longitudes and catalog star azimuths about that spin axis. 
To use this technique, the frame. of the sensor observations must be nearly 
undistorted; i.e., 

(7-126) 

where til is the phase or .azimuth difference and 8. is an error tolerance to allow for 
distortion. (For the HI~AO-I attitude acquisition algorithm, 6.= I deg.) For the 
phase match technique to work, the spin axis of the spacecraft must be known to 
an accuracy substantially better than 6 •. The phase about the spin axis need not be 
known, however. 

To implement a phase match, compute the phases of all observations in an 
estimated CC frame with an arbitrary zero phase. Next, extract from a star catalog 
all stars, S, meeting the requirement 

(7-127) 

where Z is the spin axis unit vector; () is the angle between the spin axis and the 
s~nsor optical axis; r is the radius of the sensor field of view; and 62 is the 
maximum anticipated error in the spin axis position. Compute . the longitude of 
each catalog star as discussed in Section 5.6. Divide the entire azimuth circle «(}:..to 
360 deg) into. bins of equal width. 6, such that 

(7-128) 

where the second term allows for errors in catalog star longitudes caused by errors 
in the spin axis position. The score, R, is given by 

B B 

·R= ~ ~ N;Mj 
;=1 j=1 

(7-129) 

where N;=O if there are no observations in ,the ith azimuth bin and N;= I 
otherwise; ~=O if there are no catalog stars in thejth longitude bin and ~= I 
otherwise; and B is the number of bins. . 

Rotate the observation frame by 6 by adding 8 to each observation azimuth 
and compute a score for the new configuration. Repeat this process for a complete 
36O-deg circuit. The highest score corresponds to the correct phase for the observa
tio~. Alternatively. the process can be stopped when a score is attained which the 
analyst feels is sufficiently "large to ensure that the correct phase has been found. 

A major limitation of the phase match technique is that it fails if".either the N; 
or M values in Eq. (7-129) are mostly 1. 

To ensure that ~=O often enough, the mean number of catalog stars per 
longitude bin, < S). must be ;$2; < S) is given by 

(1-130) 
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where p is the density of stars brighter than the limiting magnitude of the sensor 
(see Section 5.6). If (S)~ L those bins where there are no stars become the 
important ones; if the star catalog is complete, these "holes" will never contain 
observations when the correct phase is found. 

Because the catalog must contain all or ,nearly all stars to the limiting 
magnitude of the sensor, the only way to control (S) is by adjusting the sensor 
sensitivity. If the threshold is sufficiently high (i.e., only fairly bright stars are 
detected), the star density, p, will be low; thus, (S) will be low and ~ will be zero 
sufficiently often. This procedure also ensures that N; will be zero often enough 
because the sensOr cannot observe more stars than are in the catalog, if the catalog 
is nearly complete. 

Several refinements to this technique are possible. If the star catalog is 
complete, we can assume that a single selected observation will match some star in 
the catalog. By matching the observation with each catalog star in tum, a set of 
possible phase angles is generated. Because the number of catalog stars is normally 
far less than the number of bins, this reduces the number of scores which must be 
calculated. 

A second refinement makes use of elevation and azimuth information. Be
cause the maximum elevation error for an observation is 6

2
, the elevation informa

tion is useful if 

82«8 

To include elevation information. redefine the score given in Eq. (7-129) as 

B B 

R = L L N;MjE;.j 
;=1 j=1 

(7-131) 

where E;.j = I if the elevation of one of the observations in the ith bin is within 8
2 

of 
the elevation of one of the catalog stars in the jth bin, and is 0 otherwise. 

7.7.4 Discrete Attitude Variation Technique 

This technique should be used only as a last resort because it involves the 
repeated use of one of the other matching techniques and is therefore very costly in 
computation time. No knowledge of the initial attitude is required, but any 
information available can be used to limit the number of attitude guesses that must 
be tried. However, the observation frame must be un distorted to the extent 
required by the identification technique that will be used. To implement the 
discrete attitude variation technique, create an array of trial attitudes such that no 
possible attitude is more than t: angular distance from one of the discrete trial 
attitudes in the array. For each trial attitude, apply any of the other identification 
techniques described above. The attitude that gives the highest score is taken to be 
correct. 

Because the number of possible attitudes may be very large (e.g., jf t:= I deg, 
there are over 40,000 of them), refinements to the technique which cut down the 
number of guesses are critical. For one such refinement: assume that no informa-
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tion is available concerning the initial attitude and that the number of catalog stars 
is much less than the number of discrete attitude guesses that are possible. 
Provided that any given observation is very likely to correspond to one of the 
catalog stars, then a substantial savings in computer time can be realized by 
assuming that the observation matches each catalog star in turn. For any given 
catalog star, this determines two of the attitude axes; the third is discretely 
estimated as above. Each catalog star and third-axis attitude is tried until a 
sufficiently high score is attained. This refinement is very powerful if it is possible 
to narrow the field of candidates in some way for anyone of the observations. For 
example, if some· brig..tness information is available, the brightest observation 
might be used. The star catalog candidates for this observation are then limited to 
only the brightest stars, thus proportionately decreasing the number of attitude 
guesses that must be tried. 

7.8 Gyroscope Models 

Lawrence Fallon, III 

As described in Section 6.5, gyroscopes form the major component of inertial 
guidance systems, which are used extensively for attitude propagation and control. 
This section describes mathematical models for the estimation of spacecraft angu
lar rates from gyro measurements, the simulation of gyro outputs from true 
spacecraft angular rates, and the modeling of noise in gyro outputs. We ~re 
concerned primarily with torque rebalanced single-degree-of-freedom gyros and 
draw largely on analysis performed by the TRW Systems Group for the High 
.Energy Astronomy Observatory (HEAO) missions [McElroy, 1974]. The notation 
of Section 6.5 is used throughout. 

7.S.1 Gyro Measurements 

The gyro output, (J, represents a voltage proportional to the torque current in 
an analog rebalanced gyro or the number of rebalance pulses in a pulse rebalanced 
gyro (Section 6.5). The relationship between (J and Wi' the. angular rate component 
in the direction of the gyro's input axis, depends on the type of gyro in use. For 
example, rate gyros supply an angular displacement, (JR' which is ideally propor
tional to "'i. Thus 

(7-132) 

where "'iM is the gyro's measurement of "'i' and KR is the rate gyro scale factor. 
Rate-integrating gyros operating in the rate mode (Section 6.5) provide an output (JI 

which is ideally proportional to the integral of "'i over a sampling interval Btl. Thus, 
the . gyro's measurement of the average angular velocity over the interval is 
obtained from 

M KI 81 
w· =--, Btl 

(7-133) 

where KI is the rate-integrating scale factor. The interval, BII , typically in the 200-
to 500-ms range, must be chosen such that 81 remains small. In high angular 
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velocity environments, such a choice may not be practical, and errors in the 
computation of WI

M result if the gyro's input axis moves significantly within 8tl • A 
more sophisticated algorithm given by Paulson, et al., [1969] reduces errors due to 
this effect. . . 

7.8.2 Model for Measured Spacecraft Angular Velocity 

The spacecraft's angular velocity W; in the direction of the gyro's input axis is 
related to the gyro's measurement of this quantity wr by the following model from 
Iwens and Farrenkopf [1971]. 

(7-134) 

where k; is a small correction to the nominal scale factor in Eq. (7-132) or Eq. 
(7-133), because KR and KI are not precisely known; bi is the drift rate; and n; is 
white noise on the gyro output. In torque rebalanced gyros, b

l 
represents a null 

shift in the torque rebalance control loop which generally is not constant but may 
be influenced by gyro noises and systematic effects. Modeling of gyro noise sources 
is discussed in more detail in Section 7.8.4. 

If the direction of the gyro's input axis is given by a unit vector, VI' in the 
spacecraft coordinate frame, Eq. (7-134) becomes 

(7-135) 

where W is the true spacecraft angular velocity vector. 
Consider a configuration of N single-degree-of-freedom gyros with input axes 

oriented to measure the three components of W (Section 6.5). To account for the N 
gyros, the following vectors are constructed: 

[ 

Wi~ j [ bjJ 1 [ niJ 1 
wg

M
= :M; bg = ~ ; ng = } 

WiN b,N IN 

(7-136) 

Gyro geometry and scale factor error matrices are similarly constructed: 

[

1+kiJ 

K= 

o 
(7-137) 

It follows that the vector WgM, representing the collective output of the gyro 
configuration, is give~ by 

(7-138) 

7.8.3 Calculation of Estimated Angular Velocity From...e Gyro Measurements 

An expression for the true spacecraft angular velocity is found by solving Eq. 
(7-138) for w, . 

W= C(w M -b -n ) g g g (7-139) 
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where 

In the case of three gyros, this expression reduces to 

Because the expected value of Dg is zero, an estimate of the spacecraft angular 
velocity, «(0), becomes 

(7-140) 

where b= Cbg is the effective gyro drift rate vector in the spacecraft frame. 
In practice, the scale factor corrections and input axis orientations are not 

known precisely and will vary slightly with time. The matrix C is calculated before 
launch based upon ground calibrated values for K and U and then remains 
invariant. To take time variations into account, a misalignment/scale factor 
correction matrix, G, is introduced such that 

(7-141) 

where input estimates for band G are used. Equation (7-141) is a convenitmt 
algorithm for_ the calculation of spacecraft angular velocities from gyro meas~re
meg,ts for use in attitude propagation (Section 17.1) or in attitude control (Section 
'19.4). 

Because each gyro contributes a scale factor uncertainty and a 2-deg-of
freedom input axis alignment error, the elements of G will in general be indepen
dent for N :> 3. G may be initialized at zero if C contains all scale factor and 
alignment information after gyro calibration and spacecraft assembly. After 
launch, it may be necessary to refine G occasionally dlle to small scale factor and 
alignment changes. Estimates for the gyro drift are available after gyro calibration 
but must be redetermined frequently after launch. Procedures for the refinement of 
band G are presented in Section 13.4 and by Gray, et al., [1976]. 

7.8.4 Modeling Gyro Noise Effects 

Gyro ooise may seriously degrade the accuracy of the calculated spacecraft 
angular velocities and-of-attitude estimates based on these angular velocities. For 
torque rebalanced gyros, it is convenient to model gyro noise as being composed of 
electronic noise, float torque noise, and float torque derivative noise, as introduced 
in Section 6.S. The models given here for these three noise sources follow the 
formulation of Farrenkopf [1974] and McElroy [1975] for rate integrating gyros in 
the rate mode. 
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Electronic noise is modeled as a time-correlated colored noise· of standard 
deviation a., on the gyro output. At the kth readout time interval, the electronic 
noise, n.,(k), is . 

n,,(k) = e-8t
,/T[ neCk -1)- aer..(k -I)] +(I"":VI- e- 28t,/T )a.,r.,(k) (7-142) 

where reek) is a normally distributed random number with zero mean and unit 
standard deviation, .,. is the torque rebalance loop time constant (Section 6.5), and 
6tl is the gyro readout time interval. If .,. is much less than 61/, then Eq. (7-142) is 
simply . 

n.,(k)=a.,r,,(k) 

Float torque noise is assumed to be white Gaussian noise of standard devia
tion (1" on the gyro drift rate. It is modeled as a noise, n,,(k), on the gyro output 
corresponding to the kth readout interval given by 

where f,,(k) is a normally distributed random number with zero mean and unit 
standard deviation independent from r.,(k). 

Float torque derivative noise is integrated white noise of standard deviation. a .. , 
and is modeled as a noise, nu{k), on the drift rate at the kth readout interval. Thus, 

where fu(k) is a random number analogous to but independent of both reek) and 
~OO . 

Gyro noise effects cause an uncertainty in the angular rates calculated from 
Eqs. (7-132) and (7-141), which then cause cumulative uncertainties in attitudes 
determined using these angular rates. If the spacecraft attitude and drift rate are 
known exactly at time I I' then at time '2 = t 1 + t11 the attitude. uncertainty will 
follow a Gaussian probability distribution with standard deviation 

(7-143) 

As an example of noise levels, the HEAO-I gyros have specified values of 
a,,=0.5 arc-sec, (1.,=0.22 arc-sec/secl/ 2, and (1u=4.7X 10':'5 arc-sec/sec3/2• A plot 
of Eq. (7-143) using these parameters is shown in Fig. 7-27. At time II (0.32 sec) on 
this figure, attitude uncertainty at the I a level is O.S arc-sec; at '2 (32 min) it is 9.6 
arc-sec; and .at '3 (24 hours), 690 arc-sec. The frequency at which the attitude 
reference and drift rate must be redetermined depends larg~ly on the noise 
characteristics of the particular gyros in use. 

·If the value of a noise at one lime influences its value at some other lime, then it is a colored lIOise. The 
value of while Mise at one time gives no information regarding its valUe at any other time. 
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Model of Attitude Determination Uncertainty Due to Gyro Noise Effects Using Parameters 
Specified for the High Energy A.5tronomy Observatory-l Mission. (Adapted from McElroy, 
(1975].) 

7.9 Reaction Wheel Models 

F. L. Markley 

If active spacecraft control is to be modeled in a simulation system, mathema
tical models of the control system are needed. Specifically, models of the reaction 
wheel torque and friction characteristics are needed to model reaction wheel 
control systems. As discussed in Section 6.6, reaction wheel characteristics differ 
widely among spacecraft; therefore, we choose as a single illustrative example the 
reaction wheel proposed for the IUE spacecraft [Welch, 1976). This wheel is 
equivalent to that used on the yaw axis of Nimbus and has a moment of inertia of 
0.00338 kg_m2 and a synch speed of 1500 rpm.· 

The wheel torque is provided by an AC two-phase induction motor, which is 
driven by square pulses provided by a reaction wheel drive electronics package. 
The torque level is· controlled by varying the duty cycle, or fraction of each 
haif-cycle in which the applied square-wave voltage is nonzero. The duty cycle, Xtk, 

is varied between +1 and -1 by a control voltage, V, as shown in Fig. 7-28.t 

• The synch speed, or $YBchronous speed. is the speed of the wheel at which the electromagnetic torque 
N_.defined below, is zero. .'.-
t The torque applied to an induction motor is proportional to the square of the applied voltage. The 
drive electronics includes a square root circuit so that the applied torque is proportional to the control 
voltage. The duty cycle as used in Eq. (7-144) and Fig. 7-28 is actually the squared input to the wheel. 
The nonlinearity of the function graphed in Fig. 7-28 near v=o is due to the fact that the mathematical 
square foot function has infinite slope at the origin, which can be modeled only approximately' in the 
wheel drive electronics package. For a negative duty cYcle, the phase relation between the signals 
applied to the two phases of the wheel is reversed. 

~ ,,' . 
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v 

Fig. 7-28. Duty Cycle. Xrk• as a Function of Control Voltage, Y 

The net torque on the wheel is given by 

N = XdcNem - N/riclion (7-144) 

where both N"". the applied electromagnetic torque when the duty cycle is unity. 
and Njriclion' the bearing friction torque. depend on the wheel speed. s. The 
dependence of Nem on s is shown in Fig. 7-29. For accurate si~ulation. a table of 
values and an interpolation scheme should be used for N"". For less precise 
calculations, the following approximation is adequate: 

(7-145) 

-1500 

-Nom FOR X. < 0 

Fig. 7-29. Applied Torque, N .... as a Function of Wbeel SpCcd, 8 
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where r= 1- S / stnQx for Xdc > 0, r = 1 + S / stnQx for Xdc < 0, stnQx is the synch speed, a 
is the value of r for which Nem has maximum magnitude, and No is the maximum 
magnitude of Nem• The friction torque is most simply modeled as the sum of 
Coulomb and viscous terms 

(7-146) 

For the IUE wheel, the Coulomb friction coefficient is Nc =7.06x 10- 4 N'm, and 
the viscous friction coefficient is f= I.~l X 10- 6 N ·m/rpm._ 

A considerably more sophisticated friction model developed by Dahl [1968] 
can be used where the simple model described above is inadequate. The Dahl 
model is a statistical model of friction as the random making and breaking of 
bonds between solid surfaces. It includes "stiction," the increased friction found 
when the relative velocity between the sliding surfaces is zero. 

7.10 Modeling Gas-Jet Control Syste~ 

Robert S. Williams 

A mathematical model of a gas-jet control system· is used to predict the 
spacecraft response when a given set of commands is input to-the control system. 
This prediction may be used for simulation, for refinement of initial estimates when 
computing commands, or for comparison· with the actual spacecraft response" 
during or after the execution of a command. 

The main factors modeled in a gas-jet system are (1) the thrust profile, or 
time-dependence of the jet thrust relative to the commanded on and off times, and 
(2) the alignment of the thruster in the spacecraft body coordinate system. Both 
factors are ordinarily measured before launch. However, the measured thrust 
profile may be erroneous if the thrust vector does not lie along the thruster 
symmetry axis or if launch vibration affects the alignment. Consequently, inflight 
calibration, discussed in Section 19.3, may be desirable if several maneuvers must 
be performed and the fuel budget is tight. . 

Several additional effects may be considered, although in most cases they will 
be negligible. These are the change in spin rate resulting from the conservation of 
angular momentum as propellant flows from storage tanks to thrusters, and the 
change in center of mass and moments of inertia as propellant is consumed. These 
effects can be easily estimated given the geometry of the tanks and thrusters and 
the propellant flow rate. The major uncertainty is in the distribution of the 
propellant within the tanks. 

Thrust Prome. A hypothetical thrust profile is shown in Fig. 7-30. The 
commanded start time is 10; . the thrust begins buildup at' I) and reaches a steady 
state at 12; the commanded stop time is 13; the thrust begins to decay at 14 and 
reaches zero at Is. The delays between 10 and I) and between 13 and 14 are due to 
electrical and mechanical delays in the valve circuits and to. the time for the 
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propellant to flow from the valves to the thrusters. The intervals from t I to t2 and 
from t4 to ts are the rise and fall times, respectively; these are nonzero because of 
the time required to establish steady-state propellant flow and (for hot-gas systems) 
reaction rate in the thruster. The exact shape of the buildup and decay does not 
follow any well-established law; Fig. 7-30 is descriptive rather than quantitative. 
The thrust may not even reach steady state if very short pulses are commanded. 

w 
<J 
II: 

~ 

TIME 

Fig. 7·30. General Thrust Profile for Gas Jet Control Systems 

Typical values for delays and rise and fall times range from a few milliseconds 
to a few hundred milliseconds. For example, Werking, et al., (1974) cite a fall time 
of 300 ms for the cold-gas thrusters on RAE-2, whereas a rise time of \0 ms can be 
inferred from measurements on 0.4 N thrusters for the hot-gas IUE system 
[Sansevero and Simmons 1975). Sansevero also reports a delay lime of 5 to 15 ms 
for opening and closing solenoid valves in the latter system. 

In both hot-gas and cold-gas systems, the peak force increases with increasing 
propellant flow rate. In cold-gas systems, a pressure regulator is ordinarily used to 
maintain a constant flow rate and, hence, peak force as long as the propellant 
supply pressure remains above the regulator output pressure. If the pressure is not 
regulated, the flow rate will depend on individual system characteristics, but will 
drop as propellant is consumed and the supply pressure drops. In hydrazine-fueled 
systems, the flow rate of the propellant, which is a liquid, is not regulated. In these 
systems, the peak force is measured at various supply pressures so that thruster 
performance may be predicted over the entire range of pressures which will be 
encountered during the mission. The pressure dependence of the force is sometimes 
described in a parametric form suitable for the thruster model. Otherwise, the 
model must use interpolation between calibration points to predict thruster per
formance. 

Hydrazine thrusters may not reach their full rated performance until the 
catalyst heats up. According to measurements on the IUE system [San severo and 
Simmons 1975], the initial thrust from a cold thruster may be as little as 50% of the 
rated value, rising to 90% after 3 sec of operation and to essentially 100% after 30 
sec. Hydrazine thrusters using electrothermal rather than catalyzed decomposition 
[Murch, etal., 1976; Pugmire and O'Connor, 1976; Grabbi and Murch, 1976} at 
least partially alleviate this problem because the reaction chamber is heated 
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electrically before propellant is fed in. As with pressure dependence of the force, 
the time dependence is sometimes available directly from the calibration data in a 
suitable form; otherwise, the initial thrust and the firing time required to reach full 
thrust can be used to create a simple piecewise linear model of the increase in 
force. 

The response of the spacecraft to control torques is proportional to the time 
integral of the torque. When the thruster firing time is long compared with tum-on 
and tum-off delays, rise and fall times, and warm-up times, response will depend 
only on the peak force and the time. If the response of the spacecraft is a rate 
change about an axis about which the rate is directly measured, a detailed model 
may be unnecessary even for short thruster firing times, if commands can be sent 
until the measured rate equals the desired rate. As an example of a case in which 
neither of the above simplifications ordinarily applies, consider precession of a 
spinning spacecraft, in which the thruster is fired for a series of short intervals, each 
a fraction of a spin period. (See Section 1.3.) The direction of the applied torque 
changes with time, so that an average direction and magnitude must be computed, 
and rise and fall times can be expected to be significant. 

The geometry for the computation of the average torque is shown in Fig. 7-31. 
Here, L is the angular momentum vector; r is the radius vector from the center of 
mass to the thruster; F(t) is the thrust, assumed to lie in the L/r plane; and 
N=rxF is the resultant torque. N2 and N4, corresponding to the forces F(t0 and 
F(t4), are shown relative to Ne, which is the direction of the average torque. The 
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Fig. 7-31. Geometry of Precession Jet Firing. The torque vector, N, is assumed to lie in the spin plane. 

centroid, or time (or equiva\ent angle) at which the instantaneous torque is parallel 
to the average torque, is computed by requiring that the integral of the torque 
component, N J.' perpendicular to Nc vanish: 

0= f N J.(t)dt= rsinO f F(t)sinw(t-'te)dt (7-147a) 

where Co) is the spin rate, 0 is the angle between rand F, and the integral is 
computed over one spin period. The effective torque or impulse, Ie' is then calcu
lated as the time integral of the torque component, Nil' parallel to Ne: 

Ie=-f NII(t)dt= rsinO f F(t)cosCo)(t- te)dt (7-147b) 
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The required integrals can be computed numerically from the thrust profile. If 
a trapezoidal approximation, as shown in Fig. 7-32, is sufficiently accurate, the 
integrals can be performed analytically, with the results that 

(7-148) 

and 

(7-149) 

where 

coswt2-coswtl a= 
w(t2- tl) 

coswts-coswt4 
w(ts - t4) 

. sinwt2 -sinwtl sinwts-sinwt4 b= ---..,.:---:--
w(l2 - t I) w{ls - t4) 

(7-150) 

(Time points are labeled to correspond to Fig. 7-30.) The trapezoid model is 
commonly used for modeling gas-jet thrust profiles at Goddard Space Flight 
Center. 

~ 
a: o ... 

TIME 

Fig. 7-32. Trapezoidal Approximation for Gas Jet Thrust Profile 
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CHAPTERS 

DATA TRANSMISSION AND PREPROCESSING 

8.1 Data Transmission 
Generation of Data and Insert/on into the Telemetry 
Stream. Tracking Stations. Reeel"ing StatiOM. TrQl/Smis
sion from the Receioing Station to Attitruh Determination 
Computers. Transmission of Attitude Results and 
Spacecraft Commmu/s 

8.2 Spac:ecraft TelemetJy 
8.3 TIlDe Tagging 

Spacecraft Cl«k Time Tagging. Ground-Based Time Tag
ging 

8.4 TelemetJy Processors 

This chapter describes the process by which data are transmitted from sensors 
onboard a spacecraft to the point at which these data are used for attitude 
determination by a software system. Section 8.1 provides an overview of the data 
transmission process from the spacecraft to the attitude determination software 
system, and the command transmission process from the ground to the spacecraft. 
Sections 8.2 and 8.3 provide a detailed view of two particular aspects of interest
the content and form of the telemetry data, and the process used to associate a 
time with the telemetered data, or time tagging. Section 8.4 describes the part of an 
attitude software system which transforms telemetry data into engineering data. 

S.l Data Transmission 

James S. Legg, J,. 

In this section we describe methods by which data are obtained and trans
mitted from sensors onboard a spacecraft to a ground data base, or downlinked, 
arid the methods by which commands are transmitted from the ground to the 
spacecraft, or up/inked. We will follow the flow of data from the spacecraft sensors 
to _ the telemetry transmission antenna, from the 'antenna- to a ground tracking 
station, from the trac1ting station to a receiving station (e.g., an Operations Control 
Center at Goddard Space Flight Center), and from the receiving station to a 
telemetry data base accessible to an attitude determination processing computer. 
After data analysis, commands to the spacecraft may be generated, which follow 
the reverse process to the spacecraft. An overview of this two-way transmission of 
spacecraft telemetry data and commands is shown ~n Fig. 8-1 (for additional detail, 
see Gunshol and Chapman [1976D: 

S.l.l Generadon of Data and Insertion Into the Telemetry Stream 

Measurements of many different physical properties are performed automati
cally or on ground command onboard a spacecraft, and the results of these 
measurements are used by other spacecraft components, telemetered to the ground, 
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Fig. 8-\. Telemetry and Command Data Flow Between Spacecraft and Attitude Determination 
Computer 

or tape recorded for later transmission. Two or more of these functions may be 
performed simultaneously. Several types of measurement require analog-to-digital 
conversion (A DC) of the value of a physical quantity before storage or transmis
sion. Analog measurements of voltages are often .dIgitized by measuring the time 
required for a ramp voltage of known slope (i.e., linearly changing with time) to 
equal the voltage being measured. The time required is proportional to the 
measured voltage and is stored in binary form in memory chips in parallel format; 
i.e., each memory chip contains a bit which is either 0 or I. The stored value is later 
transmitted via telemetry in serial format; i.e., the bits are transmitted one at a time, 
usually the most significant bit first. 

Some measurements, such as digital sun sensor data, are intrinsically digital 
and need not be converted before transmission. Such measurements frequently 
occur in a Gray rather than a binary code, as described in Section 6.1. Other types 
of hardware which provide digital data include optical or magnetic shaft encoders, 
gyroscopes, and pendulum dampers. 

A third common measurement is a time interval between events, e.g., the time 
between successive Sun pulses, the time between a slit Sun sensor pulse and 
acquisition of the Earth's horizon by an Earth sensor, or the time between 
acquisition and loss of an Earth presence signal. These measurements are generally 
made by a crystal-controlled oscillator circuit which counts the number of vibra
tions of a piezoelectric crystal between the two events. 

Measur.ements are sampled from sensors in a cyclic order, the sampling rate 
being determined by a spacecraft clock (a crystal oscillator). Sensors often produce 
signals which are not directly suitable for telemetering_ In these cases, the sensor 
output is applied to the input of a signal'conditioner, which adapts the signal to suit 
the input of the telemetry transmission system. This process includes signal 
amplification and, when necessary, analog-to-digital conversion. Sensors typically 
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requiring signal conditioning include thermocouples, strain-gages, variable reluc
tance devices, and small-change variable resistance devices. Sometimes a single 
signal conditioner may be used with more than one sensor, allowing several signals 
to be multiplexed into the same conditioner; i.e., the same signal conditioner is used 
on a timesharing basis. Sensors which do not generally require signal conditioning 
are potentiometer pressure gages, accelerometers, bimetallic thermometers, gyros
copes, displacement gages, and angle-of-attack meters. 

Figure 8-2 summarizes the process of sampling the sensors and inserting the 
sampled data into the telemetry stream together with other information, such as the 
synchronization (sync) pattern. The multiplexer, driven at a rate determined by the 
spacecraft clock, samples various sensors via the signal conditioners. These data are 
fed into the encoder, which generates digital data corresponding to the analog 
output from the multiplexer. The encoder output then goes to the signal mixing 
gates, which transmit one signal at a time, in a time-ordered sequence. The signal 
going to the telemetry transmitter is determined by the mixing gates, based on the 
spacecraft clock. The spacecraft clock supplies time interval information to the 
sync generator, which supplies the sync pattern characteristic of the spacecraft. 
Nonmultiplexed data (such as time history codes, output from an onboard com
puter, and output signals from sensors producing digital data) are interleaved with 
the multiplexed data. The bit rate at which data are transmitted is an integral 
power-or-two multiple or submultiple of the spacecraft clock rate. 
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Fig. 8-2. Transfer of D:aa From Sensors to the Telemetry Stream 
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The signal transmitted from the spacecraft is generally transmitted on a 
frequency modulated (FM) carrier wave ·which is modulated by one or more 
subcarrier oscillators, which are, in turn, frequency modulated by signals contain
ing the information to be transmitted. This type of telemetry signal is referred to as 
FM/FM. There are three basic ways, one digital and two analog, of superimposing 
the ,data pulses on the carrier signal. The most widely used is the digital method of 
pulse code modulation, or PCM, in which the sensor data are transformed to binary 
numbers and transmitted serially. In this case the noise is minimized because the 

. signal consists of only two voltages, corresponding to 1 and 0, each pulse being the 
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same width. When superimposed on an FM/FM signal, the composite is called 
PCM/FM/FM. 

The manner in which the PCM pulses are generated depends on how transi
tions from I to 0 are treated by the transmitter. The three most common methods 
are illustrated in Fig. 8-3. In nonreturn-to-zero level (NRZL), ones have a specific 
assigned voltage and zeros have another. The signal remains constant during the 
entire bit period in both cases. In nonreturn-to-zero mark (NRZM), there are two 
voltage levels, but neither corresponds exclusively to ones or zeros; the voltage 
level changes value whenever a I occurs. Finally, in return-to-zero (RZ), a I is 
represented by a pulse for one-half the bit period and a 0 is represented by no pulse 
at all. . 

DATA STREAM 
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ZERO lEVEl 
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NON RETURN TO { 
ZERO MARK 

INRZM) 
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IRZI 

I ·1 0 I 0 0 0 I I I I 0 0 I 

} 

MAY BE EITHER WAVEFORM. 
DEP£NDING ON THE LAST BIT 
TRANSMITTED PRIOR TO THIS 
TIME INTERVAL 

Fig. 8-3. Waveforms Used in PCM Telemetry Signals 

Two methods of superimposing analog data on the FM carrier wave that do 
not require digitization prior to transmission are pulse amplitude modulation (PAM) 
and pulse duration modulation (PDM). PAM consists of generating a high
frequency signal whose amplitude depends on the value of the data to be trans
mitted. PDM generates a constant frequency signal whose pulsewidth is propor
tional to the value of the transmitted data. The latter method of modulation 
improves the signal-to-noise ratio significantly over the PAM method because 
sharp spikes caused by the multiplexer switching from one sensor to another affect 
the amplitude of the signal but not the width of the transmitted pulses. 

When transmitting telemetry data, it is necessary for the telemetry transmitter 
to identify the data item corresponding to each segment of the bit stream. This is 
done by inserting a synchronization bit string into the telemetry stream on a 
regular basis, usually at the beginning or end of each repeating telemetry (multi
plexer) cycle. This generally corresponds to the beginning or end of a minor or 
major frame of telemetry data (see Section 8.2). As deScribed in Section 8.2, the 
sync pattern is usually 24 bits long and is unique to each satellite. The method of 
selecting the format of the sync bit pattern varies from one spacecraft to another. 
The important feature of all sync patterns is that they be recognizable; i.e., the 
correct position of each bit must be recoverable in the event of an occasional loss 
of one or more bits or the insertion of extraneous bits. This is critical because data 
items can be identified only by their position relative to the sync pattern. There are 
generalized sync patterns which provide optimal correlation properties, and display 
relative immunity to phase displacement by random pulses occurring immediately 
adjacent to the pattern [Stiltz, 1961; Jackson, 1953J. 
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International standards have been adopted regarding transmitting frequencies, 
bandwidth, and other characteristics which are applicable to commercial, scientific, 
and military spacecraft of participating nations. The board responsible for these 
decisions is the Inter-Range Instrumentation Group (lRIG), which annually pub
lishes standards for telemetry designers and users. Samples of such guidelines are 
(Stiltz, 1961): 

The number of bits per frame shall not exceed 2048, including those 
used for frame synchronization. The frame length selected for a particular 
mission shall be kept constant. Word length for a given chaDI,~1 can range 
from 6 to 64 bits but shall be kept constant for a given channel for a 
particular mission .... 

Frames shall be identified by a unique frame synchronization word 
which shall be limited to a maximum length of 33 bits .... 

When the telemetry bit error rate is expected to be greater than I bit in a 
million, NASA usually specifies that parity bits be included in the telemetry 
stream, typically doubling the number of bits to be transmitted but affording an 
opportunity to detect bit errors. This process is called convolutional encoding. A 
convolutional decoder is required at the receiving station to detect and correct 
random bit errors. This reduces the raw bi\ error rate by orders of magnitude and 
effectively increases the signal strength by approximately 6 dB, or a factor of four 
in power. Convolutional encoders have been flown on far-Earth spacecraft such as 
RAE-2 (lunar orbit), IUE, ISEE, and IMP-6, 7, and 8. 

Finally, the type and shape of the transmitting antenna depends on the 
tr;;lnsmitting frequencies desired and the pointing accuracy required. Most 
spacecraft have at least one parabolic or turnstile antenna for transmitting in the 
very high frequency (VHF) range and one for the S-band range. The VHF antenna 
transmits in the 30- to 300-MHz frequency range and is used for transmitting 
telemetry data, for tracking, and for receiving commands. It is generally used 
during both launch and mission modes. The S-band antenna is normally designed 
in a logarithmic spiral configuration, transmits in the 1.55- to 5.2O-GHz range, and 
is used during the mission mode. The bandwidth of an S-band antenna is typically 
subdivided into 13 subbands, each of which conveys information independently; 
thus, a higher data rate can be achieved with S-band than with VHF by sending 
more than one stream of information simultaneously. The subbands are listed in 
Table 8-1, with the letters which characterize them. The letters are used as 

Table 8-1. Subband Frequency Ranges in the Microwave S-Band 

SUB-BAND 
FREQUENCY WAVELENGTH 

IGHz) leM) 
SUB-BAND 

FREQUENCY WAVELENGTH 
IGHZl (CM' 

1.&5-1.65 19.3 - 18.3 2.~-110 '0.3 - 9.67 

1.65- 1.,85 183-16.2 3.10- 3.40 9.67 - 8.32 

1.85- 2.00 16.2 - t!J.D 3.40 - 3.70 8.32 - 8.10 

2.00 - 2.40 16.0- 12.& 3.10- 3.90 8.10- 7.69 

2.40 ... 2.60 ".5 - u.s 3.90 _ 4.20 7.69-1.14 

2.60 - 2.70 11.5 _ 11.1 4.20- 5.20 7.14 - $.77 

2.70- 2.90 11.1 - 10.3 
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subscripts to denote the subband; e.g., a signal at 1.60 GHz is designated Se' Radio 
frequencies have been designated for various uses within the western hemisphere in 
the Radio Regulations of the International Telecommunication Union, which 
meets in Geneva, Switzerland. A sample of these regulations appears in Table 8-2 
for the frequency range 450 MHz to 6.425 GHz, illustrating the proportion of 
allocations devoted to aerospace use [Reference Data for Radio Engineers, 1968]. 

Table 8-2. Designations of Radio Frequencies Between 450 MHz and 6.425 GHz; Aerospace 
Frequencies Are Underlined. (From Reference Datafor RIldio Engineers (1968).) 

MI!GAHI!JnZ • SERVICE "'GAHI!RTZ ""AVICE 

............... PI.ID 

__ 
FIXED 

M081.1 M081U 
--..0 'IXIO _27CIO RADIO ASTRGOIOIIIY 

IlDBlLE 2lUD-2900 ABROlIIAIII'JCAL AADtO NAVIGATlON 
MI'EOROLgu~-8ATELY1! MOJO LOCATION 

4JD.I>.89OJI. - 291D-3'OO RADIO NAYlGATIOIIII ....-.0 I'IXED lGROUNo.8ASlD RADARS • 
RADIO LOCATION RADIO LOCATION .............. 'IXID 

~121S AERONAUTICAL RAOIO NAVIGATION 
t2t15-1300 RADIO LOCATION 

AlIA ...... 
GIGAHERTZ .... VlCE 

t~'350 AERONAUTICAL RADIO NAVIGATION 
RADIO LOCATION 3.t~3.3OD RADIO LOCATION 

t3S0-t4DD AAD10 LOCAnON 3.300-3.400 RADIO LOCATION 
'«10-1427 fWHD ASIRQNOMY AMATeUR 
.G'I-1429 AXED 3.400-3.500 RADIO LOCATION 

IIIOBfLE EXCEPT AERONAUTlCAL . S!!!!BJNICATION-SATEUITE 
ma (SATELLITE TO EARTH) 
nELECOMMANOJ AMATEUR 

1~'cm PIXEO 3.GDO-3.1OD FIXED 
IIDBILE M081U 

'43&-1525 MOBIU RAOJO lOCATIOII 
...... D COMMUN!e:Tl5m-BATEI:~1TE 

l~tl3S ~ fSATELLITE TO EARTH) 
UEUMITERING) ......... .200 PUlED 
FIXED ImBlLE 
MOBILE COMMUNlgnCN-sATEt:LfTE 

1~111O as. (SATELLITE TO EARTH) 
!!E.DII!TEIIING) ............. AERONAUTICAL RADIO NAVIGATIQN 

1840-1_ AERONAUTICAL RADIO NAvtGATION 4.400-4.100 FIXED 

1660-''''. UHTEOROLOGlCAl. AIDS M081LE 
METEOROLOGICAL-5AT£lLITE COMIIUNICATIOlII-5ATELLITE 

1684.4-1GGB.4 IIETIOROLOGICAL AJDS (EARTH TO SATELLITE' 
_TEOROLOGfCAl-sATELbml 4.'fI».:4.990 FIXED 
RADIO ASTRONOMy _.f 

1868.C-tSJD METEOROlOGICAL AfDS 41J9O-.S.aao RADIO ASTRONOII'Y 
MI!TEORO~ICAL-BATEbL!E 1I.OIIO-5.2!IO A!RONAUTlCAl. RADIO NAytGATtOII 

1~1690 MITEOROLOGlCAL AIDS ............. RADIO LOCATtON 
pueEO SPAC! AES!ARCH 
"'U EXCEPT AERONAUTICAL ............... RADJO LOCATION 

tS90-tJDD MITIOROLDGtCAl AJDS -.-.. - AERONAUTICAL RADIO NAVIGATION 
MIn'EOROLQGlCAL-sATELUTE RADIO LOCATION 

1700-1710 SPACE RISI!AACH &.460-&,470 RADIO NAVIGATION 
Il!LEMETERt~ A'!Q TRACKINg, RADIO LOCATION 

171~1no PlXIlD 5.4'1O-6.eso MARITIME RAOIONAYfGATION 
MOBILE RADIO LOCATION 

1770-1'190 'IXID 1.810-6.870 RADIO LOCATION 
ImBlLE AMATEUR 
!!!!!!ORO!tQg!CAl-sATELLITe 1~&.721 RADIO LOCATION ' __ 22110 FIXED AMATE ... 
MOBILE SPAC£ ReS!ARCM 

22110-23110 IO& ..... AC!' 
AND TRACKING IN 5.72I-5.82S RAmO LOCATION 

AMAnUR 23110-_ TlON • .92&-8. ... ,IXID 
AllAn ... MOBI.e 
'IUD CC*UUN1!:!TlON-sAl!Llalii 
MOBILE IEARTH TO SATELLITE) _2I5lIO 
'IXID 
IIDBIUI 

. RADIO LOCATION 

8.1.2 Tracldng Stadons 

Telemetry data from NASA-supported spacecraft are received by a worldwide 
network of tracking stations called the Spaceflight Tracking and Data Network 
(STDN). The northernmost station is located in Fairbanks, Alaska, at 65° North 
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latitude; the southernmost is in Orroral Valley, Australia, at 350 South latitude. 
The locations of fixed STDN stations are given in Fig. 8-4 and detailed locations 
are listed in Table 8-3. In the second column of this table, the abbreviations USB 
and GRARR indicate unified S-band and Ground Range and Range Rate, respec-

161JO 

6IJO~-+--4---~-+--4---~-+--4---~-+--4---~-+--4---~-+--+--4 

." .. : .. 

160" 120" 60" 400 00 400 800 121l" 161JO 

Fig. 11-4. Locations of STDN Stations. (The three-letter station designators are defined in Table 8-3.) 

tively. In addition to the permanent tracking stations, the network includes port
able"land-based stations (vans), a ship (the USNS Vanguard), and several specially 
equipped Advanced Range Instrumented Aircraft (ARIA). Figures 8-5 through 8-8 
show examples of STDN facilities. This network of receiving stations supports 
NASA's Earth-orbiting scientific and applications satellites. interplanetary 
missions, and manned space flight.· 

One of the larger STDN stations is located at Rosman, North Carolina, and is 
shown in Figs. 8-8(a) to 8-8(d). The aerial view in Fig. 8-8(a) shows seven of the 
station's tracking and data acquisition antennas. The largest ones are two 26-m 
telemetry antennas at either end of the large clearing just above the center of the 
photograph. (Closeups are shown in Figs. 8-5 and 8-8(b». In the clearing above 
and to the left of the large antenna in the center are two Satellite Automatic 
Tracking Antennas (SATAN). The two antennas in the clearing in the lower left 
corner of the aerial view are range and range-rate antennas and are shown in Fig. 
8-8(d). Finally, the VHF Satellite Command Antenna on Medium Pedestal 
(SCAMP) antenna of Fig. 8-8(c) is in a small foreground clearing along the 
righthand edge of the aerial view. 

Operational control and scheduling of the network is provided by the Network 
Operations Control Center (NOCC) located at Goddard Space Flight Center (GSFC) 

-The Jet Propulsion lAboratory (JPL) Deep Spoce Network (DSN) handles communications for 
interplanetary missions. Because of the long distances involved, this system uses the 26-m antennas in 
Madrid, Spain, and Goldstone, California. 

;--1 
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Table 8-3. Geodetic ~rdinates of STDN Stations Tracking System, Referenced to Fisher '60' 
Ellipsoid, Semimajor Axis=6378166 m and l/flattening=298.3. (See Appendix L for the 
transformation ·to geocentric coordinates.) System locations are subject to minor changes as 
refinements in positional accuracies are made. 

LATITUD£.' 
HIIGHT 

STATION SYSTEM LONGITum; ~I -ILIJPSOtD 
IMITUISI 

ASCENSlOIIIISLAND l!9!!I .... usa - '/067U.3T" 3A5"4072.57" 1128 

SANTIAGO, CHtlE ~ 9mUSB -33"11!1'113.58 2II9"2O'OU"· >08 
VHF GAARA -_06" 2II9"2O"01.or' 7118 
INTERFEROIft.TIR 

-3JOIIIr58. "" 
289Dl9'SiI.2O'" 894 

8lAMUDA !!!!e! 9mUSB :J3021'l15.OO" _31.94- -33 
FPQ..6AAOAA 32"2O'UII!I- 295oxr41JJtr -35 

GRAND CANARY 9mUSB . 27045"51.8'" J44D21lil.aa- 1111 
ISLAND~ 

ENGINEERING TRAINING 9rr.USB 
_ .. .so-

_'28.:IT - • 
CENTER, MARYLAND I!!£.I 9m usa IEATSJ -",06" 283009"29.2'" • 

INTERFEROMETER 380511'&1.25- 2B3D09'38 71- - • 
GOlDSTONE. 211m USB 35"20"29 ...... 2000r35.Dr 9'9 
CALIFORNIA !!!!!!! 9m USB (ERTS) _'29,60" 243007'37.6- 913 

GUAM !Q!!!!! 9mUS. '3018'38.25" 144044·12.~'' II. 
HAWAII~) 9mUSB 22007'34.48"' 2OC)020'OS 43" 1139 

Fps·16 RADAR 22OD774.3'" 2OD01O'tM.07" 1143 

MADRiD. SPAIN (MAO. 16m USB 4CJD2rt9.61" 35&°49'53.59" 808 

YEARln ISLAND. 9mUSBNO.l 28030"29."'" 2J90tlr23.SS'· -55 
FLOfnDA !!!!y 9m USB NO. 2 :zao3077.9'- 219018'23 e- -56 

OARORAL VALLEY. INTERFEROMETER -35OJ7"32.l!r 1480Sr'S.IS'· 926 
AUSTRALIA !Sm!!I 

QUITO, ECUADOR 1m!!! INTERFEROMETER -GlJD3moo- 28'025'16.'0- 3546 

ROSMAN. 4.3mUSB J5011'O.sr 27700776.9r .'0 
NORTH CAROLINA !!!am VHF GRMR 350' "42.or 2J700726.97" 8'0 

TANANARIYE, MALAGASY 4.JmUSB - 'SOO,'13.87" 47018"11.87" .36B 
REPU8L1C~ VHF GRARR -lSOOt'l8.W' 47018'11.83"' '36B 

INTERFEROMETER -1sc"0cr31,." 47017'59:15" '341 
FPS-16 RAOAR - 'S000"05,1Ir 47018'53,46" .301 

FAIRBANKS. ALASKA 9mUSB 60"118"9.20" 212029'13.39" 338 

~ VHF GRARR 840M'17.W 212029'19.12" 339 
INTERFEROMETER _'39.9'" 21202S'Jl.8!r 282 

WINKFIELD. ENGLAND INTERFEROM£TEA 6'026'.'2" J59018'091T ., 
~ 

1 A MINUS SIGN 1-. INDICATES SOUTH LATITUOE, 

in Greenbelt, Maryland. Selection of which station tracks a given satellite at a 
given time is made by the NOCC based on requests from the Project Operations 
Control Centers (POCC) for unmanned spacecraft, and from the Mission Control 
Center (MCC) at. the Lyndon B. Johnson Space Center (JSC) in Houston, Texas, 
for manned spacecraft. . 

Telemetry data received by STDN stations are either transmitted in near real 
time to GSFC, as discussed in Section 8.1.3, or are recorded on magnetic tapes and 
mailed to the receiving station. Range (position) and range-rate (velocity) data 
from the sp..acecraft are also acquired by radar or laser techniques at the tracking 
stations and relayed for use in orbit determination. Spacecraft command data are 
transmitted to the spacecraft in near real time or stored at the station for later 
transmission. 

Computer facilities are located at each STDN station for processing 
spacecraft-associated data and performing local equipment test and control runc-
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Fig. 8-S. NASA Multiband Telemetry Antenna (260m Diameter) at Rosman, North Carolina 



8.1 DATA TRANSMISSION 287 

Fig. 8-6. USNS Vanguard used for Spacecraft Tracking 

Fig. 8-7. Advanced Range Instrumented Aircraft 

tions. Da~a processing capabilities range from simple h.eader generation to rela
tively sophisticated data compression operations [Scott, 1974J. One of the process
ing functions provided by STDN stations is time tagging, or attaching the Green
wich Mean Time (GMT) to processed data (see Section 8.3). 

It is anticipated that in the future the ground-based communications network 
will be enhanced by satellite relay systems. For example, the Tracking and Data 
Relay Satellite System (TDRSS), scheduled to become operational in 1979, consists 
of two communications satellites in geostationary orbits which can relay telemetry 
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Fig. 8-8(a). NASA Tracking Stations at Rosman, North Carolina. Aerial view of tracking station 
sbowing seven antennas. See text for description. 

data in real-time from other spacecraft which are not within the line of sight of any 
STDN station and which can also relay real-time commands from the tracking 
stations to the spacecraft. The two TDRSS satellites win be approximately 130 deg 
apart, at 41 0 and 171 0 West longitude. The inclination of their orbits win be 
between 2 arid 7 deg. A ground tracking station located within the continental 
United. States (presently planned for White Sands, New Mexico) will remain in 
constant contact with the Tracking and Data Relay Satellites (TDRS) providing 
telecommunication' for orbital tracking data, telemetry data, and, in the case of 
manned spaceflight, voice communication (Fig. 8-9). This network will provide 
coverage of at least 85% of all orbits below 5000 km. For orbits above this altitude, 
the remaining STDN stations will prQvide coverage. To ensure reliability, a 
redundant TDRS win be placed in orbit midway between the two operational 
sat~Jlites and a fourth will be maintained on the ground for rapid replacement 
launch, if required. Redundant antenna systems will also be provided at the 
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Fig. 8-8(b). 26-m trac:king antenna showing 
the two-wheel tracking assembly. 

8-8(c). Satellite Command Antenna on 
Medium Pedestal {SCAMP}. 

Fig. s.:8(d). Range and range rate antennas. 
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14.6 TO 16.25 GHz: PRIMARY 
2200 TO 2300 MHz: TEST 80 SIM 
202fi TO 2120 MH,: nac" 

2200 TO 2300 MHI MULTIPLE ACCESS 
.... ,,--~ 2200 TO 2300 MH,} 

14.6 TO 16.25 GHI SINGLE ACCESS 

EARTH 

"TRACKING. TELEMETRY. AND COMMAND SUBSYSTEM. (TTIoC) 
(PRIMARY DURING LAUNCH PHASE. BACKUP DURING 
OPERATIONAL PHASE) 

8.1 

Fig. 8-9. Tracking and Data Relay Satellite System (fDRSS), Scheduled for Implementation in 1979 

primary STON tracking site. The number of worldwide full-time tracking stations 
will be reduced to approximately five when the TORSS is fully operational. 

Two modes of operation are being considered for the TORSS. The first, 
multiple· access (MA), allows each TORS to transmit telemetry and commands for 
as many as 20 spacecraft simultaneously. The disadvantage of MA is that the 
probability of transmission errors increases for spacecraft with altitudes greater 
thim 5000 km. The single access (SA) method allows ea~h TORS to transmit 
telemetry and commands to only two spacecraft at a time. Its advantage is its 
transmission efficiency for spacecraft with altitudes up to 12,000 km. 

Tracking and data acquisition in the Soviet space program differs in several 
respects from NASA's program; detailed information on the Soviet program is 
both limited and somewhat dated. (See the U.S. Senate Report [1971] for a 
-comprehensive discussion.) Although the United States has developed an extensive 
network of tracking stations in foreign countries, the Soviet Union relies primarily 
on stations within its own territory and on sea-based support. Because of the larger 
land area, stations within the Soviet Union can provide greater contact time than 
could a similar set of stations spread throughout the United States. Soviet re
ferences have been made to tracking stations in the United Arab Republic, Mali, 
Guinea, Cuba, and Chad. 

At least 10 ships have been identified as working for the Soyiet Academy of 
Sciences, the majority of which are involved in some phase of space operations. 
Among the most' advanced of. these are the Kosmona~t· Vladimir Komarov and the 
Akademik Sergey Korolev. The latter is a space satellite control ship which was 
launched in 1971 and is described as the largest scientific research ship in the 
world, 182 m long and displacing 21,250 metric tons. The ships maintain contact 
with the Soviet Union via the Molniya c,?mmunications satellites. 

l: 
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8.1.3 Reteiving Stations 

NASA's STDN tracking stations are linked with each other and with GSFC 
and JSC by the NASA Communications Network (NASCOM). This system provides 
voice, data, teletype, television from selected stations, and other wideband com
munication. The network uses land lines, submarine cables, and microwave links. 
Redundant. geographi~l1y diverse routes are provided so that communication will 
not be lost if a primary route fails. 

NASCOM leases full-time voice circuits (2-kHz bandwidth) to nearly all 
stations and control centers in its network. Most communication is routed through 
the GSFC Switching, Conferencing and Monitoring Arrangement (SCAMA). When 
these circuits are used for data transmission, the data format in Fig. 8-10 is used. 
The length of the data block may be any multiple of 12 bits, but the use of a 

ROUTING 
HEADER 
(48 BITS) 

DATA 
(PREFERRED 

LENGTH IS 
96 12·BIT 
WORDS) 

SYNCHRONIZATION WORD 1 

SYNCHRONIZATION WORD 2 

DESTINATION CODE I SOURCE CODE 

DATA FORMAT I DESTINATION CODE 
CONT'D 

~ 
, 

Nth WORD 

Fig. 8-10. NASCOM High-Speed Data Format 

} 

NORMALLY USED 
FOR 48-BIT 

MESSAGE HEADER 

NORMALLY AN 
ALGEBRAIC CODE 

AND ERROR 
FLAGS 
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1200-bit block is encouraged so that it will be compatible with planned future 
STDN data-handling systems. A 48-bit message header normally follows the first 
48-bit routing header, and the last 24 bits normally include a 22-bit algebraic code 
and 2 bits for nagging detected errors. 

8.1.4~ Transmission From the Receiving Station to Attitude 
Determination Computers 

When telemetry data arrive at the receiving station, whether by NASCOM or 
mailed tapes, they are processed by a control center computer before delivery to an 
attitude determination processing computer. At GSFC, this function is performed 
by an Operations Control Center (OCC) for near-real-time data and/or by the 
Information Processing Division (lPD) for playback (tape recorded) data. 

The processing performed by the OCC is minimal, since it is performed in near 
real time, and consists of stripping out data to be relayed to several destinations, 
one of which is the attitude determination computer. The sync pattern is examined 
and a quality flag is attached to the data, based on the number of incorrect bits in 
the sync pattern (Section 9.1). Sometimes the current GMT is attached to the data 
as well. The current date and the name of the tracking station which received the 
data are also inserted. The data are then transmitted to the attitude determination 
computer via a communication line controlled by a software package called the 
Altitude Data Link (ADL). 

Processing performed by the IPD is more extensive, since the data need not be 
relayed immediately. Data are collected from tracking stations for periods of a day 
or more, and are then time ordered before transmission to the attitude determina
tion computer. Segments of data which were incorrectly time tagged by the 
tracking station are detected and corrected. Other functions performed by the OCC 
are also performed by the IPD. The data are then transmitted to the attitude 
determination computer via a communication line under control of the ADL. 

8.1.5 Transmission of Attitude Results and Spacecraft Commands 

After the attitude determination computer processes the attitude data, it 
generates a definitive attitude history file, which is relayed to the IPD computers 
via the ADL and processed by a software package called the Telemetry On-Line 
Processing System (TELOPS). The data are then available for processing by 
experimenters. (For more detail on TELOPS, IPD, and their role in the data 
transmission process, see Gunshol and Chapman [1976].) 

Commands may be uplinked to the spacecraft based on analysis of data on the 
attitude determination computer. Command requests, in engineering units, may be 
relayed from the attitude computer area to the OCC by voice (telephone lines). 
These requests are translated into coded commands by the OCC and transmitted to 
the tracking station via NASCOM. The tracking station then stores the command 
for later transmission or relays it to the spacecraft immediately in near real time. 
Sometimes the relayed commands are stored in a computer onboard the spacecraft 
for later execution. These are referred to as delayed commands. 
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8.2 Spacecraft Telemetry 

Janet Niblack 

Telemetry is a sequence of measurements being transmitted from one location 
to another.· The data are usually a continuous stream of binary digits (or pulses 
representing them). A single stream of digits is normally used for the transmission 
of many different measurements. One way of doing this is to sequentially sample 
various data sources in a repetitive manner. This process is called commutation, and 
the device which accomplishes the sequential switching is a commutator. The 
commutator may be either a mechanical or electronic device or a program in an· 
onboard computer. 

A minor frame of telemetry data contains measurements resulting from one 
complete cycle of the main commutator. Each frame consists of a fixed number of 
bit segments called telemetry words. Each word in a frame is a commutator channel. 
If the telemetry word contained in a main commutator channel is supplied by 
another commutator (called a subcommutator), data appearing in that channel are 
said to be subcommutated. If a single data source is sampled more than once within 
a minor frame, the data item is said to be supercommutated. The le~el of commuta
tion for a particular data item determines the relative frequency at which it is 
transmitted .. Whether a data item should be commutated, subcommutated, or 
supercommutated depends on how the measurement will be used and at what rate 
the value will change. 

A major frame (sometimes called a muster frame) contains the minimum 
number of minor frames required to obtain one complete cycle of all subcom
mutators, or an integral multiple of this number. (8:!Cause fiot all spacecraft 
telemetry systems use subcommutators, the major frame concept is not always 
relevant.) A minor frame counter or minor frame ID is often telemetered to identify 
the position of a minor frame within a major frame. This counter is particularly 
useful when minor frames are lost in transmission, since minor frame location 
determines what type of data a subcommutator channel will contain. Figure 8-]] 
shows a simple eight-channel main commutator with two subcommutators. Table 
8-4 gives the sequence of telemetry words which would be generated by this 
commutator for one major frame. Note that the relative frequency at which a 
subcommutated data item appears depends on the number of channels in the 
subcom·mutator. 

Because commutation involves time-dependent functions, some method of 
establishing and maintaining exact sychronization of data sampling is necessary. 
Spacecraft clocks provide the signals for synchronization. A frame synchronization 
signal, described in Section 8;), is a series of pulses which marks the start of a 
minor frame period. These pulses are transmitted as part of each main commutator 
cycle and are used in identifying individual frames when the data are received on 
the ground. 

The assignment of specific data items to commutator and subcommutator 
channels defines the telemetry format. Commutator or subcominutator channels are 
allocated to experimental data, to attitude determination and control data, and to 

• For an extended discussion of spacecraft telemetry, see Stiltz (1961). 
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Fig. 8-11. Levels of Commutation. See text for description. 

Table 8-4. Contents of a Typical Major Frame of Telemetry Data. Major frame words 2 and 7 are 
subcommutateci Words 4 and 8 are supercommutated. 

~ I 2 3 • & • 7 • 
fRAMl! 

.......... A 

1 'RAMI! _L 'RAMI! STAR EXPEAlMENT EXPEAlM£NT X UAGNETOMETER STAR 
SYNC SPEED ID ASfI!CT tDATA 2 PAT" DATA ASPECT 

2 ......... DAIIP£R 'RAMI! STAR EXPERIMENT EXPERIMENT Y MAGNETOMETER STAR 
SYNC ANGUI ID Alil'l!CT tDATA JDAlA DATA ASfI!CT 

3 'RAIII! TlMI! .- STAR ExPERIUlNT EXPERIM'NT Z MAGftETOYETER STAR 
. SYNC • CllUNTEA ID ASnCT tDATA 2 OAT" DATA ASfI!CT 

• 1'RAMI! SUN 'A_ srAR ExPERIMEHT EXPERIMENT Z COIL DATA STAR 
SYNC PITCH ID ASPECT tDATA :I DATA ASPECT 

• 'RAMI! SUN ROLL .. - STAR ExPERIMENT EXPERIMENT x MAGNETOMETER STAR 
SYNC ID ASfI!CT lDATA lDAIA DATA ASPECT 

8 'RAMI! COMMAND .- STAA EXPERIME'" ExPERIMENT Y MAGNETOMETER STAR 
SYNC STATUS ID ASfI!CT 1 QATA 2DAJA DATA ASPECT 

1 'AAIIE COMMAND ,- STAR EXPERIMENT EXPERIMENT Z MAGNETOMETER STAA 
SYNC VEAIl'ICA- ID ASfECT tDATA :lDAT" DATA ASPECT 

T_ 

a 'RAMI! SPARE .- STAR EXPERiMENT EXPERIMENT ZCO.LDAlA STAR 
SYNC ID ASPECT 1 DATA 2 DATA ASfECT 
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general spacecraft maintenance (or housekeeping) data. A telemetry system may 
have either a fixed format or several formats which correspond to various operating 
modes. For example, immediately following launch, attitude data, power supply 
data, and other data related to the "health" of the spacecraft are needed at a high 
frequency. Later, these items can be telemetered at a reduced rate and the amount 
of experimental data can be increased. Failure conditions, such as an undervoltage 
condition, may cause resumption of a launch-type format. 

All spacecraft telemetry systems have one or. more telemetry formats estab
lished before launch. However, it is often difficult to predict which data items will 
be the most useful. Telemetry systems with programmable formals allow the formats 
to be changed by remote command during flight. For example, in the SAS-3 
telemetry system, several telemetry formats were defined at the time of launch. 
Within a year, due to the permanent failure of several spacecraft instruments, use 
of any of these formats resulted in the transmission of a significant amount of 
useless data. Two new formats were added (by remote command) to allow 
additional magnetometer and experimental data to be telemetered in place of the 
useless data. 

Digital Codes. Although a measurement is telemetered as a series of binary 
digits, the value of this measurement need not be represented in the natural binary 
code. Although the binary code is frequently used, other d&gital codes are more 
convenient and reliable for certain applications. One of the problems with the 
natural binary code is that a change of one unit may require a change in several 
binary digits (e.g., 12710= 01111111 2 to 128'0 = lOOOOOOOJ. Thus, if the value is 
sampled when the bits are changing, it is possible for a gross error to occur. To 
circumvent this problem, codes have been developed in which only one bit changes 
per unit change in value. The Gray code, also called th:: reflected binary code, is the 
most widely used code of this type and is described in Sections 6.1 and 8.4. 

Binary codes in which a I represents the presence of a pulse and a 0 represents 
the absence can be generated using simple hardware circuitry. However, errors in 
such a code arising from minor imperfections in the telemetry system, such as 
transmission noise or the momentary failure of a relay contact are common. To 
increase data . reliability, error-checking codes are used, the simplest type being a 
parity code. In parity codes, one bit is added to the original code and the extra bit is 
set so that the number of bits with value one is always even (even parity) or odd 
(odd parity). The addition of parity bits to a natural binary code .is shown in Table 
8-5. With a single parity bit, it is possible to detect bit errors, but not to determine 
which bit is in error. 

Table 8-5. Even and Odd Parity Codes 

EVEN PARITY ODD PARITY EVENPARrrY ODOPARITV 
DECIMAL DECIMAL 
NUMBER 

BINARY PARITY BINARY PARITY NUMBER BINARY PARITY BINARY PARITY 
NUMBER BIT NUMBER BIT NUMBEFl BIT NUMBER BIT 

0 0000 0 0000 1 • 0101 • 0101 1 

I 0001 1 000. 0 • 0110 0 0110 I 

7 00'0 • 001 • 0 7 0111 • 0111 0 

3 oon 0 0011 • B 'oro • 1000 0 

4 0.00 • 0100 0 • '00' 0 1001 I 
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More intricate codes have been designed which not only detect bit errors but 
also correct them. An example of a simple error-correcting code is an/ 8-bit 
Hamming code which consists of 4 message bits and 4 parity bits. This code is 
capable of correcting an error in anyone bit and detecting errors in any two bits. 
We define the Hamming matrix, H, as 

H=[~ 
0 0 0 I I I 

! 1 
0 I I 0 0 I (8-1) 
I 0 I 0 I 0 
I 1 I I I I 

Note that the first three entries of each column form the binary numbers 0 to 7. 
The mes.sage row vector, M, is defined as 

(8-2) 

where a, b, c, and d are the 4 message bits and the p's are parity bits to be defined. 
A received message vector is tested by forming the syndrome vector, S, defined by 

S=HMT = (S"S2,S3,S4)T (8-3) 

To code a message, we set the parity bits such that S is identically 0 (mod 2); 
that is 

P4+ b + c + d =0 
P3+ a + c + d=0 
P2+ a + b + d =0 

P,+P2+P3+ a +P4+ b + c + d =0 

(The parity bits are located as indicated in Eq. (8-2) so that only one new parity bit 
is inv~lved in each component of Eq. (8-4) and the message is easy to code.) When 
a message vector is received, the syndrome vector is calculated. If S = 0, we assume 
that no error occurred. If S4 = I, we assume that a single error occurred and the 
binary number SIS2S3 gives the number of the component of M which is in error. 
If S4 = 0 and one or more of the other syndrome bits is I, then two bits of Mare 
incorrect, and the error is detectable but uncorrectable. It is possible for errors in 
more than two bits to be undetected or incorrectly corrected. 

To illustrate the above Hamming code, assume that we wish to send the 
message 1100. From Eq. (8-4) we choose the parity bits such that the 8-component 
message vector is 00111100. If an error occurs in bit 5 (counting the left-most as bit 
0), then the received message is 00111000. The syndrome of the received message is 
1011. Because S4= I, we assume there is a single error in bit 101 =5 and the 
correded message vector is 00111100, from which we extract our original message 
(1100) from bits 3, 5, 6, and 7. 

If the probability of an error in any bit is 1%, then the probability of at least 
one error in a 4-bit message is approximately 4%. If a single parity bit is added, 
errors will occur in approximately 5% of the messages, which must then be 
discarded, and undetected errors in two message bits will occur in approximately 
0.25% of the messages. If the 8-component Hamming code is used, errors in one bit 
which are then corrected will occur in approximately 8% of the messages. Errors in 
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two of the message bits for which M must be discarded will occur in approximately 
0.64% of the messages, and undetected errors in three or more bits will occur in 
approximately 0.05% of the messages. Thus, even simple error-correcting codes 
improve the amount of information correctly transmitted and reduce the probabil
ity of undetected errors. 

Error-checking and self-correcting codes can be costly in terms of the number 
of bits required. Therefore, their use is justified only when the possibility of error is 
large. Because errors increase with transmission distance, these additional bits are 
frequently used for lunar and interplanetary missions. For an extended discussion 
of error-correcting codes. see Peterson and Weldon [1972J or Ryder [1%7J. 

Often the natural binary code is used to represent a particular range of 
positive values, with a sign bit provided to allow representation of negative 
numbers. Normally, the sign bit is set to 0 for the positive values, although 
occasionally I is used. In either case, a negative number can be represented in 
natural binary or as either the one's or two's complement of the corresponding 
positive number. The one's complement is obtained by inverting every bit, i.e., 
changing each original 0 to I and each original 1 to O. The two's complement is 
obtained by inverting every bit and adding 1 to the result. Computers often use the 
two's complement form for negative numbers because, with fixed-length arithmetic 
of n bits. the two's complement of x is 2" - x. Thus, the two's complement behayes 
much like the negative of the number; for example, the sum of a. binary number 
and its two's complement is zero. Table 8-6 shows four methods of representing 
positive and negative binary numbers, using four bits. Note than when two's 
complement is used, only one representation of zero is possible, and the largest 
magnitude of a negative number is one greater than the largest positive value. 

A major factor in the choice of a digital code is whether the sensor is digital or 
analog. Using a code such as those previously described, digital sensors generate 

Table 8-6. Alternative Representations of Positive and Negative Binary Numbers 

DECIMAL ONE'S COMPLEMENT TWO'S COMPLEMENT ONE·S COMPLEMENT NATURAL BINARY 
EQUIVALENT SIGN 81T ·0 FOR ... SIGN SIT· 0 FOR. SIGN SIT. 1 FOA +- SIGN BIT· 0 I=OA • 

7 0111 0111 ,," 0111 

6 0110 0110 1110 0110 

5 0101 oloi 1101 0101 

4 0100 0100 1100 0100 

3 0011 0011 1011 0011 

2 0010 0010 1010 0010 

I 0001 0001 1001 0001 

0 0000 0000 1000 0000 

-(I 1111 - 0'" 1000 

-I "'0 1111 OttO 100' 

-2 1101 1110 0101 1010 

-3 1100 110. 0100 lOll 

-4 lOll 1100 0011 1100 

-5 1010 1011 0010 1101 

-6 1001 10tO 0001 "'0 
-7 1000 1001 ooob ",, 
~ - 1000 - -
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binary digits which can be inserted directly into the telemetry stream. As an 
example, sensors which measure position often generate Gray-coded output by 
using a pattern of conducting and nonconducting surfaces with contacting brushes 
or, as in the case of the digital Sun sensor described in Section 6.1, a patterned 
mask or reticle and photocells. 

Analog sensors generate signals which vary continuously with the magnitude 
of the measured quantity. For telemetering, output from analog sensors must be 
converted from an analog to a digital form. This is accomplished by an analog-to
digital converter (ADC), sometimes simply called an encoder. The ADC generates a 
series of bits describing the magnitude of the analog sample being encoded. The 
format of the bits is determined by the characteristics of the ADC. Generally, an 
ADC generates one of the four signed binary codes shown in Table 8-6. 

8.3 TIme Tagging 
James S. Legs:. Jr. 

Telemetry data transmitted from a spacecraft generally have little significance 
without knowledge of when the data were measured. Slowly varying quantities, 
such as information describing the mode of operation of the spacecraft or the 
telemetry format, do not need to be accurately time tagged; however, most attitude 
data change continuously with time as the spacecraft position and attitude change. 
Consequently it is important to accurately correlate telemetry data items with the 
time at which they entered the telemetry stream, i.e., the time at which they were 
transmitted in the case of real-time data, or the time at which they were record'ed 
onboard the spacecraft for tape recorded playback data. Two methods of providing 
.accurate timing are used: (1) "clocks" onboard the spacecraft, and (2) time tagging 
at a tracking or a receiving station. 

8.3.1 Spacecraft Oock TIme Tagging 

Spacecraft clocks measure time intervals, rather than absolute time. They 
nl)rmally consist of a piezoelectric crystal to which a known voltage is applied, 
causing oscillation at a constant frequency. Electronic circuits count the number of 
oscillations between two events and, hence, the elapsed time between them. In this 
sense, the crystal and its associated circuitry constitute a "clock." These 
mechanisms are used both to measure time intervals and to control the timing of 
spacecraft events. By using divider circuits, the effective output frequency of the 
oscillator can be decreased by successive factors of two to drive electronic com
ponents at lower frequencies. For example, this output is normally used to 
determine the rate at which telemetry data are sampled and transmitted. The 
spacecraft clock is generally activated shortly before launch and continues running 
indefinitely thereafter. Typically once per major or minor frame of telemetry data, 
the count of the clock is transmitted. After a time on Earth· has been associated 
with a spacecraft clock count; data received at other times can be correlated with 
Earth time by using the current spacecraft clock count and the known clock update 
frequency. 

-Times attached on Earth are Coordinated Unioersal nme, or UTC, as broadcast by radio time stations. 
This is also referred to as Greenwhich Meon nme (GMT) or Zulu (Z). See Appendix J. 
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Crystal oscillator frequencies drift due to aging and environmental effects such 
as temperature; for example, spacecraft clocks often run slightly faster when in 
sunlight than in shadow. To minimize such effects, the crystal is cut along a 
particular crystallographic axis and heaters stabilize .its temperature. Other effects, 
such as magnetic fields and relativistic effects, are negligible for most applications. 
Spacecraft clocks are typically stable to I part in IOJO per orbit [Fang, 1975]. The 
count of the spacecraft clock can be altered by several occurrences, depending on 
the clock. The SEASA T clock can be reset to zero and the oscillator l!.djusted to 
meet and maintain synchronization with GMT to within 100 p.sec. 

The register onboard ·the spacecraft which contains the clock count generally 
contains enough bits to allow the clock to run from several days to a year before it 
returns to zero, or rolls over. If the clock counts are in milliseconds, this requires 36 
bits. The SEASAT clock contains 40 bits, providing time steps of 30 p.sec. 

The count of the clock read into telemetry obviously gives only one time
usually the time of the beginning of a minor frame of data. If more accurate timing 
is required, ground software can use subblock time tagging to account for the time 
interval between the beginning of the minor frame and the time the critical data 
item was measured within the minor frame. This is often unnecessary for attitude 
data because times accurate to the nearest second are generally adequate. 

Both systematic and nonsystematic errors occur in the spacecraft clock read-· 
ing. Systematic errors are caused by clock rollover or resetting. Nonsystematic 
errors, such as noise in the telemetry signal, can cause one or more bits in the clock 
count to be received incorrectly by a tracking station. In this case, ·randomly 
distributed times in the telemetry stream assume random values. This can generally 
be detected and corrected by ground software, as described in Section 9.1. 

8.3.2 Ground-Based Time Tagging 
Data received at ground tracking stations can be tagged with the local 

Greenwich Mean Time (GMT) at the time they are received by the station, or (for 
NASA-supported spacecraft) they can be transmitted in near real-time to an 
Operations Control Center (OCC) at Goddard Space Flight Center in Greenbelt, 
Maryland, where they are time tagged when they are received. In either case, the 
attached GMT consists of milliseconds of year at the time the data were received, 
or day of year and milliseconds of day. When the Information Processing Division 
(IPD) (see Section 8.1) at Goddard Space Flight Center processes data, the time 
tag always consists of day of year and milliseconds of day. Tune tagging to this 
accuracy is made feasible by the Long Range Navigation-C (Loran-C) timing 
network supported by the u.s. Coast Guard, the National Bureau of Standards, 
and the U.S. Naval Observatory in Washington, D.C. Coarse clock synchronization 
(± I sec) is accomplished via frequency and time signals transmitted by radio 
stations WWV and WWVH by the National Bureau of Standards, and fine 
synchronization is accomplished via signals transmitted by the U.S. Naval Obser
vatory over the Loran-C network. These signals provide timing accuracy to 25 JLsec, 
although improvement to ±2.5 JJ.sec is anticipated in the late 1970s. 

The Loran-C network is important for spacecraft because it is the primary 
source of timekeeping for all of the Spaceflight Tracking and Data Network 
(STDN) tracking stations. In addition to STDN time tagging, Loran-C is used for 
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navigation and aviation (its primary function), precise timing and frequency 
standards for industrial purposes such as crystal manufacturing, network synch
ronization for power companies, and scientific measurements such as very long 
baseline interferometry, pulsar frequencies, and Lunar laser ranging. Eight stations 
located around the world, called master stations, receive extremely accurate 100-
kHz timing signals from the U.S. Naval Observatory. Each of the master stations 
then transmits a loo-kHz signal to two or more Loran-C slave stations. Each master 
and slave group is called a chain. The eight chains in use as of 1972 are shown in 
Fig. 8-12 [Hefley, 1972}. The master station, M, in each chain transmits a group of 
eight pulses separated by I msec, followed by a 2-msec delay and a ninth pulse. 
the ninth pulse distinguishes the signal transmitted by the master station from 
those of the slaves (denoted X, Y, and Z, or W, X, Y, and Z) which contain only 
the initial eight pulses. 

Fig. 8-12. Worldwide Loran-C Chains as of 1972 

When a slave station receives the wave train from the master station, it delays 
a preset time interval and transmits an eight-pulse signal similar to that received 
from the master. The preset delay is generated by on-site atomic clocks. 

A STDN tracking station receiving the pulse train from either a master or a 
slave station can determine time and time intervals to an accuracy of approxi
mately 25 p,sec. The pulse trains transmitted by master and slave stations are shown 
in Fig. 8-13. The slave station delay times are such that a receiver within direct 
radio distance will always receive all of the slave transmissions before the next 
master transmission, and will receive slave transmissions in the same order: W first, 
followed byX, Y, and Z. Because the geocentric coordinates of the master or slave 
station being received are known, the time delay from the transmitter to the 
receiver can be calculated. 

Some timing errors are computed by the receiving station and corrected for 
when the data are not processed in near real time. These include known errors in 
the daily timing signals transmitted by the U.S. Naval Observatory, the propaga
tion delay between the master or slave transmitter and the tracking station receiver, 
the time delay within the receiver electronics, and (when appropriate) the delay 
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time within the slave station. When data are processed in near real time, th~e 
errors are ignored. When portable STDN stations are out of range of direct master 
or slave signals, delayed signals reflected off the Earth's ionosphere are used. These 
reflections, called skywaves, are less reliable because their arrival time depends on 
local atmospheric conditions between the transmitter and the receiver. The pulsed 
transmission described above facilitates distinguishing between direct signals and 
skywaves, which typically lag direct signals by 30 to 40 JLsec. Loop antennas are 
used at STDN receivers to directionalize reception; therefore, signals from only 
one Loran-C station are received at a time.· 

Time tagging errors other than those in the timing scheme itself include (I) 
propagation time from the spacecraft to the tracking station, (2) electronic hard
ware and software delays during the time-tagging process, (3) uncertainties in the 
position of the spacecraft, and (4) uncertainties in the position of the tracking 
station. These errors are typically small compared with the timing accuracies 
required by attitude determination and control software and are usually neglected. 
Their magnitudes are on the order of milliseconds. (The propagation delay from 
the Moon is -1.3 sec.) 

When required, all NASA STDN tracking stations can also employ a cesium 
beam frequency standard as the primary source for time and time interval meas
urements, with rubidium atomic frequency. standards as a first backup. At some 
tracking stations, a highly stable oven-controlled quartz crystal frequency standard 
provides a secondary backup. All stations provide automatic switchover from 
primary to secondary timing source in the event of low signal amplitude from the 
primary source. Secondary timing sources are phase-locked to the primary. 
eliminating frequency and time jumps during switchover [Scott, 1974). 

For precise attitude determination and experimental data processing, the 
actual time of measurement of each data type is determined from the time tag. In 
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ihis determination, considerations are made for time delays caused by pulse 
shaping within the electronics, the location of the data within the minor frame, the 
time delay between the time the sensor measurement was made and the time the 
sensor was sampled, ar.d so forth (see Section 8.1). 

TIme Tagging of Near-Real-TIme Data. Data received from the spacecraft in 
near real time and transmitted from the tracking station to a receiving station via 
NASCOM (Section 8.1) are usually time tagged by the tracking station, but can be 
tagged by the receiving station. In either case, the process is as described above. 
Attitude determination software'must handle random erroneous times in this case, 
since the tracking or receiving station software does not have time to detect and 
correct incorrect times. Limit checks on the times are typically sufficient. 

Time Tagging of Playback Data. When a spacecraft does not have con
tinuoustracking station coverage, which is generally the case for low-Earth orbits, 
and continuous attitude information is required, the data are stored on tape 
recorders onboard the spacecraft and played back while over a tracking station. 
Time tagging of data in this case is done either by the tracking station or the 
receiving station at Goddard Space Flight Center and is generally accomplished by 
correlating playback data with near-real-time data. During the period of the orbit 
when a tracking station is not available, all data are recorded for later playback. 
When a tracking station is available, the tape recorder continues recording, and 
telemetry data are simultaneously transmitted to the ground in real time. This 
continues for a fraction of the station pass, after which real-time data are neit~er 
transmitted nor recorded, unless there is a second tape recorder available. The 
recorded data are dumped, or played back at high speed (usually a, factor of at least 

. five faster than they were recorded), and are transmitted to the ground. After the 
recorder has been dumped, it resumes recording and the process is subsequently 
repeated. 

The tracking or receiving station time tags the tape recorded data by searching 
for the data segment which was recorded simultaneously with the transmitted 
real-time data. After a match or correlation is found, the data segment can be 
tagged with ground time, since the real-time data were tagged with ground time as 
they were received. Once this segment of recorded data has been tagged with 
ground time, the rest of the recorded data can be tagged by working backward 
from the known segment. Periods of missing data, or data dropout, can be detected 
by examining the spacecraft clock count in the recorded data. This process will be 
illustrated by the time tagging scheme used for the RAE-2 spacecraft. 

The Radio Astronomy Explorer-2 (RAE-2) spacecraft is in a lunar orbit. It is 
unable to transmit data while on the far side of the Moon, so it contains two tape 
recorders to record and then transmit data when the spacecraft is in view of 
tracking stations. The spacecraft clock count register is updated by one count every 
20 minutes, and is read into the telemetry stream during 1 of 10 calibration frames 
occurring at 20-minute intervals along with other spacecraft housekeeping informa
tion, such as battery temperatures. The sequence of events during transmission to 
tracking stations is depicted in Fig. 8-14. When acquisition of signal at a tracking 
station occurs, the tape recorder in use continues to record data while the station 
receives real-time data. When a calibration sequence is received, a command is 

1 

1 
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transmitted to the spac~aft which causes (I) the tape recorder to begin dumping 
its recorded data, (~) the other tape recorder to begin. recording data, and (3) 
real-time data transmission to cease. The tape recorder dump requires 45 minutes, 
after which tape recording and real-time transmission resume. A ground command 
then turns the tape recorder off again, while real-time transmission continues until 
loss of signal [Grant and O>mberiate 1913; Ferris, 1913]. 

TAPE RECORDER 2 

REAlTIME TRANSMISSION 

_ RECORD OATA-

_ TRANSMIT REAl·TfUE DATA 

TIME 

1 
I 
I 
I 
I 
I 
I 
I 
k 
I 
" 

4SMINUUS 

" 

TRANSMISSION PE RIOO I> 2 HOURS! 

I 
I 
I 
I 
I 
I 

0\ 
I 
's 

'" ACQUISITION OF SIGNAL BY TRACkiNG STATIONS '4: GROUND COMMAND TURNS OFF TAPE RECORDER 1 

? FIRST CALIBRATION FRAMES RECEIVED IN REAl-TIME TRANSMISSION '5' LOSS OF SIGNAL BY TRACKING STATIONS 

'3' TAPE RECORDER' COMPLETES DUMP AND RESUMES RECORDING 

Fig. 8-14. Sequence of Events During Transmission of Data From RAE-2 to Ground Tracking 
Stations 

The data are dumped at a rate five times the recording speed, so that data 
from the 225-minute orbit can be dumped in 45 minutes. For this reason, the 
process is used even when continual station coverage is available. The data segment 
recorded between times I. and 12 in Fig. 8-14 is matched with the real-time segment 
received and time tagged during the same interval. The rest of the recorded data 
are then time tagged based on the tags during this segment and the values of the 
spacecraft clock contained in the remainder of the recorded data. During the next 
data transmission, the roles of the tape recorders are reversed. 

Data Processing at the Receiving .Station. Data are processed by the IPO at 
Goddard Space Flight Center at two major levels. The first consists of analysis by 
the inpul processing computer, which includes calculations to account for short-term 
(one-orbit) drift in the spacecraft clock; this step produces attached times of 
sufficient aq:uracy for rough calculations. The second step consists of analysis by 
the intermediate processing computer. During this process, calculations include the 
change in orbital position during the tracking station pass and the corresponding 
time-dependent spacecraft-to-Earth transmission delay, the tracking station
dependent hardware delay time (measured onsite at each tracking station), and. the 
long-term (several orbits) drift in the spacecraft clock. Data are then processed by 
IPD software to validate the attached times. Incorrectly time-tagged data are 
detected and corrected. Time-tagged data from the IPD are hence more reliable 
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than near-real-time data from the Multisatellite Operations Control Center. Time
ordered data are then transmitted to an attitude determination computer via a 
communication data link or on magnetic tape. 

Summary. Attitude-related data are typically time tagged to the nearest 
millisecond, though timing capabilities exist at NASA STDN tracking and receiv
ing stations to 25 p.sec, with accuracies of ± 2.5 p.sec expected by 1980. Time tags in 
definitive data are processed by the I PO, and incorrect tags are detected and 
corrected. Near-real-time data are time tagged by tracking· stations or by the 
receiving station, and tagging errors are detected and corrected by attitude de
termination software. 

8.4 Telemetry Processors 

James S. Legg, Jr. 

After telemetry data have been received by an attitude determination com
puter as described in Section 8.1, they are analyzed by an attitude determination 
software system. The first subsystem involved in this procedure is the telemetry 
processor. The functions performed by telemetry processors vary from mission to 
mission, but routinely include the following: 

I. Reading telemetry records from a permanent telemetry disk data set or 
from a telemetry tape 

2. Unpacking selected data items, i.e .. placing telemetered values into arrays 
in core 

3. Converting the data to engineering units 
4. Validating the data (see Section 9.1) 
5. Correcting invalid data 
6. Time-checking the attached times and/or spacecraft clock count (see 

Section 9.1) and 
7. Generating segments of valid data, usually corresponding to minor or 

major frames of telemetry data 
Functions I, 2. and 7 are always performed; functions 3, 4, 5, and 6 are generally 
available. and are performed as necessary. 

Reading and Unpacking T~lemetry Data. Data are read and processed from 
the telemetry data set one record at a time; a record may contain several major 
frames of data (GEOS-3 records contain 3 major· frames), or may contain only a 
portion of a major frame (SAS-3 records contain 8 minor frames; 32 records are 
required to complete a major frame of 256 minor frames). After each telemetry 
record is read into core, selected data items are extracted and placed into arrays for 
subsequent processing. Sometimes this process requires extracting and examining 
the values of one or more data items before the extraction of other items; e.g., a 
flag in the data may indicate which of several formats the data appear in, and the 
location of other data items within the record depends on this format. The method 
of reading data records depends on whether they are being read singly in near real 
time or in large groups in the batch processing mode. In the near-real-time mode, 
data from the spacecraft are received by a tracking station as they are being 
measured and transmitted. The data are relayed immediately to ~ receiving station 
and made available to attitude determination software on an as-available basis. 
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This means that the amount of data available for processing increases steadily with 
lime, record by record. The telemetry processor must read each new record, 
process the data, pass control to the attitude determination system for further 
processing, and upon receiving control again, read the next record and repeat the 
process. If the read attempt occurs before the next record is received. an end-of-file 
condition occurs. When this happens, the telemetry processor generally waits a 
brief interval (typically -I sec). and attempts to read the record again. If the 
record is still not available. the process is repeated until a specified limit on the 
number of attempts is reached. at which time the telemetry processor displays an 
appropriate message and waits for operator aCfion. 

In the batch processing mode, all data to be processed have already been 
received. The telemetry processor can read all the data desired. process them. and 
pass all results to the attitude determination system at one time. The amount of 
data to be read and processed is limited only by the size of the arrays to be filled or 
by the amount of telemetry data available. 

Preread or quicklook features are often provided in the batch processing mode 
to read and unpack selected data items for display purposes for rapid determina
tion of whether the data are suitable for processing. Several types of data items are 
examined in such a mode; an example of a quick look display for SAS-3 is shown in 
Fig. 8-15, in which data are normalized to arbitrary units for common display. In 
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the figure, a bad GMT attached time occurred at record number 300 and an 
out-of-sequence minor frame number occurred at approximately record number 
660. A spurious event apparently happened at these times, because the oce 
attached quality flag is also bad for these two records. The telemetry format 
changed at approximately record 425. Record dropout occurred at approximately 
record 160. 

Converting Telemetry Data. Data items telemetered to the ground or at
tached by ground software frequently require conversion to engineering units prior 
to processing by attitude determination software. For example, the time attached to 
the data samples frequently consists of milliseconds of year, or day of year and 
milliseconds of day, both of which are typically converted to seconds since 0 hour 
UT Sept. I, 1957.· (See Section 1.4.) A second type of conversion is required when 
the bits representing the magnitude of a data item are inverted when the number is 
negative. This is frequently the case, for example, with magnetometer or other 
analog data. In this case, the first bit in the data represents its polarity, and is often 
assigned a value (0 for negative and 1 for positive) opposite to the sign convention 
on standard computers. The sign bit must be extracted and examined; if it implies 
a negative number, the remaining bits must be inverted and a negative sign inserted 
which the processing computer will recognize (see Section 8.2). 

A third example of conversion is the application of a linear multiplicative scale 
factor, or an additive constant, to telemetered values. In this case the converted 
value, y, is related to the telemetered value, x, by 

y=ax+b (8-5) 

where the constants a and b are based on measurements performed prior to launch. 
If the relation between the telemetered value and the converted value is 

nonlinear, some form of table lookup may be required. Examples of this type of 
conversion include infrared scanner pitch angle data, solar panel position data, and 
damper angle data for SAS-3 and Sun angle data for the SMSjGOES series.t One 
common nonlinear relation is the conversion of a Gray code (see Section 6.1) to 
engineering units. Telemetry processors convert from Gray to binary code, and 
telemetry data simulators convert from binary to Gray code; algorithms for both 
processes are presented below. 

To convert from Gray to binary code: 
I. Invert the left-most bit or retain it as is, depending on the sensor. 
2~ Invert the next bit to the right if the left-most bit is now a I. 
3. Treat the remaining bits in a similar lert-to-right pairwise manner, invert

ing each new bit if the preceding bit is now a I. 
To convert from binary to Gray code: 
I. Perform a logicalshift to the right on the binary bit string (i.e., delete the 

right-most bit, ,move each of the remaining bits one place to the right, and insert a 
o as the new left-most bit: 11101011 becomes 01110101). 

2. Perform an exclusive or of the resulting bit string with the original binary 

• These conversions are performed by subroutines TCON40 and TCON20. See Section 20.3.2. 
t See Section 22.1 for a discussion of linear and nonlinear calibration. 
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number. The result of the exclusive or operation is the Gray-coded representation 
of the original binary number. 

These conversions are illustrated in Fig. 8-16 (see also Section 6.1). 
Values obtained from the above conversions may require further conversion 

before they are suitable for processing by attitude determination software. For 
example, data obtained from Sun or magnetometer sensors may need to be 
transformed by a suitable Euler transformation from sensor coordinates to 
spacecraft body coordinates. (See, for example, Section 7.1.) As another example, 
Sun sensor data after being converted from Gray to binary code can result in a bit 
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Fig. 8-\6. Conversion Between Gray and Binary Codes. The left-most (sign) bit mayor may not 
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pattern which results in a value of - 0; i.e., the sign bit indicates negative but the 
magnitude is zero. Because this value will be converted to + 0 by most computers, 
a legitimate sensor reading (- 0) will be converted to an erroneous value (+0). 
Consequently, such data are usually converted to a range of positive numbers so 
that each value remains unique. Thus, the range of legitimate values 

-63, -62, ... , -I, -0, +0, + 1, ... \ +62, +63 

may be converted to 

+0, + I, ... , +62, +63, +64, +65, ... , + 126, + 127 

by a judicious choice of the Gray-to-digital conversion scheme. 
In addition, data is recorded in buckets, or integral steps, and may require that 

half a stepsize be added to or subtracted from the transmitted value, so that the 
converted value corresponds to the most probable value of the quantity measured. 

Validating and Correcting Telemetry Data. Validation of telemetry data 
within the telemetry processor is done on a discrete point-by-point basis and is 
discussed in Section 9.1. In some instances, invalid data can be corrected based on 
other data, but corrections in the telemetry processor are usuaUy minimal and 
highly spacecraft dependent. Invalid data can be deleted or nagged as incorrect, 
but it is generaUy left to attitude determination software to attempt corrections. If 
the data contain any parity bits. they can be checked by the telemetry processor or 
by attitude determination software. (See Section 8.2 for a discussion of parity bits.) 

Time-Checking Telemetry Data. Time-checking of telemetry data usually 
consists of comparing the times associated with different data points for Self
consistency. The values checked are usually the attached time, the telemetered 
count of the spacecraft clock, and/or the minor or major frame number. If one of 
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the three values checked is in error, it can frequently be corrected by using one of 
the other two. Many algorithms have been developed to accompiish time checking; 
there is no general agreement as to the best type to use.· Upper and lower limit 
checking is also often performed (see Section 9.1). 

Generating Segments of Valid Attitude Data. The telemetry processor, having 
performed all conversions and validation, generates segments of valid (or, in some 
cases, flagged) data which are passed to the attitude determination system for 
further processing. The segments generated mayor may not contain data found to 
be invalid, depending on the option chosen by the operator. If he elects not to 
accept invalid data, the data segments must be generated with gaps at the 
beginning, middle, or end, depending on which data are invalid. Often gaps are left 
in segments of one type of data because another type of data was invalid during 
the gap and the first type is useless without the second. 

Data segments are usually generated on the basis of an integral number of 
minor or major telemetry frames. For example, in the case of SAS-3, all major 
frames are initially flagged as containing invalid data, and as valid data are 
identified, they replace the flagged values. As a result, a major frame at the 
beginning of a pass may contain flag values at the beginning of the frame, and a 
major frame at the end may contain flags at the end, as shown °in Fig. 8-17. 
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Fig. 8-17. SAS-3 Major Frames of Data Showing Flagged Data at the Beginning and End of a Data 
Pass . 

When more data are available than required by the attitude determination 
software, data segments are often filled with every nth available data point, thereby 
reducing the size of the arrays which must be allocated in core for processing. 
Alternatively, when the volume of data is great enough to prohibit retaining all 
results in core, the telemetry processor can write its results to an intermediate 
storage device soothe attitude determination software can read and process only the 
data needed for a particular function (e.g., star camera data, Sun and mag
netometer data, slit star sensor data, or infrared Earth horizon sensor data). This 
method was used for SAS-3 and HEAO-l. 

• For examples of time-checking schemes, see Lerner, elof., (1974), Williams, et 01., (1974), or Cheuvront 
and Eiserike [1975]. 

1 
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CHAPTER 9 

DATA VALIDATION AND ADJUSTMENT 

9.1 Validation of Discrete Telemetry Data 
Checking Data Flags and Sensor Identification, Validation 
of Discrete Data Points, Handling Invalid Data 

9.2 Data Validation and Smoothing 
9.3 Scalar Checking 

Representative Scalars, Applications of Scalar Checking, 
Central Body and Horizon/Terminator Identification 

9.4 Data Selection Requiring Attitude Information 

Prelaunch anticipation and postlaunch analysis of erron\!ous data are com
monly the most time-consuming aspects of attitude analysis. However, careful 
software design can permit automatic detection and/or correction of many types 
of data errors and mitigate time-consuming and costly manual data correction. For 
real-time operation, automatic correction or deletion of bad data is essential 
because of the time required for manual processing. 

Bad data may be categorized in several ways: 
1. According to the processing stage at which the erroneous data can be 

recognized and corrected, such as errors which may be identified in the telemetry 
processor and those which cannot be identified until an initial estimate of the 
attitude is obtained; 

2. According to the source or cause of the erroneous data, such as transmis-
sion, hardware, software, or operator errors; 

3. According to the result or manifestation of the erroneous data, such as 
biased output, incorrect sensor identification, or random bit errors. 

The sections in this chapter are organized according to the first category. 
Section 9.1 describes tests which may be performed on a single frame of telemetry 
data and Section 9.2 describes tests appropriate to larger segments of data whiCh 
may be performed in the telemetry processor or the attitude determination system 
and which do not require additional information such as ephemeris data or an 
initial estimate of the attitude. Section 9.3 describes tes~s requiring ephemeris 
information which may be done in the early stages of attitude processing before an 
attitude estimate is available. Section 9.4 describes tests requiring some estimate of 
the attitude before the tests can be conducted. 

Errors which commonly occur in attitude data are summarized in Table 9-1, 
which is a representative sample rather than a comp'lete list. All of the items listed 
have been observed in real data. Complete hardware failures, calibration errors, 
biases, and misalignments have not been included. 

There are four general sources of error encountered in spacecraft data: data 
transmission, operator error, hardware or software malfunction, and "non
nominal" operating conditions. Data transmission problems, caused by a weak 
signal or electronic interference, increase the probability of random errors in the 
transmitted bit stream. No te;emetry signal, or a signal below the receipt threshold, 
will result in data dropout, or no data. Although transmission problems may be 
critical to mission performance, they do not present a significant processing 
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Table 9-1. Representative Examples of Telemetry Data Errors (including hardware failure. calibration 
errors, biases, and sensor misalignments) 

SECTION 

OAT,IlTVPE ERROR PROBABLE CAva SPACECRAFT WHERE 
D'S-

CUSSfD 

• All DATA RANDOM BIT ERROR HARDWARE/COMMUNICATIONS ALL 9.1 
""8IT SlfP'PAGE'" 

2 ALL DATA DATA DROPOUl COMMUNICA liONS fALL PHASES. NEARLY All " NOAMAll Y LOSS Of SYNCMRQNIZA TlON 

3 QUALITY fLAGS INCORRECT FLAGGING GROUND SO, 'WARE SSS·l. SAS·J •. 1 

· SPACE CRAfT CLOCK TIME JUMPS SPURIOUS RESET OF SPACECRAFT CLOCK SAS·3, $SS.t •. 3 

• liME TAGGING TIME JITTER !JUMPS OR GROUND·DUPLICATl TRANSMlSStON, SAS·t.7.3 •. 3 
GAPSI OPERATOR ERROR 

• TI ME TAGGING RELATIVE TIMES CDARECT OPlRATOR ERROR IN ATTACHING TtMES TO SAS·3, BAS". 9.' 
ABSOLUTE TIMES I~ORRECT TAPE..fIECORDED OATA NIMBUS. 

7 TIME TAGGING CORRECT TIME .II\1CORRECT OPERATOR NEARLY ALL 9.' 
DATI 

8 MUl TIPLE SENSORS INCORRECT SENSOR ID EUCTAONICSIGROUND SOFTWARE NEARLYAl.L •• 1 
fANY TYPE) 

• MAGNETo¥(T£RS TIME·DEPENDENT 81AS FIELD DUE TO EQUIPMENT ON IN SPACE· AE-3. SAS·2. 3, 6.3 
CRAFT DSO.a 

'0. VISUAL HORIZON FREQlJfNT SPURIOUS REFLECTIONS OFF SPACECRAFT RAE·2 ... 
SCANNERS EVENTS 

11 VISUAl HORIZON EXTRA SPIN PERJOOS ELECTRONICS IMP·1 
SCAI'v.I'.n I'lS ADDEO TO EARTH 

'2 IR HORIZON SCANNER INVALID EARTH WIDTHS SENSOR ELECTRONICS SMS-1. 2; GOES·l~ 9.' 
SHOW 120 eTS 

13 fR HORIZON SCA~NEA CORRECT OATA.ATTACHED UNKNOWN ITRANSMISSIONn AE.(; 9.' 
TO INSERTED SPURIOUS 
TIMES .. IR HORIZON SCANNER SPURIOUS SIGNALS WHEN 
SENSOR MISSEl) EARTH 

ELECTRONICS C'TS .. IR HORIZON SCANNER MOON INTERFERENCE GOES-' 

•• IA HQRIZONSCANNER SYSTEMATIC 2.1/70 fAROR lOOSE WIRE AT GROUND STATION . GOES·1 
IN EARTH.QUT FOR 10-
MINUTE INTERVALS 

17 IR HORIZON SCANNER NOISY DATA "CROSSTALK" OV£ TO STAR TRACKER ATS ... ,. 
WHEE l MOUNTED Rl!DUCED EARTH WIDTHS LOGICAL "AND" IN ELECTRONICS FOR AT5-6, AE ·3. 
HORIZON SENSORS SUN REJrCTION SAS·3 

'8 WHEE L ·MOUNTED SINUSOIDAL ().CCILlAl10N MISALIGNED SOLOWTER A&·3.4.1 7.2 
HORIZON SENSORS IN OUTPUT OATA AT BODY 

RATE 

20 DIGITAL SUN SENSORS FAILURE OF 1 BIT HAROWARE AE·3,fMP.a 7.' 

2' POLARIS TRACKER LOSES POLARIS FOllOWS DUST PARTICLES ATU 8.' 

n. STAR SENSOR HIGH NOJSE LEVEl CHARGED PARTiClES IN SOUTH ATlune CJ5O.B, 7, 8, 
ANOMAl YlRfFLECTIONSISENSOR FAILURE 5SS-1; SAS·' 8.4 

23 STAR SENSOR SENSITIVITY DROPS WITH UNJtNOWN SAS-2 
AGE 

2' SLIT STAR SCANNER FREQUENT AEPEATfO MUL TlptE TRIGGERINGS ay 1 STAR WHEN frAS.3. SSS. oso 8.' 
SPURIOUS EVENTS SLOWLY SPINNING/IMPROPER THRESHOLD/ 

MUL TfPLE REFLECTIONS 

problem because they are easily recognized by elementary tests so that the affected 
data may be removed at an early level. In contrast to transmission problems, 
operator errors are frequently the most difficult to recognize because they do not 
occur with any regular pattern and normally no indication exists within the data 
stream itself as to which data were attached manually at some stage of the data 
transmission process. 

The detectability of hardware or software malfunctions depends on the type of 
malfunction. The best method for identifying subtle malfunctions (i.e., biases which 
shift output values by a small amount) is the use of independent, redundant 
attitude hardware and processing techniques. Non-nominal operating conditions 
may also produce subtle errors that are difficult to detect. For example, spacecraft 
in synchronous orbits may have Earth horizon sensors which have been thoroughly 
analyzed and tested for normal mission conditions, but which are essentially 
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untested for conditions arising during attitude maneuvers or transfer from low 
Earth orbit to synchronous altitude. (See, for example, the "pagoda effect" de
scribed in Section 9.4.) Each of these. possible sources of bad data should be 
considered in preparation for mission support. 

9.1 Validation of Discrete Telemetry Data 
James S. Legg, Jr. 

Validation of discrete telemetry data consists of checking individual data 
items. The two principal methods of validation are (I) checking the actual value of 
data items. such as quality flags and sensor identification numbers, to determine if 
associated data are valid. and (2) checking that values of selected data items fall 
within specified limits. 

In describing errors in raw telemetry. it is pertinent to distinguish between 
systematic and random errors. Systematic errprs, or those which occur over a 
non-negligible segment of telemetry data, often are more troublesome to detect and 
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Fig. 9-1. Random Errors in Sun and Magnetometer Data From GEOS-3. Columns 3 through 5 list the 
x,y, and z components of the measured magnetic field vector. The last three columns list the 
Sun sensor identification and the two Sun angles. Underlined values are spurious. 
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correct than random errors, which occur at isolated points within the data. Ex
amples of these types of error in data from the GEOS-3 spacecraft are presented in 
Figs. 9-1 and 9-12 (Section 9.3). These examples include random hit errors in Sun 
and magnetometer data (Fig. 9-1) and systematic errors in Sun data (Fig. 9-12). 
Figure 9-2 illustrates rotation angle data from the AE-3 spacecraft which contained 
so much random noise that automatic data validation was impossible. Operator 
intervention and iterative processing were necessary to identify valid data (at 
rotation angles of about 450 deg). 
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Fig. 9-2. Earth-Out Horizon Scanner Data From AE-3. Large quantity of spurious data makes 
identification of valid data difficult. 

9.1.1 Checking Data Flags and Sensor IdeDtIDcatiOD 

The first method of validation is concerned with the type of data being 
analyzed, rather than whether the values of these data are acceptable. For example, 
there may be tell-tales or flags indicating whether the data were received in real 
time from the spacecraft (real-time data) or were recorded on a tape recorder 
aboard the spacecraft and transmitted later while over a tracking station (playback 
data). There may be one or more flags used to determine in which of several 
formats the.data were transmitted. Flags may also describe the operating mode of 
the spacecraft at the time of transmission and what attitude determination sensors 
were operating at that time. 

These flags are normally evaluated before attempting to read other data 
because they determine what types of data are present and where and how often 
these data occur in the telemetry. An example of the need for this form of 
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validation is GEOS-3, which has two telemetry formats, one containing a single 
data sample from the two-axis digital Sun sensors in each major frame of da~ and 
the other containing fOllr Sun sensor data sample per major frame. A nag byte, 
included in the raw telemetry data, is examined to determine the number of Sun 
data items present before extracting them from the telemetry frame. 

9.1.2 Validation of Discrete Data Points 

The most common method of validation for discrete data points is upper- and 
lower-limit checking; that is, the value of the data must fall within specified limits 
to be acceptable. These limits can be constant (a maximum sensor voltage) or time 
varying (the proper day for an attached time). If the value of a data point lies 
outside the prescribed limits, it is invalid and may be corrected, nagged, or deleted. 
This method of validation is often performed on data types such as the attached 
times and the spacecraft clock. Sometimes limit checking is useful even when the 
data will not be used in further attitude calculations. For example, if the data are to 
be plotted automatically, outlying data points may adversely affect the limits of 
plot axes, causing valid data to lose significance. Limit checking is not useful when 
all the values a data item may assume are acceptable. In these cases, a discrete data 
item cannot be classified as erroneous without examining its value relative to other 
data, as discussed in Sections 9.2 through 9.4. 

Another method of discrete data point validation is examination of the quality 
nag attached to the data by previous ground software processing. In data processed 
at Goddard Space Flight Center, this nag is set by an Operations Control Center or 
the Information Processing Division. The quality flag denotes whether a minimum 
number of bits in the telemetry synchronization (sync) pattern for each major or 
minor frame are incorrect, and hence indicates the likelihood of remaining bits in 
the data segment being bad. (The number of incorrect bits in the sync pattern 
which causes the quality flag to indicate bad data can vary from satellite to 
·satellite; it is generally 9 bits out of 24.) A quality flag indicating bad data does not 
necessarily imply that bad data are present, but rather that there is a greater 
probability of bad data, since the sync pattern itself is in error. This flag can be 
validated as a discrete data point and the remaining data in the major or minor 
frame nagged or deleted accordingly. 

Data may also be validated on a discrete point-by-point basis by comparing 
one type of data with another. For example, one can compare the value of the 
spacecraft clock for a given data sample with the time attached to that sample, or 
either of these might be compared with the minor or major frame number. Another 
example is <;omparison of the selected two-axis Sun sensor identification number 
with the analog output of the AT A photocell for each sensor (see Section 6.1 for a 
description of AT A) to determine if the Sun sensor ID corresponds to the Sun 
sensor most intensely iUuminated. A third example is determination that star 
tracker data ar~ valid by checking the values of associated flags, which indicate 
whether the tracker is in the track mode and whether the intensity of the object 
being tracked is within acceptable limits. . 

Validation may also be performed on information contained jn the header 
provided by the receiving station. Information such as the lOCation of the tracking 

r r 

I I, 
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station that received the data, the date the data were received, the start time of the 
data, and the spacecraft ID may be validated if desired. 

9.1.3 Handling maUd Data 

Data which have been determined to be invalid can sometimes be corrected. 
For example, if the attachecI time is invalid but the spacecraft clock reading is valid 
and a known attached time corresponds to a. known spacecraft clock reading, a 
current attached time may be computed on the basis of the current spacecraft clock 
time. The minor and major frame numbers might be used in a similar manner. 
Another example is correcting the two-axis Sun sensor identification based on the 
largest of the AT A readings. 

When data have been examined and found to be invalid and no method exists 
to correct them on Ii discrete point-by-point basi~, we must decide what to do with 
the bad data. In some cases, an invalid data point is useless and renders other data 
gathered at the same time useless as well. In these cases, all the data in question 
can be deleted and not processed by attitude determination software. In other 
cases, although a particular data value is useless, related data may be useful and 
should be retained. Sometimes the invalid data itself may be worth examining in 
further analysis. In these cases, the data are retained and used in further attitude 
determination calculations or corrected as discussed in the following sections. Data 
so treated are often flagged so that subsequent software can readily identify 
questionable data and correct or ignore them. The two most common methods of 
flagging data are internal flagging (changing the value of the data to a flag value, 
such as 99999) and external flagging (setting the value of a corresponding flag 
variable to a flag value). The latter method has the advantage of retaining incorrect 
data values for further analysis and tlie disadvantage of requiring extra computer 
storage for flag variables; extra core is generally required even when no data are 
flagged. 

Similar manipulation can be done manually when data are viewed in interac
tive mode on a graphic display device. This enables the operator to evaluate the 
data and selectively process those considered acceptable. As seen in Fig. 9-2, it is 
often impossible to foresee all the ways in which the data will be bad and to 
provide fully automatic validation checks in the software; consequently an interac
tive processing capability is included in most software systems to permit manual 
data validation and· manipulation. 

After data validation and processing, it may become apparent from attitude 
solutions that telemetry data should have been selected, validated, or processed in a 
different manner. In this case, the entire proCedure may be repeated using different 
discrete data validation criteria. Iterative procedures of this type are discussed in 
Section 9.4. 

9.2 Data Validation and Smoothing 

Gerald M. Lemer 
Data validation is a procedure by which we either accept or reject measure

ments but do not otherwise alter them. Rigorously. validating data by rejecting 
measurements which are "obviously" incorrect alters the statistical characteristics 
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of the data. For example. data with Gaussian noise will have, on the average, one 
measurement in 1.7 million with an error of 5a or more. In a practical sense, 
however, rejecting such data is justified because all spacecraft data are subject to 
random bit errors (see Section 9.1), which typically occur much more frequently 
than 5a Gaussian noise errors. 

Data smoothing is a technique which is widely used both to preprocess and 
validate data before attitude determination and to postprocess computed attitude 
solutions, primarily to reduce random noise or to deriv~ attitude rates. Data 
smoothing is the only processing required for some data types which are used or 
displayed directly, such as boom length, accelerometer, or spin rate data. 

Data smoothing is one method used to obtain an expected value for a 
measurement which is then used for validation. In using smoothing as a validation 
technique, one assumes that the telemetered data frequency is high compared with 
the frequencies characteristic of the data type and that similar measurements made 
at nearby times are reliable. In this section, we describe techniques used to 
"smooth" or to obtain an expected value for either measured or processed data. 
The expected value may be used either for subsequent P.Tocessing or just for 
validation. 

In addition to validating, data smoothing may be used to: 
I. Remove high{requency noise. The effects of sensor data digitization and 

noise may be reduced by the use of an algorithm which attenuates high-frequency 
components in the data. 

2. Reduce data volume. If telemetry data rates are sized for a particular data 
type or operating mode, a large fraction of the telemetered data may be redundant 
and can be discarded to reduce the data processing load significantly without 
degrading attitude solutions . 

. 3. Interpolate. For postprocessing, short periods of data dropout may be 
bridged. For preprocessing, interpolation is useful for data display or for providing 
estimated data at times other than those measured. 

4. Improve accuracy. For some data types, the intrinsic accuracy of the 
sensor exceeds the telemetered least significant bit (LSB). For example, digital Sun 
sensor errors are typically less than half the LSB at. transitions. Processing techni
ques which emphasize data when the LSB changes can, ill principle, improve the 
accuracy of computed attitudes.· 

5. Compute Rates. Attitude rates are required for some applications such as 
the initialization of data predictors and verification of control system performance . 

. Magnetometer rate data is required for some attitupe control systems and is usually 
. obtained by analog differentiation; however, backup ground support may require 
numerical differentiation. 

6. Filter Data. Some data types, such as AE~3 accelerometer data [Dennis, 
1974], are used directly and may be enhanced by filtering, which can remove 
high-frequency noise. 

-The practical worth of this scheme is doubtful because the reduced data volume may nullify the 
increased data accuracy. This procedure was implemented by Pettus [1973] with two-axis digital Sun 
sensor data. Pettus concluded that it was not useful because of the reduced data volume. 

-I' 
II 
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7. Display Data. A smooth function through noisy data can improve the 
intelligibility of graphic displays. 

Four basic techniques for data smoothing are filtering, curve fitting, sifting, 
and preaveraging. Filtering is a data weighting scheme which is applied symmetri
cally to each measurement, y;, to produce a filtered measurement 

N 

Yi = ~ a/C(Yi-/C + Yi+/C) 
/c=o 

(9-1) 

Choice of the range, N, and weights, a/c, permits the selective attenuation of 
high-frequency components in the data and significantly alters the statistical 
characteristics of the data.· Removal of high-frequency noise highlights the actual 
frequency characteristics of the data. The digital filter, Eq. (9-1), is derived from 
analog filters used for electronic signal processing. 

Curve fitting is a technique which assumes a functional form for the data over 
a time interval and computes a set of coefficients which represent the data over the 
given interval. The function selected to fit the data may be (I) a linear combination 
of orthogonal polynomials, or (2) a nonlinear combination of functions chosen to 
represent the probable characteristics of the data. Curve fitting techniques treat the 
data asymmetrically because end points tend to influence the coefficients less than 
midrange points; th!ls they are most appropriate for batch processing (the end 
points are the most important for recursive or real-time processing). Data repre
sented by coefficients are difficult to treat statistically and should not be used for 
many types of subsequent processing. Curve fitting is most frequently used for data 
display and interpolation. 

Sifting is a technique which subdivides an interval into discrete bins and 
replaces the data in each bin, independent of other bins, with a randomly or 
systematically selected data point within the bin. Preaveraging is similar to sifting 
except that the data within the bin are replaced with the arithmetic mean. Either 
sifting or preaveraging must be combined with another method for data validation, 
such as a comparison with data from adjacent bins. Sifting and preaveraging are 
most appropriate for reducing the quantity of data to be processed. They are the 
preferred choices for preprocessing data which are subsequently used in a differen
tial corrector or any algorithm that depends on the statistical characteristics of the 
data. Note that any data preprocessing method alters or destroys some statistical 
properties inherent in the measurement, including the systematic process employed 
by the spacecraft to insert sensor data into the telemetry stream. The advantage of 
data sifting (and, to a lesser extent, preaveraging) is that it js a less destructive 
method of preprocessing, and sifted data more closely conform to the requirements 
of the attitude determination algorithms described in Chapter 13. 

The guidelines presented above should not replace the careful consideration of 
the processing requirements and the characteristics of each data type before 
selecting a 'preprocessing method. The most important data characteristic is its 
implicit or explicit frequencies. Smoothing is most useful for measurement 
frequencies, Wm , such that wm =2'fT/llt»ws , where III is the telemetered data rate 

• End points, e.g., YI for i < N + I. must be treated separately. One approach is to assume YI= YI for 
i<N+1. 
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and w, is any real frequency associated with the data which is to be retained. 
Dominant low frequencies of interest are related to the orbital rate, which is 
w.,~2'lT /100 minutes = 10- 3 rad per sec for near-Earth spacecraft. The orbital rate 
affects the thermal profile and solar and aerodynamic torques. The dominant 
gravity-gradient frequency for a pencil-shaped spacecraft is {f W

O
' and for a polaJ' 

orbit the magnetic torque frequency is approximately 2w.,. High frequencies of 
interest are related to the spin period, onboard control, flexible components, and 
rastering instruments and are typically 0.1 to 50 rad per sec, which is also the 
frequency range of telemetered data. Thus, 'telemetry data rates are often a limiting 
factor in the extraction of high-frequency information. 

To summarize, the tradeoff between preprocessing sensor data before attitude 
determination and postprocessing computed attitudes must be established for each 
~pacecraft. In general, 'it is better to preprocess only for the purpose of data 
validation and postprocess to reduce random (or high frequency) noise, primarily 
because attitudes have a time dependence which is simpler than sensor data and 
preprocessing may destroy important statistical properties used in some attitude 
determination algorithms. For postprocessing, curve fitting may use low-order 
polynomials or well-established functional forms. 

Curve Fitting. Curve-fitting techniques require a data model which may be 
either purely phenomenological, such as a linear combination of orthogonal func
tions, or a nonlinear function chosen to approximate the assumed dynamics 
characteristics of the data. Fitting techniques, as described in Section 13.4, may be 
either sequential or batch. A sequential method (see subroutine RECUR in Section 
20.3) has been used successfully on the AE mission to postprocess computed nadir 
angles with a nonlinear model of the following form [Grell, 1976): 

y(t)= A,sin(w,t +4>,)+ A 2sin(w2t +4>2) (9-2) 

The state parameters, A" A 2, WI; w2' 4>" and 4>2' are updated sequentially with 
the covariance matrix controlled to track or smooth the measurements to allow for 
large model deficiencies. Curve fitting was used on AE to validate computed nadir 
angles and extract approximate nutation and coning frequencies, phases, and 
amplitudes. Nonlinear models, such as Eq. (9-2), generally require special tech
niques to obtain an initial estimate of the model parameters. For AE, a frequency 
analysis based on a fast Fourier transform [Gold, 1969) was used to obtain w, and 

Linear models are preferred for curve fitting because of the ease of solution., 
Power series, spherical harmonics, and Chebyshev polynomials are used frequently, 
although any set of orthogonal polynomials may be used. Care must be taken to 
ensur,= that the correct degree of the representaiion is selected. If n data points are 
to be fitted with representation of degree r, clearly r must be less than n. However, 
if r is either too small or too large for a given n, a poor compromise between 
minimizing truncation error'and reducing random noise will be obtained. 

One procedure to automatically select the degree of the representation is to 
monitor the g'oodness of fit or chi-squared function, 

x2(r)=~=-.L... i (y;- rf Ckgk(t;»)2 ~l (9-3a).1 
n-r n-r;=l\ k=O /' 
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where gk(I;) is the kth basis polynomial evaluated at the ith value of the indepen
dent variable, y; is the measured data, a; is the standard deviation of Yi' ~nd the 
parameters C

k 
are selected by a linear least-squares algorithm to minimize x2(r). 

x2(r) decreases rapidly with increasing degree. The degree may be chosen to be the 
lowest such that either absolute or relative conv~rgence is obtained; i.e., 

x2(r)«I~IO 

\[x2(r)-x 2(r-l) ]/x2(r)\ < (2~O.J 

(9-3b) 

(9-3c) 

Assuming the model is adequate, X2 should range from 1 to to for a correct r; 
X2 < 1 is indicative of too high a degree, T, or an overestimate of the standard 

deviations, aj • 

As an example of curve fitting, we consider the use of Chebyshev polynomials. 
We wish to smooth the data, Yj' measured at discrete times, I j. Let gk(X) be a 
sequence of orthogonal polynomials defined for x = ( - 1, 1). As described in 
Section 13.4, the problem is to determine the coefficients, Ck ' to minimize the 
quantity . 

(9-4) 

where 
(9-5) 

where the weight of the ith measurement is Wj == 1/ a: and lmax and lmin are the 
maximum and minimum values of Ij' the independent variable. The mapping 
function, Eq. (9-5), limits the range of the independent variable to that permitted 
for the orthogonal polynomials which satisfy the relation 

(9-6) 

The solution· ·for the coefficients, Ck • requires inverting the rXT positive 

definite matrix (see Chapter 13) 

A=GWGT (9-7) 

to compute 

C=(GWGTfIGWY . (9-8) 

where 

[ C, 1 y-lU r' J C1 
I0Il2 

C= . W= (9-9) 

C':_I ' 

~ 
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and 

G= (9-10) 

In practice, the matrix A is ill conditioned (i.e., difficult to invert in practice) 
for a power series, gk(X)= x\ and power series representations are not practicable 
for r>4 because of. the greatly varying magnitude of the elements of A. However, 
an alternative representation using Chebyshev polynomials will greatly improve the 
condition of the matrix A for· most applications. Chebyshev polynomials are 
solutions to the differential equation 

2 d
2
gk dgk 2 

(I - x ) dx2 - x""(G" + k gk = 0 (9-11 ) 

and satisfy the recursion relation 

gk+ ,(X)=2xgk(X)- gk_'(X) 

with the starting polynomials 

go(X) = I 
g,(x)=x 

g2(x)=2x2-1 

g3(x)=4x3- 3x 

(9-12) 

(9-13) 

. Subroutines are available to set up (APCH) and solve (APFS) the normal 
equations, Eq. (9-8), using the Chebyshev polynomials [IBM, 1968]. APFS selects 
the polynomial degree by computing Sr until the equation 

(9-14) 

is satisfied, where ( is an input parameter. Note that ( must be greater than 
approximately 10-6 for single-precision arithmetic on IBM System/360 computers. 

Given the coefficients, Ck , the smoothed value of y/ is 
r-1 

. j;= ~ Ck&c(x/) 
k=O 

A residual edit may be performed by discarding data,y;, for which· 

Iy; - jil > n"t1; 

(9-15) 

(9-16) 

where n" is a tolerance parameter. The data are processed iteratively, first obtaining 
the coefficients by solving Eq. (9-8), then editing using Eq. (9-16) until no 
additional data are discarded and the process converges. Convergence requires a 
high ratio of valid to invalid data, typically 10 to I or greater. If the data are very 
noisy, or substantial data dropout is present, automatic prOcessing will reject all 
data and manual intervention will be required. (See, for example, Fig. 9-2.) Note 
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that the use of Eq. (9-16) for data validation does not depend on the method used 
to obtain Yi and, consequently, the preceding caveat applies to any validation 
algorithm employing data smoothing. 

An estimate of the derivative, dYt/dx, is obtained by differentiation of Eq. 
(9-15), 

(9-17) 

The derivative of the Chebyshev polynomials satisfIeS the recursion relation 
[Abramowitz and Stegun 1964] 

dgk(x) -k 
gk(x)=-d- = 2 (x&t(x)- &t-I(X» (9-18) 

x (I-x) 

ror Ixl < I and gi.( ± I) equals k 2 for k odd and ± k 2 for k even. 
Figures 9-3 through 9-5 illustrate the use of Chebyshev polynomials for data 

smoothing. Figure 9-3 shows GEOS-3 magnetometer data for an early orbit. 
Despite the highly nonlinear data, a 2Oth-degree Chebyshev polynomial produces a 
satisfactory qualitative fit, which is useful for display, for determining crude 
attitude rates, and for data validation. The quantitative fit is poor because the 
telemetered data rate is too low relative to the attitude rate; therefore, a bigher 
degree or nonlinear representation should be used. Figure 9-4 illustrates the use of 
low-degree Chebyshev polynomials to fit deterministic attitude solutions. The noise 
on the solutionS is dominated by sensor resolution and the Sun-magnetic field 

lOO. 

ISO. 

100. 

r 
I 
E 50. 

b . o. 
" · · G · . · -so. 

-100. 

-150. 

-lOO. 

-~O.~------------------------------~ 06.08.20 06.10.00 06.II.liO 08.13.20 06.15.00 06.16.110 
08.08.10 06.10.50 06.12.30 06.111.10 06.15.50 06.11.30 

TIME IHH.MMJISI 

Fig. 9·3. Curve Fitting ror GEOS-3 Magnetometer Data Using a Twentieth-Degree Chebyshev 
Polynomial 
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Fig. 9-4. Curve Fitting for GEOS-3.Attitude Data (p .. pitch, R croll, Y = yaw) Using a Third-Degree 
Chebyshev Polynomial 

geometry. The sensor data was validated but not otherwise preprocessed. Figure 
9-5 illustrates a difficulty with preprocessed sensor data. In this case, Sun sensor 
and magnetometer data were preprocessed and the smoothed value used for 
deterministic attitude solutions. Note that the observed structure in the attitude 
data is artificial and the apparent high accuracy of the attitude solution is 
nllsleading. 

A major problem with batch process curve fitting is the asymmetric treatment 
of the data and the difficulty of obtaiiung a satisfactory. compromise between a 
polynomial of degree high enough to avoid truncation error and low enough to 
reduce random noise. 

FOtering. With data filters, some of the problems of curve fitting can be 
avoided by first fixing The degree and then selecting a data interval about each 
measurement. This approach is often called a moving arc filter because it is 
sequentially centered on the measurement to be smoothed and is therefore sym
metric. 

A useful filter is the least-squares quadratic filter, which has the following 
expressions for the smoothed function and its derivative [Budurka, I 967J: 

1+';'2 

Y;= ~ CtJ'i (9-19) 
k-i-m, 

i+mz 

YI= ~ DkJ'1 (9-20) 
k-i-m. 
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Fig. 9-S. GEOS-3 Attitude Solutions Using Smoothed Sun SeDsor and Mapetometer Data. Solutions 
appear unrealistically aa:urate as discussed in the text. The resolution of the GE0S-3 
attitude seDSOrs is-approximately 0.5 to I deg, and the only frequencies which should be 
observed in the data are related to the orbital period. The observed data span covers only n
of an orbital period. 

where the filter coefficients are 

Ck=(P- Qyk+Ryf)1 D 

Dk=( - Q+ TYk-Syl)1 D 

P= ~Yf~ y:-(~Y:r 

Q= ~Yk~j:- ~Yl~Y: 

R=-~Yk~y:-(~Ylr -

S=(mJ+m2+1)~y:- ~YIc~y: 

T=(mJ +m2+ l)~ Y:-(~ ylY 

D=(mJ +m2+ I)P- Q~ YIc+R~ yf 

(9-21 a) 

(9-21b) 

(9-21c) 

(9-21d) 

(9-21e) 

(9-21f) 

(9-21g) 

(9-21h) 
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and the sums in Eqs. (9-21) are over the range i - mJ <; k <; i + m2• If the data points 
are equally spaced in time, the simplified expressions for m J=m2=m are as 
follows: 

m 

,Y/=CoY;+ l: Ck(Y;-k+Yi+k) (9-22) 
k=J 

m 

YI= l: Dk(Yi-k - Y;+k) (9-23) 
;= I 

where 

3(3m2+3m-I)-15k2 
Ck = ----:---::----------:-

(2m+ 1)(3(3m2+3m-I)-5m(m+ I» (9-24a) 

D = . 3k 
k m(m+ 1)(2m+ I) 

(9-24b) 

Filters may be described by their effect on various frequency components in 
the data. Figure 9-6 illustrates the relative attenuation of frequencies for a least
squares quadratic filter. For 25 data points, attenuation is substantial for c.! > 
O.07c.!m and negligible for c.! < O.05c.!m: The quantity c.!m = 2 'IT / Ilt is the measurement 
frequency and Ilt is the time interval between measurements.l1lie number of data 
points must be carefully selected to avoid removing desired information from the 
data. 
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Fig. 9-6. Frequency Attenuation for a Least-8quares Quadratic Filter (Budurka, 1967] 

For some applications, the poor frequency cutoff characteristics of the 
quadratic leaSt-squares filter (manifested by the persistent sinusoidal oscillation at 
high frequencies) are undesirable. The Butterworth filter [Dennis, 1974; Budurka, 
1967; Rabiner and Gold, 1975; Stanley, 1975] has a much sharper cutoff, as shown 
in Fig. 9-7. The coefficients depend on both the order and the cutoff frequency, "' ... 
The difference equation for the fifth-order Butterworth is 

s S 

jl= l: G0-4-AJ'I-k+ l: B_tYl_k (9-25) 
k=O k-J 
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Fig. 9-1. Magnjtude-Frequenc;y Func;tion for Fifth-Order Butterworth Filter [Budurka. 1961] 

where the coefficients for we =O.044c"m are given in Table 9-2 for equally spaced 
data. The recurSive nature of Eq. (9-25) implies an infinite memory; that is., the 
improved bandwidth characteristic (e.g., selective frequency attenuation) is 
achieved by linking together all the measurements. The infinite memory Causes an 
initial transient response in the filter output. The Butterworth filter is particularly 

Table 9-2. Coeffic;ients for Fifth-Order Butterworth Filter [Budurka, 1961] 

An = 1.000000 A -3 = 10.000000 Go = 3.20567 x 10,5 8 -3 = 5.n4077 

A -1 = 5.000000 A -4 = 5.000000 8 -1 = 4.113261 8-4 = -2.415026 

A_2 = 10.000000 A_5 = 1.000000 8_2 = -6.833588 B -5 = 0.410249 

well suited for real-time applications because it depends only on previous meas
urements to obtain the filtered value. Figures 9-8 through 9-11 illustrate the use of 
various data filters on simulated attitude data which has been contaminated with 
Gaussian noise. In Fig. 9-8, a constant input signal plus noise is processed by a 
Butterworth (order=50, we =2.,,/50 sec-I), least-squares quadratic or LSQ (ml 
= m2 = m =25), and averaging· filter. In the figure, points denote the noisy'input 
data, and the dotted, dashed, and solid lines denote the data after processing with a 
Butterworth, LSQ, and averaging filter, respectively. Except for'the initial transient 
in the Butterworth filter's response, all three filters effectively attenuate the noise. 

In Fig. 9-9, a sinusoidal input signal, V=I+coswl (c.i=2.,,/50 sec-I), has 
been contaminated as before. The averaging filter removes both the noise and the 
signal, whereas the Butterworth and LSQ filters remove the noise and only 

• Eac;h data sample is replac;ed with the arithmetic; mean of the 2S prec:eding and subsequent samples. 
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Averaging (Solid Line) Filters. (V(t)=1 +coswl+ ... where 101",=0.13 sec-I. E( .. )=O.25. 
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attenuate the signal. The predicted attenuation factor is 0.5 for the Butterworth for 
which (o)e=(o)' Note the phase lag in the response of the Butterworth filter. 

Figures 9 .. 10 and 9-11 illustrate the use of the frequency response of the 
Butterworth and LSQ filters to obtain a desired output frequency spectrum. In Fig. 
9-10, the Butterworth filter cutoff, (o)c=2'17/I00, is chosen to attenuate the input 
frequency. whereas in Fig. 9-11 the cutoff, (o)c = 2'17/12.5, is chosen to pass the input 
frequency and only attenUate the noise. The frequency dependence of the Butter
worth filter's phase lag is apparent by comparing Figs. 9-9 and9-11. 

The frequency response of the LSQ filter is not as easily controlled as that of 
the Butterworth. In Fig. 9-10, with m = 50, there is some attenuation of the input 
frequency, whereas in Fig. 9-11, with m=5, the signal attenuation is negligible but 
the noise is not removed completely. 
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9.3 Scalar Checking 

Gerald M. Lemer 

Data validation based on scalar checking occupies an intermediate position in 
the data validation hierarchy; data must be time tagged and ephemeris information 
computed, but an attitude estimate is not required. Scalar checking tests the 
self-consistency of attitude data and is used to remove or correct spurious data 
prior to the ~ctual attitude computation. 

Scalar checking is based on the elementary principle that scalars, such as the 
magnitude of a vector or the angle between two vectors, do not depend on the 
coordinate system in which they are evaluated. In particular, a scalar computed 
from measurements in the body frame must equal that computed in any convenient 
reference frame. 

9.3.1 Representative Scalars 

The scalar which is validated most frequently in attitude determination sys
tems is the measured- magnitude of the Earth's magnetic field, BM=IBMI.* 
Nthough attitude determination algorithms generally. require only the measured 
field direction, the measured magnitude may be compared with the calculated 
magnitude, Be = IBeI, computed from the spacecraft ephemeris and a model for the 
Earth's magnetic field (Section 5.1). Measured data is rejected if 

IBM - Bel> £B (9-26) 

'where £B is a tolerance parameter based on the magnetometer resolution and 
unmodeled magnetometer biases. 

Comparison of BM . and Be for a data segment is particularly useful for 
identifying errors in time tagging or in the spacecraft ephemeris. The former error 
is manifested by a systematic phase difference between BM(t) and Bdt) such that 
BM(t)~Bdt+tO>, and the latter by a qualitative difference in both amplitude and 
phase. The roOt-mean-square of the quantity Il.B(t;) = BM(t;)- Bdt;) is a measure 
of the fidelity of the field model or an indicator of the presence of systematic 
magnetometer biases. Assuming a magnetometer quantization size of X B' the mean 
square residual [Corien. 1975J 

«Il.B)2) = ! ~(Il.B(t;»2 (9-27) , 
must be greater than X;/12. The residual error,8B=«(Il.Bi> - xii 12)1/2, in the 
IGRF (1968) magnetic field model has been shown to be less than 200 nT (Section 
5.1) for intermediate altitudes of 700 to 800 km. Computed residual errors in excess 
of this value are indicative of unmodeled biases. 

For missions which fly magnetometers, Sun sensor data may be validated by 
comparing the measured angle between the Sun and the magnetic field vectors with 

• Rigorously, the measurement BM is a true vector only if the magnetometer triad is orthogonal; 
otherwise, BM denotes three ordered measurements which are treated a1gebraicaUy as a vector. 
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that computed from the spacecraft ephemeris and a field model. Assuming that BM 
satisfies Eq. (9-26), Sun data is flagged if 

Icos-'(BM' SM) - cos- '(Bc' Sc)I> f.g (9-28) 

where SM and Sc denote the measured and the calculated Sun vectors and fIJ is a 
tolerance based on the magnetometer and Sun sensor resolution, the accuracy of 
the field model, and unmodeled biases. An equation analogous to Eq. (9-27) may 
be used to obtain a measure of the relative Sun sensor and magnetometer 
alignment and the error in the model field direction. Expected root-mean-square 
(rms) residuals, due to Sun sensor and magnetometer resolution, will contribute a 
residual to Eq. (9-28) analogous to the X;;12 term in the discussion following Eq. 
(9-27). However, this residual is highly orbit dependent and can best be established 
via simulation [Coriell, 1975]. Unmodeled rms residual angular errors in the IGRF 
reference field are of the order 0.3 to 0.5 degree (Section 5.1) at 700 to 800 km. 

Earth horizon scanners and similar devices measure the Earth nadir vector in 
body coordi~ates, EM' This vector must satisfy the condition 

Icos-'(EM· 8M ) - cos-'(Ec' Bdl < fM 

when used with magnetometer measurements, and 

Icos-'(EM'SM)-cos-'(Ec'Sdl<fS 

(9-29) 

(9~30) 

when used with Sun sensor measurements. Ec is the nadir vector in inertial 
coordinates andfM and fS are tolerances associated with the magnetometer and 
Sun sensor-accuracies, respectively. 

Clearly, mean and root-mean-square residuals of scalar quantities are useful 
for assessing the magnitude of unmodeled errors in sensor data. Displays of 
predicted-versus-observed scalars are useful in identifying time-tagging or other 
systematic errors in the data, particularly before mission mode when tests based on 
an a priori attitude are not available. 

9.3.2 Applications of Scalar Checking 

In addition to its use in validating and assessing sensor data, scalar checking 
has been used in star identification (Section 7.7), magnetometer bias estimation 
[Gambhir, 1975], and Sun sensor data reduction. For example, a procedure to 
periodically compensate for magnetometer biases is based on the assumption that 
the biases are constant for some appropriate time interval (typically an hour or 
more). Neglecting noise, we may write 

Bu(t/)=BM(I/)-b (9-31) 

where Bu(ll) is the unbiased measured magnetic field at time II' BM(II) is the biased 
measured magnetic field at time tl , and b is the magnetometer bias which is 
assumed constant in time. Although the components of the' vector Bu(t/) aTe 
attitude dependent, the magnitude Bu(tl) is not. Assuming that the magnetometer 
triad is orthogonal, we may equate Bu(t/) to the model field magnitude, Bdll)' 

B~(I,)= B~(I/)= IBM(I,)-bI2 = B~+ b2 -2b·BM (9-32) 
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or 

(9-33) 

where the 'explicittime dependence of Be and BM has been. suppressed for 
convenience. 

The vectors BM are known from measurements, and the corresponding values 
of Be can be calculated using spacecraft ephemerides and geomagnetic field 
models. Therefore, the values of Y(t;) corresponding to each value of BM can be 
calculated, and a least-squares fit of the data to Eq. (9-33) (see Chapter 13 and 
Gambhir, [l975D can be made to obtain the best estimates of the three components 
of b. 

As a second application, a scalar· test may be applied to correct anomalous 
two-axis Sun sensor data. Figure 9-12 illustrates a problem encountered with the 
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Fig. 9-12. Observed Sun Sensor Data for GEOS-3 in Mission Mode, June 28, 1975 

GEOS-3 Sun sensors in mission mode. Correct angular measurements (NA and 
NB) were telemetered but the sensor head (10) selected by onboard electronics was 
incorrect when the Sun was near the Earth horizon. (Similar problems were 
observed when the Sun traversed the field of view of two sensors.) Let SMi denote 
the measured Sun vector in body coordinates, assuming that the measurement 
corresponds to the ith sensor. Then the correct sensor selection minimizes the 
quantity 

(9-34) 

wh~ XM 'and Xc are the measured and calculated values for any inertial reference 
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vectors (e.g., nadir or magnetic field) and Sc is the calculated inertial Sun vector. 
Note that this procedure can fail for certain geometries. For example, if the Sun 
sensor boresights are dispersed at a half cone angle (J with respect to the spacecraft 
Z-axis, Eq. (9-34) is independent of i when XM is colinear with the Z-axis. 

9.3.3 Central Body-and Horizon/Terminator Identification 

Data from horizon scanners, either those sensitive to the visible or the infrared 
portion of the electromagnetic spectrum, must be validated to reject spurious 
triggerings caused by the Sun, the Moon, or reflections from spacecraft hardware. 
For visible light sensors, a further test is required to distinguish between horizon 
and terminator crossings (Section 4.1). 

Although most spurious triggerings are relatively simple to identify (Section 
8.1), terminator crossings escape most preprocessing tests and normally are 
eliminated after the attitude computation by a data regeneration test [Joseph, 1972] 
or solution averaging (Section 11.2). However, a simple scalar test based on the arc 
length separation, a, between the Sun, S, and the triggering event, X, will suffice 
for both central body identification and terminator rejection for all cases for which 
the data regeneration test will succeed [Williams, 1972]. 

For any triggering, the angle a may be computed by applying the law of 
cosines to the spherical triangle shown in Fig. 9-13. Thus, 

cos a = cos {J cos y + sin{J sin y cos ~ (9~35) 

Fig. 9-13. Spherical GeomelJy for a Sensor Event at X 

e Figure 9-14 illustrates the terminator geometry for a central body, R, of 
e angular radius p, less than half-lit (crescent). Alternatively, Fig. 9-14 illustrates the 
It case for the central body more than half-lit (gibbous) if the Sun is at the opposite 
Ie pole. Since the Sun is at a pole of the coordinate grid, the latitude lines are lines of 

constant a. For infrared sensors, the only restriction on a is that 

4) ao=1j;-p<a<''''+p=aJ (9-36) 
ce where cos1j;=R·S. 
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DARK 
CUTJIAL 

BDDY 

9.3 

Fig. 9-14. Defmition of Sun to Central Body Angles Which Defme Event Classification. Light and 
dark portions of the central body are interchanged for the SUD at the opposite pole. "; and '" 
are measured from the Sun and are defmed in Eqs. (9-36) through (9-43). 

The requirements for visible light data are more restrictive. First, consider the 
crescent geometry of Fig. 9-14. Note that the angles a l and 1/! on the figure are 
measured from the Sun. The small circle of constant a l is tangent to the terminator 
on the SR great ci,cle and the small circle of constant a2 passes through the cusps 
or the points where the horizon and terminator intersect. Oearly, a triggering:-at 
latitudes 110 <; a <; a, can result only from the central body horizon. Triggerings at 
.latitudes a l < a <; a2 can result from either the horizon or the terminator. * This is 
defined as the indeterminate case. Triggerings at latitudes a > a~ are necessarily 
spurious. 

The angles a, and a2 may be calculated with '!Ie aid of the upper half of Fig . 
. 9-15. The plane of the figure contains the vectors Sand R with the spacecraft at 
the origin and the Sun along the + Yaxis. By symmetry, this plane also contains X 
at the angle a = a,. Dc (89.15 deg) is the dark angle defined in Section 4.1. 

Let RIB be the vector from the center of the central body to the terminator 
crossing. Taking components of X and RIB' perpendicular and parallel to the 
sunline, we obtain 

with the result 

Xsina l + RIBsinDc= Rsin1/! 

X cosal + RIBcosD~ = R cos1/! 

al=arctan[ (Sin1/!- RRIB sin Dc )/ (cos1/!- RRIB COS Dc ) l 

(9-37) 

(9-38) 

(9-39) 

To compute a2' we note that when a = a2' X is located on both the horizon and 
the terminator. Points on the terminator are formed by rotating RIB about the 

-Data regeneration procedures will attribute this data unambiguously (and incorrectly) to a horizon 
erossing. 
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Fig. 9-15. Computation of a,. the angular separation between the Sun and the closest point on the 
terminator to the Sun. (See Fig. 9-14.) 

sunline. Clearly, all points on the terminator satisfy Eq. (9-38) for components 
parallel to the sunline, 

XCOSU2+ RflJcos Dc= RcoSIf 

The condition that X is on the horizon is simply 

X2+Ri=R2 

Therefore, we have the result 

RflJ 
coslf- TcosDt: 

cosa2 = 
(1- Ril R2)'/2 

(9-40) 

(9-41) 

(9-42) 

As seen from Fig. 9-15, as If increases beyond 90 deg, a, will exceed t12 and 
') there exists a value of If such that 

d 
Ie 

)n 

(9-43) 
and 

IX, =a2=90 deg 

This is the condition for which the central body is half lit. 
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The conditions for the gibbous central body may be obtained by inspection. 
Note that for a. ;) a> a 2• a triggering must occur at the terminator (the correspond
ing horizon is dark) and the indeterminate case is absent. Table 9-3 summarizes the 
results for terminator identification. 

Table 9-3. Definition of Triggering Event Classification in Terms of III 
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9.4 Data Selection Requiring Attitude Information 

James R. Wertz 

Previous sections have described data selection or validation procedures which 
do not require any knowledge of the attitude and, therefore, can be performed at 
an early stage of attitude processing. In contrast. data selection requiring attit~de 
information must be a part of the attitude determination process -itself and niay 
require an iterative procedure to determine if the data selection process is consis
.tent with the computed attitude and to reselect the data if it is not. 

The most straightforward data selection of this type is that which requires only 
an a priori altitude estimate, that is, an attitude estimated or assumed before any 
processing is done. In practice, some a priori knowledge is usually available and 
this is generally sufficient to resolve quadrant ambiguities or to choose the correct 
attitude solution from the two possible solutions generated by intersecting cones. 
The latter procedure is described in more detail in Section 11.2. For spacecraft 
using automatic control, the intended or null attitude may be used to validate data 
used for a definitive attitude solution; however, any such test may also effectively 
hide a failure of the control system, since data that is inconsistent with the intended 
attitude would automatically be rejected. 

When data selection requires attitude information, it may become the most 
complex and time-consuming aspect of the attitude determination process. For 
example, in Fig. 9-2, an attitude estimate and manual data editing were required to 
determine which of the two groupings of data at the top of the figure was valid and 
which was anomalous. 

On RAE-2 a horizon sensor of a new design (the panoramic attitude sensor 
described in Section 6.2.2) was flown. During the translunar portion of the flight, 
much of the data was spurious. Figures 9-16(a) and 9-16(b) illustrate displays which 
were used to manually distinguish valid lunar sightings from spurious data due to 
the Sun, spacecraft reflections, or noise. The ordinate of Fig. 9-16(a) is the angle, ,,(, 
from the spin axis to the scanner line of sight and the abscissa is the rotation angle, 

. 
, l 
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~, from the Sun to a sighting event. The panoramic scanner is a variable mounting 
angle sensor; for RAE-2 the angle 'Y changed by 0.707 deg approximately every 15 
sec. The crosses in Fig. 9-16(a) mark observed light to dark (LOS) or dark to light 
(AOS) transitions and the ovals mark the expected location of solar and lunar data 
for the a priori attitude 5 hours before insertion into lunar orbit. The data observed 
near ~=O deg or ~= 180 deg and 60 deg>y>O deg are clearly spurious and are 
believed to have been caused by reflected sunlight [Werking, 1974]. The relatively 
small-amount of data near ~=65 deg and )'=30 deg are valid AOS or LOS events 
from the lunar horizon or terminator. The expanded view of these data in Fig. 
9-16(b) shows that m9St of the valid data were LOSs at the terminator. Ooser 
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Fig. 9-16. RAE-2 Data Selection Based on an A Priori Attitude 

inspection of Fig. 9-16(a) suggests the nature of the anomaly. Nearly all of the 
AOSs are spurious and only the lunar presence at 25 deg<), < 35 deg resulted in 
valid LOSs at the lunar terminator. For RAE-2, these displays, which utilized an a 
priori attitude and interactive graphics, were essential for attitude determination 
and maneuver planning during the early portion of the mission. 

The attitude determination process is more complex than described above 
whenever data selection based on an a priori attitude is not sufficiently accurate. 
This occurs, for example, in the presence of smoothly varying systematic anomalies 
in which some of the data are clearly invalid but presumably "valid" and "invalid" 
data run smoothly together. Attitude determination in the presence of such·errors 
requires iterative processing to obtain successive attitude estimates. The general 
procedure for this is as follows: . 

l. Discard "obviously" bad. data (in addition to the rejection of random 
errors as described in Sections 9.2 and 9.3). 
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2. Use the remaining data to estimate the attitude as accurately as possible. 
3. Use the new attitude estimate to reject additional data (or recover 

previously rejected data) as appropriate. 
4. Iterate until a self-consistent solution has been obtained. i.e .• when step 3 

makes no change in the set of selected data. 
This procedure does not establish that the final attitude estimate is correct. or 

that the data selection has been correct. It is also possible that the iterative 
procedure will not converge-it may eventually reject all the data or oscillate 
between two distinct data sets. This method can at best obtain an attitude solution 
which is consistent with the data selection process. Therefore, whenever problems 
of this type are encountered. it is important to attempt to find the physical cause or 
a mathematical model of the data anomaly to provide an independent test of 
whether the data selection is correct. 

The central problem of the above iteration procedure is the data rejection in 
step 3. Operator judgment is the main criterion used, both because general 
mathematical tests are unavailable and because the anomaly is usually unantici
pated. (Otherwise it would have been incorporated as part of the attitude de~ 
termination model.) Tables of data are of little or no use for operator identification 
of systematic anomalies; therefore, data plots are normally required. Four types of 
data plots are commonly used for this purpose: 

1. Plots of raw data 
2. Plots of deterministic attitude solutions obtained from individual pairs of 

points within the data 
3. Plots of residuals between the observed data and predictions from a 

least-squares or similar processing method based on the entire collection of data 
4. Plots comparing directly the observed data and predicted data based on 

the most recent attitude estimate 
In practice, the author has found the fourth type of plot to be the most useful 

in defining the boundary between valid and invalid data. To ilIustratethe use of 
various plot types and the process by which anomalous data are identified, we 
describe the data selection process which was used to eliminate the "pagoda effect" 
identified in SMS-2 data. 

The SMS-2 Pagoda Effect. The Synchronous Meteorological Satellite-2, 
launched from the Eastern Test Range on Feb. 6, 1975 (Fig. I-I), was the second 
test satellite for the Geostationary Operatio.nal Environmental Satellite series used 
by the U.S. National Oceanic and Atmospheric Administration to provide daily 
meteorological photographs of the western hemisphere and other data. During the 
transfer orbit to synchronous altitude, attitude data were supplied by two Sun 
sensors and five body-mounted, infrared horizon sensors. As illustrated in Fig. 1-6, 
each horizon sensor sweeps out a conical field of view or scan cone. Because the 
spin axis was nearly fixed in inertial space, the scan cone of a single Earth sensor 
encounters the Earth during one or two segments of the spacecraft orbit and moves 
across the disk of the Earth as the spacecraft moves. As shown in Fig. 9-17(a), a 
major anomaly, called the pagoda effect, occurred in the Earth data [Chen and 
Wertz, 1975); this is most easily seen in the sharp upturn of Earth-out data as the 
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Fig. 9-17. Raw Data from SMS-2 horizon sensors. (All figures are based on the same set of data.) 

scan cone of the sensor enters or leaves the disk of the Earth_ The effect is common 
to all of the SMS-2 horizon sensors. 

It is clear that the data at the ends of the Earth are invalid. It is hoped that the 
data in the center are valid; otherwise, there is little potential for successful attitude 
determination. Therefore, the main question is how far into the Earth the bad data 
extend; i.e., what subset of the data should be used to provide the best attitude 
estimate. Figure 9-18 shows a plot of the spin axis declination determined from the 
Sun angle and the midscan rotation angle (i.e., rotation angle from the Sun to the 
midpoint between Earth-in and -out) from the data in Fig. 9-17(a). The data jn the 
central region give at least somewhat consistent solutions, but the 20 to 30 frames 
of data at both ends are clearly part of the systematic anomaly and should' be 
discarded. . 

Data selection is performed according to the procedure described above. Both 
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Fig. 9-18. Declination Versus Frame Number as Determined From Data in Fig. 9-17 Using Nominal 
Sensor Parameters. (Slope of solutions in central region is caused by biases in the sensor 
parameters.) 

ends of the data sample are eliminated and the best available- solution for the 
central portion of the data is obtained. Predicted-versus-observed data plots are 
then used to refine the selection process in an iterative manner and other plots are 
used as needed to check the consistency of the results. The need for an -accurate 
attitude solution in step 2 of the process is shown in Fig. 9-17(b),* which compares 
the observed data with predicted ~ta based on nominal sensor parameters and the 
data from the central portion of the pass. Particularly on the right side of the 
figure, it is clear that the anomaly involves both Earth-in and -out and that it 
~xtends at least somewhat beyond the end of the "pagoda." However, it is 
impossible to precisely determine the invalid data from Fig. 9-17(b) because of the 
poor overall fit, even in the central region. (A solution based on all the data yields 
an even worse fit.) 

Figures 9-17(c) (showing the fit to the central'portion of the data) and 9-17(d) 
(showing the pagoda characteristics) compare the observed data with the predicted 
data based on results from the central portion of the data pass using attitude and 
sensor bias parameters obtained from a bias determination subsystem similar to 
that described in Section 21.2. Once an accurate fit to the data has been obtained, 
the general character of the pagoda effect becomes clear. Both Earth-in and -out 
begin varying systematically from predicted values when the Earth width, or the 
difference between Earth-in and -out, drops below about 20 deg. At an Earth width 
of 12 deg. the Earth-out data tum sharply upward.t (The small ripple most 
noticeable in the Earth-out data on the left of Fig.9-17(d) is not a plotting artifact; 
although the cause is unknown, it may result from variations in the height of the 
Earth's atmosphere in the infrared.) 

-The attitude solution is based ~ data from the central region only. Using this attitude, data are 
predicted for the fuR data pass (mcluding the end regions) to provide a visual comparison in order to 
identify the data anomaly. This procedure was used for Figs. 9-17(b) through 9-17(d). 
tThe differences quoted and those shown in the figures are in terms of rotation angle. The arc-length 
separation between Earth-in and -out is about 14 des when the effect hegins and 7.S des when the 
upturn occurs. . 
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At the time of the above analysis, the cause of the pagoda effect was unknown. 
Subsequent investigation indicated that it is probably due to delays inherent in the 
sensor electronics, as described in Section 7.4. The results of that analysis, shown in 
Fig. 7-21, indicate that the data selection described above is at least approximately 
correct. 

The value of predicted-versus-observed data plots as part of the data valida
tion procedure is shown in Fig. 9-19, which illustrates a data pass where the sensor 
scan cone does not drop off the Earth before reversing direction and moving 
toward the Earth's center. In Fig. 9-19(a), there is no visually detectable anomaly, 
although the previous example suggests that there might be a problem at small 
Earth widths. This is confirmed by the predicted-versus-observed display of Fig. 
9-19(b), which rev.eals the pagoda effect data which must be eliminated to obtain 
accurate attitude solutions. 
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In Part II we described both the hardware and the process by which attitude 
data are gathered, transmitted to the attitude software system, and assembled in a 
manner appropriate for attitude determination. In Part III we describe the proce
dures by which-~these data are processed to determine the spacecraft attitude. 
Chapter 10 introduces the types of attitude measurements and the geometrical 
meaning of thes.e measurements. Chapters II and 12 describe methods for combin
ing as many measurements as there are observables (usually two or three) to 
produce a single, possibly multi valued determination of the attitude. Chapters 13 
and 14 then describe filtering methods to provide optimum estimates of the 
attitude, given many data points. 

As discussed in Chapter I, there are two types of attitude. Single-axis attitude 
is the specification of the orientation of a single spacecraft axis in inertial space. 
Ordinarily, this single axis is the spin axis of a spin-stabilized spacecraft. However, 
it could be any axis in either a spinning or a three-axis stabilized spacecraft. 
Single-axis attitude requires two independent numbers for its specification, such as 
the right ascension and declination of the spin axis. The attitude of a single axis 
may be expressed either as a unit vector in inertial space or as a geometrical point 
on the unit celestial sphere centered on the spacecraft. (See Section 2.1.) Generally, 
we will use the vector representation of the attitude for numerical or computer 
calculations, and the geometrical representation for analytical work and physical 
arguments. However, because of the direct correspondence between the two 
representations, we will often move back and forth between them as convenient for 
the particular problem. 

If the orientation of a single axis is specified, the complete spacecraft orienta
tion is not fixed because the rotation of the spacecraft about the specified axis is 
still undetermined. A third independent attitude component, such as the azimuth 
about the spin axis of a point on the spacecraft relative to some object in inertial 
space, completely fixes the inertial orientation of a rigid spacecraft. Such a 
three-component attitude is commonly called three-axis attitude because it fixes the 
orientation of the three orthogonal spacecraft axes in inertial space. 

Throughout Part III we will frequently ignore the distinction between single
and three-axis attitude. If we refer to the attitude as the orientation of a single axis, 
this may be taken as either single-axis attitude or one axis of a three-axis system. 
Specifically, in Sections 10.1 through 10.5 we will discuss the types of single-axis 

J 
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measurements. Measun:ments concerned specifically with determining the thif(~ 
component in three-axis systems will then be discussed in Section 10.6. 

r 
10.1 Single-Axis Attitude 

Specifying the orientation of a single axis in space requires two independent 
attitude measurements. Therefore, if only one of these measurements is known, an 
infinite set of possible single-axis attitude orientations exists which maps out a 
curve, or locus, on the celestial sphere. This is illustrated in Fig. 10-1 for the Sun 
angle measurement, 13, which is the arc-length separatiott between the attitude and 
the Sun. Any two allilllde measurements are equivalent if and only if they correspond 
to the same locus of possible altitudes on the celestial sphere. 

Fig. 10-1. Locus of Attitudes Corresponding to Measured Sun Angle, p (arbitrary inertial-coordinates) 

Given both independent attitude measurements, each having a distinct locus 
of possible values, the attitude must lie at their intersection. In general, there may 
be multiple intersections resulting in ambiguous attitude solutions. Because no 
measurement is exact, the possible attitudes corresponding to any real measure
ment lie in a band on the celestial sphere about the corresponding locus with the 
width of the band determined by the uncertainty in the measurement, as illustrated 
in Fig. 10-2. The Sun angle measurement, 13, with uncertainty Up. implies that the 
attitude must lie somewhere in a band centered on L{3 of width flL{3' Similarly, the 
nadir angle measurement, ." (i.e .• the arc-length separation between the attitude and 
the center of the Earth). with uncertainty UTI' implies that the attitude lies in the 
band defined by L., and flL.,. Clearly, the attitude must lie in one of the two 
parallelograms formed by the intersection of the two bands. We will assume that 
the region of intersection_ is sufficiently small that we may use plane geometry to 
describe these parallelograms. The correct parallelogram may be chosen and the 
attitude ambiguity resolved either from an a priori estimate of the attitude, or, if 
the attitude is constant in time, by processing many measurements from different 
times and selecting that solution which remains approximately constant. (See 
Section 11.2.) 
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Fig. 10-2. Determination of Single-Axis Attitude From Intersecting Loci 

Figure 10-3 shows an expanded view of the parallelogram of intersection 
formed by th~ two bands on the celestial sphere. The center of the parallelogram, 
where the two measurement loci intersect, is the measured value or estimate of the 
attitude. The size of the parallelogram is the uncertainty in the attitude result. For 
any measurement, m (either P or." in Figs. 10-2 and 10-3), the width, I1L

m
, of the 

attitude uncertainty band on the celestial sphere is determined by the measurement 
uncertainty, Um , and the measurement density, d

m
, which is the change in mea

surement per unit arc-length change between adjacent loci, measured perpendicular 
to the loci. Thus, 

To obtain a more formal definition, let ml and m2 be two values of the measurement m (e.g., 
PI and fJV, and let CJm"m. be the arc-length separation between Lm , and L

m
, measured 

Fig. 10-3. Expanded View of Fig. 10-2 Showing Intersecting Attitude Loci for Measurements P and 11 
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perpendicular to the loci. Then the m£J1SUI'emI!nI density. dm• is the two-dimensional gradient of m 
on the celestial sphere for a fixed position of the reference vectors (i.e .• Sun vector. nadir vector. 
etc,). That is. 

d",==IVml for filled reference vectors 

== limit Im2-mMom m (IO-J) 
o.-,."'J"""O t. 2 

If we let m. and m2 be the limits of uncertainty in measurement m. then Om m corresponds 
to the width. ALm• of the attitude uncertainty band on the celestial sphere. Thu~; , 

A4.,= Um/dm (10-2) 

If the measurement density is low (i.e., if the spacing between loci is large). a small 
measurement error will result in a large shift in the measured attitude and a small 
measurement uncertainty will produce a wide attitude uncertainty band, !:J.Lm , on 
the celestial sphere. 

In addition to the width of the two attitude uncertainty bands, the size of the 
parallelogram of intersection is determined by the angle at which tfie two loci 
intersect, called the correlation angle, S. (A more formal definition of S will be 
given in Section 10.4.) Thus, for any two measurements, e.g., p and 1/, the attitude 
uncertainty corresponding to these measurements is determined by three factors: 
(I) the measurement uncertainties, Up and U.." (2) the measurement densities, dp 
and d", and (3) the correlation angle between the loci, S..,/p' For given measure
ment uncertainties, the measurement densities determine the widths of the attitude 
uncertainty bands and the correlation angle determines how these bands will 
cpmbine to produce an overall attitude uncertainty. Thus, attitude accuracy analy
sis for pairwise measurement combinations may be reduced to determining the 
various measurement densities and correlation angles. Specific formulas for trans
forming ·these parameters into measures of the attitude uncertainty (i.e., the size of 
the error parallelogram) are given in Section 11.3. 

Although there are many types of attitude sensors (e.g., Sun sensors, horizon 
scanners, magnetometers), the analysis of attitude measurements can be greatly 
simplified by classifying them according to the shape of the corresponding loci of 
possible attitudes. Thus, we will say that two attitude measurements are of the same 
type if and only if the attitude loci corresponding to the two measurements have the 
same shape, i.e., if both loci satisfy parametric equations of the same form. 
Although the number of attitude sensors and measurements. is large, these mea
surements correspond to only a few basic types. 

The two most fundamental types of attitude measurements are: (I) arc-length 
measurements from a known reference vector, such as the Sun angle measurement 
of Fig. 10-1, and (2) rotation angle measurements about the attitude between two 
known reference vectors, discussed further in Section 10.3. In addition, there are 
some compound measurement types (such as the rotation angle from the Sun to the 
Earth's horizon, as described in Section 10.5) that are not as well understood. 

10.1 Arc-Length Measurements 
The arc-length measurement, represented by the Sun angle, p, as shown in Fig. 

10-1, is the simplest measurement type. For this type, the locus of possible attitudes 
is a small circle centered. on the known reference vector with an angular radius 
equa' to the measured arc length. If the arc length is measured directly, as in the 
case of p, the loci are uniformly distributed over the celestial sphere. That is, if Lp. 

i-'-'" 
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and Lp. are the loci corresponding to Sun angle measurements p, and P2' then they 
are concentric small circles and the perpendicular separation. ap,.PI' between them 
is constant along the two curves and equal to the difference in Sun angle, i.e., 
ap,,{J, = I P2 - P,I· As defined in Eq. (10-1), the Sun angle density, dp, is the magni
tude of the two-dimensional gradient on the surface of th~ celestial sphere of the 
family of attitude loci, Lp, for a fixed position of the Sun. S. That is, 

dp=IVPI= limit IP2-p,l/ap,.p.=1 (10-3) 
"11 •• 11 ...... 0 

A second example of an arc-length measurement is the Earth width, D, or the 
rotation angle about the attitude between the two Earth horizon crossings for either 
a rotating sensor or a~fixed sensor mounted on a spinning spacecraft. A given Earth 
width implies that the nadir angle, 11, between the attitude and the center of the 
Earth must have one of two possible values, as shown in Fig. 10-4. Thus, although 
the Earth-width measurefl/l!nt is a rotation angle, it is classified as an arc-length 
measurement because the resulting attitude loci are small circles. 

Fig. 10-4. A given Earth width, D, results in two possible nadir angles, 'It and 112" 111 corresponds to the 
scanner scanning "above" the center of the Earth (C- C) and 112 corresponds to the sensor 
scanning "below" the center of the Earth (B - B). This gjves two sets of loci, L"I and L,,2> 
for the possible position of the attitude . ., is the fIXed angle between the horizon sensor and 
the spin axis. 

The Earth-width measurement is more complex than the Sun angle measure
ment in two ways. First; as mentioned above, a given Earth width corresponds to 
two possible.discrete nadir angles. As illustrated in Fig. 10-4, a given Earth width, 
D, can correspond to the two horizon crossing points, C. As the points move about 
the perimeter of the Earth's disk, point A traces out the locus, 4", of possible 
attitudes at a fixed nadir angle, 1J" from the Earth's center, E. However, the same 
value of D can also correspond to horizon crossing points at B. In this case, the 
locus of possible attitudes is 4,., with nadir angle 112 < 11,. 
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The second complexity of the Earth-width measurements is that although the 
nadir angles have unit density (d., = I) over the entire celestial sphere, the Earth
width measurements do not. Figure 10-5 shows a plot of nadir angle as a function 
of Earth width for the geometry of Fig. 10-4. From this figure, it is clear that 
an/a." varies from infinity to zero. Thus, because n is a function only of." (for a 
spherical Earth), we may write 

do=lvnl=IVn(a,8)1 E, p, and y fixed 

=(an/a.,,)d., 
=(an/a.,,) E, p, and y fixed (10-4) 

where E and p are the position and angular radius of the Earth, and y is· the 
mounting angle between the sensor and the attitude. . 

Figure 10-6 shows a plot of attitude loci corresponding to Earth widths from 
Fig. 10-5 of approximately 5, JO, 15, 20, ... deg. The loci do not cover the sky 
because the nadir angle must lie between y + P and y - p, where y is the mounting 
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Fig. 10-5. Nadir Angle Versus Earth Width for Geometry of Fig. 1().4 (y=65 deg, angular radius of 
Earth = 20 deg). Such curves are symmetric about 1/ = Y only for y = 90 deg. Loci resulting 
from nadir angles at A, B, and C are labeled on Fig. 10.6. 

angle from the attitude to the horizon sensor and p is the angular radius of the 
Earth's disk. The physical interpretation of the measurement density as the density 
of loci on the celestial sphere is clear from the figure. When the attitude is near the 
A or C loci, the measurement density, do, is high. (Compare with Eq. (10-4) and 
Fig. 10-5.) Here, an uncertainty in n of 5 deg corresponds to only a small 
uncertainty in the attitude, IlLo, and the attitude uncertainty band will be narrow. 
In contrast, when the attitude is near B, the Earth-width measurement density is 
low and a shift in n of 5 deg corresponds to a large uncertainty in the attitude. The 
numerical form of the curve plotted in Fig. 10-5 and of the density (lo/a." are 
given in Section 11.3. 



e 
j 

11 
1/. 

is 
le 

10.3 ROTATION ANGLE MEASUREMENTS 349 

Many standard attitude observations are arc-length measurements. The shape 
of attitude loci, not the method by which the attitude data are processed, deter
mines the type of measurement. For example, the elevation of an identified star 

Fig. 10-6. Attitude loci equally spaced in Earth width for C4lnditions of Fig. I()'S. A, B. and C 
correspond to the similarly lettered points on Fig. I()'S. The measurement density, dUo is 
high near A and C and low near B. 

above the spin plane is equivalent to an arc-length measurement of the attitude 
relative to the star. A single magnetometer reading, in a known magnetic field, 
measures the arc-length distance between the magnetometer axis and the magnetic 
field vector. Most observations involving a single, known reference vector are 
arc-length measurements. 

10.3 Rotation Angle Measurements 
The second fundame~tal type of attitude measurement is·a measured rotation 

angle about the attitude between two known reference vectors, as illustrated in Fig. 
10-7. For concreteness, we will assume throughout this section that the two 

re Fig. 10-7. Standard Notation for Attitude Angles. 011 is the rotation angle about the attitude between 
the Sun and the Earth. 
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reference vectors are the Sun and the center of the Earth,· although they could 
equally well be any two points of known orientation in the sky. 

The geometry here is more complex than in the case of the constant arc-length 
measurements. Specifically. a fixed rotation angle,' 4», about the attitude between 
the Sun and the center of the Earth implies that the single-axis attitude lies on a 
curve with two discrete segments on the celestial sphere. Representative plots of 
these curves of constant 4» are shown in Figs. 10-8 and 10-9 for an Earth-Sun 
separation. t/I, of 30 deg. The curves overlying the coordinate grid are the lines of 
constant 4». For example, the curve labeled "40°" covers all possible orientations of 
the spacecraft attitude such that the rotation angle from the Sun to the Earth 
(about the attitude) is 40 deg. Thus, the set of constant ~ curves has the same 
relation to the rotatic·n angle measurement as the set of all small circles centered on 
the Sun has to the Sun angle measurement. 

The five views in Figs. 10-8 and 10-9 are centered at varying Sun angles, p, 
and azimuthal angles relative to the Earth-Sun great circle. The rotation angle 
curves are plotted in IO-deg intervals, except that curves between the Earth and 
Sun for rotation angles between 120 deg and 240 deg have been omitted because of 
the high measurement density in that region. In Fig. 1O-9(c), 25- and 35-deg 
rotation angle curves have been added as dotted lines to show the shape of the 
curves in the region of the null, or Sun vector/nadir vector cross product. The null 
will prove to be an important reference vector for many aspects of Sun-Earth
attitude geometry. 

Fig. 10-8. Rotation Angle Geometry for a JO.Deg Sun-Earth Angular Separation. View centered at 
p=6tJ des. azimuth =60 deg from Earth-Sun great circle. 

-The center of the Earth is a known reference vector, but a horizon crossing is not. This is discussed in 
detail in Section 10.5. 
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s 

Fig. 10-9. Different Views of Rotation Angle Geometry for a 30-Deg Sun-Earth Angular Separation. 
Views centered at p, azimuth coordinates of: (a) 30 deg, 0 deg; (b) 150 deg, 60 deg; (c) 90 
deg, 90 deg; and (d) 60 deg, ISO deg. 

The general character of the rotation angle curves is evident from the plots. As 
can be seen most clearly in Fig. 10-9(a). the great circle containing the Earth and 
the Sun divides the celestial sphere into two hemispheres. All rotation angle curves 
between 0 deg and 180 deg are in one hemisphere and all curves between 180 deg 
and 360 deg are in the other. In addition, the 30- and 330-deg rotation angle curves 
(i.e .• the curves with ~=~) divide each hemisphere into four quadrants, as can be 
seen in Fig. 1O-9(c). Each rotation angle curve (except those of 30 deg and 330 deg) 
consists of two nonintersecting segments in opposite quadrants of one hemisphere 
(Fig. 1O-9(c». All segments start and end on the Earth, the Sun, the zenith (E -I), 
or the antisolar point (S -I). 



352 GEOMETRICAL BASIS OF ATTITUDE DETERMINATION 10.3 

In contrast to the uniformly distributed small circles of {3 and T/ (i.e., dfj = d." 
= I), the rotation angle curves are characterized by their greatly varying density. 
For l/I < 90 deg. the rotation angle density (dot> =- 1 V4>( a. I» I. Sand E fixed) is 
greatest between the Earth and the Sun (and between the zenith and the antisolar 
point) and approaches zero as a limit in the region of the null or the anti null. 
Recall that a low rotation angle density means that a small change in rotation 
angle corresponds to a large change in attitude. Figure 1O-9(c) shows that a char.ge 
of only 5 deg in rotation angle from 30 deg at the null to either 25 deg or 35 deg 
corresponds to a shift in attitude from the nul' to a point over 30 deg of arc away. 
Thus, the region around the null or the antinull will yield poor attitude solutions based 
on the rotation angle measurement, because a smdl uncertainty in rotation angle 
corresponds to a large uncertainty in the attitude. Similarly. for the geometry of Figs. 
10-8 and 10-9, the area between the Earth and the Sun (or between the zenith and 
the antisolar point) will result in particularly good attitude solutions from rotation 
angle data. Expressions for the rotation angle density, which may be used to 
quantitatively evaluate the attitude accuracy. are given in Section 11.3. 

Figure 10-10 shows the rotation angle curves for an Earth-Sun separation of 90 
deg. In general, the rotation angle curves have become more uniformly distributed 
over the celestial sphere, although a large region of low density remains in the 
vicinity of the null and the antinull. . -

When the angular separation between the Earth and the Sun is greater than 90 
deg, the geometry is equivalent to that of separations of less than 90 deg with the 
location of the Earth and the zenith interchanged. Thus, the geometry for the 
30-deg angular separation shown in Figs. 10-8 and 10-9 is equivalent to the 
geometry for a 15O-deg separation with the zenith and Earth interchanged. 

BUll 

Fig. 10-10. Rotation Angle Geometry for a 9().Oeg Sun-Earth Angular Separation. Note that the 
measurement density is more nearly uniform than in Fig. 10-8. but is still low in the 
vicinity.of the null. 



10.4 CORRELATION ANGLES 353 

10.4 Correlation Angles 

We have seen that the attitude uncertainty depends on the measurement 
uncertainties, the measurement densities, and the correlation angle (or angle of 
intersection of the attitude loci). In this section, we give a formal definition of the 
correlation angle, expressions for the correlation angles among the arc-length and 
rotation angle measurements described above, and an example of the application 
of correlation angles and measurement densities to determine the accuracy of the 
Sun position in a two-axis Sun sensor. 

To specify the, angle of intersection between two loci, several choices are 
available. Geometrically, it is convenient to define the correlation angle as the 
acute angle between the tangents to the loci as was done in Section 10.1. However, 
for computer work or algebraic manipulation, this involves continuous tests on the 
range of an angle and adjustments when it falls outside the range 0 to 90 deg. Thus, 
for algebraic use, it is more convenient to define a unique correlation angle 
covering the range 0 to 360 deg. Given t",o arbitrary loci, L; and Lj' we formally 
define the correlation· angle between them, 8 11j, as the rotation angle at the 
intersection of the loci from the positive gradient of L; counterclockwise (as viewed 
from infinity toward the spacecraft) to the positive gradient of ~, as illustrated in 
Fig. 10-11. This.is equivalent in its effect on attitude uncertainties to defining 8;11 

as the acute angle between the tangents toLl and ~. Note that from the fonnal 
definition, we have 

(10-5) 

As an example of the correlation angle for two arc length measurements, 
consider the Sun angle/nadir angle correlation angle, ap/fI, shown in Fig. 10-11. 

Fig. 10-11. Definition of the Correlation Angle, 9 p1fI 

Bpifl equals the angle between the radii of the two small circles at their intersec
tion; however, this is just the Sun-Earth rotation angle, 4>, defined in Fig. 10-1. 
Thus, 

(10-6) 
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When the correlation angle is 0 deg or 180 deg, the two small circles are tangent 
and the two measurements give essentially the same information about the attitude. 
Thus, when the correlation angle is small (or near 180 deg). the attitude uncertainty 
is largest, because the component of the attitude tangent to the two circles is 
essentially unknown. In contrast, when the correlation angle is near 90 degor 
270 deg, the two measurements are independent and the attitude uncertainty is 
smallest. 

As an example of the correlation angle for arc length/rotation angle intersec
tions, we consider the Sun angle and Sun~Earth rotation angle measurements. 
Figures 10-8 through 10-10 are convenient for studying the general character of 
these loci intersections. The latitude lines on the underlying coordinate grid in 
these figures are curves along which the Sun angle is constant. because a fixed Sun 
angle, fJ, implies that the attitude lies on a small circle centered on the Sun. The 
fJ=60 deg locus is marked on Fig. 10-8. Thus, in Figs. 10-8 through 10-10, 8 pl., is 
simply the angle between the constant <I> curves and the constant fJ curves as 
indicated in Fig. 10-8 between the /3=60 deg and <1>=30 deg loci. The value of the 
angle at any point on the celestial sphere is derived in Section 11.3 as 

8 pl., = arc tan( tant~ns: <I> - cot <1» (10-7) 

8 p1tp =0 implies that the constant /3 and constant <I> curves are tangent. As is most 
easily seen in Figs. 10-8. and 10-9 (c), this occurs when the attitude lies on the great 
circle containing the Earth and the null· (shown as a dashed line on the figures). 
Consequently, along this great circle, no information is available on the component 
of the attitude tangent to the constant /3 and <I> curves. 

Because the Sun angle and the nadir angle are the same type of measurement, 
a similar relationship must hold for the nadir angle/rotation angle correlation 
angle, 8..,/tp: 

8..,/"= arc tan( ta tan ~ <I> -cot <1» 
nT/sm 

(10-8) 

Also by symmetry with fJ/<I>, 8..,/tp=0 when the attitude lies on the Sun-null great 
circle. 

The set of all possible correlation angles relating any set of attitude measure
ments satisfies an addition theorem. For example, if Gp, G.." and Gil> are the 
directions of the gradients of the constant fJ, 1J, and <I> curves, respectively, then we 
can see from Fig. 10-12 that 

8 pl,,+8..,/tp+8"IP=(360·n)deg n=lor2 (10-9) 

where '1 = I jf th~ vectors are in the order G p' G", G., and n = 2 if they are in the 
order Gp, G." G..,. Equation .(10-9) is particularly useful for the approximate 
evaluation of correlation angles, because frequently one or two of them are easy to 
estimate. 

• This is true everywhere along the Earth-null great circle except at the Earth. Zenith. null. and antinull, 
where the tangent to the constant ~ curve is undefined. 
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... 
Fig. 10-12. Addition Theorem for Correlation Angles. The sum of the correlation angles for any set of 

measurements must sum to a multiple of 360 deg. 

Correlation angleS will be used extensively in Chapter II to determine the 
attitude accuracy from various measurement types. To illustrate the versatility of 
the correlation angle and measurement density concepts, we analyze here the 
internal accuraoy of the solid angle Sun sensors described in Section 6.1. Specifi
cally, given a sensor with a circular field of view 128 deg in diameter, ana- a 
uniform reticle pattern with an O.5-deg step size (or least significant bit) on both 
axes at the boresight, we wish to determine the maximum inaccuracy in the 
measured posiiion of the Sun, assuming -that there is no error in the sensor 
measurements. Our procedure will be first to detemune the type of measurement 
made by the Sun sensor and then to determine the measurement densities and the 
correlation angle between the two sensor measurements. 

Figure 10-1-3 shows the locus of Sun positions corresponding to given output 
angles f and A. (Compare Fig. 10-13 with Fig. 7-9.) Oearly, the loci of Sun 
positions corresponding to a given f ot A output signal are great circles at a 
constant rotation angle about the X and Y axes, respectively, from the sensor 
boresight which defines the center of the field of view of the sensor.· (These 
rotation angle loci are different from those of Figs. 10-8 through 10-10 ~use the 
rotation angle is being measured about the sensor axis rather than about the 
position of the Sun.) 

To determine the measurement density on the celestial sphere~ we note that the 
separation between the sensor input slit and the reticle pattern on the back of the 
sensor is a constant. Therefore, equal steps along the reticle pattern correspond to 
equal steps in the ~ngent of the angle from the boresight to the Sun along the two 
axes, i.e., tanf and tanA. Therefore, the density of the step boundaries on the 
celestial sphere is the derivative of the tangent of the measurement angles. (Com
pare with Eq. (10-4).) Thus, dr = l/cos2r, dA = l/cos'-A, and the measurement step 

• The locus of Sun positions for constant r or A is a great c:in:le only if the index of refraction, n, of the 
material inside the sensor is l. If n .p I, then the loci will deviate slightly from great c:in:1es and A and r 
will not be independent. In this elUUJlpie, we will assume nco I, as is commonly true for high resolution 
sensors_ 
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Fig. 10-13. Correlation Angle and Measurement Density Geometry for a Soiid Angle Sun Sensor 

size on the celestial sphere is 0.5° / d. At the boresight the measurement density is I 
and the Sun angle is being measured in O.5-deg steps; along an axis at the edge of 
the sensor (for example, at f = 0, A = 64 deg) the density is 1/ cos264 ° = 5.20. and 
the steps are 0.5° /5.20=0.096 deg. Thus, ignoring problems of diffraction. reduced 
intensity, and manufacturing imperfections, all of which tend to be worse at the 
edge, the resolution at the edge of the sensor is approximately five time better than 
at the center. 

To evaluate the uncertainty in the position of the Sun. we still need to de
termine the correlation angle, S A/r. between the two loci. This can be obtained by 
inspecting Fig. 10-13. Specifically, SA/r equals the rotation angle about the Sun 
from the sensor + Y axis to the - X axis. The angular separation between the X 
and Y axes is 90 deg; therefore, the correlation angle at any point in the sensor 
field of view may be evaluated using Fig. 10-10 with the Sun, Earth. and null 
replaced by the sensor + Y axis, the - X axis, and the boresight, respectively. as 
shown in Fig. 10-14 with the center of the view shifted to the boresight ~xis. 

Figure 10-14 shows that SA/r is near 90 deg in the vicinity of the boresight 
and along the X and Yaxes. For SA/r=90 deg, the uncertainty in the position of 
the SUil, Us, is smallest and is equal to half the length of the diagonal of a rectangle 
whose sides are the angular step size. At the boresight, Us = 0.5 X 0.5 ° X v'2 = 0.154 
deg. At the sensor boundary along one of the axes, Us = 0.5 X (0.52 + 0.0962)2 = 
0.255 deg. Along a line midway between the X and Y axes, steps in A and f are of 
equal size, but the measurement loci do not intersect at right angles; Along this line 
we may use Napier's Rules (Appendix A) to obtain 

tan A = tan f = cos 450 tan/3 (lO-IOa) 

and 

tan(O.5S A/r) = cos /3 (IO-lOb) 

where /3 is the angle from the boresight to the Sun. At the sensor boundary, /3=640 

and. therefore. SA/r=47.34°. A=f=55.40°. dA =dr =3.1O. and the step size is 

I 
I' 
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Fig. 1()'14. Correlation Angles for Solid Angle Sun Sensor 
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0;5° /3.10=0.161°. This may be further evaluated using the upper form of Eq. 
(11-14) to give Us =0.201 deg. (If the loci at the boundary midway between the two 
axes formed a re"tangle on the celestial sphere rather than a parallelogram, the 
attitude uncertainty there would be 0.114 deg.) Thus, although the single-axis 
resolution varies by a factor of 5 over the· full range, the attitude uncertainty 
fluctuates by only about 50%. A similar analysis for a Sun sensor with a 32-deg 
"square" field of view (Fig. 10-14) and other properties as above gives Us =O.354 
deg at the boresight, 0.308 deg at the center of each edge, and 0.300 deg at the 
corners. 

105 Compound Measurements-Sun-to-Eartb Horizon Crossing 
Rotation Angle 

Sections 10.1 through 10.4 described measurements involving one or two 
reference vectors whose orientation in inertial space is known. The technique that 
we have used is to examine the locus of possible attitudes for any given measure
ment to classify that measurement. However, some common attitude measurements 
do not fall into the basic categories that we have established thus far. One example 
of such compound measurements is the rotation angle about the attitude from the 
Sun to the Earth's horizon, c'PH • The horizon sensor which produces this measure
ment is assumed to have a field of view which is a point on the celestial sphere, 
which thus sweeps out a small circle as the spacecraft rotates and provides an 
output pulse upon crossing the Earth's horizon. 

The Sun-to-Earth horizon crossing rotation angle differs from other rotation 
angle measurements in that the location of the horizon crossing on the celestial 
sphere is unknown. We know only that the horizon crossing is a given arc-length 
~istance from the nadir vector. Thus, c'PH is neither a rotation angle measurement 
nor an arc-length measurement and the attitude loci corresponding to constant 
values of c'P H do not have the same form as the loci corresponding to {J or tit 
measurements. 
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Let 1/1, '1, and p be the Sun-nadir separation, the sensor mounting angle 
(relative to the attitude), and the angular radius of the Earth. respectively. Figures 
10-15 and 10-16 show the shape of several constant cI>H curves for 1/I>y+p and 
1/1 < '1 + p, respectively. The solid curves are the attitude loci for a constant Sun to 
Earth-in horizon crossing angle and the dashed curves are the attitude loci for a 
constant Sun to Earth-out horizon crossing angle. Earth-in, or in-triggering. denotes 

Fig.··10-15. Sun-to-Earth Horizon Crossing Rotation Angle, <f>H' Geometry for I}>y+p. The disk of 
the Earth is shaded. 

Fig. 10-16. Sun-to-Earth Horizon Crossing Rotation Angle, <f>H' Geometry for I} < y + p. The disk of 
the Earth is shaded. 
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a sensor crossing from space onto the disk of the Earth and Earth-out, or 
out-triggering, denotes a crossing from the disk of the Earth to space. 

An examination of the figures shows several characteristics of the (l)H loci. The 
loci are entirely contained between small circles of radii y + P and y - p, because 
these are the only conditions under which the sensor will cross the Earth. In the 
limit p~O, the set of all 41» H loci lie on a small. circle of radius y about the Earth; 
that is, ." = y. The constant 41» H loci are neither small circles nor constant rotation 
angle curves, but a third, distinct measurement type. Note that in Fig. 10-16 the 
45-deg locus consists of two, discrete, nonintersecting, closed curVes. In this case, it 
is possible to have four discrete, ambiguous attitude solutions when combining (l)H 

with the nadir angle measurement. Unfortunately, the formulae for the various 
correlation angles involving (l)H and other attitude measurements are inconvenient 
to use. However,. the location of several-of the correlation angle singularities can be 
identified from the figures. The 41» H measurement may be combined with either the 
Sun angle or the nadir angle measurement to determine the attitude. Attitude 
singularities will occur whenever the 41» H loci are tangent to small circles centered on 
the Sun (Lp) or the Earth (L,,), respectively. Reference to Figs. 10-15 and 10.16 
shows that for the horizon angle/nadir angle method, the constant (l)H loci are 
tangent to small circles centered on the Earth at the transitions from solid to 
dashed lines. Thus, an .,,/(I)H singularity occurs when there is a transition from 
Earth-in crossing to Earth-out crossing. Equivalently, 8'1/4>8 = 0 whenever the 
sensor field-of-view small circle is tangent to the Earth. Similarly, 8 p/(fl =0 
whenever the constant 4I»H loci are tangent tQ small circles centered OR the Sun. 
Again, these Lp curves are the latitude lines of the underlying grid. Representative 
points where 8 p/4>8 =0 have been marked by the. letter A on Figs. 10-15 and 10-16. 
This occurs when the Sun vector, the nadir vector, and the horizon crossing vector 
are coplanar. 

Finally, we may determine the attitude by using two horizon crossing mea
surements, an Earth-in crossing, and an Earth-out crossing. (For example, an 
Earth-in rotation of 45 deg and an Earth-out rotation angle of 75 deg implies that 

. the attitude must be at one of the two points marked B on Fig. 10-16.) For a 
spherical Earth, this gives us the same information as an Earth-width measurement 
plus a Sun-to-nadir vector rotation angle measurement. As discussed in Section 
10.3, a singularity occurs in the Earth-width/rotation angle method whenever the 
attitude lies on the Sun-null great circle shown as a dotted line in Fig. 10-16. At 
any point along this line, the 41» H loci passing through that point are mutually 
tangent. Although this cannot be clearly established from the figure, it is at least 
consistent with the shape of the attitude loci along the Sun-null great circle. 

10.6 Three-Axis Attitude . 
Thus far we have described procedures for using two independent measure-

ments to determine the orientation of a single spacecraft axis. For single-axis 
attitude, this is all of the information that is desired. However, to completely 
determine the orientation of a rigid spacecraft, three parameters must be deter
mined and, therefore, an additional measurement is· required. For three-axis
stabilized spacecraft, these three parameters are frequently chosen to be three 



360 GEOMETRICAL BASIS OF AltiTUDE DETERMINATION 10.6 

angles. known as Euler angles, which define how the spacecraft-fixed coordinates 
are related to inertial coordinates. This procedure is described in Section 12.1. 

An alternative procedure frequently used for spinning ~pacecraft is to define 
the orientation in space of a single spacecraft axis (such as the spin axis) and then 
to define the rotational orientation of the spacecraft about this axis. This rotation 
angle, also called the azimuth or phase angle, may be specified as the azimuth of 
some arbitrary point in the spacecraft relative' to some reference direction in 
inertial space. as illustrated in Fig. 10-17. In this figure. the underlying coordinate 
grid is fixed in inertial space. 

,Fig. .. I()'I7. DerIDing the Three-Axis Orientation of the Spacecraft by Defining the Spin Axis and 
Azimuth in Inertial Coordinates. The underlying coordinate grid is an inertial coordinate 
system. 

To determine the three-axis attitude specified by the spin axis direction and 
azimuth. we first determine the orientation in inertial space of the spacecraft spin 
axis using any of the methods described in Sections 10.1 through 10.5. The one 
remaining attitude component is 'then measured by measuring the rotation angle_ 
about the attitude between some fixed direction in inertial space and an arbitrarily 
defined reference direction fixed in the spacecraft. For example, we might record 
the time at which a slit Sun sensor parallel to the spin axis sees. the Sun and assume 
that the spacecraft is rotating uniformly to determine its relative azimuth at any 
other time. Alternatively. if we are using a wheel-mounted horizon scanner (Section 
6.2), we· could- measure the relative azimuth between the center of t.he disk of the 
Earth (midway between the telescope Earth-in and -out crossings for a spherical 
Earth) and some reference mark fixed in the body of the spacecraft, as has been 
done for the AE series of spacecraft. This pilch angle may be used directly for 
Earth-oriented satellites or, with ephemeris data. transformed into an -inertial 
azimuthal measuremenl The reference point for the inertial azimuth is arbitrary. 
However. the perpendicular projection of the vernal equinox onto the spin plane is 
commonly used. 

Another alternative procedure, frequently used on three-axis stabilized space~ 
craft, is to determine the attitude by measuring the orientation in spacecraft 



10.6 . THREE-AXIS ATTITUDE 361 

coordinates of two reference vectors fixed in inertial space. For example, three 
orthogonal magnetometers may be used to measure the orientation of the Earth's 
magnetic field iil spacecraft coordinates. Similarly, a- two-axis Sun sensor can 
provide the coordinates of the Sun vector in spacecraft coordinates. The specifica
tion of these two vectors in spacecraft coordinates fixes the orientation of the 
spacecraft in inertial space. 

When using two reference vectors, the attitude problem is overdetermined 
because we have measured four parameters (two orientation parameters for each 
reference vector) but have only three independent variables. This is clearly shown 
by the Sun sensor/magnetometer example. The Sun sensor output defines a 
spacecraft axis which 'is pointing toward the Sun. It remains only to determine an 
azimuth about this axis. However, specifying the direction of the magnetic field 
vector in spacecraft coordinates determines both the azimuth of the spacecraft axis 
paralJeJ to the magnetic field and also the angular separation of the magnetic field 
vector and the Sun vector. (See Fig. IO-IS.) The latter quantity is not an indepen
dent parameter because it is fixed by knowing the direction in inertial space of 
both the Sun vector and the magnetic field vector. (See Sections~.3 and 12.2 (or a 
discussion of using this fourth parameter as a test for invalid data.) 

z 

J-=o...------y 

x 
'Fig. 10-18. Sun (8) and Magnetic Field (M) Geometry 

If we are determining three-axis attitude by determining the orientation in 
spacecraft coordinates of two reference vectors, then all the analysis of Sections 
10.1 through 10.5 can be applied directly to determining the orientation of each
reference vector. For example, the theory of correlation angles was applied to the 
output of a two-axis Sun sensor at the end of Section 10.4. Similarly, a single 
magnetometer measurement in a known magnetic field is an arc-length measure
ment specifying the angle between the external magnetic -field and the mag
netometer axis.· The same analytic procedures can be applied to other types of 
sensors as well. 

• Ordinarily, magnetometer measurements are obtained from three mutually perpendicular magne
tometers, The sum of the squares of the readings determines the overaU field strength. -Any two of the 
measurements may then be taken as the remaining independent numbers. These are two arc-length 
measurements which together determine the orientation of the magnetic field in spacecraft coordinates 
to within a discrete ambiguity which may be resolved by the sign of the third measuremenL 
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SINGLE-AXIS A TIITUDE DETERMINATION METHODS 

11.1 Methods for Spinning Spacecraft 
General Requirements, Specijie Solution Methods, Nonin
tenecting Loci 

11.2 Solution Averaging 
11.3 SingJe-Axis Attitude Determination Accuracy 

Attilfllle Accuracy for MeQSUTemenlS With UncorrelDt~d 
Uncertainties, Attitude Accuracy for MeQSUTements With 
Correlated Uncertainties. Measurement Densities and 
Correlation Angles 

11.4 Geometrical Limitations on Single-Axis Attitude Ac
curacy 
limitations on the Attitude Direction Due to Attitllde 
Accuracy Requirements, Limitations on Reference Vector 
Direction, Applications 

I1.S Attitude Uncertainty Due to Systematic Errors 
Behovior of Single-Frame Solulions, Identification of 
Singularities, Slate Vector Formulation 

This chapter describes standard procedures for determining the orientation in 
space of any single spacecraft axis. For illustration we will normally assume that 
this is the spin axis of a spin-stabilized spacecraft. However, this axis could equally 
well be that of an attitude sensor, such as the rotation axis of a scanning horiZon 
sensor, or any axis in a three-axis stabilized spacecraft. 
--- The methods presented here are all deterministic in that they use the same 

number of observations as variables (normally the two parameters required to 
specify the orientation of a single axis). The models presented have all been used 
·for the operational support of a variety of spacecraft. The directions to the Sun and 
to the center of the Earth or to a point dn the Earth's horizon are used as reference 
directions for illustration; however, the techniques presented may equally well be 
applied to any known reference vectors. All of the models given involve different 
observations made at the same time. However, if the attitude is assumed constant 
or if a dynamic model for attitude motion is available, these methods may be 
applied to observations made at different times. 

Section 11.1 describes the basic, deterministic single-axis methods and the 
problem of nonintersecting loci. Section 11.2 describes the resolution of solution 
ambiguities, data weighting, and solution averaging. Sections 11.3 and 11.4 then 
provide analytic expressions for single-axis uncertainties, limitations on solution 
accuracy due to the relative geometry of reference vectors, and application of this 
information to mission analysis. Finally, Section 11.5 describes the behavior of 
single-axis solutions in the .presence of systematic biases, identifies the specific 
singularity conditions for each of the models in Section 11.1, and introduces the 
need for state estimation procedures to· resolve the biases characteristic of real 
spacecraft data. 
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11.1 Methods for Spinning Spacecraft 

Peter M. Smith 

Determining the attitude of a spin-stabilized· spacecraft in the absence of 
nutation is equivalent to fixing the orientation of the unit spin vector axis with 
respect to some inertial coordinate system. The most common system used is that 
of the celestial coordinates right ascension and declination. described in Section 
2.2. In general. ambiguous solutions for the attitude are obtained, due to multiple 
intersections of the attitude loci. and must be resolved either by comparison with 
an a priori attitude or by using the method of block averaging described in Section 
11.2 

11.1.1 General Requirements 

For a deterministic, two-component attitude solution, we require two reference 
vectors with their origin at the spacecraft and either (a) an arc-length measurement 
from the spin vector to each reference vector, or (b) one arc-length measurement 
and a rotation angle measurement about the spin axis between the reference 
vectors. 

As shown in Fig. II-I, each arc-length measurement for case (a) defines a 
cone· about each reference vector; the intersections of these cones are possible 
attitude solutions. For concreteness. let us assume that the two known reference 

Fig. II-I. Single·Axis Attitude Solution Using Two Arc-Length Measurements, Case (a) 

• Recall -'rom Chapter 2 that we may define single-axis attitude either by three components of a unit 
vector, A, or by the coordinates (a,S) of the point at which that vector intersects the unit c:elestial 
sphere. In the former c:ase, we think of an arc-length measurement as determining a cone about the 
reference vector; in the latter c:ase, as determining a small circle (the intersection of the cone with the 
celestial sphere) on the c:elestial sphere about the referenc:e point. Bec:ause the two representations are 
equivalent, we will use them interchangeably as convenient. See Section 2.2.1 for a discussion of the 
relative merits of the spheric:a1 and rectangular coordinate systems. . 
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vectors are the Sun and nadir vectors, Sand E. The cone about S has a half angle, 
p, equal to the angular separation of this vector and the unknown attitude vector. 
A; similarly, the cone about t has a half angle, 1/, equal to the angular separation 
between t and A. The possible solutions for the attitude are AI and A2• 

Analytically, this geometrical problem is specified by .three simultaneous 
equations in three unknowns, Ai' Aj , Ak : 

A·S=cosfl (II-I) 

A·E=cos1/ (11-2) 

A·A=I (1.1-3) 

These three equations may be solved using the following technique due to 
Grubin (1977]. Let 

cosfl- t,SCOS1/ 
x • • 2 

1- (E'S) 

cos 1/ - t,Scosfl 
y= • A 2 

1-(E·S) 

z = ± yl- xcosfl-yCOS1/ 
• • 2 

I-(E·S) 

C=SXE 

Then, the solutions for A are given by 

A=xS+yE+zC 

(11-3a) 

(11-3b) 

( 11-3c) 

(II-3d) 

(11-3e) 

Equation (11-3e) gives the two possible ambiguous attitude solutions. If the 
radicand in Eq. (11-3c) is negative, then no real solution exists; i.e., the cones do 
not intersect. Utility subroutine CONES8, described in Section 20.3, may also be 
used to solve for the intersection of two cones. 

Figure 11-2 shows case (b), in which an arc-length measurement and a rotation 
angle measurement are combined to solve for the attitude. The arc-length mea
surement, say fl, constrains the attitude to lie on a small circle of radius fl centered 
at S. This small circle is called the Sun cone, where the reference vector is the Sun 
,:::ector. In addition, the rotation angle measurement, 4». r!qpires tha_f tpe attitudc:. 
A. lie at the intersection of the great circles defined by (A. S) and (A. E). where S 
and t are known reference vectors. To solve for the attitude. we first solve for 1/. 
Using the law of cosines for the sides of spherical triangle AES (Appendix A), it 
follows that 

cos If = cos fl cos 1/ + sin fl sin 1/ cos 4» (11-4) 
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Fig. 11-2. Single-Axis Attitude Solution Using an Arc-Length and a Rotation Angle Measurement, 
Case (b) 

where 1[; is the arc length between E and S. Solving for 1J gives two possible 
solutions: 

(H~5) 

Each arc length, 1J, defines a small circle about E. When E rep-resentS the nadir 
vector, this small circle is called the nadir cone. The evaluation of A now reduces to 
case (a) as the attitude is constrained to lie at the intersections of the small circles 
with radii equal to arc-length measurements fl and 1J. Because of the twofo!d 
ambiguity in 1J, a maximum of four possible solutions can be obtained for A. 
However, of the two possible attitudes computed for each value of 1J, only one 
member of each pair will be consistent with the original rotation angle. ~; hence, 
the fourfold ambiguity is reduced to a twofold ambiguity as in case (a). 

Adjustments to the data are required for certain sensor types. before de
terministic solutions can be computed. For visible-light Earth sensors. terminator 
crossings must be differentiated from horizon crossings and removed from further 
processing. The problem of identification of terminator crossings is described in 
Section 9.3. Attitude determination methods which use the angular radius of the 
Earth must obtain a value based on an oblate Earth. Methods for modeling the 
Earth's oblateness are described in Section 4.3. Both Earth oblateness and 
spacecraft or.bital motion cause distortion in the observed Earth width. This may 
be corrected by constructing a fictitious Earth width-i.e., that which would have 
been observed if the spacecraft were stationary-as shown in Fig. 11-3. The two 
disks represent the position of the Earth at horizon-in and -out crossing times, 'I 
and to' Each disk has a radius (PI'PO) equal to the ang.ular Earth radius for the 
appropriate horizon crossing. EI and Eo are the nadir vectors evaluated at 1/ and 
to' The open dots represent the horizon crossing events for an Earth fixed at its 
position at time tl , and the solid dots represent the horizon crossing events for: an 
Earth fixed at its pOsition at to' The observed Earth width, Q, is corrected to the 
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Fig. 11-3. Earth-Width Corrections Caused by Orbital Motion of the Spacecraft Between Times of 
In-crossing Observation and Out-crossing Observation. (Motion is greatly exaggerated.) 

fictitious value, 0' = 0 - ~O. Because the horizon vectors for each of the four 
crossing events in Fig. 11-3 may be calculated (given an a priori attitude and Earth 
model), utility routine PHASED (Section 20.3) may be used to compute ~O. 0: is 
the width that would have been observed for a spherical Earth of radius PI fixed' at 
its position at time I] and may be used to obtain an accurate attitude solution. For 
.Ii spin-stabilized spacecraft, the spin axis attitude is completely described by its 
right ascension and declination. However, for some spacecraft, a knowledge of the 
pointing direction of a particular body fixed vector, X, may be required. The 
azimuth angle measures the rotation of this body vector about the spin axis. For 
spinning spacecraft with Sun or Earth sensors, this azimuth angle is effectively 
measured with every sensor triggering. Thus, the calculation of an azimuth angle is 
trivial. 

11.1.2 Specifk Solution Methods 
The attitude determination methods described below all use the procedures for 

case (a), case (b), or some multiple-step combination of these. The reference vectors 
are arbitrary. but for convenience, we will use the Sun vector and the nadir vector 
throughout: For a, spacecraft equipped with one Sun sensor and two Earth sensors , 
mounted at different angles from the spin axis and capable of simultaneous I: .; 

operation. six attitude determination methods may be used:!, 
l. Earth-width/Sun angle method :i~ 
2. Dual Earth-width/Sun angle method ii" 
3. Earth midscan rotation angle/Sun angle method ii i 
4. Earth-width/Earth midscan rotation angle method i,",; 

5. Dual Earth-width/Earth midscan rotation angle method " 
6. Single horizon rotation angle/Sun angle method ' : 
Each of these is described below. Figure 11-4 summarizes the geometry and i i~ 
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Fig. 11-4. Single-Axis Attitude Determination Methods. In each step. the iJidependent variables are 
underlined and the variable being solved for is circled. 

notation for the various methods. The steps used in evaluating the attitude for each 
method are given with the known observables used in the computations. The 
circled variables represent the parameters being solved for iq each of the steps. For 
example, in the Earth-width/Sun angle method, spherical triangle AHE is used in 
step 1 to compute the nadir angle, 'IJ, with twofold ambiguity. The computed values 
of 'IJ are then used in step 2 to calculate the attitude with fourfold ambiguity. For 
each method, at least ~ twofold ambiguity may remain, and this may be resolved 
either by comparison with an a priori attitude or by the'block averaging process 
described in the next section. 

In principle, any of the six methods can be used alone to determine .the 
spacecraft attitude. In practice. however, all of the applicable methods are norm
ally used and the final attitude is taken as some weighted average .of the results. 
The principal reasons for this redundancy are: (I) to ensure that a solution is 
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obtained when some types of data are not available because of hardware or 
software malfunctions, (2) to reduce the effect of possible biases or other systematic 
errors by using methods which vary in their dependence on the observables. and (3) 
to aid in the identification of biases and estimation of the size of systematic errors 
by comparing the various solutions throughout the data pass. (See Section 11.5 for 
a further discussion of the latter procedure.) The principal disadvantage of using 
multiple solutions is that it makes the correct statistical treatment of the variables 
more difficult because a single measurement. such as a Sun angle. enters several 
calculations and is formally treated as an independent measurement each time it is 
used. 

11.1.2.1 Two Arc-Length Methods 

I. Earth-Width/Sun Angle Method. The attitude observables used are S, E, 
P. 'Y. U. and p. Using the law of cosines for sides on the spherical triangle shown in 
step I for the method, we may solve for the nadir angle, 1J: 

cos'Ycosp± sin ycos(U/2)"vsin4ycos1(U/2) + cos4y - cos2p 
cOSlJ= 

sin4y cos2(U/2) + cos4y 
( 11-6) 

The nadir angle is determined with twofold ambiguity. The ;l';\f:'iections of the 
nadir cone and Sun cone shown in step 2 are then used to compuie a maximum of 
four solutions for the attitude using utility routine CONES8 (Section 20.3) or the 
analytic procedure described above. 

2. Dual Earth-Width/Sun Angle Method, The attitude observables used are 
So.t. p, 11' 'Y2' PI' P2' UI• and U2• where the suffixes I and 2 refer to separate Earth 
sensors I and 2. This method requires simultaneous Earth coverage by both Earth 
sensors. In step I of Fig. 11-4. the attitude geometry is shown only for sensor I; 
however. a similar spherical triangle exists for sensor 2. The law of cosines of the 
sides may be applied to both triangles to give 

COSPI = cos 'Y I cos 11 I +sin'Ylcos(UI/2)sinl1l 

cos P2 = cos 'Y2COS 112 + sin 'Y2cos(U2/2)sin 112 

( 11-7) 

(11-8) 

If noise and bias differences between the two sensors are ignored. then 
lJ2 = lJl = 'Il and the two equations may be combined to give 

[ 
COSY2COSPI-COS'YICOSP2 ] 

'IJ = arc Ian sin Ylcos(Ut/2)coSP2 -'Sin Y2cOS(U2/2)coSPI 
(11-9) 

Unlike the single Earth~width method, this method provides an unambiguous 
nadir angle, 'IJ, The analysis now parallels the single Earth-width method described 
above. As shown in step 2, A is constrained to lie at the intersections of the nadir 
cone and Sun cone and may be obtained using either CONES8 or the analytic 
procedure. 

1n general, 'Ill 1:: 'Il2 because the sensors will have different biases and different 
noise. Thus. Eqs,'(lI-7) and (11-8) are overspecified and Eq. (11-9) will provide 
only an approximate solution which fails to account for the differences in un-
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certainties between the observables. Equation (11-9) generally should not be 
regarded as the statistically best estimate of 'q. 

11.1.2.2 Arc-Lengtb Rotation Angle Methods 

The methods discussed in this subsection make use of the mid scan rotation 
angle, cI>, or the rotation angle from the Sun vector to the nadir vector, measured 
about the spin axis. Typically. this angle 'is observed by measuring the in-crossing 
and out-crossing rotation angles separately and averaging them. 

3. Earth Mldscan Rotation Angle/Sun Angle Method. . The attitude observ
abies used are S, tp. and cI>. Referring to the attitude geometry shown in step I 
for this method, we see that the law of cosines for sides may be used on spherical 
triangle ASE to compute the nadir angle with twofoldambiguity.,Thus. 

cos P cost/!:!: sin p cos cI>ysinzp cos~"" coszp - co~ 
cOS'q= (11-10) 

sinzp cos2cI> + cosZp .. 

Step 2 shows that the attitude is constrained to lie at the.intersection of the 
Sun cone and one of the two possible nadir cones. CONES8 may therefore be used 
to compute up to a maximum of four solutions, which may be decreased to two 
solutions by comparing the observed midscan rotation angle and calculated values 
for this angle using each of the four possible attitude solutions. Only. two of"the 
four attitudes will yield the correct value for cI>. 

4. Ear!b-~idth/Earth Midscan Rotation Angle Method. The attitude obser
vables are S, E, n, cI>, p, and 'Y. Step I shows that. the law of cosines for sides may 
be applied to spherical triangle AHE to compute the nadir angle with twofold 
ambiguity, as given by Eq. (I ]-6). The Sun angle, p, is then solved for in step 2 by 
applying the law of cosines for sides to !riangle ASE: 

cos'q cos If :!: sin "I cos cI>Ysin,." cos2ct> + cos,." - cos~ 
cosp= (11-11) 

sin,." coslcI> + cos'"r, 

The two possible Sun cones and two nadir cones may be combined, as shown 
in step 3, to yield a total of eight attitude solutions from CONES8. Comparison of 
observed and calculated values of cI> rc:duces the number of solutions to four. 

S. Dual Earth-Width/Earth Midscan Rotation Angle Method. This method 
requires si.ml!ltaneous Earth coverage by two Earth sensors. The attitude observ
abies are S, E, nl , Oz, PI' PZ' 'Y I' 'Yz, and cI>. The analysis for step 1 of this method 
parallels the dual Earth-width/Sun angle method and, hence, Eq. (11-9) may be 
used to calculate an unambiguous value for the nadir angle. Step 2 shows how this 
nadir angle may be combined with the observed midscan angle to compute a Sun 
angle. This computation parallels that described above in step 2 for the single 
Earth-width/Earth midscan rotation angle method. Hence, Eq. (1 I-II) may be 
used to compute the Sun angle. Using CONES8, the two possible Sun cones and 
nadir cone are combined to calculate four solutions for the attitude. The fourfold 
ambiguity is reduced to two by comparing the observed and the' calcukted cI> 
angles. 
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11.1.2.3 Compound Arc-Length Rotation Angle Method 

6. Single Horizon Rotation Angle/Sun Angle Method. This method superfi
cially resembles.the arc-length/rotation angle class. It is, however, a more compli
cated multistep prpcess because the inertial location of the horizon crossing vector 
'is unknown. (See Section 10.5 for 3:, discussion of the geometry of this measure
ment.) The attitude observab~s are S, E, {3, y, «1», and p. The attitude geometry for 
this method is shown in step I of Fig. 11-4. Applying the law of cosines for sides to 
spherical triangle ASH gives 1jI: 

cosljl = cos{3cosy + sin{3sin y cos «I» (11-12) 

Step 2 shows that CONES8 may be used to solve for the horizon ve~or, ii, 
using the arc-length measurementsljl and p. Two solutions are obtained for H. Step 
3 shows the application of CONES8 to triangle ASH using as reference vectors S 
and the two solutions for iI. A maximum of four solutions are obtained for the 
attitude. Two of these solutions are rejected by comparing observed and calculated 
values for «1». 

n.l.3 Nonintersecting Loci 

_ Throughout the foregoing discussion we have tacitly assumed that the various 
cone intersections always produce an analytical solution. However, in the presence 
of biases and randoni noise, the possibility arises that the pair of solution cones do 
not -intersect, or, that arc cosine and square root functions are undefined. There are 

. two methods for obtaining a solution in this-case. One method is to input some 
pr.edetermined bi~ such as a.Sensor mounting angle· bias -.or Earth angular radius 
bias. This change may produce the desired intersection and an attitude solution. 
Alternatively, we' may force the cones to intersect by computing a fictitious 
intersection point midway between the cones at their point of closest approach. If 
the necessary change in the arc-length measurements which define the half angles 
of the two cones exceeds a given tolerance, the forced solution is rejected. 

11.2 Solution AveragIng 

Peter M. Smith 

Application of the deteiministic attitude methods described in Section 11.1 to 
a span of data results in a set or block of attitude solutions consisting of several 
attitude estimates for each data frame. The D.,umher of attitude solutions for a 
frame depends on the number of valid methods used in processing. For example, 
the deterministic processing subsystem for the CTS spacecraft [Shear, et al., 1976], 
can in principle use up to 12 methods and return a maximum of .2 ambiguous 
solutions for each processing method. . ; 

This section describes qualitatively how the method of block averaging may be 
used to resolve the ambiguous solutions and how the resultant block of chosen 
attitude vectors is averaged to provide the best estimate for the spin vector. Block 
averaging requires only that the true solution vary more slowly with time than the 
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false solutions in the ambiguous sets. Therefore, it has general applicability and has 
been used in evaluating the pitch, roll. and yaw angles of the three-axis stabilized 
RAE-2 spacecraft as well as the spin axis right ascension and declination of 
spin-stabilized spacecraft such as AE, CTS, SMS, GOES, SIRIO. IUE and ISEE. 

Data Weighting. As the first step in the averaging process. a weight. W. is 
assigned to each individual attitude solution within the block. The weight for any 
one solution is the inverse square of the arc-length uncertainty for that solution. 
Several methods for calculating the single-frame arc-length uncertainties are de
scribed in Sections 11.3 and 12.3. The forced attitude solutions described in Section. 
11.1.3 are arbitrarily assigned a small weight to minimize their contribution to the 
averaging process, except for cases in which only forced solutions are available. 

Resolution of Ambiguous Solution and Block Averaging. Several methods are 
available to select the true solution from a block of data containing ambiguous 
solutions. The first method is to compare each set of ambiguous solutions with an a 
priori value for the attitude and to select the solution lying closest to this initial 
estimate. If no a priori estimate is available, an alternative procedure is to plot all 
of the attitude solutions in a right-ascension-versus-declination plot, as shown in 
Figs. 11-5 and 11-6. The set of correct solutions should form a cluster, because the 
correct attitude is assumed to remain approximately constant; the incorrect so.Iu
tions from each of the ambiguous sets will usually be more scattered, because the 
geometry of the incorrect solutions changes as the orbital position of the spacecraft 
changes during the data pass. Any attitude near the cen~er of the cluster may then 
be used as itn °a priori attitude for the subsequent elimination of ambiguous 
solutions. 
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Fig. 11-5. Right Ascension Versus Declination Plot Including Both SolutioD3 From Each Ambiguous 
Pair. Concentration of points neat decliilation of -8 deg indicates correct solution should 
be in that region. 
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Fig. 11-6. Right Ascension Versus Declination Plot Keeping Only Selected Solution From Each 
Ambiguous Pair for the Same Data as in Fig. 11-5. Note the greatly reduced range on the 
axes relative to Fig. 11-5. 

A third method is to use each of the solutions in each ambiguous set as trial 
solutions and choose the one which provides the best fit to the data. Thus, the first 
solution in the block is arbitrarily selected to provide the trial attitude and used to 
resolve the ambiguities. The set of remaining attitude solutions is averaged to 
obtain an initial attitude estimate. Because erroneous attitudes due to noisy or 
biased data or unrejected terminator crossings may be present, a residual edit 
process is performed. The residual. Ri• for each attitude. is defined as the angle 
between the individual attitude vector and the average attitude vector. The Ri 
values are used to compute a standard deviation. a, for a set of selected attitudes, 
according to 

(11-13) 

where Wi is the weight assigned to each selected attitude solution. The summation 
is over all the selected attitudes in the block. 'fPe selected attitudes are then 
compared with the average attitude, and any th'at differ in arc-length separation by 
more than No are rejected. (N is normally·chosen in the range 3 to 5.) A new 
averaged attitude is calculated from the edited group of attitudes. This editing 
procedure is repeated until no additional attitudes are rejected. A goodness-of-fit 
parameter associated with the· averaged spin vector and the M attitudes remaining 
is defined as oj M. In a similar manner, other ambiguous solutions present in the 
original unresolved set of attitudes are selected as trial attitudes and the whole 
procedure is repeated. The averaged spin vector and the set of attitudes associated 
with the lowest oj M value are selected as the true set of attitude solutions. 
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After the resolution of ambiguous solutions, the processing is the same for all 
the methods. The a priori attitude, or the selected trial attitude. is used to process 
the unresolved block of attitudes. The chosen attitudes are then averaged to obtain 
a new attitude estimate. The chosen attitudes are residually edited in iterative 
fashion until a self-consistent set of solutions remains. In practice, the laborious 
search for a trial attitude is conducted over a small subset of data because 
processing time is proportional to the square of the number of solutions in the 
original set. In addition, for a trial search to be successful, it is necessary for at 
least one attitude in the block to lie close to the final averaged attitude and for the 
true attitude solution to vary more slowly than the false attitude solutions. A 
time-varying attitude or large systematic or random errors present in constant 
attitude data would result in wildly fluctuating attitude solutions and can cause the 
block averaging process to fail. 

ReliabUity of the Averaged Attitude Solution. ThequaJity of the computed 
average attitude solution may be evaluated using either statistical measures or 
solution plots. As an example of the latter, the plots of right ascension versus 
declination shown in Figs. 11-5 and 11-6 immediately reveal if the chosen attitudes 
are . clustering about a constant value. These plots display either the selected and 
the rejected attitude solutions or only the selected solutions. Plots of attitude 

. solutions versus frame number may also be used to search for systematic variatjons 
or incorrect editing. For example, Fig. 9-18 in Section 9.4 shows a plot of 
declination versus frame number before residual editing for real SMS-2 data. The 
downward spikes are due to a systematic anomaly in the sensor performance; these 
data should be removed before further processing. A set of suspect attitude 
solutions would be revealed by a wide scatter in the plotted data. Similarly, poor 
quality solutions or a processing method giving inconsistent results can be 
eliminated. (See Section 11.5.) 

A second possible method for evaluating the quality of solutions is to compute 
statistical indicators. For example, standard deviations can be calculated for the 
sets of solutions associated with each method separately, for an average of the 
single-sensor methods for each Earth sensor and for an average over all the attitude 
methods. 

11.3 Single-Axis Attitude Determination Accuracy 

Lily C. Chen 
James R. Wertz 

In this section, we calculate the uncertainty in deterministic single-axis solu
tions due to both the statistical noise on the data and estimates of any systematic 
errors which may be present. The purpose of this calculation is both to determine 
the attitude accuracy available from given measurements and to provide weights 
for the various data and measurement types as described in Section 11.2 . 

Attitude uncertainties can be obtained through two different approaches. In 
the direct calculation procedure discussed in Section 12.3, the attitude uncertainty 
is obtained directly from the uncertainties of the various observables via the partial 
derivatives of the attitude parameters with respect to the observables. Although this 
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is adequate for determining the attitude uncertainty for specific values of the 
observables, it provides little insight into the underlying causes of the attitude 
uncertainty and does not lend itself to mission or maneuver planning or analytic 
attitude studies, where a wide range of alternatives are considered. 

An alternative method, described in this section and in Section 11.4, is to 
express the attitude uncertainty in terms of three factors (involving the various 
partial derivatives) which have well-defined physical and geometrical interpreta
tions. We then use this factorization to develop explicit analytic expressions for the 
attitude uncertainty and to discuss the geometrical causes of large uncertainties to 
provide the perspective necessary for prelaunch analysis and mission or maneuver 
planning. . 

In this section, the discussion is restricted to single-axis attitude determined 
from measurements taken at a single time. The attitude, which corresponds to a 
point on the celestial sphere as discussed in Chapter 10, is defined as the spin axis 
for a spinning spacecraft or as the direction of some convenient axis fixed in the 
body for a three-axis stabilized spacecraft. . 

If the uncertainties in two measurements are due to in(jependent error sources 
such as random noise or unrelated systematic errors, then the uncertainties are 
uncorrelated. In other words, an error in one measurement does not imply any error 
in the other measurement, and vice versa. Alternatively, part of the uncertainties in 
two measurements may come from the same err~r source. For example, if the 
attitude is determined by measuring the Earth width with a horizon telescope at 
two different times, then a misalignment in the sensor mounting angle would cause 
an error in both measurements and the uncertainties are-correlated. Measurement 
uncertainties are also correlated whenever there exists a systematic error which can 
'introduce uncertainties in both measurements. 

1l.3.1 Attitude Accuracy for Measurements With Uncorrelated Uncertainties 

Quantized Measurements. The easiest measurements to interpret physically 
are quantized measurements, i.e., those for which the measurement uncertainty is the 
result of the step size or bucket size in which the measurements are made or 
transmitted.· As discussed in Section 10.4, two measurements, m and n, each imply 
that the attitude lies within a band on the celestial sphere as shown in Fig. 11-7. 
Here, a plane geometry approximation is made such that the constant measure
ment curves on the celestial sphere are approximated by straight lines. Lm is the 
locus of attitudes corresponding to measurement m; .flLm = U ml dm is the change in 
the attitude perpendicular to Lm due to the uncertainty, Um (1/2 step size): dm is 
the measurement density for measurement m a'S defined in Section 10.1, and em / n 
is the correlation angle between measurements m and n, as defined in Section 10.4. 

The correct attitude solution may be anywhere inside the error parallelogram 
shown in Fig. 11-7. The probability of the correct attitude being in any small area 
of the parallelogram is the ,same regardless of the location within the parallelogram. 

·In a strict sense, all attitude measurements an: quantized by the process of transmitting them as binary 
numbers. However, we wiD regard the quantization as important only when the quantization step is 
sufficiently larger than the noise such that in a continuous string of measurements of an approximately 
constant observable, only one or two discrete values are reported. 
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Fig. 11-7. Error Parallelogram for Quantized Measurements. (An example of this error parallelogT8m 
for Sun anll'e and nadir angle measurements is shown in Figs. 10-2 and 10-3.) 

For example, the probability of the attitude being in some small area at the tip of 
the parallelogram is the same as the probability of the attitude being in an equal 
area at the center of the parallelogram.· The probabili~v density, or probability per 
unit area on the celestial sphere, is constant inside the parallelogram and zero 
outside the parallelogram. 

The attitude uncertainty for quantized measurements is the error parallelogram. 
To fully specify this uncertainty requires both the size and orientation of the 
parallelogram, which depend on four independent parameters. For example, we 
could give the width of both bands and the azimuthal orientation of each band 
relative to an arbitrary reference direction. 

It is frequently convenient to characterize the attitude uncertainty by a single 
number. Clearly, this cannot be done in any precise sense because no one number 
completely defines the error parallelogram. We define three convenient error 
parameters which may be used depending on the nature of the uncertainty 
requirements. The component uncertainty is the distance from the center to the edge 
of the parallelogram along some specified direction, e.g., right ascension un
certainty. The maximum uncertainty, Umax' is the semilength of the longest diagonal, 
or, equivalently, the radius of a circle cimcumscribed about the parallelogram. 

: [ 2 2 ]1/2 Umax = I· e I (LlLm) +(LlLn) +2(LlLm)(LlLn)lcos8mlnl sm min 

~ I~n LI [ ( ~ )\ ( ~ )\ {~ )( ~ )1=9010'1'" (11-14) 
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If we have not specified otherwise, Vmox will be taken as the attitude un
certainty for quantized measurements. Finally, we define the mean uncertainty, 
V_

n
, as the radius of a circle with area ,equal to that of the parallelogram: 

U =2 m n 
[

,ilL ilL ]1/2 
- '11lsin8mlnl 

(11-15) 

Continuous Measurements. If the uncertainty in a transmitted measurement 
is due to either Gaussian-distributed random noise or any unknown systematic 
error which is assumed to have a Guassian probability distribution, then the 
attitude uncertainty corresponds to an error ellipse on the cel~stial sphere. For 
illustration, we first consider the simplest case in which the two independent 
measurements, m and n, correspond to attitude loci which are orthogonal on the 
celestial sphere, as shown in Fig. 11-8. Let x be' the attitude component perpen
dicular to Lm and Ox be the standard deviation in x resulting from the uncertainty 
in m; i.e., 0x= Vm/dm, where Vm is now the standard deviation of the measurement 
m. By the definition of a Gaussian distribution, the probability of the x-component 
of the attitude lYing between x and x + 8x is given by 

P(x)8x=(Ox~ )exp(-x2/20;)8X (11-16) 

wliere p(x) is called the probability density for x. Similarly, if y is the attitude 
component perpendicular to L,;, then the y-component probability is 

p(y)8y = (_I _ )exp( - y2 /2o;)8y (11-17) 
Oy1i71 

The ptobability both that the x-component lies between x and x + 8x and thai 
the y-component lies between y and y + 8y is 

... .... 

-.::......,.--f---...,......-......::~~-----t....;::.4,:-- L,,-X AXIS· 

,$IJ'. Fig. 11-8. Enor Ellipse for Orthogonal Measurements 
y~-'?t~··-·. 
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p(x)8xp(y}8y= ( 2'11~.'~v )exp[ - i(x
2 

/ a.~)- i'(yZ / ~~) ]8.\'8)' 

=p(x.y)8x8y 
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(II-IS) 

p(x.y) is the two-dimensional probability density on· the celestial sphere. From Eq. 
(ll-IS) it is clear that the lines of constant probability deQsity are ellipses defined 
by (xz/o;)+(yz/a:)=K. where K is a constant. The standard deviations of x and 
yare just the semirnajor and semiminor axes of the K = I ellipse. As shown in Fig. 
11-8. the standard deviation of any arbitrary component, x'. is the perpendicular 
projection of the K = I elIipseonto the x' axis. That is. 

OJ<' = ~ [(a; + ~:) + (0;- a;)c()S2" ]'/2 . (11-19) 

where " is the angle between the x' axis and the major axis of the ellipse. The same 
relationship holds for the Ka uncertainties in any attitude component. 

In general. we would like to consider the independent measurements. m and n, 
corresponding to nonorthogonal loci. as shown in Fig. 11-9. For computation. we· 
choose an orthogonal coordinate system. x and y. for which the y-component is 
perpendicular to Ln' Thus. the standard deviation for the y-component is 

(11-20) 

The standard deviation for the x-component is now more complex. As we will 
show later (Eq. (11-27b): 

OJ< = I' 0. I SlD\::Iml" 
(11-21) 

where eml" is the correlation angle between Lm and Ln' Note that for e=9O deg. 
the previous result is recovered. 
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Fig. 11-9. Error Ellipse for Nonorthogonal Measurements 
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Because Lm and Ln are not orthogonal, the x and y components are not 
independen~ A measure of the degree of their interdependence is the correlation 
coefficient, Cx),' given by (Eq. (11-27d» 

= - ---;:================- (11-22) 

rUm )2 (Un )2 2 
\ dm + d

n 
COS em/ n 

Note that_(\,,=O (measurements m and n are independent) when em / n =90° 
or 270°, and ICxyl is a maximum when em/n=oo or 180°. ' 

The above results may be established by use of the covariance analysis introduced in Section 
12.3. The derivation is summarized here. ~ 

The covariance matrix, P, which defines the attitude uncertainty determined from meas
urements m and n, can be obtained from the following equation: 

(11-23) 

where M and U are the initial estimates of the square of the errors in attitude and measurements, 
respectively, and G is given by 

[ 

am 
G= ax 

an 
ax 

aa; J-
an 
ay 

(lI-i4) 

where m and n are the two measurements and x and yare any two orthonormal components on 
the celestial sphere (such as acosB and B where a and B are the right ascension and the 
declination of the attitude). Because, Um and Un are uncorrelated, the uncertainty matrix, U, is 
diagonal. By definition, 

U=[ ~~ ~;] (11-25) 

If we assume M -I = 0 and let (x,y) be the tWo perpendicular coordinates shown in Fig. 
11-9, then 

am J. "" ax = - ..... sm""mln 

am e 
ay = d",cos !'lIn 

an =0 
ax 

an =d" 
ay 

By substituting Eqs. (11-24) through (11-26) into Eq. (11-23), we obtain 

(11-26) 

(1l-27a) 

I 1 
i 

I , I 

:1 
'.[ 

'I 
.,.\ 

.,\. 

I 
1 
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where 

( Un)2 2 (U",)2 
d

n 
cos 9",/n + d", 

Pxx= . 2 =(J~ 
SID 9",/n 

(l1-27b) 

P c::r 2 =02 ( 
U)2 . 

n d" .J' 
(l1-27c) 

(1I-27d) 

Ihe semi major axis, 0.; semiminor axis, 02; imd the orientation. A. of the error 
ellipse in Fig. 11~9 can be expressed in terms of ox' 0y and Cxy by the following 
equations (see, for example. Keat and Shear (l973D: 

( 2 2)2 - 2 2 2 ] Ox - 0y +4Cxy o x oy (11-28a) 

( 2 2)2 4C- 2 2 2 ] Ox - 0y + xyOXOy (1I-28b) 

(1I-28c) 

By substituting Eqs_ (11-20) through (11-22) into Eq. (11-28), the following 
expressions for 0., 02' and A in terms of Um• Un. dm• dn' and emln are obtained: 

where 

1 4AB . 20. 1 - 2 SID oi:Jmln 
(A+B) 

1 4AB . 20. 
- 2 SID '='mln 

(A +B) 

Bsin29mln 
tan 2A = --:----::-----=-=-

A + B cos 2emln 

u2 

A:=~ 
d~ 

U2 

B:=_n 
d; • 

1 

(11-29a) 

(II-29b) 

(11-29c) 

(1I-29d) 

Note that the long axis of the error ellipse is not. in general. aligned .with the 
long diagonal of the error parallelogram. The uncertainty of the attitude com-

,) ponent along any specific direction making an angle JI with respect to the semima
jor axis of the error ellipse. or making an angle p + A with respect to Ln. can then be 
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obtained by substituting Eq. (11-29) into Eq. (11-19), with Ox replaced by 0, and 0y 

replaced by 02' That is. -

2_ I A + B [ 1 4AB . 20 2] op - 2" . 2 1+ - 2 SID 0m/n cos " 
SID 9 m/ n (A + B) 

(11-30) 

where A and B are defined in Eq. (11-29d). 
The physical int:rpretation of the error ellipse in Fig. 11-9 is different in 

several respects from that of the quantized error parallelogram of Fig. 11-7. As 
shown in Eq. (11-18) and Fig. 11-10, the probability density is no longer uniform, 
but is a maximum at the center and falls off continuously away from the center. 
The boundaries of the error ellipses are lines of constant probability density. The 
no uncertainty along any arbitrary axis is given by the perpendicular projection of . 
the no error ellipse onto that axis. Thus, the 10 uncertainty along the y' axis is the 
distance from the origin to the point A in Fig. 11-10; that is, the probability that 
the y' component of the attitude lies between A and A' is 0.68. 

Although the probability of anyone component being within the 10 un
certainty boundary is 0.68, the probability of both attitude components in any 
orthogonal coordinate system being within the 10 error ellipse is less than 0.68.· 
Specifically, the probability of the attitude lying somewhere inside the 10 error 
ellipse is 0.39. Table Il-I·gives the probability for the attitude to lie within various 
error ellipses and for anyone component to lie within the boundary of the error 
ellipse. 

Fig. 11-.10; Probability I~terpretation of Error Ellipse From Fig. 11-9 

• This is easily vtsuaJized by considering a two-c:omponent error rectangle. If the two components, x and 
y, have upper limits at th.e boundary of the rectangle "f B" and By. then four possibilities exist: x < BlI " 

and y. < BJ' x> B" ~d Y > ~y. x < B" and y> By! a~ ~ > B" and y < By. Ho~~ver. o~y the ~JJSt 
combmation results m the poml defmed by (x.y) being IDSlde the box. The probability o~ this occ:umng 
is clearly less than either the probability of x < B" or the probability of y < By-
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Table II-I. Probability for location of the Attitude with Gaussian Measurement Errors 

PROBABtLiTY OR CONF 10£ I'IICt LEVEL UNCEATAtiliTY LEVEL. K 

UNCERTAINTY CONFIDlNc:1 
LEVEL. K "tWO THREE LEVEL two THREE 

SINGLE COMPONENTS COMPONENTS SINGLE COMPONENTS COIIIPC)NfNTS 
COMPONENT IStNGLE·AXIS .THREE-A)"S COMPONENT ISING.LE.AXIS ITMR£E·AXI$ 

ATT,TUDE' ATTITUDE) ATTITUDE) ATTITUDE. 

,. 0.682' O.39:E 01981 0.150 0.6750 11110 1.&380 

2. 0._ 0.8641 0.1385 0.68 0_. Ht'Oo 1.8120 

J. 09973 0.9889 0.9707 0.90 ..... 2.1480 2.5000 

4. 0._ 0_ 0.9989 0.911 1.9600 2.4480 21950 

0.99 2.5160 U3 .. 1368. 

0._ 2.807., 3.2&50 1 ..... 

A precise statemeni of the attitude uncertainty for Gaussian errors requires the 
specification of three independent numbers. e.g .• the size and eccentricity of the 
error ellipse and the orientation of the long axis relative to some arbitrary 
direction. As in the case of quantized measurements. we would like to characterize 
the uncertainty by a single number. Again there is no precise way to do so. because 
specifying the ellipse is the only unambiguous procedure. One option for a single 
accuracy parameter would be to use Eq. (11-29a) to obtain 01. This is then the long 
axis of the error ellipse and corresponds approximately to U mQ)( for quantized 
measurements. 

An alternative one-parameter estimate for the attitude uncertainty would be 
the radius of a small circle on the celestial sphere which had the same integrated 
probability as the corresponding error ellipse. A numerically convenient approxi~ 
mation to this radius is given by 

. UA = V( o~ + 0n/2 

=V(P.u + Pyy )/2 

= 1 [(Um )2+(Un )2]1/2 
v2lsin8m/nl ,dm dn 

(1I-31) 

This approximation is good for 01~02. That is. if Um and Un are the 30 
uncertainties in m and n, then the probability that the attitude will lie within U

A 
of 

the estimated value. iJ 0t~(J2' is 0.989. If 01»02' then the approximation of Eq. 
(11-31) is less accurat~,being a 37% overestimate for the 10 uncertainty radius a~d 
a 16% underestimate for \he 30 uncertainty radius. As 0. becomes much larger than 
°2, the error ellipse becomes very elongated and any single ·number representation 
becomes less meaningful. In this case, the best choice for the one-parameter 
attitude· uncertainty would be the semimajor axis of the error ellipse. which is 
approximately 

U' R: I ~ + -.!!.. [( U)2 (U)2]1/2 
A IsinElm/nl dm dn 

(11-32) 
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as can be obtained from Eq. (11-29) when (12 approaches zero. An alternative 
physical interpretation of UA ' as defined by Eq. (11-31), is to note that UA is the 
exact formula for the attitude component inclined at 45 deg to both the semimajor 
and semiminor axes of the error ellipse (see Eq. (11-19». 

Another option for a single accuracy parameter would be to use the radius of a 
circle with the same geometrical area as the error ellipse. That is, 

= [ dmdn%7n~m!nl ]'!2 ( 11-33) 

Equation (11-33) is analogous to Eq. (11-15) for the quantized measurements. 
Note that this representation also gives a poor estimate of the attitude uncertainty 
when (11)>(12 because Umean~O when (1z~O. Again, when (11)>(1Z' Eq. (11-32) should 
be used for one-parameter attitude uncertainty. The application of a three
dimensional analog of Umeon to three-axis attitude is discussed in Section 12.3. 
Throughout the rest of this chapter, we will use UA as defined by Eq. (11-31) as our 
one-parameter estimate of the attitude uncertainty, unless stated otherwise. 

11.3.2 Attitude Accuracy for Measurements With Correlated Uncertainties 

Whenever there exists a systematic error which can introduce uncertainties in 
both measurements m and n, then the measurement uncertainties contain a 
correlated component. For example, a sensor mounting angle bias will produce a 
correlated uncertainty component when using the Earth-width/Sun-to-Earth-in 
rotation angle method. 

When attitude is determined from two measurements with a correlated un
certainty component, the measurement uncertainty matrix given in Eq. (11-25) will 
contain off-diagonal terms. That is, 

where 

[ 

UZ 
U- m 

Cm!n 

U~=R~+ ~(~~J\~s;i 

U;= R;+ ~ ( ~;; )2(~S;)2 

Cm!n = ~ ( ~~ )( ~;; )(~Si}2 

( 11-34) 

( 11-35) 

In Eq. (1l-35), Um and Un are the total uncertainties in measurements m and 
n; Rm and R-n are the random errors in measurements m and n; !lSi is the ith 
systematic error existing in either measurement; am/aS; and an/as; are the partial 
derivatives of m and n with respect to the ith systematic error: and em!n is the 
correlated uncertainty component between the two measurements. 
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In this case, the attitude uncertainty can be obtained from -the covariance 
matrix approach given in Section 11.3.1 with Eq. (11-25) replaced by Eq. (11-34). 
The result is 

[ 
U2 U2 C _ ]1/2 I m n mIn 

U =---=--- --+--2---cosa 
A _~ I' a I d 2 d 2 d d min V" sin min m n m n 

(11-36) 

Equation (11-36) gives the general expression for the attitude uncertainty' 
determined by two measurements with total uncertainties U m and Un' and corre
lated uncertainty component Cmln• This equation can be applied to any single-axis 
attitude determination procedure regardless of the type of measurements and 
attitude determination methods. 

Equation (11-36) shows that the attitude accuracy in general is determined by 
three factors: the ineasurement uncertainties Um' Un' and Cmln; the measurement 
densities, dm and dn; and the correlation angle, amln' Note that the attitude 
uncertainty goes to infinity (i.e., a singularity occurs) whenever dm , dn , or sinamln 

is zero. 
The expressions for the measurement uncertainties are given in Eq. (11-35), 

and the expressions for d and a, which depend on the types of the two measure~ 
ments, are given in Section 11.3.3 for arc-length and rotation angle measurements. 

11.3.3 Measureme~t Densities and Correlation Angles 

Expressions for the measurement density, dm , and the correlation angle, amln, 
depend on the types of measurements. Because arc-length and rotation angles are 
the most fundamental and most commonly used measurements, we derive explicit 
expressions for dm, amln, and UA in terms of the geometrical parameters involved. 
The results are presented in Table 11-2 using the notation defined in Figs. II-II 
and 11-14. The attitude uncertainty UA , for any deterministic attitude method using 
arc-length and rotation angle measurements, can be obtained by substituting the 
expressions from Table 11-2 into Eq. (11-31) or (11-36). 

To make the discussion specific, the Sun and the Earth are used as the two 
reference vectors. However. final expressions are not limited to the Sun/Earth 
system. The results are generally applicable for any single-axis attitude determina
tion procedure using arc-length or rotation angle measurements. We emphasize 
that the uncertainties presented in Table 11-2 are a result of the observations which 
are used for a deterministic solution and do not depend on the numerical procedure 
by which the attitude is computed. For example. Section' 11.1.2.2 describes a 
procedure for computing the attitude from the measurements f3 and cI». First, /1, cI» 
and the reference vector parameters are used to compute 1/. and then f3 and 1/ are 
used to compute the attitude. The uncertainty for this method may be obtained 
directly from line 3 of Table 11-2, irrespective of the fact that 1/ was used as a 
numerically convenient intermediate variable in computing the attitude. 

Table 11-2 gives the attitude uncertainty in terms of simple functions of 
measurement uncertainties and geometrical conditions, which enables one to give 
quick attitude uncertainty estimates, frequently without computer computations. 
This is a major _ advantage of the geometrical approach over other computational 
techniques, in terms of time. cost. and the need for prompt decisions. 
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Table 11-2. Summary of Single-Axis Attitude Accuracy for Arc-Length and Rotation Angle Mea
surements. (See Section 11.5 for a list of attitude singUlarities for these methods.) 

METHOD dm 
dn (ofmln 

/I1q 
I I + 

I I COT, "I +. llJu 2 -- -COT'ICOT-
SIN!! 2 

2 

/11'" I I!!!!.!.I JCOS2,. COT2 , TAN-' [ ~_ 
COT'" J SINO TANdSiN'" 

OR 

I ~!I JCOS2 I) • COT' \ OR 
SIN 'J 

OR 

I SIN ~ SIN~I 
TAN-' [£QLlJ COSq 

SIN "SIN q 

q'''' 1 SAME AS ABOVE COT 41] TAN- 1 [ TANrj 
TANqSlN4> -

OR TAN- 1 [~] 
COS~ 

014> I COT> COT~I 
2 SIN t - TANJt 

SAME AS ABOVE SAME AS ABOVE 

I- Cmln ) J,n 
-2 \ dmdn COS9mJn ARE AS GivEN IN EO. (11-35. 

Fig. II-II. Notatiqn Used for Attitude Uncertainty Computations 

As an example of. the application of Table 11-2, we compute attitude un
certainty for the IUE spacecraft with its spin axis attitude oriented toward the 
north ecliptic pole [Boughton and Chen, 1978J. Figure 11-12 shows the IUE 
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-il. AT IIOATH ICllPTIC POll! 
1210 ... ·.1 _1331U31 

Fig. 11·12. ~ttitude Determination Geometry for IUE Mission Attitude 

mission attitude geometry on the spacecraft-centered celestial sphere. A is the 
attitude at the north ecliptic pole, S is the direction of the Sun for a January 15 
launch, E is the direction of the Earth as seen by the panoramic scanner, and 
N = S X E is the direction of the nell. E is 90 deg from S. 

In this example, /l=I/I=9O", "'= 119°, E=29°, and ~=900. From Table 11-2 
or Fig. 11·18 in the next section. we obtain 

and 

Sp/.,,= LSAE=90° 

SIb/P= LEAN=O° 

SIb/." = L SAN = 90° 

d = sinl/lsinE = sin29° =0 S5 
Ib sin/lsin", sin 119° . 

Assuming that Up=O.l°, U.,,=0.7°, and UIb=4.9° with no correlated components, 
we get 

( UA )Ib/." = sin ~o (0.1
0
)2 + ( ~:~; r = 8.95° 

The weighted mean of the attitudes obtained from the three methods will thus 
have an uncertainty of (see, for example, Bevington [1969D 

I.! 
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U
A 

= [ 1 2 + 1 2 + 1 2 ] -1/2 

(UA )P/TJ (UA )<t/P (UA )<t/TJ 

=0.71° 

Thus. in this case, all of the attitude information is coming from the PI." attitude 
method. 

Measurement Densh)r DerlYIItIoD. For any arc:-Iength measurement such as the Sun angle, 
fl, or the nadir angle. 11, an error in the measurement produces the same amount of error in the 
attitude along the gradient to the consta~t measurement curve, as shown in Fig. 11-13. Thus. by 
definition, 

d,""IVfl(a,B)1 S held fixed 

I~fll 
"'IL'p+~-L,I.I. 

... 1 (11-37) 

Similarly, 

However, if 11 is not measured directly but is obtained instead from an Earth-width 
measurement, 0, the measurement density for 0 is 

- ~"'IVO(a,B)1 

"'IVlI(a,B)II~ I 

=la~1 (J 1-38) 

Let p be the angular radius of the Earth and T be the sensor mounting angle; then, from Fig. 
11-14, 

.. 0 
cos p'" cos T cos 11 + SIn T SID 11 cos "2 (11-39) 

By differentiating Eq. (11-39) and substituting it into Eq. (11-38), we get 

I cotT I 40=2 sin(O/2) - cotllcot(O/2) (11-40) 

Thus, 40 can change rapidly during a data pass. Specifically, 40=0 when cotT 
... cotllcosO/2 or LAEH, ,,,, LAEHo =90°. This means that when Earth-width measurements 
are used for attitude determination, a singularity occurs when the sensor scans near the middle of 
the disk of the Earth. . 

The geometry for the rotation angle density, shown in Fig. II-IS, is considerably more 
complex than for arc-length densities. In the figure. the attitude changes from A to A' along the 
direction perpendicular to L. due to an infinitesimal change in rotation angle from ~ to ~+&~. 
To obtain the arc: length.M',let B be the intersection of L.+6• with the extension of EA. Then 
AB is &" along the constant A direction due to the change &~; that is, AB'" &lIIA' By definition, 
the angle BM'=8'1/" Therefore. 

AA'=I1..+6.- L.I.I. 
=ABcos(L BAA') 

= &lIIACOS 8.,/. 
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Fig. 11-13. Measurement Density for Arc-Length Measurements 
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Fig. 11-14. Geometry of Earth-Width 
Measurements 

Fig. II-IS. Measurement Density for'Rotation 
Angle Measurements 

The rotation angle density. d~ is 

do"'IV~a,p)1 S;Efixed 

14·1 

I 14.11 
= Icos8'1/ol 411 A 

From spherical triangle SAE, we have 

cot1/tsinll=cot.sinA+cosllcosA 

(1I .. n> 

(1142) 
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which yields 

I::IAI=I:::I 
From Eq. (II-54) to be derived later. we have 

Icos9 1= ICOlpl 'II. 
Vc0s2p + cot2I 

<11-43) 

Substituting Eqs. (11-42) and (I i-43) into Eq. (11-41). we obtain 

d .,. lsin .IVc0s2p + cot2I ,. 

• IsinPI 
(11-44) 

Because of the Sun/Earth symmetry in Fig. 11-15. d. also can be expressed in terms of" 
and A as 

d ... lsin .IVc:os~ + cot2 A 

• Isin,,1 
(11-45) 

Note that d ... 0 when I .. fJ .. 90° or when A"'"" 90°. i.e .• when the attitude is at the null. If we 
defme E as the arc-length separation between the attitude and the null (Sun-Earth cross product). 
then Eqs. (11-44) and (11-45) can be reformulated as 

d ... I sin,,"sinE I 
• slnpsin" 

where "" is the angular separation between the Sun and the Earth and E is given by 

E sinpsin"sin. 
cos .. sinl/l 

(11-46) 

(11-47) 

Thus. d.=O when the attitude is at null or when the Sun and Earth are in the same 
mrection.. Conversely, 4-+00 when 1'=0 or,,=O. i.e., when the attitude is c:lose to the Sun or the 
Earth. 

CorrelatIon Angle DerIvatIon. The correlation angle between two arc-length measurements 
is simply the rotation angle, .•• between the two reference vectors. That is. 

(II~) 

where. is measured from S to i: about A. 

61: 

E 

Fig. 11-16. Derivation of 9 pl• 
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The correlation between an arc-length measurement and a rotation angle measurement can 
be derived f~-om the infinitesimal spherical triangle shown in Fig. 11-16. L. and LfJ are the 
constant. and constant fl curves through A. By derwOOn, 9 fJ1• is the angle between LfJ and 
L •. Let the attitude move an infinitesimal amount from A to A' alo!>g L.; then, P wiD change by 
- Bfl perpendicular to Ln and l: will change by Bl:, which gives an arc-length change of Bl:sinfl 
along LfJ. From the infinitesimal right triangle ABA'. we obtain 

-BIl I I BPI 
tanefJ,.= (sinfl)Bl: • = - sinp Bl: • (11-49) 

From the spherical triangle AES. we have 

cott/lsinfl=cospcosl:+cot.sinl: (1 I-SO) 

By differentiating Eq. (II-50) and expressing t/I and l: in terms of p, " and •• it can be shown 
that (Wertz and Chen, 1976) 

tan9fJ,.",[ tan':::. -cot.] 

This can be reformulated in terms of A and" as 

cot A 
tanefJ,.=-

COS1J 

(11-51) 

(II-52) 

Again,'by symmetry between the Sun and the Earth, the correlation angle between 1J and. 
measurements can be written in the same form: 

tane",.= [ tan';!. -cot.] 

cotl: 
'" cosll 

(II-53) 

(II-54) 

11.4 Geometrical UmitatiollS on Single-Axis Attitude Accuracy 

UlyC. Chen 
JtlIIU!S R_ Wert~ 

In Section 11.3 we described how to determine the attitude accuracy for given 
geometrical conditions. However, for most aspects of mission planning-such as 
hardware configuration studies, maneuver and attitude planning, contingency 
analysis, or launch window analysis-the inverse problem is more relevant Instead 
of determining the attitude uncertainty for given conditions, we wish to select the 
geometrical conditions such that the required attitude accuracy can be achieved. 
Thus, we would like to understand the effect of any change in the .mission 
conditions on the attitude uncertainties. 

In this section, we present a graphical. method to study the geometrical 
limitations on attitude accuracy by applying the equations derived in Section I] .3. 
With this method, we obtain an overview of the attitude determination geometry 
and an insight into the effect of changes in mission parameters. Specifically, the 
equations of Section 11.3 will be used to identify "poor" geometry regions on the 
celestial sphere for either the attitude or one of the two reference vectors [Chen and 
Wertz, 1977]. 
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Two cases are considered. In Section 11.4.1, the two reference vectors are 
assumed fixed and the attitude direction is treated as a variable. The poor geometry 
regions on the celestial sphere are defined such that whenever the attitude is inside 
one of these regions, one or more of the attitude determination methods of Section 
11.1 will not provide the required attitude accuracy. In Section 11.4.2, the attitude 
and one of the two reference vectors are assumed fixed and the other reference 
vector is treated as the variable. In this case. the poor geometry regions on the 
celestial sphere are defined such that whenever the variable reference vector falls 
inside one of these regions, the attitude uncertainty et'alllated at the attitude will be 
high for one or more of the attitude determination methods. Examples of the 
application of this geometrical study to mission support activities are given in 
Section I 1.4.3. Again, throughout this section, we use for convenience the Sun and 
the Earth as the two reference vectors. However, the discussion and conclusions 
can be applied to any pair of known reference vectors. The notation defined in 
Figs. 2-1 or 11-18 is used throughout. 

11.4.1 Limitations on the Attitude Direction Due to Attitude Accuracy Requirements 

We wish to determine the regions of single-axis attitude directions on the 
celestial sphere which give poor attitude accuracy for fixed positions of the Sun and 
the Earth. As introduced in Sections lO.l and 11.3. two geometrical factors limit 
the attitude accuracy: the correlation angle, 8 m/ n , and the measurement densities, 
dm and dn • From Eq. (11-36), the attitude uncertainty becomes infinite whenever 
8 m / n = 0 or 180 deg, or either dm or dn equals zero, That is, poor geometry regions 
occur when either the correlation between the two measurements is high or the 
meas\uement density is low. 

Regions of High Correlation. Regions of poor geometry due to high correla
tions can be defined for each of the three attitude determination methods: PI.", 
P/4), and .,,14). Although specific attitude accuracy limits are mission dependent, 
we define a region of "poor geometry" as any region in which the attitude 

Fig. 11-17. Poor Geometry Regions for the Location of Attitude 
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uncertainty given in Eq. (11-36) is more than five times greater than the measure
ment uncertainty, assuming Um= Un' Cm= Cn=O, and dm= dn= 1. From Eq. (11-
36), this corresponds to it region in which 9 m / n is in the range 0° ± 11.50 or 
1800 ± 11.5°. 

For the p/." method, the analysis is simple because 9pj1J=~' as given in 
Table 11-2. Thus, the constant correlation angle curves for the p/." method are the 
same as the constant Sun-ta-Earth rotation angle curves given in Section 10.3. 
From Fig. 10-"9, it is obvious that the singularity occurs when the attitude lies along 
the Sun/Earth greatcirciewhere 9 p/" =0 or 180 deg and the poor geometry 
regions due to high P/." correlation must be regions around this great circie 
bounded by constant rotation angle curves. This poor geometry region· for a 
Sun/Earth Separation of 30 deg is shown as the shaded region labeled "P/." 
correlation" in Fig. 11-17 (preceding page). 

Fig. 11-18. Relations Among Attitude CAl. Sun (Sl. Earth (E). Null (N). and Correlation Angles 
(8il} 

For the P/~ and .,,/~ methods, the interpretation of the expressions for 9pt'" 
and 9"/,,, from Table 11-2 is more difficult. However, this interpretation may be 
simplified by using the Null, N. or Sun-Earth cross product, as shown in Fig. 11-18. 
Applying Napier's rule to the spherical triangles EAN and SAN, and comparing 
the results with Eq. (II-52) and (II-54), the rotation angle NAE equals the 
correlation angle 9 p/", and the rotation angle NAS equals '~e correlation angle 
9,,/"': From Fig. 11-18, it isciear that the constant 9 pl", and aT//'" curve~ are the 
constant rotation angle curves between the Earth and the nu!l and between the Sun 
and the null. respectively. Because the Earth/null and the Sun/null separations are 
always 90 deg, the rotation angle curves given in Fig. 10-10 can be used to obtain 
the regions of high P/~ or .,,/4> correlation. The poor geometry regions for which 
9pt'" and 9,,/'" lie within 11.5 deg of 0 deg or 180 deg are shown as the shaded 
regions labeled "P/~ correlation" and ".,,/~ correlation," respectively, in Fig. 
11-17. Note that the centers of these regions are the Earth/null and the Sun/null 
great circles. respectively. 
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Regions of Low Measurement Density. Poor geometry regions due to a low 
measurement density (d) occur only for the rotation angle measurements. As 
discussed in Sections 10.3 aM 11.3, the rotation angle density goes to zero, i.e., the 
attitude uncertainty goes to infinity, when the attitude approaches the null or the 
antinull. Therefore, poor geometry regions for the attitude due to low rotation 
angle densities are regions around the null or the antinull bounded by the constant 
rotation angle density curves. These curves can be obtained by using Eq. (11-46) to 
obtain a quadratic equation in (sin20 in terms of Z, 1f' and d: ' 

[ d 2 coS2Z cos2
( 1f - Z) ]sin4~ - { d 2

[ cos2Z +cos2(1f - Z)] + sin~ }sin2~ + d 2 =0 

(II-55) 

Note that Z is defined in Figs. II-II and 11-18. The result in Eq. (11-55) for 
1/1=30 deg and d=O.2 is shown as the unshaded region about the null in Fig. 11-l7. 
That is, whenever the attitude lies inside this region, the attitude component 

Fig. 11-19. Evolution of the Shape of the Low Rotation Angle Density Region for Varying Separation 
Between the Reference Vectors. Each subfigure is centered on the null. 

-------, 
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determined from the rotation angle measurements will have an uncertainty at least 
five times greater than the rotation angle measurement uncertainty. The evolution 
of the shape of this region for varying Sun/Earth separations is shown in Fig. 
11-19 (preceding page). 

Combination of High Correlation and Low Denshy. In Fig. 11-17. only the 
/3 /." subfigure gives the poor geometry region directly because the measurement 
densities are unity. The /1/¢' and 11/<1) regions must be obtained by combining the 
high-correlation effect with the low-density effect. This can be done numerically 
using Eq. (11-36) and results are shown in Fig. 11-20. This figure shows the poor 
geometry regions for the attitude such that within the shaded regions. the attitude 
uncertainty will be five times greater than the measurement uncertainties for the 
/3/<1) or .,,/<1) method. assuming equal uncertainties in the two measurements. 

Fig. 11-20. Poor Geometry Regions for the Attitude for the fJ/tb and T//tb Methods. When the 
attitude lies inside the shaded region, the attitude uncertainty will be more than five times 
the measurement uncertainty. based on equal uncertainty in the two measurements. 
(Compare with Fig. 11-17.) 

11.4.2 Limitations on Reference Vector Direction 

For many mission support activities, the attitude direction is predetermined 
while one of the two reference vector directions either remains to be determined or 
is moving, as in the case of a satellite with an inertially fixed attitude moving 
around the Earth which is being used as one of the reference vectors. In this case, 
we wish to obtain the poor geometry regions for the variable reference vectors such 
that whenever this vector is located inside these regjons, one or more of the attitude 
determination methods will result in poor attitude accuracy. 

For convenience, the Earth will be used as the varying reference vector. 
However, due to the symmetry between the Sun and the Earth, the results can be 
equally applied if the Sun position is treated as the variable in~tead, as will be 
shown below for the launch window analysis. ! 



394 SINGLE-AXIS ATIITUDE DETERMINATION METHODS 11.4 

Regions of High Correlation. As in Section 11.4.1, poor·geometry regions can 
be defined for each of the three attitude determination methods. For the P/fl 
method, Eq. (11-48) can be used directly. Because 9 11/,,=4», the poor geometry 
region lies between two great circles which intersect at the attitude at an angle 9,,/11 
on either side of the Sun-attitude great circle, as shown in -Fig. 11-21 for 9 111" = ± 
11.5 deg. 

For the P/4» correlation, the poor geometry regions can be obtained from Eqs. 
(II-51) and (II-52). From Eq. (II-52), A must be a right angle when 911/~=0 or 
189 deg. That is, a singularity occurs when the Earth lies_on the 9O-deg or 270-deg 
constant rotation angle curve between the Sun and the attitude. This is equivalent 
to the attitude lying on the Earth/null great circle, as shown in Fig. 11-17. The 
boundaries of this poor geometry region may be obtained by reformulating Eq. 
(II-51) into an expression for fI in terms of 911/~' P and 4», as shown in Fig. 11-21 
(or 9 P/~ = ± 11.5 deg about 0 deg or 180 deg. The evolution of the shape of this 
region as a function of P is shown in Fig. 11-22. As seen most clearly in Fig. 
11-22(c) and (d), this region is not symmetric under an interchange of the Sun and 
the attitude. Except for a Sun angle of 90 deg, the P/4» correlation region consists 
of two unconnected areas, one near the attitude and the other near the antiattitude. 

For the fI/4» correlation, Eq. (II-54) may be used directly. When 9"/~=0 or 
180 deg, 1:=90 deg or 270 deg and the Earth lies on the great circle through the 
Sun perpendicular to the Sun-attitude great circle. The poor. geometry region 

!o. 

Fig. 11-21. Poor Geometry Regions for the (Eanh) Reference Vector Due to High Correlations or 
Low Rotation Angle Densities. (Contrast with Fig. 11-17 showing poor geometry regions 

. for the attitude with fixed Earth/Sun positions.) 

around this. great circle is bounded by two great circles intersecting at the Sun and 
the antisolar point and making a constant angle with the 1:=90 deg or 270 deg 
great circle. The shaded area in Fig. 11-21 labeled ufI/iP" shows this region for 
9"/~ = ± 11.5 deg. 

Regions of Low Measurement Density. Finally, in addition to the' poor 
geometry regions due to measurement correlations, Eqs. (11-44) and (11-46) can be 
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Fig, 11·22. Evolution of the Shape of Poor Geometry Regions for the Earth Due II? P/~ CorreIa lion 

used to obtain the poor geometry regions <Iue to low rotation angle density. 
Equation (11-46) shows that the rotation angle density approaches zero whenever 1[1 
or ~ is near 0 or 180 deg. f=0 deg or 180 deg implies that the attitude is at the nuIl 
or the antinull and both p and 11 are equal to 90 deg. For a given p other than 90 
deg, the poor geometry region due to low rotation angle density depends strongly 
on 1[1; the rotation angle density becomes low when the Earth is close to the Sun or 
the antisolar point. 

We may determine two regions around the Sun and the antisolar point, such 
that if the Earth lies inside either region, the rotation angle density, evaluated at the 
attitude, wiIl be less than a specified value. The bollndary of this region can be 
obtained from Eq. (11-44) by substituting ~ in terms of ~, t/I, and p and 
reformulating the equation to yield 

cot\jl= ~ [cosPcos~± sm,.. 
(sin2~ corp + CO~2~) 

d 2sin2p (II-56) 
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This region around the Sun for fJ=30 deg and d=0.2 is shown in Fig. 11-21 
and the evolution of the shape of this region for varying fJ is shown in Fig. 11-23 .. 
Note that when fJ=90 deg, the low rotation angle density regions become a single 
continuous band bounded by small circles of fixed nadir-angle such that 

- a... 1 SI8.,=--
I +d2 

(a) (Jm3IP Ib) {J=&oO 

=0.6 

=0.2 
=0.1 

(II-57) 

Fig. 11-23. Evolution of the Shape of the Low Rotation Angle Density Region for Positions of the 
Earth. (The Sun is at the center of each plot.) When the Earth lies inside the darkly shaded 
region, the rotation angle density, d, at the attitude is less than 0.1. The lightly shaded and 
unshaded regions are for d .. O.2 and 0.5, respectively. 

Combination of High Correlation and Low Density. Similar to the discussion 
in Section 11.4.1, among the four regions in Fig. 11-21, only the fJ/." region 
provides the poor geometry area directly. For the fJ/<P and .,,/<P methods, the 
correlation regions must be combined with the low rotation angle density region to 
obtain the regions corresponding to a factor of five between the attitude un
certainty and the measurement uncertainties. This can be done by substituting Eqs. 
(11-45) and (11-52) or Eqs. (11-44) and (11-54) into Eq. (11-36) and expressing." in 
terms'of <P, fJ, and f (the ratio between attitude uncert?inty and the measurement 
uncertainty). The results for fJ = 30 deg and f = 5 are shown in Fig. 11-24. 
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Fig. 11-24. Poor Geometry Regions for the Earth for P/I) and .,,/1) Methods. When the Earth is in 
the shaded region. the attitude uncertainty will \)e more than five times the measurement 
uncertainty, based on equal uncertainly in the two measurements. (Compare with Fig. 
11-21.) 

11.4.3 Applications 

The geometrical study of the limitations on attitude accuracy described in this 
section has been applied in both prelaunch and postlaunch analysis for SMS-2; 
GOES-I, -2, and -3; AE-4, and -5; CTS; and SIRIO and in prelaunch analysis for 
ISEE-C and IUE [Wertz and Chen, 1975, 1976; Chen and Wertz, 1975; Tandon, el 
01., 1976; Chen, el aI., 1976. 1917; Chen. 1976; Lerner and Wertz. 1976; Rowe. el 
01., 1978]. To illustrate the procedure. we will discuss the attitude determination 
accuracy for SMS-2 and the attitude launch window constraints for SIRIO. The 
profile for both missions is similar to that of CTS, as described in Section 1.1. An 
alternative formulation is given by Fang [1976J. 

SMS-2 Attitude Determination. The Synchronous Meteorological Satellite, 
SMS-2, was launched into an elliptical transfer orbit on February 6; 1975. Shortly 
after launch, the attitude was maneuvered to that appropriate for Apogee Motor 
Firing (AMF). On the second apogee, the AMF put the spacecraft into a circular 
near-synchronous drift orbit over the equator. Over the next 3 days, the attitude 
was maneuvered to orbit normal with two intermediate attitudes. The data col
lected in both the transfer and drift orbits allowed the measurement of 20 attitude 
bias parameters on five Earth horizon sensors and one Sun sensor. The geometrical 
methods described here were used extensively in the analysis of SMS-2 attitude and 
bias determination and contributed substantially to the result obtained [Chen and 
Wertz, 1975; Wertz and Chen, 1975, 1976.J 

As the spacecraft moves in its orbit, the attitude determination geometry 
changes due to the motion of the position of the Earth (as seen' by the spacecraft) 
relative to the Sun and the attitude. A convenient vehicle for examining this 
changing geometry is a plot of the celestial sphere as seen by the spacecraft, with 

1 
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the directions of the Sun and the attitude fixed. Figures 11-25 and 11-26 show 
examples of such plots· for the nominal transfer orbit and apogee motor firing 
attitude near apogee. The region around perigee was of less interest because. the 
spacecraft was then out of contact with the Earth. 

As usual, the spacecraft is at the center of the sphere. The heavy solid line is 
the orbit of the Earth around the spacecraft as seen from the spacecraft. The Earth 
is moving toward increasing right ascension, i.e., from left to right on the plots. Tic 
marks denote the time from apogee in IO-minute intervals. The dotted line 
surrounding the orbit denotes the envelope of the disk of the Earth as it moves 
across the sky. AP marks the location of the Earth when the spacecraft is at the 
apogee. S - 1, A, and A -1 mark the location of the antisolar point, attitude, and 
negative attitude axis, respectively. 

The small solid circles labeled ES I and ES 4 and centered on the A / A-I axis 
are the fields of view (FOV) for two of the five SMS-2 Earth horizon sensors as the 
spacecraft spins about the A/A -1 axis. Arrowheads on the FOV lines indicate the 
direction in which the sensors scan the sky. Acquisition of signal (AOS) and loss of 
signal (LOS) of the Earth by each sensor are marked by arrowheads along the orbit 
with primed numbers for LOS and unprimed numbers for AOS. 

The three dashed curves in Fig. 11-25 are the central lines of the poor 
geometry regions for the position of the Earth due to strorig correlations, and the 

Fig. 11.25. SMS-2 Attitude Determination GeometJ)' for the Transfet: Orbit and Apogee Motor Firing 
Attitude. See text for explanation • 

• Since their initial use for the SMS-2 mission in 1975. global plots of the sky as seen by the ~ft, 
such as Fig. 11·25. have been used by the authors for each of the missions they have supported. These 
plots have been vet:Y convenient for examining sensor fields of view and optimum sensor plac:ement, Sun 
and Earth coverage, attitude uncertainties, the relative geometJ)' of reference vectors, and other aspects 
of mission analysis. See Section 20.3 for a description of the subroutines used to generate these plots. 
With practice, they may also be drawn quickly by hand using the blank grids and methods given in 
Appendix B. 
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Fig. 11-26. Poor Geometry Regions, for the Earth for the Geometry in Fig. 11-25. (Relative 10 Fig. 
11-25, the center of the plot has been shifted down 10 the celestial equator and to the right 
of the antisolar point.) Here the poor_geometry regions are bounded by a correlation angle 
of 23 des. whereas Fig. 11-21 shows the same regions bounded by correlation angles of 
II.S deg. 

four shaded areas shown in Fig. 11-26 are the poor geometry regions for the Earth 
analogous to those shown in Fig. 11-21. Thus, whenever the Earth moves inside 
one of these regions, one or more of the attitude determination methods will give 
poor results. By comparing the Earth coverage regions (from AOS to LOS) for each 
of the five sensors with the poor geometry regions for the Earth, we can easily 
choose the preferred attitude determination method for each of the five data 
passes. For example, ESt sees the Earth in a region of poor geometry due to high 
correlation between the Sun angle and the nadir angle measurements. Therefore, 
the attitude determined by the f3 /." method would yield high uncertainties and the 
other two methods should be used instead. Similar results can be obtained for the 
data passes from other ,sensors. None of the data passes falls inside the low rotation 
angle density region. Therefore, attitude uncertainties due to low rotation angle 
density were not a problem during the SMS-2 transfer orbit. 

SIRIO Laua Window Constraints. SIRIO is an Italian satellite launched in 
August 1977, which uses the Sun angle data and the IR Earth sensor data to 
determine the spinning . spacecraft attitude, similar to SMS and crs. We briefly 

~I 

I 
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describe analysis of the attitude determination constraints on the SIRIO launch 
window. (For additional details, see Che'n [1976) and Chen, el al .• /1977).) The 
purpose of this analysis is to obtain the launch window (in terms of right ascension 
of the orbit's ascending node versus the launch date) which will give the required 
attitude accuracy. 

Figure 11-27(a) shows the nominal geometry for SIRIO attitude determination 
in the transfer orbit, in a plot analogous to Fig. 11-25. The position of the antisolar 
point is plotted for a January 15 launch. As the launch date changes. so does the 
Sun position and attitude determination geometry. Thus, determining the launch 
window constraints is equivalent to determining the constraints on the position of 
the Sun to obtain good attitude determination geometry. Thus, instead of consider
ing the attitude and the Sun to be fixed. as in the previous example. we consider the 
attitude and the Earth as fixed and treat the Sun position as a variable. 

The position of the Earth can be determined by the sensor coverage. Attitude 
determination is most important before AMF. Therefore. we require that the 
attitude be determined to within the specified attitude accuracy from a data pass 

~-.":'<";"?:'~ 
... ", .... , "; ~ 

(a) NOMINAL GEOMETRY (b) Jjfrl METHOD 

_ _ .. _____ . -X" 

'"' \ , 
.'\\ "\. . 
.~~\\. , . ~ .~ 

..... ~: ...... - . 

(e) '1/-t METHOD (d) /l/-t METHOD 

Fig. 11-27.· SIRIO Attitude Determination Geometry in the Transfer Orbit. Shaded areas give Sun 
locations for which the attitude determination geometry is poor. See text for explanation. 
(Compare with Figs. 11-21 and 11-24.) 
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covering the time period of 151} minutes before AMF to 30 minutes before AMF; 
this is the darkened region between I and F along the orbit in Figs. I 1-27(b). (c). 
and (d). 

The method described in Section 11.4.2 can -be used to obtain the poor 
geometry regions for the position of the Sun using the three attitude determination 
methods, having the Earth located at I and F, respectively. Figures lI-27(b), (c), 
and (d) show these poor geometry regions for PI.", P/f1J and .,,1f1J methods, 
respectively (compare with Figs. 11-21 and 11-24). In each figure, two regions are 
plotted. corresponding to Earth positions at J and F. Thus, the overlapping regions 
in Figs. I 1-27(b) to (d) give the positions of the Sun (or the antisolar point) such 
that for all locations of the Earth between J and F, the attitude determined by that 
particular method will not give the required accuracy. 

The poor geometry regions shown in Figs. 11-27(b) through (d) provide the 
constraints on the position of the Sun relative to the ascending node. As the launch 
date changes, the Sun position changes, and the ascending node and the attitude 
are rotated to maintain the relative positions of the Sun and the node. Therefore, 
the Sun constraints can be transformed into constraints on the right ascension of 
the ascending node versus launch date, as desired. Figures 11-28(a) through (c) 
show such results for the three attitude determination methods for a full year, and 
Fig. 11-28(d) gives the constraints on the launch window where none of the three 
attitude determination methods would give required attitude accuracy. 
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Fig. 11-28. SIRIO Attitude Constraints on- the Launch Window for AMF Attitude Determination 
Ac:c:urac:y. (See text for explanation.) 
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Further Applications. Both of the examples discussed above show the applica
tions of the poor geometry regions for the reference vectors as discussed in Section 
11.4.2. However, the poor geometry regions for the attitude discussed in Section 
11.4.1 may also be used in mission planning activities, especially in maneuver 
planning. For example, if we plot an attitude maneuver on the geometry plots given 
in Fig. 11-17 or 11-20, it is clear where along the maneuver the attitude can be best 
determined using any attitude determination method. Thus, we can stop the 
maneuver· at the appropriate position for attitude and bias determination. Alterna
tively, we can change the route of a maneuver to provide attitude accuracy for 
maneuver monitoring, or we can plan an attitude maneuver purely for the purpose 
of attitude and sensor bias determination. Activities of this type were used 
successfully on AE-4 and -5 to evaluate attitude sensor biases. Similar analyses 
have been performed to provide optimal Sun sensor configurations for SEASAT 
[Lerner and Wertz, 1916J a.nd to examine Earth and Moon coverages as ISEE-C 
transfers to the Sun-Earth libration point approximately 6~lunar orbit radii from 
the Earth [Rowe, el a/., 1978J. 

11.5 Attitude Uncertainty Due to Systematk Errors 

LilyC. Chen 
James R. Wertz; 

The causes of single-frame attitude uncertainty may be separated into the two 
categories of random and systematic errors. A random error is an indefiniteness of 
the result due to the finite precision of the experiment, or a measure of the 
fluctuation in the result after repeated experimentation. A systematic error is a 
reproducible inaccuracy introduced by faulty equipment, calibration, or technique. 
The attitude uncertainty due to random errors can be reduced by repeated 
measurement. When a measurement is repeated n times, the mean value of that 
measurement will have an uncertainty ..[ii times smaller than the uncertainty of 
each individual measurement. However, this statistical reduction does not apply to 
systematic errors. Therefore, the attitude uncertainty due to systematic errors is 
usually mu~h larger than that due to random errors.· Therefore, to reduce the 
attitude uncertainty, we must identify and measure as many as possible of the 
systematic errors present in each of the attitude measurements. In this section, we 
compare the behavior of the single-frame attitude solutions with and without 
systematic errors, discuss the singularity conditions for various attitude determina
tion methods, and introduce the concept of data filters and state estimation to solve 
for the systematic errors. 

11.5.1 Behavior of Single-Frame Solutions 

Although systematic errors cannot be reduced by measurement statistics, they 
will usually reveal themselves when the same measurements are repeated at 
different times along the orbit under different geometrical conditions. Thus. a 

*If the random errors dominate, normally more measurements will be taken until the uncertainty is 
again dominated by the systematic: error. 
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study of the behavior of the single-frame attitude solutions as a function of time 
can help reveal the existence of systematic errors. 

For an ideal case in which no systematic error exists in any of the attitude 
measurements or attitude determination models, the beha,vior of the single-frame 
attitude solutions may be summarized as follows: 

I. For each attitude determination method, the attitude solution should follow 
a known functional variation with time except for the fluctuations due to random 
errors. If the attitude is inertially fixed and nutation and coning are small, the 
attitude solutions should remain constant in time. 

2. The attitude solutions obtained from different attitude determination 
methods should give consistent results. Most spacecraft provide redundant mea
surements for attitude determination to avoid problems of sensor inaccuracies or 
failure.· Therefore, more than one attitude determination method is generally 
available. If no systematic error exists, the same attitude solution should result 
from all methods at anyone time in the orbit, to within the random noise on the 
data. 

3. Near an attitude solution singularity, the attitude solutions will have large 
fluctuations about a uniform mean value because these uncertainties are due 
entirely to random errors. An attitude singularity is any condition for which the 
uncertainty of the attitude solution approaches infinity. 

Figure 11-29 shows the behavior of single-frame solutions for a near-ideal 
case. In the figure, the spin axis declination from one real SMS-2 data pass 
obtained when the spacecraft was in near-synchronous orbit is plotted against the 
frame number. In obtaining the plotted results, the biases obtained from a bias 
determination subsystem (as described in Section 21.2) have been used to compen
sate for most of the systematic errors present in the data. Consequently, apart from 
the beginning of the data pass, the solutions obtained from the four different 
attitude determination methods show. nearly constant and consistent results 
throughout. Also, the solutions near singularities fluctuate about the mean value, as 
most easily seen from solution 2 near frame 160. The inconsistency in results near 
the beginning of the data pass and the small deviation in the solutions from a 
constant value indicate the presence of small residual systematic errors. 

The ideal situation normally does not exist in a real mission using nominal 
parameters. In general, systematic errors are difficuli to avoid and contribute most 
of the uncertainty in single-frame attitude solutions. The systematic errors usually 
encountered 'in attitude determination fall into three categories: (I) sensor and 
modeling parameter biases, which include all possible misalignments in the position 
and orientation of the attitude sensors and erroneous parameter values used in the 
models; (2) incorrect or imperfect mathematical models, which include all possible 
erroneous assumptions or errors in the mathematical formulation of the attitude 
determination models, such as the shape of the Earth, the dynamic motIon of the 
attitude, or unmodeled sensor electronic characteristics; and (3) incorrect reference 
vector directions, which include all possible errors in the instantaneous orientation 

• In some cases, the same sensors may be used to provide attitude solutions based on different targets. 
For example, the Earth and the Moon provide redundant information for RAE-2 (Werking, et aJ .. 1974] 
and ISEE-I. 
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Fig. 11-29. Behavior of Single-Frame Solutions With Small Systematic Errors for Real SMS-2 Data_ 
Numbers on plots indicate solution method: I = Sun angle/Earth-in crossing, 2= Sun 
angle/Earth-out crossing, l.=Sun angle/Earth width, 4=Sun angle/Earth midscan. 

of reference vectors, such as orbit errors; errors in ephemeris information for the 
Sun, the Moon, the planets, and the stars; time-tagging errors; and the errors in 
direction of the magnetic or gravitational field. 

_ Because of systematic errors, the real behavior of the single-frame attitude 
solutions are generally quite different from the ideal situation. Specifically. the 
follOWing items characterize the behavior of single-frame solutions with significant 
systematic errors: 

I. For each attitude determination method, the attitude solution departs from 
the known functional variation with time. This behavior is most easily observed for 
the spin-stabilized spacecraft where, ideally, the attitude should remain constant in 
time, and inthe presence of systematic errors it shows an-apparent time variation. 

2. The sOlutions obtained from different i;lttitude deterinination methods give 
different attitude results and show relative variations with time. 

3. Near attitude determination singularities, attitude solutions tend to diverge 
drastically from the mean value. 

Thus, the analyst can normally identify the existence of systematic errors by 
examining the time dependence of the attitu"e solution from each method, the 
consistency of results from different method~, and the behavior of solutions 
nearing singularities. . 

The behavior of single-frame solutions with significant systematic errors is 
illustrated in Fig. 11-30, which shows the spin axis declination determined from the 
same data set as that in Fig. 11-29, except that here the systematic errors have not 
been removed (i.e., nominal parameters for all sensors were used). Note that the 
vertical scales are different in the two figures and that solutions ~hich are outside 
the scale are not plotted. Here, solutions vary strongly in time, show substantial 
inconsistency among different methods, and diverge rapidly near singularities. 
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Fig. '11-30. Behavior of Single-Frame Solutions With Significant Systematic: Errors. Same data and 
attitude determination methods as Fig. 11-29. 

The singularity conditions for the data pass of Figs. 11-29 and 11-30 can be 
obtained from the predicted arc-length uncertainty plot shown in Fig. 11-31. Again, 
points outside the scale range are not plotted. It is seen from this figure that 
singUlarities occur near the middle of the data pass for method·3 (fJ/fl.) and near 
frame 40 and beyond frame l30 for method 2 (P/tPH); these are also the places 
where the solutions diverge in Fig. 11-30. (See Section 11.1 for a description of the 
attitude determination methods.) An analysis of the location of the singularities is 
given in the next subsection. 
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Fig. 11-31. Arc:-Length Uncertainties of Single-Frame Attitude Solutions for Data Pass of Figs. 11-29 
and 11-30. 
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1I.s~1 Identification of Singularities 
. Because the ·existence of systematic errors can be recognized from the behavior 

of solutions near sii1gularities, it is important to determine th~ singularity condi- : 
tions for the commonly used at~itude determination methods. The general expres
sion of the a.uitudeuncertainty given by Eq . ..{11-36) shows that attitude uncertainty 
approaches infinity 061y under two conditions: (I) when the measurement density, 
dm or dn; approaches zero, or (2) when the correlation angle, em/ n, approaches 0 or 
180 des. i.e., when sin8m1n =0. 

. . The singularity conditions for the attitude determination methods listed in 
Table 11-2 can be summarized as follows: -

1. Sun Angle/Nadir Angle (Pl,,) Method. The only singularity for this 
method occurs when 9 p/.'I = 0 or 180 deg. From Fig. 11-18, this occurs when the 
attitude lies on the Sun/Earth great circle, that is, when the Sun vector, the nadir 
vector. and attitude are coplanar. This singularity condition can be generally 
applied to any method using two arc-length. measurements relative to two known* 
reference vectors to determine a third unknown vector direction. A singularity 
always . Occurs when the unknown vector is coplanar with the two reference vectors. 

2. Sun Angle/ Earth-Width (P/fl.) Method. Because the correlation angle here 
is the same as that for the P/TJ method. the singularity condition above also applies 
here. However, an additional singularity exists due to the measurement density of 
S}. From Eq. (11-40), do=O when coty=cotTJcosfl./2. This is the condition for 
which the dihedral angles AEH/ and AERo equal 90 deg, that is, at maximum 
Earth width for constant p. 

3. Sun Angle/ Rotation Angle (P/fP) Method. Two types of singularities exist 
for this method. The singularity due to the correlation angle is most easily obtained 
ftom Fig. 11-18, from which, ep/~=o or 180 deg when the attitude lies on the 
Earth/Null great circle. that is. when the nadir vector, the nUll, and the attitude are 
coplanar. From Eq. (11-46), the singularity due to low rotation angle density occurs 
when either sintV or sin~ equals zero, that is, when the nadir vector is parallel or 

. antiparallel to the Sun vector or When the attitude is parallel or antiparallel to the 
null. 

4. Nadir Angle/ Rotati.on Angle ('IJ/fP) Method. The singularity conditions for 
this method are similar to those for the P/fP method except that here the 
correlation angle equals 0 or 180 deg when the attitude lies along the Sun/null 
great circle; that is. wgen the Sun vector, the null, and the attitude are coplanar. 

5. Earth-Width/Rotation Angle (fl./fP) Method . .singularities in this method 
come from three sources: the high correlation between fl. and fP or the low 
measurement density of either fl. or fP. The singularity condition due to the low 
measurement density for fl. is given in the P /S} method, and those due to the other 
two sources are the same as those given in· the TJ / fP method. 

In addition to these five attitude determination methods, a sixth common 
method is the Sun angle/Sun-t~horizon crossing rotation angle (P/fPH ) method, 
in which the horizon vector, H, can be either the Earth-in or -out vector (see 
Section -11.1.2). As discussed in Section 10.5, the Sun-to-horizon crossing rotation 

·The critical nature of this condition is discussed below (and in Section 10.4) in terms of the unknown 
horizon ~ng vector as an attitude reference. 
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angle measurement is a compound data type because the horizon vector is not a 
known vector but rather is determined from the Sun angle and the rotation angle 
measurements. Therefore, the equations given in Table I 1-2 cannot be directly 
applied to this method to identify the singularities. However, the singularity 
conditions for this method can be obtained by considering the attitude determina
tion procedures described in detail in Section 11.1.2. Three steps are involved in 
attitude determination in the PliPH method: the computation of I/IH from y,P and 
iPH ; the determination of the horizon vector from the arc-length angles I/IH and p 
relative to the Sun and the Earth, respectively; and the determination of attitude 
using p and y. The first step is a direct application of the cosine law for spherical 
triangles and gives no singularities. The second step causes a singularity when the 
Sun vector, the nadir vector, and the horizon vector are coplanar as a result of the 
general rule discussed in the PI 1J method. However, this rule cannot be applied to 
the third step because the horizon vector is not a known reference vector but is 
determined from the knowledge of the rotation angle, iPH ' In other words, the third 
step not only uses the values of 13 and y, but also implicitly uses the value of iPH : 

Because the singularity condition for the Ply method in general provides good 
geometry for methods using iP H' with all three data items (13, y and iP H) available, 
step three will not introduce any attitude determination singularity. Thus, the only 
singularity condition for the PliPH method occurs when the Sun vector, the nadir 
vector, and the horizon vector are coplanar. This is confirmed by examining Figs. 
10-15 and 10-16 and noting that the P/iPH correlation angle singularity occurs 
when small circles centered on the Sun are tangent to the iPH attitude loci. This 
occurs at the points labeled A on Figs. 10-15 and 10-16. 

Table 11-3 summarizes the singularity conditions for all methods discussed in 
this section. Singularity conditions for other attitude determination methods can be 
obtained in the same manner by analyzing the data types, the measurement 
densities. and the correlation angles. 

11.5.3 State Vector Formulation 
Because of the large number of possible systematic errors, single-frame de

terministic attitudes normally have large uncertainties relative to what would be 
expected from the noise alone. To meet the attitude accuracy requirement for most 

Table 11-3. Singularity Conditions for Common Attitude Determination Methods. A singularity 
occurs when anyone of the conditions is meL 

METHM SINGULARITY CONDITIONS 

111'1 S. E. A COPLANAR 

IIIn ~ E: A COPLANAR; LAEH~ AND L AEHO a flOO. 

III'" 
/111.."" ,...,... ,... 
E. N. A COPLANAR; E = :tS; A=:tN 

'11<1> "''''''' .... .... .... 
S.N.ACOPLANAR; E = :tS; A =:tN 

nt'" ~ f4.ACOPLANAR; E = :tS; A=:t~; LAEHI ANDlAEHO a flOO. 

IlI"'H 
"" .... S. E. H COPLANAR 

·CONDITION FOR MAXIMUM n IF THE ANGULAR RADIUS OF THE EARTH !PI 
IS CONSTANT. 
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missions, it is necessary 'to measure as many existing systematic errors as possible. 
Although the existence of systematic errors can usually be revealed from the 
behavior of the single-frame attitude solutions, it is our experience that making a 
quantitative determination of the individual systematic errors solely from this 
behavior is almost impossible. Hence, in addition to deterministic-type attitude 
systems, we need techniques and systems which provide the capability of determin
ing systematic errors without relying solely on operator evaluation. Such bias 
determination systems have become a standard part of most attitude systems in use 
at NASA's Goddard Space Flight Center. . 

In bias determination systems, the attitude parameters and the most com
monly encountered systematic errors are treated as the components of a general 
state vector. The various estimators or data filters are built to allow some or all of 
the components of the state vector. to vary to optimize the fit to the attitude data. 
In this manner, systematic errors which give observable effects on the data can be 
solved for quantitatively and the results can then be fed back to the attitude 
determintion systems to compensate for these errors and to obtain more accurate 
attitude results. A detailed discussion of data filters and state estimation techniques 
is the topic of Chapters 13 and 14. . . 
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CHAPTER 11 

THREE-AXIS ATTITUDE DETERMINATION METHODS 

12.1 Parameterization of the Attitude 
12.2 Three-Axis Attitude Determination 

Geomelric Melhod, Algebraic Metlwd, q Method 
12.3 Covarianee Analysis 

Chapter II described deterministic procedures for computing the orientation 
of a single spacecraft axis and estimating the accuracy of this computation. The 
methods described there may be used either to determine single-axis attitude or the 
orientation of any single axis on a three-axis stabilized spacecrafL However, when 
the three-axis attitude of a spacecraft is being computed, some additional formal
ism is appropriate. The attitude of a single axis can be parameterized either as a 
three-component unit vector or as a point on the unit celestial sphere, but 
three-axis attitude is most conveniently thought of as a coordinate transformation 
which transforms a set of rderence axes in inertial space to a set in the spacecraft. 
The alternative parameterizations for this transformation are described in Section 
12.1. Section 12.2 then describes three-axis attitude determjnation methods, and 
Section 12.3 introduces the covariance analysis ~eeded to estimate the uncertainty 
in three-axis attitude. 

1l.t Parameterization of the Attitude 

F. L. Markley 

Let us consider a rigid body in space, either a rigid spacecraft or a single rigid 
component of a spacecraft with multiple components moving relative to each other. 
We assume that there exists an orthogonal, right-handed triad u, V, w of unit 
vectors fixed in the body, such that 

uXv=w (12-1) 

The basic problem is to specify the orientation of this triad, and hence of the rigid 
body, relative to some reference coordinate frame, as illustrated in Fig. 12-1. 

It is clear.that specifying the components of u, t, andw along the three axes of 
the coordinate frame will fix the orientation completely. This requires nine I i 
parameters, which can be regarded as the elements of a 3 X 3 matrix, A, called the 
attitude matrix: 

A =[~: ~~ ~~ 1 (12-2) 
w. w2 w3 

where u=(~.;"2,"~T, v=(V.,V2,V3)T, and w=(W.,W2,W3)T. Each of these elements is 
the cosine of the angle between a body unit vector and a reference axis; ".' for 
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3 

w 
,,1-------2 

1 

Fig. 12-1. The fundamental problem of three-axis attitude parameterization is to speafy the orienta
tion of the spacecraft axes ii, Y, " in the reference I. 2, 3 frame. 

example, is the cosine of the angle between 0 and the reference 1 axis. For this 
reason, A is often referred to as the direction cosine matrix. The elements of the 
direction cosine. matrix are not all independent. For example, the fact that 0 is a 
unit vector requires 

u:+u~+u~=1 

and the orthogonality of u and v means that 

u,v,+ U2V 2 + U31)3=0 

These relationships can be summarized by the statement that the product of A and 
its transpose is the identity matrix 

(12-3) 

(See Appendix C for a review of matrix algebra.) This means that A is a real 
orthogonal matrix. Also, the definition of the determinant is equivalent to 

detA=o'(fXw) 

so the fact that ii, f, W form a right-handed triad means that det A = I. Thus, A is a 
proper real orthogonal matrix. 

The direction cosine matrix is a coordinate transformation that maps vectors 
from the reference frame to the body frame. That is, if a is a vector with 
components a" a2' a3 along the reference axes, then 

Aa=[:: ~~ :~l[:~l=[!::l=[::l (12-4) 
w, 14'2 W3 a3 w·a aw 

The components of Aa are the components of the vector a along the body triad 0, 
f, W. As shown in Appendix C, a proper real orthogonal matrix transformation 
preserves the lengths of vectors and the angles between them, and thus represents a 
rotation. The product of two proper real orthogonal matrices A"=A'A represents 
the results of successive rotations by A and A', in that order. Because the transpose 
and inverse of an orthogonal matrix are identical, AT maps vectors from the body 

s frame to the reference frame. 
Ir It is also shown in Appendix C that a proPer real orthogonal 3 X 3 matrix has 
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at least one eigenvector with eigenvalue unity. That is, there exists a unit vector, e, 
that is unchanged by A: 

(12-5) 

The vector e has the same components along the body axes and along the reference 
axes. Thus, e is a vector along the axis of rotation. The existence of e demonstrates 
Euler's Theorem: the most general displacement of a rigid body with one point fixed is 
a rotation about some axis. 

We regard the direction cosine matrix as the fundamental quantity specifying 
the orientation of a rigid body. However, other parameterizations, as summarized 
in Table 12-1 and discussed more fully below, may be more convenient for specific 
applications. In each case, we will relate the parameters to the elements of the 
direction cosine matrix. Our treatment follows earlier work by Sabroff, et al., 
f1965]. 

Table 12-1. Alternative Representations of Three-Axis Attitude 

PARAMETERIZATION NOTATtON ADVANTAGES DISADVANTAGES COMMON APPLICATIONS 

DIRECTION NO SINGULARITIES SI" REDUNDANT PARAMETERS IN ANALVSIS. TO TRANSFOJIM 
COSINE A.IAijl NO TRIGONOII£TRIC FUNCTIONS VECTORS FROM ONEREFER· 
MATRIX CONVENIENT PRODUCT RULE ENeE FRAME TO ANOTHER 

FOR SUCCESStVE ROTATIONS 

EU1.ER CLEAR PHYSlCAL. INTERPRETATION ONE REDUNDANT PARAMETER COMMANDING S1.EW MANEUVERS 
AXIS/ANGLE ... AXISUNDEFINEDWHENSlN .• ~ 

TRIGONOMETRIC FUNCTIONS 

EULER NO SINGULARITIES ONE REDUNDANT PARAMETeR ONBOARD INERnAL NAVIGATION 
SVIIIIII&TRIC q,..,...,.... NO TRIGONOiII£nOIC FUNCTIONS NO OBVIOUS PHYSICAL INTER· 
PARAIIII!TI!AS CONVENlENT PRODUCT RULE FOR PRETATION 

ICIUATERNIONI IqI SUCCESSlV1! ROTATIOIIS 

GIBBS NO REDUNDANT PARAIIUERS INFINITE FOR 18C).DEG ROTA- ANAL YTtC STUDIES 
VECTOR • NO TRIGOIiIOIIETRIC FUNCTIONS TION _£NT PRODUC:r RUU! FOR 

Sl.ICCESSIYE ROTAnONS 

EULEII NO ReDUNDANT PARAMETERS TRIGONOMETRIC FUNCTIONS ANAL YTJC STUDIES 
ANGLES •...• PHYSICAL INTERPRETATION ts SfNGUlARlTY AT SOlIE. INFUTIOUTPUT 

CLEAR .N SOME CASES NO CONVENIENT PRODUCT RULE ONBOARD ATTITUDE CONTROL OF 
FOR succ:ES81V1! ROTATIONS UUCIS STABILIZED SPACECRAFT 

Euler Axis/Angle. A particularly simple rotation is one about the 3 axis by 
an angle ~, in the positive sense, as illustrated in Fig. 12-2. The direction cosine 
matrix for this rotation is den<lted by A 3(.); its explicit form is 

I 
cos. sin~ 0 1 

A3(~)= -s~n~ co~~ ~ (12-6a) 

Fig. 12·2. Rotation About the Three-Axis by the Angle ~ 
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The direction cosine matrices for rotations by an angle ~ about the I or 2 axis, 
denoted by A I(~) and A2(~)' respectively, are . 

o 
cos~ 

-sin~ 
o 1 sin.~ 

cos~ 

[ 
cos~ 0 -Soin~ 1 

A2(~)= 0 I 
sin~ 0 cos~ 

The matriceS AI(~)' A2(~)' and A3(~) all have the trace 

tr(A (~»= I +2cos~ 

(12-6b) 

(12-6c) 

(12-6d) 

The trace of a direction cosine matrix representing a rotation by the angle ~ about 
an arbitrary axis takes the same value. This result, which will be used without proof 
below, follows from the observation that the rotation matrices representing rota
tions by the same angle about different axes can be related by an orthogonal 
transformation, which leaves the trace invariant (see Appendix q. 

In general, the axis of rotation will not be one of the reference axes. In terms 
of the unit vector along the rotation axis, e, and angle of rotation, ~, the most 
general direction cosine matrix is 

r 

cos~+eW -cos~) ele2(I-cos~)+e3sin~ 
A = ele2(I-cos~)- e3sin~ cos~+ e!(l-cos~) 

ele3(I-cos~)+ e2sin~ e2e3(I-cos~)- elsin~ 

= cos~l +(I-cos~)eeT - sin~E 

e,e3(I-cos~)- e2sin~ 1 
e2e3(I-cos~)+elsin~ 

cos~+eW -cos~) 

(12-7~) 

(12-7b) 

where eeT is the outer product (see Appendix q and E is the skew-symmetric 
matrix 

(12-8) 

This representation of the spacecraft orientation is called the Euler axis and 
angle parameterization. It appears to depend on four parameters, but only three are 
independent because lei = I. It is a straightforward exercise to show that A defined 
by Eq. (12-1) is a proper real orthogonal matrix and that e is the axis of rotation, 
that is, Ae=e. The rotation angle is known to be ~ because the trace of A satisfies 
Eq. (12-6d). 

It is also easy to see that Eq. (12-1) reduces to the appropriate one of Eqs. 
(12-6) when e lies along one of the reference axes. The Euler rotation angle, ~, can 
be expressed in terms of direction cosine matrix elements by 

cos~= -} [tr(A)-1) (12-9) 
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If sin I) :f: 0, the components of e are given by 

el =(A23- A 32)/(2 sin I» 

ez=(A31 - A 13)/(2 sin I» 

e3=(A 1Z - Az1)/(2sinl» 

(12-lOa) 

(12-lOb) 

(12-IOc) 

Equation (12-9) has two solutions for I), which differ only in sign. The two 
solutions have axis vectors e in opposite directions, according to Eq. (12-10). This 
expresses the fact that a rotation about e by an angle I) is equivalent to a rotation 
about -e by -I). 

Euler Symmetric Parameters. A parameterization of the direction cosine 
matrix in terms of Euler symmetric.parameters ql' q2' q3' q4 has proved to be quite 
tlseful in spacecraft work. These parameters are not found in many modem 
dynamics textbooks, although Whittaker (1931) does introduce them and they are' 
discussed by Sabroff, et 01., [1965]. They are defined by 

ql=e1sin i (12-lIa) 

.1) 
q2=e2slD"2 

.1) 
q3=e3slD"2 

_ I) 
q4=COS"2 

(12-11b) 

(12-llc) 

(12-!ld) 

The four Euler symmetric parameters are not independent, but satisfy the con
straint equation 

(12-118) 

These four parameters can be regarded as the components of a quatemion, 

(12-12b) 

Quatemions are discussed in more detail in Appendix D. The Euler symmetric 
parameters are also closely related to the Cayley-Klein parameters [Goldstein, 1950]. 

The direction cosine matrix can be expressed in terms of the Euler symmetric 
parameters by I /VI frl', (It''(} "'r< t~ (l' "fl,) (1c:1roq; 

[ q~-q~-q~+q~ 2(q,q2+q3q4) \'" 2(QIQ3-Q2q4)' 1 
A(q)= ~(QIQ2-QjQ4) -Q~+q~-q~+q~ 2(q2q3+Qlq4) J (12-13a) 

2(Qlq3+ Q2Q4) 2(q2Q3- q1Q4) - Q~-q~+q~+ q~ 

=(Q~_q2)1 +2qqT -2Q .. Q (12-13b) 
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1 where Q is the skew-symmetric matrix 

Q=[ -;, (12-13c) 

These equations can be verified by substituting Eqs. (12-11) into them, using some 
trigonometric identities, and comparing them with Eq. (12-1). 

The Euler symmetric parameters corresponding to a given direction cosine 
matrix, A, can be found from 

I (I 1/2 q4= ± 2" +A II +A22+A33) ( 12-14a) 

I 
ql = 4q4 (A 23-A32) ( 12-14b) 

I 
q2 = 4q4 (A JI - A 13) (12-14c) 

I 
q3= 4q4 (A 12-A21 ) (12-14d) 

Note that there is a sign ambiguity in the calculation of these parameters. 
Inspection of Eq. (12-13) shows that changing the signs of all the Euler symmetric 
parameters simultaneously does not affect the direction cosine matrix. Equations 
(12-14) express one of four possible ways of computing the Euler symmetric 
parameters. We could also compute 

1 (I )1/2 ql= ± 2" +A II -A22 -A33 

I 
q2= 4qJ (A I2 +A 21 ) 

and so forth. All methods are mathematically equivalent, but numerical inaccuracy 
can be minimized by avoiding calculations in which the Euler symmetric parameter 
appearing in the denominator is close to zero. Other algorithms for computing 
Euler symmetric parameters from the direction cosine matrix are given by Klumpp' 
(1976). 

Euler symmetric parameters provide a very convenient parameterization of the 
attitude. They are more compact than the direction cosine matrix, because only 
four parameters, rather than nine, are needed. They are more convenient than the 
Euler axis and angle parameterization (and the Euler angle parameterizations to be 
considered below) because the expression for the dir~ction cosine matrix in terms 
of Euler symmetric parameters does not involve trigonometric functions, which 
require timl"-consuming computer operations. Another advantage of Euler sym
metric pa .neters is the relatively simple form for combining the parameters for 
two indi .. dual rotations to give the parameters for the product of the two rotations. 
Thus, if 

A (q") = A (q')A (q) (12-15a) 
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-q; 
q, 
q~ 

-qi 

12.1 

(12-15b) 

Equation (12-ISb) can be verified by direct substitution of Eq. (12-13) into Eq. 
(12-ISa), but the algebra is exceedingly tedious. The relationship of Eq. (12-15b) to 
the quaternionproduct is given in Appendix D. Note that the evaluation of Eq. 
(12-15b) involves 16 multiplications and the computation of Eq. (12-15a) requires 
27; this is another advantage of Euler symmetric parameters-. 

Gibbs Vector. The direction cosine matrix can also be parameterized by the 
Gibbs vector,· which is defined by 

g.==q./q4=e.tan ~ (12-16a) 

g2==q2/q4=e2tan ~ 

g3 == q3/ q4 = e3tan ~ 

(12-16b) 

(12-16c) 

The direction cosine matrix is given. in terms of the Gibbs vector by 

[ l+gl-r,-i, 2(g.g2+ g3) 2(g,g, - g,) 1 
A= 1+ 2: 2+ 2 2(g.g2-g) I-g:+ g~-g~ 2(g2g3+ g.) 

g, g2 g3 2( +) 2(g2g3:"" g.) I-g:-g~+g~ g.g3 g2 

(12-l7a) 

(l-i)I+2ggT 
- G 

(12-l7b) 
I+r 

where G is the skew-symmetric matrix 

G~[ ;, -g3 
g, 1 0 -g. (12-17c) 

-g2 g. 0 

Expressions for the Gibbs vector components in terms of the direction cosine 
matrix elements can be found by using Eqs. (12-16) and (12-14). Thus. 

AD-Au 
g. = --------,--

I +A II +A22+A33 
(12-18a) 

·Oibbs [1901, p. 340) named this vector the "vector semitangent of version." Cayley [1899) used the 
three quantities g •• gz. g3 in 1843- (before the introduction of vector notation). and he cred~ts their 
discovery to Rodriguez. 
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(12-ISb) 

(12-ISc) 

Note that there is no sign ambiguity in the definition of the Gibbs vector and that 
the components are independent parameters. The product law for Gibbs vectors 
analogous to Eq. (12-ISb) can be found from that equation and Eq. (12-16). and 
takes the convenient vector form 

" g+g'-g'xg 
g = I-g·g' (12-19) 

The Gibbs vector has not been widely used because it becomes infinite when the 
rotation angle is an odd multiple of 180 deg. 

Euler Angles. It is clear from the above discussion that three independent 
parameters are needed to specify the orientation of a rigid body in space. The only 
parameterization considered so far that has the minimum number of parameters is 
the Gibbs vector. We now turn to a class of parameterizations in terms of three 
rotation angles, commonly known as Euler angles. These are not as convenient for 
numerical computations as the Euler symmetric parameters, but their geometrical 
significance is more apparent (particularly for small rotations) and they are often 
used for computer input! output. They are also useful for analysis. especially· for 
finding -closed-form solutions to the equations of motion in simple cases. Euler 
angles are also commonly employed fer three-axis stabilized spacecraft for which 
small angle approximations can be used. . 

To define the Euler angles precisely, consider four orthogonal triads of unit 
vectors, which we shall denote by . 

x,y,z 
x',Y·',Z' 

x",y",z" 
D,V,W 

The initial triad x.y,i is parallel to the reference 1,2,3 axes. The triad x',r,i' 
differs f~om x.Y.i by a rotation about the i axis (i= I. 2. or 3 depending on the 
particular transformation) through an angle «fl •• Thus. the orientation of the x'.r,i' 
triad relative to the x.Y.i triad is given by A,(<<fI) for i= 1.2, or 3. one of the simple 
direction cosine matrices given by Eq. (12-6). Similarly, the x".y".i" triad orienta
tion relative to the x',f.i' triad is a rotation about a coordinate axis in the i',r,i' 
~stem by an angle fJ. specified by AifJ).j= I. 2, or 3.j #: ;. Finally. the orientatiori 
of ii. V, W relativ~ to i".f'.z" is a third rotation, by an angle 1{1, with the direction 
cosine matrix Ak (1{I), k= 1.2, or 3, k #: j. The final D.V,W triad is the body-fixed 
triad considered previously. so the overall sequence of three rotations specifies the 
orientation of the body relative to the reference coordinate axes. . 

• Although Euler angles are rotation angles, we follow the usual convention of denoting them by lower
case Greek letters. 
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A specific example of Euler angle rotations is shown in Fig. 12-3. Here. t~e I 

first rotation is through an angle cz, about the i axis. so that the i and i' axes ~ 
coincide. The second rotation is by 8 about the i' axis. which thus is identical with it 
in. The third rotation is by tf about the in (or w) axis. This sequence of rotations is 
called a 3-1-3 sequence, because the rotations are about the 3, I. and 3 axes. in that 
order. The labeled points in the figure are the locations of the ends of the unit 
vectors on the unit sphere. The circles containing the numbers I. 2, and 3 are the 
first, second, and third rotation axes, respectively. The solid lines are the great 
circles containing the unit vectors of the re~erence coordinate system, i,y,i. The 
cross-hatched lines are the great circles containing the unit vectors of the body 
coordinate system, D, V, w. The dotted and dashed lines are the great circles defined 
by intermediate coordinate systems. 

J 
;~; 

c· ., 
.'f 
Ii 

.l 
, :~; 

':1, 

~. 
Fig. 12-3. 3-1-3 Sequence of Euler Rotations. (See text for explanation.) J 

:\' 
The direction cosine matrix for the overall rotation sequence is the matrix " 

product of the three matrices for the individual rotations, with the first rotation 
matrix on the right and the last on the left: 

A 313(cz,,8, tf) = A 3( tf)A I( 8)A 3(cz,) = 

[ 

COStfCoscz,-cos8sintfsincz, 
- sintfcoscz,- cos 8 COStf sincz, 

sin 8 sin cz, 

cos tf sin cz, + cos 8 sin tf cos cz, 
- sintfsin cz,+ cos 8 cos tf coscz, 

-sin8coscz, 

sin8sintf 1 
sin8costf (12-20) 

cos 8 

The Euler axis corresponding to A3I3(cz,,8,tf) can be found from Eq. (12-10); it is 
denoted by e in Fig. 12-3. . 

The 3-1-3 Euler angles. can be obtained from the direction cosine matrix 
elements by 

8=arccosA33 

cz,= -arctan(A31 / A 32) 

tf = arc tan(A 13/ A 23) 

(12-2Ia) 

(12-2Ib) 

(12-2Ic) 
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(12-21C) 
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Note that Eq. (12-2Ia) leaves a twofold ambiguity in (J, corresponding to sin9 being 
positive or negative. Once this ambiguity is resolved, cp and 1/1 are determined 
uniquely (modulo 360 deg) by the signs and magnitudes of All' A2l, A3J> and All' 
with the exception that when (J is a multiple of 180 deg, only the sum or difference 
of cp and 1/1 is determined, depending on whether 9 is an even or an odd multiple of 
180 deg. The origin of this ambiguity is apparent in Fig. 12-3. The usual resolution 
of this ambiguity is to choose sin(J :> 0, or 0 <; (J < 180 deg. 

Other sequences of Euler angle rotations are possible, and several are used. 
Figure 12-4 illustrates a 3-1-2 sequence: a rotation by cp about i followed by a 
rotation by 9 about i' and then by a rotation by 1/1 about y". This is often referred 
to as the yaw, roll, pitch sequence, but the meaning of these terms and the order of 
rotations implied is not standard. The direction cosine matrix illustrated in Fig. 
12-4 is 

A 312(cp, (J,I/I) = A 2( I/I)A ,«(J )Al( cp) = 

[

COS 1/1 coscp - sin (J sin 1/1 sin cp 
-cos(Jsincp . 

sin lJi cos cp + sin (J cos 1/1 sin cp 

cos 1/1 sin cp + sin (J sin 1/1 coscp 
cos9 cos cp 

sin 1/1 sin cp - sin 9 cos 1/1 cos cp 

-cos(JsinlJi 1 
sin(J (12-22) 

cos(Jcosl/l 

Fig. 12-4. 3-1-2 Sequence of Euler Rotations. (See text for explanation.) 

The expressions for the rotation angles in terms of the elements. of the 
direction cosine matrix are 

(J = arc sin A 23 

cp= -arctan(A2t1 An) 

1/1= -arctan(A'l/ A 33) 

(12-23a) 

(12-23b) 

(12-23c) 

As in the 3-1':3 case, the angles are determined up to a twofold ambiguity 
except at certain values of the intermediate angle (J. In this case, the singular values 
of () are odd multiples of 90 deg. The usual resolution of the ambiguity is to choose 
- 90 deg < (J <; 90 deg, which gives cos(J :> O. 

______ L 
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If 4>, 8, and If are all small angles, we can use small-angle approximations to 
the trigonometric functions, and Eq. (12-22) reduces to 

where the angles are measured in radians. 

4> 
I 

-8 
(12-24a) 

It is not difficult to enumerate all the possible sequences of Euler rotations. 
We cannot allow two successive rotations about a single axis, because the product 
of these rotations is equivalent to a single rotation about this axis. Thus, there are 
only 12 possible axis sequences: 

313,212,121,323,232,131, 

312,213,123,321,231,132. 

Because of the twofold ambiguity in the angle 8 mentioned above, there are 24 
possible sequences of rotations, counting rotations through different angles as 
different rotations and ignoring rotations by multiples of 360 deg. The axis 
sequences divide naturally into two classes, depending on whether the third axis 
index is the same as or different from the first. Equation (12-20) is an example of 
the first class, and Eq. (12-22) is an example of the second. It is straightforward, 
using the techniques of this section, to write down the transformation equations for 
a given rotation sequence; these equations are collected in Appendix E. In the 
small-angle approximation, the 123,132,213,231,312, and 321 rotation sequences 
all have direction cosine matrices given by Eq. (12-24a) with the proviso that 4>, 8, 
and If are the rotation angles about the 3, 1,2 axes, respectively. Comparison with 
Eq. (12-13) shows that in the small-angle approximation, the Euler symmetric 
parameters are related to the Euler angles by 

I 
q''".::::."28 

I 
92 '".::::."21f 

I 
9)'".::::."24> 

94'".::::.1 

ll.l 1bree-AxIs Attitude Determinadon 

(12-24b) 

(12-24c) 

(12-24d) 

(12-24e) 

Gerald M. Lerner 

Three-axis attitude determination, which is equivalent to the complete specifi
cation of the attitude matrix, A, is accomplished either by an extension of the 
geometric techniques described in Chapter II or by a direct application of the 
concept of attitude as a rotation matrix. If the spacecraft has a preferred axis, such 
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as the angular momentum vector of a spinning spacecraft or the boresight of a 
payload sensor, it is usually convenient to specify three-axis attitude in terms of the 
attitude of the preferred axis plus a phase angle about that axis. This asymmetric 
treatment of the attitude angles is usually justified by the attitude sensor configura
tion and the attitude accuracy requirements, which are generally more severe for 
the preferred axis. We refer to this method as geometric three-axis attitude de
termination because the phase angle is computed most conveniently using spherical 
trigonometry. Alternatively, in the algebraic method, the attitude matrix is deter
mined directly from two vector observations without resorting to any angular 
representation. Finally, the q method provides a means for computing an optimal 
three-axis attitude from many vector observations. In this section we describe these 
methods for the computation of three-axis attitude. 

12.2.1 Geometric Method 

The geometric method is normally used when there is a body axis-such as the 
spin axis of a momentum wheel, a wheel-mounted sensor, or the spacecraft itself, 
about which there is preferential attitude data. Either deterministic techniques, as 
described in Chapter II, or differential correction techniques, as will be described 
in Chapter 13, may be used to compute the attitude of the preferred axis. __ The 
phase angle abOut the preferred axis is then computed from any measurement 
which provides an ·angle about that axis. 

In many cases, the geometric method is required because the sensor mea
surements themselves (e.g., spinning Sun sensors or horizon scanners) define a 
preferred spacecraft axis and provide only poor azimuthal information about that 
axis. 

Figure 12-5 illustrates. the. geome~c method. The reference axes are the 
celestial coordinates axes, XI' V/, and Z/. We wish to compute the 3-1-3 Euler 
angles, </>, 9, and 1/1. which define the transformation from the celestia1 to the body 

Fig. 12·5. Determination of the Phase Angle, ." 
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coordinates, XB , Y B' and ZB. Th~ Euler angles cp and 9 are related to the attitude 
(a,8) of the preferred body axis, ZB' by 

cp=900+a ( 12-25a) 

(12-25b) 

where the right ascension, a, and the declination, 8, ale obtained by using a'!y 
one-axis attitude determination method. cp defines the orientation of the node, N. 
The phase angle,~ 1/1, is computed from the azimuth, 1/Is' of the projectio~n of a 
J!leasured vector, S (e.g~, the Sun or magnetic ·fiel~) on th! pl!lne nprmal to ZB. Let 
M be the projection of S on the plane normal to ZB and P =ZB X N. Application of 
Napier's rules (Appendix A) to the right spherical triangles SMN and SMP yields 

N·S=M·S cos1/l0 

p. S = M . S cos(90° -1/10) = M . S sin 1/10 

which may be rewritten as· 

where 

N = (coscp, sincp, O)T 

p=( -cosOsincp,cos9coscp,sin9)T 

The phase angle, 1/1, is then given by 

1/I=1/Io+1/Is 

(12-26a) 

(12-26b) 

(12-27) 

(12-28a) 

(12-28b) 

(12-29) 

As a more complex example of the geometric technique, we consider the 
thJ;'ee-axis attitude determination for the CTS spacecraft during attitude acquisition 
as illustrated in Fig. 12-6. The spacecraft Z axis is along the sun line and the 
spacecraft Y axis (the spin axis of a momentum wheel) is fixed in inertial space on 
a great circle 90 deg from the Sun .. An infrared Earth horizon sensor has its 
boresight" along the spacecraft Z axis and measures both the rotation angle, QE' 

from the Sun to the nadir about the spacecraft Y axis and the nadir angle, 11, from 
the spacecraft Y axis to the Earth's center. We wish to compute the rotation angle, 
(Ps, about the sunline required to place the spacecraft Yaxis into the celestial X- Y 
plane as a function of the following angles: the Sun declination in celestial 
coordinates, 8s ; the clock anglet or difference between the Earth and Sun azimuth 
in celestial coordinates, da=aE-as; and either measurement QE or 11. As shown 
in Fig. 12-6, (Ps is 180 deg minus the sum of three angles: 

( 12-30) 

• Note that M-S > 0 by the definition of M. If M· S co 0, 1/10 is indeterminate because S provides no 
phase information about ZB· If M·S>O,1/Io is obtained unambiguously because the quadrants of both 
sin",o and cos1/l0 are known. 

t For the synchronous CTS orbit, the azimuthal difference or clock angle is zero at local midnight and 
decreases by IS der/hl'ur. 
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Fig. 12-6. Attitude Determination Geometry for CIS 

Applying Napier's rules to the right spherical triangles ETS, ERS, and QTS, 
the arc length SE is 

1/-= arc cos(S . E) = arccos(cosBs cosl1a) 

and the rotation angle, A, is 

A= L RSE=arcsin(sin/JE/sin1/-) 

(12-31) 

(12-32) 

where /3£ = 11 - 90° and the arc length, TQ, is 90 deg. Next, the quadrantal spherical 
triangle, QES, is solved for the angle ESQ: 

41£= L ESQ = arccos(cos(90° -l1a)/sin1/-) (12-33) 

Combining Eqs. (12-30), (12-32), and (12-33) with L YSR=90 deg gives the result 

4Is = 90
0 

- arc sin(sin/J£/sin 1/-) - arc cos(sin l1a/sin 1/-) (12-34) 

or 

4Is = arccos( sin/3E/ sin 1/-) - arc cos(sinl1a/ sin 1/-) (12-35) 
where 

(12-36) 

Finally, gE and /3E are related through the quadrantal spherical triangle, YSE, by 

(12-37) 

One problem with the geometric method is apparent from the proliferation of 
inverse trigonometric functions in Eqs. (12-31) to (12-37), which results in quadrant 
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and consequent attitude ambiguities. Ambiguity is a frequent problem when 
dealing with inverse trigonometric functions and must be carefully considered in 
mission analysis. Although from Fig. 12-6, ~s and all the rotation angles in Eq. 
(12-30) are in the first quadrant by. inspection, the generalization of Eq. (12-35) for 
arbitrary angles is not apparent. From the form of Eq. (12-35), it would appear that 
there is a fourfold ambiguity in ~s; however, some of these ambiguities may be 
resolved by applying the rules for quadrant specification given in Appendix A. 
There is, however, a true ambiguity in the sign of A which may be seen by 
redrawing Fig. 12-6 for ~s~ -10 deg and noting that, in this case, 

(12-38) 

The ambiguity between Eqs. (12-30) and (12-38) is real if only pitch or roll 
measurements are available and must be differentiated from apparent ambiguities 
which may be resolved by proper use of the spherical triangle relations. However, if 
both QE and 11 measurements are available, the ambiguity may be resolved by the 
sign of QE because QE is positive for Eq. (12-30) and negative !or Eq. (12-38). 

ll.l.l Algebraic Method 

The algebraic method is based on the rotation matrix representation of the 
attitude. Any two vectors, u and v, define an orthogonal coordinate system with the 
basis vectors, q, r, and s given by 

q=u 
r=uxv/luxvl 
s=qxr 

provided that u and v are not parallel, i.e., 

Iii ·vl < 1 

(12-39a) 

(12-39b) 

(12-39c) 

(12-40) 

At a given time, two measured vectors in the spacecraft body coordinates 
(denoted by the subscript B) iiB and VB' determine the body matrix, Mg: 

MB=[qB :rB :5B] (12-41) 

For example, the measured vectors may be the Sun position from two-axis Sun 
sensor data, an identified star position from a star tracker, the nadir vector from an 
infrared horizon scanner, or the Earth's magnetic field vector from a mag
netometer. These vectors may also be obtained in an appropriate reference frame 
(denoted by the subscript R) from an ephemeris, a star catalog, and a magnetic 
field modeL The reference matrix, MR, is constructed from iiR and vR.by 

(12-42) 

As defined in Section 12.1, the altitude matrix, or direction cosine matrix, A, is 
given by the coordinate transformation, 

AMR=MB (12-43) 
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because it carries the column vectors of MR into the column vectors of Ms. This 
equation may be solved for A to give 

A=MsMi' 

Because M R is orthogonal, M R- '= Ml and, hence (see Appendix q, 

A = MsMl 

(12-44) 

(12-45) 

Nothing in the development thus far has limited the choice of the reference 
frame or the form of the attitude matrix. The only requirement is that M R possess 
an inverse, which follows because the vectors q, t, and s are linearly independent 
provided that Eq. (12-40) holds. The simplicity of Eq. (12-45) makes it particularly 
attractive for on board processing. Note that inverse trigonometric functions are not 
required; a unique, unambiguous attitude is obtained; and computational re
quirements are minimal. 

The preferential treatment of the vector U over v in Eq. (12-39) suggests that 0 
should be the more accurate measurement;- this ensures that the attitude matrix 
transforms 0 from the reference frame to the body frame exactly and v is used only 
to determine the phase angle about u. The four measured angles that are required 
to specify the two basis vectors are used to compute the attitude matrix which is 
parameterized by only three independent angles. Thus, some information is im
plicitly discarded by the algebraic method. The discarded quantity is the measured 
component of v parallel to 0, i.e., 0B·V s. This measurement is coordinate indepen
dent, equals the known scalar 0R·V R' and is therefore useful for data validation as 
described in Section 9.3. All of the error in uB·Vs is assigned to the less accurate 
measurement VB' which accounts for the lost information. 

Three reference coordinate systems are commonly used: celestial, ecliptic, and 
orbital (see Section 3.2). The celestial reference system, Me' is particularly con
venient because it is obtained directly from standard ephemeris and magnetic field 
model subroutines such as EPHEMX and MAGFLD in~ection 20.3. An ecliptic 
refere,!ce system, ME' defined by the Ear!h-to-Sun vector, S, and the ecliptic north 
pole, P E' is obtained by the transformation 

(12-46) 

where Sand P E are in celestial coordinates, 

PE~(O, -sinf,cosf)T (12-47) 

and f~23.44 deg is the obliquity of the ecliptic. 
An orbital reference system, Mo' is defined by the nadir vector, E, and the 

negative orbit normal, - ii, in celestial coordinates, 

[ 
_ _ ]T 

Mo= -iJXE: -il:E Me (12-48) 

*If both measurements are of comparable accuracy, basis vectors c'onstructed from ii+v and g-V 
would provide the advantage of symmetty. 
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Any convenient representation may be used to parameterize the attitude 
matrix. Quaternions and various Euler angle sequences are commonly used as 
described in the previous section. _ 

The construction of vector measurements from _ sensor data is generally 
straightforward, particularly for magnetometers (Section 75), Sun sensors (Section 
7.1), and star sensors (Section 7.6). For Earth-oriented spacecraft using horizon 
scanners, the nadir vector may be derived from the measured quantities by 
reference to the orbital coordinate system defined in Fig. 12-7. The Zo axis is along 
the nadir vector and the Yo axis is along the negative orbit pormal. The scanner 
r..neasures both (I) the pitch angie, gE' about the scanner axis (the spacecraft Yaxis, 
VB) from the spacecraft Z axis, ZB' to the YBZo plane, and (2) /JE' the angle from 
the scanner axis to the nadir minus 90 deg.· 

Fig. 12·7. Three-Axis Attitude From IR Scanner Plus Sun Sensor Data 

Solving the quadrantal spherical triangies, XB YBZo and YBZBZO' gives 

ZB' Zo = coSgECOS/JE 

XB'ZO=SingECOS/JE 

Hence, the nadir vector in body coordinates is 

EB=(singEcos/JE' -sin/JE,cosgEcos/JE)T 

1l.1.3 q Method. 

(1249) 

(12-S0) 

(12-SI) 

A major disadvantage of the attitude determination methods described thus 
far is that they are basically ad hoc. That is, the measurements are combined to 
provide an attitude estimate but the combination is not optimal in any statistical 

-The angles DE and IlE are analogous to pitch and ron. respectively, as they are defined in ~pter 2. 
Because standard defmitions of pitch, ron. and yaw do not exist, the sign of the quantities here may 
differ from that used on some spacecraft. (See Section 2.2.) 
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sense. Furthermore, the methods are not easily applied to star trackers or combina
tions of sensors which provide many simultaneous vector measurements. Given a 
set of n)o 2 vector measurements. u~. in the body system. one choice ror an optimal 
attitude matrix. A. is that which minimizes the loss function 

n 

l.<A)= ~ w;/u~-Au~12 (12-52) 
;=1 

where w; is the weight of the ith vector measurement and u~ is the vector in the 
reference coordinate system. The loss function is the weighted sum squared of the 
difference between the measured and transformed vectors. 

The attitude matrix may be computed by an elegant algorithm derived by 
Davenport [1968J and based in part on earlier work by Wahba [I965J and 
Stuelpnagel (1966). This algorithm was used for the HEAO-I attitude determina
tion system [Keat. 1977). 

The loss function may be rewritten as 

" l(A)= -2 L WjAV;+constant terms 
;=1 

where the unnormalized vectors W; and V; are defined as 

The loss function leA) is clearly a minimum when 

" 1'(A)= ~ W;AV;=lr(WTAV) 
;=1 

is a maximum, where the 0 X n) matrices Wand V are defined by 

W=[WI :W2 : '" :Wn ] 

V =[V ; V : ... : V ] I. 2. • n 

(12-53) 

(12-54) 

(12-55) 

(12-56) 

To find the attitude matrix. A. which maximizes Eq. (12-55), we parameterize 
A in terms of the quaternion, q. Eq. (12-13b), 

(12-57) 

I) where the quaternion has been written in terms of its vector and scalar parts, 

IUS 

to 
cal 

~2. 
may 

q=(~) ( 12-58) 

I is the (3 X 3) identity matrix, qq T is the (3 x3) matrix outer product formed from 
the vector part of q, and Q is the skew-symmetric matrix 
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Substitution of Eq. (12-51) into (12-55) and considerable matrix algebra (Keat, 
1977) yields the following convenient form for the modified loss function: 

(12-60) 

where the (4x4) matrix K is 

(12-61) 

and the intermediate (3 X 3) matrices Band S, the vector Z, and the scalar 0 are 
given by 

o=tr(B) 

(12-62a) 

(12-62b) 

(12-62c) 

(12-62d) 

The extrema of }', subject to the normalization constraint qTq= I, can be found by 
the method of Lagrange multipliers (Hildebrand, 1964]. ~e define a new function 

(12-63) 

where A is the Lagrange multiplier,g(q) is maximized without constraint, and A is 
chosen to satisfy the normalization constraint. Differentiating Eq. (12-63) with 
respect to q T and setting the result equal to zero, we obtain the eigenvector 
equation (see Appendix q 

Kq=Aq ( 12-64) 

Thus, the quaternion which parameterizes the optimal attitude matrix, in the 
sense of Eq. (12-52), is an eigenvector of K. Substitution of Eq. (12-64) into (12-60) 
gives 

(12-65) 

Hence,}' is a maximum if the eigenvector corresponding to the largest eigenvalue 
is chosen. It .can be shown that if at least two of the vectors Wi are not collinear, 
the eigenvalues of K are distinct [Keat, 1977) and therefore this procedure yields an 
unambiguous quaternion or, equivalently, three-axis attitude. Any convenient 
means, e.g., use of the subroutine EIGRS [IMSL, 1975], may be used to find the 
eigenvectors of K. 

A major disadvantage of the method is that it requires constructing vector 
meastuements, which is not always possible, and weighting the entire vector. 
Alternative, optimal methods which avoid these disadvantages are described in 
Chapter 13. Variations on the q-method which avoid the necessity for computing 
eigenvectors are described by Shuster [I978a, 1 978b). 
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12.3 Covariance Analysis 

Gerald M. Lerner 

Covariance analysis or the analysis of variance is Ii general statistical procedure 
for studying the relationship between errors in measurements and error in quanti
ties derived from the measurements. In this section, we first discuss covariance 
analysis for an arbitrary set of variables and then· discuss the interpretation of the 
covariance parameters' for three-axis attitude. For a more extended ~iscussion 4>f 
covariance analysis, see, for example, Bryson and Ho (1969) or Bevington (1969). 
For geometrical procedures for analyzing single-axis attitude error, see Section 
I1.3. 

We define the mean, E, and variance, v, of the random variable x by 

E=E(x) 

v= E{ (x-E)2} =E{ (8X)2} 

(12-66a) 

(12-66b) 

where E denotes the expectation value or ensemble average. The variance is simply 
the mean square deviation, 8x = x - t of x from the value x = E. The root-mean
square (rms) deviation, or standard deviation, a, is defined by 

a=Vv 
The covariance of two variables XI and xl' with means E, and ~2 and standard 

deviations a, and a2' is defined by 

(12-68) 

and is a measure of the interdependence or correlation between the two variables. 
The correlation coefficient of XI and x 2 is the normalized covariance 

C'2= C21 =E{ (XI;EI)( X2~E2)} = a~~2 (12-69) 

which satisfies the inequality 

(12-70) 

For independent variables, CI2 =A12 =0, and for totally corr~lated variables 
(e.g., XI =7x2), IC121= I. Covariance analysis relates the presumably known 
variance and covariance in one set of variables (e.g., measurement errors) to a 
second set of variables (e.g., computed attitude errors). 

We assume that the n computed quantities, Xi' are functions of the m 
measurements, Yj' with m:> n. Thus. 

x;=X;(YI,Yz"'Ym) (12-71) 

or, in vector notation, x=x(y). In Chapter II, geometrical techniques were applied 
to the special case n= m=2 and x=(a,6)T. Here, we are' primarily concerned with 
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the case where n = 3, m ~ 3, and x consists of three attitude angles; however, other 
interpretations and higher dimensions are consistent with the formal development. 
If m>3, then the problem is overdetermined and the functional form of Eq. (12-71) 
is not unique. In this case, we assume that a unique function has been chosen. 

If the measurement errors, 8J1i, are sufficiently small and x is differentiable, the 
error in x; may be estimated by using a first-order Taylor series:· 

max· 
8x;= ~ "f8Yj (12-72a) 

j=1 !J'l 

or 

8x=H8y (12-72b) 

where H is the n X m matrix of partial derivatives with the elements H ij;; ax;! aYr 
The expectation value of the outer product of 8x with 8x T is 

E(8xBxT)= E(H By 8yTHT)= HE(8y8yT)HT 

which may be rewritten in matrix notation as 

Pc=HPmH T 

( 12-73) 

(12-74) 

where the elements of the covariance matrix, Pc, and the measurement covariance 
matrix, Pm. are defined by 

PCg;; E( 8x; 8xj) 

P my ;; E( By; 8J1i) 

(12-75a) 

(12-75b) 

Thus, the diagonal elements of the n X n symmetric covariance matrix, Pc' give 
the variance of the errors in the computed components of x and the off-diagonal 
elements give the covariance between the components of x.Similarly, the elements 
of the m X m matrix Pm give the variance and covariance of the measurement errors 
in y. 

Equation (12-74) provides the link between the (presumably) known variance 
and correlation in the measurements, and the desired variance and correlation in 
the computed quantities. Different algorithms for obtaining x from y, when m> n, 
will, in general. yield different solutions, different partial derivatives and. con
sequently, a different computed covariance matrix. Thus, an algorithm, x(y), might 
be chosen to avoid undesirable error correlations. 

Equation (12-74) relates the variance and covariance in the measurements to 
the variance and covariance in the computed quantities without implying anything 
further about the distributions of the errors in either x or y. However, three specific 
cases are often used in attitude analysis. 

1. If the distribution of errors in y is Gaussian or normal, then the distribution 
of errors in x is also Gaussian. . 

-In general, we are not free to pick some appropriately small region about the solution in which the 
first-order Taylor series is valid. It must be valid over the range of solutions corresponding to the; range 
in measurement errors. Thus, sec:ond-order effects, which are ignored here, may become important when 
using realistic estimates of the measurement errors. 
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2. If the measurement accuracy is determined by quantization, i.e., buckets or 
steps which return a single discrete value for the m~surement or group of 
measurements, then the variance in the measurement is S2/ 12, where S is the step 
size. If all of the measurements are limited by quantization, then the probability 
density of the attitude is a step function (i.e., uniform within a particular region 
and 0 outside that region. See Section 11.3.) 

3. If there are a large number of uncorrelated measurements, then the Central 
Limit Theorem (see, for example, Korn and Korn [1973D can be used to infer the 
distribution of erro~ in x, irrespective of the form of the distribution of the 
measurement errors. The theorem states that if the m random variables '1 are 
uncorrelated with mean ~ and variance vJ> then as m-+oo, the distribution of the 
sum 

m 

~'l 
j=1 

is asymptotical~y Gaussian [Bevington, 1%9] with mean 
m 

~~ 
j=1 

and standard deviation 

( f '1)1/2 
j=1 

An application of this theorem to Eq. (12-72a) with 

ax; 
'l=~6Yj .dlj 

(12-76a) 

implies that, for m large, the errors in Xi' that is, 6xi , are approximately Gaussian 
with standard deviation 

., {~, ( ~~ r ·r' (12-76b) 

In practice, the Central Limit Theorem may give reasonable estimates for m as 
small as 4 or 5, although in such cases the results should.be verified by other 
means. The Central Limit Theorem may also be used to compute the variance and 
distribution of errors in a measurement which is contaminated by many error 
sources with (presumably) known variances. To determine the covariance matrix Pc 
from Eq. (12-74), we need to determine both the measurement covariance matrix, 
Pm' and the matrix of partial derivatives, Ii. In practice, Pm IS normally assumed to 
be diagonal; i.e., the measurements are assumed to be uncorrelated. The diagonal 
elements of Pm are simply.the variance of the measurements. If the measuremt;nts 
are correlated but can be written as functions of uncorrelated quantities, then the 
above analysis may be used to determine Pm' For example, the Sun/Earth-in and 
Sun/Earth-out rotation angle measurements, !lJ and !lOt described in Section 7.2, 
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are correlated but may be written in terms of the uncorrelated quantities, '1' the 
Sun to Earth-in time; '0 , the Sun to Earth-out time; and Is, the Sun time as 

where (.0) is the spin rate. Thus, 

Sl/=(.o)(II-IS ) 

Slo =~Io - Is) 

a2 
's 

0 0 

Pm=H 0 a2 

" 
0 

0 0 a2 
'0 

HT 

(12-77a) 

(12-77b) 

(12-78) 

where a,s' att, and ato are the standard deviations in the (assumed) uncorrelated 
measurements Is, II' and 10 • The elements of Hare 

aSlI aSlI 
HII = al

s 
= -(.0); H'2= all =(.0); 

aSlo aSlo 
H 2 ,= al

s 
=-(.0); H 22 = all =0; 

Substitution of Eqs. (12-79) into Eq. (12-78) yields 

aSlI 
H I3=-=0 

alo 

The correlation coefficient between the errors in Sll and Slo is 

a2 
ts 

----~---'/.,-2 ~ I 
[(a2 + (12)(12 + ( 2 )] 

Is I, Is " 

(12-79) 

(12-80) 

Given an estimate of Pm' it remains to evaluate the partial derivatives axJaYj 
to obtain H. These partials may be computed either numc:rically or analytically. 
Numerical evaluation of partial derivatives is particularly convenient when com
puter evaluation of the necessary functions is already required for attitude de
termination, as is normally the case. For example, consider the right ascension of 
the spin axis attitude, a, as a function- of the Sun angle, P; a horizon sensor 
mounting angle, y; and other variables [Shear, 1973]: a=a(p,y, ... ). Then, if the 
variance in P .is vp == a~, and if a is linear ovec the appropriate range, the partiaJ 
derivative is approximately 

aa a(p+ap,y, ... )-a(p,y, ... ) 
ap~ ap 

(12-81) 

Given specific values of p, y, and the other measurements and their variance and 
correlation, H can be calculated directly from Eq. (12-81). 

This method breaks down if the attitude cannot be computed from the 
perturbed data, i.e., if a(p+ap,y, ... ) is undefined. (This is clearly an indication 
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that a is nonlinear in this region and therefore Eq. (12-72) is probably invalid.) It is 
also possible for the perturbed solution to yield only the wrong attitude solution of 
an ambiguous pair and, therefore, to give absurdly large uncertainties. Numeri
cally, both problems may be resolved by substituting some reduced fraction, e.g., 
0.10/1' for 0/1 in Eq. (12-81). The reduced fraction chosen should be small enough to 
avoid undefined solutions and large enough so that computer round-off error is 
insignificant 

The alternative to numerical partial derivatives is to find analytic expressions 
for the partial derivatives. (See, for example, Shear and Smith (1976] for analytic 
solutions for the partial derivatives for all of the spin-axis methods describe<1 in 
Section 11.1.) This eliminates the major inaccuracy of the numerical computations 
resulting either from no solution or from an erroneous one. The use of analytic 
partial derivatives eliminates the problem of undefined solutions or incorrect 
solution choice at the cost of potentially very complex algebra. The principal 
advantage of the numerical procedure is that it is simple and direct. In this case, 
the possibility of algebraic errors in the uncertainties is nearly eliminated because 
any error in the basic formulas will affect both the perturbed and the unpei1urbed 
solutions. Because no additional algebra is required, numerical evaluation of 
partials can be applied to very complex systems with minimal difficulty. 

Interpretation of the Covariance Matrix. The geometrical interpretation of the 
computed n X n covariance matrix is generally difficult. As discussed in Section 
11.3, no single number adequately represents the "attitude error" nor does the 
computed variance in each component of y completely characterize the "error" in 
that component Thus, combining attitude solutions obtained by various methods 
into an "average" solution by weighting according to their variance is frequently 
misleading. 

In practice, the selected set of measurements frequently have uncorrelated 
errors. Thus, the measurement covariance matrix, Pm' is diagonal, and the diagonal 
elements of Pc, i.e., the variance in the error of the computed quantities, is given by 
the simple expression 

m (ax.)2 
V",= ~ -a I Vy, 

j=1 !)Ij 1 
(12-82) 

However, even when Pm is diagonal, P" is diagonal only if there is nearly a 
1-to-l relationship between the measurements and the computed quantities (i.e., if 
for e~~h ~I there is ~ Yj s~ch that.laxdaYkl«llJxdIJYjl for all k =I: j. This latter 
condItIon IS rarely satIsfIed In practlce. . 

Further insight into the significance of the covariance matrix may be obtained 
by observing that it is positive definite and symmetric by construction and, if 
det (P,,) =/: 0,· it may be diagonalized by a similarity transformation (see Appendix 
C). This transformation may be thought of as a rotation of the n correlated errors, 
6x, into a new coordinate system where the transformed errors, Bx', are uncorre-
lated. The covariance matrix for Bx' is . 

(12-83) 

1 -Det (P.)=O if and only if ICyl= 1 for some i,j.ln this case, the phase space of x should be reduced by 
one dimension such that either X, or Xj is eliminated. 
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where P; is diagonal with elements c~ and B is the n X n matrix which diagonalizes 
Pc. Procedures for computing B are contained in Appendix C. 

For n = 3, where the elements of x are the attitude angles. the probability that 
the transformed attitude error. 8x' = (8x;, 8x;, 8X;)T, is contained in the error el
lipsoid 

(12-84) 

is the probability that the chi-square random variable for 3 degrees of freedom is 
less than K2 [Abramowitz and Stegun, 1964). K is commonly called the a un
certainty level. Thus, the "3a" attitude error ellipsoid is defined by Eq. (12-84) with 
K = 3. The largest of the V~" v;""", is the three-dimensional analog of the semimajor 
axis of the error ellipse described in Section 11.3 and is one measure of the attitude 
accuracy. An alternative measure of the overall attitude error when none of the v~ 
are much smaller than the others is the radius. p, of a sphere whose volume equals 
that of the error ellipsoid. Thus, 

( 12-85) 

which may be solved for p to give (see Appendix q 

P= K(v' v' v' )1/6= K(detP' )1/6= K(detP )1/6 .x. %2 x) (' C 

Table II-I gives the relationship between K and various confidence levels. As an 
example, if we wish to assign a 99% confidence level to a three-axis attitude 
estimate, we obtain from Table II-I that K=3.37 and use Eq. (12-83) to determine 
vmax' A conservative measure of the attitude accuracy is then 3.37c:..ox ' Alterna
tively, if the approximation of Eq. (12-86) is valid. we compute the determinent of 
the covariance matrix and set p=3.37 [det(Pc»)1/6. 
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CHAPTER 13 

STATE ESTIMATION ATTITUDE DETERMINATION METHODS 

13.1 Deterministic Versus Slate Estimation Attitude Methods 
13.2 Slate Vectors 

State Vector Elements, Choosing State Vector Elements 
13.3 Observation Models 
13.4 Introduction to Estimation Theory 
13.5 Recursive Least-Squares Estimators and Kalman Filters 

Recursive Least-Squares Estimation, Kalman Filters 

It became clear at the end of Chapter II that some method of dealing with 
multiple parameters is necessary to obtain accurate attitude estimates. In this 
chapter, we summarize the basic procedures normally used for handling this 
problem. Slate estimation methods of attitude determination use the partial deriva
tives of the observables with respect to various solved-for parameters to correct an 
a priori estimate of these parameters. The collection of solved-for attitude parame
ters is called the slale veclor. The process of determining the state vector elements 
is variously refeTTed to as slale estimation, differential correction, or filtering. Section 
13.1 summanzes the state estimation process. Section 13.2 discusses the concept of 
the state vector and how it should be constructed. SectiQn 13.3 describes how 
observations are handled in the state vector formulation. Finally, Sections 13.4 and 
13.5 summarize the mathematical methods for carrying out the state estimation 
process. 

13.1 Deterministic Versus State Estimation Attitude Methods 

James R. Wertz 

In Chapters II and 12 we have been primarily concerned with deterministic 
attitude methods in which the same number of observations as variables is used to 
obtain one or more discrete attitude solutions. In contrast, siate estimation methods 
of attitude determination correct successive estimates of attitude parameters as 
illustrated in Fig. 13-1 for an estimator which processes one observation at a time. 
Here, as introduced in Chapter 10, Lp and L." are the attitude loci corresponding to 
the Sun angle measurement, /1, and the nadir angle measurement, 11, and the state 
vector, X, consists simply of the attitude, (a,8)T .• · The initial estimate of x is 
"o=(a4)tBo>T. After processing the Sun angle information, /1, the state estimate is 
shifted toward Lp to xI" The amount of the shift depends on ax/ a/1 and the 
uncertaintieS in "0 and /1. After processing the 11 measurement, the state vector is 
shifted toward L" to x2• The process can continue with additional measurements. 

-In Sections 13.1 through 13.3, it is sufficient to regard the slate vector as simply a collection of 
variables. The nOlation (a,8)T is used because in later sections the slate vector will be regarded as a 
column vector for matrix manipulations. 
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Fig. 13-1. Differential Correction Process. (See text for explanation.) 

In state estimation methods, neither the number of solved-for attitude 
prarmeters nor the number of attitude observations is important as far as the 
process itself is concerned. (If the number of observations is less than the number 
of solved-for parameters, some combination of the unknowns will retain their. a 
priori value, or, in some cases, an algebraic singuIarity will result.) In Fig. 13-1, we 
can obtain an answer after processing only a single observation, e.g., p, or we can 
process 1000 observations. Similarly, we can solve for the two-component attitude 
of Fig. 13-1 or any number, N, of parameters incorporated into"an N-dimensional 
state vector. In general, the state vector "and the various attitude estimates (i.e., 
estimates of the values of the N parameters) will be vectors in an N-dimensional 
phase space. The most common state estimator is the least-squares filter: which 
minimizes the square of the difference ~tween the observations and the calculated 
results. 

In state estimation processes, there are two basic ways to update the state 
vector. If a new estimate of the state vector is obtained after each observation, the 
process is called a sequential estimator, or recursive estimator, as illustrated in Fig. 
13-1. If the partial derivatives for all the observations are processed and then 
combined to produce a single update to the state vector, the process is referred to 
as a batch estimator. Generally, the sequential estimator will be more sensitive to 
individual data points than will the batch processor; that is, the sequential 
estimator may converge to a solution more quickly but be less stable than a batch 
processor. It is a:lso possible to combine batch and sequential methods and update 
the state vector after some intermediate number of observations has been pro
cessed. 

Both state estimators (either batch or sequential) and deterministic processors 
have advantages and disadvantages. The deterministic method nearly always 

• The word filter is applied to any pro«:ess which sorts ont high-frequency noise from the low-frequency 
information-for example. the slowly varying nadir or rotation angles. Much of the language of filtering 
theory comes from electrical engineering, where much. of the analysis was initially done. 
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provides a solution and. requires, at most, a very rough a priori estimate of the 
attitude. The methods and results are easy to interpret physically and geometri
cally. However, it is both cumbersome and algebraically difficult to model biases, a 
time-varying attitude, or other attitude-related parameters with deterministic pro
cessors. Large quantities of data are difficult to combine with the proper statistical 
balance in a deterministic processor, which is of particular importance where very 
accurate attitude solutions are needed. 

In contrast to the deterministic processor, state estimation can provide statisti
cally optimal solutions. Expanding the state vector to represent a large range of 
attitude parameters, such as biases, orbit parameters, or time-varying coefficients, 
is relatively easy. (We may also use physically meaningless parameters as state 
vector elements for numerical convenience.) However, state estimators may diverge 
and provide no solution at all. They may require a dynamic model or a more 
accurate estimate of the a priori attitude than do deterministic methods, and their 
increased flexibility and sophistication means that interpreting the physical or 
geometrical meaning of the results may be very difficult. 

In practice, both solution methods are frequently used in a complementary 
fashion. For spinning spacecraft, a deterministic processor solving only for the 
attitude is often used to obtain an a priori estimate for a state estimator, which then 
corrects on an expanded state vector including biases or attitude drift parameters. 
Results are then confirmed by returning to the deterministic processor to verify 
that systematic errors have been eliminated. (See, for example, Section 11.5.) 

As with deterministic processors, the attitude Ilccuracy for state estimators 
should be independent of the choice of numerical procedure for handling the data, 
provided statistically correct ways of combining the data are used. For example, we 
may use either spherical trigonometry or vector algebra to compute the estimated 
state vector elements. We can lose information by choice of a particularly poor 
technique; however, no technique, no matter how clever or sophisticated, can 
obtain more real information than the statistics of the data will allow. Determining 
that all of the information content has been obtained from a particular segment of 
data in a state estimator is not necessarily easy. Generally, this is tested empirically 
-if different statistical methods and different processin.g techniques produce 
essentially the same results, then we assume that we have extracted nearly all of the 
information in the data. When we discuss fundamental limits to attitude accuracies 
throughout Part III, we assume that, in general, all processing methods are 
equivalent in terms of the accuracy obtainable, although the processing efficiency 
may vary greatly. 

13.2 State Vectors 

Steven G. Hotovy 

As the name implies, a state vector deals with the state, or condition, of some 
situation; this situation is referred to as the process.· For our purpose, the attitude 
process consists of all of the parameters which define or affect the spacecraft 

• A wide body of literature exists which.gives an introduction to Slate vectors with varying degrees of 
sophistication. See, for example, Deutsch [.l%S], Bryso~ and Ho (1969), and Schmidtbauer. el aI .• (1973). 
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attitude and the interrelationships between them. The state consists of the values of 
these parameters at anyone time. 

The three elements necessary to define the attitude process are described 
below: 

I. The state vector, x, is an m-dimensional vector which includes all of the 
variables necessary to permit accurate attitude determination. It may include such 
factors as sensor biases and misalignments, attitude propagation parameters (which 
may include the attitude itself), and orbital parameters. The- state vector elements 
may be constant for the processing interval (e.g., biases and misalignments), or they 
may be time varying (e.g., the quaternions described in Section 12.1). In the latter 
case, the propagation of the state vector is given by the differential equation 

dx - =I(x I) 
dl ' 

(13-1) 

2. The observation vector, y, is an n-dimensional vector composed of sensor 
measurements. These measurements may involve direct ~ensor readouts, such as 
event times from a Sun sensor, or observations in some processed form, such as 
Earth~width data obtained from a wheel-mounted horizon scanner. 

3. The observational model vector, z, is an n-dimensional vector composed of 
predicted values of the observational vector based on estimated values of the state 
vector elements, i.e., 

Z=g(x,l) (13-2) 

The observation model vector is frequently based on the hardware model of the 
sensor which is providing the corresponding observation. 

The way in which these three vectors are used to obtain an estimate of the 
state vector depends on which state estimation technique is being used, as dis
cussed in Section 13-4. In general, however, for a given estimate Xc, of the state, the 
observation model vector Zo is determined, and then compared with the observa
tion vector Yo. A new estimate of the state XI is then selected to minimize, in some 
sense, the difference between Yo and Zo. The balch eslimalor, introduced in Section 
13.1, repeats the cycle with the new estimate XI of the state but wfth the same 
observation vector, Yo; a recursive estimator does the same with a new observation 
vector YI' as well as the new state estimate, XI • 

. 13.2.1 State Vector Elements 

The state vector should include those elements which are necessary to allow 
determination of the spacecraft attitude with sufficierit accuracy, using sensor data 
of varying quality. These elements may be &rouped into three main categories: (I) 
sensor-related parameters, (2) orbital parameters, and (3) attitude propagation 
parameters (which may include the attitude itself). 

Among the most important parameters to include in the .state vector are those 
relating to sensor performance. With each type of sensor is associated a collection 
of biases which may affect their performance. An extensive list of these biases and 
misalignments may be obtained from the mathematical sensor models descril?ed in 
Chapter 7. These biases may remain constant for the life of the mission, such as a 
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bolometer offset for a horizon sensor, or may be time varying, such as mag
netometer residual biases and drift parameters for a gyroscope. 

Orbital information is necessary for attitude determination whenever the 
sensor supplying the data produces a measurement which depends on spacecraft 
position in the orbit (such as horizon scanners and magnetometers). Although any 
of the orbital parameters could be included in the state vector, the orbital in-track 
error, which measures how far the spacecraft is behind or ahead of its anticipated 
position, is the most common because it is frequently the largest .source of error 
and because it is easily modeled by obtaining the spacecraft ephemeris at a time 
offset from the nominal time. . 

The third category of state vector elements consists of attitude propagation 
parameters. The choice of these parameters is based on whether the propagation 
model being employed includes dynamics. In a kinematic model, the elements of 
the state vector relating to attitude propagation do not include internal or external 
torque parameters, and the modeled attitude of the spacecraft at any time in the 
interval of interest, A(t), can be calculated directly from the state vector elements, 
i.e., 

A(t) = h(x, t) (13-3) 

In a dynamic model, some elements of the state vector may include torque
related parameters, and the modeled attitude of the spacecraft at any time in the 
interval of interest is determined by integrating the equations of motion. In some 
estimators, the quaternions and body rates are themselves considered part of the 
vector, and in this case the modeled attitude is determined from the state propaga
tion equation (Eq. (13-1).) 

An example of a simple kinematic model is the one used for attitude de
termination for the SMS-2 spacecraft [Chen and Wertz, 1975]. For this model, it is 
assumed that the spacecraft spin axis remains inertially fixed and tbat the 
spacecraft rotation remains constant over the interval of interest. The state vector 
elements relating to attitude propagation are 

a = right ascension of spin axis 

8 = declination of spin axis (13-4) 

'" = spacecraft rotation rate about the spin axis 

This model is appropriate for a spin-stabilized spacecraft which is expected to 
encounter only small torques (either environmental or control) during the interval 
of interest. This attitude propagation model was assumed in the development of 
several of the attitude hardware models of Section 7. 

An example of how a state vector can be expanded is provided by examination 
of the SAS-3 attitude determination system [Rigterink, et al., 1974]. SAS-3 is a 
spin-stabilized spacecraft for which the constant attitude model described above is 
appropriate. Therefore, the state vector should minimally contain the right ascen
sion and decl!nation of the spin axis and the spacecraft angular rate. In addition, a 
magnetometer triad provides data which are used to compute the spacecraft. 
attitude, but the attitude solution accuracy requirements demand compensation for 
the magnetoDleter misa1ignments, residual biases, and errors in the calibration 
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curve. Expanding the state vector, x, to include these elements gives 

x = (a,8,w,0,4»Otj,b)T 

441 

(13-5) 

where 0 is the colatitude of a given component of the magnetometer triad in 
spacecraft coordinates, 4»0 is the corresponding azimuth, j is the slope of the 
magnetometer calibration curve, and b is the residual bias. 

Another kinematics model, useful for three-axis stabilized- spacecraft, was 
developed for the GEOS-3 mission (Repass, et al., 1975J. GEOS-3 is an Earth
oriented, gravity-gradient stabilized spacecraft; thus attitude information is most 
conveniently expressed in pitch, roll, and yaw angles. It is assumed that each of 
these angles can be expressed adequately in terms of an initial value and a fixed 
rate of change for a suitably chosen time interval. The elements of the state vector 
relating to attitude propagation are as follows: 

p = initial pitch angle 

p = pitch rate 

r = initial roll angle 

;=rol1 rate 

y = initial yaw angle 

j=yaw rate 

The pitch, roll, and yaw angles at time tare 

p(t)=p+p!J.t 

r(t)=r+r!J.t 

y(t)=y+j!J.t 

(13-6) 

(13-1) 

where !It is the time since the beginning of the interval of interest. GEOS-3 has a 
three-axis magnetometer triad which is subject to both misalignment errors and 
residual biases; the misalignment is expressed by the three angles Ox, OJ" and OK 
between the true magnetometer placement and the spacecraft i, Sr, and z axes, 
respectively. 

Thus, the complete state vector becomes 

(13-8) 

where OJ refers to the jth magnetometer and bj is the residual bias on the jth 
magnetometer. 

An example of a state vector which incorporates a dynamics model is that of 
the Nimbus-6 attitude determination system (Lefferts and Markley, 1976]. Attitude 
determination and control hardware on Nimbus-6 consisted of a horizon scanner, 
four two-axis Sun sensors, and four r~action wheels. The onboard control system 
continuously varied the reaction wheel rates (and, hence, the body rates) to 
maintain the near-nominal attitude of zero pitch, roll, and yaw. For this reason, it 
was felt that no kinematics model would approximate the spacecraft attitude with 
suffiCient accuracy. The state vector elements relating to attitude propagation were 
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initial estimates of the quaternion, q=(Q.,q2,q3,q,J\ and initial estimates of the 
spacecraft angular velocity, Co)=(Co)",Co)Y'Co)z)T. The attitude is propagated using the 
spacecraft equations of motion (Section 16.1). The torque terms in the equations of 
motion included control system parameters consisting of the moments of inertia of 
each wheel (m.,m2,m3,m4) and a constant bias on the speed of each wheel 
(s.,S2,S3,S4)' The torque terms also include environmental torque parameters, which 
include constant torques in body coordinates (c",cy,cz ) and the spacecraft magnetic 
dipole in body coordinates (d",d,A). Thus, the state vector has the following 21 
elements: 

x = (Q.,Q2,Q3,Q4,c.)",c.)y,c.)Z,m.,m2,m3,m4,s"s2,S3,S4'C",Cy,Cz,d",fiy,dz ) T (13-9) 

Dynamics models are most useful when control system operation or significant 
external torques make kinematic modeling impossible or when highly accurate 
attitude solutions are required. 

13.2.2 Choosing State Vector Elements 

For a complex satellite containing sophisticated attitude determination and 
control hardware, there are potentially hundreds of state vector elements. Large 
state vectors are undesirable for several reasons. Two or more elements of the state 
vector may have nearly the same effect on the data and therefore be redundant and 
difficult to distinguish. For a given pass of data, only a limited number of state 
vector elements can be solved for, and the selection of the solved-for parameterS is 
more difficult for large state vectors. Finally, from a computational standpoint, 
programs involving large state vectors are more difficult to develop and test, more 
unwieldy to operate, and require more computer time and storage to exe.cute. 
Therefore, guidelines concerning the selection of state vector elements for a 
particular application are needed. Specifically, the state vector should include all 
elements that satisfy the following criteria ai some time in the mission: 

1. It significantly affects the observati~n model vector relative to changes in 
the attitude. 

2. It represents.a physically real quantity. 
3. Its value remains nearly constant over an interval of interest or it is 

propagated in a dynamics model. 
It may be necessary to include additional parameters that do not represent 

physically real quantities, such as coefficients of polynomial approximations. 
Therefore, the· number of state vector elements can be quite large. However, for a
given set of data, the number of vector elements actually solved for can be reduced 
by constraining the remaining elements to the best estimate of their values. (This 
topic is addressed in detail in Section 14.3.) . 

One factor which affects the three criteria for selection of a state vector 
element is the accuracy requirement of the attitude solution. The "significance" of 
the effect of a parameter on the observation model vector is relative: what is 
insignificant when larger attitude uncertainties are permitted may be significant 
when highly 'accurate attitudes are required. The "constancy" of the value of a 
parameter over an interval of interest is also relative: slight variations in the value 
of a p'arameter can be tolerated for less accurate attitude solutions or short time 
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intervals. but these variations may be unacceptable for more accurate attitude 
determination or longer time intervals. this is especially true in attitude propaga
tion modeling. 

Another important consideration is the observabilily of a potential state vector 
element. A state vector eleptent is observable over an interval if an estimate of its 
value can be made from the observations over that interval. For example, two-axis 
Sun sensor data provide no attitude information concerning the rotation angle ..... 
about the sunline. If the sunline and spin axis are collinear, then the spacecraft 
phase angle about the sun is unobservable from Sun sensor data. Another example 
is given by a magnetometer triad mounted on the spacecraft pitch, roll. and yaw 
axes of an Earth-oriented satellite in a polar orbit. Over the magnetic poles .. the 
magnetic field vector is nearly parallel to the yaw axis. For that reason, any 
misalignment of the pitch and roll magnetometers in the pitch-roll plane is nearly 
unobservable. If a state vector element is expected to have little observability in the 
interval of interest, it is best to constrain it to the best estimate of its value. 

It may not be possible to separate the effects of several different elements of 
the state vector on the data. An example of this is provided by a body-mounted 
horizon sensor on a satellite which has a fixed spin axis attitude and body rate. For 
a short interval of interest, the geometry of the Earth relative to the spacecraft 
changes only slightly. Therefore, if the time between observed Earth-in and -out 
differs from that predicted from the Earth-width model described in Section '1.2, 
four sensor biases could explain such behavior. These are an in-crossing azimuthal 
bias, an out-crossing azimut.hal bias, a bias on the angular radius of the Earth, and 
a mounting angle bias. Because the geometry changes only slightly, each parameter 
alone could be used to correct the predicted time properly, but it would be 
impossible to solve for more than one parameter because they are so highly 
correlated. Also, it is impossible to determine which parameter is the true cause of 
the error. In the case of highly correlated state vector parameters, it is best to 
constrain all but one of the parameters to the best estimate of their values and 
solve for the remaining parameter. 

Some considerations of state vector formulation are due to the manner in 
which estimates for these parameters are determined, a topic discussed in detail in 
Sections 13.4 and 13.5. It is advantageous if an observation varies monotonically 
with each state vector element influencing. the corresponding observation model. 
This is so because if two values of a particular parameter produce the same value 
for the observation model, the incorrect value could be selected as the best estimate 
for the parameter. It is also desirable that the observation model vary nearly 
linearly as a function of the state vector because the observation model function in 
Eq. (13-2) is linearized for many state estimation techniques. 

13.3 Observation Models 

Steven G. Hotovy 
In this section we discuss the formation of the observation vector and 

observation model vector. An observation is any quantity which may be computed 
from a sensor measurement or combination of measurements. It may be a direct 
sensor measurement, such as the reticle count from a Sun sensor, or a derived 
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quantity, such as the nadir angle from wheel-mounted horizon scanner data. An 
observation model is the predicted value of the observation based on hardware 
models of the appropriate sensors, sensor measurements, and the value of the state 
vector. Several hardware and associated observation models are provided in 
Chapter 7. 

The general form of an n-dimensional observation model vector is 

z=g(M,x) (13-10) 

where x is the m-dimensional state vector and M is a p-dimensional vector of 
sensor measurements. The observation and observation mooel vectors are related 
by 

y(M) = z+ v = g(M, x) +v (13-11) 

)Vhere y(M) is the true observation and v is the total error due to errors in the 
measurements and. inaccuracies in modeling the observation. Note that we draw a 
distinction between observations and measurements. By measurements we refer to 
the data provided directly from a sensor, such as the crossing time and Sun angle 
from a slit Sun sensor or the Earth width and corresponding time from a 
wheel-mounted horizon scanner. 

The measurements are therefore determined explicitly by the attitude sensor 
hardware on the satellite. The observations, however, are defined by the person 
developing the estimator. As we will see, it is possible to specify several different 
observations based on the same measurement or to specify one observation which 
combines measurements from several different sensors. 

Before forming observation models, it is important to analyze carefully the 
particular application of the estimation process and identify the elements of the 
state vector. When this has been done, observation models can be selected. The 
overriding consideration in this selection is the accurate estimation of the state 
vector elements. Only those models in which at least one of the state vector 
elements is observable at some time in the mission should be considered. However, 
there are potentially hundreds of observation models which satisfy this criterion; 
therefore~' some method of selection is necessary. 

One requirement is that the observation model be compatible with the state 
vector. For example, if the bolometer offset of a wheel-mounted horizon scanner is 
not included in the state vector, the bolometer offset model should not be selected 
because it is too detailed. On the other hand, if the spacecraft is expected to 
experience appreciable nutation, the Earth-width model for a horizon scanner, 
which assumes an inertially fixed spin axis, may be too simplistic. 

Observations are preferred which are as close as possible to true sensor 
measurements. The transformation from true sensor measuremenis to calculated 
observations has two undesirable effects [Pettus, 1972]: (I) the transformation may 
generate statistically correlated observations from uncorrelated measurements and 
(2) the transformation may involve parameters which are not known accurately 
and which wQuld therefore lead to inaccuracies in the model. 

. It is also desirable to select observations which have uncorrelated noise. An 
example of the effect of correlated noise occurs in Sun sensor/horizon sensor 
rotation angle models. Suppose that ts is a vector of Sun sensor:. crossing times, tJ is 
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a vector of horizon sensor in-crossing times, and to is a vector of horizon sensor 
out-crossing times, with uncorrelated noise I1ts, I1t/, and I1to' respectively. We 
consider two possible pairs of rotation angle model vectors. The first is the 
Sun-to-Earth-in angle, .1' and Sun-to-Earth-out angl~, .0: 

tlt/=(t/-tS)c.> (13-I2a) 

(13-12b) 

where w is the spin rate. The second pair of observation model vectors consists of 
the Earth width, 0, and the Sun-to-midscan, .M' rotation angles: 

O=(to-t/)c.> 

.M = [(tl + to)/2 - ts]w 

(13-13a) 

(13-13b) 

Then, the noise (~.I'~.O" ~O, and ~.M) on -the first observation model 
vectors are related by 

11./·~.0 =(~t/-l1ts)·(~to- ~tS)w2= l~tsl2w2 (13-14) 
whereas, for the second pair, 

~O·~.M=(~to-A~). [H~t/+~to)_~tS]W2= W~toI2_I~t/12)W2 (13-15) 

Thus, the first pair.J>f rotation angle measurements has correlated noise, 
whereas the second does not if the magnitudes of the noise for the Earth-in and 
Earth-out times are the same. The implication of Eq. (13-14) is that noise in the 
Sun sensor crossing time data affects both the ./ and .0 rotation angle models in 
the same manner. Because it is assumed in the use of many estimation algorithms 
that the random errors in the observations are uncorrelated, the Earth-width and 
Sun-to-midscan rotation angles are the preferable observation models. 

There are also guidelines concerning the number of observation models to 
employ for a particular application. There should be enough observation models to 
make use of all sensor measurements which would be helpful in estimating the 
elements of the state vector. Also, it is desirable that there be several different 
models based on the same sensor data so that the user can select the appropriate 
models for changing mission conditions. Different state vector elements may be 
more observable in different models and the changing geometry or sensor perform
ance may require changing observation models. Finally, there should be some 
observation models which depend on a minimum of sensor measurements so that 
the loss of one or more measurements does not invalidate all observation models. 
Within these guidelines, the observation model vector should be as small as 
possible to minimize design and operating complexity. The largest number of 
independent observation models that can be used at anyone time is the same as the 
number of independent measurements. 

Examples. The SAS-3 attitude determination problem described in Section 
13.2 provides one example of an observation model vector. To successfully obtain 
spin axis attitude solutions using data from a single-axis induction magnetometer 
requires that the state vector include both attitude and magnetometer bias parame
ters, as defined by Eq .. (13-5), that is, 

x= (a, 8, w,fJ,cpo.j,b)T 
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The measured component, BM , of the magnetic field parallel to the sensitive 
axis of the magnetometer is given by 

BM=fVM+VO (13-16) 

where V M is the voltage measured by the magnetometer and Vo is the voltage 
measured by the magnetometer in the absence of a magnetic field. 

The predicted measurement. Bp, based on the values of the state vector 
parameters is calculated as follows, The attitude matrix, A (I), at any time t after 
the beginning of the interval is 

(13-17) 

where 

~l 
and the D matrix, which transforms a vector from celestial coordinates to a 
coordinate system whose z axis coincides with the spacecraft spin axis, is 

D~ [::::~::sin8 -~::sin8 ~os8l. 
cos a cos 8 sin a cos8 sin 8 

In spacecraft coordinates, the position vector, r, of the sensitive axis of the 
m.tgnetometer is 

rB = [:~:;:~::;] 
sm9 

Thus, in.inertial coordinates, the magnetometer position vector, r/, is 

[ 

cos( wI + <l>o)cos 8] 
r l = AT( l)rB = D T sin(wt:<I>o)Cb~8 

sm8 

The predicted measurement. B p, is then 

Bp =r/' BI +b =~os9cos(wt +<1>0)[ cosaBy::::sinaB.,] 

+ [sin8cos8-cos8sin8sin(wt+<I>o)][ cosaB" +sinaBy] 

+ Bz (cos 8 cos 9 sin(wt +<I>o)+sin8sin8)+ b 

( 13-18) 

(13-19) 

(13-20) 

where B/:=(B",By,Bz)T is the ~agnetic field in inertial coordinates. 
The obserVation is chosen to be the magnetometer voltage, V. Thus, the 

one-dimensional observation vector, y, is 

y=VM 

while the observation model vector, Z, is 
z= Vp:=(Bp- Vo)/! 

(13-21) 

(13-22) 
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I where Bp , which is a function of the state vector, is given by Eq. (13-20). 
The Optical Aspect Bias Determination System, OABIAS. provides an ex

ample of a system with several observation models (Joseph, et al., 1975). (A 
modified version of OABIAS was used as the bias ~etermjnation subsystem for 
CTS, as described in Section 21.2.) This system processes Sun sensor and body
mounted horizon scanner data for attitude and bias determination for spin
stabilized spacecraft, and its state vector consists of the spacecraft attitude, the 
phase of the spacecraft at the start of the processing interval, the satellite spin rate, 
four alignment angles for the horizon scanner, two alignment angles for the Sun 
sensor, an error in ·the central body angular radius, and an orbital timing bias or 
in-track error. The four sensor measurements are 

l. Time of Sun sighting 
2. Sun angle at this time 
3. Time of horizon in-crossing 
4. Time of horizon out-crossing 

OABIAS provides the following seven observation models: 
1. Sun angle model (Section 7.1) 
2. Sun sighting time model 
3. Horizon sensor nadir vector projection model (Section 7.2) 
4. Horizon.sensor crossing time model 
5. Horizon sensor Earth-width model (Section 7.2) 
6. Sun-to-Earth-in and Sun-to-Earth-out rotation angle models (Section 7.3) 
1. Sun-to-Earth-midscan rotation angle model (Section 7.3) 
Models I, 2, and 4 are included because they are the observation models 

corresponding to the four sensor measurements. Each sensor measurement can be 
used in at least one observation model. Also, Model I requires Sun angle data only, 
Model 2 requires Sun sighting time data only, and Models 3 and 4 can be used for 
either Earth-in or -out data, so that even if only one data type were available, there 
would be at least one valid obserVation model. Models 3, 4, and 5 require horizon 
sensor data, but each model uses different state vector elements in its formulation, 
thus providing flexibility for the user. Models 6 and 1 are more complicated 
because they require both Sun sensor and horizon sensor data, but are useful 
because some state vector elements may be more observable in these observation 
models, and they have a clearer physical interpretation than Models 2 and 4. As 
described above, Models 5 and 7 have uncorrelated noise, whereas the two models 
in 6 have correlated noise. This collection of observation models follows the 
guidelines which have been suggested and has been employed in several missions, 
as described in Section 20.4 

13.4 IntrodUction to Estimation Theory 

Lawrence FaDon, III 
Paul V. Rigterinlc 

The purpose of an estimator or data filter is to calculate a state vector which is 
) optimum by some measure. For example, a least-squares filter determines the state 
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vector which minimizes the square of the difference between the observed data and 
the expected data computed from an observation model. The contribution of an 
individual observation in this process may be weighted according to the ob
servation's expected accuracy and importance. Because they provide the best 
estimate of the state parameters when the uncertainty is a result of Gaussian noise, 
least-squares filters are by far the most common and are the only type considered 
here. 

There are two major classes of least-squares estimators: batch and sequentiaL 
A balch eSlitnlllor updates a state vector at an .epoch or reference time using a block 
of observations taken during a fixed timespan. For example, suppose that a state 
vector consists of the spacecraft attitude and other model parameters and that it is 
desired to estimate these parameters at a given epoch. Observations made at any 
other time can be used to' update the epoch state vector.if a mathematical model is 
available to relate the state parameters at each measurement time to their values at 
the epoch. 

In a sequential estimator, the state vector is updated after·each observation (or 
a small set of observations) is processed. The two major types of sequential 
estimators are recursive least-squares estimators and Kalman filters. Like a batch 
estimator, a recursive least-squares estimator corrects the state vector at an epoch 
time. The recursive least-squares estimator's confidence in the updated state at the 
epoch time improves as more and. more data are processed. Consequently, the 
sensitivity of this type of estimator to the observations diminishes as time passes. A 
Kaltnlln filter is a sequential estimator with a fading memory. It generally corrects 
the state vector at the time of each of the observations rather than at 'an epoch 
time. After the state is updated using one or more observations, it is propagated or 
extrapolated by a mathematical model to the time of the next set of observation's to 
provide an initial estimate for the next update·. The filter's confidence in its 
estimate of the state is allowed to degrade from one update to another using 
~odels of noise in the state vector. This causes the influence of earlier data on the 
current state to fade with time so that the filter does not lose sensitivity to current 
observations. . 

Batch' Least-Squares Estimation. This subsection describes the mathematical 
formulation of the Gauss-Newton least-squares procedure initially formulated inde
pendently by Karl Gauss and Adrien Legendre in the.early Nineteenth Century. 
We begin by considering the. m-component state vector, x, which is allowed to vary 
with time according to the function 

x(t)=h(xO,t) (13-23) 

where XO is the state vector at the epoch or reference time, to. The batch least
squares algorithm estimates this epoch state vector, xO; this estimate is denoted by 
io.t The simplest time variation occurs when x is constant; that is, x=xo. However, 

-What we actually describe here is an extended Kalman filter. The distinction between the basic 
Kalman filter and the extended Kalman filter will be clarified in Section 13.5.2. 

tIn estimation theory texts, the notation i is often used to denote an estimate. We use i to avoid 
confusion with the notation for unit vectors. 

-;-,-. 
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if x contains parameters whose time variation is nonnegligible, propagation of the 
state, as described in Section 17.1, will be required. If the state undergoes a minor 
unmodeled variation during the time spanned by the observations, a batch estima
tor will calculate a weighted "average" value for iO. In this case, a Kalman filter as 
described in Section 13.5 may allow better tracking of the state variations than will 
a batch technique. 

Consider a set of n observa tions, 

(13-24) 

taken during the timespan of interest, as described in Section 13.2. To determine 
the state vector, x, we assume that y equals the observation model r:eclor, g(x,t), 
based on the mathematical model of the observations plus additive random noise, 
v. Thus, for each element of y, 

(13-25) 

Loss Function. We will use Eq. (13-25) to estimate xO, given an a prlOTl 
estimate i~, the observations y, the functional forms' of b(xo, t) and g(x, t), and the 
statistical properties of v. To accomplish this, we use the least-squares criterion as a 
measure of "goodness of fit"; the best value of XO minimizes the weighted sum of 
the squares of the residuals between the elements of the observation and observa
tion model vectors. This is done quantitatively by minimizing the loss junction, .-

J=!pTWp 

where the observation residual vector, p, is defined by 

p=y-g 

(13-26) 

(13-27) 

W is an (n X n) symmetric, nonnegative definite matrix chosen to weight the 
relative contribution of each observation, according to its expected accuracy or 
importance. In the simplest case, W is the identity matrix indicating that equal 
weight is given to all observations. Throughout the rest of this section, we assume 
that W has the form 

-2 11, 0 0 

0 -2 

W= 
(12 

(13-28) 

0 -2 
(In 

where I1j (i= 1,2, ... ,n) is the uncertainty in the ith observation. 
An important variation of the loss function given by Eq. (13-26) penalizes any 

deviation from the a priori estimate in proportion to the inverse of the uncertainty 
in that estimate; that is 

(13-29) 

where So is the (m X m) state weight matrix. If the elements of So are zero, no 

--1 
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weight is assigned to the a priori state estimate, and Eq. (13-29) is equivalent to Eq. 
(13-26). Commonly, So has the form ' 

-2 axl 0 o 
0 -2 

So= 
ax2 

0 

where axk (k= 1,2, ... ,m) is the uncertainty in the a priori estimate, i~. The use of 
So is especially valuable when lack of observab'/ity is a problem. This occurs when 
a change in one or more state parameters causes little: change in the observations, 
i.e., when the observations do not contain enough information to completely 
specify the state. (The problem of state observability is discussed from a practical 
point of view in Chapter 14.) 

The loss function given in Eq. (13-29) is particularly. useful in the later 
discussion of sequential estimators. Other criteria. for goodness of fit are discussed 
by Hamming [1962].' .. 

Locating the Loss Function Minimum. For J to be a minimum with respect to 
xo, aJ / axo must be zero. Therefore, the value of Xo which mlnimizes J is a root of 
the equation 

aJ =-pTWG+[xO-iO]TS=OT 
a~ A ° (13-30a) 

where G is the (nXm) matrix 

agl agl agl 
ax? ax~ ax~ 

G== ag == 
axo (13-30b) 

agn agn agn 

ax? ax~ ax~ 

Values for ag;/ax are normally computed analytically from the observation 
model. Values for ag;/axO are then calculated from 

ag, og; ax ag; 
oxo = ax (I;) axo (t;) = ax (t;)D(/;,to) (13-31) 

where D(t/,ta) is the (mXm) state transition malrix consisting of the partial 
derivatives of the state at II with respect to the state at the epoch time, tei; that is, 

OXl(/i) aXl(/;) aX.(/;) 

ax? ax~ ax~ 

D(/;,/o)=: oxo (/i)~ ax 
aXm(/;) aXm(I/) aXm(/;) 

ax? ax~ ax~ 
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The elements of D may be calculated either numerically or analytically, 
depending on the functional form of h(xO,t). If x is assumed to be constant, then 
D(t;,/o') is the identity, and 

ag; ag; 
axo = ax 

The most common method of solving Eq. (13-30) is to linearize g about a 
reference state vector, x~, and expand each element of g in a Taylor Series of x~. 
Note that x~ may be different from i~. If higher order terms are truncated, this 
yields for each element of g: 

ago 
&= &(x~)+ ax~(x~)[ XO-x~] 

In general, each element of g could be evaluated at a different reference vector. 
Expressing the above equation in vector form gives 

g=gR + GRxo- GRX~ (13-32) 

if the same reference vector is used for each element of g. (The possibility of using 
distinct reference vectors for different elements of g will be useful in the later 
development of a sequential least-squares algorithm.) The subscript R signifies 
evaluation at xO=x~. 

Substituting Eq. (13-32) into Eq. (13-30) yields 

[So+ GIWGR]xo= Soi~ + GIW[y-gR + GRX~] (13-33) 

We now solve this equation for xO, and denote the result by iO, 

iO=x~+ [So+ GIWGRr ' [ GIW(y-gR)+So(i~-x~)] (13-34) 

If x~ =i~, and if g is a linear function in xO, then this equation will provide the 
best estimate for Xo. If g is nonlinear, XO will not be corrected exactly by Eq. (13-34) 
unless i:~ is already very close to the optimum value. 

If the correction determined from Eq. (13-34) is not small, then an iterative 
procedure is usually necessary. In this case, g is first linearized about the a priori 
estimate, which is then corrected to become i~, as follows: 

(13-35) 

The corrected value, i:~, then replaces i:~ as a reference for the linearization of 
g in the next iteration. The (k + I)st estimate for XO is derived from 

i~+I=i~+ [So+ G[WGk]-I[ G[W(y-gk)+ So(i:~ -i:~)] (13-36) 

These iterations continue until the differential correction (i.e., the difference 
between i~+, and i~) approaches zero and/or until the loss function no longer 
decreases. At this time, i2 + I has converged to its optimum value. If the estimator 
fails to converge, a new a priori estimate should be attempted. If this is not 
successful, improved mathematical modeling, additional data, or higher quality 
data may be necessary. A block diagram of the batch least-squares alorithm is 
shown in Fig; 13-2. 
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Fig. 13-2. Block Diagram of Batch Least-Squares Estimator Algorithm 

13.4 

Statistical Information. -- For a converged SQlution, several statistical quantities 
are useful. The em x m) error covariance matrix is given by· 

P=[ So+GTWGr'=E{eeT) (13-37) 

assuming that E(e)=O, where the estimation error vector e=xo-io, and E denotes 
expected value. Provided the estimation process has converged, uncertainties in the 
estimated state parameters may be calculated from the diagonal elements of P by 

~ = Vi; (13-38) 

These uncertainties are realistic error estimates only if the observations are 
uncorrelated and contain only random errors. The mathematical models 
characterizing state propagation and the relationship of the observations to the 
state are also considered to be known with sufficient accuracy. As discussed in 
Chapter 14, these assumptions are seldom- fulfilled completely in practice. To 
account for this problem, Bryson and Ho [1968] recommend modifying the un
certainty to be 

(13-39) 

where Jo is the loss fum:tion based on the final estimate for XO and E(J)=!(n + m) 
is the expected value of J for n observations and m state vector elements (See Eq. 
(13-29).) 

The off-diagonal elements of P represent the interdependence or correlation 
among errors in state parameters. The correlation coeffiCient, 

PjI 
01 (13-40) 

VPjjPI/ 

·The properties and physical signiflCllJlce of the error covariance matrix are more fully described in 
Section 12.3. Eqs. (13-37) and (12-74) are equivalent if $0=0, and if the components of the observation 
vector are uncorreJated so that W is diagonal. 
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measures the correlation between the jth and Ith state parameters. Correlation 
coefficients range from -1 to + I; either e~treme value indicates that the two 
parameters are completely dependent and o~ may be eliminated from the estima-
tion process. . 

Another useful quantity is the weighted root-mean-square (rms) residual, given 
by 

(13-41) 

where Wi is the ith diagonal element of the weight matrix and the units of Pm/$ are 
the same as for the y/. The mrs residual must be calculated using only observations 
of the same units. If y contains observations of different types, then a Pm/$ value 
may be calculated for observations of each data type.'" 

Because Puns is normalized according to the sum of observation weights, it is 
frequently more useful than the loss function as a relative measure of the degree to 
which the solution fits the observed data. However, this parameter alone is 
insufficient for detecting the two major causes of a poor fit-unmodeled biases and 
a high level of D(~ise in the observations. Some insight into the contributions of 
these two phenomena in specific cases is gained by writing Pm/$ in the form 

where k is the weighted mean of residuals, 

~WiP/ 
k=---

and (Jp is the weighted rms deviation of the residuals, 

(13-42) 

( 13-43) 

(13-44) 

The mean of the residuals should be near zero, because the Pi can be either positive 
or negative. A large value for k indicates that unmodeled biases are probably 
present in the observations. A large value of 0, indicates that the observation noise 
is large . 

• Alternatively; a fractional rms residual, T nm' may be calculated using all observations, as fonows: 
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Example of a Simplified Batch Least-Squares Application. Consider a space
craft that is spinning uniformly about the axis A. which may be expressed in 
rectangular celestial coordinates (~ction 2.2) as 

A=AxX+AyY+AJ: 

or in terms of right ascension, a. and declination, /), as 

A .. = cos a cosS 

Ay = sina cosS 

Az = sin/) 

Suppose that A is fixed in inertial space during an interval spanned by a series 
of observations from an onboard sensor, and that an initial estimate for A is 
available using attitude solutions from previous intervals. Suppose, also. that the 
observations con~ist of arc lengths, 0;, between A and a known time-varying 
reference vector, V(t), such as the nadir vector. We choose 

x=[~] 
as the state vector. Because A is constant, x = XO and D is tlie identity matrix. The 
observation vector consists of n values of 0;, i.e., 

To cons!ruct the observation model vector, g, we express the 0; in terms of the i 
elements of A by 

O;=cos-I(V;"A)=cos- I( Vx,Ax + ~Y.A,. + Vz,Az) 

where V; be calculated at the time of the ith observation, ie .. V; == V(tJ The 
elements of g are then given by 

g;=cos- I
( V ... cosacosS+ Vy,sinacosS+ Vz,sinS) 

The (nX2) matrix of partial derivatives of the observation model with respect 
to the state vector is 

where 

3g; Vx,sinacosS- Vy,cosacos/) 

3a = .. II 
V ,~( V cosacosS+ Vy,sinacosS+ Vz,sinS)2 
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ag; U".cosasin8+ U)"sinasin8- Uz,cos8 

a8 =-;::=======================
VI-( U".cosacos8+ U)\sinacosB+ Uz,sinB)2 
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If the a priori state vector estimate, xA = [aA,BA)T, is known to an estimated 
accuracy of [(70,(76] and all observations are measured with equal estimated accura
cies of (Jet then Eq. (13-35) gives the following solution for x, assuming that x

A 
and 

yare weighted according to their expected accuracies: 

i, ~ [ ~ H [ .~' .;, 1 +o,-'GJG.r' [ .,-'GJ (,-g,) 1 
This solution may be improved by additional iterations. Equation (13-36) gives 

the solution in the (k + I)st iteration as: 

Corrections to x will continue in this fashion until convergence is achieved; 

Convergence· and Marquardt's Algorithm. The Gauss-Newton differential 
correction procedure outlined above may be unsuitable for some nonlinear prob
lems because convergence cannot be guaranteed unless the a priori estimate is close 
to a minimum in the loss function. Moreover, its rate of convergence can be 
difficult to control [Melkanoff and Sanada, 1966; Wilde, 1964). An alternative 
approach to solving the batch least-squares problem which guarantees convergence 
is the gradient search method. or method of steepest descent. With this technique, the 
state parameters are adjusted so that the resultant direction of travel in state space 
is along the negative gradient of J, i.e., in the direction of steepest descent of the 
loss function. Although this method initially converges rapidly, it slows down when 
the solution approaches the vicinity of the minimum. 

To overcome both the difficulties of the Gauss-Newton technique when an 
accurate initial estimate is not available, and the slow convergence problems of the 
gradient search approach when the solution is close to the loss function minimum, 
D. W. Marquardt [1963] proposed an algorithm which performs an optimal 
interpolation between the two techniques. For simplicity, let So=O, reflecting no 
confidence in the a priori estimate. Equation (13-29) then shows that 

3J = -pTWG (13-45) 
axo 

Correction of the state estimate xi in the direction of the negative gradient of 
J yields the following expression for xk + 1: 

-0 -0 '\ -IGTW' [ ] Xk+1=Xk+1\ k y-gk . (13-46) 

..i 
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where" is a proportionality constant. The Marquardt technique uses an expression 
of the form 

( 13-47) 

If" is small, Eq. (13-41) is equivalent to the Gauss-Newton procedure. If" is 
large, XO is corrected in the direction of the negative gradient of J, but with a 
magnitude which decreases as " increases. 

An example of the use of Marquardt's algorithm for improved convergence is 
as follows: 

l. Computl! the loss function using the a priori state estimate, x~. 
2. Apply the first state correction to the state to form x~ using Eq. (13-41) with 

"»GTWG. 
3. Recompute the loss function at i O = x~. If J (x':) :>J (x~), then x~ is discarded 

and" is replaced by 'AK, where K is a fixed positive constant, usually between I 
and 10. The state estimate x~ is then recomputed uisng the new value of " in Eq. 
(13-47). If J(x~<J(x~), then x~ is retained, but" is replaced by "I K. 

4. After each subsequent iteration, compare J(x2+.) and replace" by "K or 
"I K as in step 3. The state estimate x~ +. is retained if J continues to decrease and 
discarded if J increases. . 

This procedure continues until the difference in J between two consecutive 
iterations is small, or until" reaches a small value. Additional details are given by 
Marquardt [1%3] and Bevington [1%9). 

Advantages and Disadvantages of Batch Estimators. The major advantage of 
batch estimators is that they are the simplest to implement; they are also generally 
less sensitive to bad data points than are the somewhat more sophisticated 
algorithms described below. Another advantage of batch estimators is that all 
observation residuals can be seen simultaneously, so that any obviously invalid 
observations, i.e., those with unusually large residuals, can be removed. An obser
vation is commonly removed if the absolute value of its residual is greater than 
three times the weighted rms residual. 

The computer execution time required for a batch estimator depends on the 
number of state parameters, the number of observations, the complexity of the 
state and observation models, and the number of iterations required for conver
gence. If a large number of iterations is required, a recursive estimator should be 
considered. The computer storage required to contain the observations for possible 
future iterations is also a disadvantage of batch estimators; therefore, for applica
tions in which computer storage is limited, recursive estimators or Kalman filters, 
described in the next section, may be preferred. 

Example of a "Single-Frame" Least-Squares Estimator. In the pr(!vious exam
ple in this section, we wished to determine the constant attitude of a spinning 
spacecraft based on large number of measurements at different times. In this 
example we assume that there are several measurements at one time and that we 
wish to determine the attitude at that time. (This is commonly done when the 
control and environmental torques are poorly known and it is impossible to pr.edict 
how the attitude will change between data samples.) 



13.4 INTRODUCTION TO ESTIMATION THEORY 457 

In particular, we wish to compute the three-axis altitude for an Earth-oriented 
spacecraft with a horizon scanner, a two-axis digital Sun sensor, and a three-axis 
magnetometer. The attitude is parameterized by pitch (E

p
)' roll (t), and yaw (€y). 

Thus, the state vector is 

x=(Ep,E,,€y)T 

with the a priori estimate, i.4 = (0,0, O)T. Note that all observation vector and state 
vector elements are evaluated at the same time, so that the functional dependence 
on time is ignored. The seven-component observation vector is 

Y=(Pm,rm,Hx,H)"Hz,NA,NBl (13-48) 

where Pm and rm are the measured pitch and roll angles from the horizon scanner, 
H=(Hx,Hy,Hz)T is the measured magnetic field in spacecraft body coordinates, 
and NA and NB are the measured Sun sensor reticle counts (see Section 7.1). 

To simplify the construction of the seven-component observation model 
vector, g(x), we define yaw, roll, and pitch as the 3-1-2 Euler angle sequence which 
rotates a vector from orbital to body coordinat~s (see Section 12.2). The Sun and 
magnetic field vectors in orbital coordinates, So and Ho> are. obtained from an 
ephemeris and magnetic field model. The nadir vector is Eo=(O,O,I)T by the 
definition of the orbital coordinate system. The Sun, magnetic field, and nadir 
vectors in body coordinates are 

SB=ASo; 

where, from Table E-I, the attitude matrix is 
(13-49) 

A(Ep't,~v)= 

l cos~. cos Ep - sin €ysin E,sin Ep si n Eycos Ep + cos Eysin E,sin Ep - cos E,sin Ep ] 
- sin Evcos E, cos €ycos E, sinE, (13-50) 

cos€ysin~ + sin {vsinE,cosEp sin~,.sinEp -cosEysinE,cosEp cos E,cos Ep 

Substitution of Eq. (13-50) with Eo=(O,O,I)T into the above expression for EB 
and comparison with Eq. (12-51) (see Section 12.2) gi· .. es the first two observation 
model equations as· . 

(13-51) 

The reason for choosing the 3-1-2 Euler angle sequence is apparent from the 
simple form of Eq. (13-51). The observation model equations for H are given 
directly from the second part of Eq. (13-49) as 

(g3,g4,gS)T =AHo (13-52) 

Finally, the observation model equations for NA and NB are obtained using 
Eqs. (7-23) through (7-26), with the result 

(13-53) 

·The sign of e" and t. as defined here. is opposite to D£ and /1£ defined in Section 12.2. 

_.....01 
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where 

where 
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a=Szy l/2 

b=Slyl/Z 

y=hz /(n2
- st- Sf) 

13.4 

Ass is the transformation matrix from Sun sensor to body coordinates (see Eq. 
(7-9), and m, km' h, and n are . sensor constants defined in Table 7-2. 

The partial derivatives of the observation model vector elements, gi' with 
respect to the state vector elements, xi' are 

where 

ag l ax. = 81j; 
J 

(13-54a) 

(13':S4b) 

(13-54c) 

(13-54d) 

(13-54e) 

(13-54f) 

andj= 1,2, or 3. 
The observation weights are taken to be the inverse of the corresponding 

variance. For pitch and roll data, the weights are 

WI = I/a;; Wz= l/a1 (13-55) 

and for the .magnetometer data, the three observation weights are assumed to be 
equal and given by 

(13-56) ... 

The errors in the Sun sensor data are assumed to be dominated by the step 
size (see ·Section 12.3); hence, 

w,= w7 = 12 (13-57) 

Note that the weights have the same units as the square of the corresponding 
inverse measurement. The elements of the weighted matrix, W, are given by· 

Wy= wt8y; i,j= 1,2,3 (13-58) 

>{ 
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assuming thai the measurement errors are uncorrelated, 
With the above definitions. we now wish to find the state vector estimate, i, 

which minimizes the loss function defined by Eq. (13-29) with So= 0 (to indicate no 
confidence in the a priori solution). The solution is given by Eq. (13-36) with the a 
priori solution Xo=xA as 

xk + I =x/c +( GlWG,,) -IG/cTW[y_g/c] 

where Gk is given by Eqs. (13-30b) and (13-54) and the subscript k denotes that the 
partial derivatives are evaluated at x = xk • The covariance matrix of the computed 
state vector (see Section 12.3), 

P=(GlWGk )-' (13-60) 
is obtained as a byproduct of the differential correction algorithm. 

13.5 Recursive Least-Squares Estimators and Kalman Filters 

13.5.1 Recursive Least~Squares Estimation 
Lawrence FaUon, III 

Consider an n-component observation vector. y, which is partitioned into p 
members; that is 

(13-61) 

Each member contains q observations which are generally measured at nearly 
the same time. For example, consider an observation vector which contains n = 100 
star tracker measurements obtained in a 30-minute interval. If y consists of angular 
coordinates which are measured two at a time. then it would be partitioned into 
p = 50 members. each containing q = 2 components. The observation model vector, 
g. is also partitioned in the same manner as y. 

A batch least-squares estimate of the m-component state vector xu, determined 
with observations from only member Y., will be denoted x~. The state estimate 
determined using observations from both members y, and Y2 will be denoted i~. 
and so forth. We want an expression for i~ using x~ and observations from member 
Y2' This will then be extended to form an expression for i2, using i2 _, and the 
observations from member y". 

The loss function in Eq. (13-29) leads to the following relation for iV: 

[So+ G~,W,G'RI']i~=Soi~ + G~,W,[y,-g'RI + G'R,X~,] (13-62) 

which is equivalent to Eq. (13-33). except that WI' G'R
" 

and gUt, contain observa
tions from member y, only. The subscript R, signifies evaluation at reference state 
vector xt (We will use a different reference state vector lor each of the p members 
of g.) Similarly. for x~, . 

(IJ-63) 
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where the subscript S means that observations from both members Y I and Y2 are . 
included. The 2q-vectors y S and bSR are defined by 

YS=[;~] 

bSR = [ GIR1X:1 1 
G2RzXRz 

where x~z is a reference state vector which is generally different from X~I. The 2q
vector gSR' the (2qXm) matrix GSR' and the (2qX2q) matrix Ws are analogous to 
Ys and bSR• 

Using Eq. (13-62) and (13-63), we obtain 

S2Ri~= SIRi~+ G~zW2[Y2-g2Rz + G2R2X~Z] 

where the (mxm) matrices SIR and S2R are defined by 

SIR=SO+ G&IWIGIRI 

SlR=SIR+ G~zW2GlRz 

(13-64) 

We emphasize that the (qX q) matrix W2• the (qX m) matrix G2Rz• and the 
q-vector glRz pertain to observations from Y2 only. Solving Eq. (13-64) for ig yiel.ds , 

ig=~+ P2G~zW2[ Y2-glR. + GlRZ(X~2 -x?)] 
where the (m X m) matrix P 2 is given by 

P2=Sii/= [PI-I+G~2W2G2R2rl 

and the (mXm) matrix PI' 

(13-65a) 

(13-65b) 

PI = SiR" = [So+ GrRIWIGrRlrl (13-65c) 

Equation (13-65) is an expression for xg which depends on x~. PI (the 
covariance of error in iCO. and quantities associated with observations from 
member Y2. Once x~ and PI have been calculated. observations from YI are no 
longer necessary for the estimation of X2. 

By analogy, the expression for x%, the state estimate using the first k members 
of the observation vector, is 

iZ=i2-1 +PkG~Wk[ Yk-gkRt + GkR,.(X~ -i2_1)] (13-66) 

In many sequential least-squares applications, the estimate derived from 
processing the previous observations becomes the reference vector for the current 
estimation, i.e., x~ = i2_1. In such cases, the state estimation is frequently not· 
iterated in the batch least-squares sense. The state estimate "improves" as addi- . 
tional data are processed. Occasionally, however, the same reference vector will be 
used for the entire group of data, and iterations mayor may not be used. 
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The algorithm given by Eq. (13-66) requires the inversion of the (m X m) 
matrix Su at each step to compute Pk' This algorithm may be transformed into 
one which requires inverting a (q x q) matrix. Recall that q is the dimension of the 
members of y. which are generally smaller than the m-dimensional state vector. 
Applying the matrix identity 

[A -1+ BC]-I =A -AB[I + CAB]-ICA (13-67) 

to Eq. (13-65b) and extending the result to the kth estimate of P yields 

Pk = Pk- I - Pk-1Gl[ Rk + GkPk-1Gl] -'GkPk- 1 

where Rh , the (qX q) measurement covariance matrix, is the inverse of Wk' Substitu
tion of Eq. 03-67) into Eq. (13-66) and some matrix manipulation yields 

i~=i~_I+ Kk[ Yk -gk+ Gk(i~. ""'i~_,)] 

where the (m X q) gain matrix, Kk • is given by 

Kk=Pk_IGkT[ Rk+GkPk-IGlr' 

(13-68) 

( 13-69) 

If Eq. (13-69) is now substituted into Eq. (13-67), we obtain the following 
algorithm for Ph' the error covariance matrix of the state estimate, i~: 

(13-70) 

Equations (13-68) to (13-70) are the basic equations used in sequential least
squares estimators. In these equations, the q-vector gh and the (q X m) matrix G

k 
are the parameters associated with observation k. evaluated at xO=x~.' If x~. 
=iL" then Eq. (13-68) reduces to 

(13-71) 

The (qX q) matrix to be inverted in Eq. (13-69) thus has the dimensions of Yh' 
In a common application of this algorithm, the observations are processed one at a 
time. In this case, q = I and no matrix inversion is necessary. 

Because of computer roundoff errors, Pk can become nonpositive definite and 
therefore meaningless. An alterna~ive is to use the Joseph algorithm for the 
computation of Pk: 

(13-72) 

This algorithm requires more computation than Eq. (13-70), but ensures that 
Pk will remain positive definite. Substituting Eq. (13-71) into (13-72) reproduces Eq. 
(13-70), which indicates that the two methods are analytically equivalent for any K 
defined by Eq. (13-69). Figure 13-3 summarizes the procedures used by a recursive 
least-squares algorithm. 

Advantages and Disadvantages of Recursive Least-Squares EstImators. The 
principal computational advantage of recursive least-squares estimators occurs in 
applications where iterations are not required. In these' cases, the estimator con
verges (i.e., the difference between i~ and i~_1 approaches zero) as additional data 
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are processed. This results from the use of i~_1 as the reference state vector for the 
estimation of i~. Only information pertaining to the kth set of observations ml¥lt 
be stored in these cases. Use of a recursive estimator instead of a batch estimator 
(in which the reference state vector is not replaced until all observations have been 
processed) will thus result in a reduction of computer storage requirements and a 
decrease in execution time, The principal disadvantage of the recursive least
squares estimator is that it is more sensitive to bad data, particularly at the 
beginning of a pass, than is the batch estimator. 

If the state undergoes minor unmodeled variation during the time spanned by 
the observations, the recursive least-squares estimator will calculate a weighted 
"average" value for i O which is essentially equivalent to the value estimated by a 
batch procedure. In contrast, the Kalman filter described below will generally track 
state variations better than either the recursive or batch least-squares algorithms. 
135.1 Kalman Filters 

To estimate the value of a state vector at an arbitrary time, tk , the state 
estimate at to. from a batch or recursive algorithm, must be propagated from to to lk 

using a model of the system dynamics. The Kalman filter, on the other hand, 
estimates the m-component state vector i(tk ) directly based on all observations up 
to and including Yk and the -dynamics model evaluated between observations.· 

• This subsection describes a continuous-disc:rete Kalman filter which assumes that the system dynamiCS 
varies continuously with time and that observations are available at discrete time points. The two other 
classes are continUOUl and discrete Kalman filters, in which both the system dynamics and observation 
availability are either continuous or discrete. The continuous-cUscrete filter is the most common for 
spacecraft attitude determination. Much of the development of these filters was done by R. E. ~ , 
(1960, 1961) in the early 19605. The basic Kalman filter in each of these classes assumes ~at the 
observation models and system dynamics are'linear. What we describe is actually an extended Kalman 
filler because nonlinear observation models will be allowed. 
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Although all filters require a dynamics model (the simplest of which is x = 
constant) to propagate the state estimate between observations, the accuracy 
requirements for this model are normally less severe for the Kalman filter than for 
batch or recursive estimators because propagation is not performed at one time 
over the entire block of data. In addition, the Kdman filter compensates for 
dynamics model inaccuracy by incorporating a noise term which gives the filter a 
fading memory-that is, each observation has a gradually diminishing effect on 
future state estimates. 

Each time a set of q observations, y", is obtained, the Kalman filter uses it to 
update the a priori state vector estimate at Ik' denoted by ik-I(/k), to produce an a 
posteriori estimate ik(tk). It also converts the a priori error covariance matrix 
estimate, Pk- 1(/k), into the a posteriori estimate, Pk(tk). These a posteriori estimates 
are then propogated to tk+1 to become the a priori estimates i,,(/k+I) and P,,(/k+l) 
for the next observation set, Y Ir.+ I( I" + I). The subscript k on i and P indicates that 
the estimate is based on all observations up to and including the observations in Yk. 

The Updating equations for the Kalman filter are the same as those for the 
recursive least-squares estimator except that we are now estimating the state vector 
and covariance matrix values at the time tIt rather than at a fixed epoch 10- Thus, 
the Kalman filter update equations are 

ik(t,,) =ik_l(tk)+ Kk[Yk -Ik] 

with the (m X q) gain matrix 

Kk = P"-I( tk)Gl[ Rk + GkPk-l(tk)Gl] - I 

and either 

or, alternatively, 

(13-73) 

(13-74) 

(13-75) 

(13-76) 

for the (m X m) error covariance matrix. In these equations, the q-vector Ik and the 
(qxm) matrix Gk are evaluated at ik-I(tk). 

In some cases it is necessary to iterate the estimate of ik(tk ) to reduce the 
effects of nonlinearities in the observation model. If this occurs, then Ik and Gk will. 
be evaluated about a reference vector xR,.(tk), which may be different from 
ik-I(tk). Equation (13-73) is then replaced by the more genC!ral form 

i(lk) = XR,.(tk) + K"[Yk -Ik+ Gk (xR,.(tk)-ik-l(tk)} ] (13-77) 

Iteration may then be done using Eq. (13-71) with xR" (tk) = ik_l(tk) to esti
mate ik(tk). The operation is cyclically repeated using XR.(/k)=ik(tk) and so on, 
until the change in the ik(t) between successive iterations is negligible. Jazwinski 
[1970] provides additional information concerning local iteration techniques. In 
attitude determination, the time between observations is normally short and local 
iteration is generally not needed. Thus, Eq. (13-73) is the more common expression. 
Additional techniques for nonline~ problems' are discussed by Athans, et al., 
[1968]. 

--..I 
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Propagation of x and P Between Observation limes. The Kalman filter 
assumes that the system dynamics is linear and of the form 

:t x=Fx+ Bu+Nn (13-78) 

where F, B, and N are known matrices which may be time varying and the matrix 
F has dimensions (m x m). The dimensions of Band N are such that the terms Bu 
and Nu are m-vectors.· The vector u is a known, deterministic driving function 
which does not depend on x. For example, u could consist. of attitude-independent 
environment or control torques. In many attitude determination problems, u is zero 
and the term Bu may thus be ignored. The vector n is zero mean white noise which 
is assumed to be uncorrelated with the observation noises, vn ; that is 

E(o(/»=0 

E(O(/)O(T)T)= V(/)8D (t-T) (13-79) 

E(o(/}vI)=O 

for all t, T, and k, where V is a known, symmetric, nonnegative definite matrix; 
8D (t - T) is the Dirac delta; and E denotes the expectation value. It is the matrix V 
which is selected to give the filter its desired fading memory characteristics. White 
noise processes such as 0(/) do not exist in nature. The term No in Eq. (13-78) is 
included more as compensation for imperfections in the dynamics model than as a 
literal approximation of actual system inputs. 

The Kalman filter propagates the state vector estimate via Eq. (13-78) with the 
noise term omitted; that is, 

~x=Fi+Bu 
dt 

The solution to this equation is [Wilberg, 1971] 

x( t)= D( t, 1/c)X( l/c) + r(t,l/c) 

where the m-vector r is given by 

r(t,tk) = f'D(/,T)B(T)U(T)dT 
'. 

( 13-80) 

(13-81) 

(13-82) 

Implementation of these two equations requires that the state transition 
matrix, D, be determined. When F is time invariant, 1) is the exponent~al of 
(m x m) matrix F; that is, 

D( I,T)= exp( F( 1.- T» (13-83) 

, J 

and when F is time varying, D is obtained by integr~ting the following matrix . :1 
equation;either analytically or numerically: 

d 
dt D(t,//c} = FD(/,IIc) (J3-84) 

-The dimensions of vectors u and D will depend upon the nature of the filtering application. They are 
frequently of different dimensions than the state vector. 
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In many applications the propagated state vector is updated at each observa
tion set, Y k' and the propagation computations are restarted using the a posteriori 
estimate ik(tk). Thus, Eq, (13-81) takes the form 

( 13-85) 

If the function u is zero, then the propagated state vector is given by the simpler 
equation 

(13-86) 

We now develop an expression for propagating P, which uses D, N, and V. 
Recall that the (m X m) matrix P represents the covariance of errors in the state 
estimate; that is, 

P(t)=E(e(t)e(t)1 

where e(t)=x(t)-i(t),· and it is assumed that E(e(t»=O. Differentiating this 
expression with respect to time, using Eqs. (13-78) and (13-79), and performing 
some algebra yields the matrix Riccati equation, 

p= FP+ PFT + NVNT 

which has the sOlution [Wilberg, 1971; Meditch, 1967] 

P(t)= D(t,tk)P(tk)DT(t,tk)+ Q(t,tk) 

where the (mXm) matrix, Q(t.tk), is defined by 

Q(t,tk)= [D(t,T)N(T) V(T)NT(T)DT(t,T)dT 
Ii 

(13-87) 

(13-89) 

A more explicit form of Eq. (13-88) for propagating P between observations Ylc 
and Yk+l is 

(13-90) 

Q{tk + I' tic) is called the state noise covariance matrix.· A block diagram of the 
Kalman filter algorithm is given in Fig. 13-4. 

Example of i and P Propagation. As an example of state and error 
covariance propagation in a Kalman filter, we describe a simplified version of an 
algorithm employed for attitude determination on the ATS-6 spacecraft. This 

• When the system dynamics is nonlinear, the state propagation is commonly performed by integrating 
an equation of the form 

:ti=f(X.t)+BU 

with the initial c:ondition x(t,,)=i(t,,). where ,. is a function which is nonlinear in ll. Additional 
teclmiques for propagation of attitude parametm are given in Section 17.1. The state transition ·matrix 
to be used in the propagation of P is calculated using Eq. (13-84) M.th . 

F=[ ~!] 
This linear approximation causes the resulting estimate for P to be only a first-order approximation to 
the true c:ovariance matrix. 
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spacecraft was Earth-pointing and three-axis stabilized by an active onboard 
control system. The motion about the three axes was assumed to be uncoupled and 
each axis was modeled independently. The dynamic model for anyone of the three 
axes is of the form 

x.=8 

x2 =x.=O 

X3=X2=6 

x3=n 
where 8 is a small angulAr deviation from a known reference attitude and n is zero 
mean white noise. The matrix form of the above equation is 

~x=Fx+Nn 
dt 

where x=(X.,X2,X3)T, N=(O,O,I)T, and 

F-[~ 
I 
o 
o !J 

Note that the vector n is actually a scalar in this application. This causes the matrix 
N to have dimensions (3 x I) .. It is therefore denoted by the 3-vector N. The state 
transition matrix determined from the above equations is 

[
Ill t 0.51112 j 

D(t,tk)= g ~ ~' 
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where !:ll = t - tk• Because the system dynamics does not include a deterministic 
driving function, the·term u in the state vector propagation equation is zero. 

The state noise covariance matrix can be established analytically through Eq. 
(13-89) as 

where V is a scalar selected by experience with real and simulated data to give the 
filter its desired fading memory characteristics. 

Suppose that x(tk) and P(lk) are known and that propagation to tk+1 is 
desired. Then, ik(tk+ I) is calculated using Eq. (13-86); that is, . 

[ 
I !:It 0.5!:lt2] 

ik(tk + I)= ~ ~ ~I ik(tk) 

where, in this case, !:It= tk+I-lk. Pk(lk+ I) is then calculated using Eq. (13-88): 

Pk(tk+I)= 

[~ 
!:ll 
I 
o 

o 
I 

!:It 

0] V [ Mt' o + 120 15!:lt4 

I 20!:lt3 

i(lk+l) and Pk(lk+l) may then be updated by Eqs. (13-73) to (13-76) using tae 
observations at Ik + 1 to become Xu 1(lu I) and PH l(tU I)' 

Divergence. A Kalman filter achieves a steady state when the corrections to 
the state vector reach a consistent level and when the error covariance matrix is 
stable. Divergence occurs when the estimated state moves away from the true state. 
This is the most common problem associated with Kalman filters. The most 
frequent causes of Kalman filter divergence are linearization errors, cumulative 
roundoff and truncation errors, modeling errors, and .unknown noise statistics. 
Linearization problems can be reduced by local iteration, as described earlier, or 
more frequent selection of observations. Roundoff and truncation errors' may be 
partially solved by using a Kalman filter variation, called a square-root filter 
[Andrews, 1968], which substitutes the square root of the error covariance matrix 
for its full value in the filter gain equation. Another useful variation which is as 
numerically stable as the square root filter but which requires less computation is 
the UDUT filter discussed by Bierman [1977J. In the adaptive filter [Jazwinski. 
1970], the state noise covariance matrix, Q, is adjusted using the residuals between 

It actual and computed observations. This variation is intended to reduce the effects 
j: of modeling errors. . 

Problems associated with unknown noise statistics may be solved after exten
sive testing with both simulated and real data. Proper filter response will only result 
when the appropriate balance between the state noise and measurement noise 
covariance matrices is found. A data rejection scheme which removes all observa
tions whose uncertainties are not accurately known is also necessary to prevent 
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divergence. If, for example, state noise has been underestimated with respect to 
observation noise. the state estimation procedure will become less and less sensitive 
to the observation residuals. Divergence' could then result even though the filter 
may have reached a steady state. Alternatively, if observation noise has been 
underestimated, the state estimation procedure may be incorrectly influenced by 
the observation errors. Reviews of alternative methods to solve filter divergence 
problems are given by Cappellari, et al., (1976] and Morrison (1969]. 

Advantages and Disadvantages of Killman Filters. The Kalman filter is 
frequently chosen for use in onboard attitude determination and for applications 
where constant tracking of a changing attitude is required. It is useful for on board 
processing because it does not need to recycle through previously observed data 
and is frequently able to estimate the current state in real time. The execution time 
required for a Kalman filter depends on the complexity of the calculations required 
to update the state transition and state noise covariance matrices. In some applica
tions, the advantages resulting from the lack of iteration in the batch least-squares 
sense are partially offset by the time required to update these quantities. 

Sequential Pseudoinverse ~mator. When the observations are much more 
accurate than the state propagation process, and when correlation among the 
elements of the state vector can be ignored, the sequential pseutioinverse estimator 
can serve as a useful substitute for the Kalman filter; This type of estimator 
computes the minimum correction to the state vector such that the difference 
between the observation vector, Yre, and observation model vector, gre' becomes 
zero. This causes the state to match the observations exactly at the time of the 
uPdate. (This exact match is actua\ly possible only when q, the dimension of Y re. and 
gk' is less than or equal to m, the dimension of the state vector.) The sequential 
pseudoinverse method does not actually provide any filtering of observation noise . 

. Its performance is therefore generally inferior to that. of the Kalman filter. It does, 
however, have the advantage of being relatively simple and computationally fast. 
The application of a sequential pseudoinverse estimator to onboarrl attitude de
termination using gyro and star tracker data is discussed by McElroy and Iwens 
[1975]. 

The governing equations for this algorithm are obtained from the Kalman 
filter by choosing the measurement covariance matrix, Rre , to be a null or zero 
matrix and setting the error covariance matrix, Pre-I; to a multiple of the identity 
matrix. Thus, from Eqs. (13-73) and (13-74) we obtain for the pseudoinverse 
estimator 

where 

T T -I 
Kre= Gre (GreGre ) (13-90) 

In this algorithm, the gain matrix depends only on the current observation set 
so that the state estimate always corresponds to an exact fit to the most recent 
observations. Thus, this estimator has a rapidly fading memory; that is, the 



REFERENCES 469 

dependence of the 'current estimate of the state on the earlier observations 
diminishes completely as new information js provided by the latest observations, 
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CHAPTER 14 

EVALUATION AND USE OF STATE ESTIMATORS 

14.1 Prelaunch Evaluation of Stale Estimators 
14.2 Operational Bias Detenniuation-
14.3 Limitations on State Vcc:tor Obscrvability 

JtlnIIS R. Wert: 

! \ Chapters 10 through 13 have provided the basic analytic foundations of 
attitude determination and attitude state vector estimation or data filtering. This 
chapter discusses practical aspects of state estimation and makes specific sugges
tions for the evaluation and operational use of estimators. There is no optimum 
procedure for analyzing attitude data, and much of the discussion is necessarily 
subjective. This chapter is intended as a practical guide, to/ be modified as 
appropriate for the problem under consideration. Section 14.1 describes specific 
procedures for the prelaunch evaluation and testing of estimators, and Section 14.2-
describes the operational use of estimators. Finally, Section 14.3 discusses the 
limitations on state vector estimation and procedures for determining which state 
vector elements should be solved for in a particular situation. Although tile 
discussion is as spacecraft independent as possible, the examples used are drawn 
primarily from systems using horizon sensors and Sun sensors on a spinning 
spacecraft, such as the crs spacecraft described in Section 1.1. 

14.1 Prelaunch Evaluation of State Estimators 
Given a functioning estimator or data filter, how do we determine whether it 

behaves correctly? The two basic requirements for testing estimators are a data 
simulator and a detailed test plan. Normally, real data is not sufficient for testing 
because the correct solution is unknown. However, it may be possible to use real 
data when the attitude has been determined by more accurate, redundant sensors. 
For example, attitudes based on SAS-3 star tracker data were used to evaluate 
infrared horizon sensor data [Hotovy, .]976] and a similar procedure is anticipated 
for MAGSAT [Levitas, el al., ]978]. When a data simulator is used it must be at 
least as sophisticated (i.e., incorporate as many effects) as the state estimator and 
preferably more sophisticated. 

A test plan for the evaluation of an estimator should be designed by an 
individual or group other than those who designed the estimator itself; otherwise, 
that which was overlooked in the design will also be overlooked in the testing. The 
test should be designed to teSt each part of the-estimator independently and should 
also test that all of the parts of the estimator work together. Unfortunately, with a 
complex state estimation system, it is. effectively impossible to test all possible 
combinations of processing. options. Therefore, it is important to attempt to 
identify both combinations that may present problems (e.g., a change in sensors in 
the middle of a data pass) and those that will normally be used in practice. 

There are three levels of testing that may be performed on any state estimator: 
(I) testing under nominal and contingency mission conditions, (2) testing under 
conditions specifically designed to identify and isolate problems, and (3) testing 
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under conditions specifically designed to identify system limits. The first type of 
test is the least severe and is the minimum requirement for any test procedure. 
There are two major problems with type (I) tests-it is unknown how the estimator 
will behave under unanticipated (but possible) mission conditions and it is not 
really known what to expect from nominal mission conditions. The nominal 
situation is usually sufficiently complex that analytic solutions for the various 
parameters are not available. Therefore, the only conclusions that can be drawn 
from tests under nominal or contingency conditions are that the estimator behaves 
approximately as one would expect or that it obtains the correct answer on 
"perfect" data within the limits required by the design and the conditions antici
pated. Both of these conclusions are weak, although they may be adequate for 
some purposes. 

Type (2) tests eliminate much of the ambiguity by choosing tests specifically 
aesigned to identify problems or evaluate performance;:~although the conditions 
chosen may be unrealistic. The usual procedure here is to choose conditions 
unrealistically simple such that analytic solutions for the observables are available 
or at least such that the analyst has an intuitive ""feel" for the results. For example, 
horizon sensor modeling might be tested using a spherical Earth model and a 
circular, equatorial spacecraft orbit; star sensor calibration algorithms might be 
tested using an evenly spaced, rectangular grid of stars. 

Type (3) tests are the most stringent and are the analog of destructive testing 
in civil engineering bec.~use the intent of the test is to determine the limits of 
system performance. For example, the attitude might be chosen at the celestial pole 
to determine how the estimator handles coordinate siDgularities; or unmodeled 
biases, such as a deliberate orbit error, might be included in the data to determine 
how well the estimator behaves in the presence of unmodeled systematic variations. 
The latter test is particularly valuable because unmodeled systematic errors are the 
practical accuracy limit for most state estimators. 

Finally, we describe three specific tests to examine the operational 
characteristics of state estimators. These are designed to test the statistical compu
tations and resulting uncertainties, the accuracy of observation models, and the 
accuracy of computed partial derivatives. 

Statistical and Uncertainty Tests. For any state estimator, we want to deter
mine whether uncertainties calculated by the estimator truly reflect the variations 
in the solutions due to the noise on the data. This cat). be conveniently done with a 
data simulator which adds pseudorandom noise to the data based on an aJgebraic 
random nUmber generator. (For a discussion of the characteristics of algebraic 
pseudorandom number generators, see, for example, Carnahan, el 01., [1969].) A 
series of 10 to 20 test runs are made under identical conditionS including the 
addition of Gaussian noise to the data; the only difference between the runs should 
be the seed or starting value used for the algebraic random number generator. The 
standard deviation 'of the resulting attitude and bias parameter solutions is then a' 
real measure 9f the spread in the solutions due to the noise on the data; further, it. 
is fully independent of the statistical computations within the estimator (i.e., the 
spread is dependent only on the estimator solution and not on its statistics).! 
Therefore, this solution spread can be compared with the uncertainties computed" 
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by the estimator to determine the accuracy of these computations. Note that the 
computed uncertainties should be nearly the same for each test run. This test is 
particularly effective when the underlying statistical analysis is uncertain, as in the 
case in which nonlinearities may become important·or those in which quantized 
measurements are assumed continuous. 

To evaluate this test we need to know how weD the standard deviation, Si' of 
the resulting attitude or bias solutions, Xi' measures the actual variance, al, in the 
state vector solution; that.is, how closely should the observed S; agree with the 
value of aj computed by the state estimator. Given n random samples from a 
normally distributed population, the sl shouldbave a chi-square distribution (see, 
for example, Freund (1962D such that 

2 2 
PSi 2 PSi 
-2- < a j < 2 (14-1) 
X;;.v X(J - a). v 

where 11 == n - I and (1-2a) is the confidence interval for the results. For example, 
if we make 10 runs on a· simulated data set for which the resulting standard 
deviation in the 10 values of element; is 0.015 deg, then for a 90% confidence level, 
we obtain from standard statistical tables X~.OS.9= 16.92 and X~.9S.9= 3.325. There
fore, with 90% confidence, aj lies in the interval (9xO.0152/16.92)1/2=0.OIJ deg to 
0.025 deg; that is, the computed uncertainty from the estimator should lie in Jhis 
range 90% of the time. 

Observation Model Tests. The best procedure for testing the accuracy of 
individual models is to execute the state estimator on simulated, noisefree data and 
closely examine the solutions or solution residuals. The noise in the system is then 
the unavoidable noise due to machine round off. For the estimator to be func
tional, this must be below that anticipated for the actual data; nevertheless, it 
clearly demonstrates any existing differences between simulator models and models 
incorporated into the estimator, such as slightly different ephemerides or sensor 
models. 

Partial Derivative Tests. The partial derivatives in an estimator may be tested 
for accuracy by the following method. Set all of the state vector elements except 
one to their correct, known value in a simulated data set. Set the one element being 
tested off of the com~ct value by a small amount, such as 0.1 to 0.01 deg. Assuming 
that the problem is approximately linear over this small range, the estimator should 
converge to the correct solution in a single iteration. If the first iteration gives an 
answer which is. significantly in error, then the partial derivatives are probably 
computed incorrectly. However, even if the partial derivatives are incorrect, the. 
estimator may still converge slowly provided that the sign of the partials is correct. 
or course, the estimator will generally operate more efficiently if the values of the 
partial derivatives are correct. It is also po~ible that nonlinearities may be 
important even in a very small region around the correct solution. If this is 
suspected, then an independent test of the partial derivatives should be sought. 

14.1 Operational Bias Determination 

This section is concerned primarily with estimators used for bias determination, 
a process of state estimation or liata filtering that is performed only infrequently 
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during the life of a space mission, to determine various calibration parameters or 
biases; these will then be fixed at their estimated values and subsequently used for 
routine attitude determination. Therefore, we are concerned here with how to get 
the most possible information about biases from a given set of data. In practice, 
most of the time spent in bias determination is devoted to selecting the data to be 
processed (i.e., selecting the data base to be used and eliminating individual 
samples) and verifying the solution in as many ways as possible. 

Operational bias determination is governed by both mission requirements and 
time constraints. State estimators are used to solve for attitude and biases simul
taneously either to find the best estimate of bias parameters or to find the best 
attitude estimate to be used in conducting maneuvers. The estimation process may 
be divided into the following two or three steps: (1) a rapid preliminary state vector 
estimate to provide backup in case of software failure or unanticipated timeline 
changes (this step is necessary only in real-time analysis); (2) determination of the 
best possible attitude and bias parameters; and (3) validation of the results, 
possible revision of the answer, and evaluation of the uncertainties. 

To carry out the above program requires a systematic and predesigned 
procedure to accomplish each step and to record mission parameters and the 
results of the various tests performed. Recordkeeping is particularly important in 
areas such as the spacecraft control environment, in which large quantities of data 
are ordinarily processed and reaccessing data may be difficult or time consuming. 

Seleding Data Sets for Processing. To obtain the best possible estimate of 
bias parameters, we would like to obtain data bases· with the greatest possible 
information content. To do this, we use the procedures described in' Section 14.3 
and Chapter II to evaluate the information content and correlations for the various 
data sets that will be available or could become available. Conclusions are then 
tested on simulated data to establish a formal operational procedure. 

An advantage of the geometrical analyses of Chapter II and Section 14.3 is 
that many potential data sets may be evaluated quickly with minimal computer 
supporL Consequently, it may be possible to evaluate many possible geometrical 
conditions for bias determination or sensor calibration. With this information, data 
collection can be pianned specifically for sensor evaluation. For example, after 
firing the apogee boost motor for SMS-2, GOES-I, and CTS to put the spacecraft 
into a near synchronous orbit, an attitude maneuver was required to bring the spin 
axis to orbit normal. This large maneuver was accomplished by a series of smaller 
maneuvers with intermediate attitudes, or.stops, used to obtain one orbit of data for 
sensor evaluation [Chen and Wertz, 1975; Wertz and Chen, 1976; Tandon, et al., 
1976]. The steps were chosen by evaluating the different available geometries along 
the maneuver path. 

Although.making the best use of eXisting maneuvers or normal geometry is the 
most efficient procedure for sensor evaluation, it may be appropriate to use the 
geometrical analyses to plan specific calibration maneuvers or maneuvers designed 
explicitly to calibrate or evaluate hardware performance. Small attitude maneuvers 
are frequently used with gas jet systems to evaluate the approximate performance 

• Data base in this context is any collection of data that can be processed together through a state 
estimator. 
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of the jets before using them for long maneuvers. (See, for example, Werking, el al., 
(1974).) Attitude sensor calibration maneuvers were used on AE-4 and -5 to 
measure the sensor biases early in each mission to provide accurate deterministic 
attitudes and are planned for SMM for the calibration of gyros and Sun and star 
sensors [Branchflower, el al., 1974}. 

Sample Operating Procedure. Having obtained data suitable for state vector 
estimation, we would like to process this data to obtain the most information 
possible. We describe here a sample procedure for spinning spacecraft used with 
some variations for launch support for CfS; for spacecraft in the AE, SMS, and 
GOES series; and anticipated for upcoming missions [Chen and Wertz, 1975; 
Tandon, el al., 1976; Wertz, et al., 1975]. This procedure is based on a processing 
system similar to the crs system descn"bed in Section 21.2, incorporating a 
deterministic processor, a bias determination subsystem (normally, a state estima
tor), and a means for comparing predicted and observed data. The operating 
procedure which has proved successful in these cases is as follows: 

Obtain a Preliminory Solution: . 
1. Manually select data or check the automatic data selection process. 
2. Use the deterministic processor to .provide an unbiased initial estimate 

for the bias determination sul,lsystem. 
3. Use the bias determination subsystem to obtain a preliminaiy state 

vector estimate based on prelaunch selection of the parameters to be solved for. 
(See Section 14.3.) . 

Obtain the Best A Wlilab/e Solution: 
4. Use an iterative procedure to e1iminate data anomalies, as described in 

Section 9.4. 
5. Again, use the deterministic processor on the final set of selected data to 

provide an unbiased estimate for the bias subsystem. 
6. Obtain a converged solution with the state estimator. Convergence 

should be based on the convergence of the state vector elements themselves, rather 
than on statistical tests which may give unrealistic results if the problem is 
nonlinear, if some of the measurements are quantized, or if the estimator includes 
the option of data rejection. To test for convergence, the change in each of the state 
vector elements may be required to be below a predetermined level (e.g., 0.001 deg 
for angular parameters) or the change may be required to be some fraction (e.g., 
0.1 or less) of the change on the preceding iteration. As discussed in Section 14.3, a 
solution should be obtained which provides the maximum number of state vector 
elements which can be solved for. 

Test the Solution. Four classes of tests are available: 
7. Use the bias parameters in the deterministic processor to verify that the 

systematic errors in the deterministic solutions have 1,leen reduced. (See Figs. 11-29, 
11-30, and 9-18.) 

8. Determine the consistency of the results by comparing the predicted and 
the observed data. Note any systematic behavior of the residuals. (See Figs. 9-17 
through 9-19.) 

9. Add known biases to the real data and see if they can be recovered by 
the same procedure which was used to obtain the fmal answer. 
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10. To ensure that the .estimator is operating in a ""linear" region, try 
different initial estimates for the state vector parameters and check to see that the 
estimator converges to the same answer. 

Discussion. Typically, state estimation accuracies are limited by systematic 
rather than statistical errors because when statistical errors dominate, more data is 
normally available that could be prOCessed to further reduce the statistical error. 
Therefore, it is important to observe and record the level of systematic variations 
and to attempt to estimate the systematic uncertainties. The uncertainties com
puted by the stale estimator will be unrealistically low because they will account 
only for the statistical variation. 

One procedure for estimating the systematic uncertainties in a given set of bias 
parameters is to examine the scatter among independent determinations. Here, the 
estimator is used to analyze data taken with different orbits and different 
geometries, but from the same sensors. The results from the different data sets may 
then be statistically combined to obtain improved estimates. of attitude parameters 
and their uncertainties. (See, for example, Chen and Wertz [1975].) 

Although the above procedure provides the most unambiguous quantitative 
results, truly ""independent" data sets are rarely, if ever, available. Therefore, the 
resulting uncertainties may still be unrealistically low. We may test further for 
systematic uncertainties by using an a priori knowledge of unmodeled biases such 
as errors in the orbit, the Earth model, or unobservable sensor biases. The 
unmodeled biases are applied to simulated data, the estimator is used to solve for 
the state vector parameters, and the uncertainties are estimated by the amount that 
the computed state differs from the known values. 

A final procedure for testing the level of systematic errors directly is to apply 
ai·unmodeled bias to the data and to adjust the magnitude of the bias to give 
systematic residuals of the same magnitude as those observed in the real solutions. 
The amount· by which the state vector elements are changed by this systematic 
error is then an estimate of the parameter uncertainty, due to the unknown 
systematic error. The "unmodeled" bias here may be conveniently chosen as one of 
the state vector elements which is not solved for during the test. 

None of the above methods for determining a realistic uncertainty estimate is 
completely satisfactory, and the procedures for obtaining the best attitude state 
vector estimate cannot be quantified. Thus, there is still a need for sophisticated 
judgment on the part of the operator of a state estimator. The most effective 
operational pr~edure for attitude determination is the use of a deterministic 
processor for .continuous, routine attitude determination with the occasional use of 
a state estimator to determine biases and evaluate possible systematic errors. . 

14.3 LimitatioDS on State Vedor ObservabUity 
In general, a good state estimator should provide more state vector elements 

than can be solved for simultaneously with any real data pass; if not, there is 
insufficient flexibility in the eStimator. Thus, the first requirement for analysis with 
any estimator:.-whether in prelaunch testing or operational use-is to correctly 
choose the state vector elements to be solved for. In principle, this is a straightfor
ward matter: based .on the estimator covariance matrix; any set of elements. for 
which the.off-diagonal terms in the covariance_matrix remain smaIl can be resolved 

I 
I· 
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by the estimator. In practice, model inadequacies, nonlinearities, and data anoma
lies frequently make the covariance matrix difficult to interpret and. therefore, of 
very limited use in choosing the solved-for parameters. 

Before discussing practical procedures for choosing state vector elements, we 
distinguish three types of state vector elements: (I) tbe attitude itself, whicb is the 
basic parameter to be determined; (II) biases which may be represented by a 
deviation in one particular measurement type-for example, a bias in the Sun 
angle, an azimuth bias of the Sun sensor relative to a horizon sensor, or a 
magnetometer bias; and (III) biases which are not associated with anyone 
particular measurement, for example, a bias on the angular radius of the Earth or 
any orbit parameter such as an orbital in-track error. 

If the state vector element being considered consists only of the attitude and 
constant type II biases, it is sufficient to determine an accurate attitude one time 
because if the attitude is known, the biases are determined by the various sensor 
measurements. In addition, correlations among type II biases are the same as those 
among their respective measurements. Therefore, the analysis of the information 
content of measurements also indicates a correlation among biases. For example, a. 
correlation between the Sun angle and the Sun-ta-Earth rotation angle measure
ment, as described in Section 11.4, implies a correlation between the Sun angle bias 
and azimuth bias. In contrast, type III biases cannot be analyzed by the general 
procedure for type II biases and must be treated individually. ..' 

In general, we would like to solve for as many parameters as possible, so long 
as a meaningful, converged solution can still be obtained. We would like to know 
beforehand whicb combinations of parameters are uncorreIated and therefore can 
be resolved. As a general hypothesis, we suggest that the greater the variation in the 
geometry, the larger the number of parameters which can be solved for. Repeated 
measurements under the same geometrical conditions, for example, measuring tbe 
Earth width by a spacecraft in a circular orbit witb its spin axis at orbit normal, do 
not provide new information with which to distinguish various sensor biases; such 
as deviations in the mounting angle of the sensor, the angular radius of the Earth, 
or the semimajor axis of the spacecraft orbit.· Repeated measurements under the 
same geometrical conditions serve only to reduce the statistical noise, but tbis is of 
limited practical value because the uncertainties are normally dominated by 
systematic rather than statistical errors. However, if the geometrical conditions 
change (for example, if the orbit is noncircular· or the attitude is not at orbit 
normal), each measurement provides new information and more parameters may 
be solved for. Thus, state vector estimation is best done with data which in
corporate the widest possible variety of geometrical relationships among the 
attitude reference vectors. 

To determine explicitly whicb state vector elements are observable or dis
tinguishable, four procedures have been found to be useful and have been success
fully applied to the analysis of real spacecraft data: (I) trial and error with , 
• Although biases may be indistinguishable in the instance cited, a fuB orbit of chata may determine the 
attitude very precisely. The importance of determining the biases depends on whether it is the attitu~e·l!t. 
the time of the data pass which is important, or whether the biases themselves are needed sO that 
accurate attitudes may be determined. at a later time when less or different data are available. 

J' •• 
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simulated data, (2) analysis of correlations among different measurement types (for 
type II state vector elements which are correlated with specific observations), (3) 
analysis of the information content of a single measurement type, and (4) analysis 
of geOmetrical procedures which allow a particular parameter to be resolved. 

I. Trial-and-Error Procedures. In a trial-and-error procedure, we use the 
state estimator to process real or simulated data, trying various combinations of 
state vector elements to determine which combinations give converged solutions. In 
the case of simulated data, we may also determine which combinations return 
approximately the correct unswer. This procedure is practically useless as a general 
analytic technique for more than 5 to 10 parameters because of the many possible 
combinations of state vector elements and processing options. Also, it is difficult to 
obtain any general insight from trial-and-error analysis which can be applied to 
~nditions different from those tested. Nevertheless, trial ,and error provides a 
procedure for testing analytic results obtained by other methods, and may be the 
most economical procedure for single applications. It serves as the basic test for 
other techniques and, all analytic conclusions should be subsequently tested, so far 
as possible, first on simulated data and then on real data. Each of the procedures 
presented below has been tested on both real and simulated data. 

2. Correlations Among Different Measurement Types. ~f two measurements 
are correlated over some region, the associated type II biases are also correlated 
over that region and are difficult to distinguish. Therefore, the analysis of Chapter 
II concerning correlations between measurement types may be applied directly to 
correlations between type II biases. For example, Fig. 11-26(a) indicates that for 
the SMS-2 spacecraft in its transfer orbit to geosynchronous altitude, the Sun 
angle/nadir angle correlation angle was near zero during the entire coverage of the 
Earth by horizon sensor 2. Therefore, the Sun angle and nadir angle measurements 
are providiJig nearly the same information about the attitude, and their associated 
biases are strongly correlated. Thus, we expect that a Sun angle bias is difficult to 
distinguish from a sensor mounting angle bias· with these data. This conclusion, 
and similar conclusions with data from other sensors, was confirmed through the 
analysis of both real, and simulated SMS-2 data [Chen and Wertz, 1975]. 

Although this procedure can provide information on the correlation of biases 
quickly and easily, it is limited to type II biases and is also limited to data spans 
over which the: geometry does not change greatly. As the data span becomes 
longer. such that the correlation is changing, the interpretation in terms of corre
lated and uncorrelated biases is less clear. Procedure 3 is concerned specifically 
with the changing correlation over long data spans. 

3. Information Content of a Single Measurement Type. Procedure 2 is only 
applicable 'to Correlations at one point or over a small region; however. large data 
passes' are normally needed for bias determination. Therefore, we would like to 
examine the info~ation content of any single, type of attitude measurement by 
determining the correlation angle for measurements of the same type at the 

• Note that although a sensor mounting angle bia3 and a true nadir angle bias are not identical, the 
distinction is Dot critical in this case. Both biases shift the computed attitude in the same direction, but 
the relative amount of the shift is not linearly related for the two biases. _ 
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beginning and the end of (or throughout) a long data pass. If this correlation angle 
is small and if the possibility of a bias in the measurement exists, there is little 
information content in the measuremenl Conversely, if the correlation angle is 
large, even in the presence of a constant bias on the measurement, it may be 
possible to use that measurement to determine both the attitude and the corres
ponding type II bias. 

Figure 14-1 illustrates the qualitative physical basis for this interpretation for 
the case of a cone angle measurement for which the possible attitude loci are small 
circles on the celestial sphere. For concreteness, we assume that the measurement is 
a direct measure of the nadir angle and that the + 's are the orientations of the 
Earth (i.e., the centers of the various nadir cones) at the beginning and end of a 
data pass. The solid line corresponds to the possible attitudes assuming that there is 
no bias in the measurement. The dashed line corresponds to the possible attitudes 
if there is a bias 11." in the nadir angle measurement. The correlation angle, 9'1"'1,' 
between the nadir angle measurement at the beginning (time t.) and end (tiine Ii) 
of the data pass is just the angle of intersection of the two nadir cones. In Fig. 
14-I(a), this correlation angle is small. Therefore, the horizontal component of the 
attitude is poorly defined. However, if there is the possibility of a nadir angle bias, 
then the radius of the cone is unknown and the vertical component of the attitude 
is also poorly d.efined. In this example we have, in effect, only one measurement 
and one potential bias and, therefore, this measurement provides no information 
about the attitude: In practice, the bias is not totally unknown and may normally 
be expected to fall within some assumed limits. However, in the logic of the state 

+ + 
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Fig. 14-1. Nadir Angle/Nadir Angle Correlation for Data Passes of Different Lengths. Subscripts 1,2, 
and 3 denote the positions of the Earth and nadir cone at times 'I' Iz, and ' 3, See text for 
explanation. 
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~stimator it is usually assumed that the bias is completely unknown and can take 
on any value.· It is in this sense that a single measurement with a bias of unknown 
magnitude provides no attitude information. 

Fig. 14-I(b) illustrates two more widely spaced points corresponding to the 
ends of a data pass of intermediate length. or to a data pass for which the central 
data is unavailable. Although we do not know the value of the nadir angle bias. we 
assume that it is a constant bias for both measurements. Therefore. the attitude 
must lie along the dotted line. Thus; the horizontal component of the attitude is 
well determined. but both the vertical attitude component arid the nadir angle bias 
are not determined. 

Finally. Fig. 14-I(c) illustrates the information available from a full data pass 
with a large correlation angle between the measurement at the beginning and at the 
end. If we assume that the attitude is fixed. then all of the measurements must give 
the same result if the nadir angle bias has been correctly determined. Because the 
three solid curves do not intersect in one point. there must be a nadir angle bias. 
Because the dashed lines do intersect in a point, the attitude must be at that 
intersection and the nadir angle bias must be equal to d1J. In this case we have used 
a single measurement type to determine both the attitude and the magnitude of the 
type II bias associated with that measurement type. 

As an example of the above analysis. consider a system similar to the examples 
of Chapter II (such as CTS, SMS/GOES, or SIRIO) consisting of a spinning 
spacecraft with Sun angle, Sun-to-nadir rotation angle, and nadir angle measure
ments and possible biases in all three measurements. If data is obtained over a 
period of less than a day, then the inertial position of the Sun remains essentially 
fixed. Therefore, if there is a possible Sun angle bias, the Sun angle measurement 
indicates that the attitude lies on a cone of unknown radius centered on the Sun; 
that is, there is no information in the Sun angle measurement. Adding Sun angle 
data to a state estimator and including a Sun angle bias in the state vector solved 
for will affect neither the attitude results nor the values of any of the other state 
vector elements. Of course. if the attitude is determined from other data, then the 
Sun angle measurement provides a measure of the Sun angle bias. 

To determine the content of the Sun-to-nadir rotation angle measurement, it is 
convenient to find a general procedure for determining the correlation angle 
between it measurement at the beginning of a data pass and that same measure
ment at some other time during the data pass. As shown in Fig. 14-2. the attitude 
locus. LfJ. for a given Sun angle measurement, p, remains nearly fixed on the 
celestial sphere as the spacecraft moves in its orbIt. Therefore, the correlation 
angle, em m' between one measurement, m, at any two positions in the orbit is ,j z 
just the difference between the p / m correlation angles at these two positi.ons. (See 
Section 10.4 for a discussion of correlation angles.) For example, for m = 4», where 
cI» is the Sun-Earth rotation angle: 

e~/~(time I to time 2)=e~,;~z =efJ/~(ti~e 2) - ep/~(time I)=ep/~z -ep/~I 
(14-2) 

• Assuming that the bias is completely unknown is equivalent to setting the state weight matrix, So> in 
Section 13.4 t.> zero. If So is nonzero, then a penalty is assigned to deviations of the bias from its 
nominal value, and a single measurement with a possible bias does constrain the attitude solution. 
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Fig. 14-2. Computation of 8"',/ .... From Correlations, 8",/" With the Sun Angle. L/I and L", are the 
attitude loci, or possible positions of the attitude on the celestial sphere, for a given Sun 
angle, fJ. and a given measurement value. m. So long as the time interval 'z- '. is short 
enough so that the Sun remains essentially fIXed, then 8""/"'2= 8/1/"" - 8/1/"" for any 
measurement m. 

The rotation angle correlation angle, e~/~ can be determined from Fig. 14-3, 
which shows the efj/~ correlation angle curves at 2-deg intervals over the entire sky 
for fixed positions of the Sun and attitude and variable positions of the Earth. For 
example, if the center of the disk of the Earth is at B, then efj/~ (evaluated at the 

Fig. 14-3. 

CTS 

ENVELOPE OF THE DISK 
OF THE EARTH 

AS SEEN FROM CT8 

Sun Angle/Rotation Angle Correlation Angle Curves at 2-Deg Intervals for a Sun Angle of 
Approximately 6S Deg. See text for explanation. The orbit and Earth envelope illustrated 
are for the crs transfer orbit. At l(kteg intervals, the correlation angle curves are solid 
lines. The lines at ±2 deg have been omitted to identify the 8p /.=O curve. Bec:ause the 
only independent parameter in generating these curves is the Sun angle, /l. they may be 
used for any spacec:raft for which fJ~6S deg as shown. 
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attitude) equals zero. Similarly, if the Earth is at Cor D, then 9 11/4>=268°; if the 
Earth is at E or F, then 8 11/4>=272°. Figure 14-3 also shows the approximate 
geometry of the ers transfer orbit to synchronous altitude. As in Figs. 11-25 and 
11-26, the line with vertical tick marks denotes the Earth's orbit about the 
spacecraft (as seen by the spacecraft), asterisks mark the envelope of the Earth's 
disk, AP marks the location of apogee, and I and I' mark the interval over which 
horizon sensor I senses the Earth. Thus, horizon sensor I picks up the Earth at I 
where 9 11/4>=268°; 9 11/4> then increases to a maximum of approximately 271° just 
before apogee and drops to about 266° as sensor I loses the Earth at 1". Therefore, 
the maximum variation in 9p/4> is about 5 deg. From Eq. (14-2), this implies that 
94>/4> has a maximum value of about 5 deg. Thus, the rotation angle correlation 
angle for the ers geometry is small and there is very little information content in 
the rotation angle measurement if the possibility of an unknown bias in the 
measurement is considered. 

The above conclusion about minimal information in the CTS rotation angle 
measurement is generally applicable under certain common conditions. Note that 
in the vicinity of the spin plane in Fig. 14-3 (between the lines at nadir angles, .,." of 
85 deg and 95 deg), 9 11/4> is approximately 270 deg and is insensitive to the rotation 
angle, ~ .• Physically this means that if the attitude is near orbit normal, then as the 
spacecraft moves through an entire orbit, the rotation angle, ~, goes from 0 deg to 
360 deg, but the loci of possible attitudes remains nearly the same for the various 
positions of the spacecraft in its orbit. Although the measurement is changing 
through its full range, the information content as to the possible locations of the 
attitude is nearly the same for all of these measurements. Therefore; whenever the 
nadir angle remains near 90 deg for an entire pass (i.e., if either the attitude is at 
orbit normal or the Earth is small and the sensor is mounted near the spin plane as 
is the case for CTS) and there is the possibility of a rotation angle bias, then there 
is very little information in the rotation angle measurement. 

For the nadir angle measurement, the situation is the opposite of the rotation 
'angle measurement. For an attitude near orbit normal, the measured value of the 
nadir angle remains approximately fixed, but the corresponding attitude loci rotate 
through 360 deg as the spacecraft goes around a full orbit. Therefore, the nadir 
angle measuremen~ contains sufficient information to determine both the attitude 
and a constant nadir angle bias as illustrated previously in Fig. 14-1. (The nadir 
angle bias may be a composite of biases in the sensor mounting angle, the angular 
radius of the Earth, or other parameters.) 

In summary, we may determine the information content of any type of 
measurement in which there may be a constant bias by examining the changing 
orientation of attitude loci for that measurement. It is the attitude loci, not the 
reference vector or measurement values, that is important. If there is no rotation of 
the attitude loci (e.g., the·Sun angle measurement) and if a bias in the measurement 
is solved for, then there is no information about the attitude in that measurement. 
Conversely, if there is a large rotation of the attitude loci (e.g., nadir angle or 
Earth-width measurements over a full orbit with the attitude near orbit normal), 

*The same conclusion can be obtained from Eq. (II-52) or Fig. 11-18. 
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then that information may be used to solve for both the attitude and the magnitude 
of the constant type II bias in that measurement. These conclusions on the 
information content of the 13, 4J, and 'IJ measurements have been verified on both 
real and simulated data for the GOES-I and crs missions [Tandon, et a/., 1976). 

4. Geometry of Individual Biases. The procedure described in the preceding 
paragraphs is only applicable to type II biases. The general procedure for type III 
biases is to find a region in which the data are very sensitive to the bias in question. 
Particularly good regions to test in this regard are those where the effect of the bias 
on the data changes sign or reaches an extremum or where the measurement 
density is low. 

As an illustration of sensitive regions for particular biases, consider the case of 
a negative bias on the angular radius of the Earth, as illustrated in Fig. 14-4. The 
solid line is the nominal Earth disk and the dotted line is the sensed or biased Earth 
disk. If there is a bias, then as the sensor scan moves downward across the disk of 
the Earth, a measured Earth width corresponding to a scan at A will imply that the 
scan was crossing at A' where the Earth width for a nonrinal Earth disk would be 
the same size as for the biased disk at A. Thus, the computed nadir angle would be 
significantly larger than the real nadir angle. Similarly, a real scan at B will imply' 
that the scan crossed the nominal Earth at B' and the computed nadir angle will be 
significan tly smaller than the real nadir angle. Thus, as the sensor scans across the 
diameter of the ~ going from A to B, there will be a large discontinuity in the 
computed nadir angles if there is an unresolved bias on' the angular radius of the 
Earth. Making the computed attitudes agree {even if the value of the attitude is not 
particularly well knownl as a horizon sensor sweeps across the diameter of the 
Earth provides a very sensitive measure of the bias on the angular radius of the 
Earth. This procedure was used on the crs mission to determine the Earth radius 
bias to about 0.02 deg on a very short span of data taken as the horizon sensor scan 
'crossed the diameter of the Earth. 

NOMINAL EA~TH DISK 
BIAS ON EARTH RADIUS 

................. ~ .. 
• - r e. o •• 

•• -, SENSED EARTH DISK •••• .. - -.. . . 
A, •••• -•• 

'......... : ..... ,-.... . 
.... /....... .... .... _-------------

'. B • ' ..... 
'...... : ... _--

6' 
' ..... : --

"' , .... ~""''''''''-
-:.-. ----
~ ..... -. '-..... --.. .. .. .. 

SENSOR 

SCANS 

Fig. 14-4. Sensitivity to Bias on the Angular Radius of the Earth. Earth width is the same on the 
nominal Earth disk at A' and B' as it is on the sensed Earth disk at A and B. 
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Although an analysis of this type is necessary for type III biases, such as a bias 
on the angular radius of the Earth or an orbital in-track error, it may be used for 
other biases as well. For example, a bias in the mounting angle of an Earth horizon 
sensor causes a shift in opposite directions on opposite sides of the orbit. Thus, two 
data passes on opposite sides of the orbit with the spacecraft at a constant attitude 
were used to successfully determine the sensor mounting angle bias for sensors on 
the ers and GOES-I spacecraft (Tandon and Smith, 1976]. A similar procedure 
was used for the Panoramic Attitude Scanner on RAE-2 (Werking, et al., 1974] and 
magnetometer data on the SAS-I mission (Meyers, et al., 1971]. 
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CHAYfERIS 

INTRODUcnON TO ATTITUDE DYNAMICS AND CONTROL 

15.1 Torque-Free Motion 
15.2 Response to Torques 
15.3 Introduction to Attitude Control 

Dynamics is the study of the relationship between motion and the forces 
affecting motion. The study of the dynamics of objects in interplanetary or 
interstellar space is called astrodynamics and has two major divisions: celestial 
mechanics and attitude dynamics. Celestial mechanics or orbit dynamiCS, discussed 
briefly in Chapter 3, is concerned with the motion of the center of mass of objects 
in space, whereas attitude dynamics is concerned with the motion about the center 
of mass. In Part IV, we deal exclusively with this latter category. 

Thus far, we have been concerned primarily with determining the orientation 
of a spacecraft without consideration of its dynamics, or, at least, with an implicit 
assumption of a specific and accurate dynamic model. However, knowledge of 
attitude dynamics is necessary for attitude prediction, interpolation, stabilization, 
and control. In this chapter, which is less quantitative than the remainder of Part 
IV, we attempt to provide a physical "feel" for attitude motion and environmental 
torques affecting the attitude. Chapter 16 then develops the more formal 
mathematical tools used in the study of attitude dynamics and briefly discusses the 
effect of nonrigidity in spacecraft structure. Free-body (i.e .. satellite) motion differs in 
several important respects from the motion of rigid objects, such as a spinning top, 
supported in a gravitational field. Thus, the reader should be careful to avoid relying on 
either intuition or previous analytic experience with common rotating objects supported 
in some way near the surface of the Earth. 

15.1 Torque-Free Motion 

James R. Wertz 

We consider first the simplest case of the attitude motion of a completely rigid, 
rotating object in space free of all external forces or torques. In describing this 
motion, four fundamental axes or sets of axes are important. Geometrical axes are 
arbitrarily defined relative to the structure of, the spacecraft itself. Thus, the 
geometrical z axis may be defined by some mark on the spacecraft or by an 
engineering drawing giving its position relative to the structure. This is the 
reference system which defines the orientation of attitude determination and 
control hardware and experiments. 

The three remaining axis systems are defined by the physics of satellite 
motion. The angular momentum axis is the axis through the center of mass parallel 
to the angular momentum vector. The instantaneous rotation axis is the axis about 
which the spacecraft is rotating at any instant; Euler's Theorem (Section 12.1) 
establishes the exiStence of this axis. The angular momentum axis and the instan
taneous rotation axis are not necessarily the same. For example, consider the 
rotation of a symmetric. dumbbell, as shown in Fig. 15-1. In elementary mechanics, 
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we define the angular momentum, L, of a point mass, m, at position r relative to 
some arbitrary origin as 

L=rXp=rXmv (IS-I) 

where p is the momentum and v is the velocity of the particle in question. For a 
collection of II points, 

" " L= ~ L;= ~ riXPI (15-2) 
;-1 i-I 

Assume that the dumbbell is rotating with angular velocity Co) about an axis through 
the center of mass and perpendicular to the rod joining the masses (Fig. IS-I(a». 
Then, L is parallel to Co) and the motion is particularly simple because L and Co) 

remain parallel as the dumbbell rotates. 
However, if the dumbbell is initially rotating about an axis through the center 

of mass but inclined to the normal to the central rod (Fig. IS-I(b», L is in the 
plane defined by Co) and the two end masses, but L is clearly 1101 parallel to Co). (Use 
Eq. (15-2) to calculate the angular momentum about the center of mass.) Now the 
free-space motion is more complex. Because the -conservation of angular momen
tum requires that L remain fixed in inertial space if there are no external torques, 
the instantaneous axis of rotation, Co), must rotate as the dumbbell rotates. Con
versely, if Co) is fixed in space by some extemal supports or axes, a torque must be 
supplied via the supports to change L as the object rotates. (This may ,»e 
conveniently demonstrated by constructing models of the two dumbbells in Fig. 
IS-lout of Tinkertoys.) 

_Oearly, the motion about the axis in Fig. IS-I(a) is simpler than that in Fig. 
15-1(b). Thus, the motion of the dumbbell leads us to define as the third physical 
axis system, preferred axes about 1"hich the motion is particularly simple. Specifi
cally, a pri'!.Cipal axis is any axis, P, such that ~e resulting angular momentum is 
parallel to P when the spacecraft rotates about P. Therefore, for rotation about a 
principal axis, L is parallel to Co), or 

L=l Co) = I Co)p p p (15-3) 

ROTATION AXIS~ w 
• ANGULAR MOIII£NTUM VECTOR. L 

I. 

&aJ ROTATlOJr ABOUT A PRINCIPAL AXIS (b) ROTATION ABOUT A NONPRINCIPAL AXIS 

Fig. IS-I. Rotation of a Symmetric Dumbbell. See text for discussion. 
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where I, is a constant of proportionality called the principal moment of inertia. 
Because the magnitude of the angular velocity is defined by Co.) = v / r, where r is the 
rotation radius, Eqs. (15-1) through (15-3) imply that for a principal axis and a 
collection of point masses, 

" 
1,= ~m/: 

i-I 
(15-4} 

where r; is the perpendicular distance of m; from the principal axis. For rotation 
about non principal axes the motion is more complex, and Eq. (15-3) does not hold. 

The form of Eq. (15-2) shows that whenever the mass of an object is 
symmetrically distributed about an axis (i.e., if the mass distribution remains 
identical after rotating the object 360/ N deg about the specified axis, where N is 
any integer greater that 1*), the angular momentum generated by rotation about 
the symmetry axis will be parallel to that axis. Thus, any axis of symmetry is a 
principal axis. In addition, we will show in Chapter 16 that any object, no matter 
how asymmetric, has three mutually perpendicular principal axes defined by Eq. 
(15-3). 

The sets of axes above may be used to define three types of attitude motion 
called pure rotation, coning, and nutation. Pure rotation is the limiting case in 
which the rotation axis, a principal axis, and a geometrical axis are all parallel or 
antiparaIlel, as shown in Fig. I5-2(a). Clearly, the angular momentum vector will lie 
along this sar •• c axif. These four axes will remain parallel as the object rotates. 

Coning is rotation for which a geometrical axis is not parallel to a principal 
axis. If the principal and rotation axes are still parallel, the physical motion of the 
object is precisely the same as pure rotation. However, the "misalignment" of the 
geometrical axis (which may be intentional) causes this axis to rotate in inertial 
space about the angular momentum vector, as shown in Fig. I5-2(b). Coning is 

-
I.} PURE ROTATION 

L.w,P 

Z ,~- ==~ 

, 

, , 

-, .. -----
" x 

--
Ib) CONING Ie' NUTATI0~ 

Fig. 15-2. Types of Rotational Motion. L=angular momentum vector; P ... principal axis; 101= 
instantaneous rotation axis; i =- geometric:al zaxis. 

• In this case, the mass distn'bution consists of N symmetrieaDy distn'buted groups of mass points. If L 
does not lie on the axis of symmetry, then for N >2 it must lie closer to, or farther away from, one 
group; however, this is impos81'ble because all of the mass points contJjbute equally to L For N=2, the 
mass distribution has the form m(x,y,z)'" m( - x, - y,z), where z is the symmetry axis. Therefore, any x 
or y components of L cancel when summed and L must lie along the z axis. 
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associated with a coordinate system misalignment rather than a physical misa
lignment and can be eliminated by a coordinate transformation if the orientation 
of the principal axes in the body of the spacecraft is known precisely. 

Finally, nutation· is rotational motion for which the instantaneous rotation 
axis is not aligned with a principal axis, as illustrated in Fig. 15-2(c). In this case, 
the angular momentum vector, which remains fixed in space, will not be aligned 
with either of the other physical axes. Both P and", rotate about L. P is fixed in the 
spacecraft because it is defined by the spacecraft mass distribution irrespective of 
the object's overall orientation. Neither L nor", is fixed in the spacecraft. '" rotates 
both in the spacecraft and in inertial space, while L rotates in the spacecraft but is 
fixed in inertial space. The angle between P and L is a measure of the magnitude of 
the nutation, called the nutation angle, 9. Nutation and coning can occur together, 
in which case none of the four axis systems is parallel or antiparallel. 

We now describe the simple case in which two of the three principal moments 
of inertia are equal; that is, we assume II = I2:F 13 , Although this is an idealization 
for any real spacecraft, it is a good approximation for many spacecraft which 
possess some degree of cylindrical symmetry. In this case, the angular momentum 
vector, L, the instantaneous rotation axis, "', and the P 3 principal axis are coplanar 
and the latter two axes rotate uniformly about L. The body rotates at a constant 
velocity about the principal ~xis, P3, as P3 rotates about L and the nutation angle 
remains constant. (Because P3 is a spacecraft-fixed axis and is moving in inertial 
space, it cannot be the instantaneous rotation axis.) 

As shown in Chapter 16, the spacecraft inertial spin rate, "', about "the 
instan~eous !otation axis (when 11= Iz) can be written in terms of components 
al'?Jlg P 3 and Las: 

'" = "'p + "'I = "'pP 3 + "'/L (IS-S) 

Because P 3 and L are not orthogonal, the amplitude of '" is given by 

",2=W2+W2+~ W cosO pip / (IS-6) 

where the nutation angle, 0, is the angle between P and L; the inertial nutation rate, 
"'/' is the rotation of P3 about L relative to an inertial frame of reference; and the 
body nutation rate, "'p' is .the rotation rate of any point, R, fixed in the body (e.g., a 
geometrical axis) abOut P3 relative to the orientation ofL. Figure IS-3 shows a view 
looking "down" on the motion of the axes when 9 is small. Here "'/ and", are the 
rotation rates of lines LP3 and P3R, respectively, relative to inertial space, and 5 is 
the rotation rate of P3R relative to P3L. The component angular velocities in .t::qs. 
(IS-S) and (IS-6) are related by'<Eq.I6-68»: 

(IS-7) 

By resolving'" in Eq. (IS-S) into components along P3 and orthogonal to P3 and 
then using Eq. (IS-1), we may obtain an expression for the angle,!" between P3 and 

-This dermition of nutation is in keeping with common spacecraft usage and differs from that used in 
cIassic:aI mechanics for describing, say, the motion of a spinning top. In the latter case, nutation refers to 
the vertical wobble of the spin axis as it moves slowly around the gravitational field vector. 

: f 
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Fig. 15·3. Position of Principal· Axis, ;;3 and Arbitrary Spacecraft Reference Axis R, at Times'l and'2 
for a Nutating Spacetraft With Small Values of 9 and r. ~/=/2-/1. 

Col. as follows: 
"'/sinfJ 13 

tan!= = -tanfJ (15~~) 
"'p + "'/cosfJ II 

To obtain a physical feel for the . motion described by Eqs. (15-5) through 
(15-8), we note that in inertial space, 6) rotates about L on a cone of half-cone angle 
(9- n called the space cone, as illustrated in Fig. 15-4 for II> 13, Similarly, 6) 

maintains a fixed angle, r, with p) and, therefore, rotates about P3 on a cone called 
the body cone. Because 6) is the instantaneous rotation axis, the body is instan
taneously at rest along the 6) axis as 6) moves about L. Therefore, we may visualize 
the motion of the spacecraft as the body cone rolling without slipping on the space 
cone. The space cone is fixed in space and the body cone is fixed in the spacecraft. 

Figure 15-4 is correct only for objects, such as a tall cylinder, for which II is 
greater than 13, In this case, Eq. (15-1) implies that 6)p and "'I have the same sign.· 
If 13 is greater than II' as is the case for a thin disk, "'p and w/ have opposite signs 
and the space cone lies inside the body cone, as shown in Fig. 15-5. The sign of w,
is difficult to visualize, since "'p is measured relative to the line joining the axes of 
the two cones. (Refer to Fig. 15-3.) If we look down on the cones from above, in 
both Figs. 15-4 and 15-5, P3 is moving counterclockwise about L. In Fig. 15-4, the 
dot on the edge of the body cone is moving toward 6) and, therefore, is also 
rotating counterclockwise. In Fig. 15-5, the dot on the edge of the body cone is 
moving counterclockwise in inertial space, but the 6) axis is moving counterclock
wise more quickly. Therefore, relative to the P3 -L-6) plane, the dot is moving 
clockwise and "'p has the opposi te sign of "'. If It = 12 = 13, the space cone reduces 
to a line, "'p = 0, and the spacecraft rotates uniformly about L. In this case, any axis 
is a principal axis. 

Figure 15-6 illustrates the motion in inertial space of an arbitrary point, R 

*The terms pro/ale and obhne are commonly used for I. > 13 and 13> II' respectively; these terms refer 
to the shape of the energy ellipsoid, which is introduced in Section IS~ 
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BODY CONE 

Fig. 15-4. Motion of a Nu~ting Spacecraft The 
body cone roDs on the space cone for 
1.=/2 >/,. 

R 

6 

PATH 
OFR 

2 

Fig. IS-S. Motion of a Nutating Spacecraft 
The body cone roDs on the space 
cone for 1,>/.=/2, 

4 

9 10 11 12 

Fig. 15-6. Motion in IneJ1ial Space of a Point, R. Fixed on a Nutating Spacecraft With I. = 12 > 13, 

. 0rigin=L, o=P,. X=""e=R (arbitrary pOint fIXed on the spacecraft); .=arbitrary point 
fIXed in inertial space. 
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(such as the geometrical z axis), fixed in the body of the nutating spacecraft The 
coordinate axes in Fig. 15~6 are fixed in inertial space with the angular lIlomentum 
vector at the origin. The symbols X, Q, and. mark the directions of Col, p], and R, 
respectively, on the plane normal to L. Thus, the dashed line is the line connecting 
the centers of the body cone and the space cone and the X along the dashed line is 
the point at which the two cones touch. The heavy solid line is>a line fIXed in the 
spacecraft joining the principal axis to the arbitrary point, R. The light solid line 
traces the motion of R in inertial space as the spacecraft rotates and nutates. The 
nutation angle, fJ, is assumed small. For the case shown, I. =3.5/

3
, Therefore, 

"', = 2.5w1 and the inertial spin rate, w = 3.5"". That is, in one revolution of the 
dashed line, the heavy solid line rotates 3.5 times in inertial space and 2.5 times 
relative to the dashed line. In a single frame, the dashed line rotates 36 deg and the 
heavy solid line rotates 90 deg relative to the dashed line and 126 deg relative to the 
edge of the page. 

Figure 15-7 is identical with frame 12 of Fig. 15-6, except that the point!n the 
body which is followed is farther from the axes and the positions of R and P3 for 
each of the 12 frames have 1:!een labeled. As seen clearly in this figure, a point in 
the body at an angle l/I from P3 will always be between (l/I- fJ) and (l/I+ fJ) from L. 

If the space corie is inside the body cone, then the motion of a general point is 
as shown in Fig. 15-8. For this example, 13=3.5/ •. Thus, assuming fJ is small, 
w, = - 0.71""', and ",=0.285"". Notice the "backward" rotation of the heavy solid 

Fig. 15-7. Frame 12 of Fig. IS-6 for a Point Farther From the Principal Axis 
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line relative to the dashed line and the very slow rotation of the heavy solid line in 
inertial space. Also notice that the angular momentum vector is now between the 
principal axis and the instantaneous rotation axis. • 

If the values of the two moments of inertia I, and 12 are close but not equal, 
the motion is physically very similar to that shown in Figs. 15-4 through 15-8, but is 
considerably more involved mathematically. The space cone and body cone have 
approximately elliptically shaped cross sections rather than circular ones. Thus, (0), 

L. and P are no longer coplanar and the nutation angle, 9, is not constant. 
Because attitude measurements are made in the sp4"cecraft frame, it is of 

interest to consider the motion of an object fixed in inertial space as viewed from a 
frame of reference fixed on the nutating spacecraft. The motions in this frame of 
reference are just the reverse of those previously discussed. -Thus, the body cone 
remains fixed and the space cone rolls around it carrying the inertial coordinate 
system. Figure 15-9 illustrates the motion of a point fixed in inertial space as 
viewed from the spacecraft for the nutation shown in Fig. 15-6. In Fig. 15-9, P3 is 
fixed at the origin of the coordinate system in each frame and the geometrical point 
R from Fig. 15-6 is fixed at the position shown by the. e. The open square marks 
the position of L. The solid square marks the position of an arbitrary point, S, fixed 
in inertial space. (S is shown in Fig. 15-6 as the solid square on the upper axis.) 
Frames are at the same time intervals in both figures so that the relative orientation 
of all components is the same for each of the 12 frames in the 2 figures, as is shown 
most clearly in frame I. 

R 

6 

It , , , 

3 

Fig. 15-8. Motion in Inertial Space of a Point,R, Fixed on a Nutating Spacecraft With 13>ia""l". 
Origin=L, o=ii',. X=,.,. .=R. 
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Example of Rtal SateUite Motion. Figure 15-10 shows 12 frames taken at 
equal time intervals (every 1.25 sec) from a motion picture of an actual, small, 
scientific spacecraft in 'orbit.· The spacecraft is the Apollo 15 subsateUite,launched 
into lunar orbit by a spring mechanism from the service module of the Apollo IS 
spacecraft at 21 :01 UT, August 4, 1971, just before it left lunar orbit. for return to 
Earth [Anderson, e. ;;;!., 1912). As the subsateUite moved away from the command 
module, it was photographed by the astronauts using a hand-held camera operated 
at 12 frames per second. 

The approximate structure and dimensions of the satellite are shown in Fig. 
15-11. The satellite was used to measure properties of the magnetic and gravita
tional fields and the solar plasma in the vicinity of the Moon. A magnetometer on 
the end of one of· the three booms and the wire running along the boom can be 
identified in Fig. 15-10, frames 4, 6, and 8. This boom has been marked with a 
white dot. (rip masses were added to the other two booms for balance.) Following 
the motion of the white dot (indicated by the solid line and arrow in frame 1) 
reveals the counterclockwise rotation of the satellite. The frames have been chosen 

l 

~\ 

2 3 

Fig. 15-9. Motion of Point, .. Fixed in !nertial Space Viewed From a Nutating Spacecralt for 
Conditions of Fig. 15-6. Origin=P3. X="" e=R, D=L The relative positions of aD points 
are the same as in Fig. 15-6, as seen most easily in frame 1. 

• Such photographs may become commonplace with shuttle-launched spacec:rafL Closeup photographs 
of orbiting satellites prior to that time are rare. Figure 15-10 is taken from the only existing footage at 
the time of this writing. 
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Fig. 15-10. Motion of ApoUo IS Sub~teUite (courtesy NASA) 

so that the satellite rotates about 360 deg in 4 frames (90 degjframe), as can be 
seen by comparing frames I, 5, and 9, or frames 4,8, and 12. 

By the symmetry of the satellite, we may assume that a principal axis lies 
along the long axis of the body. Thus, the satellite is nutating, because the principal 
axis (the body axis) is not fixed in space but is rotating c9unterclockwise in a small 
cone whose axis is inclined slightly to the left of center in each frame, as shown by 
the dashed line in frame 1. 
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The satellite's inertial spin rate, "', and inertial nutation rate, "'" can be 
estimated from the figure. From frame I to frame 9, the satellite completes slightly 
less than two rotation periods, but slightly more than two nutation periods. By 
measuring the change in orientation of both the booms and the principal axis 
between frames 1 and 9, 'we estimate 

",~11.8 rpm 

",,~12.4rpm 

Neglecting the fact that P and L are not quite collinear, we obtain immediately 
from Eq. (15-5) 

"'p~11.8-12.4= -0.6 rpm 

and from Eq. (15-7) 

I) "'p 
-~1+-=0.95 
13 "" 

Thus, 13> I) and the motion of the various axes is as illustrated in Fig. 15-5 and 
15-'8. We shall see in Section 15.2 that this condition determines that the satellite 
motion is stable, i.e., that the nutation will not increase and will eventually damp 
out if there are sufficient dissipative forces. Thus, by examining the photographs we 
see that the three booms are long enough and heavy enough to provide the satellite 
with stable, rather than unstable, rotation. Although our quantitative estimates may 
be in error, our qualitative results depend only on the inequality "', > "', which is 
clear from Fig. 15-10. 

PRINCIPAL 
AXIS 

\\\\\\\\\\\\\\\'\~ 
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Fig. IS-II. Approximate Size and Shape of Apono IS Subsatellite 
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15.2 Response to Torques 

F. L. Markley' 

We now turn to a qualitative discussion of the effect of an applied force on the 
motion of a spacecraft about its center of mass. The basic equation of attitude 
dynamics is obtained from Eq. (15-2), which expresses the angular momentum of 
the spacecraft as a sum over the masses, mi' located at positions, r;, and moving 
with velocities, v;, that make up the spacecraft. Differentiation with respect to time 
gives 

n n 

= L (v; X m;v;+r;x m;8 j ) = L r;XFj 
lei i=1 

-'~ 

( 15-9) 

where aj and F; are the acceleration of mj and the force applied to it, respectively. 
The torques, Ni' on the individual points in a rigid body are due to both forces 

between the points and externally applied forces. Under the very general condi
tions discussed in Section 16.1, the internal torques sum to zero and the resultant 
torque, N, is simply the torque due to external forces. The external torques are of 
two kinds: (I) disturbance torques (described in Section 17.2) caused by environ
mental effects such, as aerodynamic drag and solar' radiation pressure, and (2) 
deliberately applied control torques from devices such as' gas jets or magnetic coils. 
(Control torques due to reaction wheels do not change the total angular momen
tum of the spacecraft because they are not external torques. A spacecraft with 
reaction wheels is not a rigid body; the control torques in this case cause a 
redistribution of the angular momentum between the wheels and the spacecraft 
body.) Control torques will be discussed in more detail in Section 15.3. 

If a spacecraft is initially spinning about a principal axis, a torque applied 
parallel or antiparallel to the angular momentum vector, L, will cause an increase 
or a decrease in the magnitude of L without affecting its direction. A torque 
component perpendicular to L, will cause the direction of L to change without 
altering its magnitude. The change in direction of the angular momentum vector 
due to an applied torque is called precession.· The special case of slow precession 
due to a small applied torque (such that the magnitude of the integral of the torque 
over a spin period is much less than ILl) is known as drift. Environmental torques 
are a common source of attitude drift. 

Although internal torques do not change the value of the angular momentum 
in, inertial space, they can affect the behavior of L in spacecraft-fixed coordinates. 
Additionally, if the internal forces between the components of a spacecraft lead to 
energy dissipation (through solid or viscous friction or magnetic eddy currents, for 

-Note that this definition of precession, which has been adopted in spacecraft dynamics, is somewhat 
different from the meaning usually assumed in physics. 

, " 
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example) the rotational kinetic energy of the spacecraft' will decrease. These effects 
can be qualitatively understood with the aid of two concepts-the angular momen
tum sphere and the energy ellipsoid. Consider first the situation in which there is no 
energy dissipation. In Section 16.1, it is shown that the rotational kinetic energy of 
a rigid spacecraft is equal to . 

E,,= f(I.Co)~+/2"'i+ 13",n= 4(LU 1.+ LJ/ 12+ ~/ 13) (IS-IO) 

where II' 12, and 13 are the spacecraft principal moments of inertia; "'., "'2> and "'3 

are the angular velocity components about the bo<,Iy-fixed principal axes; and L., 
~, and ~ are the components of the spacecraft angular momentum vector along 
the principal axes. The equivalence of the two forms of Eq. (15-10) follows from 
Eq. (15-3). Now consider a representation of the spacecraft angular momentum as 
a point in a three-dimensional coordinate system. the displacement of the point 
along the three coordinate axes being proportional to L •• ~, ~ respectively. The 
locus of points in this angular momentum space consistent with a fixed rotational 
kinetic energy is the set of points satisfying Eq. (15-10). Rewriting this equation as 

L~ LJ ~ --+--+--=1 
2/.Ek 2/2E" 2/3E" 

(IS-II) 

shows that these points lie on an ellipsoid with semiaxislengths VU.E" , V2/2E" , 
and y2I3Ek • This is the energy ellipsoid corresponding to rotational kinetic energy 
E". 

The components of L in inertial space are constant in the absence of torques. 
but the components of L in spacecraft-fixed coordinates are time dependent. The 
magnitude, L= ILl, of the angular momentum is constant, however. The locus of 
points in angular momentum space corresponding to a fixed magnitude, L, is just a 
sphere of radius L, the angular momentum sphere. The locus of possible values of L 
in the spacecraft frame is the intersection of the angular momentum sphere and the 
energy ellipsoid. Figure 1S-12 shows this intersection for the case I. = 12 < 13, and 
Fig. 15-13 shows it for 1.=/2>/3, In both ca&es of axial symmetry, the locus of 
possible values of the angular momentum consists of two circles about the 
symmetry axis. The angular momentum vector in the spacecraft frame moves at a 
constant rate along one of the circles. This motion is nutation. as described in 
Section 15.1, Fig. 15-12 Corresponds to Fig. 15-5 with P3 held fixed, and Fig. is-13 
corresponds to Fig. 15-4. 

This pictorial representation of nutation can be used to analyze the effects of 
energy dissipation. In the presence of dissipative forces, the energy ellipsoid shrinks 
in size while maintaining its shape, and the angular momentum sphere is un
changed. The angular inomentum vector continues to rotate along the intersection 
of the shrinking energy ellipsoid and the angular momentum sphere. This path has 
an approximately spiral shape. The shrinking of the energy ellipsoid continues until it 
lies wholly within, or is tangent to, the angular momentum sphere. For I. = 12 < 13 
(Fig. 15-12), this results in L ~ing aligned along the positive or negative 
3-axis. For 1.=/2>/3 (Fig. 15-13), the limit occurs when L lies on the circle 
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L2 

Fig. 15-12. Energy Ellipsoid and Angular Momentum Sphere for I. = 12 < 13. L •• L2• and L3 are the 
angular momentum components in body principal coordinates . 

.,L1 

~ 
Fig. 15-13. Energy Ellipsoid and Angular Momentum Sphere for 1.=12>/,. L •• L,.. and L3 are the 

angular momentum components in body principal coordinates. 

L~ + LI = L 2, ~ = O. It will be shown in Chapter 16 that L remains fixed at a point 
on this circle. Thus, in both examples nutation ceases, and the motion of the body 
is simple ro~tion about a fixed axis. Clearly, energy dissipation must also cease 
(see Section 18.4). . 

If there is no axis of symmetry, the intersections of the energy ellipsoid and the 
angular momentum sphere are not circles. A family of intersections for different " 
values of E" with 1,>12 >13 is shown in Fig. 15-14. When energy dissipation 
ceases, the angular momentum vector becomes aligned with the major principal 
axis; i.e .. the axis corresponding to the largest principal moment of inertia. It is 
clear from Eq. (15-10) that when' L is constant, the rotational kinetic energy is 
minimized when rotation is about the major principal axis. If the nominal 
spacecraft spin axis is the major principal axis, nutation represents excess kinetic 
energy above that required by the magnitude of the angular momentum. The 
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Fig. 15-14. Family of Intersec:tioDS of Energy Ellipsoid and Angular Momentum Sphere for Vari9us 
Energi~ With II :12:13 in the ~tic? 25:5: 1. ~ch curve. is 1a~I~ wi~ its value of 
212E/ L • PI' Pz and P3 are the pnnClpal axes; PI IS the major pnnClpal axJS. 

reduction of this excess kinetic energy and the corresponding alignment of the 
rotation axis with the principal axis of largest moment of inertia is known as 
nutation damping. Several mechanisms for nutation damping are discussed in more 
detail in Section 18.4. 

If the nominal spacecraft spin axis is a principal axis other than the major 
principal axis, energy dissipation will result in an increase in nutation. The motion· 
when energy dissipation ceases is pure rotation about an axis perpendicular to the 
nominal spin axis, a condition known as flat spin. A well-known example of this is 
Explorer I (Fig. 15-15), the first U.S. satellite, which was launched on February I, 
1958. It was designed to spin about its longitudinal symmetry axis, which was an 

Fig. 15-15. Explorer I. P" the nominal spin axis, is the principal axis with minimum moment of 
inertia. 
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axis of minimum moment of inertia, but the motion rapidly changed into a flat spin 
mode. Bracewell and Garriott (1958) explained this as a result of energy dissipation 
due to vibrational motions of the antennas. This is an example of the case 
illustrated in Fig. 15-13. In this case, energy dissipation mechanisms will not reduce 
nutation, and active nutation damping by means of external control torques must 
be resorted to. 

15.3 Introduction to Attitude Control 

Vincent H. Tate 

Attitude control is the process of achieving and maintaiIling an orientation in 
space. An altitude maneuver is the process of reorienting the spacecraft from one 
attitude to another. An attitude maneuver in which the initial attitude is unknown 
when maneuver planning is being undertaken is known as altitude acquisition. 
Altitude stabilization is the process of maintaining an existing attitude relative to 
some external reference frame. This reference frame may be either inertially fixed 
or slowly rotating, as in the case of Earth-oriented satellites. 

Control System Overview. Control torques, such as those produced by gas 
jets, are generated intentionally to control the attitude. Disturbance torques are 
environmental torques (e.g., aerodynamic drag) or unintended internal torques 
(e.g., crew motion). Because these can never be totally eliminated, some form of 
attitude control system is required. An altitude control system is both the process 
and the hardware by which the attitude is controlled. In general, an attitUde control 
system consists of three components: attitude sensors, the control process, and 
control hardware. An attitude sensor locates known reference targets such as the 
Sun or the Earth to determine the attitude. The control process or control law 
determines when control is required, what torques are needed, and how to generate 
them. The control hardware or actuato~ is the mechanism that supplies the control 
torque. 

Control systems can be classified as either open-loop or closed-loop. An 
open-loop system is one in which the control process includes human interaction. 
For example, attitude data from the attitude sensors is analyzed, and a control 
analyst occasionally sends commands to the spacecraft to activate the control 
hardware (e.g .. fire thejets). A closed-loop, or feedback, system is one in which the 
control process is entirely electrical or computer controlled. For example, attitude 
sensors send attitude data to an onboard computer which determines the attitude 
and then activates the control hardware (e.g., fires the jets). Normally, closed-loop 
systems are more sophisticated and complex but can maintain a much smaller 
tolerance on the deviation from the desired attitude. Frequently, in a closed-loop 
system, the attitude sensors are such that the attitude measurement is directly 
related to the desired orientation. For example, a wheel-mounted horizon sensor 
with a magnetic index mark on the body is placed so that the mark should be 
pointed toward the center of the Earth in azimuth. The difference between the time 
the index is sensed by the wheel and the time of the midscan between the two 
Earth horizon crossings is a direct measurement of the difference between the real 
and the desired attitude. This type of attitude measurement is called an error Signal. 
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The function of the control system is to maintain the error signal within specified 
limits. 

The example just described is an active attitude control system in which 
continuous decisionmaking and hardware operation is required. The most common 
sources of torque for active control systems are gas jets, eleciromagnets, and 
reaction wheels. In contrast, passive attitude control makes use of environmental 
torques to maintain the spacecraft orientation. Gravity-gradient and solar sails are 

. common passive attitude control methods. 
Attitude control systems are highly mission dependent. The decision to use a 

passive or an active control system or a combination of the two depends on mission 
pointing and stability requirements, interaction of the control system with onboard 
experiments or equipment, power requirements, weight restrictions, mission orbital 
characteristics, and the control system's stability and response time. For example, a 
near-Earth, spin-stabilized spacecraft could use magnetic coils for attitude maneu
vers and for periodic adjustment of the spin rate and attitude. Above synchronous 
altitudes, gas jets would be required for. these functions because the Earth's 
magnetic field is generally too weak at this altitude for effective magnetic maneu
vers. Table 15-1 compares the various types of commonly used control methods. 

Table IS-I. Comparison of Attitude Control Methods 

CONTROL 
METHOD 

GAS 
THRUSTERS 

MA(;NETIC 
COilS 

GRAV_TV 
GRADIENT 

MOMENTUM 
WHEELS 

REGIONS Of' SPACE 
WKfR! APPUCABLIE 

UNLlMITfD 

BELOW SYNCHRONOUS ORBIT 
1<35.000 I(M) 

NeAR MASSIVE CENTRAL BODY 
IEARTH. MOON. ETC.I 

UNLIMITED 

RIEPAtSfNTATfYl 
TORQuE 

fOR A THRUSTER FORCI OF 03 NAND 
MOMENT ARM OJ':Z III; TORQut. 06 I\J.M 

FOR A .co.ClOOPOLI!-QlILECTROMAGN£T 
AT AN ALT'JUDI Of 5!OKM. TOROlJt:: 
0001 N·M 

FOR AN 8CJO.KM CIRCULAR ORBIT AND AN 
ELO~ TED SA TELUTE WITH A TRANSVERSE 
MOMEIYT OF INERTIA OF 1000 KGoY'. TORQUIi 
.. 5 X 10'!t ItI-MJD(G OF OJ'Sl' JROM NULl 
ATTITUD! 

TYPICAL ANGULAR IIOM8NTUM • 10 KG·u2/S. 
TYPICAL TOROUE ABOUT TNI WMUl AXIS _01""" 

·E" ENVIRONMENT MODel; H. HARDWARE. S. STABILlZ"A TION .... MAIIiIEUVIRS. 

ISfE.OSO.ATS. 68 '''' .. J.IOCM) en 183 lSI; 18.3 (lit) 

AERa5. OSO. 5 t IE I; 6.JI (MI; 
5AS-3. At: 183 IS). 19.1 (M); 

19 21M •• AP H II) 

GEOS. RAE 5 'lIEJ.1JI.2IEI; 
'8.3 IS) 

A TS-6. SAS-l. 66 IHI; '.9 1M.; 
AE. OAO. GEOS 18.2 IS), 19.4 hIJ; 

18.3 !SI 

Passive Attitude ControL The most common passive control techniques are 
spin stabilization, in which the entire spacecraft is rotated so that its angular 
momentum vector remains approximately fixed in inertial space; duol-spin stabiliza
tion, in which the spacecraft has a rotating wheel or consists of two rotating 
components; and graVity-gradient stabilization, in which the differential gravita
tional forces acting on an asymmetric spacecraft force the minor axis (minimum 
moment of inertia axis) to be perpendicular to the gravitational equipotential. With 
the exception of gravity-gradient stabilization. passive control normally requires the 
use of active control systems, such as mass expulsion or magnetic coils. to 
periodically adjust the spacecraft attitude and spin rate to counteract disturbance 
torques. They also require some form of nutation damping to eliminate nutation 
caused by an unbalanced spacecraft or the elasticity of the spacecraft structure. 

A spin-stabilized spacecraft normally spins about the major principal axis for 
stability, as described in Section 15.2. These are sometimes called single-spin 
spacecraft to distinguish them from dual-spin spacecraft disc-.. ssed below. The basic 
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requirement for spin stabilization is 

\fNdt\«ILI (15-12) 

where L is the spacecraft angular momentum, N is the sum of the disturbance 
torques discussed in Section 11.2, Ndt is the angular momentum change due to 
environmental torques over time interval dt, and the integral is carried out over 
whatever length of time passive stability is required. The integral defines the" 
change in both the spacecraft orientation and the spin rate. If the disturbance 
torques are cyclic and the maximum attitude change from the torques is less than 
the mission requirements, no other control technique is required once the mission 
attitude is achieved. If disturbance torques exhibii either cyclic variations or a 
secular trend which exceeds the mission attitude CQDstraints, an active control 
system is required to periodically adjust the attitude and the spin rate. Spin 
stabilization is a simple and effective technique and requires no moving parts; 
however, it is limited to spacecraft for which the spin itself does not inhibit the 
spacecraft function. -

The International Sun-Earth Explorer-I, ISEE-I, shown in Fig. 15-16, is an 
example of a spin-stabilized spacecraft. The spacecraft contains scanning experi
ments for studying the space environment between the Sun and the Earth. Gas 
thrusters are used for reorientation maneuvers and for periodic adjustment of the 
attitude and spin rate to counteract the solar pressure disturbance torque. A passive 
fiuid nutation damper (see Section 18.4) is used to control nutation. A Panoramic 
Attitude Sensor, which senses the Earth and Moon horizons, and a Sun sensor are 
used for attitude determination. 

Fig. 15-16. ISEE-l Spin-Stabilized Spacecraft 

Dual-spin stabilized spacecraft have two components spinning at different 
rates. Normally, one spacecraft section, such as a wheel, is spinning rapidly and the 
other section is despun or spinning very slowly to maintain one axis toward the 
Earth. A dual-spin -system operates on the same principle as a single-spin system 
and usually requires a nutation damper and an active control system as does a .. 
single-spin spacecraft. A dual-spin system provides platforms for both scanning 
and pointing (inertially fixed) instruments. However, with a two-component space
craft, additional complexity arises because of the need for bearings and support 
structures separating the two components. 
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The Orbiting Solar Observatory-8, OSO-8, shown in Fig. 15-17, is an example 
of a dual-spin spacecraft. The sail and pointing instrument assembly are the despun 
components and contain the solar power array and Sun pointing experiments. A 
passive-eddy current nutation damper located in the sail controls the nutation. The 
wheel is the spinning component and contains. scanning instruments. An 
electromagnetic torquer mounted along the wheel spin axis and a pair of gas jets on 
the wheel are used for maneuvering the spacecraft and maintaining the spin rate. A 
wheel-mounted Sun sensor, a magnetometer mounted on one of the ballast arms, 
and a star scanner are used for attitude determination. 

"--..!. ..... / 
Fig. 15-17. OSO-8 Dual-Spin Stabilized Spaeecraft 

A gravity-gradient stabilization system interacts with the gravitational field to 
maintain the spacecraft attitude. Because the gravity-gradient torque decreases as 
the inverse cube of the distance from the gravitational source, gravity-gradient 
systems are usually used for near-Earth or -Moon missions requiring one side of 
the spacecraft to point toward the central body. Due to orbit eccentricity, damper, 
and thermal heating effects, the potential pointing accuracy is typically 1 to 4 deg. 
The basic requirement for gravity-gradient stabilization is that the gravity-gradient 
torque be greater than all other environmental torques. To achieve this, one 
principal moment of inertia must be smaller than the others, causing the minor axis 
to align along the nadir vector. To obtain the differential in moments of inertia, 
booms are often deployed along the minor axis. The gravity-gradient torque causes 
the spacecraft to oscillate or librate about the pitch axis and a passive damper is 
generally used to minimize the amplitude of this oscillation .. Gravity-gradient 
systems require no moving parts other than, in some cases, extendable booms or 
antennas. 

Figure 15-18 shows the Radio Astronomy Explorer-2, RAE-2, gravity-gradient 
stabilized spacecraft placed in orbit about the Moon. During the transfer from the 
Earth to the Moon, the spacecraft was spin stabilized and used gas jets for attitude 
control. After achieving a lunar orbit and final boom deployment, it became a 
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-'. 

Fig. 15-18. RAE·2, Gravity-Gradient Stabilized Spacecraft . 

noilspinning, gravity-gradient stabilized spacecraft. The libration control system 
consisted of a passive hysteresis damper and an extendable and retractable tubular 
. boom. Two Panoramic Attitude Sensors were used to sense the Earth and Moon 
and two single-axis and eight two-axis digital Sun sensors were used for attitude 
determination. 

Active Attltude. ControL The most common active control techniques are :! . 
mass expulsion devices, such as gas jets or ion thrusters; momentum wheels, which 
are used to absorb disturbance torques; and electroIhagnetic coils, which provide a 
torque by interacting with the Earth's magnetic field. 

Mass expulsion control systems used for attitude maneuvering include gas and 
ion thrusters. Gas thruster systems are efficient in the execution of a maneuver, are 
simple to operate, and are not limited to a specific environment; however, they are 
expensive, require Complex hardware and plumbing, and are limited in lifetime by 
the amount of fuel onboard. Gas attitude control systems can also cause orbit 
changes during a reorientation maneuver. Consequently, the thrusters are usually 
fired in pairs to minimize translational motion. Gas thruster systems are commonly 
used with spin-stabilized spacecraft (such as CTS described in Section 1.1) for 
attitude maneuvering and spin rate control. For this type of spacecraft, a minimum 
of two reorientation thrusters and two spin rate control thrusters are required. For 
a three-axis stabilized system, six possible directions (± pitch, ± roll, ± yaw) are 
available for maneuvering the spacecraft and a minimum of six thrusters are' 
required. 
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Momentum wheel control systems can have wheels on I, 2. or 3 axes and 
normally require a secondary active control system, such as gas jets. to maintain 
the wheel and spacecraft momentum in the presence of disturbance torques and 
friction losses. A dual-spin spacecraft is a single-momentum wheel system. A 
two-wheel system for an Earth-oriented spacecraft normally has one wheel along 
the pitch axis for pitch control and another wheel mounted on either the roll or the 
yaw axis for rolJ/yaw control. A three-axis system Uses momentum wheels along all 
three axes and may have six or more wheels along nonorthogonal· axes. Figure 
15-19 illustrates three typeS of momentum wheel systems with mass expulsion and 
magnetic coils to control the wheel spin rate. The operation of the momentum 
wheels is complex and relies on the interaction of mechanical parts~ which limits 
the system lifetime. 

YAW 

DOWN 

Ibl TWO·WHEEL SYSTEM 

ROLLJYAW 
CONTROL THRUSTERS 

lal ONE·WHEEL SYSTEM 

OESATURATION 
THRUSTERS 

lei THREE·WHEEL SYSTEM 

PlTO! 
"OMENTUM 
WHEEL 

.. -- .... 
"' , 

\ 
\ 
\ 
\ 
I 
I ... , --, 

"""""",,,,, 

PITCH CONTROL 
THRUSTEP.S 

Fig. 15-19. Alternative Momentum Wheel Stabilization Systems 

Momentum wheel stabilization systems are used to maintain the attitude by 
momentum exchange between the spacecraft and the wheel. As a torque acts on 
the spacecraft along one axis. the momentum wheel reacts, absorbing the torque 
and maintaining the attitude. As a result, momentum wheels are particularly 
attractive for attitude control in the presence of cyclic torques or random torques. 
such as in manned space stations. The wheel spin rate increases or decreases to 
maintain a constant attitude. Over a full period of a cyclic torque, the wheel speed 
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remains constant. Secular torques acting on the spacecraft cause the momentum 
wheel speed to either increase or decrease monotonically until the wheel speed • 
moves outside operational constraints. A momentum exchange device (i.e., a gas 
jet, magnetic coil, or gravity-gradient torque) must then be used to restore the 
momentum wheel speed to its nominal operating value. The upper operating limit 
of a momentum wheel is called the saturation limit. 

Momentum wheel control systems used for maneuvering operate in the same 
fashion as the str.bilization systems. For example, consider a maneuver for an 
inertiaIly pointed spacecrafL Initially, the spacecraft is motionless and the wheel is 
spinning with angular momentum H. At some time, I, the control system is 
commanded to maneuver the spacecrafL At this time, a transfer of momentum, 
~H, from the wheel to the spacecraft occurs and the spacecraft attitude begins 
changing. The angular momentum of the wheel becomes H - m and the angular 
momentum of the spacecraft becomes m. When the spacecraft reaches its desired 
attitude, the momentum transfer is reversed, the spin rate of the momentUm wheel 
returns to its original value, and the spacecraft body momentum returns to zero. 
The spacecraft is now pointing at its new attitude with zero angular momentum. 
The Applications Technology Spacecraft-6, ATS-6, shown in Fig. 15-20, has a 
three-wheel momentum control system. Momentum wheels are mounted along the 
pitch, yaw, and roll axes and serve as prime torquers for stabilization and 
maneuvering. 

II) ATS-8SPACICRAFT (tt) COIIPONENT YlEWO, THE AnlTUDE CONTROLIYSTDI LOCATED AT THI 
BOT1OIIIOf THa _CRAfT AS IIElI LOOIIING'- TIll! EARTH 

Fig. 15-20. The Three-Axis Momentum Wheel Stabilized ATS-6 Spacecraft 

Magnetic coil control systems can be used for maneuvers for virtually all 
orbits at less than synchronous altitudes (35,000 km). Magnetic control systems are 
relatively lightweight and require no moving parts, complex hardware, or expend
ables. This makes magnetic torquing attractive for space applications; however, it 
requires significant amounts of power, it provides slow maneuvering because of the 
power constraints, and its oPeration depends on the magnetic field configuration. 
Three types !Jf magnetic torquer systems currently being used are permanent 
magnets, "air-"core torquing coils (i.e., electromagnets), and iron-core torquing 
coils. Permanent magnets are the heaviest type and are used for limited stabiliza
tion. "Air-" and iron-core magnets are used for both stabilization and maneuver
ing. For a spin-stabilized spacecraft, magnetic coils may be mounted either around 
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Fig. 15-21. The AE Spacecraft. AE uses a momentum wheel. thrusters, and magnetic coils for altitude 
control. 

or perpendicular to the spin axis. Spin axis coils can be used only for reorientation 
because torque cannot be applied along the spin axis, whereas a coil with its dipole 
in the spin plane can provide both reorientation and spin rate control. 
Electromagnetic control systems vary the control coils' polarity and direction to 
match the Earth's magnetic field to produce a torque to cause the attitude to 
change as desired. The Atmospheric Explorer, AE. spacecraft shown in Fig. 15-21, 
uses magnetic coils both along the spin axis and in the, spin plane for attitude 
stabilization, maneuvering, and momentum wheel control. 
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CHAPTER 16 

ATIITUDE DYNAMICS 

16.1 Equations of Motion 
KinemIItic Equations of Motion; RIlte of Chtmge of Vec
ton in Rouuing Fromes; Angu/Iu Momentum, Kinetic 
Energy, and Moment of lnertio Te1IS()r; Dynamic Equa
';0111 of Motion 

16.2 Motion of a Rigid Spacecraft 
Torque-Free Motion-Dynamic Equatiolll, Torque-Free 
Motion-KinemDlic Equations, Variotion-of-Parometers 
Fonnulation 

16.3 Spacecraft Nutation 
Dynamic M~tion of Q Symmetic Dual-Spin Spacecraft, 
Nutation Monitoring With Digital Sun Sensor 

16.4 Flexible Spacecraft Dynamics 
Flexibility Effects on Spacecraft Atiitude DynamiCS, 
Modified Equatiolll of Motion, CharacteristicS of Various 
Flexible Spacecraft 

This chapter describes the mathematical formulation of attitude dynamics. 
Alternative descriptions are available in many standard references, such asr 
Goldstein [1950]; Kibble [1966]; Synge and Griffith [1959]; MacMillan [1936]; and 
Whittaker [1937]; and in more recent books emphasizing spacecraft applications, 
such as Thomson [1963] and Kaplan [1976]. Section 16.1 is concerned with 
equations of motion of attitude dynamics, using the notation defined in Section 
12.1. Section 162 considers the solutions of these equations for torque-free rigid 
body motion and the use of these solutions in the variation-of-parameters formula-
tion of rigid body dynamics. Section 16.3 discusses dynamics approximations 
appropriate for determining nutation parameters from attitude sensor data. Finally, 
the effects of flexible components on spacecraft dynamics are discussed in Section 
16.4. 

16.1 Equations of Motion; ; 

F. L. Markley 

The equations of motion of attitude dynamics can be divided into two sets: the 
kinematic equatiOns of motion and the dynamiC equatiOns of motion. Kinematics is the 
study of motion irrespective of the forces that bring about that motion. The 
kinematic equations of motion are a set of first-order differential equations specify
ing the time evolution of the attitude parameters introduced in Section 12.1. These 
equations, which contain the instantaneous angular velocity vector Co), are consid
ered in Section 16.1.1. Section 16.1.2 presents the relation between the rate of 
change of a vector in an inertial reference frame and its rate of change in a 
reference frante rotating with angular velocity Co). In Section 16.1.3, the angular 
momentum, kinetic energy, and moment of inertia tensor are precisely defined and 
the relations between them presented. Finally, the dynamic equations of motion, 
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which express the time dependence of 6), are derived in Section 16.1.4. These are 
needed for dynamic simulations and for attitude prediction whenever gyroscopic 
measurements of '" are unavailable. 

16.1.1 Kinematk Equations of Modon 

Several parameterizations for the attitude have been presented in Section 12.1. 
Each parameterization has an associated set of kinematic equations of motion. 
Since the Euler symmetric parameter or quatemion parameterization. has proved 
most useful for spacecraft kinematics analysis, we consider this case first. 

The time dependence of the Euler symmetric parameters can be derived from 
the product relation, Eq. (12-15). Let the quatemion q represent the orientation of 
the rigid body with respect to the reference system at time I, and q" represent the 
orientation with respect to the reference system at time 1+11/. We shall denote 
these by q(t) and q(t+l1t), respectively. Then q' specifies the orientation of the 
U. t, w triad (Fig. 12-1) at time 1+ t..J relative to the position that it occupied at time 
t. Equation (12-11) gives 

ff . 111) 
'II = e"sJDT 

where elf' ev , e", are the components of the rotation axis unit vector along the U. t, W 
triad at time I (because this is the reference system for q') and 111) is the rotation in 
time 11/. Thus, 

(16-1) 

where 1 is the 4x4 identity matrix. Equation (16-1) is particularly useful if the axis 
of rotation does not change over the time interval AI, and is often used in inertial 
navigation. This is discussed more fully in Section 17.1, as are the errors resulting 
from the use of Eq. (16-1)when the axis is not strictly constant. 

For the case of general attitude motion, it is convenient to convert Eq. (16-1) 
to a differential equation. In this case, At is infinitesimal and 11C) = ",At, where", is 
the magnitude of the instantaneous angular velocity of the rigid body. We use the 
small angle approximations 

AI) 
cos-~l 

2 ' 
. AI) 1 A 
SJD-~-w t 

2 2 

j; 

J 
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to obtain 

q(/+Llt)~[ 1 + i0Llt ]q(/) (16-2a) 

where 0 is the skew-symmetric matrix 

0_[ -~ "' .. -"'" ~'l 0 "'II W" (16-2b) 
"'0 -"'II 0 "' ... 

-"'II -"'" -"' ... 0 

and (o)=c.>e'is the angular velocity vector. Then 

dq =: lim 
q( 1 + ~/) - q( i) 

=!Oq (16-3) 
dl 6,.....0 ~I 

If 0 is constant, we can formally integrate Eq. (16-3) to obtain 

q(/)=exp (0//2) q(O) (l6-4a) 

In the weaker case that e is constant but '" varies, the integration can still be 
carried out to yield. 

q(/)=exp(! {O(/') dt') q(O) (16I4b) 

The meaning of exponential functions of matrices and the relation of Eq. (16-4) to 
Eq. (16-1) are discussed in Appendix C. 

The time dependence of the direction cosine matrix, A, can be similarly 
derived. We have 

A(/+~/)=A'A(/) (16-5) 

where A' is given by Eq. (12-7) with rotation angle ~~ and with e., e2' e3 replaced 
by ell' eo' e"" as discussed above. If ~I is infinitesimal, small-angle approximations' 
can be used for cos ~~ and sin~~, yielding 

A'= 1 +0' ~I ( 16-6a) 

where 1 is the 3 X 3 identity matrix and 

(16-6b) 

Thus 

dA· . A(/+~/)-A(/) 
-=: 11m =O'A 
dt 6,.....0 ~I 

(16-7) 

Exponential solutions of this equation similar to Eq. (16-4) can be written, but are 
not used as frequently. 

The kinematic equations of motion Jor the Gibbs vector, g, can be derived 

'r 

';-~ 

.. 

t 
~J.~ 
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from Eq. (12-19). For infinitesimal ~{we have, from Eq. (12-16), 

, - ~~ 1 A g =etanT~2'" u.t 

513 

where g' is the Gibbs vector representing the infinitesimal rotation between times t 
and 1+61, so that 

dg 
- = H ",-",xg+("'·g) g] dt (16-8) 

The kinematic equations of motion for the Euler angles (+,9,t/!) can be derived 
by a different technique. Consider the 3-1-3 sequence of rotations as illustrated in 
Fig. 12-3 as an example. The rotations involved are + about i, 9 about x', and t/! 
about w. If + were the only angle changing, the angular velocity would be ~z. 
Similarly, if only 9 or only t/! were changing, the angular velocity would be ft, or 
~w, respectively. When all three angles are changing, the angular velocity is the 
vector sum of these three contributions: 

"'=~z+ft'+~w 

Taking components of '" along the body axes U, V, w gives 

"'" =~z·o + ft'·o 

",,,=~i·v+ft'·v 

"' .. =~i ·w+ ft, ·w+ ~ 
Comparison with Eqs. (12-2) and (12-20) gives 

i -u=A I3 =sin9sint/! 

i ·v=A2J=sin9cost/! 

i ·W=A33=cos9 

(16-9) 

(16-lOa) 

(16-IOb) 

(16-IOc) 

The inner products of x' with the body axes are elements of the matrix giving the 
orientation of the U, Y, w triad relative to the i', r. i' triad: 

Thus. 

[

cost/! cosOsint/! Sin9Sint/!] 
A'sA3(t/!)A1(9)= -sinJ/i cos9cosJ/I sin 9 cost/! 

o -sin9 cos 9 

x'·o =AI' = cost/! 

x'·v=A2.t;' -sint/! 

i'·w=A3.=0 
Combining these results gives 

"'g = Iicos1fi+~sin9sint/! 

"'" = -lisiri1fi+~sin9cost/! 

", .. =~+~cos9 

(16-lla) 

(16-llb) 

(16-llc) 

I 
I 

i I 
, 

I 
I 
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Equation (16-11) can now be solved for iJ, +, and ~ to yield the kinematic equations 
of motion for the 3-1-3 Euler angle sequence: . 

iJ .. ",u cosl/l-"'" sinl/l 

+ .. ("'. sin l/I + "'"cosl/l)/sin 0 

~ ... "'w -(w.. sinl/l+ "'" cosl/l) cot 0 

(16-12a) 

(16-12b) 

(16-12c) 

The lack of uniqueness in the specification of 4> and l/I when 0 is a multiple of 180 
deg shows up as a singularity in the kinematic equations or motion, Eqs. (l6-12b) 
and (16-12c). when sin9-0. This is a serious disadvantage of Euler angle formula· 
tions for numerical integration of the equations of motion. 

For many applications. it is convenient to have expressions for the com· 
ponents of the angular velocity vector, "', along the reference axes as functions of 
the Euler angle rates. These are given by 

[ ~ j- AJ,,(+",~)[ ~ 1 (16-13) 

where A'JI3(4),O,l/I). the transpose of the matrix of Eq. (12-20), is the matrix that 
transforms vector components from the body frame to the reference frame. The 
result of this matrix multiplication is . 

",,"'" icos++ ~sin9sin4> 

"'l- 9sin+- ~sin9coS4> 

"'3 ... ~cos6++ 
Either Eq. (16-11) or Eq. (16-14) can be used to show that 

",2e:: 92+~2++l+ 2#cos(J 

(16-143) 

(16-14b) 

(16-14c) 

(16-15) 

Similar relations can be derived for other Euler axis sequences and are 
collected in Appendix E. When the third axis is identical with the first, the 
kinematic equations are singular when 9 is' a multiple of 180 deg; when the first 
and third axes are different, the equations ate sinaular when fJ is an odd multiple of 
90 deg, as expected. 

t6.1.l Rate of Change of Vectors in ~otatlng Frames 

We have resolved vectors into components along coordinate axes in several 
coordinate systems. We shall now derive the relationship between the time deriva
tives of an arbitrary vector resolved along the coordinate axes of one system and 
the derivatives of the comPonents in a different system. For definiteness, we 
consider the geomagnetic field vector in the body system and reference system, 
previously introduced. We wish to compare the time derivatives of the field 
measured by magnetometers fixed in' a rotating spacecraft with the derivatives 
measured by a (possibly fictitious) set of magnetometers traveling with the 
spacecraft but with a fixed orientation rel~tive to the reference frame. If we denote 
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the components of the vector in the reference system by a' =(O.,02,O)T and the 
components in the body by a=(au,a",a",)T, then, according to Eq. (12-4), 

a=Aa' (16-16) 

The time variation of the components of a is due to the time variation of both A 
and a'. The former represents the variation due to the change of the relative 
orientation of the two reference systems. The product rule for differentiation gives 

da = dA a'+A da' 
dt dt dt 

The first term on the right can be written, using Eq. (16-7), as 

dA a'=U'Aa'=U'a= -I-'Xa 
dt 

(16-17) 

where the last equality follows from the explicit form of U'. The second term 
consists of the components in the body frame of the vector da' /dt, where the time 
derivatives are evaluated in the reference frame. If we denote this vector by 
{da' /dt)b' we have 

da (da') dt = -I-'Xa+ dt b (16-18) 

If the components of a along the body axes, 0u,o",a"" are constant, then da/dt=O 
and . 

( 
da') - =I-'Xa 
dt b 

(16-19) 

This expression gives the derivatives of a in the reference. coordinate system, but 
with the vector components resolved along the body coordinate axes. Because it is 
a vector equation, a and I-' can be resolved into components along any set of 
coordinate axes, including the reference axes; therefore, the prime and the sub
script b will be omitted in future applications where the distinction is clear from the 
context. An alternative, geometric derivation can be given which derives Eq. 
(16-19) directly in the reference coordinate system. Figure 16-1 shows the vector a 
at times t and t+At. The motion of a is in a cone with I-' as the axis, with fIXed 
cone angle 7J. In the time between t and t+At,the rotation angle is wAt, and the 
magnitude of As, the change in a, is 

Aa "'2(asin7J)sin!I-'At 

where 1J is the angle between a and 1-'. Then 

da I' Aa . I I -d - 1m -A ""a wsm.,,- I-'Xa t . 4,-00 t 

In the limit at-..O, the direction of All is tangent to the circle, perpendicular to the 
plane containing a and w. 111u$ 

.tJa "'wxa 
dr 

which is Eq. (1~19) in the reference coordinate system. 
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w 

Fig. 16-1. Rate of Cbange of a Rotating Vector 

16 ... .3 Angular Momentum, Kinetic Energy, and Moment of Inertia Tensor 

The fundamental quantity in rotational mechanics is the angular momentum, 
L, as discussed in Section 15.1. For a collection of n point masses, the angular 
momentum is given by 

n 

L,DIa/= ~ flXmiv i 
;=) 

(16-20) 

where m" fl' and Vi are the mass, position, and velocity, respectively, of the ith 
point mass. Newton's laws of motion, which are valid only in an inertial coordina\e 
system, will be used to derive an equation of motiQn for L, so it is important to 
-assume for the present that fl and Vi are the position and velocity in an inertial 
reference frame. It is convenient to write fi as the sum of two terms 

fi=R+Pi" ( 16-21) 

where R is the position of a fixed reference point, 0', in the rigid body, and Pi is 
the position of the ith mass relative to 0', as shown in Fig. 16-2. Differentiating 
Eq. (16-21) with respect to time gives 

dpi 
vi=V+Tt ( 16-22) 

wbere V is tbe velocity of 0' in the inertial frame. Substituting Eqs. (16-21) and 
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(16-22) into Eq. (16-20) yields 

L/o'al= MRxV+RX :1 [i~1 m;p;] 

(16-23) 

where M =~?_Im; is the total mass of the body. If 0' is taken to be the center of 
mass of the body, 

(16-24) 

by definition, so the second and third terms on the right side of Eq. (16-23) vanish 
identically. We will always choose this reference point for rigid body dynamics, 
giving 

L'Olal=MRXV+L (16-25) 

where the first term on the right side represents the angular momentum of the total 
mass considere~ as a point located at the center of mass, and the second term, 

(16-26) 

is the contribution of the motion of the n mass points relative to the center of mass. 

o 
Fig. 16-2. The position of mass point, i, relative to the origin, 0, of an inertial reference frame is the 

vector sum of its position relative to a reference point, 0', filled in the body and the vector 
R from 0 to 0'. 

A similar separation between center-of-mass motion and motion relative to the 
center of mass occurs for the kinetic energy 

(16-27) 
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The middle term in Eq. (16-27) vanishes identically if 0' is the center of mass of 
the body, so, 

(16-28) 

where 

n (dP,)2 
Ek=i ;~I m; dt (16-29) 

is the kinetic energy of motion relative to the center of mass. 
Spacecraft rigidity has not been assumed to this point. If the body is not rigid, 

a reference point other than the center of mass is often used, in which case all the 
terms in Eqs. (16-23) and (16-27) must be retained. If we now assume that the 
spacecraft is rigid, i.e., that all the vectors p; are constant in a reference frame fixed 
in the spacecraft, then all the vectors may conveniently be resolved into com
ponents along a spacecraft reference system. In this section, the subscripts I, 2, 3 
will be used for components along spacecraft-fixed axes. This should be dis
tinguished from the notation in Section 12.1, where the subscripts I, 2, 3 referred to 
an arbitrary reference system, and u, v, w to the spacecraft reference system. The 
attitude dynamics problem is only concerned with motion relative to the center of 
mass, and thus only with the angular momentum, L, and kinetic energy, Ek , 

defined by Eqs. (16-26) and (16-29), in the rigid body case. 
Although th~ components of p; in the spacecraft frame are constant, the 

components of dpJdt are not zero if the spacecraft is rotating with instantaneous 
angular velocity (.0), because the vector dpJ dt is the rate of change of p; relative to 
inertial coordinates, resolved along spacecraft-fixed axes. All time derivatives must be 
evaluated in an inertial reference frame if Newton's laws of motion are to be 
applied directly. Equation (16-19) with a=p; gives 

(16-30) 

where p; and III are understood to be resolved into components along spacecraft
fixed axes. 

Substituting Eq. (16-30) into Eq. (16-26) yields 
n n 

L= ~ m;p;x(IIlXp;)= ~ m;[pl(.o)-(p;"(.o)p;) 
i-I i-I 

(16-31) 

We define the symmetric 3 X 3 moment of inertia tensor, I, by 
n 

/11= ~ m;(p,~+pM (16-32a) 
;-1 

n 

/22= ~ ml(p,~+pM (16-32b) 
i-I 

n 

133= ~ ml(pA+pM (16-32c) 
I-I 

!~, 
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n 

112 = 121 = - ~ m;pilP,'2 
;=1 

n 

123 = 132= - ~ m;p;2P;3' 
i-I 

n 

131 = 113= - ~ m;p;lPiI 
i=1 

Then. Eq. (16-31) can be written in matrix form as 

L=Ic., 

519 

(16-33a) 

(16-33b) 

(16-33c) 

(16-34) 

Substituting Eq. (16-30) into Eq. (16-29) and using Eq. (16-31) for L yields 
n n 

E,,=! ~ m;(CclXp;)·(CclXp;)=! ~ m,.Ct)·[p;X(CclXp;)] 
; '1::!2 I ;r= I 

(16-35) 

Thus, both the angular momentum and the kinetic energy can be expressed in 
terms of I and Ccl. 

Some authors (e.g., Whittaker (1937D define the negatives of the off-diagonal 
elements 

lJk = - ~" j :I: k 

as products of inertia; but other authors (e.g., Goldstein [I950J and Kibble [1966D 
define the elements ~'" without the minus sign. as the products of inertia. Still other 
authors (e.g .• Thomson [1963J and Kaplan [I976D define the p(oducts of inertia as 
Whittaker does, but denote them by Ij ". so that the off-diagonal elements of the 
moment of inertia tensor are - Ijk" The quantity I is called a tensor because it has 
specific transformation properties under a real orthogonal transformation (see, for 
example, Goldstein [I950J or Synge and Schild [1964J.) ,It is sufficient for our 
purposes to think of the moment of inertia tensor as a real, symmetric 3 x 3 matrix. 
Because the moment of inertia tensor is a real, symmetric matrix, it has three real 
orthogonal eigenvectors and three real eigenvalues (see Appendix q satisfying the 
equation 

i= 1,2,3 (16-36) 

The .scalars ~I' 12, and 13 are the principal moments of inertia, and the unit vectors 
PI' P2• and P3 are the principal axes. These quantities were introduced in a-more 
intuitive manner in Section 15.1. If we use the principal axes as the coordinate axes 
of a spacecraft reference frame, the moment of inertia tensor takes the diagonal 
form 

o 
12 

o 
(16-37) 

In this coordinate frame (and only in this frame), Eqs. (16-34) and (16-35) can be 
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expressed as 
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Lz=I'1f'>2 

L3= 13"'3 

Ek = !(II",f+ l'1f'>i+ 13"'D 
Combining Eqs. (16-32), (16-33), and (16-31) gives 

n 

11= ~ mi(pi~+P~) 
i=1 

n 

12= ~ m;(p5+p~) 
;=1 

n 

13= ~ m;(p~ +p~) 
;=1 

n 

o = ~ miPilPi2 
;~l 

n 

o = ~ miP,-zPiJ 
;=r I 

n 

o = ~ miPiJPiI 
;=1 

16.1 

( 16-38a) 

(16-38b) 

(16-38c) 

(16-39) 

(16-40a) 

(16-40b) 

(16-40c) 

(16-4la) 

(16-4I,b) 

(16-41c) 

where the vectors p; are resolved into components along the principal axes in Eqs. 
(16-40) and (16-41). Equations (16-41) must have balancing positive and negative 
contributions in the sums on the right-hand sides. Thus, principal axes can be 
thought of intuitively as axes around which the mass is symmetrically distributed. 
In particular, any axis of rotational symmetry of the mass distribution is a principal 
axis. Equation (16-40) shows that II' 12, and 13 are all nonnegative, and thus detl 
"" 11/ 2/ 3 ) O. The determinant is zero only if all the p; are collinear, i.e., if all the 
mass is along a mathematical straight line. Thus, for real objects det I ) 0, and, 
because the determinant is invariant under a change of coordinate system (see 
Appendix q, this holds in all coordinate systems. Consequently, in any coordinate 
system, the moment of inertia tensor has an inverse, 1- I, which is also a 3 X 3 
matrix·. We can thus write Eqs. (16-34) and (i6-35) as 

(16-42) 
and 

Ek = !LTrIL (16-43) 

respectively. According to Eq. (16-43), a surface of constant energy is an ellipsoid 
in L I , Lz, L3 space, as was discussed in Section 15.2. Note that Eq. (16-35) sim~larly 

-The moment-of-inertia tensor is not an orthogonal matrix. so I-I is not equal to IT. 

~ 
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defines an energy ellipsoid in "'" "'2' "') space, with semiaxis lengths "';2E,J I, , 
y2Ek/12 , and V2Ek/ I) . This ellipsoid may be used for qualitative discussions of 
rotational motion. but it will not be considered in this work. According to 
Whittaker (1937, page 124J. "The existence of principal axes was discovered by 
Euler, Mem. de Berl .• 1750, 1758, and by J. A. Segner, Specimen Th. Turbinem, 
1755. The momental ellipsoid was introduced by Cauchy in 1827, Exerc. de math. I, 
p.93." 

16.1.4 Dynamic Equations of Motion 

The basic equation of attitude dynamics relates the time derivative of the 
angular momentum vector, dL/ dr, to the applied torque, N. This relation was 
introduced in Section 15.2, and Eq. (15-9) gives dL/dt in inertial coordinates. In 
this section,we consider the time derivatives of the components of L along 
spacecraft-fixed axes. because the moment of inertia tensor of a rigid body is most 
conveniently expressed along these axes. Combining Eqs. (15-9), (16-34), and 
(16-18) gives· 

dL =N-wXL=/ dw 
dt dt 

where the torque vector. N. is defined as 

n 

N= L f;XF; 
;z::sJ 

(16-44) 

(16-45) 

and w is the instantaneous angular velocity vector discussed in Section 16.1. The 
force, Fi' on the ith mass consists of two parts: an externally applied force, Fr"', 
and an internal force consisting of the sum of the forces, 'ij' exerted by the other 
masses (the cohesive forces of the rigid body): 

Thus, 

n 

F;=Frx,+ L'ij 
j=1 
j .. ; 

n n n 

N= L f;xFrx,+ L L f/X'ii 
;=1 ;=1 j=1 

j .. 1 

(16-46) 

(16-47) 

Each pair of masSes contributes two terms to the second sum, f; X'ii and fj X 'Ii' By 
Newton's third law of motion, 'ji = - 'Ii' so the contribution to the sum of eacb pair 
of masses is (fCfj)X'y. If the line of action of the force between each pair of 
masses is parallel to the vector between the masses, f/- r

j
; the cross product 

vanishes, and the net torque, N, is equal to the torque due to external forces alone. 
This is always assumed to be the case in spacecraft applications. Some forces, most 
notably magnetic forces between moving charges, violat«: this condition, so that the 

-The moment-of·inenia tensor of a rigid body is constanl This is not the case when nexibility effects 
(Section l6.4) or fuel expenditure (Section 17.4) are considered. 
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rate of. change of mechanical angular momentum is riot equal to the external 
torque. In the case of electromagnetic forces, this difference can be ascribed to the 
angular momentum of the electromagnetic field, but this is negligible for spacecraft 
dynamics problems. 

Equation (16-44) is the fundamental equation of rigid body dynamics. The 
presence of the ",xL term on the right side means that L, ,and hence "', is not 
constant in the spacecraft frame, even if N = O. The resulting motion is called 
nutation, and is discussed qualitatively in Section 15.1. Rotational motion without 
nutation occurs only if '" and L are parallel, that is, only if the rotation is about a 
principal axis of the rigid body. 

Substituting Eq. (16-34) or Eq. (16-42) into Eq. (16-44) gives 
'~ 

(16-48) 1- =N-"'X(I"') dt ' 
or 

dL =N-(I-.L)XL 
dt (16-49) 

respectively. These equations can be written out in component form, but no insight 
is gained by it, except when the vector quantities are referred to the principal axis 
coordinate system. In the principal axis system, Eq. (16-48) has the components: 

~. 
I.(ft =N.+(lz-/3)"?"'3 

d"'l ' 
11(ft=Nz+(/3 -/.)"'3"' •. 

d"'3 
13(ft = N3+(I.- 11)"'."'1 

,and Eq. (16-49) has the components: 

dL. 
Tt =N.+(II I z-l1 13)~L3 

d~ dt =N2 +(11 13- 111.)L3L. 

(16-50a) 
!< 

(16-50b) 

(16-5Oc) 

(16-5Ia) 

(16-5Ib) 

dL3 
Tt=N3+(III.-1112)L.L1 (16-5Ic) 

Equations (16-44), (16-48), and (16-49) and their component forms Eqs. 
(16-50) and (16-51) are alternative formulations of Euler's equations of motion. 

A spac:ecraft equipped with reaction or momentum wheels is not a rigid body. i)ut the dynamic 
equations derived above can still be used, with one minor modification. When wheels are present, 
the total angular momentum of the spacecraft, including the wheels, is 

(16-52) 

where the moment of inertia tensor / includes the mass of the wheels and the vector b is the net 
angular momentum due to the rotation of the wheels relative to tlu! spacecraft. The inverse bf Eq. 
(16-52) is 

",=/-I(L-b} (16-53) 

I':.. 

... 
.' 
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Substituting Eq. (16-52) or (16-53) into Eq. (16-44) gives 

lru" ~N- db -Col X (/CoI+ b) 
dt dt (16-54) 

or 

(l6-S5) 

respectively. For numerical calculations the second form is sometimes preferable because it does 
not involve the derivatives of the wheel angular momenta. The derivative term in Eq. (16-54) bas 
a natural physical interpretation. however. The quantity db/dt is the net torque applied to the 
wheels by the spacecraft body; so. by Newton's third law of motion, -db/dt is the torque 
applied to the spacecraft body by the wheels. Writing Eqs. (16-54) and (16-55) in component 
form in the principal axis system yields equations similar to Eqs. (16-50) and (16-51). 

Euler's equations of motion can be used to discuss the stability of rotation 
about a principal axis of a rigid spacecraft. Let p) be the nominal spin axis, so that 
"'I and "'2 are much smaller than w). Let us also assume that the applied torques are 
negligible. Then the right side of Eq. (I6-SOC) is approximately zero, and w) is 
approximately constant. Taking the time derivative of Eq. (I6-S0a), multiplying by 
/2' and substituting Eq. (16-S0b) gives 

d2w I dW2 11/ 2--2 =(lz-/3)/2 -y-w) 
dt at 

-==-(12 - 13)(1) - 11)w~"'1 (I6-S6) 

If (/2- /3)(/)- /1)<0, then WI will be bounded and have sinusoidal time depen
dence with frequency V(l2-/)(lI-/)/(l1/2) w); however, if (/2- I~(/)- /1»0, 
then "'I will increase exponentially. Thus, the motion is stable if I) is either the 
largest or the smallest of the principal moments of inertia, and unstable if I) is the 
intermediate moment of inertia. This can be seen in the form of the paths of the 
angular momentum vector in the body shown in Fig. 15-14; the loci in the 
neighborhood of the principal axes of largest and smallest moment of inertia are 
elliptical closed curves, but the loci passing near the third principal axis go 
completely. around the angular momentum sphere. Equation (l6-S6) only estab
lishes the stability over short time intervals; over longer time intervals, energy 
dissipation effects cause rotational motion about the axis of smallest moment of 
inertia to be unstable, too, as discussed in Sections IS.2, 17.3. and 18.4 . 

16.2 Motion of a Rigid Spacecraft 

F. L. Markley 

We now tum to a discussion of the solutions of the kinematic and dynamic 
equations of motion presented in the previous section. These equations must be 
solved simultaneously because, in general, the torque N depends on the spacecraft 
attitude. Numerical integration methods and approximate closed-form solution 
methods for the general case are discussed in Section 17.1. 
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If N is independent of the attitude, the dynamic equations can be solved 
separately for the instantaneous angular velocity (,), which can then be used to solve 
the kinematic equations. A special case for which analytic solutions are available is 
the N = 0 case, which is treated in Sections 16.2.1 and 16.2.2. These solutions are 
intrinsically interesting and furnish a useful approximation for the motion when the 
torques are small. Sections 16.2.1 and 16.2.2 provide an analytic counterpart to the 
qualitative discussion of attitude motion in Section 15.1. They also provide the 
starting point for the variation-of-parameters formulation of attitude dynamics 
presented in Section 16.2.3. 

16.2.1 Torque-Free Motion-Dynamic: Equations 

The vector quantities in this section will be resolved along spacecraft principal 
axes to simplify the equations of motion. If two of the principal moments of inertia 
are equal, we shall take these to be II and 12; this is referred to as the axial 
symmetry case. If no two moments of inertia are equal, we shall denote the 
intermediate moment by 12, In this case, the labeling of II and 13 will be fixed by 
the following convention: if L2 <2I2Ek , we take 13<12 <11; and if L 2 >2I2Ek , we 
label the principal axes so that I I < 12 < 13, If L 2 = 2I 2Ek' either labeling can be 
used. With this convention, L2 always lies between 2J2Ek and 2J3Ek • The two limits 
can be visualized by considering the loci of the angular momentum vector on the 
angular momentum. sphere shown in Fig. 15-14. Motion with e=2I3Ek is pure 
rotation about the P3 axis, that is, nutation-free motion. Motion with L 2=2I2Ek , 

on the other hand, means that L lies on one of the loci passing throught the axis of 
intermediate symmetry, P2' In the axial symmetry case, this locus is the equator of 
the angular momentum sphere relative to the P 3 axis. With the convention adopted 

. here and the "'3 > 0 convention adopted below, then, L will lie on the P 3 side of the 
L 2 = 2I 2Ek loci, which is the upper hemisphere in the axial symmetry case and a 
smaller surface in the asymmetric case. 

When the body is axially symmetric, we define the transverse moment of inertia 

IT=II =12 (16-57) 

In this case, Euler's equations, Eq. (16-50a) through (l6-5Oc) simplify to 

dw l 
IT(fI = - (13 - IT )f.>3"'2 (16-58a) 

~ 
IT(fI =(13- IT )"'3t4! (16-58b) 

dw3 
!3Tt=0 (16-58c) 

Equation (16-58c) shows that "'3 is a constant.· We choose the sense of the P3 axis 
SO that "'3>0. Differentiating Eq. (l6-58a) with respect to t, multiplying by IT' and 
substituting Eq. (16-58b) yields 

-For spherically symmetric spacec:raft, 13=/1= 12=ITJ and Eq. (16-58) shows immediately that 6) is a 
constant vector in the body. This also follows from the fact that ", .. I;IL in the spherical symmetry 
case. Because L is constant in inertial coordinates, '" must be constant also. Then, because ",XL=o, Eq. 
(16-44) shows that 1., and hence "" is constant in the body reference system. 

, -i 
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which has the solution 

(16-59a) 

In this equation, Wr is the maximum value of 1.1,; I, is some time at which w. attains 
its maximum value, and 

(16-59b) 

is the body nutal;on rate introduced in Section 15.1.* The derivation of Eq. (16-59a) 
is analogous to that of Eq. (16-56), but Eq. (16-59a) is exact if 1.=lz, whereas Eq. 

'. i (16-56) is an approximation based on the smallness of "', and 1.12 relative to 1.1
3

, 

\ Combining Eqs. (l6-58a) and (16-59a) gives 

i' 

"'2= -"'T sinwp(/-/.) (16-59c) 

Equations (16-59a, c) show that "'T=(",~+",;)'/2, so "'T is the magnitude of the 
component of the angular velocity perpendicular to the symmetry axis and is called 
the transverse angular velocity. 

By using the addition formulas for the sine and cosine, we can rewrite Eqs. 
(16-59) in terms of the components ("'01' "'oz, 1.103) of "'0> the initial value of", in Jhe 
body frame. Thus, 

1.1, =1.10, COSWpl+"'oz sinwpl (16-6Oa) 

"'2="'02 cos"'pt-wo. sin"'pl (16-60b) 

"'3="'03 (16-6Oc) 
where 

"'OJ ="'T cos "'pl. (16-6la) 

"'02 = "'T sin "'p I J (16-61b) 

It is often useful to express "'03 and "'T in terms of the magnitude of the angular 
momentum vector and the rotational kinetic energy. In the axial symmetry case, 
Eqs. (16-38) and (16-39) give 

so we have 

L2= I;"'f+ If",: 

2 Ek = J r"'f + J 3"': 

• Equation (16-66) shows that this definition is equivalent to that of Eq. (15-7). 

(16-62a) 

(16-62b) 

(16-63a) 

(16-63b) 
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Equations (16-59) can be written in vector form as 

"'= "'0]P3 + "'T[ cos "'p (t -/,)P, - sin"'p(/-/,)P2 ] 

Then the angular momentum vector is 

L= 1]"'03P] + Ir"'T[ cos "', (I - 1,)PI-sin"',(1 - 'I)P2] 

Comparing Eqs. (16-64) arid (16-65), we obtain 

16.2 

(16-64) 

(16-65) 

-I • 
"'= IT L+",pP] (16-66) 

Thus, the body nUlation rale, "'" and the inertial nutalion rale, "'I' defined by Eq_ 
(16-59b) and ' 

"'/=L/ IT 

agree with the quantitities introduced in Section 15.1. 
It is also clear that 

cosO = L]/ L=I3"'03/ L 

where 0 is the angle between Land P3• Thus, 

(16-67a) 

(16-67b) 

IT-I] 
"'p = -1-"'1 cosO (16-68) 

3 

These equations form the basis for the discussion of nutation in the axial symmetry 
case given in Section 15.1. 

The solutions to Euler's dynamic equations of motion in the asymmetric case, 
I, .;. 1

2
, cannot be written in terms of trigonometric functions. Instead, they involve 

the Jacobian elliptic functions [Milne-Thomson, 1965; Neville, 1951; Byrd and 
Friedman, 1971]. These solutions, found by Jacobi (1849], are discussed by Synge 
and Griffith [1959]. MacMillan, (1936], Thomson [1963]. and Morton. et al., (1974]. 
The angular velocity components in body principal coordinates are given by 

""=""mcn(<<)lm) (16-69a) 

"'2= -"'2msn(<<) 1m) (16-69b) 

~="'3mdn(<<)lm) (16-69c) 

where en, sn, and dn are the Jacobian elliptic functions with argument 

«)="',(t-t l ) (16-70) 

and parameter· 

(16-71) 

As in the axial symmetry case, 'I is a time at which "'I = "'1m· The maximum v~lues 

-Many authors use the modulus, k=m l / 2, rather than the parameter. We follow the notation of 
Milne-Thomson (1965] and Neville (1951). 
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Fig. 16-3. Graphs of the Jacobian Elliptic: Fum:tions SD{xlm), Cll{xlm), and dn(xlm) for m-O.7. The 
quarter-period, K, is equal to 2.07536 for this m. 

of the body rate components along the three axes are 

==[ L2_ 2I3E" ]./2 
"'1m 1.(1.-13) (16-72a) 

(16-72b) 

(16-72c) 

(16-73) 

where the upper sign applies for 1,>12 >13 and the lower for 1.<1
2
<1

3
, 

The values of m given by Eq. (16-71) are always between 0 and I. Plots of the 
three elliptic functions are shown in Fig~ 16-3, and useful equations involving them 
are collected in Table 16-1. Because dn is always positive, we choose the sense of 
the P3 axis such that ~ is always positive, as in the axial symmetry case. For m« J, 
the first two terms in a power series expansion in m of the Jacobian elliptic 

Table 16-1. Identities for Jac:obian Elliptic Func:tions. In Eqs. (9), (10), and (II), the dependenc:e on 
the parameter, m, has been omitted for notational c:onvenience. 

III ! III (~m)· en '%\1) dn (+'m) (8) dn2 (+Im) + m 1f12 '+1m) - I 

IfI venvelnv+lflven vein v 
(2) ! ." ,+Im) • -III '+Im) dn (+lml (9) IfI(V+.,-

I -msn2vm2. 

envr.,n-lfIvdnvllndnw .! dn (+/m) • -m IfI (%\1) en (+/m) 
(to) enlv+.,-

l-mm2vm2. 
(3) 

(4) III (-+'m'- -IIII+/m) eIn vdn,,- m IfI v en v",.en. (tl) eIn(v+.,. 
I -mm2vm2 •. 

(6) ." (-+'m) • en '+'m, (t2) III (+/m) ",.IIn+-tm 1+-1In + cos +) cos + (m«I) 

181 dn (~/ml·eIn (+/m) (t3) 1 
1m«1) enl+/m)'" cos++.m'+-sin+cos+'IIn+ 

171 .,,2 (+/m) + 1f12 (+/m) - 1 ,,4, 
dn (+Im'''''1 -i m.m2+ 1m«I, 
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functions given by Eqs. (12), (13), and (14) of Table 16-1 provide an analytic 
approximation for the rotational motion for near-axial symmetry or small nutation. 
These equations also show that for m = 0, the Jacobian elliptic functions are 
trigonometric functions. This limit arises in the axial symmetry case, I, = 12, and 
also in the case of no nutation, L 2=2I3Ek • In the axial symmetry limit, Eqs. (16-69) 
through (16-73) become equal to Eqs. (16-59) and (16-63). The m= I limit is 
attained when L 2=2I2Ek • In this limit, the Jacobian elliptic functions can be 
expressed as hyperbolic functions, which is in agreement with the exponential 
behavior for rotation about an axis of intermediate moment of inertia, for which 
L2~2I2Ek· . 

Equations (16-69) through (16-73) can be verified by substitution into the 
Euler equations of motion, with the use of Equations (I), (2), (3), (7), and (8) of 
Table 16-1. We can derive equations in terms of the initial body rate vector, (0)0> for 
the asymmetric case by using the addition laws for Jacobian elliptic functions, Eqs. 
(9), (10), and (II) of Table 16-1, and Eqs. (16-69) through (16-73). This gives 

where 

"'Olcn",p! + (""'02"'031 "'3m)sn",/ dn "'pI 
"',= 

I - (P."'02! "'3misn2"'pl 

"'Olcn "'p I dn "'pI - ("'03"'01 1 ""'3m)sn "'p I 
"'2= 2 2 

I - (p."'0l1 "'3m) sn "'pI 

"'02 = "'lmsn "'p!' 
"'03 = "'3mdn"'pl, 

From Eqs. (16-72c), (16-38), and (16-39), we also have 

( 
2 2 2 )'/2 

"'3m = "'03 + P. "'02 

(16-74a) 

(16-74b) 

(16-74c) 

(16-75) 

(16-76) 

(16-77a) 

(16-77b) 

(16-77c) 

(16-78) 

Equations (16-74a, b, c), are significantly more complex than Eqs. (16-6Oa, b, 
c), the analogous equations for axial symmetry. In these equations, the dependence 
of the Jacobian elliptic functions on the parameter has been omitted for notational 
convenience. 
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16.1.1 Torque-Free Motlon-Kinematle Equations 

The various forms of the kinematic equations of motion considered in Section 
16.1.2 contain components of the instantaneous angular velocity vector, '*', on the 
right-hand side. The solutions for '*' obtained above can be substituted into the 
kinematic equations in the torque-free case; however, this leads to rather intract
able differential equations, which can be avoided by a suitable choice of coordinate 
system. An especially convenient inertial reference system is one in which the 
angular momentum vector, which is fixed in inertial space if N=O; lies along the 
third coordinate axis. Then L in body coordinates is given by 

(16-79) 

where A is the direction cosine matrix. The most convenient kinematic parameters 
in this case are the 3-1-3 Euler angles, so we use Eq. (12-20) for A to obtain 

L. = 1."'1 = Lsin9sin\jf 

~ = 12"'2 = LsinOcos\jf 

~ = 13"'3 = L cosO 

(16-80a) 

(16-80b) 

(I6-8Oc) 

We can choose 9 to lie between 0 deg and ISO deg, so Eq. (16-8Oc) determines 9 
completely, with "'3 given by Eq. (16-6Oc) or (16-69c). Not~ that with these 
conventions, 9 is the nutation angle introduced in Section 15.1. Then, Eqs. (16-80a) 
and (16-80b) determine \jf completely, including the quadrant, with "'I given by Eq. 
(16-59a) or (16-69a) and "'2 by Eq. (16-59c) or (16-69b). We cannot determine + in 
this fashion, so we use Eq. (16-12b), wh!ch in the notation of this section is 

:~ =("'. sin\jf + "'2 cos\jf)/sinO (16-81) 

Using Eq. (16-80) yields the equivalent, and more useful, form 

. d+ II"'~+ 12~ 
- = L -=--::---:::-"7 
dt I:",~ + Jf~ 

(16-82) 

In the asymmetric case, I. -I: 12 and Eqs. (16-69a) and (16-69b) can be substituted 
into Eq. (16-82). Integration results in a closed-form expression for +, which 
involves an incomplete elliptic integral of the third kind [Milne-Thomson, 1965; Byrd 
and Friedman, 1971; Morton, et al., 1974). In the axial symmetry case, on the other 
hand, d+/dt is a constant, and we have 

and 

d+ - = L/IT="'I dt (16-83) 

(16-84) 

(16-85) 
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where the inertial nutation rate, ""I' was introduced in Section 15.1 and Eq. 
(16-67a). The initial value of ~ in Eq. (16-84), ~os is arbitrary because the definition 
of the inertial reference system only specifies the location of the inertial three axis. 

Because the kinematic equations of motion for the 3-1-3 Euler angles have 
now been solved, the direction cosine matrix can be found from Eq. (12-20). Any 
other set of kinematic parameters can then be evaluated by the techniques of 
Section 12.1, e.g., the Euler symmetric parameters from Eq. (12-14), the Gibbs 
vector from Eq. (12-IS), or the 3-1-2 Euler angles from Eq. (12-23). The resulting 
parameters specify the orientation of the spacecraft body principal axes relative to 
an inertial frame in which the angular momentum vector is along the inertial three 
axis. It is frequently more convenient to specify the orientation of the spacecraft 
relative to some other inertial frame, such as the celestial coordinate frame. This is 
especially important if the resulting closed-form solution is to be used as the 
starting point for a variation-of-parameters analysis of the motion in the presence 
of torques, as described below, because the angular momentum vector is not fixed 

. in inertial space when the torque does not vanish. Changing this reference system is 
straightforward if there is a convenient rule for the parameters representing the 
product of two successive orthogonal transformations. The most convenient pro
duct rule is Eq. (12-15) for the Euler symmetric parameters, so we will write the 
closed-form solution for this kinematic representation. This solution, in the axial 
symmetry case, is 

where 

[ (. q; -qi 

q; 1 
q(t)= -:~ q~ qj q' 

-qj q~ q~ qo 
-qi -qi -q; q4 

qj = U1 cosasinj1+ U2 sinasinj1 

qi=U2 cosasinj1- UI sinasinj1 

q;=U3 cos a sinj1 + sin a cosj1 

q.; = cos a cosj1- u3sinasinj1 

-1 t a=2""p 

j1=!""lt 

u=Lo/ILoI = [UI'~2,U3]T 
Lo=[ L01,Lm,L03 ]T 

(I6-S6) 

(16-87a) 

(16-81b) 

(16-S1c) 

(16-81d) 

(I6-S1e) 

(16-S7f) 

(I6-S1g) 

(I6-S11r) 

In this solution, aU the constants of the motion have been reexpressed in terms of 
initial values of the Euler symmetric parameters and Lo. the angular momentum 
vector in body principal coordinates. These initial values are arbitrary (except that 
the sum of squares of the Euler parameters must be unity) because the inertial 
reference frame can be chosen arbitrarily. 

A geometrical construction, due to Poinsot, and presented in many texts (e.g., 
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Goldstein (1950];· Synge and Griffith (1959]; MacMillan (1936]; Thomson (1963]; 
and Kaplan (1976D pictures the rotational motion of a rigid body as the rolling of 
the inertia ellipsoid on an "invariable plane" normal to the angular momentum 
vector. In the axial symmetry case, Poinsot's construction is equivalent to the 
discussion in Section 15.1 of the space and body cones. In the general case, the 
geometrical construction is not easy to visualize, and the analytic solutions are 
more useful for spacecraft applications. The results for the asymmetric case are 
described by Morton, et al., (1974]. 

16.2.3 Variation-of-Parameters Formulation 

The solutions of the attitude dynamics equations in the torque-free case have 
been obtained above. The variation-of-parameters formulation of attitude dynamics 
is a method of exploiting the torque-free solutions when torques are present 
[Fitzpatrick, 1970; Kraige and Junkins, 1976]. Our approach follows that of Kraige 
and Junkins. 

To introduce the basic ideas of the variation-of-parameters approach, we first 
consider a simple example, the· translational motion of a point mass in one 
dimension. The equations of motion in this case are 

dx -=v 
dt 

dv 
(fi=F(x,v,t)/m 

(16-38a) 

(16-88b) 

where the dependence of the force on x, v, and t is arbitrary. The solution of these 
equations when F=O is 

x(t)~xo+vot 

v(t)=vo 

(16-89a) 

(16-89b) 

This is called the forward solution because it expresses the position and velocity, x 
and v, of the mass at time t in terms of its position and velocity, Xo and Vo> at the 
prior time, t=O. We can also write the backward solution: 

xo=x(t)-v(t)t 

vo=v(t) 

which expresses Xo and Vo in terms of x(t) and vet). 

(16-9Oa) 

(16-9Ob) 

The central idea of the variation-of-parameters approach is to use Eqs. (16-89) 
to represent the motion of the mass even when a force is applied. This is possible if . 
Xo and Vo are allowed to be time varying, as shown in Fig. 16-4. At each point on 
the trajectory of the particle, the position and velocity are the same as those of the 
force-free motion represented by the tangent line with intercept xrJ..t) and. slope 
vo{t), i.e., with initial position and velocity xJ.t) and vo{t). In this case, Xo and Vo are 
the varying parameters that would be constant in the force-free case. (It is possible 
to express the motion in terms of ot}ler parameters, such as the kinetic energy, but 
we will only consider initial conditions as the varying parameters.) 

To obtain the equations of motion in the variation-of-parameters form we 
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x 

o 
Fig. 16-4. Variation-of-Parameters Formulation Applied to Motion of a Point Mass in One Dimen-

sion . 

differentiate the backward solution, Eq. (16-90):' -

dxo dx do 
y,=Tt-tTt- v 

dvo dv 
y,=Tt 

Equation (16-88) is then substituted into Eq. (16-91), yielding 

dxo 
y, =v-rF(x,v,t)/m-v= - tF(x,v,t)/m 

dvo dt =F(x,v,t)/m 

(16-9Ia) 

(16-9Ib) . 

(16-92a) 

(16-92b) 

Note that the right sides of these equations vanish when F=O because Xo and Vo 

are constants in this case. Finally, we substitute the forward equations of motion 
on the right sides of Eq. (16-92) to eliminate x and v, and obtain the final equations 

dxo 
y,=-tF(xo+vol,oo>t)/m (16-93a) 

doo . 
Tt= F(xo+ vot,oo>t)/m (16-93b) .' 

These equations must be integrated to obtain xO<t} and oO<t), and then x(t} ando(t} 
are given by Eq. (16-89). 

The equations of motion in the variation-of-parameters approach, Eqs. (16-93), 
are generally more complicated than the original equations of motion, Eqs. (16-88). 
They have the advantage, however, that the right sides are smaller than the right 
sides of the original equations if the forces are small. Thus, larger integration steps 
can be taken if the equations are integrated numerically (see Section 17.1). 
Comparison of Eqs. (l6-88a) and (16-93a) shows that the variation-of-parameters 
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approach will be useful if 

IFlt«I11W1 
that is, if the impulse of the applied force over the time interval considered is much 
less than the momentum of the particle. 

We now consider the attitude dyruunics problem in the axial symmetry case. 
: ; The parameters to be varied are the initial values of both the Euler symmetric 

parameters and the components of the angular momentum vector along the body 
principal axes. The foward solutions are Eq. (16-86) and 
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LI(t)=LOlcos2a+Lmsin2a (16-94a) 

~(t) = L02cos2a - LOlsin2a (16-94b) 

~(t)= Lm (16-94c) 

where a is given by Eq.,(16-87e). These are obtained by multiplying Eqs. (16-60) by 
the principal moments of inertia along the three axes. The backward solutions are 
obtained from Eqs. (16-86) and (16-94) by interchanging L with La and q with qo> 
and changing the sign of t (and thus Jf a and fJ). Differeritiating the backward 
solutions and substituting the forward equations of motion on the right-hand sides, 
as in the example above, yields the variation-of-parameters equations of motion for 
the ,axial symmetry case: 

dqo ~l -~3 ~3 -~ ~]n 
fit 2 - - 0 ::'3.,0 (0)2 -(0)1 _ 

-WI -W2 -W3 0 

dLOI (IT) dt =N,,+~ 1- 13 U2N3fJ 

d~~ =Nb-2(1- ~:)UIN3fJ 
dLm 
T=N3 

(16-95) 

(16-96a) 

(16-~b) 

(16-96c) 

where fJ, a. and u are given by Eq. (16-81); and N". Nb• and ;;, are defined by 

Na = NI cos 2a - N~in2a 

Nb = N2cos2a + N l sin2a 

w.=[(uJNb - u2N3)(I-cos2fl)- u.G- Nasin2fl]/ Lo 

~=[(uIN3- u3N,,)(I-cos2fl)- U2G- Nbsin2fl]/ Lo 

(16-97a) 

(16-97b) 

(16-97c) 

(16-97d) 

G =(UINa + U2Nb + uJ NJ)(2fl-sin2fl) (16-97f) 

Note that the angle fJ must be expressed in radians in these equations. 

- ... 
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The variation-of-parameters method will be most useful if INlt«ILI. In this 
case, Eqs. (16-95) and (16-96) can be integrated with a large till'e step to find qoC./) 
and Lo(/). The Euler symmetric parameters, q(/), representing .he attitude at time I, 
can then be obtained from Eqs. (16-86) and (16-87); the angular momentum vector 
L(t), can be found from Eq. (16-94), if desired. Equation (16-95) has the same 
structure as the kinematic equation of motion for the instantaneous Euler sym
metric parameters, Eq. (16-3), so any techniques used for solving the latter equation 
can also be used for the former. In particular, the closed-form solution of Eq. 
(16-4), which is discussed in Section 17.1, is applicable if the direction of ~ does not 
change during the time step. 

The above variation-of-parameters equations were derived from rigid body 
dynamics and therefore are most useful for single-spin ypacecraft. Effects of 
reaction wheels can be added as perturbations, but the resilting equations are most 
useful if the deviations from the unperturbed motion are small. In particular, any 
spacecraft nutation (with nutation angle less than 9Odeg) is modeled exactly and 
much more efficiently by the variation-of-parameters method than by a straight
forward numerical integration of Euler's equations. 

The variation-of-parameters equations for the asymmetric case, I, -+ 12, have 
been studied by Kraige and Junkins [1976}. They are significantly more compli
cated than the equations for the axial symmetry case, largely because of the 
dependence of the parameter, m, of the Jacobian elliptic functions on the initial 
values of Land q. 

16.3 Spacecraft Nutation 

Roben M. Beard 
Michael Plett 

In principle, the closed-form solution (Eq. (16-69» to Euler's equations for 
torque-free rigid-body motion could be used to determine spacecraft dynamic· 
motion from telemetered attitude sensor data. In practice, this is normally imposs
ible because initial values of the Euler angles and an accurate knowledge of 
spacecraft rotational kinetic energy and angular momentum magnitude are un
available. This section discusses some simplifying assumptions which reduce the 
complexity of the original equations, thus permitting approximate solutions for the 
spacecraft motion based on attitude sensor data. 

Throughout this section we assume that the spacecraft is undergoing rigid
body, torque-free motion, that the moments of inertia are known, and that the 
nutation angle, fJ, is small. The inertial frame (4, Y, Z) is defined to have its Z axis 
collinear with the angular momentum vector, L. The body frame (x, y, z) will be 
the principal axes. Without loss of generality, we take the body z axis to be the 
nominal spin axis; the 3-1-3 Euler rotation sequence (cp,fJ,1/!) defined in Eq. (12-20) 
will be used to transform vectors from the inertial to the body frame. 

Spacecraft nutation causes attitude sensor data which would otllerwise be 
constant to oscillate; this oscillation may be used to determine parameters of the 
spacecraft dynamic motion. Virtually all types of attitude sensors are sensitive to 
D,u~tion and could be used, in principle, to monitor ii. For example, for a 
symmetric spacecraft (/" = Iy = IT)' Eq. (16-60) shows that the output of gyro
scopes, which measure the instantaneous angular velocity, 6), in the body frame, 
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will oscillate at the body nutation rate, "'p( = t/.). Alternatively, consider an a~titude 
sensor which measures the angle between some inertial vector, S/' and the body z 
axis. Without loss of generality, we may require the X axis of the inertial frame to 
be the projection of SI into the plane perpendicular to L. Then, if 

Ss=(Ss ,Sa ,Sa )T =A3J:J(SI ,SI ,S, )T =A313S 1 .. ., • ~ r z 

is the body frame representation of S/' where Am is the 3-1-3 transformation given 
in Eq. (12-20), we see that 

Ss. = Slxsin(lsin",+ S/zCOS(l 

For a symmetric spacecraft, as shown in Section 16.3.1, (I is a constant, and from 
Eq. (16-84), 

"'''''''''It +"'0 
Thus, the angle measured by the sensor oscillates with the inertial nutation rate, "'I 
(=~). Examples of such sensors include magnetometers aligned with the body z 
axis or star sensors which measure the coelevation of stars. 

Figure 16-5 shows :the simulated variation in measured Sun angle and in 
apparent spin rate for a symmetric spacecraft (/z/ IT"'" 1.238) with a Sun sensor 
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whose slit plane contains the x and z axes and having a nutation angle, 0, of 5 deg 
and an average measured spin period of 9 sec. We have just shown that the Sun 
angle oscillates at the inertial nutation rate "'/ (=~), which for this example 
correspond~ to a period of 7.24 sec. It can be shown in a derivation similar to that 
in Section 16.3.1 (but one which solves in terms of the variation of Sun crossing 
tim~) that the deviation in crossing time oscillates at the body nutation rate "'p 

(=1/1), or for this example, a period of 37.8 sec. Section 16.3.2 shows that for a 
symmetric spacecraft whose attitude sensor measures the coelevation of the inertial 
vector only once per spin period, the measured ·coelevation angles vary at a rate 
which is roughly approximate to the body nutation rate. This is shown by the 
dashed line in Fig. 16-5. 

Section 16.3.1 derives a technique for determining the dynamic motion of a 
dual-spin symmetric spacecraft from body measurements of the coelevation of 
inertial vectors. This technique involves solving for the Euler angle rates and initial 
values and is suitable for a time development of the rotational dynamic motion. 
Section 16.3.2 derives techniques for monitoring spacecraft nutation with a digital 
Sun sensor. It presents approximations for the amplitude and the phase of L in the 
body system for a symmetric spacecraft and extends these approximations to an 
asymmetric spacecraft Techniques in this section are particularly suitable for 
determining the amplitude and phasing of torques for active nutation damping (see 
Section 18.4). . 

16.3.1 Dyoamie Motion of a Symmetric Dual-Spin Spacecraft. 

In this case, we assume a dual-spin spacecraft having a momentum wheel with 
known moments of inertia (/w/w1!/) and known constant spin rate ("'w/w1!/) relative to 
the body; further, we assume that the wheel rotational axis is aligned with the body 
z axis. The components of the total angular momentum, L, in the body frame are 
then 

where 

Lx = I,,"'x = L sin 0 sin 1/1 

Ly = Iy"'y = L sin 0 cos 1/1 

Lz = Iz"'z + hz = LcosO 

hz = I z..-"'w/w1!/ 

(16-98) 

Recall from Section 16.1 that the body moments of inertia (/x,ly,Iz ) are assumed 
~easured with the momentum wheel "caged." Substitution of Eq. (16-98) into Eq. 
(16-12) (and noting that here x,y,z, are used in place of II, v, W in Section 16.1) gives 

9=L(l.. -l..)SinOsin1/lCOS1/l 
I" Iy 

4J=L --+--. ( sin~ cos~ ) 
I" Iy 

. (I colA[, sin~ ) hz 1/I=LcosO ------- --. 
Iz Iy 1,,- Iz 

(16-99). 
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For the axially symmetric case, using 1,,= ly=IT, Eq. (16-99) becomes 

0=0 
· Izw. +hz 
.p= l~osfJ 

· wz(/z -IT )+ h. 
if = - ---.:....:.-.-::-IT.:....:-~ 

Thus, fJ, cj., and tj, are each constant. 
For small fJ, cosfJ~l, and Eq. (16-lIc) reduces to 

wz~++tj,=i;, 

537 

(16-100) 

where w is approximately the average measured spin rate (ignoring nutation.). 
Thus" Eq. (16-100) becomes . . 

9=0 

(16-101) 

· i;,(/z-IT)+hz 
if= - IT 

Because the right sides of Eq. (16-101) are known, the problem of determining the 
time development of .p, fJ, and if reduces to determining fJ and the initial values of .p 
and if from sensor data. 

Using small angle approximations for fJ, the 3-1-3 transformation from the 
inertial to the body frame given in Eq. (12-20) reduces to 

. [COS(.p+if) sin(.p+if) fJsin if ] 
A3I3~R = -sin(.p+if) cos(.p+if) fJcosif 

9sin.p -fJcos.p I 
(16-102) 

where fJ is in radians. "I1!us, for each observation of a vector, SB' in the body frame 
whose inertial position, S/' is.known (e.g., a star, the Sun, the magnetic field vector, 
the nadir vector), we have 

ss= [~] =R[;:;:::] =RS1 

SZ sm€ 
(16-103 ) 

where a and t: are the azimuth and elevation, respectively, in the inertial system. 
Using Eq. (16-102) and .p=cj./+.pOt the third row of Eq. (16-103) becomes 

Sz=sin£+(lcosuin(+I+.po-a) (16-104) 

• Equation (16-103) may be used'to show that if the spin rate is measured'by observing the times.when 
an inertial vector, S, crosses a body-fIXed plane containing the z axis (taken as the x-z plane WIthout 
loss of generality), then, for small 9, crossings occur whenever, sin(++ 1/1)- 9(8z / 8x)cosl/l= Ii. Thus, 
for S sufficiendy far from L (Le., 88z /8x c:.l), the average measured spin rate is ++.j,. 
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or 

S.-sin( . 
~COS-(- = IJsin(+t ++0- a) (16-105) 

and because S • ... sin(~), where fobr is the elevation of the observation in the body 
frame, we have 

sin( (.) - sin ( • . 
COS( = [lJcos+o]sin(+t- a)+ [9sin+o]cos(+t- a) (16-106) 

For small ( the left-hand side approximately equals the elevation residual, (. - (, 
and is referred to as the reduced eleootlon residual. Because .;. is known from Eq. 
(16-101), this can be solved for a given set of observations with simple linear 
regression by recognizing that it is of the form 

with 

Then 

'.¥Cl+Cl 
+o-arctan(CalC,) 

(16-107) 

(16-108) 

(16-109) 

with appropriate sign checks to determine +0 OIl the range 0 to 360 deg . 
.. Finally, if C is the observed phase angle of the body x-axis, we may approxi-

mate 
(16-110) 

Integrating, then, 

(16-111) 

or 
(16-112) 

and we have thus determined (I and the initial values of .,. and .z,. 
This technique was used successfully to determine the dynamic motion of the 

SA&.l spacecraft from telemetered star sensor data. Figure 16-6 is a plot of the 
left-hand side of Eq.(l6--IOS) (the reduced elevation residual) versus time (modulo 
the period of +) for a selected orbit of SAS·l star sensor data~ where l~/ 1,.-1.067 
and 'the averaae meas~ spin rate was i;)-l.()61 dea/~ Fitting this data to Eq. 
(16-1(6) usma the technique of Eq. (16-10?> resulted in +.,,:, ,6..13 deg, ''''0.58 deg, 
%=343.27 d~, whete from Eq. (16-101). +-4.75 dealsec, Ij."'" -3.69 deg/sec. For 
convenience the star sensor may be ronsideted as mounted along the body x axis. 
Because the Sensor field of view is small, the left-hand side of Eq. (16-105) is 
approximately the difference between the observed elevation in the nutating body, 
frame and the elevation in the (nonnutatina) inertial frame. The amplitude of th~ 
plot is then approximately 8. The approximate phase. 1/)0; may be obtainM frolD the 
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Fig. )6-6. Reduced Elevation Residual Versus Tame ModlIIo r.riod of • for a Nutating SpaetCI'8ft 
With 8-G.S8 Des. See tellt for explanation. 

phase of the plot and the azimuth, a, of any star sighting. For example, if the 
circled observation at a phase of approximately + 90 deg occurs at 52.3 sec 
(modulo the period of~) and is for a star whose azimuth in the I: system is 175.25 
deg, then ~o~900-~t+a~16083°0 

16..3.2 Nutation Monitoring Wltb a Digital Sun Senor 

In this SUbsection, we consider the problem of determining the amplitude and 
phase of nutation from a Sun sensor which observes the Sun approximately once 
per spin period. We assume that both the Sun angle and Sun sighting time are 
monitored by a sensor, such as the digital SUD sensor described in Section 6.1.3, 
whose field of view is a slit parallel to the z principal axis and perpendicular to the 
nominal spin plane. As illustrated in Fig. 16-5, nutation produces an OSCillation in 
both the Sun angle and the measured spin period determined from the Sun sighting 
times. We wish to relate this oscillation to the nutation angle, fI, and the azimuthal 
orientation, l/-, of the angular momentum vector, ~ in spac:ecraft cooriiinates. 

Figure 16-7 shows qte path on the body.fixed celestial sphere of the angular 
momentum unit vector, L, assuming l:k < 11.. < I •• (This is equivalent to Fig. 15-14 
with the x,y, and z axes -;.eplaced by P3' P;r. and PI' respectively.) Note that the 
nutation angle, 9, between L and the body z axis, l,varies between 91ndJr and 9"",,_ A 
digital Sun sensor determines the measured Sun angle, PM-arccos ~·s), between i 
and the Sun vector, S, at the time that the Sun crosses the sensor slit plane. The 
nominal Sun angle, p=arccos (LoS), between t and S remains constant because 

., 
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B VI 

Fig. 16-1. Path of Angular Momentum Vector on Body-Fixed Celestial· Sphere for a Nutating 
Spacecraft 

both vectors are fixed in inertial space. Therefore, as L oscillates about i, the 
position of the Sun at the time of a Sun angle measurement mov~ up and doW!l 
the sensor slit plane so that P remains constant. In Fig. 16-7, when L is at A, then S 
il!. at S. and the measured Sun angle, Pm' is a maximum; when L is at B, S is at 8 2 

and Pm is a minimum.· The amplitude, IlPm, of the measured Sun angle variation 
will be between 2fJtI/IJJC and 2fJmJn depending on the orientation of the sensor slit 
plane relative to the principal axes. When the Sun sensor slit plane is the y - z 
plane, IlPm = 2fJmmc (assuming Sun sightings actually occur when (J = fJtI/IJJC)' 

When the slit plane is the x - Z plane, IlPm will be a minimum. In most 
practical cases, this minimum value is approximately 2fJmJn• However, as shown in 
Fig. 16-8, when I" «.Iy and the Sun angle is sufficiently small, then the path of the 
angular momentum vector will be very elongated and IlPm will be greater than 
2fJmJn when the slit plane is the x - z plane. For Sun angles I~ than 90 deg, as 
shown in Fig. 16-8, the maximum value of Pm is P+fJmJn when L is at D. However, 
when the maximum radius of curvature of the nutation curve is greater than P, 
then the minimum Pm will be fJ - fJmJn - E and will occur at two symmetrically 
locatd points, A and B, on the nutation curve. For Sun angles greater than. 90 deg, 
we may use Fig. 16-8, measuring P from the - z axis. Thus, Pm wjll oscillate 
between P += fJmJn + E and P - fJmJn. Note that the eleyation of the Sun in the 
spacecraft frame oscillates at the inertial nutation rate, cp, as shown in Eq. (16-106). 
However, fro~ Fig: 16-8, it is clear that the measured Sun angles depend on

A 
the 

orientation of L in the body; hence, they should oscillate at the same rate as L in 
the·body, as Will be proved later. 

• Sun sightings occur at discrete points along the path of L. However. for the geometrical arguments of 
Figs. 16-1 and 16-8. we assume that Sun sightings will occur for each of the possible positions of L. 
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Fig. 16·8. Sun Angle Measurement Geometry for a Very Asymmetric Nutating Spacecraft. See text 
for explanation. 

The average of the measured Sun angles will be somewhat different from the 
nominal Sun angle, p, as shown in Fig. 16-8. The dotted curve on Fig. 16-8 is a 
small circle of radim, p, centered on the sensor slit and tangent to the body z axis. 
At points C and E, where this curve intersects the path of i. the nominal and 
measured Sun angles will be equal: between C and E inside the nominal Sun angle 
curve, 13m> P; outside the nominal Sun angle cone, Pm < p. A similar construction 
is possible on Fig. 16-7. It is clear from the location of points C and E that the 
average measured Sun angle will be less than P whenever the Sun angle is less than 
90 deg. Similarly, the average Pm will be greater than P whenever the Sun angle is 
greater than 90 deg. Normally, this effect is small and may be masked by the 
granularity of the Sun angle measurement. In the extreme case in Fig. 16-8, the 
average Pm is about 2 deg less than p. 

To obtain quantitative expressions for the nutation parameters in terms of the 
measured Sun angle parameters, it is convenient to define two intermediate 
variables. The first is Rp, the ratio of the observed Sun angle variation to the 
maximum nutation amplitude. Thus, 

aPm 
Rp=~ < I (16-113) 

mtlJC 

For a symmetric spacecraft, the path of i in Figs. 16-7 and 16-8 is a small 
circle of radius (J and the maximum and minimum values of Pm are P + (J and P - (J. 

In this case, Rp=aPm/2(J= I. For asymmetric spacecraft, Rp is a function of (Jmox, 

p, the moment of inertia tensor, I, and the azimuth, €, of the sensor slit plane. 
To determine the functional dependence of Rp on the spacecraft parameters, 

we define the second intermediate variable. RI, by 

sin20mox 

IAIz-Iy ) 

Iy(Iz - Ix) , (16-114) 
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(16-115) 

where 8 is the nutation amplitude at phase '" as defined in Fig. 16-7. 

To derive Eqs. (16-114) and (16-1 IS). note that 9 reaches its extreme values when one component 
of the angular velocity reaches its maximum and the other component is zero. For the case of 1.1' 
being the principal moment of intermediate value, we have 

Iylllpn 
sinB_=~ 

• lxlll"", 
slnB"""---r;-

Substituting for 1II_ and lIIpn (the maximum values of 1II along the x and y axes, respectively) 
from Eq. (16-12) and taking the ratio of sinB""" to sinB ....... yields Eq. (16-114). From Eq. (16-69), 
we have 

L" "'1"lII"",cn(ltlm)"'Lsinll sin", 

4- -Iyc.;...sn(ltlm)" Lsin9cosl/l 

Substituting from Eq. (7) of Table 16-1. squaring, and addins yields 

[ 

L2(/y -I.)] [ 1),(1,,-1.) ] 
l-cn2(ltlm)+sn2(ltlm)" (1 . ) sin'6 ( )sin~+cor", 

L -2I.Efc 1.1' (, 1),-1. 

where the fllllt term in brackets is l/sin'6mar ~gebraic manipulation then yields Eq. (16-115) . 

.. From Fig. 16-7, we see that 

(16-116) 

Note that", is the third Euler angle in a 3-1-3 sequence and that as '" increases, the 
projection of L onto the x - y plane moves clockwise. By examining the spherical 
triangle A -Sun-z, we obtain 

and 

. e sin8sinA 
sm = sinp 

(e+A) 
!an( ~- )-tan( 9~P) cos! 2:) 

cos -2-

(16-117) 

(16-118) 

which gives Pm as a function of 8"""" p, 1, and ~. From this, llPm can be calculated 
so that Eq. (16-113) can be inverted to determine 8"""" which is the unknown in 
real data. The maximum and minimum values of Pm and hence Rfl are found 
numerically for a given 8"""" p, (, and 1. Note that the dependence of Rfl on 1 is 
only through ~e parameter Ri. Values of Rfl for 8111t1X =2 deg and P=90 deg are 
shown in Fig. 16-9. Numerical tests indicate that Rfl is insensitive to Omax and P so 
that the curves in Fig. 16-9 are accurate to 5to 10% when 28max <P and R;>O.l5. 
They were constructed for Ix < Iy < I. and the slit plane in the first quadrant; they 
may be extended to other quadrants by symmetry. These curves have the 
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Fig. 16-9. Ratio. Rp. of Observed Sun Angle Variation to Nutation Angle as a Function of Sun Sensor 
AzimutJi. Eo and RJ for P=90 Deg. 9 ..... =2 Des. and 1,,< ly < I •. Read ~ from bottom for 
Rp used in computing /lP and from the top in computing 9""", from the Sun angle variation. 
see text for explanation and elUUllple. 

approximate analytic form 

(
I+RB) (I-R,) RfJ= -2- + -2- cos[2(900-01 (16-119) 

The analytic approximation is about 5% low at R/=0.25 and about 25% low at 
R/=0.05. The oscillations of Pm with changing 1/1 defined by Eq. (16-118) vary from 
sinusoidal to nearly sawtooth depending on the spacecraft symmetry and slit 
location. (Note that on Fig. 16-8, points Band D are only 100 deg apart in 
azimuth.) The rate of the Sun angle oscillation for an asymmetric spacecraft is the 
asymmetric analog of Eq. (16-100) for small OtnQ}(' i.e., 

-~~Rlwz 

where the intermediate variable, R/, is defined by 

(Iz -IJt)(Iz -ly) 

IJt1y 

(16-120) 

(16-121) 

with R/ positive for 1%,ly < 1% and negative for Iz < IJt,lr . 
The same numerical process that yields RfJ also yields em' the azimuth of the 

angular momentum vector when Pm is a maximum. This information is valuable for 
phasing a torque to counteract the nutation and is shown in Fig. 16-10 for the same 
conditions as Fig. 16-9. Note that ~m is compressed toward 90 deg as the spacecraft 
becomes more asymmetrical (smaller Rl). These curves are also insensitive to both 
BtnQ}( and p. As long as 30tnQ}( < p and R/ > 0.15, the curves are accurate to about 15 
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Azimuth. t",. of Angular Momentum Vector. L, at Which the Measured Sun Angle is a 
Maximum as a Function of Slit Azimuth. ~. and Rl for 8"",. = 2 Deg and /J= 90 Deg. See 
text for explanation and example. 

deg in ~. Figures 16-9 and 16-10 are intended for estimates only; Eq. (16-118) should 
be solved directly when spacecraft parameters are well established . 

. To illustrate nutation monitoring from Sun angle data, consider a spacecraft 
with relative moments of inertia I.. = 51.5, I = 71.3, I. = 90.0 and a Sun sensor 
mounted 30 deg from the x axis, i.e., ~=30°. From Eq. (16-114), Ri=0.35. Assume 
that Pm covers the range 67.5 0 < Pm < 73S. Rp is obtained from Fig. 16-9 as 0.72 
and 9/7/Q}( is then computed from 

flP 6" 
9f1Ul,,= 2Rp = 2xO.72 =4.2° (16-122) 

From Fig. 16-10, the maximum value of Pm occurs at ~m=59°, which means that L 
is at an azimuth of 59 deg at the measurement of the maximum Sun angle. A 
torque applied 1800 out of phase with L at an azimuth of 239 deg would reduce the 
nutation amplitude. This technique was used successfu Ily on the SSS-I spacecraft 
[Flatley, I 972bJ. 

Many Sun sensors provide the Sun crossing time so that the interval between 
successive crossings may be used to measure the spin period. However, this 
measured spin period is affected by nutation. By examining Fig. 15-8 and assuming 
that the Sun ~nsor points in the direction of P 3 to R on that figure, we see that the 
Sun sensor is rotating counterclockwise in inertial space at an approximately 
uniform rate (or, equivalently, the Sun is rotating clockwise relative to the sensor). 
As shown in Fig. 16-11, the angular momentum vector is rotating counterclockwise 
rel!ltive to the Sun sensor, where, for simplicity, we have chosen I" = 1/'= IT< I •. 
Beca..use IT is less than I., the spacecraft is nutating more rapidly than it is rotating 
and L is rotating faster than the Sun sensor. 
. It is essentially the wobbling motion of the spacecraft which is resI?Onsibl~ for 
the variation in the measured spin period. Assume that in Fig. 16-H, Land S are 
at LI and SI at time t l ; At time t2, after one measured spin period, the Sun has 
rotated 360 deg to S2' L has moved more rapidly and gone more than 360 deg to 
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Fig. 16-11. Body-Fixed Celestial Sphere Showing Change in Measured Spin Period From the Observa
tion of Sun Sighting Tunes for a Symmetrical Nutating Spacecraft. See text for explana
tion. 

~ 

~. We wish to examine the rotation ,!f the ~y coordinate system relative t~ th~ 
inertial coordinate system defined by' L and S. At time t), the x axis is in theL-S 
plane. At time 12, it is past the L-S plane by the angle a. Thus, because of ~~ 
change in the orientation of the, body coordinate system relative to the inertial 
coordinate system, it has rotated through more than 360 deg to pick up the Sun 
again and the measured spin period is greater than the true spin period. Similarly. 
when i is to the left of center in Fig. 16-11, the measured spin period will be less 
than the true spin period. (Oearly, over a long term the average measured spin 

, ,period must be close to the true spin period.) The spin period oscillation has the 
same period as i in the spacecraft frame. 

For a symmetric spacecraft and small nutation angles, we can express fJ as a 
function of I, P. and the variation in the spin period. llP, defined by 

AP 
P mtlJt - P min 

P mtlJt + P min 
(16-123) 

where P mtlJC is the maximum measured period, and P min is the minimum measured 
period. As shown below, the desired relation is 

(16-124) 

Thus, given an observed variation in the spin period and the average Pm. which 
may be substituted for P in Eq. (16-124), we can compute the nutation angle, fJ. 

Equation (16-124) may be derived by extending the development of Flatley [1972aJ. Let the 
inertial frame be as before with the Z axis collinear with L and the X axis along the projection of 
S into the plane perpendicular to z. Let the Sun sensor slit contain the body JC and z axes. Then, 
Eq. (12-20) shows that the y component of S in the body frame, assuming U small, is 

S}'=sin,8( -sin."cos+-COSl/lcosusin+)+cos,8COSt/lsinU 

~ - sin,8sin(</)+ 1/1)+ Ucos,8COSt/l (16-125) 
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and is equal to zero at a Sun sighting. At any time, I, Eq. (16-100) gives for a single-spin 
symmetric spacecraft 

1.",., 
~= I.,-sB + </>o".,{R, + 1),.,.1+~0 (I6-126) 

(I. -IT) "'= - -I-T-"'·I+"'o="'o-R"".I (16-127) 

The first Sun sighting after 1=0 will occur at a rotation angle of approximately 2w-(~0+ 
"'0>_2,,; and, in general, the nth Sun sighting will occur at 

I2w- (</>0+ ",0>_2" + 2w(n-I») -(</>0+ ",0>_2" + 2wn 
t= +81 = +81 (16-128) 
" "'6 n Wz n 

where 81. is the deviation of the crossing time from that if B=O. 
Using Eqs. (16-126) and (16-127), and defining ",.=",(/.), Eq. (16-125) becomes 

assuming ",.81" small, or 

Sy=O"., - sin II sin{",.I" +</>0+ "'0)+ (Jcos/lcos",. 

"., -",.81.sinll+ Bcos/lcos",. 

B cos/l cos"'" 
81 = --c..,.-".-= 

" ",.sin/l 
(/l+00r2w) 

Thus, the period between any two consecutive Sun s~ghtings is 

Note that 

[ 
- (</>o+ ",0>_2" + 2wn ] 

P,,=I.-III_I= "'. +81" 

- +81,,_1 
[ 

-(</>o+",O>modz,,+2w(n-:-l) ] 

"'z 

"',,-I ="'0- R''''z',,_1 

= "'" +2wR, + R"".(81" - 81,,_1) 

""",,,+2wR, 

(16-129) 

(16-130) 

(16-131) 

(16-132) 

assuming R"".(Bt,,-81,,_I) is small. Substituting Eq. (16-132) into Eq. (16-131) and reducing 
yields . 

(16-133) 

To frod the minimum and maximum p". we note that only the factor sin("'" + wR,) varies. The 
extrema of the sine function are ~ I and occur at 

",,,+wR,=w/2~'I1i i=O,I,2,3 (16-134) 

for /l '" 0 or '17. "'z '" O. andR, '" 0.1.2,3 •.... Furthermore, 

{ 

1fIQX for"'.+wR,='I1/2~2wi (16-135) 
p.= f R 3· /2 2 i<;>0.1.2.3 min or",.+'17 ,= '11 ~ wi 

for 0<11<'17/2 and 2i<R,<2i+1. For 'I1/2<II<w or 2i-I<R,<2i, the maximum and 
minimum values for P" are reversed. Substituting Eqs. (16-133) and (16-135) into Eq. (16-123) 
yields Eq. (16-124). 
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For the case where R, approaches. an integer, Eq. (16-133) shows that p. approaches 2'11/"'_ 
for all n; i.e., the spin rate variation becomes smaU with respect to the other approximations. The 
same phenomenon ocaus as f3 approaches 'II /2. For either of these cases, simulations are 
necessaI)" to determine the spin rate variation arising from the second-order effects neglected 
above. 

The phase, 1/1, of L in the spac:ec:raft coordinate system at the time of a 
maximum spin period measurement is determined from Eq. (16-134) and is 
summarized as foUows: 

2n-1 < R/<2n 
2700 -180R/ 
900 -180R/ 

2n< R/<2n+ I 
900-180R/ 
2700-180R/ 

Note that 1/1 is measured cloc:kwise from the + y axis so that in terms of the 
azimuth, ~ (measured countercloc:kwise from the Sun sensor slit plane or the x axis) 
a maximum oc:curs at either 1/1=270°-180° RI = 90° -Eor at €= -180°+ 180° RI . 

The variation in the S'JD angle for a symmetric spacecraft may also beused to 
determine the phase of L in the body coordinate system. Applying Eq. (12-20) to 
the Sun vec:tor, S, gives the z component of S in the body frame as 

Sz = cos Pm = sinp sin fJ sin 4> + cospcos(J 

~fJsinpsin4>+cospcos(J (16-1-36) 

Substituting from Eq. (16-126) for 4> and from Eq. (16-128) for t at a Sun sighting, 
we have 

sin 4> = sin [( R/c.'zI. - 1/10)+ 1/10+4>0 + "'zt.] 

=sin[ - 1/I+"'z8t.]~sin( - 1/1) 

where Eq. (16-127) has been used to identify -1/1. Thus, 

cosPm~- (J sinp sin 1/I+cospcos(J 

(16-137) 

(16-138) 

which shows that Pm varies with the period of 1/1, and is a maximum when 1/1=90 
deg (~=O) and a minimum when 1/1=270 deg (~= 180 deg) for a slit in the x-z 
plane. This verifies the statement made earlier that the period of oscillation of the 
measured Sun angles for a symmetric spacec:raft which measures the Sun angle 
only once per spin period is that of 1/1. 

The spin period variation observed from an asymmetric satellite depends on 
the orientation of the slit relative to the x and y axes. A convenient approximation 
based on a number of simulations with a dynamics simulator (ADSIM, described 
"by Gray, et al., [1913] is 

(Jmax 
AP= 1800 cotpsin(180° RI )Rp(E) (16-139) 

where AP is defined by Eq. (16-123), (JmtlX is the maximum nutation angle in 
degrees, and R/ is defined by Eq. (16-121). Rp has the approximate analytic form 

( 1+R,) (1-R,) R/i= -2- + -2- cos~ (16-140) 
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and can be obtained more accurately either from Fig. 16-9 or by solving Eq. 
(16-118). 

Note that Rp has the opposite dependence on ~ h:om that observed with the 
Sun angle variation. (See Eq. (16-119).) That is, the maximum spin period variation 
occurs for a sensor on the x axis (Ill < Iy), whereas the maximum variation in Sun 
angle occurs for a sensor on the y axis. Simulations have shown that Eq. (16-139) 
holds for (J< 10 degand (J«P, but that the spin rate variation does not go to zero 
as the Sun angle approaches 90 deg as Eq. (16-139) indicates. For a specific 
spacecraft, simultations are recommended to obtain a more accurate relationship 
between llP and (J. Similarly, simulations are necessary to determine the orienta
tion of L at the measurement of the maximum spin period because of the complex 
relationship between the variations of .j, and the geometrical effects observed in the 
Sun angle variation. 

To illustrate the usefulness of the spin period variation, consider the spacecraft 
in the previous example. For those moments of inertia R;'=0.35, RJ =O.442, and 
(from Fig. 16-9 or Eq. (16-140» Rp=O.915 for ~=30 deg. Assume Pm=50 deg and 
the observed spin period ranges between 6.0288 sec and 5.9707 sec; then 

. (J 

llP=4.84x 10-3 = I~: cot(500)sin(79.56°)O.9l5 

or (Jmax = 1.15 deg. 

16.4 Flexible Spacecraft Dynamics 

Roger M. Davis 
Demosthenes DWens 

Flexible bOdy dynamics becomes significant when the natural frequencies of 
flexible spacecraft components have the same magnitude as spacecraft rigid body 
frequencies due. to either librational motion of a gravity-gradient stabilized 
spacecraft (Section 18.3), nutation of a spin-stabilized spacecraft (Section 16.3), or 
control system response of an actively controlled spacecraft. (Section 18.3). The 
lowest natural frequencies of flexible components should be at least an order of 
magnitude greater than the rigid body frequencies· before flexibility can be safely 
neglected. 

The uncoupled lowest natural frequency, I, of a typical experiment boom with 
an end mass, M, extending from Ii compact, nonspinning central body can be 
estimated by the following equation, derived from linear beam theory: 

. I 
Ir::::.-2'IT 

3El Hz 
(M +0.243 p/)/3 

(16-141) 

where E is the Young's modulus of the boom structural material, I is the area 
moment of inertia of the boom cross section, p is the boom mass density per unit 
length, and I is the boom length. The product EI is the ben4ing stiffness, which can 
be computed or obtained from. ~xperimental results. Typical values range from 6.0 
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N·m2 for a very flexible antenna element such as those on the RAE, to 170 N·m2 

for stiff spin axes booms on spinning spacecraft. 
When the estimated natural frequencies of flexible components are close to the 

rigid body frequencies, a more detailed analysis of flexibility effects is warranted. 
Deformations in very flexible spacecraft will strongly influence the magnitude and 
distribution of external and internal forces. Because the internal dynamics can be 
highly nonlinear. a rigorous time history simulation of the spacecraft system is 
required to predict attitude motions. 

The need for simulation of flexible spacecraft dynamics depends on the 
attitude determination accuracy required because all spacecraft are flexible at some 
level. For attitude data, flexibility effects will be exhibited as either superpositions 
of a high-frequency signal or as the dominant portion of the attitude motion, 
depending on the flexibility of the system. Therefore. it is important to compare the 
effects of flexure with the attitude requirements and with sources of error other 
than flexibility. Attitude determination errors can be present in highly flexible 
spacecraft because of the relative motion between the attitude sensors and experi
ments that require precise attitude measurements. Such systems may require. 
additional sensors to determine the position of the experiment relative to the prime 
sensor. 

Flexible cqmponents interact with the spacecraft attitude control system by 
superimposing deflections and accelerations on the average measurements made by 
attitude sensors and rate gyros. Consequently, the control system can give er
roneous command signals that could destabilize a spacecraft. Flexibility can also 
move the instantaneous center of mass and moments of inertia and thereby induce 
unexpected resPonses to command control torques. 

16.4.1 Flexibility Effects on Spacecraft Attitude Dynamics 

A quantitative analysis of flexible spacecraft attitude dynamics is beyond the 
scope of this section. (See, for example, the conference proceedings edited by 
Meirovitch [I 977D· However, we will discuss specific effects in general terms to 
make the reader aware of the various phenomena t.hat may occur. A particularly 
good review and bibliography is presented by Modi [1974]. 

Gravity-Gradient Forces. Gravity-gradient forces are both space- and time
dependent when acting on long flexible components such as the RAE antenna 
booms. When large. the deformations cannot be treated by simple linear methods 
because of the change in loading as the boom deforms. Time-dependent loading is 
induced by libration of the spacecraft resulting from orbital eccentricity. Large 
deformations will change the principal moments of inertia of the spacecraft system 
and influence the observed attitude motions. However. axial tension due to 
gravity-gradient forces can significantly increase the effective bending stiffness. 
thereby raising the natural frequencies. 

Solar Heating. Temperature gradients due to unequal solar heating can cause 
warping of spacecraft structures. The effect on the spacecraft attitude depends on 
the time history of the solar energy input, structural properties (including cross-
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section geometry), thermal expansion coefficients, thermal conductivity and diffu
sivity, and surface properties (absorptivity and emissivity). In a fully sunlit orbit, 
solar heating on an Earth-pointing spacecraft can cause a bias in the attitude or 
induce attitude motion with a frequency equal to the orbit rate. As a satellite passes 
in and out of the Earth's shadow, transients can be induced by the step changes in 
thermal loading. The significance of these transient loadings will depend on' 
whether the flexible spacecraft has natural frequencies that are close to multiples of 
the orbital frequency. 

Some early spacecraft (Naval Research Laboratory's gravity-gradient satelli~e 
164 (Goldman, 1974] and 000 IV and V (Frisch, 1969]) experienced' stability 
problems that were attributed to solar thermal deformations. These problems have 
generally been overcome by designing deployable elements for minimum tempera
ture gradients and increasing their torsional stiffness. Thermal effects can still be 

,important, however, if the attitude is critical for experiment sensors on the end of a 
long boom. The attitude change, 8, at the end of a boom due to a temperature 
gradient can be approximated by 

atlT 
tan(}~dl 

where a is the coefficient of thermal expansion of the boom material, tl T is the 
temperature difference across the boom, d is the boom diameter, and I is the boom 
length. Typically, a is of order of 1.8 x lO-s cm/(cmOK) and tlT is in the range 
0.3°K ~ LlT ~ 0.8°K. 

Temperature gradients in spinning spacecraft are generally not important due 
to the averaging effect of the spin rate. However, perturbations due to thermal lag 
could develop when experiment booms have a long thermal time constant and are 
shadowed by the spacecraft body once per spin period. 

Deployment Dynamics. Coriolis forces are developed during boom develop
ment as a result of the deployed components moving relative to the body axes with 
a deployment velocity, v, and the body axes themselves rotating at an angular rate 
o with respect to an inertial frame. The Coriolis acceleration, 20 x v, during 
deployment reduces the spin rate and deforms flexible appendages in a direction 
opposite the direction of rotation. When deployment stops, the restoring forces due 
to strain, centrifugal, and gravity-gradient forces will cause the flexible elements to 
oscillate in phase about an equilibrium position. A periodic motion will therefore 
be superimposed on the spin rate. The persistence of this motion will depend on the 
effectiveness of structural damping or boom damper devices. 

Solar Pressure. Solar torques (Section 17.2) are modified in flexible 
spacecraft by the change in the instantaneous angle of incidence of the solar 
radiation due to deformations. The differential force acting on a mass element of a 
flexible member is proportional to the cosine of the local instantaneous angle of 
incidence. For very flexible spacecraft, the dynamical system is nonlinear, because 
~he loading becomes a function of the deformation. In addition, spacecraft defor
mations can induce solar prelSure torques due to the shift of the center of pressure 
from the center of mass. For most satellites ~t low or intermediate altitudes (up to 
6500 kmF solar torques due to spacecraft flexibility are negligible when compared 
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with gravity-gradient torques. At synchronous altitude, however, solar pressure can 
have a significant impact on the stability of gravity-gradient stabilized spacecraft. 

Aerodynamic: Drag. Deformations of flexible spacecraft modify rigid body 
aerodynamic torques in a manner analogous to solar pressure torques. Again, the 
magnitude of a differential force acting on a mass point is a function of the 
instantaneous angle of incidence of the air stream. Below 500 km, aerodynamic 
drag forces can induce significant deformation on highly flexible Earth-pointing 
spacecraft. The shift of the center of pressure from the center of mass due to the 
deformation may induce destabilizing torques that could tumble nonspinning 
spacecraft. Spinning spacecraft with transverse wire booms will tolerate high 
aerodynamic pressures if spin rates are at least 5 rpm. Aerodynamic forces will 
deform the wire ·booms; however, simulations have demonstrated that the energy 
absorbed during half a revolution is removed during the other half of the revolu
tion. Spinning spacecraft in low-perigee orbits will exhibit boom oscillations but 
insignificant attitude perturbations due to aerodynamic drag. 

System Frequencies and Modes. Spacecraft with more than one flexible 
boom have system frequencies that depend on the phase relationship of boom 
displacements with respect to each other. The system frequencies and modes are 
not the same as structural bending modes because they are a combination of all 
flexible element modes. Antisymmetric modes will induce rotation of the central 
spacecraft body that will be detected by attitude sensors, as shown in Fig. 16-12. 
Symmetric modes do not couple to attitude motion. Hence, large symmetric 
element deformations cannot be sensed by attitude sensors alone. Additional 
position sensors are necessary when information concerning the deformed shape of 
an experiment boom is critical to its performance. 

LOCAL VEFITICAL 
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Fig. 16-12. Sysu:m Modes of a Gravity-Gradient Stabilized Spacecraft With Flexible Booms. f, is the 
pitch angle. 

Attitude Perturbations Due to Thrusting. The dynamic response of a flexible 
spacecraft to thrusting can result in undesirable perturbations of the spacecraft 
attitude. For example, the location of the center of mass. within the spacecraft may 
be time dependent due to deformational motion. Accordingly, the thrust from 
body-fixed nozzles used for orbit adjustment will induce both rotational and 



552 AlTITUDE DYNAMICS 16.4 

translational motion because the thrust vector will not pass through the instan
taneous center of mass at all times. The rotational motion perturbs the attitude and 
changes the direction of the thrust vector. 

Thrusting for attitude adjustment will cause deformation of transverse booms 
out of the spin plane. Repeated pulses can cause a buildup of deformations 
depending on the phasing of the pulses and deformations and may result in large 
attitude motions about the nominal rigid body orientation. 

16.4.2 Modified Equations of Motion 

The complexity of the flexible spacecraft equations of motion is increased by 
the additional degrees of freedom required for structural deformations and the 
coupling between translational, rotational, and deformational motion. Several 
methods for derivation of the equations of motion for computer simulation of 
flexible· spacecraft are given by Likins [1970]. The generalized system mass matrix 
formulation is presented to illustrate the type of system equations encountered in 
the simulation of a flexible spacecraft. 

These equations are appropriate for a rigid spacecraft with flexible solar panels 
and antennas and, possibly, a set of momentum Wheels within the rigid structure, 
as shown in Fig. 16-13. 

Fig. 16-13. Rigid Spacecraft with Flexible Solar Panels and Antenna and Momentum Wheels Within 
the Rigid Structure 

To specify the spacecraft structure and. motion, we define the following 
quantities: the mass, m, and the moment of inertia, /, of the complete spacecraft in 
an equilibrium configuration; the location, r, and velocity, v, of the center of mass 
of the complete flexible spacecraft in its rigid frame of reference; the angular rate, 
c.J, of the rigid spacecraft and the four-component attitude quatemion, q, defined in 
Section 12.1; the n-vectors 

(16-142a) 

(16-f42b) 

which provide the modal coordinates and velocities of the flexible spacecraft 
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[Goldstein, ]950). Here. n is the number of generalized coordinates which describe 
the small oscillations of the spacecraft due to its flexibility. In addition, we 
introduce the component vectors 

YI=(~) 

PI =( N-:XL,OI ) 

(16-143) 

(16-144) 

where F is the total external force and N is the total external torque acting on the 
spacecraft of total angular momentum L

IOI• There may also be generalized forces 
driving the normal modes, which will be represented by the n-vector P2. FinaUy, we 
introduce the n X n diagonal damping matrix, Cll;the n X n diagonal stiffness 
matrix, K22 ; and the (n+6)X(n+6) system mass matrix, M, which is formed from 
four matrices, as follows: 

(16-145a) 

The 6 X 6 matrix Mil is 

M -[ ~ ~ ~ : 0] (16-145b) 
11= Q-g-~-:1 

and the n x n matrix M22 is diagonal and can always be reduced to the identity 
matrix by proper formulation of the equations of motion. The 6Xn matrix M'2 

provides the interaction between the flexible modes and the rigid spacecraft and 
M21 == MJ~. The matrices M, C22, and Kll are obtained from a dynamic analysis 
and derivation of the equations of motion for a flexible spacecraft (see, for 
example, Heinrichs and Fee []972D. 

In terms of the quantities above, the equations of motion for a flexible 
spacecraft are 

rev 

X=Y2 

MlIy+ M12Y2=P,-b, 

(14-I46a) 

(16-I46b) 

(16-146c) 

(16-146d) 

M21y, + MnY2=P2- C22Y2- Kllx2 (16-146e) 

where the 4x4 matrix n(",) is defined by Eq. (16-26). The 6-vector hI refers to the 
moving parts of the spacecraft with respect to its rigid frame of reference. If the 
only moving parts are the wheels, h, has the form hI =(O,O,O,hT), where the 
3-vector h is the angular momentum of the wheels with respect to the rigid 
spacecraft. From Eq. (16-144) we see that PI depends on the spacecraft total 
angular momentum, L,01' which is given by 

(]6-147a) 

---~ 
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where 

[ (MOJ,] 
Ljr.x. mtJdn == ( M J2)s Y2 (16-147b) 

(MI2)6 

Here, (Mil); is the ith row of the matrix M 12. Note that L,ol consists of three terms: 
the first term gives the angular momentum of the rigid spacecraft, where the 
moment of inertia, I, includes the mass of the wheels, the solar panels, and the 
antenna; the second term is the angular momentum of the wheels with respect to 
the spacecraft; and the third term is the angular momentum due to the· flexible 
modes. Note that Eq. (16-146b) is identical with Eq. (16-3) and Eq. (16-147a) is an 
extension of Eq. (16-52) for the case of a flexible spacecraft. 

Equations (16-146) and (16-147) form a complete set of equations of motion 
for the flexible spacecraft. In this representation, the state vector, x),, of the flexible 
spacecraft is ' 

(16-148) 

It follows from Eq. (16-146d) that in the above representation, information 
must be provided on the time derivative of the six-vector hI to solve the equations 
of motion. However, the available information is often the tim4: dependence of hI 
itself. In this case, it is convenient to work in a different representation where the 
spacecraft state vector is ! 

The 6-vector LI and n-vector ~ are 

LI==MIIYI+ MI2Y2+ hl 

~==M2IYI+M2iY2 

(16-149) 

(16-15Oa) 

(16-150b) 

We will show that the equations of motion for XL do not involve the time derivative 
of hI' Also, in the absence of any generalized forces, the vectors LI and ~ are 
conserved. Thus, physical meaning can be attributed to the various vector com
ponents. In partiCUlar, the last three components of LI are the components of the 
total angular momentum of the flexible spacecraft, LIO/ (see Eq. (16-147». To 
obtain the equations of motion for LI and ~, Eq. (16-150) must be solved with 
respect to YI and Y2' The result is 

YI =( MII - MI2Mi.2 IM21) -I[LI-h l - MJ'1.Mi.2I~] 

Y2=(Mn- M2IMi"j'MI2) -'[ - M2IMil'(LI-hl)+~] 

Using Eq. (16-150), Eqs. (16-146d) and (16-146e) reduce to 

L1=P, 

Lz=P2 - CW2 - Knxz 

(16-15Ia) 

(16-15Ib) 

(16-152a) 

(l6-i52b) 

where Y2 is given by Eq. (16-151b), and the angular rate term, t.l, in PI (see Eq. 
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(16-144» is given by 

'" = I - I [L,o' - b - Lpe". moths] (16-IS3) 

This follows from Eq. (16-147a). We see that the new equations of motion, namely 
Eqs. (16-146a), (16-146b), (16-146c), (16-IS2a), (16-IS2b), together' with Eqs. (]6-
15Ib), (16-IS3), and (16-147b) involve only components of the state vector XL' and 
the time derivative of hI is not present. Note that the equations of motion of the 
state vectors Xy and XL are equivalent and should lead to identical solutions. 

The equation of motion for the total angular momentum can be obtained from 
Eq. (16-152a) as . 

t,o, = N - [ I -1(L,o, - b - L/"".mowtn) ) X Lrol (]6-]S4) 

This relation and Eq. (16-IS3) are extensions of Eqs. (I6-SS) and (I6-S3) for the 
case of a flexible spacecraft. 

In Eq. (16-15Ib), inversion of the nXn matrix M22-M2IMI,IMI2 is required. 
However. the useful matrix identity, 

(M22 - M2IMIIIMI2) -I = M2ZI- Mii IM21(MII - M I2Mii IM2I) -IMI2Miil 

(16-]S5.> 

may be used to reduce this to inversion of only 6x6 matrices. Moreover, substitut
ing Eq. (16-155) into Eq. (16-15Ib) and noting that M 22 =I, we obtain 

Y2=L2- M21 { [I-(M II - MI2M2I)-IMI2M2I] X Mljl(LI-bl ) 

+(MII - M 12M 21)-1 MI2~} (16-IS6) 

Thus, we have replaced the multiplication of an n X n matrix by an n X I vector 
involving n2 multiplications, with multiplication of a 6 X n matrix by an n X I vector 
and an n X 6 matrix by a 6 X I vector. This involves only 12n multiplications. Thus, 
for complex systems, Eq. (16-157) should take the place of Eq. (16-ISlb) in the 
equations of motion for the state vector XL' 

16.4.3 Characteristics of Various Flexible Spacecraft 

Flexibility effects for some past and future spacecraft are summarized in Table 
16-2. The satellites are excellent examples of large flexible spacecraft [Blanchard, el 

01., 1968] (see Fig. IS-18). They are gravity-gradient stabilized by four 230-m-long 
antenna booms. The antenna booms have a double-V configuration with a nominal 
included angle of 60 deg. Librational motions are damped by a libration damper' 
that is skewed a nominal 66.5 deg from the plane of the antennas. The estimated 
oscillation period of the RAE-I antenna booms is 91 minutes using linear beam 
theory. Because the orbital period is 224 minutes, flexibility effects are obviously 
important. The equilibrium deformation due to gravity-gradient forces is on the 
order of 50 m. Hence, the linear beam theory is not adequate and detailed 
simulation is necessary. Axial tension due to gravity-gradient forces also increases 
ilt:nding frequencies. During a dynamics experiment performed on RAE-I, two 
distinct short-period oscillations of 19 and 6 min (corresponding to antisymmetrical 
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Table 16-2. Typical Spac:eaaft Flexibility Characteristics. "X" indicates a potentially significant mode. 
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SPACECRAFT FLEXIBILITY CHARACTERiSTICS 
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TW09&mOAMPER800MS. EI.l.'lN·m2• p.20.2a1n11 

FOUR Gt·m TRANSVERSE BOOMS. lEI .. 7.11 N· m'.OVEALAPPED.p -20Bglrn 

TWO 6.'-mSPlN AXIS BOOMS. EI" '.17N . m2 .INTERlOCKED.p-20Bglm 

FOUR 810m WIRE TRANSVERSE BOOMS. IE, - 0.1'· 89 g1m. END MASS -38 
TW06'-mSP.N AXIS BOOMS. lEI- 7.11N· m'.INTERLOCKED,,, -20Bglm 

FOUR 61-m WIRE TRANSVERSE BOOMS. 1E1- O.IJ II 8'&2 tim, TiP MASS .. 39 

TWO 6.'"," SPIN AXIS BOOMS 

FOUR 61-m TRANSVERSE WIRE BOOMS. £1 - D.D" 8.B3g1m, END MASS" 0.113 kg 

X TWO 7.6,," SPIN AXIS BOOMS. EI- 1200-1800 N·m',,, .. B2a1m 

CTS SOLAR PADDLES 1 3 If 7.6 m. CLOSED·LOOP CONTROL SYSTEM. MOMENTUM 
WHEELS. AND THRUSTERS 

SEASAT SOLAR PADDLES 1615 rn2" SYNTHETIC APERTURE RADAR ANTENNA 12 BY 10 m' 

X REACTION WHEELS. O.s.oEG"POINTING ACCURACV 

SSS-A TWO 7.7-m FIBERGLASS TAPERED BOOMS. EI - 2$ N om2 .p - 32O"rn 

system modes) were superimposed on the longer period librational motion [Lawlor, 
et al., 1974]. By exciting antisymmetrical modes, the properties of the flexible 
booms could be deduced from attitude data and, hence, the antenna configuration 
during the steady state could be determined. The modified shape had a significant 
influence on the interpretation of radio astronomy scientific data. 
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CHAPTER 17 

ATfITUDE PREDICflON 

17.1 Attitude Propagation 
General Techniquea. Inregrrnion Methods 

17.2 Environmental Torques 
Gracity-Gradient Torque, Solar Radiation Torque, 
Aerodynamic Torque. Magnetic Distlll'bance Torque 

17.3 Modeling Internal Torques 
11.4 Modeling Torques Due to Orbit Maneuvers 

Thrust Vector Collinear ~th the Spin Axis, Thrust Vec
tor Not Collinear With Spin Axis ,but Nominllily Passing 
Through Sp4CecTQjt CenJo of Mass 

To meet spacecraft attitude determination and control requirements, we must 
frequently predict the attitude motion for a given set of initial conditions. This 
requires specifying the differential equations governing the attitude motion and a 
method of solution. The general methods used for attitude prediction, given 
appropriate torque models, are discussed in Section 17.1. The necessary modeling 
of the environmental and internal torques is described in Sections 17.2 and 17.3. 
Torque modeling during orbit maneuvers is discussed in Section 17.4. 

.....• 

17.1.1 General Techniques 

17.1 Attitude Propagation 

C. B. Spence, Jr • 
F. L. Markley 

To model or predict the time evolution of the attitude, two basic methods are 
used: dynamic modeling and gyro modeling. Dynamic modeling consists of integrat
ing both the dynamic and the kinematic equations of motion (see Section 16.1) 
using analytical or numerical models of the torque. Gyro modeling consists of using' 
rate sensors or gyroscopes to replace the dynamic model such that only the 
kinematic equations need be integrated. 

The dynamic equations of motion of a rigid spacecraft are given by Euler'S 
equations as 

d 
d,L=NDlsT+NcoNTRoL -",xL 

L= I", 

(17-la) 

(17-lb) 

where 1 is the moment of inertia tensor and '" is the spacecraft angular velocity 
vector. The time derivative is taken and the vectors are resolved in a body-fixed 
coordinate system. The terms ND1ST and NCONTROL are the disturbance and control 
torques, respectively, acting on the spacecraft. The kinematic equations can be 
written in differential form using the 'quaternion representation of the attitude (see 
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Secuon 12.1 and Appendix D) as 

where 

0 

g= -~3 

~2 

-~J 

dq I 
-=-gq 
dl 2 

~3 -~2 

0 ~J 

-~J 0 
-~2 -~3 

(17-2) 

~J 

(17-3) 
~2 

~3 

0 

The quatemion representation is generally prefered to the Euler angle representa
tion because of its analytical characteristics. 

As the dynamic complexity of the spacecraft increases, each degree of freedom 
must be represented by its appropriate equation of motion. For example, in
corporating momentum or reaction wheels for attitude stability and maneuvering 
adds additional degrees of freedom. Momentum wheel dynamics can be included 
as an addition~1 term in Euler's equations and an additional equation of motion for 
the wheels themselves. For this case, Eq. (17-1a) is rewritten as 

d 
dt (/(0)= N D1ST+ NCONTROL -(0) X /(0)- [(o)Xh+ N WHEEL ] (1l4a) 

L=/(o)+h (17-4b) 

where h is the total angular momentum of the reaction wheels and NWHEEL is the 
net torque applied to the momentum wheels, which is a function of bearing 
friction, wheel speed, and applied wheel motor voltage. The equation of motion of 
the wheels is 

(17-5) 

The dynamic and kinematic equations of motion are taken as a set of coupled 
differential equations and integrated using one of the methods described in Section 
17.1.2. The integration state vectorconsists of the three angular velocity body rates 
or angular momentum components, the attitude quaternion, and any additional 
degrees of freedom due to non rigidity (wheels, movable and flexible appendages, 
rastering instruments, etc.) Alternatively, for spacecraft which have a set of gyros 
as part of their attitude determination hardware (Section 6.5), the gyro assembly 
performs a mechanical integration of Euler's equations (irrespective of whether the 
spacecraft is rigid or flexible), and consequently only the kinematic equations 
require numerical integration. The gyro package flown aboard a spacecraft usually 
consists of three or more gyros which are capable of measuring the spacecraft's 
angular rates. The discussion of the gyro model used to compute the spacecraft's 
angular velocity from the gyro measurements is described in Section 7.8.2. The 
attitude propagation problem is diminished for spacecraft which fly a gyro plick
age; in many cases, however, the calibration of the gyro model (see Section 6.5) can 
be a significant part of the attitude determination problem. 
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17.1.2 Integration Methods 

Once the appropriate differential equations for attitude propagation have been 
established, it is necessary to choose a method for solving them. Because exact 
closed-form solutions of the complete equations to be integrated are almost never 
available, an approximation method is needed. Two methods are disl;ussed in this 
section: direct integration using s.tandard methods of numerical analysis, and a 
method for the kinematic equations using a closed-form solution of the equations 
with constant body rates. 

Direct Integration. The equations of motion of attitude dynamics are a set of 
first-order coupled differential equations of the form 

dy 
dl =f(/,y) (17-6) 

where f is a known vector function of the scalar I and the vector y. In this section, 
we will consider for simplicity the single differential equation 

dy 
dt = f(/,y) (17-7) 

The extension to coupled equations is straightforward, with a few exceptions that 
will be pointed out. 

Numerical algorithms will not give the continuous solution y(/), but rather a 
discrete set of values Yn' n = 1,2, ... , that are approximations to y( I) at the discrete 
times In = 10 + nh. Values of y( I) for arbitrary times can be obtained by interpola
tion. (For interpolation procedures, see, for example, Carnahan, el al., [1969]; 
Hamming (1962]; Hildebrand (1956]; Ralston [1965]; or Henrici [1964].) The 
parameter h is called the slep size of the numerical integration. A minimum 
requirement on any algorithm is that it converge to the exact solution as the step 
size is decreased, i.e., that 

( 17-8) 

where the number of steps, n, is increased during the limiting procedure in such a 
way that nh = In - 10 remains constant. 

Three important considerations in choosing an integration method are trunca
tion error, roundoff error, and stability. Truncalion error, or discrelizalion error, is 
the difference between the approximate and exact solutions Yn - y(ln), assuming 
that the calculations in the algorithm are performed exactly. If the truncation error 
introduced in any step is of order hP+ I, the integration method is said to be of 
order p. Roundoff e"or is the additional error resulting from the finite accuracy of 
computer calculations due to fixed word length. An algorithm is unslable if errors 
introduced at some stage in the calculation (from truncation, roundoff, or inexact 
initial conditions) propagate without bound as the integration proceeds. 

Truncation error is generally the limiting factor on the accuracy of numerical 
integration; it can be decreased by increasing the order of the method or by 
decreasing the step size. It is often useful to vary the step size during the 
integration, particularly. if the characteristic frequencies of the problem change 
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significantly; the ease with which this can be done depends on the integration 
method used. The computation time required is usually proportional to the number 
of junction evaluations, i.e., evaluations of J,,=:: /(t",y,,) that are required. It is clear 
that decreasing the step size increases the number of function evaluations for any 
fixed integration algorithm. 

Two families of integration methods are commonly employed. In one-step 
methods, the evaluation of y,,+J requires knowledge of, only y" and j". Multistep 
methods, on the other hand, require knowledge of back oolues yJor h for some j < n 
as well. One-step methods are relatively easy to apply, because only Yo and /0 are 
needed as initial conditions. The step size can be changed, as necessary, without 
any additional computations. For these reasons, one-step methods are widely used. 
The most common one-step methods are the classical R-stage Runge-KUlta methods 
[Lambert, 1973J 

Y,,+.J =y" + hq,(t .. ,y",h) 

R 

q,(t,y,h)= ~ crkr 
,=) 

R 

~ cr=I 
,=) 

kJ=/(t,y) 

r=2,3, ... ,R 

(17-9a) 

(17-9b) 

(17-9c) 

(17-9d) 

r=2,3, ... ,R (17-ge) 

(17-9f) 

where different choices of the parameters c, and bn (subject to the constraints of 
Eq. (17-9c) define different methods. The increment junction, q" is a weighted 
average of R evaluations of /(t,y) at different points in the integration interval. 
Note that an R-stage method involves R function evaluations. The constants are 
always chosen to give the maximum order (and thus minimum truncation error) for 
a given R; this order is R for R=I,2,3,4; R-l for R=5,6,7; and <R-2 for 
R ;> 8 [Butcher, 1965J. For this reason, fourth-order four-stage Runge-Kutta 
methods are the most popular. It requireS much tedious algebra to derive the 
relations among the parameters of a four-stage method that make it of order 4. 
This derivation leaves' two free parameters, resulting in a twofold infmity of 
fourth-order methods1Ralston, 1965]. One popular choice is· 

(17-10a) 

• This method reduces to Simpson's rule 

Y.+I""Y.+ ~[f(tJ+4.t{t.+ !h)+f{t.+h)] 

if f is independent of y. 
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kl = f( 'n.Yn) (17-lOb) 

k2= i{ln+ ih,Yn+ ihkl) (17-IOc) 

k3= f(ln + ih.Yn+ ihk2) (17-IOd) 

k4 = f( In + h.Yn + hk3) (17-10e) 

This is the algorithm implemented in subroutine RUNGE in Section 20.3. The 
chief drawback of Runge-Kutta methods is the many function evaluations required 
per integration step. 

We now turn to a discussion of multistep integration methods. A k-slep 
multistep method has the form 

k k-J 

Yn+l=h ~ fJJn+l+j-k- ~ Cljln+l+j-k (17-11) 
j=O j=O 

where different choices of the parameters Clj and ~ define alternative methods. 
Depending on the choice of these parameters. a k-step method requires up to k 
back values of J,. and Yn' One drawback of these methods is that they are not 
self-starting; some other method, often Runge-Kutta. must be used to calculate the 
first k values of Yn and fn. Another disadvantage is that step size changes are more 
difficult than for single-step methods; additional back values must be available if 
the step size is increased, and intermediate back values must be calculated by 
interpolation if the step size is decreased.· A third penalty is increased computer 
storage requirements. The chief advantage of multistep methods is that only one 
function evaluation is needed per integration step. 

A multistep method is explicit if fJk = 0 and implicit if fJk .". O. Implicit methods 
may appear to be of dubious value, because they apparently require a knowledge of 
fn+ 1 = J(tn+ I,Yn+ I) to evaluate Yn+ I' If the original differential equation is linear, 
however, 

J(I,y)=A (/)y + 4>(/) (17-12) 

an implicit method can be used directly. yielding 

Yn+ 1 = [1- hfJkA (In+l)rl[hfJkct>(ln+I)+ h kil 
fJJn+l+i-k - ~I Cljln+l+i-k] 

j=O j=o 

(17-13) 

Such methods for linear differential equations are known as correct-only methods. 
for reasons that will be apparent shortly. If we are integrating a system of 
equations, A is a matrix and Eq. (17-13) requires evaluation of a matrix inverse. 
(The I in the first bracket becomes the identity matrix.) 

• An alternative procedure is to utilize the last k values of y. and f. that have been evaluated, regardless 
of step size changes, rather than requiring the back values to be at evenly spaced points. This requires 
inversion of a k x k matrix at each step to find the coefficients, and the stability properties of these 
methods are less wen understood than those of the conventional methods considered here !yong, 1974) 
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Implicit methods can be made to have smaller truncation errors and better 
stability properties than explicit methods [Lambert, 1973J, so it is desirable to have 
some method of finding/,,+ 1 to enable an implicit method to be used for nonlinear 
equations. The usual procedure is to use an explicit .method, known as a predictor, 
to calculate YII+ I' Then /,,+ 1 is evaluated and an implicit method, known as a 
co"ector in this application, is used to obtain a refined value of YII+ I' followed by a 
second evaluation of /,,+ 1 using the new YII+ I' Methods in this general class are 
caIled predictor-corrector methods. The mode of application descnDed above is the 
PECE (predict-evaluate-correct-evaluate) mode; it requires two function evalua
tions per step. It is also possible'to apply the correCtor more than once after a 
single use of the predictor, but analysis indicates that the PECE mode is preferable, 
and that decreased truncation error is better achieved by decreasing the step size 
than by multiple applications of the corrector [Lambert, I 973J. 

It can be shown that no convergent k-step method can have order greater than 
k + 1 if k is odd or k + 2 if k is even [Henrici, 1962J. However, methods of order 
k + 2 have poor stability properties, so k + 1 is the optimal order for practical k-step 
methods. The most commonly used k-step methods are the Adams methods, which 
are defined by choosing tlk-I = - I and tlj=O for j::/: k -I. These have good 
stability properties and reduced computer storage requirements compared with 
other multistep methods. One explicit Adams method, the Adams-Bashforth, has the 
form 

k-I 

YII+ I =YII+ h ~ PJ,,+I+j-k 
j-O 

(17-14) 

and is of order k. An Adams-Moulton method is an implicit Adams method of 
order k + I, given by 

k 

YII+I=YII+h'~ PJII+I+J-k 
j=o 

(17-15) 

A widely used predictor-corrector pair is a p-step Adams-Bashforth predictor 
followed by a (p- J)-step Adams-Moulton corrector; both steps are of order p. 
One advantage of this pair is that the difference between the predicted and the 
corrected values of YII+ 1 gives an estimate of truncation error and can be used for 
step size control. This is in contrast to Runge-Kutta methods, for which step size 
changes are relatively easy, but estimates of truncation error are difficult to obtain. 
The fourth-order Adams-Bashforth-Moulton pair is given by 

Predictor (explicit): 

h 
YII+I=YII+ 24 (55111-59111_1+37/"_2-9/"_3) (17-16a) 

Corrector (implicit): 
h . 

YII+I = YII + 24 (9/"+1 + 19/.. -5/"-1 +/"-2) (17-16b) 

This is only an example; higher order methods are widely used and, unlike higher 
order Runge-Kutta methods, cost only additional storage space and not additional 
function evaluations. (See, for example, Hull, et a1., [1972] or Enright and HuD 
[I 976J.) 
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If values of yare needed at intermediate times and an Adams integrator is 
being used, it is convenient to employ an interpolation algorithm based on values 
of In rather than Yn' because the former already have to be stored for the integration 
routine. 

In either the Runge-Kulla or the predictor-corrector calculations, some of the 
function evaluations may be done approximately rather than exactly (by not 
recalculating torques, for example) to save computational effort. These are called 
pseudoevalualions, and are represented by E*, so one often reads of a PECE* mode 
of a predictor-corrector. 

In choosing an integration method. the factors of programming complexity, 
computer storage requirements, execution time, and computational accuracy must 
all be considered. For a specific application where the characteristic frequencies of 
the system are known to be nearly constant, a fixed-step method is indicated. If the 
step size is limited by variations in the driving terms rather than by integration 
error (noisy input and/or low-accuracy requirements) or if function evaluations are 
relatively inexpensive, a Runge-Kulla method is preferred-. If, on the other hand, 
the integration step is set by integration error (smooth input, high accuracy), or 
function evaluations are expensive, a predictor-corrector method is better. Adams 
methods are favored in this class because they combine good stability properties 
with relatively low computer storage requirements and programming complexity. 

If the characteristic frequencies of the system are not constant, a variable-step 
method should be used. A complete integration package in this class must include 
an algorithm for automatic step size variation, based on an estimate of local 
truncation error. Because predictor-corrector methods provide an automatic esti
mate of local truncation error, they are the preferred variable-step methods. The 
best general-purpose integration methods currently available are packages with 
variable-step and variable-order Adams-Bashforth-Moulton integrators (see Hull, 
el 01., (1972) and Enright and Hull (1976), which also include comparative tests of 
integration packages using a wide variety of test cases). 

Approximate Closed-Form Solution for the Kinematic Equation. As described 
in Section 17.1.1, when a set of gyros is part of the attitude determination hardware 
and the method of gyro modeling is used, only the kinematic equation need be 
integrated for attitude propagation. Wilcox (1967) and Iwens and Farrenkopf 
[1971) have presented a method of processing gyro data which yields an approxi
mate closed-form solution to the kinematic equation: If we assume that the gyro 
data is telemetered or sampled at a fixed rate and that the angular velocity vector 
in body coordinates is constant over the sampling interval, then a closed-form 
solution to the kinematic equation (Eq. (17-12» is 

q(ln+J)=efIVq(ln) (17-17) 

where T is the sampling interval (T= In+ .-In); Un is Eq. (17-3) evaluated at time 
In; q(ln) is the attitude quatemion at time I,,; and q(t,,+.) is the propagated attitude 
quatemion at time 1,,+ •• The validity of Eq. (17-17) as a solution to the kinematic 
equation can be established by differentiation. 

Equation (17-17) can be rewritten in a more convenient form for numerical 
computation by evaluating the matrix exponential using the procedures in Appen-
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dix C. (See Eq. C-79.) Specifically, 

( 17-18) 

where 

(17-19) 
and 1 is the identity matrix. 

For spacecraft gyros the sampling period is typically 100 to 400 nis. Because of 
the simplicity of Eq. (17-18), the closed-form solution has been used as( the 
kinematic integrator for onboard computers [Fish and Chmielewski, 1977]. The 
gyro system is usually a rate-integrating gyro package which provides an average 
angular velocity vector over the sampling period (see Section 6.5). The term inside 
the brackets in Eq. (17-18) is then an orthogonal rotation which retains the 
normalization of the propagated attitude quaternion. 

It remains to illustrate the general validity of the closed-form solution and the 
computational error. To assess the latter, the quatemion q(/,,+I) is expanded in a 

I· Taylor series about the time I" 

! ~ I~ 
q(1 )=q(/)+-T+--T2+... (17-20) 

,,+1 "dl 2 d/2 

By repeated use of the kinematic equation (Eq. (17-2», the Taylor series can be 
rewritten as 

[
I! T

2Sl! i T~ . ] i. 
q( t,,+ I) = 1 + 2" TSl" + --rr- + ~ + . .. q( I,,) + 4 Tlfi"q( I,,) 

+ [ I~ si"Sl" + 2~ Slnsin.] T 3q( I,,) + I~ T 3g"q( tn) + ... (17-21) 

The series of terms in the first bracket on the right-hand side of Eq. (17-21) is 
the Taylor series expansion of exp( iSln T]. The remaining terms constitute the error 
introduced for a sampling period T in assuming a constant body rate equal to "'n. 

In general, the rates are not constant, and information from a rate-integrating 
gyro package can be used to form the 4 X 4 matrix 

- 1 f'.+1 I . I" 2 Sl=- Sl(/)d/=Sl + -Sl T+ -Sl T + ... -T n 2" 6 n '. 
(17-22) 

The terms in Eq. (17-21) can be rearranged to yield 

[
It T2lj2 1 T3lj3 ] 

q(/,,+I)= l+2"Tlj+--rr-+~+ ... q(/,,) 

I· . + -[Sl Sl -0 Sl ]T3n(t)+·.· 48 nn nn "" (i7-23) 

The first of the two terms on the right-hand side is the Taylor series expansion 
of the closed-form expression 

(17-24) 
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which differs from Eq. (17-17) in using time-averaged rate information rather than 
instantaneous body rates. It can also be written in the form of Eq. (17-18). with 12 
replacing Un. Equation (17-23) shows that the error in this clostd-form expression is 
of order Tl and vanishes if Unsln=slnUn. or equivalently, if the vectors "'n and wn 
are parallel. Thus, the order Tl correction to the closed-form expression using 12 is 
zero if the axis of rotation is fixed, even though the rates may be time dependent. 

17.2 Environmental Torques 

C. B. Spence. Jr. 

As described in Section 17.1, attitude prediction requires a model of the 
environmental disturbance torques acting on the spacecraft. To numerically in
tegrate Euler's equations, the torque must be modeled as a function of time and the 
spacecraft's position and attitude. As listed in Table 1-2, the dominant sources of 
attitude disturbance torques are the Earth's gravitational and magnetic fields. solar 
radiation pressure, and aerodynamic drag. 

17.2.1 Gravity-Gradient Torque 

Any nonsymmetrical object of finite dimensions in orbit is subject to a 
gravitational torque because of the variation in the Earth's gravitational force over 
the object. This gravity-gradient torque results from the inverse square gravitational 
force field; there would be no gravitational torque in a uniform gravitational field. 
General expressions for the gravity-gradient torque on a satellite of arbitrary shape 
have been calculated for both spherical [Nidey, 1960; Roberson, 1961; Hultquist, 
1961) and nonspherical [Roberson, 1958b) Earth models. For most applications, it 
is sufficient to assume a spherical mass distribution for the Earth. If more accuracy 
is required, this may be obtained from the general potential function for the Earth 
given in Section 5.2. Alternatively, the effect of the Earth's oblate ness can be 
accou~ted for in the motion of the orbital plane [Hultquist, 1961; Holland and 
Sperling. 1969). 

In this section, we assume that the spacecraft's moment-oC-inertia tensor is 
known for some arbitrary body reference frame whose origin need not coincide 
with the spacecraft's center of mass and that the spacecraft is orbiting a spherical 
Earth. The gravitational force dFI acting on a spacecraft mass element dml located 
at a position R; relative to the geocenter is 

- p.R.dln. 
dF.= " (17-25) , R/ 

where p. == GM (1) is the Earth's gravitational constant. The torque about the space
craft's geometric center due to a force, dF;, at a position, r/, relative to the 
spacecraft's geometric center (see Fig. 17-1) is 

dN;=r;XdF;=(p+r;)XdFj (17-26) 

The vector p is measured from the geometric center to the center of mass and the 
vector r; is measured from the center of mass to the mass element dmj • The 
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gravity-gradient torque on the entire spacecraft is obtained by integrating Eq. 
(17-26) to obtain 

J J -"R; 
NGG= r;xdF;= (p+r;) X --3-dm; 

R; 
(17-27) 

The geocentric position vector for the ith mass element can be expressed in terms 
of the geocentric position vector of the origin of the body reference frame, Rs' as 

R;=Rs+r;=Rs+p+r; (17-28) 

For a practical artificial satellite R; = Rs + P + r;»p + r;; therefore 

" 
-3= ... -~=121 2R .. (p+r;) (p+r;)2]l-Z""" -3[ _ 3Rs.(p+r;)] R; (R, R,) Rs 1 + 2 + 2 ..... Rs I 2 

~ ~ ~ 

(17-29) 

Substituting Eqs. (17-28) and (17-29) into Eq. (17-21) and performing some 
algebraic manipulation, the gravity-gradient torque may be rewritten as 

"M • 3" J -,. ) NGG= -2 (R,xp)+ '3 (r;XRs)(r(Rs dm; 
Rs Rs 

(11-30) 

where f r;dm; = 0 by definition of the center of mass and M is the total mass of the 
satellite. Note that the first term is zero when the geometric center is chosen to be 
the center of mass. The integral in the second term may be r~tten in terms of the 
ll!oI!'epts of inertia. Defining the vectors r, and is along the body reference axes 
(X, Y,Z), the gravity-gradient torque (assuming p=O) can be expressed as 

3" [ - .] NGG= -3 RsX(I'Rs) 
Rs 

(17-31) 

where I is the moment-of-inertia tensor. From Eq. (17-31), several general 
characteristics of the gravity-gradient torque may be deduced: (I) the torque is 
normal to the local vertical; (2) the torque is inversely proportional to the cube of 
the geocentric distance; and (3) within the approximation of Eq. (17-29), the torqiJe 
vanishes for a spherically symmetric spacecraft. 
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Many spacecraft rotate about one of the ptinCipal axes. Because the transverse 
axes (the principal axes normal to the axis of rotation) are continuously changing 
their inertial position, it is convenient to replace Eq. (17-31) with the average 
torque over one spacecraft rotation period. Let the spacecraft spin about the Z axis 
with spin rate Cal. The body coordinate system at time t can be expressed in terms of 
an inertially fixed reference' frame Xo. Yo> and Zo at t = 0 as 

X= cos fJXo + sin fJ Yo 

Y= -sinfJXo+cosfJYo (17-32) 

Z=Zo 
where fJ = Call. The unit vector Rs can also be written as 

• ·0· ·0 
Rs2 = - Rs1smfJ + R .. 2cos fJ (17-33) 

• _·0 
R .. 3-Rs3 

·0·0·0 •••• 
where Rd , Rs2' and Rs3 are components of R .. along Xo. Yo. ,and Zo at 1=0. The 
instantaneous gravity-gradient torque from Eq. (17-31) is averaged over one spin 
period to obtain 

1 L2fT (NGG)s= 2'1i 0 NGG dfJ (17-34) 

Substituting Eqs. (17-31) and (17-33) into Eq. (17-34), the spin-averaged gravity
gradient torque becomes 

(17-35) 

where the products of inertia average to zero over the spin period. 
Some spacecraft consist of both an inertially fixed component and a spinning 

component. For example, the lower portion of the OS0-8 'spacecraft spins to 
provide gyroscopic stability while the upper portion, which consists of solar and 
instrument panels, is servo controlled to keep the panels pointing toward the Sun in 
azimuth. For ,such a composite spacecraft, Hooper (1977) has shown that Eq.' 
(17-31) can be used to calculate the gravity gradient torque along the principal 
body axes frame by defining an effective moment of inertia. For a composite 
satellite, with both spinning and inertially fixed components, the effective moments 
of inertia applicable to gravity-gradient torques are defined as 

(
I +1 ) IJ<J<=(/~, +p}MJ)+ J<J<s 2 YY .. +piMs 

(17-36) , 

I 
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where the subscripts S and I refer to the spinning and inertially fixed components, 
respectively. The moments of inertia on the right-hand side of Eq. (17-36) are 
defined about their respective component's center of mass. The symbols M and p 
are the total component mass and the distance of the component's center of mass 
from the center of mass of the composite structure. 

For some spacecraft, it is convenient to average the gravitational torque over 
an orbit to obtain the net angular momentum impulse imparted to the spacecraft. 
The magnitude of the time-averaged or secular torque is often needed for the 
design of attitude control systems (Hultquist, 1961; Nidey, 1961). The time 
averaged value of the gravity-gradient torque (NGG)o for an inertially fixed 
satellite is defined by integrating Eq. (17-33) over one orbit, 

(17-37) 

where p. is the mean anomaly which is proportional to the elapsed time. The 
integration can best be carried out by changing the variable of integration from the 
mean anomaly to the true anomaly (see Section 3.1): 

1 (2ft 2 
(NGG>o= In RsNGGdp 

2'1Ta~ 0 
(17-38) 

where e, a, and p are the orbital eccentricity, semimajor axis, and true anomal~, 
respectively. Because the spacecraft is inertially fixed, the body reference axes. X. 
Y, i. are constant and only R. is a function of P. This relation is 

a(l- e2) 

R, == IRsl = -:-I-+-e-c-o-s-p (17-39) 

Choosing a coordinate system (h,p,V such that it is the direction of the orbit 
normal, p is in the direction of perigee, and q = it X p, the components of Rs are 
given by 

Rsl =X 'pcosp+ X·q sinp 

R.2 =V 'pcosp+ V 'qsinp 

Rs3 = Z.p cos 11 + Z.q sinp 

(17-40) 

Substituting Eq. (17-40) into Eq. (17-38) and performing the integration, the 
average torque can be written as 

(NGG) 0= 3p. x[ (/yy -I" )(Z'h)(V 'h)+ Ixy(X'h)(Z'h) 
2a3.y(I- e2)3 

-lxz(X'h)(V ·h)+ Iyz{ (Z'b)2 - (V .h)2)] + v[ (/ .. - Ixx )(X.b)(Z.b) 

~-l 
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+Z[ (In -1)'}')(X.b)(Y ·b)+ I"A& .b)2 _(i'b)2) 

+ luCY .i.)(Z.i.)-lyz(X.i.)(Z.b)] 

17.2 

(17-41) 

If X, Y, and Z are principal body axes, then Eq. (17-41) reduces to 

3" [- - - ] (NGG)o= X(I),},-lzz )hzhy+Y(lzz-ln)h"hz +Z(In-I),},)hyh" 

2a~(I-' e2)3 
(17-42) 

where h", 11" and hz are the components of the orbit normal unit vector along the 
principal axes. 

From Eq. (17-42), we see that (I) if any principal axis is parallel to orbit 
normal, the secular gravity-gradient torque is zero and (2) if a principal axis is in 
the orbit plane, the secular gravity-gradient torque Will be along that axis. 

The secular gravity-gradient torque for a spin~stabi1ized satellite can also be 
calculated from Eq. (17-38). Substituting Eq. (17-35) into Eq. (17-38), the secular 
torque for a spinning satellite is given by 

[
" (1",,+ I)')') ] .' 

3" lzz- 2 
(NGG )= (217(I+ecos")(Rs'Z)(RsXZ)d" (17-43) 

..,.,..,. lo..l 3)0 
2'ITa-v(l-e~ 

Writing the unit vector Rs in terms of the true anomaly as Rs=pcos"+qsin,, and 
aSsuming that Z, p, and q are constant over one orbit, the average torque is 

" [ (I",,+l),},)] 3" lzz - 2 _ _ _ _ 
(NGG_) = (b·Z)(ZXh) (17-44) 

a~(I_e2)3 
From Eq. (17-44), we see that (1) the secular torque is perpendicular to Z and 

therefore does not alter the magnitude of the angular momentum; (2) the gravity
gradient torque causes the _SPin axis to precess in it cone about the orbit normal 
with cone angle ~=arccos(b·Z); and (3) the rate of precession of Z is proportional 
to sin(2~) and therefore is a maximum at ~=45 or 135 deg. 

17.2.2 Solar Radiation Torque 

Radiation incident on a spacecraft's surface produces a force which results in 
a torque about the spacecraft's center of mass. The surface is subjected to radiation 
pressure or force pet: unit area equal to the vector difference between the incident 
and reflected momentum flux. Because the Solar radiation varies as the inverse 
square of the distance from the Sun, the solar radiation pressure is essentially"" 
altitude independent for spacecraft in Earth orbit. The major factors determining 
the radiation torque on a spacecraft are (1) the intensity and spectral distribution: 

.of the incident radiation, (2) the geom~try of the surface and its optical properties, " 
and (3) the orientation of the Sun vector relative to the spacecraft. 
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The major sources of electromagnetic radiation pressure are (I) solar illumina
tion (Section 5.3), (2) solar radiation reflected by the Earth and its atmosphere, i.e., 
the Earth's albedo (Section 4.1), and (3) radiation emitted from the Earth and its 
atmosphere (Section 4.2). Of these -sources, as shown in Table 17-1, direct solar 
radiation is the dominant source and is generally the only one considered. The 
force produced by the solar wind is also normally negligible relative to the solar 
radiation pressure (see Section 5.3). 

Table 17-\. Intensity of Radiation Sources for a Satellite Over the Subsolar Point Integrated Over All 
Wavelengths. (Data From NASA (1969b).) 

ALTlTUDIi SOLAR RADIATION EARTH REFLECTAffCE- EARTH RADIATION-..... IWIm2, (JfJm'. ""m2• 

!IIID '3S8 EDD tliD 

'.DOlI '3511 - 117 

2.lIIIO '3511 300 89 
<.DOlI '3S8 180 62 

8.DOII '3118 1& 38 
111.aoo '3118 30 ,< 
30 ..... '35B 12 3 

6O.DOII '3S8 7 2 

• ASSUMING A SPHERICAL SPACECRAFT. 

The mean momentum flux, P, acting on a surface normal to the Sun's 
, radiation, is given by 

, 

i' 
!. 

(17-45) 

where Fe is the solar constant (see Section 5.3) and c is the speed of light. The solar 
constant is wavelength dependent and undergoes a small periodic variation for an 
Earth-orbiting spacecraft because of the eccentricity of the Earth's orbit about the 
Sun. If the momentum flux incident on the spacecraft's surface is known, Edwards 
and Bevans [1965] have shown that the reflected flux can be described analytically 
by the reflection distribution function and the directional emissivity. However, 
these properties of the irradiated surface are generally not known in sufficient 
detail to evaluate the required functions. 

For most applications, the forces may be modeled adequately by assuming 
. that incident radiation is either absorbed, reflected specularly, reflected diffusely, 

or some combination of these as shown in Fig. 17-2. Let P be the momentum flux 
incident on an elemental area dA with unit outward normal N. (Each area consists 
of two surfaces with oppositely directed outward normal vectors.) The differential 

INCIDENT 

ABSORPTION SPECULAR REFLECTION DIFFUSE REFLECTION 

Fig. 17-2. Absorption and Reflection of Incident Radiation 
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radiation force (momentum transferred per unit time) due to that portion of the 
radiation that is completely absorbed is 

(17-46) 

where S is the unit vector from the spacecraft to the Sun, fI is the angle between S 
and N, and Co is the absorption coefficient. If cosfl is negative, the surface is not 
illuminated and will not experience any solar force. The differential radiation force 
due to that portion of the radiation which is specularly reflected is 

(17-47) 

where the reflected radiation is in the direction (-S +-2N cosfl). The coeffiCient of 
specular reflection. Cs' is the fraction of the incident radiation that is specularly 
reflected. For a diffuse surface, the reflected radiation is distributed over all 
directions with a distribution proportional to cos4>, where 4> is the angle between 
the reflected radiation and N. The differential radiation force for diffusely reflected 
radiation is determined by integrating .the contribution of the reflected radiation 
over all angles to obtain 

dfdiJfuse = PCd ( - ~cosflN -cos8S)dA (0< fI < 90°) (17-48) 

where the coefficient of diffuse reflection, Cd' is the fraction of the incident radiation 
that is diffusely reflected. Assuming that absorption, specular reflection, and 
diffuse reflection all playa part (without any transmission), then the total differen
tial radiational force is 

(17-49) 

where Co + Cs + Cd = 1. For surfaces that are not completely opaque, the incident 
momentum flux, P, can be modified to account for the radiation that does not 
impinge or interact with the surface. The differential radiation force can be written 
to include secondary reflections, but this is normally not a significant factor in the 
total radiation force [McElvain, et al., 1966]. 

The solar radiation torque, Nsoltu' acting on a spacecraft is given by the general 
expression 

(17-50) 

where R is the vector ftom the spacecraft's center of mass to the elemental area dA. 
dfto/al is given by Eq. (17-49), and the integral is over the spacecraft's irradiated 
surfr.ce. Because of the difficulty in evaluating the radiation torque directly from 
Eq. (17-50) for 'arbitrary surfaces, the spacecraft configuration is frequently 
approximated by a collection of simple geometrical elements (e.g., plane, cylinder, 
sphere). The solar radiation force, F;, on each element is determined by evaluating 
the integral of Eq. (17-49) over the exposed surface area, that is, 

F;= J dftotal ; (17-51) 

Table (17-2) lists the solar radiation force F; for some simple geometrical shapes. 
The torque on the spacecraft is the vector sum of the torques on the individual 
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Table 17-2. Solar Radiation Force for Some Simple Geometric Figures 

1iE0000TRlC FIGURI 
'DRCI! 

::::U":~!,!,,~~Z'.IG. A AND -PACOS.~I_~ •••• ~( C.COS •• iCd)-1 
SPHEAE OF RADIUS • -P.4.,~(i.iCd )a. 
RIGHT CIRCULAR CYLiNDIA OF 

-p (1[_.( .. i C.).j Cd] ",' (,-c~) cos. "21i RADtUS,. SYMMITAY AXd. AND 
HEm,.,. f'I; '" SUNANGLEIII!ASURIED 
FROM SVMIIE.TAY AXIS 

• ~-~C.SlN. --jed) cos. A,.2 (C,COSil+:i.C.,) A,."'" ~ .• r!r 

COH"2] i) 

elements composing the spacecraft irradiated surface, i.e., 

n 

NsoIor= I RjXFj 
;1:1 I 

(17-52) 

where R; is the vector from the spacecraft center of mass to the center of pressure 
of the ith element. The center of pressure is at the intersection of the line of action· 
of the single force which replaces the resultant radiation force and the plane 
passing through the center of mass of the spacecraft perpendicular to the line of 
action. The location of the· center of pressure, rep' relative to the centroid of the 
geometrical sphere is given by 

f rxdf=repxF (J7-5j) 

Solar radiation torques are reduced by the shadows cast by one part of the 
spacecraft on another. Shadowing reduces the total force and also shifts the center 
of pressure. The extent of shadowing is a function of the geometrical design of the 
spacecraft and the incident Sun angle. Examples of shadow modeling for DCSC II 
and AE-3 are given by Suttles and Beverly [1975] and Gottlieb et 01., [1974]. 
Although the shadow modeling for AE-3 was used to evaluate aerodynamic torque, 
the same method can be applied to solar radiation torque. 

17.2.3 Aerodynamic Torque 

The interaction of the upper atmosphere with a satellite's surface produces a 
torque about the center of mass. For spacecraft below approximately 400 km. the 
aerodynamic torque \s the dominant environmental disturbance torque. 

The force due to the impact of atmospheric molecules on the spacecraft 
surface can be modeled as an elastic impact without reflection [Beletskii, 1966]. The 
incident particle's energy is generally completely absorbed. The particle escapes 
after reaching thermal eqUilibrium with the surface with a thermal velocity equal to 
that of the surface molecules. Because this velocity is substantially less than that of 
the incident molecules, the impact can be modeled as if the incident particles lose 
their entire energy on collision. The force, df,cero, on a surface element dA, with 
outward normal N, is given by 

(17-54) 
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where V is the unit vector in the direction of the translational velocity, V, of the 
surface element relative to the incident stream and P is the atmospheric density 
(Section 4.4). The parameter CD is the drag coefficient defined in Section 3.4 apd .is 
a function of the surface structure and the local angle of attack, arc cos (N' V) 
[Schaaf and Chambre, 1961). For practical applications, CD may be set to 2.0 if no 
measured value is available. 

The aerodynamic torque NAero, acting on the spacecraft due to the force dfAero, 

is 

(17-55) 

where rs is the vector from the spacecraffs center of mass.to .the surface element 
dA. The integral is over the spacecraft surface for which N·V>O. Note that the 
translational velocity of element dA for a spacecraft spinning with angular velocity 
6> is 

( 17-56) 

where Vo is the velocity of the center of mass relative to the atmosphere. (Note that ,'l 

6> i.s relative to the rotation of the atmosphere which approximately equals the 
Earth's rotational rate.) Because the linear surface velOCity due to the spacecraft 
spin is generally small compared to V 0> second-order terms in 6> can be neglected in 
substituting Eqs. (17-54) and (17-56) into Eq. (17-55). Thus, the total aerodynamic 
torque is 

NAero= !CDPVJ f (N.Vo}(Voxr.}dA + !CDPVO f {N'(6)Xr.)(Voxrs} 

(17-57) 

The first term in Eq. (17-51) is the torque due to the displacement of the 
spacecraft's center of pressure from the center of mass. The second' term is the 
dissipation torque due to the spacecraft spin. For a spaoecraft in Earth orbit with 
",r« V 0> the second term. is approximately four orders of magnitude smaller than 
the first and may be neglected. 

The first term in Eq. (17-51) is evaluated in the same manner as the solar 
pressure torque. The surface area of the satellite is decomposed into simple 
geometric shapes and the total aerodynamic force is calculated by integrating Eq. 
(17-54) over the individual shapes. Table 17-3 lists the aerodynamic force for some 
simple geometric figures. The total torque about the center of mass of the 
spacecraft is the vector sum of the individual torques calculated by the crosS 
product of the vector distance from the spacecraft's center of mass to the center of 
pressure of the geometric shapes and the force acting on the component. 

Shadowing of one part.of the spacecraft by another must also be considered in 
the torque evaluation. Because the aerodynamic torque increases as the spacecraft's 
'altitude decre"ases, shadowing can be very important at low altitudes. The extent of 
.shadowing is a function of the spacecraft's design and orientation relative to the 
velocity vector. Examples of shadowing models are given by Gottlieb, et 01., [1974] 
and Tidwell, (1970). 
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Table 17.3 .. Aerodynamic Force for Some Simple Geometric Figures 

GEOMETRIC PlOUAES 
'Olla! _AI! D. AAOlUS " - i Cgp y2 .,,29' 

I'LAIIIE WITH SURPACE AREA A AND NOR· 
MAL UNIT VECTOR ~ 

.. -iCc,pi,2 At .. ;'; 

RIGHT CIRCULAR CYlIND£A OF LENGTH L _iCgpv20L~20 
AND DIAMETER D. UNIT VECTOR-;-II 
ALONG CYUNDER AXIS 

17.2.4 Magnetic Disturbance Torque 

Magnetic disturbance torques result from the interaction between the 
spacecraft's residual magnetic field and the geomagnetic field. The primary sources 
of magnetic disturbance torques are (I) spacecraft magnetic moments, (2) eddy 
currents, and (3) hysteresis. Of these, the spacecraft's magnetic moinent is usually 
the dominant source of disturbance torques. The spacecraft is usually designed of 
material selected to make disturbances from the other sources negligible. Bastow 
(1965] and Droll and hIler [1967J provide a survey of the problems associated with 
minimizing the magnetic disturbances in spacecraft design and development. 

The instantaneous. magnetic disturbance torque, N"",g (in N· m), due to the 
spacecraft effective magnetic moment m (in A· m~ is given by 

Nmag=mxB (17~58) 

where B is the geocentric magnetic flux density (in Wb/m~ described in Section 
5.1 and m is the sum of the individual magnetic moments caused by permanent and 
induced magnetism and the spacecraft-generated current loops. (See Appendix K 
for a discussion of magnetic units.) 

The torques. caused by the induced eddy cu"ents and the irreversible magneti
zation of permeable material, or hysteresis, are due to the spinning motion of the 
spacecraft: Visti [1957] has shown that the eddy currents produce a torque which 
precesses the spin axis and also causes an exponential decay of the spin rate. This 
torque is given by 

(17-59) 

where", is the spacecraft's angular velocity vector and k" is a constant coefficient 
which depends on the spacecraft geometry and conductivity. Eddy currents are 
appreciable only in structural material that has a permeability nearly equal to that 
of free space. Table 17-4 lists values of k" for simple geometric figures. Tidwell 
(1970J has outlined an alternative procedure for calculating the torque due to eddy 
current interaction which involves the evaluation of three different constant coef
ficients. 

In a permeable material rotating in a magnetic field, H, energy is dissipated in 
the form of heat due to the frictional motion of the magnetic domains. The energy 
loss over one rotation period is given by 

(17-60) 

where V is the volume of the permeable material and dB is the induced magnetic 
induction flux in the material. The integral is over the complete path of the 
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Table 17-4. Eddy Current Coefficients for Various Geometrical Figures. (Adapted From NASA 
(1969a).) 

GEOMETRIC FIGURE COEFFICIENT. ". 

THIN SPHERICAL SHELL OF RADIUS , ~ .. 4IJd 
THICKNESS d. AND CONDUCTIVITY • 

CIRCULAR LOOP OF RADIUS, AND i"r3
S 

CflOSS.SECTIONAL AREA 5 LOCATED IN 
A PLANE CONT AININO THE SPIN AXIS 

THIN-WALLED CYLINDER WITH LENGTH I. 0 • .,,3 Id(,_¥ TANH;;') 
RADIUS '. AND THICKNESS d 

hysteresis loop. The hysteresis effects are appreciable only in very elongated "soft" 
magnetic material (i.e .• materials for which changes in the ambient field cause large 
changes in the magnetic moment); The torque due to the hysteresis is given by 

II) l!!EH 
NHys,= 11)2 Tt (17-61) 

where flt is the time over which the torque is being evaluated. 

17.3 Modeling Internal Torques 

Menochem Levitas 

Internal torques are defined as torques exerted on the main body of a 
spacecraft by such internal moving parts as its reaction wheels, flexible booms or 
sQlar arrays, scanning or rastering instruments, tape recorder reels, liquids inside 
partially filled tanks, or astronauts inside a manned space station. In the absence of 
external torques, the total angular momentum of a spacecraft remains constant. 
However, internal torques can alter the system's kinetic energy and redistribute the 

o spacecraft's angular momentum among its component parts in ways which can 
change its dynamic characteristics. For example, in a sl?inning spacecraft, angular 
momentum can be transferred from the nominal spin axis to another principal axis, 
resulting in nutation (Sections 15.2 and 16.3), uncontrolled tumbling [Thompson, 
1964), or flat spin (spinning about a principal axis, other than the nominal spin 
axis; see Section 15.2 and Gebman, [1976D. These undesirable results are often best 
countered by attitude-stabilization systems based on other internally generated 
torques, such as gas jets (Section 6.8), nutation dampers (Section 18.4). reaction 
wheels (Sections 6.6 and 18.2), and other movable-mass stabilizing mechanisms 
[Childs, 1971; Childs and Hardison, 1974; Edward, 1974). In this section we discuss 
three internal disturbance torques which alter the spacecraft attitude: (I) mass 
expUlsion torques, (2) propellant slosh loads, and (3) the motion of internal 
hardware an4 astronauts. The effects of spacecraft flexibility are discussed in 
Section 16.4. 

Mass Expulsion Torques. Whenever mass is ejected from a spacecraft, dis
turbance torques result which can degrade the control system performance, lead to 
premature fuel depletion, or cause mission failure. Knowledge in this area has 
developed primarily from experience, when investigations of anomalous spacecraft 
behavior are traced to mass expUlsion disturbance torques. An excellant summary 
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is given by Schalkowski and Harris (1969]. Three design considerations are impor
tant in dealing with mass expulsion torques: identification of the sources and 
assessment of the torque magnitudes, determination of acceptable magnitudes, and 
control over design and development to ensure that the acceptable magnitudes will 
not be exceeded. Mass expUlsion torques can be· grouped into two major categories 
according to the nature of their sources: 

l. Unintentional control system torques. These torques result from faulty 
design or equipment failure and include most of the mass expUlsion disturbances 
identified to date. The most common are leakage of fuel or pressurizing agents,. 
thrust vector misalignment (Schalkowski and Harris, 1969], reaction forces resulting 
from plume impingement on the vehicle (Schalkowski and Harris, 1969; NASA, 
1968; General Electric, 1964; and Victor, 1964], and anomalous thruster firing 
times (Schalkowski and Harris, 1969]. 

2. Torques resulting from sources intended 10 expel mass. These torques are 
natural byproducts of processes not intended to produce torque, such as dumping 
residual propellants [Schalkowski and Harris, 1969; MSFC, 1966], sublimation 
(Mobley and FischeU 1966], payload separation and ejection, and equipment 
jettison [Schalkowski and Harris, 1969]. Such processes occur infrequently, some· 
times only once during the spacecraft lifetime. The associated disturbances cause 
problems only when they are overlooked or when their magnitude is underesti-
mated. . 

The major problem associated with assessing the effects of mass expulsion 
disturbances is that of identifying the source. Once this has been done, testing or 
simulation may be used to determine the magnitude of the aSsociated torque. 
Accurate analytic models are generally unavailable, but estimates of the upper 
bounds of various torques, based on test or simulation results, are usually 
sufficient. Due to obvious difficulties, direct measurements of mass expulsion 
torques are rarely made. Instead, tests are generally conducted on components to 
provide input data for torque calculations. . 

Although disturbance torques from jettisoned solids can be obtained analyti
cally, ground testing of the ejection mechanism is normally used as a checking 
procedure. The separation impulse can also be computed from the photographed 
trajectory of the jettisoned object. Because the expelled mass is no longer regarded 
as part of the spacecraft, the effect of mass expUlsion is to alter the "spacecraft's" 
total angular momentum, even though the torques are uiternaUy generated. 

Propellant Slosh Loads. Propellant sloshing refers to free surface oscillations 
of a fluid in a partially filled tank resulting from translational or angular accelera
tion of the spacecraft caused by an attitude or orbit ·control system, elastic 
deformation of the vehicle, or an environmental disturbance. Once sloshing begins, 
it may persist for a long time due to the small damping effects of the tank walls 
unless damping devices, such as baffles, are provided. Propellant sloshing can 
result in attitude precession or nutation, spacecraft instability, or damage to the 
propellant tank. . 

The extent of propellant sloshing and the consequent forces on the spacecraft 
depend on the tank geometry, propellant properties, the effective damping, the 

'See, for example, Schalkowski and Harris (1969), NASA Research Center Pioneer Proi"' Office 
(1967), Massey (1968), Mariner-Mars 1964 Proj"t Report MPR (1965), Dobrotin, el aI., (1969), Bourke, 
el al., [1969J, NASA (1968), and General Electric [1964]. 
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height of the propellant in the tank, the acceleration field, and the perturbing 
motion of the tank (Langley Research Center, 1968). The parameters which are 
normally adjustable include the tank structure and the damping devices. The tank 
geometry influences the natural sloshing frequency modes, the forced response, and 
the resulting pressure forces and torques acting on the tank. Baffles, as shown in 
Fig. 17-3, increase the effective fluid damping and thereby reduce the duration of 
the free oscillations and the magnitude of forced oscillations. Dynamic coupling 
between sloshing propellants and elastic structures may also have significant 
influence on the vibration frequencies and mode shapes of elastic tanks and can 
cause dynamic instabilities [Langley Research Center, 1968). 

p = 

Fig. 17-3. Cross Section of a Cylindrical Tank With a Single-Ring Baffle to Dampen Propellant 
Sloshing 

The dynamic response of vehicles to sloshing liquids is difficult to determine 
experimentally, especially in the case of large containers at low gravity [Dodge and 
Garza, 1967). The major characteristic of low gravity is a small Bond Number which 
is proportional to the ratio of the weight of a unit depth of liquid to its surface 
tension. Small Bond Numbers can be simulated even at Earth gravity, but only for 
small containers. (Dodge and Garza, [1967] tested cylinders up to 3.3 em in 
diameter.) Fortunately, the dynamic response of a vehicle can be determined 
analytically by representing the liquid dynamics by an equivalent mechanical 
system, consisting of fixed and oscillating masses connected to the tank by spring 
or pendulums and dashpots. This technique has been used with considerable 
success to derive the dynamic characteristics of sloshing liquids.· The analytical 
models are designed so that they have the same resultant pressure force, torque, 
damping, and frequency as the actual system. Procedures to determine the natural 
sloshing frequencies, mode shapes, and equivalent mechanical systems fo~ axially. ' 
symmetric tanks are described by Abramson, et 01., [1966], Lomen [I 96Sb), 
Lawrence, el 01., [1958), Lomen [1965a), and Moiseev and Petrov (1966). When 
used with similar representations for other spacecraft components, the vehiCle 
dynamics can be calculalecl. When tanks become large, as in large space vehicles, 
the forces exerted by the propellent increase and sloshing occurs at lower frequen
cies which could cause serious stability problems. This can be overcome by . 
subdividing the tanks into smaller compartments [Bauer, 1960). 

Crew Motion. The effects of crew movements inside a spacecraft are difficult i 

to predict accurately, chiefly because of the random nature of the movements·f 

• specific tank geometries were studied by Dodge and Garza (1967), Abramson (1966], Lomen (I96Sb], 
AbJ1llllSOD, el al., (1961], Bauer (1960, 1964], Rathayya (I96S], Koene (1961], and Dodge and Kana' 
(1966]. ' .. ,;. 
t Although individual human motions may be random, the motions of astronauts inside a space vehicle Ii.,;; 
do follow fixed statistical patterns.:';;~{' 

~, ~, :-
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Intuition and experience indicate, however, that resulting disturbances are directly 
proportional to the amplitude of the motion and the ratio of the human's mass to 
the spacecraft moment of inertia. This is illustrated in Fig. 17-4, which shows the X 
axis jitter rate (i.c., rate of angular deviation from the nominal direction) for Skylab 
(Fig. 17-5) due to the motion of the three astronautS. To provide protection against 
such jitter, the pointed experiment mounting package was decoupled from the main 
body of the spacecraft as much as possible. Equations of motion describing the 
dynamics of a vehicle containing an arbitrary number of moving parts (treated as 
point mass particles) were first developed by Roberson [1958a) and later by Grubin 
[1962]. Fang [1%5], gives expressions for the kinetic energy and angular momen
tum about the variable center of mass, in terms of body-fixed coordinates. Each of 
the above assumes fixed masses confined to definite paths. Neither assumption, of 
course, is strictly valid with regard to astronauts. 

I 
-9 

i 
!!! 
x 

1 
CREW JOGGING CREW AJIIAKE CREW ASLEEP 

Fig. 17-4. Jitter Caused by Crew Motion Onboard Skylab. (Adapted from Chubb, et 01 .. [197S~) 

ZAXIS 

Fig. 17-5. Skylab Spacecraft Configuration (drawing courtesy NASA) 

The potential instability of spinning space stations under the influence of crew 
motion was studied by Thomson and Fung [1965). They considered effects due to 
one or two point masses executing several types of circumferential and radial 
motions and concluded that an astronaut could rock a space station and cause it to 
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tumble if the period of his motion is in the neighborhood of certain integral 
multiples of half the space station's spin period. The exact multiples vary with the 
type of motion. and the size of the neighborhood increases monotonically with the 
mass of the astronauts and with the amplitude of the motion. Poli (1971 J concludes 
that when an astronaut executes a closed path motion onboard a space vehicle. the 
total angular momentum does not necessarily return to its original value in 
spacecraft coordinates-a fact which becomes clear when we observe that the 
astronaut can add mechanical energy to the system. 

In contrast to the above deterministic works, Davidson and Armstrong (1971] 
investigated the effect of crew motion on spacecraft orientation from a probabil
istic, random walk point of view. Recognizing that control systems consist of 
mass-expelling. or energy-consuming hardware. and that such hardware would be 
activated whenever a disturbance due to crew motion reached a certain value. the 
authors calculated how often stabilizing torques would he required and. hence. 
what the depletion rate of mass or the consumption rate of energy would be. They 
assumed that the crew motion followed a fixed statistical pattern and. therefore, 
that the use of frequency-versus-magnitude histograms of the crew's motion was 
legitimate. They used discrete matrix methods for limited motion and the diffusion 
equation in the case of large multimanned space stations. In the latter case. only 
the mean value and the variance of the histogram affected the outcome. 

Internal Torques Produced by Moving Hardware. The motion of hardware 
components onboard a space vehicle is normally compensated for. such that the 
main body experiences no torques. In some cases, this compensation is straight
forward; for example, in principle, every rotor can be balanced by an identical 
rotor moving in the opposite direction. In other cases. such as the Advanced 
Atmospheric Sounding and Imaging Radiometer (AASIR) to be flown on 
STORMSAT in 1982 [White, et 01., 1976], the motion may be complicated. 
requiring detailed numerical analysis to compute compensating commands to an 
independent torquing device, such as a magnetic coil or gas jets. 

Cloutier [1975J gives a graphical technique which permits rapid evaluation of 
the effects of gimballed, stepping. and scanning devices on the spacecraft. Beard, et 
01., [1974J describe how turning a tape recorder on and off affected the spin rate of 
SAS-2. Devices containing internal moving parts-whose primary function is to 
generate stabilizing torques, absorb mechanical energy, and damp nutation-are 
described by Childs [1971], Childs and Hardison [1974J, Edward [1974], and in 
Section 18.4. 

17.4 Modeling Torques Due to Orbit Maneuvers 

Gyanendra K. Tandon 

In this section we discuss the modeling of tOrques due to orbit maneuvers for a 
spin-stabilized spacecraft. The principal feature affecting the computation of this 
torque is the mounting configuration of the rocket used to perform the maneuver. 
In general, two kinds of engine mountings are used: (I) those for which the thrust 
vector is nominally collinear with the spin axis and (2) those for which the thrust 
vector is not collinear with the spin axis but nominally passes through the 
spacecraft center of mass. 
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17.4.1 Thrust Vector Collinear With the Spin Axis 

This engine mounting configuration is normally used for large velocity 
changes such as those produced by the apogee boost motor used to change the 
elliptical transfer orbit into a near-circular orbit for geosynchronous satellites. This 
is the most desirable mounting for a spin-stabilized spacecraft because it has the 
following three distinct advantages over alternative mountings: 

I. There is no loss of thrust due to the spacecraft spin. 
2. The thrust vector always passes through the center of mass of the 

spacecraft if the fuel burns symmetrically and, therefore, no torque will be present. 
3. The engine can be fired continuously. 

However, if the thrust vector from the motor does not pass through the spacecraft 
center of mass, due to misalignments, then a disturbance torque will be generated 
which will cause the spacecraft to precess and nutate. This will affect the velocity 
change in two ways. First, the magnitude of the final velocity change will be 
reduced since a component of the thrust will be perpendicular to the new spin axis 
and will cancel out over a complete nutation period. Second, the resulting velocity 
change may be in the wrong direction, because the geometric z axis of the 
spacecraft will not be in the initial spin axis direction in inertial space throughout 
the engine firing: These errors in the magnitude and direction of the velocity vector 
will necessitate 'using more fuel for later orbital corrections and produce a corres-
ponding reduction in the weight available for useful payload. .. 

There are three potential angular misalignments and three offset misalign
ments which could lead to a torque being generated during the motor firing. Each 
misalignment can have both an x and a y component because the x and y axes of 
the spacecraft may not be equivalent. These misalignments are defined in Fig. 17-6. 

BODy caNTERLINE -------------

' .. ", 
-F/crr Yf'CS 

-CSlCL· ·Cs/CL 

-crnICL.° Yl;mlCL 

ANGULAR IllSALIGNMINT OF THRUST VICTOR WITH RlSPICT TO MOTOR CASI 

ANGULAR MlSALIGJIIaNT OF MOTOR CASE WITH REsPECT TO SPAClCAAfT c:DITERLtNI 

ANGULAR MlSALlGlQlltn OF PRINCIPAL INIRTIA AXIS IIITM RUPICT TO SPAC!CRA" ClNnRL .... 

OF'SiT OJ THIIUST VICTOR WITH RESPICT TO APOGII MOTOR CASE 

OF'SI1' Of ..,,-em CAlI WITH RUPICT TO SPac&CRAJT ClJlnRUfiIII 

OJI'dT OF TMI CRNTaA O' MASS WITH RESPECT TO SPACICRA" CENTIRUHI 

NOTa: MISAUGNIIINTS ARIllXAGGlAATED FOR CLARITY. EACH UISAUGNMIMT MAS OM. CGIIPOJdNT IN TMI ~ OP 1'HI PAPER NID Old 
COMPONUIT OUT OJ' TMI P\.ANL 

Fig. 17-6. Definition of Misalignments for a Rocket Motor Nominally Aligned With the Spin Axis of 
a Spinning Spacec:raft 
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An analytic model for the spacecraft motion during the engine firing, includ
ing the above six misalignments, can be developed with the following simplifying 
assumptions: 

I. Rigid body dynamics are applicable. 
2. The engine is a solid fuel motor and the fuel bums symmetrically about 

the motor case centerline. 
3. The total spacecraft mass, moments of inertia. and the location of the 

center of mass in the spacecraft are linear functions of time during the motor firing. 
4. The motor firing does not distort the spacecraft: i.e .. the misalignments 

remain constant during the motor firing. 
5. The exhaust gases carry away angular momentum equal to that of the 

fuel which was burned. 
'The last assumption is applicable to a motor which possesses a single, large, 
centrally mounted nozzle. A solid fuel motor of this type is generally used for large 
velocity changes. In this case, the exhaust gases spend so short an interval in the 
engine that they have no time to exchange any angular momentum with the 
spacecraft before being ejected and hence the spin rate of the spacecraft will not 
change if the alignments are correct. This is in agreement with the observed very 
small spin rate change during the apogee motor firing on CTS (+0.4 deg/s), 
GOES~I (+1.8 deg/s), GOES-2 (-3.2 deg/s), and SIRIO (+0.4 deg/s) [Tandon 
and Smith (1976); Page (1975); Chen and McEnnan (1977)]. 

If the engine is different from the one discussed above, especially if it 
possesses more than one nozzle, an appropriate jet damping model should be used 
in place of assumption 5. The term jet damping refers to the phenomenon in which 
the rotation of the motor exhaust gases carries away a portion of the component of 
the 'spacecraft's angular momentum perpendicular to the nominal exhaust direc
tion.' ThiS serves to damp the nutation induced by the motor firing. The jet 
damping theory is discussed by Thomson and Reiter [1965], Warner and Snyder 
[1968], Katz [1968], and Papis [1968]. The basic dynamics model consists of three 
sets of differential equations and an algebraic vector equation. These are 
summarized in vector fonn in Fig. 17-7. NF is the portion of the torque, N, which is 
induced by the motor thrust, F, and NJ is, the portion which models the effect of 
the angular momentum carried away by the exhaust gases. N

J 
will depend on the 

jet damping model used. The equation for NJ , using assumption 5, is 

(17-62) 

where all vector quantities are resolved along the spacecraft principal axes. The 
detailed derivation of the equations in Fig. 17-7 is given by Keat and Shear [1974]. 

Assumptions I through 4, together with an approximate jet damping model in 
place of assumption 5, were used to simulate the performance of the CTS 
spacecraft during apogee 'motor firing by Keat and Shear [1974]. The signs of the 
misalignment\! were selected so, that their effect was cumulative (i.e., the worst case 
for the combined effect of all of the misalignments was simulated). The results of 
thesimulal, ,>Os indicated that for the nominal specified misalignments for the CTS, 
spacecraft, the principal Z ax~;; (the nominal spin axis) would wander up to 2 deg 
from its initial pOsition in inertial space during the motor firing and this would 
cause a ~.:',deg .. lor m the direction of the velocity change vector. The additional 
fuel needed to correct the effects of this directional error on the orbit would be 
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Fig. \7-7. Summary of the Dynamics Equations for Modeling Torques Due to Orbit.Maneuvers. All 
vector quantities are resolved along spacecraft principal axes. 

about 1.6 kg out of a total fuel budget of 1l.2 kg for fine orbit correction 
maneuvers. The simulation runs with 10 times the nominal specified misalignments .. 
indicated that the effects would be 10 times larger; In view of the above results, the 
spacecraft hardware was aligned with extra care so that all the misalignments were 
within the nominal specified limits. 

17.4.2 lbrust Vector Not Collinear With Spin Axis but Nominally Passing Through 
Spacecraft Center of Mass 

This configuration is used for small velocity changes, where it is possible to 
tolerate some fuel wastage. In this configuration, the engine must be fired in a 
pulsed mode so that a net thrust in the desired direction is generated. 

As the fuel is used, the spacecraft center of mass will move on the spin axis. 
The thrust vector will not always pass through the center of mass of the spacecraft 
and hence a torque will be generated which will cause the spacecraft to' precess and 
nutate. 

The effect of misalignments can be modeled similarly to that for the first 
configuration, the main difference being in the modeling of the angular momentum 
of the exhaust gases, because for small rOcket engines, a liquid or gas fuel is 
normally used. This fuel must be moved from storage tanks to the engine before 
use, resulting in a change in the spacecraft moments of inertia before engine firing. 
In addition, the engine firing in a pulsed mode must be modeled. 
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CHAPTER 18 

ATTITUDE STABILIZATION 

IS.I Automatic Feedback Control 
IS.2 Momentum and Reaction Wheels 

Momentum Bios Control Systems, Reaction Wheel Sys
tems 

IS.3 Autonomous Attitude Stabilization Systems 
lnertially Referenced Spacecraft (HEAD-I), Earth-Ref
erenced Spacecraft 

IS.4 Nutation and Libration Damping 
Passit>e Nutation Damping, Actit>e Nutation Damping, 
Libration Damping 

Chapters 18 and 19 describe the various techniques used for attitude control. 
These techniques may be divided into two categories. Attitude stabilization, dis
cussed in this chapter, consists of maintaining an existing orientation. Attitude 
maneuver control, discussed in Chapter 19, consists of reorienting the spacecraft 
from one attitude to another. Although this is a convenient categorization for 
analysis, the two areas are not totally distinct. For example, we include in attitude 
stabilization the process of maintaining one axis toward the Earth, which implies a 
continuous change in the inertial orientation. 

Section 18.1 introduces the principles of control theory, derived largely fro).ll 
electrical engineering. Section 18.2 then describes the general principles of inertial 
guidance and reaction wheel control. Section 18.3 provides several specific ex
amples of attitude stabilization systems. Finally, Section 18.4 describes both active 
and passive methods of nutation damping. 

18.1 Automatic Feedback Control 

JaM/aid Hashir 
Gerald M. Le17f8r 

Feedback, or closed loop control, is the process of sensing a system parameter to 
control its value-for example, using a thermostat to control the temperature of a 
room by regulating the operation of a furnace in response to a changing environ
ment. Automatic feedback control is used for attitude control of many spacecraft. 
Using feedback control, commands to generate control torques are automatically 
issued to correct the spacecraft attitude whenever it has been sufficiently perturbed. 
Typically, the control torques are implemented by mass expUlsion devices such as ~;,i 
jets, momentuLI storage devices such as reaction wheels, or magnetic coils. , ' 

A block diagram is a convenient schematic representation of either a physical 
system or the set of mathematical equations characterizing its components_ Figure, 
18-1 is a typical spacecraft attitude control system block diagram. The blocks are, 
the transfer elements which represent functional relationships between the vllrious ',", 
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inputs and outputs. The operations of addition and subtraction are represented by 
a small circle, called a summing point. The output of the summing point is the 
algebfllic sum of the inputs. each with its appropriate algebraic sign. A typical 
input for a three-axis stabilized spacecraft is a disturbance torque and the output is 
an error signal indicating the deviations between the desired and the actual values. 
The plant is that part of the control system which needs to be controlled, i.e., the 
spacecraft dynamics. The dynamic characteristics of the plant are generally deter
mined by the specific hardware used. The disturbances are external torques which 
affect overall system performance. They can be either deterministic or random in 
nature. For example. gravity-gradient and magnetic torques on the spacecraft are 
deterministic in the sense that they are known functions of the spacecraft position 
and orientation. In contrast. the torques produced by the impact of mptf·nroili .. are 
randomly distributed [Levinson. 1977]. The output of the system. OM' is measured, 
processed by the feedback loop of the control system. and compared with a 
reference or desired value, ORE/-"' to obtain an error signal. ° == OM - OREF" The error 
signal is processed by the contro!ler to generate a control torque to counter the 
effect of the input disturbance torq'ue and thus contiol the output OM near (JREF (or ° 
near zero). For convenience. we will normally assume that OM is a measured 
attitude angle (although. in practice. it is usually a time or voltage) and set (JREF=O, 

so that (J = (J,..,. 

INPUT 
DISTURBANCE 
TORQUE IND' 

FEED· 

TOTAL TORQUE. N 

PLANT 
(SPACECRAFT 

DYNAMICS' 

BACK SWITCH 

9y IOUTPUT} 

Fig. 18-1. Block Diagram of a General Spacecraft Attitude Feedback Control System. The system 
output is a measured angle 9M which is to be controlled near a reference or desired value 
9R£F' The controller issues a torque based on the error signal. 9-= 9M - 9R£F' to control the 
effect of the disturbance torques on the spacecraft dynamics. 

If the switch in Fig. 18-1 is open, we have an open-loop system in which the 
controller response is independent of the actiJal output. For example, the issuance 
of magnetic control commands from the ground is an open-loop procedure. 
Conversely. if the switch is closed. we have a closed-loop 0' feedback syslem in 
which the input to the controller is modified based on information available from 
the actual output. For example, for the attitude control of a three-axis stabilized, 
Earth-oriented spacecraft, we may continuously monitor pitch and roll angles (and 
often rates)· by attitude sensors (and gyros) and provide this information to the 
controlle" which computes commands according to a control law and issues these 
commands to a torquing device or actuator. A control law is a principle on which 
the controller is designed to achieve the desired overall system performance. 

The input-output relation of each element of the control system (i.e., the 
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controller, plant, or feedback) is generally defined in terms of a transfer function 
(see Section 7.4). This idea of representing a physical system is a natural outgrowth 
of Laplace transform operational methods to solve linear differential equations (see 
Appendix F). The transfer function of each system element is defined as the ratio 
of the Laplace transform of its output to the Laplace transform of the input, 
assuming that all initial conditions are zero. Generally, the transfer function is 
represent~d as the ratio of two polynomials in s, as 

n(s) a sm+a sm-'+ ... +a 
G ) m+' m , 

(s = d(s) = sR+bnsR-'+ ... +b, 

The m values of s, for which n(s) is zero, are known as the zeros of G(s) and the n 
values of s, for which des) is zero, are known as the poles of G(s). The transfer 
function, G(s), thus has m zeros and n poles. 

The transfer function of the plant element may be obtained· by taking the 
Laplace transform of the equation which describes the system dynamics. For 
example, if the equation describing the plant is 

18= N (18-1) 

where I is a constant, it may be transformed to obtain 

Is2e(fJ)= E(N) 

Thus, the transfer function, G(s), for the plant described by Eq. (18-1) is 

(18-2) 

e(output) E(9) 
G(s) e(input) = E(N) = Is2 (plant) (18-3) 

The transfer function of the feedback element commonly describes a filtering, 
smoothing, or calibration of the sensed output signal; however, in this section we 
will assume that the measured and reference angles are compared directly and thus 
the feedback transfer function is unity. 

The transfer function of the controller is obtained by first relating the control 
torque to the error signal in terms of a control law. The simplest of the control laws 
is proportional control, for which 

(18-4) 

where Nc is the control torque and K is the system gain. Proportional control is 
rarely used because it results in large oscillations in 9. 

A common method for spacecraft attitude control is a position-plus-rate control 
law for which 

(18-5) 

Here, the control to.rque, Nc' is directly proportional to the error signal and its time 
derivative. The K,fJ term provides damping. However, more sophisticated instru
ments, such as rate gyros, are needed to implement this control law. The transfer 
function for this controller is 

G(s) 
E(9) 

E(Nc) 
-I (controller) 
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As an example. we consider the pitch control of a spacecraft with a reaction 
!. I wheel with its axis along the pitch axis using a position-plus-rate control law. The 
I equation for the pitch angle. 9. is, 

IS 

::>1 
vs 

4) 

is 

!rol 

1-5) 

ime 
.w
lsfer 

(18-1) 

where L is the total angular momentum (wheel plus s{'acecraft body). h is the wheel 
momentum. No is the disturbance torque. Nc = -h is the control torque which 
alters the speed of the reaction wheel •. and I is the moment of inertia of the 
spacecraft about the pitch axis. It is convenient to rewrite the position-plus-rate 
control law in the form 

Nc = -h= -K(-ri+9) (18-8) 
C 

where l' is the lead time constanl and K is the pitch gain. Equation (18-7) then yields 

No =19+K-ri+KfJ (18-9) 

This is a simple second-order differential equation. Using Table F-I to take the 
Laplace transform of Eq. (18-5). we obtain 

(18-10) 

The block diagram of this system, described by the plant of Eq. (18-3). is shown in 
Fig. 18-2, and the transfer function of this closed-loop system is 

NO 
INPUT--~ 

e(O) _ I 

e(No) - Is2 +K1's+K 

PLANT 

1 

I;J 

-K(7I+ 11 

POSITION PLUS 
RATE CONTROLLER 

~-T""'""-+OUTPUT 

(18-11) 

Fig. 18-2. Position-P!us-Rate Pitch Control Bloc:k Diagram. See text for explanation. 

Comparing Eq. (18-9) with the second-order equation of a mass-spring-damper 
system (see, for example. Melsa and Shultz [1969D. we define the natural frequency. 
Wn• and the damping ratio, P. of our system as 

and rewrite Eq. (18-11) as 

_.fK 
wn=VI 

e(9) 1/ I 
e(ND } = s2+2PWns+Co)~ 

(18-12) 

(18-13) 

We now discuss the respOnse of this system when the input disturbance torque 
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is a step function. Because the Laplace transform of a step function of magnitude 
No is Nols (see Appendix F), Eq. (18-13) reduces to 

N /1 
1:(8)= 0 (18-14) 

s( 9 2 + 2pc,'nS + w;) 

This may be rewritten as the sum of partial fractions, to obtain for p < I 

(18-15) 

where 

WI =wn,/1 - p2. 

Using the inverse Laplace transforms listed in Table F-l, we can obtain the time 
response of the pitch angle as 

No [-1/2 ] 8(t)=J( 1-(I-p2) exp(-p"'n/)sin(w,t+,p) (18-16) 

where ,p=arctan [(1- p2)'/2 /p]=arccos(p). 
Figure 18-3 shows, a plot of the system response to a step function assuming 

that Nol K= I. The shape of the response curve depends on the damping ratio, p, 
and the time scale is determined by the natural frequency, Wn ' When p=O. the 
system is called undamped and undergoes a bounded sinusoidal oscillation. As p 

2.2 p=o 

2.0 

1.8 

~ .. 1.6 I 
~ 

1.4 

1 
1.2 

STEADY STATE 
1.0 
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~ wnt (radians) 

Fig. 18·3. Time Response of a Simple Second-Order System With Nol K= 1. See text for explanation. 
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increases, the overshoot and the number of oscillations decrease, and the system 
eventually attains a steady-state value equal to Nol K. The gain K is chosen to 
achieve a specified steady-state error for an assumed magnitude of the disturbance 
torque, No. When {i 12" p < I, there is only one ov.ershoot and no undershoots. 
When p> I, the system is overdamped and acts as a simple first-order system. If 
p= I, the system is critically damped. In many applications, overshoots are undesir
able. However, if we choose a value of p> I, the response of the system is slow; 
therefore, we will consider the value of p= I (critically damped).· For this case, Eq. 
(18-13) reduces to 

e(o) 

e(ND) l(s+wn)2 
(18-11) 

The performance of a control system is generally expressed in terms of 
acceptable steady-state. error for a specified disturbance. The steady-state e"or is 
defined as the difference between the desired output, 0REF' and the actual output. 
The maximum steady-state error is determined using the final value theorem (see 
Appendix F) as 

8(00)= lim (sf(II» 
$....0 

(18-18) 

As an example of pitch control design, we will consider a solar radiatiQo 
pressure torque of the order of 10-8 N'm (typical for MMS satellites). The 
steady-state error may be calculated using Eqs. (18-13) and (18-18) with f(ND ) 

= 1O-8s as 

lIe 00) = bm s = -- = --radians . [ 10-8 
N'm I 10-8 10- 8 

• 

.1-+0 Is(s2+2PWns +w;)· lw; K 
(18-19) 

where K is in N ·m. Using this expressiQn, the value of the pit~h gain is chosen so 
that the steady-state error is within the given constraints. Having chosen the pitch 
gain, we can then calculate the lead time constant, T, of the pitch control system to 
achieve a desired damping ratio from Eq. (18-12). The value of T so determined 
should be significantly smaller than the orbital period of the satellite. 

A third common control law is bang-bang control defined by 

-0 . 
Nc = mNnuu= -NnuuSlgnO (18-20) 

where N max is the maximum control torque and fJ is the angular error. An example 
of this law is the attitude control of a spacecraft using jets to apply a constant 
torque in a direction to null .the attitude error. The block diagram for a bang-bang 
control system is shown in Fig. 18-4. The control torque depends only on the sign 
of the difference between the desired and the actual output. 

A block diagram for a bang-bang-plus-dead zone controller is shown iJ.l Fig. 
18-5. Here the control torque is characterized by a dead zone followed by a 

-The damping ratio p=V2 /2 is frequently chosen because of its desirable frequency response 
characteristics. See Section 18.4 and DiStefano, et oJ., (1967]. 
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Fig. IS-S. Bang-Bang Control System With Deadband Controller 

maximum torque. The law in functional form is 

where 

Nc=f(O)Nmax 

f(O): -I for 0 >.OmtlJC 

- 0 for - OmtlJC <: 0 <: OmoJl 

I for 0 < - OmtlJC 

and OmtlJC is the half-width of the deadband. 

18.1 

(18-21) 

System Stability. The purpose of any feedback control system is to maintain
a definite and known relationship between the desired output and the acutal output 
of the system. To achieve this goal, the system m~st respond to any temporary 
disturbances by eventually decaying to its desired or steady-state value. A linear 
system is stable if its output remains bounded for every bounded input. System 
stability can be investigated by applying a unit step function disturbance torque to 
the system in steady state and examining the output as time advances. If the 
variation of the output about the initial steady-state value approaches zero, the 
system is stable. If the output increases indefinitely with time, the system is 
unstable. If the output undergoes continuous bounded oscillations, the system is 
marginally stable. Finally, if the output attains a constant value other than the 
initial steady-state one, the system has limited stability. 

In general, the stability of a system may be deduced by examining the poles of 
its closed-loop transfer function shown schematically in Fig. 18-6. An examination 

: ~ I 
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of the figure yields 

(R-HC)G=C 

595 

from which the general expression for the closed-loop transfer function is obtained 
as 

C G 
R = I+GH (18-22) 

Comparing Figs. 18-2 and 18-6, we obtain for the previous example of the 
pitch control system: 

R= f(ND) 

C= f(U) 

G= IIIs2 

H=K('Ts+ I) 

Hence, thci closed-loop transfer function is 

C f(U) G I 
R = f(ND ) = I+GH = Is2+K('Ts+l) (18-23) 

which agrees with Eq. (18-11). The poles of the transfer function are given by the 
zeros of . 

IS2+ K( 'TS + I )=(s-(,,)+)(s -(,,)_) 

(,,)~ =[ - K'T±VK2.,2_4KI ]121 

(18-24a) 

(18-24b) 

The necessary and sufficient criterion for system stability is that all of the poles of 
the closed-loop transfer function lie in the left half of the complex s-plane; i.e., for 
the above example the requirement is 

Re«(,,)~)<O (18-25) 
where Re(s) denotes the r~1 part of s. 

The general relationship between the location of the poles of the transfer 
function and the system stability may be determined by considering the linear 
differential equation 

AU(t)=N(t) 

where the linear operator A with constant coefficients a; is 

n d 
A= l": a;-d ; 

;-0 t 

(i8-26) 

(18-27) 
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and N(t} is a disturbance torque. Substituting a trial solution of the form 

8( t) = exp(wt) 

into Eq. (1S-26) with N(t}=O, we obtain the characteristic equal ion 

The complementary solution to Eq. (IS-26). i.e .• A8c =0, is 

" 8c(t)= L C;exp(w;t) 
;=1 

IS.I 

(IS-2S) 

(IS-29) 

( IS-30) 

where the n values of w; are the roots or zeros of the characteristic equation. Thus, 
a necessary condition for system stability (i.e .• for the lim 8c(t) to exist) is that, for 
all i, Re(w,) < O. 1_00 

The question of stability has thus been reduced to investigating the 
characteristics of the roots of Eq. (lS-29). A pure imaginary root, i.e., Re(w;)=O, 
results in an undamped oscillatory component of the solution, while a root with a 
positive real part results in an exponentially increasing component of the solution. 
All of the roots of Eq. (IS-29) have negative real parts if and only if the 
Routh-Hurwitz criteria [Korn and Korn, 1965) are satisfied. These are 

I. a;>Oforalli (IS-3Ia) 

2. Either all the even or all the odd Ti' i ~ n, defined below, are positive. 

To=a" 

T1=a,,_1 

T = la"-I 
2 a,,_3 a" I a,,_2 

a,,_1 a" 
T3= a,,_3 a,,-2 

a,,_s a,,_4 

a,,_1 ,a" 

T4= 
a,,-3 a,,-2 
a,,_s a,,_4 
a,,_1 a,,-6 

and so on. 

0 
a,,_1 
a,,_3 

0 
a,,_1 
a,,_3 
a~-s 

0 
'a" 

a,,_2 
a,,_4 

(IS-3Ib) 

(IS-3Ic) 

(IS-3Id) 

(IS-3Ie) 

(IS-3lf) 

A number of other methods of determining system stability-such as the 
Nyquist criterion, and root locus diagrams-have been developed in the last three 
decades (see, for example, Melsa and Shultz (1969) and Greensite [1970D. The most 
common of these is the root locus diagram, which is a plot in the complex s-plane of 
all possible locations of the roots of the characteristic equation of the system's 
closed-loop transfer function as the gain, K, is increased from zero to infinity. 

Let GH, the open-loop transfer function, be represented as the ratio of two 
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polynomials in s: 

K(sm+an_,sm-'+ ..• +ao) Kn(s) 
GH= =--=KB(s) 

sn+bn_,sn-'+···+bo ·d(s) (18-32) 

where K is the system gain. Then the closed-loop transfer function is 

C' G(s) 
R = n(s) 

1+ K des) 

(18-33) 
G(s) d(s)G(s) 

-::---=:-=-:--:- = -:-:"--:-,--::::'-:--:-
1+ KB(s) d(s) + Kn(s) 

The poles of the closed-loop transfer function are the roots of d(s) + Kn(s) = 0. As 
. the value of K changes, the. location of these roots in the complex s-pIane also 
changes. A root locus diagram is the locus of these roots as a function of K. The 
locus of a particular root is a branch on the root locus diagram. For K = 0, the roots 
of the characteristic equation are the roots of d(s)=O, that is, the poles of the 
open-loop transfer function. As K increases from zero to infinity, these roots 
approach the roots of n(s). i.e .• the zeros of the open-loop transfer function. 
Therefore. as the value of K increases from zero to infinity, the loci of the poles of 
the closed-loop transfer function start at the open-loop poles and terminate at the 
open-loop zeros. If, for a given K. none of the roots of the characteristic equation 
has positive real parts. then the system is stable. 

A set of general rules for constructing and interpreting root locus diagrams 
follows: 

1. The number of loci, or branches of the root locus. is equal to the number of 
poles of the open-loop transfer function, GH = KB(s). 

2. The root loci are continuous curves. The slopes of the root loci are also 
continuous except for points at which either dB(s)/ds=O, K=O, or B(s) is infinite. 

3. Loci begin at poles of B(s) where K=O, and terminate at zeros of B(s), 
where K is infinite. 

4. If the open-loop transfer function. KB(s), has p finite poles and z finite 
zeros, there will also be p- z zeros at infinity if p;;> z. 

5. For a branch of the root locus diagram to pass through a particular value of 
s-say, s,-s, must be one of the roots of the characteristic equation d(s.) + Kn(s,) 
=0 for some real value of K. The condition for which s. is the root of the 
characteristic equation is that B(s.) must have a phase angle and magnitude given 
by 

IB(s.)I=lil 

B( ) _ {(21+ 1)77 radians, arg s,-
2/77 radians, 

K>O 
K<O 

(18-34) 

where I is an arbitrary integer. To satisfy Eq. (18-34), the magnitude of KB(s.) must 
be equal to unity, and its associated phase angle must be an odd mUltiple of 77 
radians. These two criteria are known as magnitude and angle criteria. respectively. 

6. Branches of the root locus are symmetrical with respect to the real axis 
because all complex roots appear in conjugate pairs. 
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7. For p>z and Isl»O. branches of the root locus approach a set of asymp
totic straight lines. The asymptotes to the loci at infinity meet at the centroid of 
B(s) given by 

p z 

L p;- LZ; 
sc=-

;=1 ;=1 
(18-35a) 

P-Z 
where p; and Z; d,enote the ith pole and zero of KB(s). The angles between the 
asymptotes and the -real axis are 

8[= 

where I:;=O.I,2 •...• p-z-1. 

{ 

(2/+ 1)'11' 
--- radians. 

p-z 
2hr d' -- ra lans. 
p-z 

K>O 
(18-35b) 

9. A breakaway point SB is a point on the real axis where two or more branches 
arrive or depart. This point is calculated by solving the equation dB(s)jds=O and 
calculating its roots. 

As an example of the above rules. we construct the root locus diagram shown 
in Fig. 18-7 of a feedback system whose open-loop transfer function is given by 

GH=KB s)= K 
{ (s+2)(s+3)(s+4) 

(18-36) 

We first determine the poles and zeros of GH. For this function. there is no zero 
and there are three poles on the real axis at s = - 2. - 3. and - 4. marked by 
crosses in the figure. Because there are no zeros. the branches are asymptotic to 
straight lines at infinity. The center of these asymptotes is ,at 

p : 

L p;- L Z; 
;=1 ;=1 

sc=----
p-z 

_--=2~:.......:::3_---.:.4 = _ 3 
3 . 

The asymptotes make an angle 8 with the real axis where 

and 

8 = ..:.,{2_1_+_1 ):.....1_80_° 
p-z 

(21+ 1)180° 

3 

8 = 360° 1 = 360° 1 
p-i 3' 

=0°.120°. and 240° 

The breakway point is determined by 

dB(s) 
d(s) =0 

(K >0./=0.1.2) 

(K < O. 1 = O. 1.2) 
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that is, 

or 

with the solutions 

S I == - 3.58,- S2 =-- 2.45 

For a system with positive gain, as K increases from K=O, the root al 
S == ( - 2,0) moves 10 the left along the real axis until it rea.ches the breakaway point, 
SB = S2' where it becomes complex, moves into the second quadrant, and 
approaches the 60°/240

0 

asymptote as K-+oo. Similarly, the root at S = ( - 3, 0) 

2i 

--
-I 

-21 
-.--ASYMPTOTES-_"'' 

-31 

--- ROOT LOCI FOR K<O 
--ROOT LOCI FOR K .. O 

-&I 
~Jg. 18-7. Root Locus Diagram of B(s) .. I/(s+2XJ+3)(J+4). Arrows indicate direction for which 

I k I incrcascs. See· text for explanation. 
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moves to the right along the real axis and into the third quadrant at S2. The real 
root at s = ( - 4,0) remains real, moving to the left along the axis (0° /180° 
asymptote). For a negative gain system, as K decreases from K=O, the real root at 
s = ( - 2, 0) remains real, moving to the right along the real axis. The roots at 
s=( -4,0) and s=( -3,0) move to the breakaway point S8=SI' where they become 
complex and approach the 120°/300° asymptote as K -+ - 00. 

The maximum value of K for which the system remains stable corresponds to 
a pole of the closed-loop transfer function which lies at s = iw on the imaginary axis 
and is located by inspection from the root locus diagram. From Rule 5, Eq. (18-34), 
the gain is 

K =\_1 \ 
mtIX B(s) $=;" 

(18-37) 

The shape of the transient response of the system is another design criterion 
and is controlled by the damping ratio, p. The gain factor, K, required to give a 
specified damping ratio, is calculated from the root locus diagram by drawing a 
line from the origin at an angle of ± IJ with the negative real axis, where lJ=arccos 
(P). The gain at the point of intersection of this line with the root locus is the 
required value of K. .. -

For the example shown in Fig. 18-7, the KmtIX is calculated for a pole located 

near s= ±3V3 i; that is, 

KmtIX =V(27 + 4)(27 +9)(27 + 16) =219.1 

The gain required for a damping factor of p=O.3 is obtained by drawing a line at 
ail angle IJ = arc cos (0.3) = 72.5 deg to the real axis as shown in Fig. 18-7. When the 
p = 0.3 line is drawn, it intersects the root locus for K > 0 at a point S3 near where 
the lines y=(x+3)tan6O° and y= -xtan72.5° intersect. The solution for this 
. intersection is 

The gain, at s~, is 

x=Re(s3)= -1.06 

Y = Im( S3) = 3.36 

IKI=V[ (X+2)2+ y2][ (X+3)2+y2][ (X+4)2+ y2] =60.5 

By inspection of Fig. 18-7, the p=0.3 line cannot intersect the locus for K<O on 
the left-hand side of the s-plane so that the system is stable with a damping ratio 
p=O.3 and K= +60.5. 

IS.2 Momentum and Reaction Wheels 

As discussed in Sections 6.6 and 15.3, momentum and reaction wheels are 
used to provide attitude stability and control. Various wheel arrangements 
used. FOr example, the momentum bias control syst~m"includes one or 
momentum wheels to provide a bias, or nominal angular momentum different 
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zero. This design is often used on Earth-oriented spacecraft, such as the ITOS and 
AE series, to provide continuous scanning over the Earth. This design is sometimes 
caIled a dual-spin spacecraft to indicate that it has two parts rotating at different 
rates. One component may be completely despun, or rotating at a controlled rate, 
such as one revolution per orbit such that it maintains the same side pointing 
toward the Earth. 

GAO and IUE are examples of an alternative arrangement in which a system 
of three orthogonal 'reaction wheels, with control signals from a set of gyroscopes, 
is used to provide three-axis stability and high pointing accuracy. This type of 
system can operate completely despun, with the reaction wheels absorbing all 
disturbance torques. It can also serve to reorient the spacecraft to a new target 
attitude by performing a series of slew maneuvers, or rotations about a reaction 
wheel axis. A hybrid configuration, flown on the Nimbus series, consists of a pitch 
momentum wheel with reaction wlieels in the roll-yaw plane to absorb cyclic 
torques. 

18.2.1 Momentum Bias Control Systems 

In a momentum bias control system, a momentum wheel is spun up to 
maintain a large angular momentum relative to disturbance torques. This design is 
common in Earth-oriented spacecraft where the momentum wheel is. along the 
pitch axis, nominally parallel to orbit normal. The advantages of the momentum 
bias design are: (I) short-term stability against disturbance torques, similar to spin 
stabilization; (2) roll-yaw coupling that permits yaw angle stabilization without a 
yaw sensor for pitch axis pointing; (3) a momentum wheel that may be used as an 
actuator for pitch angle control; and (4) a momentum wheel that may be used to 
provide scanning motion across the celestial sphere for a horizon sensor. Thus, 
momentum bias systems can provide three-axis control with less instrumentation 
than a three-axis reaction wheel system. 

By incorporating horizon scanners into the momentum wheel as described in 
Section 6.2, roll and pitch error signals may be provided to the control system as on 
the ITOS and AE series. Yaw control can be achieved without a yaw sensor 
through the kinematics of quarter-orbit gyroscopic coupling as shown in Fig. 18-8. 

Fig. 18·8. Interchange of Yaw and Roll Attitude Components for a Momentum Wheel With Angular 
e Momentum. II, Fixed in Inertial Space. The yaw error when the spacecraft is at A becomes 
n a roll error when the spacecraft moves to B. (Compare with Fig. 24.) 
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Here, a yaw error, ~, at one point in the orbit becomes a roll error, ~" a quarter of 
an orbit later. 

In a typical momentum bias system, closed-loop pitch angle control is 
maintainc:d by comparing a pitch index fixed in the spacecraft body to the midscan 
horizon-crossing signal (see Section 6.2). Open-loop roll control is often performed 
using magnetic coils, as on AE or ITOS. In the AE system, the attitude is 
determined on the ground, and magnetic coil commands are generated to null the 
roll error by reorienting the pitch axis toward orbit normal. In addition to 
compensating for atti:ude disturbance torques, adjustment must also be made for 
the change in direction of the orbit normal due to precession of the orbit (see 
Section 3.4). Transferring momentum between the wheel and the spacecraft body 
to change the body spin rate may be used for switching. between spining and 
nonspinning operations or for changing the pitch angle in the despun mode. The 
romponent of the total angular momentum, L p , about the pitch axis is given by 

Lp = IpfIJp + h (18-38) 

where Ip is the moment of inertia of the body of the spacecraft about the pitch axis, 
flJp is the body spin rate about the pitch axis, and h is the angular momentum of the 
pitch wheel where the wheel momentum is oriented along the positive pitch axis. 
From conservation of angular momentum, the change in body rate due to a change 
in wheel momentum is 

AfIJ=_Ah 
p Ip (18-39) 

Wi.th constant body spin-rate control, any secular disturba.nce torques cause a 
systematic increase or decrease in wheel momentum. When the wheel momentum 
approaches the maximum wheel capacity or minimum desired momentum, 
momentum dumping or desaturalion must be performed using gas jets or spin-plane 
magnetic coils. (See Sections 19.2 and 19.3.) 

An alternative design for a momentum bias control system is illustrated by the 
SEASA T system which uses a pair of canted scanwheels (see Section 6.2) in the 
pitch-yaw plane, as shown in Fig. 18-9. The scanwheels use the pitch and roll 
attitude error signals to maintain closed-loop three-axis attitude control. The pitch 
and yaw momentum components are given by 

h,=(h,+h2)cosa 

hy=(h,- h2)sina 
(18-40) 

where a is the cant angle between the pitch axis and the momentum wheels. The 
YAW AX'S 

hv h. TOTAL WHEEL MOMENTUM 
---------------

----~-_:___:::~::====::;--r_---___:_---=-+ PITCH AXIS 
hp 

h, 

Fig. 18-9. Canted Momentum Wheels in the Pitch·Yaw Plane. hi and hI are the wheel momenta. 
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momentum wheels are n~minally operated at the same speed, such that hI = h2' and 
the total momentum is along the pitch axis with hy=O. When the horizon scanners 
sense a roll angle error, a controlled yaw momentum component is generated by 
differentially torquing the two wheels to reduce the anticipated yaw error which 
will occur one-fourth of an orbit later. Because of the large moments of inertia of 
the SEASA T spacecraft, the scanwheel momentum is augmented by a pitch 
momentum wheel; a roll reaction wheel is used for roll angle control. The 
operation of the SEASAT control system is described in detail in Section 18.3. 

18.2.2 Reaction Wheel Systems 

Because the disturbance torques in high Earth orbit are very small (see Section 
17.2), it is possible to use small reaction wheels to absorb them with an active 
control system to maintain three-axis stability. In such a system, gyroscopes are 
generally used to sense and feed back any body motion to the wheel torque motors 
on each axis. The torque motors then apply a compensating torque to each reaction 
wheel, which effectively absorbs the disturbance torques. Thus, the angular 
momentum vector changes slowly with time, and the attitude remains fixed in 
inertial space. When the wheels near saturation, the angular momentum is adjusted 
using gas jets or magnetic coils. Ideally, the attitude is controlled to the same 
steady-state value during desaturation, although in practice transient attitude errors 
are induced. 

A slew, or attitude reorientation maneuver, can be executed using the set of 
reaction wheels to rotate the body about a commanded axis, usually one of the 
wheel axes, as described in Section 19.4. As shown in Fig. 18-10, the angular 
momentum vector remains inertially fixed, although the attitude angles change as 
do the angular momentum components in a body-fixed coordinate system. In the 
example shown, the x axis wheel might approach saturation at the final attitude 
just to absorb the larger momentum component. Note that in addition to estimat
ing the attitude, it is also necessary to keep track of the wheel momenta for 
calculating momentum dumping commands and slew execution times. 

The advantages of a three-axis stabilized reaction wheel system are: (I) 
capability of continuous high-accuracy pointing control, (2) large-angle slewing 

z 

Fig. 18-10. A Slew Rotation Aboutlhe z Axis, Shown in Inertial Space. Note Ihatlhe JC axis wheel has 
to absorb additional momentum when moving to its location at '2. 
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maneuvers without fuel consumption, and (3) compensation for cyclic torques 
without fuel consumption. This system, however, generally requires an on board 
computer to implement the control laws and achieve the target attitudes. 

Configurations of four reaction wheels provide control even if one wheel fails. 
For systems with more than three wheels operating simultaneously, a sleering law is 
required to distribute the momentum. between the wheels during a maneuver. For 
example, on the Space Telescope (Glaese. el al., 1976], the total angular momentum 
of the four-wheel system b,O, is given by 

(18-41) 

where hi is the magnitude of the momentum of the ith wheel and the transforma
tion matrix, A, depends only on the mounting angles of the wheels. The reaction 
~heel steering law is derived using the pseudoinverse A R (see Appendix q of the 
matrix A, where AR::AT(AAT)-I. The wheel torque four-vector, N, is given by 

~18-42) 

where Nc is the control torque vector in body coordinates, the vector (I, -I, 
-1, I)T represents the specific wheel geometry along the diagonals of the octants 
with positive x, and k is an arbitrary scalar which signifie~ the one remaining 
degree of freedom. The scalar, k, can be used to achieve a- desired reaction wheel 
momentum distribution. If k is set to zero, the steering law (Eq. (18-42» will 
minimize the norm of the wheel torques. If a wheel fails or is disabled, the scalar, k, 
can be chosen to null the failed component of the wheel torque vector, N, and thus 
avoid storing several different forms of the distribution matrix A R. 

18.3 Autonomous Attitude Stabilization SystelUS 

Gerald M. Lemer 

Section 15.3 ou.t!ined two 6'as~hniques for attitude control. Open-loop 
control utilizes ground~base~ software and analysis to determine the attitude and 
compute and uplink commands to an onboatd torquing system. Open-loop control 
may either maintain the spacecraft' 'at a given orientation,. which we define as 
stabilization, or maneuver the spacecraft to a new attitude, as discussed in Chapter 
19. Thus, open-loop stabilization and maneuvers differ principally in the arc length 
separating the actual and the desired ·attitude. In contrast, closed-loop control uses 
attitude errorS measured by sensors to automatically activate torquing devices via 
an oriboard computer 0:- analog electronics and thereby maintain the attitude 
errors within specified liih::s. For missions such as the planned Space Telescope. 
pointing requirements may be as stringent as 0.01 arc-second (Elson. 1977]. 
However, most current autonomous spacecraft have much more modest require-
ments, in the range 0.2 to I deg. . 

Closed-loop control can provide a significant improvement in both cost and 
accuracy over open-loop systems, which require frequent, complex, and expensive 
ground-based operational support to maintain a I-deg pointing accuracy. Auto
nomy, however, is no panacea because of the added hardware cost, complexity, 
and weight and the reduced flexibility. Autonomous systems are less fault tolerant 
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of data or environmental anomalies than are ground-based systems. They do not 
have available either the sophisticated ground processing software or the "common 
sense" judgment of the operator or analyst. Modfications to analog control systems 
are, of course! impossible after launch and expensive before launch, and changes to 
onboard software, while possible, are more difficult than comparable changes to 
ground-based software. 

In this section, we describe the characteristics of and design considerations for 
several typical autonomous control systems. Two basic configurations are dis
cussed: inertially referenced spacecraft which maintain a nearly fixed attitude 
relative to a stellar target and Earth-referenced spacecraft which maintain a nearly 
fixed attitude relative to the nadir and orbit normal. The inertial rotation rate of 
Earth-referenced spacecraft varies from 4 deg/minute for near-Earth satellites to 
15 deg/hour for geosynchronous satellites. 

18.3.1 Inertial.y Referenced Spacecraft (HEAO-l) 

The first High Energy Astronomy Observatory (HEAO-I) operated during the 
early mission in a celestial point mode in which the body Z axis was pointed to and 
maintained within I deg of an inertial target while the spin rate about the Z axis 
was maintained within 10% of 0.18 deg/sec. A computed attitude reference was 
propagated.onboard using a set of gyros (see Section I7.l) and periodically 
updated via ground-based command software utilizing star tracker data. The 
HEAO-I control logic, implemented via an onboard computer (see Section 6.9), 
compares the target and observed attitude and issues a corrective thruster com
mand when an error signal based on the attitude and attitude rate errors exceeds a 
preselected value. 

Let qT and qo be the quaternions which parameterize the target and observed 
attitudes, respectively (in some arbitrary reference frame), and B(q) be the 3 X 3 
matrix constructed from the quaternion q. Then, as shown in Section ]6.1 and 
Appendix D, the matrix that rotates the body axes to the target attitude is 

(18-43a) 
or, in quaternion notation, 

-) - [ -:~: :;: -;;: :;~ 1 [ = :~~ 1 
qo qT= qE = qrz - qTI qT4 qT3 q03 

- qTl - qT2 - qT3 qT4 q04 

(18-43b) 

where qK=(QKI,qK2,qK3,qK4)T; K=E, T, or 0; and qE is the error quoternion. If the 
observed and target quaternions are equal, then the error quaternion is qE 
=(0,0,0, I)T andB(qE) is the 3x3 identity matrix. 

One goal of the control laws is to minimize the projections of the observed X 
and Y body axes on the target Z axis; thus, we require that 

XO,ZTsO 

YO·ZTsO. (18-44) 

Because these projections are the 1,3 and 2,3 components of B=B(qE)' Eq. 
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(18-44) can be written as 

Xo· ZT= BI3 = 2( qElqE3 - qEZqE4) eO 

Yo· ZT= B23 = 2( QEzqE3 + QEIQE4) eO (IS-45) 

Let t, ~, and €v denote the infmitesimal rotations about the body X, Y, and Z 
axes required to achieve the target attitude. Then B(f/E) transforms vectors from 
the body to the target frame and is given by 

Dr 

o 
I 

+€, 

Be[+~ 
-€ 'P 

-~l[ ~ ~ +~l[ +~ -y ~l 
I -~ 0 I 0 0 I 

-€y 
I 

+€, 
+~l -€, 

I 
(IS-46) 

where AI' Ay , and Az are the Euler rotation matrices (see Section 12.1) and terms of 
order € are omitted in Eq. (IS-46) and throughout this section. Thus, BI3= +t, 
and B23= -€,. The error quaternion i~ measured onboard the HEAO-I spacecraft 
by continuously propagating a reference attitude (measured on the ground using 
star tracker data) with rate-integrating gyros (see Section 6.5.2). The gyros also 
measure the body rates, which may be compared with the desired rates of 
"'X~"'y~O and "'z~O.lS deg/sec. The position and rate error for either the X or Y 
axis are combined as shown schematically in Fig. IS-II to yield a desired thruster 
burn duration, 

IX = Kx( - B23 + .,x"'x) 

Iy = Ky(BI3 + "y"'y) 

where Kx and Ky are the system gains, "x and.,y are lead time constants, and Ix 
and ~ are the desired thruster burn durations. Errors about the X and Y body axes 
are corrected independently (the small gyroscopic coupling between the X and Y 
axes through the angular momentum about the Z body axis is ignored). 

ENVIRONMENTAL TORQUE INTEGRATOR 

BURN DURATIDN 

t ~t' t' - --t 

~i"'2At 

GAIN 

RATE 

AN 

INTEGRATDR • 

Fig. 18-11. HEAO-I Position Plus Rate Controller Block Diagram (B=f, or t and B=",)' or ",..). 
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Either position only, rate only, or position plus rate control may be achieved 
by the control law shown in Fig. IS-II, where fJ and iJ are the angular position and 
rate errors about a body axis and I is the computed thrust duration. Note that, in 
the figure, environmental disturbance torques, N~, are integrated and added to the 
commanded control torques. To avoid excessive thruster activity, commands are 
issued only if the required thrust duration, I, exceeds a minimum time, Ill. For 
large I, the thrust interval is set equal to the sampling rate and the thruster fires 
continuously. 

The action of the position plus rate controller is illustrated in the state space 
diagram in Fig. IS-12 where the ordinate is the rate error and the abscissa is the 
position error. If the attitude state lies within the shaded region or deadband, 
thruster commands are inhibited. However, if tbe attitude enters the region above 

, or below the deadband, corrective thrusts are commanded. Abov.e and to the right 
i . of the dead band, the angular velocity is decreased by tbe control law; below and to 

the left, it is increased. After large errors are removed, each thrust yields a 
minimum rate cbange of lliJ= N!:J.II I, where N is the thruster torque, III is the 
minimum thrust duration, and I is the moment of inertia about the controlled axis. 
Initially, thrust commands will be issued by the controller, causing approximately a 
vertical trajectory· on Fig. 18-12, until the deadband boundary i~ reached. The 

C 

j RATE 
IDEGIS) 

0.02 

0.01 DECREASE ANGULAR 
VELOCITY 

STEADY·51 ATE 
TRAJECTORY 

A 

9 ------t---+----~~4:~~~~:__---__i__l:......---- POSITION 
IDEG) -0.1 

B 

INCREASE ANGULAR 
VELOCITY 

0.1 

Fig. 18-12. HEAO-J ControDer State-Space Diagram. A, B. and C are various initial states. An 
uncontroDed trajectory is an approximately horizontal line. 

-The vertical Ii\lft are "luaUy sections of parabolas, 9=(;-;0>2/2a+9", where the initial angle and 
rate arc 90 and 90 and the angular acceleration during the thrust is Q. For thrusters, Q is large. and thus 
9~90 during the thrust. 

~I 
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attitude state then moves horizontally within the deadband at a constant angular 
velocity; when the deadband boundary is next crossed, another thrust is com
manded. The trajectory, in the absence of environmental torques, for representative 
initial conditions A, B, and C is shown in Fig. 18-12. The path 7-8-9-10-11, ... , is a 
sleady-slate trajeclory which is approximately maintained by the control laws. 

The size of the attitude deadband in state-space is determined by the system 
gain, K, time constant, T, and minimum thruster duration, I!J.t, with the permitted 
position and rate dimensions given by 89=2M/ K and fJO=2111/ KT, respectively, 
as shown in Fig. 18-12 .. The mean time, (I), between thrusts in steady state 
depends on the minimum angular rate change and is given by 

(t) ==(21!J.1/ K)/(Nl!J.t/ 1)=21/ KN (18-47) 

The general effect of environmental torques is to perturb the attitude, as 
shown in Fig. 18-12; this results in curved trajectories in the state-space diagram. 

The HEAO-I control law has the advantage of simplicity, and gains and 
deadbands may be selected to suit various applications. The 'major disadvantages 
are that (I) the response of the system to disturbance torques is undamped, which 
results in a waste of expendables as the attitude state is driven within the 
deadband; and (2) the attitude pointing accuracy is severely limited by the 
requirement for complex ground-based support to provide periodic updates to the 
reference attitude, qo; typically every 12 hours. One obvious impr~vement on the 
HEAO-I control system is to provide an autonomous capability for updating the 
reference attitude. Such a system, using a star tracker (see Section 6.4) as the 
sensing device will be used on HEAO-B [Hoffman, 1976]. In addition to providing 
periodic reference attitude updates, the HEAO-8 control system continuously 
estimates the gyro drift bias (see Section 7.8) using an onboard version of the 
Kalman filter discussed in Section 13.5. A similar system for SMM, using a precise 
Sun sensor as the primary attitude reference, is described by Markley [1978]. 

18.3.2 Earth-Referenced Spacecraft 

The two basic limitations of the HEAO-I control system~the lack of both 
damping and an autonomous attitude reference-are easily overCOme for Earth
referenced spacecraft. A momentum wheel provides gyroscopic .rigidity and thereby 
permits damping. In addition, the control system may utilize either gravity-gradient 
torque or horizon sensors to measure absolute position errors and, consequently, 
does not require extensive ground support. 

The spacecraft considered here rotate at one revolution per orbit in an orbit of 
moderate eccentricity (say, e<O.I) at altitudes where atmospheric drag may be 
neglected. We will first reformulate Euler's equations for these spacecraft by 
deriving an expression. for the gravity-gradient torque. Next. the general 
characteristics and approximations underlying the equations are described. Finally, 
they are applied to GEOS-3, HCMM, SEASAT, and CTS to illustrate the analyti
cal procedures used for the evaluation of arbitrary stabilization systems. 

We assume that the·nominal mission attitude is as shown in Fig. 2-4, where the 
body Z axis (normally the payload axis) is along the nadir, and the body Y axis is 
along the negative orbit normal. For ~ circular orbit, the body X axis is along the 
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velocity vector.· The attitude angles are defined as roll, pitch, and yaw, which are 
small rotational errors about the velocity vector, negative o~bit normal, and nadir. 
(Alternatively, these may be thought of as small errors about the body X, Y, and Z 
axes.) The roll, pitch, and yaw angles (in radians) are denoted by €,., (p' and t.: 
respectively. The transformation matrix from the orbit reference frame to the body 
frame is, 

(18-48) 

where B is the transformation from the body frame to the reference frame defined 
by Eq. (18-46). The matrix A transforms any vector, V, from orbital coordinates 
(V 0) to body coordinates (V B); that is, AVo = VB. The order of the three rotations 
in Eq. (I8-48) is irrelevant because infinitesimal rotations commute. 

The angular velocity vector in the body frame is (see Section 16.1) approxi
mately 

CiJB=[!l+A[ _O"'ol=[t-~:l 
€y 0 €y + "'o€, 

(18-49 ) 

where "';=P,(J)/ R3 is the orbital angular velocity of a spacecraft in a circular orbit 
of radius R, and p'(J) == GM (J) is the Earth's gravitational constant The zenith vector 
in body coordinates is 

fB =A (0,0, -I)T =(€" -€,., =-I)T (18-50) 

and hence the gravity-gradient torque (see Section 17.2) is 

NGG =3"':rB X (I. rB) = 3",; (€"{Iz - Iy ),€,(Iz - Ix ),O)T (18-51) 

where the moment of inertia tensor, I, is assumed diagonal with components lit' I
y

, 

and I z along the body axes. Note that to first order there is no gravity-gradient 
torque along the yaw axis. (There is, however, a yaw-restoring torque which results 
from gyroscopic roll/yaw coupling, as described in the next subsection.) 

With the previous definitions, Euler's equations in body coordinates for a 
spacecraft with internal angular momentum, hx' ky, and hz along the body X, Y, 
and Z axes are (see Section 16.2) 

:t L+CiJXL= ~N=NE+'Ne+NGG (18-52) 

where NE , Ne, and NGG are the environmental, external control, and gravity
gradient torques, respectively. Writing Eq. (18-52) in component form gives 

IxE. + [4w;(I)' - Iz )- ky"'o]t - [hy + {Ix - Iy + Iz )eiJo]t. = NEx + Nex + hz"'o -;'x 

(18-53a) 

• For orbits of nonUro eccentricity, the velocity vector is replaced by the cross product of the negative 
orbit normal and the nadir vector. 
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(18-53b) 

IzE,. + [",,;(1), -1,,)- h,""o)~ + [II, +(1" -I)' + I, )""o]t= N£I + Nez - h,,""o - h, 
(I8-53c) 

where the total angular momentum is L= 1'40)+ h, and we have assumed that 
""o»max(I~I, Itl, It),l) and have neglected all second-order terms including those 
involving h" and hz in Eq. (18-53b). Equation (18-53) is central to the remainder of 
this section. We first describe its general characteristics and underlying approxima
tions and then apply it to several representative spacecraft. 

The pitch equation is decoupled from the roll and yaw equations which are 
coupled through the bias momentum, h)" and the orbit rate term (I" -I)' + I,~o' 
Control torques, including dampers, generally increase the coupling .. between the 
roll and yaw equations but leave the pitch equation uncoupled.· For gravity
gradient stability, I" > I, and the gravity-gradient force provides a restoring torque 
proportional to pitch with frequency V3ri; ""~ where 0y =- (I" -1,)/ I)'. The effect of 
orbital eccentricity on the pitch behavior of gravity-gradient stabilized satellites 
may be seen with the aid of Fig. 18-13. The rate of change of ungular momentum 
about the pitch axis, ignoring environmental torques and with the pitch wheel 
speed constant, is 

( 18-54) 

where" is the true anomaly. For an orbit with small eccentricity, e, we have (see 
Eq. (3-11», 

" ... M +2esinM 

1/. TRUE AHOMAl V 

PITCH AXIS" NEGATIVE 
OR81T NORMAL (OUT OF PLANE 
OF PAPER) 

"--.....I"-----------_P£RIGRE 
EARTH 
CENTER 

( 18-55) 

Fig. 18-13. Intluollce of Orbital Eccentricity on a Gravity-Gradient Stabil~ed Spacecraft. (Adapted 
from Pisacane. et aI .. II967].) The orbit is ill the plane of the paper • 

• Off-diagonal lenns ill Ihe moment-of-inertia tensor lead to coupling and are UlIually treated as 
disturbance torques. 
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where M ="'0'+ Mo is the mean anomaly. Substitution of Eq. (18-55) into Eq. 
(18-54) gives . 

with the solution 

( I -[) t +3w: JC [ z 4=2c,,:esinM 
)' 

~= 3a2~ I sinM + CICos(VJ;; "'ol+f{>t) 
)' 

(18-56) 

(18-57) 

where C1 and .pI are integration constants associated with the complementary 
solution. 

The particular solution to the differential Eq. (18-57), t, = 2e sin M / (3a - I), 
results in a sinusoidal steady-state error, which for GEOS-3 (e=0.OO54, (I =0(984), 
had an amplitUde of 0.3' deg. For spacecraft with a)'~] /3, there is ·a pitch 
resonance and therefore this configuration is avoided . 

The coupled rollfyaw expressions from Eq. (18-53) in the abseJ!,ce of roll and 
yaw wheels, control, and environmental torques (other than gravity-gradient) are 

IJC"t +4w:(ly - Iz )("-"'0(1 ... -Iy + Iz )~=O 
- 2 J. Iz~ +"'o(ly - IJC){, +"'0(1 ... - I)' + Iz )~=O (18-5.8) 

With the notation ax =(/)' - Iz)/ Ix and a. =(1)' - Ix)/Iz' these may be rewritten in 
Laplace transform notation (see Appendix F) as . 

[ 
s2+4w:aJC 

"'o(l-az)s 

with the characteristic equation 

s4+",:(3ax + 1 + axa.)r2 + 4w:oxoz =0 

(18-59 ) 

(18-60) 

For roll/yaw stability, the roots to Eq. (18-60) must have no positive real part (see 
Section ] 8.1) and hence 

(18-61) 

must be real and' negative.' Therefore, a necessary and sufficient condition for 
stability 'is 

(18-62) 
where 

6 .. 0,>0 
Figure 18-14 illustrates the regions of pavity-gradient stability defined by the 

-If "'I is afoot of Eq. (Is.eo), then -"', ~ also. Thus.. for both 't aM -', to !lave DO positiYc real part. 
'\ must. bo p\uo i~ary ud If i4 fW ~ aopthe. . 
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ECCEN'TRlcrTY 
I1ESONANCE 

18.3 

Fig. 18-14. Gravity-Gradient Stability for Various Moments of Inertia. Three-axis stability corres
ponds to the unshaded region (adapted from Kaplan (l976D. The letters S, G, and R 
denote the configurations of -three gravity-gradient stabilized spacecraft-SEASA T-A, 
GEOS-3, and RAE-2. (See Appendix I.~ 

above inequalities. (As described previously, Ix> Iz or ixox > Izoz is required for 
pitch stability.) 

18.3.3 Examples of Earth-Referenced Spacecraft 

The remainder of this section concerns the analysis of Eq. (18-53) for four 
representative spacecraft configurations and control systems, as described in Table 
18-1. Although all four spacecraft are of the momentum bias design as discussed in 
Section 18.2, they are physically very different. The moments of inertia of the 
asymmetric HCMM spacecraft are three orders of magnitude smaller than those of 
the symmetric SEASAT-A spacecraft. All four spacecraft orbits are near-circular, 
but the CTS orbit is equatorial at synchronous altitude, whereas the others are at 
500 to 850 km in polar orbits. GEOS-3, shown in Fig. 19-17, uses an extendable 
6.5-m boom with a 45-kg end mass to achieve a large, gravity-gradient restoring 
torque which, combined with a damper, provides passive l-deg pitch control. For 

Table 18-1. Physical Characteristics of Representative Earth-Oriented Spacecraft. Nj A indicates not 
applicable. See Appendix I for other spacecraft characteristics. 

MOMENTS Of INERTIA (kg. m2, INERTIAL WHEEL UOMENTA (N·M·S' ORBIT 
Sl'ACECRAF"I" SPIN RATE 

I. 'Iy I. ISEc-', h. hy h. alkmJ I . I H ..... 

GE()S.3 2'67 2'57 . 35.5 0.00'03 NIA -2.41 . NIA :ff CTS 1130 92 1130 0.000073 NIA _20.3' NIA 

SEASAT-A 26.'00 26.'00 3000 0.00'06 ott _24.4' ott 7163 0 '08 

IICMM '9.4 28.7 'B.4 0.00'08 NlA -5.n' NIA 6978 0 98 

'PITCH CONTROL VIA MOMENTUM EXCHANGE. 

ttREACTION WHEELS AT NOMINAL ZERO BIAS FOR ROLLIYAW CONTROL. 
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SEASAT-A. the large, symmetric Agena (the final stage of the launch vehicle) 
remains attached to the experimental module and provides a large gravity-gradient 
restoring torque; however. the O.5-deg pitch control requirement can be satisfied 
only by adding a· pitch sensor and controlling the pitch wheel speed. For both 
HCMM and CTS. the effect of the gravity-gradien~ restoring torque is negligible, 
and pitch control is achieved by controlling the pitch wheel speed. Roll/yaw 
control. which is equivalent to maintaining the wheel angular momentum along the 
orbit normal. is accomplished as shown· in Table IS-2. Except for GEOS-3, for 
which the gravity-gradient resoring torque is large. active control is' achieved by 
using a sensed roll error to drive a torquing system. For all four spacecraft, yaw is 
controlled indirectly via quarter-orbit coupling with roll (see Section IS.2) because 
of the lack of simple. effective yaw sensors in Earth orbit. * Both SEASAT and 
CTS, however. use an indirect method of augmenting the yaw control, referred to 
as WHECON (an acronym for wheel control) by commanding a yaw torque based 
on the sensed roll error. 

For spacecraft with magnetic coils. dampers. or residual dipoles. the geomag
netic field in the spacecraft coordinates is required. Assuming a dipole field and an 
orbit passing over the magnetic pole. the magnetic field in orbital coordinates (see 
Section 5.1 and Appendix H) is 

8 0 = BM (cos".O.2 sinA)T (IS-63) 

where BM =7.96X 106/ R3 (Teslas) as defined in Eq. (H-IS). R is the geocentric 
distance in kilometers, and A is a continuous measure of the latitude (i.e .• " is the 

Table 18-2. Control Systems for Spac:ec:raft in Table 18-1 

PITCH 

SPACECRAfT -.- IlIISOA 

GlDS-3 GRAVITY GRADSENT '-" 
CT. PITCH WHIIL SPIED -' SEASAT .... 2 PITCH WHEEL SPlID SCANWHEELs' 

GRAVITY GRADIENT 

...".... PITCH WHlIL INID SCANWHULl 
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SPACECRAJIT 

MlTMQO SENSOR 

GEO$.l CIUAlIT£R_8IT -, --CT. 
_ ...... """. 

SEASAT-A2 WMlCON4 NON_ 

HeM .. ' CIUAIITalI4R8JT ----
'NQN9PINNING IAATH SINSOA ASSIM8l. Y ISII seCTION 1.2 • 

.... OPO .. O SPACICIIAn. 
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~EGISTEReD TRADlIIIARIC O' ITMACO CORPORATION. (SEE seCTIOli U1 

4ACAONV .. POR ... 11. cmIfrROL .. I SlASAT DISCUSSION IN TeXT) 

___ 

IIIT_ ....-
GRAVITY GAMUINT' -JUS ........ 
AC)U RIACTION IIHIEL _"LS 
GRAWTY GRADIINT 

-....c: TOAQUIIIG 
_IL 

- ---- -
JnS .illS - _u - _TIC 

CONTROL 
ACCURACY 

IDIGI 

"" 
G. 

o.s 

'.0 

• Direct yaw control can be achieved using a gyroscope, as in lDertial guidanc:e systems; using either 
onboard processing of Sun sensor or star tracker data; or using ground commands to periodically 
'lIpdate the yaw referenc:e. " 
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latitude when the satellite is traveling north and 180 deg minus the latitude when 
the satellite is traveling south). 

GEOS-3. The GEOS-3 control system is described in Table 18-2 and the 
spacecraft is shown in Fig. 19-17. The control torque from the magnetic eddy 
current damper is (see Section IS.4 and [Pettus, 1968)) 

• d' 
Nc=kDBx dt B 

where kD is the damper constant, the geomagnetic field is 

( 18-64) 

B=ABo= BMA (cos>.,0,2sin~l (18-65) 

and A is defined by Eq. (18-4S). 
Substitution of Eqs. (IS-48) and (IS-65) into Eq.-(I8-64) gives the damper 

torque in body coordinates as . 

(18-66) 

where for a circular, polar orbit, A=",o' Substituting Eq. (18-66) into Eq. (1S-54) 
and using Table IS-I with hx=hz=O, hy= -h, and Ix=Iy=I gives the result 

.. 4kD sin2>.. 2 
IE,+ 2 • 2 E,+(4Co10 {l-Iz )+hwo}€, 

cos >'+4slO >. 

+ (h - Izw" - ~Dsin~ 2 )~ + 2kDWoEy =' N Ex 
cos >. + 4~ID >. 

•• • 2 -2Co10 kD 
I~+kD~+3wo(l-Iz)f,,= 2 • 2 +NEy 

cos ~+4SID >. 

_ kDcorA. ( kDSin 2>. ). 
Iz~+..2 . 2 ~+hwoEy- h-Izw"+.2 . 2 E,-2kDwoE,=NEZ 

C05->' + 4slO >. _ C05->' + 4 SID >. 

(18-67) 

The pitch equation has the form of a forced harmonic oscillator which may be 
solved by expanding the right-hand side of the equation or the lorcing function in a 
Fourier series [Repass. el al., 1975]. 

1(/) 
- 2Co1 k 
. "D +N (I) 

1 + 3 sin2"'"t Ey 

== -"'okD(1 + Jcos2Co1"t+ ;COS4Co1/11+"') 

ao 00 

+ T + ~ (ancosnt.oV+bnsinnw"t) 
ned 

(IS-6S) 
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where· ).., = wot and an and btl are the Fourier coefficients given by 

(18-69) 

Taking the Laplace transform of the pitch equation and rearranging yields (see 
Appendix F) 

':::p(s)= t:(~p(/»= { q - WukD(I + jcos 2wol + ;COS4wol+··· + >l 

+ t: [ 0 0/2 + n~1 (u"cosnwol ~ b"sinnWo/)]} ;res) 

where the time constants and frequencies associated with the 
oscillations are given by the zeros of the characteristic equation 

r(s)= Is2+ kos+3w;(I-I.) 

Thus, the zeros of Hs) aret 

s:!: = [ - ko =Vkb -12w;(I-I.)1 ]/21 

and the time constant. T, -and oscillation frequency, I, are. 

T= - I/Real(s+)=21/ko 

1=lm(s+)=VI2w;(I-I.)/-kb /21 

decay 

(18-70) 

of pitch 

(18-71) 

(18-72) 

(18-73) 

(18-74) 

The steady-state solution, ~p(t), is obtained using Eq. (F-33) and the principle 
of superposition, 

- -2 0 0 a1cos(wol-CPI) 
~ (t) = -- + -- + ------'-----'-_...,.-,:-
'P 30WoT 601w; Iw;[ (30-1)2+4/(W

o
T)2f/2 

(18-75) 
(02 - 2wokD/3)cos(2wol- CP2) 

+ +, ... ,+ 
Iw;[(30-4)2+ 16/(woT)2]'/2 

where 0 =(I-I.}/I;$ I, cP" =arctan-I[kon/ Iwo(3a- n2»). and we assume bn ==0. 
The GEOS-3 design tradeoff can be seen by comparing Eqs. (18-73) and 

(18-75). Rapid transient response is obtained by decreasing T=2I/ko . However, 

·Withoulloss of generality, we assume that the spacecraft is traveling north at the Equator at , ... 0. 
tTbe complementary solution to the pitch equation (i.e~ for zero forcing terms) may be shown to be of 
the form 

~(')=exp( - t/T)[A exp(if')+ Bup( - ift)1 

by substitution into Eq. (18-61). 
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the steady-state error is reduced by increasing '1' and I. Consequently, for GEOS-3, 
satisfactory steady-state performance was achieved at the cost of poor transient 
performance. The parameters were 1=2157 kg_m2, kD =9.0I2 N·m·s, and thus 
'1' = 4.2 days and the root-mean-square steady-state pitch error was approximately 
0.5 deg [Lerner and Coriell 1975] 

The Laplace transform of the roll-yaw equations (Eq. (18-67» may be written 
in matrix form as 

[ 

2 2kD 2 
Is + -3-s+4c.I"(/-/z)+h,.,,, 

- (h -/z"',,)s - 2kD,.,,, 

where E,(s)= e(~,(t», E)'(s)= e(~(/», and the slowly varying coefficients of the 
damping term have been replaced with their orbit averaged values, 

( 
2 sin "'01 cos "',,1 ) 

=0 
COS2"',,1 + 4 sin2,.,,, I 

(

- COS2"',,1 ) I 

cos2"'ot+4sin2"'ol = '3 
Equation (18-76) may be formally solved for roll and yaw to yield 

(18-77) 

(18-78) 

The time constants and frequencies which describe the decay of transient roll and 
yaw oscillations are related to the zeros of the determinant of M which are given by 

[ 
2 2kD 2 - ]( 2 kD) 2 2 Is +3s +4c.I"(I-Iz )+h,.,,, Izs + Ts+h,.,o +(h-/z"'~)s 

+ 4kD ,.,o( h - Iz"'o) + 4!c~"': = 0 (18-79) 

Denoting the roots of this fourth-order equatior by Sl' sr. S2' and sl, the time 
constants and frequencies are 

'1'1 = -1/Re(sl)~6.1 days 

(18-80) 
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fl = Im(sl)~O.OOI6 sec-I 

h=lm(s2)~O.OI2 sec-I 

617 

(18-81) 

The fact that these time constants are much greater than the orbit period 
(100 minutes) justifies the orbit averages of Eq. (18-77). The characteristic 
frequencies, fl and f2' are related to the gravity-gradient restoring torque and 
nutation, respectively. The very long time constants associated with the decay of 
transient pitch and roll oscillations required the development of a procedure which 
minimized the pitch and roll errors after attitude acquisition (see Section 19.5). 

HCMM. The HCMM control system, as outlined in Table 18-2, provides 
pitch control by torquing the pitch wheel based on horizon scanner pitch angle 
data. The pitch wheel torque command, shown schematically in Fig. 18-15, is 
computed from the pitch angle and rate as 

(18-:82) 

1------------_..., Kptp 

s -it 

Fig.· 18-IS. Position-Plus-Rate for Pitch Angle Control 

The rate gain, JS;~0.8 N· m· s, provides damping of the pitch response with time 
constant T = 2Iy/ Kp~67 s and the position gain, Kp~0.OI2 N· m, provides a 
restoring torque with frequency f~VKpl Iy ~O.021 S-I. The pitch loop response to 
a 5-deg initial error is shown in Fig. 18-16. 

Substituting Eq. (18-82) into Eq. (18-53b) and taking the Laplace transform 
gives 

{/ys2+ Kps + [3",; (Ix - Iz )+ Kp] }'::p(S) = E(N£y) 

and the roots of the characteristic equation are 

(18-83) 

(18-84) 

The gains, Kp and Kp are chosen to provide near-critical damping and minimizethe 
overshoot, as discussed ·in Section 18.1. For critical damping, 

(18-85) 

Thus, the design value, Kp = 0.8 N . m' s corresponds tp a ~amping ratio of p~ I Iii 
" (see Section 18.1), which results in one overshoot and no undershoots. 

Roll and yaw control are achieved by commanding the y axis electromagnet 
based on magnetometer and horizon scanner roll angle data [Stickler, el 01., 1976]. 
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Fig. 18-16. HCMM Pitch Loop Response to a S-Deg Error 

The electromagnet strength is commanded according to the control law 

D" == KNB" + KpBx€, (IS-S6) 

where B is the measured magnetic field in" the body and Kp and KN are the 
precession and nutation gain, respectively. Although the magnitude of D" is limited 
to 10 A ·m2 (10,000 pole·cm) by hardware constraints, we will ignore this complica
tion in the subsequent analysis. Substitution of Eqs. (IS-4S) and (IS-63) into Eq. 
(1S-S6) gives the control torque 

[ 
sinA 1 Nc-DxB= {k,.[ sinA(2t+"'o~ )-cosA(~-;2..,o€,)] +kpcosA€,} (\ 

-cosA 

(IS-S7) 

where the gains, magnetic field strength, and unit conversions have been absorbed 
i~to the constants kll and kp• Substituting Eq. (IS-S1) into Eq. (IS-53) and taking 
the Laplace transform leads to the coupled roll and yaw equations in matrix 
notation as 

(IS-8Sa) 

where 
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I 

l .. s2-4kftssin2>. I [h-(I .. -I"+II)"'o+k,,sin2>.]s 

+ [ 410>~ (I" - II > + h",. - sin 21.(2kft",. + k,>] : - 2k
ft
",.sinl>. M(s)a - - - - - - - ____________________ _ 

[(11 + I .. -1,)Io>.-h+kft sin2>.]s I Ilr - k.srosl>.+ (I,,-I .. )kI~ 
+ (k, + 2kI.k.}OOS2>. +;""'0 + k."'osin'2>./2 

(18-88b) 

The treatment of the variable wol=A as a constant in Eq. (18-88) should be 
noted~ The nonlinear differential equation may be solved without resort to this 
approximation by the technique of multiple time scales [Alfriend, 1975] which is 
based on the two widely differing periods that tharacterize the HCMM dynamics, 
i.e, the ri'utation period'(20 seconds) and the orbital period (100 minutes). Here, we 
are concerned with a qualitative description of the HCMM dynamics as a function 
of the mean anomaly or subsatellite latitude. 

Although many approximations were employed in obtaining Eq, (18-88) and 
simulations using detailed hardware and environmental models (particularly for the 
magnetic field) are required to evaluate control system performance, most of the 
characteristics of the HCMM control system are contained in the relatively simple 
model described by that equation. For a given latitude and control gains, the zeros 
of the characteristic. equation 

det(M(s»=O ( 18-89) 

may be computed. In general, there are four roots to the fourth-order Eq, (18-89). 
In the absence of control torques, these roots are pure imaginary, ± iWI and ± i"'2, 
where w,-:::::.h/Y/x/z is the nutation frequency and W2~Wo is the orbital frequency. 
With nutation control but no precession control (k" < 0, kp = 0), the roots are 
complex conjugate pairs with negative real, parts and the system is damped and 
stable. The damping time constant associated with the nutation, '1'", is shown as a 
function of latitude in Fig. 18-17(a); at the Equator (A =0) 'I'"-:::::.-0.6/k,,. 

The Routh-Hurwitz criteria (see Section 18.1) may be applied to Eq. (18-89) to 
obtain the necessary conditions for stable preeession control as 

[4w;(Iy -Iz )+ h(oo,-~iI"lA(1knwo + kp)] [w;(Iy -Iz )+ hwo + !k"wosinlA] 

(18-9Oa) 

- 4kllsin2A [ ( Iy - 1]( )w; + hwo + ! k"wosin lA ] 

- k"cos
2
A [ 4( Iy - Iz )w; + hwo - {2k"wo + kp)sin lA ] 

- 2k"wosin2A [ (/y - Ix -Iz )wo + h - k"sin lA ] 
(18-9Ob) 

- (2k"wo + k~)COS2A [( Iy - Ix -/z )wo + h + k,;sin lA ] > 0 

(18-9Oc) 
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Fig. 18-17. ConlJ'Ol System Tune Constants, as a Function of Latitude (Spac:ecraft is Traveling North). 
See text for explanation. 

For HCMM, the spacecraft parameters satisfy the inequalities 

h»14( Iy - Iz )"'01 

h»l(Iy -I" )"'01 

Ikp l»12kn"'01 (18-91) 
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and Eq. (18-90) may be rewritten to good approximation as 

hwo - kpsin 2A > 0 

- k"wo{6tan2A+ 1)- kp>O 

k,,<O 

621 

(18-92a) 

(18-92b) , 

(18-92c) 

In Fig. 18-17(b), the dotted line shows that the mission attitude (pitch=roll 
= yaw = 0) is a position of stable equilibrium even in the· absence of active 
precession control, although the time constant is too long (approximately 120 
minutes) to counter the effect of typical disturbance torques. The solid line shows 
the precession time constant for the control law defined by Eq. (18-86). For the 
HCMM parameters, this precession control law is ineffective in the Southern 
Hemisphere and unstable between 14° and 76° south latitude when the spacecraft 
is traveling north. (The Northern Hemisphere is the region of ineffective control 
system performance when the spacecraft is traveling south.) 

Consequently, the HCMM control system deactivates precession control (i.e., 
sets kp=O) whenever IBJ B"I> 1.4. This "magnetic blanking" results in active' 
control only within about 35 deg of the equator. Detailed parametric studies can 
thus be conducted to establish near-optimal gains and control laws and to obtain 
regions of stability by solving algebraic equations without the need for ti~,e- , 
consuming simulation. 

SEA SAT. As outlined in Table 18-2, pitch control for SEASAT-A is essen~ 
tially the same as for HCMM; however, roll/yaw control is achieved using roll and 
yaw reaction wheels with the control torques based on the horizon scanner roll 
error signal and wheel speeds [Beach, 1976]: 

-h =-K~-Kt-wh ): ,~,,~ 0 Z 

- hz = Kry€, + wohx (18-93) 

The commanded roll reaction wheel torque, hx' based on position and rate errors, 
provides a roll restoring torque. together with damping. The wheel-speed-dependent 
terms in Eq. (18-93) cancel like terms in Euler's equation and effectively remove 
the roll and yaw dependence upon the reaction wheel speeds (although, of course, 
the gyroscopic pitch momentum wheel coupling remains). The yaw wheel is torqued 
ISO-deg out of phase with the roll error signal to provide yaw damping, 

Substitution of the wheel control torque, Eq. (18-93) into Eq. (18-53) yields the 
roll/yaw equation in Laplace transform notation as 

[ 
Ixs2 + K; s+ Kx + K, Hs 1 (:,(S») == e( NEX) (18-94) 

-Hs-Kry Izs
2+K. .:.)'(s) NEz 

with the characteristic equation, 

1",/zs4+ K;/zs
3 + [lxK.+ Iz(K" + K,)+ H2]S2+(K;Kz + KryH)s 

+Kz(Kx+K,)=O (18-95) 

where Kx = 4w;( 1- Iz) + hwo = 0.0 II N· m, Kz == hwo == 0.026 N· m, H = 'h - 1''''0 = 
21.3 N'm's, and Ix =I),=1==25100 kg·m2

• 
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The selection of the gains, K" K; and Kry' is done most conveniently using the 
root locus plot shown in Fig. 18-18. With all three gains equal to zero, the two roots 
marked by x are pure imaginary with associated frequencies, 1.5"'0 and 3.9"'0' 
related to the nutation and the gravity-gradient torque. As the roll position gain, 
K" increases to 0.39 N· m, the roots migrate away from the origin along the 
imaginary s axis to the point marked by the arrowheads, which implies a faster 
response to a roll error. Addition of roll rate gain, K;, moves the roots into the third 
quadrant, which implies damping of both roll and yaw errors. Note, however, that 
the magnitude of the real part of one root remains small and the associated time 
constant is therefore large (14 minutes at K;= 116 N ·m·s) and, consequently, the 
yaw damping is slow. The addition of a roll error to yaw torque gain, Kry' 
substantially reduces the longer time constant and thereby improves the system's 
performance. The gain, Kry=0.08 N·m, is chosen such that the decay constants 
associated with the two roots are approximately equal, T~(l.1",o)- I = 14 minutes. 
The addition of the roll error to the yaw torque gain is fundamental to the 
WHECON wheel control concept which is frequently encountered in attitude 
control literature (see. for example, Dougherty, et 01., [1968).) 

ImIS) 

'-----'-~--........ ----f----------- RelS) 

Fig. 18-18. Root Loc:uS-Plot For SEASAT Control System. See text for explanation. 

ers. The crs control system, shown in Fig. 18-19, is similar to SEASAT 
except that gravity-gradient torques are negligible at the synchronous altitude of 
CTS and thrusters, offset at an angle a from the yaw axis in the roll/yaw plane, are 
used instead of reaction wheels to control the wheel axis attitude. The wheel 
angular momentum, h, is chosen such that 

h»max[l%o{1y - Iz )1, l"'o{1z + I" - Iy )I,I"'o{1y - I" )1, 1"'0(1" - Iz)l] (18-96) 

(1~-91) 

with the characteristic equation 
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(18-98) 

The roots of the characteristic equation are approximately ± ifIJo and ± ifIJ". where 
fIJ" = h/Vlxlz is the nutation frequency. The control torque, Nc, is based on the roll 
error signal, derived from horizon sensors, 

e{Z::)= -K,(Ts+I)E,(s)( """~::) (18-99) 

or in the time domain 

(Z::) = - K,(Tt+t)( -~::) (18-100) 

where K, is the system gain and ". is the leac.!-time constant (see Section 18.1). 
Substituting Eq. (18-100) into Eq. (18-97) gives the closed-loop roll/yaw 

equations as 

[
lxS

2
+K,cosa(Ts+I)+hfIJo hs ][:,(S)]=e[NEx] (18-101) 

-(h+K,TSina)s-K,sina Izs2+hwo .:.'.,(s) NEz 

Inverting Eq. (18-101) yields the control block diagram for the roD channel shown 
in Fig. (18-20). The closed-loop transfer function for this system is 

E,(s) G3(9) , 
G,(s)e(NEx)+ G2(s)e(NEz ) = 1+ K,[ cosaGj(s)-sinaG2(s)]H(s)G)(s) 

where 

G,(s)=lzs2+ hwo 

Gz(s)=-hs 

(18-102) 
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Fig. 18-20. Control Block Diagrl;lm for crs Roll Angle 

G3(s)=[ (S2+ w:)(Ixlzs2 + h2)]-1 

H(s)='Ts+ 1 

18.3 

z,lS) 

Thus, the closed-loop poles of the system are the zeros of the characteristic 
equation 

(18-103) 

As the system gain is increased from K,=O to K,= 00, the zeros of ns) migrate 
from the zeros of [G3(s)r l to the zeros of [cosaGI(s)-sinaG2(s)}H(s) which are 
located at 

s= -II'T 

- hsina ± (h2sin2a -4Izhwocos2a) 1/2 

s= 
2 lzcos a 

The roots in Eq. (18-I04b) are negative and real provided that 

tan a ;> 2,lIzwol h 

(18-I04a) 

(18-I04b) 

(18-IOS) 

For a high-gain system, the equality in Eq. (I8-IOS) is chosen; this provides the best 
transient yaw response [Dougherty, et al., 1968]. 

The steadj-state performance of the control system may be obtained by 
applying the final value theorem (see Appendix F) to Eq. (18-101): 

lims {[ l.rs2+ K,cosa( 'TS + I) + hwo]Z,(S) + hsZ)'(s)} = limse (N Ex) 
s--+O s.....o 

lims {[ - (h + K,~sina)s - K,sina ]Z,(s) + (lzs2+ hwo)Z)'(s)} = lims e( NEz) 
5-0 s~o 

(18-106) 
which may be rewritten as 

(K,cosa+ hwo) limsZ,(s) = limst:(NEx ) 
s--+O s--+O 

( 18-107) 
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By the final value theorem, 

lim sE,(s)=€,( 00) 
s ..... o 

and, hence, for a high-gain system such as thrusters, where K,"»htA)", 

M 00)= N£x(OCi)/ K,cosa 

€y(oo) = [NEz ( 00)+ tanaN£x (00)]/ htA)" 
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(18-108) 

(18-109) 

Equation (18-109) may be used to estimate the system gain, K" and angular 
momentum, h. 

18.4 Nutation and Libration Damping 

Ashok K. SaxeTJII 

A spacecraft undergoes periodic motion if it is disturbed from a stable 
equilibrium position. For a spin-stabilized spacecraft, this periodic motion is 
rotational and is known as nutation (Section 15.1), whereas for' a gravity-gradient 
stabilized spacecraft, it is oscillatory and is known as libration. 

Nutation and libration occur as a result of control or environmental torques, 
separation from the launch vehicle, or the motion of spacecraft subsystems such as 
the tilting of experiment platforms or the extension of booms and arrays. Normally, 
an attempt is made to suppress or damp this motion because it affects the 
performance of sensors, pointed instruments, and antennas. However, Weiss, et al., 
[1974) have shown how nutation can be advantageously used to scan the Earth. In 
such cases, a desired scan motion can be reversed without the use of energy by 
exciting controlled nutation modes. 

Nutation or libration can be damped by passive or active devices. A passive 
damper is one which does not require attitude sensing, is driven by the motion 
itself, and dissipates energy. The frequency of the damper is intentionally kept near 
or· equal to the rigid body frequency so that it significantly affects the motion of the 
spacecraft. An active nutation damper may be used if the initial amplitude of the 
motion is large, if the damping time of a passive damper is prohibitively long, or if 
passive damping leads to an undesirable final state (Section 15.2). In such cases, 
the attitude control system provides the necessary damping torques. 

18.4.1 Passive Nutation Damping 

As discussed in Sections 15.2 and 16.2, a rigid spacecraft can be stabilized by 
spinning it about the axis of maximum or minimum moment of inertia, called the 
major and minor axes, respectively. Nutation occurs if a spacecraft does not spin 
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about a principal axis. Thus, the problem of nutation damping is that of aligning the 
nominal spin axis with the angular momentum vector by dissipating the excess i ~ 
kinetic energy associated with nutational motion. For a rigid body, this is possible 
only if the spin axis is the major axis, i.e., the principal axis having the largest 
moment of inertia. Table 18-3 summarizes the characteristics of several types of 
passive dampers. Real spacecraft always have some damping and associated energy 
dissipation. This may be either inherent in the system (structural damping), due to 
spacecraft components (fuel slosh, heat pipes), or due to the nutation damper 
hardware; Lord Kelvin [Chatayev, 1961) showed that a body which has been 
stabilized by gyroscopic means can lose its stability in the presence of dissipative 
forces. In 1958, Bracewell and Garriott (1958) showed that a slightly nexible 
spacecraft with no rotors or motors can be spin stabilized only about its major axis. 
During the course of· publication, this result was confir~ea 'when Explorer I, 
launched in February 1958, started tumbling in the first"" orbit because it was 
spinning about its minor axis. A dual-spin spacecraft with two axisymmetric 
rotating components can be stabilized about a minor axis in the presence of 
damping on one of the components [Landon and Stewart, 1964]. In this case, 
damping 10 the slower rotating component has a stabilizing effect and overcomes 
the destabilizin~ effect of damping in the faster rotating component. 

Table 18-3. Representative Passive Nutation Dampers 

DAllPER ENERGY DISSIP ... TION 
CHARACTGRIlrrICS MECHANISM 

PENDULUM FLUID FRICTION STURDY. LONG LIF, 

EDDY CURRENT EDDY CURRENTS DELICATE. HIGH-ENERGY DISSIP ... TION 
RATE. VAAI .... BLE D ... MPlNG CONSTANT 

BALL-IN·TUBE ROLLING AND VISCOUS STURDY. LONG LIFE. RE ..... INS TUNED 
FRICTION FOR DIFFERENT SPIN RATEB. CANNOT 

BE USED ON THE DESPUN PORTION OF ... 
DUALoSI'lN SPACECRAfT 

VISCOUS RING FLUID FRICTION SIMPLE CONSTRUCTION. LONG LIFE 

The earliest duel-spin satellite (OSO) used a two-degree-of-freedom pendulum 
nutation damper which consisted of a brass ball mounted at the top of a nexible 
steel rod [Cloutier, 1975). The damping was provided by immersing the ball in 
silicone. Currently, one-degree-of-freedeom nutation dampers, such as those de
scribed below, are preferred. 

Mathematical techniques used to study Pllssive nutation damping include the 
Energy Sink method used by Likins [1967) and the Routh-Hurwitz stability method 
[Likins, 1967). Nutational stability has been studied using Liapunov's second 
method by Pringle (1969). If the satellite has many rotating components with many 
dampers, the resulting equations have periodically varying coefficients and stability 
can be studied using Floquet analysis [Meirovitch, 1970); this approach has been 
used by Johnson (1974). 

Eddy Current Damper. In an eddy current damper, the energy dissipation 
required for nutation damping is provided by the motion of a conducting plate 
relative to a magnet. The energy dissipation rate per unit weight due to the 

; , 
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generation of eddy currents in the conductor is much greater than that of fluid 
dampers. 

A typical pendulum eddy current damper, such as that used by the SAS series, 
consists of a Ni/Pttorsion wire parallel to the ~in axis. The wire carries a 
pendulous copper vane which oscillates between the poles of an electromagnet. The 
drag force is proportional to the relative velocity between the vane and the 
electromagnet. If d and p are the thickness and resistivity of the vane, and B is the 
magnetic induction between the poles, then the damping constant, c, is given by 
[Haines and Leondes, 1973) 

KB 2d c=--
p 

where K is a constant which depends on the shape and size of the poles. Eddy 
current dampers have the advantage of a variable damping constant, because the 
strength of the electromagnet can be changed by ground command. The SAS 
dampers could also be tuned in flight for different spin rates by changing the spring 
stiffness of the damper and hence its frequency of vibration. 

Ball-In-Tube Damper. A ball-in tube damper, shown in Fig. 18-21, consists of 
a closed, curved tube in which a ball is allowed to roll freely. The damping caused 
by rolling friction may be augmented by viscous damping if the tube is filled with a 
viscous fluid. The ends of the tube may have energy-absorbing" bumpers. The 
damper behaves like a centrifugal pendulum and its frequency of vibration is 
directly proportional to the spin rate of the body on which it is mounted. Hence, if 
such a damper is tuned initially, it remains tuned for different spin rates. These 
dampers are mounted on the spinning portion of a dual-spin spacecraft and on 
single-body spinning spacecraft. They have been used by most of the early ESRO 
spacecraft, including ESRO-U and -IV and HEOS-I and -2. 

I 
i 

.---t- BUMPER 

II"'" 

CUAV1!D 1U8£ 

SATELLITE BODY 

i 
Fig. 18-21. BaU-in-Tube Nutation Damper 

Viscous RIng Damper. Viscous ring dampers dissipate energy by fluid motion 
inside a ring. Although the study of these dampers began in 1960 [Carrier and 
Miles, 1960), interest in this type of damper has increased because of energy 
dissipation in heat pipes. A heal pipe is typically a fluid-filled aluminum pipe used 
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to maintain near-isothermal conditions during the nonspinning phase of a 
spacecraft mission. During the spinning phase, the heat pipes act like viscous ring 
dampers. ATS-5, launched in August 1969, was spinning abou its minor axis and 
was supposed to spin about its major axis after the apogee boost motor had fired 
and the casing had been ejected. However. the unexpectedly high energy dissipa
tion in the heat pipe caused the spacecraft to enter a flat spin before the casing was 
ejected. After ejection of the casing, the spacecraft started spinning about the 
desired major axis. although the spin direction was opposite that desired. Viscous 
ring dampers may be mounted either in. or perpendicular to, the spin plane. We 
discuss first the performance of a damper mounted in the spin plane and later 
discuss a simpiified model of a damper mounted in a plane perpendicular to the 
spin plane. " 

The damper flown on the ARYABHATA satellite consists of a fiberglass tube 
partially filled with mercury. The damping produced by viscous ring dampers 
depends on whether the flow through the tube is laminar or turbulent. For small 
nutation angles (~ I deg). the fluid in a damper mounted in the spin plane is spread 
around the outer portion of the tube and has a free surface at the center of the 
tube. In such a mode, the damper performance depends on the frequency of the 
surface waves. For larger nutation angles, the fluid acts as a lumped mass or slug. 
The motion of the slug depends on the viscous drag and centripetal acceleration. If 
the nutation angle is small (I deg to 10 deg), the viscous drag is large compared 
with the centripetal acceleration and the slug is dragged around the body with a 
small oscillatory motion. This is called the spin-synchronous mode and a small 
oscillation is superimposed on the nutation angle decay (Alfriend, 1974J. For larger 
nutation angles, the force due to centripetal acceleration exceeds the viscous drag 
force and the slug rotates with respect to the body at the body nutation rate. In this 
nutation-synchronous mode the slug is slightly offset from the ZjL plane because of 
the viscous drag. The transition angle between the spin-synchronous and the 
nutation-synchronous modes depends on the damper parameters and it is possible 
that the "spin-synchronous" mode may not exist if the ring is not eccentric to the 
spin axis. 

A simple model of a viscous ring damper mounted in .a plane parallel to the 
spin axis of a dual-spin spacecraft is shown in Fig. 18-22. The damper is modeled 
as a viscously coupled momentum wheel of momentum h, radius of gyration XO' 

fluid mass m, and damping constant c. The angulltr momentum of the system is 
given by 

L=lw-hk, 

where we have assumed that the wheel momentum is along the negative z axis. I is 
the moment-of-inertia tensor of the spacecraft and w is the spacecraft angular 
velocity. The model equations are 

I,/"x'= Nx + (/z -Ix }wyWz + hwy -101.1 

li"y = Ny + (/z -Ix )wxwz - hw" -Iouwz 

li"z = Nz + (Ix -Iy )wxwy + it + louwy 

IoU = lo"'x - cu 
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where u is the angular velocity of the fluid relative to the spacecraft body, 10 = mx: 
is the moment of inertia of the damper, and N is the external torque. If we assume 
that the main body of the spacecraft is not spinning ("'". = 0) and that the damper 
does not significantly affect the moment of inertia of the spacecraft (mx: is smaIl 
compared to the principal moments of interia). then when the damper is tuned, the 
optimum damping constant is 

where "', = hl'.JI,Jy is the nutation frequency and the corresponding time constant 
is 

18.4.2 Active Nutadon Damping 

41z 
T =apt C 

ap' 

Active nutation damping involves the use of a sensor to measure the nutation 
phase and possibly its amplitude as described in Section 16.3. and an actuator to 
change the angular momentum of the system. Sensors ~mmonly used are Sun 
sensors, horizon sensors. magnetometers, and rate gyros. The actuator may be a 
magnetic coil. a gas jet, a momentum/reaction wheel, or a control moment 
gyroscope. Active damping may be done by an open-loop system, in which case the 
actuator is activated by ground command, or by a closed-loop system, which 
requires some onboard logic circuitry between the sensors and the actuators. 

Magnedc Nutadon Damping. An open-loop magnetic damping method has 
been developed and used at Goddard Space Flight Center [Flatley, 1972] to banale 
circumstances in which a spacecraft. may be nutating unexpectedly. This was used 
when SSS-l developed unexpected nutation due to thermo-elastic flutter and when 
the pendulum damper of SAS-3 became stuck at its maximum amplitude. 
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We assume that the active nutation damping procedure is performed over a 
sufficiently short time so that we can neglect the change in the orientation of the 
geomagnetic field vector with the spacecraft's motion. When a constant current is 
passed through the spin axis coil, the direction of the resulting torque in inertial 
space is nearly constant, although it will change slightly depending on the size of 
the nutation cone. The transverse component Lr of the angular momentum vector 
rotates in space at the inertial nutation rate and in the body at the body nutation 
rate. If the spin axis is the major axis, the spin plane component of-the geomagnetic 
field rotates in the opposite direction at the spin rate of the body and its direction 
can be measured by a magnetometer. The nutation phase is determined from Sun 
sensor data, as described in Section 16.3. A time and polarity for the current is 
selected so that the magnetic torque is opposite in direction L7 for half the 
inertial nutation period, after which the polarity of the current is reversed .. The 
resulting torque will oppose Lr over the second half of the inertial nutation period. 
Thus, this nutation damping technique consists of (I) the proper selection of a time 
and polarity for the magnetic coil current and (2) reversal of it every half inertial 
nutation period. Thus, Lr and consequently the nutation can be reduced to zero. 

An onboard control scheme is being considered for nutation damping for the 
HCMM spacecraft. The roll angle is observed by a horizon sensor and the nutation 
is sensed by the pitch axis magnetometer. The roll angle, ~r' can be minimized and 
the nutation damped simultaneously by using a pitch axis magnet control law of 
the form 

M.v = KNBy + KpBA, 

where My is the coil strength, B is the geomagnetic field intensity, and KN and Kp 
are constants. (See Section 18.3.) 

Gas Jets. An open-loop gas jet nutation damping scheme was planned but 
not needed for" the CTS spacecraft. As described in Section 1.1, CTS has 16 
"low-thrust engines which are mounted around a wheel at different distances from 
the spin axis. The nutation phase and amplitude can be determined on the ground 
from Sun sensor and rate gyro data (see Section 16.3). Nutation is damped by 
adding angular momentum equal and· opposite to the transverse angular momen
tum and the timing is such that the spin axis i:; closest to the desired direction. 
(Section 16.3 presents an analysis of timing requirements for gas jet nutation 
damping.) The first of these conditions can be fulfifIed by an appropriately timed 
single thrust. However, the second condition can be fulfilled only by changing the 
direction of. the thrust vector in the body coor~inate system. This can be done by 
choosing an appropriate combination of available jets. A precession maneuver 
from one attitude to another which includes nutation damping can ideally be 
accomplished by firing the jets twice, as shown in Fig. 18-23. The first impulse is 
such that the new angular momentum vector points halfway between the two 
attitudes and the second impUlse of the same polarity and magnitude is fired after 
half a nutation period. 

Dougherty, el al .. (1968] have proposed an active, closed-loop gas jet nutation 
damping scheme known as the WHECON system. (See also Section 18.3.) The 
spacecraft is assumed to have a body-fixed pitch wheel and two gas jets slightly 
offset (about 10 deg) from the roll plane. The constant impulse jets are activated 
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FIRST PULSE FIRED 

NOMIIIIAL SPIIil AXIS 
NUTATES AFTER THE 

FIRST PULSE 

INITIAL ANGULAR MOMEIliTUM VECTOR 

FINAL ANGULAR 
MOMEIliTUM VECTOR 

SECOND PULSE FIRED AFTER HALF 
THE IIIUTATIOIII PERIOD WIlEN THE 

IIIOMIIliAL SPIIil AXIS IS AT THE 
DESIRED ATTITUDE 

Fig. 18-23. Gas Jet Precession Maneuver Including Nutation Damping 
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from roll angle data to keep the satellite within predetermined roll and yaw 
deadbands. The system is sensitive to changes in the nutation rate (wheel speed, 
moments of inertia) and to any change in the magnitude of the jet impulses. Iwens, 
el 01., [19741 have studied the stability of such a system and suggest that a time 
delay of about 5/8th nutation period be used between impulses. The control logic 
is such that when the roll deadband is encountered, a corrective pulse is fired 
followed by another pulse of the same polarity 518th nutation period later, 
provided that no other deadband activated impulse has been fired during this 
period. 

Control Moment Gyroscope. A single-axis control moment gyroscope whose 
gimbal can rotate about an axis perpendicular to the nominal spin axis can be used 
for active and semipassive nutation damping for a dual-spin satellite. In active 
damping, the nutation is sensed by an accelerometer whose output is used to 
control the gimbal angle. In the semipassive mode, the gimbal is restrained by a 
torsional spring and dashpol. In this case, the control moment gyroscope may be 
mounted on either the spinning or the nonspinning component and the stability 
criterion is the same as that for passive dampers. The damping time constant of 
such a system. is much smaller than that of a passive system. 

18.4.3 Libratlon Damping 

Gravity-gradient stabilized spacecraft may librate as a result of the initial 
attitude acquisition process or environmental torques. For such spacecraft we are 
interested in aligning a principal axis to the local vertical, i.e., in lib,alion damping. 
A gravity-gradient satellite is nominally in a stable equilibrium position when its 
minor axis lies along the local \"ertical and its major axis is perpendicular to the 
orbital plane.· In this section we discuss some of the methods used for passive 
libration damping. In the early 19505, Roberson and Breakwell (1956) suggested 

-Except for a smaO let of momeDts of inertia corrcaponding to the Delp region (DeBra and Delp. 196IJ. 
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that libration could be damped by the dissipation of energy in a flexible part of a 
spacecraft. Mobley and Fischell [1%5) have suggested a method which utilizes 
eddy current rods rigidly attached to the spacecraft. Section 18.3 includes a 
detailed example of libration damping during the GEOS-3 attitude acquisition. 

Spring Damper. The TRAAC spacecraft used a damper consisting of a 
spring with a small mass attached to a boom as shown i, Fig. 18-24. The spring 
was released after boom depl~yment an~ could expand to about 12 m. As ,the 
spacecraft libratecl; the spring 'eipanded and contracted, resulting in energy dissipa
tion due to the high structural damping in the spring. This was provided by 
mechanically soft cadmium which covered the beryllium-copper wire of the spring. 
The spring was then coated with silver to prevent subliination of the cadmium in 
the vacuum of space. This damper is more efficient for removing librations in the 
erbit plane than for librations in the plane perpendicular to the orbit. 

TIP MASS SMALL MASS 

MAIN BODY 

Fig. 18-24. Spring Libration Damper for a Gravity-Gradient Stabilized spaceeraft 

Magnetically Anchored Eddy Current Damper. A damper such as that used 
by GEOS-3 consists of two concentric spheres which can move relative to each 
other and are separated by silicone oil to provide viscous damping. The inner 
sphere is attached to a magnet which aligns or anchors itself to the Earth's 
magnetic field vector. The outer sphere is attached to the spacecraft's boom and is 
made of pyrolitic graphite for diamagnetic centering of forces on the inner sphere 
and aluminum for energy dissipation through eddy currents. The damping torque 
Nd is 

A (dB) Nd=cBX dt 

where c is the damping constant and B is the direction pf the net magnetic field in 
the body coordin~te system. If A is the attitude matrix, '" the angular velocity of 
the satellite, and BI the direction of the magnetic field in inertial space, then the 
above expression can be rewritten in the form 

Nd=C[ A (BI XB/) +(o)-B(",.B) ] 

Because the eddy currents are generated by a strong permanent magnet, the:! 
damping is strong over a wide range of altitudes. After the spacecraft is in its', " 
equilibrium position, the magnet continues to tiack the Earth's magnetic field ana,), , 
thus creates a disturbance torque on the spacecraft. Under certain combinations ot+;' 
damping coefficient, orbital parameters and moments of inertia, the damper tend{) , 
to move the spacecraft into a nonzero bias attitude. In such cases, a limit cyclt:j , 

.~.:> 
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exists because the gravity-gradient moment unloaded is equal to but out of phase 
with the momentum added due to the magnetic field. 

Eddy Current Rods. Ferromagnetic rods which are coated with a conducting 
copper sheet and fixed along the principal axes of a spacecraft can be used for 
libration damping. As the spacecraft librates, eddy currents are generated in the 
rods because of the change in the geomagnetic field relative to the body coordinate 
system. The number of rods used does not create a proportional increase in the 
damping coefficient because the flux density is reduced in each rod. The 'instan
taneous power dissipated is proportional to the square of the rate of change of the 
magnetic field vector along the longitudinal axis of a rod. Because the eddy 
currents are generated by the geomagnetic field, the damping produced is inversely 
proportional to the sixth power of the orbital radius and is not adequate at high 
altitudes. 
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CHAPTER 19 

ATfITUDE MANEUVER CONTROL 

19.1 Spin Axis Magnetic Coil Maneuvers 
19.2 Spin Plane Magnetic: Coil Maneuvers 

MOIIWntum and Allillllk Mtl1IeIIOers, OptimD/ Commond 
Frocedures, Representative Example of AE-5 Magnetic 
ManeutJeTS 

19.3 Gas Jet Maneuvers 
19.4 Inertial Guidance Maneuvers 

Single-Axis Slews, Multiple-Axis Slews 
19.5 Attitude Ac:quisition 

Classification of Attitude Acquisition, Acquisition 
Maneuvers, Representative Acquisition Sequence 

This chapter describes procedures for reorienting, a spacecraft from one 
attitude to another. Sections 19.1 and 19.2 describe maneuvers using magnetic coils 
and Section 19.3 describes maneuvers using gas jets. Section 19.4 then describes 
procedures for inertial guidance maneuvers. Finally, Section 19.5 discusses the 
special class of attitude acquisition maneuvers in which the spacecraft starts in an 
unknown or uncontrolled attitude and ends in an attitude appropriate for mission 
operations. This chapter uses the general attitude control concepts introduced in 
Section 15.3 as well as the equations of spacecraft motion presented in .Sections 
16.1 and 16.2. 

19.1 Spin Axis Magnett.: Coil Maneuvers 

B. L. Gambhi, 
DesR.Sood 

In this section we consider precessional motion generated by a magnetic coil 
wound around the spin axis of a nonnutating spin-stabilized spacecraft. For such a 
spacecraft, the angular momentum L can be expressed as 

L= Ls (19-1) 

where L is the magnitude of the angular momentum and s=(;) is a unit vector 
along the spin axis. The magnetic moment, M, of an electromagnet aligned with the 
spin axis (i.e., the spin-axis-coil) may be expressed as 

M=mous -I <; u <; I (19-2) 

where 1110 ~ the maximum attainable magnetic moment, and u is a commandable 
coil state parameter which is proportional to the current through the coil and is 
either positive or negative depending on whether the direction of current flow is 
counterclockwise or clockwise relative to s (see Section 6.7). The magnetic dipole 
generated by the coil interacts with the geomagnetic field, B, to produce a torque, 
N, on the spacecraft, given by (see, for example, Jackson [1965D 

N=MxB=mous xB (19-3) 
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By definition, the time rate of change of angular momentum is equal to the total 
impressed torque, i.e., 

(19-4) 

From Eq. (19-3), N is orthogonal to both Band M. Because M is either parallel or 
antiparallel to s, the torque is also orthogonal to L. Therefore, the magnitude of L 
remains constant,. so that 

N= dL =L ds 
dl dl (19-5) 

Combining Eqs. (19-3) through (19-5) gives 

-= -J sxB=O xi ds (mOil) 
dl L P (19-6) . 

where 

This is a well-known equation (see, for example, Goldstein, (1950D, describing the 
precession of s about the magnetic field, B, with an angular velocity, Op> which. is 
either parallel or antiparallel to B depending on the sign of the coil state parameter, 
u. This is illustrated in Fig. 19-1. 

'IP· PROJECTION OF .IN PRECESSION PLANE 

THEREfORE. USING EO 1t9·6) FOR 4s 

m • o .-~ B 
• L 

Fig. 19-1. Spin Axis Precession Due 10 Interaction Between a Magnetic Dipole Aligned Along the 
Spin Axis and the Geomagnetic Field 

It is instructive to express Eq. (19-6) in terms of time rates of change of the 
right ascension, a, and declination, 6, of the spin axis. In terms of these quantities, 
the celestial rectangular components of sand ds/dl can be written as , 

s =cos6cosax+cos6sinay +sin6z 

d5 6da" deL (jI=cos dlxs+(jIYs 

where is is a unit vector along z x s and is given by 

is= -sinai +cosay 

Similarly, Ys is a unit vector along sXxs and is given by 

(19-7) 
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Y .. =5 XX .. = -sinBcosai -sinBsinay +cosBi 

Taking components of Eq. (19-6) along i .. and Ys' we obtain 

da umo dt = T [(Bxcos a + Bysina)tanB- Bz] 

dB = u'"o(_B sina+B cosa) 
dl L x Y 

19.1 

(19-8) 

(19-9) 

Here, Bx' By, Bil are the celestial rectangular components of the geomagnetic field. 
Figure 19-2 provides a physical interpretation of Eqs. (19~8) and (19-9). The 

torque component along is' rotates the equatorial projection of the spin vector 
around the celestial z axis and therefore is the cause of right ascension change. 
Similarly, the torque component along y. pulls the spin axis toward the celestial z 
axis, which results in declination change. . 

Integration of Eqs. (19-8) and (19-9) to accurately predict the total spin axis 
motion requires an accurate knowledge of the geomagnetic field. However, the 
analytical characteristics of magnetic control maneuvers may be obtained from the 
dipole model presented in Appendix H. We discuss spin axis maneuvers for two 
limiting cases of satellite orbits: equatorial and polar. 

PROJECTION 
OJ' SPIN AXIS 
INTO EARTH'S 
EQUATORIAL 

PLANE 

TO VERNAL EQUINOX X, 

~~--... Y 

EARTH'S 
EQUATORIAL 

PLANE 

Fig. 19-2. Resolution of Torque Into Components in the Spin P1ane 

For an equatorial orbit, the magnetic field components along the celestial 
rectangular coordinate axes are given (see Appendix H) by 

MGsin9';' 
Buq= 2R

3 
[cosa",+3cos(2v'-am)] (19-10) 

(19-11) 

(19-12) 

where MG is the strength of the geomagnetic dipole (a8.0x l()2s gauss·cm3 a8.0X 
lOIS Wb.m), R is the distance from the center of the Earth to the spacecraft, 9';' is 
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colatitude (~168.6 deg) of the dipole, ,,' is the azimuth in the orbit plane of the 
spacecraft position vector measured from the celestial x -axis, and Qm is the right 
ascension of the dipole axis; Qm=QmQ+"'E(t-tO>, where "'E is the Earth's rotation 
rate and Qm = QmO at some reference time, to-

Note from Eqs. (19-10) through (19-12) that the equatorial magnetic field 
components, being proportional to sinfl';'(~0.2), are much smaller than the com
ponent along the celestial z axis. Hence, for a satellite in an equatorial orbit, it is 
easier to accomplish right ascension changes than declination changes (see Eqs. 
(19-8) and (19-9». 

For a polar orbit, the magnetic field components are given by 

B)(p= ~~ {iCOSfl';'COSSlSin2J1'+Sinfl';'(3cosSlcoS'l"COS(Qm-Sl)-COSQm]} 

(19-13) 

Byp = ~~ { icosfl,;,sinSlsin 2,,' + sin fI';'(3 sin Slcoslv' cos( am - Sl) - sin am l} 
(19-14) 

Bzp='~~ [!COSfl';'(I-3COS2J1')+ 1sinfl';'Sin2J1'COS(am-Sl)] (19-!5) 

where Sl is the right ascension of the ascending node and JI' is the azimuth in the 
orbital plane of the spacecraft position vector, measured from the ascending node. 
Note that the x and y components are of the same order of magnitude as the z 
component. Hence, for a satellite in a polar orbit, declination changes can be 
accomplished as easily as right ascension changes. 

For both the equatorial and the polar orbit cases, the x and y components of 
the geomagnetic field are oscillatory, involving angular frequencies that are com
binations of twice the orbital rate (from terms involving JI'), the Earth's rotation 
rate (terms involving am) and the rate of change of the ascending node, Sl. For 
near,Earth satellites, the orbital period is much smaller than the Earth's rotation 
period (a day), whereas the ascending node completes a cycle in several weeks or 
months. Therefore, the dominant oscillations in the x and y components of the 
geomagnetic field have twice the orbital frequency. Consequently, for a given coil 
state u, the time rate of change of declination (Eq. (19-9» follows an approximate 
sine curve, whereas only a part of the right ascension rate is oscillatory in nature 
(Eq. (19-8». The general characteristics of these results are valid even when more 
exact models of the geomagnetic field are used and are valuable for the develop
ment of magnetic control strategies. 

Magnetic Control Strategies The reorientation of near-Earth satellites using a 
spin axis coil dates from TIROS-2 in 1960. In early missions, magnetic control 
potentialities could not be fully exploited because of the need for ground contact to 
change the coil state, u (magnitude and/or polarity of the coil current). The coil 
was left on for a ::.umber of orbits or days, during which time, the spin axis would 
precess at a very slow average rate. This mode of control is referred to as continuous 
torquing. 
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The launch of TIROS-9, in January 1965, saw an innovation in magnetic 
control system design. Through an onboard timer, the coil polarity was switched 
four times per orbit. Therefore, this .system was called quarter-orbit magnetic 
attitude control, or QOMAC. QOMAC takes advantage of the fact that the 
geomagnetic field oscillates with a period of approximately half the orbital period 
by switching coil polarity in consonance with the geomagnetic field. To allow some 
flexibility in maneuver planning, QOMAC hardware prQvides for control of the 
initial phase and· ·polarity and the switching period. Both continuous and QOMAC 
torquing have been used for OSO-8. The decision as to which to use for a particular 
maneuver depends on whether a straight line or a square wave function best 
represents the desired coil state history for that maneuver. 

Recent spacecraft have been equipped with delayed command systems (DC.Ss), 
in which a preselected sequence of coil-state-change commands, covering an 
extended period of time, is loaded into an onboard memory during a station pass 
and is executed at the appointed times without subsequent ground contact. This 
provides maximum flexibility arid is limited only by the size of the onboard 
memory. The improved precision in the timing of coil commands provides three 
improvements over the QOMAC method: (I) minimization of the time required· to 
complete a maneuver, (2) minimization of the arc-length error between the desired 
attitude and the attitude obtainable within a specified time, and (3). minimization of 
the energy expended for completion of a maneuver. 

The control strategies used for generating the preselected commands for the 
DCS load are normally based on the optimization of one or more of these three 
improvement criteria as dictated by mission requirements and hardware limita
tions. One such optimization control algorithm, developed by Werking and 
Woolley [1973J, is adaptable to varying mission constraints and has been used 
successfully for SAS-3 and several spacecraft in the AE series. The governing 
equations of this algorithm are based on energy optimization. The time optimal 
conditions are obtained as a special case as shown later. Because energy expended 
is proportional to the square of the current, we wish to minimize 

subject to the end point conditions 

S(l.)=5J , the initial attitude 

s(tf)=~' the final attitude and If <' t2 

tf is the time when the final attitude is attained 

u(t.)= U(t2)=0 

(19-16) 

( 19-17) 

and the attitude dynamics equations obtained from Eq. (19-6) with the addition of 
environmental disturbance torques D; thus, 

ds =s x( mou B+ l.D) 
dt L L 

(19-18) 

Here, the· components of D orthogonal to s have been expressed in the form 
s x D. The disturbance torques along s can only produce small fluctuations in the . 
magnitude of the angular momentum vector, L = Ls, and therefore have minimal 
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effect on the attitude dynamics. The disturbance torques along the spin axis have 
been neglected in Eq. (19-18), and L is assumed to be constant. 

The attitude dynamics constraint can be directly incorporated into the op
timization integral by introducing three Lagrange multipliers represented by the 
vector A. Thus, 

J= J,.'2{uz+[sx(iB+ 10)-: lA}dl (19-19) 

Integrating by parts the (d5/d/)·A term gives 

J =5.·A(/.)-Sz·A(tz)+ J,'2[ U
2 +5 X ("';u B+ tD)-A +5' ~~ ]dl (19-20) 

The conditions under which J is at an extremum (maximum, minimum, or 
stationary) are obtained by requiring that the variation of the integral resulting 
from infinitesimal changes in the path along which the system evolves (from the 
state [s.,u(t.)] to the. state [s2,u(/2»)) must vanish identically; i.e., the partial 
derivative of the integrand with respect to u and the gradient with respect to 5 must 
be zero. Thus, for energy optimization, the following conditions must be satisfied: 

2u+(5 x iB).A=O (19-21) 

Ax -B+-D =-(
mou I) dA 

L L dt 
(19-22) 

In writing Eq. (19-22), it has been assumed that the disturbance torques are 
independent of the attitude over the range of the integral. This assumption is valid 
for maneuvers involving small· arc motions, but becomes questionable for large 
maneuvers. . 

Equation (19-21) shows that the component of A along 5 has no effect on the 
coil state u and, hence, does not influence the path of the system in the [5(/),u(t)] 
space. Also, Eqs. (19-18) and (19-22) correspond to precession of both A and 5 
about the instantaneous force field mouB + D with the instantaneous angular 
frequency (mouB+ D)/ L. (See the discussion following Eq. (19-6).) Therefore, A 
and s maintain constant magnitudes and the angle between them remains fixed. 
Thus, without loss of generality, the constant angle between 5 and A may be set 
equal to 90 deg. To underscore this fact, let us define a unit vector, q, which is 90 
deg ahead of A in the plane normal to S, 

(19-23) 

Because it differs from i only in a phase angle, it obeys the same dynamic equation 

dq (mOu I) dt =q X TB+ L D (19-24) 

Equation (19-21) can now be rewritten in terms of 5, q, and A, using 5xB·A= -5X 
A·B, as 

0".>. ,_ 

moil 2u=-·BA 
L (19-25) 
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Thus far we have assumed that u is a continuous variable. For most missions. 
the coil current can be set to only a few levels and the appropriate magnitude is 
easily selected on the basis of the amount of arc motion desired. so that the only 
commands to be computed are coil-on. coil-off. and polarity selection. This 
corresponds to three possible values of u. namely. u= I, O. or -1. Under these 
conditions, exact energy optimization cannot be attained. Heuristically. the closest 
approach to energy optimization will be to replace Eq. (19-.25) by the following set 
of rules. For any time, I, in the maneuver interval. set 

if 
mo • I 
-B'q~-
L A 

u= 0 if 
I mo I (19-26) --<-B'q<-
A L A 

-I if 
mo. I 
-B'q~--
L A 

Equations (19-11) and (19-18) determine the. satellite attitude history and Eqs. 
(19-23), (19-24), and (19-26) provide the framework for obtaining the desired coil 
state history. However, Eq. (19-26) is not deterministic because A is a free 
parameter. Also, Eq. (19-23) does not fix the initial phase (</>q) of q in the spin 
plane. Equation (19-26) shows that parameters, A, </>q have a strong influence on the 
coil state history. Whenever the maneuver is feasible, there will be paired sets of 
values of ('\''''9) which allow the desired attitude to be reached. The feasible values 
of ('\''''9) then parameterize the paths for which the integral J is close to being 
extremum. Among these paths, the one requiring the least amount of coil-on time is 
the minimum energy palh and the corresponding coil commands are the energy 
oplimal commands. 

To obtain the minimum maneuver time commands, note that in Eq. (19-26) if 
1/.\=0, then the coils will always be on in either the positive or'the negative sense. 
A5 before, more than one "nearly extremum" path is possible. However, they need 
now be labeled by only one parameter, "'9' Thus, the generation of commands for 
minimum time maneuvers involves only a one-parameter search. 

A byproduct of the minimum time maneuvers is the determination of the final 
attitudes that can be obtained as the parameter.p is varied. Thereby a boundary 
can be generated about the initial attitude suc~ that all attitudes within this 
boundary will be attainable within the prescribed time. The attitude within the 
boundary that is closest to the desired attitude can be determined and the 
corresponding minimum time commands can be generated. Thus, a single 
algorithm can be used for minimization of time, energy, or arc-length error. Details 
of the implementation of this algorithm are given by Werking and Woolley (1913]. 

19.2 Spin Plane Magnetic Coil Maneuvers 

MiJully G. Grell 
Malcolm D. Shuster 

The main function of a spin plane magnetic coil is to control the magnitude of 
the spacecraft total angular momentum, which we will call simply the momentum. 
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On most spacecraft, orientation and momentum control are handled separately by 
dipoles mounted along the spin axis for orientation control (Section 19.1) and 
dipoles mounted perpendicular to the spin axis for momentum control. However, 
orientation and momen.tum control can be strongly coupled in spin plane magnetic 
coil maneuvers. For low-inclination orbits, where the spin axis is closely aligned 
with the geomagnetic field vector, the spin axis coil is inefficient and the spin plane 
coil may be a better choice for both momentum and attitude control. Spin plane 
magnetic coil maneuvers can be carried out on both spinning and despun 
spacecraft, although the types of commands are different for each. 

A spinning spacecraft is controlled by turning the magnetic coil on and off 
and by changing its polarity twice per rotation period at constant phase angles 
relative to the geomagnetic field vector. This mode of operation is called commuta
tion. The phase angle of the magnetic dipole relative to an appropriate reference 
axis at which the polarity is changed is called the commutation angle. 1f. The 
polarity is changed at angles 1f and 1f + 77. (All angles in this section are in radians.) 
This control mode is flexible because both momentum and attitude can be changed 
in any direction within the torque plane, i.e., the plane normal to the geomagnetic 
field. 

The inertial coordinate system in which the magnetic control torque is most 
easily calculate~ is shown in Fig. 19-3. Here S is the ~pin. axis and 8 is the 
geomagnetic field vector. We define an orthonormal triad i, j, k, which is assumed 
to be fixed for one· spin period by . 

k=8, 
~ _ 8xs 
1= 18Xill' 

. . . 
j =kxi 

Fig. 19-3. Coordinate Systems for Determining Magnetic Control Torques 

In this system L=LS=L(-sinOj+cosOk). A magnetic dipole, m, in the magnetic 
field. 8, produces a torque, N, given by 

N=mX8 (19-27) 

Then m= m (cos 1fi + sin1fcos9j + sin1f sin 9k) and, if the dipole is perpendicular to 
the spin axis, Eq. (19-27) can be expressed as 
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N=mB(sino/cosfJi -coso/j) ( 19-28) 

The geometry is shown in Fig. 19-3. 
If the dipole polarity is reversed every half rotation. the average torque. (N). 

for a full spin period is 

I !.",+w mB jl/-+'fI . . (N)= - (mxB)do/'= - (sino/'cosOi -coso/'j)do/' 
'IT I/- 'IT .;, • 

2mB •• 
= --(coso/cosOI +sino/j) 

'IT 

and the angular momentum change, fl.L, of the spacecraft in the time interval. 11. is 

1
~ 2mB •• 

fl.L= 0 (N)dl= -'IT-(cosOcoso/i +sino/j)!l.t ( 19-29) 

where we assume that fl.l is an integral multiple of the spin period. 
Equation (19-29) shows that the available angular mo~entum changes form an 

ellipse in the plane perpendicular to the geomagnetic field vector. B. We may think 
of both orientation and momentum maneuvers as simply changing the spacecraft's J. 
angular momentum vector, L; specifically. attitude maneuvers change the direction 
of L, or the spin axis, s, and the momentum maneuvers change its magnitude. 

19.2.1 Momentum and Attitude Maneuvers 

Given the geomagnetic field and the initial target angular momentum vectors 
(1.0 and LT), we wish to generate a set of commands which may be used to carry 
out the maneuver. The commands consist of coil-on and coil-off times and 
commutation angles, which are kept constant for the duration of each command. 
In addition, we may wish to minimize the number of commands to achieve LT or 
to minimize coil-on time for energy minimization. We will assume that new 
commands are generated every n minutes; that each command. i. results in a 
change, fl.L;; and that ( is the tolerance on LT, 

The goal is to determine the optimal commutation angle for each command 
and the times at which the coils are to be turned on and off. As a first approxima
tion, we will pick the most favorable commutation angle at some point of each 
command interval and keep this angle constant. The most favorable commutation 
angle d~pends on the type of mane.uve.r .. ,W~ consider four maneuver types: 

, Type 1. Achieving the target momentum regardless of attitude changes 
Type 2. Achieving the target attitude regardless of momentum changes 
Type 3. Achieving attitude and momentum objectives simultaneously 
Type 4. Achieving the target attitude without a significant change in mo

mentum (this is a special case of type 3) 
Type I maneuvers can be achieved by maximizing ,the y component of fl.L, i.e., 

by choosing 0/= ± 'IT /2 in Eq. (19-29), with the sign chosen to increase or decrease 
the momentum. Specifically, 

(Type I) (19-30) 

When the angle, 0, between Land B is small, type I maneuvers are inefficient 
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because of small momentum and large attitude changes. To avoid inefficient 
operation, the magnetic coil should be turned off whenever 9 < 9

1im
• The maneuver 

is terminated and the coil turned off when 

(19-31) 

Type 2 maneuvers are somewhat more complicated. Let Q be defined by 

Q=LX(LT XL)=LrL2[i.T -(i.·i.T)i. ] (19-32) 

Q lies in the (L, LT) plane and is perpendicular to L. 
For type 2 maneuvers, the best performance occurs when .:1L is in the torque 

plane such that (N)·Q is a maximum. Using Eq. (19-29), Q·.:1L is a maximum 
when o(Q·.:1L)/o1/l=0 and o2(Q·.:1L)/o1/l2<0, or 

1/I=arctan[ ...,. • .....;;.J_.Q_] 
(i ·Q)cos9 

(Type 2) (19-33) 

From the two solutions for 1/1, we pick the one for which .:1L·Q>O. 
By introducing an efficiency angle, rlim. the magnetic coil is turned off 

whenever 

As in the type I maneuver, this conserves spacecraft power when the torque is 
small because the angle between Band m is small. The maneuver is complete when 

(19-35) 

For type 3 maneuvers we choose.:1L such that .:1L·(LT- L) is maximized, from 
which we obtain 

+-.retan{ [i .::~~~~g} (Type 3) (19-36) 

From the two solutions for 1/1. we pick the one for which .:1L·(LT- L) >0. For 
efficient operation, the magnetic coil is turned off whenever 

(19-37) 

The maneuver is comp1ete when 

(19-38) 

For type 4 maneuvers, there are two directions in the torque plane, 1/1=0 and 
If! = I/T, which are perpendicular to the current angular momentum vector and, 
therefore, change only the orientation and not the momentum magnitude. The 
direction is chosen for which .:1L· (LT - L) > 0, that is, 

1/I=i{l+signp'(LT-L)Cos9]} (Type 4) (19-39) 
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For the efficiency angle and the convergence limit. the same parameters can be 
used as for type 2 maneuvers. 

After the commutation angle has been determined. it must be translated into a 
hardware command. This can be done using the measured magnetic field directly 
as on SAS-3 (Gambhir and Sood. 1976) or using an Earth horizon sensor. as on the 
AE series (Phenneger, el 01 .• 1975]. In the latter case. the commutation angle is 
referenced from the nadir vector. whose orientation is sensed onboard: in this <:ase. 
an extra rotation angle. «1». is added. which is measured from the nadir vector. E. to 
the i axis. as shown in Fig. 19-3. 

19.2.2 Optimal Command Procedures 

The above discussion is valid for fixed reference vectors. Because the magnetic 
reference vectors and, consequently. the optimal commutation angles are con
tinuously changing. the commutation angles computed at any time t do not remain 
optimal for the duration of the command. To achieve a solution which is more 
nearly optimal we perform instead a discrete sequence of commands. each lasting 
for a specified time interval. 

Let us suppose that at each time I j• i= I, ...• n. a commutation angle If', is 
chosen and maintained until the time tj+ I' At some final time. tn+ I' the magnetic 
coil is turned off and the marieuver is completed. The final angular momentum L 
will be a function of these commutation angles. i.e .. 

L=L(I/-) (19-40) 

where I/- denotes the n-dimensional vector (1f'1.lh .... lf'n)T. The goal of any spin 
plane magnetic coil maneuver is to bring L (or some function of L) as close as 
possible to the target momentum LT (or some function of LT). We can obtain this 
by requiring that the I/-j be chosen to minimize a loss function. F(I/-). or maximize a 
gain function, appropriate to the particular maneuver type. For type I maneuvers, 
F(I/-) has the form 

F,(I/-)=(L(I/-)-LT)2=Minimum (Type I) (19-41) 

Here the objective is to minimize the difference between the magnitudes of the 
target and actual angular momenta. For type 2 maneuvers, we wish to minimize the 
angle between the target and the actual angular momentum vectors. Thus. 

(Type 2) (19-42) 

For type 3 maneuvers. we wish to minimize the norm of the difference vector 
between the target and the actual angular momenta; thus, 

(Type 3) (19-43) 

Finally. for type 4 maneuvers, no optimization is required because the objective is 
met by selecting the commutation angles to be 0 or 'IT. 

Having chosen a maneuver type. the next step is to find the solution of the 
optimization function. F. Although various nonlinear programming techniques can 
be applied (see Sections 13.4 and 13.5). we will use the gradient search method to 
obtain an iterative solution. An initial guess 1/-(0) is first obtained. This may be done. 
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for example. by choosing the instantaneous solutions of Section 19.2.1 evaluated 
near the midpoint of each command interval. The function F decreases or increases 
most rapidly when", is varied along the gradient. V F(y,), of Fin y,-space, defined 
by (see Appendix C): 

( 
aF(",) aF(~»)T 

VF(y,)= ~"'" ay,;: 0 9-44) 

Thus, subsequent iterations for y, are chosen by 

y, (I< + I) = ",(k) +). V F(y,(k» 
(19-45) 

where A is a constant selected by trial and error to make the iterations converge as 
quickly as possible. If A is too large. the iterations may oscillate and never come 
very close to the optimal solution. If ). is too small. the iterations approach the 
optimal solution only very slowly. 

A nearly optimum value of A may be determined by performing an iter~tion 
sequence up to some given order. computing the final loss value for each }.,"and. 
then extrapolating to the optimum A. which minimizes the loss function. At least 
three trials for different values of A will be necessary because a two-point extrapo
lation is a straight line and has no minimum or maximum. Once this optimum). is 
found, the iteration is performed once more to determine the optimum y,. 

To calculate the gradient vector we note that F(t[!) depends on t[!only through 
L(t[!); that is. 

F(t[!) = F(L(t[!» (19-46) 

Hence. 

(19-47) 

where V L denotes the gradient with respect to the three components of L. For 
example. for a type 3 maneuver (Eq. (19-41». 

( 19-48) 

To determine a Ljat[!;. we note that the final angular momentum, L(t[!). may be 
written 

n 
L(t¥}=Lo+ ~ .1L,Ni) (19-49) 

;=1 

where ~L, is the angular momentum change in the time interval from I; to 1
1
+., 

(Actually ~L; depends on all previous commutation angles and not on 1/1, alone.) 
Using Eq. (19-49). we have 

( 19-50) 

If ~L; and the attitude do not change greatly during this 'time interval. the quantity 
above may be determined from Eq. (19-29). Otherwise. it may be approximated 
from the quotient of differences as 
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(19-51) 

Thus, the partial derivative of F(+> with respect to +i for the various maneuver 
types is given by 

(Type I) (19-52) 

(Type 2) ( 19-53) 

(Type 3) (19-54) 

The command procedure is as follows: After selecting the desired maneuver 
type, the instantaneous commutation angles are computed for each command 
interval. By using the termination criteria, we can see approximately how much 
time is needed to get to the target. The first approximation constitutes the initial 
value for the optimization scheme, which will further improve the performance of 
the magnetic coils by reducing the coil-on time. The command angles generated 
will be a minimum time set. If we want to achieve minimum energy commands, to 
save electric power, the parameter to optimize on for a given time interval will.be 
the limit angle, r 1im• For a given value of rlim, the coils will be turned off when the . 
angle between the optimal torque vector and the desired direction is greater than 
rllm. From an initial value rlim = 180 deg, we have to proceed by reducing the angle 
to a threshold value, under which no convergence can be obtained to the target 
value. The minimum energy optimization will work only if the command time 
given is more than the minimum time. 

19.2.3 Representative Example of AE-S Magnetic Maneuvers 

The control scheme described has been used for the magnetic control of the 
AE-5 spacecraft launched in November 1975 [Phenneger, et a/., 1975; Grell, 1977]. 
To maintain an orbit-normal orientation, daily commands are required to com
pensate for a 3-deg attitude drift due to orbital precession and atmospheric drag. 
The average daily change in angular momentum is 2 kg m2/sec or about 1% of the 
total angular momentum. The command performance is constant for up to 15 to 20 
min of command time and begins to deteriorate at about 25 min. With a total coil 
strength of 197.2 A m2, 5-deg attitude maneuvers or 4 kg m2/sec angular momen
tum maneuvers can be achieved in a 2-hour orbit. The combined maneuvers 
average half the efficiency of the pure orientation or momentum maneuvers, as 
shown in Fig. 19-4. For a typical set of optimized commands, the attitude favorable 
and momentum favorable sections of the combined maneuvers alternate during the 
orbit. The attitude maneuvers with no momentum change show the worst perfor
mance, but they may be necessary when mission constraints do not allow a change 
in the magnitude of the angular momentum. 

The optimization scheme can increase the efficiency by as much as 20% 
relative to instantaneous commands. Generally, 20 iterations are enough to con-
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Fig. 19-4. Changes in Attitude and Angular Momentum for Representative Altitude. Momentum. and 
Combined Maneuvers for the AE-5 Spacecraft 

verge to the opti"mal solution, and the optimization gives the closest possibie 
solution even if there is not sufficient time available to converge to the target. The 
initial guess for the optimization does not affect the final solution, even if the 
starting commutation angles are randomly selected. The most frequently used 
maneuver is the combined maneuver, with attitude and momentum maneuvers 
used as backup for various contingencies. It has also been found that for the 
combined maneuver, the Lagrangian optimization converges much faster (in three 
iterations) but diverges when rnsufficient time is given in which to reach the target. 

19.3 Gas Jet Maneuvers 

Robert S. Williams 

Gas jet maneuvers can be conveniently divided into two classes according to 
whether the inertial direction of the torque vector is constant or changing during jet 
firing. Most maneuvers are of the first type and are analytically straightforward. 
When the direction of the applied torque is constant, the jet can be fired for as long 
or short a time as necessary to produce the desired change, and prediction of the 
spacecraft response requires only a straightforward integration of the equation for 
angular acceleration. The second type of maneuver is represented by precession of 
a" spinhing spacecraft using a jet fixed to the spacecraft body as described in 
Section 1.2.3. Here, the torque vector is approximately perpendicular to the spin 
axis and rotates at the spip rate. The jet must be pulsed on and off; otherwise, the 
torque will average to zero over a spin period. Successive pulses must be controlled 
by an inertial reference, commonly the Sun vector, to achieve a nC(t cumulative 
motion of the spin axis in the intended direction. 

The fundamental equation for gas jet control is the equation for rate of change 
of angular momentum: 

(19-55) 

where I is the moment-or-inertia tensor, tAl is the angular velocity, N is the applied 
torque, m is the rate of consumption of propellant (m > 0 by definition), and I is the 
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perpendicular distance from the spin axis to the thrus~er. The last term accounts for 
the angular momentum lost as propellant is expelled, which may be nonzero even if 
the thruster orientation is such that the thrust produces no net torque. Except for 
detailed dynamic analysis, it is normally adequate to assume that the angular 
velocity is parallel to one of the principal axes and that the torque is applied about 
th:s or another principal axis. The time rate of change in the moment of inertia will 
be included in the following examples, although as noted io Section 7.10, the effects 
of this term can usually be ignored. 

Spin Rate Control. The. spacecraft spin rate is ordinarily controlled by 
nozzles mounted perpendicular to and displaced from the spin axis, approximately 
in the plane perpendicular to the spin axis which contains the center of mass. A 
component of torque perpendicular to the spin axis will reduce the effective torque 
about the spin axis but will have no other effect, as the perpendicular torque 
components will average to zero over a long, continuous firing or a sequence of 
randomly timed pulses. In this case, Eq. (19-55) reduces to 

N -w/lm= :t (Iw)=wI -wdlm (19-56) 

where N is the applied torque, w is the instantaneous spin rate, / and m are defined 
as in Eq. (19-55), w is the angular acceleration, I is the instantaneous moment of 
inertia about the spin axis, and d is the instantaneous radius of gyration, or distance 
from the spacecraft center of mass to the center of mass of the propellant. The 
equations which must be solved are then 

w= [N _W(/2- d 2)m]/ I (19-57) 

and 

I=d.2m (19-58) 

which may be used t'o predict the time required to produce a given change in the 
spin rate. The value of d will change slightly during a maneuver; this can usually be 
ignored if an average of initial and final values is used. When the spin rate can be 
directly measured, and when the spacecraft can be monitored and controlled in 
real time, an accurate prediction is not required beCause the maneuver can be 
extended or terminated prematurely to achieve the desired spin rate. 

Momentum Unloading. Spacecraft for which all three axes must remain 
inertiaUy fIXed are usually controlled by a combination of gyroscopes and momen
tum wheels. Secular disturbance torques may change the angular momentum of the 
spacecraft beyond the capacity of the momentum wheels to compensate. When this 
happens, gas jets can be used to dump or unload excess momentuni, or conversely, 
to add or load deficit momentum. A jet is fired to produce a torque opposite the 
direction of the accumulated angular momentum while the spacecraft is com
manded to maintain its attitude; the result is that the momentum wheel accelerates 
at the rate necessary to counteract the applied torque. A detailed description of this 
maneuver depends on the control laws governing the momentum wheels and 
gyroscopes (see Section 18.2); the sole function of the jet is to introduce a 
"disturbance" torque of appropriate direction and magnitude. 
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Attitude Control With an Inertially Fixed Jet. A three-axis stabilized 
spacecraft, or a dual-spin spacecraft in which control thrusters are mounted on the 
des pun portion, can be maneuvered with an inertially fixed jet. For three-axis 
stabilized spacecraft. maneuvers can be treated th~ same as spin rate control 
maneuvers (apart from interactions with the stabilization system) by integrating the 
spin rate to find the rotation angle. The inversion maneuver required for the AE 
spacecraft is an example of precession of a dual-spin spacecraft by continuous 
firing of a thruster mounted on the despun portion. The object of the maneuver is 
to rotate the spacecraft spin axis by 180 deg by rotating L about the spacecraft x 
axis. The thrust geometry is shown in Fig. 19-5. The equation of motion is 

dL =L~i: =N=rXF=rF[LX(-x)] 
dl dl ( 19-59) 

where L is the total angular momentum. N is the applied torque, F is the thrust, 
and r is the vector from the center of mass to the jet and r· N =0. E~pressing the 
direction of the applied torque in terms of the unit vectors x and L allows the 
equation to be written in the form 

dL = + rFLX(_i) 
dl L ( 19-60) 

which is the equation for 'uniform precession about the - x axis at a rate /.oJ = rF / L. 
The AE maneuver thruster is aligned so that the thrust vector intersects the z axis 
as closely as possible so as to generate only precession torques. It is also assumed 
that the onboard control system will keep the torque vector inertially fixed. This 
assumption breaks down somewhat in practice, however, and correction maneuvers 
with the magnetic control system are usually required after the inversion maneuver. 

x+---------~~--~--~~--____ ~ __ x 

THRUSTER MOUNTING 
ANGL E 130 DEGI 

Fig. 19-5. Thrust Geometry in Spacecraft JC-Z Plane for the AE Inversion Maneuver 

Precession of a Spinning Spacecraft. As noted above, attitud'! control of a 
spinning spacecraft requires that the control thruster be operated in a pulsed mode, 
each pulse lasting a fraction of a spin period. Successive pulses are correlated to 
achieve a cumulative motion of the spin axis, ordinarily by using either the Sun or 
the Earth as an inertial reference. See Section 1.2.3 for a qualitative description of 
this maneuver. 

Formally, Eq. (19-55) can be integrated directly to. determine the motion of the 
spin axis resulting from a series of pulses. In practice, each pulse is assumed to 
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produce an instantaneous change in spin rate and attitude, and successive pulses 
are summed to complete the maneuver. Spin rate change is computed from Eq. 
(19-56); the torque component along L will generally be zero unless a thruster is 
misaligned,. producing a spin component of the torque. The direction and magni
tude of the change in attitude are computed from Eqs. 1-148 and 1-149. Normally 
the change in spin rate accompanying each pulse is small enough to neglect in 
computing the attitude change, although the cumulative .change may be large 
enough to require that the spin rate be updated periodically in the course of 
simulating a single maneuver. Each pulse typically precesses the spin axis by an 
amount of the order of 0.1 deg. Therefore, the precession arc length is approxi
mately determined from the fractional change in the angular momentum vector 
shown in Fig. 19-6: 

(19-61) 

where a", is the angular change in the orientation of L; aL is the magnitude of the 
change in L, equal to the impulse N of the applied torque (from Eq. (7-149», and 
assumed perpendicular to L; and Iw is the magnitude of the angular momentum 
about the spin axis, i.e., L= Iw. The pulse centroid is calculated from Eq. (7-148). 
The precession torque vector equals r X F, where r is the position vector to the 
thruster at the time of the pulse centroid, and is parallel to rXL, because only the 
component of F parallel to L produces a precession torque . 

.J------+v 

Fig. 19-6. Single-Pulse Precession of the Momentum Vector, L 

"" "" The heading angle, e:: arccos[(r X L)-(SX L»), where S is the Sun vector, is the 
rotation angle about L from the LIS plane to the Ljr plane. (Sec> Fig. 1-11.) In a 
rhumb line maneuver, the heading is fixed for the duration of the maneuver. This is 
nominally the case if the thruster pulse time is fixed relative to the Sun detection 
time, but the heading will vary if the thrust profile or the spin rate changes during 
the maneuver_ The fact that e is nominally constant suggests that .a convenient 
coordinate system for analysis is one in which the Sun vector is parallel to the z 
axis and L lies in the xlz plane at the start of the maneuver. In this coordinate 
system, the attitude trajectory or time history makes a constant angle, e, with lines 
of latitude as shown in Fig. 19-1. 

A further simplification results if the attitude trajectory is plotted. in a 

• A thruster may be aligned deliberately to produc:e a torque c:omponent which will canc:el the 
remaining terms in Eq. (19-56) so that ';'=0. 



l 

19.3 GAS JH MANEUVERS 653 

Fig. 19-7. Rhumb Line Attitude Maneuver for Constant Heading of 8=32° Relative to the Sun. For 
the manuever illustrated. p, ~ 50°. P,= 10°, and ~1= 153°. The arc length between the initial 
and final attitudes is 59 deg and the rhumb length is 75 deg. 

Mercator representation· with the Sun at the pole. as shown in Fig. 19-8 for the 
same maneuver shown in Fig. 19-7. The heading angle. 8. can be read directly 
from the rhumb line joining the initial and final attitudes if the horizontal and 
vertical scales are equal at the equator. 
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Fig. 19-8. Mercator'Plot of Rhumb Line Maneuver Illustrated in Fig. 19-7. See text for explanation. 

·The Mercator representation is a conformal mapping devised by Gerhardus Mercator, a sixteenth
century Flemish geographer. Points on the surface of the sphere are plotted on the x I)' plane. 
Longitude is plotted directly on the x axis. but -101!c(tan(~/2». where ~ is the colatitude, is plotted on 
the}' axis. A straight line connecting an) two points on the map is a loxodrome or rhumb line. a line 
making a constant angle with both parallels and meridians, which made the Mercator map useful to 
early terrestrial navigators. 
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The rhumb length, A, is the arc length between the initial and final attitudes 
along the rhumb line and is greater than or equal to the arc length of the great 
circle joining the two points. The values of 8 and A for a rhumb line maneuver can 
be calculated from the initial and ~inal attitudes in the coordinate system with the 
Sun at the pole from 

tan 8 = [Io&tan( /3;/2) -log.,tanUV2») N, 
A= 1/3,-/3Mlsin 81 /3,';' /3; 

A = Iq,rin /3,1 /3, = /3; 

( 19-62) 

(19-63) 

where /3; and /3} are the initial and final coelevation angles, respectively (measured 
from the Sun), of the spin axis in this coordinate system; q" is the final azimuth 
angle (in radians); and the initial azimuth angle is zero by definition of the 
coordinate system. (For a derivation, see Williams (1971].) The algebraic signs of 
the numerator and denominator of Eq. (19-62) correctly indicate the quadrant of 
8, which has a range of 360 deg; if q,} is zero, 8 is + 90 deg if the numerator is 
positive and - 90 deg if the numerator is negative. Although the rhumb length A is 
longer than the arc length between the initial and final attitudes, the difference is 
small for short arcs, rhumb lines near the equator, or rhumb lines heading nearly 
directly toward or away from the coordinate system pole. Where the difference is 
significant. a great circle maneuver can be approximated by a series of short rhumb 
lines. 

Equations (19-62) and (19-63). and the inverse equations for /3/ and cf>r can:be 
used for an initial prediction of the commands required to perform a particular 
maneuver and to determine the resulting trajectory. A pulse-by-pulse simulation 
can then be used to refine the computation based on the amount by which the 
simulated final attitude misses the required final attitude. A miss may occur 
because spin rate or pulse characteristics are known to change during a maneuver, 
or simply because the resolution of the control system does not allow arbitrary 
heading angles or arc lengths to be generated. A Mercator plot of the attitude 
trajectory can be used to monitor the progress of a maneuver if data can be 
obtained and processed in near real time. If attitude points lie on the predicted 
trajectory but do not progress toward the final attitude at the predicted rate, the 
maneuver can be lengthened or shortened and subsequent predictions adjusted 
proportionally. If attitude points lie off the predicted trajectory, a correction 
maneuver will be required, and the computation of the pulse centroid will have to 
be modified. If all subsequent maneuvers are performed at the same spin rate with 
the same pulsewidth. a constant adjustment is indicated. If maneuvers are per
formed at different spin rates. it may be found .in some cases that the pulse timing 
is incorrect, in which case the centroid angular error will depend on .spin rate; in 
other cases. the orientation of the thruster relative to the Sun sensor is incorrect, 
leading to a centroid angular error which is independent of spin rate. 

r 
! 

.1 
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19.4 Inertial Guidance Maneuvers 

Dale Headrick 

Inertial guidance maneuvers use only information obtained internally from 
gyroscopes or accelerometers. On IUE, for example, the telescope is commanded to 
move from one target to another with the maneuver execution based only on 
control error signals derived from rotation rates sensed by a set of gyros. (The 
terminal phase. however, uses data from a star tracker operated as a finder 
telescope.) The actuators for inertial guidance maneuvers are usually reaction 
wheels, although gas jets may be used instead, as on HEAO-I (see Section 18.3). 
The reaction wheels may be commanded to perform a maneuver by a sequence of 
single-axis slews as on OAO and lUE or by simultaneously maneuvering all three 
axes as planned for HEAO-B. 

19.4.1 Single-Axis Slews 

A single-axis slew, in which the spacecraft body rotates about a fixed axis, can 
be executed by transferring momentum from a wheel to the body, causing the body 
to rotate about the wheel axis. The rotation rate is controlled with rate feedback 
information from gyros to provide damping to avoid overshooting the target. The 
required slewing time depends on the wheel capacity, the current momentum bias 
(even in a nominal zero-bias system), and any attitude or attitude rate limits which 
may be imposed. Figure 19-9 is a diagram of torque, wheel momentum, body rate. 
and angular position for an ·idealized system. At time 10 a new angular position is 
commanded. and the torque motor goes full on. The wheel momentum increases 
linearly with time until either the maximum permissible body rate or wheel 
momentum is reached at time '.. During this time, conservation of angular 
momentum requires the body rate, dO/dOt, to decrease linearly. causing the position 
angle, 0, to change quadratically with time. The body rate remains constant until 
time ' 2, when a braking torque is applied to slow the body rate to approach the 
target position angle with a small angular velocity. After approximately reaching 
the target at time ,), the terminal phase involves the elimination of small residual 
errors by the stabilization control system as described in Section 18.3. When the 
control system, illustrated in Fig. 19-9, is implemented in discrete form (i.e., 
computer controlled), modifications are required from the analog position-plus-rate 
law to optimize the maneuver performance and minimize the computational 
requirements. An on-off or bang-bang type of impulsive control is preferred 
because it simplifies the actuator electronics by eliminating the need for continuous 
control and reduces the required sampling rate. Even for a discrete control system, 
however. the stability and optimization analysis are usually performed for the 
continuous case. 

As an example of a bang-bang control system, consider the single-axis ctmtrol 
loop used to place a target star in, a telescope aperture slit, as shown in Fig. 19:10. 
The system obeys the equation 10= N, where the applied torque, N, is a constant. 
The available control is u::; N / I with values ± U or 0 and the equations of motion 
are 

dO =w(I) 
dl 

(19-64a) 
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Fig. 19-9. Example of a Single-Axis Slew Maneuver. See text for explanation. 
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Fig. 19-:10. Reaction Wheel Attitude Control To Null the Angle, 9, Between the Telescope and the 
Target Star 

dw - =U(t) 
dr 

(l9-64b) 

The block diagram fora bang-bang control system is shown in Fig. 19-11. We will 
consider the basic bang-bang control law and several variations of it following the 
development of Hsu and Meyer.[1968], who give a more extensive discussion of the 
subject with additional cases .. 

Position-Only Control. As a simple case, consider position-only feedback, 
where the rate gain or amplification, a, is zero. The sampled output angle, 9, is fed 
back as input control signal by the function 

u(t)= - Usign9(t) (19-65) 
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911 

Fig. 19-11. Bang-Bang Attitude Control System. (e (t) is the control error signal) Compare with the 
bang-bang system shown in Fig. 18-4 where there is no rate gain, Q. If Q is zero; the 
diagrams lire equivalent. 

Because usually both position and rate are of interest, the attitude behavior can be 
conveniently visualized in state-space, or phale space, as it is more commonly called 
in physics. For this single-axis control system, state-space becomes the slate plane 
of position versus rate. The time history of the state parameters fJ and 8 determine 
a trajectory in the state plane. The equation of motion is obtained by integrating 
Eq. (19-64) under the condition of Eq. (19-65). The state-plane trajectories of the 
system shown in Fig. 19-12(a) will consist of a set of parabolas given by 

(J2 
T±UfJ=c, foru=±U {19-66) 

where c is a constant. They are connected about the 8 axis at the switching line as 
shown in Fig. 19-I2(a). The tJ axis is called the swit<;hing line l?ecause u = + U to 
the left of it and u = - U to the right of it. Thus, the wheel torque motor control 
signal will change ~gn as the state trajectory (fJ,8) crosses the switching line. Each 
state-plane trajectory is closed, with its size· depending on the initial condition. 
Physically, the spacecraft will oscillate indefinitely about the equilibrium condition, 
without achieving the target attitude at ihe desired zero rate condition. 

Position-Plus-Rate ControL Adding a term to the control error signal which 
is proportional to the attitude rate provides damping and has the effect of a lead 
network in electrical systems in predicting the state at a future time. For position
plus-rate contrbl the switching function becomes 

u(t)= - Usign(fJ+a8) (19-67) 

and the switching line, instead of being the fi axis, becomeS the straight line 
,) fJ + 00 = 0, with slope - I/o. 

The state trajectories are found from integrating Eq. (19-64) with w= - U for 
ill (fJ+atJ»O and with c;,= + U for (fJ+a8)<0. The trajectories will again be 
le families of parabolas whose curvature, or acceleration, changes sign at the switch-
ile ing lines as shown in Fig. 19-12(b). A system originally at A will follow the 

trajectory shown, reversing control at B and again at C, spiraling in toward the 
center. As it approaches the origin from C, however, the system trajectory crosses 

~k, the switching line after shorter and shorter time intervals, causing the control relay 
ed to rapidly switch states. This condition is called chattering, and although the 

system will continue to move toward the origin in a damped fashion, it could lead 
;5) to actuator wear. In the discrete version of this system, the. relay remains on for a 
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brief time after. the switching line is crossed. This approach reduce~ actuator wear 
but may lead to instabilities. 

Optimal Damp1ng. We would like to design a system which will approach the 
origin in an efficient manner for any initial condition. From Fig. 19-12(b) it is 
apparent that .the origin can be approached from only two directions. labeled Q 
and Q'. Thus. we would prefer to use as switcning lines those parabolas which pass 
through the origin. This is algebraically described. by 

[ 
1· .] u=.- Usign uo+ 21010 

={+U, 
-U, 

for 
(19-68) 

for 
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As shown in Fig. 19-12(c), after the trajectory intersects the switching line, it will 
proceed directly toward the origin. For example, an initial state at A will intersect 
the switching line at B, change directions, and move along the switching line to the 
origin where the control is set to zero. Similarly, an initial state at C will intersect 
the switching line at D and proceed to the origin. This case is discussed in more 
detail by Hsu and Meyer [1968]. In practical applications, ~odifications are 
required to take into account any instrument or system rate limits which may exist. 
Also, the wheel torque (and acceleration) are neither perfectly. known nor nec
essarily constant over the entire wheel speed range. The minimum expected wheel 
torque should be used in designing the control law to avoid relay chattering. A 
modified version of this optimally damped bang-bang control law has been 
implemented in the IUE and SMM attitude control system computers. 

When a system has been shown to be stable and optimal (in some sense) when 
operating continuously, it does not necessarily follow that the discrete or pulsed 
version is optimal or contronable except in the limit of very high pulse rates. A 
discrete system periodically samples attitude sensors and controls the actuator. The 
time step is the time between consecutive samples and may be limited by the time 
constants of an analog control system or the capacity of an onboard computer. As 
the length of the time step is increased, control may be lost at periods correspond
ing to the resonant frequencies of the system. For example, if the time step is an 
integral multiple of the nutation period, the oscillations will not be damped. An 
example of this problem is given by Schmidtbauer, et 01., [1973J. In such caseS~ 
further analysis, including digital simulations, will be required to analyze the 
system performance. 

19.4.2 Multiple-Axis Slews 

For an orthogonal set of reaction ~heels aligned with the body axes, we can 
reorient the spacecraft from one celestial target to another by a sequence of 
single-axis slews. The required direction cosine matrix is 

(19-69) 

where R;(fJ) is a matrix representing the rotation about axis ; through an angle (J, 

and the target coordinates (a,B,p) are the right ascension and declination of the 
target and an azimuthal rotation angle about the target. The ma~ C is uniquely· 
specified by the initial and final target coordinates. This does: Mt, however, 
completely specify the slew sequence. 

A sequence of three slews is sufficient to accomplish any maneuver in the . 
general case where the r6tation angles, denoted for convenience as roll, pitch, and 
yaw, can take any value between 180 deg and -180 deg. There are 12 possible 
combinations of the form roll-pitch-yaw, where consecutive rotations abo~t the 
same axis, such as roll-roU-yaw are excluded but nonconsecutive rotations about 
the same axis, such as roll-pitch-roll, are allowed. There are 3x(3-I)X(3-1) ... 12 
such combinations. 

As an example, if we choose to perform a roll-pitch-yaw maneuver, we could 
calculate the required angles by setting (see Appendix E) 



660 
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cos'" cosO 
= -sin",cosO 

sinO 
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cos",sinOsincp+ sin", coscp 
- sin",sinOsincp+ cos"'coscp 
-cosOsincp 

- cos",sinOcoscp + sin", sincp 1 
sin",sinOcoscp + cos!/- sincp 
cos 0 coscp 

( 19-70) 

Because the Cij matrix elements are known, the angles cAn be calculated as follows: ~. 

Pitch: sinO= C31 ' cosO= ±l./t - Ctl 

- C32/COSO . r: 
Roll: tancp= C/O (19-71) 

33 cos 

- C21 /COSO 
Yaw: tan",= C/O 

II cos 

This sequence is ambiguous because either sign of the radical can be taken. leading· , 
to separate roll-pitch-yaw slew sequences where the rotation angles are supple- . 
ments of each other.· This same' ambiguity exists for all cases, yielding a total of 24 : 
possible slew sequences to perform a maneuver. . 1 

Because the computer operations involved are rapid. all 24 possibilities can be. j 
computed and ordered according to a suitable criterion. Typically. the minimum. 
total path or minimum slewing time is chosen, but other criteria may be used. Oil 
OAO it was found that the performance error due to gyro misalignments grew·· 
linearly with slew angle, and the sequence was chosen which had the shortest • 

" maximum slew leg. 
Although errors may arise from gyro misalignments, no error is caused jf a 

wheel is misaligned because any undesired momentum components will be sensed 
by the gyros and controlled to zero. The design for the JUE spacecraft takeS 
advantage of this feature by mounting a redundant fourth wheel along the diagonal 
of the orthogonal cube formed by the three primary wheels. If one of the three 
orthogonal wheels fails, relays will be set in the control ~lectronics to send its' 
commands to the skewed wheel. The rate component along the desired axis will be 
executed at 1/V3 times the normal rate due to the projection of the commanded 
axis on the skewed axis, while the undesired components are temporarily absorbed ;, 
by the reaction wheels on the other two axes. 

A major advantage of using a sequence of single-axis slews is that the other 
two axes are controlled to zero, which minimizes the coupling of the axes in Euler'S 
equations. This allows the three attitude angles to be estimated separately accord
ing to the accumulated gyro angles. Another advantage of this single-axis sequence 
lies in the ease of checking constraints. On JUE, for example, maneuvering is;! 
severely restricted by co~straints on the position of the body axes with respect to:; 
the Sun, the Earth, and the Moon both while the spacecraft is pointed and whi1~L: 

?:,f,:" 
'~. ' 

-The ambiguity may be resolved, however, by limiting the intermediate rotation to the range 0 to ISO:;;: 
deg. In the above example, we would then have fJ=an:cos(+"I- ell ). This convention is generati~5: l: 
adopted for Euler angle sequences. See, for example Goldstein (19501 a.nd Appendix E.· :<~.;: 

·'ll: ~. 
C'\;<"" 
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moving. Constraint checking is simplified by first transforming these inertially 
known vectors into the body system using the current attitude direction cosine 
matrix. By the geometry of the single-axis slews it is possible to perform even the 
dynamic constraint checks geometrically without simulating the maneuver. 

An alternative to the single-axis slew sequence, called the eigenaxis method, 
[TRW, 1976J has been designed for HEAO-B, where a quaternion attitude estimate 
is available in the onboard processor. This method uses quaternion multiplication 
to compute the unique rotation axis, e, and angle, 4>, which can achieve the desired 
three-axis reorientation. The error quaternion, fE' is given by 

(19-72) 

where f is the current attitude state and fo is the desired attitude (see Section 12.1 
and Appendix D). The eigenaxis, e, is identified by expressing the four components 
of the error quaternion as 

(19-73) 

and performing the maneuver by rotating about e through the angle 4>. In theory, 
this yields a minimum path maneuver, but in the actual design,large deviations are 
expected from the eigenaxis due to system nonlinearities such as torque motor 
response, torque or wheel saturation, and non orthogonal reaction wheels. Com
pensation is made for these effects by continually updating the eigenaxis and 
recomputing the motor torques. 

19.5 Attitude Acquisition 

Gerald M. Lerner 

A ttitude acquisition consists of the series of attitude maneuvers, commands, 
and procedures necessary to reorient and reconfigure the spacecraft from the 
attitude state at separation from the launch vehicle to an attitude state suitable for 
the initiation of normal mission operations. The latter configuration is referred to 
as mission mode. This section describes the problems and procedures unique to 
attitude acquisition, including the deployment of extendable booms, antennas, and 
solar panels and the inflight checkout of both hardware and software. 

Most missions require some period of attitude acquisition. The simplest 
ac.quisition sequences require maneuvers such as despin, deployment of solar 
panels, activation of the onboard sensors and experimental hardware, and a 
maneuver to the first mission attitude. This sequence is similar to that used by 
SAS-3 and most stellar-oriented missions. Slightly more complex sequences are 
required for geosynchronous spacecraft which employ a transfer orbit such as 
SMS/GOES or ers. For these missions, a prolonged sequence of interspersed 
attitude and orbit maneuvers, lasting a week or more, is required to attain the 
proper position, orbit, and attitude. (See Section 1.1 for an example.) A sequence of 
maneuvers lasting 5 months was employed by RAE-2, initially to achieve a circular 
orbit about the Moon and finally to deploy four extendable antennas in a timed 
sequence to a total length of 450 m to achieve a three-axis, gravity-gradient 
stabilized attitude [Werking, et al., 1974J. 
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Some missions may require periods of altitude reacquisition to reacquire 
mission mode in the event of hardware or software failure or op~rator error. As an 
example. reacquisition is required for autonomous missions. such as the IUE. if the 
attitude error after a commanded maneuver exceeds the Fine Error Sensor field of 
view (Blaylock and Berg. 1976). 

Clearly. specific details of attitude acquisition are very mission dependent-a 
function not only of attitude requirements. but of onhoard hardware. ground 
support hardware (e.g.. the availability of telemetry and command stations). 
ground support software. and power and thermal constraints. Despite the 
numerous constraints placed on this phase of a mission. some of which may be 
quite severe. considerable flexibility is available to the mission planner and the 
opportunities for innovative solutions are great. Although the implemented proce
dures for GEOS-3 (see Section 19.5.3) and CTS [Basset. 1976) were both specific 
and intricate. numerous alternatives were considered [Repass. et al .• 1975: Lerner. 
et 01 .• 1976: Kjosness. 1976] and discarded. Frequent improvements to the baseline 
procedures were made in the days preceding launch and probably could have 
continued. Although the end points of attitude acquisition sequences are fixed. the 
possible paths are distinctly non unique: many ml,lst be traveled and pitfalls 
mapped in prelaunch planning before the best can be selected. 

19.5.1 Classification of Attitude Acquisition 

Attitude acquisition' may be categorized by the degree of autonomy of the 
spacecraft haniware or. conversely. by the amount of ground support required. The 

-spacecraft may be (I)Iu/~l' autonomQus:(2) semiautonomous. i.e .. using a mixture of 
on board and ground support: or (3) ground controlled. Fully autonomous attitude 
acquisition is accomplished either through the use of analog. preprogrammed 
electronics or a digital onboard computer. or OBC (see Section 6.9). Sensor data is 
used in a control law which is implemented via the analog electronics or OBC to 
command torquing devices such as electromagnets, wheels, and thrusters. For 
example, the German Aeronomy satellite, AEROS. used error signals from an 
analog Slm sensor and a magnetometer to control an e1ectrQmagnet and torque the 
spin axis to the Sun. HCMM uses magnetometers and a wheel-mounted horizon .' 
scanner to control a magnetic torquing system to achieve a stable. three-axis~> 
Earth-pointing attitude [Stickler and Alfriend; 1974]. . 

For semiautonomous spacecraft. a mixture of on hoard and ground support is 
used to achieve acquisition. HEAO-I used an onboard analog c.ontrol system to 
place the spin axis within several degrees of tho Sun and ground software using star 
tracker data to determine a precise three-axis attitude and calibrate the gyro-based 
control system. After calibration. the control system maneuvered the spacecraft to '; . 
a target attitude and maintained it there using hydrazine thrusters to null the" 
difference between the target and the gyro.-propagated onboard attitude (se~·X· 
Section 19.4). ., 

Ground-based attitude control may be either open-loop or closed-loop. Closed"~:· 
loop control is similar to that provided on board: sensor data is telemetered in reid.·,· 
time. ·to the ground support computer; the data are processed and torquing': 
commands are computed; and. finally. the software uplinks the requisite .... 
mands. The main advantage of closed-loop control is the flexibility and power 
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large ground-based computers. Continuous. rapid-response commanding capability 
is provided without requiring increased onboard weight and attendant complexity. 
The main disadvantages are the requirement for continuous uplink and downlink 
contact during operations and increased opportunities, for hardware or software 
failure or operator error due to the extended communication lines. Attitude 
acquisition for the CTS spacecraft (Basset. 1976] used closed-loop control ,with a 
Hewlett Packard 2100A minicomputer. -

Open-loop ground-based attitude control uses 'ground software to process and 
display sensor data and to compute and evaluate (often via simulation) commalld 
sequences. Analysts then select appropriate commands which are uplinkedfor 
execution on board. Open-loop control requires a time delay from 30 sec to several 
hours between receipt of sensor data and command execution whereas closed-loop 
ground-based control delays are of the order of several seconds. The advantage of 
open-loop control is the software simplicity and reliability afforded by relaxing the 
severe time constraints to permit analysts to evaluate and verify computed com
mands while retaining the power and flexibility of the ground-based computer 
facilities. The analyst can also respond to contingencies not foreseen in prelaunch 
analysis and rely on his judgment and experience in evaluating commands. The 
disadvantages are the limited control afforded by the slow response time, * and the 
increased possibility of operator error when many individual decisions and actions 
are required from computation to uplink of commands. Open-loop control has' 
been the most widely used to date. Examples include the generation of command 
sequences for attitude maneuvers or maintenance for AE, SMS/GOES, and CTS 
and the GEOS-3 acquisition sequence described in Section 19.5.2. 

19.5.2. Acquisition Maneuvers 

This subsection describes attitude maneuvers that are unique to attitude 
acquisition. Table 19-1 (page 666) illustrates the types of maneuvers and con
straints required for representative acquisition sequences. The initial state is de
termined largely by the configuration of the spacecraft within the last rocket stage 
and whether or not that stage is spin stabilized. The detailed release mechanism for 
spacecraft separation from the last stage and the performance of the yo-yo despin 
mechanism, described below, are also important. The final state includes the 
attitude, attitude rate, and spacecraft configuration (e.g., solar panel and antenna 
deployment, momentum wheel spinup, and attitude sensor and experiment tom
on). 

In the event that the spacecraft cannot be commanded due to an onboard or 
ground support failure, intermediate attitudes between the initial and final state 
should be "safe harbors,"' viz capable of being maintained for prolonged periods 
without endangering the success of the mission. As an alternative, opportunities for 
easy access to safe harbors should be ,mapped and exploited as necessary by, for 
example, loading backup commands to be executed automatically on board the 
spacecraft at some later time. 

Yo-Yo Despin. This maneuver is frequendy employed for reducing the 
spacecraft's spin rate "shortly after separation from the last stage of a booster 

*Open-loop control employing several analysts and telephone lines "4$ employed ror RAE-I to 
minimize time delays (IBM, 1968). 
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rocket. The last stage of rockets such as the Scout and Delta is often spin stabilized 
at a high angular velocity, e.g., 150 rpm, and this spin rate is maintained by the 
spacecraft at separation. 

As illustrated in Fig. 19-13, we assume that a cylindrical spacecraft with axial 
moment of inertia I and radius R is rotating without nutation about its longitudinal 
axis with angular velocity O. Two equal masses, ml and m2' are attached to 
separate cables of length I wrapped around the spacecraft perimeter opposite the 

t 

z 

v 

Fig. 19-13 .. Mechanism of Yo-Yo Despin. Two masses are attached to cables wrapped around the 
spacecraft. When the masses are released, they carry away much of the spacecraft angular 
momentum • 

. direction of rotation. At time t = 0, the masses are released and travel tangentially 
away. from the spacecraft. As the cables unwind, they increase the moment of 
inertia of the system about the z axis and decrease the spacecraft's angular velocity. 
When completely unwound, the cables and attached masses are jettisoned, carrying 
off a substantial fraction of the system angular momentum. The relationship 
between the final spin rate, the spacecraft size and inertia, the cable length, and the 
yo-yo masses is derived as follows. . 

We define the body coordinate frame, i, y, and i, to be fixed in the spacecraft 
which is rotating about i at angular velocity 0 relative to inertial spa~e (see fig. 
19-14). The masses are initially at ±x. Similarly, the cable frame, i, j, and k, is 
rotating 10 the body such that the cables are tangent to the spacecraft perimeter 
along.the ±l axis; i.e., the coordinates of the points where the cables are tangent to 
the body are ftxed in the cable frame at (± R, 0, 0) . 

. Assuming no energy loss during the despin, we can compute O(t) from the . 
conservation of energy and angular momentum. By symmetry, the angulat 
momentum and kinetic energy of both masses are equal and it suffices to consider. 
only mi' The position and velocity of ml in the cable frame (see Fig. 19-14) are 

(19-
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(19-74b) 

where f[J is the angular separation between the cable and body frames in radians . 
. The angular velocity of the cable frame, relative to inertial space. is 

(19-75) 

y 

"" Fig. 19·14. Yo-Yo Despin Geometry in Cable and Spacecraft Frames. The i andk axes are out of the 
plane of the figure. 

From Section 16.1. the velocity. v •• of m .. in inertial space. expressed in the cable 
frame. can be written in terms of (4, r., and i'. as. 

V.=i'.+(4Xf.=Rf[J(O+cj,)i +ROj 

The angular momentum of nil in the cable frame is 

(19-76) 

(19-77) 

Because k is fixed in inertial space in the direction of total system angular 
momentum, we may use the conservation of angular momentum to obtain 

(19-78) 

where 00 == O( I = 0) and the total moment of inertia is the sum of the inertia of the 
spacecraft body (J) and the two masses (2m

I
Ri. 

The kinetic energy of m. is 

T. = tm.v .. vl = tm.R2[ f[J2(0+ cj,)2 +02] (19-79) 

From the conservation of energy we obtain 

(19-80) 

Equations (19-78) and (19-80) may be solved simultaneously for f[J and 0 to obtain 
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.p = !lot 

!l( t) == !lo{ a - ~t2)/ (a + !l~t2) 

where 

667 

( 19-8Ia) 

(19-8Ib) 

(19-8Ic) 

Thus, Eq. (19-8Ia) shows that the cable unwinds at a constant rate equal to the 
initial spacecraft angular velocity. Equation (19-8Ib) may be rewritten in terms of 
the unwound cable length, 1= R.p= R!lo' as 

(19-82) 

Note that n=o when 

(19-83) 

which is independent of the initial spin rate. For example, for the HCMM 
spacecraft, with J= 18.4 kg m2

, R=0.5 m and two yo-yo masses of 2 kg each, it 
cable length 1=(4.6+0.25)1/2=2.2 m would completely despin the ~pacecraft for 
any initial spin rate. 

Momentum Transfer. Momentum transfer is an acquisition maneuver used for 
dual-spin spacecraft. Initially, the body is spin stabilized at an angular velocity n 
and the wheel is fixed in the body frame (Fig. 19-15a). Finally, the body is despun 
and most of the momentum is transferred to the wheel (Fig. 19-15b). For Earth
oriented missions, the desired final attitude is such that the wheel axis and orbit 
normal are collinear and the residual body spin rate, "'0> is I revolution per orbit 
about the orbit normal. 

The maneuver for an Earth-oriented mission is illustrated in Fig. 19-15 and 
described by Barba and Aubrun [I975J and Gebman and Mingori [I975J. Essen
tially, the maneuver involves a transfer from an initial configuration in which the 
body is spin stabilized with the attitude anti parallel to the orbit normal and the 
wheel is despun, to a final configuration in which the body is despun and the wheel 
is spinning with its axis antiparallel to the orbit normal.· Because the wheel axis 
(body y axis) is normal to the initial spin axis (body z axis), the maneuver results in 
the erection of the wheel axis to the orbit normal. Although the total angular 
momentum vector is conserved during the maneuver and the magnitude of the 
wheel angular momentum may be controlled via the wheel speed, the partitioning 
of the total angular momentum vector between the body and the wheel cannot be 
fully controlled. Consequently, the total transfer of momentum to the wheel 
cannot, in general, be obtained and the final state will consist of the wheel axis 
nutating about the conserved total angular momentum vector. 

As the wheel is accelerated, the body rate about the y axis first increases, 
reaches a maximum, and finally decreases to near zero. The body rate about the z 
axis decreases rapidly and then oscillates about zero with a frequency proportional 
to the wheel momentum. The residual offset angle, fJ, between the body y axis and 
the orbit normal declines from 90 deg" and oscillates about a minimum residual 

• As described in Section 18.3, we assume Ihe body )I axis is to be aligned with the pitch axis of the 
orbital coordinate system or the nellative orbit normal.. 
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Fig. 19-IS. Computer Siinulation Results for Momentum Transfer Maneuver (from Barba and 
. Aubrun, (1975D 

offset, which is typically S to 10 deg. Figure 19-ISc illustrates the characteristics of 
the man~uver . 

. If the transverse wheel moment. of inertia, K., is assumed to be small 
compared with· the body moment of inertia about the z axis, lz, the initial state is 

LB(O) = IzSHa 

Lw(O)=0 

and the desired final state, in an inertial frame, is 

LB(T)=lyc.)oD 

Lw(T)=hn 

(19-84) 

(19-8S) 

wheteLB is the angular momentum of the body, Lw is the angular momentum of 
the wheel, n is a unit vector in the direction of the orbit normal, ly is the moment of 
inertia of the. spacecraft about the y axis, and h is the magnitude of the wheel 
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momentum. Conservation of the total angular momentum, LT' during wheel 
acc\eration ensures that, in an inertial frame. 

(19-86) 

Control over wheel speed during acceleration permits the relation Lw(T)= - hy to 
be obtained in body coordinates, but the identity 

L; - h2 = constant = L~ (T)+ 2Ls( T)· Lw( T) (19-87) 

does not guarantee that Ls(T) is near the orbit normal although that desired 
configuration is consistent with the conservation of energy and momentum and is 
nearly obtained. The offset angle, 9, is approximately [Gebman and Mingori, 1975} 

9= (1/2 { 0.939 [ I + t (::: i. ) f/4} + 0«(3/2) (19-88) 

where 

(19-89) 

and T is the wheel acceleration time (assuming a constant torque), II> 12 > I) are 
the ordered body moments of inertia, KI is the transverse wheel moment of inertia, 
and Iw is the axial wheel inertia. Equations (19-88) and.(19-89) assume that the I) 
axis (the smallest moment-of-inertia axis) is parallel to the wheel axis (/y in the 
example). Thus, reduced offset angles are achieved, for a given configuration, by 
reducing the wheel acceleration torque, hiT. 

As an example of the application of the momentum transfer maneuver, we 
consider a proposed acquisition sequence for CTS [Lerner, et al., 1 976}. The 
mission mode angular momentum was 20 N·m·s (3750 rpm) and 0.01 N·m·s (I 
rpo) for the wheel and body, respectively, along the positive orbit normal. The 
angular momentum at the start of the acquisition was - 9720 N . m· s (60 rpm along 
the negative orbit normal). The proposed acquisition sequence was as follows: 

I. Use gas jets to despin to - 1.25 rpm to obtain a total angular momentum of 
20 N·m·s n. 

2. Accelerate the wheel until the body rate is - I rpo, at which time the wheel 
speed will be near 3750 rpm. 

3. Damp the resultant nutation, using thrusters as described in Section 18.4 
(typical half-cone angles are 8 to IO deg). 

4. Use thrusters to precess the attitude to orbit normal, as described in Section 
19.3, to achieve the final attitude (typical attitude errors are 7 to I3 deg). 

Table 19-2 summarizes the results of simullilted momentum transfer sequences for 
CTS as a function of wheel acceleration time. 

Deadbeat Boom Deployment. Deadbeat deployment consists of either extend
ing booms or antennas so as to minimize attitude librations after deployment or 
using extendable appendages to remove existing libratiops. The former procedure 

I was used on RAE-J and -2 and the latter on GEOS-3. Such maneuvers are called L ': I . 



670 AlTITUDE MANEUVER CONTROL 19.5 

Table 19-2. Simulated Momentum Transfer Acquisition Maneuvers for CTS 

ATTITUDE ERROR AND NUTATION 
NET WHEEL WHEEL 

TORQUE BEFORE DAMPING AFTER DAMPING 
ACCELERATION FINAL_EEL BURN lDEGI BURNIDEGI 

nME (SECI IN'MI SPEEDIRPMI 
, t By B- y' 

T .. .. 
3850 o.oos 3850 7.2 9.7 11.0 2.3 

187& 0.011 3750 10.3 12.1 7.2 I.lI 

lOGO 0.G20 3750 14.1 21.5' 21.4 3.1 

• OfFSET ANGLE BETWEEN ANGULAR MOMENTUM VECTOR AND ORBIT NORMAL 

t NUTATION HALF'CONE ANGLE., ... ARCTAN «lIxwxl2 + IIzwzl2) tl2/16I .. SI). ~ERE Ix.IZ' AND 

I .. ARE THE X. Z. AND WHEEL INERTIAS; Wx AND wz• THE BODY RATES IDEGlSI; AN,D S. THE WHEEL 

SPEED IRPMI. -

deadbeat, meaning no recoil, after the stroke employed by drummers, and are based 
on the conservation of angular momentum. Consider a spacecraft librating under 
the influence of gravity-gradient torques about the pitch axis with a boom fully 
extended along the yaw axis. At any time, the attitude state may be represented as 
a point in the pitch/pitch rate state-space as shown_in Fig. 19-16. If an initially 
extended boom is retracted to an intermediate length at ~ear zero pitch and 
minimum pitch rate, the decrease in inertia about the -pitch axis will cause the pitch· 
rate to increase (become less negative to conserve 'angular momentum) and follow 
the trajectory depicted by the inner circle_· If subsequently the boom is reextended 
at a pitch angle near zero and maximum pitch rate, the increase in inertia will 
reduce the· pitch rate and remove the pitch librations. The proper choice of an 
intemtediate moment of inertia, J" is derived as follows. Assume that the retraction 
and extension maneuvers are instantaneous. Conservation of angular momentum at 
retraction requires 

Fig. 19-16. 

PITCH RATE 

REEXTEND BOOM 

INTERMEDIATE 
Ll8RATI0N 

STATE 

--------~----+__i--+-----r----------PlTCH 

Deadbeat Maneuver for Removal of Pitch Libratian Using Extendable Boom. The origia 
of the figure correspondS to pitch .. pitch rate .. O, but the scale of the axes is arbitrary.: 
Note that·pitch=O implies an inertial rate about the pitch axis of minus I revolution per 
orbit (rpo) or I rpo about the positive orbit normal. 

·We assume that the inertia change is instantaneous. For typical configurations. boom maneuvers 
require 1 to 10 millules whereas fibration periods are typicany 1 hour (~orbital period/fj). The' 
external torques are proportional to pitcb (and ncar zero) wben the extension and retraction occur. 
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(19-90) 

where Ie is the moment of inertia about the pitch axis with the boom extended, jJ; 
and x are the pitch rate amplitudes before and after extension, and "'0 is the orbital 
angular velocity. At extension, for the pitch rate to vanish, conservation of angular 
momentum yields 

1,( x + "'0) = 1''''0 

Substitution of Eq. (19-91) into Eq. (19-90) yields 

I, = le( I - pj2",0) 

(19-91) 

(19-92) 

which is the required moment of inertia after retraction to remove a libration rate 
amplitude jJ;. 

The equation of motion for pitch, p, considering only gravity-gradient torque 
and assuming a small roll and roll rate, is (see Section 18.3) 

p+(3"':/2Iy )(lx - It )sin2p=O ( 19-93) 

V(here Iy' lx, and I. are the moments of inertia about the body pitch (y), roll (x), 
and yaw (z) axes and "'0 is the orbital rate. Letting "'=''''pt where 

[ ]
1/2 

"'p = "'0 3(1x -It )/Iy (19-94) 

Equation (19-93) can be rewritten as 

dJ1 I. - + -sm2p=O 
d.,.2 2 

(19-95) 

with the integral 

dp [ I ]1/2 dt = ±"'p 2(cos2p-cos2A) (19-96) 

where A, the maximum value of pitch, is an integration constant. 
For a pencil-shaped spacecraft, Ix~/y»/., and ",p~{3 "'0' The maximum rate 

occurs when p = 0, so that 

p;=( ?'),=o~"'o[ t(I-COS2A) )'/2 (19-97) 

and Eq. (19-92) may be rewritten in terms of the libration amplitude as 

[ 
3 ] 1/2 

.1,/1,,=1- i(l-cos2A) (19-98) 

Magnetic StabUization. As a final acquisition maneuver type, magnetic sta
bilization is a technique in which a spacecraft axis is induced to track the Earth's 
magnetic field about the orbit. This is used for high indination spacecraft to 
provide a reference angular momentum direction normal to the orbit plane. 
Consider a spacecraft in a polar orbit with an electromagnet along the yaw axis 
and an onboard damper. Regardless of the initial attitude and attitude rate, the 
interaction of the electromagnet and external field will cause the yaw axis to track 



672 A TTlTUDE MANEUVER CONTROL 19.5 

the field (minimum energy configuration) and induce an average spin rate of 2 rpo 
about the orbit normal. Magnetic stabilization was used for GEOS-2 and proposed 
for GEOS-3 as the first step in the attitude acquisition because it is passive (no 
ground support is required) and converts a random initial state into a well-defined 
state suitable for subsequent acquisition maneuvers. 

19.5.3 Representative Acquisition Sequence 

In this section, we describe the attitude I\cquisition sequence employed for the 
Geodynamics Experimelltal Ocean Satellite, GEOS-3, launched on April 9, 1975, 
from Vandenberg Air Force Base, California, on a Delta 1410 rocket. Other 
acquisition sequences are described by Basset [1976J for crs, Byrne, et al., [1978J 
for HCMM, and Markley [1978) for SMM. GEOS-3 demonstrated the utility of 
spaceborne radar altimeters for oceanography and served as a bridge between the 
earlier geodetic satellites, GEOS-I and GEOS-2, and the ocean resources program, 
SEASAT. The spacet;raft, illustrated in Fig. 19-17, was placed in a circular orbit at 
an altitude of 843 km and an inclination of 115 deg to provide coverage of the 
North Atlantic Ocean, the area of primary experimental interest. 

UNTO PLA:E 
OF FIGURE) (

ZIYAW) 

X IROLlI 

Fig. \9-17. GEOS-3 Spacecraft 

VHF ANTENNA 

The ground-based, open loop attitude acquisition sequence for GEOS-3 was 
designed to achieve a gravity-gradient stabilized. three-axis attitude with the 
spacecraft z and y axes in the nadir and negative orbit normal directions. respec
tively. The GEOS-3 control hardware consisted of a 6.5-m boom extendable along 
the negative z axis; a passive, magnetically anchored eddy current damper (Section 
18.4) located at the end of the boom; a z axis electromagnet; and a momentum 
wheel with its axis along the y axis. Attitude determination hardware consisted of 
two-axis digital Sun sensors and magnetometers. Pitch and roll stability in the 
mission mode was provided by gravity-gradient torque and yaw stability was 
accomplished via quarter-orbit coupling with roll through the momentum wheel 
(see Section 18.2). 
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The goal of the GEOS-3 acquisition sequence was to achieve mission mode 
and begin experimental operations as rapidly as possible. The mission constraints 
are given in Table 19-1. The initial attitude acquisition plan for the GEOS-3 was to 
activate the z axis electromagnet soon after spacecraft separation to achieve 
magnetic stabilization (Section 19.5.2). to extend the boom over a high northern 
latitude command station to achieve proper (Pitch~O) gravity-gradient stabiliza
tion, and, finally, to accelerate the wheel to achieve yaw stabilization. This 
procedure was abandoned because the large amplitude librations induced by the 
boom and wheel maneuvers coupled with the long system damping time constants 

Table 19-3. GEOS-3 Attitude Acquisition Profile 

EvENT 
TIME FROM DATE 

LAUNCH SfATION REIIIARIIS 
HRIIIIN MOVitAY ""~. 

1. LAUNCH 0 419n5 2358Dl 

2. SEPARAnON lID 4/111175 _1 TANANARIVE l·DEG18 TUMBLE ABOUT 
PITCH AXIS 

3. RELEASE BOOM 3/12 4/10/75 031lIII0 ALASKA BOOM LENGTH 026 M 
AFTER RELEASE 

4. EXTENDBOOMTO 4/IilI 41111175 045700 ALASKA ACHIEVE PROPER 

o.72M GRAVITY-GRADIENT 
CAPTURE 

6. DEPLOY BOOM TO IlOl44 4/1V75 024237 ALASKA ATYAW810EGAND 
6.47M ROLL AMPLITUDE 

2O£G 

6. AcnYATE WHEEL 111117 4/1V75 0316D3 ORRORAL AT PITCH -11 DEG. 
RESIDUAL PITCH 
UBRATION WAS 
12O£G 

7. DEAOBEATTRIM '111II1II 4/1V75 :126400 WINICI'IELD RESIDUAL PITCH 
74121 4113176 021800 WlNKFIELO AMPLITUDE WAS 

3O£G 

·HOUR :MINUTE :SECOND. 

with the boom extended combined to require an estimated 30 days to achieve 
stability [Pettus, 1973). 

Further prelaunch analysis yielded an improved procedure incorporating sev
eral attitude acquisition strategies: 

I. Gravity-gradient capture at a boom length of apprOximately I m could be 
achieved by first allowing the spacecraft to despin under the influence of 
gravity-gradient and damper torques and subsequently extending the boom 
approximately 0.5 m when pitch~roll~O [Repass, el al., 1975). 

2. Pitch, but not roll, Iibrations could be removed by a sequenced boom 
retraction and extension as described in Section 19.5.2; therefore, roll 
librations would netd to be removed before boom extension.· Roll libra
tions could be removed by· the damper if gravity-gradient stabilization 
could be achieved before boom extension to 6.5 m because, at a boom 
length of I m, the damping time constant is only 13 hours [Davis and Yong, 
1975] .. 

3. After gravity-gradient stabilization, the acceleration of the wheel at the 
proper point in the pitch libration cycle, when the wheel acceleration 
reaction torque and gravity-gradient restoring torque cancel, could mini
mize subsequent librations [Pettus, 1973) . 

. <,~!ihen a 4- to 8-day ~ping lime co~tanl dominat~ ~e dynamics. 



674 ATTITUDE MANEUVER CONTROL 19.5 

These strategies were incorporated into the acquisition sequence outlined in 
Table 19-3 and were implemented using a combination of passive stabilization 
based on gravity-gradient torque and active, open-loop, commanding using real
time graphic displays. After spacecraft separation, the attitude data indicated a 
slow spin, I deg/s, about the body y axis and the boom and damper magnet were 
released to permit the spacecraft to despin. Figure 19-18 illustrates the theoretical 
attitude behavior during the despin (i.e., events 3 to 4 in Table 19-3). 

The damper magnet is driven through the Earth's magnetic field by the 
spacecraft's orbital motion. As described in Section 19.5.2, this induces the magnet 
to spin about the orbit normal at a mean inertial rate of 2 rpo. Consequently, the 
reaction torque on the spacecraft damps roll motion and induces the spacecraft to 
spin at a steady-state pitch rate of I rpo. Equation (19-96) describes this pitch 
motion, where "'p =0.087 deg/s for a I-m boom length. Representative attitude 
solutions are illustrated in Fig. 19-18. Closed trajectories about pitch 0 and 180 deg 
represent proper and inverted capture, respectively; open trajectories for positive 

EXTEND 
BOOM TO 
CAPTURE 

PITCH RATE IOEGIS) 

Fig. 19-18. Stability Contours in the Pitch-Pitch Rate State Space for a I-m Boom Length. Shaded 
regions indicate attitude capture. 

and negative pitch rate represent backward and forward tumbling, respectively. 
The action of the damper causes the attitude to move to trajectories with smaller 
rates and, ultimately, to proper or inverted capture. Extending the boom to 
approximately 1.3 m at the point marked by the arrow in Fig. 19-18 increases the 
transverse moment of inertia by approximately 30%, halves the pitch rate, and 
causes the attitude to switch to a closed trajectory about pitch zero. .: . 

The real-time displays observed during actual boom extension and wheel". 
acceleration are shown in Fig. 19-19. The attitude solutions typically lagged 20 .. 
40 sec behind real time and command initiation and uplink required an additlonlar; 
5 to 10 sec. Figure 19-19(a) illustrates both that the boom extension command 
sent after roll Iibrations had damped and that the pitch rate decreased 
extension to conserve angular momentum. The wheel acceleration command 
Fig. 19-19b) was transmitted 33 min after boom extension at a predetermined 
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angle so that the gravity-gradient and wheel acceleration reaction torques-would 
oppose and minimize pitch librations after the maneuver . 

I 
~ .. 
i 
~ 

... ... F" _ YAW -... ... ... 
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Fig. 19-19. Real-lime Attitude Acquisition Displays for OE0S-3 

Operational considerations dictated that the two commands be sent ~ver a ·pair 
of command stations in daylight with adequate telemetry visibility before and after 
each command. Dynamical considerations dictated a half-hour command separa
tion (for torque opposition) and a small yaw angle to ensure yaw capture and 
minimize roll-yaw librations. These constraints limited command opportunities· to 
an average of approximately one per day. After 2 days of monitoring potential 
command opportunities, the maneuvers were initiated despite a yaw angle near the 
maximum value for satisfactory dynamics [Lerner and Coriell, 1975]. Figure 19-20 
compares the observed attitude data (dots) with a postlaunch simulation (solid line) 
during and after the boom and wheel commands. After boom extension, a pitch 
libration, with an amplitude of approximately 40 deg, was induced while roll and 
yaw remained near their initial values of 2 deg and 80 deg, respectively. The wheel 
was accelerated 33 minutes later, when the wheel acceleration and gravity-gradient 
torques were in opposition and the 4O-deg pitch libration was consequently reduced 
to about 15 deg. The wheel momentum coupled the roll and yaw motion, resulting 
in an initial 60-deg amplitude yaw oscillation and an S-deg roll oscillation with a 
9-minute period. In Fig. 19-2O(b), the attitude behavior 16 hours later is shown. As 
described in Section IS.3, pitch, roll, and yaw oscillations have decayed with time 
constants of approx~ately 4 days, 6 days, and 5 hours, respectively. Thus, the 
large yaw oscillation rapidly decayed, the roll oscillation remained near the small 
initial value, and the pitch oscillation was subsequently reduced from 10 to 3 deg 
by a deadbeat boom retraction and extension as described in Section 19.5.2. 
Experimental operations were initiated 4 days after launch. . 
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CHAPTER 20 

SOFIW ARE SYSTEM DEVELOPMENT 

20.1 Safeguards Appropriate for Mission Support Software 
20.2 Use of Graphic Support Systems 
20.3 Utility Subroutines 

Vector and Matrix Algebra Routines, Tirne·Com1l!rsion 
Routines, Ephemeris Routines. Plotting Routines 

In practice. much of the time devoted to preparation for mission support is 
spent in the development of computer software systems. Although some progress 
has been made in the standardization of software. the variations in attitude 
determination and control hardware. mission requirements. and processing 
sophistication have meant that most spacecraft series have required largely new 
attitude determination and control software systems. Therefore. questions of soft
ware structure and performance are central to the practical problems of mission 
support. This chapter describes the general principles for the development of 
attitude software and the use of executive support systems and utility subroutines. 

20.1 Safeguards-Appropriate for Mission Support Software 

Myron A. Shear 

Attitude determination requirements may be divided into three categories: real 
time, near real time, and definitive. A real-time requirement implies that attitude 
must be determined within seconds of the receipt of data and is usually associated 
with monitoring an attitude -maneuver or attitude acquisition sequence. A near
real-time requirement implies that attitude must be determined within minutes or 
hours of the receipt of data, usually to compute control commands to achieve or 
maintain a desired attitude. A definitive requirement implies that an accurate 
attitude history is to be generated, perhaps weeks or months after the fact, 
generally for use in analysis of experimental results. The most critical demands on 
mission support software generally arise in real-time or near-real-time support, 
when results must be obtained shortly after the receipt of data. Failure to obtain 
accurate results within the prescribed time may jeopardize the success of the 
mission. Therefore, software intended for use in real-time or near-real-time mission 
support must be designed to meet particularly high standards of reliability. flexibil
ity, and ease of operation. In some missions, even a minor software error could 
lead to total mission failure; furthermore. software must be capab!e of handling 
contingencies as well as nominal mission conditions. For example, if one attitude 
sensor fails, the software should still be capable of supporting the mission to the 
extent that the remaining attitude sensors permit. In real-time and near-real-time 
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support, there is no time to make software modifications either to correct errors or 
to add new capabilities. Even a minor modification to a large software system may 
require hours or days to implement and the system reliability would be in doubt 
until extensive testing had been performed. For these reasons, specific safeguards 
should be considered in the design, implementation, and testing of mission support 
software. This section describes some of the safeguards used in mission software 
developed for the Attitude Determination and Control Section of NASA's God
dard Space Flight Center. 

The software environment for mission support programs at Goddard Space 
Flight Center is typically a multiprogrammed, large-scale computer with interactive 
graphics terminals, card readers, printers, and other peripheral devices. Mission 
support programs are assigned relatively high priority, and nonmission support 
programs are run only as resources permit. Most mission support software is 
designed for interactive graphics operation, primarily because of the greater flexi
bility provided by allowing an analyst to examine the input data and program 
results and change the processing options accordingly. Graphics operation, de
scribed further in Section 20.2, also allows rapid correction of user input errors. 
Nongraphic systems utilizing card input and printed output are normally limited to 
utility programs which do not directly process telemetry data and, therefore, 
require fewer' processing options. The safeguards discussed in this section can be 
applied to either nongraphic or graphic systems. 

Error Checking. If a program terminates unexpectedly and must be restarted, 
a period of 15 minutes or more may be required to resubmit the job, schedule the 
required resources, and initialize the program. A delay of this magnitude is 
unacceptable in real-time support, and very inconvenient in near-real-time support. 
For this reason, mission support software must be fully protected against failures 
due to user errors or unexpected telemetry data. An interactive graphics program 
must not be allowed to terminate abnormally except for the most severe error 
conditions; most common errors can ,be corrected by the user if the program 
provides appropriate error messages. Thus, mission support software must check for 
all foreseeable error 'conditions, provide standard corrective actions whenever 
possible, or provide an error message which is clear enough to allow the user to 
diagnose and correct the problem promptly. If further diagnosis is required, the 
user must be able to request intermediate displays to obtain additional information. 

User input errors are almost inevitable; these may be simple typographical 
errors, or logical errors resulting from specifying an inconsistent set of input 
parameters. The program should check user input parameters for validity, espe
cially in cases :in which a user input error could lead to' abnormal program 
termination. Forexamp~e,-:.)a 'user error which leads to overfilling an array or 
infinite looping may resuiHn a program termination which is difficuit to diagnose 
and relate to the original error. ' 

Potential mathematical singularities should also be checked to avoid errors 
such as division by zero, square root of a negative argument, or inverse trig
onometric functions of invalid arguments. These singularities may result from user 
input errors, invalid telemetry data, or spacecraft hardware noise. Most operating 
systems provide features' to intercept such errors, apply standard fixups, print 
warning messages. and/or terminate the program. However, these operating system 
features (such as the FORTRAN monitor) are generally inadequate for an interac-
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tive graphics system. Occurrences of mathematical singularities may require a 
standard corrective action; a count of the errors for later display, or an execution 
halt to inform the user of the error with an appropriate message. If standard 
corrective actions are applied indiscriminately, the program may generate 
meaningless results with no indication of the cause of the' problem. 

In addition to user input, ,Imission support softwa're generally obtains input 
from telemetry data files. ephemeris files. attitude history files, and other sources. 

I; Because these files are comp6ter generated. they are not normally as susceptible to 
errors as user input. However. the data in these files must still be checked for 

j validity. especially for errors which might result in'program termination. The most 
,; common errors are an ephemeris file which does not cover the time span of the 

data being processed; a file generated in the wrong format or out of time order due 
,: to human error or software errors in the generating program; the header record of 

a file which disagrees with the data on the file; I/O errors which lead to random 
.,' bit changes on the file; and files containing no data records. 

If, in spite of error checks. a program abnormally terminates, or abends, then 
as a last resort the graphics executive should intercept the abend and allow a rapid 
recovery or restart of the program. Intercepting anabend is not, as satisfactory as 
detecting an error within the program, because diagnosis of the abend may be more 
difficult; however, it does permit recovery from errors detected within operating 
system routines in cases in which prior error detection by the user would be __ ' 
inconvenient or the potential for error was unforeseen. 

Flexibility. ,Mission support software should provide enough flexibility to 
handle contingencies such as spacecraft hardware malfunction, telemetry errors, or 
mission timeline changes. It is generally not possible to foresee all contingencies, 
nor is it feasible to provide special capabilities for every contingencY,which can be 
foreseen. However, if the software is sufficiently flexible, it is often possible to 
improvise a technique for handling a contingency simply by altering the available 
program options. For this reason. all program parameters should be variables 
which can be changed via interactive graphics: parameters such as tolerances and 
calibration constants should not be hard-coded within the program. Data set 
specifications should be flexible to permit processing multiple data sets or switch
ing between data sets without terminating the program to change job control 
language. Processing flow within the program should be flexible and should be 
controlled by user input parameters. The program should optionally provide 
displays of all input, output, and intermediate results in a variety of formats (plots, 
tables, summaries); these formats should be designed to allow for the display of 
nonnominal as well as nominal data. A variety of options should be provided for 
editing telemetry data based on criteria such as maximum and minimum 
tolerances, residual tests, and consistency checks. As a last resort. the program 
should allow the operator to manually flag individual data items or override or 
modify any or all of the telemetry data items. 

Ease of Operation. Ease of operation is more than just a' convenience in 
mission support software; a system with the degree of flexibility described above 
will normally have hundreds of user input parameters and can easily become so 
complex as to tax the skiJI of any user. Operator interaction must be minimized. 
both to reduce the chance of human error and to minimize delays in near-real-time 



684 SOFTWARE SYSTEM DEVELOPMENT 20,1 

operation. To minimize the need for user input, typical default values should be 
provided for all input parameters, for example, via FORTRAN BLOCK DATA 
subprograms. Those parameters which must be changed from their default values 
and which are known a few hours or days in advance (such as orbit parameters or 
calibration constants) can be specified on input cards which are read when the 
program is initialized (e.g .• NAMELIST card input). The user then will change 
only those parameters which differ from their expected values. Once the user 
changes a parameter. the new value should be used by the program until the user 
changes it again. 

All displays should be clear and self-explanatory to a trained user; there 
should be no need for the experienced user to consult a user's guide for definitions 
of input parameters or error codes. The most frequently altered input options 
should be grouped together at the beginning of displays, so that the user can skip 
rarely used options. AlI input and output should be in the units and format which 
are most convenient for the user; for example, if times are to be expressed in 
calendar format for purposes of communicating with the control center, then the 
program should make the necessary conversions. There should be no need for the 
operator to do hand calculations or consult tables because the error rate for such 
operations is unacceptably high. Output displays should be designed to communi
cate information as rapidly as possible. A plot display can often be interpreted by 
the user many times faster than a tabular display, but only if proper attention is 
given to automatic scaling and exclusion of spurious points. 

Reliability. A softwafe system is said to be reliable if it meets its specifica
tions (i.e .• obtains correct results) for all possible sets of input data. The error
~hecking features discussed above are considered part of the specifications; thus, a 
reliable program must generate appropriate error messages for invalid input data. 

Reliability begins with program design. The design should be simple, straight
forward, and modular. If, after a detailed study, it appears that there does not exist 
any simple design which can meet the specifications (including execution time and 
core requirements). then it is advisable to consider relaxing the specifications rather 
than proceeding with the development of a system which may never achieve the 
required reliability. 

Following detailed design, the program should. be coded in a higher level 
language with features designed to minimize or eliminate bookkeeping-type errors,' 
thereby allowing the programmer to concentrate on program logic. Some useful 
langllage features include the ability to define COMMON blocks in a single 
library. the ·ability to check calling sequences in the called routine against those in 
the caHing routine, structured programming constructs to eliminate GO TO state~ 
ments, tests for variables which are never initialized, simplified vector and matrix 
operations. and automatic enforcement of programming standards. Most versions .. 
of FORTRAN lack these features; however, precompilers can be used to add these: .i 

features to FORTRAN or other programming languages. A structured FORTRAN, ~': .. 
precompiler providing many of these features is described by Chu [1977]. . 

Enforcement of good programming standards can eliminate many cOffi:1l1on 
errors. The standards used will necessarily depend on the application, program~' . 
ming language, and computing environment. One such set of FORTRAN program.,."> 
ming standards has been described by Berg and Shear [1976]. 
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Table 2()'1. Methods for Avoiding Common Software Errors 

ERROR METHOOS FOR AI/OIDING 

INT~:~~~i~g:PNR:XPfiCTED UNITS OR CooRDI. USE ONE CONSISTENT SET OF UNITS AND COOR· 
NATE SYSTEM IDEGJRAD; KMiEARTH RADlII DINATES FOR ALL MODULE.TO-MODULE INTER· 
AU. TIME IN SECONDS FROM REFERENCE/ FACES. PERFORM CONVERSIONS WITHIN EACH 
JULIAN DATEICALENDAR TIMEIDAY OF YEAR; MODULE AS NECESSARY 
COORDINATES IN MEAN OF 1950.0ITRUE OF 
DA TE, GEOCENTRIC/SFACECRAFT -CENTERED. USE ONE CONSISTENT SET OF UNITS FOR USER· 
ETC I TO· PROGRAM INTERFACE. IF CONVERSIONS ARE 

REOUIRED. DO THE CONVERSIONS AT THE POINT 
OF 110 

E.G •• SUGGESTED TIME SYSTEM' USE SECONDS 
FROM A FIXED REFERENCE FOR ALL MODULE 
TO-MOOULE INTERFACES ICOMMON TIME 
REFERENCES ARE GIVEN IN SECTION 1.41. FOR 
INPUT/OUTPUT. USE CALENDAR TIME FORMAT. 
AND PERFORM THE CONVERSION AT THE 
POINT WHERE 110 IS PERFORMED 

VARIABLE TYPES DO NOT MATCH ISINGLE USE FORTRAN FIRST ·LETTER CONVENTIONS FOR 
PRECISION/DOUBLE PRECISION. REAL/INTE· VARIABLE NAMES. IF DOUBLE PRECISION IS'RE· 
GER/LOGICALf; FORGOT TO DECLARE VARI· QUIRED. USE IT THROUGHOUT THE MODULE. 
ABLE TVPE EXCEPTION; LARGE ARRAYS CAN BE EXPLICITLY 

DECLARED SINGLE PRECISION TO SAVE CORE, 
SINCE A DECLARATION IS REQUIRED FOR ARRAYS 
IN ANY CASE 

COMMON STATEMENTS DISAGREE USE A PRECOMPILER TO COPY COMMON STATE· 
MENTS FROM A SINGLE LIBRARY. INOTE THAT 
THIS ALSO IMPLIES THAT THE SAME NAME WILL 
BE USED FOR THE SAME PARAMETER IN EACH 
MODULE I 

MINIMIZE USE OF COMMON STATEMENTS BV 
USING CALLING SEQUENCES TO RESTRICT AND 
DEFINE MODULE INTERFACES 

CHANGED THE VALUE OF AN INPUT PARAME· DO NOT USE THE SAME VARIABLE FOR BOTH 
TER, THEREBV LEADING TO ERRORS ON SUB· INPUT AND QUTPUT TO A MODULE; ..... DO NOT 
SEOUE NT CALLS CHANGE INPUT PARAMETERS 

LOGICAL ERROR; 
FAILURE OF SPECIAL CASES' USE X, Y,Z COORDINATES FOR ALL CALCULA· 
COORDINATE SINGULARITIES ISPHERICAl noNS (SEE SECTION 2.21 
COORDINATES AT .9(]0 DECLINATION; DIS 

~~~~~E~ ~~~~.,,~':,~~~~ ~~; .. "0 CONTINUITY AT O/J600 RIGHT ASCENSION' 

ADJUST RIGHT ASCENSIONS TO LIE WLTHIN 180° 
OF A SPECIFIED NOMINAL VALUE OR FORCE 
~~J;i~T~g~~GLE RESIDUALS TO THE RANGE 

INSUFFICIENT COMPUTATIONAL PRECISION USE STANDARD VECTORIMATRIX UTILITIES 
NEAR MATHEMATICAL SINGULARITIES. WHICH HANDLE SINGULARITIES PROPERLY 
IMA TR I X INVERSION, INVERSE TR IGONOME· ISEE SECTION 20.31 
TAlC F UNCTIONS, ETC.' 

TIME CONVERSION ERRORS FOR LEAP YEARS, USE STANDARD UTILITY ROUTINES FOR CALEN· 
CROSSOVER AT END OF YEAR, CROSSOVER AT DAR TIME CONVERSION WHICH HANDLE ALL 
END OF DAY. ETC. SPECIAL CASES (SEE SECTION 20.31. USE TIME 

IN SECONDS FROM A FIXED REFERENCE FOR 
ALL INTERNAL CALCULATIONS ISEE SECTION 
1.41 

!NS~r~3~EENU~:S~RF%':tE~~~ CONDITIONS; PROVIDE AN ERROR RETURN CODE FROM ALL 
DETECTED AN ERROR CONDITION AND RE· MODULES IN WHICH AN ERROR MIGHT BE DE· 
TURNED WITHOUT SETTING ALL ExPECTE 0 TECTED. CHECK THE ERROR CODE ON RETURN 
OUTPUTS AND TAKE AN APPROPRIATE ACTION (SUCH AS 

SETTING THE ERROR CODE FOR THE NEXT HIGHER 
LEVEL MODULE AND RETlJRNINGI.IF .PARTIAL 
OUTPUT MAY BE OBTAINED FOR SOME ERROR 
CONDITIONS, SET ALL OUTPUTS TO A DEFAULT 
VALUE BEFORE BEGINNING PROCESSING IN THE 
MODULE 

INS~~~~C~l~1~~X~BdW1LL PRINTOUT PROVIDE USER INPUT PARAMETERS TO CONTROL 
UNABLE TO CHANGE TOLERANCES THESE OPTIONS 
UNABLE TO CHANGE FORTRAN UNIT NUM, 
BERS FOR 110 

DOCUMENT ATION: 
INCOMPLETE OR MISLEADING SPECIFY UNITS, COOADINATE SYSTEMS. TIME 

SYSTEMS, VARIABLE TYPES. DIMENSIONS 

LIST MODULE RESTRICTIONS, ASSUMPTIONS. 
DESCRIPTIONS OF RETURN COOES, AND DEFINI 
TIONS OF FLAGS 



686 SOFrw ARE SYSTEM DEVELOPMENT 20.2 

Quality assurance of coding is the next step toward reliable software. All 
coding should be reviewed by someone other than the original author. This review 
serves to enforce programming standards, detect coding errors, and reduce inter
face problems between systems which are being developed independently. 

The final step in the development of reliable software is extensive testing by an 
independent testing group, using realistic simulated data. Test cases should be 
selected to exercise all program options and to genera~e results which can be 
independen~y verified; this should include testing for proper handling of error 
conditions. Testing of filtering algorithms is described in detail in Section 14.1. 
Myers (1975] and Dahl, et al., [1972] suggest additional techniques for the devel
opment of reliable software. Table 20-1 lists some of the more common causes of 
software errors encountered in mission support programs, along with suggested 
methods for avoiding or minimizing these errors. The table is based primarily on 
experience with FORTRAN scientific applications programs. 

Finally, standardization of software can significantly improve reliability and 
reduce software development costs. Using standard interfaces between modules 
and standard units (such as the fundamental SI units) for variables reduces 
program complexity and facilitates reuse of the module. In general, the reliability 
of a module tends to increase with time, as errors are detected and corrected; 
however, this is true only if th~ original specifications for the module remain fixed.' 
Thus, if a library of standard multimission utility routines is developed and ". < 

maintenance of the library is carefully controlled, these utilities can achieve a very . 
high reliability. Specific utility routines appropriate for attitude systems are c:fis
cussed in Section 20.3. 

20.2 Use of Graphic Support Systems 

Department Staff 

In standard usage, graphic implies a pictorial representation. The terms con
versational and interactive are used interchangeably to define a mode of processing 
which involves an exchange of information and control between a user at a 
terminal and a computer. In this section, we will use the term graphiC todescribt .' 
conversational processing with a cathode ray tube as th~ user's terminal. 

Attitude support software systems operate in both the graphic mode and the 
batch, or nongraphic, mode. Some systems are designed to operate strictly non
graphically, some are designed to operate only with the direction of an operator at 
a display terminal, and some are designed to operate in either mode. Eac~ 
processing technique provides some operational benefit. 

Batch processing provides no means for interaction. Intermediate results may 
not be viewed and conu:ol parameters may not be modified during processing .. ' 
Systems designed to operate solely in the batch mode use automated tecbnllqu,es,.·· 
such as multiple sets of input parameters, for proc,o;sing several segments of 
one job. In addition. batch systems are often programmed with logical swi.tcbesi' 
which determine the level of output 'and the options to be employed. Because u ... ·¥-.··".· 

processing systems operate without the intervention and guidance of an n~ .. r .. tnr.'" 

they normally require less core residence time than do graphic systems. 
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approach minimizes the use of resources and susceptibility to human errOT. How
ever, the inability to dynamically modify control parameters after viewing inter
mediate results and to redirect program flow is a disadvantage for any system 
which is required to process data acquired under a wide variety of circumstances. 

Graphic processing allows for modification of parameters and data and for 
redirection of processing by a display operator. This flexibility can be invaluable if 
the right parameters are available for modification. That is, the designer of a 
graphic system must make available to the display operator those items which may 
require modification. Because these parameters may be difficult to. identify in 
advance, most systems display more parameters than are normally modified in 
practice. 

In addition to flexibility, graphic processing techniques free the system de
signer from providing algorithms for all contingencies because the choice of 
processing options can be left to the judgment of the display operator. Although 
the flexibility provided by graphic processing appears to nlake this technique far 
superior to a strictly batch system, graphic processing is costly. A knowledgeable 
display operator must be present to operate the system, a graphic device must be 
allocated, and the core residence time of the system is increased because of the 
long idle periods while the program is awaiting operator action at a display. 

The best approach to attitude software design is a system which can be 
executed in either mode. Such a system provides the flexibility required for 
nonnominal conditions but does not use the resources required by a graphic system 
when data conditions are nominal. The system's designer can provide both auto
matic recycling and contingency procedures for nongraphic. runs and display 
parameters, data, and flow control switches for modification when a display device 
is available. 

Early attitude support systems at NASA's Goddard Space Flight Center used 
the general-purpose Graphic Subroutine. Package (GSP) to perform graphic func
tions [IBM, 1972). This package supports the construction of display images and 
allows operator intervention. However, a knowledge of the package and a limited 
knowledge of the device are required to develop the graphic interface. Adding a 
new display image to the system generally entails developing and testing a new 
subroutine. 

An alternative to generalized packages such as GSP is a graphic supportsystem 
which provides fewer capabilities but is easier to use. A graphic support system 
offers the advantages of standard display formats and operating procedures, simple 
display creation, and usability without knowledge of a graphic device. The use of 
standard display formats means that display images can be considerably more 
sophistica ted than would be. possible with a generalized package, given the same 
amount of development time. The graphic support system permits the analyst to 
use many techniques previously available only to a few experts. In addition, an 
operator or analyst working with several systems can understand and use a new 
display even though he may be completely unfamiliar with the particular aititude 
system being used. This aspect is particularly important for bringing past .ex
perience to bear on current problems. 

The features which make a graphic support system beneficial also tend to 
reduce operating efficiency. Because of the limited capabilities, which make it easy 
to use, the support system may not be adaptable t~ special-purpose requirements. 
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Similarly, the internal code of the support system cannot be written as efficiently as 
a mission-specific system because of its need to maintain generality within the 
limited capabilities provided. Ideally. a graphic support system provides all ne
cessary graphic services without the complex protocol required by a generalized 
package. 

The Graphic Executive Support System. An example of a graphic support 
system is the Graphic Executive Support System, GESS, which has been used in 
various forms for attitude support at Goddard Space Flight Center since 1972 
(Hoover, et al., 1975). GESS provides execution sequence control. data manage
ment, error recovery. and graphic services. Execution sequence control allows the 
display operator to transfer control to alternative subroutines ·at given points in the 
processing now, to move backward or forward in the program, or'to skip entire 
subsystems. Data management includes such functions·· as data compression to 
delete bad data elements. scrolling to add recent data to an. array and to discard 
old data. and graphic data entry under operator control. Error recovery allows a 
job to continue processing after an abnormal termination condition has been 
detected by the operating system. Graphic capabilities are the most commonly used 
features of GESS and consist of plot, tabular, and message displays. 

A GESS plot display contains up to six functions plotted on a rectangular 
coordinate system and graphically displayed. A typical GESS plot is illustrated in 
Fig. 20-1. Each function may be plotted as discrete points, connected points. or 
characters. The functions to be plotted and the method for. plotting each function 

Fig. 2()'1. 
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are described in a plot display table which allows the programmer to create 
complex, multipurpose plots with only a few lines of code. For example. the 
complete code used to define the display image illustrated in Fig. 20-1 is as follows: 

RTANGT DISPLOT 'PREDICTED Aim OBSERVED ROTATION AI~GLES VS. TIME' 
'TIME IN MINUTES FROM START TIME','ROTATION ANGLE (DEG)', 
«TIM1,-999999.),(TIM2,-999999.)), 
«Zl"-999999.",l),(Z2,,-999999.,,,l), 
(Z3"-999999.",l),(A1,POINT,-999999.,,,,2), 
(A2,POINT,-999999.",,2)? 

Here, five functions are plotted: arrays Zl, Z2, and Z3 (as connected lines) versus 
TIMI and Al and A2 (as sets of discrete points) versus TIM2. "-999999" is a flag 
which identifies points which are not to be plotted. 

The actual data included in the functions may vary from run to run. Once the 
plot has been displayed, the display operator may modify the appearance of the 
plot or change the value of any plotted data element. The plot modifications are 
made available to the display operator through the option menu to the right of the 
plot (IDENT, EXPAND, REMOVE, FETCH, etc.) These options include iden
tification of plotted functions, expansion of a selected area of the plot, removal of 
functions, data flagging, and retrieval of numeric values. 

A GESS tabular display consists of control parameters displayed next-- to 
descriptive text or data arrays' displayed in columns with descriptive headings. The 
descriptive text and headings, the formats for displaying the data, and the location 
of the data are described in a tabular display table similar to that used for plots. 
The table entri~ for control parameters may contain criteria against which the 
parameter is to be validated. For example. a parameter may be required to lie 
within a certain range or to match one of a list of values equated to words. In the 
latter case, the word is substituted for the value in the display image and the 
operator changes the value by entering a different word (e.g., "USE 08-
LATENESS MODEL (YES, NO) .YES" for which the operator may leave the 
"YES" response unchanged or replace "YES" with "NO," thus changing the 
control option). Displayed data which do not conform to the validation criteria 
must be corrected by the display operator before processing can proceed. 

A GESS message display consists of as many as 814 characters of text and is 
normally used to inform the display operator of conditions detected by the 
program, such as the processing status, errors encountered, or the starting time of a 
data block. The text of a message is defined through a subroutine calling sequence 
instead of a table. 

All displays may be printed by the display operator on a line printer or a 
CalComp plotter (Fig. 20-1). All displays may also be presented strictly for 
information and require no modification or action by the display operator. Dis
plays presented in this mode do not cause the system to wait for operator response. 

G ESS facilitates the incorporation of graphic. capabilities into an attitude 
support software system and provides graphic support on any or several disRlay 
devices. The operational and flow control restrictions have not made GESS 
unacceptable ror any existing attitude support system, but the very ease of display 
creation which has made the system $uccessrul has also caused some attitude 
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support systems to be designed for strictly graphic processing. Any graphic support 
system can be more effectively and efficiently used· as the graphic vehicle for a 
system which requires graphic capability on option but which is capable of 
operating without it. 

.20.3 Utility Subroutines 

Myron A. Shear 

This section briefly describes several utility routines used frequently in attitude 
calculations. The source code for each routine described here, including internal 
documentation explaining input and output parameters, is available from 

COSMIC 
Barrow Hall 
University of Georgia 
Athens, GA 30601 

by asking for Program Number GSC 11421, Attitude Determination and Control 
Utilities. The routines are divided into four categories: vector and matrix algebra, 
time conversion, ephemeris calculations, and plotting. As discussed in Section 2.2, 
most of the computer routines use vector components in rectangular coordinate 
systems; however, conversion routines between spherical and rectangular 
coordinates are provided. 

Single- and double-precision versions of the same routine are not provided. 
For this and other reasons, some users may find it advisable to modify the standard 
routines provided. However, before developing another routine to perform any of 
these functions, the reader should understand the routines as they exist, '.lecause 
they have been extensively tested and are designed to provide a combination of 
accuracy, reliability, compactness, and speed. 

The routines described here are written in FORTRAN IV-H for the IBM 
System 360. The basic algorithms should be easily implemented for any other 
compiler or machine, with the possible exception of the printer plot routine, which 
depends on character manipulation features, and the sphencal grid plotting rou
tine, which requires the use of a CaIComp plotting package. 

20.3.1 Vector and Matrix Algebra Routines 

Routine 

Vector Routines 

Function 

UNVEC 

RADECM 

VEC 

ANGLED 

Unitizes a vector and computes its magnitude. 

Computes the right ascension and declination in degrees of a vector 
and the magnitude of the vector. 

Converts right ascension and declination in degrees to the three 
components of a unit vector. 

Computes the angle in degrees between two unit vectors. For 
vectors which are nearly parallel, the cross product is used for 
greater accuracy. 
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Routine 

PHASED 

CROSSP 

VPHASE 

FIDIt:tion 

Computes the rotation angle, ." in degrees defined by three unit 
vectors as shown in Fig. 20-2. 

Computes a vector cross producL 

Computes the unit vector defined by a given arc length.! fJ, alld 
rotation angle, ." with respect to two known unit vectors, A and B, 
as shown in Fig. 20-2. 

Fig. Fig. 20-2. Given A, B. B. and ~, Subroutine VPHAZE Computes C. Given A, B, C, Subroutine 
PHASED Computes ~. 

CONES8 Computes the two unit vectors defined by the intersections of two 
cones, where each cone is defined by a unit vector and a half-c:one 
angle. 

Matrix Algebra Routines 

MA TMPY Multiplies two matrices of arbitrary dimensions. 

INVERT Inverts a matrix and/or solves a set of linear equations, using the 
Gauss-Jordan method with optimal pivoting. 

Least-Squares Routines 

POL YFT Performs a least-squares polynomial fit to a set of data P,Oints. 
Execution is substantially faster than many common techniques. 

DC Given a user-supplied function and a set of data points, Dc 
performs a standard differential correction to obtain a least-squares 
fit for a state vector of from I to 20 parameters. Requires a 
user-supplied· routine to compute derivatives and predicted obser
vations. 
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Routine 

RECUR 
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Function 

Given a user-supplied function. RECUR pcrfcrms a standard re
cursive estimation to process a single observation and update the 
estimate of a state vector to provide a least-squares fit to a set of 
observations. 

Integration of Differential Equations 

RUNGE General Runge-Kutta integrator. to be 'Used with a user-supplied 
.routine for computing derivatives. 

20.3.2 TIme-Conversion Routines 

Routine 

JD 

DATE 

TCON40 

TCON20 

Function 

Converts year. month. and day to Julian date. using the algorithm 
of Fliegel and Van Flandern (1968). 

Convens Julian date to year. month. and day. JD and DATE 
together provide the basis for all calendar time conversions. 

Converts time in the format YYMMDD.HHMMSS to seconds 
from 0 hours UT. September I. 1957. 

Converts time in seconds from 0 hours UT. September I. 1957. to 
the form: YYMMDD.HHMMSS. TCON20 and TCON40 together 
provide examples of how any general time conversion can be 
performed easily using JD and DATE. 

20.3.3 Ephemeris Routines 

Routine Function 

Analytic Ephemeris Utilities 

ELEM Converts position. velocity. and gravitational constant of the 
central body into classical Keplerian· elements. Handles hyperbolic. 
parabolic. circular. or elliptical orbits. 

0RBGEN Two-body orbit generator that computes position and velocity 
given Keplerian elements. time from epoch. and gravitational con

...:,stant of the central body. Useful for Earth or Moon orbits. 

RAGREN Computes the right ascension of the Greenwich meridian (=si
dereal time at Greenwich. see Appendix J) in degrees. Uses a 
first-order method accurate to 0.01 deg for times from 1900 to 2100 
A.D. 

EQUIN Rotates coordinates from mean equator and equinox of time I to 
mean equator and equinox of time 2. using a first-order method 
accurate to 0.01 deg for time periods of 50 years or less. 
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Routine 

MAGFLD 

SUNIX 

SMPOS 

PLANET 

". 
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FIIIICtitm 

Set of routines that compute the Earth's magnetic field vector at 
any desired time and position according to the International 
Geomagnetic Reference Field described in Appendix H. 

Computes the position of the Sun using a rapid analytical technique 
accurate to 0.012-deg arc length over the period 1971 to 1981. (The 
epoch date of the parameters is 1900; thus we anticipate that the 
accuracy should remain close to this limit for times beyond 1981.) 

Computes positions of the Sun and the Moon using an analytic 
technique which includes 21 perturbation terms for the Moon and 2 
perturbation terms for the Sun. It is accurate to within 0.25-deg arc 
length for the Moon and 0.0l2-deg arc length for the Sun over the 
period .1971 to 1981. (The epoch date of the parameters is 1900; 
thus we anticipate that the accuracy should remain close to these 
limits for times beyond 1981.) 

Computes positions of all nine planets using a two-body helio
centric orbit generator. Accurate to O.02-deg arc length for times 
within ± 2 years of the epoch. Elements and epoch time may be 
updated-periodically using values from the American Ephemeris and 
Nautical Almanac. .- . 

Ephemeris UtUiti~ WhIch Read Data Sets 

EPHEMX General ephemeris routine for the Sun, the Moon, and spacecraft. 

GETHDR, 
GETV, 
DELTIM, 
HEMITR, 
INTP 

ROITAP, 
ROUND 

SUNRD 

RJPLT 

Uses any combination of the routines GETHDR, ORBGEN, 
RJPLT;'ROITAP, SUNRD and SUNIX. May be used for Earth
or Moon-orbiting space<;raft. 

Set of routines to read a standard Goddard Trajectory Determina
tion System orbit file. (See Section 5.4 for contents of the file.) 

Set of routines to read a standard Goddard Trajectory Determina
tion System ephemeris tape. (See Section 5.4 for contents of the 
tape.) 

Routine to obtain positions of the Sun, the Moon, and the first 
seven planets from a direct acc~ file (SLP file, Section 5.5) 
containing polynomial coefficients derived from the standard Jet 
Propulsion Laboratory planetary ephemeris tape. The routine's 
accuracy is comparable to that of the Jet Propulsion Laboratory 
tape. (See Section 5.?) 

Routine to read a standard Jet Propulsion Laboratory planetary 
ephemeris tape to obtain positions of the Sun and the Moon. (See 
Section 5.5.) . 
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20.3.4 PloUing Routines 

Routine 

GRAPH. 
SCALE 

Function 

General printer plot package. Generates a Cartesian plot of any set 
of data on a line printer. with scaling performed automatically. Plot 
covers up to 80 lines. with up to 132 characters per line. A sample 
plot is shown in Fig. 20-3. 
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SPHGRD,· 
SPHPLT 

Fig. 2()'3. Sample Plot Generated by Subroutine GRAPH 

Spherical grid CaIComp plotting routines which generate a pers
pective drawing of the celestial sphere as seen from any orientation 
and plot user-specified lines, points, or other characters on the 
sphere. A sample plot is shown in Fig. 20-4. 
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CHAPTER 21 

SOFTWARE SYSTEM STRUCTURE 

21.1 Genc:ral Structure for Attitude Software Systems 
21.2 Communications Technology Satellite Attitude Support 

System 
21.3 Star Sensor Attitude Determination Systems 

Compo1U!nlS of a Star Sensor Attitude Determination S,s
tem, Construction of Batch and Sequenlilll Attitude S,s
tems 

21.4 Attitude Data Simulators 

This chapter describes the overall structure of attitude support systems as they 
have been used for mission support in the Attitude Determination and Control 
Section at NASA's Goddard Space Flight Center. Section 21.1 gives the general 
framework that has proved useful in mission support. Sections 21.2 and 21.3 
illustrate how this was implemented in attitude software for particular mission 
types. Section 21.4 briefly describes the function and operation of attitude data 
simulators. 

21.1 General Structure for Attitude Software Systems 

Myron A. Shear' 

The requirements for attitude support software systems vary considerably 
from mission to mission, depending on spacecraft and ground support hardware, 
data volume, telemetry format, and the mission.timeline. However, certain features: 
are common to most attitude support systems, and there is a general software·' 
structure which has proved useful for a variety of missions. This section describes 
that general structure and discusses the tradeoffs to be considered when modifying 
this general structure for special mission requirements. 

The basic software requirement for most missions is to take spacecraft,-'~: 
telemetered data and perform ground processing to determine the attitude. Th~ 
attitude results may then be used to compute control commands which are.~ 
transmitted to the spacecraft. The computation of control commands is typicallY, 
though not necessarily, done with a separate software system. As discussed in the: 
introduction to Section 20.1, attitude determination requirements may be either 
real time, near-real time, or definitive, depending on the time constraints. For";' 
tunately, the same software system can often be used to satisfy all three require- . 
ments if appropriate options are provided to handle each mode of operation. '. 

Figure 21-1 shows th.e general structure for a typical attitude support system,; 
used in the Attitude Determination and Control Section at Goddard Space Flight 
Center. This system consists of several processing subsystems, operating under the:; , . 
control of a driver and utilizing a graphics package' (see Section 20.2) to . 
interactive graphics capabilities for all subsystems. 

The telemetry processor subsystem reads the raw telemetry data set, 
frames of data from the telemetry stream, and converts data from hm,Rr.f-C()OeUi . .i 
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SPACECRAfT 
SUN 

"""'" PUN'" STAAS 
MAGNI!TIC fIELD, ETC. 

O_A 
CAPABILITIES 

MANEUVER MONITORING 
DATA PR1:0ICTlON 
LOGGING 
ARCHIVING 
COMPUTING COMMANDS, ETC. 

Fig. 21-1. General Structure for an Attitude Software System. Arrows indicate direction of data flow. 

values to engineering units. (Chapter 8 contains a detailed discussion of data 
transmission and manipulation up to and including the telemetry processor.) The 
data preparation subsystem performs data selection, editing,'smoothing, calibration, 
and adjustment, with or without operator interactive control (see Chapter 9). Here, 
the data can be displayed in tabular or graphical form so the operator may 
examine it for anomalies. By this point in the processing, absolute times should 
have been attached to data items so that ephemeris data can be obtained. The 
required ephemerides may include the spacecraft, the Sun, the Moon, planets, stars, 
and the Eflrth's magnetic field, depending' on the sensor hardware used. 

The deterministic attitude subsystem is normally used next to obtain a rough 
attitude for control purposes or an initial attitude estimate for the state estimation 
subsystem. Deterministic methods. discussed in detail in Chapters 11 and 12, are 
advantageous because they can be used in the absence of an a priori attitude and in 
the presence of a substantial amount of spurious data. However, deterministic 
methods are generally limited to solving for not more than two or three parameters. 
Thus, sensor bias determination and calibration cannot' be done in the de
terministic subsystem, and the presence of these systematic errors will generally 
limit the accuracy of the deterministic solution. However, deterministic processing 
may still use a significant amount of computer time. For example, horizon sensor 
data may require iterative techniques to resolve attitude and·central bodyambigui
ties and to reject spurious data and terminator crossings. Similarly. star sensor data 
may require complex star identification procedures. 

In contrast to the deterministic subsystem. the state estimation subsystem will 
,generally assume that an accurate a priori attitude is availabJe and that spurious 
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data points have been rejected. Therefore, this subsystem can use least-squares 
state estimation techniques (described in Chapters 13 and 14), such as Kalman 
filtering, recursive estimation, or differential correction, to solve for a state vector 
with perhaps.a dozen or more parameters, including the attitude, sensor biases, and 
attitude dynamics. The sensor biases determined in this subsystem may sub
sequently be used by the deterministic subsystem to improve the accuracy of the 
deterministic results for subsequent . data passes. 

Not all missions require both a deterministic and a state estimation subsystem; 
if an accurate a priori attitude is available, for example, from an onboard control 
system, then it may he possible to eliminate the deterministic subsystem. However, 
some form of attitude initialization may still be required to determine an a priori 
attitude immediately after launch. Conversely, if the attitude accuracy require
ments do not necessitate bias determination (or if the spacecraft dynamics or 
mission timeline do not permit bias determination), the state estimation subsystem 
may be eliminated. -

The ··other capabilities" of Fig. 21-1 will depend on mission characteristics 
and may include routines to monitor maneuvers in realtime, predict the availabil
ity of future data passes, compute control commands, or perform solution logging 
and data archiving functions. These capabilities may be provided in separate 
software systems or designed as subsystems invoked from the driver. The tradeoff 
here involves speed and ease of operation versus programming complexity and ease 
of maintenance. Separate utility programs are generally easier to develop and 
maintain because interfaces are minimized. If a separate graphics device and other 
computer resources are available, then the utility program can be executed concur
rently with the main attitude system. However, if the main attitude system must be 
terminated to provide resources for the utility, then the extra time involved in 
terminating and reinitializing the attitude system must be considered, especially for 
near-real-time applications. 

The general structure described above has been used successfully on many 
missions including CTS, GOES, SIRIO, RAE, IMP, SMS, ISEE, and IUE. The 
success of this structure is due primarily to its modularity and flexibility. A 
modular structure implies that each subsystem has a minimum number of inter
faces with each other subsystem. This results in ease of development and 
maintenance, because subsystems can be developed concurrently and almost inde
pendently. When modifying the system for future missions, it may be possible to 
replace only the telemetry processor subsystem and support a spacecraft with a 
totally different telemetry format but similar sensor hardware. System flexibility 
results from the fact that subsystems can be invoked in almost any sequence, under 
operator control. For example, attitude processing can be repeated on the same 
data using different processing options without repeating telemetry processing, data 
preparation, and ephemeris accessing. Similarly, state estimation can be (and 
usually is) repeated. many .times, solving for a different set of parameters or 
changing the filtering options, without repeating the deterministic attitude process
ing. Thus, the system minimizes execution time for the most frequently repeated .' 
functions. 

The modular system also lends itself to a simple overlay structure, allowing 
each subsystem to share the same core siorage. The system provides interactive· ,.' : . 
graphics control at each step in the processing; we have found this to be' 



21.1 GENERAL STRUCTURE FOR ATTITUDE SOFTWARE SYSTEMS 699 

in attitude support systems to handle the unpredictable problems that occur in real 
data, requiring operator intervention to select and edit the data and ensure the 
quality of the attitude results. 

There are several ways in which this general structure can be modified to 
handle special requirements. The structure in Fig. 21-1 assumes that all the 
subsystems are part of the same program and that core storage interfaces are used 
for communication between subsystems. This arrangement is used for crs, as 
described in Section 21.2. However, one or more of the subsystems could be 
implemented as separate programs and one or more of the subsystem interfaces 
could be implemented via' data sets. The tradeorrs here are among program 
complexity, computer resources, and operational timeline requirements. For ex
ample, the telemetry processor could be split off as a separate program which could 
then operate on a minicomputer. This would have the advantage of freeing 
resources on the primary computer; however, it would have the disadvantage of 
reducing the flexibility and ease of operation of the attitude system. If the telemetry 
processor incorrectly constructed frames from the telemetry stream, there is no way 
the attitude system could correct this error in the processed telemetry, and it would 
be necessary to reexecute the telemetry processor with different processing options. 
This could require a human interface between the primary computer and the 
minicomputer, which, for real-time operation, might prove impractical. Similarly, a 
hardware failure oI,l the minicomputer would be just as serious as a failure of the 
primary computer, increasing the risk of computer failure for real-time and 
near-real-time requirements. 

As another example. the state estimation subsystem could be a separate 
program, interfacing with the remainder of the attitude system via a data set 
containing preprocessed telemetry. This arrangement is anticipated for MAGSAT 

. processing. In this case, the state estimation system could be run on another 
computer to distribute the computing load and allow the real-time requirements of 
the deterministic attitude system to proceed conciJrrently. The major advantages of 
a separate program are ease of maintenance and simplification of the interfaces; 
the major disadvantages are the increased operational difficulty involved in creat
ing and maintaining the interface data set, the time delay involved in an extra 
processing step, and the reduced flexibility which results from not being able to 
reaccess the original telemetry data from the state estimation system. 

Data set interfaces between subsystems can be used even if the subsystems are 
combined in a single program. A data set interface requires .additional I/O 
processing time; there is not necessarily any reduction in core storage because 
generally at some point a block of data for processing must still be held in core. 
However, a data set interface reduces the possible interaction between subsystems 
and thus reduces interface problems. If the observations can be processed singly in 
the attitude determination subsystems. a data set interface can reduce core re
quirements. In this case, a data set interface is probably more convenient than the 
alternative of cycling between the telemetry processor and the attitude system for 
each observation. Data set interfaces can also provide for a more rapid restart and 
reduce the need for reprocessing in the event of machine failure. 

The use of separate programs does not necessarily imply data set interfaces. 
Core storage interfaces can be used between separate programs, even operating on 
separate machines; however, the use of a core interface tends to increase the 
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interdependency of the programs, thus reducing the advantages normally assoc
iated with separate programs. For this reason, and because additional system 
software is required to interface/the programs via core storage, separate programs 
are normally interfaced via data sets. 

For real-time maneuver monitoring, special capabilities must be provided to 
minimize or eliminate the need for operator interaction. In real-time operation, the 
telemetry processor normally reads one or a small number of data samples, and the 
driver automatically invokes the data preparation and deterministic attitude sub
systems to process this small set of data. Then a special maneuver monitoring 
subsystem is invoked to generate displays showing the actual maneuver trajectory 
versus the expected or desired trajectory. Computed r~ults are also displayed to 
indicate whether the maneuver is within expected tolerances and to warn of any 
potential problems, such as violating Sun angle constraints or maneuvering outside 
antenna coverage. While these displays remain on the screen, program flow returns 
to the telemetry processor to read all the data which have been received since the 
previous call. to this subsystem. Typically, a complete cycle through these subsys
tems will take 10 sec or less, which is well within the real-time requirements for a 
system which operates with a .manual interface to the control center. If the 
real-time control requirements were much more severe than this, the manual 
interface would have to be eliminated and the control loop would have to be closed 
within the support computer (see Section 19.5.1). This would require much more 
sophisticated control monitoring software to make reliable' control decisions 
without operator assistance. Fortunately, most missions are designed to make this 
type of ground-based, closed-loop control unnecessary. 

21.2 Communications Technology SatelIite Attitude Support System 

Gyanendra K. Tandon 

As an example of the general structure discussed in Section 21.1, we describe 
how that structure was implemented for the Communications Technology Satellite 
(CTS) Attitude Support System. This system provided adequate computational 
support throughout the CTS mission, even when a balky latch valve in the control 
system caused substantial changes in the nominal timeline. During this emergency 
situation, the system provided all the information needed to define an alternate 
timeline in real time. 

The CTS Attitude Support System consists of two major programs: the CTS 
AU:tude Deiermination System, qSADS. and the CTS Maneuver Control Pro
gram, CTSMAN. In addition. the following utility programs were available for use: 
the CSMP / AMF Dyanmics Program (Section f7.4); simulators CTSSIM and 
ODAP (Section 21.4); the orbit geometry program OSAG {Shear. 1972]; and a set 
of standard programs for checking. archiving. and purging the data from the 
attitude data !ink. ADL. file (Section 8.1) and for checking the archived data. 

The basic system structure and data flow of the CTSADS system {Nelson. et 
al., 1975], are shown in Fig. 21-2. Graphic displays of control parameters and data 
are available throughout the system for controlling and monitoring program 
operation. Input to the sysrem includes control parameters via NAMELIST data 
sets or cards for each subsystem, although these are not shown in Fig. 21-2. 

'.j 
: 
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Fig. 21·2. CTS Attitude Determination System, CTSADS, Baseline Diagram. The card input option' 
for control parameters for each subsystem is not shown. 

CTSADS uses the Graphic Executive Support System, GESS, described in 
Section 20.2 for operation on an IBM 2250, or a Data Disc 6600 graphics display 
device. GESS provides execution sequence control, data management. error re
covery. and graphic services. The driver is the main control module of CTSADS, 
providing the interface between the GESS executive and each subsystem in 
CTSADS. It permits the operator to select any desired subsystem or to terminate 
the job. CTSADS can also be executed in a nongraphic mode for analytical 
purposes. 

The CTSADS program consists of seven major subsystems and an attitude 
status file subsystem (not shown in Fig. 21-2) used for writing the current 
spacecraft attitude to a direct-access disk file. The seven major subsystems are as 
follows: 

I. Telemetry Processor. This subsystem reads the raw telemetry data provided 
by the control center (see Section 8.1) on disk or tape and provides the attitude 
determination system with the spin rate and Sun and Earth sensor data. During 
attitude maneuvers it also provides the engine firing pulse counts to the control 
monitor subsystem. In addition. it can perform three levels of telemetry time 
checks (Section 8.3) and three types of data smoothing (Section 9.2). 

2. Data Adju.vter. The data adjuster selects a working set of the telemetry data 
and obtains the corresponding ephemeris information. In addition. it provides the 
operator with options for selecting a subset of the data. smoothing or adjusting 
data. overriding individual values. rejecting invalid data points. and selecting the 
ephemeris sources. The operator can examine the data both before and after 
adjustment. using a variety of character and plot displays. 

3. Deterministic Altitude. The deterministic attitude subsystem computes the 
attitude using any combination of seven deterministic methods; each method uses 
a closed-form analytical technique to compute one or more attitudes from a pair of 
observables (see Section 11.1). These single-frame attitude solutions are then 
averaged to resolve the ambiguous solutions and yield a best estimate of the 
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average attitude over a block of data. During the attitude maneuvers, the best 
estimate of the average attitude for each single frame of data is determined and is 
passed to the control monitor for maneuver monitoring. 

4. Bias Determination. The bias determination subsystem is used to determine 
attitude and sensor biases using either a least-squares differential correction or 
recursive estimation procedure. The program uses up to five observation models to 
solve for any subset of up to 20 state vector elements. Details of observation 
models and filtering techniques are described in Chapter 13. This subsystem and 
the differential correction subsystem provide two alternative programs for bias and 
attitude determination. 

5. Differential Correction. The differential correction subsystem provides an 
alternative approach to attitude and bias determination and serves as a backup to 
the bias determination subsystem. It first converts the raw data (Sun angles, spin 
rates, and Earth times) into arc lengths and/or rotation angles. Based on these 
angles, the subsystem uses a least-squares state estimation algorithm (see Sections 
13.4 and 13.5) to solve for a state vector which includes separate biases in each type 
of arc-length or rotation angle measurement or to solve for polynomial coefficients 
for right ascension and declination as functions of time, up to first order. The 
biases here are numerically convenient parameters in contrast to the physically 
motivated parameters of the bias determination subsystem. 

6. Predicted-Versus-Observed Plots. This subsystem provides the operator with 
a visual display of the observed Earth sensor data compared with the Earth sensor 
data predicted using any specified set of attitude and bias parameters. These plots 
are used to evaluate the attitude and bias solutions obtained by the various 
subsystems. The plots can also be used as a backup method of attitude and bias 
determination, by varying the state parameters manually to obtain the best fit to 
the data. In addition, the predictions can be generated for arbitrary times to 
determine data coverage for future data passes. For examples of these plots, see 
Section 9.4. 

7. Control Monitor. This subsystem monitors attitude reorientation maneuvers 
in real time, to determine whether they are proceeding in the right direction at the 
proper rate. In the monitor mode, the system automatically cycles through the 
telemetry processor, data adjuster, deterministic attitude, and control monitor 
subsystems. Ordinarily on each cycle, a single telemetry record (10 sec of data) is 
retrieved from the raw telemetry data file and processed through each applicable 
subsystem. The control monitor· accumulates the results from processing each 
record and updates displays which show the observed attitude motion versus the 
predicted attitude motion as obtained from the predicted maneuver file. The 
predicted maneuver file is generated by the CTSMAN program described below. 
The control monitor can also compute new command parameters necessary to 
correct a maneuver if it is not proceeding as predicted. 

Figure 21-3 shows the normal operating procedure for attitude determination. 
In CTSADS. the subsystems may be invoked in any desired order. However. the 
data adjuster must be executed immediately after the telemetry processor to select 
data-ror prOGessing and to choose ephemeris options before any other subsystem 
can be executed. The routine steps followed for determining an attitude soluti~ 
from a batch of data are delineated in Fig. 21-3. 

Figure 21-4 shows the data flow during maneuver monitoring. The control 
monitor first reads the predicted maneuver file to obtain the predicted attitudes 
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Fig. 21-4. Data Flow ~g Maneuver Monitoring for CIS. The control monitor receives attitude 
solutions from the deterministic attitude subsystem and the rest of the data from the data 
adjustment subsystem. 

and other parameters for the scheduled maneuver. During the actual maneuver the 
observed pulse counts, Sun angles, spin rates, and Earth times from the data 
adjuster and the single-frame attitude solutions from the deterministic attitude 
subsystem are passed into the control monitor for comparison with the predicted 
values. 

Finally, the CTSMAN program [Tandon, 1975; Rochkind, 1973, 1974] com
putes the ground station commands necessary to perform an attitude reorientation 
maneuver, given an initial attitude and a desired final attitude. In addition, the 
program computes the full maneuver sequence and the history of maneuver-related 
parameters. A subset of the computed maneuver-related parameters is stored on a 
disk data set, called the predicted maneuver file, for use by the control monitor in 
monitoring the maneuver in real time. 

21.3 Star Sensor Attitude Determination Systems 

Lawrence Fallon, III 

This section provides an overview of attitude determination systems which use 
star sensor data. Such systems generally use a model of the spacecraft attitude 
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motion which is periodically updated from star sensor measurements. This model 
requires an initial attitude estimate usually provided by other sensor types; how
ever. occasionally an initial three-axis estimate is calculated using star sensor data 
when only a single-axis estimate is available externally. The motion model used for 
attitude calculation may be either a simple kinematic description of a uniformly 
spinning spacecraft or a complicated dynamics model involving environmental and 
control torques. Alternatively. a system of rate or rate-integrating gyroscopes may 
be used to provide a mechanical substitute for a spacecraft dynamics model. 

The methods which use star sensor measurements to update an attitude model 
may be divided into two categories: batch and sequential. In a batch updating 
system, observations made at different times are related to an epoch time using the 
attitude model. and collectively identified with stars whose coordinates are supplied 
by a star catalog. An average or least-squares attitude-solution is then calculated 
and used to update the attitude at the epoch time. Additional model parameters are 
frequently included in this procedure. In a sequelltial updating system. the dyna
mics model is used to extrapolate the attitude to the time of each star sensor 
observation in succession. When the extrapolation process reaches the time of a 
particular observation. an attempt at star identification is made. If the identifica
tion is successful, it is used to update the attitude at the time of the measurement. 
and perhaps· to update other parameters in the spacecraft model as well. The 
updated model is then extrapolated to the time of the next observation, and so on. 
The frequency with which the attitude reference must be updated in either system 
is dependent on the accuracy of the star sensor measurements, the accuracy of the 
motion model, and the desired accuracy of output attitudes. 

21.3.1 Components of a Star Sensor Attitude Determination System 

In addition to a telemetry processor and other auxiliary features, star sensor 
·attitude determination software systems normally consist of five components. as 
shown in Fig. 21-5. The detailed makeup of these components depends on the type 
and .accuracy .of sensor measurements; the quality of the attitude estimates pro
vided by other attitude hardware; the field-of-view Size, orientation, and sensitivity 
of the sensor; the complexity and accuracy of the attitude model; and the desired 
accuracy of the attitude solutions. 

In star catalog acquisition, a subcatalog is acquired from a whole sky star 
catalog, as described in Section 5.6. The estimated accuracy of the initial attitude. 
the field-of-view size, the expected motion of the sensor's optical axis. and the 
sensor's magnitude sensitivity dictate the size and shape of the subcatalog. For 
example. a spherical cap subcatalog was generated for the star tracker illounted 
parallel to the SAS-3 spin axis. The 13.3-deg-wide cap was selected to accommo
date the rotating 8- by 8-degfield of view and approximately 2 degof potential 
spin axis error. It contained 30 to 50 stars brighter than the 7.5 instrumental 
magnitude limit. A 12-deg wide band subcatalog generated for the SAS-3 tracker 
perpendicular to the spin axis contained approximately 2000 stars brighter than an 
instrumental magnitude of 7.5. 

Data selection and correction is the most hardware-dependent of the five 
components. Editing, selection, correction, and calibration of the sensor data are 
generally done here. For example, data from the SAS-2 N-slit star scanner (Section 



21.3 STAR SENSOR ATTITUDE DETERMINATION SYSTEMS 705 

• STAR SENSOR 
-ATTITUDE 

; ~. ! , DfTERMINATroN , SYSTEM 

I I I 1 
ATTITUDE 

51 AR CATALOG DATA SELEcnON AnlTUDE STAR ANDMOOEL 
ACQUISITION AND CORRECTION EXTRAPOLATION IDEiUlflCATION PARAMETER 

REFINEMENT 

. Fig. 21·5. Major Components of a Star Sensor Attitude Determination System .. \ telemetry processor 
and possibly other auxiliary components as described in Section 21.1 are also required. 

7.6) consists of a series of voltages which must be examined to determine when a 
transit occurred, i.e., when. Ii star crossed one of the slits. By examining the 
differences in time between all transits of slits I and 3 (see Fig. 7·24), many 
differences are found corresponding to 0/ w, where 0 is the angular separation of 
slits I and 3 and w is. the spin rate. If the number of transit pairs separated by 
approximately 0/ w is plotted as a function of spin period, as shown in the spin rate 
histogram of Fig. 21-6, an initial estimate of the spin rate is obtained. This spin rate 
is then used to group the transits into triplets corresponding to the three slit 
crossings by tire same star. As another example, SAS-3 star tracker data is 
examined to remove all points except those corresponding to valid star sightings by 
examining various telemetry flags. The star sightings are lhen calibrated and 
converted into unit vectors in the spacecraft frame, as described in Section 7.6. 

Before stars can be identified, ar. attitude estimate must be available at the 
time of each sensor observation. The proCedure which supplies this attitude 
estimate is called attitude extrapolation. The attitude estimate may be a three-axis 
attitude relative to inertial space, or to the spacecraft frame at some epoch time (for 
which some estimate of the inertial attitude usually is available). In either case, the 
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attitude estimate is provided by extrapolating an initial attitude using a model of 
the spacecraft attitude motion. 

For example, after triplets of SAS-2 N-slit star scanner observations have been 
grouped together using the initial spin rate, a better spin rate estimate is obtained 
from the time differences between the slit 1 and slit 3 crossings within the same 
tripleL This improved spin rate is then used to calculate observed star unit vectors 
at some nearby epoch time. This set of observed star vectors at an epoch time is 
called a snapshot. It is assumed that within the period of interest the spacecraft is 
spinning uniformly and, therefore, that each star transits slits I and 3 of the sensor 
with the same time difference. Any deviation of the spacecraft from the uniform 
spin model may cause significant distortion in the snapshot and thus interfere with 
star identification. 

If an accurate snapshot is needed, greater precision and sophistication in the 
spacecraft model is usually required~ The system used for the SAS-3 star trackers 
modeled spacecraft motion as the simple spin and nutation of a symmetric rigid· 
body in a torque-free environment (Section 16.3). The variation of the individual 
measurements of the same star with respect to time is used to estimate spin and 
nutation parameters, which are then used to extrapolate a relative attitude from the 
epoch time to the time of each measurement. This relative attitude is then used to 
calculate an observed star snapshot in the spacecraft frame at the epoch time. If the 
accuracy of the model begins to. degrade because of spin rate variation, for 
example, the snapshot may frequently be improved by shortening the time span of 
data used in its creation. 

The HEAO-I system uses gyros to propagate an attitude estimate to the time 
of each star tracker observation (Section 17.1). This procedure is capable of 
providing very accurate attitude estimates for snapshot generation. Even if the 
initial estimate is imprecise, the relative accuracy of snapshots created in this 
fashion is generally greater than in either of the previously described methods. 

After the star coordinates and corresponding attitude estimates are computed 
at a reference time, star identification is attempted. The star coordinates are 
generally in the form of a snapshot, which may coptain only one star or many 
stars. If it contains only one star, it must be identified using a direct-match 
algorithm, as described in Section 7.7. If it contains more than one star, any of 
several pattern-matching techniques may be appropriate, depending on the size and 
quality of the snapshot and the accuracy of the initial attitude estimate. A typical 
SAS-3 star tracker snapshot with superimposed catalog stars is shown in Fig. 21-7. 
Observations are denoted by open circles and catalog stars by plus signs. Double 
circles correspond to multiple sightings of the same star. 

After pattern matching, all observations but one have been identified with 
catalog stars. The star which caQseddte unidentified observation was apparently 
not in the catalog. Note that after matching, the catalog stars have been shifted to 
the right and upward about ·2 deg. Details on alternative pattern-matching 
methods, including the direct match, are given in Section 7.7. 

After observations have been identified with catalog stars, the final step is 
altitude model refinement. This involves the calculation of attitude using some 
averaging or optimization process, such as least-squares or Kalman filtering. This 
procedure may also include the optimization of other model parameters, such as 
environmental torque variables, .angular momentum components, or gyro drift 
rates. 
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Fig. 21-7. Snapshot of SAS-3 Spin Plane Star Tracker Observations 

11.3.2 Construdton of Batch and Sequential Attitude Systems 

Whether the star sensor attitude determination components should be as
sembled to form a batch or a sequential system depends on various circumstances. 
Sequential systems require less computer resources because information regarding 
only one (or, at most, a small number) of stars must be stored at anyone time. For 
this reason, sequential systems are usually chosen for onboard processing_ Because 

': they are frequently restricted to direct-match star identification algorithms, sequen
tial systems are often unsuitable when more sophisticated star identification 
techniques are needed. Therefore, a batch system will be most appropriate when 
star identification may be difficult-for example, when errors in the initial attitude 
estimate or the attitude model are large relative to the spacing between stars visible 
to the sensor. If the system must operate in a variety of . attitude accuracy 
environments, a hybrid system which incorporates both sequential and batch 
capabilities may be desirable. 

The software support systems for the N-slit star scanner in the three SAS 
missions were all batch systems. The SAS-2 Star System, as described by Rigterink, 

; et al., (1973], received an initial attitude estimate accurate to approximately-2 deg 
from a Sun sensor/magnetometer system. The program was then required to 
identify stars observed during 30- to 60-min intervals, which generally spanned 
several spacecraft spin periods, and to calculate attitude solutions accurate to 0.25 
and 0.5 deg about the spin and lateral axes, respectively. After selection of transits, 
initial spin rate estimation, and association of triplets, an improved spin rate was 

'i' calculated and a snapshot was created using a uniformly spinning spacecraft 
model. A congruent triangle distance-matching technique [Fallon, el al., 1975) was 
then used to identify the observations with stars in a band catalog. An attitude was 
then calculated for the epoch time of the snapshot using a least-squares process. A 

j spin rate smoothing and phase angle computation procedure then allowed attitude 
computation for any time within the segment. 

L_ 
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The system being used to support HEAO-I is also a batch system. A coarse 
single-axis attitude estimate is provided by a Sun sensor. This estimate. a snapshot 
consisting of star tracker data obtained from one spacecraft rotation (approxi
mately 30 minutes). and a band catalog are used in a phase search star identifica
tion procedure enhanced with distance-matching tests in an effort to identify 
specific stars. A batch least-squares program then uses the identification results to 
calculate an attitude which is required to be accurate to at least I deg. This attitude 
is then propagated forward in time to provide an initial estimate for a triangle-type 
star identification algorithm which attempts to identify 5 to 20 star tracker 
observations measured within a 5- to 8-minute time span. Assuming that identifica
tions are successful. the batch least-squares p(ogram calculates a snapshot attitude 
solution accurate to 0.005 to 0.010 deg. This solution is then used to estimate an 
attitude correction which is sent to the spacecraft's onboard computer to impwve 
its attitude reference. The on board computer uses the gy'ro data to propagate its 
attitude reference forward in time. Because this on board reference is required by 
spacecraft control procedures to maintain at least 0.25 deg (30) accuracy. it is 
updated typically 5 to 20 times a week using ground attitude solutions to 

counteract the effects of gyro-related errors. Comparison of attitudes propagated 
by the onboard computer during the periods between attitude updates with ground 
attitude solutions calculated at the same times as corresponding propagated atti
tudes yields information regarding gyro drift and misalignment parameters (Section 
7.8). Refined gyro calibration parameters are then sen't to the spacecraft to improve 
the quality of the propagated attitude reference. 

The performance of the HEAO-I reference and gyro calibration update 
procedure can be assessed by examining the total arc difference between ground 
attitude solutions and corresponding onboard propagated attitudes. Figure 21-8 
shows the onboard versus ground profile for the week following September 16. 
1977. During the first 5 days of this week.onboard attitude accuracy was 
maintained' to within approximately 0.05 deg-significantly better than the 0.25-
deg accuracy requirement. Note that the drift rate update sent on September 18 
significantly decreased the onboard attitude error growth due to gyro-related 
errors. On September 21. however. a commanded scan rate change caused a rapid 
increase in onboard erroJ pue to the strong dependence of drift rate solutions on 
the scan rate. A new drift rate was estimated using data following the scan rate 
change and sent to the spacecraft on September 22. Propagation accuracy then 
returned to the 0.05-deg level. Additional details concerning the structure and 
performance of the HEAO-I attitude ground support system are given by Fallon 
and Sturch (1977). 

An example of a sequential system which uses a spacecraft dynamics generator 
with simple environmental torque models is given by Foudriat (1969). An attitude. 
reference is extrapolated. to the time of each star scanner measurement by the 
dynamics generator and then updated using a limited-memory Kalman filter, 
assumin~. that the direct-match star identification attempts are successful. By 
appropriate selection of star scanner measurements for attitude refinement. attitude 
and model parameters may be refined well enough to permit attitude extrapolation 
for periods as long as 1000 sec with arc-second accuracy. Another example of a 
sequential system is the Space Precision Attitude Reference System (SPARS) 
developed by Lockheed and Honeywell for onboard attitude determinati(}n (Paul
son. et 01 .• 1969]. SPARS uses gyro data for- attitude extrapolation instead of a 
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Fig. 21-8. HEAO-1 On~rd Altitude Propagation Accuracy for the Week Following September 16. 
1977lFallon and Sturch, 1977) 

spacecraft dynamics model. The direct-match identified transits are used b)" a 
Kalman filter to sequentially refine attitude and gyro drift parameters. 

21.4 Attitude Data Simulators 

Peter M. Smith 

In the design and development of mission software, the attitude data simulator 
is usually the first system to be built. The simulator is used in all mission phases; 
therefore, it is important to understand in advance the functional and operational 
requirements for the entire satellite program. A summary of these requirements is 
presented below. Their implementation within the simulator software is then 
illustrated by discussion of the structure of two specific simulators. This section is 
concerned with mission-dependeinsoftware, which is used in conjunction with 
mission support software, rather than mission-independent programs such as 
ADSIM [Gray, et al., 1973], ODAP [Joseph and Shear, 1973], and FSD [NASA, 
1978] which are used primarily for prelaunch analytical studies. 

Functional Requirements. Attitude data simulators are used primarily in the 
following application areas: 

I. Development and testing of mission support attitude determination sys
tems. Here, the simulator is used to provide data to exercise and test all 
capabilities of the attitude determination system. 

2. Prelaunch simulation sessions in which both nominal data and contingency 
data situations are generated to train mission support personnel. 

3. Analytical studies to aid in the planning of mission timelines and maneuver 
~ control procedures. The testing of new analytic procedures is most readily 
~ carried out using simulated data because of data control and the knowledge 

of all parameters which define the simulated data set. Mission requirements 
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will dictate the need for spacecraft dynamic modeling, based on either a 
slowly varying attitude responding to time-averaged external torque or a 
detailed model, including such effects as onboard torquing devices and 
flexible appendages. 

4. Real-time mission support for the identification of systematic variations 
(such as the Pagoda effect, described in Section 9.4) and prediction of the 
availability and quality of future data. 

For a simulator to provide adequate support in all of the above areas. its data 
generation capabilities should satisfy tlie following criteria: 

I. The simulator should. generate realistic mission data (e.g .. constant attitude 
data, maneuver data. or nutating data). The sophistication level of ~imula
tor modeling should equal or surpass that of the attitude determination 
system to allow the latter to be tested to the limits of its accuracy. 

2. Provisions should be included for noise. random bit errors. quantization 
errors, and realistic sensor biases to test the performance of the attitude 
determination system with data that have been degraded to increasing 
levels of· severity and to clearly identify the effect of various errors and 
biases. 

3. For real-time support requirements, the simulator should be able to 
generate data both at a reduced rate with artificial delays added to simulate 
real-time spacecraft telemetry and at the normal high-speed rate with no 
delays applied. 

Simulator Structure. As an example of the implementation of these func
tion~ requirements, we describe the structure of two specific simulators. CTSSIM 
and PLOTOC, used for the Communications Technology Satellite. launched in 
January 1976. crSSIM [Smith, 1975] is an independent simulator used in the 
development, testing, and prelaunch phases; PLOTOC, which is capable of com
paring real and simulated data, [Plett, et al., 1975; Nelson, et al., 1975] is an 
integrated subsystem of the attitude determination system, utilized primarily for 
launch support. 

Figure 21-9 shows the functional baseline diagram for crSSIM. The simulator 
operates under the Graphics Executive Support System. described in Section 20.2, 
and uses the core allocation/deallocation, graphics displays, and interactive pro
cessing services provided by this executive. Program flow through the simulator 
proceeds from left to right. Starting conditions for a simulation run are set via 
graphic, card, or data set NAMELIST input. Attitudes for a maneuver trajectory 
may be either internally generated or read from a tape created by an external 
program. ·Ephemeris data is read from disk data sets or tapes or is generated 
internally. Simulated data may be perturbed by applyi~g noise and biases to sensor 
hardware parameters. Plot displays allow the user to crit~cally examine the simu
lated data. The interface with the attitude determination system is either a raw or a 
processed telemetry data set. Data is generated on a frame-by-frame basis with a 
variable sampling frequency controlled by the timing routine. The simulator can 
also read ptocessed telemetry data (e.g., nutating data generated by a dynamic 
simulator) and use it to simulate raw telemetry data. 

In a typical prelaunch simulation, data covering a large time interval 
(approximately 6 hours). with noise and sensor biases appJjed, are generated in a 
single simulation run, carried out at the high-speed rate. The attitude determination 
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Fig. 21·9. Functional Baseline Diagram for the Atlitude Data Simulator for the CTS Spacecraft 

system is then required to process these data and solve for the attitude and applied 
biases. In contrast. maneuver simulations are generally carried out in real time to 
provide launch support personnel with realistic monitoring conditions. During 
real-time simulations. data are generated at a rate close to that expected during 
mission support. Spacecraft con trol commands. provided by an external control 
system. are used as input to the simulator to generate the maneuver data; these 

. data are then analyzed in real time. The maneuver may be allowed either to 
continue to completion or be stopped and retargeted. depending on the current 
simulated attitude. Further stopping and retargeting is carried out until the thruster 
has been calibrated and the maneuver is proceeding on target. 

The PLOTOC simulator- is a subsystem of the attitude determination system. 
Its prime function is to allow the operator to compare the observed infrared Earth 
sensor data with simulated data based on the attitude and bias solution obtained 
by the attitude determination system. as illustrated in Fig. 21-10. The plus signs in 
the figure represent observed data points for the horizon-in and horizon-out 
rotation· angles measured by the Earth sensor. The solid lines represent the 
predicted rotation angles for two possible attitude solutions. The inner pair of 
rotation angle curves clearly represents the superior solution. Predicted-versus
observed rotation angle plots can reveal the presence of systematic variations in the 
observed data (e.g .. the Pagoda effect) and by judiCiously editing the data span, a 
more reliable solution may be obtained. PLOTOC can also be used to generate 
predicted data in advance of the observed data to provide Earth sensor coverage 
information. ' 
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CHAPTER 22 

DISCUSSION 

James R. Wertz 

This chapter provides a subjective discussion of the state of the art in attitude 
determination and control and identifies specific problems and areas in which 
information or further development would be valuable. The major changes that 
will effect future mission profiles were described in Section 1.1. The most impor
tant of these are increased spacecraft autonomy and launch via the Space Shuttle, 
which will substantially increase the volume of space activity and somewhat reduce 
costs. (Sixty shuttle launches per year are anticipated from 1984 onward.) In 
addition, accuracy requirements are becoming increasingly stringent, as illustrated 
in Fig. 22-1. Thus, the major requirements for the 1980s are to handle increased 
data volume and to obtain greater accuracy at reduced costs. 

In contrast to orbital mechanics, the area of spacecraft attitude determination 
and control has developed almost entirely in two decades, so much of the 
fundamental work remains incomplete. For example, there is no geometrical 
analysis of attitude accuracy for three-axis stabilized spacecraft comparable to that 
discussed in Chapter II and, although orbit determination hardware and mea
surements have become at least somewhat standardized, attitude determinaq,on 
hardware and measurements have not; there is no clearly superior measurement 
type_ or generally accepted standard hardware or analytic techniques. 
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The emphasis of current research in spacecraft attitude determination and 
control can be approximately determined by a literature survey, as shown in Table 
22-1. The categories were arbitrarily assigned in an attempt to rtrpresent the topics' 
covered. Over half of the papers were concerne~ with new control systems or 
hardware, either proposed. planned. or recently flown. This reflects the diversity of 
hardware and methods in use at the present time. In contrast, only 5% of the 
papers dealt with any aspect of attitude determination and another 5% with 
evaluating disturbance torques or methods of measuring the properties of 
spacecraft relative to attitude stability and control. . 

Table 22·1. Distribution of Topics .in a 1975-1976 Spacecrafi Attitude Determination and Control 
Literature Survey Based on the NASA Scientific Technical Information Data Base. 
Miscellaneous additional topics and papers which could not be categorized by the tide or 
the abstract have been omitted. 

TOPIC NUMBER OF PAPERS 

DESCRIPTION. ANALYSIS OR REOUIRE'MENTS OF ATTITUDE 45 
CONTROL SYSTEMS PROPQSED OR PLANNED FOR FUTURE 
MISSIONS 

EVALUATION OF OPERATIONAL CONTROL SYSTEMS OR :n 
HARDWARE 

CONTROL LAWS AND CONTROL PROCEDURES 27 

ATTITUDE DYNAMICS AND SYSTEM STABILI7Y 19 

ATTITUDE DETERMINATION IALL ASPECTSI 7 

NUTATION CONTROL S 

MEASURING OR EVALUATING DISTURBANCE TORQUES 4 

MEASURING SPACECRAFT PROPERTIES RELATED TO ATTITUDE 4 
STABILITY AND CONTROL -
TOTAL 148 

The Attitude Systems Operation of Computer Sciences Corporation's System 
Sciences Division provides attitude analysis and operations support for the Atti~ 
tude Determination and Control Section of NASA's Goddard Space Flight Center. 
Jn contrast to the general literature survey. the recent analytic work of this group 
falls into five major areas: (I) development of more sophisticated procedures for 
obtaining high reliability with star sensors for missions such as HEAO or MAG
SAT, (2) improvements in understanding attitude geometry, primarily for spin
stabilized spacecraft such as AE. SMS/GOES, CTS, SIRIO, JUE, and ISEE; (3) 
development of procedures for obtaining increased accuracy from Earth horizon 
sensors, both for spin-stabilized spacecraft and Earth-oriented spacecraft such as 
SEASAT, HCMM, DE, or MAGSAT; (4) detailed planning for attitude acquisition 
maneuvers for spacecraft which undergo major changes in determination and 
control procedures between launch and the initiation of normal mission operations,. 
such as RAE, CTS. GEOS, or HCMM; (5) development of procedures for 
processing the increased volume of attitude data that is anticipated with the 
increased launch potential of the Space Shuttle in the 1980s; and (6) satisfying the 

. i increasingly stringent attitude determination and control requirements and ensur
ing the quality of computed attitude solutions. 

The remainder of this section disclJsses developments which are necessary for 
the continued evolution of spacecraft attitude determination and control techni
ques. We have divided these developments into five categories: quality assurance, 
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sensor design, hardware standardization, software standardization, and basic 
analysis. 

Quality Assurance. A major problem that must be resolved in the Shuttle era 
is quali~~' assllrance~the designing of software systems that will provide accurate 
attitude information without operator intervention under normal circumstances 
and that will recognize abnormal circumstances. The need for increased quality 
assurance comes from four principal changes in future attitude operations: in
creased autonomy with the use of onboard computers, increased accuracy re
quirements. increased data volume (both more spacecraft and more data per 
spacecraft), and the need for reduced costs. Increased data volume and reduced 
costs require a system with minimal operator intervention. Increased accuracy 
implies more sophisticated modeling procedures, more potentially adjustable atti
tude parameters. and more complex analysis and filtering procedures. Finally, 
increased autonomy implies software which executes with minimal external inter
vention and which is capable of recognizing abnormal data. 

One solution to quality assurance and increased autonomy may lie in multiple 
component systems such as that described for the CTS spacecraft in Section 21.2. 
Here a deterministic processor (or a differential corrector with only a limited 
number of state vector elements) is used for normal operations either on the 
ground or on board the spacecraft, and a more sophisticated ground-based 
differential corrector is used occasionally for bias determination. The bias parame
ters determined in the latter system are then used as input parameters to t.he 
"normal" processor to perform routine operations. The character of the routiite 
operations may be monitored both by internal checks and flags and by summary 
displays that permit an operator to gain an overview of the system operation and to 
examine in more detail any abnormal data segments. However, in the CTS system, 
even the telemetry processor and deterministic attitude component require operator 
intervention and interactive graphics for effective use. 

A second possible solution may lie in the direction of a hybrid or evolutionary 
attitude system .. Initially, such a system behaves like a very flexible data filter as 
described in Chapters 13, 14,20, and 21, with operator control at essentially every 
stage via mteractive graphics. As biases are resolved and the data quality and 
nature of the most common anomalies are determined, specific automatic options 
are chosen and the system becomes increasingly autonomous. Operator interven
tion is required only when anomalies are encountered, which are identified by a 
series of checks and flags in the data. After the most common anomalies have been 
identified, automatic procedures for handling these are initiated (via, for example, 
alternative processing parameters when specific anomalous conditions are encoun
tered). At this point, the ·systein is essentially fully autonomous-.:.having been 
"designed" by the. experience of the operator to handle the particular data . 
characteristics specific to that mission. The system then operates routinely in a 
non interactive mode· with occasional interactive nms to ensure that the system is 
behaving properly or to account for changing mission conditions. 

Sensor Design. One of the principal requirements for the future is Ii need for 
attitude analysis at earlier phases of mission planning and hardware design
particularly when attitude accuracy requirements approach the limit of sensor 

• For complex ground-based systems, a low level of continuous, interactive control may be necessary to 
CJ 'Ire the availability of data sets and hardware devices. 
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accuracies. Characteristic of this need for early analysis is a dichotomy between 
two distinct procedures for obtaining attitude measurements-the use of simple 
sensors with complex output versus the use of complex sensors with simple output. 
This distinction may be illustrated by the Sun sensors used for SIRIO and the 
SMS/GOES missions (Chen. et al .• (1976); Chen and Wertz [1975D. During the 
transfer orbit to synchronous altitude, both satellites are spin stabilized and use 
Sun sensors consisting of approximately V-shaped slits as shown in Fig. 22-2. The 
Sun angle is determined by measuring the time between Sun sightings for the two 
slits. The relationship between the Sun angle. p, and ratio of the time between Sun 
sightings, !:It, to the spin period. P (determined by the time between Sun sightings 
for the vertical slit), for both sensor types is shown in Fig. 22-3. By examination, it 
is clear that the SIRIO system is a relatively simple sensor with an output that is at 
least moderately complex to interpret, since it becomes very nonlinear as the Sun 
moves toward the spin axis. In contrast, the SMS/GOES Sun sensor has a more 
complex structure, but the output signal is nearly linear over the sensor's range of 
performance. 

/ 
Fig. 22·2. Shape of SMS Sun 

Sensor Mask and Re
lative Orientation of 
Slits in the SIRIO Sun 
Sensor 

.... SlRIO 

Fig. 22-3. Sun Angle Versus Spin Angle for SMS and SIRIO Sun 
Sensors. The spin angle is the azimuthal rotation of the 
spacecraft between observations of the Sun by the two 
sensor components. 

The relative advantages of the two sensor types do not become apparent until 
we ask what the measurement is to be used for and how it is to be processed. If the 
Sun angle is to be measured by simply attaching a scale to the sensor output with 
no analysis possible, as might be required in a simple display device or analog use 
of the data for onboard attitude control, then the SMS/GOES configuration is 
superior because of the linear output. However. in any attitude determination 
system or display device where there is software available for processing, the 
SIRIO design becomes distinctly superior. First, a straightforward analysis of the 
spherical geometry involved in the SIRIO sensor (SectiQn 7.1) shows that 

tanp = tan 9 /sin(At /2'1TP) (22-1) 

where 9 is the angle between the two linear slits in the SIRIO design. In contrast, 
the SMSjGOES design requires a table of calibration values which must be stored 
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and interpolated to compute the Sun angle. In addition, the SIRIO sensor is very 
amenable to bias determination and in-flight calibration. If we assume only that 
the slits have indeed been made linear, then only three bias parameters fully 
characterize the relative orientation between the two slits and the spin axis (Section 
7.1). In principle, these parameters can be established as elements of a state vector 
or determined manually from several data segments. Thus, it is at least possible to 
have a very accurate in-flight calibration of the SIRIO Sun sensor parameters. (In 
practice this may be impossible for any specific mission because of limitations in 
th~ amount or quality of available attitude data, the geometry, or mission timeline 
constraints.) In contrast, there is no analytic procedure for general determination 
of bias parameters for the SMSjGOES Sun sensor because each segment of the 
calibration curve would have to be corrected separately. We may carry out a bias 
determination procedure at any particular Sun angle, but extrapolation of the 
results to other Sun angles is tenuous at best. 

As is clear from the above example, the complex sensor with a simple output 
may be preferable in systems such as limited-capacity onboard processors or 
control center displays where the output must be used directly with no algebraic 
manipulation, bias determination, or state estimation. However, the simple sensor 
with output which can be analytically modeled is preferred whenever there is 
software available for processing or whenever bias determination or state estima
tion techniques are available to increase attitude accuracies. This would include 
spacecraft using onboard processors for which biases can be telemetered up from 
the ground, as described for SMM below. Thus, high accuracy requirements would 
suggest the need for sensors which can be modeled analytically to make the best 
us~. of sophisticated data analysis techniques. 

Hardware Standardization. Related to the problem of sensor design is the 
need for software systems to provide greater reliability and reduced costs and to. 
permit more effort to be applied to the new and unique problems which arise. The 
principal problem in the standardization of hardware is that missions have widely 
varying requirements and hardware systems have normally been designed to meet 
specific mission conditions at minimum cost. Therefore, the main precursor to 
standard sensors or standard software is the development of a hardware system 
with sufficient fleXibility to meet the requirements of many missions. Two basic 
approaches to this problem are available: to work with combinations of existing 
hardware or to design new hardware with the specific intent of designing flexibility. 

The use of combinations of existing hardware is a major goal of the Multi
Mission Spacecraft, MMS, series, the first of which will be the Solar Maximum 
Mission, SMM. As shown in Fig. 22-4, the MMS spacecraft consists of three 
standard modules (Power, Attitude Control, and Communicatlon.s and Data 
Handling) in a triangular frame with space for the payload equipment at one end 
(GSFC, 1975]. The attitude control subsystem shown in Fig. 22-5 contains the 
following attitude sensing equipment: a set of three two-degree-of-freedom gyro
scopes; two Ball Brothers CT 401 star trackers ~described in Section 6.6); one 
precision digital Sun sensor; and three orthogonal magnetometers. All MMS 
spacecraft will have a coarse Sun sensor system, and a high-accuracy payload 
sensor may also be used for some missions. Attitude control will normally be 
provided by a set of three orthogonal, 20 N . m . s reaction wheels (possibly with ii 
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fourth wheel). In addition, 100 A·m2 electromagnets will be used for initial 
acquisition and momentum maintenance and will provide a minimum reorientation 
tate of 0.2 deg/sec for spacecraft with moments of inertia up to 400 kg·m2• The 
MMS spacecraft. includes an onboard computer described in Section 6.9 that 
processes aU attitude data and, in conjunction with other stored information, 
generates control commands. 

The first of the MMS missions, SMM, has an attitude accuracy requirement of 
5 arc-seconds (0.001 deg) in pitch and yaw and 0.1 deg in roU. The attitude support 
anticipated for SMM will be based on considerable interaction between the 
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onboard processor and the ground software (Werking, 1976). Definitive attitude 
will be determined by the onboard processor. For SMM, the onboard computer 
will spend approximately 30% of its time in attitude-related activities. Ground 
processing will be used for early mission support (stabilization and attitude acquisi
tion), for calibration or bias determination (to determine sensor parameters which 
will then be telemetered for use in the onboard processor), and for operational 
control support (system monitoring, TDRSS scheduling, ephemeris and target star 
uplink, and maneuver planning). The SMM example is representative of the types 
of functions that can best be carried out by splitting data processing between the 
onboard computer and the more sophisticated ground-based systems. and again 
indicates the need for sensor systems that can be analytically modeled so that bias 
determination and state estimation is possible. 

The MMS attitude control module is intended to support Earth-observation, 
solar physics, and astronomy payloads' in both near-Earth and geosynchronous 
orbits. At present, it is not clear how widespread use of the MMS spacecraft design 
will become.· AS with other attempts at standardization, the main problem is 
obtaining sufficient flexibility at low cost. 

A second standard spacecraft configuration will be used for the Applications 
Explorer Missions. AEM, the first of which will be the Heat Capacity Mapping 
Mission. HCMM (Smith. 1974).t The AEM series will be relatively low-cost 
missions using a small spacecraft (up to 165 kg at launch) orbited initially by the 
Scout launch vehicle and by the Space Shuttle for later missions. The missions will 
generally be Earth oriented .. with attitude control to approximately I deg in pitch 
and'roll and 2 deg in yaw. The main components of the attitude control system are 
two reaction ·wheels incorporating horizon scanners similar to those used for 
Nimbus and LANDSAT. which provide both attitude determination and control. 
(HCMM will use only a single scanner.) A triad of magnetic torquers will be used 
for initial acquisition, roll control. and momentum control. Digital Sun sensors and 
a tr~axial fluxgate magnetometer will be used for yaw angle determination. A third 
reaction wheel along the roll axis may be ,included on some missions. 

An alternative approach to hardware standardization is to design it with the 
specific goal of extreme flexibility. For example. an attitude determination package 
might consist of a coarse element and a fine element. both of which provide 
redundancy and nearly full sky coverage. The fine element could consist of either a 
specific payload sensor or a combination of redundant gyroscopes (Section 6.5) 
and fixed head star trackers (Section 6.4). capable of accurate attitude determina
tion in any orientation. The fine element would be used only for attitude refine
ment based on a good a priori estimate and would be included only on missions for 
which pointing accuracies of less than about 0:5 deg are required. 

The coarse attitude element would be used for attitude acquisition. orbit 
maneuvers. and initial attitude estimates for the fine element. It would be the only 
attitude reference for spacecraft with accuracy requirements of about 0.5 deg or 

• As of. January 1978. MMS spacecraft were intended for use in seven missions (SMM. STORMSAT. 
CLlMSAT. LANDSAT-D. LFO-E. GRO. and PSCTS) and possibly for further missions in these series. 
See Appendix I for acronyms and additional mission details. 
t A~ of January 1978. spacecraft in the AEM series were HCMM. SAGE. COBE. ERBS. EUVE. and 
STEREOSA T and possible follow-ons. See Appendix I for acronyms and additional mission details. 
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larger. An appropriate coarse attitude package flOwD on COS-B and ISEE-B 
consists of two pairs of slit sensors capable of triggering on both the Sun and the 
Earth and distinguishing between them (~ee Section 6.2· and Massart [1976J.) A 
single package consisting entirely of three slit sen8C;lrs has also been proposed 
(Wertz, 1975J. Table 22-2 compares the redundancy and coverage of the celestial 
sphere for the package of three slit sensors and the package of five horizon sensors 
and two Sun sensors flown on the SMS/GOES missions. From the table we see 
that the three-sensor package provides nearly' full sky coverage for both the Sun 
and the Earth and the potential for attitude determination even with the loss of any 
two of the three sensors. The seven-sensor package provides substantially less sky 
coverage and redundancy. 

Table 22-2. Comparison of Sky Coverage and Redundancy. for Sensors Flown on the Synchronous 
Meteoroligical Satellite Witba Possible Package of Three Slit Sensors. (Data from Chen 
and Wertz (1975) and Wertz 11975).) 

PROPERTY SMS SLIT SENSOR PACKAGE 

NUMBER OF seNSORS 2 120" SUN SENSORS 1 SLIT PARALLEL TO SPIN AlClS 
6 HORIZON seNSORS 2 SLITS CANTEO TO SPIN AXIS 

SUN ANGLE lOVER 101J'lf. OF SKY 1 OYER -. OF SKY 
MEASUREMENTS 2 OVER _ OF SKY 3 OVER 87'll OF SKY 

NADIR ANGLE NO MEASUREMENT OVER 1 OYER 101J'lf. OF SKY 
MEASUREMENTS 42lO OF SKY 20VER -.OFSKY 
IAT SYNCHRONOUSALTI· lOVER _ OF SKY 3 OVER _ OF SKY 

TUDEI '20VER ROF SKY 

EFFECT OF LOSS OF ONE MODERATELY SERIOUS, NO PROBLEM, EARTH ANI) SUN 
CRITICAL seNSOR EARTH R COVERED; SUN seNSING 101J'lf. COVERED; SUN 

5016 COVERED ANGLE B7'll COVERED 

EFFECT OF LOSS OF TWO VERY CRITICALo ALL SUN SERIOUS: ALL SUN ANGLE AND 
MOST CRITICAL seNSORS OR EARTH OBSERVATIONS MIDSCAN NADIR ANGLE MEASURE· 

LOST MENTS LOST; SUN·EARTH AND 
EARTH-WIDTH ANGLES B7'll COVERED 

Software Standardization. The nee'd for software standardization comes from 
increased data volume and the demand for both reduced costs and greater 
accuracies. By spreading the costs over multiple missions, sophisticated, expensive 
hardware and ground or onboar~ processing tools can be developed. In addition, 
complex systems become more reliable and more accurate after they have been 
used several times and system characteristics have been identified. Expertise in use 
and interpretation also increases when systems are used for several missions; 

In the area of attitude software, several multimission support, programs have 
been developed at Goddard Space Flight Center. At the present tirile, however, 
~ost of the standardization has come at the level of subroutines, sys~em 'com
pOnents, and relatively small utility programs. For example, the Graphics Executive 
Support System described in Section 20.2 has proved to be a very valuable 
executive for systems using interactive graphics and is used for most mission 
support systems. ' 

Three multimission systems which have been used at Goddard Space Flight 
Center serve to illustrate the advantages and problems of standardization. The 
Attitude Dynamics Data Simulator, ADSIM. has been used to support over' 10 
missions. It simulates spacecraft dynamics and sensor data for a generalized, rigid 
spacecraft and has an expandable structure to accommodate additional features. 
However, ADSIM is relatively complex to use; it has a large set of input parame-
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ters, operates in four coordinate systems, and requires considerable analysis to set 
up for a particular mission. In addition, sensor simulation is time consuming (both 
analytically and in computet time) because it must follow a more general proce
dure than is permitted for a system designed to work with specific, known 
components which .have well-established frequencies associated with them. 
( The Optical Aspect Bias Determination System, OABIAS, has been used to 

support bias determination activities for eight missions and has been modified and 
expanded to become the bias determination subsystem of the CTS attitude system 
(Section 21.2). Although OABIAS has been successful in supporting diverse 
missions, it is limited to spin-stabilized spacecraft using Sun sensors and horizon 
sensors. Thus, the system can support only a limited class of hardware and cannot 
be used for three-axis stabilized missions. The Multi-Satellite Attitude Prediction 
Program, MSAP, has supported a greater variety of missions than OABIAS 
because it is modified for each new spacecraft to take into account the 
aerodynamic drag and control laws for each specific mission. Of course this 
reduces the versatility and efficiency of the system because considerable analysis 
and programming is required for each new mission. 

The generalized software systems have. had only limited success. primarily 
because of the widely varying types of hardware and miSSion constraints. Genera
lized software capable of satisfying varied requirements will contain more options 
and control parameters than anyone spacecraft will use. General software is more 
difficuJt to design; requires more core storage; a-nd· is generally more complex, 
inefficient, and expensive (although the cos" may be spread over many missions). 
Even though there are substantial advantages to generalized software. it is unlikely 
to become widely used until spacecraft hardware becomes more standardized_ 

Basic Aoaly.. Because the fundamenials of attitude determination and 
control have been studied for only a few years, considerable future effort will be 
required to expand and systematize our knowledge of attitude-related activities. 
These analytic needs may be divided into five overlapping categories: (I) data 
evaluation and bias determination; (2) filtering theory and computer processing 
techniques, both ground based and onboard; (3) spacecraft dynamics; (4) en
vironmentalmodeling; and (5) attitude geometry, including' attitude accuracy and 
bias observability. 

In the area of data evaluation, we need to determine what quality assurance 
procedures are appropriate for data from autonomous,spacecraft; what data should 
be telemetered by the onboard computer to optimae the division between onboard 
and ground-based functions; and how the ground-based software should process 
and react to these data. We would like to understand how to 'formalize the process 
of identifying data anomalies as described in Chapter 9. We need to determine 
which bias parameters can or should be estimated and what constraints should be 
placed on an attitude state vector to obtain "reasonable" answers in the presence of 
systematic residuals. We also need improved sensor models, including the opera
tional evaluatiQn and refinement of the horizon sensor electronics model described 
in Section 7.4 and further development of star sensor instrumental magnitudes 
discussed in Section 5.6. 

In the area of estimation theory, we should improve our understanding of the 
behavior of estimation algorithms, particularly when the errors are dominated by 
quantization. Similarly, we need to determine how best to estimate attitude 
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parameters in the presence of large systematic residuals, because systematic errors 
are ordinarily the limiting factor in the attitude determination process. This 
understanding should lead to improVed standardized procedures for processing 
attitude measurements with standard estimators. A better analysis of the effect of 
preaveraging on subsequent state estimation is necessary to provide a high-quality 
two-stage filter. The goal here is an estimator consisting of a preaveraging stage 
which reduces the data volume to a manageable level while retaining as much of 
the original information content as possible, and a second stage which is a complex 
estimator of t):le type described in Chapter 13 that can be iterated· many times on 
the preaveraged data to find the best available solution. Another state estimation 
problem is to find the best balance between onboard and ground processing. such 
that the economy and strength of both methods can be fully utilized. This includes 
estimation techniques for onboard processors and the choice of bias, calibration, or 
environmental parameters to be supplied to the onboard processor by ground
based systems. 

In the area of spacecraft dynamics, much of the current literature is related to 
stability and control of complex systems; this literature is the best source of 
information on future requirements. Additional work is also needed in the iden
tification and modeling of, internal disturbance torques, as described in Section 
17.3, and in obtaining simple, approximate relations in flexible spacecraft dynamics 
(see Section 16.4). We should obtain a better understanding of the impact t)f 
spacecraft dynamics on attitude accuracy as more stringent requirements develop. 
A more complete analysis of the approximate effect of small amplitude nutation on 
both observed data and attitude solutions (as described in Section 16.3) would be 
useful. ' 

Additional analysis is necessary in several aspects of environmental modeling, 
including more detailed models of environmental torques, as described in Section 
17.2. For torque computations, models of the Earth's atmosphere which do not 
require frequent input of observed data would be valuable, but may be impossible. 
Improved models of the Earth's horizon, as described in Section 4.2, are needed; 
these would include variations in the infrared radiation profiles and models of the 
variations in the CO2 layer which incorporate the effects of weather and horizontal 
temperature gradients. Particularly important here is an e"al~ation of real 
spacecraft attitude data obtained together with other high-accuracy attitude data, 
such as that from star sensors. Further development of star catalogs and star 
positional data, as described in Section 5.6, will become more important with the 
increasing use of star sensors as an accurate attitude reference. 

In the area of attitude geometry, we have mentioned the need for a geometrical 
analysis of a~titude. accuracy f.o! three-axis stabilized spaceCrJ.f~\r',~atJ~i?~, 
further analYSIS of bias observabdlty over long data passes, as descnbOO hi ~tioil 
14.3, is required. Convenient procedures for representing the time variations in the 
geomagnetic field (as sensed by the spacecraft) or the long-teimposition of the Sun 
for Earth-oriented spacecraft would be useful in mission planning and analysis. We 
should also obtain more information on the spherical geometry characteristic~ of 
attitude determined from mUltiple nearby sources, as in the case of star sensors or 
landmark tracking. A reliable and systematic procedure is needed to incorporate 
geometric error analyses into attitude solutions and uncertainty computations. 

Finally, we should undertake a systematic evaluation of the relative advan
tages and disadvantages of various hardware types 'and possible attitude reference 
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vectors. This wouldinchide particularly the use of landmark tracking data and the 
observability of both orbit and attitude parameters from "attitude" data taken on 
board the spacecraft. This could lead to an autonomous orbit/attitude system. 

Summary. There are two major goals in spacecraft attitude determination 
and control in the Space Shuttle era: (I) reliable, flexible. and economical coarse 
attitude determination for attitude acquisition, orbit and attitude maneuver control, . 
and attitude determination and control when requirements are not stringent; and 
(2) reliaole. high~accuracy procedures for semiautonomous attitude determination 
and control. probably using landmark tracking for Earth-oriented spacecraft and 
star sensors or payload sensors for other missions. Such systems should use 
hardware that can be analytically modeled and on board routine processing using 
calibration, bias, or environmental data supplied by sophisticated ground-based 
systems. Achievement of these goals will necessitate some degree of hardware 
standardization. which is a precursor to standardization of software and processing 
techniques. The support of common systems should provide an opportunity to 
develop a more basic understanding of attitude-related problems. rather than 
continually redeveloping and revising procedures to ensure the success of indi
vidualized missions. 

Another major problem to be overcome is that of improved communication 
between the frequently discrete groups working in the area of attitude determina
tion and control-that is, those primarily involved with hardware, stability and 
control theory, and ground processing and attitude support. A major goal of this 
book is to provide some common background so that we can reduce the com
lllUnications barrier and improve our mutual understanding. 
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APPENDIX A 

SPHERICAL GEOMETRY 

A.I Basic Equations 
A.2 Right and Quadrantal Spherical Triangles 
A.3 Obliq"e Spherical Triangles 
A.4 Differential Spherical Trigonometry 
A.S Haversines 

James R. We"~ 

Finding convenient reference material.,in·spherical geometry is difficult. This 
appendix provides a compilation of the most useful equations for spacecraft work. 
A brief discussion of the basic concepts of spherical geometry is given in Section 
2.3. The references at the end of this appendix contain further discussion and 
proofs of most of the results presented here. 

A.I Basic Equations 

Algebraic Formulas. Let Pi be a point on the unit sphere with coordinates, 
(a;.c5;). The arc-length distance, (J(P"P,), between PI and P2 is given by: 

cosfJ(PI,PZ)=cos(J(P2,PI) 

=sinBlsinBz+cos8IcosBzcos(al-a2) 0<; (J<; 1800 (A-I) 

The rotation angle, A(PI,P2;P3), from PI to P2 about a third point, P
3

, is 
cumbersome to calculate and is most easily obtained from spherical triangles 
(Sections A.2 and A.3) if any of the triangle components are already known. To 
Calculate directly from coordinates, obtain as intermediaries the arc-length dis
tances fJ(P;Jj), between the three pairs of points. Then 

. cos(J(PI,PZ) - cos(J(PI,P3)cos(J(P2,P3) 

cosA(PI,P2;P3)= . fJ(P P)' (J(P P) 
SID I' 3 SID 2' 3 

(A-2) 

with the quadrant determined by inspection. 
The equation for a small drc:le of angular radius p and centered at (a", 150> in 

terms of the coordinates, (a,B), of the points on the small circle 'is, from Eq. (A-I), 
, " 

cosp=sinBsinBo+cos8cosBocos(a- a~) (A-3) 

The arc length, P, along the arc of a small drc:Ie of ImgUlar radius p between two 
points on the circle separated by the rotation angle, I) (I) measured at the center of 
the circle) is 

(A-4) 

The chord length, 'Y, along the great circle chord of an arc of a small circle of 
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angular radius p is given'by 

cosy = 1-(I-coscll)sin2p (A-5) 

where ell is as defined above, 
The equation for a great circle with pole at (a0>60> is, from Eq, (A-3) with 

p=90°, , 
(A-6a) 

The inclination, i, and azimuth of the ascending node (point crossing the equator 
from south to north when moving along the great circle toward increasing azi
muth), "'0> of the great circle are 

;=90°-60 

4>o=90o +ao (A-6b) 

Therefore, the equation for the great circle in terms of inclination and ascending 

node is 
tan 6 = tan; sin( a - 4>0} (A-6c) 

The equation of a great circle through t~o arbitrary points is given below. Along a 
great circle, the arc length, the chord length, and the rotation angle, ell. are all 
equal, as shown by Eqs. (A-4) and (A-5) with p=90°. 

Finally, the direction of the cross product between two unit vectors associated 
with points PI and P 2 on the unit sphere is the pole of the great circle passing 
through the two points. Find the intermediary, PI' from 

(A-1a) 

, As shown in Fig. A-I, PI is the azimuth of point PI relative to the ascending node 

... -, 
Fig. A-I. p. is the pole of the great cir!:le passing through PI and P2 and is also in the direction of the 

cross product PI xP2• {JI is an intermediate variable used for computations. 
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., ' ?f th~ great circle through PI and P2• The coordinates, (a~,6~), of the cross product 
PI xP2 are given by 

" 

. (A-7b) 

Combining Eqs. (A-7b) and (A-6a) gives the equation ~or a great drcle through 
points PI and P z: 

(A-8) 

Area Formulas. All areas are measured on the curved surface of the unit 
sphere. For a sphere of radius R, multiply each area formula by RZ. All arc lengtiis 
are in radians and all angular areas are in steradians (sr), where 

I sr=solid angle enclosing an area equal to the square of the radius 

=( l!oydegZ 
The surface area of the sphere is 

(A-9) 

The area of a lune bounded by two great circles whose inclination is e radians is 

g,=29 .(A-IO) 

The area of a spherical triangle whose three rotation angles are e., e2, and 9 3 is 

(A-II) 

The area of a spherical Polygon of n sides, where e is the sum of its rotation angles 
in radians, is 

gp = e - (n - 2)77 (A-12) 

The area of a small circle of angular radius p is 

(A-l3) 

The overlap area between two small circles of angular radii p and €, separated by a 
ithe center-lo-center distance, a, is 

---1 
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) 

[ 
COS(-Cospcosa ] 

Oo=2'11-2cosparccos .. stnpstna 

2 [ 
COSp-coSEcosa ] 

- COSEarccos .. 
SID f.S1D a 

2 [ 
cosa-COSECOSP ] 

- arccos .. 
StnUtnp 

(A-14) 

Recall that area is measured on the curved surface. 

A.2 Right and Quadrantal Spherical Triangles 

Example of an Exact Right Spherical Triangle. For testing formulas, the 
isosceles right spherical triangle shown in Fig. A-2 is convenient. The sides and 
~gleS shown are exact values. 

Napier's Rules for Right Spherical Triangles. A right spherical triangle has 
five variable parts, as shown in Fig. A-3. If these components and their comple
ments (complement of 4l = 900 -4l) are arranged in a circle, as illustrated in Fig. 
A-3, then the following relationships hold between the five components in the 
cfrCle: 

The sine of any component equals the product of either 
1. The tangents of the adjacent components, or 
2. The cosines of the opposite components 

For example, 
sin"= tan4»tan(90° - 4l)=cos(90° - A)cos(90° - 0) 

Quadrants for: the solutions are determined as follows: 
1. An oblique angle and the side opposite are in the same quadrant: 
2. The hypotenuse (side 0) is less than 90 deg if and only if 4» and" are in the 

same quadrant and more than 90 deg if and only if 4» and " are in different 
quadraD.ts. 

Note: Any two components in addition to the right angle completely determine the 
triangle, except that if the known components are an angle and its opposite side, 
then two distinct solutions are possible. 

Fig. A-3. Diagram for Napier's Rules for Right Spherical Triangles. Note that the complements are 
used for the three components farthest from the right angle. 
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The following formulas can be derived from Napier's Rules for right spherical 
triangles: . 

sin;\ = tanf/>cot c)= sin (Jsin A 

sin f/> = tanAcotA =sinlJsine) 

coslJ = cot c) cot A = cos f/> cos A 

cosA = tan f/>cot(J= cos A sin c) 

cos cl> = tan;\ cot(J = cos f/> sin A 

(A-IS) 

(A-16) 

(A-I7) 

(A-IS) 

(A-I 9) 

Napier's Rules are discussed in Section 2.3. Proof of these rules can be found in 
most spherical geometry texts, such as those of Brink [1942); Palmer, et 01., [1950); 
or Smail [1952). 

Napier's Rules for Quadrantal Spherical Triangles. A quadrantal spherical 
triangle is one having one side of 90 deg. If the five variable components of a 
quadrantal triangle are arranged in a circle, as shown in Fig. A-4, then Napier's 
Rules as quoted above apply to the relationships between the parts. (Note that the 
bottom component is minus the complement of e.) The rules for defining 
quadrants are modified as follows: 

l. An oblique angle (other than e, the angle opposite the 9O-deg side) and its 
opposite side are in the same quadrant. 

2. Angle e (the angle opposite the 9O-deg side) is more than 90 deg if and only 
if ;\ and f/> are in the same quadrant and less than 90 deg if and only if ;\ and 
</> are in different quadrants. 

Fig. A-4. Diagram for Napier's Rules for Quadrantal Spherical Triangles. Note that complements are 
used in the three components farthest from the 9O-deg side and the component opposite the 
9O-deg side is minus the complement of 9. 

The following formulas can be derived from Napier's Rules for quadrantal 
spherical triangles: 

sin A = tan cl> cot</> = sin esinA 

sin c) = tan AcotA=sin esinf/> 

cose= -cotf/>cotA= -cosc)cosA 

COSA = - tan cl>cote=cosAsinf/> 

cosf/>= - tan Acote=cos«PsinA 

A.3 Oblique Spherlcal Trlangles 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

(A-24) 

Three fundamental relationships-the law of sines, the law of cosines for 
angles, and the law of cosines for sides-hold for all spherical iriangles. These may 
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be used to derive Napier's Rules (Section A.2) or may be derived from them. The 
components of a general spherical triangle as used throughout this section are 
shown in Fig. A-S. 

Law of Sines. 

sin 8 sin" sin + 
sinS = sinA = sine) 

Law of Cosines for Sides. 

cosA=cos8cos++sin8sin+cosA 

Similar relationships hold for each side. 

Law of Cosines for Angles. 

cos A = - cos S cos e) + sin e sin e) cos" 

Similar relationships hold for each angle. 
8 

Fig. A-S. Notation.for Rules for Oblique Spherical Triangles 

(A-2S) 

(A-26) 

(A-27) 

Half-Angle Formulas. A spherical triangle is fully specified by either three 
&ides or three angles. The remaining components are most conveniently expressed 
in terms of haIf angles. Specifically, 

where 

and 

where 

sine 11- 8)sin( a-+) 
sin 8 sin + 

cos(1: - S)cos(1: - e) 
sinSsine) 

(A-2S) 
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Similar relationships may be found for the other trigonometric functions of half 
angles in most spherical geometry texts. 

General Solution of Oblique Spherical Triangles. Table A-I lists formulas for 
solving any oblique spherical triangle. In addition, in any spherical triangle. the 

Table A-I. Formulas for Solving Oblique Sphericai Triangles. See also Table A-2. 

8.)'.~ A 

9.1\,4> ). 

8. ~4> 
A 

9 

8. A. 4> 

1I.9.A }.. 

FORMULA 

. , ~ j linlo-6Isinlo-~) san-H,"" 
2 oin8oin~ 

cos! ).. j COl 11:- 9J COl 11:- 4>l 
2 oin9stn4> 

cos~ D COlli cos). + sin II lin). cos 4> 

sin r, tan 4> 
tanA· 

sin III-r
1
, 

COIe·sinA sin 4> COl 8 - cosll.cos4> 

lin A= sin 9sin). 
, sin 8 

cosesin~ 
sin (4)- ~ ,= I; 

I; cos A 

sin).=~ 
line 

lSECTION A·S PRESENTS AN ALTERNATIVE FORMULA. 

COMMENTS 

o.! III+)'+~) 
2 

UNIQUE SOLUTION' 

l:a.!.C9+A+4>l 
2 

UNIQUE SOLUTION' 

UNIQUE SOLUTION' 

tan r, a tan.). cos 4> 

UNIQUE SOLUTION 

UNIQUE SOLUTION 

tan r
2 

D tan A COS 8 

UNIQUE SOLUTION 

-r3·cos~tan). 

2 VALID SOLUTIONS 

2 VALID SOLUTIONS 

tan r4 • tan 9 cos ). 

2 VALID SOLUTIONS 

cot rl; = tan II. cos 8 

2 VALID SOLUTIONS 

2 VALID SOLUTIONS 

tan rS a cos II. tan 8 

2 VALID SOLUTIONS 
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following rules are sufficient to determine the quadrant of any component: 
1. If one side (angle) differs from 90 deg by more than another side (angle), it 

is in the same quadrant as its opposite angle (side). 
2. Half the sum of any two sides is in the same quadrant as half the sum of the 

opposite angles. 

A.4 Differential Spherical Trigonometry 

The development here follows that of Newcomb [1960], which contains a more 
extended discussion of the subject. 

Differential Relations Between the Parts of a Spherical Triangle. In general, 
any part of a spherical triangle may be determined from three other parts. Thus, it 
is of interest to determine the error in any part produced by infinitesimal errors in 
the three given parts. This may be done by determining the partial derivatives 
relating any four parts of a spherical triangle from the following differentials, 
where the notation of Fig. A-5 is retained. 

Given three angles and one side: 

-sinAsin4>dO+ dS + cos q, dA +cosAd4>=O (A-30) 

Given three sides and one angle: 

-dO + cos4>dA+ cos A df/' + sinf/'sinAdS =0 (A-31) 

Given two sides and the opposite angles: 

cosOsin4>dO-cosq,sinSdf/'+sinOcos4>d4>-sinq,cosSdS=O (A-32) 

Given two sides, the included angle, and one opposite angle: 

-sin4>dO+cos A sin Sdf/'+ sinAdS+ cos 4> $inOdA=0 . (A-33) 

As an example of the determination of partial derivatives, consider a triangle in 
which the three independent variables are the three sides. Then, from Eq. (A-31), 

as I cos A cot A 
~ A,9 = - sinf/'sinA = - sinf/' 

Infinitesimal Triangles. The simplest infinitesimal spherical triangle is one in 
which the en~e triangle is small relative to the radius of the sphere. In this case, 
Lh,: spherical triangle may be treated as a plane triangle if the three rotation angles 
remain finite quantities. If one of the rotation angles is infinitesimal, the analysis 
presented below should be used. . 

Figure A-6 shows a spherical triangle in which two sides are of arbitrary, but 
nearly equal, length and the included rot;ltion angle is infinitesimal. Then the 

Fig. A-6. Spherical Triangle With One Infmitesima1 Angle 
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change in the angle by which the two sides intercept a great circle is given by 

B~=~/-cJ>= 1800 -(A+~) 

=69cosA 

The perpendicular separation, a, between the two long arcs is given by 

a=69sinA 

(A-34) 

(A-35) 

If two angles are infinitesimal (such that the third angle is nearly ISO deg), the 
triangle may be divided into two triangles and treated as above. 

A.5 Haversines 

A convenient computational tool for spherical trigonometry is the haver sine, 
defined as 

haversine9 =hav9 =t(l-cos8) (A-36) 

The principal advantage of'the haversine is that a given value of the function 
corresponds to only one angle over the range from 0 deg to 180 deg, in contrast to 
the sine function for which there is an ambiguity as to whether the angle corres
ponding to a given value of the sine faIls in the range 0 deg to 90 deg or 90 deg to 
180 deg. Given the notation of Fig. A-5, two fundamental haversine relations in 
any spherical triangle are as foIlows: 

havA=hav(8-cf»)+sin8sincf»hav A (A-37) 

sine a- 8)sin(a-cf») 
havA= . 8 . S10 S1Ocf» 

(A-38) 

where 

a=i(8+A+cf» 

The first three formulas from Table A-I can be expressed in a simpler form to 
evaluate in terms of haversines, as shown in Table A-2. Most spherical geometry 

Table A-2. Haversine Formulas for Oblique Spherical Triangles 

KNOWN TO FORMULA COMMENTS 
FIND 

9.'A.~ A havAahaY >.- havI9-~ 
sin9 lint[> 

9,A.4> >. IIaV >. a ,-cos 1: COS 11: ~ AI 
lin 9 lin 4> 

ta! (Eh A+ 411 
2 

U.4> • haYt[>- haY (9-1.) + lin 9 lin >'hav 4> 
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texts (e.g., Brink [1942} or Smail (1952D carry a further discussion of haversine 
formulas. The function is tabulated in Bowditch's American Practical Navigator 

(I 966}. 
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APPENDIXB 

CONSTRUCTION OF GLOBAL GEOMETRY PLOTS 

Jomes R. Wertz 

Global geometry plots, as used !hroughout this book, are convenient for 
presenting results and for original work involving geometrical analysis on the 
celestial sphere. The main advantage of this type of plot is that the orientation of 
points on the surface is completely unambiguous, unlike projective drawings of 
vectors between three orthogonal axes. This appendix describes procedures for 
manually constructing these plots. Methods for obtaining computer-generated plots 

Fig. B-1. Equatorial Projection Grid Pattern 
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are described in Section 20.3 (subroutines SPHGRD, SPHPLT, and SPHCNV). 
Interpretation and terminology for the underlying coordinate system is given in 
Section 2.1. 

For most applications related to attitude geometry, the spacecraft is thought of 
as being at the center of the globe. Therefore, an arrow drawn on the globe's 
equator from right to left would be viewed by an observer on the spacecraft as 
going from left to right. This geometrical reversal is illustrated in Figs.· 4-3 and 4-4, 
which show the Earth as a globe viewed from space and as viewed on the 
spacecraft-centered celestial sphere. Similarly, Figs. 11-25 and 11-26 show the orbit 
of the Earth about the spacecraft as viewed by the spacecraft. This spacecraft
centered geometry allows a rapid interpretation of spacecraft observations and 
attitude-related geometry. 

In this book, we Use four basic globe grids showing the unit sphere from the 
perspective of infinitely far away (i.e., half the area of the sphere is seen on each 
globe) as seen by observers at 30-deg latitude intervals from the equator to the 
pole. The four grids llIe shown in Figs. B-1 throudt B-4 and are intended for 

Fig. B-2. 3O-Deg Inclination Grid Pattern 
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reproduction by interested users, (For accurate construction, the globes must be 
reproduced to the same size as nearly as possible. Therefore, reproductions of the 
different projections should be made at the same time on the same equipment.) 
Coordinate lines are at IO-deg intervals in latitude and longitude except within 10 
deg of the poles, where the longitude intervals are 30' deg. The globe originals are 
handdrawn and are accurate to about I deg in the central regions and 2 deg near 
the perimeter. 

The most important feature of the globes for the purpose of plot constniction 
is that the geometry of figures constructed on the sphere does· not depend on the 
underlying grid pattern. For example, if we take the globe from Fig. B-2. we may 
draw a small circle of 2O-deg radius centered on the pole and an equilateral· right 
spherical triangle between the pole and the equator as shown in Fig. 8-S(a). (Any 
parallel of latitude is a small circle and the equator or any meridian of longitude is 
a great circle.) Having constructed the figure, we may rotate or tilt the underlying 
grid pattern without !lffecting the geometrical construction. Thus, in Fig. B-S(b) the 

Fig. 8-3. 6O-Deg Inclination Grid Pattern 
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underlying coordinate grid has been rotated about 120 deg counterclockwise and 
the triangle/circle pattern has been left unchanged. Thus. in the new coordinate 
system (viewed by rotating the page 120 deg clockwise). we have constructed a 
small circle with a 2O-deg angular radius centered at about 21 deg below the 
equator. By rotating the underlying grid an appropriate amount. we could center 
the small circle at any desired latitude. 

Because of the symmetry of the underlying sphere. we may not only rotate the 
grid pattern, but also interchange the underlying grids among the four shown in 
Figs. B-1 through 8-4. For example, Fig. B-5(c) shows the circle/triangle pattern 
with the underlying grid changed to the equatorial view and rotated somewhat 
counterclockwise. (Again, the grid may be rotated to any convenient angle.) The 
meridian lines on the ·grid pattern, along with the imaginary meridians between 
those that are shown, are great circles. Therefore, in Fig. 8-5(c), the dashed line is a 
great circle passing through one vertex of the triangle and tangent to the small 
circle. Finally, in Fig. B-5(d), we have left the constructed figures unchanged and 
returned the underlying grid pattern to its original orientation from Fig. B-5(a). 

Fig. 84. Polar Projection Grid Pattern 

'., " 
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(b) 

(e) (d) 

Fig. B-S. Construction of Global Geometry Plots. See text for explaDation. 

Thus; by using the grid pattern of Fig. B-1, we have constructed a great circle 
tangent to a small circle of 20-deg radius about the pole or, equivalently, at an 
inclination of 70 deg to the equator. 

In practice, this construction is performed by flfSt drawing the original figure 
of B~5(a). and then placing it on top of the equatorial view on a light table so that 
both. grids can be seen. After rotating the grid patterns relative to each other until 
the desired orientation for the dashed curve is obtained, we can trace the dashed 
curve directly on the grid of Fig. B-5(a). This general procedure for drawing great 
and small circles by superposing grids on a light table (or window) and rotating 
them until the desired orientation is obtained has been used to construct nearly all 
the globe figures in this book. Note that whenever figures are constructed using 
superposed grids, the centers of the two grids must be on top 'of each otner or, 
equivalently, the perimeters of the two grids must be superposed. This principle of grid 
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superposition can be appl\ed to the construction of various figures. as discussed 
below. 

Constructing Great Circles Through Two Points. Figure B-1 is the basic figure 
for constructing all great circles on the celestial sphere. because all possible great 
circles are represented by the meridian lines on the figure and the imaginary 
meridians between the ones drawn. To construct a great circle between any two 
points of any of the globes, place the globe with the two points on top of a copy of 
Fig. B-1. Keeping the perimeters of the two .figures superposed, rotate the globes 
relative to each other until the two points lie over the same meridian on the 
underneath grid. This meridian is then the great Circle defined by the two points. 
Note that this great circle is most precisely defined when the two points are nearly 
90 deg apart and is poorly defined if the two points are nearly 0 deg or 180 deg 
apart. 

Measuring Arc Lengths. The grid pattern in Fig. B-1 can also be used to 
measure the arc-length separation between any two points on the sphere. The 
parallels of latitude (i.e., the horizontal straight lines in Fig. B-1) are separated by 
10 deg of arc along each meridian. Therefore, to determine the arc length between 
two points, superpose the globe with the two points over a copy of Fig. B-1 and 
rotate it until the meridian forming the great circle between the two points is found. 
The arc length is then determined by using the parallels of latitude along the 
meridian as a scale. For example, consider the dashed great circle in Fig. B-5(c). 
Because the triangle is a right equilateral triangle, the distance between any vertex 
and the opposite side must be 90 deg. This may be confirmed by counting the 
parallels of latitude along the dashed great circle. Also, the diameter of the small 
circle in Figs. B-5(b) and (c) may be measured along the meridian passing through 
the center of the circle. In both subfigures, the measured angular diameter is 40 
deg, as required. Note that arc length must be measured along a great circle; it 
cannot be measured along parallels of latitude or other small circles. 

Constructing Great Circles From General Criteria. In general, any great circle 
is constructed by first finding two points on it and then drawing the great circle 
between these points. For example, to draw a great circle at a given inclination to 
the equator, first pick the intercept point on the equator. Measure alorig the 
equator to the right or the left (depending on the slope desired) 90 deg and then up 
from the equator (along a meridian) an angle equal to the inclination. This point 
and the intercept point on the equator define the great circle. This method could 
have been used to construct the dashed great,circle in Fig. 8-5(c) directly without 
considering the tangent to the small circle. 

Figure B-6 illustrates the procedure for constructing a great circle through a 
given point, A, perpendicular to a given great circle, AA'. Locate the point A' alorig 
the given great circle 90 deg from A by the method described above. Measure along 
the meridian through A' 90 deg in either direction to the point B. The great circle 
through A and B is perpendicular to AA'. ' 

Constructing Small Circles. This construction has already been demonstrated 
by the example of Fig. 8-5. The method desCribed there may be used to construc~ 

i 
" 

;;. 
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Fig; 8-6. Construction of Great Circle AB Perpendicular to Great Circle AA' 

small circles whose center is on the perimeter, 30 deg from the perimeter, 60 deg 
from the perimeter, or at the center. Small circles centered on the perimeter are 
straight lines on the plot and small circles centered in the middle of the plot are 
circles. The radius of the small circles constructed by this method is the colatitude 
(distance from the pole) of the parallel of latitude chosen on the underlying 
coordinate grid. For most purposes, one of these four sets of small circles is 
sufficient. They have been used for all of the constructions in this book. If it is 
necessary to construct a small circle at an intermediate arc distance from the 
perimeter, first construct a small circle of the desired radius at the desired latitude 
and as near the desired longitude as possible. Transform each point on this circle 
along a parallel of latitude a distance in longitude equal to the difference in 
longitude between the desired center and the constructed center. This procedure is 
illustrated in Fig. B-7. 

Fig. B-7. Transforming a siDan Circie in Longitude 

.; , 



APPENDlXC 

MATRIX AND VECfOR ALGEBRA 

C.I Defmitions 
C.2 Matrix Algebra 
C.3 Trace, Determinant, and Rank 
C.4 Matrix Inverses and Solutions to Simultaneous Linear 

Equations 
C.s Special Types of Square Matri~ Matrix Transforma-

tions 
C.6 Eigenvectors and Eigenvalues 
C.1 Functions of Matrices 
C.B Vector Calculus 
C.9 Vectors in Three Dimensions 

C.l Definitions 

F. L. Markley 

A matrix is a rectangular array of scalar entries known as the elements of the 
matrix. In this book, the scalars are assumed to be real or complex numbers. If all 
the elements of a matrix are real numbers, the matrix is a real matrix. The matrix 

[AU 
AI2 

A," ] 
A21 All Aln 

A= • : =[Aij] (01) 

AmI Am2 Amn 

has m rows and n columns, and is referred to as an m X n matrix ·or as a matrix of 
order mXn. The equation A = [AijJ should be read as, "A is the matrix whose 
elements are Aij." The first subscript labels the rows of the matrix and the second 
labels the columns. 

Two matrices are equal if and only if they are of the same order and all of the 
corresponding elements are equal; i.e., 

A = B if and only if Aij= By ;i= I, ... ,m ;j= I, ... ,n (C-2) 

An n X n matrix is caIled a square matrix and is usually referred to as being of order 
n rather than n X n. 

The transpose of a matrix is the matrix resulting from interchanging rows and 
columns. The transpose of A is denoted by AT, and its elements are given by 

AT =[ (AT)ij] =[ Aji] (C-3) 

As an example, the transpose of the matrix in Eq. (C-l) is 

. [AU A21 

AI2 A22 
A T = . 

A ln Aln 

AmI] Am2 

Amn 

I 
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It is clear that the transpose of anm X n matrix is an n X m matrix, and that the 
transpose of a square matrix is square. The transpose of the transpose of a matrix is 
equal to the original matrix: 

(C-4) 

The adjoint of a matrix. denoted by A t, is the matrix whose elements are the 
complex conjugates of the elements of the transpose of the given matrix.· i.e .• 

At==[(At)ij]=[ Aj1] (C-5) 

The adjoint of the adjoint of a matrix is equal to the original matrix: 

(At)t =A (C-6) 

The adjoint and the transpose of a real matrix are identical. 
The main diagonal of a square matrix is the set of elements with row and 

column indices equal. A diagonal matrix is a square matrix with nonzero elements 
only on the main diagonal. e.g .• 

jJ (C-7) D= 

o o 
The identity matrix of a given order is the diagonal matrix with all the elements 

on the main diagonal equal to unity. It is denoted by I, or by In to indicate the 
order explicitly. 

A matrix with only one column is a column matrix. An n X I column matrix 
can be identified with a vector in n-dimensional space, and we shall indicate such 
matrices by boldface letters. as used for vectors.t A matrix with only one row is a 
row matrix; its transpose is a column matrix, so we denote it as the transpose of a 
vector. The elements of it row or column matrix will be written with only one 
subscript; for example, 

(C-8) 

A set of m n X I vectorS stil• i = 1,2, ...• m, is linearly independent if and only if the 
only coefficients a;, i= 1,2, •..• m, satisfying the equation 

m 

~ a;8(;) = a.B(I)+ a
2
8(2) + .•. +amB(m)=O 

;= I 

-The word adjoint is sometimes used for a different matrix in ihe literature. 

(C-9) 

tStrictly speaking, a vector is an abstract mathematical object, and the column matrix IS a concrete 
i realization of it, the matrix elements being the components or the vector in some coordinate system. 
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are a;=O. i= 1.2, ...• m. There can never be more than n linearly independent n X I 
vectors. 

Co2 Matrix Algebra 

Multiplication of a matrix by a scalar is accomplished by mUltiplying each 
element of the matrix by the scalar. i.e., 

(C-IO) 

Addition of two matrices is possible only if the matrices have the same order. The 
elements of the matrix sum are the sums of the corresponding elements of the 
matrix addends, i.e., . 

A + B =[Aij+ Bij] 

Matrix subtraction follows from the above two rules by 

A - B =A +( -I)B= [Aij- By] 

(C-ll) 

(C-12) 

Multiplication of two matrices is possible only if the number of columns of the 
matrix on the left side of the product is equal to the number of rows of the matrix 
on the right. If A is of order I X m and B is m X n, the product AB is the I X n 
matrix given by 

Matrix multiplication is associative 

A(BC)=(AB)C 

and distributive over addition 

A(B+C)=AB+AC 

but is not commutative. in general, 

AB';'BA 

(C-13) 

(C-14) 

(C-15) 

(C-16) 

In fact, the products AB and BA are both defined and have the same order only if 
A and B are square matrices. and even in this case the products are not necessarily 
equal. For the square matrices A = n ~] and B = [~ :]. for example, we have 

AB=[!~ ;~]';'BA=[~ !:] 
If AB= BA. for two square matrices. A and B. we say that A and B commute. One 
interesting case is diagonal matrices. which always commute. 

The· adjoin~ (or transpose) of the product of two matrices is equal to the 
product of the adjoints (or transposes) of the two matrices taken in the opposite 
order: 

(C-17) 
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(C-18) 

This result easily generalizes to products of more than two matrices. 
Multiplying any matrix by the identity matrix of the appropriate order, on the 

left or the right, yields a product equal to the original matrix. Thus, if B is of order 
mXn, 

(C-19) 

The product of an n X m matrix and an m-dimensional vector (an m X I matrix) is 
an n-dimensional vector; thus, 

A similar result holds if a row matrix is multiplied on the right by a matrix, 

yT =XTAT = [ ~ AjiXj] (C-2I) 
J=I 

An important special case of the above is the multiplication of a I X n row 
matrix (on the left) by an n X I column matrix (on the right) which yields a scal~, 

n 

s=yTX= ~ Xj}} 
j=1 

(C-22) 

For real vectors, this scalar is the inner product, or dot product, or scalar product of 
the vectors X and y. For vectors with complex components, it is more convenient 
to define the inner product by using the adjoint of the left-hand vector rather than 
the transpose. Thus, in general, 

(C-23) 

Note that, in general, 

Y·X=(X·Y)· (C-24) 

This definition reduces to the usual definition for real vectors, for which the inner 
product is independent of the order in which the vectors appear. Two vectors are 
orthogonal if their inner product is zero. The inner product of a vector with itself 

n n 

X·X= ~ Xi· X/= l': jXt!2 
i=rJ i-I 

(C-2S) 

is never negative and is 'zero if and only if all the elements of X are zero, i.e., if 
X = O. This product will be denoted by X2 and its positive square root by jXj or by 
X, if no confusion results. The scalar jXj is called the norm or magnitude of the 
vector, X, and can be thought of as the length of the vector. Thus, with our 
definition of the inner product, 

jXj = 0 if and only if X = 0 (C-26) 

.. 
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which would not be true if we defined the inner product using the transpose rather 
than the adjoint. because the square of a complex number generally is not positive. 

If we mUltiply an n X I row matrix (on the left) by a I x m matrix (on the 
right). we obtain an n X m matrix. This leads to the definition of the outer product 
of two vectors 

(C-27) 

If the vectors are real. the adjoint of Y is the transpose of Y. and the ijth element of 
the Quter product is X; 1). 

Matrix divisIon can be defined in terms of matrix inverses, which are discussed 
in Section C.4. . ' 

Col Trace, Detenninant, and Rank 

Two useful s'talar quantities, the trace and the' determinant, can be defined for 
any square matrix. The rank of a matrix is defined for any matrix. 

The trace of an n X n matrix is the sum of the diagonal elements of the matrix 
n 

trA:: ~ A;; (C-28) 
; e= J 

The trace of a product of square matrices is unchanged by a cyclic permutation of 
the order of the product 

n n n 

tr(ABC)= ~ ~ ~ AijBjkCk;=tr(CAB) 
;=lj=lk=1 

However. tr(ABC) =1= tr(ACB), in general. 
The determinant of an n X n matrix is the complex number defined by 

(C-29) 

(C-30) 

where the set of numbers {PI.P2 .... 'P"} is a permutation, or rearrangement, of 
{I,2 .... ,n}.Any permutation can be achieved by a sequence of pairwise inter
changes. A permutation is uniquely even or odd if the number of interchanges 
required is even or odd, respectively. The exponent p in Eq. (C-30) is zero for even 
permutations and unity for odd ones. The sum is over all the n! distinct permuta
tions of {1.2 •.. :,n}. It is not difficult to show that Eq. (C-30) is equivalent to 

n 
detA = ~ (- I);+j A.·M .. 

~ IJ I) 
(C-31) 

j-I 

for any fixed i= 1,2 ..... n, where Mij is the minor of A!J' defined as the" determinant 
of the (n-I)x(n-I) matrix formed by omitting the ith row andjth column from 
A. This form provides a convenient method for evaluating determinants by 
successive reduction to lower orders. For example, 

123 456 =lxI56\_2X\461+3XI45\ 
789 89 79 78 

=(5 x 9 -8x6)- 2(4X 9-7 x6)+3(4X 8-7 X 5)=0 (C-32)· .... ··.· . 
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The determinant of the product of two square matrices is equal to the product of 
the determinants 

det(A B) = (detA)(detB) 

The determinant of a scalar multiplied by an n X n matrix is given by 

det(sA)=s"detA 

The determinants of a matrix and of its transpose are equal:. 

detAT =detA 

Thus, the determinant of the adjoint is 

detAt=(detA)* 

(C-33) 

(C-34) 

(C~35) 

(C-36) 

The determinant of a matrix with all zeros on one side of the main diagonal is 
equal to the product of the diagonal elements. 

The rank of a matrix is the order of the largest square array in that matrix, 
formed by deleting rows and columns, that has a non vanishing determinant. 
Clearly. the rank of an m X n matrix cannot exceed the smaller of m and n. The 
matrices A, AT. At, AtA, and AAt all have the same rank. 

C.4 Matrix Inverses and Solutions to Simultaneous Linear Equations 

Let A be an m X n matrix of rank k. An n X m matrix B is a left inverse of A if 
BA = I". An n X m matrix C is a right inverse of A if AC= 1m. There are four 
possible cases: k is less than both m and n. k = m = n, k = m < n, and k = n < m. If k 
is less than both m and n, then no left or right inverse of A exists.· If k = m = n, 
then A is nonsingular and has a unique inverse. A - I, which is both a left and a right 
inverse: 

A - IA = AA - I = J (k=m=n) (C-37) 

A nonsingular matrix is a square matrix with nonzero determinant; all other 
matrices are Singular. If k = m < n, then A has no left inverse but an 'infinity of right 
inverses. one of which is given by 

(k=m<n) (C-38) 

If k = n < m, then A has no right inverse but an infinity of left inverses, one of 
which is 

(k=n<m) (C-39) 

A l or A R is called the generalized inverse or pseudoinverse of A .. 
Consider the set of m simultaneous linear equations in n unknowns; 

XI.XZ,···.X .. ; 

·It is possihle to define a pseudoinverse for a general matrix, which in this case is neither a left nor a 
right inverse. In the other three cases, the pseudoinverse is identical with A -I. A R. and A L. respectively. 
The results on solutions of simulJaneous linear equations can be generalized with this definition 
(Wiberg, 1971). 
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AX=Y (C-40) 

If k = m = n, then X = A - Iy is the unique solution to the set of equations. It follows 
that a nonzero solution to AX=O is possible only if A is singular, i.e., 

AX=O for X.,. 0, only if detA =0 (C41) 

If k = m < n, there are more unknowns than equations, so there are an infinite 
number of solutions. The solution with the smallest norm, lXI, is 

X=ARy (C42) 

If k = n < m, there are more equations than unknowns; therefore, no solution exists, 
in general. However, the vector X that comes closest to a solution, in the sense of 

minimizing IA X - YI, is 
(C-43) 

Note that although AA L :I- 1
m

, it is possible that AA Ly = Y for the particular Y in 
Eq. (C-40). In this case, Eq. (C-40) has a unique solution given by Eq. (C-43). 

It is easy to see that if A is nonsingular, then A -I is nonsingular also and 

(C-44) 

Likewise, if A is nonsingular, then AT and At are nonsingular and their inverses are 

given by 

(ATfl=(A-1)T 

(Atfl =(A -l)t 

(C45) 

(C-46) 

If two matrices, A and B, are nonsingular, their product is nonsingular also; and. 
_ the inverse of the product is the product of the inverses, taken in the opposite 

order: 
(C47) 

This result easily -generalizes to products of more than two matrices. 
Various algorithms exist for calculating matrix inverses; several are described 

by Carnahan, et al., [l9(i21 and by Forsythe and Moler [1967]. An example of a 
subroutine for this purpose is INVERT, described in Section 20.3. 

C5 Special Types of Square Matrices, Matrix Transformations 

A symmetriC matrix is a square matrix that is -equal to its transpose: 

(C48) 

A skew-symmetric or antisymmetric-matrix is equal to the negative of its transpose: 

(C49) 

Clearly, a skew-symmetric matrix must have zeros on its main diagonal. An ' 
example of a skew symmetric matrix is 0 in Section 16.1. A Hermitian matrix is - -

1 
,'I 
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equal to its adjoint: 

At=A, (C-SO) 

A real symmetric matrix is a special case of a Hermitian matrix. An orthogonal 
matrix is a matrix whose transpose is equal to its inverse: 

(C-SI) 

A unitary matrix is a matrix whose adjoint is equal to its inverse: 

(C-S2) 

A real orthogonal matrix is a special case of a unitary matrix. The product of two 
unitary (or orthogonal) matrices is unitary (or orthogonal)., This result generalizes 
to products of more than two matrices. A siInilar result generally does not hold for 
Hermitian or symmetric matrices. A normal matrix is a matrix that commutes with 
its adjoint 

AtA =AAt 

Thus, both Hermitian matrices and unitary matrices are special cases of normal 
matrices. 

By the rules for determinants of products and adjoints, it is easy to see that if 
A is unitary 

IdetAl2= 1 (C-53) 

Thus, detA is a complex number with absolute value unity. SiInilarly, if A is 
orthogonal, 

detA= ± 1 (C-S4) 

An orthogonal matrix with positive determinant is a proper orthogonal matrix; an 
orthogonal matrix is improper if its determinant is negative. 

Let X be an n-dimensional vector and let A be an n X n matrix. Then AX is 
another n-diInensional vector and can be thought of as the transformation of X by 
A. If X and Y are two vectors, the inner product of AX and AY is 

(AX)· (AY) = (AX)t(AY)=xtAtAY 

If A is unitary, 

(AX)·(AY)=X·Y (C-5S) 

The dot product is unchanged if both vectors are transformed by the same unitary 
matrix. This result with X = Y shows that the norm of a vector is unchanged, too, so 
,the unitary matrix can be thought of as performing a rotation of the vector in 
n-dimensional space, thereby preserving its length. If the vectors are real, the 
rotations correspond 'to proper real orthogonal matrices. 

The transformations of a matrix are defined analogously to the transforma
tions of a vector, but they involve inutliplying the matrix on both the left and right 
sides, rather than only on the left side. Several kinds of transformations are 
defined. If B is nonsingular, then 

(C-S6) 
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is a similarity transformation on A. We say that As is .fimilar to A. A special case 
occurs if B is unitary. In this case we have a unitary transformation on A, 

Au= BtAB 

A second special case occurs if B is orthogonal, in which case 

Ao= BTAB 

defines an orthogonal transformation on A. 

(C-57) 

(C-58) 

It follows directly from the invariance of the trace to cyclic permutations of 
the order of matrix products, Eq. (C-28), that 

and 

tr As =trAu =tr Ao =tr A 

Also, by the rules on determinants, 

detAs=detAu=detAo=detA 

It is easy to see that 

(C-59) 

(C-60) 

(C-61) 

(C-62) 

Thus, Au is Hermitian (or unitary) if A is Hermitian (or unitary), an~ Ao is 
symmetric (or orthogonal) if A is symmetric (or orthogonal). 

C.6 Eigenvectors and Eigenvalues 

If A is an n X n matrix and if 

AX=AX (C-63) 

for some nonzero vector X and scalar A, we say that X is an eigenvector of A and 
that A is the corresponding eigenvalue. We can rewrite .Eq. (C-63) as 

(A -Al)X=O 

so we see from Eq. (C-4I) that A is an eigenvalue of A if and only if 

det(A -Al)=O 

(C-64) 

(C-65) 

This is called the characteristic equation for A.1t is an nth-order equation for A and 
has n roots, counting multiple roots according \0 their multiplicity. 

Because the equation AX=AX is unchanged by multiplying both sides by a 
scalar s, it is clear that sX is an eigenvector of A if X is. This freedom can be used 
to normalize the eigenvectors, i.e., to choose the constant so that X· X = I. From n 
eigenvectors of A, X(I), i= 1,2, ... ·,n, we can construct the matrix 

xl') x12) XP) xln) 

P=. 
xli) xl2) xP) xl") 

. (C-66) 

x(J) 
n 

X (2) 
n x (3) 

" 
x(n) 

" 
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Matrix multipliclltion and the eigenvalue equation (Eq. (C-63» give 

",xP) "2xI2) A"xln) 

AP= 
",xlI) "2xl2) A"xln) 

=PA .. (C-67) 

" x(1) , n " X(2) 2 n A"x!n) 

where A is the diagonal matrix 

", 0 

il 0 "2 A= 

0 0 

(C· 68) 

The matrix P is nonsingular if and only if the n eigenvectors are linearly independ
ent. In this case, 

(C-69) 

and we say that A is diago1llllizable by the similarity transformation P -'AP. If A. is 
a normal matrix, we can choose n eigenvectors that are orthonormal, or simul
taneously orthogonal and normalized: 

X(i).X(;)=8I={ 0 i::/: j 
, I i=j (C-70) 

When the eigenvectors are Qrthonormal, P is a unitary matrix and A is diagona1iz
able by the unitary transformation A=ptAP. Any square matrix can be brought 
into Jordan canonical form [Hoffman and Kunze, 1961] by a similarity transforma
tion 

(C-71) 

where the matrix J has the eigenvalues of A on the main diagonal and all zeros 
below the main diagonal. It follows from Eqs. (C-71), (C-S9), and (C-60) that the 
trace of A is equal to the sum of its eigenvalues, and the determinant of A is equal 
to the product of its eigenvalues; i.e., 

n 

trA= I ~ (C-72) 

(C-73) 

Many algorithms exist for finding eigenvalues and eigenvectors of matrices, 
several of which are' discussed by Carnahan, et al., [1969) and by Stewart [1973). 
Using Eq. (C-6I), we can see that the eigenvalues of Hermitian matrices are real 
numbers and the eigenvalues of unitary matrices are complex numbers with 
absolute value unity. Because the characteristic equation of a real matrix is a 
polynomial equation with real coefficients, the eigenvalues of a real matrix must 
either be real or must occur in complex conjugate pairs. 
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The case of a real orthogonal matrix deserves special attention. Because such a 
matrix is both real and unitary, the only possible eigenvalues are + 1, -I, and 
complex conjugate pairs with absolute value unity. It follows that the determinant 
of a real orthogonal matrix is ( - 1)'" where m is the multiplicity of the root A = - 1 
of the characteristic equation. A proper real orthogonal matrix must have an even 
number of roots at A= -I, and thus an even number for all A =F 1, because 
complex roots occur in conjugate pairs. Thus, an n X n proper real orthogonal 
matrix with n odd must have at least one eigenvector· with eigenvalue + 1. This is 
the basis. of Euler's Theorem, discussed in Section 12.1. 

It is also of interest to establish that the eigenvectors of a real symmetric 
ma~x can be chosen to be real. The complex conjugate of the eigenvector 
equation, Eq. (C-63), is AX*=U*, because both A and A are real. Thus, X* is an 
eigenvector of A with the same eigenvalue as X. Now, either X=X*, in which case 
the desired result is obtained, or X =F X*. In the latter case, we can replace X and 
X* by the linear combinations X + X* and i(X - X*), which are real eigenvectors 
corresponding to the eigenvalue A. Thus, we can always find a real orthogonal 
matrix P to diagonalize a real symmetric matrix A by Eq. (C-69). 

C.7 Functions of Matrices 

Let f(x) be any function of a variable x, for example, sinx or expx. We want 
to give a meaning to f(M), where M is a square matrix. If f(x) has a power series 
expansion about x = 0, 

(C-74) 

then we can formally (i.e., ignoring questions of convergence) define f(M) by 
00 

f(M)=: ~ anMn (C-75) 
n=O 

with the same coefficients an' It is clear that f(M) is a square matrix of the same 
order as M. If M is a diagonalizable matrix, then by Eq. (C-69), 

M=PAP-' (C-76) 

where P is the matrix of eigenvectors defined by Eq. (C-66), and A is the diagonal 
matrix of eigenvalues. Then, 

Mn=(PAP-t)n=PAnp- t (C-77) 

and 

feAt) 0 

o I f(M)=P( f anAn )p- t= P 
0 f(A2) 0 

p- t (C-78) 
n-O 

f(~) 0 0 

If M is a diagonaIizable matrix, Eq. (C-78) gives an alternative definition of f(M) 
that is valid when f(x) does not have a power series e~pansion, and agrees with Eq. 
(C-7S) when a power series expansion exists. 

j 

1 ;' 
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As an example. consider exp(!nt), where n is the 4x4 matrix introduced in 
Section ] 6.1. 

"'J 
o 

Matrix multiplication shows that n 2= -«(o):+(o)~+(o)DI= -(0)21. so it foUows that 

nuc = ( -1)"(0)21<1 

for all nonnegative k. Now, 

GO 

=1 ~ 
k=O 

where 

n 2k+ I =(.-li'(o)2kn 

c=cos( i(o)t) 
S=Sin( i(o)t) 

",=(0)//(0) ;= 1.2,3 

(C-79) 

This example shows that the matrix elements of f(M) are not the functions f of the 
matrix elements of M. in general. . 

C.8 Vector Calculus 

Let !fJ be a scalar function of the " arguments X I .X2> •••• Xn• We consider·the 
arguments to be the components of a column vector 

X=[ X1,X2> ••• ,Xn ]T 
The " partial derivatives of !fJ with respect to the elements of X are the components 
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of the gradient of cp. denoted by 

:~ =[ :: . :: ..... :: ] 
I 2 ,. 

(C-80) 

Note that acp/ax is considered a I X n row matrix. If we eliminate the function cp 
from Eq. (C-80). we obtain the gradient operator 

aax =[ -d~1 • a~2 ..... a~,. ] (C-81) 

The matrix product of the I X n gradient operator with an n X I vector V yields 
a scalar. the dit'l!rgence of V. which we denot~ by 

(C-82) 

The dot is used to emphasize the fact that the divergence is a scalar. although the 
usage is somewhat different from that in Eq. (C-23). 

The mil partial derivatives of an m-dimensional vector V with respect to 
X I'X 2 ••••• X,. can be arranged in an m X n matrix denoted by 

av _[ aYj 1 
ax = ax) J (C-83) 

This is like an outer product of V and a/a x; however. the analogy is not perfect 
because the gradient operator appears on the right in the matrix product sense and 
?n the left in the operator sense. . 

C.9 Vectors in Three Dimensions 

In this section. we only consider vectors with three real components. For 
three-component vectors. three products are defined: the dot product, the outer 
product, and the cross product . . The cross product. or vector product. is a vector 
defined by 

[ 

V2V3- V3 V2] 
UxV= V3V I ·- V I V3 

V I V2 - V 2 V I . 

The following identities are often useful: 

U-V= VI VI+ V2V2+ U3V3= VVcos9 

IUxVI= VVsin9 

where 9(0 ~ 9 E;; 180°) is the angle between U and V. In addition. 

UxV=-VxU 

U·(UXV)=O 

U·(VXW)=V·(WXU)=W·(UXV)= VI 

WI 

(C-84) 

(C-85a) 

(C-85b) 

(C-86) 

(C-87) 

(C-88) 

, '~ , 
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I "J'(V XW)r= (U x V). [(V x W) x (W x U») 

= U2V2W2 - u2(V. W)2 - V2(U· W)2 - W2(U· V)2 

+2(U'~(V'W)(w,U) . 

U X (V XW)= V(U· W)~~(U· V) 

0= U XCV XW)+ Vx (WX U) + Wx (U XV) 

(U x V)'(WXX)=(U' W)(V. X)-(V' X)(V' W) 
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(C-89) 

(C-90) 

(C-91) 

(C-92) 

The following identity provides a means of writing the vector W in terms of U, V, 
and UXV, if UxV+O: <- . 

[(UX V)·(UX V) ]W= [(VX tJ)·(VxW)]U + [(V X V)·(U X W)]V 

+ [.W·(UXV)]UXV 
If A is a real orthogonal matrix, 

(AU)X(AV)= ±A(UxV) 

(C-93) 

(C-94) 

where the positive sign holds if A is proper, and the negative sign if A is improper. 
The tangent of the rotation angle from V to W about U (the angle' of tl.te 

rotation in the positive sense about U that takes V x U into a vector parallel to 
WxU) is 

taDe=~_'_IU_IU_._(V_X_W) __ __ 

U2(V' W)- (U· V)(U· W) 
(C-95) 

The quadrant of e is given by the fact that the numerator is a positive constant 
multiplied by sin e, and' the denominat~r is the same positive constant multiplied 
by cose. If U, V, and Ware unit vectors, e is the same as the rotation angle on the 
celestial sphere defined in Appendix A. Equation (C-95) is derived in Section 7.3. 
(See Eqs. (7-57).) 
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APPENDlXD 

QUATERNIONS 

Lawrence FaRon, III 

The quaternion representation of rigid body rotations leads to convenient 
kinematical expressions involving the Euler symmetric parameters (Sections 12.1 
and 16.1). Some important properties of quaternions are summarized in this 
appendix' following the formulation of Hamilton [1866] and Whittaker [1961]. 

Let the four parameters (q.,q2,q),q4) form the componen~ of the quaternion, 
q, as follows: 

q=q4+ ;q. + jq2+ kq) 

where i,j, and k are the hyperimaginary numbers satisfying the conditions 

i2=/=k2= -I 

ij= - ji=k 

jk= -kj=i 

ki= -ik=j 

The conjugate or inverse of q is defined as 

q·=q4- iq.-jq2- kq) 

(0-1) 

(0-2) 

(D-3) 

The quantity, q4' is the real or scalar part of the quaternion and iq. + jq2 + kq) is the 
imaginary or vector part. 

A vector in three-dimensional space, U, having components V., V2, V) is 
expressed in quateillion notation as a quaternion with a scalar part of zero, 

(04) 

If the vector q corresponds to tht" vector part of q (i.e., q=iq.+jq2+kq3)' then an 
alternative representation of q is 

q=(q."q) (D-5) 

Quaternion multiplication is performed in the same manner as the multiplica
tion of complex numbers or algebraic polynomials, except that the order of 
operations must be taken into account because Eq. (0-2) is not commutative. As 
an example, consider the product of two quaternions 

q" = qq' = (q4 + iql + jq2 + kq)( q4 + ;q, + jq2 + kq;) (0-6) 

Using Eq. (0-2), this reduces to 

11_ '( , , '+ ') q -.qq = -q.q,-q2q2-q3q3 q4q4 

+ i( q,q4 + q2q; - q3q2 + q4q,) 

+ j( - Q,93 + q2Q4 + Q3Q, + q4q2) 

+ k( 9.92 - 929, + q3Q4 + Q49;) . (0-7). 
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If q'=(q~,q'), then Eq. (0-7) can alternatively be expressed as 

q" = qq' = (q4q~ - q 'q',q~' + q~+ q X q') 

The length or norm of q is defined as 

Iql=yqq· =yq*q ="q:+q~+d+q~ 
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(0-8) 

(0-9) 

If a set of four Euler symmetric parameters corresponding to the rigid body 
rotation defined by the transformation matrix, A (Section 12.1), are the com
ponents of the quaternion, q, then q is a representation of the rigid body rotation. 
If q' corresponds to the rotation matrix A', then the rotation described by the 
product A' A is equivalent to the rotation described by qq'. (Note the inverse order 
of quaternion multiplication as compared with matrix multiplication.) 

The transformation of a vector U, corresponding to multiplication by the 
matrix A, 

U'=AU 

is effected in quatemion algebra by the operation 

U'=q*Uq 

(0-10) 

(0-11) 

See Section 12.1 for additional properties of quatemions used to represent rigid __ 
body rotations. 

For computational purposes, it is convenient to express quaternion multiplica
tion in matrix form. Specifically, let the components of q form a four-vector as 
follows: 

'-[El (0-12) 

This procedure is analogous to expressing the complelt number c = a + ib in the 
form of the two-vector, 

In matrix form, Eq. (0-7) then becomes 

[
fa'l [f4 q; fi' = -qi f4 
f" q' - ql 
f~ . -q; -qi 

(0-13 ) 

Given the quatemion components corresponding to two successive rotations, Eq. 
(0-13) conveniently gives the quatemion components corresponding to the total 
rotation. 
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APPENDIXE 

COORDINATE TRANSFORMATIONS 

Gyanendra K. 1tmdon 

E.I Cartesian. Spherical. and Cylindrical Coordinates 
E.2 Transformations Between Cartesian Coordinates 
E.3 Transfonnations Between Spherical Coordinates 

E.l Cartesian, Spherical, and Cylindrical Coordinates 

The components of a vector, r, in cartesian, spherical, and cylindrical 
coordinates are shown in Fig. E-I and listed below. 

Cartesian 

Spherical 

Cylindrical 

(x,y,z) 

(r,O,+) 

(p,+,z) 

I~--------------------~I------------~~Y 

I 
I '" , I ./ x 

,P I / 
" 1,/ 

--------- ,~ ... 
y 

Fig. E-I. Components of a Vector. r, in Cartesian (x,y,z), SphCrlc:a1 (r,II,</>), and Cylindrical (p,<p'z) 
Coordinates 

The declination, 8, used in celestial coordinates is measured from the equatorial 
plane (x-y plane) and is related to 0 by the equation 

8 =90° - 0 (E-l) 

The components in cartesian, spherical, and cylindrical coordinates are related by 
the following equations: 

x""rsinOcos+ 

y=rsinOsin+ 

=pcos+ 

""psin+ 

! ~. 
I, ' 

" 
.~ 

j 
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z = rcosO =z (E-2c) 

r=(x2+y2+z2)1/2 = (p2 + Z2) 1/2 (E-2d) 

{ 1/2} (J = arccos z /(x2 + ,2 + Z2) = arc tan(p / z) 0<; 8 <; 1800 (E-2e) 

q,= arctan(y / x) =q, 0<;c[><360° (E-2f) 

p=(x2+ y~I/2 =rsinO (E-2g) 

The correct quadrant for q, in Eq. (E-2f) is obtained from the relative signs of x 
andy. 

E.2 Transformations Between Cartesian Coordinates 

If rand r' are the cartesian representations of a vector in two different 
cartesian coordinate systems. then they are related by 

r'=Ar+a (E-3) 

where a represents the translation of the origin of the un primed system in the 
primed system and the matrix A represents a rotation. For most attitude .work, 
a=O. 

The transformation matrix A (called the attitude matrix or direction cosine 
matrix in this book) can be obtained by forming the matrix product of matrices for 
successive rotations about the three coordinate axes as described in Section 12.1. 
The elements of matrix A are direction cosines of the primed axes in the unprimed 
system and satisfy the orthogonality condition. Because A is an orthogonal matrix, 
its inverse transformation matrix wil! be its transposed matrix; symbolically, 

!'A ~I=AT (E-4) 
-. t!',~., ·,~-:·:~·:.L;~ I, -. 

For many applications, the definition of the direction cosine matrix in terms of 
the orthogonal coordinate unit vectorscin the two coordinate systems, 

·li,c:ii'·Y i'·z 1 
A .=L;;:t.;;,r;; :::! (E-5a) 

is useful for computations.As~·~~ri.PIe~ietthe primed coordinate system have 
its coordinate axes aligned with :t6ij~aaCfaft~tO-Earth vector R, the component of 

,z) V perpendicular to R, and thQ ~i.bitli'o6n~Vector RxV /IRXVI; where V is the 
spacecraft velocity: . . . '.' 

ial 

·1) 
py 

2a) 

2b) 

Then, substituting Eq. (E-5b) 
not require the evaluation of . 

Euler's Theorem. Euler's the~t~1II 
body can be expressed as a Qll!;\dU:O\j:g1i'jiS()j~! 

Therefore, the most general" 

(E-5b) 

eXlne!~~i~ln for A which does 

finite rotation of a rigid 
about some fixed axis. 

rotation by some angle. 
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4', about some fixed axis, e. The axis e is unaffected by the rotation and, therefore, 
must have the same components in both the primed and the unprimed systems. 
Denoting the components of e bye., ez, and e» the matrix A is 

[ 

c:os~+e«I-c:os~) elez(l-c:os~)+e,sin~ ele3(1-c:os~)-ezSin~ 1 
A." eleZ<l-c:os~)- e,sin~ c:os~+ eKl-c:os~) eze3(1-c:os~)+elsin~ (E~) 

ele3(1-c:os~)+ezSin~ eze3(1-c:os~)- elsin~ c:os.+el<I-c:os~) 

In this case, the inverse transformation matrix may be obtained by using Eq. 
(E-4) or by replacing 4' by - 4', in Eq. (E-6), that is, a rotation by the same amount 
in the opposite direction about the axis e. 

Euler Symmetric Parameters. The Euler symmetric parameters, q. through 
q4> used to represent finite rotations are defined by the following equations: 

.4' 
q.=e.sID2' 

.4' 
qz=ezslD2' 

.4' 
q3=e3sID2' 

q4=COS ~ (E-7a) 

Oearly, 

t/.+ q~+ q~+ q~= 1 (E-7b) 

The transformation matrix A in terms of Euler symmetric parameters is 

(
q~-q~-~+q~ 2(q.qZ+q3q4) 2(q.q3-92q4) ] 

A = 2(q.q2- 9394) -q~+q~- ~+ q~ 2(q2q3+q.q4) 

2(q.q3+qz94) 2(q2q3-q.q4) -q~-q~+q~+q~ 

(E-8) 

The inverse transformation matrix in this case may be obtained by use of Eq. (E-4), 
or by replacing q., q2' and q3 by - q., - q2> and - q». respectively, in Eq. (E-8) and 
leaving 94 unaltered. . 

The Euler symmetric parameters may be regarded as components of a qua-
termon, 'I, defined by . 

(E-9) 

where i, j, and k are as defined in Appendix D. The multiplication rule for 
successive rotations represented by Euler symmetric parameters is given in Ap
pendix D. The Euler symmetric parameters in terms of the 3-1-3 Euler angle 
rotation ~, 0, t/I (defined below) are as follows: 

q. =sin(O /2)cos«~- t/I)/2) 

9z=sin(0 /2)sin«~- t/I)/2) 

q3 = cos( 0/2)sin« + + 1/1)/2) 

q4=cos(0/2)cos«~+t/I)/2) (E-IO) 



t) 

)r 

?
le 

10) 

E.2 TRANSFORMATIONS BElWEEN CARTESIAN COORDINATES 763 

Gibbs Vector. The Gibbs vector (components g" gz, and g3) representation 
(see Section 12.1) for finite rotations is defined by 

g, ==q.! q4=e,tan(1I»/2) 

g2 == q21 q4 = e2tan(1I» 12). 

g3 == q31 q4 = e3tan(1I» 12) (E-ll) 

The transformation matrix A in terms of the Gibbs vector representation is as 
follows: 

2(g,g2+g3) 

1-g~+ g~- g~ 

2(gZg3- gil 

The inverse of A can be obtained in this .~~~. by the method of Eq. (E-4), or by 
replacing gj by - gj in Eq. (E-12). 

Euler Angle Rotation. The Euler angle rotation (4),9,tf) is defined by succes
sive rotations by angles 4>, 9, and tf, respectively, about coordinate axes i, j, k 
(Section 12.1). The i-j-k Euler angle rotation means that the first rotation by angie 
4> is about the i axis, the second rotation by angle 9 is about the j axis, and the third 
rotation by angle tf is about the k axis. There are 12 distinct representations for the 
Euler angle rotation which divide equally into two types: 

TYPE 1. In this case, the rotAtions take place successively about each of the 
three coordinate axes. This type has a singularity at 9 = ± 90 deg, because for these 
values of 9, the 4> and tf rotations have a similar effect. 

TYPE 2. In this case, the first and third rotations take place about the same 
axis and the second rotation takes place about one of the other two axes. This type 
bas a singularity at 9=0 deg and 180 deg, because for these values of 9, the 4> and tf 
rotations have a similar effect; 

Table E-I gives the transformation matrix, A, for all of the 12 Euler angle 
representations. The 3-1-3 Euler angle representation is the one most commonly 
used in the literature. The Euler angles 4>, 9, and tf can be easily obtained from the 
elements of matrix A. A typical example from each type is given below. 

TYPE 1: 3-1-2 Euler Angle Rotation 

4>=arctan( - A2.! A 22) 

O=arcsin(A23) 

tf=arctan( - A'31 Al3) 

(E-13a) 

(E-13b) 

(E-13c) 

The correct quadrants for 4> and tf are obtained from the relative signs of the 
elements of A in Eqs. (E-l3a) and (E-l3c), respectively. 

TYPE 2: 3-1-3 Euler Angle Rotation 

4>= arc tan(A3,1 - Al2) 

O=arccos(A33) 

tf == arc tan( A 131 A 23) 

(E-14a) 

(E-14b) 

(E-I4c) 



TYPE -I 
EULER ANGLE 

REPRESENTATION 

1·2·3 

1·3·2 

2·3·1 

2· I· 3 

3·1·2 

3·2 ·1 

Table E·l. The Attitude Matrix, A, for the 12 Possible Euler Angle Representations (Sasine, 
Cacosine, lax axis, 2ay axis, 3az axis) 

TYPE-2 
MATRIX A EULER ANGLE MATRIX A 

REPRESENTATION 

[- C~+SI/IC» -C~+St/l!¥ 

1 [ 
C8 SO!¥ 

-::cs -s~t¥+C~ S~C4>+C. 1·2·1 S\!ISO c:~-s\llC8t¥ 

~ C8C4> C~ -S~-C\IIC8t¥ 

[- C~C4>+S\!I!¥ CI/IS9t¥ -S\ltC4> 

1 [ : .. SOC4> 

-so C8C4> C8t¥ ,·3·1 C\IIC8C4> -SI/It¥ 

s\1tC8 S\ltSOC4> -C\lt!¥ S~t¥'CI/IC4> S~ -S\ItC8C4' -Cl/lt¥ 

[- so ~ 

1 [ 
C\ItC4>-S\ItC8t¥ S\ltSO 

-C~C4> + S\lt!¥ C\11C8 C\ltSOt¥+S\ItC4> 2" ·2 SO!¥ C8 

SI/ISOC4> + C~t¥ -s\1tC8 -SI/lSOt¥ • C\ltC4> S\ItC4>+C\ItC8t¥ -C~ [ _.- S\1tC8 -C\lt!¥ + SI/ISOC4> 

1 ["-- c\ltSO 

-:+C"'SO!¥ C\1tC8 SlIIt¥ + ClllSOC4> 2·3·2 -SOC4> C8 

-so C8C4> S\ItC8C4> + Cl/lt¥ S~ 

[-- c •. + S",SOC4> -S\1tC8 

1 
[ , .. - C.+S\ItC8C4> 

-:+ClllSOt¥ 

C8C4> so 3·1·3 -S\ltC4>-C\ltC8t¥ -5. + CIIIC8C4> 

S.-C\ltSOC4> C\1tC8 S8t¥ -st/C4> 

[ - C8t¥ -so 

1 
[ ,,-~ ... C~+S\ItC4> 

. -C~'SojISOC4> CI/IC$' s~t¥ S\1tC8 3·2 ·3 -SI/ICBC4> -CojI!¥ -S~+C\ltC4> 

SlIIt¥ + C\ltSOC4> -SI/IC$ + ClIISOt¥ C\1tC8 SOC4> SO!¥ 

-SOC4> 

1 
C\!It¥ + SjlC8C4> 

-SI/It¥ + C\llCOC4> 

- 1 CjIC~+S~ 

-S~+C\ItC4> 

--~l SOC4> 

-SI/It¥ + Cr/1C8C4> 

~---l 
-:!¥+CI/IC$ 

S~ 

1 
CI/iSO 

C8 

-c~so 

1 S~ 

C8 

I 

I 

--..I 

~ 

~ 
52 z 
~ 
;; 

I 
rIO 

~ 
j 

~:'':-'a j i.UTfW---W-_iT'''-''Iifi "-iiTllAt ·····r· f"'f • .if"· 'l"!iI:jri(Utilr'-Tiinw 'b ... O:I .• ,~""I!'[:~!71 ~,~.ifiiTf.in;C.rn,~. p.;::,-: po 'UWi"Tt,>* 
~~;:"~"'~'-~:lr· ~ -3§E~>~"~~,:,.>-~_, ."~~~._ -,~:':": -.~,. [.-~ :';r~ 
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The correct quadrants for I/> and 1/1 are obtained from the relative signs of the 
elements of A in Eqs. (E-14a) and (E-I4c). respectively. 

Kinematic Equations of Motion. For convenience, the kinematic equations of 
motion (Section 16.1) for the 12 possible Euler angle representations are given in 
Table E-2. The kinematic equations of motion for other representations of the 
attitude matrix can be found in Section 16.1. 

Table E-2. Kinematic: Equations of Motion for the 12 Possible Euler Angle Representations (I = x 
axis, 2= y axis, 3= z axis; "'I' "'2' foI) are c:omponents of the angular veloc:ity along the body 
x, y. z axes.) 

AXIS INDEX VALUES 

SEQUENCE KINEMATIC EQUATIONS OF MOTION 
I J K 

· 1-2-3 1 2 3 4J = 'wI Cos lj> - "'J sin lj> ) me 9 
TYPE 1 

2-3-1 2 3 1 8=wJcOSrJ!+w1Iinl/l 

3-1-2 3 1 2 ~ = w K - 'wI cos lj> - w J sin lj> ) tan 9 

1-3-2 1 3 2 ;= 'wI coslj> + "'J sin lj> )sec9 

3-2-1 3 2 1 ; = '" J cos lj> - WI lin lj> 

2-1-3 2 1 3 ~ = "'K + 'wI cos lj> + w J sin lj» tan 9 

1-2-1 1 2 3 • = 'wK cos lj> + 101 J sin lj> ) esc 9 
TYPE 2 

2-3-2 2 3 1 6 = 101 J COS lj> - w K sin I/J 

3-1 - 3 3 1 2 ~ = "'1- 'wK cos lj> + w J sin lj» cot 9 

1-3-1 1 3 2 ; = - 'wK coi lj> - 101 J lin lj> I esc 9 

3-2-3 ·3 2 · 1 8 = wJ cos lj> + w K sinlj> 

2-1-2 2 1 3 ~ = WI + 'wK cos lj> - 101 J sin lj> ) cot 8 

[.3 Transformations Between Spherieal Coordinates 

Figure E-2 illustrates the spherical coordinate system on a sphere of unit 
radius defined by the north pole. N, and the azimuthal reference direction, R. in 
the equatorial plane. The coordinates of point Pare (1/>,0). A new coordinate 
system is defined by the north pole, N', at (1/>0>00> in the old coordinate system. The 
new azimuthal reference is at an angle, 1/>0 relative to the· NN' great circle_ The 
coordinates (1/>',9') of P in the new system are given by: 

cos 9' = cos 90cos 9 + sin 9aSin 9 cos( I/> -1/>0) 

sin {I/>' -1/>0)=sin(I/>-l/>o)sin9 /sin9' (E-15) 
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where f) and 0' are both defined over the range 0 to 180 deg. and (.p-.p0) and 
W - 4»0) are both in the range 0 to 180 deg or in the range 180 to 360 deg. 
Simplified forms of Eqs. (E-IS) in two special cases are as follows: 

Case 1: .p=4»0=90° 

cosO' = coslJocosO + sin lJoSin IJ sin.po 

cos.p' = - cos .poSin f) / sin f)' 

Fig. B-2. Transformation Between Spherical Coordinate Systems NR and N'R' 

Case 2: 4»=4»0=0 

cos 0' = cos Oocos f) + sin OaSin 0 cos.po 

sin 4»' = - sin 4»aSin S / sin 0' 

(E-16) 

(E-17) 

The most common spherical inertial coordinates for attitude apalysis are the 
celestial coordinates (a,8) defined in Section 2.2. The right ascension, a, and the 
declination, 8, are related to 4» and 0 by 

a. =4» 

8=90°-0 (E-18) 

j' 

f 
I;'·· 

I' j.: 
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TIlE LAPLACE TRANSFORM 

Gerald M. Lerner 

Laplace transformation is a technique used to relate time- and frequency
dependent linear systems. A linear system is a collection of electronic components 
(e.g., resistors, capacitors, inductors) or physical components (e.g., masses, springs, 
oscillators) arranged so that the system output is a linear function of system input. 
The input and output of an electronic system are commonly voltages, whereas the 
input to an attitude control system is a sensed angular error and the outpUt is a 
restoring torque. Most systems are linear only for a restricted range of input. 

Laplace transformation is widely used to solve problems in electrical engineer
ing or control theory (e.g., attitude control) that may be reduced to linear 
differential equations ~ith constant coefficients. The Laplace transform of a real 
runction, f( t), defined for real t > 0 is 

I: (f(I));:: F(s) = Lao f(t)exp( - st)dt 
0+ 

(F-l) 

where 0+ indicates that the lower limit of the integral is evaluated by taking the 
limit as t~O from above. The argument of the Laplace transform, F(s), is complex, 

s;:: CJ + i", 

where i;::Ff. For most physical applications, t and", denote time and frequency, 
respectively, and CJ is related to the decay time. 

The inverse Laplace transform is 

I iC+iao e -1(F(s»;::f(I)= -2 . F(s)exp(st)ds 
'TTl C-iao 

(F-2) 

where the real constant C is chosen such that F(s) exists for all Re(s) > C, that is, 
to the right of any singularity. 

Properties of the Laplace Transform and the Inverse Laplace Transform·. The 
Laplace transform and its inverse are linear operalors, thus 

I: (af(l) + bg(l» = oe(f(t»+bl:(g(l» 

::aF(s)+bG(s) 

I: -1(oF(s)+ bG(s»= ol:-f(F(s»+ bl:-I(G(s» 

= of( I) + bg(t) 

where 0 and b are complex constants. 

• For further details, see DiStefano, et al., [1967] 

(F-3) 

(F-4) 
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The inilial value Iheorem relates the initial value of f(t). f(O+). to the Laplace 

transform. 

(F-5) 

and the final value Iheorem. which is widely used to determine the steady-state 
response of a system, relates the final value of f( I). f( (0). to the Laplace trans
form,· 

f(oo)= lims.f(s) 
9 .... 0 

(F-6) 

The Laplace and inverse Laplace transformations may be scaled in either the time 
domain (time scaling) by , 

e (f(t/ a»= aF(as) 

or the frequency domain (frequency scaling) by 

e -1(F(as»= f(t/ a)/ a 

The Laplace transform of the time-delayed function. f(t - to)' is 

e (f(t -/0» =exp( - sto)F(s) 

(F-7) 

(F-8) 

(F-9) 

where f(t- to) = 0 for t <; to- The inverse Laplace transform of the frequency shifted 
function. F(s - so). is 

f -1(F(s- so»=exp(so/)f(t) (F-W) 

Laplace transforms of exponentially damped. modulated, and scaled functions are 

f(exp( - at)f(/» = F(s+ a) 

e (sinwtf(t» = [F(s- iw)- F(s+ iw) ]/2i 

e(coswtf(t»= [F(s- iw)+ F(s+ iw) ]/2 

f(t'1(t»=( _l)n dd;n F(s) 

f(f(t)/t)= ir$JF(u)du 
9 

(F-Ila) 

(F-Ilb) 

(F-lIc) 

(F-lId) 

(F-Ile) 

The Laplace transform of the product of two functions may be expressed as the 
complex convolution integral, 

I lC+ir$J 
f (f(t)g(t» = 2'1Ti C-ir$J F(w)G(s- w)dw (F-12) 

Multiplying the Laplace transform of a function by s is analogous to differentiating 
the original function; thus. . 

.The final value theorem is valid provided that sF(s) is analytic on the imaginary axis and in the right 
half of the s-plane; i.e .. it applies only to stable systems. 
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df 
f -'(sF(s» =dl + f(O)8D(/) (F-13) 

Dividing the Laplace transforin of a function by s is analogous to integrating the 
original function; thus, 

f -'(F(s)/s)= ff(U)dU (F-14) 

The inverse Laplace transform of a product may be expressed as the convolution 
integral 

e -'(F(S)G(s»=l' !(/)g(/-T)d-r=l' g(t)f(t-T)dT 
o· o· 

(F-15) 

which may be inverted to yield 

F(s)G(s) = flt f(t)g(t-T)dT= flt g(t)f(t-T)dT 
o· o· 

(F-16) 

A short list of Laplace transforms is given in Table F-I; detailed tables are 
given by Abramowitz and Stegun [1968J, Korn and Korn [1968J, Churchill [l958J. 
and Erdelyi, et al., [1954J. 

Table F-I. Laplace Transforms 

g(d GIS' glt, GIS' 

df SFIS'-tlO·, - u It-B,"t ."" l-asll' -
cit 

elf" ~ FIS'-. &,,""1 flO·' 
, 11.2 

-
_S"-2 ~ \_ ••• dIn-II d'" ," "'/~+I 

cit O· cIt"-1 0+ ," rla+lI/~1 
t 

.""I-at' 10 tI~'d> FISIIS 
I/IS+o' 

,".,." I-at' I/IS+o,n+l 

'"lit' 1_'" d" FIS' 
sinW! w/lr +w2, 

dS" cas wt sIr • ... 2, 

fI.1I , [ Flu'du 
."" I-at'llin wt w 111S+aJ2 .... 2, 

_,." I-at' cas WI 1S+aJ I 11S • .i2 + ... 2, • 

lIt/a' a F CaS, Ie,." '-atl - exp l-bt' , 11&-1>' 11 I (S+aJ IS ... , , 

11.-.0 ' ."" 1-.oS' FIS' 
le.XI> l-at' - b.,." l-b.1I I 1_, SlIIS+aJ IS ... , , 

IIinh latl a/lr-a2, 
e,." 'tlo'l'tI FIS-So' _tat, S/lr_.2, 

'0 ',-a'" _,-as, 

NOTE: FIS' g t tltI .. ~ '-Itl cit; GIS! .lgltl."p I-It' cit 

10+ Jo• 
" DENOTES A POSITIVE INTEGER; a AND b DENOTE POSITIVE REAL NUMBERS. 

"'0 IS THE DIRAC DELTA FUNCfION. 

tu IS HEAVISIDE'S UN'T 'ITEP FUNCfION WHICH IS DEFINED BV u g 0 FOR, < a. u -I FOR, > .. 
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Solution of Linear DIfferential Equations. Linear differential equations with 
constant coefficients may be solved by taking the Laplace transform of each term 
of the differential equation, thereby reducing a differential equation in t to an 
algebraic equation in s. The solution may then be transformed back to the time 
domain by taking the inverse Laplace transform. This procedure simplifies the 
analysis of the response of complex physical systems to frequency-dependent 
stimuli, such as the response of an onboard control system to periodic disturbance 
torques. 

The solution to the linear differential eq~ation 

(F-17) 

with an = I and forcing function x(t) is given by 

(t)=f -I[ Xes) ]+f -If .f ;f a;s;-I-'Y~k) 1 y res) _._-_I_k~_O ____ _ 
. res) 

(F-IS) 

n 

where Xes)=: f(x(t», Hs)=: ~ a;s; is the characteristic polynomial of Eq. (F-I1) 
and ;=0 

are the initial conditions. 
Any physically reaSQnable forcing function, including impulses, steps, and 

ramps, may be conveniently transformed (see Table F-I). The analysis of the 
algebraic transformed equation is generally much easier than the original differen-
tial equation. For example, the steady-state solution, f( 00), of a differential equa-
tion is obtained from the Laplace transform by using the final value theorem, Eq. 
(F-6). ' . 

The first term on the right-hand side of Eq. (F-IS) is the forced response of the 
system due to the forcing function and the second term is the free response of the 
system due to the initial conditions. The forced response, f -1(X(s)/Hs», consists 
of two parts: transient and steady state. 

Solving the differential equation (Eq. (F-I1» is equivalent to finding the 
inverse Laplace transform of the algebraic functions of s in Eq. (F-IS). One 
technique involves expresSing rational functions of the form 

m n 

R(s)= ~ bls;/ ~ a;s;EN(s)/Hs) 
. iasO ;-0 

(F-19) 

as a sum of partial fractions (n ~ m) using the fundamental theorem of algebra. 
The characteristic polynomial, Hs), ~ay be factored as 

, 
r(s)= II (s+p/)"" (F-20) 

1=1 



r 
"~" 

1 
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where -Pi is the ith zero of Hs) with multiplicity mi and 
, 
~~=n (F-21) 
i_I 

The partial fraction expansion is 

,,,,, elk 
R(s)=b,,+ ~ ~" Ie 

i-I k .. 1 (S+Pi) 
(F-22) 

where 

and b,,=O unless m=n. The coefficients ell are the residues of R(s) at the poles 
- Pi' If no roots are repeated, Eq. (F-22) may be rewritten as 

where 

~ ell 
R(s)=b,,+ ~

i-I S+PI 

ell =(s+ PI)R(s)ls __ ~ 

(F-23) 

The zeros of rcs) may be determined using various numerical methods (DiStefano; 
et al., 1967]. 

The inverse Laplace transform of expressions in the form of Eq. (F-23) may be 
obtained direcdy from Table F-I. Other techniques for' cOmputing inverse Laplace 
transforms include series expansions and differential equations [Spiegel, 1965). 

Example: Forced Harmonic Oscillator. The equation describing a I-degree
of-freedom gyroscope (Sections 6.S and 7.8) is 

d7f + D dO + KO = .f.~t) (F-24) 
dt2 IG dt IG IG 

where IG is the moment of inertia of the gyroscope about the output axis, D is the 
viscous damping coefficient ~bout the output axis, K is the restoring spring 
constant about the output axis, L is the angular momentum of the rotor, and fl(t) is 
the angular velocity about the input axis which is to be measured (see Fig. 6-45). 

We assume that the input angular velocity is sinusoidal· with amplitude, A, 
and frequency, "',,; i.e., 

~t)=Acos"' .. t 

The solution of Eq. (F-24) is given by (F-lS) as 

=e- I [ X(S)] e- I [ DOo/ IG +sfJo+90 ] 
~(t) r(s) + {(s) 

(F-2S) 

(F-26) 

-This is not as severe a restriction"as it might seem because lillY physically reasonable r.(t) may be 
expanded in a Fourier series. The result for a general r.(1) is then obtained by linear superposition. 
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. where 
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r(S)=S2+ Dsl IG+ KIIG 

X(s)=t' (ALcosWel I IG )= ALs[ (S2 +w;)IG r I 
80= 81,=0 

(j = d81 
0- dl ,=0 

The characteristic polynomial, Hs), may be factored as 

r(s)=(s+ PI)(S+ P2) 

where 

PI=(D+lV4KIG-D2 )/(21d 

Ap.F 

(F-27) 

P2=(D-,"V4KIG-D2 )/(2lG ) (F-28) 

and we assume 4KIG- D2>O. 
Substitution of Eq. (F-28) into Eq. (F-26) yields 

8(1)=E -I[ ALsIIG ] + f -I[ D801 IG+
S8

0+
Oo] (F-29) 

(S2+w;)(s+ PI)(S+ P2) (s+ PI)(S+ P2) 

The second term on the right-hand side of Eq. (F-29) is given in Table F-l as 

[ 
D8011G + sOo + 90 ] ( I ) . e- I 

( )( ) = -_- {(D8011G+80)[exp(-PII)-exp(:--P21)] 
S+PI s+P2 PI P2 

(F-30)-

The first term on the right-hand-side of Eq. (F-29) may be expanded in partial 
fractions as 

[ 
s ] exp( - iw"l) exp(iw"l) 

e-
I 

(S2+ w;)(S+PI)(S+P2) = 2(PI-iWe)(P2-iwe) + 2(PI+ iWe)(P2+ iwe) 

I { Plexp( - PII) P2exP( - P21) } 
+ ( ) 2 2 - 2 2 (F-31) 

PI- P2 PI +We P2 +we 

Equation (F-30) and the last term on the right-hand-side of Eq. (F-31) are the 
transient response of the system .to the initial conditions and the forcing function. 
The transient response decays with a time constant and frequency given by 

[Re(PI)] -I = 'To = 2ld D 

(F-32) 
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For t-+oo, the steady-state solution, the first two terms on the right-hand side of Eq. 
(F-31) dominate 9(t). These two terms may be rewritten as 

. IGAL [(K 2) DW,.] hm 9(t)= 2 2( 2 ) 2 4 -I -w, cosw,t+ -1-smw .. 1 
t;!>TO K +w, D - 2K1G + IGw" G G 

(F-33) 

where 

Dw, 
tan." = 2 

K-IGw .. 

Several features of gyroscope design are evident from these equations: 
I. The output response of the system to a constant or low-frequency input, 

we~O, is linearly related to the input for 1»"'0; for example, 

lim fJ(I):::;:<,A(L/ K) (t».,.o) 
,., • .-.0 . 

2. The viscous dam~ing constant, .l);~.~ ~ sufficiently ~igh so that . .,.o !s 
small compared With the gyro,sampij,l.8'penod. However, if the dampmg IS 

too high, the system output beco~ frequency dependent and lags the 
inpuL , 

3. Systems with negligible damping,' D~O, resonate at input frequencies near 
the characteristic frequency of the system, 

wo=VK/IG 

Integral Equations. Integral equations have the general form 

y(t) =f(t) + f.Uzk(u,/)y(u)du 
"I 

(F-34) 

where k(u,t) is the kernelof the equation. The limits of the integral may be either 
constants or functions of time. If ul and u2 are constants, Eq. (F~34) is called a 
Fredholm equation, whereas if u. is a constant and u2 = I, then Eq~ (F-34) is called a 
Volterra equation of .the second kind (Kornand Korn, 1968J. 

If the functionaJ forin of the kernel may be expressed as 

k(U,/)=k(u- t) (F-35) 

then the Volterra equation 

y(/)= f(/) + L'k(U- t)y(u)du (F-36) 

may be solved by Laplace transform methods. Taking the Laplace transform of Eq. 
(F-36) and rearranging, we obtain 

Y(s)= F(s)/(I- K(s» (F-37) 



774 THE LAPLACE TRANSFORM Ap. F 

where Y(s)= f (y(t», F(s)= f (j(t», and K(s)= f (k(t», which may be solved for 
y(t) by taking the inverse Laplace transform. 
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APPENDIXC 

SPHERICAL HARMONICS 

John Aiello 

Laplace's Equation, V2U=O, can be written in the spherical coordinate system 
of Section 2.3 as: 

a2u + ~ au + ~ a 2
u + cot(J au + --L a 2u =0 (0-1) 

ar2 r ar r2 a9 2 r2 a9 rsinlg a+2 

If a trial substitution ofU(r,9,+)= R(r) Y(9,+) is made, the folloWing equations are 
obtained through a separation of variables: 

d2R(r) dR(r) ... 
r2~ +2r~ -n(n+ I)R(r)=O (G-2) 

a 2 Y(9,+) aY(9,+) I a 2 Y(9,+) 
2 +cot9 "(J + ~ 2 +n(n+ I)Y(B,+)=o (G-3) 

a9 I] sm-u a+ 

where n (n + I) has been chosen as the separation constant. Solutions to Eq. (G-2) 
are of the form 

R(r)=Arn+ Br-(n+l) (G-4) 

Thus, solutions to Laplace's Equation (Eq. (G-I» are of the form 

n=0,1,2, ... , (0-5) 

These functions are referred to as solid spherical harmonics, and the Y(9,+) are 
known as surface spherical harmonics. We wish to define U over a domain both 
interior and exterior to a spherical surface of radius r, and to have U continuous 
everywhere in the domain and to assume prescribed values UO<9,+> on the surface. 
Under these conditions, Eq. (G-5) with B=O gives the form of U for the interior 
region of the sphere and with A = 0 represents its form in the exterior region. 

To determine the surface spherical harmonics, the trial substitution 

Y(9.+)= P(cos9)~(+) (G-6) 

is made in Eq. (G-3). 
Multiplying by sinlg / P~ and choosing a separation constant of m2 yields 

d
2
P(cos9) dP(cos9) [ m2 ] 

d9 2 +cot9 d9 + n(n+ 1)- sin2fl P(cosB)=O 

d2~(+) 
-- +m2~(+)=0 

d+2 

The solutions to Eq. (G-8) are readily found to be 

(0-7) 

(G-8) 
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~(q,)= Ccosmq,+ Ssinmq, (G-9) 

in which m must be an integer, because $(q,) is required to be a single valued 
functio~. Equation (G-7) can be rewritten substituting ~ = cosO as, 

~[(I-X2)dP]+[n(n+I)-~]P=0 (G-IO) 
dx dx l-x2 

which is the generalized Legendre equation (Jackson, 1962]. For m=O, the solu
tions to Eq. (G-IO) are called Legendre polynomials and may be computed from 
either Rodrigues'. formula 

P (x)= _I_(~)" (x2 -1)" , .. 
" 2"n! dx 

(G-II) 

or from a reCurrence relation convenient for computer use [Arfken, 1970]. 

PlI+ t(x)=2xP,,(x)- P,,_t(x)- [xP,,(x)- P,,_t(x) ]/(n -t-I) (G-12) 

Rodrigues' formula can be verified by direct substitution into Eq. (G-IO), and the 
recurrence relation can be verified by mathematical induction. When m:f: 0, 
solutions to Eq. (G-IO) are known as associated Legendre junctions (of degree, n, 
and order, m), and may be computed by [Yevtushenko, et al., 1969] 

(l-x 2t/2 d,,+m(x2 -1)" 
Pnm(x) = 2"n! dx,,+m (G-J3) 

or by [Heiskanen and Moritz. 1967] 

I (2n -2k)' 
p (x)=2-"(I_x 2)m/2 ~ (_I)k . x,,-m-2k (G-14) 

nm "=0 k!(n-k)!(n-m-2k)! 

where I is either (n- m)/2 or (n- m-I)/2, whichever is an integer. Table G-I lists 
the associated Legendre functions up to degree and order 4 in terms of cosO 
[Fitzpatrick, 1970].· 

Table 0-1. Explicit Forms of Associated Legendre Functions Through Degree n=4 and Order m=4 

i.'::: 0 1 2 3 • 
0 1 

1 cos. SINfI : 
2 leos' •. !. lSIN 8 COS 8 ! JSIN2 n 

2 2 

3 i (cor ~ . i cos .) ~SIN (J (COS
2

9 -~) 15 S1N2 0 cos 0 15SIN3 9 

• ~(COS4 •. !cos2 •• 1) ~ SINO(COS
3

S -.; COS9) 105 2 ~ 2 ') 105 51N3 8 cos 9 105SIN4 , 
87m 

251N 0 050 -; 

• Because Eq. (0-10) is a homogeneous equation in P, it does not define the normalization of P. 
Equations (0-11) and (0-13) define the conventional Neumann normalization, but other normalizations 
are used (ace Appendix H or Chapman and Bartels 11940D. 

. , 
, ~ . 

, 
, r· 
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Using Eq. (G-I3), the functions Pnm can be shown to be orthogonal; that is, 

f +1 2 (q+m)! 
-1 Ppm(x)Pqm(x)dx= 2q+ I (q_ m)! 1)1 (G-15) 

where I): is the Kronecker delta. 
h is now possible to write the complete solution to Laplace's equation as 

':Ie n+ 1 n 

U(r,fJ,cp)= .~ (-;) L [Cnmcosm</>+ Sn,,;sinmcp ]Pnm(cosfJ) (G-16) 
n .. O m=O 

describing the potential exterior to a spherical surface of radius a. Customarily, Eq. 
(G-16) is written in the form 

co )n+1 
U(r'fJ'CP)= L (;- JnPnO(cosfJ) 

n=O 

00 n n+ I 

+ L L (;-) [Cnmcosmcp+Snmsinmcp]Pnm(cosO) 
n=l m=1 

(G-I7) 

where I n = C"o' Terms for which m = 0 are called zonal harmonics and the J" are 
zonal harmonic coefficients. Nonzero m terms are called tesseral harmonics. or, for 
the particular case of n = m. sectoral harmonics. 

Visualizing the different harmonics geometrically makes the origin of the 
names clear. The zonal harmonics. for example. are polynomials in cosfJ of degree 
n. with n zeros. meaning a sign change occurs n times on the sphere (00 <: fJ <: 1800 ). 

and the sign changes are independent of 9. Figure G-I shows the "zones" 
(analogous to the temperate and tropical zones on the Earth) for the case of 

Fig. G·\. Zones for P6(cos9) Spherical Harmonics 
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P6(COS(J). The tesseral and sectoral harmonics have n- m zeros for 0° < 0< 180°, 
and 2m zeros for 0° <; + <; 360°. Figure G-2, the representation of P63(COSO)cos3+, 
illustrates the division of the sphere into alternating positive aR~ negative tesserae. 
The word "tessera" is Latin for tiles, such as would be used in'·a mosaic. When 
n = m, the tesseral pattern reduces to the "sector" pattern in Fig. G-3. 

Fig. G-2. P~c:osB)COS3+ Showing Alternating 
Positive and Negative Tesseral Har
monics 

Fig. G-3. PM<c:osB)COS6+ Showing Tessera1 Pat· 
tern Reduc:ed to Sectoral Pattern 

For a more detailed discussion of spherical harmonics, see Hobson [1931]. 
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APPENDlXH 

MAGNETIC FIELD MODELS 

Michael PInt 

Spherical Harmonk Model This appendix presents some computational as
pects of geomagnetic field models. A more qualitative description of the field 
characteristics is given in Section 5.1. As discussed there, the predominant portion 
of the Earth's magnetic field, B, can be represented as the gradient of a scalar 
potential function, V, i.e., 
. ' .. 

B=-VV (H-I) 

V gn be conveniently represented by a series of spherical harmonics, 

k )n + I n 
V(r.9,1f» = a L (7 L (g:;'cosmlf>+h:;'sinmlf»P:;'(9) 

n=J m=O 
(H-2) 

where a is the equatorial radius of the Earth (6371.2 km adopted for the Interna
tional Geomagnetic Reference Field, IGRF); gnm and hn

m are Gaussian coefficien~ 
(named in honor of Karl Gauss); and r, 9, and If> are the geocentric distance, 
coelevation, and East longitude from Greenwich which define any point in space. 

The Gaussian coefficients are determined empirically by a least-squares fit to 
measurements of the field. A set of these coefficients constitutes a model of the 
field. The coefficients for the IGRF (Section 5.1; [Leaton, 1976D, are given in 
Table H-l. The first-order time derivatives of the coefficients, called the secular 

Table H-l. IGRF Coefficients for Epoch 1975. Terms indicated by a dash (-) are undefined. 

n m glnTl hinT' iloTIy" htnT/yrl n m glnT' hinT' ilnTIy,) hInT/yr) 

I 0 -30188 -- 25.8 - 6 2 16 102 2.0 -0.1 
I I -2036 573& 10.0 -'0,2 6 3 -210 68 2.8 -0.2 
2 0 -1898 - -24.9 -- 6 4 -1 -43 0.0 -1.3 
2 1 29117 -2124 0.7 -3.0 6 6 -8 -9 0.9 0.7 
2 2 1661 -·37 4.3 -18.9 6 6 -114 -4 -0.1 1.7 
3 0 12911 - -3.8 - 7 0 88 - 0.0 -
3 1 -2144 -361 -10.4 6.9 7 1 -57 .... D.D -1.4 
3 2 12911 249 -4.1 2.5 7 2 -7 -24 0.0 -0.1 
3 3 805 -253 -4.2 -5.0 7 3 7 -4 0.8 0.3 
4 0 961 - -0.2 - 7 4 -23 11 0.9 0.3 
4 1 807 148 -2.0 5.0 7 II -9 27 D.3 -0.7 
4 2 462 -2114 -3.9 0.8 7 6 11 -17 D.3 0.1 
4 3 -393 37 -2.1 1.7 7 7 -8 -14 -o.s 0.8 
4 4 236 -307 -3.1 -1.0 B 0 11 - D.3 -
Ii 0 -204 - 0.3 - 8 1 13 ,4 D.3 -C).2 
6 1 388 39 -0.7 1.2 8 2 3 -111 0.0 -0.4 
6 2 2711 142 1.1 2.3 8 3 -12 2 0.2 -0.2 
6 3 -20 -147 -1.8 -2.0 8 4 -4 -18 -0.4 -0.3 
Ii 4 -161 -98 -0.6 1.3 8 II 6 1 -0.3 0.4 
6 II -38 74 1.0 1.1 8 8 _2 18 0.8 -0.3 
8 0 48 - 0.2 - 8 7 • -e -0.3 -o.s e 1 67 -23 0.11 -0.11 8 8 1 -1' :...a, D.3 
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terms, are also given in Table H- 1. With these coefficients and a definition of the 
associated Legendre functions, P::', it is possible to calculate the magnetic field at 
any point in space via Eqs. (H-I) and (H-2). 

The coeffients of the IGRF assume that the Pn
m are Schmidt normalized 

(Chapman and Bartels, 1940), i.e., 

('If 2 2(2- 8.:!) 
J
o 

[P::'(9)] sin9d9= 2n+1 (H-3) 

where the Kronecker delta, 6/ = I if i = j and 0 otherwise. This normalization, which 
is nearly independent of m, is chosen so that the relative strength of terms of the 
same degree (n) but different order (m) can be gauged by simply comparing the 
respective Gaussian coefficients. For Schmidt normalization, the P::' (9) have the 
form 

m -f[ (2-8.:!)(n-m)! ]1/2(2n_I)!!}. m 

Pn (9)=1 (n+m)! (n-m)! sm 8 

{ 

n-m (n- m)(n - m -I) n-m-

x cos 8- 2(2n -I) cos 2fJ 

(n-m)(n-m-I)(n-m-2)(n-m-3) . n-m- } 

+ 2.4(2n-I)(2n-3) cos "9- ... (H~) 

where (2n - I)!! == I· 3·5· .. (2n - I). The square root term in Eq. (H-4) is the only 
difference between the Schmidt normalization and the common Neumann nor
malization described in Appendix G. The computation time required for the field 
models can be significantly reduced by calculating the terms in Eq. (H-4) recur
sively, i.e., expressing the nth term as a function of the (n - l)th term~ The first step 
is to convert the coefficients in Table H-l from Schmidt to Gauss normalization, 
which saves about 7% in computation time (Trombka and Cain, 1974J. The Gauss 
functions, p n•m, are related to the Schmidt functions, P::', by 

pm=s pn.m 
n n.m 

(H-5a) 

where 

s =[ (2- 6.:!)(n- m)! ]1/2 (2n-I)!! 
n.m- (n+m)! (n-m)! 

(H-5b) 

The factors Sn.m are best combined with the Gaussian coefficients because 
they are independent of r, 9, f/J and so must be calculated only once during a 
computer run. Thus, we define 

gn.m == Sn.mgnm 

hn.m == Sn.mhnm (H-6) 

Using mathematical induction, it is possible to derive the following recursion 

relations for Sn.m: 
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So.o= I 

[ 
2n - I ] Sn.O = Sn . 1.0 -n- n~1 

( n - m + 1)( 8,! + I) , 
n+m m~ I 

The pn.m can be similarly obtained from the following recursion relations: 

pO.o= I 

pn.n = sin fJpn-l.n-1 

where 
(n-I)2- m2 

K n•m = -----.,-
- (2n-I)(2n-3) n>1 

n=1 

781 

(H-7) 

(H-8) 

(H-9) 

Because the gradient in Eq. (H-I) will lead to partial derivatives of the pn.m, we 
need 

apn.n =(sinfJ)apn-l.n-1 +(coso)pn-I.n-I n~ 1 
afJ ' afJ 

apn.m apn-I.m apn-2.m 
-a-fJ- = (cosO) ofJ - (sinfJ)pn-l.m - Kn.m--::a:-=fJ-

Also note that 

cos mcp = cos« m - I )cp + cp ) 

= cos«m - I )cp)coscp - sincpsin«m - I )cp) 

(H-IO) 

(H-II) 

A similar recursion relation can be derived for sinmcp. The computational advan
tage of Eq. (H-II) is that it greatly reduces the number of times that sine and 
cosine functions must be calculated. 

Given the coefficients gn.m and hn.m and recursion relations in Eqs. (H-1) 
through (H-II). the field B is calculated from Eqs. (H-I) and (H-2). Specifically. 

-Iav k (Q)n+2 n, apn.m(o) 
B9=--=- ~ - ~ (gn.mcosmcp+hn.msinmcp)-~-

r afJ n=1 r moO ao 

- 1 av -I k (Q )n+2 n 
B =-, --=-.- ~ - ~ m(-gn.msinmcp+hn.mcosmcp)pn.m(O) 
~ rsmO acp smO n= I r m=O ' 

(H-12) 
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Here, B, is the radial component (outward positive) of the field, B, is the 
coelevation compollent (South positive), and B. is the a.~imuthal component (East 
positive). (See Fig. 2-5, Section 2.3.) The magnetic field literature, however, 
normally refers to three components X, Y, Z, consisting of North, East, and nadir 
relative to an oblate Earth. These components are obtained from Eq. (H-12) by 

X("North") = - B,co5(- B,sin~ 

Yr' East") = B. 
Z(" Vertical" inward positive) = B,sin~ - B,cos~ 

(H-13) 

where ~=).- 8<0.2°, ). is the geodetic~atitude, and 8 =90° - 0 is the declination. 
The correction terms in sin ~ are of the order of 100 nT or less [Trombka and Cain, 
1974). 

The geocentric inertial components used in satellite work are 

Bx=(B,cos8+ B,1sin8)cosa- B.sina 

By = (B,cos8 + B,1sin8)sina+ B.cosa 

Bz = (B,sin8 - B,1cos8) (H-14) 

Note that B is still a function of longitude, 1[>, which IS related to the right 
ascension, a, by: 

(H-I,5) 

where ao is the right ascension of the Greenwich meridian or the sidereal time at 
Gr~enwich (Appendix J). 

Dipole Model. Equations (H-6) through (H-14) are sufficient to generate 
efficient computer code. However, for analytic purposes, it is convenient to obtain 
a dipole model by expanding the field model to first degree (n= I) and all orders 
(m=O, I). Eq. (H-2) then becomes 

= -\:(g~a3cosO+ g:a3coslflsinO+ h:a3sinlflsinO) (H-16) 
r 

The cosO term is just the potential due to a dipole of strength gfa3 aligned with the 
polar axis. (See, for example, Jackson [1965).) Similarly, the sinB terms are dipoles 
aligned with the x and y axes. Relying· on the principle of linear superposition, 
these three terms are just the Cartesian components of the dipole component of the 
Earth's magnetic field. From Table H-l, we find that for 1978. 

g~= -30109 nT 

g:= -2006 n1 

h:=S704nT 

Therefore, the total dipole strength is 

a3Ho=a3 [ gr+gt+ hnl
/

2 
=7.943 X 1015 Wb·m 

(H-17) 

(H-18) 
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The coelevation of the dipole is 

g. . 
( 0) 1J';'=arccos Ho = 168.6° (H-19) 

The East longitude of the dipole is 

~:.. = arc tan ( :~ ) = 109.3° (H-20) 

Thus, the first-order terrestrial magnetic field is due to a dipole with northern 
magnetization pointed toward the southern hemisphere such that the northern end 
of any dipole free to rotate in the field points roughly toward the north celestial 
pole. The end of the Earth's dipole in the northern hemisphere is at 78.6° N, 289.3° 
E and is customarily referred to as the "North" magnetic pole. Frequently, dipole 
models in the literature use the coordinates of the North magnetic pole and 
compensate with a minus sign in the dipole equation. 

The above calculations were performed for 1978 by adding the secular terms 
to the Gaussian coefficients of epoch 1975. The location of the dipole in 1975 can: 
be similarly calculated and compared with the 1980 dipole. That comparison yields 
a 0.45% decrease in dipole strength between 1975 and 1980 and a 0.071-deg drift 
northward and a 0.056-deg (arc) drift westward for a total motion of O.09-deg arc. 

The dipole field in local tangent coordinates is given by 

B,=2 (;-y[ g?coslJ+(g:cos~+h:sin~)sinlJl 
B9=(;-)3[ .gfsinlJ-(g:cos~+ h:sin~)cos~] 

B.=( ;-)'[ g:siri~-h:cos~] 

(H-21) 

The field could be converted to geocentric:; inertial coordinates using Eq. (H-14), 
but the exercise is arduous and not particu1arly instructive. However, we may take 
advantage of the dipole nature of the dominant term in the field model to 
approximate the magnetic field of the Earth as due to a vector dipole, m, whose 
magnitude and direction are given by Eqs. (H-18) through (H-10). Thus, 

. a3lfo A A 

B(R)=}i3[3(m oR)R-m] (H-22) 

where R is the position vector of the point at which the field is desired. Because this 
. is a vector equation, the components of B may be evaluated' in any convenient 

coordinate system. As an example, the field in geocen~c inertial components can 
be obtained from the dipole unit vector, . 

(H-23) 
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where aGO is the right ascension of the Greenwich meridian· at some reference time 
(000=98.8279° at Oh UT, December 31. 1979). daG/dl is the average rotation rate 
of the Earth (360.9856469 deg/day), t is the time since reference. and (fJ;" • .p;,,) 
=(168.6°,109.3°) in 1978. 

Then 

(H-24) 

where R", R" and R. are the geocentric inertial direction cosines of R. The field 
·components are 

a3H : • 
. B,,= R 3°(3(fu'R)R,,-sinfJ;"cosam] 

a3H . 
B.v = R 3

0 (3 (fu· R)R, - sin 0;" sin am ] (H-25) 

." a3HO • 

·B~= RT[3 (fu'R)Rz-cosfJ;"] 

These equations are useful for analytic computations and for checking computer 
~akulations. For example. if R is in the Earth's equatorial plane. then Rz =0 and 

a3HO 
Bz=RT(-cosI68.6°) (H-26) 

which is positive, i.e., north. Because the direction of the field line is customarily 
defined as that indicated by a compass needle. Eq. (H-22) is self-consistent. 

For analytical work, the most useful coordinate system is the L h. n orbit 
pJ~ne system (Section 2.2). in which R has the particularly simple representation 

R. = R(p')cosp' 

Rb=R(p')sinp' (H-27) 

Rn=O 

where ,,' is the true anomaly measured from the ascending node. Vectors are 
transformed into the [,b.n system. from the geocentric inertial system by first 
rotating about the inertial z axis through {l. the right ascension of the ascending 
node. followed by a rotation about the ascending node by the angle i. the orbital 
indination. Using this tra~sformation. the unit magnetic dipole is 

ml = sin O;"cos ({l - am) 

mb = - sin O;"cos i sin({l - am) + cos O;"sin; 

mn =sinO;"sinisin ({l- am) + cosO;"cos; 

(H-28) 

• This techllique of computing aG is good to about 0.005° for I year on either side of the reference date. 
At times more.odistant from the reference date. a new aGO can be computed as described in Appendix J. 
Note that ~o is equal to the Greenwich sidereal time at the reference time of fI' UT. December 31. 
1978. 
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where n is the rit9tt ascension of the ascending node and; is the inclination of the 
orbit. 

Substituting Eqs.(H-27) and (H-28) into Eq. (H-22) yields the magnetic field 
in the /,b,n system. Although the equations are moderately complex, they can still 
be useful. Due to the simple form for R, especially for circular orbits, it is possible 
to analytically integrate the torque due to a spacecraft dipole moment as has been 
done for ITOS (Kikkawa, 1971]. 

A circular equatorial orbit is particularly simple because ;=n=o and, there-
fore, " 

m . :R = sin 0';' (cosamcos p' + sin amsin pI) 

Substituting into Eq. (8-22) and simplifying yields 

a3H 
B,= --;sin 0';'[3 cos (2pl - a",)+cosa",J 

2R 

(8-29) 

(8-30) 

As in Eq. (H-26), the minus sign in the orbit normal component, Bn assures the 
northward direction of the field lines. 

The torque resulting from a spacecraft magnetic dipole interacting with Bn is 
in the orbit plane, or, in this case, the" equatorial plane. This torque causes 
precession around the orbit normal, or, for ;':'0, right ascension motion. Torque 
out of the orbit plane is caused by the ascending node component B, and the 
component Bb • For; = 0, out of plane is 'the same as declination motion. Thus, for 
an equatorial orbit, the ratio of declination motion to right ascension motion is at 
most on the order of 

1 
B'.b 1 = 12 sinO';' 1= 
B - {}' 0.4 

n cos m 
(8-31) 

Consequently, for a satellite in an equatorial or low-inclination orbit, the right 
ascension is the easier to control. 

Note that the declination terms BJ and Bb in Eq. (8-30) oscillate with a 
frequency of twice the orbital period. That is, the direction of the magnetic field in 
the orbit plane system rotates through 720 deg during the orbit. 

Thus, BJ and Bb change signs four times during the orbit. Declination motion 
then can be obtained in a certain direction by switching the polarity of the 
magnetic control coil four times or every quarter orbit. This is the basi~ for 
QOMAC control theory. If the satellite has a residual magnetic dipole, the Bn term 
will cause a secular drift in right ascension and the BJ , Bb terms will cause an 
oscillation in declination at twice the orbital period and a diurnal oscillation in 
declination due to the rotation of the Earth. 
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APPENDIX I 

SPACECRAFT ATI1TUDE DETERMINATION AND CONTROL 
SYSTEMS 

Ashok K. Saxena 

1.1 Spac:ecraft Listed by Stabilization Method 
1.2 Spacecraft Listed by Attitude Determination Accuracy 

Requirements. 
I.3 Spacecraft Listed by Type of Conb'ol Hardware 
1.4 Spacecraft Listed by Type Of Attitude Sensors 

This appendix summarizes spacecraft attitude systems and serves as a guide to 
mission specifIC altitude .determination and con/rolliterature. The main table is an 
alphabetical listing of satellites by acronym with pertinent data as available. 
Subsequent sections list these spacecraft by stabilization method, accuracy reo 
quirements, control system, and sensor system. For example, if you are interested 
in gravity-gradient stabilization in low-Earth orbit, Section 1.1 lists DODGE, 
GEOS-3, and RAE-2 as gravity-gradient stabilized. The main table lists GEOS-3 as 
the only one of these in low-Earth or1;lit. Normal automated literature search 
procedures may then be used to obtain available literature citations for GEOS-3. 

The material in this appendix has been collected from literature searches, the 
TRW Space' Log, and Joseph and Plett (1974). Design values are quoted for 
upcoming spacecraft, which are denoted by an asterisk after the spacecraft 
acronym. The superscript CCb" is used for body and "w" is used for wheel. 

1.1 Spacecraft Listed by Stabilization Method 

Missions with mutiple phases (e.g., RAE-2) are listed in all appropriate 
categories. 

Single Spin 
AEROS-I,2, ALOUETIE-I,2, ARIEL-III, ARYABHATA, ATS-3, ers, DE
A*, ESRO-IV, GOES-I, HEAO-I,C, HEOS-I, IMP-6,7,8, ISEE-I,B,C*, iSIS-I, 
II, ISS, IUE, LES-S,7, RAE-2, SIRIO, SM-3, SMS-I,2, SKYNET (U.K.I,2), 
SSS-I 

Dual Spin 
ANS, ATS-6, DODGE, FLTSATCOM, HEAO-B*, IUE, NIMBUS-S,6, OAO-

l, 2,3, OGO-I, SAGE*, SEASAT*, SMM·, ST, SYMPHONIE 
!; Momentum Wheels 

ANS, ATS-6, DODGE, FLTSTCOM, HEAO-B*, IUE, NIMBUS-S,6, OAO-2, 
3,000-1, SAGE·, SEASAT*, SMM*, ST, SYMPHONIE 

Gravity Gradient 
DODGE, GEOS-3, RAE-2 

Magnetic 
AZUR-I, HCMM· 

Gas Jets 
HEAO-I,C* 
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PRINCIPAL MASS lAUHCMOATE 
ACRONYM' ""'" COUNTRY 'KG) AND VIE HtCl( INCUNA 

TtON 
IDIGI 

AU ATMOSPHERE USA _PLUS DEC 16. Jl73. 68' 
iEXPLOAlR 3 PROPEL· BY U1LlA 

LANT 

AH ATMOSPHERE USA C!l4PlUS NOY 19. 1915. '9 
tXPlOAER!iO PROPEL BY DElTA 

LANT 

A .. ' GfNlRAL NAIll fOR USA 
APPLICATIONS lX-
Pl..ORfA IIlISSJON • 
• 9 . HCMM·. SAGE" 

AfROS 1 AlRONOMY GERMANY '27 DEC 16. tBn. 972 
SATl.LUTE·, BY SCOUT 

AERQS..2 AERONOMY GERMANY '27 JUl Y 16. 1914. 968 
SATELUTE·' BY SCOUT 

AlOUETlE·' CANADA .... SlPT 19,1962, BY 8O' 
THQR·AGENA 8 

Al.OUITTE·' CANADA '46' NOV 28. '96!io. BY ... 
THOR AGENA B 

AN' NETHERLANDS NETHERLANDS '30 AUG 30.197., BY 890 
ASTROt«)MlCAl SCOUT 
SATElLIn 

ARrEl·1II U.K UAYS.1967,8V 80 
SCOUT 

ARYABttATA INDIA 360 APR 19.197!t ... 
" 

AIS-3 APf'LlCATIO~ USA 36' NOV 5. 1967. BY O. 
TECHNOLOGY ATLAS 
SATIELLITE·3 AGENA D 

AfS.6 APPLICATIONS USA '.360 MAY 30, 1974, 1.3 
TECHNOLOGY BY TlTAN·IIlC 
SATELLlTE-6 

AZURI, GERMAN GERMANY 7.3 NOV 8.1969, 101.9 
ALSO RESEARCH BY SCOUT 
CALLED SATELLITE 
QRS.A 

CTS COMMUNICATIONS CANAOA JAN 17. 1976. o. 
TiCKNOLOGV 8V DELTA 
SATllLlTE 

DE,A- OYNAMICS USA 268 191", BY ," EXPLORER·A DELTA 

DE,S- DYNAMICS USA - U.H,BV .. 
EXPLORER·B DELTA 

DODGE DEPARTMENT Of USA ISS.2 JULY I, '961, 7,2 
DEfENSE GRAVITY BY TlTAN·1II C 
f.XPlRIMENT 

ERTS lAATH RESOURCES 
TECHNOLOGY SATEL· 
LITE RENAMED 
LANDSAT 

ESRD-IV EUROPEAN SPACE fSAO '20 NOY 71,1972, 81.06 
RESEARCH BY SCOUT 
ORGANIZATI()H.IV 

I .. RIGU AND APOGEE HEIGHT ARE MEASURED FROM THE SURFAC& OF THE EARTH 

'. 

ORBIT PARAMETERS 

ptRIGEI APOGEE' 
HEIGHT HIIGHT 

KMJ "(III) 

';0 '.300 

'09 1.8'8 

- IlOO 

SUN SYNrRONOUS 

227 ... 
SUN SYNCHRONOUS 

996 1,031 

507 2,892 

260 1.100 

... -600 

... 623 

i 
35.712 
Gf OSYN~HRONOUS 

35,159 ".820 
GEOSYNCHRONOUS 

239 .-
".796 
GEOSVNCHRONOUS 

27& 23,918 

27& 1._ 

ll.243 ll.607 

264 1,143 

Ap.1 

PERIOD 
IM'NUTES} 

'30 

'07 7 

970 

... 
."". 
1214 

892 

... 

.... 
'.436 

','" 

121.8 

1,436 

•• 7 

'00 

'.317 

.. 

, 
,< 

'" 

";'. 
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STA8lUZATlON A",nUDE 
nc:HNIQUE COIIlTROLHAROIIIAAl! POINTING ACCURAC"i ATTITUDE SENSORS MISSION OBJICTIYIS 

ISPlN RATE IN RPM) 

DUAL SPIN MAGNenc Z AXIS COIL . ,. BQDY-MOUNTED lR NOAI. ATMOSPHEAI PRD8I 

i 
i 
i· 

"'to' 0.111-'8 MAGNETIC SPIN COJU ZOOIIICANHI!RS WI'" SOt.AR A8SORPTION 

"'w -. "".4 MOIIlNTUII WHlel WMIIL.IlQUNTED fA RXPERfMINTS 
GAS ....... HORIZON SCANNlRS 

DlGIT~LSUNS£~ 

DUALSPfN llAGNanc z AXIS COIL , ,. BODY..tIJUNHO IA MOR'· ATIIOSPNERE PROal 
"'to' 0.111-'8 MAGNETIC SPIN COILS ZON SCANNERS 

IIOMBNTUMWHIIL WMEIL-MOUNTID JR w. -214.4 GAS""1S HORIZON SCANNnRS 
DIGITAL SUN SENSORS 

SPlN~. to MANUAL AND AU"fO. ! 0.20 FOR SOlAR AS- TWO IR SENSORS AeRONOMY • MEA$. 
MATIC MAGNETIC PECTANGLE ANALOG FtNt SUN SENSOR URUPHYSICAL 
COl': 'OR PRECESSION DIGITAL SOLAR ASP1!CT PROPERTIES OF UPPER III_ 

A"nIOSPHEAIIN COR· 
AUTOMATIC SPIN COA· t 30 fOA ~LAR AZI· TMREE-AXIS MAGNe:· ReLATION WlTM IX-
RECTION DURING DAY· MUTH TOIIETIA TREMl UL TRAVIOUT 
LIGHT RADIATION 

SPIN wb • to MANUAL AND AUTO- f 0.20 FOR SOLAR AS- TWO IR SENSORS AEROJIIOMY.IIEAS-
1M nc MAGNETiC PECT ANGLE ANALOG FINE SUN SENSOA UR£S PlfY$lCAL 
COIL FOR PReCESSION DIGITAL SOLAR ASPECT PROPERTIES OF uPPeR .....,.. Al'ImSPHERllN COR· 
AUTOIIAnc SPiN COR· t ." FOR SOLAR AZJ· THREE .... IS MAGN!. RELATION WITH EX. 
AECTION DURING DAY· MUTH TOMETER mEMI ULTRAVIOLET 
LIGHT RADIATION 

SPIN ""'b. 1.43 Ml!ASURIEMENT OF 
EARTH'S IONOSPHEQI 
BY RADIO SOUllfDlNG 

SPfN wb • 2.25 ItWOSPHERIC 
RESEARCH 

MOMENTUM wHEELS THREE 0RTH0G0NA1. t 0.30 FOR SCAN AND STAR SENSOR ASTRONOMY 
ONBOARO COM- MOMENTUM WHEELS SUM SCAN HORIZON SENSOR 
PUTER 

X, Y,ANDZIllAG- t 10 FOR STAR. OfFSET, SOLAR SENSOR _. 
NmcCOILS ANDK·RAY IllAGNETOIIETER 

SPIN .,. SOLAR ASPECT SENSORS MEASURE VERTICAl. 
DISTRIBUTION OF 
MOLECULAR OXYGbJ. 
MAP RADIO FREQUENCY 
NOISIIIII GALAX"I 

SPIN ~ • 10-90 NtTROGEN JETS FOR ". DIGITAL SOLAR SENSOA .-RAY ASTRONOMY 
SPIN TRIAXIAL FLUGATE SOI.AA PHYSICS 

MAGNETOMETER ...-
SPIN ""b. 100 HYDRAZINE JETS ". STAR SENSOR CQIDIUNICAnONS 

V-5UT SUN SENSOR METEOROLOGY 
SCANNING RADIOMETER 

MOMENTUM WHEELS THREE • ..,IIIIENTUM * Q.1° IR EARTH SENSORS ERECT A LARGE AN-
__ LS 

DIGITAL &UN SfNSORS TENNA STRUCTURE 
GAS JUS POLARIS TAACltEA 

INeRTIAL REFERENCE PROVIDE GOOD TV 
GYROSCOPES SJGNAL TO LOW-cosr 
INTERFEROMETER GROUND RECEIVERS 

DI!IIIONSTRATE 
USER.oRIENTED AP-
PUCATION EXPEAI· 

11£"" 
PASSIVE MAGNETIC TWO FIXED MAGNETS ANGLE BETWEEN THE SUNSENSQR IlEASUREMENT OF 

SUCH THAT THa AESUL T, GEOMAGNETIC fiELD RAOIAnON MDPAR· 
INO DIPOLE ..,M!NT VECTOR AND THE 1W().AXIS MAGNETOIItTER TtCLES IN THE POLAR 
POINTS IN THE DlRIe. Z·AXIS WAS LESS ZONE AND IN THI 
TION OF THI Z MfS WITH THAN 120 VANALLEN BELT 
AN ACCURACY Of 8 MIJI. 
uns 

SPIN IN TRANSf Eft HYDRAZlN:E CATALYTlC * 10 TRANSFER AND TWO NONSPINNING EARTH COIIMUNlCAnONS 
AND DRIFT ORBITS THRUSTERS DR.FTOABlT 111-
"'to'~ TWO IR HORIZON SCANNERS 

MOMENTUM WHEEL ...... "TCHANj NONSPINNING SUN SENSOR 
MOMENTUM WHEEL ROLL Ml88JON SPINNING DIGITAL SUN 
'"'w· 3160 ORBIT .... SOR * 1.10 YAW 

SPIN ttYORAZlN! THRUSTERS ... V,HORIZON SCANN£RS lNVISTIGATl1 LECTRO-
"'to' '0 

_III_ 
DYNAMIC E.FICTS til UPPERA __ 

DUAL SPIN PITCH MOIIINTUllIIM&I!.L . ,. HORIZON SCANNERS lNVESTIGAn ILECTROo 
w., • 1 RIY/ORBIT alAGNEne COILS 

_III_ 
DYNAMIC E'FICf8 IN 

HYDRAZlN6 THRUSTERS ~ ATMOSPHURI 

GRAVITY.QRAOIf.NT MOMENTUM WHEEL ., .. _III_ _TI 
AUGMENTED BV TV CAMERAS GRAVITY..QRADIINT 
CONSTANT,SPEEO STABluzanON NEAR 
ROTOR AND MAG- GaOSYNCHRONOUS ' 
NETIC DlPOLE FOR ALTITUDI 
YAW 

SPlNt.o.tb ·66 MAGNGTICCOILS A TTtTUO'E DETERMlNA- IA HORIZON SCANNBR STUDy N&AR·EAATN 
TlON&20 DIGITAL SUN SENSOR IlAGNaTOSPHIRI AND 

ICINOSPHIRi 
A TTITUCE CONTROL. 50 TRIAXIAL FLUX GATe 

llAGNe'rOlll!TER 
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ORBIT PAAAU£ TERS 
PRINCIPAL MASS LAUNCH DATE 

ACRONYM NAME COUNTRY 'KG) ANO VEHICLE tNeLlNA· PERIGEE' APOGEE' PERIOD 
TlON HlIGHf HEIGHT IMINUTES) 
tOEGI III.MI tKMI 

EXPLORER GENERAL NAME GIV-
EN TOSATELLITES; 
•. g..~ EXPlORER·4$IS 
SAME AS5SS-1 

fLTSATCQM FUET SATELLITE USA ' ... ' ATLAS· 1,436 
COMMUNt~TtON CENTAUR f.f.OSYNCHRONOU!t 
SYSTEM 

<f 
GE0S-3 GfODYNAMtCS USA 3«1 APR. 9, 191&. ". 835 ... " .. EXPERIMENTAL BY DEl TA ; 

OCEAN SATEL· /, 
LlTE·3 ; 

~, 
GOES.1 GEOSTATIONARY USA ... OCT 1', 197&, '0 3&.170 3f:I,796 1,43&9 -/ 

OPERATIONAL BY DELTA GEOSYNCHRONOUS 
ENVlROJIIIENTAL 
SATELUTE·1 

HCMM' KEA T CAPACITY USA -9lI MAY 1978. 88 000 600 .7 
MAPPING MISSION 8VSCOUT 

HEA().t HtGHENERGY USA 3,150 AUG. 12, 1917. 22.75 417 434 OJ 
ASTRONOMY BY ATlAS· 
OBSERVATORY·' CENTAUR 

,I 

I 
J' HlAO-B- HIGH ENERGY USA 3,'50 NOV 1978, 2175 ~O!. - 435 -.. i; , 

~ BY ATLAS. 
! OBSERVATORY·S CENTAUR 

HEAO-C· HIGH ENERGY USA 3,1SO LATE 1979. 22 7!l - 460 -460 -.. , 
ASTRONOMY BY ATLAS I J 08S£RVATORY-C CENTAUR , -, 

HEOS-l HIGHLY ECCENTRIC <SAO ")6 DEC !t.I968. :11128 424 :123,428 6,792 J 
ORBIT SATELLITE BY DiLTA 

........ INTERPLANETARY USA 2116 MAR 13. UJ7l, ",8 , .. 111.146 !..628 
MONITORING BY THOR·DELTA 
PLATFORM-8 

IMP·7 INTERPLANETARY USA 3>6 SEPT 23. 19n, 172 191,391 23&,389 17,439 
MONITORING BY DELTA 
PLATF0ftM.7 

...... INTERPLANETARY USA J71 OCT 26. 1973. ",2 196.04' 2l!..1M 17,362 
MONITORING BY DELTA 
PLATfORM-8 

\, 
i~~ 

ISEE·l INTERNATIONAL USA ". OCT :no 1977. ",. 288 134.000 220 
SUN·EARTH BY DELTA DAYS 

L~ EXPLORER·1 

tSEE·B INTERNATONAL • SA , .. LAUNCHED 28.' 288 134.000 229 
SUH-EARTH SlMULTANI:· DAYS 
EXPLORER·S OUSLYWfTH :."l JS£E·A ON THE 

SAME LAUNCH 
,,~ 

VEHICLE ~:\ 

lSEE·C· INTERNATIONAL USA 469 JULY 1918. 'N PERI· APOHE· t VEAR .t 
SU>W!AATH BY'DELTA ICUP· HELION L10NAl {I! 
EXPLORER-C T.C :'[J.973 k~7 f! ~ PLANE2 

T ...... INTERNATIONAL CANADA 238 JAN. 30, 1969, 88 .• 3 .7. un ,,,, J 

1 BATELunfOR BY DELTA 
IONOSPH£IUC 
STUDt",,1 1 

ISIS-If INTERNAnONAL ~DA 284 APR 1,1971, 88.1& 1.l56 1.423 113 
SATELLITE 'OR BY THOR.DELTA 
IONOSPHERIC 
ST\IDI ..... 

ISS .0N0SI'tf ..... '35 -70 -1.000 - 1.000 
SOUHOtNG 
SATELUTE 

iTOS-H .. IMPROVED TIAOS USA 340 JUL V 29, 1918, '02 1,$07 1.~22 1t62 

NOAA·' OPERATIONAL BY DELTA 
SATILUTUl- NA-
TIONAL OCEANIC AND 
AT~RtCAQ. 
MlNlSTRAnmc·5 

'p£RlGEE AND APOGEE HEIGHT ARe MEASURED'ROM THE SURfACE OF THE EARTH 
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STAB'lIZATK)N ATTITUDE TECtfNlQUE CONTROl. HAADWARI POINTING ACCURACY "n'TUDE SENSORS MSSSIOII OBJECT'VIS 
ISPlJt RATE rN RPM) 

MOMfNTUM WHEE lS THREE MOIIIENTUM .0.20 TWO SPIJIINING EARTH WDRUM101 COMMUNI· 
WHIIELS AT 3IXO t leX) SI_ CATMPlSYSTIM .OR 
RPM. HYORAZUII TWO SPINNING SUNSENSQRS THE NAVY 
THRUSTERS ONI flGNSPlJllNrNG IARTH a..PORT AIR FORa 

SlNSOR Cl*lllAND""" 
TWO NOIiSPINNING SUN COI'OTAOI. .. -

GRAVITY GAAOIIENT PlTCHMlEI&. "SoYA. THRIEI DIGITAL SUtI SOLro EARTH PHYSICS 
DUAL SPIN REACTION BOOM • 1.20 POINYING Sf_ ANDOCIANOGAAPMY 
w •• 2G:IO Z AXIS MAGNETI'C COIL 'fMRIE·AJlIS 1llAG-

"'OUSTER 

SPIN w
b

• 90 HVDRAZtMi JETS • 100 ITRANSFER ORBIT) FIVE '" HORIZON SCANJdRS oPERATIONAL 
I 0 10 IMlSSlON (MalT) TWO DUAL-SUT SUJI Ml!TEOROI.OGICAL SI_ SATILLITE 

THREE·A)!; IS ONBOARO CHI. MOIII!NTUM WHEEL ATTITuDE DETlRMINA- ONE IR SCANNER IMP HIAT CAPACITY 
CONTROL. DUAL SPIN THREIIlAGNETfC nCIN THREI DIGITAL SUN OF TME IARTH 
wb ·l REVIORBIT COILS • O.lO IN ROLL •• 0.50 'N SI_ 
ww- UMO PITCH. t 20 IN YAW TRIAXIAL 'LUX GATE 

ATTlTuDi CONTROL MAGNETOMETER 
• ,0 IN ROLL ANOPlTCM 
t 20 rN YAW 

ONBOAAD COMPUTER HYDRAZINE JETS ... COARSe SUN SENSORS ALLSltYX·AND 
SlNGLE·AXIS SPIN. FOiE SUN SENSORS GAMllA-RAY SURVEY 
TKAlE·AXIS 1WO so. ao FOY 
STABILIZED STAR TRACKERS 

FOUR SDOF GYROSCOPES 

ONBOARD COMPUT E. R MOMENTUM WHEELS ONBOAFlO I 10 COARSE SUN SENSORS .-RAY TELESCOPE TO 
TMREr·AMIS MAGNETIC <:OILS ARC MINUTE. FPlE SUN SENSORS O&TEAUJNE rNTENSlTY. 
STABILIZED HYDRAZlNE JETS GROUND ATTITUDE THREE JO. JO FOV "CTM. POSITION. AND 

DtTERMJNATlON· STAR TRACKERS TIllE YARIATIttNS 01' 
• 0.1 ARC MINUTE SIX SDOF GVROSCOPES X-RAY SOURCES 

ONBOAAD COMPUTE A HYDRAZINE JETS A"lTuDE. CONTROL COARSE SUN seNSORS ALL BY GAMMA·RAY 
StNGU· ... MtS SPIN ... FINE SUN SENSORS SUAVlY 
STABILIZED An'TUDE DETEAMlNA- tWO SO. so FOY 

TlON ,0.0$0 STAR TRACKERS 
FOUR SD9F GYROSCOPES 

SPlN~ ·'0 NlTROGINJ'lTS TWO EARTH ALBEDO STUDY IJITIRP\.AN1i· - TARV RADIATION. 
twO SOLAR APECf SOLAR tmID. AND 
"NSCIRS MAGNltTIC FIELDS 
SOLAR GATE SIJISaA OUfIlDl ..... 

IlAGNITOSPH:ERI! 

SPIN ""b.!t FAEONJaTS .,. OPTICAl. MQRIZON STUDY ................ 
"""""ER TARV P.-c:rr1CL18 AIfD 
DKlITAL SUN SENSOR eUCTROIIAGNETIc: 

-~ 
~Nwb·46 FAEONSETS ... OPTICAL nLISCDPI S1UDY SOLAR PLASMA. 

DIGITAL SUN Sl!NSOR SOlAR WIlIID. SOLAR AND 
COSMIC RADIATION. 
ELlC'flIOIrAGNETIC 
fll!LD YARlAnONS. 
EARTH'S MAONETtC 
TRAIL 

SPIN ""b .. '2-68 FREONJlTB 10.&0 OPTICAL TllLESCOPII STUDY-.... ............. 
DIGITAL SUN SENSOR I01.AR WIND. SOLAR 

AND GALAC1lC COSMIC 
_~nlCTRO-
IlAGNBTIC PIILD VAAl-
ATIOIIS. AND ",TaR· 
"'--""&T ...... _no: 
FIELD 

SPDIwb " 20 CO\,DQAI.IE'fS ... PANORAMIC AmTl.D& STUDYIIAGIIIIITOS1'M_. -- ~"""SP_ ---- _PlTllRACTIOIIIlI ....... -.-
SPIll w

b
• 20 COLD GAS JnS .... Y·SLIT ClDelNID 

STWYIWIJQTOSfII __ 
_ IIAlITMAL8I!lIO 1JITI!JIPLAJIIT ...... SP _ -- -----.-

......... 20 HYDIIAZJNI .11!111 • ,0 P-..-ATTITUDI! 
sruoy ___ • -- 1IfrERnAIIU ....... ..eII --- ---IIII1'IIUII THD 

SPIN wb • 2.931 IIAGIImCCOlL_ -'S!~"'OP 
~ATl!DWlTH 1!AATH1I_ 
~NlORGI!C). 

11\' __ 

_ClNIITIC P18LD 
YICmIR GlYflIAT· 
TITUDI OR SPlIt RATI 
C1WIG8 

........ 2.8 
_ClNIITIC COIL _ 

_DI' 
ATTIT...,.- AND SPIN 1ARnnI-" "",..- ... _-

........ ,. .'.&0 IR_ ~""0I'.uc. 
DIGJT .... __ 

_ DIJIS11Y 01' THe 

-.-.~ A_ -- __ COIIoa 

IUJI'ICIENT TO IIAIJI. 

IR __ 

IE'I'ECIIIOI OGICAL 1ATR.~ 
'"Itt. 1 REVIORBIT TAl. CONSTAAIN1'S --- UTI 
Ww·,40 

.. .. - .-
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ACRONYM 
N_ 

PRINCIPAL MASS LAUNCHOATE 
COUNTRY IKG' ANDYEMIClE 

I'TOS-I·.'- 'MPROVED TtAOS 
Ofi'IRAnOlllAL 

USA DELTA 

SATILLfTlI.l. J 

lUI!' INTeRNATIONAl. USA 430 JAN.26,1918. 
UL TRAYlOU1' BY AUG-
IlCPLIIRIR MENTED 

THRUST DELTA 

LANDSAT·' ORIGtMALLY USA ... JULY 23. 1912 • 
CAu.lDERTS BY DELTA 

LANOSAT·2 USA ... JUNE 22. 1975. 
BY DELTA 

LANDSAT.c- USA THlRO QUARTER 
1971.8V DELTA 

LANOSAT·D USA -'881 

....... UNCQLNEX· USA 102 t:-:'~iJ."}C PERIMENTAL 
SATELUTE.& (MULTIPLE PAY-

LOAD) 

....... UNCOUIEX· USA -3110 
......... NT .... 
MTELUTe·} 

. IllAGSA'- GflIMAGNETlC USA -, .. '919-1980 
PfELD SATELUTE 

- -.n. T'MISSION 
MODULAR SPACE-
CIIAPT SI!RIIS 
(q..-·I .. _ 

USA 772 DEC. tt. 1912. 
." BY DELTA .. _ 

USA B29 JUNE 12. '91&, 
BY DELTA 

0A0-2 ORBITING ASTRG USA ''- DEC. 7. 1968. BY 
N_LD8SI!A-

.' 
ATLAS-

YATORY·2 CENTAUR 

CAG3 ORB.nNG ASTRC). USA 2.- AUG. 21. 1912. 
NmllCAL 08S£R- BY ATLAS-
VATORV-3.ALSO CENTAUR 
COPERNICUS 

QGO-, OR8JTlNGGEG USA ... SEPT. 4. 1964. 
_CAL OBS£RVA· BY ATLAS-. TORY AGENA8 

OS().J • ORBITING SOLAR USA 6311 BEPT.29, 1911, 
O8SI!RVATORY-7 BY DELTA 

oso.e OR91T1NG SOLAR USA 1.\190 JUNE 21, 1971. 
Q8S1AVATORV.s BY DELTA 

RAl!·2 RADIO ASTRONOMY USA ... JUNE 10, 1913, 
1XPLC1R1!114 (ORBIT' BY AUGMENTEO 

32E THRUST LONG-
(LAUNCH, TANKOELTA 

&AGE- STRATOSPMS<IC USA -... FEB,1919 
_ANDGAS· 

="==-A6JW1-8. 

9A6-2 SMALL ASTRONOMY USA , .. NOV. '5. '912. 
. SAT6LLJTE.2 BY SCOUT 

'PUUGIlI1 MID APOoII HEIGHT ARIIIEA8UIlEO PROM THE SURPACE OF THE EARTH. 
~T __ TN LAGRANGlANI'O.NT L,. 

ORBIT PARAMETERS 

'NCU_ PERIGEE APOGEE PlAIOD TlON HI'GMT HIIGHT (MINUTES) IDEG) CKat) CKIIII 

'02 - 1,419 -1.468 .1&.2 

28.. EL"=GE~::"ONC Us 1.-

89 9'. 9t? 103.3 

89 898 91. 103.1 

89 9'. 9'. .03.3 

98 700 700 89 

..2 
33_ 33_ 

',319 

-0 NEAR GEOSTATIONARY 

9. 32ti ... 98 

89 .... ' ..... 1,102 107.26 

899 1,100 1.113 107.0 

3!1 764 n" '1(10.3 , 
3S 738 ?EO 89.' 

31.1 260 . ...... M 
HOURS 

33 323 6" 93.< 

32-"" .<09 662.< gUo 

1,100 1,100 220 
SELENOCENTRIC ORBIT 

-110" -aoo -aoo -9' 

2 ... 632 96 

, .. 
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STABILIZATION' ATTITUDe tECHNIQUE CONTROL HARDWARE POINTING ACCURACY "nITUDE SlNSORS MISSION OIUlCTtVES 
ISP'N RATE IN RPM' 

DUAL SPiN MAGNETIC COILS SUFFfC1ENT TO MAIN· IR HORIZON SlNSORS METEOROLOGIcAL SATE,,· 
"'b. t REVIORBIT lAIN CONSTRAINTS SOLAR ASPlCT seNSORS Llns 
ww· ICO 

SPIN ABOUT AXIS HYDAAZINE .IITS 1 ARC-SECOND P~AIiUC ATTITUDE UL TRAVIOUT SPEC1'RO-
OF MINIMUM R(ACTION WMEELS seNSOR, GAAPHV OF STllLAR 
MOMENT OF IN SPIN ..,e SUN SENSOR SOURCIS 
EATfA; THREE·AXIS PINE. SUN &ElISOR 
STABILIZED IN ANALOG SUJI SENSOR 
MISSION NOD£ GYROSCDPl8 . 'tNlIRRQA SENSOR 

DUAL SPIN ATTITuDE: CONTROl. HORIZON SENSORS EARTH'S AESOURCIS 
~ 070 
A1 TlTUDI DETERMINA. 
T'OOI t 0.0'" 

DUAL SPIN ATTITUDE. CONTROL HORIZON SIINSORS EARTWS RESOWICIS ,.70 
AnlTUDE Dl!.TEAIIUtA. 
TION t 0.070 ",-. 

OUAl SPIN ATTITUDE CONTROL ~seNSORS EARTH'S R£SOURCIS 
~ 0 10 
ATTITUDE DETERMlNA· 
'ION t 0.010 

MUSPACKAGI '0010 TWOSTARTRACKEAS EARTH SURVEY 
lSEESMMI GYROSCOPES 

TNEMATIC IIAl'PER 
FOR lAJIDMARK 
TRACKING 

SPlNw
b

·10 TWO ORTHOGONAL ! 20 EARTH SENSOR WITH EXPEAIMENTAl SATEt.· 
MAGNETIC COilS 3 FAN BEAM FIELD LITE 

OFYIEW 

, 
1\ ' 

. I 
FOUR SOLAR GATE 
SENSORS 

SPIN w.., • HOO. GIMBAUD FL VWHEEL ~ 0,0 IR EARTH SENSORS EXPEAIMliNTALSATEL· ,~ 
PLASMAJf1S LITE 

DUAL SPIN MAGNETIC COILS ATTITUDE DETEAMINA· TWO STAR CAMERAS ACCURATE MAPPING OF 
TIO~ 2OARC·SEC 'INE SUN SENSOR THE EARTH"S MAGJlETIC 

GYROSCOPES FIELD 
ATTITUDE TRANSFER STUDY OF THE EARTH'S 
SYSTEM CRUST • MANTLE • AND 

COAl 

MOMENTUM WHEELS fOUR MOMENTUM , ,0 HORIZON S£NSORS METEOROLOGICAL 
WHEELS f1WO ON 
ROLLAJUS) 

MOMEN1UMWHEELS 'OUR MOMENTUM ,,0 HORIZON SENSORS III!TEOROLOGtCAL 
WHEELS ITWO ON 
R~LLAXlS) 

[: 
MOMENTUM WHEELS THREE MOMENTUM 10020 STAR TRACKER ULTRAVIOLET ASTRONOMY 

WHEELS RATE INTEGRATING 
GYROSCOPES 

MQMENTUMwHEElS THREE UOMI!NTUM ;~ ~:~~~C. FOUR GlMBAL£D ULTRAVIOLET ASTRONOMY 
WHEELS STAR TRACKERS 

RATE·tNTE(lRAnNG 
GYROSCOPES 

MOMENTUM WHEELS THREE MOMl!NTUM ,>" TWO HgRlZON GEOPHYSICAL 
WHEELS TRACKERS 
AIR JETS YAWANDSOLAAAARAY 

SUNst_ 
PITCH RATE. GYROSCOPeS 

DUAL SPIN Z AXIS MAGNETIC COIL 1010 V-8UT ST AA SENSOR MaASURS SOLAR 4ND 
WSASL • 0 NITAOGIIN JETS v-&.It SUJiII S£NSOR QJSIIJC X-RAYS. 

,",.-30 MAGNETOMETER GAIIMA RAYS. ULTRA-
VIOLET RADIATION. 
ANODTHIR ASPICTSOP 
SOl4'R ACTMTY 

DUAL SPIN Z AXIS MAGNETIC COIL to'O Y-5LIt STAR SENSOR SOLAR AND COSMIC 
wSAIL -0 IIIITROGEN JETS V-5l1T SUN SEJISOR X-RAYS. MlA8URE SOLAR 

MAGNETOMITBR ut. mAVIOUT UN. ...... PROfiLES. AERONOMY 

SPIN 'REON JaTS FOR SPIN A TTITUD! DETERMlN .... DPTtcAL HORIZON SCAJII. STUDY R' SOURCES 
THREE·AXIS AND PRECESSION TlON; NER WITH YARIABLE 
GRAVITY GRADIENT t 1° IN SPIN MOUNTING ANGLE 

t JO IN GRAVITY. DlOItALrSUNSENSOR 
GRADIENT COJtTROL 
ATTITUDE CONTROL. 
t 100 PITCH. ROLL 
• 20° YAW 

MOMENTUM WHEELS noo-.,.,.,. ATTITUDE DETEAMlNA- TWO tR SENSORS STUDY THE OZONE 
'"b. 1 REV/ORBIT WHEELS TION~ 'IYI DIGITAL SUN. LAYER 

THRII MAGNETIC t 050 PlTCH se_ 
CO".8 • 0 10 RDLL MAGN&TOM&TEAS -

t 20 YAW 
ATTITUDE CONTROL: 
t 10 rN PITCH. ROLL 
t 20 YAW 

DUAL SPIN MAGNETIC COtLS FOR ,,0 N-5L1T STAR SENSOR GAMMA-AAV 
wb • 0.5 TO 10 /SEC SPIN AND PRECESSION DIGITAL SUN SENSOR ASTRONOMY 

"' ... ·2.000 
MAGNI!TOIIITERS 
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ORBIT PARAMETERS 

ACROIIYIIII NAMI! PAI."L MASS LAUNCHOATI 
INCUNA- PERIGEE' APOGEE' COUNTRY IKG) ANDYEHlCLE PlRIO!) 
T_ 

.... GHT .... GHT (MlNUTISJ 
IDEG' ,- IKM' 

BAH SlllAU_ USA '89 MAY 7,1971. 2.8 1103 511 94.8 
5AnLLJTa.3 BY SCOUT 

IllASAY' USA 2.311 .AJNE 1978, I0Il 190 7l1li '00 
BYATL,AS. 
AGlNA 

SlAIO ITAUAN_AL ITALY '80 
OPIRATIONS RE· 

AUG. 21, 1877. 
BYOILTA 

0.3 35,800 35,800 '.-
8IEAACN SATILLITE 

SkYfI£T U.1t. '29 NOV. 22. 1969. U 300:700 38_ 1431.0 

""'-II BY DELTA GEOSYNCHRONOUS 

flM.3 SAN ...... CO'3 ITALY 382 APRIL 211. 1971, 
BY SCOUT 

3 '38 - 93.8 

SMS-l. ·2 SYNCHRONOUS USA .43 MAY 17. 1974; 1.8 35._ 35 ..... 1,438.1 
IllErEOROLOGICAL FEB. 8. 1971. 0.' 35._ 38.103 1.438JS 
SATELLITE-t.-2 BY DELTA GEOSYNCHRONOUS 

...... SOLAR MAXIMUU • USA 2.087 197B.BY 28.lI " -- -- -.. 
MISSION (PIRST DELTA 01133 
IMULn4tSS1ON 
SATELUTE) 

...... BUALL SClENTIFtC USA 52 NOV. 16.1971, 3 .222 28.878 511 
SATELLJTE.t BY scour 

ST SPACE USA - t983.8Y 28" !OIl !OIl 115 
nLESCOPI SlfUTTL£ 

~. FRANCII 221 DEC. 19. 191" 0.5 36.on 35.852 '.418 
GERMANY aYDELTA GEOSYNCHRONOUS 

TIff()S.lX USA '35 JAN.22.t_. .... 100 3,000 119 
BY DELTA 

'PIRlGIE AND APOGEE H:&IGHT ARE MEASURED-FROM THE SURFACe Of THE EARTH. 
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STABILIZATION 
ATTITUDI. • TECHNIQUE POtNTltrriG ACCURACY ATTITUDE SENSORS IIISSIDN OBJECTIVES 

ISPIN RAU IN RPM) CONTROL HAROWAAI 

DUAl.SP'IN MAGNETIC COILS FOR TWO STAR CAMlRAS X-RAY ASTRONOMY 
wb - 0-& ,.IV/ORBIT SPIN AND PRICISSION Jl.SLn S1'AA SENSOR 

IR HORIZON 5CANNlA 
SPINNING AJIID 
_",G 
.... SENSOR 
MAGJdTPMITlA 

DUALSPJ .. MOMINTUMWMlEL A TT.TUDE OETERMlNA- TWO IR MOIUZON SENSORS OCIAII '"'b. 1 REV/ORBIT REACTIONIIM1i!L T'OOO FOUR DfGtTAl SUN ""'""'" w .. -7300 THREE MAGNiTIC t 0 20 IN PITCH. ROLL, SEIISGRS 
CGILS ANDYAW MAGNETOMETERS 

A nlTWE CONTROL 
t 0 SO IN PITCH. ROLL. 
ANDVAW 

SPIN HYDRAZINf JETS ". IR BUT HORIZON SENSOR SIWER .... GK-FR1QUlIiICY 
w b -90 m HORIZON teLESCOPE Q)MMUIllCATIONS 

PLAJIAA AND V BEAll 12'-18 GtGAMHlTZ 
SUNSE_ 

SPIN GASJI .. IARTH HORIZON SENSnA CGIIIIUNK:ATIONS 
DlGn'AL SUN SlNSOSI 

SPIN MAGNeTIC COil ". SUNS£NSOR OBTAIN OATA ON AT. 
MAGNETOMETER TRIAD MOSJI'MIRJC i)&JISITY AND 

IIOLlCUUIR n_ 
TUAa,DETI_ 
"'TAGGEN COMCEfITAA. 
noN 

SPIN HYORAZlN2 JETS • t (JD ITRANSfER ORBIT) FIVE 1ft HORIZON SCAN- MlTIQH)LOGY 
wb -90 I 0 10 IMISSION ORBIT) NlRS 

TWO OVAL-5UT SUN 
SENSORS 

MOMENTUM wKEELS FOUR IIIOMENTUM to,O ROLL THREE TWO-AXlS SOLAR ASTROPHYSICS 
ONBOARO CO~· WHEELS ABOUT SUN ...... !. GYROSCOPES 
PUYER SIX MAGNETIC COILS ! 5 AAC-SFC IN REDUNDANT FINE 

PITCH AND YAW POINTING SUN SENSORS 
REDUNDANT TRIAXIAL 
MAGNETOMETERS 
TWO fiXED-HEAD STAR 
TRACKERS 
COARSE SUN SENSOR 

SPIN MAGNETIC COIL ACo . ,. STAR SCANNER STUDy IlAGNETOSf'HERf --wb -1 TIVATED AT PERIGEE OPTJCAL HORIZON SENSOR 
ONLY DIGITAL SUN SENSOR 

ONBOARDCOM MOIllENTUII WHEELS POINTING ACCURACY' TWO STAR TRACKERS MAJOR ASTR"'W'I~L 
Pi.rrER USING MAGNEnc TORQUING t 0.1 AAC-SEC SUN"NSORS nLI!SCOPI! 
FINE ERROR STABILITY FIN! eRROR SENSOR 
SENSOR tOO' ARCSEC 

MOMENTUM WHEELS MOMENTUM WHEELS ". EARTH HORIZON SENSOR UPERtMlNTAL CQII. 
GASJIiTS DIGIT AL ~ SENSpR IIl.INlCA TIONS SA TILLITE 

SPIN MAGNETtC COJLB ". CONlCAL SCAJIJ· MlTIOROLOGICAL 
HORIZON seNSORs 
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I.l Spacecraft Usted by Attitude Determination Atturaey Requirements 

" l' 
ANS 
HEAO-B· 
IUE 
LANDSAT-D· 
MAGSAT· 
OAO-3 
SAS-3 
SMM· 
ST· 

AE-3,S 
ARYABHATA 
ATS-3 
CTS (acquisition) 
DE-A·,B· 
GOES-I (transfer) 
IMP-6,7 
ISEE-I,B 
NIMBUS-S,6 

" 0.10 " 0.25
0 

ATS-6 AEROS-I,2 
crs (mission) FLTSATCOM 
GOES-I (mission) ISEE-C· 
HEAO-I,C· SEASAT· 
LANDSAT-I,2,C· 
LES-7 
OA0-2 
OSO-1,8 
SMS-I,-2 (mission) 

RAE-2 GEOS-3 
SAS-2 ISS 
SIRIO 
SM-3 
SMS-I,-2 (transfer) 
SSS-I 
SYMPHONIE 
TIROS-IX 

" 0.5
0 

.HCMM· 
IMP-8 

ARIEL-III 
LES-S 
000-1 

1.3 Spacecraft Usted by Type of Control Hardware 

Magnetic 
AE-3,-S, AEROS-I,2, ANS, AZUR-I (passive), DE-B·, ESRO-IV, GEOS-3 
(acquisition), HCMM·, HEAO-B·, ISIS-I,ll, ITOS-8,I·,J·, LANDSAT-D·, 
LES-S, MAGSAT, OSO-7,8, SAS-2,3, SM-3, SSS-I, SP, TIROS-IX 

Jets 
AE-3,S, ARYABHATA, ATS-3,6, ers, DE-A·,-B·, FLTSATCOM, GOES-I, 
HEAO-I,B.,C·, HEOS-I, IMP-6,7,8, ISEE-I,B,C·, IUE, LES-7(plasma), 
OGO-I, OSO-7,8, RAE-2 (acquisition), SIRIO, SKYNET (U.K.I,2), 
SYMPHONIE 

Momentum Wheel 
AE-3,5,ANS, ATS-6, GEOS-3 (mission), FLTSATCOM, HCMM·, HEAO-B·, 
IUE, LANDSAT-D·, MAGSAT·, NIMBUS-S,6, OA0-2.-3, OGO-I, SAGE·, 
SEASAT·, SMM·, SP. SYMPHONIE 

Gimbaled Flywheel 
LES-7 . 

Reaction Boomi' 
GEOS-3 

) : 

, f 

\' 

1.-

i ( 
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I.4 Spa~raft Listed by Type of Attitude Sensors 

Star Sensors 
Star Scanner 

ANS, ATS-3, OSO-7,8, SAS-2,3, SSS-l 
Fixed-Head Star Trackers 

HEAO-I,S.,C., LANDSAT-D·, MAGSAP, SAS-3, SMM·, SP 
Gimbaled Star Trackers 

ATS-6: OAO-2,3 

Horizon Scanners 
Optical 

DODGE, IMP-6,7,8, ISEE-I,C·, IUE, RAE-2, SSS-I 
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Infrared 
AE-3,-5, AEROS-I,-2, ATS-6, CTS, ESRO-IV, FLTSATCOM, ISS, GOES-I, 
HCMM., ITOS-8,1·)·, LES-7, MAGSAT·, SAGE*, SAS-3, SEASAP, SMS-l,-

2, SIRIO 
Sun Sensors 

A nalog Sun Sensor 
AEROS-I,2, ATS-3,6, GOES-I, IUE, SIRIO, SMM·, SMS-I,-2 

One-Axis Digital Sun Sensors 
AE-3,5, AEROS-I, ARYASHATA, ATS-6, CTS, ESRO-IV, IMP-8,9,IO, 
ISEE-I,C., ISS, ITOS-8,1·,J·, IUE, RAE-2, SAS-2,3, SKYNET (U.K,I,2), 
SM-3, SSS-I, SYMPHONIE 

Two-Axis Digital Sun Sensors 
ATS-6, CTS, GEOS-3, HCMM·, HEAO-I,B·,C·, IUE, MAGSAP, RAE-2, 
SAGE*, SAS-3, SEASAP, SMM-, SP 

Magnetometers 
AE-3-5, AEROS-I, ANS, ARYABHATA, GEOS-3, HCMM·, ISS, MAG-
SAP, OAO-2,-3, OSO-7,8, SAGE-, SAS-2,3, SEASAP, SM-3, SMM· 

Gyroscopes 
ATS-6, HEAO-I,S·,C·, IUE, LANDSAT-D·, MAGSAP, OA0-2,-3, SMM· 

References 

I. Joseph, M. and M. Plett, Sensor Standardization Study Task Report, Compo Sc. 
Corp., 3()()()"19300-0ITN, May 1974. 

2. TRW Systems Group, Public Relations Staff, TRW Space Log, Redondo 
Seach, CA (Annual Report). 



APPENDIXJ 

TIME MEASUREMENT SYSTEMS 

Conrad R. Stureh 

International Atomic Time, TAl, which is provided by atomic clocks, is the 
basis for the two time systems used' in spacecraft time measurements. Ephemeris 
Time, ET, which is used in the preparation of ephemerides, is a uniform or 
"smoothly flowing" tilDe and is related to TAl by 

ET= TAl + 32.18 sec 

In contrast to ET, Coordinated Universal Time, UTC, uses the TAl second as the 
fundamental unit, but introduces I-second steps occasionally to make UTC follow 

.the nonuniform rotation of the Earth . .uTC is necessary for terrestrial navigation 
and surveying for which the rotational position of the Earth at a given instant is 
critical. It is this bme which is broadcast internationally and is used for tagging 
spacecraft data and for all civil timekeeping. Finally, sidereal time is a direct 
measure of the rotational orientation of the Earth relative to the "fiXed" stars and, 
therefore, is used to estimate the position of a spacecraft relative to points on the 
Earth's surface. The characteristics of the various time systems are summarized in 
Table J-1. 

Any periodic phenomenon may be used as a measure of time. The motion of 
the Earth, the Moon, and the Sun relative to the fixed stars has traditionally been 
used for this purpose. However, the need for increasingly accurate time measure
ments has resulted in the development of several alternative time systems. The 
reqUirement for high accuracy comes from the cumulative effect of timing errors. 

, An accuracy of 1 sec/day (I part in lOS) would appear satisfactory for most 
scientific or technical purposes. However, an error of this magnitude in an 
ephemeris of the Earth causes an error of 10,800 km in the position of the Earth 

Table J-1. Time Systems 

KIND OF 
OEFlNEDBY . FUNDAMENTAL 

REGULARITY USE nloll! UNIT 

SIDEREAL EARTH'S ROTATtON RELATlVe SIDEREAL DAY. IRREGULAR ASTRONOMICAL OBSIRVA-
TOSTARI 1 ROTATION OP EARTH TIOHS; DETERMINING UT 

AND ROTATIONAL ORIENTA-
TION OF !!ARTH 

SOLAR: 

APPARENT EARTH'S ROTATION RELATIVE succeSSIVE TRANSITS IRREGULAR AND SUNDIALS 
TO TRUE SUN 01' 8U'! ANNUAL VARIA· 

TIONS 

,MeAN EARTH'S ROTATION RELATIVE MRAN SOLAR DAY IRREGULAR -
TO Flcn'I'lOUS MEAN SUN 

UNIVERSAL 
• UTO DIISIlRVEDUT MEAN SOLAR DAY IRREGULAR STUDY Of EARTtrS WANDERING 

FDLE 

UT1 CORRECTeD UTa MEAN SOLAR DAY IRREGULAR SHOWS SEASONAL VARIATION 
OF EARnr& ROTATION 

un CORRECTED UTt MEAN SOLAR DAY IRREGuLAR BASIC ROTATION OF EARTH 

UTC-GMT ATOMIC SECOND AND LEAF MEAN SOLAR DAY UNIFORM EXCEPT CIVIL TIMEKEEPING; TER-
-z S1!CONDS TO ..-oxlllATE FOR LEAP SEC- RISTRIAL NAVIGAnON AND 

Dn ONDS SURVEYING; BROADCAST ned 
SIGNALS 

EFHEIoII!RIS. ET FRACTlON OF TROPICAL YEAR EPHI!M£RtS SECONO UNIFORM ePHEMERIDES 
111C111 

ATOMIC. TAl FREQUENCY OF 133 Ce RADIA. ATOMIC SECOND· UNIFORM BASIS OF IT AND UTC 
TION ePHEMERIS SECOND 
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after only 1 year, several orders of magnitude worse than what is acceptable for 
many unsophisticated measurements. Thus; the generation of accurate ephemerides 
requires a precise time measurement system. 

The diurnal motion of celestial objects is the most obvious timekeeper. Until 
the Middle Ages ""seasonal hours:' one-twelfth of daylight or nigbtime periods, was 
used. Of· course, this unit varies both with the season and with the observer's 
~atitude. A more uniform u~it of time is the apparent solar day, defined as the 
mterval between two successive passages of the Sun across the observer's meridian. 
As discussed below, this interval varies throughout the year due to variations in the 
Earth's orbital speed and the inclination of the ecliptic. The Earth's orbital motion 
does not affect the sidereal day, the interval between two succesive meridian 

,passages of a fixed star. However, irregularities in the rotation of the Earth cause 
both periodic and secular variations in the lengths of the sidereal and solar days. 

The annual motions of celestial objects provide a measurement of time which 
is independent of the irregular variations in the rotation of the Earth. The tropical 
year, upon which our calendar is based, is defined as the interval of time from one 
vernal equinox to the next. The ephemeris second is defined as 1/31556925.9747 of 
the tropical year for 1900. Because of the precession of the equinoxes (Section 
2.2.2), the tropical year is about 20 minutes shorter than the orbital period of the 
Earth relative to the fixed stars. This latter period is known as the sidereal year. 
Due to secular variations in the orbit and rate of precession of the Earth, Jhe 
lengths of both types of year (in units, of se' the ephemeris second) vary to first 
order according to the relations: 

Tropical year = 31556925.9747 - .s30T 
Sidereal year=31558149.540+.010T 

where T is the time in units of Julian Centuries of 36525 days from 1900.0 
[Newcomb, 1898). 

The first satisfactory alternative to celestial observations for the measurement 
of time was the pendulum clock. The period of a pendulum is a function of the 
effective acceleration of gravity, which varies with geography and the position of 
the Sun and the Moon. The resonance frequency of quartz crystals has recently 
been employed in clocks; this frequency depends on the dimensions and cut of the 
crystal and its age, temperature, and ambient pressure. Atomic clocks are based on 
the frequency of microwav~ emission from certain atoms. An accuracy of 10- 14 

(fractional standard deviation) may be achieved with atomic clocks; corresponding 
accuracies for quartz and pendulum clocks are 2x 10- 13 and 10-6, respectively. 
For an extended discussion of time systems, see Woolard and Clemence (19661 the 
Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris 
and Nautical Almanac [H.M. Nautical Almanac Office, 1961) and MUlier and 
Jappel (1977). 

Solar TIme. The celestial meridian is the great circle passing through the 
celestial poles and the observer's zenith. As shown in Fig. 1-1, the hour angle, HA, 
is the azimuthal orientation of an object measured westward from the celestial 
meridian. As the Earth rotates eastward, a celestial object appears to move 
westward and its HA increases with time. It takes 24 hours for an object to move 
completely. around the celestial sphere or 1 hour to move 15 deg in HA; thus, 1 deg 
of HA corresponds to 4 minutes of time. 
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Fig. J-I. Definition of Hour Angle 

The apparent solar time is equal to the local HA of the Sun, expressed in hours, 
plus 12 hours. Apparent solar time can be measured with a simple sundial 
constructed by driving a long nail perpendicularly through a flat piece of wood. If 
the nail is then pointed toward the celestial pole, the plane of the wood is parallel 
to the equatorial plane, and the shadow of the nail cast by the Sun onto the wood is 
a measure of the H A . 

Due to the Earth's orbital motion, the Sun appears to move eastward along the 
ecliptic throughout the year. Because the Earth travels in an elliptical orbit,' it 
moves faster when near the Sun and slower when it is more distant; therefore, the 
length of the solar day varies. Even if the Earth were in a circular orbit with a 
constant speed, the azimuthal component of the Sun's motion (parallel to the 
celestial equator) would vary due to the inclination of the ecliptic relative to the 
equator. To illustrate this. consider a satellite in a nearly polar orbit, as shown in 
Fig. J-2. The satellite changes azimuth slowly while near the equator and rapidly 
while near the poles'; Although the variation in the length of the day due to the 

Fig. J-2. Variation in Azimuthal Rate for a Satellite Moving Uniformly in its Orbit. A I.A2 •...• AS are 
azimuthal projections of the orbital points 1.2 •... 5 and are equally spaced in time. 

", 
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eccentricity and inclination of the Earth's orbit is small, the cumulative variation 
reaches a maximum of 16 minutes in November. 

To provide more uniform time than the real Sun, a fictitious mean Sun, which 
moves along the equator at a constant rate equal to the average annual rate of the 
Sun, has been introduced. Mean solar time is defined by the HA of the mean Sun. 
The difference between the mean and apparent solar times is called the equation of 
time. 

Standard TIme. Mean solar time is impractical for communication and 
transportation because it varies continuously with longitude. Therefore, the world 
has been divided into 24 time zones of approximately 15 deg each. Normally, these 
zones are centered on standard meridians which are multiples of 15 deg in 
longitude. The uniform time throughout each zone is referred to as Standard Time, 
and usually differs by an integral number of hours from the mean solar time at 0 
deg longitude, or Universal Time, as discussed below. Table J-2 lists the standard 
meridians for time zones in the continental United States. The apparent solar time 
is converted to Standard Time by adding the equation of time for the date and 
subtracting the algebraic difference (expressed in units of time) between the 
observer's longitude and the standard meridian. 

Table J-2. Standard Time 

TIME ZONE STANDARD MERIDIAN UT MINUS STANDARD TIME UT MINUS DAYLIGHT TIME 
(DEG. EAST LONG.) (HOURS) (HOURS) 

EASTERN 2BIi 6 4 

CENTRAL 270 6 r. 

MOUNTAIN 2!i5 7 6 

PACIFIC 240 8 7 

Greenwich Mean TIme, Universal TlDle. The O-deg longitude line is referred 
to as the Greenwich meridian because it is defined by the former site of the Royal 
Greenwich Observatory. Greenwich Mean Time, GMT, is the mean solar time at 0 
deg longitude; that is, GMT is the HA of the mean Sun observed at Greenwich 
(called the GHA) in hours plus 12:hours, modulo 24. Greenwich Mean Time is also 
called Universal Time, UT, and, in spaceflight operations, Zulu, or Z. 

Uncorrected UT or UTO (read "UT Zero") is found from observations of 
stars, as explained in the discussion of sidereal time below. UTO time as determined 
by different observatories is not the same, however, due to changes in the 
longitudes of the observatories caused by the wandering of the geographic pOle. 
Therefore. UTO is corrected for this effect to give UTI, which is then a measure of 
the actual angular rotation of the Earth. The Earth's rotation is subject to periodic 
seasonal variations. apparently caused by changes in, for example, the amount of 
ice in the polar regions. When UTI is corrected by periodic terms representing 
these seasonal effects, the result is UTZ. Even un is not a uniform measure of 
time. Evidence from ancient eclipse records and other sources shows that the 
Earth's rate of rotation is slowing; also, unpredictable irregularities in the rotation 
rate are observed. 

Before 1972, the broadcast time signals were kept within 0.1 sec of un. Since 
January 1, 1972, however, time services have broadcast Coordinated Universal 
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Time, UTe. A second of UTe is equal to a second of International Atomic Time, 
but UTe is kept within 0.90 sec of UTi by the introduction of I-sec steps. usually 
at the end of June and December. 

Epbemeris TIme. The irregularities in the Earth's rotation cannot be pre
dicted; however, gravitational theories have been formulated for the orbital mo
tions of tbe Earth, the Moon, and the planets. In particular, Simon Newcomb's 
Tables of the Sun, [1898], published at the end of the 19th Century, gives the 
position of the Sun for regular time intervals. These intervals define a uniform time 
called Ephemeris Time, ET. In theory, Ephemeris Time is determined from obser
vations of the Sun. In practice, observations of the Moon are used because the Sun 
moves slowly and its position is difficult to observe. One method is to record the 
UT of a lunar occultation of a star; the tabulated value of ET for the observed 
lunar position, corrected for effects such as parallax, is noted and the difference 

llT=ET- UT 

is determined. A table of approximate II T values, both in the past and extrapolated 
into the future, is provided in The American EphemeriS and Nautical Almanac [U.S. 
Naval Observatory, 1973]. Ephemeris time at any instant is given by 

ET=IlT+ UT 

International Atomic Time. The cesium nuclide, 133 Ce, has a single outer 
electron with a spin vector that can be either parallel or anti parallel to that of the 
nucleus. The flip from one orientation to the other, a hyperfine transition, is 
accompanied by the absorption or emission of microwave radiation of a given 
frequency. In an atomic clock, the number of these transitions is maximized in a 
reSQJ}.ator by the introduction of microwave radiation from an oscillator tuned to 
the same frequency. The cycles of the oscillator are counted to give a unit of time. 
In 1967, the 13th General Conference on Weights and Measures established the 
Systeme Internationale (SI) second as the duration of 9 192631 770 periods of the 
radiation from the above transition in 133 Ceo This unit is the basis of International 
Atomic Time, TAl, and was chosen to make the SI second equal to the ephemeris 
second. The reference epoch for TAl is January I, 1958, when O"omos TAl equaled 
0"0"'0" un. For most purposes, ephemeris time may be considered to be equal to 
TAl plus 32.18 sec, the value of llT for January I, 1958. 

Sidereal Time. Sidereal time, ST, ·is based on the rotation of the Earth 
relative to the stars and is defined as the HA of the vernal equinox, CY>. The local 
sidereal time, LST, is defined as the local HA of CY>, LHA CY>, and the sidereal time at 
Greenwich, GST, is defined as the Greenwich HA ofCY>, GHA CY>. Sidereal time may 
also be determined from the HA and right ascension, RA, of any star. The RA of a 
star is the azimuthal component of the star's position measured eastward from cy> 
(see Section 2.2.2). From· Fig. J-3 we see that 

LST= LHA cy>= LHA· + RA·, modulo 24 (1-1) 
: . 

where LHA·and RA· are the HA and RA (both converted to time) of the star. In .~ 
the example in Fig. J-3, LHA· is 135 deg or 9 hours, RA· is 90 deg or 6 hours, and 
the LST is 15 hours. Similarly, 

GST= GHA cy>= GHA·+RA·, modulo 24 (J-2) 
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where GHA· is the GHA of the star (converted to time). In Fig. J-3, GHA· is 45 
deg or 3 hours; thus, GST is 9 hours. Note that the sidereal time at Greenwich is 
equal to the right ascension of the Greenwich meridian. The difference between LST 

08S£RIlER 

LOCAL MERJDtAN 

Fig. J-3. Sidereal Tune. (View looking down on the Earth's North Pole.) 

and GST (6 hours in this example) corresponds to the obse{Ver's East longitude (90 
deg in this example). In general, 

LST= GST+ ELI15 (J-3) 

where EL is the observer's East longitude in degrees. From the definition of mean 
solar time, it follows that GMT or UT equals the GHA of the fictitious mean Sun 
plus 12 hours, or 

UT= 12 hours + GST- R,. 

where R,. is the right ascension of the mean Sun. For a given UT of any calendar 
date, 

GST= R,. -12 hours + UT 

= 6h38m45s.836 + 86401 84s.542 T+OS .0929 T2+ UT (J-4) 

where T is the number of Julian centuries of 36,525 days which have elapse4 since 
noon (GMl) on January 0, 1900 [Newcomb, 1898}. The corresponding equation 
for GST expressed in degrees is 

GST=99°.6910+36000°.7689 T+O°.OOO4 T2+ UT (J-5) 

where UT is in degrees and T is in Julian centuries. Julian dates, or ID (Section 
1.4), are convenient for determining T in Eqs. (J-4) and (J-5). The ID for 
Greenwich mean noon on January 0, 1900 (i.e., January 0.5, 1900), is 2 415020.0. 
ID's for any date in the last quarter of this century may be obtained by adding the 
day number of the year to the I D for January 0.0 UT of that year listed in Table 
J-3. For example, to find the GST for 3h UT, July 4, 1976: 

~ '. . .•.. " 
~ .'~. 
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Day number of July 4.125 ( = 3h UT July 4), 1976 
+JD for January 0.0, 1976 
= J D for July 4.125, 1976 
-JD for January 0.5,1900 
= Tin days 
+ 36,525 = T in Julian centuries 
8640 184.542 T + 0.0929 T2 

+ first term Eq. (J-4) 
+ UT 
GST 

Ap.J 

186.125 
+ 2442777.500 
= 2 442 963.625 
- 2 415 020.000 

27 943.625 
0.765054757 

6610 214.340 sec 
= 76d12hlom14~340 

6 38 45.836 
3 0 0.000 

21 h49m o-~176 

Due primarily to the varying distances of the Sun and the Moon. a small amplitude 
oscillation, known as astronomical nutation, is superimposed on the precession of 
the equinoxes. Sidereal time corrected for this effect is called meal! Jitiereal time. 
GST in Eqs. (J-4) and (J-5) is mean sidereal time. The maximum difference 
between mean and apparent sidereal time is only about I sec. 

Table J-3. Julian Date at the Beginning of Each Year From 1915 to 2000 

YEAR JDFOR YEAR JD FOR YEAR JD FOR 
JAN 0.0 UT JAN 0.0 UT JAN 0.0 UT 

2400000+ 2400000+ 2400000+ 

1975 42412.5 1984 45699.5 1993 48 987.5 
·,976 42777.5 1985 46065.5 1994 49352.5 
1977 43143.5 1986 46430.5 1995 49717.5 
1978 43508.5 1987 46195.5 1996 50 082.5 

1979 43873.5 1988 47160.5 1997 50 448.5 
1980 44 238.5 1989 47526.5 1998 50 813.5 

1981 446045 1990 47891.5 1999 51 178.5 

1982 44969.5 1991 48 256.5 2000 51543.5 

1983 45334.5 1992 48 621.5 

Because of the orbital motion of the Earth, a solar day is longer than a sidereal 
day. As illustrated in Fig. J-4, the fixed stars are sufficiently far away that lines 
connecting one of them to the Earth are essentially parallel. Because the Earth's 
orbitalperit'u 1~ a).'l)roximately 360 days, angle A is approximately I deg. A sidereal 
day is defint:~ CI~ one complete rotation of the Earth, 360 deg, relative to the stars. 
The Earth has to rotate 360+A deg 10 complete a solar day. The ratio of the moan 
solar day to the mean sidereal day is 1.00273 79093; the mean sidereal day equ&.ls 
23 ·hours, 56 min, 4.09054 sec of mean solar time and the mean solar day equals 24 
hours, 3 min, 55.55536 sec of mean sidereal time [U.S. Naval Observatory, 1973]. 
Note that the "76 days" in the above example indicates the excess number of 
sidereal days, one for each year, that had occurred since the beginning of the 
century. 

Sidereal time and mean solar time are affected proportionally by variations in 
the Barth's rotation. Although the irregular fluctuations in the Earth's rotation 
cannot be predicted. the general dece'leration can be seen in Fig. J-5. The lengths of 
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Fig. J-4. Orbital Motion of the Earth for I Day (Exaggerated) as Viewed From North Ecliptic Pole 

the two types of day in se are given approximately by: 
Sidereal do)' = 86164.09055 + 0.00 15 T 

Mean solar day = 86400 + 0.0015 T 
where T is in Julian centuries from 1900.0 (Allen, 1973J. These terms are the dashed 
line in Fig. J-5 .. 

1600 1700 1800 

YEAR 

Fig. J-5. Excess Length of the Day Compared With the Day Near 1900. Note the very irregular 
nuctuations about the mean slope of 1.5 ms/century (Morrison. 1973]. 

Using Sidereal 11me to Compute the Longitude of the Subsatellite Point. To 
determine the direction of geographic points on the Earth as seen from a 
spacecraft, it is necessary to know both the spacecraft ephemeris and the longitude 
of the subsateUite point. For' any UT, Eq. (J-4) can be used to determine the 
Greenwich sidereal time, GST, which in turn can be used to determine the East 
longitude, ELsfC' of the subsatellite point for any. satellite for which the right 
ascension of its position in geocentric coordinates is known. From Eq. (J-3), we 
have 

ELspc = RA spc - GST (in degrees) 

where RA is the right ascension in degrees of the spacecraft at time GST. 
Because UTe is accurate to about I sec, the accuracy of the resulting longitude will 
be about 0.005 deg if the spacecraft ephemeris is known precisely. 
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APPENDIX K 

METRIC CONVERSION FACTORS 

The metric system of units, officially known as the International System of 
Units, or Sf, is used throughout this book, with the single exception that angular 
measurements are usually expressed in degrees rather than the SI unit of radians. 
By international agreement, the fundamental SI units of length, mass, and time are 
defined as follows (see, for example, NBS Special Publication 330 [NBS, 1974D: 

The metre is the length equal to I 650 763.73 wavelengths in vacuum of the 
radiation corresponding to the transition between the levels 2Plo and 5ds of the 
krypton-86 atom. 
The kilogram is the mass of the international prototype of the kilogram (a 
specific platinum-iridium cylinder stored at Sevres, France). 
The second is the duration of 9 192 631 770 periods of the radiation corres
ponding to the transition between two hyperfine levels of the ground state of 
the cesium-133 atom. 

Additional base units in the SI system are the ampere for electric current, the kelvin 
for thermodynamic temperature, the mole for amount of substance, and the candela 
for luminous intensity. Mechtly (1973) provides an excellent summary of SI units 
for scientific and technical use. 

The names of multiples and submultiples of SI units are formed by application 
of the following prefixes: 

Factor by which 
unit is multiplied Prefix Symbol 

1012 tera T 
109 giga G 
111' mega M 
IW kilo k 
I()2 hecto h 
10 deka da 
10- 1 deci d 
10- 2 centi c 
10-3 milIi m 
10- 6 micro JL 
10- 9 nano n 
10- 12 pico p 
10- 15 femto f 
10- 18 atto a 

For each quantity listed below, the SI unit and its abbreviation are given in 
parentheses. For convenience in computer use, most conversion factors are given to 
the greatest available accuracy. Note that some conversions are exact definitions 
and some (speed of light. astronomical unit) depend on the value of physical 
constants. All notes are on the last page of the list. 
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To convert from To Multiply by Notes 

Mass (kilogram, kg) 

Atomic unit (electron) kg 9.109 6x 10-31 (I) 
Atomic mass unit, amu kg 1.66053 X 10-27 (I) 
Ounce mass (avoirdupois) kg 2.834952312 5x 10- 2 E 
Pound mass, Ibm (avoirdupois) kg 4.535 923 7 X 10- 1 E 
Slug kg 1.459 390 294 X 101 

Shon ton (2000 pound) kg 9.071 847 4x I(f E 
Metric ton kg 1.0 x IOl E 
Solar mass kg 1.989 x 1()30 (I) 

Length (metre, m) 

Angstrom m LOx 10- 10 E 
Micron m LOx 10-6 E 
Mil (10- 3 inch) m 2.54 x 10-5 E 
Inch m 2.54 x 10- 2 E 
Foot m 3.048 X 10- 1 E 
Statute mile (U.S.) m 1.609 344 X 10l E 
Nautical mile (U.S.) m 1.852 X 10l E 
Earth equatorial radius m 6.378 l40x 106 (3) 
Vanguard unit m 6.378 l66x 106 (4) 1 : 

Solar radius m 6.959 9x 10
8 (1) 

Astronomical unit, AU m 1.495 978 70 x 10" (5) 

Light year (tropical year) m 9.460 530x 1015 (I) 

Parsec (distance for which 
stellar parallax is I arc-sec.) m 3.085 678 X 1016 (I) 

Time (second, s) (7) 

Sidereal day, d. (ref.='Y') s 8.616409 18x 10" (I). 

= 23h 56m 4.0918" (I). 

Ephemeris day, d. s 8.64x 10" E 

Ephemeris day, d. d. 1.00273789 (I)· 

Vanguard unit s 8.068 124 2x l(f (4) 

Keplerian period of a satellite in min 1.658 669 x 1O-4 x a 1/ 2 (6) 
low-Earth orbit a inkm 

Keplerian period of a satellite of d • 3.652 569 x I(fxa1/
2 (6) 

the Sun ainAU 

Tropical year (ref. = 'Y') s 3.155692555 I X 107 (7)· 

Tropical year (ref. ='Y') de 3.652421938 8x l(f (7)· 

Sidereal year (ref. = fixed stars) se 3.15; 314954 8x 107 (7). 

Sidereal year (ref. = fixed stars) de 3.652 563 605 1 X 102 (7)· 

• Epoch 1980. 
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To convert from To Multip~v by Notes 

Calendar year (365 days) s. 3.153 6x 107 E 
Julian century d 3.652 5x let E 
Gregorian calendar century d 3.652425 X l<t E 

Velocity (metre/second. m/s) 

Foot/minute. ft/min mls 5.08 X 10- 3 E 
Inch/second. ips mls 2.54 X 10- 2 E 
Kilometre/hour. km/hr mls (3.6) - I = 0.277777 ... E 
Foot/second. fps or ft/sec mls 3.048 X 10- 1 E 
Miles/hour. mph mls 4.470 4x 10- 1 E 
Knot mls 5.144 444 444 X 10- 1 

Miles/minute mls 2.682 24 X 101 E 
Miles/second mls 1.609 344 X l(f E 
Astronomical unit/sidereal year mls 4.740388 554x)03 
Vanguard unit mls 7.905 389x IQl (4) 
Velocity of light. c mls 2.997925 X 108 (I) 

~ccelcration (metre/second2• m/s2) 

Gal (galileo) m/s2 LOx 10- 2 E 
Inch/second2 m/s2 2.54 X 10- 2 E 
Foot/second2 m/s2 3.048 X 10- 1 E 
Free fall (standard). g m/s2 9.806 65 E 
Vanguard unit m/s2 9.798299 (4) 

Force (N ewton == kilogram . metr~ / second2• N == kg· m / sl) 
Dyne N LOx 10- 5 E 
Poundal N 1.382 549 543 76 X 10- I E 
Ounce force (avoirdupois) N 2.780 1385 X 10- 1 (8) 
Pound force (avoirdupois),lbf== 

slug·foot/second2 N 4.448221 615260 5 E 

Pressure (Pascal ~ Newton/ metre2 == kilogram· metre - I . second - 2 
Pa==N/m2:=kg'm- I 's- 2) 

Dyne / centimetre2 Pa LOx 10- 1 E 
Ibf/foot2 Pa 4.7880258 (8) 
Torr (0° C) Pa 1.333 22 X I Q2 (8) 
Centimetre of Mercury (OU C) Pa 1.333 22 X I Ql (8) 
Inch of Mercury (32" F) Pa 3.386 j89X IQl (8) 
Ibf/inch2

• psi Pa 6.8947572 X IQl (8) 
Bar Pa LOx lOS E 

i· Atmosphere Pa 1.013 25 X 105 F 

--- ---------
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To convert from To Multiply by Notes 

Energy or Torque (Joule:: Newton· metre == kilogram -metre2/second2
, (2) 

J::N·m::kg-m2/s2
) 

Electron volt, e V J 1.602 191 1 X 10- 19 (8) 

Mass-energy of lamu J 1.49241 X 10- 10 (I) 
Erg:: gram· centimetres2 / second2 

= pole· centimetre· oersted J LOx 10- 7 E 

Ounce inch J 1.061551 6x 10-3 (8) 

Foot poundal J 4.214011 Ox 10-2 (8) 

Foot Ibf = slug· foot2/second2 J 1.3558119 (8) 
Calorie (mean) J 4.19002 (8) 

British thermal unit, BTU (mean) J 1.055 81x IW (8) 

Kilocalorie (mean) J 4.19002xIW (8) 

Kilowatt hour J 3.6x 106 E 

Ton equivalent of TNT J 4 20x 109 (8) 

Power (Watt==Joule/second::kilogram-metre2/second3
, W::J /s::kg·m2 

/5
3
) 

Foot Ibf/second W . 1.355 811 9 (8) 
Horsepower(550ftlbf/s) W 1.4569981XIQ1 (8) 
Horsepower (electrical) W 1.46 x 1Q1 E 
Solar luminosity W 3.826 x IQ16 (I) 

Moment of Inertia (kilogram·metre2
, kg'm~ 

Gram.centimetre1 kg·m1 LOx 10-7 E 
Ibm.inch2 kg·m2 2.926 391 x 10-4 

Ibm.foot2 kg·m2 4.214011 x 10-2 

Slug.inch1 kg·m2 9.415 402 x 10-3 

Inch ·Ibf -secondsl kg· m2 1.129 848 x 10 - 1 

Slug.foot2 =ft.lbf·secondsl kg·m2 1.355818 

Angular Measure (radian, rad). Degree (abbreviated deg) is the basic unit used 
in this book. 

Degree 

Radian 

SoUd Angle (steradian, sr) 

Degree2. deg2 

Steradian 

rad 'IT/180 E 
~1.745 329 251994 329 577 x 10-2 

deg 180/'IT E 
~5.729 S77 951308232 088 x 101 

sr ('IT/180r E 
~3.046 174 197867085 993 x 10-4 

degl (180/'nY E 
~3.282 806 350 011 743 794 x loJ 

i.,' 
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To convert from To Multiply by Notes 

Angular Velocity (radian/second, rad/s). Degrees/second is the basic unit used 
in this book. 

Degrees/second, deg/s 

Revolutions/minute, rpm 

Revolutions/second. rev /s 

Revolutions/minute, rpm 
Radians/second. rad/s 

Revolutions/second. rev /s 

rad/s 

rad/s 

rad/s 

deg/s 
deg/s 

deg/s 

'IT/180 . E 
~1.74S 329 25t994 329 577 x 10-2 

'IT/30 E 
~1.047 197 SSt 196597 746 x 10- 1 

2 'IT E 
~6.283 185307 179 586 417 
6.0 E 
180/'IT E 
~S.729 577 951 308 232 088 x 101 

3.6x IOZ E 

Angular Momentum (kilogram· metre2/ second, kg· m2/ s) 
Gram -centimetre2 / second; 

g-cm2/s 
Ibm· inch2/ second 
Slug· inch2/ second 

Ibm· foot2 / second 

Incb·lhf . second 

Slug· foot2/ second = ft ·lbf ; second 

kg·m2/s 
kg"m2/s 
kg·m2/s 
kg·m2/s 
kg·m2/s 
kg·m2/s 

l.Ox 10-7 

2.926 397 X 10":"4 
9.415 402 X 10-3 

4.214 Oil X 10-2 

1.129848 X 10- 1 

l.355818 

E 

811 

Magnetic Flux (Weber=: Volt . second =: kilogram· metre2 • Ampere -I. second -2, Wb=: V . s 
=:kg.m2.A -1· S-2) . 

Maxwell (EMU) Wb l.Ox 10,-8 E 

B, Magnetic Induction (commonly called "magnetic field", 

Gamma (EMU) 

Gauss (EMU) 

Telsa =: Weber / metre2 =: kilogram· Am pere - I 

second- 2, T=:Wb/m2=:kg·A- I ·s-; 
T l.OxlO-9 

T l.Ox 10-4 

(9)· 

E, (9) 
E, (9) 

H, Magnetic Field Strength (ampere turn/metre, A/m) (9) 

Oersted (EMU) Aim (1/4'IT)X 1()3 E, (9) 
R:S7.9S7747 154 594 766 788 x 101 

Magnetic Moment (ampere·turn·metre2=:Jouie/Telsa, A·m2 =:J/T) 

Abampere·centimetre1<EMU) A·m2 l.OxlO- 3
. E, (9) 

Ampere·ccntimetre1 (Practical) A·m2 1.0x 10-4 E 
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To convert from To Multiply by NOles 

Magnetic Dipole Moment (Weber· metre == kilogram· metre· Ampere - I • second - 2, 

Wb.m~kg.m.A - I .S-2) 

Pole· centimetre (EMU) Wb·m 47TxlO- 10 E,(9) 
~1.256 637 061435917 295 x 10- 9 

Gauss. centimetre3 (Practical) Wb· m 1.0 X 10- 10 E 

Temperature (Kelvin. K) 
Celsius, C 
Fahrenheit, F 
Fahrenheit, F 

Notes: 

K 
K 
C 

tK =te +273.15 
tK = (5/9XtF + 459.67) 
te = (5/9)(tF - 32.0) 

E 
E 
E 

E (Exact) indicates that the conversion given is exact by definition of the non-SI 
unit or that it is obtained from other exact conversions. 
(l) Values are those of Allen (1973]. 
(2) In common usage "Joule" is used for energy and "Newton-metre" for torque. 
(3) Value is that adopted by the International Astronomical Union in 1976 

(Muller and Jappel, 1977]. Reported values of the equatorial radius of the 
Earth differ by about 20 m. It is therefore recommended that this unit not be 
used except in internal calculations, where it is given a single defined value. 

(4) Values are those adopted in subroutine ROlT AP, described in Section 20.3. 
Vanguard units should be avoided if possible because of differences in the 
definitions of the units involved .. The Vanguard unit of length is equatorial 
radius of the Earth; the Vanguard unit of time is the time for an Earth 
satellite to move I radian if the semi major axis is I Vanguard unit. 

(5) Value is that adopted by the International Astronomical Union in 1976 
(Muller and Jappel, 1977]. 

(6) Value is calculated from mass parameters adopted by the International 
Astronomical Union in 1976 (Muller and Jappel, 1977]. Actual period will 
differ due to various perturbation effects. (See Section 3.4.) 

(7) For high-precision work, consult Appendix J on time measurement systems. 
The conversions for the length of the year are derived from values, given by 
Newcomb [1898j, which define the unit of ephemeris time. The most con
venient method ior determining the lime interval between events separated by 
several days or more is to use the Julian Date. See Section 1.4 and subroutine 
JD in Section 20.3 for a convenient algorithm for determining the Julian date 
and Appendix J for a table of Julian Dates. 

(8) Values are those of Mechtly (1973]. 
(9) Care should be taken in transforming magnetic units, because the dimension

ality of magnetic quantities (8, H, etc.) depends on the system of units. Most 
of the conversions given here are between SI and EMU (electromagnetic). The 
following equations hold in both sets of units: 
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N=mxB=dxH 
B= I1H 

MnRIC CONVERSION FACTORS 

m = I A for a current loop in' a plane 
d= 11m 

with the following definitions 
N=torque 
B=magnetic induction (commonly called "magnetic field") 
H =magnetic field strength or magnetic intensity 
m =magnetic moment 
I =current in loop 

813 

A =vector normal to the plane of the current loop (in the direction of the 
angular velocity vector of the current about the center of the loop) 
with magnitude equal to the area of the loop 

d :::::magnetic dipole moment 
J.I. :::::magnetic permeability 

The permeability of vacuum. IJ.o. has the following values. by definition: 
1Lo=1 (dimensionless) EMU 
1Lo=4'IT X 10- 7 Nj A2 SI 

Therefore. in electromagnetic units in vacuum, magnetic induction and mag
netic field strength are equivalent and the magnetic moment and magnetic 
dipole moment are equivalent. For practical purposes of magnetostatics, space . 

. is a vacuum but the spacecraft itself may have p. ,;. fLo. . 
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APPENDIX L 

SOLAR SYSTEM CONSTANTS 

LI Planets and Natural Satellites 
L.2 The Sun 
L3 The Earth 
L.4 The Moon 
L.5 Potential Spacecraft Orbits 

James R. Wertz 

The mass, size, and gravitational parameters are those adopted by the Interna
tional Astronomical Union (IAU) in 1976 [Muller and Jappel, 1977J. The geo
centric and geographical coordinate system conversions are based on the method 
adopted by the American Ephermeris and Nautical Almanac [H.M. Nautical 
Almanac Office, 1961J using the updated value for the Earth's flattening adopted 
by the IAU [Muller and Jappel, 1977). The properties of artificial satellites, both in 
orbit about solar system objects and in transfer orbits between objects, are 
calculated from the para~eters given and are based on Keplerian orbits with no 
perturbative corrections. The properties of the Earth's upper atmosphere are from 
the 1972 COSPAR International Reference Atmosphere [1972J, and the lJ'"S, 
Standard Atmosphere [1976J. Additional constants are from Allen [1973J, which is 
an excellent source of additional astronomical information. See Chapter 3 for 
definitions of orbital quantities and planetary magnitudes. 

L.t Planets and Natural Satellites 

Table L-l lists the orbital properties of the major planets. Because of orbital 
perturbations, the data here are not tabulated with the full precision normally used 
for ephemerides. If greater accuracy is needed, consult the American Ephemeris and 
Nautical Almanac for current osculating elements or Section 5.4 for epemerides for 
computer use. Quoted data are from Allen (1973). 

Table L-2 lists the physical properties of the Moon and planets. Additional 
data on the Earth and Moon are given in Sections L.3 and L.4. Properties of the 
natural satellites of the planets are given in Table L-3. 

I· 
i' 
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Table 1.-1. Planetary Orbits 

SEMIMAJOR AXIS SIDEREAL PERIOD SYNODIC MEAN MEAN 
PLANET PERIOD M~~:~~2 ORBITAL ECCENTRICITY 

VELOCITY 1970 
(AUI 1I0'I(MI 

ITROPICAL lDAYSI I (DAYSII (DEGI II(MISECI YEARS I 

MERCURY 0.387099 67.9 0.241186 87.969 11&.88 4.0&2339 47.88 0.206828 

VENUS 0.723332 1011.2 0.91621 224.701 583.92 Ul02131 36.C13 CI.OO8787 

EARTH 1.000000 148.8 l.000D4 365.2118 O.88lil109 29.71 0.018722 

MARS 1.&23691 227.9 1.88089 688.880 779.94 0.924033 24.13 CI.093377 

JUPITER 6.202803 779.3 11.88223 4332.&89 388.88 O.Clll3091 13.08 CI.0484I1 

SATURN e.s3884 1427.0 29.4677 10719.22 31a.G9 O.Cl3346O 8.84 CI.II68&II 

URANUS 19.18'9 2889.8 84.0139 30686.4 3&8.68 0.011732 8Bl 0.G4724 

NEPTUNE 30.01176 4496.6 184.763 110189 367.41 0.005981 6.43 0.00858 

PLUTO 39.44 6900 247.7 904811 368.73 0.003971 4.74 0.260 

LONGITUDE OF An 
MEAN LONGITUDE 4r:I LONGITuDe. L. 

DATE OF 
INCLINATION THE ASCENOING OF PERIHELION.3 PERIHELION 

PLANET TO ECLIPTIC. I NODE. 1900 IDEGI Q; 1900 
(DEGI JANUARY 0.11. 

PASSAGE '970 1970 IDEGI AIDEG, CENTURYI 
IDEOI 

CENTURY I I~~I OR EARLIER 

MERCURY 7.C1042 47.14&8 +1.1.8113 711.8883 +1.51144 47.9826 DEC. 211. 1970 

VENUS 3.3944 76.7797 +0.8897 130.1827 +1.3917 2&6.4144 MAY 21.1970 

EARTH - - - 101.2197 +1.7187 •• 7422 JAN. 1. 1970 

MARS ,.IlIIOO 49.7683 +0.7711 334.2193 +1.94Ofj 12.87112 OCT.21.1989 

JUPITER 1.3047 •• 4418 +1.01OB 12.72OB +1.81011 203.4187 SEPT. 211. 1983 

SATURN 2.4894 112.71188 +0.9728 91.0972 +1.9683 43.00II5 SEPT. 8. 1944 

URANUS 0.7130 73.4783 +0.4989 171.&3 "1.11 184.2B02 MAY 20. 1988 

NEPTUNE '.7727 13O.8S11 +1.G993 4&.87 +1.4 238.9233 SEPT. 2. 18711 

PLUTO '7.17 109.73 - 223 - 18'.884 OCT. 24. 174' 
---- ----- ----- -- -- --- -----

lONE DAY. 88.400 II SEOUNDS. 

~N OAILVMOTION IS THE MIlAN CHANGE IN TRUE ANOMALY AS VIewED FROM THE SUN. 

~B lONOlTUDII OF PBRIHBLlON. ~.IS MEASURBD FROM THB VBRNAL IOUlNOX; THAT IS. ::1. A + .... WHERB A IS MEAsURID ALONG THE BCLlmc 
'FROII TH!,! VERNAL louiNOX BAS1WAAO TO THB Asc:&NDING NODI AND ... IS THE ARGUMENT OF PERIHELION M8ASURIIO FROII THB ASCENDING 
NODI ALONG THB ORBIT IN THE DIRECTION OP THE PLANET'S MOTION TO PERIHELION. 

4AT EPOCH SEPTEMBER no. 1911C1. 
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Table L-2. Physical Properties of the Moon and Planets 

PLANETARY INCLINATION 
MAJOR 

MEAN ATMOSPHERIC EQUATORIAL GRAVITATIONAL MASS' 
PLANET RADIUS ELLIPTICITY. DENSITY 01' EOUATOR 

COMPONENTS 
• R.-Rp.lR. CONSTANT,GM' 11024 _ •• 

Ikml 
1I0'2 m3/02. ,.,.1 .... 3• TOORalT UN ORDER OF 

IDEG' ~Aa ND~ 

THE MOON 1138.2 0'- 4.902188 0.073483 3.341 &.68 NONE 

MERCURY 2,438 0.0 22.03208 0.33022 5.4 <28 NONE 

VENUS 6.0&2 0.0 324.85B6 4_ 5.2 ] CO,. N2 • O2, H2O 

EARTH 6378.140 0.0033528' 403.&033 S.0477 5.518 -23.44 N2, O2 , A" H20. CD2 

MARS 3387.2 0.D119 42.82B2B 0.64191 3.9!1 23.96 CD2.AIo,CO, H2O 

JUPITER 71.39B 0.D63 '26.712.0 1,899.2 1.34 3.08 H2, He. H20. eH •• NH3 

SATURN 6O,CIOD 0_ 37.1134.0 _.55 0.70 28.73 ~,CH4,NH35 
URANUS 25._ O.os 5803.2 86.978 ua 97.82 H2·CH. 

NEPTUNE 24,300 0.D21 6971.3 102..89 2.30 28.80 ~,CH4 

PlUTO 2,500 - 40 0.7 - - UNKNOWN 

VISUAL MEAN VISUAL SMALL SU9S0LAR DARK SIDE SlOEREAL. 

A~~EN~S MAGNITUDE MAGNITUDE I~g~~o ANGLE TEMPER· TEMPER· EOUATORIAL PLANET O~~!'~tl O.",o:I~ION8 PHASE 
A g·v VARIATION," ATURE ATURE ROTATION 

Vll,O' Vo A, J"K' J"KI PERIOD 

THE MOON 0.0&7 <0.23 -12.73 <0.91 <O.D2B - 104 27.321691 DAYS 

MERCURY o.oss ~.36 _ 0.27 0.91 0.027 600 100 59 DAYS 

VENUS o.n -4.34 _ 4.22' 0.78 0.0'3 240 240 244.3DAVt;2 

EARTH 0.39 -3.9 - 02 - 29S 2SO 23.93447 HOURS 

MARS O.IS -1.S1 - 2.02 1.37 0.016 :>SO - 24.8:1294 HOURS 

JUPITER 0.70 -9.25 - '.6 0.9 0.014 120 .. 9.8417 HOURS] 

SATURN 0.75 -9.oB ~ 0.,0 1.0 0.D44 90 - 10.23 HOURS
4 

URANUS 0.90 -7.15 + 5.5 0.55 0.00' 65 - 10.82 HOIJRS 

NEPTUNE 0.92 -6.90 + 7.9 0.45 0.001 50 - 16.80 HOURS 

PLUTO 0.145 -'.0 +14.9 0.78 - - - S.4DAYS 

'MASSES AND GRAVITATIONAL CONSTANTS INCLUDe PLANET PLUS ATMOSPHERE PLUS SATELLITES h.e .• "EARTH" VALUE IS EARTH PLUS 
MOON': ACTUAL MASSES ARE LIMITED 9VTI<E KNOWLEDGE OF THE UNIVERSAL GRAVITATIONAL CONSTANT. G ITAKEN AS 
6672 x 10-" m3 kg-1 i-2). TH~REFORE. FoR PRECISION WORK. THE PLANETARY GRAVITATIONAL CONSTANT EI G x IMplane'l + Msa.' 
SHOULO BE USED. VALUES GIVEN ARE DERIVED FROM THOSE ADOPTED BY THE IAU IMULLER AND SAPPEL, 19771. 

'RETROGRADE. 

3ROTATION PERIOD -9.928 HOURS AT HIGH LATITUDES. 

4ROTATION PERIOD - 10.63 HOURS AT HIGH LATiTUDES. 

&TITAN, SATURN'S LARGEST SATELLITE, HASAN ATMOSPHERE WHOSE MAJOR COMPONENT IS CH4. 

BRATIO Of TOTAL REFLECTED LIGHT TO TOTAL INCIDENT LIGHT. 

7V 11. O' IS THE VISUAL MAGNITUDE WHEN THE OBSERVER IS DIRECTLY BETWEEN THE SUN AND THE PLANET AND THE PRODUCT OF THE 
SUN·PLANET DISTANCE UN AU, AND OBSERVER,PLANET OISTANCE UN AU.·IS 1. SEE SECTION 3.& FOR FORMULAE FOR OTHER VIewING 
ANGLES AND 016T A"I:ES. . 

BAS VIeweD FROM THE EARTH: MAGNITUDES FOR MERCURY AND VENUS ARE AT GREATEST ELONGATION. 

9WITH RlNa SY6TEM VleweOEOGE,ON, 

10BLVE MAGNITUDE MINUS VISUAL MAGNITUDE, SE.E SECTION 5.6. 

"FOR SMALL PHASE ANOLES.I. IN DEGREES. THE VARIATION OF VISUAL MAGNITUDE WITH PHASE IS APPROXIMATELY V III-V 10. +A, I. 
SEE SECTION 3.11. FOR SATURN. V DEPENDS STRONGLY ON THE ORIENTATION OF THE RING SYSTEM. 

J .. 
! . 



'ate· [itt 1M TL.[.ilL!!lIIc.-a 1 .. n UliiLlit £ ihL_ £ X4M¢. ~ 

r 
Table L·3. Natural Satellites of the Planets 

ORBIT MAXI~ 
SATELLlTE·To. ESTIMATED VISUAL SEMI MAJOR 

SEPARATION SIDEREAL INC~~~~ON3 ORBIT RADIUS PLANET MASS MAoNITUDE ESCAPe PLANET SATELLITE 
1I~~tsl 

FRDM PeRIOD ECCENTRICITY 11(1111 MASS 11021 1(0) 0~~ON2 
VELOCITY PRlMARy2 

IDEol IDAYSI IDEol RATIO IICMISECI 
EARTH MDQN4 384 27.321681 23 0_ 1738 0.01230002 73.11 -12.7 2.3738 
MARS 1 PMOSOS 9 0_ 0.319910 1 0421 7 +11.11 00042 2 OEIMOS 23 0.0172 1.2112441 2 0.D03 4 +12.8 000.01 
JUl'lTERI 

1.1P 422 0.D383 1.789'138 0 0.000 1810 4.70.'0'1 99.3 + 4.0 2.17 U!UROPA 871 0.0811 3.1111181 ., 
0.000 1480 Uhl"" 48.8 + B.3 2.G9 30ANYWlD8 1070 0.G978 7.1B4BB3 0 0.001 - 7.114 .,"" 149 + 4.8 2,78 4CAWBTO 1883 0.1718 18.8B9018 0 0.D07 23BO 808 .,"" lOB + 8.8 2.48 I AMALTHI!A 181 0.0183 0.418178 0 0.D03 80 +13 000.1 IHIIoIAUA 11478 1.!141111 2BII.IIIII 28 0.188 80 +14.2 -0.1 7 ELAIIA 11m 1.- 2&9.111 28 11.207 12 +17 000.03 8 PABIPHAB 23BOO 2.18 738 147 0.40 10 +18 000.02 8 SINOPE 23800 2.17 788 188 0.275 9 +18.8 -0.02 10 LYSITHEA 11700 1.- 2&9.22 28 0.12 8 +18.8 -0.01 II CARMI 22800 2.08 1192 183 0.207 8 +18.1 -0.02 12 ANANItI 21200 1.93 830 147 0.169 8 +18.7 -0.01 

SATURN I MlMAS 168 CI.OOII3 0.1142422 ' 2 o.ozo 270 0.04 +12.l1 0,13 2 ENCELADUS 23B 0.0108 1.370218 0 0.G04 300 0.08 .,1.8 0.18 3~ 281 0.0133 1.887802 1 0.000 800 0.114 +1008 0.34 4 DIONE 377 0.0169 2.736918 0 o.ooz 480 1.1 +10.8 0.31 BAHEA 827 0.0238 4.417803 0 0.001 880 2.3 + 9.9 0.111 8 TITAN 1232 o.oB47 18.948449 0 0.028 2_ 2.41.1"'- 137 +8.3 2,74 
7 HYPERION 1_ 0.0883 21.278697 1 0.104 220 0.1 +14 0.21 8 IAPETUS 3880 0.1897 78.33084 II 0.028 880 1.1 +10.7 0.88 9PHD8Be l29BO - 110.33 180 0.183 120 +18 000.1 10 JANUS 189 0.D072 0.7490 0 0.0 180 +14 -0.3 

URANUS 1 AERIaL 182 0_ 2.&2038 0 0.D03 380 1.3 +14.3 0.48 2 UMBFiIEL 287 0.00&8 4.14418 0 0.004 280 0.11 +18.1 0.30 3 TITANIA ·438 0_ 8._ 0 O.ooz 800 4.3 +13.9 0,78 4DSERON l1li8 0.0122 13.48328 0 0.001 450 2.8 +1 •. 1 0.80 I MIRANDA 130 0_ 1.414 0 0.00 120 0.1 ·'8.8 0.18 
NEPTUNe , TRITON 388 G.OO47 -- 180 0.00 lBOO hlct3 208 +13.8 3.7 2 NEREID 6883 0.0733 369.88 28 0.78 120 +IB.I 000.2 

18ATELLITIIIPLA!'IET MASS RATIO IS olWN ONLY PDA TH08B SATELLITES FOR WHICH DYNAMIC ESTIMATES ARE AVAILA8LE· AND ARE THOSE ADOPTED BY THE IAU IN 1978 (MULLER AND JAPPEL. 1877). 
2v1_ FROM EARTH. 

'RSLATIVI TO PRIMARY EGUATDRIAL PLANB. DAEATER THAN 80 DBo INDICATBB RETROGRADE MOTION 

4seBTABUBB ~"AND'L". 
IFOR AN INTERIISTIl\IG DISCUS8ION OF THe NOMENCLATURE OF JOVIAN SATELLITBB.Bee OWEN 11978) 
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L.21beSun 

Table L-4 lists the principal physical properties of the SUI'. See Section 5.3 for 
properties of solar radiation and the solar wind. 

Table L-4. Physical Propenies or the Sun 

PROPERTY VALUE 

RADIUS OF THE PHOTOSPHERE (VISIBLE SURFACE 1 6.9599 • 105 km 

ANGULAR DIAMETER OF PHOTOSPHERE AT 1 AU 0.53313 Deg 

MASS 1.989 x 1030 kg 

MEAN DENSITY 1.409 gm/em3 

TOTAL RADIATION EMITTED 3B26. 1026 J/sec 

TOTAL RADIATON PER UNIT AREA AT 1 AU 1358Js-1 m-2 

ESCAPE VELOCITY FROM THE SURFACE 617.7 km/sec 

POLAR MAGNETIC FIELD AT SUNSPOT MINIMUM (1 to 21 • 10-4'T 

APPARENT VISUAL MAGNITUDE AT 1 AU -26.74 

ABSOLUTE VISUAL MAGNITUDE (MAGNITUOE AT +4.83 
DISTANCE OF 10 PARSECSI 

.COLOR INDEX. B-V (SEE SECTION 5.61 +0.65 

sPECTRAL TYPE G2V 

EFFECTIVE TEMPERATURE 5770° K 

VELOCITY OF THE SUN RELATIVE TO NEARBY STARS· 15.4 km/sec TOWARD 
.. c 268 Deg. 6 • +26 Dog 

INCLINATION OF THE EQUATOR TO THE ECLIPTIC 725 Dog 

LONGITUDE OF THE ASCENDING NODE OF THE EQUATOR 75.48 Deg .. 0.014 DegNear 
IN 1980 PLUS RATE OF CHANGE IN LONGITUDE 

SIDEREAL ROTATION RATE OF THE SUNSPOT ZONE, AS A 
FUNCTION OF LATITUDE, LilLI :s 40°1 

114.44° _3.0° SlN2 LI per Day 

ADOPTED PERIOD OF SIDEREAL ROTATION (L a 17°1 25.38 Days 

CORRESPONDING SYNODIC ROTATION PERIOD IRELATU/E 27.275 Days 
TO THE EARTHI 

MEAN SUNSPOT PERIOD 11.04 Yean 

DATES OF FORMER MAXIMA 1957.9. 1968.9 

MEAN TIME FROM MAXIMUM TO SUBSEQUENT MINIMUM 6.2 Yean 

:. -THE QUANTITY LISTED IS THE MODE OF THE VELOCITY DISTRIBUTION. THE MEAN OF THE DISTRIBUTION. 
WHICH IS MORE STRONGLY INFLUENCED BY HIGH VELOCITY STARS. IS t9.6 KMISEC TOWARD a- 27tO 
II- "300. FOR FURTHER DETAILS, SEE MIHALAS (1968). 

:-, 
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L.3 The Earth 

The principal physical properties of the Earth are listed in Table L-S. For 
general characteristics, see also Tables L-t through L-3. See Appendix J for a 
discussion of the length of day an<t year and the nonuniform rotation of the Earth. 
See Chapter 4 for an extended di~ussion of Earth models. 

Table L·5. Pbysiall Properties of the Earth 

PROPERTY 

EQUATORIAL RADIUS, 8 

FLATTENING FACTOR IELLIPTICITYI 8;'"' f 

POLAR RADIUSt , .. 

MEAN RADIUS' 182 ",1/3 

ECCENTRICITY' (~)/8 
SURFACE AREA 

VOLUME 

ELLIPTICITY OF THE EOUATOR IsMAX - 8 MIN"sMEAN 

LONGITUDE OF MAXIMA, 8 MAX 

RATIO OF THE MASS OF THE SUN TO THE MASS OF THE EARTH 

. GEOCENTRIC GRAVITATIONAL CONSTANT, GME S liE 

MASS OF THE EARTH* 

MEAN DENSITY 

GRAVITATIONAL FIELD CONSTANTS I J; 
J4 

MEAN DISTANCE OF EARTH CENTER FROM EARTH.MOON 
BARYCENTER 

AVERAGE LENGTHENING OF THE DAY ISEE FIGURE J·51 

GENERAL PRECESSION IN LONGITUDE Ii.e., PRECESSION OF 
THE EOUINOXESI PER JULIAN CENTURY,AT EPOCH 2000 

RATE OF CHANGE OF PRECESSION 

OBLIQUITY OF THE ECLIPTIC, AT EPOCH 2000 

RATE OF CHANGE OF THE OBLIQUITY IT IN JULIAN 
CENTURIESI 

AMPLITUDE OF EARTH'S NUTATION 

LENGTH OF SIDEREAL DAY, EPOCH 1980§ 

LENGTH OF SIDEREAL YEAR, EPOCH 1980' 

LENGTH OF TROPICAL YEAR IREF ·TI EPOcH 1980§ 

LENGTH OF ANoMAlIstle YEAR IPERIHELION TO 

PERIHELloNl, EPOCH 19800 

, BASED ON THE ADOPTED VALUES OF f AND 8. 

VALUE 

637B.140 km 

0.0033S281 Q 11298.257 

6356.755 km 

6371.11Okm 

0.081BI92 

5.10066 x 10B km2 

1.08321 x '0'2 km3 

-1.6 x 10-5 (sma. -umln <0: 100 m. 
200 W 8Ild 1600 E 

332,946.0 

3.9B6005 • '0'4 m3 s-2 

5.9742. 1024 kg 

5.515gmfcrn3 

+1082.63 • 11,6 
-2.54.10-6 
-1.61.,0-6 

4671km 

0.0015 secfCentury 

1.39697128 Deg/Century 

+6.1B1 • 10-4 DegfCentury2 

23.4392911 Deg 

1-,.30,25.,0-2 T -1.64 x '0-6 T2 
+5.0. 10-7T3, Deg 

2.5586 • 10~3 Deg 

B6.164.091B_ . 
Q 23 hr 56 min 4.091B IIIC 

3.1588149548 x 107 
IIIIC 

• Q 365.25636061 DaysD 

3.166925551 x 107 
IOC 

Q 365.24219388 DaysD 

3.1558433222 x 107 
IOC 

• 365.259643n DayID 

*ASSUMING G· 6.872 x 10-11 ml kg-I ,-2; THE'VALUE OF GM
E 

IS MORE ACCURATELY KNOWN. 

§SEE APPENDIX J FOR FORMULAE AND DISCUSSION. 

D ONE DAY a 86,400 SI SECONDS, 
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Table L-6 summarizes the properties of the upper atmosphere of the Earth. 
The mean profiles between 25 and 500 km are from the COSPAR International 
Reference Atmosphere, CIRA 72 (l972J. Between 500 and 1000 km, the CIRA 72 
profile for T co = IOOOK was used to indicate the densities to be expected. The 
maximum and minimum values of the density between 100 and 500 km were 
extracted from the explanatory material in CIRA 72 and indicate the variation in 
densities which can be obtained with the models. Sea level temperature and density 
are from the U.S. Standard Atmosphere [1976J. 

Geocentric and Geodetic Coordinates on the Earth. The geocentric latitude, ~', 
ora point, P, on the surface of the Earth is the angle at the Earth's center between 
P and the equatorial plane. The geodetic or geographic latitude, ~, is the angle 
between the normal to an arbitrarily defined reference ellipsoid (chosen as a close 
-approximation· to the oblate Earth) and the equatorial plane. Astronomical latitude 
and longitude are defined relative to the local vertical, or the normal to the 
equipotential surface of the Earth. Thus, astronomical latitude is defined as the 
angle between the local vertical and the Earth's equatOJjal plane. Maximum valu~s 

Table L-6. The Upper Atmosphere of the Earth 

MEAN DENSITY Ik9/m3, SCALE 
ALTITUDE KINETIC HEIGHT 

IKM' TEMPERATURE 
MINIMUM MEAN MAXIMUM IKM' 

IUK' 

0 2882 1.225 x 10.0 8.44 
25 221.7 3.899 x 10-2 6.49 
30 230.7 1.774 x 10-2 6.75 
35 241.5 8.279 x 10-3 7.07 

.. 
40 255.3 3.972 x 10-3 7.47 
45 267.7 1.995 x 10-3 7.83 
60 271.6 1.057 x 10-3 7.95 
55 263.9 5.821 x 10-4 7.73 
60 249.3 3.206 x 10-4 729 
65 232.7 1.718 x 10-4 6.81 
70 2162 8.770 x 10-5 6.33 
75 205.0 4.178 x 10-5 6.00 
80 195.0 ,.905.,0-5 5.70 
85 185.1 8.337 x 10-6 5.41 
90 183.8 3.396 x 10-6 5.38 
95 190.3 ,.343.,0-6 5.74 

100 203.5 3.0 x 10-7 5.297 x 10-7 7.4.,0-7 6.15 
110 265.5 6.0.,0-8 9.661 .,p-8 3.0.,0-7 8.06 
120 334.5 ,.0.,0-8 2.438 x 10-8 6.0.,0-8 11.6 
130 445.4 4.5.,0-9 8.484.'0-9 ,.6.,0-8 16.1 
140 549.0 2.0.,0-9 3.845.,0-9 6.0.,0-9 20.6 
150 635.2 ,2.,0-9 2.070.,0-9 3.5.,0-9 24.6 
160 703.1 ·1r.5.,0- 'O 1244 .,0-9 2.0.,0-9 26.3 
180 7812 2.4.,0-,0 5.464 x 10-10 9.0.,0- ,0 332 
200 859.3 1.0.,0-,0 2.789.,0- ,0 3.2. '0- '0 38.5 

260 940.2 4.0.,0-11 7.248.,0-11 1.6.,0-,0 46.9 
300 972.8 '.6.,0-11 2.4,8.,0-11 8.8.,0-

" 
52.5 

360 986.5 2.0.,0-12 9.,58.,0- ,2 6.0.,0- 11 56.4 

400 992.6 3.7.,0-,3 3.725.,0- ,2 5.0.,0-
" 

59.4 
450 995.7 9.0.,0-,4 1.585 • 10-12 3.8.,0-11 62.2 
500 997.3 '.3.,0- ,4 6.967.,0-,3 3.0.,0-

" 
65.8 

600 1000.0 1.454 x 10-13 79 
700 1000.0 3.614. 10-14 109 
800 1000.0 1.170 x 10-14 164 
900 1000.0 5.245 x 10-15 225 

1000 1000.0 3.0,9.,0-15 268 
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Table L-7. Coefficients for Determining Geocentric: Rectangular Coordinates from Geodetic: 
Coordinates on the Surface of the Earth. Based on / = 1/298,257. 

~ S C IDEGI • C, (DEGI S 

.0 0.993308 1.000000 ~5tJ 0.995282 1.001970 
5 0.993331 1.G00025 55 0.995544 1.002254 

10 0.993406 1.1lOO101 60 0.995809 1.D02&2O 
15 0.993528 1.1100224 65 0.996048 1.002761 
20 0.993695 1.000392 70 0.996255 1.D02869 
25 0.993900 1.000598 75 0.996422 1.003138 
30 0.994138 1.000838 60 0.996546 1.003282 
35 0.994401 1.001103 65 0.99&622 1.003338 
40 0.994682 1.001386 .110 0.996647 1.003384 

± 45 0.994972 1.001618 

of the deviation of the vertical, or the angle between the local vertical and the 
normal to a reference ellipsoid, are about I minute of arc. Maximum variations in 
the height between the reference ellipsoid and mean sealevel (also calIedtlie geoid 
or equipotential surface) are about 100 m, as ilJustrated in Fig. 5-8. 

The coordinate transformations given here are intended for use near the 
Earth's surface to correct for an observer's height above sea level and are valid 
only for altitudes much less than the radius of the Earth. For satellite altitudes, the 
coordinates will depend on the definition of the subsatellite pointor the method by 
which geodetic coordinates are extended to high altitudes. For a discussion of 
geodetiC coordinates at satellite altitudes, see Hedman [1970] or Hedgley [1976] .... 

Geodetic and geocentric latitude are related by [H.M. Nautical Almanac 
Office, 1961}: 

tan4>= tan 4>' /(1-fi:::::: I.006740 tan 4>' 

4>-4>' = (J+! l)sin24>- U f2+ !J3)sin 4cf>+ !lsin64> 

::::::0.192420 sin 24> - 0.000323 0 sin 4cf> 

where f:::::: 1 /298.257 is the flattening factor of the Earth as adopted by the IAU in 
1976 [Muller and Jappel, 1977]. 

Let h be the height of P above the reference ellipsoid in metres; let Re be the 
equatorial radius of the Earth in metres; and let d be the distance from P to the 
center of the Earth in units of Re. Then d and h are related by 

h = Re [ d - (I - f)/VI - f(2 - f)cos24>' ] 

d= :e + 1-(i )f-( 156 )P+ (i )fCOS24>- ( I~ )pcOS44> + e(J~ 
::::::(I.5679X 1O-7)h+0.998327+0.00167600s24>-0.OOOOO4cOs4cf> 

To convert geographic or geodetic coordinates to geocentric rectangular 
coordinates in units of ReB' use the following: 

dsin4>'=(S+hX I.5679 X 1O-7)sin4> 

dcos4>'=(C+hx I.5679 X 1O-7)oos4> 

tan 4>' =(0.993305 + h X 1.1 X 1O-~tan4> 
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Table L-8. Physical and Orbital Properties of the Moon 

PROPERTY VAL.UE 

MEAN DISTANCE FROM EARTH 384401t1km 

EXTREME RANGE 356400 to 406700 km 

ECCENTRICITY OF ORBIT 0.0549 

INCLINATION OF ORBIT TO ECLIPTIC 
(OSCILLATING! 0.15 DEG WITH PERIOD OF 173 DAYS) 

5.1453 Deg 

SIDEREAL PERIOD (RELATIVE TO FIXED STARS) 27.32166140 + T x 1.6 x 10-7 

WHERET IS IN CENTURIES FROM 1900.0 Ephemeris Days 

. SYNODICAL MONTH (NEW MOON TO NEW MOON) 29.6305882+ T x 1.6 x 10-7 

Ephemeris Days 

TROPICAL MONTH (EQUINOX. TO EQUINOX) 27.32158214 + T x 1.3 x 10-7 

Ephemeris Days 

ANOMALISTIC MONTH (PERIGEE TO PERIGEE) '27.6545505 - T x 4 x 10:"7 Days 

NODICAL MONTH (NODE TO NODE) 27.212220 Days 

NUTATION PERIOD = PERIOD OF ROTATION OF. THE NODE 18.61 Tropical Years 
(ROTROGRADE) 

PERI~D OF ROTATION OF PERIGEE (DIRECT) 8.85 Years 

OPTICAL U8RAnON IN LONGITUDE ISELENOCENTRIC :t 7.6Deg 
DISPLACEMENT) 

OPTICAL UBRAnON·IN LATITUDE ISELENOCENTRIC :t 6.7 Deg 
DISPLACEMENT) 

SURFACE AREA NEVER VISIBLE FROM EARTH 41% 

INCLINATION OF EQUATOR 
TO ECLIPTIC 1.642 Des 
TO ORBIT 6.68 Des 

RADII: a TOWARD EARTH, b ALONG ORBIT, c: TOWARD 
POLE 

MEAN RADIUS 1b+c:'/2 1738.2 km 
a-c: 1.09km 
Ibb 0.31 km 
b-c: 0.78 km 

MEAN ANGULAR DIAMETER AT MEAN DISTANCE 0.5182 Deg 
FROM EARTH 

RATIO OF MASS OF MOON TO MASS OF EARTH 0.01230002 

MASS OF THE MOON- 7.3483 x 1022 kg 

MEAN DENSITY 3.3419c:m-3 

SURFACE GRAVITY 162.2 c:m s-2 

SURFACE ESCAPE VELOCITY 2.38 km/s 

• ASSUMING G .8.872 x 10-11 m3 k9~1 S-2; MASS RATIOS ARE MORE ACCURATE'. 

, . .: 
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where: 

POTENTIAL SPACECRAFT ORBITS 

C =[ corcp+ (l-f)2sin2cp] -1/2 

S=(I-f)2C 

823 

values of Sand C are given in Table L-7. In terms of S and C, the distance to the 
center of the Earth for h = 0 is 

d2= !(S2+ C2)+ ~(CZ-S2)coS2cp 

L41beMoon 

The physical and orbital properties of the Moon are summarized in Table L-8. 
Additional general characteristics are given in Tables L-2 and L-3. To determine 
the Moon's visual magnitude, V(R.O. at any distance and phase, let R be the 
observer-Moon distan~ in AU and ~ be the phase angle at the Moon between the 
Sun and the observer. Then 

V(R,€)=O.23 + SlogloR - 2.5logIOP(O 

where the phase'law, P(O, for the Moon is given in Table L-9 (Allen, 1973]. For 
additional details and a sample computation, see Section 3.5. Note that the visuai 
magnitude of the Moon at opposition (i.e., full Moon) at the mean distance of the 
Moon from the Earth is -12.73. 

Table L-9. Phase Law and Visual MagDitude of the: Moon 

t 
PIt! VIR, tI - VIR, 01 t Pit) VIR, t1- V (R.O) (DEG) (DEG) 

0 1.000 0.00 80 0.127 2.24 

6 0.929 O.os 80 0.089 2.63 

10 OB09 0.23 100 0.061 3.04 

20 0.626 0.51 110 0.041 3.48 

30 0.483 0.79 120 O.Cl27 3.93 

40 o.3n 1.06 130 0.017 4.44 

60 0.288 1.36 140 0.0G9 6.07 

60 0.225 1.62 160 0.004 6.9 

70 0.172 1.91 160 0.001 7.5 

L.S Potential Spacecraft Orbits 

Table L-lOlists the transfer time and velocity required for Hohmann transfer 
orbits between the planets. The values cited are for minimum energy transfer orbits 
between the mean distances of the planets from the Sun. The upper number is the 
one-way transfer time in days; the lower number is the velocity change required to 
go from the orhital velocity of the planet of origin to the transfer orbit in km/sec. 
See Section 3.3 for relevant formulae. Finally, Table L-ll gives the velocity of 
escape, circular velocity, and synchronous altitude and velocity for potential 
artificial satellites of the Moon and planets. 



Table L·IO. Hohmann Transfer Orbit Properties. (See text for explanation.) 

ORIGIN 
DESTINATION 

MERCURY VENUS EARTH MARS JUPITER SATURN URANUS 

MERCURY - 75.6 105 171 853 2.020 5,590 
5.8 7.5 8.8 8.2 6.9 5.4 , 

VENUS 75.6 - 146 217 931 2.120 5.730 
6.7 2.5 4.8 6.6 6.0 5.0 

EARTH 105 146 - 259 997 2,210 5.860 
9.6 2.7 2.6 5.6 5.4 4.7 

MARS 171 217 259 - 1.130 2.380 6.080 
12.6 5.8 2.9 4.3 4.6 4.2 

i 
JUPITER 853 931 997 1.130 - 3.650 7.780 

17.4 11.4 8.8 5.9 1.5 2.4 

SATURN 2.020 2.120 2,210 2.380 3.650 - 9,940 
18.5 12.7 10.3 7.6 1.8 1.3 

URANUS 5.590 5.730 5.860 6.080 7.780 9,940 -
19.1 13.6 11.3 8.7 3.3 1.5 

NEi'TUNE 10.800 11.000 11.200 11.500 13.500 16.100 22.300 
19.4 13.9 11.7 9.2 4.0 2.2 0.7 

PLUTO 16.300 16.400 16.700 16.900 19.300 22.100 29.000 
19.5 . 14.1 11.8 9.4 4.3 2.6 1.1 

THE MOPN 5.0 
3.2 

NEPTUNE 

10.800 
4.6 

11.000 
4.3 

11,200 
4.1 

~i~.iOO 
3.7 

13.500 
3.7 

16.100 
1.7 

22.300 
0.6 

-
37.400 
0.4 

PLUTO 

16.300 
4.1 

16.400 
3.8 

16.700 
3.7 

16.900 
3.4 

19.300 
2.5 

22.100 
1.8 

29.000 
0.9 

37.400 
0.3 

-
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Table L-II. Parameters for Potential Artificial Satellites of tbe Moon and Planets 

VELOCITY IN SYNCHRONOUS ORBIT 
VELOCITY CIRCULAR ORBIT 

PLANET OF ESCAPE AT THE ALTITUDE ABOVE VELOCITY IKMISECI SURFACE . SURFACE IKMISECI IKMISECI IKMI 

THE MOON 2.378 1.879 88.710 0.235 
MERCURY 4.283 3.014 241.400 0.301 
VENUS 10.348 7.318 1.638.000 0.459

' 
EARTH 11.180 7.905 35.786 3.075 
MARS 5.023 3.552 17.033 1.448 

JUPITER 59.82 42.18 B7.8'102 28.22 

SATURN 35.53 25.12 49.1502 
1B.63 

URANUS 21.77 15.39 38.130 9.78 

NEPTUNE 23.40 16.55 57.480 9.12 

PLUTO 5.4 3.8 68.000 0.81 

NOTE: THE VELOCITY OF ESCAPE FROM THE SOLAR SYSTEM AT THE DISTANCE OF THE EARTH'S ORBIT 
IS 29.785 KMISEC. 

'RETROGRADE. 

2FOR EQUATORIAL ROTATION; THE PLANET'S ROTATION IS SLOWER AT HIGHER LATITUDES. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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APPENDlXM 

FUNDAMENTAL PHYSICAL CONSTANTS 

The physical constants are those compiled by Cohen and Taylor (1973a, 
1973b] under the auspices of the CODATA (Committee on Data for Science and 
Technology of the International Council of Scientific Unions) Task Group on 
Fundamental Constants and officially adopted by CODATA. The astronomical 
constants are those compiled by Commission 4 of the International Astronomical 
Union and adopted at the 1976 IAU meeting in Grenoble (Muller and Jappel, 
1977]. The uncertainties are the I (J standard deviation expressed in parts per 
million (ppm). Additional constants are listed in Appendix K (Conversion Factors), 
Appendix L (Solar System Constants), Allen [1973J, and Rossini (1974J. 

DIMENSIONLESS NUMBERS (~ote I): 

'IT=3.141 592653589793238462643 ... 

e=2.1l8 281828459045235360287 ... 

PHYSICAL CONSTANTS: 
Uncer-
tainty 

Quantity Symbol Value Units (ppm) 

Elementary Charge e 1.6021892 X 10- 19 C 2.9 
Planck Constant h 6.626176 X iO- 34 J·s 5.4 
Permeability of Vacuum J1.o 4'ITX 10- 7 N/A2 Exact 

Fine Structure Constant 0: 7.2973506 X IO- l None 0.82 

(J1.oce 2/2h) 
Avogadro Constant NA 6.022045 X 1023 mol-I 5.1 

Atomic Mass Unit u 1.6605655 X 10-27 kg 5.1 
Electron Rest Mass me 9.109534 X 10- 31 kg 5.1 

Proton Rest Mass mp 1.6726485 X 10-27 kg 5.1 

Neutron Rest Mass mn 1.6749543 X 10- 27 kg 5.1 

Muon Rest Mass m", 1.883566 X 10- 28 kg 5.6 

Electron Magnetic ILe 9.284832 X 10- 24 J/T 3.9 
Moment 

'Proton Magnetic ILp 1.4106171 X 10- 26 J/T 3.9 
Moment, 

Muon Magnetic Moment IL", 4.490474 X 10- 26 J/T 3.9 

Rydberg Constant Roo 1.097373177 X 107 m- I 0.075 

(~c3mee4/8hl) 

Bohr Radius Qo 5.2917706 X 10- 11 m 0.82 
(0:/4'ITRoo) 

Classical Electron Te 2.8179380 X 10 - 15 m 2.5 

Radius (o:l/4'ITRoo) 

, , 

or 

! c 

1 :_"; 

;'; 
;1 

i t\ 
-!~ 

f~ 
. "1 



~ , 

~ 1 

Ap.M FUNDAMENTAL PHYSICAL CONSTANTS 827 

Uncer-
tainty 

Quantity Symbol Value Units (ppm) 

Compton Wavelength of he 2.4263089x 10- 12 m 1.6 
the electron (h/mec) 

Molecular volume of V", 2.241383 X 10- 2 m3/mol 31 
ideal gas at S.T.P.· 

Boltzman constant k 1.380662 X 10- 23 J/K 32 
ASTRONOMICAL 

CONSTANTS: 
Speed of Light in Vacuum c 2.99192458 X 108 m/s 0.004 
Gaussian Gravitational k l. 720209895 X 10 - 2 rad/day Note (2) 

Constant 
Earth Equatorial Radius R(f) 6.318 140 X 106 m 0.18 
Earth Dynamical Form J 2 1.08263 X 10-3 None 9.2 

Factor 
Earth Flattening Factor f 3.35281 X 10-3 None 6.0 

I/f 2.98251 X 102 None 6.0 
Earth Gravitation Constant GM!B 3.986005 X 1014 m3/s2 0.15 
Moon Gravitation Constant G M M 4.902194 X 1012 m3/s2 3.6 
Sun Gravitation Constant GM0 1.321 12438 X lOW m3/s2 0.038 
Gravitational Constant G 6.6720x 10- 11 m3/(kg·s2) 615. (3) 
Mass of the Moon MM 1.3483 X Ion kg. 615. (3) 

Mass of the Sun M0 1.9891 X loJO kg 615. (3) 

Mass of the Earth MfIJ 5.9742 X 1024 kg 615. (3) 
Ratio of the Mass of the MM/ M(f) 1.230002 X 10-2 None 3.6 

Moon to the Mass of the 
Earth 

Obliquity of the Ecliptic .f: 23 0 26'2 I " .448 
at Epoch 2000 =2.34392911 X 101 deg 1.2 

General Precession in P 1.39691128 ( deg ) 30 
Longitude per Julian century 

Ephemeris Century, at 
Epoch 2000 

Constant. of Nutation, al N 2.55858 X 10-3 deg 600 
Epoch 2000 

Astronomical Unit AU 1.49591870x 10" m 0.013 
Solar Parallax "'0 2.442819 x 10-3 deg 0.80 
Ratio of the mass of tbe SUD to tbose of the planetary systems (planetary system 
masses include both atmosphere and satellites): 

Mercury 6.023600x 1()6 580 
Venus 4.085235 x lOS 5.2 
Earth + Moon 3.289005 x lOS 1.5 
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Quantity 

Mars 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

Notes: 

Symbol Value 

3.098710 X 106 

1.047355 X UP 
3.4985 X \()l 
2.2869 X lQ4 
1.9314 X lQ4 
3x 106 

(I) Values from Abramowitz and Stegun (1970]. 

Units 
tainty 
(ppm) 

26 
24 
430 
9900 
3900 

( - 0.3) X lQ'i 
+4 

(2) The Gaussian gravitational constant has the given value by definition and 
serves to define the other astronomical constants. 

(3) The gravitational constant enters theories of orbital dynamics only through 
the product GM. This product is well known for the various objects in the solar 
system. G itself, and consequently the masses in 'kilograms of the Sun and 
planets, is not as well known. Therefore, accurate analyses should use directly 

,the product GM 0 and the ratios of the masses of the planets and the Sun, 

EARTH SATELUTE PARAMETERS 

ANGULAR REQUIRED 
ALTITUDE.h RADIUS PERIOD, VELOCITY 

Ikml OF THE EARTH lminl Ikm/_) 
ENERGY 

-- ldeg) IMJ/kg) 

0 90.00 84.49 7.905 31.14 

100 79.92 86.48 7.844 31.62 

200 76.84 88.49 7.784 32.09 

300 12.76 90.62 7.726 32.54 

400 7022 92.56 7.669 32.88 

500 68.02 94.62 7.613 33.41 

800 68.07 96.69 7.558 33.83 

800 62.69 100.87 7.462 34.62 

1.000 59.82 105.12 7.350 35.37 

2,000 49.56 127.20 6.888 38.60 

3.000 42.85 150.64 6.619 41.14 

4.000 37.92 176.36 6.197 43.18 

6.000 34.09 201.31 6.919 44.87 

10.000 22.92 347.86 4.933 5022 

20,000 13.99 710.60 3.887 54.83 

35.788 8.70 1438.07 3.075 57.88 
ISYNCHRONOUSI 11 SIDEREAL 

DAYI 

00 0.0 - 0.0 62.39 

I' 
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In the above table, the angular radius, period, and energy required are valid 
for elliptical orbits of arbitrary eccentricity; however, the velocity is correct only 
for circular orbits. For noncircular orbits, h should be interpreted as the instan
taneous altitude when determining the angular radius of the Earth and as the mean 
altitude when determining the period and required energy. The mean altitude is 
hm == (P + A) /2, where P and A are the perigee and' apogee altitudes, respectively. 
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BaII-In-tube nutation damper 626, 621 
BallIstic coefficient 64 
BallIstic trajectory 52 
Bang-bang control law 593 

Example of 65~58 
Bang-baDg-plus-dead-mne control law 593 
Bar (unit of pressure) 809 
Barycenter 38 
Batch estimator 431,439,448 

For star data 104,101-109 
Batch least-squares estimator 448-456 

Advantages &; disadvantages 456 
Convergence 455-456 
Example of 454-455, 456-459 

Batch mode of program operation 686 
Bays, magnetic 123 
BC/CD/CPO Number (star catalogs) 143 
Bending stiffness, of spacecraft booms 548-549 
BesseJ. Friedrich WIlhelm 45 
BeteIgense (star), angular diameter of 161 
Bias determinatlon (See also Differential 

correction,- estimation theory) 
Application of scalar checking to 329-330 
Choice of observation models for 441 
Choice of state vector elements, 

example 
Geometrical conditions for 
Need for 
Need for "simple" sensors for 
Operational procedures for 

Bias momentum, dual-spin spacecraft 
Biases (See individual item; e.g .. 

440-441 
418-483 
401-408 
111-118 
413-416 

610 

Magnetometer biases) 
Effect on deterministic solution behavior 404 
Types of 411 

Binary codes 295-298 
BlpropeDant gas Jet 206 
Block (of attitude solutions) 310 
Block llYeragJng 310-313 
Block diagram. for control system 588 
Bode's law 49 

INDEX 833 

Body cone 491-492 
Body-fixed coordinates (See Spacecraft-

fixed coordinates) 
Body-mounted holizon sensor 169, 113 

Mathematical models 231-231 
Body nutation rate 490, 525-526, 535 
Bolometer, as energy detector for horizon 

sensor 171, 178 
Misalignment of in wheel-mounted 

horizon sensor 236-237 
Bond albedo 79 

. Bond IIUIDIJer 518 
Bonner OmdllllustellulIJ (star catalog) 143 
Boom deployment., deadbeat maneuver 669-671 
BoiesIght (Sun sensor) 165 
BraIIe. Tycho 36 
Branc:b, of root locus diagram 597 
Brazilian anomaly in geomagnetic field 115 
Breakaway point, of a root locus diagram 598 
Brightness of plauets and sateIDtes 17-,80 
Brightness of spacecraft., sample calculation 79 
Brouwer methud. of general perturbations 137 
BUUerwortb mter 32~321 

-C-

Calendar time conversion subroutines 
Canopus (star), as attitude reference . 

692 
189 

Cape CanaYerBl, Florida (See Eastem Tat 
Range) 

Cape Photognlphfc Owchmu.stelllll8 (star 
catalog) 

Cilrbon dioxide, absorptiou bands 
In Earth's atmosphere 
Use of absorption band for horizon 

143 
91-92 

lOS 

sensing 92 
CartesIau coordinate trausfOJ'llllltlom 161-165 
CartesIau coordinates 160 
CartesIau pint subJOutlues (graph, scale) 694 
Catalog of Bright Stars 143, 146 
Causal (in time-dependent linear systems) 243 
Cayley-KleIn parameters 414 
Cayley, Arthur 416 
Celest1aI coordinate systems (See 

Spherical coordinate systems) 
Celestial coordinates (right ascension, 

declination) 2&-28 
Transformation subroutines (RADECM, 

VEC) 690 
Celestial equatoI' 26 
CelestIal mechauks I 
Celest1aI meridian 199 
CelestIal poles 26 
Celestial sphere 22-24 

Plots of (See Global geometry plo/l) 
Center of mass, of a Keplerian orbit 

(barycenter) 
Center of pressure 
Central IJmlt 11Jeorm 

38 
513 
431 
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CeDtroId of torque 274 Cook sectIoas 38-40 
CbanIderIsdc equadoD, for a matrix 752 Coalng (spacecraft attitude motion) 489 
CbanIderIsdc frequeocy, of a linear system 773 ConJlIDCt1oD 49 
CbanIderIsdc poIyuom1aI, of a differential Inferior vs. superior 49 

equation 770 CoDServatloD of angular momentum, related 
CbarRe coupled deYke star tracker 189 to Kepler's Second Law 40 
CbebysbeY polyuomlals (curve fitting) 318-322 CoDStants, general 826-829 
CIII-squared funedon 318 Solar system 81~2S 
Chord length, of a small circle 727-728 Unit conversion factors 807-813 
CIn:uIar veJodty 42 Consumables 18 
ClassIcal elements, of an orbit (See Control (See A tritude control) 

Keplerian elements) Control hardware (See specific item, e.g~ 
CUMSAT (climatology satellite)-- Gas jets) 

Use of MMS spacecraft 720 CODtroI law (See also Altitude control) S02, S89 
Clock angle (component of sensor Implementation via onboard computer 210 

orientation) 422 ConDoIDKNDent~ 1%,200-201 
Clocks 7Y'J Nutation damping with 631 

Atomic 799,802 ConDoI torque YS. disturbance torque 498 
Ground based 299-302 ConDoI torques (See altitude control) 
Spacecraft 298-299 ConDoller, in control system S89 
Sundials 800 Convergence, in a batch least-squares 

CIased-Ioop control 604,662 estimator 4S5-456 
CIosed-Ioop control system S02,S88-600 In a Kalman filter 467--468 
CIosed-Ioop poles, of root locus diagram S97 In estimation theory 4S1 
CIosed-Ioop rate gyroscope 198-199 In integration procedures S60 
Closed-loop traDSfer fundlon, in control Coo,ersatkmal software system 686 

systems S95-5% Conversion, of telemetry data to 
CMG (See ContrOl moment gyroscope) engineering uiiits 304,306-307 
CoastIng pbase, of space mission 53 COnversion factors, for SI (metric) units 
COBE, use of AEM spacecraft 720 807-813 
CodIng of data for tnmsmIssfon 295-298 Con.oIudon Integral 243, 768-769 
Cold gas je1s 206,209-210 Con.olutlnnal encoding 282 
Colored noise 269 Coordinate systems 24-31 
Column matrbt 745 Notation xi 
Commands; transmission of 279,292 Parallax 30 
Committee on Space Researcb (COSPAR), Table of inertial 28 

U.N. Committee 52 Transformations 760-766 
Commutation 293-294 Coordinated UnI,ersal TIme (UTq 
COmmutation angle, in magnetic control 798, 801- 802 

system 643 Attached to data 298 
Commutation mode, in magnetic control Copernicus spacecraft (OAO-3) (See OAO) 

system 643 Cordoba Durclun .. erung (Star Catalog) 143 
Commntator 293 Core catalog (star catalogs) 147 
Commutator dumneI 293-294 Cores, magnetic 20S 
Component IlIICeI'taInty (of attitude) 375 Corredion of In.alld data 296-297,307 
Compound attitude measurements 3S7-359 Correladon, among measurement types 478 

In single-axis attitude solutions 370 Among observations & noise in state 
Computer envIronment, Goddard Space estimation 444-44S 

Flight Center. 682 In estimation theory 452-453 
Computer programs (See Software) ,Limited attitude accuracy due to 
Computers, onboard spacecraft 210-213 390-391,394 
Cone angle 23 Of a single measurement type at 
Cone angle measurement (See Arc length different times 478-482 

measurement) Of measurement uncenainties 
COne intersections, analytic procedure for 374,378-379,382-383 

determining 364 CorrelatloD angle 346,353-357 
Attitude solutions using 368-370 Expressions for 384,388-389 
Subroutine for (CONESB) 691 Figure summarizing relationships 391 .I \ 

CONESI (subroutine) 691 For a single measurement type at 
Use of in attitude solutions 364-370 different times 478-482 



CorrelatIon coefIIdent 378, 429,452 
COS (European Astronomy. satellite}-

Slit horizon sensor/Sun sensor 
169,178-179,721 

CosIne detedor (Sun seJISOr) 156-159 
CosInes, law of (m spherical triangles) 

33-34,731-732 
COSPAR (See Committee on Sptzce 

Research) 
COSPAR InterDatlonal Reference 

Atmosphere 110 
CovarlaDce 429 
Covariance analysis 429-434 

In state estimation 452-453,461, 465 
CovarlaDce matrix (See Error cOlJtll'ifmce 

matrix) 430-434 
COz (See Carbon dioxide; Infrared radiation) 
Crescent (illumination phase) 331 
Crew, disturball.ce torques due to motion 

of • 578-580 
CrltkaI angle prism (Sun sensor) 159-160 
CrItically damped eontroI system 593 
Cross product (See Vector product) 
CROSSP (subroutine) 691 
Crosstalk, in magnetometers 250 
crs (Communications Technology SateIJite}-

Application of block averaging to 
attitude solutions 371 

Attitude acquisition 
661-663,666,669-670,672 

Attitude data simulator 710-711 
Attitude determination 10-12 
-Accuracy of 397 
-During attitude acquisition 422-424 
Attitude software strueture 698 
Attitude support system 700--703 
Attitude system of 788-789 
Control system description 612~13, ()22~25 
Correlation among measurement types 

480-484 
Data collection for bias determination 474 
Determination of bias on Earth 

angular radius 483 
Determination of seJISOr mounting angle 

bias 483 
Deterministic attitude subsystem 370 
Effect of flexibility on attitude dynamics 556 
Gas jet control system 506 
Horizon sensors 169, 175-176 
Mission profile 4-8 
Modeling torque due to orbit maneuvers 582 
Multiple component software 716 
Nutation damping 630 
Spacecraft 6 
Spin rate change due to orbit maneuvers 582 
Stabilization method 503 
Sun sensor 157 
Telemetry data errors 311 
Use of body-mounted horizon sensor 173 
Use of carbon dioxide band horizon 

INDEX 

sensor 
Use of open-loop control 

Curle point 
Curve ftttlng 
Cusp 
Cusp regImi, geomagnetic field 
CyImdnaI coonDDates 

-0-

835 

92 
663 
115 

317,318-322 
90 

120 
760 

W~J~ 38 
DampIng (See also Nutation damping; 

Ubration damping) 
Of a control system 591-593 
Of inertial control systems 6S~59 

DampIng matrix (for flexible spacecraft) 553 
Dark angle 88 
Data-

Acquisition and transmission process 
278-298 

Correction if invalid 2%-297, 307 
Generation and handling of, onboard 

spacecraft 278-283 
Handling invalid data 315 
Processing at receiving stations 303-304 
TlDle tagging 298-304 
Transmission from receiving station to 

attitude computer 
Data adjuster, of CTS attitude system 

292 
701 

Data anomalIes, procedures for identifying 
334-339 

Data averaging, for single-frame attitude 
solutions 370-373 

Data COD,endoo. in telemetry processor 

Data dIOpont 
Data errors 

304, 306-307 
310 

310-311 
Checking for in mission support 

software 
Table of representative examples 

Data IIIteni (See also State estimators) 
Data mters. Butterworth vs. least-

682~3 
311 

squares quadratic vs. averaging 325-327 
~tion 437 
Use for data smoothing 317,322-327 

Data flagging (See Flags) 
Data bandBng, in telemetry processor ~308 
Data pleparatlou snbsysIems, in attitude 

software systems 
Data selection requfrIng attitude 

Infonnatlon 
Data _"111"1 (See Smoothing) 
Data InmsmJssIoo (See Telemetry) 
Data YBIIdatIon (See Validotion) 
Data weIgIdlng (See also A(titruie 

determinotion accwaq) 
DATE (subroutine) 
Date, conversion subroutines for Julian 

697 

334-339 

370-373 
692 
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dates (JD, DATE) 
Day. apparent solar 

Mean solar 
Sidereal 

DC (subroutine) 
DE (Dynamics Explorer sateUite)

692 
799 
805 

799.805 
691 

Attitude system of 788-789 
Effect of flexibility on attitude dynamics 556 
Use of carbon dioxide band horizon 

sensor 
Deadband., in attitude control 
Deadbeat boom deployment 

92 
607 

669-671 
64 
28 

Decay, of Earth satellite orbits 
DeclInatioD (See also Celestial coordinates) 
Deep Space Network, Jet Propulsion 

Laboratory 
DeftJJldye attitude determination 

requfrements 
Deftnldve orbit 
Delayed command system 
Delta fuDCtlons 
Delta LaundJ Vehicle 
DELTIM (subroutine) 

284 

681 
62 

640 
xii 

3-5 
693 

DensIty of attitude loci (See Measurement 
l density) 

Density of Eartb's atmosphere 
Descending node 
DesIgn of mission support software 
DetermInant, of a square matrix 
Deterministic attitude (See Altitude 

107 
44 

681-713 
148-749 

determination, deterministic methods) 
Deterministic subsystem, in attitude 

. ll(>ftware systems 
Of crs attitude system 

691 
101 

Development of mission support software 

Devlatlon of the vertical 
Diagonal matrix 
Diagonallzatlon, of a ma trix 
Differential correction (See State 

681-695 
821 
745 

752-754 

691 

INDEX 

estimation; Data filters; Least squares) 
Dlfferendal correction subroutine (DC) 
Dlfferendal correction subsystem, of crs 

attitude system 702 
Dlfferendal equations, solution using 

Laplace transform TIc}-TII 
Dlfferendal spherical trigonometry 734-135 
Diffuse reDecdon, torque due to 572 
DIgItal codes 295-298 
DIgItal proce5SOIS (See Onboard computers) 
DIgItal SUD sensor 156, 161-166 

Spinning or one-axis, mathematical 
model 

Two-axis, mathematical model 
Dihedral angle . 

223-224 
224-227 

23 
Dihedral angle measurement (See Rotation 

angle measurement) 
DIpole model, of geomagnetic field (See 

Geomagnetic field, dipole 11Wde/) 
Dipole moment. magnetic 204 

Dirac delta function xii 
Direct match. for star identification 

259. 26C}-262 
Direct orbit 53 
Direction cosine matrl .. (attitude matrix) 

Kinematic equation~ of mlltilln fllr 
Parameterizations 
Summary of properties 
Table of as function of Euler angles 

Directrix 
Discretization error, in integration 

procedures 
Disturbance torques (See al.~o Specific 

torques. e.g. Aerodynamic) 
As control system inputs 
Distinguished from control torques 
Due to engine misalignments 
Due to orbit maneuvers 
Environmental 
-Frequencies of 
Internal 
Mathematical models of 
Table of 

411.424 
512 

41C}-420 
761-762 

764 
40 

560 

502 
589 
498 

580-583 
58c}-583 
566-·576 

318 
576-580 
558-587 

17 
558 Treatment of for attitude propagation 

Divergence--
In Kalman Filters 
Of a vector function 

467-468 
756 

DODGE (Department of Defense Gravity 
Experiment Satellite)-

Attitude system of 
Dot product, of vectors 
Double stars. in star catalogs 
Dowulink 
Draconic montb 
Drag, on spacecraft orbits 
Drag coefficient 

788-789 
747 

145-146 
278 

52 
64 

64.574 
Drift~ 

I n gyroscopes 200 
Of spacecraft attitude 498 

Drift ra1e nlInP. in gyroscopes ,. 200 
DSCS (Defense S;Jtellite Communications 

System)-
Shadow modeling for 573 

Dual-nake horizon sensors 171 
DuaI_ner single-axis attitude solutions 368 
Dual-spin spacecraft 202-203.601 

Attitude acquisition via momentum 
transfer 

'List of 
Nutation of 
Pitch control 
Stabilization by 

Dumbbell, rotation of 
Duty Cycle

Horizon sensor output 
Of reaction wheel command 

D)'IIllIII..: equations of motion 
For flexible spacecraft 
Torque free 

667-669 
787 

536-539 
617 

503-505 
487-488 

172 
270 

521-523 
552-555 
524-529 
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INDEX 837 

Dyuamks (See Attitude dynanrks) Thermodynamic equilibrium of 82 
Definition 487 Torque due to renected snnJigbt from 571 

Visual appearance of 83-87 
Eartb-ID (See In-triggering) 
Eartb-Moon Lagrange points 5' 

-E- Earth-out (See Out-triggering) 
Earth referenced spacecraft 60S; 608-625 

e (Base of natund 1ogarItbms), value 826 Table of characteristics 612 
Earth (See a/so Nadir) Earth satellites, period vs. altitude table 828 

Albedo of 83 Earth sensor (See also Horizon sensor) 

Appearance from space 83-106 Combined Earth/SUD sensor 178-179 . 

-Due to oblateness 99-103 Visible vs. infrared . 83; 169 
Appearance of horizon at 14 to 16 Eartb-wIdtb measmement 172. 347-349 

- Density of 348 
microns 92-98 Error due to unmOdeled oblateness lOS 

As attitude determination reference Pagoda effect in 3]6:..339 
source. 17 Earth-width model, for horizon sensors 

Atmosphere of 106-110 231, 233-234 
-Composition. 108 Eartb-wldth/Sun angle slngle-axis attitude 
-Effect of during eclipses 17 solutions 368 
-Horizontal temperature gradients 94-96 Singularities in 406-407 
-Models 109-110 Eastern Test Range laundl site 3,5 
-Structure 106-109 Eccentric anomaly 45--46. 
-Table of properties 820 Ea:entrIdty 38,46 
-Variation in structure 109 Echo I sateDlte 65 
-Vertical temperature cross section 96 EdIpse 72.1S-71 
Bias in sensed angular radius 235 Conditions for 75-71 
-Procedure to measure 483 Of the Sun (See Soltu eclipse) 
Dark angle 88 EdIptk 44 
Geocentric and geOdetic coordinates As reference for solar system orbits 48 

82~22 Obliquity of 48 
Geometrical distortion of surface as seen Relative to celestial coordinates 27 

from space 81 EdIptk coordinates 28 
Gravitational field models 123-129 Use in three-axis attitude system 425 
Horizon of (See Horizon) Eddy current IibratIoD damper 632 
Illumination of as seen by nearby Eddy current DUtatIon damper 626-627 

spacecraft 334 Eddy current DUtatIon damping 614 
Inertial rotational position of (GST) 802-805 Eddy current rods, use of for Iibration 
-Irregularities in 805 damping 633 
Infrared appearance of 90--98 Eddy currents, torque due to 575 
Infrared radiation from 82, 90--98 Effective torque, for gas jet 274 
Magnetic field (See Geomagnetic field) ElgeDaXIs inertial guidance _ers 661 
MOdeling procedures 82-110 EIgenvalue 752 
Models of surface shape, table 98 EIgenvector 752 
Oblateness- EIgenvectors and Elgenvalue5-

I 
-Effect on orbit 65-69 Interpret. of for attitude matrix 411-412 
-MOdeling 98-106 Of moment-of-inertia tensor 519 

, 
-Term in gravitational potential 124 EJectrlc tIuusters, for attitude control 19 
Orbit of (See a/so Ecliptic) 44,43--51 E1edromagoede UDIts 811-813 
Path of conical scan on 81,118 ElectronIc noise (gyroscopes), mathe-
Position of relative to Sun, Moon, and matical mOdel 269 

planets 13~142 EIedronks modeling, attitude sensors 242-249 
Properties of, table 819-821 ELEM (subroutine) 692 
Radiation balance, table 82 Basis of 60-62 
Radiation from 82-98 Elements-
Shadllw cone of 15 Of an orbit (See also Orbit e1emenJs, 
Shape of 99-103 Keplerian orbits) 46 
Symbol for SO Of a matrix 744 
Terminator ~ 
-Identification 331-334 Component in local tangent coordinates 30 
-MOdeling 86-90 Component in spberical coordinates 25 
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EllIpse 
EIIIpdcaI orbit, lable of properties 
EIIIpddty, of the Earth 
EIoDpdoa, of a planet 
Eocoder 
Energy-

38-40 
47 
99 

49-SO 
280 

Dissipation, effect of on rotation 499-S01 
Required for spacecraft launch 54 
Units and conversion fac:tors 810 

Eueru ellipsoid 499-S01 
Discovery of 521 

Eueru optimal magaetk III8IIeIIYeI' 642, 648 
EDYlronmenta1 torques (See DisturlJtmce 

lorqua) . 
EPHEM file (See Ephemeris file) 
Ephemeris 

Algebraic: approx. for Sun, Moon, and 
36 

planets 1~143 
Spacecraft 133-134 
Sun, Moon, and planets 138-142 

Ephemeris file 133 
Format 135 
Subroutines for reading 693 

Ephemeris subroutIDes-
Analytic-for spacecraft, Sun, Moon, 

planets 692-693 
Definitive (i.e .. dala set) 693 
General-purpose Sun, Moon, spacecraft 

(EPHEMX) 
Ephemeris TIme (E1) 
EPHEMX (subroutine) 
Epoch (orbit parameter) 
Epoc:b. of celestial coordinates 
Equatlon of the center 
EquatIon of time 

693 
798,802 

693 
46 
27 

140 
801 

Equator (type of coordinate system) 
Equator, of a spheric:a1 coordinate system 
EquatorlaJ eIectrojet 

28 
24 

123 
EQUIN (subroutine) 
EquInoxes 

Precession of 
-Sub. for updating coord. (EQUIN) 

ERBS, use of AEM spacecraft 
Error-comctlng codes 
Error mYarIance matrix 

Analysis for attitude determination 

692 
48 
27 

692 
720 

296-297 
452 

378-379, 429-434 
EnorelBpse 376-381.434 
Error parallelogram 345-346, 374-376 
Error signal, in control system 502-S03 
Errors In software, avoidance of 682-683, 685 
ERTS (Earth Resources Technology 

Satellite) (See also Landsat}-
Attitude system of 788-789 
Horizon sensors 176-178 

Escape velocity (See Velocity of escape). 
ESRO (European Space Research 

Organization Satellites}-
Attitude system of 
Nutation damping 

788-789 
627 

Estfmadon theory (See State estimation) 

INDEX 

EstImation theory techniques 
Euler angles 

Formulas 

447-470 
417-420 
763-765 

Kinematic equations of motion for 
513-514.765 

Euler axis, of rotatior 
Euler rotation angle 

413 
413 

Euler symmetric parameters (See also 
Qualernions) 414-416.583.758-759,762 

Eu1er's equatloDS 522. 558 
General form for Earth-referenced space-

craft 609-610 
Mechanical integration via gyroscopes 559 
Solutions for torque-free motion 524-528 

Euler's tbeorm 412.487-488.761-762 
Basis of 754 

EUVE, use of AEM spacecraft 720 
Evaluation of state ~tors 471-473 
EYeD parity. 295 
Exosphere 106 
Exospberic temperature . 106 
Explorer (general U.S. satellite name) 790 
Explorer 1-

Instability of rola tion 
Nutation 

.-F- • 

501 
626 

Fading memory (in Kalman filters) 463 
Fall time (gas jet) \ 273 
False slght1ngs, in star sensors 192 
Feedback mntrol systems 502. 588-600 
FUters (See Data jillers; State eSli71UJIOrs) 
FlnaI value tbeorm 768 
Flue Sun seDSOl 166 

Mathematical models 227-230 
Reticle pattern and photocell output 228 

First polot of aries (See Vernal equinox) 
Origin of term 27 

FIxed-bead star trackers 186. 189-190. 193-195 
List of spacecraft using 797 

Flags-
Associated with telemetry data 
Internal vs. external 
Set by telemetry processor 

Flake (component of horizon sensor) 
Flat spin 
Flatteolng, of the Earth 
Flexible spac:ec:raft dynamics 

• Effects on equaiions of motion 
FUght path angle 

313-315 
315 
307 
171 

501,576 
99 

18.548-556 
552-555 

61 
F10at .torque derivative noise (gyroscopes), 

mathematical model 269 
Float torque noise (gyroscopes). mathe

matical model 269 
FLTSATCOM (Fleet Satellite Communica

b 'U System}-
Attitude system of 

Fluxple maguetometer 
Mathematical model 

790--791 
182-184 
249-254 



Flyby trajectory 
Flywheel 
Focus. of an ellipse 
Force. Units and conversion factors 
Forced attitude SOIudoIlS 

60 
201 

Forced raponse. of a linear system 
FordDg fUDdlon, o'.Jifferential equation 
Fourier series, use k> solve linear 

38 
809 
370 
no 
770 

differential equations 
Fourier traDsrorm 
Frame, of data 
Frame synchronizatioD sigDaI 
Framing of te!emetry data 
Fredbolm equatioD 
Free response. of a linear system 
Freon, as gas jet filel 
Fresnel reflection 
Frk1fuu modeling, fOr reactioD wheels 
Fnel-

Budget for gas jets 
Loss due to engine misalignments 
Tanks, torques in 
Used for gas jets 

614 
243 
293 
293 
293 
n3 
no 
210 
156 
271 

207 
582-583 
577-578 

207 

Gain matrix, in sequential estimators 461 
Gal (unit of acceleration) 809 
Galadic coordinates 28 
Gamma (unit of magnetic induction) SII 
Gasjels-

Attitude control systems using 503, 506 
Attitude maneuver analysis for 649-654 
Disturbance torques due to propellant 

slosh . 577-578 
Effects of thrusting on flexible space-

craft 551-552 
~ample of use in attitude control 14-16 
Hardware description 206-210 
List of spacecraft using 796 
Mathematical models 272-275 
Nutation damping with 630-631 
Use for altitude control 19 
Use for attitude stabilization 622-{i25 

Gauss (unit of magnetic induction) 811 
Gauss, Karl I 13, 779 
Gauss' Equation 45 
Gauss-Newton least-squares procedme 448, 455 
Gaussian coefficients, Geomagnetic field I 17 

Table of 779 
Gaussian measurelDe>:.t t'rrors 430-431 

Probabilities associatc;(\ with 381 
Sample computation 434 

GCl (See Geocentric Inertial Coordinates) 
Gemlnl program, use of horizon sensors 

167,168, ISO 
General perturbations, method of (orbit 

analysis) 139 
Geocentric coordinates, conversions with 

geodetic 82a-S22 

INDEX 

GeoceDtrle inertial CoordInates 
GeodetIc coOnunates. on the Earth's 

surface 
GeoId 
GeoId beIgbt . 

Map of 

839 

29 

820-822 
98,99,125 

99 
125 

Geomagnetlt field (See also Magnetic. 
magnetometers, etc.) 113-123,719-786 

Accuracy of models 118-119 
Analytic approximations for 782-785 
As attitude determination reference 

source 
Dipole model 
-For Earth-referenced spac:ec:raft 
-Rectangular components 
-Spherical components 
Diurnal variation 
General descriptioD 
Index of geomagnetic activity 
Magnetic storms 
Mathematical models 
Models 
Perturbations of 
Secular drift 
Solar perturbations 
Spherical harmonic model 
Subroutine for (MAGFLD) 

i7 
182-785 

613 
784 
783 

122-123 
11),:,120 

122 
121 

n9-785 
117-123 
1»'-123 

Geometrle albedo 

113 
,2~123 

n9-782 
'693. 

79 
Genmetrle method of tbree-axis attitude 

detennfDatioo 421-424 
Geometrical axes of spacecraft 487 
Geometrical BmItatIoIIS of attitude 

accuracy 
Applications 

GeometrY-
Attitude 
Effect of changes on informatioD 

389-402 
397-402 

22-35 

content of measurements 478-482 
Spherical (See Global geometry plots; 

Splrericol Keometry) . 
GEOS (Geodynamics Experimental 

Ocean Satellite}-
Attitude acquisition 
Attitude system o~ 
Control system description 
Data records 

662, 666, 612-6n 
7~791 
612-617 

304 
Data sample 
Deadbeat boom deployment 
Fitting magnetometer data 
Libration damping 
Magnetic stabilization 
Momentum wheel 
Spacecraft 
Stabilization method 

312, 313, 314 
669 
321 
632 
672 

202-203 
612 

State vector for bias determination 
Sun sensor 

503 
441 
157 

'-Data correction 
Use of open-loop control 

GESS (See Graphics Executive SlIJIPOrt 
System) 

GETHDR (subroutine) 

330 
663 

693 
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Use of 
GETV (subroutine) . 
GIbIIous (illumination phase) 
Gibbs yector 

Kinematic: equations of motion for 
GIbbs; J. WDJanI 

133 
693 
331 

416,763 
512-513 

416 
196 
196 

GImbal (gyroscope support) 
GlmbalnlflldoD aIs (gyroscope) 
Gimbaled star tnaers 186, 187-189 

List of spacecraft using 
. GJobaI geomebJ plots 

Construction of 
Explanation of 

797 

737-743 
22-26 

391-399 
398 

INDEX 

For attitude determinatioJ) 
Spacecraft orbit on 
Subroutines for (SPHORD, SPHCNV, 

SPHPLl) 6~95 
~Iobal PGSIdonlng System 8-10 
GMT (See Unioersal Time) 
Goddard Space FIIgbt Ceoter

Attitude Data Link 
Computer environment 
Information Processing Division 

292 
682 

292, 299-303 
Network Operations Control Center 284 
Role in CIS mission 7 
Role in receiving II: relaying data 284 
SCAMA (Switching, Conferencing, etc.) 291 

Goddard Trajectory DetennInatlon 
System (OTDS) 

subroutines for 
GOES (Geostationary Operational 

___ Environmental Satelliter-
Applic:ation of bloc:k averaging to 

attitude solutions 
Attitude acquisition 
Attitude determination accuracy 
Attitude software structure 
Attitude system of 
Correlation among measurement 

133-134 
693 

371 
661 
391 
698 

790-791 

types 48().484 
Data conection for bias determination 474 
Determination of sensor mounting angle 

bias ~ 
Fitting attitude solutions 322-323 
Orbit generator accuracy 138 
Spin rate change due to orbit maneuvers 582 
Sun sensor analysis 717-718 
TelemetlY data errors 311 
Use of carbon dioxide band horizon 

sensor 
Use of open-loop control 
Use of body-mounted horizon sensor 

Goodness-Gf-ftt fuDCtlon 
GPS (See G/obQJ Positiof!ing System) 
Gradient. of a scalar function 
Gradient operator 
Gradient search, -method of differential 

correction 
GR.APiI (subroutine) 
GnpIde software systems 

92 
663 
173 
318 

756 
756 

455 
694 

~90 

Graphlc Subroutine Package (OSP) 687 
GnpIde support systems 68~90 
Graphics (See also Interactioe graphics) 
Graphics ExecutlYe Support System 

(GESS) 
Grapblng subroutines 
GnritatloD, Newton's development of 

laws 

688-690 
694-695 

36-38 
41 GraYItatIonal constant, accuracy of 

GraYItatIonal constants. Earth, Moon, and 
Sun ~7 

GraYltatlonalIield models 123-129 
GraYltatlonal potential 123-129 
GraYlty assWt trajectory 60 
GraYlty-gradlent attitude control 614-617 
GraYlty-gradlent capture sequeoce 672~77 
GraYlty-gradlent stabllbatfoD 19, S03, 50S-S06 

Conditions for 611~12 
List of spacecraft using 787 

GraYlty-gradlent tensor 128-129 
GraYlty-gradient torque 17 

Effect on flexible spacecraft 549,551 
For dual-spin spacecraft, math. 

model 
For Earth-referenced spacecraft 
Mathematical mocJel 

568-570 
609 

566-570 
GIlly Code-
.. Algorithm for conversion to binary 306-307 

Conversion table 164 
Output vs. Sun angle for sensors using 165 
Reason for use 163-164 
Reticle pattern for 164 

Great drde 22 
Construction of on global geometry plot 742 
Equations for 728-729 
Properties of 32 

Greatest elongation SO 
Greenwlch Hoor Angle 802-803 
Greenwlch Mean TIme (OMl) (See also 

Universal TirT/l!) 19, 801 
Greenwlch merldhm BOI 

Subroutine for right ascension of 
(RAOREN) 

Greenwich Sidereal TIme (OSl) 
Gregorian calendar century 

692 
802-804 

809 
720 . GRO. use of MMS spacecraft 

GSFC (See Goddtud Space Flight Center) 
GTDS (See Goddmd Trajectory 

Delermi1llllion System) 
~yrosccpes 

Accuracy of attitude propagation with 
for HEAO-l 708-709 

-As attitude determination reference 17 
Attitude propagation with 564-566, 558-559 
Biases 198,200 
Effect of misalignmentS on slew 

maneuvers 660 
Hardware description 196-201 
Mathematical models 266-270, 558, 559 
Measurements from (rate and rate . 

integrating) 266-270 

1 
i 
! 

I 
!. 

1 ; 



Modeling nOIse effects 
Solution of differential equation 
Spacecraft using 

268-270 
771-773 

797 
Gyrotorquer (See Control moment gyroscope) 

-H-

Half-angle formulas, for spherical triangles 732 
Hamming Code 296-297 
Harrnooic oscDlator-

Equation for forced 614 
Solution for forced 711-713 

Hal'ersines 735-736 
Advantages over normal trig functions 735 

HCMM (Heat Capacity Mapping Mission) 
(See also AEM}-

Attitude acquisition 662,672 
Attitude system 720,790-791 
Control system description 612-613,617-621 
Momentum wheel 202 
Nutation damping 630 
Scanwheels horizon sensor 176--178 
Use of carbon dioxide band horizon 

sensor 92 
Yo-yo despin 667 

HD number (star catalogs) 143 
Heading (orbit parameter) 61 
Heading angle (gas jet precession) 652 
HEAO (High Energy Astronomy 

Observatory}-
Attitude acquisition 662 
Attitude system of 790-791 
Control system description 605-608 
Fixed-head star tracker 190, 193-195 
Gyroscopes measurements 266--270 
Image dissector tube star sensor 

measurements 256-258 
Inertial guidance maneuvers 655,661 
Inertial reference assembly 197 
Instrumental magnitude for star camera 258 
Large data volume 308 
Momentum wheel 202-203 
Onboard computer 21 1,212-213 
Star catalog for 147 
Star tracker altitude determination 

706, 70S-709 
Two-axis Sun sensor 158 
Use of q method for attitude 

determination 427 
Heat pIpe 627 
Heat sink. use in horizon sensors 171 
Helgbt, used for distances measured from 

the Earth's surface 43 
Heliocentric coordinates 29 
Helmbolz coD, for magnetometer testing 250 
HEMITR (subroutine) 693 
Henry Draper star eataIog 143 
HEOS (Highly Eccentric Orbit Satellite) 

Attitude system of 790-791 

INDEX 841 

Nutation damping 627 
Hermitian matrix 750 
Hohmann transfer orbit (See also Plane 

change orbit maneuvers) 56-59 
Between the planets, table 824 

Horizon-· 
Appearance of at 14 to 16 microns 92-98 
Definition dependent on sensor 167 
Identification of 331-334 
Of an oblate Earth 99 

Horizon crossing vector (See also Eonh 
width; Sun sensor I horizon Sensor . 
rotation angle) 

Computation of ~239 
For oblate Earth 103-IOS 
In single-axis attitude solutions 370 

Horizon plane. for an oblate Earth 101 
Horizon sensors-

Analysis of representative poor geometry 
for 397-399 

Biases 234--237 
Components of 169-172 
Data validation 329 
Example of use in attitude 

determination IG-12 
Geometry of 231 
Hardware 166--180 
List of spacecraft using ·797 
Mathematical models 23G-242 
Mathematical models of electronics 244-249 
Model of azimuth biases 239-242 
Optical system of 170 
Output 17\-172 
Pagoda effect bias at small Earth 

widths 336--339 
Path of scan on the Earth 87 
Representative output 172 
Representative spectral response 170 
Representative telemetry data errors 311 
Rotation angle (from Sun sensor) 

models 237-242 
Slit horizon sensor I Sun sensor 17S-179 
Use for single-uis attitude 362-409 
Use for three-axis altitude 426 
Visible vs. infrared 83,169 

Horizon spheroid. for an oblate Earth IOJ 
Horizon/Sou rotation angle (See Sun 

sensor/horizon sensor rota/ion angle) 
Hot gas Jets . 206. 207-209 
Hour angle 799 
Hour angle of Greenwleb Meridian., 

subroutine for (RAGREN) 692 
Hour Angle. Greenwleb 802-803 
Hour, measure of right ascension 28 
HR number (star catalogs) 143 
Huygens, CbrIstlan 38 
Hydrazlne-

As gas jet fuel 207-209 
Thrust characteristics for 273-274 

Hydrogen peroxide, as gas jet fuel 207 
Hyperbola 38-40 



842 INDEX 

HJ)IeI'boIlc anomaly 41 spacecraft 481-488 

Hyperbolk orbit. table of properties 41 Iastrumental star magnltudes 258 

Hyperbolic yeIodty 42 Integral equations, solution using Laplace 

Hypergolk fuel 53 transform TI3-TI4 
Hysteresis, torque due to 515 Integration methods S60-S64 

ChoK:eof S64 
Errors in S60 

-I- Subroutine (RUNGE) 
InteradlYe grapbfcs, use in mission 

692 

Identity matrix 145 support software 682, 686-4j90 

IGRF (See Inlemtlliono/ Geomagnetic lnteradlYe software system 686 

RefereJl£e Freid) Interfaces, data set vs. core storage 699 

J1lnm!nadon during partial eclipse 16 Internal torques on spaeeaaft 516-580 

JDnmhudlon of planet, as seen by nearby international Astronomical Union, 1916 

spacecraft 334 adopted astronomical constants 821-828 

DfmnInadonof sphere, as function of 
international AtomIe TIme (TAl) 198, 802 

phase, distance 18-19,89 international desIgnatIOn. of.spacecraft 52 

Image dissector. in star tracker . 189 international GeomagnetIc Reference FIeld 118 

Image dissector tnbe star measurements, 
Coefficients of TI9 

mathematical model 256-259 Subroutine for (MAGFLD) 693 

IMP (Interplanetary Monitoring Platform)-
Internadonal System of Units 801-813 

Attitude software structure 698 
Prefixes. 801 

Attitude system of 1~191 
international Telecommunication Union 283 

Effect of flexibility on attitude dynamics 5S6 
Interplanetary environment 130-132 

Telemetry data errors 311 Interplanetary fIigbt-

Use of body-mounted horizon sensor 113 Sample calculation 58-59 

Use of convolutional encoding 282 Table of orbit proPerties 824-825 

Improper orthogonal matrix 151 Interplanetary probe. distinguished from 

Impulse (of force) 206 satellite 52 

Impulse (of torque) 214 Inter-Range instrumentation Group 282 

Impulse response functlon 242 Intersedlng cones, attitude solutions 12 

IneIInatkm. (orbit parameter) 44,46 Intersedlon. of attitude measurement 

Man.~uver to change 59 loci 345-346 

Of Earth satellite orbit 53 Interstellar probe 52, 60 

In-erosslng (See In-triggering) INTP (subroutine) 693 

IndnctIon m.lgIICtometer 181-184 In-trtggertng (Earth-in) 11,112, 358 

inertia wbeel 201 Inverse Laplai:e transform 761 

inertia. moment of (See Moment of inertio) Inverse. of a matrix 149-750 

inertial c:oordInate systems 26-28 INVERT (subroutine) 691 

Table of 28 Ion jets 206 

inertial guidance 16 Ion thnIsters, for attitliie oontrol 19 

inertial guidance 1lllUleDVeJ'S 655-661 IPD (See Information Processing Dioision) 

inertial nutation rate 490,526,535 IR (See Infrared) 
inertial reference assembly. for HEAO-I . 197 ISEE (International Sun Earth Explorer)-

inertial spin rate 490 Application of block averaging to 

JnertIally referenced spacecraft 605-608 attitude solutions 371 

inferior conjunction 49-50 Attitude determination ac:c:urac:y 391 

inferior planet 49 Attitude software structure 698 

1nf1nltesimai spIIerlc!ll triangles 734 Attitude system of 7~791 

information ProcessIng DIvIsIon (lPD) Earth and Moon coverage for ISEE-C 402 
292, 299-303 Effect of flexibility on attitude dynamics 5S6 

Infrared borIzon sensors (See Horizon Gas jet control system 210 

sensors) Panoramic scanner 169, 173-175 

-- Infrared rad1atIon, from Earth 82,~98 Slit horizon sensor ISun sensor 

- Jn1tIal Value 1beorm 768 169, 178-179,721 

inJectIon 53 Stabilization method 503, S04 

Determination of orbit elements from 60-62 Use of convolutional encoding 282 

InDer )iiodud. of vectors 747 ISIS (International Satellite for 

In-pIane orbit JIIIIIIeDVeJ'S S6-S9 Ionospheric Studies)-

Inpd axis (syrosc:ope) 196 Attitude system of 790-791 

h!s!a!!tpMGns IOtadon uIs, of ISS (Ionosphere Sounding Satellite)-

~- , 

\ ,~ . ;.j 
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Attitude system of 790-791 
ITOS (Improved Tiros Operational. 

Satellite}--
Attitude system of 790-793 
Momentum wheel 202,601,602 

IUE (International Ultraviolet Explorer)--
Application of block averaging to 

attitude solutions 371 
Attitude acquisition 662 
Attitude determination accuracy 397 
Attitude software structure 698 
Attitude system of 792-793 
Computation of attitude determination 

accuracy 384-386 
Gas jet control system 207-209 
Inertial guidance maneuvers- 655, 659, 660 
Momentum wheel 203 
Onboard computer 210 
Panoramic scanner 169,173-175 
Reaction wheels 270, 272,601 
Star tracker 190 
Sun sensor 157, 166 
Thruster characteristics 273 
Use of convolutional encoding 282 

-J-

Jatthia atmosphere modeJs 
Jacobian elliptic fUDdioIlS 
JD (See Julian Day) 
JD (subroutine) 
JDS (See Julian Day for Space) 
Jet damping 

110 
526-528 

692 

582 
Jet .... opulslon Laboratory, Deep Space 

Network 284 
Jets (See Gas jets) 
Jordan canonical form, for a square matrix 753 
Joseph Algorithm (in sequential estimators) 461 
JPL (See Jet Propulsion Laboratory) 
JPL ephemeris tapes 140 

Subroutine for (RJPL T) 693 
JSC (See Lyndon B. Johnson Space Center) 
JDIlao century 809 
JDIlao Day 20 

Conversion subroutines for (JD, DATE) 692 
Table 804 

JDIlao Day for Space 20 
JDIlao period (basis of Julian Day) 20 
Jnplter, effectiveness for gravity assist 

trajectory 
Jz perturbations. 
J2 term, in gravitational potential 

Kalman filter 
For star data 

-K-

Propagation of state &: error 
covariance matrix 

60 
67---fJ9 

126-127 

448, 462-469 
708-709 

464-467 

INDEX 

Kapnstln Yar (Soviet launch site) 
Kepler, JobamJes 
Kepler's equadoo 

843 

4 
36-38 

45 
Numerical solutions of 

Kepler's FIrst Law 
Kepler's Laws 
Kepler's Second Law 

46,134,140 
37-40 
37-42 
37-40 

Kepler's Third Law 
Kep1erlao orbh 

Table of properties 
Kep1erlao orbh elements 

As function of position &: velocity, 
subroutine for 

As function of injection conditions 
Table of 

KernaI, of integral equation 
KDogram, definition 
Kinematic equations of motion 

Euler angle representations 
Torque free 

Killematics (See Attitude kinematics) 
KIDetIc energy-

Of rotational motion 
Orbital (See also Vis viva equation) 

Knudsen nnmber 
Kosmonavt VladImIr Komarov (Soviet 

tracking ship) 
Kroneeker delta 

-L---

37,41-42 
35-37 

47 
46 

692 
~2 

46 
TI3 
807 

511-514 
765 

529-531 

517-519 
311 

108 

290 
xii 

Lagrange, Joseph 55 
Lagrange point orbits 55 
Lagnmge points 55 
Lambert sphere 79 

Reflected intensity from 85 
Landmark traddDg, potential use for 

attitude determination 124 
Landsat (See also ERTS; Earth SfII'WJ 

Satellite) -
Attitude system of 792-793 
Horizon sensors 180 
Landsat-D, use of MMS spacecraft 120 
Momentum wheel 202 

Laplaee transform 767-TI4 
Application to control systems 590 
Example of use to solve liilear differential 

equations 615-616 
Table 769 

Laplaee's equadoD. in spherical coordinates TI5 
LatItnde, geocentric vs. geodetic: vs. 

astronomical 820-822 
I;atltnde component, of a spberical 

coordinate system 25 
Lannch 

Ad.ted velocity required for prograde 
orbit 53 

Energy required for 54 
LaundI phase, of space mission 3-7 
LaundI sites 
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~~t 3 
U.s. 2-3 

LaundI ,ehfdes 
Reignitable upper stage 53 
U.s. 3 

LaundI window, attitude accuracy 
constraints 399-40 I 

Law of CosInes 33-34 
Law of SIDes 33 
LBN coordinate system (orbit defined) 28 
Lead time coDStant, in control systems 591 
least-squares estimator (See also Batch 

ietJst-sqruues estimator) 437 
Analytic basis 447-470 
Example of 4S4-455, 456-459 

least-squares quadratle mter 322-327 
least-squares subroutIues 691~92 
l-egeDdre funedoDs, & Legendre 

polynomials 776 
Legrange, Joseph 45 
LeIImbz, Goffrled 38 
Leogdt, units and conversion factors 808 
LES (Lincoln Experimental Satellite)-

Attitude system of 792-793 
LFO (Landsat Follow-on Satellite)-

Use of MMS spacecraft 720 
LJbJatloD 625 
LJbJatloD dampIDg 631~33 

Use of deadbeat maneuver for 66~71 
LJbJatloD points (three-body orbit) 55 
LUetIme, of Earth satellites 64 
LIft (aerodynamic) 63 
LIght year 808 
IJ&Iiiing conditions, on spacecraft 71-80 
L1m1t checkIDg 314 
LImIted stabDlty, of a control system 594 
IJne of apsfdes 44 
IJne of nodes 44 
LInear Independence, of a set of vectors 745 
LInear operators 767 
LInear system _ 242 
\ Relationship to Laplace transformation 767 
LIt hmizon 85 
LocaIIIorIzontaI coordlnates 30 
~ UmgeDt COUlidhudes 30 
Locator (horizon sensor signal 

processing) 94, 172 
Locus-

In defining attitude measurements 344 
Intersection of in attitude 

measurements 344-346 
Lq Range NavIgadoa-C 

(LORAN-C) 299-300 
lnngItnde component, of a spherical 

c:oordina~ system _ 25 
LongItude of subsateIIJte point 80S 
lnngItnde 01 the .,.......tJng node 49 
LORAN-C (See Lollg Range NaoIgotion-C) 
Loss fUDdIon fm estimation theory) 449-451 
Loss 01 sIpaI (See Out-triggering) 
I.omdrome (rhumb line) 653 

Lubrlcadon, of spacecraft wheel bearings 
Lunar Orbiter (spacecraft), attitude 

reference system 189 
142-143 

285 
Lunar parallax 
Lyndon B. Johnson Space Center 

-M-

MAGFLD (subroutine) 693 
Magnetic attitude control (See also 

Magnetic stabilization) 18-19, 617~21 
Hardware for 204-205 
Maneuver strategy 639-642, 644-M9 
Maneuvers 6~9 

Magoedc coli control systems 503, 508-509 
Magnetic co1Is 204-205 
Magoedc dipole moment 204 

Units and conversion factors 812,813 
Magoedc dlsturbance torque 575-576 
Magoedc equator 114 
Magoedc field-

Interplanet;uy 130-132 
Of the Earth (See Geomagnetic field) 

Magoedc r..,ld ~ units and 
conversion factors 811,813 

Magoedc nux, units and conversion factors 811 
Magoedc induction field 251 
Magoedc induction, units and conversion 

factors 811,813 
Magoedc materials 205 
Maguedc moment 204 

Of a current distribution 252 
Units and conversion factors 811,813 

Magoedc nutation damping 614, 62~30 
Magoedc observatories 122 
Magoedc penneabmty 813 
Magoedc precession 63~9 
Maguetfc stabilization 671~72 

List of spacecraft using 787 
Magoedc storm 121 
Maguedc systems of units 811-813 
Magoedc torque 17 
Magoedc torquing-

Continuous 
List of spacecraft wring 
Quarter orbit (QUOMAC) 

Magnetometers 
Bias determination 
Biases 
Data-
-Curve fitting for 
-Residual errors in 
-Validation of 
Example of use in attitude 

determination 
List of spacecraft using 
Mathematical models 
On Apollo 15 subsatellite 

Magaetopause 

639 
796 
640 

180-184 
329-330 
251-254 

321 
328 
328 

13-14 
797 

249-254 
495-496 
106,120 



INDEX 

Magnetosheatb 120 
Magnetosphere 106, 120 
Magnetotall 120 
Magnitude (scale of brightness) 77 

Instrumental , 258 
Moon and planets. table of 816--817,823 
Of planets. satellites, and spacecraft 77-80 
Sample calculation for spacecraft 79 
Stellar 144-145 

MAGSAT (Magnetic Satellite)
Attitude software structure 
Attitude system of 
Evaluation of horizon sensor data 
Fixed-head star tracker 
Need for accurate Sun sensor 
Scanwheels horizon sensor 
Star catalog for 

699 
792-793 

471 
193-195 

166 
176--178 . 

147 
Use of carbon dioxide band horizon 

sensor 92 
Major frame 293-294 
Major priocipalllllis 500, 625-626 
Maneuver control (See Allilude maneuver 

control) 
Marginal stabUity, of a control system 594 
Mariner (spacecraft), attitude reference 

system 
Mariner 10 
Marquardt's Algorithm 
Mars-

Hohmann transfer orbit to 
Oppositions of 

Mask detector (Sun sensor) 
Mass expulsion system (See Gas jets) 
Mass expulsion torques 
Mass, units and conversion factors 
.Master catalog (star catalogs) 
Master frame (telemetry) 
Master station (time signals) 
MATMPY (subroutine) 
Matrix 
Matrix algebra 

Subroutines 
Matrix fUDCtions 
Matrix Inversion 

Subroutine (INVERT) 
Matrix multiplication subroutine 

(MATMPy) 
Matrix notation 
Matrix Riccatl equation 
Matrix transformations 
Mean (of a random variable) 
Mean angular motion 

for Earth satellite 
Mean anomaly 

Rate of change of 
Mean distance, in an elliptical orbit 
Mean free path, in atmosphere 
Mean of date coordinates 
Mean orbital elements 
Mean sea level (See also GeOid; geoid 

height) 

189 
60 

455-456 

58-59 
51 

158 

576--577 
808 
147 

293-294 
300 
691 
744 

744-757 
691 

75~755 
749--750 

691 

691 
x 

465 
751-752 

429 
47,67 

67 
45-46 

67 
38 

108-109 
28 
46 

98,99 

845 

Mean Solar TIme 
Mean Sun 

798,861,805 

Measurement, as used in state estimation 
Measurement covariance matrix 
Measurement density (See Attitude 

861 
444 
461 

measurement density) 
Measurement uncertainty (See Attitude 

determinJ1lion QCCfUacy; Uncertainly) 
Mercator, Gerbardns 653 

653 Mercator representation 
Memuy (planet), relativistic rotation 

of perhelion 
Memuy program, use of horizon 

sensors 
Meridian 
Mesopanse 
Mesosphere 
Message vector (in a Hamming code) 
Metre, definition 

63 

167.168 
24 

106 
107 
296 
867 

867..:s13 
17 

Metric conversion factors 
Mkronieteorltes, torque due to 
Minicomputers, use in attitude software 

system 
Minor, of a matrix 
Minor frame 

699 
748 
293 

Minor frame counter (minor frame ID) 
293-294 

MInor prloclpal axis 625-626 
Misalignment, of rocket engine, torque 

due to 580-583 
Mission Control Center 285 
Mission IDOIIe, of space flight 661 
Mission operations phase, of space mission 3-8 
Mission orbit 53 
Mlmon prolile--

Future changes in 8-I2 
Representative 3-12 

Mlmun support (See also Software) 681-713 
Example of role of attitude determination 

& control 3-8 
Requirements during Space 

Shuttle era 716--722, 724 
Software 681-713 

MMS (Multimission Modular Spacecraft) 
(See also SMM-MMS·A) 

MMS series spacecraft
Attitude system 
Computer used on 
Momentum wheels 
Sun sensor 

MOD coordinates (See Mean of d"te 
coordinates) 

718-720 
210 
203 

166-167 

Mod1Ded Julian Day 21 
Modulus, of Jacobian elliptic functions 526 
MoJnlya (Soviet communications satellite) 290 
Moment of Inertia . 

i:..timate of for Apollo 15 subsatellite 
0! spacecraft 
Transverse 
Units and conversion factors 

Moment-of·1nertIa tensor 

497 
489 
524 
810 

518-520 

J 
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Momentum bias 201 
MOIIIeIdml bias COJdrol system ~3 

Design of 203 
Momentum dumping 602 
N~fM ~3 
Using gas jets 650 

Momentum tnmsfel' lD8IIeIIYers 667-669 
Momentum wbeels (See also DuaJ-spii. 

spo«eraft; Reaction whnls) 
As part of horizon sensor system 176-178 
Attitude control systems using 503, S01-S08 
Dynamic equations of motion for 

spacecraft with 
Effect on spacec:raftnutation 
Euler's equations for 
Hardware description 
List of spacecraft using 
Torque model 
Use in attitude acquisition sequence 
Use in attitude stabilization 
Use in inertial guidance maneuvers 

MonopropellaDt gas jet 
Month--

Types of 
-Numerical values for 

Moon-

522-5n 
536-539 

559 
~1-203 
787, 796 

656 
667-669 
6()()...«)3 

655-661 
206 

52 
822 

Analytic ephemeris subroutine (SMPOS) 693 
Dark angle 88 
Def"'mitive ephemeris subroutines 

(SUNRD, RJPL1) 693 
Effect on acceleration of Earth satellite 127 
Effect on Earth satellite orbit 63,70-71 
Identification of from RAE-2 data 335 
Lagrange points with Earth 55 
Located horizon dependent on 

temperature 
Magnitude and phase law of, table 
.Multipurpose ephemeris subroutine 

168 
8n 

<EPHEMX> 693 
Numerical values of different types 822 
Orbit of 139, 141-143 
Parallax of 142-143 
~esm 822~n 
Properties of orbit 51-52 
Shadow cone m 75 
Types of 52 

Momi-Ceutered coonllnates (See Selentr 
centric coordiiIIltes) 

MOl'ID!i are filter 322 
MoYIDg edge tracker (Earth sensor) 179-180 
MnIthntssIon software 686. 721-722 
Multiplexor 280 
MuItIsIep IutegnduiS 561 

-N-

Nadir " 22, 83 
Nadir augIe 12. n 
. Error due to unmodeled oblateness· lOS 

Nadir augIe measuremeat 344 

INDEX 

Density of 
Information content 

Nadir angle/Sun augIe measurement. 

348 
482 

information content 480-482 
Nadir augIe/Sun angle slogle-axls attitude 

solutions 368 
406-407 

12 
365 

12 

Singularities of 
NadIrcoue 

Use in attitude determiuation 
Nadir vector 
Nadir vector projectlou model, for horizon 

sensors 232-233 
Napier, Jolm 34 
Napier's Rules 34 

For quadrantal spherical triangles 731 
For right spherical triangles 730, 731 

NASA Communkatlons Network 291 
NASA Monograph atmosphere model ItO 
NASA Standard Spacecraft Computers 

(NSSC-I & NSSC-2) 210-212 
NASCOM (See NASA Communications 

Network) 
Nadoual Bureau of Standards, timekeeping 

~ystem 299 
Natural frequeDcy, of control system 591 
NAVST AR (See Global positioning 

system) 
Near-real-dme attitude determination 

requirements 
Network OperatIons Control Center 
Neumann normallzadon, of Legendre 

polynomials 
Neutral sheet, geomagnetic field 
Newcomb, Shnon 
Newton, Issae 
Nimbus (meteorology satellite)

Attitude system of 
Digital Sun sensor 
Horizon sensors 
Momentum and reaction wheels 
Momentum wheel 
State vector for bial; determination 
Telemetry data errors 
Yaw reaction wheel 

Nineteen FIfty (1950) Coordluates 
Node, of an orbit 

Motion of (See Regression of nodes) 
NodIcal month 
Noise, White vs. colored 

681 
284 

n6 
121 
802 

36-38 

792-793 
157,162 
176-178 

601 
202 

441--442 
311 
270 

27 
44 

52 
269 

Noise correlation, a.. ~t:ria for observa-
tion model selt."nnTl 444-445 

Nongraritatloual forces, effect on orbit 63-65 
Nonlutersectlng kid, use of in attitude 

solutions 
Nonreturn to zero level pulse generation 
Nonreturn to zero mark pulse generation 
Nonspherk:al mass distribution, effect on 

370 
281 
281 

orbit 63, 65-69 
Nonsplunlng Earth Sensor Assembly 

169, 175-176 

·-~l· . . , 

1 

!~ , 
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Normal matrix 
Notation-

For attitude angles 
Use in this book 

NSSC (See NASA StandtudSpacecraft 
Computers) 

Null (attitude geometry parameter) 

751 

349 
x-xii 

Use of in evaluating correlation angles 
Null (optical center line of a sensor) 
Nutation--

350 
391 
188 

Astronomical 804 
Description from spacecraft frame 

Effect on sensor data 
Effect on spin period measurement 
Effect on Sun angle data 

494, 499-501 
534--548 
544-548 
53S-536 
522, 525 
49>497 
534--548 

Equation for, in spacecraft frame 
EAlimple of Apollo 15 subsatellite 
Measurement of 
Monitoring via Sun angle data 
Phy~caldescription 

Nyquist criterion, for system stability . 

-0-

OAO (Orbiting Astronomical 
Observatory}-

539-548 
490-494 

596 

Attitude system of 792-793 
Evolution of accuracy requirements 714 
Inertial guidance maneuvers 655, 660 
Momentum wheel 202 
Onboard computer 210 
Reaction wheels 601 
Stabilization method 503 
Star trackers 188 
Sun sensor 157 

Oblate spacecraft . 491 
Oblateuess of Earth (See Earth, ob/atmess) 
ObUque spherical triangle-

Equations for components of 
Table of general solutions 

Obliquity of tbe edlptk 
Observabillty-

In least-squares estimators 
Of state vector elements 

731-734 
733,735 

48 

450 
443 

Observation (as used in state estimation) 
443-444 

Observation mocIer.-
As used in state estimation 
Construction of 
Criteria for selecting 
Testing of 

Obsemltfoa model vector 
Obsenatlon resIdoal vector 
Obsemltfoa vector 
OCC (See OperatiOns Colllrol Center) 
Occultation 
Odd parity . 

444 
443-447 
443-447 

473 
439,449 

449 
439 

Oersted (unit of magnetic field strength) 

72-75 
29S 
811 

INDEX 

000 (Orbiting Geophy~ca1 Observa-
tory}

Attitude system of 
Deformation due to solar heating 
HoriZon sensor 
RubidiUm vapor magnetometer 

847 

792-793 
550 

168,180 
184 

Oo-off control law (See Bang bang conlrol 
law) 

Onboard computers 21.0-213 
Interaction with ground-support 

facilities 719-720 
Use in attitude acq~tion 662 
Use of for HEAO attitude propagation 108 

Onboanl prucessInj 8-9 
One-step Integrators 561 
ODe's complelllellt arithmetic 297 

. Opeu-Ioop control system SOl, 589, 604, 663 
Open-loop transfer function, in control 

system . 5~598 
Open loop zeros, of root locos diagram 597 
OperatIonal procedures-

For identifying data anomalies 
For use of state estimators 

OperatIons Control Center 
Role in CTS mission 

334--336 
473-476 

285, 292, 299 
7 

OperatIons pbase. of space mimon ($ee 
Mission operations) 

OpposItIon (planetary configuration) 49 
Of Mars, table of 51 

Optical double stars 146 
OptIcal pumping 184 
OptJmal attitude determination methods (See 

also State esiimation) 426-428 
ORBGEN (subroutine) 141,692 

Basis of 134--135 
OrbIt decay 64 
OrbIt defined coordlnate systems 28-29 

Use for three-BlIis attitude 425 
OrbIt determination I, 132 
OrbIt element&-

As function of injection conditions (iO:-62 
Subroutine for determining from position 

&: velocity .. ' 692 
OrbIt me format 133-134 
OrbIt generators-

Keplerian (ORBGEN) 
Numerical 
-Accuracy and applications of 

OrbIt maneuvers 
Torques due to 

OrbIt aormaI 
OrbIt peI1IiItIatIons 
OrbIt YS. Crajedoly· 
OrbItal motion of spacecraft. attitude 

692 
134-138 
137-138 
~ 

'80-583 
8 

62-71 
53 

correction for 365-366 
OrbIts (See also qhemerls subTOlllinG) 

Apparent shape when viewed obliquely 73 
Definitive spacecraft 133-134 
Earth satellites 828 
Example of types in typical mission ~ 
Lunar and planetary 138-142 
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Numbering of 53 
Planetary 48-52 
Potential artificial satellites of planets 825 
Solar system 815.817,824-825 
Subroutine for elements from position 

and velocity (ELEM) 
Table of equations 
Two-body generator (ORBGEN) 

Orthogonality, of vectors 
OrthogonallJllltrlx 
Orthogonal transformation 
Osculating orbital elements 
OSO (Orbiting Solar Observatory) 

Attitude system of 
Dual-spin stabilization 
Gas jet control system 
Gravity-gradient torque on 
Magnetic torquing on OS0-8 
Momentum wheel 
Nutation damping 
Orbit generator accuracy 
Spin axis magnetic coils 
Stabilization method 
Telemetry data errors 
V -slit star scanner 

Out-of-plane orbit maneuvers 
Out-aosslDg (See Out-triggering) 
Out-triggering (Earth-out) 
Outel' product, of vectors 
Output axis (gyroscope) 
Overdamped control system 
O,ersboot, in control systems 
Ozone, absorption bands 

-P-

PagodaeRed 
Mathematic:al model 

PIII10lllIIlk Scanner 

692 
47 

692 
141 
751 
152 

41 

192-193 
505 
209 
568 
640 
203 
626 
138 
205 
503 
311 

181,190-192 
56 

II, 112, 359 
148 
196 
593 
593 

91-92 

336--339 
244-249 

(attitude sensor) 169, 173-115 
Data from 335 
Mathematical models 231-242 
Model of biases relative to Sun sensor 241 

Parabola 38-40 
Parabolle anomaly 41 
Parabolle orbit, table of properties 41 
Parabolic ,elodty 42 
PII,I'IIIIu 3G-31 

Lunar 142-143 
ParaDel (component of a sphtric:al 

INDEX 

coordinate system) 
Parallel telemetry formats 
Parameter, of Jacobian elliptic functions· 
Parity code 

24 
219 
526 
295 

Parking orbit 
Parsec (unit of distance) 
Partial derlvatiYes-

5-6,53 
808 

Numerical vs. analytical evaluation 432-433 
Procedure for testing correctness of 413 

-.-~ 

f , 
Partial eclipse 
Passive attitude control 
PassI,e attitude stabilization 
Passive nutation damper 
PECE, integration method 
Pendulum nutation damper 
Penumbra 
Penumbral Kllpse 
Periastron 
Perlcyanthiane 
Perifocal distance 
.Perlfocus 
Perigee 

Rotation of 
-Numerical formula for 

Perigee height 
Maneuvers to change 

Perihelion . 
Perilune 
Period (orbit parameter}

In an elliptical orbit 

12, 16 
503-506 

18-19 
625 

563-564 
626 

12 
12 
42 
42 
42 
42 
42 
66 

68-69 
43 
59 
42 
42 

41 
Of Earth or Sun satellite as function of 

semimajor axis 808 
Of Earth satellite as function of altitude, 

table 828 
Of Earth satellite. numerical values 54, 828 

Permalloy (use in magnetic coils) 205 
Permeability oharoum 813 
Permendur (use in magnetic coils) 205 
Perturbations-

In solar, lunar, and planetary 
ephemerides 

Of orbits (See Orbit perturbations) 
Phase angle (See also Azimuth anKle) 

Of solar iIlumination 
Phase law-

Of Moon. table 
Of planets and· satellites 

Phase match, for star identification 

139 

78 

823 
18-19 

PHASED (subroutine) 
Use in attitude computations 

PboJodIemlcal reactions, in Earth's 
atmosphere 

259,264-265 
691 
366 

108 
Pbotodlode, as energy detector for horizon 

sensor 110,118 
Physical constants 826--829 
PI (v), value 826 
Pioneer, nuclear power supply 156 
PIoneer 10, 11 60 
nmang\e ~ 
nmaxls 29 
nm control, for dual-spin spaCKraft 611 
nm gain, in control systems 591 
Plane change, orbit maneuvers 56, 59 
PLANET (subroutine) 693 

Analytic basis 141-142 
Planetary configurations (planetary aspects) 49 

Symbols for . 50 
Planetary Index, of geomagnetic activity 122 
Planets-

1i 
'1 

I'· 
) 



INDEX 

Analytic ephemeris subroutine for 
(PLANEl) 693 

Definitive ephemeris subroutine 
(SUNRD) 693 

Illumination of as seen by nearby 
spacecraft 334 

Magnitudes of 77-80 
Orbits of 48-52.138-142 
-Table 815 
Properties of 814-817 
Spheres of influence on satellite orbits 71 
Symbols for 50 

Plant, in control system S89 
Plesetsk (Soviet launch site) 4 
PLOTOC (attitude data simulator) 711-712 
Plots-

Computer generated (See Graphic 
support systems) 

Of celestial sphere (See Global geometry 
plots) 

Plottlng subroutines 694--695 
Plume (gas jet exhaust) 208 
Polnsot's constructIoo, for rigid body 

rotation 
Polar electrojet 
Polaris (pole star) 

As attitude reference 

53G--53 I 
123 
27 

189 
Pole centimetre (unit of magnetic dipole 

moment) 
Pole, of a spheric:al coordinate system 
Poles, of control system transfer function 
POLYFf (subroutine) 
Polygon matdl, for star identifICation 
Polynom1al fit, subroutine for (POL YFT) 
Poor geometry regIous, for attitude 

812 
24 

590 
691 
263 
691 

determination 389-402 
Posidon-only control system 65~57 
Position-plus-rate control system 590, 657--658 

UseofbyHCMM 617 
Use of by HEAO-A 606--608 

PostprocessIDg Of attitude results ~ data 
preprocessing 

Poundal (unit of force) 
rower, units and conversion factors 
Poyntlng-Rober1son effect 
Poynting vector 
PreaveragIDg (to reduce data volume) 
PrecessIon (attitude motion) 
PrecessIon of the equinoxes . 

Subroutine for updating c:oordilmte 
(EQUIN) 

Precompiler, use in software systems 
PredIcted vs. oIIsemld pIoIB, for crs 

318 
809 
810 
64 

156 
317 

14,498 
27,48 

692 
684 

attitude system 702 
Predktor-conector Integrators 563--564 
PreproeessIng of attitude data (See also 

SmDl'thing; yalJdation; Telemetry 
processor) 

Contrasted with postprOCeSsing of 
results 

310-334 

318 

849 

Effect on statistics 317 
Pressme. units and conversion factors 809 
PrImary (one of two objects in an orbit) 38 
Prime meridian 25 
PrIndpaIaxes 519 

Discovery of 521 
Of spacecraft 488-489 

.-Stability of rotation about 523 
PrIndpaI moments of IDert1a 489,519 
PrIDter plot subroutines (GRAPH, SCALE) 694 
ProbabIlIty density (of attitude) 375, 376 
Process (in state estimation) . 438 
Produt1 of inertia 519 
Prograde orbit 53 
Programmable telemetry format 295 
ProgrammIng (See Software) 
ProgrammIng standards 
Project OperatIons Control Center 
Project Scanner 
Pro1ate spacecraft 

684-686 
2B5 

92-96 
491 

Propagation (See Attit!uk propogmion) 
Propellant (See also Fuel)-

Disturbance torques due to slosh 
Proper motion 
Proper orthogonal matrix 
Proportional control system 
Proton precession magnetometer 
PSCfS, use of MMS spacecraft 
PsemIoevaInation (in numerical 

integration) 
PseudoInverse, of a matrix 
Psendolnverse state estimator 
Pulse amplitude modulation 
Pulse eode modulation 
Pulse duration modulation 

571-578 
144 
751 
590 
184 

"720 

564 
749 

468-469 
281 

.280-281 
2BI 
171 PyroeIeetr1e detectors, for Earth sensing 

-Q-

Q method, of three-axis attitude 
determination 

Quadrantal spherk:aI triangle 
Equations for components of 

QuadJatnre 
QuaIIty-

Of attitude solntions, need for 
Of software . 

QualIty Rag, on attitude data 
QuantIzed measurements 

Attitude determination accuracy 
Variance of 

Quantum magnetometer 
Quarter orbit eonpllng 
Quarter OrbIt MagnetIe Attitude 

Control (QUOMAC) 
Basis for 

421,426-428 
34 

731 
50 

716 
686 
314 
374 

374-376 
431 

181, 184 
601 

640 
785 

QuatemJons (See also Euler symmetric 
parameters) 

Algebra of 758-759 
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Components of 
Kinematic equations of motion for 
Norm of 
Representation of attitude by 
Use in control laws 
Use for attitude propagation 

758 
511-512 

759 
414 
605 

INDEX 

558-559,564-566 
Quleldook displays 305 
QUOMAC (See Quarter Orb;; Magnetic 

Attitude Control) 

-R-

RADECM (subroutine) 
RadIance profiles, of Earth in infrared 
RadJatloD balance. for the Earth 
RadJatloD pressure, torque due to 
Radiometric balance Earth sensor 
Radius of gyradoD, of gas jet propellant 
RAE (Radio Astronomy Explorer)-

Application of block averaging to 

690 
95 
82 

570-573 
ISO 
650 

attitude data 371 
Attitude acquisition 661,666 
Attitude software structure 698 
Attitude system of 792-793 
Data from panoramic scanner 335 
Deadbeat boom deployment 669 
Effect of flexible booms 549, 555, 556 
Gas jet control system 210 
Gravity-gradient stabilization 505--506 
High-altitude attitude magnetometers 181 
Panoramic scanner 169,173--174 
Stabilization method 503 
Sun sensor 157 
Telemetry data errors 311 
Thruster characteristics 273 
Time-tagging of playback data 302-303 
Use of convolutional encoding 282 

RAGREN (subroutine) 692 
Random error, in attitude measurements 402 
Range and nmge rate, orbit measurements 132 
Rank, of a matrix 749 
Rate KJrOSCO~ 196,197-198 
Rate-lDtegratIDg gyroscopes 196, 199--200 
Reactlon wbeeIs-

Hardware description 
Mathematical models 
Use for a~titude cOntrol 
Use in attitude stabilization 
Use in inertial gUidance maneuvers 

Real-time attitude detennIDatIon 
reqnbements 

Receiving sIatIons 
Data processing at 

RecIangDIar coordiDate system, 

201-203 
270-272 

19 
603--a)4 
655--661 

681 
291-292 
303--304 

advantages relative to spherical 25--26 
RECUR (subroutine) 692 

Applieation of on AE spacecraft data 318 
RecursIYe estimator 431,439,448 

Subroutine (RECUR) 
Recursive Ieast-squares estimator 

Advantages & disadvantages 
Reference merldlan 
Reference orblt 

692~T 
459-462 
461-462 

25 
62 

Reference point, in spherical coordinate 
system 

Reference spheroid, in Earth models 
Reference veCtors (See Attitude determi'na

tion, Reference sources. see also intJj-

25 
99 

vidual reference vectors. e.g~ Sun, mog. 
[reid) 

RefJeded binary code (Gray code) 
Refleetlon, specular vs. diffuse 
Regression of nodes 

Numerical formula for 
Relativlstk: effeets on orbit 
Residual. rms 
Residual editing 
Resldnal magnetk: dipole 
Retrograde orbit 
Return-to-zero pulse generation 
Revolution vs. rotation 
Rbumb length 
RbumbUne 
Rbumb tine attitude maneuver 
Rigid spacecraft motloD 
Right asceDSlon (See also Celestial 

coordinates) 
Related to time 

RIght asceoslon of the Greenwich 

295 
571 

66 
68 

37.63 
453 
320 
252 
53 

281 
53 

654 
653 

652--654 
523--524 

28 
802-803 

Meridian (Greenwich Sidereal Time) 803 
Subroutine for (RAGREN) 692 

RIght asceDS10n of the ascending node 
Maneuver to change 
Motion of (See Regression of nades) 

Right spherical triangle 
Equations for components 
Example of exact triangle 

Rise time (gas jet) 
RJPLT (subroutine) 
Roberts.atmosphere model 
Rocket engIDe misalignments, torque 

due to 
RoUaxIs 
Roll, PItch, Yaw coordinate system 
Roolioeus dIagnun 

Use fot. selection of control gains 
Rosman STDN traeIdng station 
Rotating c:oonIJnate fl'llllle5, rate of 

change of vectors in 
Rotation--

44,46 
59 

34 
730--731 

730 
273 

140,693 
110 

580--583 
29 
29 

5%-600 
622 

284-289 

514-515 

Distinction from nutation and coning 489 
Distinction from revolution 53 

RotatIoD ang1e 23 
Formula for 121 
Formula for, in vector notation 157 
Subroutines for (pHASED, VPHAZE) 691 

RotatIoD angle measmement 23, 346, 34'1-3!i2 
Density 352 
Notation for 23 



Singularity conditions 406-407 
Use in deterministic: attitude solutions 

364,365,369 
RoIatkm angle models (Sun sensor/horizon 

sensor) 237-242 
Ro1atlon axis of iijIIi£ecnft . 487-488 
Rotational ~. (See Attitude dynamics, 

attitude kinemtnics) 
ROUND (subroutine) 693 
Round-off error, in integration proc:edureli 560 
Routh-Hurwitz criteria-

Example of use 
For nutation damper study 
For system stability 

Row matrix 
Royal Greenwich 0_ ,atory 
ROITAP (subroutine) 

Use of 
RPY coordinates (See Ro/~ Pitch, Yaw 

coordinates) 
KUNGE (subroutine) 

Analytic: basis for 
. Runge Kutta, integration method 

Subroutine for (RUNGE) 

s-band data transmkdon 
8-band telemetry subbands 

619 
626 
596 
745 
20 

693 
134 

692 
562 

561-562 
692 

282 
282 

SAGE (Stratospheric: Aerosol Gas Experi-
ment satellite) (See abo AEM)-

Attitude system of 792-793 
Sc:anwheels horizon sensor 176-178 
Use of AEM spacecraft 720 

San Man:o Platform ~ site 4 
SAO nmnber (star catalogs) 143 
SAS (Small Astronomy Satellite)-

Analysis of dynamic: motion 
Attitude acquisition 
Attitude system of 
Constant current source on SAS-3 
Data records 
Disturbance torques 
Earth-width data 
Evaluation of horizon sensor data 
Fixed head star tracker 
Image dissector tube star sensor 

538 
661 

792-795 
206 
304 
580 

233-234 
471 

193-195 

measurements 256-258 
Instrumental magnitude for star camera 258 
Large data volume . 308 
Launc:h of SAS-I (Uhuru) . 4 
Momentum wheel 202"-203 

N-slit star scanner analysis 705, 706, 707 
Nutation damping 61.7,629 
Observation model for bias 

determination 
Optimal magnetic: maneuvers 
Programmable telemetry foimats 
Sc:anwheels horizon sensor 

445-446 
641} 

295 
176-178 

INDEX 

Spin axis magneti<: coils 
Spin plane magnetic: control 
Stabi1ization method 
Star catalog for 
Star identification for 
Star scanner 
Star tracker analysis 
State vector for bias determination 
Sun sensor 
Telemetry data errors 
Telemetry processor 

Satemte-

851 

205 
646 
503 
147 
263 
187 

706-707 
440-441 

157 
311 
305 

Dermed 38, 52 
Distinguished from interplanetary probe 52 
Loc:al mean time of subsatellite point 68 
Longitude of subsatellite point 805 
Magnitude of (brightness measurement) 

n-80 
Names (See Spacecraft, names) 
Orbit of 52-62 
-Lifetime 64 
-Period around Earth or Sun vs. 

semimajor axis 808 
-Period vs. altitude above Earth, table 828· 
-Potential artific:ial satelliw of planets 825 
-Propertieli 825 
-Utility subroutines for 692-693 

SateDite Automatic Trading AnteDD8S . 284 
SateIBte Command Antenna 284, 289 
SateDite trading stations (See Tracking 

stoJions) 
SateJiitrs. natural, table of properties 
SaturatIon 1lm1t, of momentum wheel 
Saturn V launch vebIde 
Scalar c:bedIng, for data validation 
Scalar product, of vectors 
SCALE (subroutine) 
Sc:a1e IIeIght, of atmosphere 
Sea1Iger, Joseph 
SCAMA (See Switching, Conferencing, 

and Monitoring A"angement) 

817 
SOB 

3 
328-334 

747 
694 
lOB 
20 

ScannIng mec:haoIsm. employed by horizon 
sensor 169 

Scanwheels horizon sensor 169, 176-178 
SckmIdt norma1IzatIoo, for spherical 

harmonics 
Score (numeric:a1 measure of star 

780 

identification) 260 
Scout launch vehicle 3 
Sean:h coD maguetometer 181 
Sean:h pattern (in fixed head star trac:kers) 189 
SEASAT (ocean studies satellite)-

Anticipated horizon radiance variations 98 
Attitude system of 794-795 
Canted momentum wheels 602-603 
C1oc:k 299 
Control system description 612-613,621-622 
Effect of nexibility on attitude dynamics SS6 
Loc:ator used on horlz:Jn sensor 172 
Momentum wheel 202 
Sc:anwheels horizon sensor 170. 176-178 
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Sun sensor 
-Coverage of 
Use of carbon dioxide band horizon 

157.166 
402 

sensor 92 
Second (ephemeris) 799 
Second (SI unit) 802 

Definition 807 
Secondary (one of two objects in an orbit) 38 
Sectoral bannonk roerHclents. 

explanation of 
Secular drift, geomagnetic field 
Secular terms. geomagnetic field model 
Se\eJlO(entrk coordinates 
Self-correctIng codes 
Semlronjugate axis, of hyperbola 
Semimajor axis 
Semlmloor axis 
Semltraosverse axis. of hyperbola 

777-778 
113 
779 

29 
296-297 

40 
38.46 

38 
40 

Sensor electronks, mathematical models 
242-249 

Sensors (See A lIitude sensors; see also 
Object sensed, e.g .• Horizon sensors) 

Sequential estimator 437.448 
For star data 704. 707-709 

SertaI telemetry formats 279 
Shadow bar Sun sensor 159 
Sba.dow cone 72 

or Earth and Moon 75 
Shadowing-

574 
573 

INDEX 

Effect on aerodynamic torque 
Effect on radiation torque 

Short period variations, in orbital 
elements 65 

Shottie .. ( See Space shultle) 
Sf (melrk) units 

Prefixes 
Sidereal day 
Sidereal month 
Sidereal period 

807-813 
807 

804-805 
52 
50 

Distinguished from solar period for 
Earth satellite 55 

Sidereal time 798, 802.,.805 
Subroutine for (RAGREN) 692 

Sidereal year 48 
Sifting (to reduce data volume) 317 
SIgoaI conditioner 279 
SImDarIty tnmsformation 752 
Simpson's Rule. for integration 561 
Simulators, for attitude data 709-712 
SImuhaDeous llDear eqoatItms, salution of 

SIDes, law of <in spherical triangles) 

Single-axis IlItItudt' 
Single-axis attitude determination

Accuracy 
Methods 

SlngIe-degree-of.freedom IDroscope 
SIng1e-spJn spacecraft . 
Singular matrix 
SIngnIarItIes. in attitude solutions 

. 749-750 

33,731-732 
343-346 

373-409 
362-409 

196 
503-504 

749 
403 

Singularity conditIons in anltode 
determination 

Table of 
Sinter, Use in thermistor flake 
SIRIO (Italian experimental 

communications satellite)-

406-407 
407 
171 

Application of block averaging to atti
tude solutions 371 

Attitude accuracy constraints on launch 
window 399-401 

Attitude determination accuracy 397 
Attitude software structure 698 
Attitude system of 794-795 
Correlation among measurement types 480 
Slit horizon sensor/Sun sensor 178-179 
Spin rate change due to orbit maneuvers 582 
Sun sensor analysis 717-718 
Use of body-mounted horizon sensor 173 
Use of carbon dioxide band horizon 

sensor 
Skew-symmetric matrix 
Skylab-

92 
750 

Attitude control system 197.201 
Disturbance torques due to crew motion 579 
Spacecraft configuration 579 

SKYMAP, star catalog 147 
SKYNET (U.K. Communications 

satellite)- Attitude system of 
Skywave (in radio broadcasts) 
Slave station (time signals) 
Slew maneuvers 
Silt horizon/Sun sensor 

794-795 
301 
300 

601,655-U1 
178-179 

721 As possible standard coarse sensor 
Math. model for misalignment 

Slit sensors, Analysis of alternative 
designs 

SIlt star sensor, mathematical model· 
SLP ephemeris files 

Subroutine for reading (SUNRD) 
Slug (unit of mass) 
SI\1 (San Marco satellite) 

219 

717-718 
254-256 

140 
693 
808 

Attitude system of 794-795 
Small drcle (spherical geometry) 22, 32 

Area formulas 729-730 
Construction of on global geometry plot 

Equations for 
739,742-743 

727 
Smithsonian Astrophyslcal Observatory, 

star catalog 143-144, 146-147 
SMM (Solar Maximum Mission) (See 

also MMS)-
Attitude acquisition 672 
Attitude control law for 659 
Attitude system 718-720,794-795 . 
Control system 608 
Data collection for bias determination 475 
Fine Sun sensor 166-167 
Inertial reference assembly 187 
Onboard computer . ~ 210 

Smoothlng, of attitude data and . 
results ~11r:J327 i. 
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Applications of 316 Orbits 48-52 
Guidelines for 317-318 Properties 81~25 

SMPOS (subroutine) 693 Solar time 798, 799-801 
Analytic basis 141-142 Solar wind J 20," 129:-132 

SMS (Synchronous Meteorological Sectors 131-132 
Satellite)- Solid angle 23 

Application of block averaging to Formulas 729:-730 
attitude solutions 371 Units"and conversion factors 810 

Attitude acquisition 661 Solid spherfaII harmonics 115 
Attitude determination accuracy 397-399 SoundIng rocket 52 
Attitude software structure 698 South Atlantic Anomaly (See Brazilian 
Attitude solutions from 373 Ano~) 
Attitude system of 794--795 SoYiet Space Program 3 
Behavior of single-frame solutions 403-405 . Launch sites 3 
Correlation among " meaSurement types Tracking and data acquisition 290 

418,480-482 Space cone 491~92 

Data collection for bias determination 474 Space MIsldon, profile of-
Earth-width data 233-234 Future changes in 8-12 
Horizon sensor electronics Representative 3-12 

modeling 244-249 Space navigation I 
Launch of 5 Space PredsIon Attitude Reference 
Pagoda effect 336--339 System (SPARS) 708 
Sensor package characteristics 721 Space shuttle 3,8-9 
State vector for bias determination 440 Effect on attitude determination and 
Sun sensor analysis 717-718 control 714,724 
Telemetry data errors 311 Orbit ephemeris 134 
Use of body-mounted horizon sensor 173 Payload mass as a function of altitude 9 
Use of carbon dioxide band horizon Star tracker for .190 

sensor 92 Thrust 53 
Use of open-loop control 663 Space TeIescoJ--
View of Earth by 84,91 Attitude system of 194--795 

Snapshot. of star seD$OJ' data 706 Onboard computer 211 
SoeJrsJaw 223 Pointing accuracy 714 
Software- Reaction wheels 604 

Avoidance of errors in 682-683, 685 Stability requirements 604 
Development of 681-713 Spaeecraft-
Example of attitude support software . Data generation and handling 

structure 700-703 onboard 278-283 
For multimission support 686,721-722 Effects of flexibility on dynamics 548-556 
General structure for attitude Gyroscope measurement of angular 

support 696--700 velocity 267-268 
Goddard Space Flight Center Magnitude of when viewed from a 

, environment 682 distance 79 
Safeguards for mission support 681-686 Names and international designations 52 
Standardization of 686,721-722 Stabilization and control. methods of 18-19 
Systems. general structure for 696--700 Stabilization. methods of (See also 
Test procedures for state estimators 471~73 Attiiude stabilization) 3 
Utility subroutines 690-695 Spacecraft attitude contror(See Attitude 

Solar eclipse 72 control) 
Solar heating, effect on flexible, spacecraft Sjlacecraft attitude determination and 

549,550 control systems 787-791 
Solar mass rado, for planets 827-828 Spacecraft attitude dynamfcs (See 
Solar parallax 31 Attitude dynamics) 
Solar radiation- Spaeecraft atdtude motion-

Flux 130 Example of ApoIJ015 subsatellite 49~91 
Pressure. effect on orbit 64-65 Introduction to 487-502 
-Effect on flexible spacecraft . SSG-55 I Spaeecraft axes, alternative systems 487-489 
Stabilization 19 Spaeecraft~ celestial sphere 22-24 
Torque 17,570-573 Spacecraft-centered coordinates 26--29 

Solar sail 64 Spaeecraft docks 298-299 
Solar System- Spaeecraft ephemerides-
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Definitive subroutines 693 Control using gas jets 650 
Two-body orbit generator (ORBGEN) 692 Effect of nutation on measurement 

Spacemdt fixed coordinates 26 of 544-548 
Spacecraft orbits 52--62, 132-138 Spin stabilization 19,503-504 

As function of injection conditions 60--62 Spin-stabilized spaceeraft 3 
Multipurpose ephemeris subroutine list of 787 

(EPHEMX) 693 SpHt-to-!ndex time, horizon sensors 172 
Spaceeraft stabUhy (See also Attitude dy- Math. model (split-angle model) 231,234 

nami(S; Disturbance torques; Square root fiher 467 
Nutation; Flexible spacecraft dynamics) 523 SSS (Small Scientific Satellite) 

Apollo 15 subsatellite 49~97 Attitude system of 794-795 
With respect to libration (GEOS Effect of flexibility on attitude dynamics 556 

example) 674 Nutation damping 544, 629 

SpaceRlgbt Tracking and Data Network Telemetry data errors 3JI 
(STDN) 283-290 ST (See Space Telescope) 

Time-tagging by 299-J\l1 StabHhy-

SpaceJab, onboard computer 211 Of control systems 594-600 

SPARS (See Space Precision Attitude Of rotation about a principal axis 523 

Reference System) Of spacecraft (See Spacecraft stability) 

Spedal pertm:batlons, method of (orbit Stabilization (See ,1 ttitude stabilization; 

analysis) 139 Nutation damping; Libration damping) 

Specular reflection 84 
Standard deviation . 429 '!~ 

Torque due to 572 Standard notation x-xii :1 

SPHCNV (subroutine) 694 For attitude angles 23,349 ~ 
Sphere, Wumlnatlon of as function of phase. Standard symbols xi-xii,50 I 

distance 78-79,89 Standard TIme SOl ~ 
Sphere of lDDuence-- Standardization-

I 
For spacecraft orbits 69-71 Of attitude hardware 718-721 

Table of for planets 69-71 Of attitude software 686,721-722 

Spberical coonIInate systems 24-31,760 Star azimuth 259 

Advantages relative to rectangular 25-26 Star camera 193 

Properties of 24-26 Star catalog, acquisition of by an attitude 

Tf!lllSformations between 765-766 system 704 
Spberical excess 32 Star catalogs 143-150 :' 

Spberlcal geometry 31-35 Star lOngitudes 149-15-1 I Construction of global geometry plots Star saumers 186, 187, 190-192 

737-743 list of spacecraft using 797 

Equations for 727-736 Star sensors-

Spberlcal barmonks 775-778 Attitude determination meth;,ds for 703-709 

Expansion of gravitational potential in 124 Characteristics vs. accuracy require-

Recursion relations 781 ments 190 
Representation of the geomagnetic Data selection and corr~tion 704-705 

field 779-782 Example of use for nutation 

SchDridtnormatizationfor 7SO monitoring 538-539 

Spberlcal plot subroutines (SPHCNV, Hardware 184-195 

SPHGRD, SPHPL1) 694-{j95 List of spacecraft using 797 

Spberlcal plots (See GIobaJ geometry plots) Mathematical model of intensity 

Spberlcal triangle 23 response 258-259 

Infinitesimal 734 Mathematical models 254-259 

Notation for 33 Overview of attitude determination 
Properties of 32-35 with 703-76; 

Spberlcal trigonometry 33-35 Representative telemetry data errors 3JI 
Differential 734-735 Star traekers-
Example of 34-35 Fixed-head 186, 189-190, 193-195 i· 

Table of genefal solutions .733,735 Gimbaled 186, 187-189 
, 

S~GRD (subroutine) 694 J ist of spacecraft using 797 
i, 

SPHPLT (subroutine) 694 Star_ . 
Spill-axis drift, during rocket engine ftriog 582 Angular diameter of 167 
Spta-axis precession, magnetic 636--649 As attitude determination reference 
SpIn rate- source 17 !, t 

Change during rocket engine ftriog 582 Densities 145 !!~ 
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Distribution. mathematical model of 263 
Identification 706 
Identification techniques 259-266 
Instrumental magnitudes of 258 
Magnitudes 144-145 
Position modeling 143-150 

State (in differential correction or "state" 
estimation) 439 

436--483 
437-438 
407-408 

State estimation 
Advantages relative to deterministic 
Need for 
Operational limits on accuracy 
Subroutine for (DC) 
Use in crs altitude system 

State estimators--
Analytic basis 
Operational use of 
Prelaunch evaluation 
Subsystem in attitude software 

476 
691 
702 

447-470 
471-484 
471-473 

system 697-{;98 
Unresolved analytic problems Tll-723 

State noise covariance matrix 465 
State plane trajectory 657 

Examples of 658 
For HEAO-I 607 

State space 657 
State transition matrix 450 
State vedor 436. 438--443 

Choice of elements to be solved for 476--4g3 
Construction of 438--443 
Need for 407-408 
Subroutine for updating (RECUR) 692 

Statevedore~~ 
Choice of' 
Observability of 
-Limitations 

State welgbt matrix 

439--443 
443 

476--483 
449 

SIDN (See Spaceflight Trackillg and Data 
Network) 

Steady state (in Kalman filters) 
Steady-state error, in control systems 
Steady-state system re5pOuse 
Steady-state trajectory 

467 
593 
770 
608 

Steepest descent, method of (differential 
correction tec" .lique) 

Steering law 
SteUar parallax 
Stepslze, in numerical integration 
STEREOSAT, use of AEM spacecraft 
Stkt\on 
Stiffness matrix (for flexible spac:ecraft) 
STORMSAT-

Disturbance torllues 
Use of MMS spacecraft 

Slrapdowo torque rebalanced gyroscope 
Stratopause 
Stratosphere 
Subrommutated data 
Subsate1Ute, Apono IS, nutation of 
Subsatelllte point (See also Nadir) 

Alternative definitions 
Local mean time of 

455 
604 

31 
S60 
720 
272 
553 

580 
720 
199 
107 
107 

293-294 
49S-497 

22 
83 
68 

INDEX 855 

Longitude of . 80S 
Subsolar point 84 
Snmm1ng point, in control system 589 
Son- (See also Solar) 

Analytic epbemeris subroutines 
(SUN IX, SMPOS) 693 

ApprQach by spacecraft 60 
As attitude determination reference 

source 17 
Definitive ephemeris subroutines 

(SUNRD. RJPL T) 693 
Effect on acceleration of Earth satellite 127 
Effect on geomagnetic activity 120-123 
~nergy flux from 130 
Expression for mean motion 141 
Interference with horizon sensors 169 
Multipurpose ephemeris subroutine 

(EPHEMX) 
Properties of 
Solar wind 
Symbol for 

Sun angle measurement 
Density of 
For nutating spacecraft 
Information content 

693 
818 

120, 129-132 
50 

11.23,344 
347 

539-548 
480 

Sun angle / aadIr angle slngle-axls attItwIe 
solutions 368 

4IJ6...:407 
12 

364 
156, 159-161 

11,13 
717-718 

Singularities in 
Sunrone 

Use in attitude determination 
Sun presence detector 
Sun sensor 

Analysis of SIRIO vs. SMS design 
Calculation of coverage of celestial 

sphere 
Calibration constants 
Combination Sun/Earth horizon 

sensor 
Data validation 
Exantple of use in attitude control 
Example of use in attitude 

34--35 
230 

178-179 
329-330 

14-16 

determination 10-14 
Field of view 22S-226 
Hardware 15S-166 
List of spacecraft by Sun sensor type 797 
Mathematical models 218-230 
Model of azimuth biases relative to 

horizon sensor 
Nutation monitoring with 
Simple vs. complex 
Two axis, accuracy analysis 
Use for single-axis attitude 
Use for three-axis attitude 

239-242 
539-548 
716-718 
35S-357 
362-409 

426 
Sun sensor/horizon sensor rotation angle 
~ 357-359 

Information content 480-482 
Models 237-242 
Use in artitude determination 364--365, 369 

Sun shade (for star sensor.) 186 
S1III-S)'IICbrun orbit 68 
SundIals 800 
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SUNRD (subroutine) 
SUNIX (subroutine) 

INDEX 

.--~-.~ 

" 
¥ 

TelemetrY data errors (See also Data 
errors) 31G-31J 

Table of representative examples 311 
Telemetry formats 219, 293-295 

Analytic basis 
Supercommutated data 
Superior coojUDdlon 
Superior phmet 

140,693 
693 
141 

293-294 
49-SO 

49 
115 

, Telemetry Ou-Une ProcessIng System 

Surface spberkaI barmoDics 
Stmeyor (spacecraft), attitude reference 

system 
SwItcldog, CoolereodDg, aod MoDltoriDg 

. Ammgement (SCAM A) 
SwitddDg Doe (component of control 

system) 
Symbols, astronomical 
Symmetrk mass distribution. principal 

axis of 
Symmetric matrix 
Symmetrk spacecraft 
SYMPHONIE (French/German 

communications satellite}
Attitude system of 
Horizon sensors 

189 

291. 

651 
50 

489 
1SO 
524 

194-195 
ISO 
210 
314 
293 

Syoch speed. of reaction wheel 
SyochroDizatioo pattern, quality flag for 
Syochronlzatlon slgoal, role in telemetry 
Syochronlzatlon word, in NASCOM data 

format 
SyochroDOUS satelHte 

Of various planets, table 
Syndrome vector 
Syoodk month 
Syoodk period 

291 
55 

8i5 
296 

52 
SO 

System galo-
Of a control system 590 
Role in root locus diagram 591-600 
Selection of for altitude control 622, 624 

. System mass matrix (for flexible space-
. craft) 553 

Systematic error, in attitude measurements 402 
Effect on deterministic solution behavior 404 

Syzygy 49 

-T-

Tachometers, for measuring wheel speed 
Tangent height 
Tangent plaDe coordIoates (See Local 

tangent t:oordiiultes) 
TCON20 (subroutine) 

. TCON40 (subroutine) 
TDRSS (See Tracking and Data Relay 

Satellite System) 
Tenon-

Use in gas jets 
Use in momentum wheel bearings 

TelemetrY 
Generation and transmission of 
Time tagging 

Telemetry anteD118S 

202 
93 

692 
6~ 

206 
202 

293-298 
218-298 
298-304 
284-288 

(TELOPS) 292 
Telemetry processor 304-308 

In attitude software systems 696-691 
Of CTS attitude system 101 

TelemetrY word 293 
. TelI-taIe (data flag) 313-315 

TELOPS (Telemetry On-Line Processing 
System) 2~ 

Temperature-
Of Earth's atmosphere 101 
Units and conversion factors 812 

Tensor 519 
Terminator 84, 86-90 

Identification of 331-334 
Tesseral harmonic coeffk:leots, explana-

tion of m-118 
TestIn(r 

Of altitude software 686 
Of state estimators 411-413 

TbermaI radiation (See Infrared radiation) 
Definition of 83 

Thermistor. as energy detector for horizon 
sensor 111, 118 

1bermoplle, as energy detector for horizon 
sensor 11t; ISO 

Tbermospbere 101 
Thlrd-body lDteractioDs, effect on orbit 

63,69-11 
Tbree-axis attitude 343,359-361 
Three axis attitude determination-

Accuracy 429-434 
Example of least-squares estimator 456-459 
Methods 410-434,420-428 

Tbree-axis stablllzed spacecraft 3 
Thrust prome (of gas jet) 201, 212-215 
Thrusters (See Gas jets) 
nme-

Local mean time of subsatellite point 68 
Measurement and broadcast facilities 

299-302 
Units and conversion factors 808-809 

nme cbecklng, of telemetry data 301-308 
nme measurement systems 18-21,198-806 

Conversion subroutines for 692 
Table of 198 

nme optimal magnedc maneuver 642, 648 
nme tagging 218 

Near-real-time data 302 
Playback data 302 
Representative telemetry data errors 311 
Telemetry data 298-304 

T1ROS (meteorology satellite}-
Attitude system of 194-195 
First Use of Quarter Orbit Magnetic. 

Attitude Control 639 



lltlus-Bode law (See Bode's Law) 
TOD (See True of date) 
Torque (See also Disturbance torques; 

A tli tude control) . 
Average of gas jet 
Due to magnetic moment 
Effect of. on spacecraft motion 
Internal vs. external 
Units and conversion factors 

Torque-free motloo, of spacecraft 
Torque-free solutions. for attitude 

motion 
Torr (unit of pressure) 
Total eclipse 
TRAAC, Iibration damping 
Trace, of a matrix 

274 
813 

49S--502 
521 
810 

487--497 

524.-531 
809 

Track pattern (in fixed-head star trackers) 
Tracking and Data Relay Satellite 

72. 76 
632 
748 
189 

System (TDRSS) 8-10.287-290 
Tracking stations 283-290 

Location of 284-285 
Timing systems 299-302 

Trajectory, of gas jet precession 652 
Trajectory. of spacecraft 53 
Transfer elements. of a control system 588 
Transfer function 244 

Mathematical model of horizon sensor 
electronics 244-248 

Of horizon sensor electronics I 72 
Use in control systems 589-590 
Use of to evaluate stability 591-593 

Transfer orbit (See also Hohmann transfer 
orbit) 5-{" 53 

Transfer time., in Hohmann transfer 
orbit 

Between the planets (table) 
Transformations between coordinate 

systems 
Transit 

58-59 
824 

760-766 
71-75 

254 Transit time, in slit star scanner 
Transmissioo, of data and commands (See 

also Telemetry) 278-292 
Transpose, of a matrix 744 
Transverse angular velocity 525 
Transverse moment of inertia 524 
Trapezoid model, of gas jet profiles 275 
Trigonometry, spherical (See Spherical 

trigonometry) 
Trojan asteroids 55 
Tropical year 48 
Tropopause 106 
Troeaoomaly 45~ 
Troe of date coordinates 27-28 
Troocation error, in integration procedures 560 
TumbUng, of spacecraft due to crew 

motion 579-580 
Turbopause 108 
Tum angle, of hyperbola 40.60-61 
Two-axis Sun seosor (See Sun sensor) 
Two-degree-of-freedom gyroscope 196 

INDEX 

Two thousand (2000) coordinates 
Two's complement aritbmetlc 
Tyuratan (Soviet launch site) 

UBV magohudes 
UDU filter 
Uburu (See SAS) 

-U...:. 
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27 
297 

4 

144-145 
467 

Umbra 72 
Untertalnty In attitude measurements 345-346 

Correlated 374. 378-379. 382-383 
Due to systematic errors 402--408.476 
Expressions for 375-376,381-382.384 
Uncorrelated 374.-382 

Uncertainty of state estimator solutions 476 
Undershoot, in control systems 593 
Unhary matrix 751 
Unhary transformation 752 
Units and conversion factors 807-813 
Universal TIme (UT)=GMT=Z 

Attached to data 
Unpaeking, of telemetry data 
UNVEC (subroutine) 
Uplink 
Upper stage rocket vehicles 

19.798. SOI-802 
298 

304-306 
690 
p8 

53 
U.s. Coast Guard, tIme keeping system 
U.S. Naval Observatory, time keeping 

system 
U.S. Standard Atmosphere 
UT (See Universal Time) 
UTC (See Unit:ersal Time; Coordinated 

. Universal Time) 
Utility subroutines 

-V-

299 

299-300 
110 

690-695 

V-brush, Sun sensor code 163 
V-slit Sun sensor (V beam Sun Sensor) 161 

Mathematical model 21S--22 I 
Validation-

Data flags and sensor identification 313-314 
Of attitude data 315-327 
Of telemetry data 307.312-334 
Requiring attitude information 334-339 

Vandenberg Air Force Base, Calif. (See 
Western Test Range) 

Vangoard (tracking ship) 
Vangoard units 
Variante 
Variation of parameters, fortrulation of 

284.287 
808-809 

429 

attItude dynamics 531-534 
VEC (subroutine) 690 
Vector algebra 744-757 

Subroutines 690-691 
Vector eaIeuIus. 755-756 
Vector identities, in three dimensions i56-7S7 
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vector magnetometer, mathematic:al 
model 

Vector multlplkatlon, inner and outer 
products 

Vector notation 
Vector product (cross product) 
'EqL~lion for direction of 
Subroutine for (CROSSP) 

VeIodty-
In a Keplerian orbit 
Units and conversion facMrs 

Velocity of escape 
Planets and satelbtes, table 

Vernal equinox 
Symbol for 

VHF data transmission 
Vldkoo, in star sensors 
Viking (Mars mission), launch dates 

250-254 

747-748 
x, xii 

756 
728 
691 

54,828 
809 
42 

817,825 
27,48 

SO 
282-283 

189 

relative to oPPOSitiO;1 51,57-58 
Vis ";PQ tontroversy 38 
Vis ";PQ equation 38, 42 

Origin of 38 
Viscous ring nutation damper 626, 627--629 
VIsihUlty of sateUltes and spacecraft 80 
VIsIbUIty of spacecraft 71-80 
VlsIhle Ught seusor (See also Horizon sensor) 83 
Visual magnitude. for spacecraft, sample 

c:alculation 
Volterra equation 
VOP (See Vtuiotion of parameters) 
VPHAZE (~ubroutine) 

-W-

waUops Island, launch site 
Water, absorption bands 
Weighting (in estimation theory) 

79 
773 

691 

4 
91-92 

44~50 

INDEX 

Weighting data 
WeIghtIessDess 
Western Test Range (launch site) 
WHECON, wheel control system 

Active nutation damping with 
Wbeel-mounted IIorizon seusor (See 

also Scanwheels) 
Mathematic:al models 
Table of characteristics 

Whltenulse 
WIdte Sands (launch site) 
World Warning Agency 
WWV time signals 
WWVH time signals 

Yaw axis 
Year

Sidereal 
Tropic:al 
Types of 

-y-

Yo-yo despln _ers 

-Z-

Z (time unit) (See UnitJersai nme) 
ZeuIth 
ZeuIth angle 

370-373 
41-42 

3 
613,622 
630-631 

169 
234,236 
176-178 

269 
4 

52. 
299 
299 

29 

799 
799 
48 

663--669 

Zero crossing magnetometer 
Zerus, of control sy~tem transfer function 

22 
8S 

2SO 
S90 

Zonal hannouIc coefficients- .. 
Explanation of 
In gravitational potential 

Zulu TIme 

m 
124,127 

801 

',1 , 
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