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Preface

The advent of the space shuttle and the prospect of several decades of
regular low-altitude earth orbital activity have focused attention on high-
speed atmospheric trajectories exemplified by the space shuttle entry.
The hypersonic flight mechanics of these trajectories represents a unique
field, in that a combination of orbital mechanics and atmospheric flight
mechanics is required.

For more than a decade we have worked together in this field, pursuing
research under the sponsorship of the National Aeronautics and Space
Administration and the United States Air Force, and in teaching various
aspects of the subject to advanced undergraduate and graduate students at
the University of Michigan and the University of Colorado. During this
time, interest in this topic has grown steadily until the demand for such
material led to this book.

We have endeavored to make this text valuable as a research tool and
reference for current experts in the field, and also as a learning source for
engineers and scientists in related fields who want to become involved in
entry dynamics. Taken as a whole, this book is a comprehensive and self-
contained treatment of hypersonic flight trajectories and atmospheric entry
flight mechanics, leading the reader through the classical theories and end-
ing with our modern, unified theory. Every topic is written so as to stand
alone; the reader can enter the text at any point to obtain the analysis of
particular interest. Every chapter is followed by a list of references which
enables a researcher to trace the roots of the subject.

As a textbook, this book is designed to be used in several ways. The
first nine chapters serve as a text at the introductory level for senior stu-
dents interested in orbital and entry flight mechanics. For students with a
firm background in aerospace engineering, including aerodynamics, pro-
pulsion, and orbital mechanics, this book can be used as the text for a
specialized course in atmospheric entry. For these advanced undergraduate
and graduate students, chapter 2 and chapters 6 through 13 comprise a
suitable text for such a one-semester course. Chapter 18 can be included
as time permits. The entire text covers a two-semester sequence at the
senior or first-year graduate level which brings the student to a sophisti-
cated understanding of the subject. Finally, used as a textbook for a short
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course on entry flight mechanics for engineers working in the space pro-
gram, the following reading sequence is sufficient: chapter 2 and chapters
10 through 18.

At both the University of Michigan and the University of Colorado,
parts of this book have been used as the text for several courses at both
the advanced undergraduate and graduate levels. This favorable experience
has enabled us to bring out the text in this final form suitable as a useful
tool for both research and education. Several of our doctoral students
have contributed to the development of a unified theory for planetary
entry covered in the second half of the book. It is a pleasure to acknowl-
edge here their collective research efforts. Each individual contribution is
fully accounted for in the text. During the whole period of the prepara-
tion of this book, from its inception in 1972 until its completion in 1980,
Professor Adolf Busemann has provided his eminent leadership, assisted
by his gracious wife, Magda. To them this book is dedicated.

It is with gratitude that we acknowledge the support of the NASA
Langley Research Center, sponsor of much of the research work which
went into this book. Dr. John E. Duberg, at a very early stage, shared our
opinion that further basic research on entry trajectories needed to be
done. As technical monitors from Langley, Mr. Robert W. Rainey and
Mr. Robert S. Dunning have provided enlightening comments on several
technical papers and NASA contractor reports generated under NASA
research grants. Professor Robert M. Howe, Chairman of the Department
of Aerospace Engineering at the University of Michigan, and also the
Chairman of the Department of Aerospace Engineering Sciences at the
University of Colorado have provided us with much encouragement for
this work. It is a pleasure to acknowledge their hospitality during our
frequent visits to each other’s campus to carry out our teamwork.

The excellent typing of the preliminary manuscript was done by Ms.
Shirley Iverson while the final camera-ready copy was professionally pre-
pared by Ms. Ann Gee. Their perseverance and dedication to this work
are much appreciated.

We would like to express our deep appreciation to Magda Busemann,
Joan Vinh, and Betty Culp for their continual love and encouragement
during these years.
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Chapter 1

Planetary Atmospheres and
Aerodynamic Forces

1-1. INTRODUCTION

To study the effects of aerodynamic forces on trajectories at
orbital speeds, it is necessary to model the planetary atmospheres in
which the flights take place. Because of the nature of the aerodynamic
forces on orbiting and entry vehicles, only a very thin layer of atmo-
sphere near the planet's surface need be considered. This is conve-
nient, for in these lower reaches of the atmosphere the modeling is
much simpler,

Many of the more complicated aspects of planetary atmospheres
are of no consequence in aerodynamic calculations. For instance,
though the atmosphere is composed of a mixture of a number of gases,
it may be treated as a uniform gas of unvarying composition throughout
the aerodynamically important altitudes.

In fact, the overriding feature of the atmosphere, as far as its
effect on the spacecraft is concerned, is the density. The particular
composition of the atmosphere can have an important influence on the
aerodynamic heating of the vehicle because of the details of the disso-
ciation of the gas after passing through the vehicle's bow shock wave,
but the manner in which this is treated in this text accounts for this
very simply. Once a particular reference value of aeroheating is
determined, the other values are proportional,

The effect of composition on aerodynamic force is negligible.
Hence, the concern in modeling the atmosphere will be to conveniently
and accurately represent the density.

1-2. FUNDAMENTAL ASSUMPTIONS

There are several important assumptions which may be made
with respect to any planetary atmosphere. These assumptions will be
considered with the goal of providing an analytical representation which
lends itself to ease of manipulation while maintaining reasonable accu-
racy. For high accuracy, tables of density such as in Ref. 1 and de-
tailed models as discussed in Ref. 2 and 3 may be used for particular
numerical cases.
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1-2.1. Assumption of Spherical Symmetry

By far the greatest simplification in analytical atmospheric
modeling is achieved by assuming that the atmospheric density is a
function only of radial distance, r, from the center of the planet—the
assumption of spherical symmetry. Actually, a much better assump-
tion is that the density is a function only of altitude. If the planet's
surface were a sphere, then these assumptions would be identical.

But the basic figure of all the planets is an oblate spheroid, which has
an elliptical cross-section along any meridian. For example, the
Earth's ellipticity, the eccentricity of this cross-sectional ellipse, is
0.00335, Table 1-1.

This oblateness of the atmosphere is the greatest deviation
from spherical symmetry. However, the tremendous analytical advan-
tages of this assumption justifies this penalty in accuracy. This short-
coming can be easily corrected when necessary. The spherically
symmetric model atmosphere is presented as a function of the altitude
above the planet's mean sphere. This same density variation is then
used as a function of the altitude above the planet's basic oblate spher-
oid.

This is almost equivalent to assuming the density is constant on
surfaces of spheroids with the same ellipticity as that of the planet,
and similarly aligned. For example, for Earth if the density at 300
kilometers altitude is referred in this manner to the surface spheroid,
it will deviate from a similar spheroid by less than a kilometer (being
high at the poles, and conversely low at the equator).

For planets with small ellipticity, the reference spheroid can
be conveniently approximated with error €%, by

r= (1-¢€ sin2¢) (1-1)

'E
where r_, is the equatorial radius, € is the ellipticity, and ¢ is the
latitude.

For particular cases, the oblateness of the atmosphere can be
included in this way. However, the complications introduced are se-
vere, and general results are obscured. This approach can be seen in
Ref. 4.

Another source of deviation from spherical symmetry is the re-
action of the atmosphere to solar activity. At extremely high altitudes
the density increases drastically in response to solar radiation. This
shows up in several ways— as a diurnal hump of dense atmosphere
which follows the Sun as the Earth rotates, as a seasonal density in-
crease which follows summer north and south, as a 27 day cycle re-
sponding to a particular solar flare on the rotating surface of the Sun,
and as a long period variation corresponding to the eleven year sunspot
cycle.

Only rarely do any of these effects descent below 250 kilometers
altitude. Since aerodynamic forces are of short-term importance only
below about 150 kilometers, these effects are negligible except when
considering the slow decay of a high altitude satellite.
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1-2.2. Assumption of Nonrotating Atmosphere

The atmosphere which the space vehicle encounters is not sta-
tionary, but rotates with the planet. For Earth and Mars the aero-
dynamic forces have immediate effects only at low altitudes, very near
the surface. At these altitudes the atmosphere rotates with approxi-
mately the angular velocity of the planet. Venus has a denser atmo-
sphere with a much greater effective thickness, but its angular velocity
is almost nil, and the rotation of the atmosphere is minuscule. Only
on Jupiter and Saturn, of the readily reachable planets, with their fan-
tastic rotational speed, turbulent atmosphere, and lack of a well-de-
fined surface, would the rotating atmosphere deserve special treat-
ment. For the other planets, the speed of the atmosphere past the
vehicle contributed by the rotation of the atmosphere is a small per-
centage of the total speed, Table 1-1.

For example, for Earth, the maximum rotational speed of the
atmosphere, encountered at the equator, is about six percent of the
circular orbital velocity at low altitude. Thus, the aerodynamic force
due to atmospheric rotation has a maximum value of about twelve per-
cent of the aerodynamic force due to the vehicle's speed. In most
circumstances it would be far less than this.

It is possible to treat this effect analytically. However, just
as for the oblateness of the atmosphere, the rotational effect would
depend on the latitude of the vehicle at all times. In addition, it would
depend heavily on the inclination of the trajectory to the equator. In-
clusion of such detail in an analytical study would do more to obscure
than reveal general trends and effects.

An example of such treatment is well-presented in Ref. 4. The
effects are so slight, however, that they may easily be accounted for
by slight changes in the coefficients of lift and drag for a vehicle. In-
deed, the errors in such coefficients probably would already exceed
the error caused by neglecting the rotation of the atmosphere.

For all of these reasons, it is usual to assume a nonrotating
atmosphere. The assumption is certainly justifiable.

Table 1-1. Relative effects of oblateness and rotation of the atmo-
sphere on aerodynamic force.

Ellipticity of surface rotational speed
basic spheroid, € circular orbital speed at surface
Venus 0. 0%
Earth 0.0034 6%
Mars 0. 0052 7%
Jupiter 0.062 30%

Saturn 0.096 409,
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1-2.3. Assumption of Exponential Atmosphere

A powerful assumption, greatly simplifying atmospheric analy-
ses, which is frequently made, is that the atmospheric density de-
creases exponentially with altitude. There are several nuances to this
assumption which are worth investigating.

There are two basic equations governing the density as a func-
tion of altitude. The first is the familiar equation of state for the
atmosphere relating its pressure p, density p and temperature T

R:{:
= — 1-
p=p 3 T (1-2)

where R* is the universal gas constant, 8,31439 x 103 joules/ kg - OK,
and M is the mean molecular weight of the atmosphere. The second
basic equation expresses that the rate of change of pressure must
equal the increased weight of the atmosphere supported, as the altitude
changes.,

dp=- pgdr (1-3)

where g is the acceleration of the gravity.
From the equation of state comes

%e_ d_;’ 4ar (1-4)

which, combined with Eq. (1-3), gives

gﬂ:-[—%{g{—+—;%]dr (1-5)
P R T

This equation can be rewritten as

%ﬁ =- g dr (1-6)

where B, defined as the bracketed term in Eq. (1-5), is the reciprocal
of the scale height.

At this point several specific types of density atmospheres,
corresponding to different assumptions on 8, are to be considered.

a) The locally exponential atmosphere.
If the coefficient B can be considered constant over some small
altitude interval, the integrated density function is

-B(r-r)
£ - ° (1-7)
Py ,

from which the character of 1/ as a scale height is apparent. The
coefficient B is evaluated at the initial, or reference, point indicated
by subscript zero.

b) The strictly exponential atmosphere.
If B can be considered constant throughout the atmosphere,



Ch. 1 ATMOSPHERES AND AERODYNAMIC FORCES 5

Eq. (1-7) holds for all r. In this case the reference level is commonly
taken to be the surface of the planet.

c¢) The isothermal atmosphere.
If the temperature can be considered constant through an alti-
tude interval of the atmosphere, dT/dr = 0, and B is given by

p = &L (1-8)
R T

Since for an inverse-square gravitational force field
g =g (=) , (1-9)

the quantity g r2 is constant in an isothermal atmosphere. Again, the
density is given by the exponential function, Eq. (1-7).

d) The B r-constant atmosphere.

In several studies of atmospheric entry (Ref. 5,6), it has been
convenient to consider the dimensionless quantity B r as constant. For
all the planets this is a large quantity, usually of the order 1000,
Table 1-2. In this case, the difference introduced into Eq. (1-6) is
additive, of the order of 1/pr. Thus, the exponential atmosphere may
be retained while considering B r to be constant.

For Earth, the scale height at altitudes below 120 km, stays
between about 5 km and 14 km, with a weighted mean value of about
7.1 km. The quantity B r varies from 750 to 1300, with a weighted
average of 900.

Table 1-2. Scale heights of the planets.

Average scale height, 1/ Average fr

Venus 6 -15km 500 - 900
Earth 7.1 km 900
Mars 10. 6 km 350
Jupiter 25 km ? 3000 ?

1-3. THE EARTH'S ATMOSPHERE

Of course, the primary interest must be focused on the Earth's
atmosphere. In order to make an analytic study of orbital trajectories
encountering the Earth's atmosphere, it is necessary to have a simple,
but accurate, expression for the density as a function of r. For numer-
ical calculations for particular cases, using a high speed computer,
detailed tables, such as those in Ref. 1, or polynomial representations,
are used. For detailed computations for a specific vehicle, such an
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approach is valuable. However, the intimate knowledge of the Earth's
atmosphere which such references make available can be used to gen-
erate more easily used functions. In particular, it is convenient to
produce piecewise exponential functions, Ref. 7.

An accurate density function can be obtained by considering the
effects on density of the variation in scale height, H=1/p, and mole-
cular scale temperature, T, -

The molecular SCall\e/zI temperature accounts for both temperature
and molecular weight changes with altitude.

T
TM = 1 MO (1-10)
The standard atmosphere of Ref. 1 shows that both H and T
may be represented as piecewise linear functions between the altitudes
of 54 kilometers and 300 kilometers, Fig. 1-1, which is the region of
interest for aerodynamically affected orbital trajectories.
In each of the seven piecewise linear sections the scale height
can be written as

H = -é = Hi+a(r-ri) (1-11)

and the molecular scale temperature as

Ty = TMi+b(r-ri) (1-12)

where the subscript i indicates the value at some reference point for
the section under consideration. The reference points are chosen in
such a way that the density expression will give the least deviation from
the 1959 ARDC Model Atmosphere, Ref. 1.

The seven sections and the constants for each are given in
Tables 1-3 and 1-4. The constants a are dimensionless; the
constants b have dimensions ®°K/ km. If the altitude above mean sea
level is h, then the radial distances r and r; in Egs. (1-11) and (1-12)
can be replaced by h and h;, where h; is the reference altitude for a
given section.

From the equation of state, (1-2), and the equation defining the
scale height, (1-6), it is seen that

— —d_l
B =-=5-(Inp (1-13)

1
H

Differentiating the logarithm of p from the equation of state,
using the definitions of H and T, , and assuming linear behavior for
. M
H, Eq. (1-11), gives

dr

) " H, +a(r-r,) (1-14)
i i

din (p TM

which, when integrated, gives
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pT H,
ln(—'———piTZi) = In | Eirzr_;'?.]l/a (1-15)
or, what is the same,
TMi Hi 1/a
;P_i ) TM1+ b(r-r,) H, + a(r-1,) (1-16)

where the linear behavior of TM’ Eq. (1-12), is assumed.

MOLECULAR SCALE TEMPERATURE (K°)

0 2c'>o 5?° noloo |s|oo zoloo
300 60.29 1878, —300
,/
/
250 /
- /
s /
v '/
- 49.22 /1577 —207
w 200 :
= /
3 0
L /a2t 175
= 4075 ./1323 {164
~
< 50
100 o7
fiesz voLEcuLaR-scate 2!
80— '-\'65'7 TEMPERATURE 180
601 \ '\ 280.2!
8.3416 134
40 N | 1 | ! |
(o) 20 40 60 80 100

SCALE-HEIGHT (KM)

Fig. 1-1. The scale height and molecular scale temperature
versus altitude., The values at the endpoints of the
sections are noted.
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Table 1-3. Reference values of hi’ P, Hi and T for
the different sections of the Earth's = iatmosphere.

Reference Values

. . . o}
Section 1 0% tiem) (;lrn) (Kg /) (E;n) Ty 0
1 54 ~ 80 67 1.4975-4 6.6597 222.8
2 80 ~ 91 85 7. 726-6 4,979 165, 7
3 91 ~ 107 99 4.504-7 5,905 195, 6
4 107 ~ 164 110 5.930-8 8. 731 288.2
5 164 ~ 175 170 7.932-10 42.62 1381.
6 175 ~207 190 4.680.10 46.51 1498.
7 207 ~ 300 254 1.149-10 54. 78 1730.

Table 1-4. Values of the constants a and b for the different
sections of the Earth's atmosphere.

Section Altitude Range Constants
(Km) a b, °K/km
1 54 ~ 80 -0.1296385 -4,044231
2 80 ~ 91 0.1545455 0.0
3 91 ~ 107 0.1189286 3.878571
4 107 ~ 164 0. 5925240 19.17964
5 164 ~ 175 0.3054545 9.454545
6 175 ~ 207 0.1596875 4. 687500
7 207 ~ 300 0.1190323 3.236559
By introducing two dimensionless parameters, 6H and & T ,
with the Earth's mean radius, r, M
- 2 _ b
®y = = Te bp = T Te (1-17)

i M M
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one arrives at the basic density equation which takes into account the
variation of scale height and molecular scale temperature:

1/a

1 1
£ = p T (1-18)
i 148 (=) 1+6 . ( )
M T H r
e e
Values for (SH and & in the seven sections are given in Table 1-5.
M

Table 1-5. The dimensionless parameters 61y and 6

T
for the Earth's atmosphere (Ref. 7). M

Section 6H 6 TM
1 124.1549 126.0780
2 1.9797 0. 0000
3 128.4549 126.4670
4 432.8391 424.4544
5 45. 7107 43,6648
6 21.8982 19.9577
7 13.8588 11.9322

A major simplification can be made by noting that SH and
6 are approximately equal in the seven sections. Setting 6TM
equal to 6 y in Eq. (1-18) gives

1 l+a
N N . S— a (1-19)
P T
1+6H( )
e

which can be rewritten using Eq. (1-11) as

ﬁL = -3§ (1-20)
i

This is the power function density relationship of Billik, Ref. 8,
and shows that it is a special case of the more general density expres-
sion, Eq. (1-18).

Equations (1-18) and (1-19) with the constants from Table 1-5
yield the maximum percentage deviations from the 1959 ARDC Model
Atmosphere given in Table 1-6.
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Table 1-6. Maximum percentage deviation from standard
atmosphere.

Eqg. (1-18), general Eq. (1-19), special

Section density expression density expression
1 0.07% 0.40%
2 0.02% 0.20%
3 0.02% 0.25%
4 0.57% 1.16%
5 0.11% 0.25%
6 0.04% 0.52%
7 0.11% 1.52%

1-4. HYPERSONIC FLOW

In supersonic flow it is obvious that the velocity of sound is too
small to carry a portion of the flow pattern ahead of the moving body.
But with increasing Mach number even the lateral extent of the flow
pattern shrinks to smaller and smaller Mach angles, until the accumu-
lating gas masses along the surface of the body have to create local
velocities of sound high enough to keep the gas density finite and the
thickness of the layer from shrinking to zero. The flow around bodies
under these conditions, at which the undisturbed Mach number loses
importance and the thermodynamical characteristics of the gas at high
temperatures gain weight, is called hypersonic flow. Its investigation
constitutes an important discipline of gasdynamics to which one author
of this text has contributed significantly in its early development. The
practical interest in high performance aircraft, guided missiles, and
aerodynamically maneuverable spacecraft has brought a new extension
to the study of hypersonic flow in engineering because of all the specif-
ic questions to make their flights feasible and safe. Here we shall
summarize only the basic characteristics of hypersonic flow to help in
evaluating the aerodynamic forces on a vehicle configuration in order
to analyze its motion in the very high speed range.

Most authors consider as a rough definition of the hypersonic
flow regime a supersonic flow in which the Mach number exceeds
approximately five. Main characteristics are the following:

1/ The shock waves originating at the leading edge of the body
lie close to the body surface. This results in a strong interaction with
the boundary layer caused by the surface friction.

2/ The presence of extreme temperatures in the region be-
tween the shock waves and the body invalidates the ideal gas concept.
At low Mach numbers a diatomic molecule, such as N, or 0, in air,
has five active degrees of freedom: three in translation and two in
rotation. As the temperatures behind a shock wave increase with
increasing Mach number, the heretofore inert degrees of freedom
(vibration, dissociation, and ionization) are activated, causing serious
alterations in the thermodynamic properties of the air.
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Such complex phenomena create challenging problems. Early
reports of their investigations can be found in many specialized texts,
such as Refs. 9 and 10. Here we shall be mainly concerned with the
practical importance with respect to determining the forces acting on
bodies at hypersonic speeds using the most simplifying assumptions.

1-5. NEWTONIAN FLOW

At very high Mach numbers, approaching infinity, the shock
waves get very close to the body surface, at least for the front part.
They would even get closer to the surface when the thermodynamical
degrees of freedom are increased toward infinity, for which the ratio
of the specific heats y is approaching the value one. It is amazing
that for such extremely modern conditions the impact forces of the gas
get close to the analytical description of the wind forces on buildings
300 years ago by Sir Isaac Newton, who neglected the thermodynamic
movements of the air particles and assumed the free path length to be
infinite. Considering an element of the surface AS inclined under an
angle o to the direction of the incident flow, (Fig. 1-2), the mass of
particles which collide with the surface element in unit time is equal
to

Am = pASV sina (1-21)

where p is the density of the medium and V the speed of the particles.
The force acting on the element AS as a result of the collisions de-
pends on the nature of the interaction between the particles and the
body surface.

AERODYNAMIC
SHADOW

Fig. 1-2. Newtonian flow past double-wedge profile.
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For gases Newton assumed an elastic reflection of the particles
on a smooth wall, reversing the normal velocity component V sin o
while retaining the tangential component V cos « . However, for what
he calls a 'continuous medium' (water, oil, and mercury), Newton
estimated the normal force to be diminished by one-half, because ''the
body does not immediately strike against all particles, but presses
only the particles that lie next to it, which press the particles beyond,
which press other particles and so on.'" This value is exactly the
result for M - @ and y - 1 , when the free path is small and no
thermodynamical particle movements existed before the collision with
the body (M = «) nor would be created at the collision by the energy
loss according to the disappearing velocity component V sin o because
of the infinite number of degrees of freedom sharing its heat equivalent
(y = 1). Dropping simply the normal velocity component V sin o during
the collision creates a normal force on the surface element AS

AF = Am Vsina = pV2 AS sinzoz (1-22)
Hence we have the Newtonian formula for the pressure coefficient:

c, =2 sin o (1-23)

It was first observed by Lees (Ref. 11), that a substantial improve-
ment in the agreement of the Newtonian calculations with experimental
data for symmetric two-dimensional and axisymmetric flow can be
obtained by modifying the formula as

. . 2
c =c _2’2_01_ (1-24)
p P sin ao

where C_ is the value of the pressure coefficient at the leading edge
or nose bf the body, found from the theory of supersonic flow of an
ideal gas, and a is the angle between the tangent to the body contour
and the free-stream direction. For bodies with blunt noses, we have
obviously sine =1, while C*¥ as a function of the Mach number M

and the ratio of the constant specific heats y can be obtained with the
aid of the normal shock relations and the Bernoulli integral as

v/ (y-1) 1/(y-1)
C = __é-— [t(jil_Mz) ( J_-t_l___) -1 ] (1_25)

P YM2 z ZyMZ-y+1
For M—>w , we have
w2 ygp Y/O-D o -1
c = 2(1—) (L) (1-26)
P Y 2 2y

If the simple Newtonian impact theory is used, where any
static pressure and skin friction are neglected, the force on the ele-
ment AS is the impact pressure force. Newton's theory implies
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that only those frontal surfaces exposed to the flow can contribute to
the aerodynamic force, and pressure forces on rear surfaces in the
aerodynamic shadow are negligible, (Fig.1-2). Now if we divide the
forces acting normal on every exposed surface element AS into posi-
tive drag components in the direction of the free-stream velocity and
lifting components orthogonal to it, then using the simple pressure
from Eq. (1-23) at the surface element inclined at an angle & with
respect to the incident velocity, we have

3
C = C sing = 2 sin ¢« 1.27
(€ )p = S, (1-27)

and

(C))

2
C cosa = 2 sin o cos o 1-28
pL P ( )

For this simple body or, integrated over the surface of a com-
plicated body, Eqs. (1-27) and (1-28) give the drag and lift coefficients,

CD and CL , respectively.

1-6. THE DRAG POLAR

On the basis of the simple formulas derived from Newton im-
pact theory, we can determine the hypersonic aerodynamic character-
istics of wedges or cone-like bodies when a high degree of accuracy
is not required.

As an illustrative example, we shall consider a plane-convex
airfoil whose cross-section has the form of an isoceles triangle (Fig.
1-3). Let 6 be the nose angle of the airfoil and o the angle of attack,
defined as the angle between the base of the triangle and the direction
of the free-stream velocity. We restrict ourselves to the case of
small angles 6 and «.

Consider the case in which both the lower surface and the
forward half of the upper surface are exposed to the flow, (0 < a < 0 ).
The angle of attack of the lower surface is & while the local angle of
attack for the upper surface is clearly (8 - «)

Fig. 1-3. Triangular airfoil at angle of attack.
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The lower surface is a flat plate at an incidence « . The lift
and drag coefficients are respectively

C = Zaz

2a3 (1-29)

O
I

The total lift and drag coefficients for the airfoil are evaluated
using the area of the lower surface as a reference area. Since the
front area of the upper surface is practically equal to half of the area
of the lower surface for small 8, the contributions of the lift and drag
coefficients from the upper surface, considered as a flat plate at an
incidence (6 - «), are

- (0 - )

Q
i

(o - a)3 (1-30)

O
1l

The total lift and drag coefficients for the complete airfoil are found by
simply adding the separate contributions of the individual surface, as
longas 0< o< 8 .

C, = 20% (0 - o)’
(1-31)

3 3
C 20 + (6 - a)

D

In hypersonic flow, a useful small parameter T , called the thickness
ratio of the body, is defined as the maximum value of the angle between
the surface of the forward portion of the body and the free-stream
direction. Here, we define v=0/2 , and write the Eqs, (1-31)

C 2 2
== 2® . 2o
T T
T (1-32)
c
3 3
- =2 re-Y
T T T

The second terms in these expressions are valid only for o /T < 2 .
For large angles of attack, the pressure on the upper surfaces of the
airfoil is zero and the airfoil behaves like a flat plate. Both expres-
sions for C. /T~ and CD/ +3 are functions only of the ratio /7 .
The plot of Cy,/ T2 versus Cp/ t3 is called the drag polar (Fig. 1-4).
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Fig. 1-4. Drag polar for triangular airfoil in hypersonic
flow.

1-7. THE BUSEMANN FORMULA

For the case of a flow over a wedge or axisymmetric cone, the
gas particles move along straight lines in an infinitely thin layer adja-
cent to the surface in which the density of the gas is infinitely large.
The pressure on the surface of the wedge and cone coincides with the
pressure behind the shock wave and is determined by the Newtonian
formula

p = prZ sinza (1-33)

with subscript 1 denoting the free-stream condition. On a curved
body, a particle is constrained within the continuum flow in the shock
layer to follow a curved path and the forces required to curve the tra-
jectories of the particles must be taken into consideration. The
result is a pressure difference across the shock layer equal to the
momentum flow in the layer times the curvature of the layer. The
inclusion of this centrifugal force was first proposed by Busemann who
gave formulas for the correction (Ref. 12, pp. 276-277).

Based on the assumptions of inelastic collisions, y =1, and
the absence of frictional forces, we may assume that the speed of each
particle remains unchanged after its collision with the surface and that
the particles move along the geodesic lines of the surface. Under
this assumption, we refer to Fig. 1-5 for the evaluation of the pres-
sure difference in the layer for two-dimensional and axisymmetric
flows.

Let us follow the motion of the particles along the surface of
the body after collision. These particles move within an infinitely
thin layer depicted in the figure by the body contour and the dashed
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line. At the point x , measured along the body contour, the pressure
difference dp in the infinitesimal layer composed of particles which
have collided with the surface near the point x' and which have the
velocity u{x') , is equal to

N2
ap = LELx)u ) g (1- 34)

where R(x) is the radius of curvature of the body at the point x , and
dn the thickness of the infinitesimal layer of the deviated gas particles,
evaluated along the outward normal to the surface.

Let F be the cross-sectional area of the body in a plane normal
to the direction of the free-stream flow. By consideration of the
conservation of mass in the layer, we have

pIVdF(x') = p(x,x") u(x') £(x) dn (1-35)

dn ——

Fig. 1-5. Curved trajectories of gas particles after
collisions.

For two-dimensional flow, £ (x) =1 , and for axisymmetric flow
£(x) = 2w r(x) where r is the radial coordinate for the body of revolu-
tion.

The radius of curvature R(x) of the body at the point x is

dx 1 dr

R = - do T " sine de (1-36)
Using Egs. (1-35) and (1-36) in Eq. (1-34), we obtain

dp = V sin @ 32 u(x') dF(x") (1-37)

P = -p sin @ 7w -

Since the velocity component of a particle tangential to the body surface

is unaltered by the collision, u(x') = V cos [ @(x')] . Hence,
_ 2 . da N
dp = - Py V™ sin « S5 ©°S a(x") dF(x") (1-38)
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Integrating the equation for dp and taking into account the fact that at
the outer boundary of the layer, p = p 1VZ sin® o , we find the pressure
on the body surface to be

2 .2 d
p = p,V(sin“e +sina == [ cosa dF) (1-39)
1 dF 4

(o]

This formula was first given by Busemann in Ref, 12. In recent years,
it has been used by several authors in their investigations of minimum
drag bodies at hypersonic speeds (Ref. 13).

Convex surfaces have a negative value da/dF , and avoid sepa-
ration only when the pressure is nowhere negative. This implies a
finite positive o at the end of the nose.
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Chapter 2

Equations for Flight
Over a Spherical Planet

2-1. INTRODUCTION

In this chapter we shall derive the equations of motion of a ve-
hicle considered as a point mass of mass m flying inside a planetary
atmosphere. The motion of the vehicle is defined by

?(t) = position vector
V(t) = velocity vector (2-1)
m(t) = mass

At each instant, 1t is subject to a total force F composed of the grayi-
tational force mg , the aerodynamic force A and a thrusting force T
provided by the propulsion system.

F =T+ A + mg (2-2)
With respect to an inertial system, we have the vector equation

-

dv =
o ¥ (2-3)
2-2. RELATIVE ANGULAR MOTION
Consider a fixed system 0, X Y , and another system Oxyz

which is rotatln& with respect to t]he f1xed1 system.

Let i, j, and k be the unit vectors along the axes of the
rotating system. Let 2 be any arbitrary vector with components Ax s
AY and A along the rotating axes. Then
T+ A j+AK (2-4)
X y z

A = A

19
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Z, -

A

—
k

X,

Fig. 2-1. Relative angular motion.

Since Oxyz is rotating, its associated unit vectors_,i—,. T, and K are
functions of time. Hence, the time derivative of A

, taken with
respect to the fixed system, is
B D Pye P o, F &
at - ¢ Tat at ? dat xdt ©yat T2 d
(2-5)
Now, a point P w_i_'ch position vector ;, fixed in a system rotating with
angular velocity w , will have as linear velocity (Fig. 2-2)
V = E = wXr

(2-6)
If T is taken as the vector i3

, K respectively, we have the
Poisson formulas

d?_—» - gj:_—*? df(b_—»—»
% - exi, dt—wx_],dt—ka (2-7)

Using these relations, together with the definition (2-4), it is
seen that the second term on the right-hand side of Eq. (2-5) is

ar dj ak - -
A — A —=—+ A — = -
x dt * y dt * z dt @ x A (2-8)

The first term can be interpreted as the time derivative of the vector
—- =

A if the vectors I.,j , and k are constant unit vectors. Hence, it is
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0

Fig. 2-2. Kinematics of rotation .

the time derivative of A with respect to the rotating system Oxyz .
We denote it by

6% dAX* dAY N dAZ -

st 0 @ Lt tw K (2-9)
and write Eq. (2-5) as

dA  GA . - -

'EE— = 5t + wx A (2-10)

This is the formula for transforming the time derivative of a vector
from one system to another rotating system.

2-3. BASIC EQUATIONS OF MOTION

The inertial reference frame 0X YIZ is taken such that 0 is
at the center of the gravitational field otla sp}lerical planet and the
0X.Y. plane is the equatorial plane. The 0XYZ reference frame is
fixed with respect to the planet, hence it is rotating with an angular
velocity » assumed constant and directed along the Z-axis (Fig. 2-3).

The vector equation (2-3) is written with respect to the inertial
frame. In deriving the equations of motion we shall use the planet-
fixed axes as the reference frame. Hence, putting A=7 in Eq. (2-10)
and then taking its time derivative, we have the expression for the
absolute acceleration d—\7/ dt .

af _ 6T a7
dat ~ Bt @ x
d__\7___5_[£+" »]+» [ir:r* *]
at  etlLse @ xT @ X s Xt

or since 63/ 6t = 0

’
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%-15: thr +2$x%f—+3x($x?) (2-11)

The vector equation (2-3) now becomes, with the planet-fixed system
used as the reference frame,

2~ -
m62r: f‘-Zm:xg—:
5t

-mo x (0xT) (2-12)

For convenience, we change the notation for the time derivative and
write it as

o
dt

— —-

m = F.2mo x V-mo x(0xr) (2-13)

with V being the velocity with respect to the planet, and the time
derivative taken with respect to planet-fixed axes.

In this planetocentric system, the position vector T is defined
by its magnitude r, its longitude 8 (measured from the X-axis, in the
equatorial plane, positively eastward), and its latitude ¢ (measured
from the equatorial plane, along a meridian, and positively northward).

It is convenient to evaluate different vectors in Eq. (2-13) by
their components in a rotating coordinate system Oxyz such that the
x-axis is along the position vector, the y-axis in the equatorial plane
positive toward the direction of motion and orthogonal to the x-axis,
and the z-axis completing a right-handed system (Fig. 2-3).

| W4

Fig. 2-3. Coordinate systems.
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Let y be the angle between the local horizontal plane (that 1s
the plane passing through the vehicle and orthogonal to the vector r ),
and the ve10c1ty V. The angle y is termed the flight path angle and is
positive when V is above the horizontal plane. Let ¢ be the angle
between the local parallel of latitude and the projection of V on the
horizontal plane. The angle { is termed the heading and is measured
positively in the right-handed direction about the x-axis. Let 1 _] , and
K be the unit vectors along the axes of the rotating system Oxyz . We
have
T

-
r = r

(2-14)
and

V = (Vsiny) T + (Vcosycosy) j + (Vcosysiny) kK (2-15)

On the other hand, the angular velocity @ can be represented by

o = (wsing)i + (0 cosd)k (2-16)
Hence
wxV = - (0 Vcosycosdcosy) i+ wV(sinycosé - cosysing siny)j
+ wVcosy sinq;‘cosd,;E (2-17)
and
wx(wxr) = -w rcos ¢i +w rsing cos¢ k (2-18)

In the force _f, the gravity force is simply

mg = - mg(r) i (2-19)

The aerodynamic force A can be decomposed into a drag force
D opposite to the velocity vector v and a lift force L. orthogonal to it.
In symmetric flight the thrust vector T is always in the lift-drag _Elane
Let € be the angle between the velocity vector V and the thrust T.
Then, we can decompose the thrust into a component T cose along the
velocity and a component T sine along the lift force. It is convenient
for the derivation of the equations to group the components of aerody-
namic and propulsive force and define

Fr

T cose - D

F

N T sine + L (2-20)

where F., is the component of the aerodynamic and propulsive forces
along the velocity vector and Fyy is their co_x:nponent ortl'_l_ogonal to it in
the lift-drag plane. In vector form, since F. is along V , we can
refer to Eq. (2-15) to write

FT = (FTsmy)l +(FTcosycos¢)J +(FTcosysmLp)k (2-21)
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In planar flight, the vector Fy is in the (r, V) Plane, that is
the vertical plane, and there is no lateral force. By control action,
if we rotate the vector L and hence also the vector FN R about the
velocity vector V we create a lateral component of the force F__ that
has the effect of changmg the orbital plane. To resolve the force FN
or its collinear force L, into components along the rotatin axes, we
refer to Fig., 2-4. The vertical plane considered is the (r, V) plane.
Assume the vector L, is rotated out of this plane through an angle e o .
The angle ¢ which is the angle between the vector T and the (r, V)
plane will be referred to as the roll, or the bank, angle. The force
i:N is decomposeg into a component Fyycoso_ in the vertical plane
and orthogonal to V and a component Fy; sino orthogonal to the
vertical plane. Let x', y', and z' be the axes from the position M of
the vehicle, parallel to the rotating axes x, y, and z. Let etx, ¥y and
z, be the axes from the point M, along the direction of FN cos o' ,
_‘71 and Fpy sino  respectively. The system Mxly z. is deduced
from the system Mx'y'z' by a rotation | in the horizontal plane,
followed by a rotation y in the vertical plane. Hence, we have the
transformation matrix equation

rx' 1 0 0 cosy siny O X,
y' = 0 cosy - siny - siny cosy O ¥, (2-22)
z' 0 siny cos 0 0 1 z,
or
x! cosy sin y 0 x)
y' = - siny cosy cosycosy - siny ¥ (2-23)
ZIJ - siny sin y cosvysiny cos Y z)
L L
Since the components of ¥ in the Mx y,z, system are x = F_ _cosco,
v, = 0,z = }.7‘N sinoc , we deduce the components of ¥, along the
system MXx'y'z", or what is the same, along the rotating system Oxyz
FN = (FN coso cosy) i - (FN coso sinycosy +FN51nu~ siny) j
- (FN coso siny siny - FN sino cosy) Kk (2-24)

In summary, we have resolved all the vector terms in Eq. (2-13) into
components along the rotating axes Oxyz.

In order to take the time derivative of the vectors r and V
with respect to the planet-fixed system 0XYZ, we need to evaluate the
angular velocity vector G of the rotating axes. The system Oxyz is
obtained from the system 0XYZ by a rotation 8 about the positive Z-
axis, followed by a rotation ¢ about the negative y-axis. Hence the
angular velocity & of the rotating system Oxyz is

¢ = (sin¢ %i—)i’ JE)J + (cosd -d—) (2-25)
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VERTICAL
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ZI\ //$
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yl
° y

Fig., 2-4. Aerodynamic forces and thrust components,

We use Eqs. (_2;7) with € instead of w to deduce the time derivative
ofi, j, and k .

i _ ox - do, = o 3>

D — = = — k

e x i (cos ¢ dt) i + (dt)

a . oger - do . 40

a3t Q2 xj (cos ¢ dt)l + (sind dt)k (2-26)
K > > db - .. de . o

& - Qxk = -( dt) i - (siné dt)

If we take the time derivative of r , as given by Eq. (2-14), using the
first of the Eqs. (2-26) for the derivative of i , we have

r _  dr o de - do g
rri (dt)l + (r coso dt)J +(rdt)k (2-27)

Identifying this equation with Eq. (2-15) yields three scalar equations
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dr .

Frli V sinvy

48 _ Vcosycosy (2-28)
dt r cos ¢

d _ Vcosysiny

dt r

These equations are the kinematic equations,

On the other hand, if we take the derivative of the velocity
vector V , as given by Eq. (2-15), using Eqgs. (2-26) for the derivatives
of the unit vectors i_>, T, and K , and subsequently Eqs. (2-28) for
d6 /dt and d¢ / dt, we have

= [sin\{—jTV + Vcosy %- Xr—coszy] T

o
dt
+ [cosycoqu -:TV - V siny cosy g—ty-- Vcosy siny -%:E
VZ
+ - cosy cosy(siny - cosysiny tant]:)] j

+ [cosy siny % - V siny siny %CY- + V cosy cos th
VZ 2 -
+ — cos y(siny sing + cosy cos tan¢)l k
i (2-29

By substituting into the basic vector equation (2-13), using Eqs, (2-17),
(2-18), (2-19), (2-21) and (2-24), we obtain three scalar equations

d
siny:i—t\/:+Vcosy %- %—coszy=-r%1-F siny +-:—nF cOSg cosSy- g

T N

+ 2w V cosycosd cosy + wzr cos2 ¢

2
cosvy %1—,- V siny %}— V cos y tan %:E+ Z—cosy(siny- cosy siny tand)

1 1 . .
= FT cosy —m(FN coso 51ny+FNs1mr tany)
- CZOQ;Z: (siny cos$ - cosysind siny)
2
dav . o dy Vcosy dy V_ . cosycosy tang
cosy - Vsiny at + tany  dt + = cosy(siny + tan )
F_ sing .
_ 1 1 . N cosysing
_mFT cosy-m(FNcoso' siny - ——————taan )= 20 V tand
_wZ singd cos (2-30)

sin
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Solving for the derivatives dV/dt, dy/dt, and dy/dt , we get the three
scalar equations:

dv 1 . 2 - . .
% 0 m FT - g siny+w rcos¢ (sinycosd - cosysing siny)

2

— - — 2
at - FN coso -gcosy+ - cosyt2w V cos¢ cos

2 . .
+ w r cosd (cosycos ¢ + siny sind siny)

F _sinc 2
- T cosycosy tand

2

+ 2w V(tany cos¢ siny-sind ) - =

sindg cosd cos
cosy ¢ ¢ P

(2-31)

These three equations are the force equations. The presence of the w
term is due to the rotation of the planet. If we assume that the atmo-
sphere is at rest with respect to the planet, then it has thg same rota-
tion as the planet. In general, w is small and the term w r can be
neglected. On the other hand, the term 2w V, called the Coriolis
acceleration, has an important effect in a high-speed, long-range
flight. For an accurate analysis, especially in the problem of comput-
ing the trajectory of a ballistic missile, the term should be retained.
In this book, we shall mainly be concerned with the variations of the
speed and altitude of the vehicle in the main portion of the trajectory
where high deceleration develops. For this purpose, we can also
ignore the effect of the Coriolis, that is, we shall assume that the
planet, and hence the atmosphere, is nonrotating, « = 0.

Then, the equations become

v _ L g sin
& - m T 8 v
dy 1 V2
Vv = v - —_— -
at - FN cos o gcosy + - cos y (2-32)
F__ sinco 2
d¢ L N ¥
\ Tt ool cos - cosy cosy tand

where the force components F_, and F__ are defined in Egs. (2-20) for
the case of powered flight. Inthis case, the mass of the vehicle is
varying and we add the equation for the mass flow rate

dm T
= - = 2-33
dt [ ( )

where T is the thrust and c a parameter characterizing the propellant
used in the propulsion system on board the vehicle. In the case of
nonthrusting flight, which is usually the case for high speed entry into

planetary atmosphere, we have T = 0, F_ = - D and FN = L. Hence,
the three force equations for entry trajeg;:ories are
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dav .
T T m ey
2
V%} = I__J_c;t:l_s_g - gcosy+VT cos vy (2-34)

2
d L si v
Vﬁ: ;—:ior;;:(;-r_ cos y cos y tan ¢
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Chapter 3

Performance in Extra-Atmospheric Flight

3-1. INTRODUCTION

Beginning here, we shall analyze the performance of long-range
hypervelocity vehicles. The flight is assumed to take place in the plane
containing the great circle arc, between the take-off point and the land-
ing point. The flight is thought of in two phases as illustrated in Fig.
3-1.

a/ The powered phase, in which sufficient kinetic energy pro-
vided by the propulsion system is imparted to the vehicle to bring it,
under a proper guidance, to a prescribed position and velocity in space.
The trajectory followed is the arc AB in Fig. 3-1. The point B is
referred to as the burnout position.

b/ The unpowered phase, in which the vehicle travels to its
destination under the influence of the gravity and aerodynamic forces.
The trajectory followed is the arc BC.

4N ATMOSPHERE

Fig. 3-1. Trajectory of long range hypervelocity vehicle.

29
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The powered phase is generally short, and the corresponding
longitudinal range during launch, xp , is small compared to the
radius of the Earth. Hence, the trajectory can be analyzed using the
flat Earth assumption, This is done in Chapter 4. For a short range
flight, the unpowered phase is performed entirely in the dense layer of
the atmosphere. For long range flight, if the total energy imparted to
the vehicle at the burnout position B is sufficiently high, with a proper
orientation of the burnout velocity, the trajectory followed will have a
portion entirely outside the dense layer of the atmosphere. This por-
tion of the trajectory is represented by the arc BE in Fig. 3-1., The
corresponding contribution to the range, (xE - xg) , may be large.
This is one of the most interesting features in hypersonic flight. For
long-range operation, hypervelocity vehicles may reduce the cost in
fuel consumption since the range (xE - x,,) can be made infinite with
finite energy input. In this respect, Singer and Bredt were among the
first to recognize the favorable connection between speed and range
(Ref. 1). The idea leads to the concept of present-day shuttle vehicles
where, after the powered phase, the subsequent trajectory is entirely
flown outside the atmosphere for several days and the required mission
is accomplished without additional energy input. When it comes time
to return to the Earth a rocket may be fired to deflect the trajectory
such that it intersects the atmosphere of the Earth at a certain point
E called the entry position. The subsequent trajectory is called the
reentry trajectory. This portion of the trajectory is illustrated by the
arc EC in Fig. 3-1.

In this chapter, we shall be concerned with the extra-atmo-
spheric portion of the flight trajectory, namely the arc BE . We
shall assume that space is completely free of atmosphere. Hence,
from classical orbital mechanics, the trajectory is a Keplerian conic.
The reentry phase will be analyzed in subsequent chapters.

3-2. THE TRAJECTORY EQUATION

In the plane of motion, the position of the vehicle, considered
as a point mass represented by the point M , is defined in polar coor-
dinates by its radial distance r from the center of the Earth O , and
the angle 6 between the vectors OB and OM (Fig. 3-2). With the
aerodynamic force neglected, the vehicle is subject only to the gravi-
tational attraction which, for a spherical earth, is directed toward
the center O with a force per unit mass

F

=

m

. _
> (3-1)
r
where m is the mass of the vehicle, and p a positive constant
p = Gm (3-2)

m is the mass of the Earth and G a universal constant. This yields
a value of p for Earth:
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Fig. 3-2. Geometry of the trajectory.

km

2

sec

B = 398603.2

Since the force is central, its component F  along the direction per-
pendicular to the position vector r is zero. Hence, we can write the
equations of the motion in polar coordinates

.2

¥ -rd” = - sz (3-3)
T

0 + 210 = 0 (3-4)

The dot represents derivatives taken with respect to time. By inte-
grating Eq. (3-4) directly, we obtain

r6 = h (3-5)

where h is a constant. Since r® 1is the velocity component orthogon-
al to the position vector, Eqg. (3-5) shows that the constant h is the
angular momentum per unit mass.

The equation for r , Eq. (3-3), can be integrated by the
change of variable

1
r o= < (3-6)

-

L gt g
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Using 6 as the new independent variable to replace the time gives

. _dr de < a1 0 ds
= e—— — = r— -— = L e— e 3-
T3 & ® 3% (3) 2 do (3-1)
Since, from Egs. (3-5) and (3-6)
& = hs® (3-8)
we can write Eq. (3-7) as
. ds
= - — 3.
T h 30 (3-9)
Therefore,
2 2
rz_hdszgtﬁz -thZdz (3-10)
de de

Making these substitutions into Eq. (3-3) we obtain the linear equation
in s

IF:
—z ts o= & (3-11)
do h

The general solution of this equation is

s = J*E + Ccos (6-6.) (3-12)
h [o]

where C and 90 are two constants of integration. Returning to the
variable r , we write

— p
= 1+ e cos (6-60) (3-13)

where by definition
2

p = h/u (3-14)
and

e = Chz/p (3-15)

Equation (3-13) represents a family of conic sections. The center of
attraction O is a common focus for the family. The dimensionless
parameter e is called the eccentricity of the conic, and the parameter

p , which has the dimension of length, is the semilatus rectum, or the
conic parameter. The polar equation involves three constants, p , e
and 8 . These constants are specified by the values of the radial

distance TR the speed Vg and the flight path angle Yg at the burn-
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out position B . The flight path angle y along the trajectory is mea-
sured positive upward from the local horizontal to the velocity vector
\'

3-3. CHARACTERISTIC VALUES OF A TRAJECTORY

Once the initial values r , Vv and vy are specified, the
trajectory followed by the vehicle is Weﬁ-determlned. With each
trajectory, there are associated a number of characteristic values
which are constants of the motion. In this section, we shall define
these values and interpret their physical meanings.

First, using Eq. (3-5), we rewrite Eq. (3-3) as

FoB o -5 (3-16)
r

Multiplying the equation by T , we have

2 .
h™r pr
S )
T r
or equivalently
2
1 4 ,.2 h .o d . p
z @ 7o ?) = x T

By integrating and replacing h2 by (rzé )2 , we obtain
. . 2 -
I IR - (3-17)

where & 1is a constant of integration. If V_ is the radial component

and Vg the transverse component of the vefocity, V., = r and

Ve = r6 , and

ve o= v o4 = 7+ (r6) (3-18)
Hence Eq. (3-17) can be written as
l VZ - E = 8 (3-19)
2 r

At each point along its trajectory, the vehicle has, per unit mass, a
kinetic energy equal to{1/ 2) v% anda potential energy from which is
derived the gravitational force. Since the gravitational force per unit
mass has the magnitude pn/ r® , the potential energy at a distance r
is - p/r , if we select the level of the potential energy such that it
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has the value zero at infinity. Hence, relation (3-19) states that the
total energy per unit mass, along the trajectory, is constant. The
equation is called the energy integral or the vis-viva integral.
Next, by a rotation of the direction of reference, we can make
6o = 0 and e > 0 in the polar equation (3-13) for the trajectory.
Hence we consider
p

T T Trecose (3-20)

In this fgrm, the angle 6 is no longer measured from the position
vector r , but from a new reference direction which we shall deter-
mine later. Equation (3-20) is the general equation of a conic section.
The radial distance r remains finite if 0 < e < 1 . This condition
defines a family of closed curves, ellipses. “If the trajectory does not
intersect the boundary of the Earth's atmosphere, the vehicle returns
to its initial condition for each variation of 2 of the angle 6 . Hence,
we shall refer to the trajectory as an orbit. The distance r remains
the same when we change 6 into - 8 . The elliptic orbit is symmet-
ric with respect to the polar axis (Fig. 3-3). The minimum value of

r is called the pericenter distance r_. It is obtained by setting

6 = 0 in Eq. (3-20). We have P

r = (3-21)

We see now that the reference direction is the direction toward the
point P of closest distance called the pericenter. The maximum
value of r , r_, is called the apocenter distance. It is obtained by
setting 6 = m in Eq. (3-20). We have

r = (3-22)

Fig. 3-3. Elliptic orbit .
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The point of farthest distance, the point A , is called the apocenter.
For the Earth, the point P and the point A are also called the peri-
gee and the apogee, respectively. They are the apses of the elliptic
orbit, and the line joining P and A 1is called the line of apses. The
distance 2a between the apses is defined as the major axis of the
ellipse. Hence

P P 2p

22 = r +r = + = (3-23)
- 2
P a l+e 1-e (1-e%

This gives the relation for the semi-latus rectum

2
p = a(l-e’) (3-24)
Therefore, in terms of a and e , the expression for r_ and r can
be written as P
rp = a(l-e) , r = a(l +e) (3-25)

Now, by taking the derivative of Eq. (3-20), we have

«+  pesin® de

2
(1+ecos@) dt

Using Eqs. (3-5) and (3-20) and noticing that Vr = r , we have

h
\% = — e sin 6 (3-26)
r P
On the other hand, in evaluating Ve = r0 , we have
h
V. = — (l+ecos0) (3-27)
0 P

The Eqs. (3-26) and (3-27) give the expressions for the radial and
transverse components of the velocity along the orbit as functions of
the polar angle. The magnitude of V is given by Eq. (3-18) written
as

vV = %‘\/l+e2+2e cos 8 (3-28)

2
Since h” = up by Eq. (3-14), using the relation (3-24) we can rewrite
this expression as

vV = —“—2— \/1+e2+2ecose (3-29)
a(l-e’)

This equation gives the magnitude of the velocity along the orbit as a
function of 6 . It passes through a maximum at the pericenter,
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6 =0 , and a minimum at the apocenter, 6 = w . We have

- f pllte) _ p(l -e)
Vp - a(l-e) °’ Va - a(l+e) (3-30)

The flight path angle at each point along the orbit is given by

Vr Ve v
siny = ~ ° °sY = <. tany = _V_r (3-31)
6

Hence, using the Eqs. (3-26) - (3-28), we have

. e sin O 1+ ecosb
siny = , cos y = ———e
2 2
l+e +2ecos® l+e +2ecos®
tany = __9_531_9_ (3-32)

1 +ecos®

If weuse r =r, , and V=V to evaluate the constant energy € in
the vis-viva integral, (3-19), we have

E = - L& (3-33)

This shows that the total energy of the orbit is a function solely of the
major axis, With this value for & , we rewrite the energy integral

2 2
visw(Eo ) (3-34)

This very important relation expresses the speed along the elliptical
orbit in terms of the radial distance r

We have defined the elliptic orbit as an orbit with an eccentricity
such that 0 < e < 1 . The two limiting cases are the cases where
e=0 , and e -~ 1.

When e = 0 , the Eq. (3-20) shows that the radial distance is
constant. The orbit is circular. From the Eqgs. (3-26) and (3-27)
with e = 0 , we see that the radial component of the velocity is zero,
while the normal component of the velocity is constant. This compon-
ent, which is tangential to the circular orbit, is called the circular
speed. The circular speed can also be obtained from Eq. (3-34) by

putting a = r . Thus,
Vcir = V% (3-35)

The other limiting case is obtained by making e -1 . From
Eq. (3-23), we see that, holding the semilatus rectum p constant,
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when e - 1 , the major axis of the ellipse tends to infinity. We say
that in the limiting case e = 1 , the orbit is a parabola. The equa-
tion of the conic, Eq. (3-20), with e=1 , becomes

YT T+¥cose 2 9 (3-36)

2cos —

2

The closest distance is obtained for 6 =0
p

= = 3.37
ro= 3 (3-37)
The farthest distance, when 6 =w , is infinite. Since the trajectory

has an infinite branch, the vehicle along a parabolic flight path escapes
to infinity, though it takes infinite time. For this reason, the speed
along a parabolic trajectory is called the escape speed. From Eq.

(3-34) we see in the limiting case, when a - o , the escape speed is
2
v = «/—E (3-38)
escape r
It is obvious that, at any distance r , the condition for a circular

orbit is that Eq. (3-35) holds, together with the condition that the direc-
tion of the velocity is perpendicular to the position vector. In contrast,
for a parabolic orbit, condition (3-38) is necessary and sufficient.

Now Eq. (3-5) can be written

2

A==1:"8 =

™o

1
- 3-3
2 (3-39)
The quantity A is called the areal velocity. It represents the rate at
which the position vector sweeps out area. We see that this rate is
constant for a given orbit. For an elliptic orbit, if we integrate the
equation over a full period T we obtain

h

3 T == a2 1- e2 = Area of ellipse (3-40)

But from the Egs. (3-14) and (3-24)

b= fup 1,Ha(1-ez) (3-41)

Therefore the period is

3
2.

T = 2w (3-42)

Just as is the energy E , the period, T , in elliptical motionis a
function solely of the major axis.
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3-4, TIME OF FLIGHT ALONG THE ORBIT

Consider the Eq. (3-39) written as
r“ de (3-43)

Using the polar equation (3-20) for r , we have the time of flight from
the pericenter to a position M defined by the polar angle 6

2

do P
f = S(0)
0 (l-i»ecose)Z h(l-e2)3/2

[ 3
t =41/ 2 s(8) (3-44)
"

where the function §(0) is given by

e\ll-eZ sin O

S = -
(0) iecoso + 2 arc tan (

or

(3-45)

Let M. and M_ be two points along the orbit with polar angle 6

and 0 2 - The time of flight for the vehicle to travel the arc I\/IIM2 is

3
_,"3__
tZ - tl = " [5(92) - S(Bl)] (3-46)

Using Eq. (3-42) we can write

—F— = 7= [8(0,) - S(8))] (3-47)
The time of flight along an elliptic orbit can also be obtained by simple
geometric considerations. First we shall give some properties related
to an ellipse.

An ellipse can be obtained from a circle of center w and radius
a , called the principal circle, by an affine reduction with ratio b/a
(Fig. 3-4). From each point M' on the circle, the corresponding point
M on the ellipse is obtained by reducing the ordinate of M' by the
factor b/a . Hence when M' is at the point B' , the corresponding
point on the ellipse is B such that wB = b . The minor axis of the
ellipse is 2b . In celestial mechanics, the polar angle 6 defining
the point M, measured from the pericenter, is called the true anomaly.
On the other hand, the angle E measured at the center w of the
principal circle from the pericenter, defining the point M' on the
principal circle, is called the eccentric anomaly. Using Cartesian
coordinates as shown in Fig. 3-4, with the eccentric anomaly as the
parameter, we can write the coordinates of the point M' moving along
the principal circle



Ch. 3 EXTRA ATMOSPHERIC FLIGHT 39

x' = acos E
y' = asin E (3-48)
y B’ M’
|
B 'M
I
o |
8 E N :
(7
[=) 1
X o] w Q o’ A

Fig. 3-4. True anomaly and eccentric anomaly.

Using the affinity described above, the Cartesian coordinates of the
point on the ellipse are

x = acos E

y = bsinE (3-49)

From this, we can verify the familiar Cartesian equation of the ellipse

2 2
= o+ r -, (3-50)

The point O' , symmetric to the point O with respect to the
center w , is called the second focus, or the vacant focus of the
ellipse. A main property of the ellipse is that the sum of the distances
from any point M on the ellipse to the foci O and O' remains constant
and equal to the major axis, that is

MO + MO' = 2a (3-51)

Another property is that the bisector MN of the angle OMO' is the
normal at the point M to the ellipse. Hence, this bisector is ortho-
gonal to the tangent at M

The distance OQ' = 2¢ is called the focal distance. From Fig.
3-4 we have

c = wO = wP-0OP = a-a(l-e)

Therefore
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c = ae (3-52)
On the other hand, since OB = a , from the triangle OBuw

2
b2=a1-c:2

or

b = ajifl-e (3-53)

The ellipse can be considered as the projection of the principal circle,
the angle o between the planes containing the circle and the ellipse,
respectively, being such that cos @« = b/a . We have shown that the
time of flight from the pericenter P to the point M is proportional
to the area POM swept by the radius vector OM . By using the nota-
tion Area POM = (POM) , we write

t = K.+ (POM)

where K is a coefficient of proportionality. But

(POM) = E(POM')
= 2[(PoM) - (OuMY)]
= Zla[ aZE - aze sin E]
Hence
t = Kzab[ E - e sin E] (3-54)

The coefficient K is obtained by taking E = 2r , which corresponds
to the time t equal to a full period of revoluation T . Hence

T = Kabn » (3-55)

Compared with Eq. (3-42)

3
Kab a_ (3-56)
2 B

Hence, the time of flight from the pericenter in terms of the eccentric
anomaly E is given by

M = E - esin E (3-57)

where M is a non-dimensional time
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Equation (3-57) is the well-known Kepler's equation.
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(3-58)

The variable M ,

expressed in radians, is called the mean anomaly.
Finally, it is easy to derive relations between the true anomaly

6 and the eccentric anomaly E

From Fig. 3-4, we have

0oQ = Ow + wQ
or
rcos® = - ae+acoskE (3-59)
Using Eq. (3-20) for r , with p= a(l-ez) , we have
(l-eZ) cos 0 0s E.-e
1+ ecos®9 ¢ B
Hence,
cosE-e e+ cosB
cos® = TGS E cos B = o ose (3-60)
From this,
e o Ni-efeine o Ao sino 56l
" l-ecosE ’ " l4+ecosé B
Also,
2 9 l1-cos® (l+e) (1l -coskE) (1+e) 2 E
t - = = t =
an 7 1+cos 6 (1-e) (1+cosE) (T-e) 0 2
That is,
l1+e E
tan > \ll-e tan > (3-62)

Quite often, we use the expression for the radial distance r in terms

of the eccentric anomaly E
have

r =

Using Eq. (3-60) in Eq. (3-59), we

a(l - e cos E) (3-63)
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3-5. THE ELEMENTS OF THE ORBIT IN TERMS OF THE INITIAL
CONDITION

Let us now follow the trajectory, starting from the burnout

position B . The quantities rgp , , and Yg are known, togeth-
er with the direction from the center oPthe Earth O to the position
B . We propose in this section to calculate the quantities related to

the orbit followed by the vehicle in terms of the information obtained
at burnout (Fig. 3-5).

Fig. 3-5. The orbit from burnout conditions,

It is convenient to define the non-dimensional burnout speed up as the

ratio of the speed Vg , to the circular speed at distance rg

v
S —- (3-64)

p/ry

We shall assume that the orbit is elliptic, thatis u_ < E .  First,
by applying the energy integral, Eq. (3-34), at the point B , we
have

From this equation, the major-axis is

a 1

= = (3-65)
) 2-u

B

Since the angular momentum is constant along an orbit, it can be
evaluated at the burnout position
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h = rBVB cos Y (3-66)

Using Eq. (3-41), with the major-axis obtained from Eq. (3-65), we
have for the eccentricity

2 2 2
e = '\/;- uB(Z - uB) cos ygp (3-67)
or
. 2 2 .2 2
e = \/;m Yg + (1 -uB) cos  yp (3-68)

From Eqs. (3-65) and (3-68) for a and e , we have for the apocenter
distance and the pericenter distance from Eq. (3-25)

be
a 1 2 2 .2 2
2 - —_— i + - -
m > [ 1+ '\/51n Yg (1 uB) cos YB] (3-69)
B 2-u
B
and
o 1 2 2 2 2
= = 2[ 1- \/;1n Yg t (l—uB) cos YB] (3-70)
B Z-uB

The condition for the orbit to intersect the Earth's atmosphere, assum-
ed to be spherical, with a finite radius R , is that r, < R . Hence,
in terms of the initial conditions, we have the condition for intersection

R 1 L2 2 2 2
" > 5 [ 1- 4/sin YB+ (l—uB) cos YB] (3-71)
B Z-uB

The orientation of the orbit is given by the angle © between the direc-
tion to the pericenter and the direction to the burnout position B
This angle is obtained by replacing in Eq. (3-20) r and 6 by rp and

OB . We have

or, using Eqgs. (3-65) and (3-67)

2 2 1
u,cos Yo -
B B

cos 6 = (3-72)

2 2 2
- 2 -
\/: uB( uB) cos yq

Therefore,
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2 .
u_ siny_ cosy
B B
sin 6 = B (3-73)
B
\/1 2 (2 2) cos2
“Uglevp B
and
u2 in cosy
sin y
tan GB = B B B (3-74)

u2 cos2 1
B Yp -~

3-6. MINIMUM-ENERGY ORBIT

Let us consider the case where the vehicle, after ascending to
the highest altitude, at the apocenter A , returns and intersects the
Earth's atmosphere at the entry point E at a distance R from the
center of attraction O (Fig. 3-6). This is the case where the inequal-
ity (3-71) for intersection is satisfied. The angle ¢ between the

positions B and E , measured at the center of attraction O , is
called the range angle. From Fig. 3-6, it is seen that
6 = 6. -8 (3-75)

where GE is the polar angle defining the entry position E . The
angle 6 is given by Eq. (3-72). The angle 0 is obtained by
replacing in the Eq. (20) r and 6 by R and 0. We have

%)

o |~

cos GE =

[%(l-e -1] (3-76)

Fig. 3-6. The range angle .
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Using Eq. (3-65) for the semi-major axis we have

T
B a A
= T— = T3 (3-77)

wie

where

N o= = (3-78)

is the ratio of the radial distances to the point B and E, respectively.
Hence,

2
Au_cos y_-1
B
cos 0 =

2
B
. ‘\/1 2(2 2)os2
-ugle-uUpl) €O8 Yg

The range angle is then

(3-79)

¢ = arc cos—le-()\uZ

cos2 1) - ar osl(u2 cosZ 1)
B Yp~ ') - Brecotp ¥B~

(3-80)

where e is given by Eq. (3-67). We notice that when the point B is
at the top of the atmosphere, rg = R, and A =1 . Since the point
E is beyond the apocenter, 8 = 2m -0y , and Eq. (3-80) becomes

1 2 2
b = 2[n -arccosz(uBcos yB-l)] (3-81)

The range can be evaluated when the trajectory intersects the Earth's
atmosphere. In the limiting case, where we have an equality in con-
dition (3-71), the trajectory is tangent at its pericenter to the circle
with center O and radius R representing the atmosphere in the
plane of the motion. The flight path angle at the point of tangency,
which is also the limiting position of the entry point E , is zero. The
trajectory is called the grazing trajectory. By simple geometric con-
siderations, it is seen that the range angle for the grazing trajectory
is given by ¢G = 27 - 6p. Hence, from Eq. (3-74),

2 .
u_, siny_ cosy
B B
tand;G = B (3-82)

1 2 osZ
-uBc Yg

This equation can be written as

. 2 . _
s1n¢G - ug s1n(¢G+yB) cos yp = 0 (3-83)

Equation (3-80) for the range gives ¢ as a function of two
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parameters u, and y, . For a given initial velocity u, , there
exists a value of the initial flight path angle Yg such that the range
angle is a maximum. Conversely, for a prescribed range angle ¢ ,
Eq. (3-80) gives the initial velocity up as function of the initial flight
path angle y, . There exists an angle yp giving the minimum veloc-
ity upg to achieve the prescribed range angle, Since by Eq. (3-65) the
minimum of u, corresponds to the minimum of the semimajor axis
a , which in turn, by Eq. (3-33), corresponds to the minimum of the
total energy & , such an orbit is called the minimum-energy orbit.
To calculate the minimum-energy orbit, it is convenient to
rewrite Eq. (3-80) in the implicit form

flo, N, u )y = 0 (3-84)

B’ 'B

For this purpose, we write Eq. (3-75)

cos OE = cos (¢ + GB)

or

cos O = cos & cos OB-sincb sin 6

E B

From the Eqgs. (3-72), (3-73) and (3-79)
2 2 2 2 . 2
1- )\uB cos yn = cosd (1 - uy cos yB)+ sing up sinyg cosyg

or
cos(d +y,)
y = Locose B X =0 (3-89
2 cosyYp

G N
uB CcCOSs \{B

Now, consider the case where the points B and E are prescribed.
The Eq. (3-85) gives the relation between the initial speed u_ and the
initial flight path angle Yy to achieve the prescribed range % . We
write the equation

_ﬁ}_—_%?_?i)_ tanZ\{B- sind tanyp + % +cosdp -\ =0 (3-86)

Y “B

For each initial speed up this equation, considered as a quadratic
equation in tan Yy gives two values vy . Hence, there exist two
trajectories connecting the points B and E . One is called the high
trajectory, and the other the low trajectory. The two trajectories
coincide when the equation has a double root. In this case we have

. 2
sin ¢ - > >
u u

4(l - cosd) [ (1 -cosd)
B B

+cos¢-)\:| =0 (3-87)
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We notice that if we consider Egq. (3-85) as an implicit equation
giving u_ as function of Yg for a prescribed range angle ¢ ,
then by ta]?’king its derivative with respect to Yg

d
af YB af
au d ) = 0
B Y YB

The minimum of up with respect to yp corresponds to du /dyB =0,
that is, 8f/dypg = 0 , which is the same condition as for Eq. (3-86)
to have a double root. Hence Eq. (3-87), when solved, provides the
minimum speed up for a prescribed range angle ¢ , with an initial
distance ratio N . Solving for up . we have by taking the positive
root

2
u = N cosd - N+ )\2-2)\ cosd +1 (3-88)
B 2y v

cos =

The corresponding flight path angle Yg is given by the double root of
Eqg. (3-86). We have >
u
B
tanyp = — (3-89)

2tan 2
tanZ

In the simple case where the point B is at the top of the atmosphere,
we have X = 1 . The Egs. (3-88) and (3-89) are reduced to

2 Zsin%
U, = ——— (3-90)
B _—3
1+ sin
2
and
cos% .
tan vy = m——— = tan(——i) (3-91)
B . ¢ 4 4
1+ sin
2
That is,
. T _ ¢ .
YB T 4734 (3-92)

We see that, for the case of the minimum-energy orbit, when the burn-
out and the entry positions are at the same distance from the center of
attraction, the initial speed and the initial flight path angle are given
by simple expressions in terms of the range angle ¢ . In this case,
the other elements of the flight path can also be expressed in terms of
the range angle.

For the semi-major axis, using Eq. (3-65) with rg = R,
and Eq. (3-90) we have
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2 = Zasind (3-93)

For the eccentricity, we write Eq. (3-67)

u;(Z-u;)
e = 1- — (3-94)
1+tan Ygp

Using Eqs. (3-90) and (3-91), we have, after simplification

cos?- Zsini

2 2 2
T S S

1+s1n2 1+s1n2

We notice from Eq. (3-91) that
= 3-96
e an yq (3-96)
The apocenter distance of the trajectory can be seen to be

r
a

= = %(1+sin$+cos 52’-) (3-97)

2
For the time of flight between the two points B and E , we use
Kepler's equation, Eq. (3-57). Let E1 and E2 be the eccentric

anomalies corresponding to the point B and E , respectively. Then
the time of flight is given by

,_E_ _ - ) _ . o
a3 (1:2 tl) E2 El e(sin EZ s1nE1)

Obviously, when X = 1 , the points B and E are symmetric with
respect to the line of apses. Hence

= - E
EZ 2m 1

Therefore,

-ty = 2(w -El+esinE1) (3-98)

On the other hand, if 91 is the true anomaly of the point B

0 =1r--§ R sin91=sin%,cose = -cos

¢
1 2 (3-99)
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Using Eq. (3-61) for 8 and Eq. (3-95) for e we have

.\, 2
1- in 6
e sin 1

sin{m -E_) = sinE_ =

1 1 1-4-ecos€)1
and
cosi
. 2
esinkE =
1+sini

Upon substituting into Eq. (3-98) and using Eq. (3-93) for a , we have

3/2 Zsin$
2
l (t —t)=(1+sin$) arc sin _ 2 +cos$ Zsin$
3 270 2 N 2 2
R 1+s1n2

(3-100)

3-7. EFFECTS OF VARIATIONS OF THE INITIAL CONDITION IN THE
ELEMENTS AT ENTRY

The trajectory followed by the vehicle during reentry depends
strongly on the condition at the reentry position E . Hence, it is
interesting to study the resulting errors at the entry position E due to
an error incurred at the burnout position B

Fig. 3-7. Error in the range angle.

First, we consider the variation in the curvilinear range (Fig. 3-7)
x = Ré (3-101)

The parameters specifying the burnout condition are r, , V_ and
YB » and the curvilinear distance Xp from the origin to the projection
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of the burnout position B on the top of the atmosphere. It is apparent
that, from the rotational symmetry of the force field, any error in
linear range Axp , incurred at the burnout position will be translated
into an equal error Axyp of the range

Ax = Ax (3-102)

We shall now evaluate the error Ax , or equivalently the error
A¢ in the range as function of an error Arg , AVg or Ayp incurred
at the burnout position. For this purpose we rewrite Eq. (3-85) with
the velocity V. appearing explicitly

B
cos (¢ +vg)
1- cos & B _
(¢ ,x,VB,yB) _Ii)\vz COSZ o vg, -y = 0 (3-103)
LB YB
Then, the differential of f is
of af of of
= = — A AV +— 0
Af = - Ap + gn AN F gy AVt A
B B
Holding VB and y, constant, the change in the range Ad , due to
a change in the ratio of the radial distance AN is
Ly B8 3.104
AN 9t/ 9% ( )
Similarly,
af/ av
Lo _ B (3-105)
av 9f/ 3¢
B
and
9f/ oy
A . — B (3-106)
A\(B af/ 8¢

By evaluating the partial derivatives, we have the following formulae
for computing the error in the range angle

2
l-cosd + )\uB coszyB

29

Al X [sincb-u;sin(cb tvg) cosyB]
Ad _ 2(1 -cosd )

AVg VB[ sind -u;sin(cb +YB) cosyB]

(3-107)
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2
-2(1-cosd)siny_ +u_sind cosy
B
% = ZB B (3-107)
B cosyB[ sind -uBsin(q) +yB) COSYB]

Now, consider the quantity in the square brackets in the denominators
of the Eqs. (3-107)

. 2 .
A = sing¢ - up sin (¢ + YB) cos Yg (3-108)
A = 0 when
i 2 sin (¢ + =0 (3-109)
sind - up sin ¢ YB) cos yp = -

This is the same as Eq. (3-83) for grazing trajectory. Hence, in gen-
eral, A is not vanishing and keeps the same sign which we can easily
verify as the positive sign. Since 1 - cosé > 0 , from the first two
equations (3-107), we see that the ratio A /AN and &d / AV, are
positive. Any increase in the initial altitude, or in the initial speed,
provides an increase in the range. On the other hand, from the third
equation (3-107), the ratio A¢/ AYB changes its sign when

. 2 .,
2(1-cosd) sinyp = ug sin & cosyp

or

2
B

tanyB = —T (3-110)
2

2 tan

This equation is the same as Eq. (3-89) for the minimum-energy tra-
jectory. Along a minimum-energy trajectory, the variation of A¢ is

always negative, and is of the second order in AYB . We have
9 1 82 2
Ad = Ay, + =22 Ay )%+ ... (3-11)
Y B 2 2 B
B BYB

By taking the derivative of the third of equations (3-107) with respect to

v , and using the relations for the minimum-energy trajectory, we
have
82 4 sin2 -(g-
;‘22 =L —— (3-112)
aYB A cos Yg

Now, using Eq. (3-89) for a minimum-energy trajectory we have
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[
"

sin¢ - u;’ sin (¢ +yB) cos yg

si in ( )
2 sin% [cos% - mYB - ¢+YB ]

cos %
2
= Ztan%[cosz%coszyB+sin %sinzyB

-2 sin% cos%sin YB cos YB]

- $ cos? 4
A = Ztanzcos (yB+2)

Therefore, a perturbation AYB in the initial flight path angle, along a
minimume-energy trajectory, corresponds to an error in the range
angle given by

2y = - e 3 (ayg)’ (3-113)
2 cos Vg cos (YB+ 2)

In this case, using Eq. (3-89) in the first two of equations (3-107), we
have for the error in the range angle with respect to an error in the
initial altitude and in the initial speed, along a minimum-energy
trajectory

sind + A\ styB

P > (3-114)
2\ cos (YB+%)

and
28 sing (3-115)
AVB \% cos2 ( +$)
B YB' 2
In the special case where the point B is at the top of the
atmosphere, r_ = R , and

B

2 cos(yy +2) = 14 cos 2y, +4)

But from Eq. (3-92), 2yg +¢ = %+% . Hence,

2 cos2 (YB + %) = 1 - sin % (3-116)
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The Equations (3-113) - (3-115) become

Aé = - 4tan % (AYB)Z (3-117)
%;% - 1 (1+sin%)(1+251n %) (3-118)
cOSs
P
A S ] a2 .
AVB VB tan 3 (1+sin 2) (3-119)

Now, let us consider the variations in the entry speed V and
the entry flight path angle y_ . From the energy integral, Eq. (3-19),
we have the relation connecting the elements at the burnout position B
and the entry position E

2
%VB'J—zé
B

\s % (3-120)

2
E -
On the other hand, by evaluating the angular momentum at these points,

we have

rBVB cos Yg = RVE cos Yy g (3-121)

The differentials of Eqs. (3-120) and (3-121) give

o - _
VoAV, + = Arg VLAV (3-122)

B

and

(VB cos YB) ArB+ (rB cos yB) AVB -(rBVB smyB) AYB

= (Rcos YE) AVE - (RVE s1nyE) AyE (3-123)

For an error AV_ in the burnout speed alone, the corresponding
error in the entry speed is given by Eq. (3-122) with A rp = 0

AV v
E. 2 (3-124)

From Eq. (3-123) the error in the entry angle is obtained by putting

ArB= 0 and AyB=O
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AVB V;

(tany_ ) Ay = —_ -1 (3-125)
E E \% 2
B VE

For an error in the initial altitude, the error in the entry speed is

_AE = ( i ) (£ A
A% N r r 2
E B B VE
In terms of N and uB , this is
AV
v - 2 1 ( éxl) (3-126)
E [ u_+2(0-1)]
B
The corresponding error in the entry angle is
2
u_ + 2k -3
Al
(tany_ ) Ay_ = - B (—) (3-127)
E E 2 A
up + 2N -2

Finally, for an error in the initial flight path angle y_ alone, there is
no error in the entry speed. The error in the entry angle is given by

(tan YE) AYE = (tan YB) AYB (3-128)

We notice from Eqgs. (3-125), (3-127) and (3-128) that the entry
angle is particularly sensitive for a grazing trajectory, Vg = 0
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Chapter 4

Powered Phase

4-1. INTRODUCTION

In this chapter, we shall analyze the trajectory of the vehicle
from the launching pad, point A, to the burnout position, point B .
During the thrusting phase, the energy provided by the propellant is
transformed into potential energy through the increase in the altitude of
the vehicle, and kinetic energy through its increase in speed. Also, a
part of the energy provided by the propulsion system is dissipated in the
form of heat by action of the aerodynamic drag. The powered phase is
the phase during which it is possible to have a guidance system to con-
trol the trajectory such that at the end of the thrusting program, the
vehicle reaches a prescribed position B, specified by the position vec-
tor ;_}; , and a prescribed velocity V. . We have seen in the pre-
ceding chapter that the trajectory required by the mission may be com-
pletely specified by these conditions at burnout.

The guidance is achieved by the followmg modes of control.

a/ Control of the thrusting force T . This control is performed
by the direction of the vector thrust., Its magnitude can also be control-
led by the variation of the mass flow rate.

b/ Besides the main engine, the vehicle can be equipped with
several small rockets providing lateral thrusting forces for its guidance.
We shall assume that the resultant thrusting force of all the engines is
represented by the vector thrust T

¢/ Control of the aerodynamic force A . This control is per-
formed by varying the angle of attack of the vehicle and possibly by
varying its aerodynamic configuration. In three-dimensional flight,
the aerodynamic force is also a function of the bank angle.

4-2. THE EQUATIONS OF MOTION

To write the equations of motion, we shall assume that the tra-
jectory lies in the plane of the great circle containing the launch point
A and the burnout position B . Hence, it is necessary that all the
forces involved be contained in that plane. This leads to the assump-
tion that the vehicle has a plane of symmetry and that the veloclty
the aerodynamic force A and the thrusting force T are

55

vector V

s
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all contained in that plane. The duration of the powered phase is gen-
erally short and it is convenient for a first-order approximation to
assume that the Earth is an adequate inertial reference and in this ref-
erence system the atmosphere is at rest.

The center of mass M of the vehicle is defined by its coordinates
x and z in a ground coordinate system Axz , where the axis Ax is
the horizontal at the launching point A taken as the origin of the coordin-
ates, with positive x in the direction of motion, and the axis Az is
the vertical at the point A, taken positively up (Fig. 4-1).

v
M
-~ x’
I ]
LOCAL
—- - HORIZONTAL
W =mg

xY¥

A

Fig. 4-1. Ground inertial system.

At any point along its trajectory, the flight path angle of the vehi-
cle is defined as the angle between the local horizontal (the plane per-
pendicular to the gravitational force mg ), and the velocity vector v
The angle & between the local horizontal and the line Mx' drawn
parallel to the horizontal Ax of the launch point is precisely the range
angle as defined in the preceding chapter.

At each instant t , the vehicle is subject to three forces (Fig.

4-2).

a/ The gravitational force W = mg applied at the center of
mass M

b/ The aerodynamic force A applied at the aerodynamic center
P . The aerodynamic force can be decomposed into a drag force D

in the opposite direction to the velocity v , and a lift force L ortho-
gonal to it.

¢/ A propulsive force represented by the thrust vector T ,
applied at a point Q . To simplify the force diagram we shall assume
that the three points M , P and Q are aligned and constitute a body
axis, fixed with respect to the vehicle. Then the angle of attack o
can be conveniently measured from this body axis to the velocity vector
V . The thrust angle ¢ 1is defined as the angle between the body axis
and the direction of the thrust.



Ch. 4

POWERED PHASE

BODY AXIS
-~

HORIZONTAL

Fig. 4-2. Forces acting on the vehicle.
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Using Newton's second law, we can write the equation of motion

in vector form

where m is the mass of the vehicle.
the tangent and the normal to the trajectory of the vehicle we have

and

These equations are the dynamical equations.
directly from the general equations for flight over a spherical Earth

m —— = _T.+K+\7Vb

m —— = Tcos (e -a)-D- Wsiny

d -
-mv%‘;ﬁ)— = Tsin(e- o) - L+ W cosy

derived in Chapter 2.

The lift and the drag forces are assumed to have the form

p SC V2

L = L

N

1 2
D = EpSCDV

They can be obtained

(4-1)

By projecting this equation into

(4-2)

(4-3)

(4-4)

where p is the atmospheric mass density, and S a reference area.
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The coefficients Cyp, and CD are lift and drag coefficients. They are
functions of the angle of attack ¢« , the Mach number M and the Rey-
nolds number R,

= M, R
CL CL(a, , e)

CD = CD (e, M, Re) (4-5)

The longitudinal range x
kinematic relations

, and the altitude z are obtained from the

t
x = [ Vecos(y-¢)adt (4-6)
0
t
z = [ Vsin(y-¢)adt (4-7)
0

Finally we have the pitching moment equation, describing the motion of
the vehicle about the center of mass

2
d : .
B;—(y+ox-¢) = Llpcosa+D£P31naf—Tleme

M- K —-——‘Ld‘”df ¢) (4-8)

where B is the moment of inertial of the vehicle about an axis passing
through the center of mass and perpendicular to the plane of symmetry,
£_ the distance between P and M and {. the distance between Q
and M . The term M_ 1is the aerodynamic pitching moment, and the
term Kd(y+a -¢ )/dt represents the moment due to the mass flow of
the gas ejected from the propulsion system.

The thrust can be written as

- _ _ — n _ — _
T ﬁVre (Pe po) Ae n, (4-9)
where 8 = - dm/ dt is the overall mass flow, Vre the average rela-

tive velocity, Pe the average pressure and A_ the area over the

exit of the engine. It is assumed that the tangential stress over the
exit area is negligible. The unit vector n_ normal to the area A, is
positively directed inward. Finally, P, is the average free stream
pressure. For simplicity, we may assume that the vectors in Eq. (4-9)
are all collinear and write the one dimensional equation as

T =pV +(p -p)A (4-10)
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We define the effective exhaust velocity c as

A
e
c = Vre+(po-pe) 5 (4-11)
Hence, the expression for the thrust magnitude is simply
dm
= =.¢c— 4-12
T Bc c I (4-12)

This equation gives the thrust in terms of the mass flow rate and the
parameter c¢ which can be characterized as a function of the propellant
used in the propulsion system on board the vehicle. In engineering
practice, we may use the specific impulse I, as an alternate para-
meter which specifies the thrust performance. It is defined as the
thrust impulse per unit mass of propellant or

I = - —=— = = (4-13)

From the last two equations, it is seen that the specific impulse I
may be alternatively defined as the thrust obtained per unit mass ffc?w
which is precisely the same as the effective exhaust velocity. But it is
a common practice to use different units for Isp and c¢ through the
relationship

c = gISp (4-14)

where g is the acceleration of gravity. Therefore, while c is given
in meters per second, IS is given in seconds.
Using Eqgs. (4-11) 23R4 (4-14) we have

v (P -p)
1 = 224 2 % a (4-15)

sp g gp €

The mass flow rate can be computed from

= A -
B CgPAc (4-16)
where

C‘3 = mass flow coefficient, function of the propellant
P = average pressure in the combustion chamber. This

¢ pressure is also called the operating pressure.
A = area of the throat of the nozzle

c

Hence
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\% (po - pe) Ae

sp g ' gC A (4-17)

B Pe

The ratio of the areas Ae/ AC can be expressed in terms of the expan-
sion factor pc/pe as

1 k-1
e k k+1 Pe k

= /Y. == -
e pc) ( ) ( p) (4-18)

where k is the ratio of the specific heats,

From these relations, we see that the specific impulse is a func-
tion of the following four factors

1. The nature of the propellant (CB , Vre , k)
2. The operating pressure P,
3. The expansion factor pC/ P,

4. The altitude of flight (g and p, are functions of the altitude).

For a given type of propellant, we can evaluate its specific impulse
under some reference conditions., These conditions are:

For a solid propellant, p. = 70 atm. , pc/ P, = 70/ 1 at sea level.
For a liquid propellant, p_ = 25 atm. , pc/pe = 25/ 1 at sea level.

Let the specific impulse of the given propellant evaluated at these

reference conditions be denoted (Isp)o . Then we define the coefficient
Tsp
i = 4-19
sp = () (4-19)
sp o

This dimensionless coefficient characterizing the propellant under the
actual operating condition is now a function of four parameters--the
ratio of the specific heats k , the altitude z , the pressure in the
combustion chamber p_ and the expansion ratio p /p . If we assume
that the ratio of the specific heats is the same for all propellants, then
the function isp = f(z, P pc/ pe) can be tabulated for practical refer-
ence.

For an anlytical integration of the equations of motion, we shall
assume that, under normal operational conditions, the specific impulse
I,, . or equivalently the effective exhaust velocity ¢ , is constant.

Finally, if R is the radius of the Earth, then the range angle ¢
is seen to be given by

tan ¢ = (4-20)
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Now we see that, for each stage of the rocket vehicle, the dynam-
ical equations, Eqs. (4-2) and (4-3), the kinematic equations, Eqgs. (4-6)
and (4-7), the moment equation, Eq. (4-8), and the mass flow program
equation, Eq. (4-12), constitute a system of six equations for the
following eight unknowns:

{ : = coordinates of the center of mass
{ :([ = components of the velocity vector
m = mass of the vehicle
a = angle of attack
€ = angle of the thrust
T = magnitude of the thrust

Therefore, to specify the flight trajectory, we have at our disposal
two control variables. They may be taken to be the thrust magnitude T,
and the thrust direction ¢ . On the other hand, for a fully controlled
flight, the angle of attack a has to be adjusted constantly to render
the moment equation, Eq. (4-8), identically satisfied. Consequently,
with a flight program fully controlled, the remaining equations constitute
a system of five equations--the Egs. (4-2) and (4-3), (4-6) and (4-7),
and the Eq. (4-12)--which provide the solution for the variables x, z,
V, y and m as functions of the time t.

If the time history of the thrust magnitude T(t) is prescribed in
advance, then by integrating the mass flow equation, Eq. (4-12), we
have the variation of the mass as a function of the time. If we assume
a constant mass flow rate, then m is a decreasing linear function of
the time. In general, the mass of the vehicle is a decreasing function
with respect to time as shown in Fig. 4-3.

m
Mo
l"\
I |
| |
1 I :_:\|
IA'II lAle l -
0 t t2 ts

Fig. 4-3. The variation of the mass of a multi-stage
rocket vehicle.
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The figure represents the variation of the mass of a multi- stage
rocket. The first stage of the rocket is operating between the initial
time and the time t. . At t, the first stage is released providing a
discontinuity in the mass of the vehicle. If a lapse of time At, exists
before the engine in the second stage is ignited, during that time the
vehicle is in coast flight with constant mass. Next m continues to
decrease between the time (t, + At.) and t, and so on. In the subse-
quent analysis, we shall assume that all the At, are zero.

The remaining control variable can be selected either as the angle
of attack o , or the thrust angle ¢ or a combination of both by speci-
fying a relation between these variables and possible other variables
also. With this selection the ascending program is completely specified.

In general, in considering an ascending program, we are trying to
obtain the optimum of some performance criterion. For example, for
a preprogrammed motor, we would like to select a time history for the
thrust orientation such that the range achieved is a maximum. Prob-
lems like these involve the calculus of variations or the equivalent
modern control theory and will not be discussed here. From an
engineering standpoint, the selection of a best flight control program is
severely restricted by other technical constraints. For example, for a
thrusting flight giving the maximum range, it can be shown, upon using
not unrealistic assumptions, that the flight must be at maximum lift-to-
drag ratio, with the thrust directed orthogonally to the aerodynamic
force, and hence making a constant angle with the velocity vector. But
the thrust angle ¢ , due to the technical construction of the propulsion
system, cannot deviate at a large angle from the axis of the vehicle. In
general e is constrained by a maximum angle ¢ of a few degrees
from the main thrusting line.

Another factor to be considered is the normal acceleration. In
general, due to structural constraints, this acceleration is severely
limited. Hence, for practical purposes, we are led to adopt some
simple ascending program which is satisfactory for the analysis during
the preliminary stage of the design project. The simplifying hypotheses
will provide an analytical solution to the problem considered. The
analytical solution has the advantage that it displays explicitly the many
relationships among the different variables allowing a global analysis.
For example, the solution will give the approximate size of the engine,
and the weight of the propellant required to launch a certain given pay-
load (final weight of the vehicle) into a prescribed final orbit. From
these approximate data, with the aid of high speed computers, we may
update the numerical results to obtain the exact solution to the problem.

max

4-3. ASCENDING TRAJECTORY AT CONSTANT FLIGHT PATH ANGLE

The equations of motion derived in section 4-2 cannot be integrated
analytically. For a prescribed initial condition, and a specified thrust-
ing program, numerical integration using high speed computers has to
be performed in order to obtain the variables describing the dynamical
system as functions of the time.

For advanced planning purposes, it is useful to adopt some simpli-
fying assumptions in order to obtain an analytical solution of the ascen-
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ding powered flight. Such a solution will give explicit relationships
among the different variables and permit a preliminary selection of the
size of the vehicle, its aerodynamic characteristics, the propulsion
system required to perform a given mission, With these data we can
then use numerical integration to readjust the different characteristic
values,

There exists a simple ascending law which can be used to approx-
imate the real powered flight trajectory. Using this program, as a
first approximation, we can assume that, after lift-off, the vehicle
essentially follows a straight line trajectory having a constant angle of
inclination with respect to the local horizontal. In reality, if the flight
path angle is constant, the trajectory will be a logarithmic spiral in the
plane of the motion, but since we shall assume a flat Earth model for
the gravitational field, the trajectory with constant flight path is essen-
tially a straight line.

More specifically, we shall use the following assumptions to sim-
plify the equations in section 4-2:

a/ The powered flight trajectory involves short longitudinal range
and a relatively small altitude compared to the radius of the Earth.
Hence, from Eq. (4-20)

X
tan¢=—§20

Therefore, we can use ¢ = 0 in the equations in section 4-2. This
assumption is usually called the flat Farth assumption.

b/ TFor the same reason, the acceleration of gravity g can be
considered constant for the altitude range considered.

¢/ We shall neglect the aerodynamic force.

With these assumptions, the dynamical equations, Egs. (4-2) and
(4-3) become, as can be seen from the simplifying force diagram in
Fig. 4-4

m% = T cos (e - a)-Wsiny (4-21)
gy ~
-det = Tsin(e- a)+ W cos vy (4-22)

Fig. 4-4. Simple force diagram neglecting aerodynamic
force and the curvature of the Earth.
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Since we assume that y = constant, then dy/dt= 0 . Hence,
from Eq. (4-22) we have the relation between the thrust and the weight

T sin(a-¢) = Wcosy (4-23)

In general, for rocket flight the thrust is large as compared to the
weight, Hence from this equation we see that the angle (a- ¢) is
necessarily small and we can take cos (¢-a) = 1 in Eq. (4-21).
Then we have the simplified equation

m-— = T .- Wsiny (4-24)

Using Eq. (4-12) for the thrust we rewrite this equation, using the rela-
tion W = mg

dm .
dVvV = - ¢ Y - gsinydt (4-25)

To integrate this equation for a multi-stage rocket vehicle, we refer to
the Fig. 4-3 and assume that all the time intervals At. between the
separation of the ith stage and the engine ignition of thé (i+1)th stage
are zero. Then by integrating Eq. (4-25) starting from the time t,

of the separation of the (i-1)th stage, we have during the operatic}ﬁ of
the ith stage

m, (t)
Vit) = V -c.1 - g sin yt' 4-26
(t) i1 - S los = g Y ( )
0
where
Vi) = instantaneous speed at the time t
Vi 1 speed at the initial time of burning of the ith stage
< = effective exhaust velocity of the ith stage
mi(t) = instantaneous mass at the time t
m, = mass at the initial time of burning of the ith stage
0
t! = t -t , time interval from the initial time of

burn]i-ng of the ith stage

Now, consider the operation of one single stage., For example,
let us assume that the vehicle is a single-stage rocket. At the burnout

time t) of this stage, the change in the speed is

m

AV = V_ -V = clog m—o-gt

] 0 1 sin vy (4-27)

1

where c¢ is the effective exhaust velocity of the stage considered,

mo = m1 is the initial mass and m1 = ml(tl) is the final mass of the

vehicle. OIf we neglect the gravitational force, we have for the change
in the speed
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™0
AV = ¢ log o (4-28)
1

We see that, in this case, AV can be used as a measure of the fuel
consumption. This quantity is called the characteristic velocity of the
maneuver. From this simple formula, we can see that AV must have
a certain upper limit. The exhaust velocity has an upper limit which
depends on the propulsion system used. For example, ordinary chem-
ical propulsion systems currently provide exhaust velocities up to
3000 m/ sec, with a theoretical maximum in the neighborhood of

4000 m/ sec. On the other hand, the ratio of the masses m /rn1 also
cannot be made arbitrarily large. Let Am = mg - m, be t%e mass of
the fuel spent. Then we define the fuel ratio

m
f = f§3- =1- ;;l (4-29)
0 0
so that we can write Eq. (4-28)
AV = clo 1 (4-30)
= g 1 N f -

It is obvious that f can never approach unity, since any amount of fuel
always requires a certain provision of structure for its operation,
Therefore, the characteristic velocity for a single stage is limited due
to technological constraints. Some optimistic predictions advance a
figure in the neighborhood of 9000 m/ sec for its ultimate value.

Equation {4-30) gives the performance of a single stage rocket in
the hypothetical situation of gravity-free, vacuum space. If we include
the gravitational force, the increase in the speed during a thrusting
phase of a stage is given by Eq. (4-27). The term gt siny character-
izes the losses due to the gravitational force. Becauseé of this compo-
nent, the performance of a single stage rocket is further limited.
Therefore, to obtain high final speed, one must use a multi-stage
rocket.

Let T be the total burning time for a rocket vehicle having n
stages. By repeated application of Eq. (4-26), we have the final speed
at burnout, assuming a zero initial speed.

n n
VB = Z AVi = -[Z N logpi:l - gT siny (4-31)
i=1 i=1
where My is the ratio of the masses of the ith stage, defined as
o= il _ mass of the vehicle at burnout of ith stage
! ™0 mass of the vehicle at initial time of ith stage

(4-32)
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For the range and the altitude at the end of the powered phase, we use
the Eqs. (4-6) and (4-7) with ¢ =0 , and Yy = constant. We have

XB T
sy - { V(t) dt
z T
B
vl of V(t) dt (4-33)

Using V(t) as given by Eq. (4-26) to evaluate the integral, we have, for
the case of constant mass flow B , (p = - dm/dt),

n M,
i 1 2
= E 1+ = ;
¥g T O%Y i i=1 [Vi-l Ttem ity - by tog 1) ] z 8T siny

(4-34)

where T is the burning time of the ith stage. The final altitude is
simply

z =

B Xp tan y (4-35)

4-4. OPTIMUM STAGING

The final speed of a rocket vehicle, having a prescribed number
of stages is given by Eq. (4-31). This expression for V_ is a function
of the characteristic parameters ¢, and p, of the different stages, of

. i . -
the constant flight path angle vy and the total burning time T of the
powered phase. By these considerations one may ask the following

question:
'"Is there an optimum distribution of the masses of different stages
such that, for a prescribed burnout speed V_ , the ratio m_./m of

the initial mass at launching to the final mass at the end of the powered
phase is a minimum? "

If such a solution exists, it therefore gives the lightest rocket for
a prescribed payload (final mass mF) for a prescribed final speed
\Z

In solving this problem, we write the ratio of the masses

3| 5
3.2

m

) =
== ... —= =T = (4-36)
m ! s,

3 n+1 i=l i

5]
o

where to ease the notation, in this section, we have used the subscripts
as follows
m, - total mass of the vehicle at the initial burning time
of the ith stage. This mass is also referred to as
the gross mass of the ith stage.
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From Eq. (4-36) we see that we have defined the ratio s called the
staging ratio, as

s, = (4-37)

We notice that s. is the ratio of the gross mass of the (i+1)th stage
to the gross mass of the ith stage, the masses are all evaluated at the
initial burning time of the corresponding stage. Also it is seen that
m, = m is the initial gross mass of the rocket vehicle, while
m ., =m is the resulting payload of the operation.

Thete is a basic difference between the ratio u, as defined by
Eq. (4-32) and the staging ratio s, as defined by Eq.1 (4-37). This is
illustrated by Fig. 4-5 showing thé mass distribution in the ith stage of
a rocket vehicle

Fig. 4-5. Distribution of the masses in the ith stage
of a rocket vehicle.

The total mass shown is the gross mass m, of the ith stage. The mass
m, denotes the mass of the fuel used during the operation of the ith
stage while the mass m, denotes the mass of the structural compo-
nents of the propulsion sysstem used in the operation of the ith stage.

This mass is to be discarded leaving the mass m, as the initial
mass for the operation of the (i+1)th stage. Hencle, the mass of the
vehicle at burnout of the ith stage is

= - = + -3
N LT TS| (4-38)

Since we have used rn = m, to denote the mass of the rocket vehicle
at the initial time of the ith stage the ratio By - as defined by Eq.
(4-32) now becomes

b = ——tf -y A (4-39)

On the other hand, the staging ratio s, » as defined by Eq. (4-37) is
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TS (et mmy)
5 e =l ———— (4-40)
i i

We define the structural ratio w_ for the propulsion system used in the
operation of the ith stage as !

m,

i

“s T m +m. (4-41)
if is

Using this relation in Eq. (4-40) we have

m
1 if
s l-057T = (4-42)
1 1

By eliminating (mif/ m.) between the Egs. {4-39) and (4-42), we have
the relation !

S S 3 _42
5 T l-<.oi (4-42)

We can now formulate the optimization problem as follows.
The final speed V_, , the climb angle y and the total burning
time T are given. Tha%is, we have from Eq. (4-31)

n

- = V i =
Z c, log By pteTsiny V0
i=1

where V  is therefore prescribed. We write this equation as a con-
straining relation

n

f(p.i) = IZI <, log My + V0 =0 (4-44)

The number of stages n , the different propellant characteristics c,
and the different structural ratios w, are also given. Find a mass
distribution By By s eeeene, b such that the following function

n

»

(ui-wi)
“""i)

(4-45)

I n
gly) = T s, = T
i=1

i=1

is a maximum. This is equivalent to minimizing the product of 1/ s, .
In solving this problem, we introduce a Lagrange multiplier X to
form the augmented function
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Fle) = slp) + M) (4-46)

The solution to the problem is obtained by solving the system of (n+1)
equations

oF
— = 0 = 0 -
F o Huy) (4-47)
i
for the (n+1) unknowns p. , p,, ..., p_ and N . Explicitly, we
X . . 1 2 n
write the first n equations

n
(e, -w.) c.
9F 1 ~ 1 v L -0 (4-48)
ap’l (l'wi) le (l’wJ) p'i
i

For each of the n equations (4-48), we have

My x

. . ol
o : n[ (Hl-wi)/(l-wl)]

i=1

Since the right-hand side is the same for all equations, it is a constant
and we introduce a new constant K to replace the Lagrange multiplier
N

M,

i 1
—_— = = (4-49)
ci(p.i - wi) K
These n equations can also be put into the form
W,
_ i
p~i T ¢, -K (4-50)

The problem is then to evaluate the constant K . Using this expression
in the constraining relation (4-44), we have

n Cc.w,

ii
2 cilog ol -VO (4-51)
. i
i=1

The sum of the logarithms can be written as the logarithm of a product

Cc.w i

n .
ii
log iI._Il Ci'K = - V0 (4-52)
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That is,
cw, C, -V
( i i ) i, . 0
- K
=1 i
Or finally, by separating the unknown K
n n
c \% c
. 0 .
]T (c.-K) ' = e Tr (cw.) (4-53)
. i . ii
i=1 i=1

This equation can be solved for K , and subsequently the mass distri-
bution p, , p,, ..., B is obtained from Eq. (4-50). Obviously the
equation ](4-5 can onlifl be solved numerically. To obtain an explicit
solution, simplifying assumptions have to be made. We have the
following special cases.

4-4,1, All the Propulsion Systems are Similar

If we assume that all the stages use the same propellant, and
regardless of the difference in size, it is possible to achieve the same
structural ratio for all the stages, we have

W, = W, = ... T W T W (4-54)

Then, by Eq. (4-50), the mass distribution is the same for each stage.
We have

By S By T e SRS RS g (4-55)
The equation (4-53) for K becomes
nc VO nc
(c- K) = e (cw)
Solving for K
VO/ nc
K= c[l-we ] (4-56)

Using this solution in Eq. (4-55), we have for the common mass ratio

-Vo/nc
po= e (4-57)

We notice, by Eq. (4-43), that the staging ratios are also the same

or, explicitly in terms of the given characteristics
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—Vo/nc
s = = [e -1] (4-58)

l-w w

The final payload is then obtained in terms of the gross mass of the ve-
hicle at launching

-V _/nc
0 n
m_ = m. (=2 )“[e - -1] (4-59)

Finally, from Eq. (4-31), we have the final speed

VB = -nclogp- grsiny (4-60)

The special case we have analyzed is highly hypothetical. Never-
theless, the solution is obtained in closed form and it provides a first

estimation of the distribution of the masses for different stages.

4-4,2. The Propellant Used is the Same for All Stages

If we assume that the propellant used is the same for all stages,
but because of technological construction, the structural ratios are all
different, then we have the simplification

C. = C, = ... = ¢ = ¢ (4-01)
Equation (4-53) for K becomes

(c-K)"C = e 00w ) (4-62)

Solving for K ,

K= c[1- (wlmz...wn) n e ] (4-63)

The mass distribution is given by Eq. (4-50).

w -Vo/nc
W, = e (4-64)

We notice that the ratio ;.l.i/wi is the same for all stages. On the
other hand, by Eq. (4-43), the staging ratio is

-V _/nc
wi e 0
Si = (l-wi) [ 7o - 1} (4-65)

(wlwz...wn)
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The final payload is

-V _/nc
e 0 n n w,
m_ = m_ . w)l/“-l ﬂ(l-w.) (4-66)
“1%27 " ¥n i=1 !

Finally, we have for the final speed
n

VB = -c E log By - gT siny (4-67)
i=1

It is easy to verify that the equations in this section are reduced
to the equations derived in the preceding section if we put
w = w T eee & wn = w .

1 2

4-4.3, The Structural Ratios are the Same for All Stages

The special case considered in the previous section is very close
to the practical realization of a multi-stage rocket vehicle. There
exists another special case, namely when technological realization
allows a common structural ratio for all the stages although different
propellants are used, Then we have the simplification

W, T W, T ,.. T W = w (4-68)

In this case the equation (4-53) cannot be solved explicitly for K . The
mass ratio is here

p, = ———— (4-69)

It is seen that By is a decreasing function of ;- Therefore, if the
propellants used'are such that c we have By > By o The
staging ratio is given by Eq. (4- 4]3) wrl%ten

1
i T Teoa) (b - @) (4-70)

We see that it varies in the same direction as Mo
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Chapter 5

Return to the Atmosphere

5-1. INTRODUCTION

In Chapter 3, the trajectory for flight outside the atmosphere,
assumed to be spherical with a finite radius R , was considered. We
have seen that, if the burnout position B , (Fig. 3-1), is outside the
atmosphere, the resulting trajectory is a Keplerian conic until the
atmosphere is reencountered. In the case of an elliptic trajectory, if
the periapsis distance r_ is less than the radius R of the atmosphere,
a condition expressed by the inequality (3-71), the trajectory will inter-
sect the atmosphere at a point E , the entry position. In the case
where inequality (3-71) is not satisfied, the vehicle will be in an elliptic
orbit around the Earth if the initial speed is less than the escape speed,

that is if
vy <4 (5-1)
B

After the mission has been accomplished, to bring back the vehi-
cle, one must perform a series of maneuvers to change the initial
orbit, designated by é , to a final orbit, €. , intersecting the
atmosphere at the entry position E (Fig. 5-1). From this point on,
the vehicle is in the atmosphere and follows a flight path subject to the-
gravitational and atmospheric forces. The flight path from the entry
position E to the landing point C 1is called the reentry flight path and
its analysis is the subject of several later chapters. In this chapter,
we shall be concerned with the maneuver performed to change the non-
intersecting orbit €  into the intersecting orbit & . In general,
the means of accomp}ishing a change of orbit, or transfer, will be by
firing the rocket on board the vehicle to change its velocity, thus pro-
pelling the vehicle into a new orbit. If the rocket engine provides a
high thrust, the burning time is generally short, compared to the orbital
period. Hence, it can be assumed that, during a thrusting phase, the
position of the vehicle remains essentially unchanged while the velocity
undergoes a change impulsively. Furthermore, we shall be concerned
with the last orbital change before reentry. Hence the orbit 51 is the
final nonintersecting orbit resulting from a series of maneuvers. Ata
point D in this orbit, referred to as the deorbit position, a velocity

73
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impulse AV will be applied to the vehicle to change the initial velocity
V.  into a new velocity v, , thus injecting the vehicle into the de-
scending orbit & . This orbit, initiated from the point D , inter-
sects the atmosphere at the entry position E at a distance R from the
center of the Earth. The speed Ve , and the flight path angle y at
the point E will be referred to as the entry speed and the entry ﬁight
path angle.

In the subsequent analysis, we shall assume that the initial orbit
€ and the deorbit position D are prescribed. Hence, we have the
po}ar equation of the initial orbit (Fig. 5-1)

al(l-ef)
ros l+e, cos® (5-2)

where a. is the semimajor axis, and e  the eccentricity of the orbit
&, . %he deorbit position D is defined by the polar angle 0
measured from the direction to the periapsis of the initial orbit ?aken
as direction of reference. The distance from the center of the Earth to
the point D is denoted by r_ . It is given by Eq. (5-2) with 6 =0 .
. ; D : ; D
In general the point D is on'the second half of the orbit, that is,
8, > 7 . The firing of the rocket is performed at a point of the orbit
wl?ere the vehicle is on its way toward the periapsis. From the previ-
ous analyses, it is seen that, if 0 is specified, V_ andy at the
point D are also known. The angPe ¢ between the directions to the
deorbit position D and the entry position E , measured at the center
of attraction O , is the range angle . It is function of the descending
orbit & 2

Fig, 5-1. The descending trajectory.
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A successful recovery of the vehicle depends on the condition at
entry, namely on the location of the point E , the entry speed V
and the entry flight path angle Yo - Therefore, in this chapter we
shall consider several types of descending trajectory &. . Each
family of trajectories, initiated from the deorbit position D , is such
that a certain condition at the entry position E is prescribed. More
specifically, we shall successively consider families of trajectories
such that:

a/ the entry speed V is prescribed.

b/ the entry angle vy € is prescribed.

c/ the entry position,e or equivalently (for the planar
case under consideration) the range angle ¢ is
prescribed.

The first two problems are associated with the safe recovery of
the vehicle since the heating and the deceleration during atmospheric
entry depends on the entry speed and the entry angle. The last problem
is associated with the selection of the landing point.

In each problem we shall first evaluate the impulse velocity
required to achieve the entry condition specified. It will be shown that,
for each problem, there exists a family of descending trajectories
satisfying the prescribed entry condition. Next we shall compute the
trajectory requiring the minimum AV . The minimum of this charac-
teristic velocity also corresponds to the minimum fuel consumption of
the maneuver.

5-2. DESCENT TRAJECTORY FOR GIVEN ENTRY SPEED

In this section, we shall consider the family of descent trajector-
jes initiated from the deorbit position D such that the resulting speed
Ve at the entry position E 1is equal to a p_l;escribed value.

At the point D , velocity impulse AV is applied to the vehicle
to change the initial velocity V. into a new velocity V. called the
deorbit velocity. The resulting flight path & . is the déscent flight
path, It intersects the atmosphere at the entry position E . Along
the trajectory & , the total energy is constant as shown by Eq.
(3-19). By evaluaging this constant energy at the points D and E ,
respectively, we have

oyl oA
= vo -3 (5-3)

<
(383

where from Eq. (5-2), the radial distance rD to the deorbit position
D is prescribed and is given by

al(l - ei)
"D T Tte cos o (>-%)
el co D

with © D the true anomaly specifying the point D
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We define the nondimensional speeds .
v v \4 AV
1 2 _ e _
u, = , U ¥ —m———— , u & ———— | Au =
! /r 2 /r € /r /T
) i ») ¥ p #Tp
(5-5)
Note that w/r is the circular speed evaluated at distance T

We shall use I_Ii to denote the scaled velocity V., / A\ r/ Ty
Distances are measured in units of R , with the nondimensiconal
distances defined as

%2
poa, = (5-6)

,
il
=g
R
]
w|.®

In terms of the nondimensional quantities, Eq. (5-3) becomes

u2 -2 = ui- 2\ (5-17)

Then the required dimensionless deorbit speed u, to achieve the
prescribed dimensionless entry speed u, is

u = '\/u2+2(l-)\) (5-8)
2 e

It is convenient for the analysis to define a velocity axis system
Dxy , the hodograph space, such that its origin is at the deorbit
position D , the y-axis along the position vector T , positive out-
ward, and the x-axis along the perpendicular to the position vector,
positive toward the direction of the motion. Note that the axis Dx
represents the horizontal at the point D . In this axis system, the
initial velocity . is defined in polar coordinates by the dimension-
less speed uy and the flight path angle Yy (Fig. 5-2)

Y

Fig. 5-2. Dimensionless velocity space.
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Since the initial orbit is given and the deorbit position prescribed, u

and Y, are known quantities. From

Vf = u(ri- ;1-)
D 1
comes
Zal-)\
u, = —_— (5-9)
1 al

The flight path angle is given by Eq. (3-32).

l+e1coseD

cos ‘\{1 =

2
2
\/l+e1 + elcosGD

Using Eqs. (5-4) and (5-6), we can write

2
(1-e

1!

R S N Y
2 2
)\(Zal-)\) - al(l-el)
51n\{1‘= + )\(20(1 ) (5-10)
Now consider Eq. (5-8) for the deorbit speed u, . Since u_ and \

are prescribed, it is seen that u, is constant Eor all possibfe descent
trajectories. Hence, the locus of the terminus of the velocity .

in the hodograph space is a circle centered at D and having a given
radius u, as given by Eq. (5-8). For each direction of this velocity,
defined by the flight path ang_ls: Y, , we have a vector g . The
required velocity impulse Au is such that

Its magnitude is obtained by applying the law of cosines to the velocity
triangle in Fig. 5-2. Thus,

2 2
Au = \/u1 + u, - 2u1u2 cos (yz-yl) (5-11)

The direction of Au is defined by the angle & from the horizontal
Dx . Applying the law of sines to the velocity triangle in Fig. 5-2, we
have

u

. D S
s1n(6-y2) = Ay Sin (yz-yl) (5-12)
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From Eq. (5-11) and (5-12) it is apparent that the deorbit flight
path angle v, for the descending trajectory can be used as a parameter.
To each angle y, corresponds an impulse velocity A , and hence, a
trajectory & . The elements of this trajectory can be obtained by
using the equa%ions derived in Section 3-5, with the subscript B re-
placed by subscript 2 , and Tm by r .

We have for the semimajor axis of 62

2 1
T - 2
D Z-u2
or
a, = ———-)\—2—- (5-13)
2N - u
e

For the eccentricity of the descending trajectory, by using Eq. (3-67)
we have :

e, = ’\/ - (2N - uz)[ ui +2(1 - \)] cos‘Z Y, (5-14)

The periapsis distance is given by

rpz 1-\/1-(2x_u

D 2N - u

) [uz+2(l -\ coszy2

(5-15)

o NjOD DV

Hence we have the condition for the trajectory 62 to intersect the
atmosphere

1 -\/1 B AN -uz) [u2+2(1-)\)] coszx{2

L
- 2
A 2\ - u
e
Solving for Y, . we have the condition
Ye
cos vy, < (5-16)

x\/uz+ 2(1-\)

This condition restricts the locus of the terminus of the vector u, in
the velocity space to an arc of a circle (Fig. 5-2).

The entry angle at the entry position is obtained by writing that
the angular momentum is constant along the descent orbit. We have,
by evaluating this constant at the point D and at the point E , respec-
tively
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rDV2 cos vy, = RVe cos vy

Hence, in terms of the dimensionless variables

)\uz cosy,

cosy_ =
e
or
2
XA/ ue+2(1—)\)
cosy, = - cos vy, (5-17)
e

The orientation of the descent trajectory & is defined by the
angle w between the reference direction, which has been taken as the
direction to the periapsis of the initial orbit, and the direction to the
periapsis of the descent trajectory (Fig. 5-3). The angle w is called
the longitude of periapsis of the descent trajectory.

Fig. 5-3. Geometry of the descent trajectory.

To evaluate the angle w , let us recall two important properties of the
ellipse already mentioned in section 3-4 . Let O_ be the second
focus of the elliptic trajectory E , the first focus being the center
O . The line OO_ is the line of apses.

First, if D 'is a point on the ellipse 82 , then

= 2 -
DO + DO, a (5-18)

where a_ is the semimajor axis of &
Next, if DN is the normal to the ellipse at the point D , then,
DN is the bisector of the angle ODOZ . Since the flight path angle
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vy, atthe point D is defined as the angle between the horizontal at D,
which is perpendicular to the position vector oD , and the velocity
v , which is tangent to the ellipse at the point D , this property is
expressed by the relation

AopoZ = 2y, (5-19)

Now let n be the angle between the vectors OD and OO
(Fig. 5-3). Using the law of sines in the triangle ODOZ and the prop-
erty expressed by Eq. (5-19) we have

Do, 0o, oD
sin n sin 2\(2 T sin(2Y2+n)
But OO22 = ?.aze2 , and by the property expressed by Eq. (5-18)
DO2 = Za, - T Hence,
- 2
Za2 rD ) azeZ ) rD (5.20)
sinn  sin2y_  sin{2y_+m) B
2 2
Therefore, the first equation (5-20) gives
(2012 - \)
sinm = ————— sin 2y
Z.Q/Ze2 2
or
2 .
[ue+2(l-)\)]51n2y2 _
sin n = (5-21)

2’\/1 - (2N - uz)[ uz +2(1-2\)] cosz\(‘2

Another expression for n is obtained by using the second equation
(5-20). We have

o (2.3.2 - rD) sin Zyz ) (Zaz- \) sin 2\(2
rD-(Zaz-rD) cosZ\{2 )\—(Zaz-)\)COSZ‘YZ
or
2 .
[u”+2(1-N)] sin Zyz
tan np = Ze 5
(2x -ue) -[ue+2(1 -\)] cos 2v,

[u2+ 2(1-\)] tany

_ e 2
= > > (5-22)

[(2n-1) - ue] +tan’y,
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The longitude of periapsis of the descending trajectory e 2 is then
given by

w = GD—(Tr+n) (5-23)

Finally, the range angle ¢ from the deorbit position to the entry
position is given by Eq. (3-80), written as

2

& = arc cos L ()\u2 cos v, -1)

2

2 1 2
cos yz-l)— arc cose—(u2
2 2

(5-24)

5-3. MINIMUM IMPULSE FOR ENTRY AT GIVEN SPEED

We have seen in the preceding section that, if the entry speed
alone is specified, then there exists a family of descent trajectories
which is a function of the deorbit angle y. . To each angle vy
correspands a descent trajectory, and hence an impulsive change, E{;,
in the velocity. The magnitude of this impulse, the characteristic
velocity, is a measure of the fuel consumption for the maneuver. In
this section we shall compute this particular descent trajectory such
that Au is a minimum.

Let vy, be the limiting value of the angle y_ selected as the
parameter for optimization. This value Yo is given by the equality
sign in condition (5-16). Then from Fig. 5-%, if yo < vy, , to min-
imize Au , we must select y_ = . The velocity impullse AU is
tangential to the initial orbit, ag the 1deorbit point D , to reduce the
speed from u, to u_, . Hence, we have the condition for optimum
tangential deorbit for a given entry speed

u
e

2
NEVASE I E Y

Using Eq. (5-10) for cos Y; » wecan write this condition

> cos Yl (5-25)

2hN(N -1 (1-e12)af

2
u, < RS (5-26)
Nl-e)) - 20 42

This condition expresses that, for a given initial orbit with a prescrib-
ed deorbit position, the prescribed entry speed u must be less than
a certain value for an optimum tangential deorbit o be possible.

For tangential optimum deorbit, we have the following results
obtained by putting vy, = Yy in the general expressions for the descent
trajectory derived in %he previous section,

First,
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(5-27)

Au = u, -u (5-28)

where u_, and u_, are given by Eq. (5-8) and Eq. (5-9), respectively.
The direction of the optimum velocity impulse is given by

6 = m+ Yl (5-29)

The major axis is the same as given by Eq. (5-13) but the ex-
pression for the eccentricity becomes

2 2
e, = \/1 - (Z)\-ue) [ue+2(1-)\)] c:osz\(1 (5-30)

Using Eq. (5-27) we can rewrite this expression

af(l - ei‘)(zx -ui)[ u2+2(1 -\
e, = 1- (5-31)
M2y -))

The entry angle is given by Eq. (5-17) written as

2 2
o )\(l-el)[ ue+2(1-)\)]

cosy_ = = (Zozl-)») (5-32)

The longitude of periapsis of the descent trajectory is given by Eq.
(5-23), where now the expression for the angle n is

2 2 2 2
@y [ue+2(1-)\)] '\/(l—el)[ X(Zal—)\)-al(l-el)]

tan nn =
)\(Zozl-)\) - ai(l-ef)[uz+2(l-)\)]
(5-33)

The range angle is given by Eq. (5-24). The polar equation of the entry
orbit is
p
P — (5-34)
1+e2 cos (8 -w)

where e, is given by Eq. (5-31) and
2 2 2
P al(l-el)[ue-{-Z(l—)\)]

Z —_
2) B (2011-)\) (5-35)

R “ell-e
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The entry position E is defined by the polar angle © E

0. = 0 +¢ (5-36)

where ¢ 1is the range angle. OE can also be computed from Eq. (5-34)
with r=R and 6 =8 .

A tangential deor%it is optimum when the entry velocity is small
as constrained by the inequality (5-26). OWhen this inequality is not
satisfied, the minimum deorbit angle vy for the descent trajectory to
intersect the atmosphere is larger than %he initial flight path angle
0 (Fig. 5-4).

Fig. 5-4. Minimum velocity impulse when ycz) > K
In this case, as can be seen in Fig. 5-4, the minimum Au cor-
reponds to y, = y_ . Since the limiting value of Y, is given by the
equality sign in (5-%6), we have

u
cos 'y, = = (5-37)

Ay w2010
e

The minimum characteristic velocity is given by Eq. (5-11), and its
direction by Eq. (5-12) with the value of Y, obtained from Eq. (5-37).
Using Eq. (5-37) in Eq. (5-17) we see that cos Yo = 1 . Hence, the
entry is grazing

y = 0 (5-38)

The eccentricity of the descending orbit is given by Eq. (5-14), which
by virtue of Eq. (5-37), becomes

e = == (5-39)
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The longitude of periapsis of the descent orbit is given by Eq. (5-23).
To evaluate the angle n , we notice from Eqs. (5-14), (5-21) and
(5-22) that

(Zk-uz)-[u2+2(l-)\)] cos 2y
e e 2
cos n = e (5-40)
2

From Eq. (5-37)

uz(Z-)\Z)- a2

N w4 2(1-2)]

2
cos Zyz = 2cos yz-l =

Hence, upon substituting into Eq. (5-40), with the aid of Eq. (5-39) we
have

)\Z-uz
e

cos i = — (5-41)
)\(ue-)\)

The polar equation of the entry orbit is

P2
v 1+e2cos(6-w) (5-42)

where now, by using Egs. (5-13) and (5-39)

P ‘12
2 2 e
T T oefte) 7w (5-43)
The position of entry is given by the polar angle 6 . It is obtained
by putting r=R , and 6 = 0 in Eq. (5-42).

E

5-4. DESCENT TRAJECTORY FOR GIVEN ENTRY ANGLE

In this section we shall consider the family of descending tra-
jectories initiated from the deorbit position D , such that the result-
ing flight path angle y at the entry position E is equal to a prescrib-
ed value. €

The notation used is the same as in the previous sections. We
now write the equations for the conservation of energy and conservation
of angular momentum, Eqs. (5-7) and (5-17), using the dimensionless
variables defined by Egs. (5-5) and (5-6).

u -2 = uz -2 (5-44)

and
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u, cosy = )\u2 cosy, (5-45)
In the hodograph space Dxy as defined in section 5-2 , let x and y
be the components of the deorbit velocity u, . Then
X = u,cosy,
y = u, siny2 (5-46)
Therefore
ug = x2 + y2 (5-47)

Using these equations, we rewrite Eqs. (5-44) and (5-45)

2 2
(x2+y)—2=ue-2)\
ue cosy, = Ax (5-48)

By eliminating u, between these two equations, we have

XZ Y2
- = 1 (5-49)
2(\ - 1) coszye 2 - 1)

2 2
(A -cos ye)

This is the equation of a hyperbola symmetric with respect to the axes
in the velocity coordinates system Dxy (Fig. 5-5).

Y

Fig. 5-5. Locus of the terminus of the deorbit velocity
for entry at given angle,.



86 RETURN TO THE ATMOSPHERE Ch. 5

The equation expresses that, for a deorbit from a prescribed
position D , at a given distance \ , in such a way that the entry angle
Ye—ivs equal to a prescribed value, the terminus of the deorbit velocity

u, must be on a branch of a hyperbola defined by Eq. (5-49). Each

hyperbola corresponds to a specified entry angle y . In particular,
when the entry is grazing, cosy = 1 , and we hdve the limiting
hyperbola ¢
2 2
— - L= =1 (5-50)
2 2(h -1)
(A +1)

Figure 5-5 gives the plots of several hyperbolas, loci of the terminus
of the deorbit velocity 4, , for several values of Y. , and for an
initial distance ratio N\ = 1.18. €

To each prescribed value Yo We have a branch of an hyperbola.
When the terminus of the vector ~u, moves along this hyperbola, it
generates a family of descent trajec%ories, all intersecting the atmo-
sphere at a point E at a distance R , with the prescribed entry angle

Y . The deorbit angle y_ can be used as a parameter for the

family. 2

If the entry speed is also prescribed, then the magnitude of u
is prescribed as given by Eq. (5-8). The descending orbit is obtained
by finding the intersection of the circle of radius u_ and the hyperbola
given by Eq. (5-49). We have, by using the Egs. (§-8) and (5-46)

2

x = [u 4+ 2(1-N\)] COSZ\{Z

[ SR (I WV

y = [u +2(1-2\)] s:'LnZy2 (5-51)

[0}

To simplify the notation, we rewrite Eq. (5-49) as

2 2
Ax - By =1 (5-52)
where
)\Z—coszy
A = Ze
2(N - 1) cos Yo
B = S (5-53)
B 2(\ - 1) i

By substituting the Eqs. (5-51) into Eq. (5-52) and solving for Y, » we
have
u cosy
cosy, = < = (5-54)

Mfuz +2(1-\)
[
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The branch of the hyperbola corresponding to the velocity 1_1; pointing
in the same direction as the motion along the initial orbit corresponds
to a solution providing two points of intersection, hence two values for
Y, . One solution y_ > 0 , gives a high descent orbit, while the
other, YZ <0 , gives a low descent orbit. The solutions are real

when
u cosvy
e e

< 1 (5-55)

)\’\,u2+2(1-)\)
e
u > )\ /M_ (5-56)
e — 2 2
N - cos Yo

For a given entry angle Yo o there exists a lower bound for a pre-
determined entry speed for an entry trajectory to be physically possible.
On the other hand, we can write Eq. (5-55) in terms of a condition on

or, that is, when

Ve
2
A/ ue+2(1 -\)
cosy < (5-57)
e — u,

Hence, if the entry speed is prescribed, there exists a lower bound for

the entry angle y , for an entry trajectory to be physically possible.
By prescribing both Yo and u_ , for a given initial orbit, that
is, for a given g« ., and e we can also vary the deorbit position,

by varying X\ , to satisfy g'he physical constraints on the entry. To
study the influence of A on the condition for entry, we rewrite the
condition (5-56)

2h(N -1)

5 > (5-58)
N -cos Yo

With y fixed, the right hand side of the inequality (5-58) is an in-
creasineg function of X . Hence its minimum corresponds to the posi-
tion of deorbit at the periapsis of the initial orbit.

A= e (l-e)) (5-59)

1

We conclude that, when V and y are both prescribed, for a given
initial orbit, single-impulse deorbit is always possible if the following
condition is satisfied
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2a (1~ 1- -1
Ve ayi-e) [ay(-e) - 1]

> (5-60)

- 2 2 2
q“i al(l—el) - cos Y

R
We now return to the case where only the entry angle y is

prescribed. Then, there exists a family of deorbit trajectories
initiating from a prescribed deorbit position D . Using the deorbit
flight path angle y, as a parameter for this family, we can calculate
the elements of the descent trajectory selected. This can be obtained
by expressing the entry speed u in terms of the variables X\, y_,

and y, and then substituting into the equations obtained in section 5-2.
2
For u, we have from Eq. (5-54)

2(\ - 1)

)\2 SZ > cos v, (5-61)
cos Y, - cos y_

The deorbit speed u_ 1is given by Eq. (5-45).

2

2(\ -1)

)\2 os'2 cos % Ve (5-62
€ A Ve

The magnitude of the velocity impulse Au , and its direction §
are given by the Eqs. (5-11) and (5-12) respectively, with the initial
speed given by Eq. (5-9) and the initial flight path angle by Eq. (5-10).
The dimensionless semimajor axis of the descending trajectory is
given by Eq. (5-13), written with the value of u, given by Eq. (5-61)
as

»

2 2 2
A\ cos Y, - €os Y
o, = (5-63)
2 200 2 2 )
COs Y, - oS Y

The eccentricity of the descending trajectory is given by Eq. (5-14).
In terms of \ , Ye and Y, o this is

2 2 2 2
4N (N - 1)(\ cos yz- cos ye) cos yecos YZ

2 2 2
(A cos Y, - cos ye)
(5-64)
The longitude of periapsis of the descent trajectory is given by Eq.

(5-23), where now the angle n is given in terms of the selected vari-
ables as
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2(\ - l)coszy tany

e 2
tan n = 5 > 5 5 (5-65)
[ A7 -(2\ - 1) cos Ye] -cos y tan'y,

The polar equation of the entry trajectory is

P2
T l+e2cos(e-m) (5-66)

where e, is given by Eq. (5-64) and

2N (N - 1) cosz\( coszy
= = ° 2 (5-67)
32 2 2 B
cos Y, -cos Y,

The position of entry E is defined by its polar angle © which is
obtained by putting r =R , and 6 = GE in the polar Eq. (5-66).

5-5. MINIMUM IMPULSE FOR ENTRY AT GIVEN ANGLE

We have seen in the preceding section that, for an entry at a
prescribed angle initiating from a prescribed deorbit position, there
exists a family of descent trajectories which is a function of the deorbit
angle vy These trajectories are such that the terminus of the de-
orbit vefocity W, isona hyperbola defined by Eq. (5-52). In this
section we shall select from among the descent trajectories in this
family the one that results in a minimum characteristic velocity Au
That particular trajectory is called the optimum deorbit trajectory for
a prescribed entry angle.

In the hodograph space (Fig. 5-6), consider a hyperbola, the
locus of the terminus of u. for a_given entry angle y . In this hodo-
graph space, the initial ve%omty u, is prescribed. Let x, and ¥,
be the projections of W, on the axes of the coordinates sys%em ny
We have from Egs. (5-9) and (5-10)

My (5-68)

The minus sign for vy is taken if the point D is on the second half of
the initial orbit.

The minimum Au is obtained by finding the shortest distance
from the point with coordinates (x .y to the hyperbola. Let super-
script (*) denote the optimum elemenés The point with coordinates
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(x>'< , y* ) giving the terminus of the optimum deorbit velocity u
on the hyperbola defined by Eq. (5-52) is the point where the normal to
the hyperbola passes through the point (x1 , Yl) .

Let the equation of this hyperbola be

e
b

f(x,y) = Ax2 - By2 -1 =0 (5-69)

where A and B are defined by Eq. (5-53). The components of the
normal to the hyperbola are given by

af

= A
o= 2Ax
of
— = - 2B 5-70
By y ( )

Requiring that this normal be collinear to the vector Au gives

X - X y-vY
1 1
Ax -7 By (5-71)
Y
D Y X
¢ Ui
(X,, Y)
VP AN
2 AU*
(x*, v*)

Fig. 5-6. Optimum velocity triangle for entry at given angle.

The set of Eqs. {5-69) and (5-71), gives the coordinates (x* , y’s)
components of the optimum deorbit velocity u *
It is convenient to use the deorbit angle Y, as the variable.

’

Let

ste
sk
i,

z = tany; = -Y-T (5-72)

X
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be the tangent of the optimum deorbit angle. Then from Eqgs. (5-71)

and (5-72) we have

Ay1 + Bx1 z
(A+B)z

x Ay1 + Bx1 z

o (A + B) (5-73)

Upon substituting into Eq. (5-69) we have a quartic equation in =z

4 3 2
AOZ +Alz +Azz +A32+A4 = 0 (5-174)

where the coefficients Ai are given by

3 2

AO = B X1
A = 2aB°

1 1M

2

A2 = AZByi - AB xf + (A+ B)2
A, = 2A%Bx

3 - ° 171

32

A = - A -7

4 Yy {5-75)

Hence, the optimum deorbit flight path angle is obtained by solving a
quartic equation. In general, this equation gives four roots correspon-
ding to four normals drawn from the point (x  , y.) to the hyperbola
defined by Eq. (5-69). One of these roots corresponds to the minimum
of Au

The elements of the optimum deorbit trajectory can be easily
obtained in terms of z by using the general equations derived in the
preceding section.

First the components of the deorbit velocity u, are given by
Eq. (5-73). Next, the minimum characteristic velocity is simply

Au = \ﬂx* N xl)z F oy - yl)2 (5-76)

The direction of Au  is the direction of the normal to the hyperbola
which has components (Axa< , - By*) . Hence, if & 1is the opti-
mum angle of AW, measured from the x-axis, we have

zcosZ

. Y

sk B e

tan 6 - - A z - - T—Z_ (5—77)
N - cos Ye

The entry speed is given by Eq. (5-61). Since
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cosz * 1 1
\{ = . =
2 * 2
2 l1+tan vy 1+z
2
then
£ -
o= 2(h - 1) (5-78)
e 2 2 2
A -(l+4+z )cos Yo

The optimum deorbit speed is given by Eq. (5-62) written as

2
2(n - 1)(1+
w. = ( Wtz ) cosy (5-79)
2 2 2 2 e
N -(l+z)cos Ve

£

The dimensionless semimajor axis of the optimum deorbit trajectory is
given by Eq. (5-63). We have

)\2-(1+z2)coszy
= > — (5-80)
2[ N -(l1+z) cos Ye]

The eccentricity of this orbit is

4AN(N - 1) )\-(1+zz)coszy ] coszy
o 1. e e

2 [ )\2 -1 +zz)coszye] 2 (5-81)

The longitude of periapsis of the optimum deorbit trajectory is given by
Eq. (5-23) with the angle m expressed in terms of \ , Yo and =z
as

2(\ - 1) zcosz\(e
tan n = (5-82)
2 2 2
[ A" -(2X\ -1) cos ye] -zt cos Y,

The polar equation of the entry orbit is given by Eq. (5-66) where e

is given by Eq. (5-81) and 2
* 2
pZ 2N(\ - 1) cos Yo
< - (5-83)

2
xo-(1 +Z2) coszye

The position of entry E 1is defined by its polar angle 6 which is

obtained by putting r =R and 6 = GE in the polar Eq. (5-66).



Ch. 5 RETURN TO THE ATMOSPHERE 93

The formulae (5-78) - (5-83) are expressed in terms of the vari-
able z =tany * | solution of the quartic equation (5-74). By using,
instead of z , the components x and y* of the optimum deorbit
velocity . as given by the Egs. (5-73), we have the following alter-
nate formulae.

The optimum deorbit speed is

sk * 2 * 2
u = X +vy (5-84)

Hence, we have from Eq. (5-44) for the entry speed

% %2 * 2
u, ='\/x +vy + 2(\ -1) (5-85)
Also, from Eq. (5-13)
_ A
@, = % a5 e (5-86)

2-(x +y )

The eccentricity is obtained from Eq. (5-14). With the aid of Egs.
(5-51) and (5-85), it is seen that

% * 2 2 *2 %2
e, = ’\/?x -1) +x 'y (5-87)

For the angle m in the evaluation of the longitude of periapsis of the
optimum deorbit trajectory through Eq. (5-23), we rewrite Eq. (5-22)

uZtn
2 Y,

tan nn =

2 2
(1-u,)+tan Y,

>)

Then, using the Egs. (5-72) and (5-84) to simplify the expression

S
tan n = —X—,V? (5-88)
1-x
Finally,
ES
P .
2 b k2
R C %y U-ey )
or using Eqs. (5-86) and (5-87),
e
P
2 * 2
= Ax (5-89)

R
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5-6. DESCENT TRAJECTORY FOR A GIVEN ENTRY POSITION

In this section we shall consider the family of descent trajectories
initiated from the deorbit position D and intersecting the atmosphere
at a prescribed position E . This entry position can be defined by the
range angle ¢ measured from the initial position vector oD (Fig. 5-7).
Let u_ be the deorbit speed and vy, the deorbit flight path angle
at the point . They are the initial speed and flight path angle for
the descending trajectory & _ . The equation relating the initial speed,
flight path angle, radial distance and range angle has been derived in
Chapter 3, Eq. (3-86). We rewrite this equation, using subscript 2
to replace subscript B

Q-_c;s&) tanzy2 - sin ¢ tany2+ U_-c;ﬂ)_+ cosd -A = O
u, u, (5-90)

In the hodograph space Dxy as defined in section 5-2, let x and y
be the projection of the deorbit velocity u, on the axes

X = u,cosy,

y = u, sin\(2 (5-91)
Hence,

uZ = x2+y2

2

’cany2 = i (5-92)

By substituting Eq. (5-92) into Eq. (5-90) and rearranging, we have
2 .
(A -cosd) x + (sind)xy - (1 -cosd) = 0 (5-93)

In the velocity coordinates system Dxy , this equation is the equation
of a hyperbola having the asymptotes

(A -cos¢) < (5-94)

sin &

Hence, the first asymptote is the y-axis. For a geometric interpreta-
tion of the second asymptote, we consider the triangle ODE , and
evaluate the tangent of the angle ODE . Let E' be the projection of
the point E on the axis OD . Then
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i _ EE' R sind
tan OPE = B ° T -Rcoss
D
Hence,
tan A ODE = —S28 (5-95)
A -cosd

Thus, the second asymptote of the hyperbola given by Eq. (5-93) is the
line DE

Equation (5-93) shows that, for the descent trajectory initiated
from the point D , to intersect the atmosphere at a prescribed
position E defined by the range angle ¢ , the terminus of the deorbit
velocity__a—z’ must be on that hyperbola. When the terminus of the
vector u moves on that hyperbola, it generates a family of descent
trajectories. Using the deorbit flight path angle y, as the parameter
for this family, we can calculate the elements of the descent orbit in
terms of X\ , ¢ and Y, - Let

z = tan Y, (5-96)

Then, if x and y are the components of the deorbit velocity a—z’ in

the Dxy axis system,
y = xz (5-97)

By substituting into Eq. (5-93) and solving for x , we have

and therefore

(1 -cosd)
-cosd) + zsind

(5-99)

(1-cosd)
\/ X -cosd) + zsind (5-98)

The deorbit speed can be obtained by directly solving Eq. (5-90).

[ 2
1-cosd)(l+z)
-cosd) + zsind (5-100)

For the other elements of the descent trajectory, we only need to
evaluate the entry speed u interms of A, ¢ and z =tany, , and
then substitute into the equee\tions derived in section 5-2. From Eq.
(5-7) we obtain

2
~ (l1-cosdp)(l+z)
Ye T \/2()\_1)+ (N -cosd)+zsind (5-101)
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Fig. .5-7. The hyperbola which is the locus of the terminus
of the deorbit velocity for entry at given position.

Fig. 5-8. Optimum velocity triangle for entry at
given position.
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The impulsive change in the velocity Au , and its direction 6 , are
given by Eqs. (5-11) and (5-12), respectively, with the initial speed
given by Eq. (5-9) and the initial flight path angle by Eq. (5-10).

The entry flight path angle is given by Eq. (5-17). We have

u 2+2(1-)\)
-

cosy, = (5-102)

u_ 2
Ve (1+z)
where u, is given by Eq. (5-101). The dimensionless semimajor

axis of the descent orbit is given by Eq. (5-13), written with the value

of u, given by Eq. (5-101) as

.. = A{(A-cosd) + zsin ¢] - (5-103)

(2N -1) - cosd +2zsind - (1 -cosd) z

The eccentricity of the descent orbit is given by Eq. (5-14).

R _ '\/2(1-cos¢)zz+ 2(A -1)zsind +()\-1)2 (5-104)

2 [ (N -cosd)+zsing]

The longitude of periapsis of the descent orbit is given by Eq. (5-23)
where now the angle m is given in terms of the selected variables as

(1-cosd)z
tan m (N - 1)+ 2zsing (5-105)
The polar equation of the entry orbit is
p
2
r 1+e2cos(6—w) (5-106)
where e, is given by Eq. (5-104) and
P
P2 A(L-cosd)
R - (A -cos ¢) + zsind (5-107)

The position of entry E is, of course, specified by the prescribed
range angle &
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5-7. MINIMUM IMPULSE FOR ENTRY AT GIVEN POSITION

We have seen in the preceding section that, for an entry at a pre-
scribed position, initiating from a given point D on the initial orbit,
there exists a family of descent trajectories which is a function of the
deorbit flight path angle vy These trajectories are such that the
terminus of the deorbit ve120c1ty u, is on a branch of hyperbola defined
by Eq. (5-93). In this section we shall select from among the descent
trajectories in this family the one that results in a minimum character-
istic velocity Au . That particular trajectory is called the optimum
deorbit trajectory for a prescribed entry position.

In the hodograph space (Fig. 5-8), consider the hyperbola which
is the locus of the terminus of u, for a given entry position defined
by the range angle ¢ . In this hodograph space, the initial velocity
a, s prescribed. Its projections X, and y, on the axis system
Dxy are given by Eq. (5-68).

As for the problem of minimum impulse for entry at a given angle
solved in section 5-5, we obtain the minimum of Au by finding the
shortest distance from the point with coordinates (x1 Yy ) to the
hyperbola defined by Eq. (5-93).

Again, let superscript (*) denote the optimum elements. The
point with coordinates (=*, y*) on the hyperbola giving the terminus
of the optimum deorbit velocity W is the point where the normal to
the hyperbola passes through the point (x , yl) . We write the equation
of this hyperbola

f(x,y) = (X-cos¢)x2+(sin¢)xy- (l1-cos¢p) =0 (5-108)

The components of the normal to the hyperbola are given by

af .
ox 2(\ - cosd) xty sing
g—f’ = x sind (5-109)

Requiring that this normal be collinear to the vector AT gives

x-x) v-v,
: = : (5-110)
2(h-cosd) x + ysingd x sind

The set of equations (5-108) and (5-110) glves t};xe coordinates (x , y*) ,
components of the optimum deorbit velocity u_ . It is convenient to
use the variable z as defined by Eq. (5-96). Then the components of
the vector u. are given in terms of z by Eqgs. (5-98) and (5-99).
Upon substituting these equations into Eq. (5-110) and rearranging we
have a quartic equation in =z

4 3 2
B = -
0% +B1z +B2z ~I~B3z+B4 0 (5-111)
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where the coefficients Bi are

o]
il

(1- cos<‘p)sin2¢

0
- 2 .3

B1 = 4(1 -cos¢)(\ -cos¢d)sind -y, sin ¢
B‘2 = 2(1-cos¢)(2)\2-4)\cos¢ +3cosz¢-1)

+ ley1 sin3¢ - SyT()\ - cos¢)sin2¢
B3 = -4(1-cos¢)()\-cos¢)sin¢—xfsin3¢

. 2 2 2 .

+6x1y1 (A - cosd)sin ¢ —8y1 (A -cosd) sind
B4 = (l-cos¢)sin2¢-xi()\-cosq))sinzcb

+ 4x1y1()\ - cosq))2 sing - 4yf (N -cos¢)3

(5-112)

Hence, the optimum deorbit flight path angle is obtained by solving
a quartic equation. In general, this equation gives four roots corre-
sponding to four normals drawn from the point (x, , y ) to the hyper-
bola given by Eq. (5-93). One of these roots corresponds to the mini-
mum of Au

The elements of the optimum deorbit trajectory are obtained by
using the value of z computed from the quartic equation (5-111) in the
general equations for descending trajectory derived in the previous

section,
By using, instead of =z W the components x* and y* of the
optimum deorbit velocity u,  as computed from Egs. (5-98) and (5-99),

we also can calculate the elements of the descending trajectory using
the alternate formulas, Eqgs. (5-84) - (5-89).
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Chapter 6

Basic Equations for
Planar Entry Trajectories

6-1. INTRODUCTION

In Chapter 5 we considered the trajectory of the vehicle from the
‘ \\_3 ﬂ deorbit position D to the entry position E . This point E is assumed
Tgn # to be at the top of the sensible atmosphere. Thus, until now, the tra-

: f jectory has been analyzed for flight in a vacuum. From here on , this

4 text will treat the portion of the flight path beyond the point E , re-

i‘ ferred to as the entry trajectory.

‘ Along the entry trajectory, the aerodynamic force is no longer
negligible. In fact, it plays an important role as a braking force to
reduce the speed of the vehicle to the point such that the terminal phase
of the flight before landing can be conducted as a vertical free fall using

> a system of parachutes for soft landing for vehicles with no lift capa-
‘ bility, or as a gliding flight at low speed as an ordinary airplane for
% vehicles which can generate aerodynamic lift.
4

6-2. ENERGY DISCUSSION OF THE TRAJECTORY IN PHASE SPACE

The equations of motion of a vehicle flying in a Newtonian gravi-
tational force field and subject to thrust and aerodynamic force were
derived in Chapter 2, Eqs. (2-28) and (2-32). We shall assume that
along the fundamental part of the entry trajectory where the decelera-
tion undergoes rapid change, the engine is shut off at all times. Hence,
with T =0 , and using Eqs. (4-4) for the lift and drag forces, we
have the planar equations of motion in the plane of a great circle

(Fig. 6-1).
2
av %% (r) sin
a7 2m -8 Y
2
VR e A G
at Zm - LelE e Y
%tf = Vsiny (6-1)

100
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Fig. 6-1. Geometry of the entry trajectory.

where V 1is the speed of the vehicle, vy the flight path angle measured
from the local horizontal, positively up, and r the radial distance
from the center of the planet. The atmospheric density p and the
acceleration of gravity g are, in general, functions of the distance r .

p = plr) , g= gl(r) (6-2)

The reference area S has some conventional value, used to evaluate
the lift coefficient CL and the drag coefficient C_ . In general,
these coefficients are functions of the angle of attacR( a , the Mach
number M , and the Reynolds number Re

CL = CL(a, M, Re)

C, = Cple, M, R) (6-3)

In hypersonic flight however, it is generally assumed that CL and C
are functions of the angle of attack only.

For a given vehicle, if the initial conditions are prescribed,
r=r , V=V , andy=y at t=0 , and if a flight program is
prescoribed by spoecifying the ar?gle of attack function o = o(t) , then
with Egs. (6-2) and (6-3), the system of equations (6-1) can be inte-
grated, at least numerically, giving the time histories of the variables

r(t) , V(t), and y(t) . In the following we shall mainly interest our-
selves in the flight program of constant o« . In this case the coeffi-
cients C_ and C_ in Eqgs. (6-1) are constants.

It is conveniént to write the Eqs. (6-1) in nondimensional form.
For this purpose, let r be a reference radial distance. Frequently

r_ is taken as the radfus of the planet, assumed homogeneous and
sp}?erical, but for reasons which shall be clearly justified later, we
shall take r as the initial radial distance. We define the dimension-
less variables

D
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T
\Y o
r

(6-4)

N
it

where u is the dimensionless kinetic energy, and, for a Newtonian
force field, z 1is the negative of the potential energy. The accelera-
tion of gravity is then

g =g (—) (6-5)

where g is the acceleration of the gravity at the reference distance.
With r © as the initial distance, the initial value of z is z = 1

Uosing z as the new independent variable, we climinate the time
and rewrite Egs. (6-1) as

S
aw | 5P%p%
dz ~ 2 .
mz siny
dﬁ = _r& + (_1. __1_) (6 6)
dz 2 ;" 2a)® B
2mz
where
¢ = cosy (6-7)

The system of Eqs. (6-6) constitutes the exact equations for flight in a
Newtonian force field, subject to aerodynamic forces. Its integration
requires specifying the law of variation for the atmospheric density,
p , as a function of the independent variable =z

The system of Eqs. (6-6) is exact. Hence, for flight in a vacuum,
that is when p - 0 , we expect to obtain the trajectory in the form of
a Keplerian orbit. Putting p = 0 in the Eqs. (6-6), we have the
system

4 (+-2L) e (6-8)

Integrating the first equation yields the vis viva integral

u = z+ C (6-9)

where C is a constant representing the total energy. Substituting this
relation into the second equation (6-8) and integrating gives
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o = M— = K (6-10)

where K is a new constant of integration,.
The definitions (6-4) and (6-7) of u, z, and ¢ show that

c = rv COSX (6_11)
3
ZgOrO

Hence, Eq. (6-10) is a statement of the conservation of angular
momentum for flight in a vacuum.

The Keplerian trajectory can be conveniently visualized in the
cylindrical coordinate space (z , ¢ , u) (Fig. 6-2).

u
)
M |
!
|
|
|
|
0 ,/: 1
| ]o '
|
|
|

e
c+/ za
1
z
| P

4

Fig. 6-2. Drag-free trajectory in phase space.

The trajectory is in the plane o = constant. In this plane, it is
a segment of a straight line representing the equation (6-9). This line
makes an angle of 45° with the u axis (Fig. 6-3). By the definitions
(6-4) of u and z , the trajectory lies in the positive (u, z) space.
When C < 0 , itis an ellipse, and the radial distance is bounded.
The variable z oscillates between a minimum =z corresponding to
the apogee distance, and a maximum =z corresponding to the perigee
distance. On the other hand, the kinetif energy is a minimum where
the radial distance is maximum, and it is a maximum for a minimum
of r . When C =0 , the trajectory is a parabola, and since z = 0,
the maximum distance is infinity. At the point at infinity, the kinetic
energy of the system is zero. When C >0 , the trajectory is a hyper-
bola. But, at the point at infinity where the potential energy is zero,
there is a residual kinetic energy equal to C
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Fig. 6-3. Three types of Keplerian orbits.

When p # 0, the total energy and the angular momentum are no
longer constant. Still, it is possible to discuss the variations of these
quantities and have some insight into the behavior of the trajectory by
considering the phase space (z , ¢ , u)

Let £ be the vehicle total energy when aerodynamic force is
encountered. We have

£ = u-z (6-12)
From the first equation (6-6)
r pSC_ u
dé __9.2_D_._ (6-13)

mz siny

From the last equation (6-1), it follows that

If siny > 0 , r increases and z decreases.
If siny < 0 , r decreases and z increases.
In both cases the total energy, £ , of the system is decreasing,

as seen in Eq. (6-13). Hence, § is a convenient dimensionless inde-
pendent variable.

On the other hand, the definition (6-10) of the angular momentum,
¢ , show that

o _YE d, o  du_ s4u
dz z dz

With the aid of the equations (6-6) we have

ds _ TP S\[I_.l_ © 4 CD
dz 2mz3 L tany

) (6-14)
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If tany< 0 , z increases. Thus, for the angular momentum to
decrease, the condition
CD

CL + m < 0 (6-15)

must be satisfied. If high lift is developed, for example in the case of
a pull-up maneuver, the condition may be violated, and the angular
momentum can increase. On the other hand, if tany > 0 , =z de-
creases. Then, decreasing angular momentum requires that

CD

CL * tan y

0 (6-16)

The condition is always satisfied for positive lift. But for large nega-
tive lift, the angular momentum can increase.

Thus, we have obtained some very general conclusions for the
variations of the total energy and of the angular momentum of the
dynamical system representing the motion of the vehicle without regard
to a specific law of variation for the atmospheric density. These
criteria are very useful for the qualitative discussion of the asymptotic
behavior of the dynamical system represented by the point M in the
phase space (Fig. 6-2). For example, if we consider the trajectory of
a satellite starting out at very high altitude, with an initially elliptic
orbit, and subject to aerodynamic force besides the gravitational force,
then first we see that, in the phase space (z, ¢, u) , the point M
is constantly on a ruled surface generated by the equations

o = o(t)

u = z + g(t) (6-17)

with g(t) being a decreasing function of the time t . Let R be the
radius of the planet. By the physical constraint r > R , in the phase
space of Fig. (6-2) , both 2 and zp tend to ro/R with

T

Z <

)
a R

Also, since u > 0 , the limit of § is

Et) > &) > - max =z

Furthermore, for a vehicle with no lift capability, putting C and
dividing Eq. (6-13) by Eq. (6-14), gives
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which is, using definition (6-10)

d¢ _ 2u (6-18)

do o

This shows that the angular momentum ¢ (t) is also decreasing.

6-3. THE FUNDAMENTAL EQUATIONS

The system of nonlinear differential equations (6-6) can be inte-
grated for any specified vehicle from a prescribed initial condition,
once the law of variation of the atmospheric density is known. We shall
assume an exponential atmosphere of the form

o = p PP (6-19)

where h is the altitude above the surface of the planet
h =r1r- R (6-20)

with R being the radius of the planet. § 1is the reciprocal of the scale
height and p _ is the atmospheric density at the surface. Using an
average value for B in the altitude range of interest, we can treat it
as essentially a constant.

For an analytic integration of the equations of motion, we intro-
duce an altitude variable m proportional to the atmospheric density

p SCD

N = s (6-21)

Then using the exponential law, Eq. (6-19)

Br
dn. . _goar = 2 dz (6-22)

al ZZ

With this change of variable Egs. (6-6) are transformed into

g\_.l_ _ 2u z2
dn sin vy Bro n
C 2
o - L 2z (L .1 .
dn CD Br m (Zu z) ¢ (6-23)

This system is the fundamental system of equations for planar entry
trajectories. The system is exact in the sense that the equations are
valid for flight in a Newtonian force field. The atmosphere is specified
by prescribing the value of ﬁro as shown in Table 1-2 (e. g.,

Bro = 900 for the Earth's atmosphere). The flight parameter is
specified by the constant lift-to-drag ratio, CL/ CD . For the
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integration of the entry equations, the values u , m and vy at the
initial time are given. Rigorously speaking, the varfable z = r /T

in the equations can be expressed in terms of the atmospheric density
n through Eq. (6-21). This will require the specification of the drag
parameter, that is the value of SC_/ mp. A simplification can be
made by noticing that in the fundamental equations, Eq. (6-23), the
variable n which is proportional to the atmospheric density undergoes
strong variation while within the relatively thin layer of the atmosphere,
as compared to the radius of the planet, we have for all practical pur-
pose z=7r /r = 1. Mathematically, this can be clearly seen in

Eq3 (6-22) %y noticing that the value of fr is large, of the order of
10 With this simplification, we are led to the basic equations for
atmospheric entry

ﬂ _ 2u + 1
an sin y Bron
C
dﬁ L 1 ( 1
= —_— - (== -1) ¢ (6-24)
dn CD ﬁroﬂ 2u

One characteristic feature with these equations is that for entry from

very high altitude, we have n, 0 . Hence, besides the values for
the atmospheric parameter, Br_ , and lift-to-drag ratio, C./C R
we only need to specify the initial values u_ and Y for the integra-

tion without regard to other physical characferisticsof the vehicle. In
other words, for a given planetary atmsophere, using the same lift-to-
drag ratio C_/C_ , with the same initial condition in u and vy _ ,
the relationships ]%etween u, Yy and mn arethe same r%gardles% of
the mass, size and shape of the vehicle. The only difference is that
the actual altitude during entry, for any specified vehicle, is ultimately
computed by Eq. (6-21) for the corresponding drag parameter.

The basic equations we have derived are adequate for a prelimi-
nary analysis of the phenomena encountered during atmospheric entry
of a hypervelocity vehicle. This will be done in Chapters 7, 8 and 9.

In Chapter 7, first order solutions for planetrary entry will be obtained.
A second order theory for entry trajectories as developed by Loh will
be the subject of Chapter 8. Chapter 9 concerns the aerodynamic heat-
ing during entry. The rest of the text will be devoted to more sophisti-
cated theories for planetary entry.
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Chapter 7

Analysis of First-Order
Planetary Entry Solutions

7-1. INTRODUCTION

To help in the understanding of the basic physical phenomena
encountered by a vehicle during its descent through a planetary atmo-
sphere, in this chapter we shall derive several first-order solutions
for planetary entry by making, separately for each case, the necessary
physical assumptions. Each type of trajectory will be analyzed in
detail. In particular, we shall be concerned with the variations during
the entry of the altitude, the speed, and the acceleration of the vehicle.
Other physical quantities associated with the dynamic pressure over the
vehicle, and the heating phenomena will be analyzed in Chapter 9. The
study of the physical quantities associated with an entry trajectory is
important since not only the knowledge of the variations of these quanti-
ties is of great assistance in the preliminary planning of the design of
a specific type of entry vehicle, but also it provides the basic informa-
tion with which one can construct new and accurate theories for analyz-
ing entry trajectories.

For convenience, we recall the basic equations for entry trajec-
tories in the plane of a great circle

du _ 2u . 1
dn siny [31'01'1
C
d¢ _ L 1 ( 1 1
= = - 5= -1 (7-1)
dn CD Bron 2u

where p T is a constant and by definition

), & = cosy (7-2)

while r is the initial distance from the center of the planet and g

is the acceleration of gravity at this reference level. The equationso
were obtained by assuming that, at each instant, r=R +h= roo
where R is the radius of the planet and h is the flight atltitude. The
altitude is obtained through the variation of the density of the atmosphere

108
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which is related to the dimensionless variable 1 by the relation

SChPs  gh

2mg

(7-3)

It is generally assumed, in first-order theory, that the component
of the gravity along the tangent to the flight path can be neglected com-
pared to the drag. This is equivalent to neglecting the second term on
the right-hand side of the first equation (7-1). Hence, we write it as

du _ 2u
dn " sin v (7-4)

The second equation (7-1) is maintained in its general form. We re-
write it with the physical meaning of each term

C
2. L1 (Lo, (7-5)
dmn CD Brn 2u
| °y/ \
lift gravity centrifugal
force force force

Two quantities of interest along an entry trajectory are the distance
traveled, and the deceleration, First, we have

ds
- =V -6

X (7-6)
where s 1is the arc length travelled since the initial time. On the other
hand, the equation for the speed V with the tangential component of

the gravity g siny , neglected is

2
av pSCLV
* T T m (7-7)
Hence,
SC_V
av _ P2%% (7-8)
ds 2m -

Using the definitions (7-2) and (7-3) for u and m , we have

Sy . — 1
E(r—o) = Z2pr nu (7-9)

This equation, upon integration, gives the distance travelled along the
flight path. The tangential deceleration is simply

dv

T (7-10)
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Using Eq. (7-7), in dimensionless form, we have

E; = 2pr_mu (7-11)

Another quantity of interest is the time of flight. It is obtained by in-
tegrating Eq. (7-7). In dimensionless form, it is

l
\/ ) 372 (7-12)
Bro nu

The following sections discuss the integration of the equations of

motion given above under various approximations relative to the nature
of the entry trajectories.
7-2. GLIDING ENTRY AT SMALL FLIGHT PATH ANGLES

The main assumption for this type of entry trajectory is that the
flight path angle is small, that is

siny = 'y , cosy = 1 (7-13)

If in Eq. (7-5) we consider the variation of ¢ = cos y as negligibly
small, this leads to the assumption of equilibrium glide at small flight
path angles as first formulated by Sanger and Bredt (Ref. 1). We have

(=—-1) = 0 (7-14)

Solved for u , this is

C T ATTEr.C,7C ] (7-15)

On the other hand, if u is used as the independent variable, the varia-
tion in the altitude is given by

2
1-(V/gr)
prym = 2(‘(:1 -/28) Yu 20 . (7-16)
L' 7D (CL/ cD)(V /goro)

Figure 7-1 gives the plot of 1/ (3r n versus V/ \/goro for different
values of the lift-to-drag ratio, o / C_ . The ordinate of the figure
varies as the altitude. It is seen ti'[fat tEe speed decreases as the alti-
tude decreases during the glide.
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Fig. 7-1. Gliding entry at small flight path angle.

Velocity - altitude diagram for different values of lift-to-drag ratio.

The flight path angle is obtained from Eq. (7-4). We have, by
taking the derivative of Eq.(7-15) with respect to u

iny = o ——— L1
Bro siny = - (CL/CD)u (7-17)

From Eq. (7-9), we have for the distance travelled, using Eq. (7-16)
for n

(C./C)
d S L" D
w'c )T D (-1

Integrating from the initial value u gives
o

C
s 1 L 1-2u
= = =l =11 ——= -
r z<c )Ogl-Zu (7-19)
o D o
We see that, for any prescribed final speed u, , the distance travelled
s, 1is maximized by using the maximum lift-to-drag ratio. Using
the final speed Vf = 0 , the total range is given by
s C
LS o
o D 1-(V/gr)
o' "o’ o
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The total range (s /rp) is plotted in Fig. 7-2 in terms of the initial
speed Vo/ '\/ 8,7, or different values of lift-to-drag ratio.
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o] 0l 0.2 03 04 05 06 07 08 09 IO
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Fig. 7-2. Gliding entry at small flight path angle.
Total range in terms of injtial speed .

The time of flight is obtained by integrating Eq. (7-12). We have,
first by substituting Eq. (7-16) into Eq. (7-12)

2g C
a o ) ] (__L) 1
du( ro t - C 1/2 (7-21)

D' (2u-1)u

Integrating from the initial value u gives

E&t - l(i) log {Hm" ][ 1-5} (7-22)
%o ) Cp 1- y2u 1+ V2w

For any prescribed final speed u, , the total time of flight ’cf is
maximized by using the maximum lift-to-drag ratio. Using up = o,
we have the total flying time,.

g 1 CL 1+ Vo/ Vgoro
—t = s\ log (7-23)
o D 1- VO/ Jgoro
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Finally, from Eq. (7-11) we have the deceleration along the gliding
entry trajectory

2
a _ _1-2u -V TegTo) (7-24)
g, (CL/CD) (CL/CD)

As the speed decreases, the deceleration increases continuously along
the descending trajectory and it is minimized by using the maximum
lift-to-drag ratio.

The first-order solution of this section is known as the first-order
solution of Eggers, Allen and Neice (Ref. 2).

7-3. GLIDING ENTRY AT MEDIUM AND LARGE FLIGHT PATH
ANGLES

When the flight path angle is not small, the condition of equilibri-
um glide is no longer maintained. On the right-hand side of Eq. (7-5)
the lift force is predominant while the difference between the centrifugal
force and the gravity force remains small. Hence, we have the simpli-
fied equation
C
4 _ __L (7-25)

dn CD

and upon integrating from the initial time
C
cosy - cosy = — (n-m) (7-26)

CD o

Combining the Eqs. (7-4) and (7-25) to eliminate m we have

C
a2 -1 (E) (1-27)
v D
which integrates to
2(y_-v) ]
u o
-— = exp [—— (7-28)
u (CL/ CD)

Equations (7-26) and (7-28) constitute the first-order solution of Lees
for gliding entry at medium positive lift-to-drag ratio and medium flight
path angle (Ref. 3).

Using Eq. (7-11), with the solution (7.26) for mn and (7-28) for

u , we have for the deceleration, by taking n,o~ 0
2 -
2 . E—(cosy cosy ) exp [_(YO_Y)...} (7-29)
g, (CL/CD) o (CL/CD)



114 FIRST-ORDER SOLUTIONS Ch. 7

Since, by this expression, 'a' is a function of y alone, the maximum
deceleration occurs at a value of y obtained by solving the equation
da/dy =0 . We have

C

L
1 (—-—-—-—) siny = cosy - cosy (7-30)
2 CD o

This equation can be written as a quadratic equation in tan (y/2)

2y (SL b
(1 +cosy0) tan > - (§> tan > - (1- cosyo) =0 (7-31)

The equation has two roots, one positive and one negative. For a
descending trajectory, we take the negative root

C C 2
Yy _ 1 [ L [( 1J) .2 ]
tan = - —] +4sin vy (7-32)
2 2(1+cosyo) CD CD o

Using this critical value for vy in Eqgs. (7-28) and (7-29), we have the
corresponding speed and the maximum deceleration. The altitude at
which the maximum deceleration occurs is giveh by Eq. (7-26) with vy
as given by Eq. (7-32). Let subscript (%) denote the condition at the
point of maximum deceleration. We have

(CL>( ) = cos vy cos y L (CL) sin y
- n*‘: -n = sk - = -S\Cc_ sk
CD o o 2 D
Therefore
Y*
tan——z—-
ng-m, = - ———— (7-33)
1+t 2 Mx
+ tan >

Another form of this equation is obtained by combining it with Eq.{7-31)

Y

(1 +cos Yo)tan—‘2

¢} Y.

2+ (CL/CD) tan =

Using the solution (7-32), we have explicitly for the critical altitude
where the maximum deceleration occurs, in terms of the lift-to-drag
ratio (CL/CD) , and the initial flight path angle Y,

2 . 2
\ﬂCL/CD) + 4 sin yo-(CL/CD)

2 .2
4+ (CL/CD)/(I + cos yo)] [ (CL/CD) —\/(CL/CD) +4 sin yo]
(7-34)
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When the initial flight path angle is small

2
4 s
sin Yo

2
(CL/CD)

<< 1

and the square root can be approximated by

2

c 2 sin” vy

2 .2 L [e]
\/(CL/CD) + 4 sin Y, * (C ) 14 ——m8 ™ ———

The expression for n, becomes

=<

2
2 sin” ==

2
] -t (7-35)
* o (CL/ CD)

In this case, the critical flight path angle, as given by Eq. (7-32),
becomes

Y
Y, 2 s1n2 -—22
tan— = . ————— (7-36)
2 (CL/CD)

If the flight path angle is not too large, we have the approximate rela-

tion >

YO

Yy = =~ — —— (7-37)
c_/cC
( L/ b
In this case, we obtain from Eq. (7-28) the critical speed where maxi-
mum deceleration occurs

i (=) (7-38)
—— = exp -
v, C./Ch
The maximum deceleration is simply
2
2. Protle exp (-————ZY" ) (7-39)
g, (CL/CD) CL/CD

The solution obtained by Lees applies to circular speed entry.
For supercircular speed entry, it has been generalized by Ting (Ref. 4).
In this case, the second term on the right-hand side of Eq. (7-5) is not
negligible since for large values of u , the difference [ (1/2u)-1] is
not small. To obtain the expression for the flight path angle Ting used
the approximation
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Then, we have the equation

C
d
rrRR o e bl (7-40)
n D o U'o

Upon integrating and using the initial conditions, we have

C
_ L) 1 1 n
cosy-cosyo = (-_CD (n-no) -—51'0 (—Zuo - 1) log N (7-41)

For small flight path angles, we have Ting's first-order solution for
entry at supercircular speed

c 1/2
2 L 2, 1 u
Y = - [Y -2 (—)(n-n ) +—(5—-1) log —] (7-42)
o CD o pro Zuo n,
Next, we write Eq. (7-5)
C
d 1
- sin El = C_L - 1 ( o - 1) (7-43)
n D Br m
o
Combining this equation with Eq. {7-4) to eliminate n , we have
d
. . dy (7-44)
1 [_L 1L 1>J
2 CD ﬁron 2u

Considering the denominator on the right-hand side of this equation as
constant, we have, upon integrating

Log ui = (7-45)

o l[i L Ly
2lcy ™ Br_n 2w

Equations (7-42) and (7-45) constitute Ting's solution for entry from
supercircular speed (Ref. 4).
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7-4. BALLISTIC ENTRY AT LARGE FLIGHT PATH ANGLES

When the aerodynamic force is in the form of pure drag, we have
ballistic entry. For ballistic entry, C_ =0 . The general assumption
is that ballistic entry involves short range so that the assumption of
flat Earth applies. In Eq. (7-5), if we neglect the centrifugal force, we
have

d _ . 1 7_46
dn 28r mu ( )
o
From this equation, because of the small factor 1/2 pr_ , it is seen

that for relatively steep trajectories, the dimensionless atmospheric
density m will quickly become finite and the right-hand side can be put
equal to zero. Since the term is the gravity term, this is equivalent to
neglecting the gravity force compared with the drag force which is large
during the fundamental portion of a steep ballistic entry trajectory.

We shall first conduct the investigation under this assumption and later
modify the solution to include the effect of the gravitational force.

7-4.1. Analysis Neglecting Gravity

If gravity is neglected, the integration of Eq. (7-46), with the
right-hand side put equal to zero, yields

cosy = coOs Yo (7-47)

We conclude that, for ballistic entry, the flight path angle remains
nearly constant and the trajectory is essentially a small portion of a
spiral. Using this solution, Eq. (7-4) can be integrated to give

2(n-mn_)
L - exp [___‘2_] (7-48)
u s5in y
O o]

Equations (7-47) and (7-48) constitute the first-order solution for
ballistic entry at large flight path angles as given by Gazley (Ref. 5),
Allen and Eggers (Ref. 6) and Chapman (Ref. 7).

Equation (7-48), with n, s 0 , can be written as

n
sin
Yo

s
o

) (7-49)

It is seen that V decreases as the radius of a logarithmic spiral
(Fig. 7-3).

In the figure, the angle n is measured in radians. Let ¢ be
the constant angle between V and the tangent to the spiral. We have

tano = sin Y, < 0 (7-50)
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V decreases more rapidly with the altitude for larger initial flight path
angles. On the other hand, by the definition (7-3) of n , for each
value of the altitude, m is larger for larger values of the drag coeffi-
cient and smaller values of the wing loading (mg /S). Hence, the
speed decreases more rapidly with a larger drag coefficient and a
smaller wing loading. The deceleration is given by Eq. (7-11). We
have, using the solution (7-48) for u ,
[Z(n -n) ]
— = 2[51‘0 u_m exp (7-51)

sin
Yo

Fig. 7-3. Variation of the speed during ballistic entry.

The maximum deceleration occurs at the altitude Ny obtained by
solving the equation da/dn = 0 . We have

N, == % sin Yo (7-52)
From the definition (7-3) of 7n , this critical altitude is positive
if
S
sin < “pfs (7-53)
- ‘Yo = mﬁ -

If this inequality is not satisfied, the deceleration continues to
increase and reaches a maximum at the altitude zero. In this case,
the maximum deceleration is

a, 2(n <" n,)
— = 2Bpr u m_ exp|—r—— (7-54)
g o o s sin y
o o
where ng is the value of 11 at sea level
SC_p
n = —2s (7-55)

s 2mp
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The corresponding value of u is

2{n_-m)
u* = uo exp [______s o ] (7_56)

sin vy
o

In the case where the strict inequality in (7-53) is satisfied the
maximum deceleration occurs at an altitude h, above the surface of
the planet. The corresponding value of m is"‘given by Eq. (7-52).
Using this value in Eq. (7-48) with n, ® 0 , we have

L
e

Therefore

.‘L<
1
1]

0.607 V (7-57)
[e]

Thus, the point on the ballistic entry trajectory where the speed
has decreased to about 60.7% of its initial value is the point of maxi-
mum deceleration. The maximum value of the deceleration is obtained
from Eq. (7-51) with n, as given by Eq. (7-52). We have

vm

[31‘0 u
- T - T siny (7-58)

We see that the maximum deceleration is proportional to the
quantity - u_ siny and is independent of the physical characteristics
of the vehicle, °

Figure 7-4 presents the speed-altitude relationship, Eq. (7-49),
for different values of the initial flight path angle. The use of the
dimensionless quantity m is convenient since the diagram applies to
any type of vehicle regardless of its physical characteristics. For
each specified vehicle, one can compute its sea level value n by
Eq. (7-55) and deduce the speed ratio at this level. This alsosapplies
to any level by using the corresponding value p

Figure 7-5 presents the deceleration-altitude relationship, Egq.
(7-51) for different values of the initial flight path angle. It is conven-
ient for the plot to write this equation as

a 2n
Y n exp (———) (7-59)
Zﬁrogouo siny

In this way, the diagram can be used for any type of entry vehicle
at any initial speed. The line of maximum deceleration is the hyperbola

(l) (2—3———-) = L - 0.36788 (7-60)
n ﬁrogouo €
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Fig. 7-4. Ballistic entry at large flight path angle.
Speed - altitude diagram for several values of the initial angle.
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Fig. 7-5. Ballistic entry at large flight path angle.
Acceleration - altitude diagram for several values of the initial
angle.
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7-4.2. Analysis Including Gravity

The results in the previous section are obtained by neglecting the
gravitational force. If the effect of gravitational force is retained,
then for ballistic entry, under the flat Earth assumption, the Egs. (7-1)
are reduced to

du _ 2u + 1
dn sin y Br m
o
T (7-61)
dn Zﬁronu

The first of these equations is now integrated under the assumption
that the flight path angle is nearly constant and can be put equal to its
initial value. Hence we have the linear equation

gﬂ 2u 1

. — = (7-62)
dn siny B rom
Using a new dimensionless atmospheric density o such that
2
¢ T " %in " (7-63)
Yo
we can write the solution of Eq. (7-62) as (Ref. 8)
u = ﬁrl exp ( - )] Ei(a)+ C] (7-64)
o

where C is a constant of integration and the exponential-integral
function Ei(e) is defined as

o t
Fi(a) = [ %- dt (7-65)
- 00

This integral function is tabulated in Ref. 9. The constant of integra-
tion C in Eq. (7-64) is evaluated using the initial condition., It is
seen from this equation that the kinetic energy of the vehicle, or
equivalently its speed, passes through a maximum for a falue of «
satisfying the equation

exp (o)
o

Ei(e) + C (7-66)

If the constant of integration C has been obtained from the initial
condition, this equation can be solved for o . Upon substituting back
into Eq. (7-64) we have the value for the maximum kinetic energy
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1
u = (7-67)
ﬁro o
Now, using Eq. (7-11), we have for the deceleration
a .
- g_;:[;r = a exp (-a)] Ei(e) +C] (7-68)
o o
The deceleration has a maximum at the altitude where
. exp (o)
Ei(e¢) + C = ———7= (7-69)

a -1

Again, if the constant C has been evaluated, using the initial
condition, this equation can be solved for « and, by the definition
(7-63), for n , yielding the altitude where maximum deceleration
occurs. Combining the last two equations, we have the maximum
deceleration

a

e
w

o
- = (7-70)
go 51ny0 a -1

where « is obtained by solving Eq. (7-69). Maximum deceleration
occurs at a positive altitude if

exp(ozs)
Fi(e )+ C - —m > 0 (7-71)
s a - 1

where a, is the value of ¢ at sea level, that is
Zns SCDp s

s siny0 - mp sinyo (7-72)

If the vehicle's physical characteristics are such that inequality (7-71)
is not satisfied, then the deceleration monotonically increases during
the balistic entry and reaches its highest level at sea level. This
maximum deceleration is given by

a:}:
- m = a  exp (-as) [El(as) + C] (7-73)

From Eq. (7-64) the constant of integration C is given by

C = ﬁro u_ exp (ao) - Ei(ao) . (7-74)
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where
Zno

o = - (7-75)
o siny

On the other hand, a series expansion of the exponential function is

00
n
- a
Ei(a) = \{E+ log o + E Y (7-76)
n=1
where y_ = 0.577215... 1is the Euler constant, Hence, for entry
from higg altitude, a = 0 and an approximate expression for C
is

= - - - 7-77
C Br uo(l+a0) o Y log @ ( )

7-5. SKIP ENTRY

A trajectory of interest for a lifting hypervelocity vehicle is the
skip trajectory. In the skipping phase, the vehicle enters the atmo-
sphere, negotiates a turn, and is ejected from the atmosphere. This
type of maneuver can be used to achieve a change in the orbital plane.
Only the maneuver at constant lift-to-drag ratio in a vertical plane will
be analyzed in this section. The skip trajectory involves a short long-
itudinal range. Hence the flat Earth assumption will be used; that is,
we shall neglect the centrifugal force. Furthermore, since the gravi-
tational force is, on the average, much smaller than the aerodynamic
force, we can neglect completely the gravitational force in the equations
of motion.

With these assumptions, we deduce from the general equations
(7-1), the equations of motion governing a skip trajectory.

ﬂ B 2u
dn - sin vy
C
T == (7-78)
n D

The second equation can be integrated to give
CL
cosy-cosy = —— (n-m)) (7-79)
(o} C o]
D
The vehicle exits at a final altitude level ng equal to the initial
altitude ng - Hence,

Yo T -y (7-80)
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This shows that, for a skip maneuver at constant angle of attack, the
ejection angle is equal to the absolute value of the entry angle.

At the lowest point of a skip trajectory, y =0 . The minimum
altitude is then

1- cosy

N4 —— (7-81)
o (CL/CD)

3
1

For this altitude to be positive, it is necessary that

1-cos Yo SCDps
c.7¢cy  ° Tzmp
L' D
where the condition ng = 0 has been assumed. We can write the
condition as
Y g p.C
.2 ‘o os L
sin. —— < ——— 7-82
2 4B (mgo/S) ( )

This provides the safety limit on the entry angle for a vehicle with speci-
fied lift capability and wing loading condition.

To obtain the velocity distribution along a skip trajectory, we
combine the two equations (7-78) to obtain

C
%Y - ?1- (CL> (7-83)
u u D
Integration gives
2(v_-v)
u o
3L exp [——} (7-84)
u (CL/ CD)
or in terms of V
(v -v)
\% o
— = exp [—] (7-85)
v, (C /¢y
Hence, since Ye T oY, the final velocity is
\ 2y
f ( o )
— = exp \—0/— (7-86)
Vo CL/CD

Equations (7-79) and (7-85) constitute the first-order solution for a
skip trajectory as originally derived by Eggers, Allen and Neice (Ref. 2).
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The distance travelled is given by Eq. (7-9) which, combined with
Eq. (7-83), provides

d 5 1
—(—) = ————————— (7-87)
dy r ﬁro(CL/CD) n

Using the solution (7-79) for (CL/CD) n , we can write this equa-
tion

1

(cosy-cosyi) (7-88)

d
™ ps) =

where the modified initial angle Y5 is defined by

CL
cosy;, = cosy_ - (—C;) n, (7-89)

The integration of Eq. (7-88) is simple. We have
Y; Y Y
tanl+ tan — tan 2. tan—l-
2 2 2 2
ps = sin log
Y4 Y, [ Y Y,

tan -} - tan > tan -—;— + tan )

(7-90)

using ‘N with its positive argument.
If 'we consider the range x , then by the differential relation

dx = cos yds (7-91)
the equation to be integrated is

d cos y

E\? (Bx) = (cos y - cos yi) (7-92)
Integration from the initial distance X, = 0 gives the solution
tan l-I~ tan —1- tan Y—o tan :{-1—
px = + cot log 2 2 2 2
Yo Vi Yi Yo Yi
tan%-tan—z— tan —2-+ tan——z-
(7-93)

The tangential deceleration is given by Eq. (7-11), written with sub-
script t , as

= 2fr_ mu (7-94)



126 FIRST-ORDER SOLUTIONS Ch. 7

It is informative to follow Miele, (Ref., 8), in considering also the
normal deceleration

n _ V. oody _ Sy
— il 2p (C} (7-95)

aQ
el

Hence, the total deceleration is

CL 2
2. 1+ (——-) 2Br mnu (7-96)
CD o

The total deceleration and its two components are proportional to mu.
All pass through their respective maxima at the same time., We need
only consider

a u 2(y )
-t nu =———2————(cosy-cosy )expl:-—o——] (7-97)
2
Pr_ g, (C/Cp) o (C,/Cp)
The analytical solution for n and u , as well as the expression for

the deceleration have the same mathematical form as the expressions
obtained by Lees for gliding entry at medium and large flight path angles
as derived in Section 7-3. Hence, the discussion for the maximum de-
celeration is identical to that in Section 7.3, The pertinent remark to
be added here is that, from Eq. (7-36), one can see that the peak decel-
eration occurs during the descending phase.

Furthermore, it should be noted that although for the two cases
the resulting differential equations are identical, hence, providing
identical solutions, the physical assumptions are different. For the
skip trajectory, if we return to Eq. (7-5) with the different forces
labelled, each of the gravity force and the centrifugal force is small
compared to the lift force, since it will require a relatively high lift-to-
drag ratio to negotiate a skip trajectory. On the other hand, for gliding
flight at medium and large flight path angles, one uses a moderate lift-
to-drag ratio. The gravity force and the centrifugal force, considered
separately, may have the same order of magnitude as the lift force.

The assumption used is that their combined effect is negligible compar-
ed to the effect due to the lift, hence the combined term may be put
equal to zero. To retain this effect, instead of putting it equal to zero,
we may hold it constant for the integration. In doing so, we used the
so-called Loh's assumption., Loh's theory for the entry trajectory,
which is a second-order theory, will be presented in Chapter 8.
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Chapter 8

Loh’s Second-Order Theory for
Entry Trajectories

8-1. INTRODUCTION

In Chapter 6, we derived the dimensionless exact equations for
entry at constant lift-to-drag ratio in the plane of a great circle. The
set of fundamental equations of entry are not solvable analytically, even
with the usual assumption considering the acceleration of gravity con-
stant. However, upon restricting the solution to a limited region of
application, one can obtain several first-order approximate analytical
solutions as presented in Chapter 7. Each of these solutions is then
valid for one type of entry. On the other hand, Loh has derived a more
general solution which covers the entire range of lift-to-drag ratios
and initial flight path angles (Ref. 1). We shall refer to his solution as
Loh's second-order solution.

Loh's theory is empirical, and is based on data from extensive
numerical integration of entry trajectories. Nevertheless, it proves
to be very accurate, even for trajectories with varying lift-to-drag
ratio (Ref. 2).

In formulating Loh's assumption, we consider the fundamental
equations, Egs. (6-23)

2
du 2u z
— - +
dn siny ﬁro n
2
@ _ L2 a1 6.1)
dn C, Brn 2u =z
where, as before,
2 T
uzz(gr),z: r,¢>_cosy (8-2)
oo

with T the initial radial distance. The variable m is proportional to
the atmospheric density, and is defined as

128
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(8-3)

Loh's first assumption is to take z = 1 1in the fundamental equa-
tions, Eqs. (8-1). Thus, we have the basic equations for planetary
entry

du _ 2u . 1
dn = sinvy [31'01’1
C
@ _ L 1 L, 8-4
= 5. e n (2D (8-4)

IL.oh considered this system as the system of exact equations for entry,
but, as seen here, it is obtained by neglecting the altitude as compared
to the reference radial distance.

Let

G = (5--1)4¢ (8-5)

Although the right-hand side of this equation is a function of the vari-
ables m , u and ¢ , all varying with the time, Loh observed through
extensive numerical integration for different types of entry trajectories,
that the term remains nearly constant for each trajectory. Therefore,
he used the assumption that G is constant for the purpose of integra-
tion with respect to either m or vy . A possible interpretation of this
phenomenon can be seen by observing that the expression for G is the
difference between the gravity force and the centrifugal force along the
normal to the flight path. For curvilinear flight over a spherical Earth,
this difference remains nearly constant. In keeping this term, these
effects are retained in the solution, with any resulting error from the
assumption coming entirely from the fluctuation between the two forces.
Such fluctuation is small.

8-2. UNIFIED SOLUTION FOR ENTRY

With G considered as constant, the second Eq. (8-4) is written

C
L
2= (8-6)
" D
where, for constant lift-to-drag ratio, the right-hand side of this
equation is constant. The integration is immediate,

C

L
cos y - cos Yo = [E— - G](n - no) (8-7)
D
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This equation can be rearranged to give the expression for the flight
path angle in terms of n and u

COSYO+(CL/CD) n(l - ﬂo/n)

(8-8)

Y T TR /Br )I-n_/ml (172w - 1]
To integrate the first equation (8-4), Eq. (8-6) is rewritten as
C
ssiny D - B g (8-9)
dmn CD

Then, with y as the independent variable of integration, Eq. (8-4) is

du 2u sin y

ay " T(C_IC)-G] ~ T Br_ml(C,/Cy) - G]

Using the solution (8-7) to rearrange the right-hand side of this equa-
tion gives

du + 2u _ sin y
dy [ (C;/Cp)-G] ﬁro{cosy-cosyo+ no[(CL/CD)-G]}
Since n, = 0 , the final equation for u is
du 2u sin y
—_— = (8-10)
dy [(CL/CD)-G] ﬁro(cosyo- cosy)
Let
K= 2 (8-11)
[, /Cy- Gl
and
sin y
£(y) (8-12)
ﬁro(cos Y, - cos v)
The equation for u is a non-homogeneous, linear equation:
du
ot Ku o= ) (8-13)

If we treat G as essentially constant, K is a constant for constant
lift-to-drag ratio entry. Then Eq. (8-13) can be integrated:
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-K'Y

u = Ce + F(y) (8-14)

where C is the constant of integration, and F(y) represents the
integral

Fiy) = e Y[RV gy ay (8-15)

The constant of integration C can be evaluated by using the initial
conditions

Y=y, , u=su , m=mn (8-16)

It should be noted that, although K is treated essentially as a constant
for the purpose of integration, when the solution is obtained explicitly
in the form (8-14), both terms on the right-hand side of this solution

are now functions of u , y and n through the definitions (8-5) and
(8-11) of G and K . Hence, in evaluating the constant of integration
C , one may choose either to consider K as a functionof u, y and

m or as a constant evaluated at some specific point along the trajectory.
If C is evaluated by considering K as varying, then

(K vy -Ky) (K vy -Ky)
u=ue °° + [Fiy)-e °° F(y_)] (8-17)

where

= 2
%o = (C,/C - (I/pr_m ) [ (1/2u)-1] cosy_ (8-18)

The two equations (8-8) and (8-17) constitute Loh's unified solution for
entry. In general, the function F(y) as given by the integral (8-15)
cannot be expressed in terms of elementary functions, but series solu-
tions are available (Ref. 1). The equations can be solved for any two
of the three variables u , y and n in terms of the remaining one.
From the value of m , one can recover the real altitude through the
definition (8-3) written as

SC_p
D's -fh
—Zmﬁ e (8-19)

3
il

The drag parameter of the vehicle is involved only at this step. Hence,
as far as the relationship between the dimensionless kinetic energy u
and the flight path angle y 1is concerned, it is dependent on the value of
the drag parameter only through the initial value n . Practically,

for entry from very high altitude =n is zero. Thu%, the relationship
between u and vy is completely ingependent of the drag parameter.

In this case the value K as defined by (8-18) should be evaluated at
some intermediate point of the trajectory other than the initial point to
avoid the singularity caused by taking n = 0
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8-3. SECOND-ORDER SOLUTION FOR ENTRY

In general, the unified solution as presented by Loh is too tedious
to use since the two governing equations, Eqgs. (8-8) and (8-17) are
transcendental in the variables u, yand v . But the second term in
the expression (8-17) for u contains the factor 1/[31‘o by the definition
(8-12) of the function f(y) , which is generally small. = For the Earth,
ﬁro = 900 , and according to Table 1-2 , the values of ﬁro for the
planets Venus, Mars and Jupiter are 500, 350 and 3000 respectively.
Therefore, except for the cases where extreme accuracy at the termi-
nal phase of flight is desired or for the cases involving planetary at-
mospheres in which the values of Br are unforeseeably small, one
can omit the term with the factor l/gr in the expression (8-17) for
u . In this case, the solution becomes0

cosy +(C_/C In(l-m /n)
cos y = e ot D ° (8-20)
L+(1/pr )1 -n_/m)[ (1/2v) - 1]

and
2y -v)
(CL/CD)- (l/Bron)[ (1/2u) - 1] cosy

log (=) (8-21)

Equations (8-20) and (8-21) form the basic second-order solution as
derived by Loh. From these two equations, any two of the three vari-
ables u, y and mn can be determined in terms of the remaining one.
The equations are still transcendental in the variables. To ease the
numerical computation, whenever n /m << 1 , Eq. (8-20) can be
approximated by ©

cosy +(C./C_)n
cos y = 2 L D (8-22)
1+(1/ﬁro)[(1/2u) - 1]

On the other hand, Eq. (8-21), when solved for n , gives

(l/ﬁro)[ (1/2u)-1] cosylog(u/uo)

= 8-23
n (CL/ Cp) log (u/uo) - Z(Yo -Y) ( )

Eliminating m between the last two equations yields

-1

C
TR Y SR

YoY% 2 CD Br [1-(cosy0/cosy)]

o
(8-24)

This transcendental equation can be solved for y in terms of u
Subsequently, the corresponding value of n can be obtained from
Eq. (8-23), or more accurately from Eq. (8-20), rewritten as
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CL 1 "o 1
E; (n-no) = (COSY'COSV0)+§;(1_T)(E'1) cosy

For mn _/m << 1, the right-hand side can be simplified. This gives
approximately the dimensionless atmospheric density n representing
the variation of the altitude

-1

C
L 1 1
n=m_ + (—) [(cosy-cosyo)+ pr_ (E-l)cosy]

(8-25)

Loh has shown that the second-order solution, as derived, is very
accurate compared with the exact numerical solution (Ref., 1). However,
it should be noted that the exact equations as considered by Loh are the
equations (8-4) obtained by taking z =1 . The theory is based on com-
putational experience showing that, during the process of integration,
the term G is nearly constant. This explains the accuracy of the
theory. A physical explanation of this phenomenon will be given in the
next section when we show how the second-order solution is reduced to
different first-order solutions.

8-4. REDUCTION OF THE SECOND-ORDER SOLUTION TO FIRST-
ORDER SOLUTIONS

As presented in Chapter 7, several authors have obtained first-
order solutions for different cases of entry trajectories. The proce-
dures followed in deriving these solutions are the same. First, the
type of entry trajectory is examined, and then approximations are made
based on physical reasoning, and the basic equations for entry are
simplified allowing simple integrations to obtain the solution in closed
form. Each of the solutions is then only valid for a specified type of
entry trajectory. The second-order solution obtained by Loh is a unified
solution in the sense that it is valid for all types of entry trajectories.
Hence, upon appropriate simplifications, it should be reducible to the
different types of entry solutions if the empirical observation made by
Loh is consistent with the physical entry phenomena.

The second-order solution derived by Loh as presented in the
previous section is reproduced here for convenience of discussion.

cosy +(C./C yn(l-m /)
cos y = o L D = (8-26)
1+(1/[3r0)(1—n0/1'1)[(1/2\1)-1]

2{y -vy)
u _ 0
log (TI;> T (T - (BT n (1/20)-1] cosy (8-27)

An alternate expression is



134 LOH'S SECOND-ORDER THEORY Ch. 8

. -1
L) u 1 [(1/2w) - 1]
— 1 —)| 1 +5—
(cD °g‘uo’{ “Br, [1-<C°SY0/C°SY’J
(8-28)

The solution has been derived based on the assumption that a combined
gravity and centrifugal term G is constant. This G term is defined
as

1 1
G = W(z-l)cosy (8-29)

As has been observed, this term represents the difference between the
gravity force and the centrifugal force along the normal to the flight
path. We shall derive the different first-order solutions from Loh's
second-order solution and at the same time try to justify his empirical
assumption.

8-4.1. Gliding Entry at Small Flight Path Angles

When the flight path angle is small, cos y = cos Y, * 1 . Thus,
Eq. (8-26) becomes, with n, T 0

C
2 Loy - (_L)n (8-30)

Or, solving for u

- -31
e 2[1+pr_(C /CL) n] (8-31)

which is identical to the first-order solution, Eq. (7-18), for gliding
entry derived in Chapter 7. Now, Eq. (8-29) with cosy =1 can
be written as

(—-1) = Gn (8-32)

By comparing the two Eqgs. (8-30) and (8-32), we see that the nearly
constant term G is, in this case, nearly equal to the constant lift-to-
drag ratio. It also can be seen in Eq. (8-6) that, for gliding entry at
small flight path angles, ¢ = cos y 1is nearly unity and the right-hand
side of this equation is nearly zero. The condition

L 1
C Bro n

1
(—Z-G-l) cosy=0 (8-33)
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is called the condition of equilibrium glide. That is, there is nearly
exact balancing among the lift force, the gravitational force and the
centrifugal force along the flight path for y = 0 . This assumption
was first formulated by Singer and Bredt in Ref. 3.

Now Eq. (8-28) is written as

- 1
Yoo ¥ ) ( /2)(CL/CD) log (u/uo)
cosy - cosy N (cosy-cosyo)+(1/ﬁro)[(1/2u)—1] cosvy
Br C
[e) L u 1 -1
. 5 (——-—C ) log (;—) ( 70 " 1) (8-34)
D o
The left-hand side of this equation, for y= y , can be approximated
by ©
YO-Y - YO-Y B 1 B 1
COSYy - cOsYy b 1 L1 T sinvy
o 2 sin 2(\/+yo)sm Z(yo-y) sin Z(y+y0)

On the other hand, for entry from near circular speed, 2u =~ 1 , and

the logarithm term on the right-hand side of Eq. (8-34) is a(ljpproximated
by

1
(5=-1)
u 1 2u 1
1 —) = = _ —) = m———— L = - —_—
og(u) log 2u 1og(2u) il + Zu(Zu 1)
© 2u

With these approximations, Eq. (8-34) is reduced to the final result
for the small flight path angle in the form

1

Br siny= - ————— (8-35)
o (CL/CD) u

which is identical to Eq. (7-17) derived in Chapter 7. Equations (8-31)
and (8-35) form the first-order solution of Eggers, Allen and Neice
(Ref. 4) for gliding entry at small flight path angle. The derivation of
Eq. (8-35) directly from the second-order solution is somewhat deli-
cate because it involves the ratio of small quantities, A more direct
way is to use the first Eq. (8-4) with the second term on the right-hand
side neglected. This is equivalent to assuming that the component of
the gravity force on the tangent to the flight path is negligible compared
to the drag force. Then,

du 2u

dn sin vy

Using the first-order solution (8-31) to evaluate the derivative du/dmn
yields directly Eq. (8-35)
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8-4.2. Gliding Entry at Medium and Large Flight Path Angles

When the flight path angle is not small, we neglect the terms with
coefficient 1/[3r0 in Loh's second-order solution. Then the Eqs. (8-26)
and (8-27) are reduced to

CL
cosy-cosy = —=— (n - no) (8-36)
D
and
2(y_-v)
u o
B exp [___—___} (8-37)
uo (CL/CD)

Equations (8-36) and (8-37) are the first-order solutions of Eggers,
Allen and Neice {Ref. 4) and Lees (Ref. 5) for skip entry and gliding
entry at medium and large flight path angles., They have been derived
by different approaches in Chapter 7. In the present analysis, this
case corresponds to considering the term G as negligibly small.
Hence, Loh's assumption, the empirical assumption of considering G
as nearly constant, is essentially correct.

8-4.3. Ballistic Entry at Large Flight Path Angles

For ballistic entry, C_ =0 . This, along with neglecting the
term with coefficient 1/[3r0 in Eq. (8-26), gives

cosy = cosy (8-38)

Since the flight path angle is nearly constant, the trajectory is essen-
tially a spiral in the plane of the great circle. If we keep the term
1/8r  in Eq. (8-26) to retain the small variation in the flight path
angle, then

1 1
BT n(n-no)('é;-l) (8-39)
(o]

cos Yy - COS‘Y0 = -

Now Eq. (8-27), with the constant term cos y as unity, is

1 u 1

2 - =- _ —_ -

vy - ¥) Fr_n log (=) (55 -1 (8-40)
o o
The ratio of the last two equations yields

a 2y -v) 2

(n-n) log(a—) N COSY - COSY - sinvy

o o o
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The last step in approximating the equation above is accomplished by

using y = v, 2s done previously. Hence, the expression for the veloc-
ity is
2(n-mn)
L . oexp [___.__ 2 ] (8-41)
U siny

Equations (8-38) and (8-41) form the first-order solution of Gazley (Ref.
6), Allen and Eggers (Ref, 7) and Chapman (Ref. 8) for ballistic entry
at large flight path angles, Since they are here derived from Loh's
second-order solution, they involve his assumed nearly constant G ,
the combined gravity and centrifugal force. Let us examine the validity
of this conjecture of Loh. Comparing the two equations (8-29) and (8-39)
we see that

cos y(cos Y, - cos y)

G = (m-m) (8-42)

Hence, except along the initial portion of the trajectory, this term can
be considered as smallif y =y . Infact, as has been presented in
Chapter 7, for the direct derivation of the first-order solution for
ballistic entry we put C. =0 , G =0 in the second Eq. (8-4) and have

L
upon integration

cos y = cos vy
o

Hence the constancy of the term G , being small in this case, is explain-
ed.

8-4.4. Skip Entry at Large Flight Path Angles

Along a skip trajectory, the vehicle enter the atmosphere, nego-
tiates a turn in the vertical plane and returns to the vacuum, Hence, if
the flight continues under the action of the gravity, each portion of
atmospheric flight is joined to the next by a ballistic arc. In Chapter 7,
it has been seen that the original solution was developed by Eggers,
Allen and Neice (Ref, 4) with the assumption that, in the turning process,
the aerodynamic lift is the predominant force and the gravity force can
be neglected. While the original derivation considers a flat Earth model,
we can retain the curvature of the Earth in the combined Loh's G
term and set it equal to zero compared to the lift term. That is, the
second Eq. (8-4) now becomes

C
2= (8-43)
" D
Integration gives the solution
CL
cosy-cosy = z— (n-n) (8-44)

D
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This equation can also be obtained from Loh's second-order solution,
Eq. (8-26) by neglecting the term G in it. Using the same assumption
in Eq. (8-27) we have for the speed

2(yv_-v)
u o
2 o oexp [-———] (8-45)
u (CL/CD)
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Chapter 9

Aerodynamic Heating

9-1. INTRODUCTION

The various first-order solutions developed in Chapter 7 are now
employed to analyze the thermal problems encountered in hypersonic
flight. The study is of fundamental interest to scientists and engineers
involved in design of space vehicles and in planning flight operations
for a given mission. In space-flight, achieving a maximum payload is
always a factor of prime consideration. A relatively important fraction
of this payload is used in the protection and cooling process during
entry if the spacecraft is to be recovered. During entry the total heat
transferred to a spacecraft from the environment must be absorbed by
some coolant material or radiated away. But any heat absorbing mater-
ial has a maximum allowable temperature and therefore can accept
only a given amount of heat per unit weight. Hence, the total heat in-
put to the vehicle must be kept as low as possible.

On the other hand, often the coolant material is simply the pro-
tective wall of the vehicle exposed to the oncoming airstream, and it
follows that the selection of this material is dictated by the required
structural strength and rigidity for the vehicle. An important criter-
ion determining the required structural performance of the vehicle is
the dynamic pressure encountered, which is a function of the entry
trajectory flown. In structural analysis, it is known that the strength
of the structure is a function of the stresses induced by the temperature
gradients within the material. Since these temperature gradients are
proportional to the time rate of heat input, the maximum time rate of
heat input is also a parameter of prime interest in the design of the
vehicle. Hence, three of the most important parameters of the entry
trajectory are the total heat input along the trajectory, the maximum
rate of aerodynamic heating and the maximum dynamic pressure.

This mechanism of heat flow into a vehicle during entry was in-
vestigated at an early time by Allen and Eggers (Ref. 1). Since then,
because of the many possible combinations of speed regimes and aero-
dynamic shapes, numerous technical papers have been published. But
the basic aspects of the aerodynamic heating during entry are still the
same. Only numerical factors for different heat transfer formulas and
their validity in terms of the regime of the speed vary with the different
authors. Hence, in this chapter, we shall follow Allen and Eggers (Ref.

1) in analyzing the three most important aspects of aerodynamic heating
139
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during entry; namely,

1. The total heat input, Q

2. The time rate and maximum time rate of average heat input
per unit area, q = dH_ /dt and
av av
(a )

avmax = (dH /dt)
av max

3. The time rate and maximum time rate of local stagnation
region heat input per unit area, q, = st/dt and

(qs)max = (st/dt)max :

For easy reference, the notation introduced in this chapter is
summarized below:

2

A surface area m

’

CF equivalent skin-friction coefficient

C_ specific heat of atmosphere at constant pressure,
k cal/kgm °K

2
h convective heat transfer coefficient, k cal/m sec OK

. . 2
convective heat transfer per unit area, k cal/m

A o

fraction of the heating rate at any point to the heating rate
at stagnation point

K constant3'7ré stagnation point heat-transfer equation,

k cal/m sec
q time rate of heat input per unit area, k caLl/rn2 sec
E dimensionless q
Q convective heat transferred, k cal
R radius of curvature of body surface at stagnation point, m
T temperature , °K

Subscript

o conditions at reference, initial condition
av average values
f final conditions
£ local conditions
e exit conditions
r recovery conditions
] stagnation conditions, also conditions at sea level

w  wall condition
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9-2. HEAT FLOW INTO THE VEHICLE

A vehicle entering a planetary atmosphere possesses a large
amount of total energy. When it encounters the atmosphere at high
speed, a shock wave system will form ahead of the part of the vehicle
exposed to the oncoming airstream. The resulting deceleration of the
flow induces the formation of a high temperature region in the inviscid
flow between the shock system and the body. In addition, the velocity
of the stream relative to the vehicle vanishes at the surface (zero-slip
condition), producing a further increase in the static enthalpy of the
fluid. Therefore, if the temperature at a small distance from the body
is higher than the surface temperature, thermal energy flows into the
body. The heat transfer is made up of two basic processes:

a/ convective heating associated with the transport processes
in the boundary layer,

b/ radiant heating associated both with the radiation from the
high-temperature gas to the vehicle, and the radiation away from the
hot surface of the vehicle.

To simplify the analysis, Allen and Eggers have assumed that:

1. Convective heat transfer predominates and radiation effects
could be ignored.

2. Real gas effects may be neglected.

3. Shock-wave boundary-layer interaction may be neglected.
4. Reynolds analogy is applicable.

5. The Prandtl number is unity.

Of the first assumption, the radiation effects that are neglected
include the radiation from the surface of the body and the radiation to
the body from the high-temperature disturbed air between the shock
wave and the surface. The first simplification is based on the fact that
the maximum allowable surface temperature will be about the same for
a variety of entry vehicles, regardless of shape, and as a consequence
the radiation away from the surface will be approximately the same.
Hence, neglecting this form of heat transfer should not alter the quali-
tative effect of the relative heating investigated. The second simplifi-
cation, namely neglecting the radiative heat transfer from the disturbed
air, is purely for qualitative evaluation and is not applicable to very
blunt and heavy shapes at entry speeds about 3,000 m/sec

In the second assumption, the neglect of real-gas effects in the
flow, particularly dissociation, on convective heat transfer is a good
assumption for entry speeds up to 3,000 m/sec . In any case, it is a
conservative assumption resulting in heating rates higher than actual
rates.

In the third assumption, it has been shown by Lees and Probstein
(Ref. 2), and by Li and Nagamatsu (Ref. 3), that shock-wave boundary-
layer interaction may significantly increase laminar skin-friction co-
efficients on a flat plate at zero incidence and at Mach numbers in ex-
cess of about 10 . Hence, this assumption should not be used for high
entry speed of the order of 6,000 m/sec or higher.
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The assumptions of Reynolds analogy and constant Prandtl num-
ber taken as unity also restricts the entry speed to the range of less
than 3,000 m/sec . It is for the purpose of simplifying the analysis
that these assumptions were made. Hence, they should be removed
for an accurate quantitative evaluation of the aerodynamic heating dur-
ing entry of a specific vehicle. Nevertheless, the qualitative and ex-
plicit results obtained with these assumptions remain generally valid
for an estimate of heat transport phenomena as a function of the aero-
dynamic shape of the vehicle, and the type of entry trajectory.

On the basis of the foregoing assumptions, for large Mach num-
bers, the difference between the local recovery temperature of the air,

Tr , and the wall temperature, Tw , can be expressed as
2
\%
(To- Ty F ch (9-1)

where the subscript £ denotes local conditions at a point on the body
surface.
Now, by Reynolds analogy, the local heat-transfer coefficient

hl , for the assumed Prandtl number of unity, is

1
h, = = C \% -2
¢ T Z % Cp 1y (9-2)
where Cp, is the local skin-friction coefficient based on conditions
just outside the boundary layer.

The time rate of convective heat transfer from the air to any
element of surface of the body may be expressed by

S - n - -3
dat ¢ Tem T (9-3)
Hence,
dH v2
T = 1c (Cg Cp eV, (9-4)
P £ /4

Equation (9-4) can be integrated over the surface A of a body to
yield the time rate of heat input

a9

- - f dH 4a = L ApV (9-5)

where assuming C = C

1 pf)(_v_f)
Cr T 2 {CFIZ (T v/ 94 (9-6)
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The parameter C_ is termed the ' equivalent skin-friction co-
efficient'" and will be assumed constant at a mean value for a particular
vehicle (Refs. 4-5).

The time rate of average heat input per unit area may be obtained
from Eq. (9-5) as

aQ _ 1 3
& - 7SV (9-7)

o
<
IR
e
3 b

Consider next the local convective heat transfer at a stagnation
point in the region of the foremost part of the body. According to Lees
(Ref. 6), the heating rate at any point on a body is a fraction

9
k = = (9-8)
qS

of the heating rate q, at a stagnation point of radius of curvature R

n v ™
X £
q_ = ( ) (— ) (9-9)
S VR Po Vo

where « is a constant. The constant exponents n and m depend on
the type of boundary-layer flow. For laminar flow, we have n=1/2
and under the assumptions that the viscosity coefficient varies as the
square root of the absolute temperature and that flow between the bow
shock wave and the stagnation point is incompressible we can use the

value m = 3 (Ref. 1).
> (9-10)

Hence, we shall consider

9-3. DIMENSIONLESS VARIABLES

With the expressions obtained for different thermal quantities in
terms of the atmospheric density p and the speed V , we are now in
a position to study the heating during entry using the first-order solu-
tions derived in Chapter 7. The dimensionless variables introduced for
developing first-order solutions are

u o= - (VZ) > b (9-11)
= — s ’rl — -
2 goro 2mp

where the subscript zero denotes a reference condition, usually the
initial condition.
It is convenient for the analysis to write the thermal quantities
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in terms of these dimensionless variables. Using definitions (9-11) in
Eq. (9-7), the time rate of average heat input per unit area is

3/2
. [ Vemp 3 ]
dav \: SCD (goro) CF Qav (9-12)
where
_ 3/2
= n u (9‘13)
av

The expression for the time rate of local heat per unit area, Eq.
(9-10), is

4k m -
a, =|—= q (9-14)
s [ [R_ SCDpO ] s

where

_ 1/2 3/2
q = m u (9-15)

Finally, the total heat input is obtained by integrating Eq. (9-5).
It is advantageous to integrate this equation with respect to u , though
the relation (7-12) of Chapter 7, written as

(9-16)
a0 o D m, (9-17
du - 2 SC 860 -17)
D
Integrating from u, to u
AC
EF m
Q = 2 <—S—C-J_> goro(uo-u) (9-18)
D
9-4, ENTRY OF A BALLISTIC VEHICLE
For ballistic entry, the solution obtained in Chapter 7 is
2(n-mn)
— = exp [————-—O——] (9-19)
u sin vy
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Hence, with no':f 0

AC

B F m 2n
Q = 2 (SC ) €o%0% I:l T S¥P Tin N ] (9-20)
D o
2
Since u_ = (1/2) V' /g r , the fraction of the initial kinetic
energy which 1s transferred to the vehicle in the form of heat can be
written as
-—--—-Q = l(———ACF)l:l exp ————-Zn ] (9-21)
1 mVZ 2 SCD sin y
2 o
For a relatively light vehicle Ng >> 1 and since sin Y, < 0,
the ratio is reduced to
A
i S (——CF> (9-22)
1 mVZ 2 SCD
2 o

where subscript f denotes the final condition.

To minimize the heat convected to the vehicle, the ratio of the
skin-friction coefficient C_ to the total drag coefficient C_ must be
made as small as possible,” This is achieved by a blunt body. Since a
light vehicle is subject to sharply decreasing speed due to the aero-
dynamic force, Eq. (9-22) can also be obtained directly from Eq. (9-18)
by taking u.= 0 . For a relatively dense ballistic vehicle , ng is
small and

Zng Zng SCpPe
1 - exp sin s o sin = - mf sin
Yo Yo Yo
Hence,
O PACE
T2 " impeiny ©-23)
= mV o
2 o

The skin-friction coefficient must be minimized to have the smallest
total heat transferred.

With the solution (9-19) the dimensionless time rate of average
heat input per unit area, Eq. (9-13), was found to be

- 3/2 3n
= u n exp (———
av o siny_

) (9-24)

The expression has a maximum value when
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1.
n = - 3 siny, (9-25)
This gives

- _ 1 3/2 .
(a = -3 Y sin vy (9-26)

av)max

This is only possible with a vehicle such that

n, > - 3 sin v, (9-27)

where ng denotes the value of m at sea level, The speed at which
the maximum average heating rate occurs is obtained by substituting

(9-25) into (9-19)

(9-28)

_ v
A YER (2R VE

We notice that this critical value of the speed is independent of the ve-
hicle physical characteristics. The altitude h at which the maximum
heating rate occurs is obtained by solving Eq. (9-25) for h

3S5C_p
D s ] (9-29)

1
h=3 1°g['mryo—

This critical altitude is a function of the vehicle drag parameter and
entry angle. If condition (9-27) is not satisfied, then the maximum
heating rate occurs at sea level,

3n
@ ) = u 3/Zns exp (—-—S) (9-30)

sin vy
o}

Figure 9-1 plots the average heating rate, q /u 3/2 versus
the "altitude' 1/m for different values of the entry angle Yo As in
Chapter 7, the diagrams can be used for any type of ballistic entry ve-
hicles. The line of maximum heating rate is the hyperbola

q

1 av 1

(-;]) (——3/2) = 3 (9-31)
Yo

If we consider the dimensionless time rate of local heat input per
unit area, Eq. (9-15), then using the solution (9-19) for ballistic entry,
we have
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(9-32)
ogbww 1o 1w b
0 003 006 009 oIz 0.5
Tav /UE/Z
Fig. 9-1. Ballistic entry at large flight path angle.
Average heating rate - Altitude diagram for several values
of the initial angle.
The expression has a maximum value when
> s (9-33)
= - = in -
" 6 Yo
This gives
q.) SR = s 9-34
(qs max o T e MY, (9-34)

The altitude where the maximum heating rate occurs, as a func-
tion of the vehicle drag parameter and entry angle is given by

3SC_p
h= = log (- —o—tr (9-35)
p mf3 sin Yo
where p is the atmospheric density at sea level. The altitude is

positive i
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sin Yo
n,G > - T (9-36)

If the inequality is not satisfied, the maximum heating rate occurs at
sea level and has the value

—_ 3“
G = u M g () (9-37)

s'max o sin y
o

Figure 9-2 plots the heating rate -c; /u 3/2 versus the altitude 1/mn
for different values of the entry anglse Oy . The diagrams can be
used for any type of ballistic entry vehicle. The line of maximum heat-
ing rate is the curve

q
1 s 1
() <—_3/z> = 3 (9-38)
u

1000

T T

100

T T T

T IIIII!I

o | | | I |
(o] 0.05 0.10 0.5 0.20 0.25

Gs /u°3/2

Fig. 9-2. Ballistic entry at large flight path angle,
Heating-rate - Altitude diagram for several values
of the initial angle.
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9-5. ENTRY OF A GLIDE VEHICLE

For gliding entry, the solution obtained in Chapter 7 is

(1-2u)
n o= (9-39)
26r_(C /C)u

The heat transfer to the vehicle is given by Eq. (9-18) which,
for u, = 0 is reduced to the same expression (9-22) as given for a
light ballistic entry vehicle.

The time rate of average heat input per unit area is obtained by
substituting solution (9-39) into Eq. (9-13)

— _ (1-2u) ul/2

It follows that the maximum average heat input rate occurs at

= (9-41)

This value of the speed is independent of the lift-to-drag ratio and
vehicle physical characteristics. The corresponding maximum value
of the average heat input rate is

—_
|

1
) = (9-42)
av'max 3 (6 BTO(CL/ CD)

If we consider the dimensionless time rate of local heat input per
unit area, Eq. (9-15), then using the solution (9-39) for gliding entry,
we have

(1 - Zu)l/2 u

s Mzsro(cL/cD)

The maximum time rate of local heat input occurs at

(9-43)

0 |
i

v —[_39- (9-44)

L —
us=z — =
oo
Again, this value of the speed is independent of the lift-to-drag ratio
and vehicle physical characteristics. The corresponding maximum
value of the local heating rate is
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{a.) = (9-45)
s max /
3 6Bro(CL/ CD)
9-6. ENTRY OF A SKIP VEHICLE
For skip entry, the solution obtain in Chapter 7 is
CL
cosy-cosy = —=(n-n) (9-46)
o C o
D
for the altitude and
[ 2y -v) ]
— = exp | =7 (9-47)
u CL/CD

for the speed. The flight path angle vy is used as the independent var-
iable.

First, for the total heat input, the integral (9-18) is valid. Letu =
u, be the value of u at the first exit. The resulting heat flow after N
the first skipping phase Q1 is

AC
F

m
9 T T (ﬁ)g (o) (©-48)

After a free flight in space, the vehicle reenters for another skipping

phase with the same entry speed u, . Then, if u is the exit speed
. . . n

at the end of the nth skip, the total ]heat input is

ACL /o -
Q = — (—) g r E :(u -u ) (9-49)
2 SCD o o k=1 k-1 k

It is clear that we have finally

ACF m
Q= 7 (F) 8o (%70 (9-30)
D
if u is the initial value of u and u_, 1is its final value.

°One may be led to believe that the final value u_ is small. In
general, a skipping trajectory is possible for high vaIfues of C /CD
coupled with a small flight path angle vy . For constant CL/&‘
the skipping phase may end at a relatively high value of u and]%he re-
maining portion of atmospheric flight is effected as a glide trajectory
at high lift-to-drag ratio. In any case, since the integral (9-18) is
valid for all types of entry trajectories, and for lifting entry ug = o ,
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the resulting total heat input for a skip trajectory is

_.Q_f__ 1 (ACF) (9-51)
1 2 2 SC -

-~ mV D

which is identical to the result obtained for light ballistic vehicle entry,
Eq. (9-22), and also for gliding entry.

Now, using the Egs. (9-46) and (9-47) in the expression (9-13)
for the time rate of average heat input per unit area, we have

_ 3/2 (cosy—cosyo) [3(Y0-Y) ]
————— exp

q = u — (9-52)
av o (CL/ CD) (CL/ CD)
The maximum heating rate occurs when daav/dy =0.
CL
3(cos y-cosy ) + (—) siny = 0 (9-53)
o CD

As in Chapter 7, we can write this equation as a quadratic equation in
tan (y/2) . Upon solving we have the critical value of y where the
maximum heating rate occurs

2 2
(C /C)-\/(C /C_ )" +9sin y
tan g— = L D L D o (9-54)
3(1 + cos yo)

In general, a skip trajectory is effected at high lift-to-drag ratios and
small entry angles such that

9 sinZ Y
—————22 << 1 (9-55)
(CL/CD)

so that, in this case, the critical y can be evaluated from

v
tang- =~ - S sin2 = (9-56)

2
(C/Cp

In terms of the flight path angle, the time rate of local heat input
per unit area, Eq. (9-15), is

1
- 372 (cosy-cosy) /2 [3(YO-Y) ]
q. = u exp | w5 (9-57)
s ) 1/2 (CL/CD)

(C /Cp)
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At the point of maximum heating rate

CL
6(cos y - cos Y,) +(-6—) sin y = 0 (9-58)
D

Solving for this equation, we have

2 . 2
oan Y (CL/CD) - \/(CL/CD) + 36 sin Y, ©-59)
2 6(1 + cos yo) -

In the case where assumption (9-55) is valid, we have approximately

6 2 Yo
tan L = - —2—— sin” =2 (9-60)
2 (CL/CD) 2
The maximum values for E and E are obtained by using the
corresponding critical values of vy . fn the case where the smal]zangle

approximation is used, since the critical y is of the order of Yo ¢
we have explicitly

u 3/ ZYZ 3y
(@) = —S—2—  exp [—————° ] (9-61)
av' max (c./C.)
Z(CL/ CD) L D
and
u 3/2y 3y
(@) = —Em—m— exp [———° } (9-62)
s'max {(C./C)
Z(CL/CD) L D

9-7. COMPARATIVE ANALYSIS OF THE PERFORMANCE OF
HYPERVELOCITY VEHICLES

Any detailed analysis of the performance would require variation-
al theory and hence is not within the stated goal of this work. Never-
theless, since some of the performance criteria such as range, time of
flight, speed and design parameters, such as convective heat and heat
rate, are obtained in explicit form, it is possible to have some quali-
tative appraisal of the performance of a hypervelocity vehicle using
different entry modes. In the past, space vehicles were designed for
a specified entry mode. In the beginning, they were all of the ballistic
entry type vehicles. A new generation of space vehicles has lifting
capability. Through attitude control the lift coefficient can be modu-
lated in the range from CL =0 to CL = CL . Correspondingly,
for a specified lifting vehicle, with a prescribzréaﬁrag polar, the lift-
to-drag ratio can be modulated from zero to (Cy/ Cplmay- We shall
restrict ourselves to performance at constant lift-to-drag ratio. Lift-
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modulation to achieve prescribed constraints will be examined in the
final chapters.

Since we consider a versatile lifting vehicle, it is proper to dis-
cuss entry modes rather than entry vehicles, The three entry modes
that have been discussed are:

1. Ballistic entry.
2. Glide entry.
3. Skip entry.

Any vehicle considered is supposed to have the capability of
entering a planetary atmosphere in any of these three modes or using
any combination of modes in following an overall, composite trajectory.

First, from the range standpoint, ballistic entry is the least
effective mode. For skip entry, the range for each separate skipping
phase is short but each atmospheric portion of the flight trajectory is
followed by a Keplerian portion in space adding significant distance to
the total range. As a matter of fact, with a high initial entry speed, a
skip trajectory can achieve infinite range while a glide trajectory total-
ly immersed in the atmosphere is condemned to a finite range. Thus,
there exists an initial speed such that there is equal range for skip
entry and glide entry, with gliding flight achieving the longer range at
lower initial speed.

From considerations of aerodynamic heating, with the possible
exception of the relatively dense vehicle in the ballistic mode, in all
three modes, the hypervelocity vehicle expends the major part of its
kinetic energy in flight and receives in exchange heat by convection
according to the simplified formula

Qf 1 ACF
T oz Tz \sc_ (9-63)
EmV D

To minimize this fraction, that is to reduce the total heat transfer by
convection, it is necessary to determine how the ratio of friction force
to total drag force can be reduced. This matter was discussed in de-
tail in Ref. 1 in connection with a purely ballistic vehicle and it was
demonstrated that the ratio could be reduced by employing high pres-
sure-drag shapes, that is, blunted shapes. On the other hand, in the
skip and glide modes the geometric configuration of the vehicle will be
slender and the above ratio may reach the order of 0.1 which is quite
high for vehicle materials to absorb. In skip or glide modes one must,
therefore, consider the possibility of the vehicle radiating a signifi-
cant part of this heat back to the surrounding atmosphere. This prob-
lem has been discussed in Ref. 4, and it is found that in a high lift-to-
drag ratio glide mode, if the surface temperature is allowed to reach
a high level, the vehicle can radiate heat at a rate equal to the maxi-
mum average convective heat transfer rate. Furthermore, in the gli-
ding mode the vehicle may require less coolant than in the ballistic
mode. The reason for this is that although in the gliding mode the
same vehicle will receive more heat, the gliding time is much longer,
by a factor of perhaps one hundred. Therefore, with a sufficiently
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high radiant heat transfer rate the glide vehicle can return to the at-
mosphere most of the heat it receives by convection.

In general, for a lifting hypervelocity vehicle a combination of an
initial entry at a high angle of attack using a pure ballistic mode,
followed by a tip over to lower the angle-of-attack, and continued with
a high lift-to-drag ratio gliding mode, looks promising from the stand-
point of aerodynamic heating.

For manned flights, another factor to be considered is the peak
deceleration. Along an entry trajectory we consider the points where
the quantities @ , ¢ and (a/g) reach their respective maximum
values. The solutions obtained in Chapter 7 and in the present Chapter
are summarized in Table 9-1.

Table 9-1. Points of maximum as , Eav and (a/g)
— - a
cls)rnax (qav)max (g max
Ballistic -1 sin = —l—sin -1 sin
Tt Y, R T nETZ Y,
Y Y Y
v 6 sin2 — y 3 sin2 —-2—9- y 2 sin2 —?0
Skip tant =- ————|tan+ = - ———— | tand = . —/————
2 (CL/CD) 2 (CL/CD) 2 (CL/CD)
\%
Glide v _ . 13_9- v . V—T; _V_ .
VEoTo 670 €070

_ In the ballistic mode at nearly constant angle vy , the maximum
of qs occurs first, at the lowest value_of n , (hence at the highest
altitude), then comes the maximum of qav , and finally the maximum
of (a/g)

In the skip mode the negative flight path angle increases from the
initial value vy to y = 0 when the vehicle reaches the lowest point.
From the Table, the three maxima occur in the same order.

Finally in the glide mode, as the speed decreases continuously
along the flight trajectory, again the vehicle reaches (q ) first,
. . . s m
and then (q )max ., In the meantime the deceleration bufl}és up to

reach its maximum at the final time. _ _

The respective maximum values of q_, ¢q and (a/g) are

R . s av
summarized in Table 9-2.



Ch. 9 AERODYNAMIC HEATING 155
Table 9-2. Maximum values of —c—ls , E and (a/g)
av
— — a
(qs)max av)max g ‘max
. 3/2 . .
3/2 51ny0 uo s1nyo Brouo 51ny0
Ballistic u - - — -
o] be 3e e
3/2 3/2. 2 2
3
Skip Yo Yo exp 3Yo Yo Yo exp Yo Brouo\{o exp 2Yo
2(C
\IZ(CL/CD) CL/ CD ( L/CD) CL/CD (CL/CD) CL/CD
1 1 1
lid
Glide \/__ (CL/CD)
3 \,()Bro(CL/CD) 346 ﬁrO(CL/CD)
From the formulas, it is seen that using a high lift-to-drag ratio,
c./C has the effect of decreasing (q ) , and also decreasing

th% peB( deceleration for both ballistic andsglﬁag entries. Then, for
entry trajectories with an upper constraint on the peak deceleration, it
is suggested that high lift be used to reduce the deceleration.
tunately, because of the lift-drag relationship and because of heating
considerations, the high drag portion of the drag polar is generally
employed so that when the lift-to-drag ratio increases, the drag co-
efficient decreases (Fig. 9-3) and from the expression (9-63) for total
heat transferred by convection, the heat absorbed increases.
effects, which work at cross purposes, will be discussed again in
Chapter 12 in connection with the concept of the entry corridor.

CL

Fig. 9-3.

CL
D mux—\
\—HIGH DRAG
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Drag polar for a lifting hypervelocity vehicle.



156

AERODYNAMIC HEATING Ch. 9

References

Allen, H.J., and Eggers, A.J., Jr., "A Study of the Motion and
and Aerodynamic Heating of Missiles Entering the Earth's Atmo-
sphere at High Supersonic Speeds, ' NACA TR 1381, 1958,

Lees, L., and Probstein, R.F., "Hypersonic Viscous Flow Over
a Flat Plate,' Princeton University Aeronautical Engineering
Laboratory, Report No. 195, 1952.

Li, Ting-Yi, and Nagamatsu, H. T., 'Shock Wave Effects on the
Laminar Skin Friction of an Insulated Flat Plate at Hypersonic
Speeds, " GALCIT Memorandum, No., 9, 1952.

Eggers, A.J., Jr., Allen, H, J., and Neice, S.E., ""A Compara-
tive Analysis of the Performance of Long-Range Hypervelocity
Vehicles, " NACA TN-4046, 1957,

Miele, A., Flight Mechanics, Vol. I, Theory of Flight Paths,
Addison- Wesley Publishing Company, Inc., Reading, Massachu-
setts, 1962,

Lees, L., "Laminar Heat Transfer Over Blunt-Nosed Bodies at
Hypersonic Flight Speeds, ' Jet Propulsion, Vol. 26, No. 4,
pp. 259-269, April 1956.




Chapter 10

Yaroshevskii’s Theory for Entry into
Planetary Atmospheres

10-1. INTRODUCTION

The analytical development in Chapters 7, 8 and 9 presents the
classical theories for entry into a planetary atmosphere. The simple
results given are adequate for the purpose of a preliminary estimate
of the variations of the trajectory variables along an entry flight path
and the different physical characteristics expressed as functions of
these entry variables. Beginning in this chapter, we shall present
various modern theories for planetary entry.

First, with the physical understanding of the phenomena associ-
ated with an entry trajectory as presented in the previous chapters,
scientists and engineers are led to formulating very general assumptions
which are valid for nearly all types of entry trajectories. This results
in a set of equation of motion valid for all types of entry trajectories of
practical interests. Furthermore, if these equations can be presented
in dimensionless form, in the same way as has been done in the pre-
vious chapters for first-order analysis, the results obtained can be
applied to any entry vehicle regardless of its physical characteristics.
This type of approach is illustrated by Yaroshevskii's theory presented
in this chapter, and Chapman's theory in Chapters 11 and 12.

Next, if the restrictive assumptions introduced are removed
while the universal character of the entry equations is still preserved,
the exact dimensionless equations of motion for planetary entry are
obtained and they are valid for all types of entry trajectories of any
entry vehicle regardless of its mass, size and aerodynamic character-
istics. Furthermore, the trajectory considered can be completely
immersed inside the atmosphere or can be partly outside of it in the
form of Keplerian arcs. This also will include orbital motion of
satellites at very high altitude subject to Newtonian gravitational attrac-
tion and infinitesimally small atmospheric drag. This analysis will be
considered in the following chapters.

Finally, one may consider the case where the aerodynamic con-
trols in the form of the lift-to-drag ratio and the bank angle are not
constant but can be modulated according to a certain law in order to
achieve a specific purpose. This type of trajectories will be analyzed
in the last chapters.

157
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Yaroshevskii's theory for entry trajectory is a semi-analytical
theory. Using some simplifying assumptions, he derived a nonlinear,
second-order differential equation which can be integrated analytically
by using series expansions. To some extent, Yaroshevskii's theory is
a special case (Refs. 1,2) of a more sophisticated theory developed by
Chapman (Ref. 3). Because his theory has some features of merit, we
shall present it in this chapter. Chapman's theory will be developed in
the next chapter, and the connection between the two theories will be
examined.

10-2. SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATION FOR
ENTRY TRAJECTORY

Consider the basic equations for planar entry derived in Chapter

2
2
av . ————pSCDV sin
a - T T 2m T B
2
&y pSC Vv v2
\' =z ————— . (g- — ) cOS Y
dt 2m r
% = Vsiny (10-1)
Strictly speaking, as was mentioned in Section 6-2, the lift and
the drag coefficients are functions of the angle of attack o , of the
Mach number M , and the Reynolds number R . For constant
angle of attack, Yaro shevsku assumed that the lift coefficient C ,
and the drag coefficient are functions of the Mach number. For

an isothermal atmosphere, ]%hls is just a function of the speed, V

If, in the equation for V , we neglect the tangential component
of the gravity force, and in the equation for y and r we use the
approximation of small flight path angle, we can write the Eqs. (10-1)
as

2
av _ pSCL(V) V
dt 2m
SC_(V) v 2
it AN A
dt 2m g T
dr
= = Vy (10-2)

The first of these equations can be used to change the independent
variable to V
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dr 0 __ Y
av pSCD(V)V

|

V%:- C—L +—‘—'—'r—2 (10-3)
D pSC (V) V
D
Zm
To derive his second-order nonlinear differential equation for
entry into a planetary atmosphere, Yaroshevskii used an independent
variable x , and a dependent variable y defined as

v CD(l) dav

Cc_ (1) S [r
D ]
y ~om _ﬁ P (10-4)

where T is the radius of the planet and V is the dimensionless
speed

v
\jer,

At this point the following remarks are in order:

a/ The altitude h is small compared to the radius r of the
planet. Hence, g is approximately constant. °

b/ For the same reason, -\/gT can be considered as the cir-

Vv =

(10-5)

cular speed at the entry altitude. Hegce, if the entry is from circular
speed, the initial value of V is unity, and from the definition (10-4)
of the independent variable x , this variable increases monotonically
from the initial value x =10

If a strictly exponential atmosphere is used, then

%E = - pdr (10-6)

where B is constant. Hence, from the definition of y

dy

- = - Bdr (10-7)

On the other hand
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= - - (10-8)

With these differential relations, and the definition (10-4) of x and vy ,
the Eqs. (10-3) are

o OV LT 2

dx CD(l) \/E?o

where in the equation for y , the approximation of small altitude,
r=r , has been used.

OEliminating v between the two equations above, we obtain a
single equation of the second-order

(10-9)

1

- —_—1
2 c. [Vx)] =2

d _ L vV (x)

—L’dxz = . ,/aro Y + . (10-10)

This equation is Yaroshevskii's nonlinear, second-order differ-
ential equation for studying entry into a planetary atmosphere. The
quantity [3r is constant, and for the Earth's atmosphere we can take

Br as about 900 . The equation takes into account the effect of
the Mach number on the lift and the drag coefficients at constant angle
of attack. In general, this equation has to be integrated numerically.
In the special case where C_ and C_ are independent of the Mach
number, the equation can be 1ntegratela using some appropriate series
expansions, depending on the type of entry trajectory.

Once the variable y is known as a function of the independent
variable x , other quantities of interest can be evaluated.

First, the flight path angle is given by the first of the Eqs. (10-9).

For the time of flight, we write the first of the Eqs. (10-2) in
terms of x and y

g?x = yfbe v Vix) (10-11)

Hence, the time is obtained by performing the quadrature

X

\/5_8 ¢ = f —dx (10-12)

x, yV(x
i
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where x, is the initial value of x . The distance travelled, s , as
projectec’{ on the surface of the planet, is given by the kinematic rela-
tion

r

ds de=—-2Vcosy
r

a - Yo at

Hence, for small flight path angles, and with the approximation of

small flight altitude relative to roo. o we have
ds | Jer Vix) (10-13)
e ~ g o x B

Using Eq. (10-11), it is seen that the distance travelled is given by the
integral

X
- (10-14)

The deceleration along the trajectory, during entry, is -(dV/dt)
Using the first of the Eqgs. (10-2), and the definitions (10-4) and (10-5),
we have

C [ Vix)]
dv ~ I D =2
(dt /g) = ﬁl‘o W)—y \% (X) (10.15)

Other physical quantities of interest, such as the heating rate and the
total heat absorbed, will be given in the immediately following section
when we consider entry at constant lift-to-drag ratio.

10-3. ATMOSPHERIC ENTRY AT CONSTANT LIFT-TO-DRAG RATIO

In practice, the simplest and most interesting case is that obtain-
ed for constant lift and drag coefficients. This case is commonly en-
countered along the main part of the entry trajectory where, at high
Mach number, the lift and the drag coefficients are independent of M .
It is also along this portion of the trajectory that the deceleration and
the heating rate reach their maxima,

From the definition of x , Eq. (10-4), it is seen that when C
is independent of the Mach number

v )

D

-X

x = log V=e (10-16)

The basic nonlinear differential equation, Eq. (10-10), is reduced to

2 C 2x
d ZX - \/Elz CL + & -1 (10-17)
dx D y
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This equation can be integrated by using an appropriate series expan-
sion, depending on the type of trajectory.

While the distance travelled, Eq. (10-14), remains the same, in
the case of constant lift-to-drag ratio entry, the expression for the time
of flight and the deceleration, Eqgs. (10-12) and (10-15) become

X Xd
Ve t = [ == (10-18)
x. y
1
and
- av -2
a = - (F/® =~/er ye % (10-19)

In the numerical computation, we can use the following approximate
characteristic values of the Earth

—1- = 7000 m , dﬁr = 30
p o)

1 r
—— =~ 26.5 sec , —éz:Zlem
Pg
Voireular «/gro ~ 7850 m/sec  (10-20)

For a strictly exponential atmosphere, the dependent variable y is
simply proportional to the atmospheric density p . With the approx-
imate value given above,

y = 1.04X106Bp (10-21)
where B is the drag parameter

SC
2
B = D m [/ kg (10-22)

mg

The aerodynamic heating rate per unit area on a body reaches its max-
imum at a stagnation point of radius of curvature R , and is given by

(Refs. 4-6)

p Vv (10-23)

where the constants C, n and m depend on the type of boundary
layer. For laminar flow, n = 1/2 , and the value of m has been
given by varicus authors as 3.1<m <3.25 . For his numerical
computation Yaroshevskii adopted the following formula as given by



Ch. 10 YAROSHEVSKII'S THEORY 163

Kemp and Riddell, (Ref. 7), for the stagnation point heat transfer rate:

4 3.25
) 0 2 1
8.8 x 1 1/ \% > kca (10-24)

s \/’1; ~ 2

m sec
For a constant drag coefficient, for which the relations (10-16) and
(10-21) apply, this formula becomes

. - 85y0.5 e-3.25x keal (10.25)
- . 0. 2 -
s RO SB 5

m sec

If there is a turbulent boundary layer, the aerodynamic heating rate
per unit area reaches its maximum at the section where the transition
through the speed of sound takes place, (Ref. 8). The formula (10-25)
for laminar flow is replaced by, (Ref. 1),

) 25y0.8 e—3. 19x keal (10.26)
9 = 0.2 _0.8 z -
R B m sec

for the heat transfer rate at the turbulent sonic point.
Another quantity of interest in aerodynamic heating is the total
heat absorbed per unit area

Q
< - [ qat (10-27)

where A is the whole surface wetted by the boundary layer, and q

is given by Eq. (10-25) for laminar flow, and Eq. (10-26) for turbulent
flow. The integration with respect to t can be changed into the inte-
gration with respect to x , by the use of Eq. (10-18),

Q x -2.25x%
e

s 2250 kcal
A~ 0.5 0.5 / 05 T (10-28)
R B X, y m
and
S __ees fx 217 keal (10-29)
A 0.2 _0.8 0.2 2 B
R B x, y m

It is seen that, if the basic nonlinear differential equation for
constant lift-to-drag ratio entry, Eq. (10-17), can be integrated, the
variable y is obtained as function of the independent variable x
The deceleration during entry is given by Eq. (10-19), while the time
of flight, the heating rate and the heat absorbed are obtained explicitly
or by quadratures through Eqs. (10-18), (10-25) - (10.26), and (10-28) -
(10-29), respectively.
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10-4. SERIES SOLUTIONS OF THE BASIC NONLINEAR DIFFEREN-
TIAL EQUATION

The basic nonlinear differential equation for constant lift-to-drag
ratio entry, Eq. (10-17), can be integrated approximately by using
series solutions. We shall integrate this equation in the following
cases.

10-4.1. Ballistic Decay From Satellite Orbits

For ballistic entry trajectory, CL/ CD =0 , and Eq. (10-17)
is reduced to

dZ er 1
_.XZ z — (10-30)
dx y

Under the action of atmospheric drag, acting primarily at periapsis, a
high altitude satellite orbit tends to a circular orbit before effective
entry. Hence, in this case, for the portion of the trajectory where
effective entry is achieved, Eq. (10-30) is integrated with the initial
conditions

x, =0 ,y(0)=10, y'(0) = 0 (10-31)
where the prime denotes the derivative taken with respect to x . The
differential equation (10-30) has a singularity at y =0 . To remove

this singularity, we notice that, in the neighborhood of x =0 , the
equation becomes

yy'" = 2x (10-32)

This equation has the solution

y =4/—§-x3/2 (10-33)

satisfying the initial condition (10-31). Hence, we can seek a solution
of the differential equation (10-30) in the form

_ [8 .3/2 2 3
= 3x (a0+a1x+ azx +a3x + ...) (10-34)

Writing Eq. (10-30)

2 3 2
yy'"' = 2x + 2x +%x +-3-x4+... (10-35)

substituting the series (10-34), and equating coefficients of like powers

in x , we obtain for the coefficients ay
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a

1
2°324 33  F785z 0 ¢ (10-36)

’

._.
o~

The recurrence formula for computing the coefficients a is

k-1
k
_z_ 1 X (2m+1)(2m+3)a_a
a a (k + 1) 3 m=1l m k-m (10-37)
k (2k+1)(2k + 3) B
1+
3
It can be seen that
2 k
Iak| < 1/{k+1) (1. 5) (10-38)

Therefore, the radius of convergence of the series is not less than

1.5 . The series solution is sufficiently accurate to evaluate the max-
imum deceleration and heat transfer rate which occurs during the fun-
damental part of the entry trajectory where the main assumptions used
for the derivation of the nonlinear differential equation are valid.

For x <1 , we need only three terms of the series, and the
truncated y function for ballistic entry from circular orbit is
2
/8 X X 3/2
= - =+ = 0-
y 3(1+6+24) X (10-39)

From Eq. (10-19), the deceleration is

/8£3r 5/2 7/2
av B o 3/2  x x -2x
- (-d—t-/g) = 3 (x + —6+ ———Z-Z—) e (10-40)

The peak deceleration is obtained by taking the derivative of this equa-
tion with respect to x and setting it equal to zero. The resulting
equation is

4x3 + 9x° 4+ 76x - 72 = 0 (10-41)

The solution of this equation gives the conditions at maximum deceler-
ation:

v
x = 0.835 , = 0.434
\/ 8T,
y = 145 , -(a/g) = 0.277 ,[pr_ (10-42)

Substitution of the solution (10-39) into Eqgs. (10-25) and (10-26) yields
the expression for the aerodynamic heating rate per unit area for lam-
inar flow, (at the stagnation point), and turbulent flow, (at the sonic
point), respectively. The maximization of these functions provides:
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The maximum heating rate along the trajectory under laminar
flow conditions is characterized by:

x = 0.237 , 4 = 0.789
gr,
7.4 kcal
y = 0.197 , q = . == (10-43)
s 0.5_0.5 2
max R B m sec

The maximum heating rate along the trajectory under turbulent flow
conditions is characterized by:

x = 0.4 , —— = 0.670
'\/gro
. kcal
y = 0.444 , ¢ = 3. 65 =2 (10-44)
t 0.2 0.8 2
max R B m sec

10-4. 2. Ballistic Entry With Various Initial Flight Path Angles.

The basic equation for ballistic entry, Eq. (10-30), is now inte-
grated with nonzero initial flight path angle. For entry from circular
speed, the initial conditions are

x = 0, y(0) =0, y(0) = ¢ (10-45)

where, from the first of the Eqs. (10-9)

Cl = - .”31‘0 Yi > 0 (10-46)

First, we consider the case of small values of ¢ . The case
c. = 0 has been considered in the previous section. "For small
values of x , we have approximately the same Eq. (10-32). We re-
scale the initial conditions (10-45) by using the transformation of vari-
ables

X 3
n=-—, y= Clg(n) (10-47)
1

2
d 2
£ - 4 (10-48)
dn £

It has the same form as before, but with the new standard initial
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condition

0, g®)=0, =2 =1 : (10-49)

3
1l

Hence, Eq. (10-48) with the initial conditions (10-49) can be integrated
numerically once for all, and by the transformation (10-47), the result
obtained can be used for any small value of ¢, = - \/E Y.

Fig. 10-1 plots this solution as a solid line, wllu'.le the dashed line is
the exact analytical solution of the Eq. (10-48) with the initial condi-
tions g(0) =0 , dg/dn = 0

/
/
1.0} /
/
/
- WM/
£ /
o / 3
ARVE SR &
05k /
/
/
/
/
7
/
/
s
z ] I
0 0.5 1.0
]

Fig. 10-1. Solution for ballistic entry from circular
speed at small initial flight path angle.

For large values of ¢, , we consider Eq. (10-30) , or rather
its expanded form, Eq. (10-135). Based on the initial conditions (10-45),
we seek its series solution in the form

0
y o= D e _x" (10-50)

m
m=

—

Substituting this series into Eq. (10-35) and equating coefficients of
like powers in x , we have for the coefficients S
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1 1. 1
¢, == ¢35 =0-3) 3]
1 c 1
1
2 2 1 10 20 17. 1
cg= (- 2 +3) 9c, cg = (3- 2+C4' 6)9Oc1
1 <1 RS TS|
(10-51)

It can be seen that the recurrence formula to evaluate o is

m-1
2m-l
mm-l)ec = T3 - > K(k-1)ep e\, (10-52)
k=2

Figure 10-2 plots the numerical solution of Eq. (10-30) using the
initial conditions (10-45) with various values of ¢, , as solid lines.
The analytical solution for entry at zero initial flight path angle, Eq.
(10-34), and entry at various nonzero initial flight path angles, Eq.
(10-50), using 4 terms of the series, are plotted as dashed lines.

Fig. 10-2. Solutions for ballistic entry from circular
speed at various initial flight path angles.

Numerical solutions = ------ 4 terms of the series
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Figures 10-3 to 10-8 give the plots of the numerical integration
of the equation for ballistic entry, Eq. (10-3), with various values for

€ T [31‘0 Vi

1

Fig. 10-3. Variations of y' = - 30y versus x ,
for ballistic entry.
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0.5 1.0 15 20 25 30 X

Fig. 10-4. Variation of the deceleration during ballistic
entry from circular speed for various initial flight path angles.

o2

02 04 0.6 08 L0 X

Fig. 10-5. Variation of the laminar heating rate during
ballistic entry from circular speed.
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Figure 10-3 plots y' = - Bro y versus x , and it can be used
to evaluate the flight path angle during entry.

Figure 10-4 plots the deceleration during entry, as given by Eq.
(10-19).

Figure 10-5 plots the variation of the heating rate at the stagna-
tion point for laminar flow. As given by Eq. (10-25), the figure plots
q, versus x , where

- VRB 0.5 -3.25x%
q = q =Y e

s 85 s (10-53)

Figure 10-6 plots the variation of the heating rate for turbulent
flow. As given by Eq. (10-26), the figure plots q, versus x , where

0.2 0.8
- R B 0.8 -3.1
qt = -—25-—-—— qt =Yy (<] 9% (10-54)
0.6 Sy
0.5 - C1=5
0.4 c1=4
1o 0.3 | 01=3
=2
0.2 °
' /—\
O.l cg=!
I 1
\C|=O
| 1 ] 1 1 | ] ] ] 1l
o Ol 02 03 04 05 06 0.7 08 09 10
X

Fig. 10-6. Variation of the turbulent heating rate
during ballistic entry from circular speed.

Finally, Fig. 10-7 plots the range versus x , as given by Egqg.
(10-14) and Fig. 10-8 plots the time of flight versus x as given by
Eq. (10-18).
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x (000} cy=1
o | —— cris
500 '/ c1=2
e o3
{'—f’/lfu 1 1 1 IC:ze
0 05 10 15 20 25 30

Fig. 10-7. Variation of the range for ballistic
entry from circular speed.

300+

C1=o.5

$ 200 ce= 1
» c1=1.5
- €y=2
:oo‘/ o3
c1=4

/ €126

1 1 1 1 1 1

Fig. 10-8. Time of flight versus x for ballistic
entry from circular speed.

10-4.3. Lifting Entry From Circular Speed

For entry with constant lift and drag coefficients, the flight

Ch. 10

parameter to be specified is K = Vpro (C,/C_) . Hence, we write

the basic nonlinear differential equation, Eq. (10-17)

C
noo e -1 - L
U= - K4 . K = yBr_ o

(10-55)
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We first integrate this equation for small values of K . If K is of
the order of unity, the corresponding lift-to-drag ratio (for Earth's
atmosphere) is of the order of C_/C_ = 1/30

For entry from circular speed with nearly zero initial flight path
angle, that is, for the case of entry from orbit decay with small lift,
we have the initial conditions

x. = 0 , y(0) = 0 , y'(0) =0 (10-56)

1/2

The solution of Eq. (10-55) is sought as a power series in x
The solution which satisfies the initial conditions (10-56) is

8 3/2 4 K 5/2
Y=\/;X - £ 3 gH )

L BE 16K> |3 /_8_(_1+ 13’ 1 712
27-11 ' 91331 3 (2a oo T 4

... (10-57)

For IKI < 3 , which, in the case of the Earth's atmosphere, corres-
ponds to the range of lift-to-drag ratio /C | < 0.1, the
solution (10-57) is sufficiently accurate forI'Ehe range of x within the
interval where the maximum deceleration and the maximum heating
rate occur.

When the entry angle is not zero, we have the initial conditions

x, = 0, y(0) =0, y'(0) = ¢, (10-58)
where ¢, = ‘\/Br Y. . The solution to Eq. (10-55) is sought as
a power Series in 7

2 3 4
y = c1x+c2x +c3x +c4x + ... (10-59)

Substituting this series into Eg. (10-55) and equating like powers in x
yields for the coefficients S

1 K 1
e, =T -3) ey =g lg vl
1 1 1 [¢]
1
B 1 4 1 1 8
4 T T2c [3"3c1 (Zc - 2)(01—3[{)] (10-60)

©

The radius of convergence of this series is small and the solution
is restricted to small values of K.
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Numerical integration of Eq. {10-55) for entry from circular
speed with different values of ¢, has been carried out by Yaroshevskii,
and the results are plotted in Figs. 10-9 through 10-11. The dashed
lines are the plots of the analytical solutions, Eqs. (10-57) and (10-59).

Figure 10-9 plots the function y versus x for entry at zero
initial flight path angle from circular speed using K as parameter.

Figure 10-10 plots the function y versus x for entry with non-
zero initial flight path angle from circular speed using K as parameter.

Figure 10-11 plots the maximum deceleration versus the initial
flight path angle. It is seen that, as c¢_ = - ‘\/B_r— Y. lincreases from
zero, the maximum deceleration first s}ightly degrea%ses, and then in-
creases. Also, it is seen that the effect of positive lift in reducing the
maximum deceleration is very powerful. Effects of the lift-to-drag
ratio, C./C_ , on maximum deceleration and maximum heating rate
during entry will be discussed in detail in Chapter 11 in the discussion
of Chapman's theory for atmospheric entry, which is more accurate
than Yaroshevskii's theory.

10-4.4. Gliding Trajectory

If the lift-to-drag ratio is large while the flight path angle re-
mains small, we have the condition of equilibrium glide as first for-
mulated by Sanger (Refs. 9,10). In this case, in Eq. (10-55), the
term y" , which represents the vertical acceleration, is nearly zero,
and the equation is reduced to the equilibrium condition for gliding
flight

er 1
y = TR — (10-61)

When the speed becomes small, the assumption of small vertical
acceleration is no longer valid. For small speed, we use the trans-
formation

2
ex-l

K f(z) (10-62)

<
il

where we define z as

oX
= 0-63
z = (10-63)
Hence, the relation between the derivatives is
d
() = z2=() (10-64)

With this transformation, the basic equation, Eq. (10-55), becomes

2
a°s 2 1 df 2, 1
ta5a” o) THdei= ol (10-65)

2, 2 1
z(z -=5) —
K dz K
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Fig. 10-9. Variations of y for lifting entry at zero
initial flight path angle from circular speed

——— Eq. (10-57) —_—— Eq. (10-62)
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1.5
1.0
i ¢, =1.0
i
y 0.5
¢, =05
! L !
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Fig. 10-10. Variations of y for lifting entry at various
initial flight path angles from circular speed.
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| I 1 |
0 ] 2 3 4 €y

Fig. 10-11. Variations of the maximum deceleration as
function of the initial flight path angle.

For C /CD > 1, I/K2 < (1/Br ) << 1 , and an approximation of
this equation is ©
4 de 3 df 2
+ 5z — +4z f(z) = -1+
2 dz
dz

z

(10-66)

The function f(z) is constructed to extend the validity of the solution
for small speed. Hence, for a trajectory beyond the validity of the
solution (10-61), by the definition (10-62), we have the initial conditions
df
= — =0 -67

£(0) 1, iz (10-67)

to integrate Eq. (10-66).
For small z , an approximate solution to the equation is

2
f(z) = 1- 4z (10-68)
while for large z , an approximate solution is
1 1
f(z) = S - ? (10-69)

Now, if we use the solution (10-61) in Eq. (10-14) to compute the
range, we have

-1 2 CD l-V2

r X r C -2
_ 0 Kdx _ o L 1-V
s = 5 S o = =2 (—) log — (10-70)
X, e .
1 1

On the other hand, if the solution (10-61) for gliding flight is used
in Eq. (10-18) to evaluate the time of flight, we have
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o ] fx Kedx l\/Z(C—L>1og [1-V] [1+V]]
\/EE 3. X1 2V e \Cp [1+V] [1-V.]

(10-71)

These are the first-order solutions for gliding entry obtained in Chap-
ter 7.

10.
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Chapter 11

Chapman’s Theory for Entry
into Planetary Atmospheres

11-1. INTRODUCTION

Compared with Yaroshevskii's theory for the entry trajectory,
Chapman's theory offers a higher degree of sophistication, Using some
simplifying assumptions, Chapman derived a relatively simple non-
linear differential equation of the second-order, free of the character-
istics of the vehicle (Ref. 1). This is made possible by introducing a
set of completely nondimensionalized variables. Chapman's reduced
equation includes various terms, certain of which represent the gravity
force, the centrifugal force and the lift force. If these particular
terms are disregarded, the differential equation becomes linear and its
integration yields precisely the solution of Allen and Eggers for ballistic
entry at steep flight path angles, If, in the basic equation, the vertical
acceleration is neglected according to the equilibrium glide assumption,
the resulting truncated differential equation yields the solution of
Sanger for equilibrium glide with relatively large lift-to-drag ratio.

In the general case, Chapman's equation has to be integrated
numerically, For each prescribed lift-to-drag ratio, and initial speed
and flight path angle, the integration of the equation generates a solution.
Each of these solutions is universal in the sense that it can be used for
any vehicle, of arbitrary weight, dimensions and shape, entering an
arbitrary atmosphere. Only the lift-to-drag ratio, initial speed, and
initial flight path angle serve as parameters of the solution.

11-2. DEVELOPMENT OF THE NONLINEAR DIFFERENTIAL
EQUATION

In deriving his equation, Chapman used the set of the equations of
equilibrium of the forces along the radial and the normal direction to
the flight path. For the sake of uniformity, we shall use instead the
equations in tangential coordinates as derived in Chapter 2.

For planar motion, the equations are

178
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2
av pSCDV .
a7 2m - g sy
2
ViY- = ———pSCLV ( lz-) cos
ac Zm 8% Y
%r- = V siny (11-1)

The last equation may be used to make r the independent variable.

S
av. PV g
dr " 2msiny ~ V
p SC
e (11-2)
dr 2m siny 2 r siny

v

We shall use Chapman's basic assumptions and his coordinate
transformation to reduce this pair of equations of motion to a single,
ordinary, nonlinear differential equation of the second-order.

In his theory, Chapman used two basic assumptions:

a/ In a given increment of time, the fractional change in distance
from the planet center is small compared to the fractional change in the
horizontal component of the velocity. Mathematically, this assumption
is expressed as

d(V cos y) I>> lfl_z
Vcosy by

(11-3)

b/ For a lifting vehicle, the flight path angle y 1is sufficiently
small that the lift component in the horizontal direction is small com-
pared to the drag component in the same direction. Mathematically,
this assumption is expressed as

1 >> —_— t 11-4
= tan y (11-4)

Sl
D

It is erroneous to think that these assumptions will restrict
Chapman's analysis to entry trajectories with small flight path angles
and small lift-to-drag ratios as many authors have believed. On the
contrary, these assumptions, applied simultaneously, constitute a well-
balanced set of hypotheses and make Chapman's theory applicable to a
large family of entry trajectories. It is clear that assumption b/ is
identically satisfied for ballistic entry. On the other hand, in this case,
assumption a/ does not specifically restrict the flight path angle,
since for ballistic entry, the flight path angle is nearly constant, and
the left-hand side of inequality (11-3) simply represents the fractional
change in the speed. Thus, the assumption is valid whenever the aero-
dynamic force becomes sensible enough to induce a rapid change in the
speed, regardless of the magnitude of the flight path angle.
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_Chapman used an independent variable :1-, and a dependent vari-
able Z defined as

1

_ - pSC _
G = Ycosy 7 = D«/-;- u (11-5)

Zm

It is convenient for subsequent derivations to express the basic
assumption (11-3) in terms of the u and Z variables. We write
this inequality with the aid of the Eqs. (11-2) and (11-5)

Ver Z ‘L

d(Vcosy)/ Vcosy

dr/r B B (1+—é—tany
u sin vy D
+ E&E__y_) > 1
Ver Z

or

CL U sin
l 1+ < tany + —IY_— >>
D A/Br Z

usinx 1

Jor Z

Hence, the basic assumption a/ is simply expressed as

C - .
|1+ = tany | > | 2y | (11-3a)
D Vﬁr Z

Now, the derivative of u , as defined by Eq. (11-5), with
respect to r , is

cosy Ell Vsinx ﬂ_l_ Vcosx

du
dr \/g—r dr-ﬁ; dr Zr@

2
where the assumption of an inverse square force field, g=pu/r
has been used. From Egs. (11-2) and definition (11-5), the exact
equation for u can be written as

—a— — C —
= .

% - Gin \/g(l * cL tany +——"1) (11-6)
A D 2+/pr Z

Hence, if the basic assumptions a/ and b/ , Egs. (11-3a) and (11-4),
are applied, the simplified equation for u is

du _ Z g
dr sin y \/r— (11-7)
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To derive the equation in z , we consider the differential law
for the atmospheric density

ipﬂ - - pdr (11-8)

By taking the derivative of z , defined by Eq. (11-5), with respect to
r and using Eqs. (11-7) and (11-8) , we have

az \/— 52(1-—+—2—E) (11-9)
U siny 2pr 2B

Concerning the last term of this equation, if a strictly exponential
atmosphere is used, P = constant and dp/dr = 0 . On the other
hand, 1f an isothermal atmosphere is used, f/g = constant , and
(1/2 B )(dﬁ/dr) - (1/pr) . In both cases, since Pr is large, the
last term of the equation can be taken as -BZ and this equation
becomes

i} z [p :
ar - " Siny = ( = +A/pr sinvy) (11-10)

Finally, the second of Eq. (11-2) in terms of the u and Z
variables is

d Z [6 [© s
31: —z E[C_+i_°9__1(1__._l)] (11-11)
: usin vy ¥ D \/a Z u

Chapman used U as the independent variable. Hence, Eq. (11-7)
is used to change the independent variable from r to u, and the
equations for Z and y , Eqs. (11-10) and (11-11), become

dT - :Z- '\/B; sin y (11-12)
u u
and
4 C — 2
= - _l_[?]‘—+ 2COSY (. C——stz )] (11-13)
du a LD WfprZ

Equation (11-12) is Chapman's first equation. It is used to
evaluate the flight path angle. If we take the derivative of this equation
with respect to u , using Eq. (11-13) and considering fr as
constant, we have

— - 2 —=2 C
- Z -
u —d__ (——-df - :—) + 22y E — COS Y) + [31' cosy =
du Mdu u Z u

(11-14)
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This equation is equivalent to Chapman's second-order nonlinear dif-
ferential equation with Z as the dependent variable and u_as the
independent variable. In this equation, cos vy = 1 - sin® vy can be
expressed in terms of a, Z and dZ/du through Eq. (11-12).

To obtain the equation in the form identical to the one given by

Chapman in his classical paper (Ref. 1), we write it as

2 — — = —_
- d Z dZ Z (l-uz) cos4x
u p— -\ - /- P + ﬁr cos vy
du du u Z u
- 2 2 C
i 2
g Meos ysiny o Lol = o
zZ )
(11-15)

With the aid of Eq. (11-12), we consider the sum of the terms

dz Z Gcoszxsinzx CL . 2
-l — -]+ + A/pr -——— <cosy sin vy

du Z

C - 2,
= - /BT siny |:l— L coszytany - w]: A/Br sinvy

“p Ver Z

The last step is a result of applying the basic assumptions a/ and b/,
Eqs. {11-3a) and (11-4). This is equivalent to neglecting the terms
containing sin“ vy in Eq. (11-15), yielding

2= —_ —_ -
- d Z dZ Zz _ -uz) 4 '\/— CL
v - —_— - = = —————=c0s Yy =~ 4/Pr C_ oS Y
du du u Zu
Vertical Vertical component Gravity minus Lift
acceleration of drag force centrifugal force force

(11-16)

This equation is the second Chapman equation. Following Chapman,
we have identified the different components of the force as labelled.
Another form is

— |- c05y-[3r-c—cosy
du

- d (d"z' Z) 1-35 4 CL 3
u Zu

du

(11-16a)

In general, this nonlinear differential equation has to be integrated
numerically. For a nonlifting vehicle, C_/C_ =0 , the equation is

applicable to large flight path angles, as well as small angles. For
lifting vehicles, it is applicable when (CL/ CD) tan y is small.
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11-3. THE Z FUNCTIONS AND RELATED QUANTITIES

As mentioned in the introductory section of this chapter, Chap-
man's equation, Eq. (11-16), is universal in the sense that it is free of
the physical characteristics of the vehicle. Hence, it is applicable to
any type of entry vehicle regardless of its weight, dimensions and
shape.

_For an entry trajectory, since Z = 0 , only initial conditions
on u, and y, need be given. The flig]ht parameter C_/C and the
characteristicl of the atmosphere, Pr , must, of course, be specified.

For each planetary atmosphere, the average value for fr is
known to a greater or lesser degree of accuracy, as was discussed in
Chapter 1. For Earth, ’\/E; is 30 . Thus, Eq. (11-16) can be inte-
grated numerically starting from the initial value u, _of the independent
variable, using the initial conditions on Zi and di/ldﬁi . For an
entry trajectory,

Z(u,) = 0 (11-17)

Since the basic nonlinear equation has a singularity at Z=0 , the

first step in the numerical integration must be handled analytically by
using an approximate value for Z in the initial portion of the trajectory,
depending on the type of entry. Some approximate Z functions will be
given in the next section. If vy, 1is given, the initial value for dE/dG.
is given by Eq. (11-12) as ! t

i
N

dZ i
— = 4/pr sinyi + — = \/Br sin \A (11-18)

i i

2l

For each flight program and entry condition, the resulting vari-
ation of Z as a function o_f_ u can be tabulated. These Tables,
known as the Tables of the Z Functions (Ref. 2), can be used to analyze
the entry of any arbitrary vehicle.

In some instances, these Tables, computed for entry into the
Earth's atmosphere, can be extrapolated for use with other planetary
atmospheres.

First, for a shallow entry at very small flight path angle, Eq.
(11-16) is reduced to

— = -2 C
_— dz Z - L
TLZUZ) L m e
du du u Z u D
with the initial condition for a prescribed -1-1
- - Z
Z(u) = 0 4z _ (11-20)
i —
du,

1

Hence, in this case, Tables of the Z functions can be used for any
planetary atmosphere, for entry with the same prescribed flight para-
meter pr (CL/CD) , as far as the variations of Z and u are
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concerned. For the flight path angle, using subscript e for the Earth,
and subscript P for any other planet, from Eq. (11-12) comes

(Br)
= k'Y y k =2 — (11'21)

YP e ,(ﬁr)P

where k is the conversion factor. The condition discussed above is,
in particular, true for a decaying orbit for various lift-to-drag ratios.
In this case, _1; =1

Next, thelextrapolation can be extended to the cases of small
entry angle. Equation (11-19) is still valid, but with the initial condi-
tions

Z(,) = 0 , -‘1;2- = \/E Y. (11-22)
du,
i
Hence, the Tables can be used for any planetary atmosphere, for entry
with the sanﬁe»\/—ﬁ—r (EL/CD) and ,\/E Y. - Under these condi-
tions, the Z and u ™ variations are the slame, while the vy wvariation
is obtained from Eq. (11-21).
In all cases, the validity of the application is restricted to the
part of the trajectory where the flight path angle remains small.
Several useful quantities during entry can be constructed from
the Tables of the Z functions.
The first quantity of interest is the deceleration during entry.
The deceleration along the flight trajectory is simply dV/dt . The
first of Eqs. (11-1), and definitions (11-5) of u and Z , yields

av VBr Z u .
- (—-/g) = I 44 siny (11-23)
dt
For small flight path angles,

- (%/g) =Br -Z (11-24)

and the deceleration is simply proportional to the product Z4a . Refer-
ence 1 gives several plots of »\/ﬁ—r Z u versus u for different types
of entry. Some of these plots are reproduced in Section 11-5 of this
chapter. They are useful in locating the speed U and the altitude Z
where the deceleration reaches its maxima and minima during entry.

The deceleration due to the combined lift and drag forces, as felt
by the pilot or an accelerometer during entry, is

2 2 - C_\2
2 . \/(_L_) + <_D..) = JLU‘_ 1 +(_L) (11-25)
£ me me cos vy CD

(1IN |
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Hence, for entry at small angles, the deceleration due to aerodynamic
force is obtained simply by multiplying the vehicle deceleration, given
by Eq. (11-24), by the constant factor A/l + (C /C_)?

The Z function provides the flight altitude of the vehicle once
the drag parameter (SC_/2m) is specified. For an arbitrary atmo-
sphere, the altitude is most conveniently expressed in terms of the
local atmospheric density p . Let subscript s denote the condition
at sea level. From the definition (11-5) of Z , we have

_pP_ - ( Zm )\/EZ (11-26)
=3

ScDrsps u

Hence, for a strictly exponential atmosphere, the altitude h is given

by
SC_r p -
h = % log [( Ds s 2 ] (11-27)

) 5

Another quantity of interest is the dynamic pressure exerted on
the vehicle.

pVZ _ (Srélg) \/é—r Zzu :(Srgg \/Br EG (11-28)
D cos vy D

1
2

Hence, the dynamic pressure is proportional to the deceleration of the
vehicle.
The free-stream Reynolds number per unit length is

R e N
¢ = X.e = Z_Eg_(__rfp_) _Z ~ L&(__rn_) E (11_29)
L e pcosy SCD b SCD

where u is the atmospheric dynamic viscosity. Thus, the Reynolds
number per unit length is proportional to the Z function.

Relatively simple expressions can also be obtained for the aero-
dynamic heating rate per unit area, q , and the total heat absorbed
per unit area, Q/A

According to the local similarity law of Lees, (Refs. 3,4), the
heating rate q at any point on a body is equal to a fraction of the
heating rate gq_ at a stagnation point of radius of curvature R . Thus,
the local heating rate is expressed as

k., = 1 (11-30)
1 qS

where the heating rate in hypersonic flow at a stagnation point, a,
can be expressed as
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n - m

q, = -\—/—C_ () (o) kcal/m? sec (11-31)
R Fo
where the constants C , n , and m depend on the type of boundary
layer flow. For laminar flow, n = 1/2 . A simple power law,

m = 3 , for the speed, together with the expression (11-26) for the
density ratio, gives the expression for the laminar convective heat
transfer rate in terms of the Z and u variables

q - C4 8 N 2m q k cal
2 11/SC_R 3 2
o cos y

D s m sec
(11-32)

where

3=-1z1%3 5/2 (11-33)
The expression for the heat transfer rate has been written in the form
of the product of three factors. The first factor represents the effect
on heat flux of the particular planetary atmosphere. The second factor
represents the effect of the physical characteristics of the vehicles,

that is, the mass, dimensions and shape of the vehicle. Ih?/]fst ;721:01‘,
which for flight at small flight path angles is reduced to Z u
represents the effect of the particular type of entry trajectory.

Although Eq. (11-32) for heating rate is useful in studying vehicles
designed to operate at radiation equilibrium temperatures, an equation
for the total heat absorbed, Q , during entry is of more interest for
heat-sink type vehicles. This is expressed in the form of an integral

Q = [ [ qdtda = ffqusdtdA (11-34)

where A is the whole surface wetted by the boundary layer. Let
k =lfde:—1-f—9-dA (11-35)
2 7 A 1 A a,

where k_ 1is the factor which takes into account the variations in heat
flux over the whole surface A , For a hemisphere, we have then
k2 =~ 0.5

= k -
0 LA qudt (11-36)
Using the expression (11-32) for q = q/kl in this integral, we have

—=1/2—5/2
4 B 2m Z u
Q = [c —= J[kZA,/SC = :I S at (1-37)
r p D cos Yy

o o
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The integration with respect to the independent variable U can be
accomplished if the simplified expression (11-7) for du/dr is rewritten
with respectto t ,

du du dr _ [~ Z.u
d  dr dat Pe cos y (11-38)

This equation gives the time of flight between 1_11 and u as

p = L f cos y du (11-39)
u

Ve I
Substitution of (11-38) into (11-37), yields the expression for the total
heat absorbed between ﬁl and U

4 1 2m | =
Q = [c ——Z——E-szA sc R | QKkeal (11-40)
Pg r P, b

where

N Y1 =3/2zdu
Q = f —————- (11-41)
u

2
cos vy

11-4. SOME APPROXIMATE ANALYTICAL SOLUTIONS

The ultimate purpose of the Chapman formulation is the numerical
integration and tabulation of the Z functions, as generated by Eq.
(11-16), for use in the preliminary design of the entry vehicle and its
mission planning. Although Chapman's equation is only approximate,
the assumptions made are general enough so that the basic nonlinear
equation ,Eq. (11-16), contains all the principal effects of the forces
acting on the vehicle during entry. Hence, under various assumptions
to simplify this equation, Chapman's reduced equation should provide
the other first-order solutions discussed previously. In this section,
we shall consider several such cases.

11-4.1. Yaroshevskii's Solution

For constant lift-to-drag ratio entry, Yaroshevskii's second-
order nonlinear differential equation, discussed in Chapter 10, is sim-
ply a case of Chapman's equation.

For constant lift and drag coefficients, Yaroshevskii's variables
are (Ref. 5)

g r SC r

o o D 0

x = log y = ? p (11-42)
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where the subscript o denotes the condition at a reference level.
In the more sophisticated definition of Chapman's variables, Eqgs.
(11-5), if a constant reference value for r is used, and a very small

flight path angle is assumed, then
SC_p r
Z = o \/ u (11-43)

Hence, the relations between the two sets of variables are

u =

H<
o]

Z - -
= =y, u=e* (11-44)
u
The corresponding relation between the derivatives is
d x d 1 d
—()=-e ()= -2 =) (11-45)
du u

Transformations (11-44) and (11-45) applied to Chapman's simplified
equation for entry at very small flight path angles, Eq. (11-19), gives

2 2x C
d—%’ g l-e +efpr_ —C—L- = 0 (11-46)
dx y D

This equation is identical to Yaroshevskii's equation, Eq. (10-17), and
its analytical solutions for various entry trajectories have been pre-
sented in Chapter 10.

11-4.2. Solution for Ballistic Entry

For ballistic entry, using Allen and Eggers assumption (Ref. 6),
we disregard the gravity, centrifugal and lift force in Chapman's
equation, Eq. (11-16), and write it as

- Z
a Ld2 2, L (11-47)
du du u

This, and Eq. (11-12), shows that the flight path angle remains constant.
The integral of Eq. (11-47) can be written

=4/Br sin Y; (11-48)

A second integration, along with the initial conditions, produces the
solution for ballistic entry

o,
N|
e N
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EI = 4/ Br sin Y, U log

(11-49)

WEl e

The Z. function provides an approximate solution for the motion and
heating identical to the solution of Allen and Eggers for ballistic entry.

11-4.3. Solution for Glide Entry

For glide entry, using Singer's assumption (Ref. 7), we neglect
the vertical acceleration and vertical component of the drag force in
Chapman's equation. Chapman's equation, along with Eq. (11-12),
shows that this amounts to considering the glide angle as negligibly
small, cosy =1 . Hence, Eq. (11-16) is reduced to the condition for
equilibrium glide

-2
= _ l -u
ZII = C (11-50)
L —
‘\/Br (_C ) u
D
The z function corresponds to equilibrium gliding flight as dis-

cussed by Sanger and Bredt.

11-4.4. Solution for Skip Trajectory

For skip trajectories, using Eggers, Allen, and Neice's assump-
tion (Ref. 8), we neglect the gravity and centrifugal force in Chapman's
equation. Thus,

- dytdz 7z 3
- _(-— . :Z_) = -\fer CL cos”y (11-51)
D

da M du u

By using an average value ; for y on the right-hand side of this
equation, and using Eq. (11-12), we may integrate this and apply the
initial conditions to obtain

C

siny = sinyi- C

s _
cos” y log (—) (11-52)
D u.

1

This equation gives the flight path angle in terms of the flight speed.
The Z function for skip trajectories may be obtained by combining
Egs. (11-52) and (11-12):

—_— C _—
3—
4z | _i = Y Br sin Y, - YBr —C—I-'-'- cos vy 1og(—_ll—) (11-53)
u D u,
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This integrates to

Z - — ,C -
— — 3 3_
V4 =u | =+ pr sinvy, 1ogi - _p_r( L)cos v logZL
111 - i - 2 \C -
u, u, D u,
i i i
(11-54)
The Z. function gives the solution for evaluating the altitude

of a skip ve}{ilclle. In practice, since the flight path angle is small, the
average value of cos?> y may be taken as unity.

11-5. NUMERICAL RESULTS

Several plots of the z functions, obtained by numerically inte-
grating the basic nonlinear equation, Eq. (11-16), for different types
of entry, have been given in Ref. 1. The accuracy of Chapman's
solution is remarkably good for entry at small flight path angles. The
discussion of these graphs is enlightening since they provide all the
interesting features for the variations of the deceleration and other
physical quantities during entry.

11-5.1. Entry From a Decaying Orbit for Various Lift-to-Drag Ratios

Chapman's analysis is designed to investigate the atmospheric
entry portion of the trajectory. It is not effective for analyzing the
flight in the near vacuum since in this case the two basic assumptions
are violated and the variable u no longer monotonically decreases,
as shown in Chapter 13 in the development of the general theory for
entry into a planetary atmosphere. Nevertheless, the behavior of a
decaying orbit can be discussed qualitatively. For orbital flight at
very high atmospheric altitude, the trajectory is a near-Keplerian
orbit. Atmospheric drag is primarily effective near the lowest point,
at the periapsis. The reduction of the speed near the periapsis be-
haves, during each passage, as an impulsive braking force, lowering
the apoapsis of the orbit while leaving the periapsis altitude nearly un-
changed. The orbit eventually becomes nearly circular. For the last
revolution, when entry is effectively achieved, with y = 0 , Eq.
(11-19) is valid. The initial conditions are

W =1 , Zu) =0, == =0 (11-55)

Figure l1-1 presents the plot of Z 4 which is proportional to the
deceleration versus u for the case C_/C_ = 0 using the initial
conditions (11-55). The peak deceleration occurs at the point where
u = 0.43. While this value is the same for any planetary atmo-
sphere, the maximum deceleration varies from planet to planet. The
maximum of Z u is 0.278 , and by Eq. (11-24) , the maximum
deceleration for ballistic entry from circular orbit into any particular



Ch. 11 CHAPMAN'S THEORY 191

atmosphere is 0.2784Br , where Pr is the characteristic value
of the specified atmosphere.

0.28

0.24 |-

020 —

0.16 —
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1>

0.08 —

0.04

] | | |
0 0.2 0.4 0.6 0.8 1.0
DIMENSIONLESS VELOCITY, ©

Fig. 11-1. Value of Z function for ballistic entry
from decaying circular orbit.

Figure 11-2 plots the results of the numerical integration of the
simplified equation, Eq. (11-19), with the initial conditions (11-55),
for different values of ‘\/E;(CL/ c.) . The plots can be used for any
planetary atmosphere. For high Bft-to-drag ratios, the Zj; function,
Eq. (11-50), is valid. It can be seen that this equilibrium glide solu-
tion, first derived by_Séinger, is accurate up to the point where the
speed is reduced to u = 0.2 . The curves approach asymptotically
the dashed line representing the Z function which can be seen as

the exact solution for CL/ CD - ooII

11-5.2. Ballistic Entry From Circular Speed With Various Initial
Flight Path Angles

If the initial speed Gi is given arbitrarily, for the case of
ballistic entry, the basic equation, Eq. (11-16), is used with the value
CL/ CD = 0 , and the initial conditions

_z'(Gi) ~ 0, == = 4/pr sin y, (11-56)
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Fig. 11-2. Values of 'Z functions for a decaying

circular orbit with various CL/ CD

The integration generates a two-parameter family of solutions,
with parameters u, and4Br siny, . Since in the reduced equation,
the term cos? v has to be evaluatedlby using Eq. (11-12), which
requires specifying separately the value of Br , extrapolation of the
numerical results for use with other planetary atmospheres is generally
restricted to small flight path angles. _

Figure 11.3 gives the plots of ballistic entry from u, =1 for
several values of the initial flight path angle Y, - The grlaphs plot
30 Z u versus u . While the values of U~ for the peak decelera-
tion read from the graphs are the same for all planetary atmospheres,
the ordinates present the deceleration for the Earth. For other planets
the values have to be evaluated proportionally according to the specified
value of Br . It can be seen that while generally the peak deceleration
increases with increasing initial angle, the lowest peak deceleration
occurs for an initial angle y, somewhere between 0° and 2° . A
detailed analysis, using the exact equations developed in Chapter 13,
shows that this occurs for a small entry angle between 0° and 1°
resulting in a minimum peak deceleration equal to 8.2g for the Earth's
atmosphere,
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Fig. 11-3. Values of Z functions for ballistic entry
from circular speed, at various initial angles.

11-5.3. Lifting Entry From Circular Speed With Various Initial Flight
Path Angles

Figure 11-4 gives the plots for entry from U, =1 for several
values of the initial flight path angle, but with a poslitive lift-to-drag
ratio, C./C_ = 0.25. For the integration, the basic equation (11-16)
is used w]fth tl?e_ini_tial conditions (11-56) applied to u, =1 . The
graphs plot 30 Z u , which is the deceleration at small flight path
angles for the Earth's atmosphere.

Comparing the two figures, Fig., 11-3 and Fig. 11-4 , it is seen
that lifting entry has the effect of decreasing the peak deceleration.
Furthermore, for large initial flight path angles, there appear two
peak decelerations of unequal magnitude. For low initial angles, the
first peak is lower than the second peak, while for large initial angles,
the first peak is higher.

The appearance of several peak decelerations is quite definite
when the lift-to-drag ratio is increased, as can be seen in Fig. 11-5.
Figure 11-5 presents the plots for entry from circular speed, u, =1,
at various initial flight path angles, and with the value of the lift>to-
drag ratio equalto 0.5 , 0.7 and 1.0 respectively.

As the lift-to-drag ratio increases, the entry trajectory becomes
more oscillatory with an oscillatory variation in the altitude (hence,
also in the Z function) inducing an oscillatory variation in the product
Z u
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Fig. 11-4. Values of Z function for lifting entry from
circular speed, at various initial angles.

11-5.4. Entry From Super Circular Speed

For entry from a high altitude orbit, the vehicle approaches the
atmosphere along an elliptical orbit. Hence, the inital speed is gener-
ally u,> 1

ﬂ"igure 11-6 presents the plots for ballistic entry, C_/C_=0 ,

= R . L' °D,
at u, = 1.4 , which is around parabolic speed when cos y ~is near
unity, with various initial angles.

When the initial flight path angle is small, which is the case for
a high periapsis altitude of the initial Keplerian orbit, the vehicle
passes through the sensible atmosphere for a short distance, and then
exits into the vacuum. The integration is terminated whenever z
becomes small enough so that the vehicle is, at that time, essentially
outside the sensible atmosphere. At that point, the speed has been
reduced from the initial speed u, to a final speed wu, , with an

. i . 1
exit angle vy, . We say that the vehicle has made one passage
through the a%mosphere. Once outside the atmosphere, the vehicle
continues its course, following a Keplerian orbit, with a lower apogee.
Because of the symmetry of the Keplerian orbit, the following entry
will be made at an inital speed equal to u, with an initial angle equal
to -y, . This process can be repeated1 and we say that the entry is
effected by several passages using atmospheric braking.
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Fig. 11-5. Values of Z function for entry from circular
speed at various initial angles.

Curve (a) in Fig. 11-6 presents an atmospheric braking with 6
passages.

If the initial flight path angle is increased by decreasing the peri-
apsis altitude of the initial Keplerian orbit, the first passage is effect-
ed at lower altitude, resulting in a higher loss of speed during the
passage. This is seen in curve (b) in Fig. 11-6. The greater loss in
speed decreases the number of passages, Ultimately, a critical entry
angle is reached when the complete entry is made in one passage.
This occurs for an entry angle somewhere between curves (b) and (c).
It can be seen that before obtaining curve (a), for initial entry at near
zero initial flight path angles, which corresponds to a very high peri-
apsis altitude of the initial Keplerian orbit, we have the condition of
orbital decay. The number of passages is very large. Theoretically,
it is infinite. The last passage, during which the entry is completed,
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is initiated at u = 1 , Y_= 0 , where n is the number of
passages before effective en?ry.

We shall return for a more detailed discussion of these features
in Chapter 13, with the development of an exact theory for planetary
entry.

0 02 04 06 08 IO
DIMENSIONLESS VELOCITY, U

Fig. 11-6. Values of Z function for atmospheric braking
of nonlifting vehicles starting from u, = 1.4.

11-6. EFFECT OF LIFT ON ENTRY

The physical quantities during entry, such as the deceleration,
and heating, are functions of the Z function which, for a prescribed
entry condition, depends on the lift-to-drag ratio. In this section, we
shall examine the effect of the flight parameter CL/ C on the decel-
eration, heating rate and total heat absorbed during enPry. The effect,
explicitly displayed, is of valuable assistance to preliminary design
and mission planning purposes. To some extent, this question has been
examined in Chapter 10, in connection with Yaroshevskii's theory for
entry into a planetary atmosphere. In this section, the variables Z
and u are used in connection with Chapman's basic equation, Eq.
(11-16), which is more accurate than Yaroshevskii's basic equation,
Eq. (10-17).

First, we shall consider the case of lifting entry from a decaying
orbit. That is, we shall first consider trajectories with various values

of CL/ CD for an initial condition u, = 1, Y, = 0
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11-6.1. Effect of Lift on Deceleration

A plot of the function 30 Zu which, by Eq. (11-24), represents
approximately the vehicle deceleration for entry at small angles into
the Earth's atmosphere, is presented in Fig. 11-7, as a function of the
dimenionless speed u for various lift-to-drag ratios.

It is seen that the effect of the lift-to-drag ratio, C_/C , 1is
very powerful. By increasing this flight parameter from 10 tc]f-) 0.1 ,
the peak deceleration is reduced from 8,38g to 4.9g , while by
using a negative lift-to-drag ratio equal to -0.1 , the peak decelera-
tion increases to 12. 8g

For small lift-to-drag ratios, the peak deceleration occurs in the
range of the dimensionless speed near u = 0.4 . When the lift-to-
drag ratio increases, the peak deceleration occurs at lower speed. It
should be noted that, due to Chapman's completely nondimensionalized
formulation, the graphs apply to any type of vehicle, regardless of its
weight, shape or size.

14
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Fig. 11-7. Effect of CL/ C_. on deceleration for entry into
Earth's atmosphere t]%orn a decaying orbit.

Figure 11-7 plots the vehicle deceleration. If we consider the
total deceleration, as felt by the pilot, then from Eq. (11-25), this
deceleration at its maximum, which generally occurs at small flight
path angles, is
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a _ - 2
() = ABr (Zw)__A1+(C /Cy (11-57)

All the peak decelerations read from Fig. 11-7 must be increased by
the factor '\/ 1+(C./ CD)2 to yield the maximum total deceleration
as felt by the pilot.

Chapman gives the plot of Eq. (11-57) for different planetary
atmospheres, as a function of the lift-to-drag ratio (Fig. 11-8). In-
cluded in this figure is a boundary representing human tolerance. It
is seen that, from the human standpoint, an entry into Mars' atmo-
sphere can be made with negative lift, while for an entry into the
atmosphere of Jupiter, a positive lift is necessary to lower the peak
deceleration to an allowable level.
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Fig. 11-8. Effect of C_ ./ C_ on maximum deceleration for
entry into various planetary atmospheres from decaying orbits.

11-6.2. Effect of Lift on Heating Rate

The use of the Z function also allows a general analysis of the
heating for an arbitrary type of vehicle.

As given by Eq. (11-32), the heating rate per unit area for
laminar flow at any point on a body is proportional to E = 21/2 w52
Hence, as for the deceleration, the function q can be plotted versus
u , for different values of the lift-to~-drag ratio, C_/C (Fig. 11-9).
The initial condition used for the integration is also the one for a
decaying orbit, while the value ‘\/[3_1‘ = 30 is the characteristic value
for the Earth atmosphere.
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As was discussed in Section 11-3, for small flight path angles,
extrapolation can be used for other planetary atmospheres.

Let
N (Br)

kK = —— (11-58)

Ve o

Since in the basic equation for the integration of entry into the Earth

atmosphere, '\/(ﬁr and (C /C_) enter as the product
\/(Br) (C /C , and sifice £3r°small flight path angles, the

equatlon is neaHy independent of y , and hence does not require
specifying the value of 4/ (fr) separately, then for entry into any
planetary atmosphere, with a Tift-to- drag ratio (C./C and

L D P ..
characteristic value (Br) p to use the same curve on Fig. 11-9,

we must have
C C
<_CL ) =k <_CL > (11-59)
D /P D ‘e

From the figure, the maximum of E is seen to occur near the value

u = 0.8 . As in the case of the deceleration, the heating rate decreases

when C /C is increased. The heating rate increases when nega-

tive lift 1s 1n]t3roduced — _
For high lift-to-drag ratios, the Z function tends to the Z

II
function as given by Eq. (11-50). Hence, when CL/ CD > 1,
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_ _1/2 5/2 32(1 ;2)1/2
q = Z u = 1/4’ 72 (11-60)
(gr) " (C /Cp)
According to this approximation, .y OCCUrS when
- 2
u = 3 = 0.816 (11-61)
and has the value
- 2
= (11-62)

qmax

w3/ Ve /e

11-6. 3. Effect of the Initial Flight Path Angle

The initial flight path angle also has a strong effect on the decel-
eration and heating. It influences other kinematic quantities such as
the total range and the time of flight as well. We shall consider the
effect of the initial flight path angle for entries from circular speed,
with various lift-to-drag ratios.

Figure 11-10 plots the maximum deceleration experienced during
an entry from circular speed of a nonlifting vehicle, C /CD =0 ,
into the Earth's atmosphere, as a function of the initiallflight path

u. = 1 ,

angle, v. The curves can be applied to other planets if the abscissa
is regarded as being -kyi , and if the ordinate scale is multiplied by
k
8./ 8
18
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Fig. 11-10. Effect of the initial flight path angle

on maximum deceleration.
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It is seen from the figure that the deceleration first slightly de-
creases to a value of 8.2 g for an initial angle near -1° , and then
increases as vy increases. The dashed line plots the approximation
of Allen and Eggers (Ref. 6). This corresponds to the function Z as
given by Eq. (11-49). Hence, using this solution in Eq. (11-24), we
have, with u, =1

dv . -2 -
- (a"/g) = PBr siny, u log u (11-63)

According to this approximate expression, the maximum deceleration
occurs at

T - 4 - 0,606 (11-64)
Je
and has a value of
av Br sin Yi
-(—dt—/g) = - (11-65)

max

Figure 11-11 plots the maximum of the dimensionless heating
rate, q , given by Eq. (11-33) for laminar flow, and the dimension-
less total heat absorbed, Q , given by the integral (11-41).
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Fig. 11-11. Effect of the initial flight path angle on maximum
laminar heating rate and total heat absorbed during entry.

The dashed lines are the plots using Allen and Eggers' approximate

solution, the Z function as given by Eq. (11-49). Using this solu-
tion in Eq. (11-%3), we have

E = Zl/ZGS/Z = VYV 4/Br sin (-yi)331og1/2(1/_1;)

(11-66)
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According to this approximate formula, the maximum of a occurs at

1
1/6

e

Q= = 0.8465 (11-67)

This gives the maximum value for E

1/4
3 = B sin (- v.) (11-68)

Clrnax @" i

The function Z. used in the integral (11-41), with an average value

for cos y ,_yields the dimensionless heat absorbed, Q , from

u, = 1 to u =0
i

s

1 udu

([31')1/4 cosz§ A/ sin(- A 0 logl/z(l/;)

Q =

= (11-69)

([31')1/4 cosZ; A 2 sin (- Yi)

It is seen that the solution by Allen and Eggers for heat transfer in
this case is quite accurate for initial flight path angles greater than
about 2°

Finally, Figs. 11-12 and 11-13 show the influence of the lift-to-
drag ratio on the heating during entry at nonzero initial angles.

Figure 11-12 plots the maximum of the dimensionless heating
rate, q , versus the initial flight path angle, vy, , for several
values o?lgﬁ{e lift-to-drag ratio, C_/C_ . For each' Y. , the maxi-
mum of q decreases as C_/ C_ “increases. t _

Figure 11-13 plots the dimensionless total heat absorbed, Q |
versus the initial flight path angle for different values of the lift-to-
drag ratio. It is also seen that increasing the lift-to-drag ratio has
the effect of decreasing the total heat absorbed for a prescribed initial
flight path angle.
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Chapter 12

Entry Corridor

12-1. INTRODUCTION

In Chapter 5, the analysis of the descent from orbit before entry
into the atmosphere of a vehicle was presented. In the vacuum of
space, any maneuver for changing orbit must be effected by the appli-
cation of power. After the last thrusting maneuver has been carried
out, the descending vehicle is in free flight and approaches the atmo-
sphere on a Keplerian orbit. When the aerodynamic force becomes
sensible, the vehicle begins to deviate from its Keplerian orbit. This
marks the beginning of the atmospheric entry phase.

At the initial altitude where it is considered that the entry phase
begins, the vehicle possesses a certain velocity v, , of magnitude V,
and directed at an angle vy, (Fig. 12-1). The entrjy'r trajectory, for
any specified vehicle, depénds on these entry conditions. They can be
evaluated from the elements of the approaching Keplerian orbit if the
altitude for entry is given.

CONIC PERIAPSIS

Fig. 12-1. Geometry of the entry trajectory.

In outer space, a Keplerian orbit is coglpletely defined by the
position vector r and the velocity vector V at any instant t . In
the plane of motion, with the direction of r as the reference direction,

205
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the three scalar quantities r , V and y suffice to specify the orbit.
This has been studied in detail in Chapter 3. In the following, we shall
consider three particular positions for defining the approaching
Keplerian orbit:

i/ The first point is an arbitrary point on the orbit, at very high
altitude where the vehicle is still in the vacuum (Fig. 12-1). The

quantities associated with this point are r, , V.  and vy
ii/ The second point is the entry point and the quanlt1t1es associ-
ated with this point are r, , V. and y . Theoretically, the defini-

tion of this point involves a certain degree of arbitrariness. One may
consider the distance r, as the distance to the top of the sensible
atmosphere. Another definition of the entry point is that point where
the deceleration due to atmospheric force has reached a certain frac-
tion, say one per cent, of the local gravitational force so that the vehi-
cle has just begun its nonKeplerian trajectory. Obviously, in this case
the corresponding initial distance T, depends on the drag coefficient
SC_/m of the vehicle, the initial speed V. and the initial flight path
angle y, . We shall return to this quest10r11 in Chapter 13. Whatever
the definition used, for all practical computation, the entry point will
be considered the last point on the approaching Keplerian orbit.

iii/ The third point to be used for the definition of the Keplerian
trajectory is its pericenter. This point is the lowest point on the
nominal Keplerian trajectory. It is the pericenter of the conic trajec-
tory which the vehicle would have followed had there been no atmo-
sphere around the planet. In the case where the Keplerian orbit inter-
sects the planet, the trajectory is extended to lead to a pericenter in-
side the planet. The quantities associated with this point are r
V. and y = P

p p

The entry speed from a close orbit is near circular speed at the
entry altitude, while entry from a high altitude orbit is effected at
supercircular speed. In particular, for a moon flight return to the
Earth's atmosphere, the entry speed is near parabolic speed. In the
case of an entry following an interplanetary flight, the vehicle enters
the planetary atmosphere at hyperbolic speed. For a safe recovery of
a ballistic vehicle, one must select the entry conditions, the speed V,
and the flight path angle Y at the distance r, , such that the subse-
quent trajectory generates 'deceleration and heating conditions within
acceptable limits., For a lifting hypervelocity vehicle, the entry posi-
tion must also be selected such that, near the end of the atmospheric
entry trajectory, the vehicle is in the correct presentation in the posi-
tion vector and the velocity vector for effectively performing the
last aerodynamic and thrusting maneuver phase for making a safe
approach and landing at the previously selected airfield.

While thrusting maneuvers in space can always be programmed
to bring the vehicle to a prescribed entry condition, the resulting fuel
consumption may become prohibitive. Savings in fuel consumption
will increase the useful payload, cargo, life support equipment and
manpower onboard the vehicle, thus providing more flexibility in mis-
sion planning,
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On the other hand, there exist constraints on the entry condition
as illustrated in Fig. 12-2. Let us assume that a physical constraint,
say the maximum deceleration, has been advanced in the selection of
an entry trajectory. This is obviously one of the constraints in manned
flights. For a given vehicle, with a certain ballistic coefficient, using
a prescribed lift-to-drag ratio, all approach orbits, having a prescrib-
ed periapsis speed V_ at the fictitious pericenter, can be divided into
two families. In one Pamily, the resulting atmospheric entry trajec-
tories generate a peak deceleration exceeding the prescribed maximum
deceleration. The boundary of this family will be referred to as the
undershoot boundary and the resulting periapsis distance is r
(Fig. 12-2). In general an undershoot trajectory, thatis a Pun
trajectory leading to an unacceptable peak deceleration, has its peri-
apsis distance less than this minimum acceptable periapsis distance.

OVERSHOOT UNDERSHOOT

Fig. 12-2. The entry corridor.

On the other hand, among the trajectories of the remaining fam-
ily of Keplerian orbits, not all can be considered as entry trajectories.
This is because if the periapsis distance of the nominal Keplerian
conic considered is too large, the atmospheric force encountered is
too small and after a short flight inside the atmosphere the vehicle will
escape into space and entry is not completed during the first pass. The
boundary of these escaping trajectories is called the overshoot bound-
ary and the resulting periapsis distance is r . In general, an
overshoot trajectory, that is a trajectory OV leading to an exit into
space, has a periapsis distance larger than this maximum periapsis
distance.

The portions representing excessive overshoot and undershoot
in the figure are excluded as not representing the intended maneuver.
This leads to a narrow corridor through which the vehicle must be
guided. The difference Ah_ =r -r will be referred to as the

P ov Pun



208 ENTRY CORRIDOR Ch. 12

corridor width. For a successful entry during the first pass, within
the limit of the physical constraint imposed upon the trajectory, the
vehicle must be guided during its Keplerian phase into this narrow
corridor. Flight from circular or elliptical orbit is somewhat tolerant
of guidance errors. An undershoot trajectory can be readily corrected
by application of a thrust at a large distance before entry. An over-
shoot trajectory can be similarly corrected. If necessary, one can
use an aerodynamic maneuver during the skipping phase to have a
correct presentation on the next return.

In contrast, entry at hyperbolic speed from outer space is
unforgiving of guidance errors. For an undershoot trajectory, because
of the high approach speed, thrusting correction may be prohibitive
because of the fuel consumption, and an insufficiently corrected under-
shoot trajectory may cause destruction of the vehicle during entry.

On the other hand, an overshoot trajectory, if inadequately corrected,
may result in a hyperbolic departure leading the vehicle into a home-
less exit into space, or a highly elliptic ejection prolonging dangerous-
ly the lapse time until the next return.

The concept of an entry corridor was first formulated by
Chapman (Ref. 1). Before we continue with the presentation of this
outstanding formulation, one fundamental comment is in order.

The introductory notion given above is related to a prescribed
vehicle, with a given ballistic coefficient following different Keplerian
trajectories, all leading to the same fictitious periapsis speed V
More clearly, for a given ballistic coefficient, with the same confc
periapsis speed V_ , for the entry to be accomplished during the first
pass, within the prpescribed maximum deceleration, the periapsis dis-
tance of the approaching Keplerian orbit should be aimed between
r and r

un ov

A novel feature introduced in Chapman's original paper (Ref. 1)
is a dimensionless periapsis parameter combining certain character-
istics of the vehicle with certain quantities associated with the conic
pericenter. With this parameter, the analysis can be applied to a
vehicle of arbitrary weight, shape and size, entering an arbitrary
planetary atmosphere.

12-2. BASIC DIFFERENTIAL EQUATIONS

Chapman developed his theory of the entry corridor for small
flight path angles. Hence, the fundamental second-order nonlinear
differential equation to be used is Eq. (11-19) written as

2= - = =2 c

- d°Z iz Z 1-3 L

v - (-: - :') = T VBT (12-1)
du du u uz D

where
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(12-2)

The 1ntegrat10n of the equation requires two initial conditions on

Z and Z = dZ/ du at the initial time, u = u,
— — e — P |
Z(uw,) = 2, , Z{(u) = Z, (12-3)
i i i i
—
To evaluate Z , we use Eq. (11-12) reproduced here for convenience
z 7 —
d—_ - = = Bpr siny (12-4)
du u

Hence, the initial conditions are

z
— — — — 3

Z = Z Z = —1_ 3 -

(ui) L (ui) — + ﬂﬁiri siny, (12-5)
u,
i
The kinematic elements at entry are Ty V. and y, . Hence,
we can form the dimensionless entry speed V_ = V / 1>g r, .
Then u, = V cos Y, .Y, and the additional prescrlbed vaiue Z

will prolv1de sufficient initidl conditions for the integration of the non-
linear equation (12-1). Subsequently, the flight path angle is given by

(12-4) and the deceleration, the heating rate or any other physical
quantity at any instant can be obtained from Z , wu, and y as
has been presented in Chapter 11.

Now, since Z, can be taken as approximately zero, or analy-
tically by using the first-order solutions, it is seen that only V, and
v. need be prescribed. Then, the analysis of the deceleration, or
whatever physical quantity is considered, determines whether or not__
the trajectory is an undershoot trajectory while the corresponding Z
function is used to assess if a trajectory is a skip trajectory, Z_-= Zi ,
or a descending trajectory, Z > Z . Several hundred solutions
for different entry trajectories were computed by Chapman and the
results presented in his report (Ref. 1). A very convenient parameter,
the periapsis parameter, was introduced to present the results in a
completely dimensionless form applicable to any type of vehicle, of
arbitrary weight, shape and size, entering an arbitrary planetary
atmosphere.
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12-3. THE PERIAPSIS PARAMETER

It was explained in Chapter 11 that the use of Chapman's vari-
ables Z and u has the advantage of eliminating the specification
of the entry altitude h, and the ballistic coefficient SC_/m . The
characteristics of the planet's atmosphere enter the basic equation
(12-1) in the dimensionless parameter pr . From Eq. (12-5), it
follows that, for shallow entry at a high altitude, where the initial
values of Z are negligible compared to subsequent values during
entry, the second initial condition can be written as

Z () = 48Ty, (12-6)

The initial flight path angle Y; should be taken at the beginning
of the sensible atmosphere. Theoretically, from Fig. 12-1, it is seen
that, once the Keplerian approach orbit is known, this angle vy, can
be evaluated for any distance r, chosen as the radius of the sensible
atmosphere. But this distance 't  is not well-defined. From a physi-
cal standpoint, if the entry ‘altitude is defined as the altitude where
aerodynamic force begins to take effect, then this altitude obviously
depends on the drag parameter SC_/m , the entry speed V. and
the angle vy, itself. For very sha]Plow trajectories grazing the edge
of the atmosphere, a precise evaluation of Yy is therefore cumber-
some.

A convenient parameter for the analysis of the entry corridor,
the periapsis parameter, was introduced by Chapman. This parameter
is associated with the hypothetical periapsis distance of the approach
conic orbit (Fig. 12-1) . The relation between this periapsis distance
r , and the elements r , V and y atany arbitrary point on the

eplerian orbit was given in Chapter 3, Eq. (3-70). This equation
can be rewritten in the current notation as

T —2 2 =2 =2, . 2
P . 1-\/(V - 1) +V(2-V7)sin vy (12-7)
r 2. vZ
where
— v a
v = = — (12-8)
cos y
Vgr
For shallow entries for which the flight path angle is small,
VZ (Z-VZ) sin2 y
—> > << 1
(Vv -1
=2
and Eq. (12-7) for supercircular entries (Vi - 1) > 0 , with the

arbitrary point taken as the entry point, can be approximated as
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- 2
r V. sin vy.
B . . 4 i
r, — 2
i 2(V, - 1)
i
Hence,
it T Vi2 Y12
—rE_ ~ T (12_9)
i 2(V, -1)
i

Chapman introduced a periapsis parameter defined as

[ SCD r
P = 75 (12-10)

where r is the hypothetical periapsis distance and p is the atmo-
spheric pden51ty evaluated at this distance. For an atr%osphere which
is strictly exponential between the initial point and the pericenter,

(b, - By plr;-x)

pp = p;e = pe (12-11)

On the other hand, from the definition (12-2) of the Z function

p.SC [r.
- i D i —
7z e — -
i 5 5 uy (12-12)

so that,
_Z-i T [5(1-i -1 )
F = oy P (12-13)
p - r.
u, i
i
-2 -2 2 -
For shallow entries, u, = V, cos vy, V. , and the ratio

r /r, can be set equal to unity, cons1s]tent Wi]th the approximation

nr?ade1 in deriving Eq. (12-9). Hence, the approximate expression for
F is
p

(12-14)
P

v,

Z(V - 1)
i

This is the form given by Chapman (Ref. 1). For the case of shallow
entry

2(V."- 1) v,
( ﬁiri yi) = =5 log (—E— Fp) (12-15)
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That is, 4/B.r. y, is a function only of V. ) Z. and F_. Conse-
i = isri P .
=4/p.r, 'y, , imposed

quegtly, the tlw%) initial conditions Z, and Ei Ty
order diffegentiai equa%ion, Eq.

at u., on the basic nonlinear second-1
(lZ-_f‘), can be replaced by the equivalent two, Z, and F_ , imposed
at V. ! p

' To explain the usefulness and generality of the periapsis para-
meter F_ in a clear and satisfactory way, let us consider the case of
ballistic gntry, C./C_ =0 , at parabolic speed, V, =1.4, into
the Earth's atmosphere. The basic equation to be intlegrated is

2= - = -2
- V4 Z Z -
e d—z - <‘dT - ?) e (12-16)
du du u u Z
The initial conditions required for the integration are
W =V =14, Z(@)=2Z. , Z, 12-17
u s Vy s hed s 2 =2 2 = BTy (12-17)
A nonzero value Ei is obtained analytically as explained in Chapman's
Ref. 2, while, instead of B.r. v. as a scanning parameter to
generate different entry trajec oriels, Fp is used as an arbitrary
scanning parameter and B.r. vy. 1is obtained from Eq. (12-15) to

be used in the second initial Condition (12-17). For each parabolic
entry trajectory into the Earth's atmosphere, the peak deceleration is
plotted versus the corresponding value F_ in Fig. 12-3. The curve
ends at the value F_ = 0.06 . For F smaller than this value,
the vehicle will pass through the atmosphpere, exit into space, and
then return for at least a second pass before the entry is completed.
Hence, this value of F_ corresponds to the overshoot boundary for
single-pass entries, N%w, let us assume that 10g is the maximum
deceleration allowed for this particular case of parabolic entry into
the Earth's atmosphere. From the graph, the corresponding value
for ¥_ is F_ = 0.31. Hence, for single-pass entries limited at
10 g ,pthe range for Fp is

0.06 < F < 0.31

The result thus obtained is independent of the entry vehicle. In prac-
tice, when the drag parameter of the vehicle and the characteristics
of the atmosphere have been specified, with F_ = 0.06 , and
F =0.31 , the equation (12-10) can be solvBd for a maximum and
a Minimum value of the periapsis distance. For a successful entry,
the parabolic returning trajectory should be aimed so that its periapsis
distance is between these limits.

In general, let us consider the ratio p
values of the atmospheric density at the two
apsis distances

of the

/p
un Pov limiting peri-
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Fig. 12-3. Maximum deceleration during
ballistic parabolic entry into the Earth's atmosphere.

P h _-h F m/S
Pun _ e(3( ov un) _ (F m/ cD)un Tov (12-18)
P i - EFm/ SCD)ov Tun )
Pov P v
The difference Ah_ =h -h between the two conic peri-
apsis altitudes is defined Bs the corridor width as illustrated in Fig.
12-2. This difference is small, r /r 0> 1 , so that the expres-
sion for the corridor width is appr&‘c’ime‘i‘tely
(F m/SC_)
1 D un
Ah = = 1og[ ] (12-19)
p B (Fpm/ SCD)OV

For the special case wherein the ballistic coefficient SCD/ m
is the same along the two boundaries, we have

F

pun

Ah = -
P g

log (12-20)

pOV

For the case considered above, for the Earth's atmosphere with
1/p = 7,162 m , the corridor widthis Ah =7, 162 x log 5.16 =
11,746 m . From Eq. (12-20), it is appared}t that, if the ballistic
coefficient is the same for the two boundaries, a condition which is
especially true when there is no deformation of the entry vehicle, then
the corridor width for a given exponential atmosphere, (constant ),

depends only on the ratio F, /F Hence, the corridor width, for
fo Pun Pov

for a prescribed V, , is the same for all vehicles.
However, the periapsis altitudes of the corridor boundaries, h
and h are functions of the ballistic coefficient through Eq. un

(12-10§9V
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12-4. CHAPMAN'S RESULTS FOR THE ENTRY CORRIDOR

To ease the discussion, Fig. 12-3 has been presented for para-
bolic entry into the Earth's atmosphere. With the purpose of present-
ing his results in a completely dimensionless form, applicable to any
arbitrary vehicle regardless of its weight, size and shape, entering an
arbitrary planetary atmosphere, Chapman used a normalization tech-
nique.

From Eq. (11-25) of Chapter 11, the dimensionless deceleration
for a shallow entry is

a - — 2
i \er Z w \V1+(C /Cp) (12-21)

Now, in integrating Eq. (12-1), instead of specifying the two
values 4/pr and (C /CD) separately, one can specify only the
single parameter \/E-r (CL/ CD) . Then, for any specified planetary
atmosphere (i.e., given '\/-[;‘ ) the actual lift-to-drag ratio flown

can be deduced. Next, let us assume that for a prescribed value

N = 4Br (C /ED) , and for a certain prescribed condition on
entry, a function' Z has been generated with the corresponding value
u ., Then we can evaluate the deceleration for the case of the Earth

(subscript e ) and the deceleration for the case of an arbitrary planet
(no subscript) as

ae _ )\Z

—ge = ’\/(ﬁr)e Z u 1+ (Br)e
2 Taaie (12-22)
g Br

Since M\ 1is prescribed for the computation of the zZ function,
we can construct the dimensionless deceleration function

G = 30 Z u 1+ — (12-23)

Since for the Earth's atmosphere (Br)e =900 , it is seen that
this function is simply the dimensionless deceleration, in Earth g's ,
for entry into the Earth's atmosphere. From the Egs. (12-22) and
(12-23), it is seen that, through the use of the dimensionless universal
function Z , all the decelerations reach their respective maximum
values at the same values for Z , and wu . Hence, if the function
Gm is used for the diagram, Gppax versus F , for different
values of the dimensionless entry speed V, , it represents the point
of peak deceleration for entry of any arbitrary vehicle into any arbitrary
planetary atmosphere. The diagram can be used directly for evalua-
tion of the entry corridor for entry into the Earth's atmosphere. For
entry into any other planetary atmosphere, from Eq. (12-22), the
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deceleration normalized with respect to the Earth gravity will be

2
2 . 8VBr T o)+ A
g g Br

e e

or, in terms of G as defined in Eq. (12-23)

V1 +()\2/Br)

2 - 8 G (12-24)
€e Ee A/(BT) \/1+(x2/9oo)

)
o]

'@<|
"
|

n

£ By - VB - m@ (12-25)

this is

I 2
1+ (CL/CD)

\/1 + [/ (Br)g(Cp/Cp)

. & =
G = ® 8 \/(Br)® G

o

] 2
(12-26)

Hence, for any other planetary entry, with the constraint Gm x -
a /g prescribed, Eq. (12-26) must be used to evaluate the cor-
responding G before referring to the diagram G versus
F max max
P The results of Chapman's investigation are presented in Figs.

12-4, 12-5 and 12-6 for ballistic entry, CL/ CD =0 , for different
dimensionless entry speeds.

Figure 12-4 plots the dimensionless maximum deceleration
Gmax versus the periapsis parameter F

For entry into the Earth's atmospherpe, the maximum decelera-
tion in Earth's g's is given directly by the ordinate. As mentioned
above, for parabolic entry, V., = 1.4 , the overshoot boundary
corresponds to F. = 0.06 } while, if the maximum deceleration
is limited to 10 g ©Y the corresponding value for F_is F — 0. 31.
Consider now a parabolic entry into another planetarypatmospﬁere, for
example, the atmosphere of Jupiter. The value for Fp is the same
for any planet. But to have the same value for K °V and hence the
same G =10 , since for Jupiter g '\/(ﬁr?un = 5.3 , from
Eq. (IZ-ﬁ?Xone must have the maximum allowablé deceleration equal
to an unrealistic 53 Earth g's . With this maximum deceleration,
for Jupiter we take 1/B = 18,288 m, and by Eq. (12-20) the corridor
width on Jupiter is Ahp = 29,992 m
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More realistically, if we want to keep the maximum deceleration
for ballistic entry into Jupiter's a’g_nosphere at 10 Earth g's , the
corresponding G would be G 10/5.3=1.89 . But the
smallest p0551b1emmax1mum decelern%clon for a non11ft1ng vehicle enter-
ing any planetary atmosphere corresponds to G = 6.5 for a hyper-
bolic entry, V, = 1.48 , as may be seen on Flg le 4, Hence, for
entry into Jupitelr's atmosphere the 10 Earth g corridor width would
be nonexistent. The smallest value of the peak deceleration for non-
lifting entry into Jupiter's atmosphere is G = 6.5 x 5.3 = 34 Earth
g's.

Figure 12-5 plots the dimensionless heating rate ¢ versus
F for ballistic entry at different speeds, while Fig. 12283 Siots the
d?mens:.onless total heat absorbed Q versus F_ . The definitions

of q and Q are given in Eqgs. (11-33) and (fl 41) in Chapter 11.
The results are presented for the entry of a nonlifting vehicle.
Before discussing the influence of aerodynamic lift on the corri-
dor boundaries we conclude this section with some remarks of interest.
First, the relationship (12-14) between 4/f.r, Y5 and F_ is
derived based on the assumption of small entry fhgh]t path anglesp such
that

-2 -—2 2
v _ .
; (2 Vi ) sin Yi

<< 1 (12-27)
—2 2
(V. - 1)
Hence, it will require that V is not near the circular speed. The
assumption is good if
=2
- > -
Vi 1 Y5

Since -y, is the order of 0.1 , the use of F  as a similarity para-
meter for gntry into different planetary atmogpheres is restricted to
about V. > 1.1 , or V. > 1.05.

Nex% although theoret%cally a skip trajectory is a trajectory
leading to Z_ = Z, = 0 , in constructing the diagrams Chapman
qualified an overshoot trajectory such that the exit speed exceeds the
circular speed, that is, a trajectory such that Vf > 1 at the exit
point.

Finally, an interesting, and possibly unexpected, result for the
entry of nonlifting vehicles, is exhibited by the curves for maximum
deceleration in Fig. 12-4, and also by the curves for maximum rate of
laminar heating in Fig. 12-5. The absolute minimum value of G
and the absolute minimum value of 9oy do not occur at the lowesxt
supercircular entry speed as might be expected. The absolute minimum

max occurs for entry at slightly hyperbolic speed and the absolute
minimum q occurs for entry at slightly supercircular speed.

A cross rprig?‘.(is presented in Fig. 12-7. From this figure, it is
seen that the lowest possible maximum deceleration for ballistic entry
into a planetary atmosphere is experienced when entering at the hyper-
bolic speed V. = 1.48 and aiming at a periapsis parameter of

F = 0.12. f’l’ns results in a2 minimum G = 6.5 as compared
p max
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to Em = 8.3 for circular orbital decay. The lowest possible
maximurh heating rate for ballistic entry occurs at Vi = 1.12 and
at I =0.018 . This results in a minimum q ax 0.19 as com-
pareH to q = 0.22 for circular orbital decay. An enlightening

. max . .
physical reason to explain the phenomena has been provided by Chap-
man in Ref. 1.

— SINGLE-PASS ENTRIES
Oﬁ_———MULTlPéE-PASS ATM 112

BRAKIN

Qmax

MINIMUM

1 ! 1 1 {
° 1.0 1.2 1.4 1.6 1.8 °

ENTRY VELOCITY, V;

Fig. 12-7. Minimum values of G and q .
as functions of entry speed for nonlﬁ?t)fng vehicles™

Also, as seen in Fig, 12-6, the normalized curves for the total
heat absorbed during ballistic entry do not exhibit minima. For any
entry speed, the lowest possible total heat is absorbed by entering at
the largest possible value of ¥ which, as shown by Eq. (12-15) and
Fig., 12-4, corresponds to the Eteepest possible entry and to the great-
est possible deceleration.

12-5. INFLUENCE OF AERODYNAMIC LIFT ON THE CORRIDOR
BOUNDARIES

One of the most interesting aspects of hypersonic flight is the
use of the lifting capability of hypervelocity vehicles to effect maneu-
vers in an advantageous way. A complete analysis of the modulation
of the lift, and possibly the bank angle, as functions of time, to achieve
the maximization of a certain quantity, called the performance index,
would require the tools of modern optimization theory. Such a subject
will be discussed in a forthcoming text entitled, "Optimal Trajectories
in Atmospheric Flight. "

Since here we are mainly concerned with entry at constant angle-
of-attack, or equivalently constant lift-to-drag ratio, we shall restrict
ourselves to the discussion of the lift-to-drag ratio, considered as a
parameter, and its influence on the boundaries of the entry corridor.
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Referring to Fig. 12-2, let us assume that the overshoot bound-
ary and the undershoot boundary correspond to ballistic entry,
C./C._=0 , of a certain vehicle. Now, if for a range of angle of
atIf‘ackl,) the vehicle can generate lifting forces, then it is reasonable to
infer that, by using negative lift, the lifting vehicle, starting on the
trajectory of the ballistic overshoot boundary, can be curved inward
holding the trajectory inside the atmosphere. Thus, this incoming
Keplerian trajectory is no longer an overshoot trajectory. That is to
say, with lifting capability the overshoot boundary for the lifting vehicle
will be higher than that of the ballistic vehicle, providing a larger
Thoy °
Similarly, for the undershoot boundary, positive lift can be used
to decrease the flight path angle and reduce the peak deceleration.

The ultimate effect is to lower the lifting vehicle's undershoot boundary,

providing a lower r
un
Through these heuristic considerations, it may be concluded that

the use of aerodynamic lift can have the effect of increasing the corri-
dor width. The actual mechanism is more complicated because of the
coupling between the lift-to-drag ratio, C /C , and the drag co-
efficient C . We shall study in some dé’caill%his coupling effect in
the following sections.

12-5.1. Overshoot Boundary with Lift

If a vehicle entered the atmosphere along an overshoot trajectory
it would pass through the atmosphere and exit into space at a point
where Z_ = Z. = 0 . If the exit speed is large but less than the
escape speed, tBe vehicle will return to the atmosphere for at least
another pass. If the exit speed is small, the vehicle will follow a free
flight trajectory outside the atmosphere for a short distance and re-
enter the atmosphere to complete the entry. For small flight path
angles, with small and moderate lift-to-drag ratios, if the exit speed
is less than the local circular speed the vehicle will stay near the edge
of the sensible atmosphere before finally descending. Hence, we can
use Chapman's definition in considering the overshoot boundary as the
trajectory such that the exit speed is the circular speed, that is,

V_ =1 . Using this definition, Chapman computed the overshoot _
boundaries for different lift-to-drag ratios using the entry speed V.,
as the scanning parameter. His results are presented in Fig. 12-8.
The figure plots the parameter 4/ (ﬁr)® (C /CD) versus the peri-
apsis parameter F_  for different values othhe initial entry speed.

As anticipateg, the curves in the figure show that, relative to
the case of C./C_ =0 , for each entry speed V, , the overshoot
boundary is eéfend%d upward, that is to lower F 1(hence to lower p ),
if negative lift (lift directed toward the center ofFthe planet) is employp-
ed. This is rigorously true when, while varying C /C_. , we can
maintain C_ constant. But, for a given vehicle aeéTodynamic config-
uration, when we vary the angle-of-attack both the lift and the drag
coefficients vary. That is, there exists a relationship between the
lift and the drag coefficients, or, referring to the drag polar, there
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Fig. 12-8. Overshoot boundaries for single-pass
entry of a lifting vehicle.

exists a relationship between the lift.to-drag ratio and the drag co-
efficient.

Typical relationships between CL/C and C using New-
tonian theory for hypersonic flow over a flaPplate are presented in
Fig. 12.9 taken from Chapman's Ref. 1. Along each drag polar, the
lift-to-drag ratio increases from the value zero at 0° angle-of-
attack to a maximum, then decreases to zero at 90° angle of attack
when the drag coefficient reaches its maximum value., For each lift-
to-drag ratio, there exist two values of C_ , one corresponds to low
drag flight and one corresponds to high drag flight. Since high drag
minimizes the aerodynamic heating, the high drag portion is used in
connection with the attempt to widen the entry corridor. But the use of
this portion will have a reverse effect. This can be seen in the Figs.
12-.8 and 12-9 and from the definition (12-10) of the periapsis para-
meter written as

'@I.-(,H

F
ER = £ (12-28)

D

With a higher negative lift-to-drag ratio, the periapsis para-
meter F_ decreases. But this does not induce automatically a de-
crease ]'.XP p , and hence an increase in r , since the drag
Pov Pov
coefficient C_ also decreases. In general, let (F, , C ) and
D Py’ "D

(F , C_ ) be the corresponding values for ¥ and C for two
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entries with lift-to-drag ratios CLI/ CDl and CLZ/ CD2 . Since
r = r ,
P P2
o /%D Bh, - h)
1 1 = e ¢ 1 (12-29)
F /CD
) 2

Fig. 12-9. Lift-drag polars for lifting surfaces
in hypersonic Newtonian flow.

The change in the periapsis altitude of the overshoot boundary,

when we change from CD to CD , is
1 2
F
1 pl/ ch
h. -h = h = = 1 —_ 2-30
2" M ApOV g B |TF 7c, (12-30)
2 2
The extension is upward, if and only if
Fp Fp
TL > C 2 (12-31)
Dl DZ
A simple graphical evaluation of parabolic entry, 7 = 1.4 on
Fig. 12-8, using the (C_/C.) x - 4 drag polar of I'lig. 12-9 ,
shows that, compared wig'ﬁ ba igltalc entry, C_/C_= 0 , between
CL/ C_.=0 and CL/ C_. = -0.5 the extension of the overshoot
boundary is upward, reacq'xing a maximum of 9.7 km for C_/C_ =
- 0.5 . Between C_/C_ = -0.5 and C /C_ = -4 e exten-
. L (P . .
sion of the overshoot boundary is downward producing a maximum nar-
rowing of the corridor of 11.3 km when C_/C_ = -4.

1
In practice, a more effective method of ex]?ending the overshoot
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boundary would be to deploy a large, light, high-drag device to increase
the drag coefficient C while keeping C_ =0 . N

In addition to specifying the overshootIEoundary V.= 1 ,itis
of interest for hyperbolic entry to specify the nonreturn boundary
v, = 2 . Both boundaries are illustrated in Fig. 12-10 for two
hyperbolic entries at V, = 1.6 and V, = 2.0 respectively. For
moderate and high negatllve lift-to-drag ratios, AV Br) . (C_/C ) <
- 0.05 , the difference between the overshoot boundargD an(}‘theDnon-
return boundary is indistinguishable on this figure.

overshoot boundary

V(P')ea (L/D)

|- -—-- nonreturn boundary

Hyperbolic

y exit \x
0 1 Ll 1 1
.002 0!

Single pass entry

Fig. 12-10. Overshoot boundary and nonreturn boundary
for hyperbolic entry.

12-5.2. Undershoot Boundary With Lift

For a prescribed entry speed v, _a deceleration-limited
undershoot boundary depends on the value Grn « prescribed and the
constant lift-to-drag ratio, C_/C selected” As in the case of

the overshoot boundary, an un&ersl?oot boundary can be extended down-
ward, hence widening the entry corridor, by a proper selection of the
constant lift-to-drag ratio. It is obvious that a better way to achieve
an optimum extension of the undershoot boundary is to modulate the
ratio CL/ C as a function of time. A rigorous treatment of the
problem woulla require_the tools of modern optimization theory. Also
a new definition of the Z function is in order since as C /CD _
varies, the coefficient CD , which is contained explicit]fy in- 2 ,
also varies.

Lees, Hartwig and Cohen (Ref. 3) have studied the effect of the

modulation of CL/ CD , under the assumption of constant CD , on
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the maximum deceleration during entry. They show that by modulating
CL/ C in a manner such that large C_/C values are employed
in the ]Pirst portion of the entry trajectory wheére the longitudinal decel-
eration is small, the resultant deceleration can build up to its maxi-
mum under conditions where the transverse component is dominant.
Then, by maintaining this constant resultant value G through de-
creasing the transverse component while increasing the longitudinal
component, the entry with modulated lift can be completed without re-
quiring large negative C_/C at any stage. In this way, the under-
shoot boundary for modula{’t‘ed DC / C can be extended considerably
from the value for constant CL/LC D, provided the value of C /CD
at entry is relatively high. They found that the ratio of G or
modulated lift to G for constant lift was essentially ir?gggendent
of Vi and Y, o mind dependent only on the initial value of CL/ CD
at entry. Their result is presented in Fig. 12-11.
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Fig. 12-11. Effect of modulated lift
in reducing peak deceleration.

On the other hand, Chapman studied the effect of constant
c./ CD on the undershoot boundary for deceleration-limited entry.
AI’Eypical diagram showing his results is presented in Fig. 12-12 for
parabolic entry, Vi = 1.4 . The diagram plots the normalized
maximum deceleration, G , versus log F . From the
. s max . (}0 P
figure, it is apparent that an increase in C / up to about 2

- é.z D . =

can extend considerably the undershoot boundary for a given G

since it leads to higher F , hence lower r for constanrpaxc
It should be noted that a constant high lift-to-dra% ratio may lead to a
skip trajectory. Hence, the constant C_/C program used is only

maintained until the flight path is essenti%‘lly l?orizontal, y = 0,
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near the point where maximum deceleration is reached. After this
point the lift-to-drag ratio is modulated to maintain the flight inside
the atmosphere in order to complete entry in a single pass.
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Fig. 12-12. Normalized maximum deceleration
for various lift-to-drag ratio entries at parabolic speed.
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Fig. 12-13. Overshoot and undershoot boundaries
as function of lift-to-drag ratio and maximum deceleration.
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The overshoot boundary with negative lift, and the undershoot

boundary with positive lift for various prescribed G ax 2TC plotted
in Fig. 12-13 for entry at parabolic speed, Vi = 1.4 ,  and entry
at slightly hyperbolic speed, V, = 1.6 . The curve in Fig. 12-11 is

used for obtaining the extension of the undershoot boundaries for mod-
ulated C /CD from curves calculated for constant C /C_. .
With a given G the improvement using modulaté’c"l (1? /C
is insignificant in tl%ag{ange of C_/C less than about 0.5 . At
c./C greater than about 1 , g'ﬁe u]?ldershoot boundaries with modu-
laIFed DCL/ C are considerably extended beyond those for constant
CL/ C . Since a constant C has been assumed and the abscis-
sa is ;:Hotted in log F , the Corridor width is proportional to the
horizontal spacing betwebn the overshoot boundary and the undershoot
boundary.

D
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Chapter 13

Unified Theory for Entry
into Planetary Atmospheres

13-1. INTRODUCTION

The classical theories for planar entry into planetary atmospheres
have been presented in Chapters 6 through 12. Except for Loh's second-
order theory which gives a high degree of accuracy, the application of
all theories is severely restricted. Each theory is applicable to one
particular type of entry trajectory because of the assumptions intro-
duced to facilitate the integration of the equations of motion. Loh's
theory itself is empirical. To alleviate this heuristic aspect, in
Chapter 8 we offered a physical explanation to justify his theory.

This book is designed primarily as a textbook, However, it is
also intended to present a complete account of the present state of the
art of the problem of evaluating the performance of a lifting hyper-
velocity vehicle entering a planetary atmosphere along a three-dimen-
sional path.

Up to this point, the first objective has been fulfilled. Entry
theories have been presented with their appropriate simplifications to
render explicit the dynamic characteristics of each type of entry tra-
jectory. Simple but accurate first-order solutions have been obtained.
They are of valuable assistance in analyzing the effect of the gravity
force and the aerodynamic force, the two main forces considered in
this volume, on the entry trajectories. Furthermore, the closed form
solutions obtained lead to explicit forms for physical quantities of
interest during entry, such as the deceleration and the heating rate.
These data are of utmost importance for the preliminary design or
mission planning of entry vehicles.

In the last quarter of this century, a new direction for space
exploration is formulated. Frequent flights weekly or even daily to
Earth orbit are planned. This introduces a new generation of space
vehicles, a versatile lifting hypervelocity vehicle used both as a satel-
lite and as a winged atmospheric vehicle with airplane aerodynamic
maneuverability. This requires a unified theory for studying atmo-
spheric entry, a theory that is applicable to all types of entry even
with lift and bank modulation. The second objective of this book is the
formulation of such a theory and the presentation of it in a complete

226
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but readable form to assist engineers and scientists working on the
space program in understanding the complexity associated with hyper-
velocity flight.

A unified theory that enables one to study the performance of a
general type of lifting vehicle, regardless of its weight, shape and size,
entering an arbitrary planetary atmosphere, would require a set of
universal equations. In turn, this requires universal variables, free
of the physical characteristics of the vehicle. In this respect, the
best theory available is undoubtedly Chapman's theory for analysis of
planetary entry (Ref. 1-2). Chapman's theory for planetary entry was
presented in Chapters 11 and 12. Just as most other first-order
theories, it is restricted to planar entries. This restriction is of
minor inconvenience since it can be easily removed. A major defi-
ciency in Chapman's theory is that, because of his two main assump-
tions, the equations are only approximate and the applications are
restricted to entry trajectories with small flight path angles, or small
lift-to-drag ratios.

In this chapter, Chapman's restrictive assumptions are removed
and the results extended to three-dimensional entry trajectories,
while all the distinctive features in Chapman's classical analysis are
conserved. Furthermore, it will be shown that, from the exact equa-
tions, all the known first and second-order solutions can be obtained,
thus displaying a certain universality for the present theory.

13-2. UNIVERSAL EQUATIONS FOR THREE-DIMENSIONAL ENTRY
TRAJECTORIES

The equations of motion of a nonthrusting, lifting vehicle, enter-
ing a planetary atmosphere were derived in Chapter 2:

%’cﬁ = V sin vy
de _ Vcosycos y
dt r cos¢
dé _ V cos y sin
at r
2
av pSCLV
e e e g sin vy
dy pSCLV2 VZ
th = —Zrn——COSO'-(g-T)COSY
2
pSC._V 2
\% %:E = -E—HTC—I;—S;- sing - —VI-_—— cos y cos Y tan ¢ (13-1)

The first three equations are simply the kinematic relations.
The last three equations are the momentum equations. The planet and
its atmosphere are assumed to be spherical and nonrotating. The
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initial plane is taken as the reference plane which shall be referred to
as the equatorial plane without loss of generality. The flight path angle
Y is measured positive upward from the local horizontal plane, and
the heading angle { is measured positive to the left of the initial
trajectory in the direction of the North pole (Fig. 13-1). The bank
angle ¢ is taken such that, for positive ¢ , the vehicle is turning

to the left. This angle is defined as the angle between the local vertical
plane, 1:_1r>1e (7, V) plane, and the plane containing the aerodynamic
force A  and the velocity v , the (K , _\7) plane.

ORIGINAL GROUND TRACK
(REFERENCE PLANE)

—

OESCENDING
ORBIT

Fig. 13-1. Coordinate systems.

The gravitational field is taken to be a central, inverse square
field, with the acceleration g(r) given by

gr) = & (13-2)

r

where p is the gravitational constant.

The atmospheric density, p , is a strong function of the alti-
tude. It shall be assumed to be locally exponential in that it varies
according to the differential law

de - g ar (13-3)
p
where the local scale height, 1/B , for any specified planetary

atmosphere, is a function of the radial distance r
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In his classical paper (Ref. 1), Chapman introduced two dimen-
sionless variables, u and Z , defined as

3 = Vcosy pSCD

7 = —— 2./
\/; 2 = 2m B8

It has been found more convenient for the present theory to use
the modified variables

u (13-4)

2 2 pSC
u = Y cos y , 7 = —L2 4 /X (13-5)
gr 2m 6]

Chapman used the variable U as the independent variable. Under
Chapman s assumption this variable is monotonically decreasing. It
will be shown later that, at high altitude, u is purely periodic. To
avoid this difficulty, in deriving the exact three-dimensional entry
equations, we shall use the following dimensionless variable as the in-
dependent variable

t

e

0

ml<

cos y dt (13-6)

This variable is strictly increasing as long as cosy > 0 , a con-
dition which is always satisfied for entry with constant lift and drag
coefficients. With this independent variable Eqs. (13-1) become

de _ cosy

ds cos ¢
dﬁ = i
s sin
2 rp SC V2
v . p—D 2 gr tan
ds " mcosy & v
rpSC. cos ¢
dy = —_— +(1 - E)
ds 2m cos vy 2
\4
rpSC_ sinco
%sk = - L - cos Y tan (13-7)

2
Zmcos vy
The differential relation between r and s is

dr
— = t 13-8
Te r tany ( )

. X 2 .
As in Chapman's theory, the variable V is replaced by u , while
the radial distance r , or equivalently the altitude, is replaced by
the variable Z
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The derivative of u with respectto s , with u as defined in

Eq. (13-5), is

ds cos y

/ C .
du _M[1+—I—’- cos o tany+—31£l—] (13-9)

The derivative of Z with respect to s, with the differential law for
p , Eq. (13-3), is

dZ 1 1 dp
_ = . - _— Z -
s pr(l 2pr + > dr) tan vy (13-10)
2p
Finally, the differential equations for y and  , written in

terms of the dimensionless variables, are

_d_x:_x/Er_z[c

2
- zor == coso =22 (g -%l)] (13-11)

D Br Z

and

ds 2 -

cos vy C:D A/Br Z

These dimensionless equations are exact. In particular, they reduce
to the equations for Keplerian motion when Z - 0

In Eq. (13-10) for Z , if a strictly exponential atmosphere is
used B = constant, and df /dr = 0 . On the other hand, if an iso-
thermal atmosphere is considered, B /g = constant, and
(1/2{32)(d[3 /dr) = -1/Br . In both cases, in the equations of motion,
the variables B and r enter as the product pr . For the Earth,
for altitudes below 120 kilometers, the mean value is large. In this
same region PBr varies from a low of about 750 to a high of about
1300 . It is, however, a better assumption to use a mean value for
Br than simply to put P constant and use the simple exponential
atmosphere in the computation. This development will follow Chap-
man's lead and put pfr constant. Also, because of the large value for
Br , the quantity inside the brackets in Eq. (13-10) is practically
unity. This minor assumption concerning the product Br does not
alter the asymptotic behavior of the trajectory at very high altitudes
where the equation in Z becomes inoperative.

In summary, the equations of motion for three-dimensional
entry trajectories are

C 2
dy ‘\/—Er Z l: Lsino- COS y cosy tani} (13-12)
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V4
%; = -PBr Ztany
7 .
du - 2YBr Zu [1 + X\ tany + Y :l
ds cosy

20/pr Z

2
dy _ \/_ErZ [)\+ cosy g _ cosY)]

ds cos vy Br Z u

a0 _ cos

ds cos ¢

S g

ds sin

dae VBr Z[é coszycosuptanq) ] (13-13)

= 3 - -
ds cos Yy Apr Z
where

C C

X = CL cos g , 5 = C_L sin o (13-14)
D D

The equations (13-13) were first derived by Vinh and Brace (Ref.
3). In view of the definition (13-5) of Z , they are restricted to
flight at constant lift-to-drag ratio, CL/C = constant ,
and for flight with a completely free modulation in the bank angle.
Extension of these equations to the case of free modulation in the co-
efficients C and C and in the bank angle ¢ for the study of
three-dimensional optimal trajectories in atmospheric, hypervelocity
flight has been obtained by Vinh, Busemann and Culp (Ref. 4).

The equations derived can be considered as the exact equations
for entry into a planetary atmosphere. Just as Chapman's simplified
equations, they are completely free of the characteristics of the vehicle.
Hence, they can be used to analyze the motion of an arbitrary vehicle
regardless of its weight, size and shape. The characteristics of the
atmosphere enter the equations in the form of the parameter Br

Once the atmosphere has been specified through pr , for any
prescribed lift-to-drag ratio, C_/C_ , and bank angle, o , and
with a prescribed set of initial conditions, the universal function Z
can be generated, and different physical quantities during entry can be
evaluated and analyzed exactly as in Chapman's theory, described in
Chapters 11 and 12. It may be thought at first glance that, to integrate
Chapman's simplified equation, Eq. (11-16) of Chapter 11, only the
product \/B—r (C /CD) need be prescribed and not fr and
(CL/ CD) separaIf‘ely. That is, Chapman's analysis appears to apply
to any arbitrary atmosphere. But this is not rigorously true since
in evaluating the flight path angle vy , using Chapman's first equation,
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Eq. (11-12) of Chapter 11, the parameter \/B_r needs to be prescribed.
A normalizing technique to obtain a similarity solution for an arbitrary
atmosphere requires sacrificing the accuracy in evaluating the univer-

sal Z function and the flight path angle y , and restricting the analy-
sis to a small class of entry trajectories.

13-3. REDUCTION TO CLASSICAL SOLUTIONS

The equations derived are the universal equations in the sense of
Chapman since they produce the universal Z functions for analyzing
the motion, deceleration and heating of an arbitrary vehicle. Further-
more, they are the exact equations for flight of a vehicle in a Newton-
ian gravitational field subject to aerodynamic force. In particular,
they provide the Keplerian solution for flight in a vacuum and all other
classical solutions when appropriate assumptions are introduced.
These particular solutions can be obtained as follows.

13-3.1. Keplerian Solution

For flight in the vacuum, let Z - 0 ., The first of Eqs. (13-13)
is inoperative. It is replaced by Eq. (13-8). Using this equation to
change the independent variable from s to r , we rewrite the other
Eqgs. (13-13)

du _ _u
dr Tor
2
4y _ 1 (1 cos X)
dr r tan vy u
de  _ cos
dr ~ rtany cos ¢
do sin
dr r tan y

ﬂ - COs q,t tang (13-15)

dr r tan y

Integrating the first of these equations yields

w= £ (13-16)
T

where p is a constant of integration. Next, combining the first two
equations to eliminate r gives

2
dy _ 1 _ Cos ¥ .
du u tan y (1 u ) (13-17)
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By the change of variable

r = —s—o0 (13-18)
cos Yy

this becomes the linear equation

dr 2 2
e— bl = —_— 3.
™ + " T > (13-19)
u
which integrates to
r o= Z2u + constant
2
u
For reasons that will be clear later this solution is written
2
2
cos y = ——u——-—-z— (13-20)
2u-(1-ce’)
where e is a constant of integration.
Combining the last two equations (13-15), we obtain
do tan 13
= - — -Z
dy tan ¢ ( D
The integration is immediate:
cos ¢ cosy = cosl (13-22)

where I is a new constant of integration.
The equation for 6 can be written with ¢ as the independent
variable.

de 1
— = . 3-2
dy sin ¢ (1 3)
Using the solution (13-22) for ¢
4o o5 Y (13-24)
dy [ 2 2
cos Wy -cos I
The quadrature gives
siny = sinlcos (8 - Q) (13-25)

where  1is another constant of integration.
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Finally, we define a new variable o by the relation

cos @ = cos & cos (6 - Q) (13-26)
42
-~
N
N
\
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Fig. 13-2. The osculating plane and the orbital elements.

Figure 13-2 displays the geometric relationship among the angles 6 ,
¢ , b and I , Q@ , «a . The angle I is the inclination, and the
angle  is the longitude of the ascending node. They are constants
of the motion for a Keplerian orbit. The new variable o , introduced
to replace the angle 06 , 1is simply the polar angle, measured in the
plane of motion from the line of the ascending node. From relations

in spherical trigonometry we have also

sin¢ = sinl sineo
siny = tand cota
sin( 6 - Q) = tan ¢ cot I (13.27)

The derivative of Eq. (13-26) with respect to r , with Eqs,

(13-15), (13-22), (13-25) and (13-27) used for simplification, results
in

de _ 1

T T Ttny (13-28)

If u is taken as the independent variable, and if the solution
(13-20) is used to evaluate tan y in terms of u , then.
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da _ _ = (13-29)
du 2 2
\/- u +2u-(l-e)
This integrates to
u =1+ecos (¢ - w) (13-30)

where w is the last constant of integration. It defines the argument
of periapsis. From the solutions (13-16) and (13-30) we can identify
e as the eccentricity of the orbit and p as the conic parameter.

For subsequent discussions, for Keplerian motion, we will take
the plane of motion as the reference plane, with the reference direction
along the pericenter. Then the equations of interest become

u = l+ecosH = % (13-31)
and
2
coszy = ———u—-z— (13-32)
2u-(1-¢)

We see that, outside the atmosphere, u varies periodically
between u=1-e and u=1+e . Hence, for flight with atmospheric
drag involving several passages through the atmosphere, the variable
u , and hence Chapman's variable W =u , 1s oscillatory. It
is, therefore, more convenient to replace it as independent variable
by the dimensionless variable s as defined by Eq. (13-6).

13-3.2. Chapman's Equations

In deriving his equations, Chapman introduced two basic assump-
tions as has been explained in Chapter 11.

a/ The percentage change in the radial distance is small com-
pared to the percentage change in the horizontal component of the
velocity.

ld(VCOSX) |>> |£i_£
V cosy T

In terms of the variables u and Z , this basic assumption is ex-
pressed as

C

1+ C—L tan vy \ >> | 22X ) (13-33)
D VBr Z
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b/ For lifting vehicles, the flight path angle y is sufficiently
small that the lift component in the horizontal direction is small com-
pared to the drag component in the same direction.

C
1>> < tan y( (13-34)
D

Before we continue with the derivation of Chapman's equations
from our formulation, the following remark is pertinent.

Most of the published analytical works on the theory concern
planar entry. For nonplanar entry, as far as the altitude, speed and
flight path angle are concerned, we only need to consider the first
three of Egs. (13-13). These equations govern the three-dimensional

variationof Z , u , and y , upon specification of the initial con-
ditions for these variables, and the three-dimensional flight parameter
N =(C_/C_)cose . Hence, throughout the rest of this chapter,

we shalchonlgider only the three equations

Z

-3; = «-fr Z tany
(s 7z .

%E = - —L——Z sr g (1+ Ntany + U )
cosy 2/pr Z

!

dy _ ’\/_ErZ [X+ cos y 1 coszy)]
ds cos y ’\/[3_1:Z T u

(13-35)

They are valid for three-dimensional entry at constant lift-to-drag
ratio, and constant bank angle. For comparison with the classical
solutions for planar entry we simply consider X\ as being C_/C
Now, applying Chapman's basic assumptions, Eqgs. (13-}3) Z{?’Id
(13-34), to the equation for u , we have the reduced equation

du _ _ _2VPr Zu (13-36)
ds cos y

These assumptions automatically restrict the validity of Chapman's
theory to the portion of trajectory where u is monotonically decreas-
ing. Using this equation to change the independent variable from s to
u , we rewrite the equations for Z and vy

dz _ ﬂér sin y (13-37)

du 2u
and
dy 1 cos y cos vy
S AR (- 22| (13-38)
Vpr Z
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It is convenient for concordance to return to Chapman's original vari-
ables u and Z . From definitions (13-4) and (13-5),

-2
u = u R zZ =

(13-39)

el |Nj

Hence, in terms of Chapman's variables, Eqgs. (13-37) and (13-38)
become

= —
d—_ - —E- = A/pr siny (13-40)
du u
and
d 1 u cosz
2 - L = [x + —=2X (1 -———l_z )] (13-41)
du u Br Z u

Equation (13-40) is Chapman's first equation. It is used to evaluate the
flight path angle. If we take the derivative of this equation with respect
to u , using Eq. (13-41), we have

— -— 2
FE(Z L) et 0 cony -
du ‘du u

(13-42)

This equation is equivalent to Chapman's second-order nonlinear dif-
ferential equation with Z as the dependent variable and u as the
independent variable. To obtain the equation in the form identical to
the one given by Chapman in his classical paper (Ref. 1)}, we write it as

2= = = -2 4

- ya -

u d_Zz _(2%_ :)- { u_)ios X + A\ pr )\cos3y
du u

du

[o¥]

Zu

- 2 . 2
+ 2 ot YRR Y 4 ABr A cosysinzy =0

z (13-43)

With the aid of Eq. (13-40), we consider the sum of the terms

— = - 2 2
dZ Z i
-(——_: - :) + uCOS_Y UL ¢ + 4/Br X\ cosysinzy
du u zZ

2 .
- \fpr siny [1-xcoszvtany-“_&&ijﬂt]
pr Z

—-’\/B_r sin y
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The last step is obtained by applying Chapman's basic assumptions,
Eqgs. (13-33) and (13-34). We see that this is equivalent to neglecting
the terms containing sin“ y in Eq. (13-43). Thus,

2
- 4 3
) - Ll-uw cos'y -A/Br X\ cos vy

z (13-44)

el

U -

Z (g z
du G

c |

du

Chapman derived this same equation for planar entry by repeatedly
applying his two basic assumptions.

13-3.3. Yaroshevskii's Equation

Yaroshevskii's theory, (Ref. 5), is closely related to Chapman's
theory. It can be shown that, for constant lift-to~.drag ratio entry,
Yaroshevskii's second-order nonlinear differential equation is a special
case of Chapman's equation.

Yaroshevskii used an independent variable, x , and a dependent
variable, y , defined as

\g T SC r
_TOQ , . _D _° o (13-45)

x = log >m 5

<
1l

where the subscript zero denotes the condition at a reference level.
In the more sophisticated definition of Chapman=s variables,

Eq. (13-4), if we use a constant value for r , and the assumption of
a very small flight path angle, cos y=~ 1 , we have
SC_p r
5 = — 7 - D/ e3 (13-46)
2m B
g r
o o

Hence. we have the relations between the two sets of variables

=y , u=¢e" (13-47)

=N NN

The corresponding relation in the derivatives is

7= ) (13-48)

el -

On the other hand, for very small flight path angles, Chapman's equa-
tion, Eq. (13-44), is reduced to

S ~2
;_f_i_‘(éé_é)_}_-_“_+ﬁro>\=o (13-49)

du Zu

da u Zu
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Using the transformations (13-47) and (13-48) in this equation, we have

Yaroshevskii's equation

2 2x
dy 4, l-ec L \er r=o0 (13-50)
dx2 ¥ ©

13-3.4. I.oh's Second-Order Solution

There exist several first-order solutions. The assumptions
introduced concern the equation for y , the third of the basic Eqs.
(13-35). We write it as

dy _E__‘/—:YZ (A +G) (13-51)

ds cos
where
2
G = <o Y [1%1] (13-52)

Jor 2

represents the combined gravity and centrifugal acceleration along the
normal to the flight path.

For skip trajectories, Eggers, Allen and Neice neglect the G
term compared to the lift N , (Ref. 6). For equilibrium glide with
nearly zero flight path angle, the correct assumption by Sanger vyields
AN+G = 0 (Ref. 7). This leads Loh to conjecture, based on exten-
sive numerical analysis, that the G term is nearly constant during
the integration (Ref. 8).

The equations for y and u , written with Z as the independent

variable, are

%Y.Z = . _+G (13-53)
A/Br sinvy
and
3—; - 2 (14 tany 4 —BY (13-54)
AVPBr sinvy 2N Br Z

With Loh's assumption of constant G , the integration of Eq.
(13-53) is immediate, We have

cosy - cosy, = USRS z) (13-55)

Joe

where subscript i denotes the initial condition. To assess the effect
of each of the entry variables, in the final equation, Eq. (13-55), G
is to be replaced by its definition, Eq. (13-52).
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Equation (13-54) for u has a singularity for Z =0 . To avoid
this difficulty, we rewrite it as

2
4 [log u--L log z] = ——5 (14X tany) (13-56)

dz pr \/E; sin vy

Dividing this equation by Eq. (13-53), we have

(\ +G) i[ L ] =
> & log u - Br log Z = -(1+X\ tanvy) (13-57)

Integrating and using the initial conditions, we have

cos y (N +G) u (A +G) Z
- = - 1 —_ — —_ -
Y-y N log cos v, > og o + 2pr log Zi (13-58)

Equations (13-55) and (13-58), derived with the present dimensionless
variables, constitute what Loh has called the unified solution of entry
dynamics (Ref, 8). The last term in Eq. (13-58) is the higher-order
effect term. It has been given only in approximate form by Loh,
Furthermore, the equations used in Loh's analysis assume constant
gravity. Neglecting the last term in Eq. (13-58) we have Loh's second-
order solution.

cosy (A1 G) 10g_u_ (13-59)
cos vy, 2 u,

L N log

For ballistic entry, X\ =0 . Thus, to the first order, by
neglecting the gravity and centrifugal force, we have from this equation
Yy = Yy, .- Keeping the G term, we combine this equation with Eq.
(13-55) to obtain

(Z - Zi) log u cos y - cOS Y; . sin Y;
c T - - 2
‘/Br u, 2y - v,)

The last simplifying step has been shown in Section 8-4.1. This gives
the classical first-order solution for ballistic entry (Refs. 1, 9)

) 13-60)
7 = yYBr - (
Z. + > sin vy, log a;

For gliding entry the flight path angle is small and nearly constant and
hence X +G = 0 , cosy=~1 . Thus, from the definition (13-52)
of G ,

- o 1-u (13-61)

z
11 Jpr ru
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This is the first-order solution originally derived by Sanger (Ref. 7).
For skip entry, G = 0 , and Eq. (13-59) is reduced to

ul/Z Y. =Y
exp ( 1)\ ) (13-62)

1/2
u

cosy cosvy,
i

while, from Eq. (13-55), we have the solution for 2

Br (cos y - cos yi)

ZIII = Zi + N (13-63)

For small flight path angles the equations become

A u
-y = =1 — -
Y, - Y > log = (13-64)

and

2

Zrrr T OHT o &y -y (13-65)

Using Eq. (13-64) we can rewrite this solution

log :19— -—E—Vsrx log? ui (13-66)

111 i z N .
i i

This is the solution for skip trajectories obtained by Chapman (Ref. 1).

The analysis in this section has shown that all the known first-
order and second-order solutions for entry dynamics can be obtained
from the present formulation including the exact limiting case for
orbital flight outside the atmosphere. Another second-order theory
can be constructed by matching the Keplerian solution with one of the
first-order solutions as has been done by Shi and Pottsepp for planar
trajectories (Ref. 10). Such a matched asymptotic solution for three-
dimensional entry trajectories using the present formulation will be
presented in Chapter 14.

13-4. NUMERICAL RESULTS

One outstanding feature of Chapman's approach is the construction
of the _Z - Tables for atmospheric entry (Ref. 11). For each initial
speed u, , entry angle \A and lift-to-drag ratio CL/ CD _, these
tables give the correspondence among the variables y , u and Z
during entry. From these we can calculate other physical quantities of
interest. The tabulation is valid for any entry vehicle. The only
difference is the actual altitude which also can be calculated for any
specified drag parameter SCD/ m
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But there are restrictions to the use of Chapman's tables due to
his two basic assumptions. In the present analysis, we have removed
these two restrictive assumptions and the basic equations (13 35) can be
integrated using the same entry data u, , y, and (C /C cos g to
generate more accurate tables. One additional benef1t is tEat the data
obtained are also valid for three-dimensional entry at constant lift-to-
drag ratio and bank angle since they are tabulated in terms of the flight
parameter X = (C./C )cosc . Several Z functions, using the
exact equations, have been computed by Brace (Ref. 12). Some select-
ed trajectories are reproduced here and compared with Chapman's
computed Z functions. They are chosen to display the quantitative
aspect of Chapman's assumptions.

In order to meaningfully compare Chapman's original results with
the results of the numerical integration of the exact equations the same
value Br = 900 has been used. Furthermore, the same integration
program and the same method for selecting the initial value Z. have
been used. The results for Z and u are converted into Z T T ,
through Eq. (13-39), and the diagrams are presented in terms of the
deceleration 4/Br Z u versus u as in Chapman's Ref. 1 for easy
comparison.

Chapman's basic assumptions concern the coefficient A |, the
quantity in parentheses in Eq. (13-35) for u.

A = 1+A1+AZ (13-67)
where
A1 = \tany (13-68)
e (13-69)
pr Z

As has been shown in Eqs. (13-35) and (13-36), Chapman's assumptions
consist of taking A =1 . Hence, Chapman's theory is accurate when-

ever |A << 1 and |A_|<< 1 , or more generally whenever
IA + l << 1 . 1It'is therefore informative, for each compari-
son, to also plot the functions A1 , A and A ., In every case,

the results of the numerical integration support the hypotheses regard-
ing the accuracy of Chapman's solution. Along trajectories where A
and A remain reasonably close to zero, Chapman's solution follows
the exact solution. Along trajectories where A is either discontinuous
or does not remain close to unity, there are discrepancies between
Chapman's theory and the present exact theory.

The best agreement between the exact analysis and Chapman's
results is evidenced in the case of steep angle ballistic entry as shown
in Fig. 13-3. A is identically zero since C_ =0 , and A
remains close to zero over most of the trajectory. This can be pre-

dicted by inspection of Eq. (13-69). _For steep ballistic entry,

sin y is nearly constant while 4/fr Z/u , which is proportional to
p , quickly becomes finite and large. This leads to near zero value
for A

2



Ch. 13 UNIFIED THEORY FOR PLANETARY ENTRY 243

Fig. 13-3. Npr Z u versus u for steep angle ballistic entry
A=0, V.,=L4, y, = =700 , u = 0.478, Z = 0.02819
O - Chapman'ls results. > Exact equations.

Fig. 13- 4_V r Z u versus u for equilibrium glide entry
A=1, V A -0.13° = 0.999, Z1 0.00007

O - Chapman s results.

Exact equations.
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Figure 13-4 presents another favorable case for Chapman's
theory, namely the equilibrium glide entry. Although A =1 , A =
N\ tany remains small for equilibrium glide along most of the trajec-
tory except at lower altitude when y becomes large. On the other
hand, although A, , as given by Eq. (13-69) is negatively large at
high altitude, as for all entry trajectories from high altitude where
Z = 0 , as soon as the vehicle reaches the denser layer of the atmo-
sphere ‘\/ﬁ Z/u again becomes finite and large so that A_ tends to
zero. It is seen from Fig. 13-4 that whenever A remains czlose to
unity, Chapman's result is accurate.

Figure 13-5 presents a trajectory where the basic assumptions
of Chapman may be valid but his selection of the variable u as inde-
pendent variable renders his results inaccurate. This is a case of
ballistic entry, hence A  is identically zero. But at parabolic
speed Vi =1.4 , and wit]h a shallow entry, Y; = -3.75°% , the trajec-
tory is an overshoot trajectory. The trajectory makes a pass through
the atmosphere, returns to a Keplerian orbit at u = 0.98 , and the
entry is completed during the next passage. In the vicinity of u = 0.98
not only is A not near unity, but A is discontinuous and reaches
large negative values. Although not shown on the graphs, exact values
of u produced by numerical integration using s as the independent
variable show an oscillation in the variable u as predicted by the
present theory. The result is a large discrepancy between the exact
theory and Chapman's theory as can be seen in Fig. 13-5. From the
figure, it should not be inferred that Chapman's result becomes accu-
rate again at lower speed. The fact that the ordinate is ‘\/-B_r- Zu ,
automatically sends both the exact solution and Chapman's solution to
zero as u tends to zero.

Finally, the entry trajectory presented in Fig. 13-6 is a clearly
unfavorable case for applying Chapman's theory. This is the case of
a grazing circular entry, V,= 1 , y. =-0, 2° |, but with high nega-
tive lift, X\ = -4 . With higﬁ negative hft, the vehicle will dive steeper
and steeper and the flight path angle will quickly reach large negative
values. From Eqgs. (13-67) - (13-69), it is seen that although A
tends to zero, A  will increase indefinitely providing values for A
much larger than unity as shown in Fig. 13-6.

Although Chapman's theory was never designed to be used in the
high-lift entry case, the Z Tables (Ref. 11) contain many such cases.
Therefore, with the advent of a new generation of entry vehicles having
high lift capability, the need for a revised set of data obtained by using
the exact equations is clearly indicated.

13.5, THE ENTRY CORRIDOR

Chapman's theory of the entry corridor has been presented in
detail in the previous chapter. Whenever his two basic assumptions
are valid, the results are accurate. In any case, the basic conception,
through the use of the periapsis parameter F_ , is an outstanding
conception and should be retained for any futufe, more accurate analy-
sis. The notion of the periapsis parameter is closely related to the
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definition of the entry altitude which, in turn, is the basis for the
computation of the overshoot and undershoot boundaries. These notions
are revised in this section, in light of the exact equations as a tool for
computing accurate entry trajectories.

13-5.1. Definition of the Entry Point

To some extent, any definition of an entry point is arbitrary,
since from a strictly mathematical standpoint, the process of changing
from a Keplerian orbit to an atmospheric flight orbit is a continuously
varying process.

For the numerical integration of his equation, Chapman chose
the starting value of vy as the initial value of y , and the starting
value of u for the first point as 0.995 u, . Then, sirize the equa-
tion has a singularity at Z = 0 , the starting value of Z is obtained
by an approximate method. This choice of the starting value of u
clearly assumes that u is decreasing at the entry point. If we are
interested in effective entry trajectories, along which the heating rate
and the deceleration build up, then we can use Chapman's definition of
an entry point as the point where u starts to decrease. In this case,
the initial value of Z can be obtained from the equation

sin vy,
A= 1+4Xtany + — L -9 (13-70)
7 .
VAVECE i

since with this value du/ds = 0.

If a broader class of trajectories is considered, especially tra-
jectories with several passages through the atmosphere, then it is
natural to consider the point where atmospheric flight is initiated as
the point where the acceleration caused by the aerodynamic force has
reached a selected small fraction, f , of the local gravity force. The
expression for the acceleration due to aerodynamic force is

.2 MQ/H(C/C)Z (13-71)
g coszy LD

Hence, for a given u, and v; Zi is obtained from
A/ zZ
G NP AJ1+(c /c )= (13-72)
g, 2 i -
i cos vy,

The manner in which f is chosen determines the accuracy with
which the atmospheric portion of a trajectory may be interfaced with
the Keplerian portion, As f becomes smaller, the entry point moves
backward along the trajectory, and the two portions of the trajectory
are more accurately matched. However, a too small value of f
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renders the entry portion too long and the tabulation of the numerical
results unnecessarily cumbersome. A reasonable range for f is
from 0.005 to 0.05 . With regard to the tabulation of noncoplanar
trajectories, since we specify X = (C ) cos ¢ for economy

of parameters, the definition (13.72) oflfhe entry point, with C_/C
replaced by X\ can still be used without interfering with the accuracy
if a small enough value of f is selected.

13-5.2. Trajectories With Several Passes

For this discussion, we adopt the definition of the entry point
using Eq. (13-72), Numerical results presented here were obtained
with the value f = 0.05 . We first consider the case where there is
no interference with atmospheric force. The trajectory is Keplerian
and the relation between the variables u and y is given by Eq. (13-
20) reproduced here for convenience

2
cos? vy = ——“———2— (13-73)
2u-(1 -e)

The constant e is the eccentricity of the orbit. As discussed in
Chapter 12 and shown in Fig. 12-1, this element, even for a reentry
trajectory can be calculated by taking a point on the orbit at very high
altitude where the motion is still Keplerian. With a known value of e,
we can plot the Keplerian trajectory, Eq. (13-73), using a polar co-
ordinate system (u, y) as shown in Fig. 13-7. In this (u, ) plane,
the polar angle y is negative in the clock-wise direction. If there is
no entry, the Keplerian trajectory is a closed curve symmetric with
respect to the y = 0 axis. In the case where the trajectory intersects
the atmosphere, the Keplerian trajectory will be perturbed starting
from a certain point i representing the initial point for the first
atmospheric passage (Fig. 13-7) . To calculate this point, we first
notice that, following the Keplerian trajectory to a distance r, where
a sensible atmosphere is likely to be present, the initial value

u, = V'Z/g,r, (Fig. 12-1) can be evaluated accurately. Then, with
this valhe of B, , Eq. (13-72) with f=0.05 , and Eq. (13-73) with
subscript i can be solved for the remaining initial values Y and

Zi . The integration of the exact equations (13-35) can be started. If
the trajectory leads to an exit into the vacuum, the deceleration as
given in Eq. (13-71) will first increase from the value f and then de-
crease to return to this same value. This portion of the "atmospheric
fly through'' is shown in Fig. 13-7 from the initial point i to the
exit point e, . Let v, and Z_ be the values of %he variables
at the first exit. From ]i:hls point on the trajectory is again Keplerian.
The next return to the atmosphere occurs at the point i where by
spherical symmetry, we have the value u -y, and “Z_ to start
again the integration of the equations for a]tmospherlc flight.

If the integration of the second atmospheric portion of the tra-
jectory leads again to an exit point e, , the conditions for the third
entry point i, are calculated in the 'same manner from the condition
at the last exﬂ? point. The above procedure is repeated until final entry
is effected.
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INITIAL
ORBIT

Fig. 13-7. Representation in the (u, y) plane
of an entry trajectory with several passes.

13-5.3. Chapman's Periapsis Parameter, F

It has been shown in Chapter 12 that Chapman's periapsis para-
meter is used to define the entry condition.
He defined the periapsis parameter as

p SCD r
Fp = -PT —éz (13-74)

where r_ is the hypothetical periapsis distance and p_ is the atmo-

spheric &)ensity evaluated at this periapsis altitude. For a very small

entry angle y, , and for a supercircular speed V, =V, /4fg.r. > 105
. i . i i ii

an approximate relation between Y5 and Fp has béen given by Chap-

man as

- -2 2

i Vi (BT

F = - exp — (13-75)
P 2(v.5 -1

z,
vV,
i

Hence F_ can be used as an alternate parameter replacing v,
Before dé)riving a more accurate formula for F for use in this
chapter, we notice that, by the definition (13-5) &t our z variable,
we have ¥ = Z . Hence, from now on, we shall use the notation
Z to rep?ace F to designate the periapsis parameter.

For an atmopsphere which is essentially exponential between the
initial entry point and the conic periapsis, we have

EP_ rp -B(rp- ri)
Zl = ? [S] (13-76)
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Now, if the value f in Eq. (13-72) is selected small enough, the
entry point can be considered as a point on the initial Keplerian orbit
(Fig. 13-7). Hence, Egs. (13-31) and (13-32) apply. We have by
evaluating the constant p and e atthe entry point and hypothetical
periapsis

r u,
£ - 2 (13-77)
r, u
i P
and
2
i 2
— L 2u, = u- 2u (13-78)
cos vy, ! P P

Using Eq. {13-77) in Eq. (13-76), we obtain the expression for
the periapsis parameter in terms of Zi and the ratio ui/ u

Y
u, Bri(l - G_)
z, =2 ;i e P (13-79)
P

There are many possible computing schemes using the formulas just
derived. For computation and tabulation of accurate Z functions we

can follow Chapman using V., , vy, and (CL/ CD) as entry data, and
7Z as an auxiliary parameter. For uniformity, a single vglue of f ,
saPy £f=0.05 , is selected. Then, we have u, = V. cos y, . Then

u  is obtained from Eq. (13-78), Z, from Eq. (13-72), and finally
Z?  from Eq. (13-79). The integrat’ion of the equations starts from

tHe values u, oy, and Zi . For tabulation we can use either the
modified (Z, u) tlunctions, or the original Chapman variables
(Z , u)

In practical application, for a given vehicle with a prescribed
drag parameter, approaching a planetary atmosphere, sometimes it is
difficult to obtain an accurate evaluation of the entry angle vy, , as
has been pointed out by Chapman. In this case, since the Keplerian
approach orbit is known, its drag-free periapsis distance r_ can be
easily evaluated. Hence, if the atmosphere is known, we also have
P For a prescribed drag parameter, F_ is evaluated from Eq.
(P?:- 74). The entry speed V., can be accuraPtely evaluated from ele-
ments of the Keplerian orbit 1using a distance r, representing the radi.
us of the atmosphere. This is because V, is not as sensitive to vari-
ation of r, asis vy, . Since the 2 Tablés have V, and Z _ as entry
data, toge%her with 'C / C_ , the entry trajectory %an be identified.

Finally, Chapman uséd Eq. (13-75) to obtain an explicit formula
for A in terms of F_ , Zi and Vi . Written in terms of Zp ,
Zi and Vi this is P

, 2avVio z
Br v, - ——_1_2-———— log (—Z—E-) (13-80)
v i
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The use of this explicit formula is restricted to very small
angles y. and V, > 1.05. An informative derivation of an improv-
ed formula for Y- 'is as follows.

Let !

Z u,
. _p i
A T

i p

n

(13-81)

From Eq. (13-77) it may be seen that (1 - x) is a very small positive
quantity. Thus, Eq. (13-79), which is

Wz pr-x)

= (13-82)
or
1
logy = 3 log x + Br(l - x) (13-83)
may be expanded for x near unity as
. _x-1+l(x-1)2
cg X = x 2 x *
Thus,
1 -
logy = (1-x) [pr-=—+ &2 _ ], x=1
2x 2
4x
That is, for large value of Br
1 Zp
_ - 13-84
1-x or log (Zi) ( )
Now, since up= ui/x , Eq. (13-78) becomes

2x(1l - x) cos2 Yi _

2
u = = -
i > 5 Vi cos Y (13-85)
cos y; - x

2 =2
Hence, solving for sin y, interms of x and V,
i i

> (1-x)[(1+x)71‘.2-2x]
sin"y, = — = (13-86)
v

i

where x is given by (13-84). This formula may be written as
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—_2 Z
[(1+x) V- 2x] log ( Z—P ) (13-87)

2
Br sin v, =
i

__1__
‘\7

Now it is apparent that if x inside the square brackets is approximated
by unity, Chapman's formula (13-80) is recovered.

13-5.4. The Entry Corridor

The theory of the Entry Corridor has been discussed in detail in
Chapter 12. Here we shall present an accurate computing scheme for
the calculation of the entry corridor, consistent with the new definition
of the entry condition as given by Eq. (13-72). We shall consider only
the undershoot boundary for deceleration-limited trajectories.

First, using the exact expression (13-71) for the deceleration due
to aerodynamic force, by evaluating equation da/ds = 0 for maximum
or minimum deceleration, we have, considering fr as constant and
using the basic equations (13-35)

2 sin vy coszy B

2YBr Z + (Br - 1) sin y + 0 (13-88)

u

It is interesting to notice that this condition does not depend ex-
plicitly on the lift-to-drag ratio although the trajectory depends on
that parameter. Also, it is obvious that the condition can only be
satisfied for negative flight path angles. When a/g reaches an extre-

mum, either a maximum or a minimum, the variables Z , u and
Yy satisfy condition (13-88) with the extremum f{ = a:‘z/ g given by
VE z 2
£, = Y22 f1+(C /Cp) (13-89)
2 L" "D
cos vy

Hence, if f = 0.05 is used to define the entry condition, for
entry trajectories to be completed during the first pass the minimum
value for the deceleration £  should not be less than 0.05. Then a
systematic scanning of all the overshoot boundaries is as follows.

We use the two equations (13-88) and (13-89) as starting condi-
tions, at the exit point, with f, = 0.05 and integrate the trajectory
backward until f = 0.05 agaln at the entry point. That is to say, for
each prescribed (C / C_) we use the value of Z at exit point Z as a
scanning parameter andDobtam Y and u by solving the two Eqs
(13-88) and (13-89). The 1ntegrag10n backward leads to the entry con-

dition vy, , u Z, when f = 0,05 . This_will give a point for

the overshoot boundary_Blotted on the diagram v, , Y. , or in a better
i 1

way, on the diagram V. Z . The conversion from vy, ,

Z_ to Z is obtamecf‘ exph&tly through Eqgs. (13-78) and (13- ]79)
The results Are presented in Fig., 13-8 for ballistic entry giving the
periapsis parameter Z_ for overshoot boundary of any supercircular
entry speed up to —\71 =P2.2
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Fig. 13-8. Overshoot and undershoot boundaries for ballistic
entries into the Earth's atmosphere.

Similarly, the undershoot boundary for any prescribed maximum
deceleration f* =f can be obtained in the same way. The two
equations (13-88) a%ﬁ 3-89) are used for the starting conditions at
the point of peak deceleration, f, =1 . Then Z is used as a
scanning parameter for an integrlatiortlnl?axckward to the entry point
where f = 0.05. The resulting value vy, , u, and Z, provides
the entry condition for a peak deceleration f, = f . It has been
found that many ballistic entry trajectories have tvggaf)(eak decelerations.
The region where they occur and a comparison of their magnitudes
are shown in Fig, 13-8 depicting the undershoot boundaries for differ-
ent values of f . As has been mentioned in Chapter 12, for
ballistic entry la“%asxuper-circular speed, there is a minimum value for
the peak deceleration if the entry is completed during the first pass.
Using the exact equations, it has been found that the smallest possible
peak deceleration is 6.5 g which occurs for a slightly hyperbolic
entry Vi = 1.466 with Zp = 0.13.
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Chapter 14

Solution of the Exact Equations Using
Directly Matched Asymptotic Expansions

14-1. INTRODUCTION

The dimensionless universal equations for atmospheric entry
were derived in the previous chapter. The modified Chapman's vari-
ables were introduced primarily to generate numerically the Z func-
tions appropriate for analyzing entries of arbitrary vehicles. First-
order solutions were also obtained. As presented in Chapter 13, the
theory is semi-analytical., In this chapter, a higher-order, analytical
solution is presented. It is obtained by using the method of directly
matched asymptotic expansions applied to the exact equations for three-
dimensional entry, The two-regime approach of directly matched
asymptotic expansions has proved to be feasible and effective in some
restricted cases (Refs. 1 -4). This chapter will follow the recent,
complete integration of the exact universal equations, (Ref, 5).

14-2. THE DIMENSIONLESS EQUATIONS OF MCTION

If an isothermal atmosphere is used, the universal equations,
derived in Chapter 13, have the form

dz 3

== = . -—)) Z

a5 pgr(l R ) Z tan vy

%;- = -—LZ r Zul:1+)\tany+—-—Y—Sln jl
cos y 2 (—‘sr 7

d0 _ cos

ds = cos &

LR 14-1
ds sin ( )

254
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2
ay  _ Mér Z [6 _ cos Jcos¢tan¢] (14-1)

2
ds cos ¥y {Br Z (con't)
where
C C
A = CL cosg , &6 = CL sin ¢ (14-2)
D D

The nomenclature is displayed in Fig. 14-1. The flight program
is specified by the lift-to-drag ratio, C_/C_ , and the bank angle,
& , or equivalently, the flight paraméters X and & . They are
assumed constant for the flight. The Z and u variables are modified
Chapman's variables.

pSC

D r
Z = -
2m B
V2 os2
v Y (14-3)

The dimensionless independent variable s 1is related to the
radial distance r by the differential equation

ds 1
dar r tan vy (14-4)

The equations will be transformed to be more suitable for use in
the method of directly matched asymptotic expansions.

z “z

Fig. 14-1. Coordinate systems.
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In this method, the solutions are obtained separately for an outer
region, where the gravity force is predominant, and for an inner
region, near the planetary surface, where the aerodynamic force is
predominant. Hence, the altitude is the appropriate independent vari-
able selected for the integration.

Let y be the altitude and let subscript s denote the reference
altitude, for example, sea level. Then

r = L +y = rs(l + h) (14-5)

where the dimensionless altitude h is defined as

= X
h = m (14-6)
s
The differential relation between s and r , Eq. (14-4), becomes
dh
ds = (1 + h) tan y (14-7)

For the integration, we adopt a strictly exponential atmosphere, but
the general method can be applied to any more realistic atmosphere
such as, for example, the one proposed in Ref, 1. For an exponential
atmosphere

-By _ 0 o ~hle

s S

(14-8)

where

€ = ‘ (14-9)

Since the constant fr_ is large, e.g., for the Earth atmosphere
Br_ = 900 , the parameter € is a small quantity. By the defini-

tioh (14-3) of Z
p SC
B D/ (1+h) -h/e
z = o e (14-10)

We define the ballistic coefficient

SCDp s

B = _erTﬁ— (14-11)

For each vehicle, B is specified and the variable Z is obtained

from
Z = B »\/(—IE-E)- o™ P/e€ (14-12)
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This relation can replace the first Eq. (14-1). The other equations,
with the dimensionless altitude h as independent variable, can be
written

du _ u 2Bu(l + \ tany) e-h/e
dh -~ T (1+h) " € sinvy
2
dg _ d (1.—q—)--£§e-h/€
dh (1 +h) u €
de _ cos Y
dh 7 (1+h)cos¢ tany
do sin
dh ~ (1 +h)tany
dy _ cosy tand B6 e-h/€ (14-13)
dh " (1+h) tany € siny cosy B
where
q = cosy (14-14)

The Eqgs. (14-13) are in a suitable form for numerical intégration
for flight inside an atmosphere. For an analytical solution of the entry
trajectory using the method of matched asymptotic expansions, we
shall use a more convenient form using some elements of the orbit as
introduced in celestial mechanics, since these elements are constants
of the motion for flight in a vacuum.
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Fig. 14-2. The osculating plane and the orbital elements.
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As seen in Fig. 14-2, if Iis the inclination of the plane of the
osculating orbit, that is, the (r , ‘\7') plane, € the longitude of the
ascending node, and o the angle between the line of the ascending
node and the position vector, the following pertinent relations from

spherical trigonometry hold:

cosd cos § = cos I
- _ fang
sin (8 - Q) = ton 1
cos ¢ = cos d cos (6 - Q) (14-15)

These relations are independent. We can easily deduce

sin¢ = sinlsinea
t
sin LI" = ﬂ
tan o
sindy = sinl cos(6 - Q) (14-16)
Using these relations, we replace the variables 6 , ¢ , and ¢ with
the new variables o« , € , and I . The Eqs. (4-13) now become
du u 2Bu{l + \ tany) e-h/e
dh ~ T (1+h ° € siny
49 _ s af) AB P
dh T(1+h) U T uw T e
da  _ 1 B& sin o e-h/ €
dh (1+h)tany € tanlsiny cosy
dan _ B§ sin o o -h/¢€
dh € sinl sinvy cos vy
dl B8 cos o« -h/e€
dh € siny cosy N (14-17)

The Eqs. (14-17) are most suitable for an integration using the
method of matched asymptotic expansions. We notice that, once the
elements o« , £ , and I are known, we obtain the original variables
6 , ¢ , and ¢ from

tan (6 - Q) = coslItana
sin¢ = sinl sin «

tan\y = cos o tanl (14-18)
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14.3. INTEGRATION BY DIRECTLY MATCHED ASYMPTOTIC
EXPANSIONS

14-3.1. OQuter Expansions (Keplerian Region)

The Eqs. (14-17) are expressed in terms of the outer variables.
The outer expansions are introduced to study the limiting conditions of
the solution in the outer region where the gravitational force is pre-
dominant. They are obtained by repeated application of the outer limit,
which is defined as the limit when € - 0 with the variable h and
other dimensionless quantities held fixed.

We assume the following expansions

u = uo(h)+€ul(h) +. ..

Nal

= qo(h)+€ql(h) +. ..
a = ozo(h)+€ozl(h)+. ..
Q = Qo(h) + GQl(h) +...

I = Io(h) +€Il(h)+ ... (14-19)

From Egs. (14-17), the differential equations with zero order of ¢ are

T o

dh (1 +h)

2

Do %

dh = T (1+h) u,

dao ) 1

dh = (1 +h)tan Y,

e, .

dh
EEQ = 0 (14-20)
dh -

The solution of this system is

u(l+h) = C

1 _2(1 +h) 2

> = ——75;—— - C,(1 +h)

9o

(14-21)
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2 .
0 1+ 41 - C1 Czcos(ao-C3)

u =
2 = C4
I, = C, (14-21)

{(con't)

where the Cn are constants of integration. The first-order and higher-
order solutions are all equal to zero because at high altitude, in the
limit the atmospheric density is zero and the motion is Keplerian.

14-3. 2. Inner Expansions (Aerodynamic-Predominated Region)

The inner expansions are introduced to study the limiting condi-
tion of the solution near the planetary surface where the aerodynamic
force is predominant. They are obtained by repeated application of the
inner limit, which is defined as the limit when € -~ 0 with the new
stretched altitude

R o= B (14-22)
€
and the other dimensionless quantities held fixed.
We assume the following expansions

u = uo(h) + eul(h) +...
q = qo(h) +eql(h) +...
a = ao(h) + Eal(h) +. .
Q = Qo(h) + €Ql(h) +...
I = Io(ﬂ) + eil(ﬁ) P (14-23)

From Eqgs. (14-17), the differential equations with zero order of ¢ are

duO ZBuO(l + )\ tan YO) ~

-h
—_— = - — e
dh sin YO
dq ~
——-;Q = - )\Be-h
dh
daO B& sin o _}:
—_— = . ~ — — e
dh tan I0 sin y, cos y,

(14-24)
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dQO B& sin 2 -h
_ = - ~ - e
dh sin IO sin Yo €98 Y,
dI~ Bé cos c; -
0 -
—~Q = — — e b (14-24)
M t
dh siny, €0s Y, (con't)
The solution of this system is
Gy - G e [ 2]
B T Q9 exP |- X
- _h ~
9, = X\ Be + C2
sin o, sin I0 = sin C3
cos oy = cos C3 cos(C4 - QO) _

Y

- - s T 0 5

cos I0 = cos C3 cos{—)\ log [tan( vy t = )] + CS}
(14-25)

where the C are constants of integration.
n

14-3.3. Asymptotic Matching and Composite Expansions

The constants of integration C  in the inner expansions will be
determined by matching with the outer expansions. In this problem,
matching is accomplished by expanding the inner solutions for large
h , expressing the results in terms of the outer variables and match-

ing with the outer solutions for small h
The outer solutions, Eqs. (14-21), become for small h

u0 = C1
o
0 2 - CICZ
Cc. -1
o = cos_1 S S + C
0 \/——2— 3
1- C1 C?_
9 = S
1 = C (14-26)
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On the other hand, the inner solutions, Egs. (14-25), become for large
h

G = 8 e [- 2 cost )
ao B é2

sino:Osin fO = sin 63

cos;0 = cos 63 cos (64-50)

cos IO = cos C3 cos{ N log [’can(4 +2cos CZ)J + C5 }
(14-27)

Matching Eqs. (14-27) with Eqs. (14-26) provides the constants 6
in terms of the constants Cn . We have n

/ C
o 2 -1 1
Cl = (2 - C1C2) exp[ cos 2. CC :I
172
E e U
2 - -
2 CICZ

_ 1 C1 -1
sin C. = sin C_ sin|cos’ (-—-————-—) + C
3 5 [ \/—2 3
1 - C1 C.2

- 1 N S -
C = cos {cos[cos _— +C3] /cos C3} +C4

4
/ 2
l-CIC2

C = cos-:l [cos C5/ cos C3]-

>

C

b -
log [tan[znk%cos ! 2_-Cl_C_:i|
172

>lo

(14-28)

Hence, the constants C are expressed explicitly in terms of the
constants C . Substitution into Eqs. (14-25) gives the inner solu-

tions. It is convenient to use the following notation to write these

solutions in a symmetric form. Let
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u:': =
cos vy,
C1 -1
sin ¢ ( ) + C ]
> 3
\/1 - C1 C2

1 1 € -1
0, = cos_ {cos |:cos- (——————-) + C3]/cos 4>>,=} + C4
/ 2
1 - C1 C2

I, = C (14-29)
i 5
The constants with subscript * are explicit functions of the constants
Cn . Then the inner solutions are
u cos’ ¥
0 0 2 -
o T Tz e [T Y]
cos Y,

cos Y, = cos vy, t )\Be-h

sin @ sin I0 = sinég,

cos a, = cOs ¢, cOS (6, - &

0 )

0

S-I<COSIO) os'l (cosl* )
co cos &, - ¢ cos¢:,:

Y

Y
6 ™ 0 w *
= 3 log [tan (—4 + —2)/ tan(z-+ y )] (14-30)

From the Eqs. (14-15) and (14-16) the meaning of the starred
constants can be seen. The Egs. (14-30) show that during the phase of
aerodynamic turning, the latitude ¢ and the longitude 8 remain
constant., The last equation gives the change in the heading | during
that phase.

The composite expansions, uniformly valid everywhere, can be
constructed by the method of additive composition. The additive com-
position is obtained by taking the sum of the inner and the outer expan-
sions, Eqs. (14-30) and (14-21), and subtracting the part they have in
common (the inner limit of the outer expansions or the outer limit of
the inner expansions), Eqgs. (14-26) and (14-27). Thus, for the vari-
ables u and y , using subscript c¢ for the composite solution,
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2 ~
u cos vy
c h 0 2 ~
W, © T aam T P exp [)\ (Y*'Yo)] (14-31)
cos vy,
and
u
sk _h
cos Y, = cos vy, 5 > +) Be /e
2cos vy, (l+h)+{u, -2cos vy, )(1+h)
(14-32)
For the angular variables o , Q and 1 , the composite solutions
are
= +a C. - cos™ ! —.—Cl !
ac aO aO T3 \/———2—
1 - C1 C2
Q= 9,+9,-C,
- L - 14-33
IC I0 + I0 C5 ( )

Hence, from Eq. (14-21), @ =Q_ and I = io . From the last
of the Egs. (14-30) ¢ ¢
cos I,

cos IC = cos ¢* cos { cos o5 ¢>|<)

Y

Y
s T 0 T 3
+ x log [tan(z+ —2-)/tan(—4+—2—-)]}(14-34)
For the angle Qc = 60 , the second Eq. (14-15) yields
= 8 in"! (tan¢*) 14-35
Qc_ x - S0 tan I (14-35)
c
where I is given by Eq. (14-34)
Fin%lly, the angle a is given by
1 (sin¢*) .1 cos vy, ( u, 1)
ac = sin cin 1 + cos 1+h -
c \/ 2 1-2 2
u*+( - u*)cos Yy
-1 [ cos y*(u>=< -1) ]
- cos
2

2
u*+(l-2u*)cos Yy (14-36)
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The composite solutions are expressed explicitly in terms. of the

five constants of integration u,,v,, ¢,, 8, and I, . For com-
putation in terms of the independent variable h , the angle ¥ is
first calculated from the second Eq. (14-30) . Subsequently, we obtain
ulsY, and IC , and finally QC and @,

14-3.4. Solution for the Planar Case

When 6 = 0 , the motion is planar. The trajectory remains
in the equatorial plane and the variable o is the same as the longitude
0

The composite solutions for u and y , Egs. (14-31) and (14-
32), remain valid. The composite solutions for 6 can be seen from
Eq. (14-36) to be

cos vy, u,
cos(e-w*)= (1+h-1>

2 2
’\/u*+(1-2u*) cos 'y, (14-37)

where W, is a constant of integration. The three constants of integra-

tion u,o, Yy and W in Eqs. (14-31), (14-32) and (14-37) for the
planar case are evaluated using the initial conditions u, , vy, and
6, at h . ! !

It i$ obvious that when C._ = 0 , (N =0), then & = 0 and the
ballistic entry is planar. To show that solution is valid for all ranges
of X we shall obtain the solution for ballistic entry using a limiting
process. The second of the Eqs. (14-30) shows that, when X\ - 0
—Y'O * Ve oo Hence we write that equation @_n the limit

~ . Y* - Y R Y* +YO

_}‘; cosy, - cosy, sin ( } sin ( >

Be = x =2 X

>

)

Ve = Y
= sinvy, (_x_)

By substituting in Eq. (14-31), we have the solution for ballistic entry,
A0

u -h/e
< . b .. [2],3e ] (14-38)
u, (1 +h) sin vy,

This solution can also be obtained by reintegrating the inner
equations with A = 0 and then matching with the outer solutions.
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14-4. APPLICATIONS

For the initial conditions to be satisfied identically, the five
constants of integration C_, or equivalently the five constants with
subscript * | as definednby Eqs. (14-29), are to be evaluated by
using the composite solutions. Let the conditions at hi be

w=u o,y y,aesae, Q=0 , I=L (14-39)

With these conditions in the composite solutions, the constants U Yo
¢, , ©, and I are obtained by solving a set of transcendental
ec‘;uations ‘which can only be done numerically. Another obstacle arises
when, as is a common practice, in order to redlz.’ce t_I.xe number of
prescribed initial values, one takes the initial (r, ,V,) plane as the
reference OXY plane with the axis OX along ? L In doing so
a.,=0 and I, =0 . Butwhen I=0, the longitudelof the ascending
node Q is not defined, as evidenced by Eq. (14-35). This singularity
can always be avoided by rotating the OXY plane through a fixed and
arbitrary angle, say 45° about the r, axis. Then the initial
conditions at hi are !

>

o
= = .= .= 0 .= -

w=w o, oysy; ,e;=0, 2,20, L =45 (14-40)
The equivalent conditions for the variables 6 , ¢ , and § are
8. =0 =0 = 45° -

i , ¢i Lpi 45 (14-41)

This method of directly matched asymptotic expansions has pro-
vided highly accurate and useful solutions to less gencial atmospheric
trajectory equations, Ref. 1. In that work, extensive numerical cal-
culations demonstrated the accuracy compared with exact numerical
solutions. The method was also proven valid for some restricted
problems in Refs. 2-4. The present development which is based on
Ref. 5 has accomplished the wedding of the exact atmospheric trajec-
tory equations, using the powerful modified Chapman variables, with
the method of directly matched asymptotic expansions. Numerical
experiments using the composite solutions obtained show that the re-
sulting solution is accurate and reliable. Thus, this analytical solu-
tion for atmospheric entry trajectories, in many ways completes the
search for explicit, analytic, and yet accurate, solutions to this broad
class of problems.

Before we close this chapter, one pertinent remark is in order:

In using the method of directly matched asymptotic expansions,
the logical choice for the independent variable is the dimensionless
altitude h . From the composite solutions, it is seen that the ballis-
tic coefficient B , defined by Eq. (14-11) , has to be prescribed.
Hence, it seems that the solutions apply to a particular vehicle and
the generality of Chapman's Z variable is lost. This is true for the
previously developed solutions concerning restricted cases (Refs. 1-4).
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In the present theory, the dimensionless ballistic coefficient B , and
the dimensionless altitude h are related to the Z function through the
explicit relation (14-12). Evaluating that equation at hi , yields

(1 +h,) -h /€
Z, = BA/—— e ! (14-42)
1 €

Equation (14-12) and its initial condition (14-42) provide the link be -
tween the two theories, the numerical theory in Chapter 13 and the
present analytical theory.

It has been explained in Chapter 13 that the selection of the initial
value Z depends implicitly on the ballistic coefficient of the vehicle,
since the way that the dimensionless deceleration due to atmospheric
force builds up to a sensible value, f=0.05 , or the altitude where
the variable u starts to decrease, are functions of the ballistic co-
efficient. In the unified theory, both the altitude and the ballistic co-
efficient are hidden in the universal variable Z

Now, assume a Z function has been numerically generated for
a certain universal entry trajectory, with u, , y. , A prescribed.
Then we also have the initial value Z . To1 cornplare this solution
with the solution developed in this chapter we can choose a standard
value for h, . Then, the coefficient B can be evaluated by Eq.
(14-42) for use in the analytic solution. At each instant, the universal
Z function is given by Eq. (14-12).

In conclusion, we consider the case of ballistic entry. Figure
14-3 plots the decelerat1on 30 Zu for ballistic entry from circular
speed u, = 1 , into the Earth's atmosphere, at different small flight
path angles The figure is taken from Chapman's report (Ref. 6),
and as has been shown in Chapter 13, in this case Chapman's analysis
is very accurate.

18 T
16—
14—
- Yi=a°
12
30
N 10—
1>
o —2°
® gl Q
1°
6
4 - L/D=0
jo
2 0°”
| | | I
o] 2 4 [} 8 10

u
Fig. 14-3. Ballistic entries into the Earth's atmosphere
from circular speed.



268 SOLUTION BY MATCHED ASYMPTOTIC EXPANSIONS Ch. 14

Omitting the subscript ¢ for convenience, we write the composite

solutions
zZ = B'\/—-—lzh e-h/€

w . b, [Qiiﬁ]
u, T T 1+h exP sin y,
u
*
cos y = cOs Y,

2 2 2
2 cos y*(l+h)+(u*-2cos y*)(1+h)
(14-43)

We are interested in the maximum of the deceleration

a/g = pr Z u . Since Z u = Zu , the equation for maximum
deceleration, d(Zu)/dh = 0 is written explicitly as

’

1 [1 ,__h g:l _[ 1 1 ZBe-h/e]
(1+h) L(1+h) ' 2(1+h) ~ ¢ “l2(1+h) T e ° € sinvy,

-h/e
2B
X exp [——9————] (14-44)
sin vy,
Since € 1is small we have approximately

h o, o 2B ey 2peE rppeh/e

" 1+h P sin vy, T sin vy, ©«P sin vy,
(14-45)

Using the equation for u , we have the simple relation, valid
at the stationary point of the deceleration

u

— = X exp (- x) (14-46)
u
%*
where
-h/e€
x = . 2Be (14-47)
sin vy,

For steep entry, the gravity effect can be neglected, and from

the solution for u , with X, = 0
u u
ol exp (- x) (14-48)
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Substitution into Eq. (14-46), provides the simple solution x =1

and
2 = 1o 0367879 (14-49)
u, e
i
In Fig. 14-3, it is seen that, as - Y; becomes larger, the value
u = ul/‘2 for peak deceleration becomes larger reaching the limit

2 T 2 0.606531 T,

u =

The fact that this is the limit can be seen by considering the
function u/ u, as defined by Eq. (14-46). Its derivative is

d
= (o) = 0w e (14-50)

Hence the function reaches its maximum at x =1 as seen in Fig. 14-4.

0.4 |

u/uy

0.2 -

Fig. 14-4. u/ u, asa function of x for maximum deceleration
during ballistic entry.

For shallow ballistic entry, we rewrite the Eq. (14-45)

(1 - x) exp (- x) = T+1h (14-51)

valid at the point of maximum deceleration.

From this equation we see that x <1 | and since h is small,
X remains near unity. Using the definition of Z in Eq. (14-47) we
can write

22
x = . —=f (14-52)

Vpr sin '
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Now, from Eq. (14-1), with X\ =0 , we have the condition at
the point where maximum deceleration occurs, d(Zu)/ds =0

2z
1 = - — =22 (14-53)

\/E; sin y

From this equation, for maximum deceleration,

22y (14-54)
sin vy,
which should be compared with Eq. (14-52). This relation sheds light
on the meaning of the constant y_ . It is not the initial flight path
angle, but it is the angle near which the maximum deceleration occurs ,
and is in general larger than v,

The constants of integratioln u, and Y, are calculated by
applying the initial conditions to the solution (14-43) at h="h, . Since
the selection of h, is rather arbitrary the initial conditions may not

provide a solution tor u, and y, . For example, we consider the
case where Y, = 0 . Then

u, (1 + h,)2
< 1

2
€OF Ya T G FZR(1Th) (14-55)

For vy, to be real

21+ h) h

u* < ——Zﬁl—— = 1+ _2‘ (14-56)

for small hi . Since by Eq. (14-43)

u h,
B T i 1
u, " 14 h, 1+ h,
% i i
we have the condition
h,
u, < 1 - — (14-57)
i 2

For grazing entry with deceleration building up, that is, one-pass
ballistic entry, the entry speed must be subcircular.

Strictly speaking, for y, =0 , u, =1 |, Z = 0 the entry
process is by orbital decay. This topic Will be dislcussed in detail in
Chapter 15. For the last phase of entry we can integrate directly the
Egs. (14-1), with vy = 0 A=0

’
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dZ

T - BT 2y

%E = - 24/Br Zu

dy [ m-1 (14-58)
ds u

Changing the independent variable to u

4z ypry
du 2 u
dy _ __1-u (14-59)
du 2
2\/Br Z u

Using a monotonically increasing variable p by the transformation
u = e-ZH (14-60)

we obtain
dZ  _ ~
d}L - - ﬁr Y

dy _ 1l-e (14-61)

By eliminating vy

a“z P
T Tz (14-62)
dp
with the initial conditions
Z(0) = 0 , ZY0) = 0 (14-63)

This is precisely Yaroshevskii's formulation as discussed in Chapter
10. It has been found that, in this case, the peak deceleration occurs
at

2 —_
W o= 0.835 W T s 0,434 (14-64)

which is consistent with Chapman's numerical calculation in Fig. 14-3.
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Chapter 15

Orbit Contraction
Due to Atmospheric Drag

15-1. INTRODUCTION

In Chapters 10-13, we have considered, among different types
of trajectories, the special case of the trajectory of a vehicle subject
to pure aerodynamic drag. If the periapsis altitude of the initial
orbit is high anough, the vehicle will make several passes through the
atmosphere before completing its entry.

On the other hand, for very high periapsis altitude the vehicle
will stay aloft for several days, weeks or even years before the effect
of aerodynamic drag has reduced the lowest altitude far enough into
the sensible atmosphere to effectively initiate the entry trajectory.
During this time the trajectory of the vehicle is essentially a Kepler-
ian orbit subject to a small perturbing effect due to the resistance of
a tenuous atmosphere. The analysis of such a trajectory is the sub-
ject of the present chapter.

In the early days, development of the theory of flight near
orbital speed inside an atmosphere was conducted in two separated
aspects. On the one hand, researchers analyzed the small perturba-
tions of satellite orbits at very high altitude. The mathematical tools
are perturbation theories in celestial mechanics based on Lagrange's
equations for the variations of orbital elements. The space vehicle,
usually referred to as a satellite, is not intended for recovery. The
main subjects of concern are first, its life expectancy, and second,
the slow variations of its orbital elements. The variables of interest
are primarily the major axis and the eccentricity of the osculating
orbit. On the other hand, engineers and scientists who were concern-
ed with the safe recovery of an entry vehicle concentrated their effort
on the study of the deceleration and heating during entry. The elements
of prime consideration are the position and the velocity of the vehicle,
both varying rapidly. The nice behavior of the near-Keplerian orbit
is no longer available, and strong physical assumptions were made to
such an extent that, although describing the same phenomenon, namely,
flight of an object inside a planetary atmosphere, the equations be-
came totally different. The gap got wider as the two theories became
more and more sophisticated. Now the two groups, one consisting
mostly of mathematicians, and one consisting mostly of physicists,
seldom reference the other group's work.

273
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With the objective of providing a unified theory for flight inside
a planetary atmosphere, we have formulated a set of universal, exact
equations in Chapter 13. These equations have been successfully
applied to the study of planetary entry of a space vehicle (Refs. 1-2),
and to optimization of such an entry (Refs. 3-4). In this chapter we
shall present the necessary transformation such that the equations can
be used for analyzing the slow variations of the orbital elements while
the vehicle is still in the near vacuum. This successful wedding is
necessary since future space vehicles are designed to stay for an
extended period in orbit as satellites, and also to be recovered safely
after a fiery entry which is followed by a glide, an approach, and a
landing on an airfield.

15-2. FORCES ON A SATELLITE IN ORBIT

The satellite and the planet are assumed in two-body relative
motion. For a spherical planet, the gravitational force is an inverse
square force of attraction with acceleration

glr) = & (15-1)

r

where r is the distance from the satellite to the center of the planet
and p the planet gravitational constant.

The atmospheric foice is in the form of drag acting in a direction
opposite to the velocity VA of the satellite relative to the ambient
atmosphere

D =

A pSC

(15-2)

o~

DVA

We shall use a strictly exponential law for the density of the atmosphere

p = p_ € (15-3)

where B is now considered as a constant
p = 1 (15-4)
= -

The quantity H which has the dimension of a length, is the scale
height, and subscript p denotes the initial periapsis condition.

The equations of motion are written with respect to an inertial
frame with origin at the center of the planet. Let V be the absolute
velocity of the satellite

Vv = V. + ¥V 15-5
% VA. . ( )
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where V _ is the velocity of the ambient air relative to the inertial
frame (Fieg. 15-1). We shall assume that the atmosphere has a uniform
rotation of angular velocity w about the South-North axis taken as the

Z inertial axis. Then

V, = rwcos¢ (15-6)

where ¢ is the latitude of the point M representing the satellite.

Z VH —_
. v
va _47/i
!
Y/ |
\pl
(4 e
w -
r / M
!
o ¢ /% -V .y
L_ 7 |
8 \Va ~>L J/r‘v’e
Q d e

Fig. 15-1. Notation.

Let ' be the angle between —\;e and V . Then by squaring
Eq. (15-5)

2

\Y = VvV +Vz -ZVVe cos ' (15-7)

2
A

The vector V_ is in the local horizontal plane. Also, near the
periapsis where the aerodynamic drag is most effective, the satellite
E_ravels nearly horizontally, that is the angle y between the velocity
V and the horizontal plane is small. Hence, following King-Hele
(Ref. 5), we can evaluate approximately the relative speed VA in
terms of the absolute speed V as follows.

First, the angle ' between V and V is seen as nearly
equal to the angle ¢ between V  and the projection v of V
on the local horizontal plane. This angle ¢ , called the heading, is
related to the latitude ¢ and the inclination 1 of the osculating
orbital plane by the well-known relation

cos y cosd = cosi (15-8)

e

- ei‘}u};f \.H..)héal:.‘s &

-
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Therefore, we have approximately

Vecosq;' = Vecos¢=rwcos¢ cos y = rw cos i

(15-9)
Upon substituting Eqs, (15-6) and (15-9) into Eq. (15-7), we have

ve = v® (1 - 1;/,—Wcos i)2 + rzwz(coszq: - coszi) (15-10)

The rotation of the atmosphere is generally slow so that the term w2
can be neglected. In the small term rw/V , itis appropriate to
use an average value. King-Hele suggested using the value r_/ Vp

o
at the periapsis to replace r/V . Finally, the inclination i , which
usually varies by less than 0.3° during a satellite's life, may be taken

equal to its initial value io . Then, we have King-Hele's expression

Ve = £V (15-11)

cos i )2 (15-12)
o

Thus, in terms of the absolute speed, the drag force is

1 2
D, = 5 pSIC,V (15-13)

acting opposite to the direction of the velocity _\;A of the satellite
relative to the ambient atmosphere.

15-3. THE EQUATIONS OF MOTION

The set of dimensionless universal equations for the motion of a
vehicle inside a planetary atmosphere has been derived in Chapter 13.
For a locally exponential atmosphere, we have the equations with the
notation in Fig. 15-1

dz 1
a5 TP (oo

+ ) Z tan y

2l

2
2
2p

N C .
Z s
du _  2Vpr U[H_Lcos”any,,_m_v_

ds cos y CD 2’\/[3_1‘ a
(15-14)
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C 2
dy _ ﬂérz [ L cosq 4+ =25Y (. cosl):l
ds cos Yy C \/— u

D Bpr Z

de _  cosy

ds cos ¢
&
Is sin

C 2
dy 3Zér Z [ L sing - =08 y cosy tanq;:l (15-14)

ds coszy cD A/ Br Z (con't)
The variables u and Z are the modified Chapman's variables
2 2 pSC
w = Jeosy o gz D [z (15-15)
gr Zm g

The independent variable s is the dimensionless arc length from the
initial time

[ Y cosyat (15-16)
0 r

1

The variable 0 is the longitude, and the angle ¢ , the 'bank angle,
is the angle between the vertical plane passing through the velocity, the
(r V) plane, a.nd the plane containing the aerodynamic force and the
velocity, the (V , V) plane. As has been mentioned above, the aero-
dynamic force is in the direction opposite to the velocity VA , the
relative velocity of the satellite with respect to the ambient air.
Finally, and C_ denote the coefficients of the aerodynamic
forces resoII‘ved in thé direction perpendicular and parallel to the abso-
lute velocity v .

The equations (15-14) are convenient for analyzing the entry
portion of the trajectory. For satellite orbits, it is more advantageous
to use the orbital elements. First, we use the relations from spherical
trigonometry

cos ¢ cosy = cosi
cosd siny = sinicos «
cos o = cos¢ cos (0 -Q) (15-17)

to transform the last three equations (15-14) into
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da ﬂér Z sin a (CL) .
—_ = 1 - —‘_C sing

ds tan i cos2 Y D

sin o

e _ \Br Z sina (_)

2
sin i cos vy

C
i Z
di M (_L_) sin o (15-18)

ds cosz Y D
From Fig. 15-1, we notice that i is the inclination and 2 the longi-
tude of the ascending node of the osculating plane. The angle o is the
angle between the ascending node and the position vector.

For satellite motion, we have a simplification and at the same
time, a complication. The simplification is that there is no lift force.
The complication is that the drag force is modified by the factor f
as explained in Section 15-2, and it is dlrected opposite to the velocity
v and not to the absolute velocity 2

A
VERTICAL
PLANE
Z,\
HORIZONTAL
LIFT-DRAG PLANE
PLANE
y:
/ F.
0
y

Fig. 15-2. Aerodynamic forces.

Figure 15-2 is the aerodynamic force diagram used in Chapter 2
in derivin& the general equations of motion, to which we have adde_c} the
velocity VA with respect to the ambient air and the drag force DA
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opposite in direction to V_ . Inthe present situation, we remove the
lift force L. and replace the vector drag D by the force D, . This
force D can be decomposed into one component in the orbital plane
and one component normal to the orbital plane. Since V  is small,

v is nearly aligned to V  and the component of D Sn the orbital
pl%ne can be considered as directly opposite to v , with magnitude

D as given by Eq. (15-13). Rigorously, the component of BA in
oéﬁtal plane has a component along the y axis and a component

along the x_ axis (Fig. 15-2) with the component along the y  axis
nearly equal'to D, and the lift component along the x  axis negligible
for all practical purposes. To obtain the component D. of D

orthogonal to the orbital plane we find the projection of A
v
= 1 2 A
D = . — pSf Vo o -1
N > ) CD K (15-19)

By the vector relation (15-5), since V is in the orbital plane and
s_ince \'Z makes an angle  with the orbital plane, the projection of

VA on t%e normal to the orbital plane is the same as the projection of
\%

—.e which has magnitude
Ve siny = rwcosé siny = rwsinicos o (15-20)

Hence, the vector BN has magnitude

1 VZ
DN =3 pSfCDrW sinicos o — (15-21)
A
or, using (15-11),
1 1/2 s
DN =3 p Sf CDV rw sin i cos o (15-22)

and its direction is opposite to the vector L sing in Fig, 15-2. The
end result of the analysis is that, in the Eqs. (15-14) and (15-18) we
replace CD by the modified drag coefficient fC_ , we delete the
component CL cos ¢ and replace the component CL sing by

. _ Iw .
CL sinog = - f CD ( V) sin i cos « (15-23)

Finally, the variable Z , called the modified Chapman Z
function, is most effective in analyzing the entry phase of the vehicle.
While the vehicle is still a satellite in orbit we use it in the form

[5(1‘p - 1)

Jer z = z (rr) e ° (15-24)




280 ORBIT CONTRACTION Ch.15

where the dimensionless constant Zo is
p. SIC_r
po D Py

Z,0% T om (15-25)

We can now rewrite the Eqgs. (15-14) and (15-18), introducing
the equation for r/ rp to replace the equation for Z

= &) - )
s z = A\ an vy
Py Py
2Z u ﬁ(rp -7
du o o
— = -utany - (—) e
ds cos y r
Ps
2
dy _ ,_ cosy
ds u
r wZ 5/2 B{r - 1)
da Py © T cosising cos o
— = 14— —_
ds \/—__ r 1/2
pf/r p u cos y
P o
o
r wZ ﬁ(r - )
dan Py © ( 3 )5/2 sin o cos o Py
s T L r 1/2 N
pf/r P u cosy
p o
o
rwZ B(r_- 1)
di  _ Py © r )S/Zsinicos2 @ o Py
ds ~ ° r 1/2
Afpf/T P, u cos y
Po (15-26)

15-4. THE PERTURBATION EQUATIONS

The Eqs. (15-26) are the bridge between satellite theory and
entry theory. As a matter of fact, they can be used to follow the
motion of a vehicle subject to gravitational force and drag force of a
uniformly rotating atmosphere and planet for its entire life in orbit
until its entry and contact with the planetary surface. The accuracy
depends on the readjustment, for each layer of the atmosphere, of the
constant value B

The variables o , 2 and i which are orbital elements are
related to the entry elements 6 , ¢ and ¢ through the relations
(15-17). On the other hand, the variables r, u and y , which are
the entry variables, can be transformed into the orbital elements
through explicit relations.

Consider the osculating orbit, which is the orbit the vehicle
would follow if at any time the drag force suddenly vanished. Putting
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Zo = 0 in Egs. (15-26), we have

< ()
ds \r
P

o]

It

() e

Ps

_d_u = - utany

ds

ds

di

o =0 (15-27)

The integration is simple and we have the general solution

2
cos®y = —9%
Yy o= 2u - ¢
1
€2
r = —_
u

=1
It
—
+
—
1
[e]

cos(s - c3)

i = c (15-28)

where the ¢, are constants of integration. We see that s is equiva-
lent to o and actually we only have 5 constants of integration. The
last constant of integration is obtained by integrating the time equation,
Eq. (15-16).

In the first three equations (15-28), we evaluate the constants
of integration by taking the origin of time at the time of passage through
the periapsis.

2 u2
cos”y = ————
2u - (1 - e)
u =1+4+ecos (a ~w)
2
r = a(l - e ) (15-29)

1+ ecos(a-w)
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These three equations provide the link between the entry variables
r , u and vy and the semi-major axis a , the eccentricity e and
the argument of periapsis, « , which are the orbital elements used
in the theory of orbits.

During the phase in orbit, Z is small and the orbital elements
vary slowly. By taking the derivatives of Egs. (15-29), considering
a , e and w as varying quantities and using the Eqgs. (15-26) for the
derivatives of r , u and y , we have the perturbation equations for
a , e and w

First, for the eccentricity e we have

2z u° 2 Blr, -1
de _ o cos 'y ( r) . o
ds S3 u r
¢ cos v P (15-30)

We present the equation in this form to show an interesting be-
havior of the eccentricity of the osculating orbit. It is a general belief
that the eccentricity decreases continuously under the action of atmo-
spheric drag. But this is the secular effect. During each revolution,
the flight path angle passes through a maximum and a minimum as
seen by the third of the Eqs. (15-26), and by Eq. (15-30) it is seen
that, at the same time, the eccentricity passes through a minimum
and a maximum respectively.

Next, we shall use the more familiar eccentric anomaly E to
replace s as the independent variable in the perturbation equations.
The following relations are obtained.

1 Z)
L (-e =1 -ecos E
a 1+ ecos{a-~-w)
2
(1 -e)
v 1 -ecos E
2
2 -
cos y = U-e) (15-31)

(1 - ecos E)(1 + e cos E)

Also, it is seen that between s and E we have the differential re-

lation
3
d V1 -
5. Vl-e (15-32)

_d~E 1 - ecos E

Hence, the equation for e has the form

B(r -r1)
1/2 po

de 2 a) 1+ecos E
== _27 - = = T =0 =
dE o(1 e) (r cos E ( l-ecosE) ©

Py (15-33)

Similarly, the variation of the semi-major axis is governed by
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(r_ -1)
> 6
da a (l+ecosE)3/2 P
2 - L2z = e (15-34)
dE or 1/2
18 (1 -ecosE)

Under the same transformation, the last three equations of the
Eqgs. (15-26) become

1 1f(r_ -r)
2 27 = > p
de do  V1-e o a). z z P ]
Lo e — E(1- E E
95 4 " ToocosT [1+ < (r sinE(l-e cos E) (l+ecos e
P
o
5 5 1
Z = = = -
i rpow o X > > > B(rp T)
—_ :-————-—-——(—) (l-ecosE) (l+tecos E) sina cosae
dE r
/ Joo2 e
pf/r l1-e o
Py
5 5 1
r wZ > > 5 B(rp-r)

i 2
di ( a) (1-ecos E) {1+ecos E) sinicos ae ©

P, ©°
dE B 5\ T
Vpf/r \l-e Py
Py

(15-35)

15-5. ORBIT DECAY

The equations (15-33) - (15-35) give the slow variation of the five
orbital elements a , e , @ , Q and i . In the present chapter we
are concerned with the variation of the semi-major axis a and the
eccentricity e of the osculating orbit. As seen from Egs. (15-33)
and (15-34), under the dissipative effect of the drag, the major axis
decreases continuously while the eccentricity, although having an
oscillatory behavior, also decreases secularly with the time. We
say that the orbit undergoes a contraction and as e decreases, tends
to circularize itself. We shall use the method of averaging for the
integration of the equations.

15-5.1. The Averaged Equation

First, we have for the radial distance
r = a(l - e cos E)

rp = ao(l - eo) (15-36)

(o]

With this we write the exponential function in the equations
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exp [ﬁ(rp -r)] = exp [[3 (ao-a-aoeo)+[3ae cos E] (15-37)
o

Along each revolution, a 1is nearly constant while the varying
quantity pPae cos E provides the fluctuation in the air density. This
leads to a natural choice of the variable

X = Pae (15-38)

to replace the eccentricity e , (Ref. 5).
By taking the derivative of Eq. (15-38) using the Eqs. (15-33)
and (15-34) we have the equation for x

1
2 —
Z -
dx _ iﬁ(e+cosE)(LH_CO§£,2eﬁ(rp i (15-39)
dE =~ T l-ecosE -
pO

The new dimensionless variable x behaves like the eccentricity e ;
that is, during each revolution x passes through stationary values
when cos E = - e, but, onthe average, x decreases with the time.
Since the decaying process is slow we can use an averaging technique
(Ref. 6) applied to the right-hand sides of Eqs. (15-34) and (15-39)
for a and x .

For the equation for a , we have the averaged equation
da a.Z 1 Z.n-(1+e os E):‘:‘/2
c
_ = .27 = —a- e — E) dE
iE 2 o exp[(i(aO a aoeo)]Z-n- f 17z exp(xcos E) d

0 (l-ecosE)
© (15-40)

For small eccentricity, the integrand can be expanded in power
series in e . Upon integrating, we have

2
da a
= =-2Z < exp[ﬁ(ao-a-aoeo)][lo+2ell
p
(]
3 2 1 3 4
= — 3 -
+ e (I +L) + 7 e (31 +1,) + 0(e )J (15-41)

where I (x) is the Bessel function of the first kind and of imaginary

argumenr%, of order n
2
1 ™

In(x) = o ()f cos nE exp (xcos E) dE (15-42)

Similarly, the averaged equation for x is
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dx

1
& o=-2z p_ exp[Bla_-a-a_e ) |[L, +5e(I +1,)

po

+-;-e (111 +1,) + 7% 1 e (71 +81,41,) + O(e )]

(15-43)

The Eqs. (15-41) and (15-43) were given by Cook, King-Hele and
Walker. As shown in Ref, 5, they truncated the equations to the order
¢4 |, formed the equation da/dx and integrated it separately for the
cases where x is very large and x very small. We shall integrate
the equation without making that asymptotic simplification, thus ob-
taining the solution uniformly valid for any x .

First, by dividing Eq. (15-41) by Eq. (15-43) and expanding the
ratio in power series in e , we have

da _ 1 2 12 2
B = Yo+ zeld-3y,-ygy,) tge [2vBy,+v,)" - 29y,

X
2 + L3324 113y% 4 38
} y2'5’03'3] 16 [- Yo 2%YoY2"YoYs

2, 2 3 4
+2y,+6y,y3t2yY,Y5 - 2Y(3y5+Y,) ]+ 0

(15-44)
where we have defined the ratios of the Bessel functions
I
= = n# 1 (15-45)
Yn 1 ,

For x> 3 , Cook, King-Hele and Walker integrated this
equation by using the asymptotic expansions of the function Y, (x)
In this case, the right-hand side of Eq. (15-44) has a very 51mp1e
form and the major axis a is obtained by quadrature. Mathematically,
the method of integration they used is not rigorous since on the right-
hand side, the eccentricity e is a function of x and a by definition
(15-38), so that the equation is actually a nonlinear equatlon in a
We shall arrange the equation in a form where the Poincare method
of perturbations can be applied (Ref. 7).

The Bessel functions satisfy the recurrence formula

2n
In_l(x) - In+1(x) = In(x) (15-46)

Hence, any function yn(x) can be expressed in terms of yO(x) and
x . For example,
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(x) = 2
ol® = vy - %
8 4
yalx) = 1+ = -~ y,
xX
8 48 24
v ¥ = -2 3 Htygt 3y,
X X
(15-47)
Let
z = — (15-48)
a
(o]

be the dimensionless semi-major axis. Then, from Eq. (15-38) we
have for the eccentricity

e = €= (15-49)
z
where
€ = L (15-50)
Ba,
is a small quantity of the order of 10.3 . Then, we can write Eq.

(15-44) as an equation in z = a/a

y 2 7Y2
dz 2 x 0 2 3 x 0 3
B Z(24 — . == L —
= €Yote Jlet -2y te ZZZ(X 80 - = T 8)
3 y 2 Y3
Yy y
4 x 1 2 0 0 0 0 4
+ € _3(-4+ _E+20y0- 10?‘?4—'-5 - 5—2 +20 ;-16}70)
2z x X X
5
+ 0(e™) (15-51)

We see that the true nature of the equation is a nonlinear equation.
Since € is a very small quantity we need not go further with the ex-
pansion, and to the order of e included, the solution of this equation

can be considered as the exact solution of Eq. (15-44), truncated to
the order e

15-5.2. Integration by Poincaré's Method of Small Parameters

Poincaré's method for integration of a nonlinear differential
equation containing a small parameter is a rigorous mathematical
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technique, proven to be convergent for small values of the parameter
€ . We assume a solution for z of the form

oo
2 €2y (15-52)
k=0

Upon substituting into Eq. (15-51) and equating coefficients of

like powers in € , we have the equations for zk(x)
dz0 Y
dx
d
z) )
dx yO
dzz = _§_(2+ 3’2 2 2)
dx z, x ~ Yo
2
dz Xz y 2 1y
3 0 2 X 1 0 3
dx = ° (2+ x -ZYO)+ Z(X-BYO- x +8YO)
2z
0
2
dz4 Xz, 7y2 y zf z,
= - (= -8y, -— +8y )+—(R2+—=-2y (— -—)
dx 3 0 0 2 2z,
%9 %0
2 3
3 20
= 4+ 20yt 10Y0+ﬂ Eﬁ+—yi 16 4)
* 3 2740 T Tx 3772 x Yo
Zzo x x x
(15-53)

We also have the initial conditions.

zO(xO) =1 , Zl(xo) = ZZ(XO) =... = 0 (15-54)

The integration of Eqs. (15-53) is accomplished by successive
quadratures. Its success depends on whether or not the integrals can
be expressed in terms of known functions. It has been found that the
following recurrence formula is useful.

Jot yg e = - BT 4 fpi v e f [ BT
(15-55)

where n# 0 and p(x) is any arbitrary function. To derive this
formula, we use the well-known relation
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xI' (x) +nl (x) = xI (%)
n n n-1
For n=1 Inl 1
Yo © 1) 3
and for n=20
1
=1
Iy = 4,
Therefore, if Yo = IO/I1
U O &
- _0 L = 1 + _Y—
Yo © T T T2z T " Yo
1 I1

Now, consider

n

y
o () - 2 2

or

y 4
-l -1 0 2
Jot) vy lypax = fotayg e 2 yoax = B yh . (R0 ax

Ch. 15

(15-56)

(15-57)

(15-58)

(15-59)

n

Rearranging this equation, we have the recurrence formula (15-55).
Using these relations we proceed with the integrations of the Eqgs.

{15-53), using the initial conditions (15-54).
First, we have

zo(x) = 1
and by Eq. (15-57)
xI_(x)
Z = 1og __l.._—..
1 x I (x)
ol o
where x = [3aoeo is the initial value of x .
Wi zy = 1 , the equation for z, is
iz—z- = 2x + 2 2
ax ~ XY
Integrating
2 2
z, = x + 1ogxIl(x) - foyo dx

(15-60)

(15-61)

(15-62)
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But, by the recurrence formula (15-55) with p(x) =x , n=1

2
2
fxyo dx = % - xy0+210gxll(x) (15-63)

so that using in Eq. (15-62) with its initial condition, we have

xIl(x)

z, = nyo(x) - Zxoyo(xo) - 3 log —{Il_(;‘_o)— (15-64)

The integrations for obtaining Zy and z are performed the same
way but they are much more laborious. I% is found that the zk(x) can
be expressed in terms of two functions

I,
A(x) = x _I:.(-;J = xyo(x)
B(x) = log [XII(X)] (15-65)

We have the final solution

1
—

24(x)

z (x) = B-B
1 o

z (x) = 2(A-A)-3(B-B)
2 o o
7,2 2 13 2 2
z3(x) = E(X - Xo) -3 (A - AO) - 2(A -AO)
+13(B-B)-2A(B-B )+ E(B B)‘Z
T 7ol T " 7o 2 " o
_ 35 2 2 71 2 2 8, 3 3
z4(x) = - (x -xo)+ 2(A-AQ)+3(A -AO)+ 3(A -Ao)
2 2
+4A (A-A )-2(x A-x A)
o o o o
2 2
-(69+6A0+7x -19A - 4A)(B - B )
o
3 2
_——E(B-B) -(B-B)3+ZA(B-B)2 (15-66)
2 o [} o
where Ao and B are the values of A and B evaluated at X=X
The serni-m%jor axis of the orbit under contraction is
— = 14+ €2 +62z +€3z +€4z (15-67)

1 2 3 4
o

Using x as a parameter, we easily express the other quantities
of interest. The eccentricity e is given by Eq. (15-49), while the
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drop in the periapsis is obtained from

P, P
)
T = B[ rpo- a(l-e)] = Ba -Baje +pae - ﬁao(l+€z1 o)
or
r - rp
P
o 2 3
= (x-~ - + 15-6
T (x xo) (z1 EZZ+€ Z3+€ 24) (15-68)
The ratio of the eccentricity is given by
£ - X (15-69)
e X z
o o

During the process of orbit contraction, the drag force is most signifi-
cant along the lower part of the trajectory, near the periapsis. This
results in a strong braking force at the periapsis which has the effect
of reducing drastically the apoapsis distance while the periapsis dis-
tance remains nearly constant. To show this effect we can calculate
the ratios of the apsidal distances as function of the variable x . We
have

r
p . _2all-e) . _zZ-€x (15-70)
r a{l -e) (l-e)
p ) o o
o
Similarly, for the ratio of the apoapsis distances, we have
ra a{l +e) z + €x
r = a (l+e) = (1 +e) (15-71)
a o o o

If we want to calculate the drop in the apoapsis, we can use the formula

rao- Ta
T = B[ao(l+eo)-a(l+e)]=(3ao-ﬁa +x0-x
or
rao- T , X
T =(xo-x)-(z1+€z2+e z3+€ z4) (15-72)
Finally, the orbital period is simply
T a 3/2 3/2
T = (7)) =z (x) (15-73)

(o] (o]
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For each initial value € = H/a , and initial eccentricity e ,
we can calculate the initial value x =Pa e = e /e . Then, we
can compute the expressions a/a O, e/% , T/T , etc., as
functions of x . Subsequently, they can beocross-plgtted in any com-
bination.

Since the quantities a , e, T are all easily observable, and

the integration has been performed to the order of e4 | for small
eccentricity (which is the case for most scientific Earth satellites) the
equations can be used to verify the assumption made on the atmosphere.
In general, it can be, as a first approximation, assumed to be locally
exponential. That is to say, the parameter § , or H=1/p , can be
assumed constant for each layer of the atmosphere. Since the value
of B enters analytically in the solution, by adjusting for concordance
between the theory and the observation, determination of B can be
made.

The theory can be modified to take into account the oblateness of
the planet and the atmosphere, as has been done by King-Hele (Ref. 5).

15-5.3. Explicit Formulas For the Orbital Elements

For small eccentricity, e < 0.2 , the solutions obtained, Eqgs.
(15-66) - (15-73), are very accurate., They are in parametric form,
and for each pair of values € and x_ they can be used to cross plot
the relationship between any pair of orbital elements.

It would be useful to derive explicit formulas between any pair
of orbital elements. This amounts to eliminating x between any two
of the equations (15-67) - (15-73). Because of the transcendental nature
of the solutions, the task is cumbersome. In this respect, King-Hele,
(Ref. 5), used an asymptotic expansion for the Bessel function I (x)
Since the asymptotic expansion is only valid for x> 3 which approxi-
mately corresponds to e > 0,02, it was necessary to divide the pro-
cess of orbit contraction into two phases. In the first phase, 0,02 <
e < 0.2 , asymptotic expansions can be used. Somewhat heuristically,
an accurate and explicit expression for the major axis was obtained in
terms of the eccentricity. In the second phase, e< 0.02 , by
neglecting higher order terms in e , the solution z(x) , identical
to the present theory, but only to the order of €“ , was obtained.
Explicit formulas for the second phase are not available. Since the
partition of the process of orbit contraction into two phases is rather
artificial, we shall offer an accurate theory uniformly valid for all
values of the eccentricity in the range 0<e< 0.2 . For very small
values of e the theory is no longer valid, but by then the satellite
is only a few revolutions before effective entry into the planetary
atmosphere.

To derive the explicit expression for the major axis in terms of
the eccentricity, we write the equation (15-67) as

z=p+ ed(z) (15-74)

where, by observing that
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a e
X = Pae = ﬁaoeo(—;—)(-e—-)
o o
we can write
X = az (15-75)
with
o = xk , k =— (15-76)
o e
o
Then, explicitly
2
o (z) = zl(az)+€zz(az)+€ z3(a2)+... (15-77)

Equation (15-74) is in the form to which a Lagrange expansion can be
successfully applied. We have, (Ref. 8),

® n n-1
€ d, = n
2= p+ D, trigy) [ep)] (15-78)
n=1
If we carry out the expansion and then put p =1 , we shall have to the
order of €
2 3 4
z=1+ ehl(a) + € hz(a) + € h3(a/) + € h4(a) (15-79)
where
h1 = B. Bo
= 2(A - - -
h2 (A Ao) + (A - 3)(B Bo)
7,2 2 13 2 2
h3 = 2(0/ -xo)-(ZAO+ > )(A-Ao)+(13+Za -4A-A )(B-Bo)
+ T340%+a-a%B-B )
2 o
1 2 2
h4 = -E(af -Xo) (35+4A0-7A)
1 2 2 2
+=(A-A )(213+42A +16A +120 -9A+4A A-8A")
6 o o o o

2
- %(B- B_)(138+25a -46a-7A%. 2A3)

- %(B-BO)2(35+7a2-6A2+aZA-A3)
2 2
+2(A-A )(B-B )(3+a +A-A")

2

-%(B-Bo)3(6-a2+2cx A+3A2-2A3) (15-80)
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with the definition

I (a)
_ 0
A = «a Il(a)
B = log [aIl(a)] (15-81)

Since a = ﬁaoe , the solution, as given by Egs. (15-79) -~ (15-81)
provides an explicit expression of the variation of the dimensionless
major axis a/aO in terms of the eccentricity.

The other orbital elements can also be expressed in terms of e
The drop in the periapsis is seen to be

2 3
= (o -x_)-(1-e)(h +eh,+e h+e h,) (15-82)

H 3

For the apoapsis, we have

2 3
= (xo-a)-(1+e)(h1+€h2+€ h3+€ h4) (15-83)

H
By replacing x by ez in Eq. (15-70), we have the ratio of the peri-
apsis distances

p _U-€o) (15-84)
T (1-e)
P, o
where z is given by the Eqs. (15-79) and (15-80).
For the ratio of the apoapsis distances, we have

Ta (1l +e€a)
T T Ure) ” (15-83)
a o
o
The orbital period is now
3
= =z /Z(a) (15-86)

L
T
o

which is a function of the eccentricity. As pointed out by King-Hele,
this equation provides a powerful method of verifying the assumption
made on the atmosphere from two of the most accurate and easily
measured orbital parameters, namely the period of revolution and the
eccentricity.
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15-5.4, The Contraction of Orbits

The solution (15-66) can be considered as the exact analytical
solution of the nonlinear differential equation (15-51). Both this solu-
tion and the explicit solution in terms of the eccentricity, Eq. (15-80),
have been computed for a number of orbits and they provide about
nearly identical results. As illustrative examples, we consider the
following initial orbits

Orbitl: € =0.008 , e 0.2+ x =25
o o)

Orbit 2 : ¢

0.009 , e =0.225->x =25
(e} [e]

Figure 15-3 plots the variation of the major axis versus the
eccentricity using the explicit solution, uniformly valid for all eccen-
tricities, In this figure and in the following figures the circles repre-
sent the exact solution.

Figure 15-4 plots the variation of the orbital period while Fig,
15-5 presents the drop in the periapsis. It is seen that the decrease
in the periapsis is very slow. This can be seen clearly in Fig. 15-6
where the ratios rp/ rp and ra/ r =~ are plotted versus the eccen-

o o
tricity. When e/e = 0.1 the calculated values for orbit 1 are
rp/r = 0.987160 and ra/ r, = 0. 684968 and the corresponding
P
o o
values for orbit 2 are foundtobe r /r = 0.985136 and r /r =
P P a a
o o

0. 651941.

15-5.5, Contraction of Highly Eccentric Orbits

For the case of orbits with large eccentricities, since x = pae,
when e-1 , a—= o0 , xbecomes very large and the asymptotic
expression for Bessel's ratio yo(x) is

1
= + —
yO ! 2x+
2
Vo = 1+§+ (15-87)

Using this form in Eq. (15-51) we have

dz 1 € € X €
_ 2 - X _
—_— = €(1+—) —_t — + ... (15 88)

an equation which can be seen as the development of

2
- A €
= ell +2x) T z4ex (15-89)

dz
dx
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Fig. 15-3. Variation of semi-major axis with eccentricity.
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Fig. 15-4. Variation of orbital period with eccentricity.
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Using the transformation
z = €(x+q) (15-90)

and changing the independent variable from x to g we have the
Bernouilli equation

dx 4x
— = 2x+ — 15-91
aq g ( )

By the change of variable

eZq
= K9 (15-92)
the equation becomes
ax 4’
dq q

Integrating, we find that K can be expressed in terms of the exponential
integral

ezq
K= -4 [ S5 )+ C
= -4 E(29)+C (15-93)

Thus, in the case of highly eccentric orbit we have the exact solution
in parametric form

2(q - qo)
e
x = ) Ty (15-94)
= +de [ E,(2q)) - E,(29)]

(o]

along with Eq. (15-90) and the initial conditions

(1-e)

z(xo) =1, q = — (15-95)

To evaluate the exponential integral, we first observe that the

argument 2q 1is large, hence its asymptotic form is adequate. In
general, we consider the integral

Ex = [ ™ ax (15-96)
By integration by parts

E_(x) = x e* - (n-1DE__
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By repeated application of this formula, we deduce the asymptotic
expansion for large x

Xn-lex [1 : (n-1) + (n-1)(n-2) } (n-1)}{n-2)(n-3) + ]

En(x) - X XZ X3

(15-97)

When n =0, we have the exponential integral and by taking 6 terms
of the series, for x> 50, the solution is identical to the numerical
values tabulated in Ref. 9

15-6. LIFETIME OF THE SATELLITE

We now examine the problem of the duration of the satellite in
its orbit. First we consider the Kepler's equation

4/% t = E - esinkE
a

or in its differential form

2
dt a3/

E Ty

The average equation is obviously

(1 - ecosE) (15-98)

at a3/2 TO 3/2

dE N B ZT(Za_) (15-99)

(o]

where T is the initial orbital period. By dividing this equation by
Eaq. (15-23), we have the average equation for the time

T r exp(x )
op o exp| Ba (z-1)]
a . 2 = (15-100)

2 1/2 1
417[3a0zo z [Il+2e(3IO+Iz)+...]

Using the solution (15-67) for z = aL/aO we have for the exponential

exp[ﬁao(z-l)] exp[z1+€zz+€2z +...]

3
2
€ 2
+ _Z(ZZ+ZZ3)+ ees]

exp(zl)[ ltez,

xL () 2

2
[1+ez +€—2(z2+2z3)+...]

x I (x) 2



Ch, 15 ORBIT CONTRACTION 299

Next, we define the dimensionless time T as

2
2mBa ppOSch

T = = To xoll(xo) exp(-xo)]t (15-101)

Then, the dimensionless time equation has the form
2
2
X |:1+€z2 +€7 ( z2+ 2z3) + .. ]
= = (15-102)

1/2 €x €2x2
z [1+—2—z(3y0+y2)+—g-27(11+y3)+. . .]

If z is replaced by its expression and then the binomial expansion is
applied, we have to the order of €2 |, inclusively,

2

€ € 2 2
—_— = . - — -2 —- -
x[ 1 2(z1 4 +3xy0+xy2) + 3 (- 11x -x y3+18xy0z1

2

2 2 2 2 2
2 - -
+ 6xyzzl+18x Yo +2x y2+1 XYY, 12xyoz2 4xy222
+ 322 4 4z +4zZ+8 )] (15-103)
- - z -
I A U I I

Finally, if the functions z,(x) as given by the solution (15-66) are sub-
stituted into this equation, 'the time 7 is obtained by quadrature.
Explicitly, by letting

2
T = 'ro+€'rl+€ > (15-104)

we have the following equations

T = <X
' 7
T, = (ZAo-l)X+EX(B-Bo)
! 3.1 2 2 2
T, = - 2x +E(7XO-8AO-11AO)X+9X Yo
63 2
-(10 A )YB-B - — - -
(10+7 o)( O)x 3 x(B BO) (15-105)
with ( )' = d( )/dx . Integrating the first equation from x, o, we
have
1,2 2
Ty © Z(XO-X ) (15-106)
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For the other two equations some of the quadratures cannot be expres-
sed in terms of elementary functions. For an accurate treatment, we
can tabulate these integrals., But, to obtain an explicit expression
for the time, an approximation has to be used.

For elliptic orbits, when e > 0.02 (which corresponds approxi-

mately to x> 3 ), we have the following asymptotic expansion for the

Bessel function In(x)

exp x [ i’: (-1)™4n® - 1%)(4n? - 3%) - - [ 4n-(2m - 1)?] ]
d m
Vamx m=0 m! (8x) (15-107)

In particular, we have for x> 3

In(x) =

exp X 1 9
I(x) = [1+—=—+ +... ]
0 8x 2
Vamrx 128x
ex 3 15
1) = px[ua- 5 - e ] (15-108)
Varx 128x

Using these expansions, we have to the order of 1/x

I (x)
0 a 3
A = X I—l—(?) = x+ 2 + 8% + ...
XII(X) 3Hx-x )
- = - = log— oo
B Bo log 1 ) (x x)+20g + Fy— +
ol [o)
(15-109)
With the expansions substituted into the equation for T, . We have
after integration
21 1 7 33 2 2
= — - —=(3 - — -
M1 T6 (%" ¥ T3ty 8xo)(xo x )
7 3 3 7 2 X
- 6(xo.x)+8x 1ogX (15-110)
o
For the equation in T, » We take approximately
XZ 2
= x
Yo
A = x
o] 0]
A2 = x2 + x
o o o
B-B = {x-~-x)
o ()
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to have

! 1 2 1 2 79 3
8(4x0-11x0)x+4(35x0-4)x -3 X (15-111)

T2

Integrating, we obtain

1 2,2 2 1 3 3 79, 4 4
- 16(4xo- llxo)(xo-x ) -—1—2—(35x0-4)(x0-x )+ 32(xo-x )

4
1|

2
(15-112)

The solution{15-104) with T,(x) as given by the Eqs. (15-106), (15-110)
and (15-112) , gives the dimensionless time T as a function of x for
large x . Although it is valid for x > 3, we can have a good
estimate of the time the satellite remains in orbit by evaluating the
lifetime T_ obtained by putting e = 0 , or equivalently x=0 .
Then, we have the lifetime given as:

u-% TRCE A RS I 9 )

1.2
€L T 2% 28 078 6 16 (15-113)

As with the orbital elements, it is possible to express the time
in terms of the eccentricity. For this purpose, we use the relation
X = xozk to write the expression for the time,

2
e 2
2. % 2.2 11 2. 7 33
€T = 2(1-zk)[1+ (3 e)e+8eo+86 TTe ]
3 )
o 33 79 4
- ﬁ(l-zk)(l4+35e -4€)+ e(l-zk)
21 2 7 2 2 2
+ 166 eo(l-zk)+8€e0z k log (zk) (15-114)

Since z has been obtained explicitly in terms of k = e/e through
the Egs. (15-79) and (15-80), this expression gives the dicl)'nensionless
time in terms of the eccentricity. To be consistent with the approxi-
mation used in deriving Eq. (15-114), we shall use the expression for
z in its asymptotic expansion form. Then, to the order of € ,

N
il

1+e[B(a)-B_]

€ o
1+€(a-x0)+210g "

or

z = 1-e(l-k+ % log k (15-115)
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By substituting into Eq. (15-114), we have, to the order of € ,

2 3
2Ly o2y, e, 2, T
€T = eT -3 2 "8 %" 3
ce e
o o 79 2 2.2 1 ]
- - — zk - — -—c1 k
> 7 Z (14+35eO 4€)+16e0z k 46 og
(15-116)
Dividing this equation by Eq. (15-113), we have
3e €e
T 2 o,11 2 7 0
= =1l-z k2[1+ 5 +8e0+8€— Z zk(14+35e0-4€)
L
€e

79 222 7 5 7 o
ik - Lelogk 26 $22 Te4_20
t 1582 K - gelogkl /[ 1-Fe +oge +get—=]

(15-117)

where z is given by its simple expression (15-115).

Figure 15-7 plots the ratio /7 for the two orbits considered
in the previous section using the Egs. I(15-115) and (15-117). The two
curves plotted in solid lines are nearly identical. It is found that they
are very close to the curve using the simple parabolic law suggested
by King-Hele (Ref. 5).

I 2 (15-118)
L

0.8 Vi
0.7+ p

0.6 Vi

T/T_

0.5 Eq. (I5-117)
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0.4 LAW

03—
0.2—

(OBl

ol L L L1
10 09 08 0.7 06 05 0.4 03 0.2 0.

e/eq

Fig. 15-7. Variationof 7/t with eccentricity.
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In practice, the solution (15-117) is valid down to an eccentricity
of about e= 0.02 . When this eccentricity is reached, solution by
asymptotic expansions is no longer valid. The equation (15-103) has
to be integrated again using a different approximation, This is also
the case where the initial orbit is nearly circular. Since e is very
small, the value of x is also small, with x < 3, and we only need
to consider the solution for 7 and T, . The solution for ™ is
exact, as given by Eq. (15- 1006) For the equationin T  , the
second of the Eqgs. (15-105), we have the series expansion of the Bessel
function In(x) for small x

n+Zm
[e0] 1
Y
In(X) = W (15-119)
m=0
In particular, we have
2 4 6
Io= 1+ 2>+ 2 X
0 4 64 2304  °
x x2 4 x6
X
I1 T2 (1 8 * 192 9216 o) (15-120)
Therefore,
XZ X4
A = Xy, = 2+—Z—-%+”. (15-121)

This series is obtained by the binomial expansion and its convergence
requires that x> I(x) , thatis, x < 2.4. To extend its validity,
King-Hele suggested1 the emp1r1ca1 formula

(2]

x
= = 2 —_— -
A Xy, + 5 (15-122)

which, although less accurate than the exact expansion, (15-121), for

small x , never has an error more than 0.07 for larger values of
X
We now write the equation for ™
dr A
1 _ 0 7 7 7 4,1 2
i (4 -I-ZBO)X- 4x(A-AO)+2 dx(ZX B) (15-123)
Using the approximation (15-122) for A and A , we have,
upon integrating the equation from x5
1 2 2 7,4 4 7 2
Tl—-z)-(4xo-5)(x -x )+%(x -x )-ZX (BO-B) (15-124)

Hence, for small eccentricity, the expression for the dimension-
less time is
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n
s8]

2
e
2. .0 X EqpL 2. 2.2 2
€ T = > {(1-x )[1+2(1+20x X )]-26

X
2070 -Z(BO-B)}
X
[¢)

(15-125)

This expression is identical to the one given in Ref. 5, since
that analysis corresponds to the present theory up through the order
of €2 . Beyond this order, the integration in Ref. 5 involves some
heuristic steps which have been avoided in the present development.
By putting x = 0 in the equation above, we obtain the lifetime of the

satellite from the initial eccentricity, e, assumed small.
2
2 ‘o €,9 2
erp = 5 L 1-305x-1)] (15-126)

By dividing Eq. (15-125) by Eq. (15-126), retaining only the
order € , we have

T x2 7 x‘2 (xi_xz)
= =1‘—Z+EE’Z[ 20 '(B'B)]
L x b4 (15-127)
o) o
Now, if we write x=x kz=x k- €x k(B - B) , we can put the
. . o o [o) o
equation in the form
2
T 2 .7 .2 [Xo 2. 3 ]
—i = 1-k +E€k —2—6(1-1( )--:I'(BO-B) (15-128)

where the argument of B is x = xokz = @z . But, to the order € ,
the solution

z=1 - e(Bo- B) (15-129)
is the same for both arguments x and «a = xok . Hence, to the order
of € , Egs. (15-128) gives the explicit expression for the ratio
T/ T in terms of k where

B = log [a Il(a)] , o = xok (15-130)

Considering the fact that both x and Bo are about 3 , the contri-
bution of the € term in Eq. (15-128) is small and for small eccentri-
city, the parabolic law as given by Eq. (15-118) is still valid.

Equation (15-128) is of the form (15-74) where p =1 - -r/'rL and
the function to be found is k“ . Hence, applying the Lagrange expan-
sion to find k“ and then taking the square root, we can express the
eccentricity as a function of the time:

£ = 1 - X 1+_1 exz(—T—)-—3-§(B - B) (15-131)
e T 80 oT 4 o)
o L L
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where

o]
it

log xoll(xo)

1 [ h-Z 1.(x ) T)}
og |x -— - —
° T, be TL (15-132)

Numerical computation has been done for several orbits and it
is found that the parabolic law is adequate. Hence, Fig. 15-7 can be
used for any elliptic orbitupto e = 0.2.

A higher order analysis of the theory has been presented in
Ref. 10. Using the same approach, the theory has been extended to
the case of an oblate planet and oblate atmosphere in Ref. 12.

or}
i
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Chapter 16

Flight with Lift Modulation

16-1. INTRODUCTION

Until now we have considered entry trajectories with constant
angle of attack and constant bank angle. A space vehicle entering a
planetary atmosphere and having control devices allowing modulation
of the lift coefficient and the bank angle will have more flexibility in
the selection of the appropriate trajectory. For a highly maneuverable
vehicle, lift and bank controls can guide the vehicle along a prescribed
trajectory to a correct presentation for making the final approach and
landing. Also, as has been shown in Chapter 9 and Chapter 12, lift
control can be performed to reduce the overall heating or the peak
deceleration., It can be used to widen the entry corridor. Lift and
bank controls, used in an optimally coordinated manner, may reduce
to a strict minimum the fuel consumption for an orbital maneuver of
a lifting vehicle (Ref, 1).

For these reasons, starting with this chapter, we shall analyze
the motion of an entry vehicle having the capability of controlling the
lift program along its trajectory.

We shall first modify the universal equations, developed in
Chapter 13 for constant angle of attack and bank angle, put them in the
form where the lift coefficient and the bank angle are variable, and
then use these equations to study successively the following entry
trajectories:

i. Entry at constant flight path angle.

Entry at constant rate of descent.
Entry at constant speed.

Entry at constant dynamic pressure.
Entry at constant heating rate.

The equations with lift and bank modulation are derived in this
chapter. Different constraints imposed upon the state of the vehicle
will be discussed and a theory of flight path control for satisfying these
constraints will be presented. Examples of flight subject to constraints
as mentioned above will be analyzed later.

The examples considered above are selected solely to present
some fascinating aspects of entry with aerodynamic maneuvering
capabilities, but the equations derived can be used to analyze entry

U"r#-wl\)
IR
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satisfying any other prescribed constraint. In particular, they can be
used in connection with optimization problems.

16-2. THE DRAG POLAR

It has been noted earlier that the drag coefficient C_ and the
lift coefficient C. are functions of the angle of attack, the Mach num-
ber, and the Reynolds number

“p

CD(a » M, Re)

‘L

R -
CL(a,M, e) (16-1)

Tor each aerodynamic configuration, elimination of the angle of
attack from the parametric equation (16-1) leads to the drag-lift rela-
tionship

Ch = Cp(Cy MR ) (16-2)

For constant Mach number and Reynolds number the plot of the
drag coefficient C_ versus the lift coefficient C_ is called the drag
X L
polar (Fig. 16-1).

CL
CLmox ————————————————— N
max
(o N S
|
Ct _______ = :
| I
/ | I
s ! |
id | |
] |
0 Cs CSf()\) Co

Fig. 16-1. The drag polar.

In general, the relationship holds for the range of the angle of
attack less than a critical angle of attack called the stalling angle of
attack. When this angle is exceeded, the effect of flow separation
becomes important; the value of C_ drops suddenly, while C_ con-
tinues to increase to a maximum value. While the maximum vaHue of
C_ can be used for pure ballistic entry, flight with lift modulation is
always effected at an angle of attack less than the critical value. For
safety reasons, the angle of attack is limited at a maximum value, g
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near the stalling angle of attack, «. . To this value, corresponds a
maximum value of the lift coefficient, C .

An important parameter in the desigﬁngf lifting vehicles is the
lift-to-drag ratio, or aerodynamic efficiency

E = — (16-3)

As are the lift and the drag coefficients, the aerodynamic efficiency
is a function of the angle of attack, the Mach number and the Reynolds
number. For constant Mach number and Reynolds number, E wvaries
with the angle of attack; as o increases, E increases, reaches a

maximum value E* | and then decreases.
The drag coefficient C can be decomposed into two parts, the
zero-lift drag coefficient C and the induced drag coefficient C
D D.
(Ref. 2). o i
CD = CD + CD, (16-4)
o i
For most vehicle aerodynamic configurations, the induced drag co-
efficient can be represented in the form
n
CD, = K CL (16-5)
i
Hence, we write the lift-drag relationship
c. = c_ +KC " (16-6)
D D L N

This is a modeling form of the general relationship (16-2). Hence, the
zero-lift drag coefficient CD , the induced drag factor K , and also

the exponent n are functions of the Mach number and the Reynolds
number, For constant Mach and Reynolds number these coefficients
are constants and can be selected to best represent the drag polar
obtained through wind tunnel measurements. For subsonic flight, the
approximation n = 2 can be used and the drag polar is called the para-
bolic polar. For thin-winged vehicles operating in the hypervelocity
regime, n is about 3/2.

With the assumed form, (16-6), the lift-to-drag ratio is

E=z ——— (16-7)

E reaches its maximum when dE/ dCL = 0 , that is when
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CD 1/n
c = - 0o = cL* (16-8)
(n-1)K
To this value, corresponds a CD*
* n
CD = T CD (16-9)
o
with the maximum lift-to-drag ratio being
1/n (n-1)/n
* -
= - (&) &) 16-10
8 D
o

To simplify the analysis we shall assume that the lift-drag rela-
tionship is independent of the Mach number and the Reynolds number.
This assumption is essentially correct for flight in the hypervelocity
regime. On the other hand, it is possible to write the equations of
motion with a general drag polar. In this respect, we define a re-
scaled lift coefficient X such that

%k
C = C 6-

L L A (16-11)
where C_* is the lift coefficient corresponding to maximum lift-to-
drag ratic. When CL reaches its maximum, A has its maximum
value, )\max = CL /CL* . Then, for constant Mach number and

Reynolds number, we Xrite the general lift-drag relationship (16-2) as

_ %
CD = CD f(\) (16-12)

where f(\) is some appropriate function defining the drag polar, and
C_* is the value of C_ at maximum lift-to-drag ratio. When A =1,
the flight is effected at maximum lift-to-drag ratio, and as a conse-
quence f(1) =1 . For a generalized drag polar representing the
relation (16-6), using the relations (16-8), (16-9) and (16-11) we have

c. =Rzl } oo (16-13)
Comparing with Eq. (16-12) we see that, for a generalized drag polar

_ (n-1)+)\n
- n

f(\) (16-14)

When n =2, we have a parabolic drag polar.
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16-3. UNIFIED EQUATIONS WITH VARYING LIFT COEFFICIENT
AND BANK ANGLE

The dimensionless equations, using modified Chapman's vari-
ables, have been derived in Chapter 13. The equations can be used to
analyze motion with modulation of the lift coefficient and the bank angle
if we assume that the drag coefficient remains unchanged. This
simplification has been used by various authors, but, as has been
pointed out in Chapter 12 on the entry corridor, strong coupling
between the drag and the lift coefficients has important effects on
entry physical quantities. Thus, the lift-drag relationship must be
considered for accurate analysis.

We recall the equations for constant lift coefficient and bank angle
derived in Chapter 13. We have

dZ
—_— = - VA
ds Pr Z tan vy
C
24/ .
_S‘SJ = - —L—-CJSZ 2 [1+ —CL cosc tany+ —em¥ ]
Y D 2/pr Z

dy _
ds

CL cos cos2
[——-coscr+ Y(1- Y )]

b \Verz u

de

ds

ds

Q4
ds

yér Z

cosy

cos

cos ¢
g9 = siny

2
C cos cos | tan
4 Y $
JEEL- [—L-sin(r - ] (16-15)

cas y CD \/ﬁr Z

where in spherical coordinates, the position of the vehicle is defined
by its altitude, through the variable Z , longitude 6 and latitude ¢ .
The velocity vector is specified by the variable u , the flight path
angle y and the heading angle ¢ . The angle ¢ is the bank angle.

The variable Z and u , called Chapman's modified variables
are defined as

7 = PSCD Xz
2m B
V2 coszx
u = e (16-16)

while the independent variable s is the dimensionless arc length
t
\4
s = { - cosy dt (16-17)
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For flight with lift modulation, since the drag coefficient CD is vary-
ing, in the definition of the variable Z , we replace CD by the

constant CL* , that is
pSC_*
L T
Z = — ,/— -
3 5 (16-18)

Also, it has been found convenient to replace u by the variable v
defined as

o

v = S = _u_z (16-19)

r
cos vy
Hence the variable v is the square of the dimensionless speed. With

these modifications, and using Eqs., (16-11) and (16-12), it is seen
that the new equations are

dZ

i pr Z tanvy
2 3! Z
v - BrZz v i(h) - (2-v) tany
ds .
E* cos y
& @[Mo”+_czs_wr_(l_l)]
s cos y br 2 v
dae cos
ds ~ cosé
4 - g
ds sin
dy _ Mér Z \sing
is > - cos | tan ¢ (16-20)
cos vy
where E = C %/C_* is the maximum lift-to-drag ratio.

Equations (16-20) are in the form suitable for the analysis of
entry with lift and bank modulation (Refs. 3-4) and even for the optimi-
zation of such entry trajectories (Refs. 5-7).

With lift and bank modulation, the entry trajectory can be control-
led in such a way that a certain requirement can be satisfied. For
example, one may control the glide angle to be constant or the rate of
descent, also called the sinking speed, to have a predetermined value,
The required lift modulation to keep the vehicle along such a trajectory
will be analyzed in the next chapter. In the following section we shall
discuss the characteristics of each family of trajectories satisfying a
specified condition,
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16-4. TRAJECTORY IN THE PHASE SPACE
We shall consider lift-modulated entry trajectories in the plane

of a great circle. Hence, taking ¢ = 0 , the equations of interest

are

dZ

&s oL Z

30 Br tan vy

dv  _ 2ABr Z v E(\)

ae E* cos y - (2-v)tany

dy _ M +1 1 (16-21)
de cos vy v -

where, as in Chapter 13, the quantity pr will be considered as
constant with Br = 900 for the Earth's atmosphere. In planar entry
the independent variable s becomes the range angle 6 . Here the
variable Z and v are defined by the Eqs. (16-18) and (16-19) respec-
tively.

It is convenient for the representation and visualization of the
trajectory to use a cylindrical coordinate system (v, y, w) where

W = (16-22)

Yor z

In this way, w varies in the same direction as the altitude (Fig. 16-2).

Fig. 16-2. Trajectory in the phase space.
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Let us assume that the entry trajectory is such that a certain
relationship exists among the three variables, speed, flight path angle,
and altitude

Flv,vy, w) =0 (16-23)

Then, in the phase space the totality of entry trajectories satisfying
Eq. (16-23) forms a two-dimensional surface. Hence, if two different
constraints must be satisfied simultaneously, the trajectory, if
physically possible, is in general unique, being the intersection of two
constraining surfaces. We shall consider these constraining surfaces
in the following cases:

16-4.1. Flight at Constant Flight Path Angle

In this flight program, we have constantly
Y =y (16-24)

where A is the initial flight path angle. In the phase space, the
tra_]ectory must lie on the vertical plane defined by Eq. (16-24). In
the (v, y) plane the trajectory is a straight line while in the physical
plane of the great circle it is a logarithmic spiral.

16-4.2. Flight at Constant Rate of Descent

The rate of descent, or sinking speed V , is the vertical
component of the velocity

Vs = Vsiny (16-25)
In dimensionless form, by expressing that the sinking speed is con-
stant, we have the relation

vsinzy = C (16-26)

where C is a constant. In the phase space, the trajectory must lie
on a cylinder whose projection in the (v, y) plane is the curve defined
by Eq. (16-26).

A geometric construction of this curve is as follows. In the
(v, y) plane, we draw a circle with center at the origin and radius C.
Since C is the square of the dimensionless sinking speed, this circle
is small if the sinking speed is small. At the point P on the circle,
defined by the polar angle y , we draw the perpendicular PQ to the
radius OP and then the perpendicular QR to OQ as shown in Fig.
16-3. The intersection R of this perpendicular and the radius OP
is on the curve. The point R describes the curve as given by Eq.
(16-26) in dashed line as the point P moves on the circle,



Ch. 16 FLIGHT WITH LIFT MODULATION 315

Y

Fig. 16-3. Trajectory at constant sinking speed
in the (v, y) plane.

16-4.3. Flight at Constant Speed

In this flight program, the constraining surface is defined by the
equation

v = C (16-27)
where C is a positive constant equal to the square of the prescribed

dimensionless speed. In the phase space, the trajectory must lie on
the right circular cylinder with axis Ow

16-4.4. Flight at Constant Dynamic Pressure

The dimensionless dynamic pressure is expressed as

1

3 P Vz/(mg/SCL*) = \/E Z v (16-28)

If C is the prescribed constant dynamic pressure, in the phase space
the trajectory must lie on the constraining surface defined by the
equation

= C (16-29)

This is the equation of a circular cone with axis Ow

16-4.5. Flight at Constant Heating Rate

The laminar heating rate at any point on the surface of the vehicle
entering a planetary atmosphere is equal to a fraction of the heating
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. . . . ; 3
rate a at a stagnation point., Since q, is proportional to p 1/2 \%
by expressing that this quantity is constant during entry, we are led
to the equation of the constraining surface

3
Y. - ¢ (16-30)
w

In the phase space, this is the equation of a surface of revolution about
the Ow axis, generated by a cubical parabola.

The different constraining surfaces discussed in this section are
drawn in Fig. 16-4.

constant constant dynamic

w speed pressure

constant

rgte
______ >
: !
)
!
vl p '/
b | / {
M / /
\l I / 7 |
| \ / // ]
l } I // // !
\
| A== I
’ ~.!
! 0 =~~~ s y
<~ TT=-- \Jcoﬁstom
flight path
constant sinking—" angle
speed

Fig., 16-4., Constraining surfaces in the phase space.
16-5. FLIGHT SUBJECT TO CONSTRAINTS ON STATE VARIABLES

The equations (16-20) are the equations of motion describing a
dynamical system subject to arbitrary control. The variables Z, v,
Y, 9, ¢ and ¢ are the state variables, while the variables \
and ¢ are called the control variables. The variable s is the inde-
pendent variable and, in the case where s is monotonically increasing,
can be called the time variable. For each prescribed initial condition
on the state variables, at the initial time s = 0 , if the control
histories in N and o are given as functions of the independent vari-
able s , a forward integration of the system of equations, called the
state equations, yields the state variables as functions of s . The
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plot of the state variables in the phase space will be called the trajec-
tory.

In general, we consider an n-dimensional dynamical system
governed by the system of differential equations

dx,

—L = f(x,u,t) (16-31)
dt j

i=1,2, , n

where x is the n-dimensional state vector
., xn) (16-32)

-
and u is the m-dimensional control vector

S eee ) (16-33)

f; = (u1 , u
In general 4 is an element of U , where U is the bounded, m-
dimensional control space. For example, in the Eqs. (16-20), we can
take u, =\ and u, = o . If the lift coefficient X\ and the bank
angle ¢ are bounded, U is defined by

IN] <
— “"max
|0' 1 < o (16-34)
- max
where 2\ is the maximum rescaled lift coefficient and T nax

is the maximum allowable bank angle.

In the previous section, we gave examples where some of the
state variables are related by certain equation which must be satisfied
along the trajectory. These equations impose constraints on the tra-
jectory. In general, if the relations are independent of the controls,
they are of the form

F(x,t = 0 (16-35)

Each of the p relations (16-35), if it is time independent, defined a
(n-1)-dimensional surface in the n-dimensional phase space. The
trajectory satisfying the relation must lie on this constraining surface.
In particular, the initial point must be taken on the surface itself.
When the relation depends on the time, we can still consider it as
defining a varying constraining surface. However, in this present
analysis we shall invariably consider time independent state equations
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dx. - -—
-——J-.dt = fj(x , u) (16-36)
i=1,2, , I

and time independent constraining relations
Fk(x) = 0 (16-37)
k=1,2,...,p

Consider the case p =1 , and the constraining surface F =0,
in the n-dimensional space E" (Fig. 16-5). Let I be the initial
point taken on the constraining surface. The trajectory starting from
the point I must lie on the surface. Using the constraining relation
F. (x) =0 , we can express one of the state variables, say x_, in
terms of the remaining (n-1) variables. Hence, we can deletelz'l the
equation for x_ from the system (16-36). Furthermore, the condition
for the trajectory to lie on the constraining surface requires that, at
each instant, the tangent to the trajectory is also a tangent of the sur-
face. That is, it is orthogonal to the normal N of the surface at the
point. Mathematically, this is expressed by taking the differential of
the Eq. (16-37)

oF oF oF

k
o dx1 + o dx2 + ...+ o
1 2 n

dx =0  (16-38)

'I‘.his equation expresses the ortho_gonality of the vector velocity
V = (dx./dt) andthe normal N = (38F /8x,).
Usi]ng the state equations (16-36), we can’write this equation as

2. oF

aka4(§,3) = 0 (16-39)
T I

At each instant, Eq. (16-39) can be satisfied by a proper selection
of the vector control U in its bounded space. The trajectory cannot
be generated if u cannot be found within its bound. If p=1 , and if
u has only one component u, , thenfrom Eq. (16-39), u  can be
obtained in terms of the remaining (n-1) state variables, Substituting
into the remaining (n-1) state equations and integrating from the initial
conditions, we generate a unique trajectory. (In some instances,

Eq. (16-39) provides more than one solution for u, and the proper
selection of the control is dictated by physical considerations.)

In general, the number of constraints cannot exceed the number
of controls, thatis p < m . If p<m, then, from the p equations
(16-39), (m-p) compoﬁ:ants of the control vector u can be selected
arbitrarily in some manner in the bounded space U .
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TRAJECTORY

\%STRAINING

SURFACE
FI(X)=O

Fig. 16-5. Trajectory on constraining surface.

On the other hand, if p=n , the solution of the n equations
(16-37) gives a finite number of points in E™ |, and hence one of the
solutions must be taken as the initial point. The trajectory cannot be
generated as a continuous function. Hence, we must have p< n.

In optimization problems, there is at least one free component
of the control vector to be selected in the bounded control space. The
problem then is to find the best control history to achieve the maxi-
mization of a certain function of the state variables at the final time.

In this presentation we shall invariably study flight trajectories
such that the number of constraints is equal to the number of controls.
More specifically, all the cases considered are such that m=p =1 ,
The unique control used is the lift control A . The state variables
involved are the variables w, v, y and hence, the constraining
relation is of the form

Fiw, v,y =0 (16-40)

Relations involving only the altitude variable w and the flight
path angle y are called kinematic constraints. They are of the form

F(w, y) = 0 (16-41)

In this case, the trajectory in the physical plane is obtained by
quadrature. To prove this, we rewrite the first of the Eqs. (16-20)
using w to replace 2Z
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d
—é\—eﬂ Br wtany (16-42)
From Eq. (16-41) we obtain y as function of w , to be used in
Eq. (16-42). Thus, w is obtained by quadrature.
This provides the equations for the trajectory in the physical
plane.

e
1

£,(8)

2
I

£,(0) (16-43)

On the other hand, constraining relations involving only the
speed v and the flight path angle y give directly the trajectory in
the (v, y) plane. Such trajectory constraints will be analyzed in
Chapter 17. General relations such as Eq. (16-40) are dynamic
constraints.
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Chapter 17

Lift Modulation with Constraints
on Speed and Flight Path Angle

17-1. STATE AND CONSTRAINT EQUATIONS

The equations for flight with variable lift and bank control were
derived in Chapter 16. For flight along a great circle, with the vari-

ables
2 pSC_*
L r
v = pral Z = —~m \/; (17-1)

the state equations are

dzZ
E = -Br Ztany
2 V4
av . pr v £(h) -(2-v)tany
de
E cosy
dy _ ANpr 2z o, 1L (17-2)
de cos y v

The rescaled lift coefficient A is used as a control and has been

defined as

Cc
= —Ii (17-3)
L
where C_* is the 1ift coefficient corresponding to maximum lift-to-
drag ratio, (L/D) . Hence, when \ =1 the flight is at

maximum 11ft to-drag ratlo. The lift coefficient is bounded by an
upper limit and proportionally we have the constraint on the lift control

IN] < (17-4)
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The function f(A) = C_/ C_%* is the rescaled drag coefficient. Its
form is dictated by the drag polar. In particular, for a parabolic
drag polar

f(\) = I—Z)‘— (17-5)

For planar entry, to visualize the trajectory in the phase space,
in Chapter 16, it has been found convenient to change the variable Z
into the variable w such that

w s —— (17-6)

In this way, since w is the inverse of the density of the atmosphere,
it varies in the same direction as the altitude. Then, we have the

equations of motion in the variables w, vand y , using a parabolic
drag polar
%eﬁ = fr wtany
2
dv  _ v{l1+\ )
36 = - - (2-v)tany

E* wcosy

1
dy . A = (17-7)

wcos 'y

In Chapter 16, we have seen that if a constraint of the form

Flv,y,w = 0 (17-8)

is imposed upon the entry variables, then it is possible to deduce the
lift control law to flight the vehicle along this constraint. Once a
certain constraint is prescribed, it is of interest to study the behavior
of the lift control along the flight. The analysis would be valuable to
mission planning and design of guidance system. Several trajectories
of practical interest have been analyzed in Ref. 1. In this chapter the
following flight trajectories will be considered:

a/ TFlight at constant flight path angle.

The constraining relation is simply

Y = v, (17-9)
where vy, is the initial flight path angle.
b/ Fligh% at constant sinking speed.

The constraining relation in this case is

v sin® y = C (17-10)
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where the constant C is the square of the dimensionless sinking speed.

For each flight program, the lift control required to satisfy the
constraining relation will be derived. The variation of the state vari-
ables and the behavior of the trajectory in the phase space will be
analyzed. Pertinent properties of the flight path will be displayed
explicitly.

17-2. FLIGHT AT CONSTANT FLIGHT PATH ANGLE

In this flight program, it is required to keep the entry angle
constant throughout the portion of trajectory under consideration. This
scheme is most attractive during the initial phase of descent, and also

at a later phase during an approach before landing.

17-2.1. The Lift Control Law

The constraining relation is Eq. (17-9). Hence, dy/d8 =0 ,
and from Eq. (17-7), in terms of the variables v and w , the lift
control is given by

w cos y, (1 -v)

N = (17-11)
v

The lift is positive for subcircular speed flight, v< 1 . At
higher speed, when v >1 , negative lift should be used to hold constant
glide angle. Since y is constant, the first of the Eqs. (17-7) can be
integrated.

wo= W exp[ (Br tan Y;) © ] (17-12)

In the plane of motion, the trajectory is a logarithmic spiral and, for
an entry trajectory, y., < O , the '"altitude' w decreases according
to the law (17-12) .

17-2.2. The Characteristic Curves

In the (v ,y) plane, the trajectory is the ray vy = v; - In the
phase space, the trajectory lies in the vertical plane (v, w). A
simplification can be made by using the modified variable

Y = wcos v; (17-13)
and the modified parameter

Ei = - E% tanyi >0 (17-14)

to replace w and E* respectively. The lift control is simply
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v o= Yd-v) (17-15)

v

In the (v, Y) plane, the lines of equal lift coefficient, A= con-
stant, are the hyperbolas defined by Eq. (17-15) with the line, v =1,
a common asymptote. Because of the constraint (17-4), the (v, Y)
space is bounded by the hyperbolas (Fig. 17-1)

A v
Y - max
l1-v
)\m v
Yy = 22X (17-16)
v-1

The initial point must be within the boundary of lift capability
and, for flight initiated at high altitude, Y - co , the initial speed is
restricted to near circular speed, v, -1 . At any altitude, the speed
is bounded by !

Y Y
T 2V 2 ¥ (17-17)
max max

with the upper bound being infinite for Y < \
max

]
2 v

|
!
|
|
|
|
|
|
|
|
|
|
|

(¢}

Fig. 17-1. Iso-lift coefficient curves in the (v, Y) plane.
Bounded space for A\ =1.
max
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From Eq. (17-7), it is seen that for a general drag polar the
speed decreases if and only if

11
EM+E Y (3 -2) >0 (17-18)

With a parabolic polar, as defined by Eq. (17-5), and the lift
control law (17-15), the condition for decreasing v is

A= (1-viyr. E(2-v) vY + “ s 0 (17-19)

In the constraining plane (v, Y) of the trajectory, we consider
the quartic curve A =0

(l-v)ZY2 - Ei(Z-V) vY + v2 =0 (17-20)

The origin is a double point having the tangents defined by the
lowest order of the equation of the curve.

Y2 . 2EvY + “ -0 (17-21)

The tangents to the curve at the origin are real, provided that

Ei > 1 (17-22)

The condition is satisfied for a steep glide of a vehicle having
relatively high maximum lift-to-drag ratio.

If the condition is not satisfied, the tangents at the origin to the
curve are imaginary and the origin is an isolated point. In the positive
(v, Y) space, the curve delimits the regions where v is increasing
and where v is decreasing as shown in Fig. 17-2, for the case where
the origin is an isolated point. The asymptote is the line

v = 1 (17-23)

The point where the tangent to the curve is parallel to the Y-axis
is obtained by setting the discriminant of the quadratic equation in
Y , Eq. (17-20), equal to zero.

2 2 2
Ei (2-v) -4l-v) =0 (17-24)
Solving for v , we obtain two roots
2(1 + Ei)
1.'"7 TZ2¥E,
i
2(1-E)
v, = —_ (17-25)

2 - E,
i
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The first root is always positive and larger than 1 . It gives
the point to the right of the asymptote with the value for Y

2(1+E)
Y = — 1 .
. = (17-26)

1

This point is above the point

(17-27)

where the curve intersects the asymptote. As expected, if the grigin
is an isolated point, 1 - E, > 0 , the second root is also positive.
The corresponding value of Y is

2(1 - Ei)
YZ = — (17-28)
i
This point (v, , Y_ ) is below the point (v s . It is above the
point (v, , Y_) ifandonly if 1. 2E, > 0 Vbe can verify that the
point (v], Y,) is on the iso-lift coeflflcxent hyperbola with \ = -1,

and the point (v, , Y_) is on the hyperbola with X =1
The point where the tangent to the curve is parallel to the v-axis
is given by the value of Y 2

vy = —21 (17-29)

It is positive if the origin is an isolated point. The correspond-
ing value of v is

v = 1-E (17-30)

The point (v

Y ,) is on the iso-lift coefficient hyperbola with
4
the value for \

4"

A = Ei (17-31)
In the (v, Y) plane, the curves \ = + )\m % intersect the
curve A = 0 between the points Vi and v, if max < 1 . The
intersections are outside when A\ > 17,

The sense of variation of the 1ift coefficient along the trajectory
is given by the sign of the derivative dx/deé . From Eq. (17-15) for
A and using the state equations, Eqgs. ( 17-7), we have

dx
@ - P

N tan v+ = (17-32)

Eﬂv
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where A is defined by Eq. (17-19), with A > 0 for decreasing v .
In the following we shall consider the case of shallow glide with low

maximum lift-to-drag ratio, Ei < 1 , which is likely to occur in
practice.
Y
Ty A=0
T
o o
2 1
Vi, A=-t
vz
v decreases
Ei <1
I 1
[¢] 1 2 v

Fig. 17-2. Curve of stationary v (A = 0)
and flow of trajectories in the (v, Y) plane.

17-2.3. The Behavior of the Trajectory

We can now discuss the behavior of the trajectory in the (v, Y)
plane as shown in Fig. 17-2 for the case where E, < 1 . Using Y
as the independent variable, with Y always decreé.sing, the equation
of the trajectory is

dv A
S 2 (17-33)
pr EiY \4

First, we consider the intersection of the trajectory with the
curve A =0 . Inthis respect, we evaluate the slope dY/dv of the
curve A =0 , and compare it with the slope of the trajectory. By
taking the derivative of Eq. (17-20), and evaluating itat A =0 , we
obtain

ZYZ[(I-V)Y-Eiv]

= (17-34)
)A v (1 - v)ZYz- vz]

——~
o7y fo
il
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where subscript A means that (dY/ dv)A is the slope of the curve A .
Likewise the slope of the trajectory T is

2
BrEYY

Note that it is infinite at A = 0 ; that is, at the intersection of the
trajectory and the curve A . Using Eq. (17-15) we can rewrite
Eq. (17- 34) as

2
4y 2 (N - Ei)
(&), == (17-36)
A N -1 (1-v)
Moving clockwise around the curve A from infinity, ye see that
between the points v=1+¢€¢ and v, , A0, A -1> 0, and
the slope of the curve A=0 is negative. Between the points v, and
v, , N“-1<0 , N -E <0 and the slope is positive. Similarly,
we see that the slope is nlegative between v and v and becomes
positive between v, and v=1-¢€ . The trajectory, in the case
E. <1 of Fig. 17-Z , can only intersect vertically the curve A =0 ,
aIlways in the decreasing direction of Y , as shown by the arrows. We
immediately have the following properties:

a/ The speed can only have one relative minimum and one rela-
tive maximum with the relative minimum occurring first.

b/ Once through a relative maximum, the speed continues to
decrease.

To discuss the behavior of the trajectory in terms of the initial
point (v, , Y.) , we introduce the limiting trajectories T, , T, and
T. as Shown in Fig. 17-2. The trajectory T. is obtained by integra-
tihg £q. (17-33) forward and backward from the point (v, Y. ) . Like-
wise, the trajectories T, and T, are obtained by integrating forward
and backward from the pdints (v, ; Y.) and (v, , Y, ), respectively.
By the existence and uniqueness of the solution of Eq. (17-33), the
limiting trajectories partition the flow of the trajectories in the (v, Y)
space.

From the figure, the type of the trajectory can be classified in
terms of the initial point. For example, the trajectories initiated from
points 1 and 2 will have the speed continuously decreasing. The tra-
jectories initiated from points 3 and 4 will have the speed decreasing
first and then increasing after passing through a minimum. After the
minimum, the speed will increase, pass through a maximum, and
then decrease again until the end. Speed along the trajectory initiated
from point 3 will remain subcircular, while the speed along the tra-
jectory initiated from point 4 will go from subcircular to supercircular
before.decreasing to subcircular again.

It should be noted that the trajectory must remain within the iso-
lift coefficient hyperbolas \ = 1 )‘m x and above the level Y=Y =

. = s
Wg COSY, where w is the value of w evaluated at sea level,
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Hence, the trajectory must be such that |\, I < X max. * It terminates
either at the point where |)\ | whe're the maximum lift capa-
bility is reached, or at Y = s w%lere the vehicle has reached sea
level.

17-2.4. The Variation of the Angle of Attack

It is interesting to follow the variation of the angle-of-attack along
the trajectory. In this respect the lift control A\ is useful. It varies
in the same direction as the angle of attack, and furthermore, for
A =1, the corresponding angle of attack is the one giving maximum
lift-to-drag ratio for the case where )\male . In the case where
)\ < 1, the maximum lift-to-drag ratio is reached at X = \

Froth Eq. (17-32), the lift coefficient is increasing if and only if max

B = -pr Ei)\v3+A>O (17-37)

In the (v, Y) plane, the curve B = 0 delimits the region where
X\ is increasing (outside the curve) and where \ is decreasing (inside
the curve). The curve B = 0 is plotted in Fig. 17-3 for the case
where E < 1. Since B=0 when\ =0 and A = 0 simultaneously,
the curve A = 0 and B = 0 have their intersection at the point (v_ ,Y.).
Furthermore since B< 0 when X\ >0 and A < 0 , the porticn of
the curve A = 0 on the left of the asymptote v=1 is entirely in the
region B< 0. Similarly, since B> 0 when\X <0 and A> 0 ,
the portion of the curve A = 0 on the right of the asymptote is entirely
in the region B> 0 . As a consequence, we have the following
properties:

a/ In the subcircular speed regime, the angle-of-attack passes
through its stationary value with decreasing speed.

b/ In the supercircular speed regime, the angle-of-attack
passes through its stationary value with increasing speed.

This theorem can be made stronger by specifying that, in both
cases, the stationary value is a minimum, as we shall prove. Explicit-
ly, we write the equation of the curve B =0

B = (l-v)ZYZ-E. [2+([3r-1)v-[3rv2]vY+v2=0
' (17-38)

Like the curve A = 0, this quartic curve has the line v =1 as
the vertical asymptote. The origin is a double point, and it is an

isolated point if E <1 . The tangent to the curve is parallel to the
Y-axis when

Eiz[2+( pr-1) v~ Pr v2]2-4(1-v)2 = 0 (17-39)

The equation can be factored into two quadratic equations
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2
Br Eiv -[(r-1 Ei-Z] v-2(1+Ei) = 0

Br Eivz - [@r-DE+2] vi2(l-E) = 0 (17-40)

The first equation provides one positive and one negative root.
In the case where 1 - E_ > 0 , that is when the origin is an isolated
point, the second equati%m provides two positive roots, one root is less
than 1 and the other root is larger than 1 . If we write this second
equation as

-Ei[ 2+ (Br-l)v-ﬁrvz] = 2(v-1)

we see that taking the root v > 1 will make the coefficient of Y in

Eq. (17-38) positive hence providing a negative value for Y . Hence,
the two positive roots of interest in the Egs. (17-40) are the positive
root of the first equation and the smaller positive root of the second
equation,

Upr-nE - 2]+ N E+2]% + 4pr Ef

Vg = (17-41)
2pr Ei
and
[(Br-1) E + 2] - \/[(Br+1) E, - 2]2 + 4prEi2
e = (17-42)
2 Br Ei

The root v_ is larger than 1 and corresponds to the point
inside the A = 0 curve. The corresponding value of Y is the double
root of the Eq. (17-38). Hence

- 5 -
Y5 = T A = -1 (17-43)
5
and
Ve
Y6 = 1'V6 , A =1 (17-44)

If we rewrite the Eq. (17-38) as a cubic equation in v, the
point where the tangent to the curve B = 0 is parallel to the v-axis is
the point providing a double rootin v . It can be shown that this is
the point

2\ = E(2+ pr vz) (17-45)

The point is in the range
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E, <\ <1 (17-46)

On the other hand, using A\ to replace Y , we rewrite the
equation (17-38) as

2 Ei[2+([3r-1)v-[3rv2])\

2o T +1 =0 (17-47)

By eliminating N\ between the two equations (17-45) and (17-47) we
have a quintic equation to evaluate the value of v = e where the
tangent to the curve B = 0 is parallel to the v-axis.

pr E]..)Zv5 - 3(Br Ei)2v4 + 2Br(Br + 1) Eizv3 - 4pr Eizvz

+ 4(1+ Br Eiz) va-4(- Eiz) = 0 (17-48)

Let us now consider the intersection of the trajectory with the
curve of stationary value for X\ , B = 0. Using the condition B =0
in Eq. (17-33) we have the slope of the trajectory at the point of
intersection

dY Y A
= = = (17-49)
(dv )T v(l-v) (l-v)Z

On the other hand, if we evaluate the slope of the curve B=0 ,
using Eq. (17-38), we have, after simplification

ay _
(F)B - N2 - (- 2

x?‘[ 2\ - E(2+Br VZ)]

(17-50)

Referring to Fig. 17-3, we move along the curve B = 0 from the
point v=1+ € tothe point v=1- ¢ in the clockwise direction.
Between the point v =1+ € and the point Ve A < -1, both the
two slopes are negative, and

(&), > (&)

We find that this condition leads to

B

N E\(2+pr V)41 > 0

which is true for X < 0 . Hence we have the possible intersection
indicated.

Between the point v_ and the point vy oo \ is negative and

5
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)\2 < 1 , the slope (dY/ dv)T is negative while the slope (dY/dv)
is positive and again we have the trajectory going from inside the
curve B = 0 to outside the curve as indicated by the arrows. Between
the point v_ and the point Vo s A <1 and

B

3
2
0 < 2\ < Ei(2+[3rv)

Hence, the two slopes are positive. The condition

@) - (@)

leads to

)\2 - Ei(2+[3r vz) AN+1 >0

Since the point is on the curve B =0 , Eq. (17-47) applies and we have
the condition

V[ﬁr(v-l)2 +1] > o
{1-v)

This condition is satisfied since (1 -v) > 0.

Similar arguments lead to the direction of intersection always
from inside the curve B = 0 to outside the curve as shown in Fig.
17-3. Hence, the intersection is always from d\/d® < 0 to
dN/do >0 . The angle of attack considered as an algebraic quantity
never passes though a relative maximum and can only pass through a
relative minimum once. More specifically, for positive « , the
stationary value is a minimum while for negative « , the stationary
value is a maximum in absolute value.

The discussion is more enlightening if we plot the trajectory and
the curve A =0 and B =0 inthe (v, \) plane. In this plane, the
equation of the curve A =0 is

2 Ei(Z -Vv) X
- — 1 =0 17-51
\ 1= + (17-51)
The line v =1 is the vertical asymptote. The curve passes

through the point X =0 , v =1 with a slope at that point equal to

d\ 1
™ - T E (17-52)
i
For any v , the product of the roots of Eq. (17-5]) is )\1)\ =1
Hence, the points where the tangent is vertical are the points where
A.=X_,=+4+ 1 . We have the values v. and v, for v as found
previously_in Eq. (17-25). In the (v, \) plane, the equation of the
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Fig. 17-3. Curve of stationary \ (B = 0)
and flow of trajectories in the (v , Y) plane.

curve B = 0 has been given in Eq. (17-47). The line v =1 is the
vertical asymptote. The curve also passes through the point X\ =0 ,
v =1 and has at that point the same tangent as the curve A =0 . The
points with vertical tangent also occur at X = + 1 , with the values
Vg and v, as given in Eq. (17-4l) and (17-42).

Figure 17-4 presents the plots of the curves in the (v, \) plane.
The limiting trajectories T and T, , as depicted in Fig. 17-2
are also replotted in this flgure. 2Us1ng these trajectories, we can
describe the behavior of the trajectory and the variation of the angle of
attack in terms of the initial condition.

For example, the trajectory starting from the point 1 , at
supercircular speed begins with negative lift with the speed always
decreasing and the lift coefficient always increasing. The trajectory
terminates whenever \ = \ or Y=Y .

For the trajectory staﬂfﬁ{g from the goint 2 , we first observe
that by the uniqueness of the solution, it cannot cross the trajectory
T, . Since the point 2 is on the left of the curve A =0 , and on the
right of the curve B = 0 , the speed decreases continuously until the
end while the angle of attack first decreases and then increases after
the trajectory has intersected the curve B =0

The trajectory starting from the point 3 will be bounded by the
trajectory T, and the trajectory T, . Hence, the speed remains
subcircular while the lift coefficient is always positive. The speed
along the trajectory will first increase to 2 maximum, and then de-
crease. The lift coefficient will decrease to a minimum value and then
increase to \ at the end if the vehicle has not reached ground
level. We also notice that the maximum speed is reached before the
lift coefficient attains its minimum value.
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Fig. 17-4., Variations of the angle of attack and flow
of trajectories in the (v , \) plane .

The trajectory starting from the point 4 will go supercircular.
The lift coefficient decreases first, reaches a minimum with negative
value, and then increases to X\ . The speed increases first and
passes through a maximum beforexdecreasing to its final value. We
also notice that the maximum speed is reached after the point of
minimum lift coefficient.

It should be mentioned that the point v=1 , X\ = 0 must be
considered as an accumulation point for all trajectories passing through
circular speed, and not the point of intersection of the trajectories.

At that point each trajectory has a different value of Y . In particular,
the trajectory T_ , which has a cusp at the accumulation point, has
the value Y3 =1 Ei

17-2.5. The Variation of the Dynamic Pressure

In general, along the entry trajectory at constant flight path
angle, the dynamic pressure increases continuously and reaches its
maximum value either at ground level or at some critical altitude. A
thorough discussion of the variation of the dynamic pressure for this
type of trajectory is given in Ref. 1. Here we mention briefly a few
characteristics of the phenomenon.

The dimensionless dynamic pressure can be represented as
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2
(1/2)pV
mg cos yi/SCL*

(17-53)

i<

Hence, in the (v, Y) plane, the lines with constant dynamic
pressure are the rays passing through the origin. As a consequence,
when the vehicle passes through the point of maximum dynamic pres-
sure, in the (v, Y) plane, the tangent to the trajectory passes through
the origin. We obtain the equation of the curve of stationary dynamic
pressure by writing

dv v
¥ " v - 0 (17-54)

Using Eq. (17-33) we get the condition for increasing dynamic pressure

CEA-ﬁrEiYVZ <0 (17-55)

Hence, the dynamic pressure increases in the region where the speed
increases (A< 0). Inthe (v, Y) plane, if we plot the curve of
stationary dynamic pressure, C =0 , the curve is entirely outside
the curve A =0 . On the other hand, from Eq. (17-37) and (17-55),
by writing

3
B =C+ BrEin (17-56)
we see that for B=0 , C< 0 . The curve C =0 is entirely outside
the curve of stationary X\ , B=0 . As a consequence, minimum lift

coefficient is reached while the dynamic pressure is increasing.

As a final remark for this case of entry at constant flight path
angle, we should mention that, for a typical entry vehicle, the Y%lue of
W (or equivalently Y ) is rather small, of the order of 2 x 10 at
15 km , reaching 2x1072 at 30 km and 1.29 at 60 km. For prac-
tical applications, in the (v, Y) plane, the region of interest is the
region at subcircular speed below the curve A = 0 where the speed
decreases along the trajectory.

The case of vertical entry, vy, = - 90° is trivial. The case of
constant altitude, coasting flight, y, = 0 has many interesting charac -
teristics. This case has been discussed in detail by the authors in
Ref. 2.

17-3. FLAT EARTH TRANSFORMATION

In the second specific example, the rate of descent, or sinking
speed, is kept at a constant value. This is a flight program of practi-
cal interest during the approach phase. The speed is relatively small;
hence, an analysis using a flat planet model is adequate.

It must be emphasized here that the general equations (17-7),
which are exact equations, can be used but to the scale of altitude and
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range considered, it is better to change the variables, say the range
angle 08 in radians, into dimensionless linear range and disregard
terms that are trivially small. In this purpose, instead of starting
with the equations for flight over a flat planet and introducing the
appropriate dimensionless transformation, it is enlightening to perform
the transformation directly on the basic equations (17-7).

For a flat planet model, we define the dimensionless linear range

x = PBro (17-57)
and use the new altitude and speed variables

= 2mp

z = frw =
pSCL
2
- \
v = rv = —— (17-58)
P g/p
Using these definitions in Eqs. (17-7), we have
9—2 = z tan
dx Y
dv PR v
—_— = e ——— (2 -—
dx E* zcosy ( ﬁr) tan y
dy . __»» 1,1 (17-59)
dx Z COS Y &7 pr

Now, for nearly all planetary atmospheres, Pr is large and in the
scale of speed considered Vv is now of the order of unity. Hence, it
is trivial that the termmn 1/Br 1is negligibly small, and we have the
dimensionless equation for flight over a flat planet.

4z . z tan
dx A
— = 2
v YU+X) 2 tan
dx  ~ E%*zcosy v
gy o M 1 (17-60)
dx Z COS Y v

We obtain identical equations by starting from equations for flight over
a flat planet. One interesting fact is that the new equations are free
of the characteristic of the atmosphere although we continue to refer
to the planet as the Earth,
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17-4. FLIGHT AT CONSTANT SINKING SPEED

For this flight program, we write the constraining relation
(17-10) as

vsiny = K (17-61)

where K is a positive constant representing the absolute value of the
dimensionless sinking speed.

17-4.1. The Lift Control Law

By taking the derivative of Eq. (17-61) using the state equations
(17-60), we have the lift control law

2 2 2
N siny - 2E¥ X cosy + siny + (2E¥z sin y/K) = 0 (17-62)

At each instant, the lift coefficient required to maintain constant sink-
ing speed K is obtained by solving this quadratic equation in X\
Since siny < 0 , then if

z > - K%/ 2E*sin vy (17-63)

we have a positive and a negative lift coefficient. Positive lift should
be selected to reduce deceleration. When condition (17-63) is reversed,
both roots are negative and low negative root must be selected.

Since the altitude is decreasing, the flight is terminated when-
ever the variable z reaches the ground level value z_ or when
|)\‘ = )\max or when Eq. (17-62) no longer has real roots. From
this equation, the condition for real roots is

2, .2 _.2 2
2y - Dsy- B cos V) (17-64)

3
2E* sin y

17-4. 2., Domain of Flight in the (y , \) Space

The discussion of the variation of the angle of attack, or equiva-
lently the lift coefficient, along the descending trajectory with constant
sinking speed can be explicitly carried out in the (y , \) space.

In this space, the constraint on maximum lift capability is repre-
sented by the lines X = + X\ . On the other hand, the boundary

. - max . . . .
for real roots, as given by the equality sign in Eq. (17-64), with z
obtained from Eq. (17-62) is simply

A = E*coty (17-65)



338 LIFT MODULATION WITH CONSTRAINTS Ch. 17

Furthermore, the condition z > 0 , in relation (17-62) for the
lift control, implies that

2ExRN

(17-66)
14+ 22

tany <

If the equality sign is used, we have the equation for another
boundary curve as depicted in Fig. 17-5. The two boundary curves
and the lines N = + X\ delimit the region in the (y , \) space
inside which the fligh?is tpﬁlay}éically possible.

More exactly, for a given vehicle, with a given atmosphere, we
can evaluate z and the boundary as prescribed by Eq. (17-66) is

replaced by the" curve given by the equation
. 2 , . ) . 2 2
siny A - 2E¥X cosy + siny + (ZE*Zs sin"y/K') = 0 (17-67)

When the trajectory reaches this boundary, the vehicle is at sea level
and the flight is terminated. The domain of flight in Fig. 17-5 is

extended by plotting this boundary with z, = 0

A
A=0
3 —
}‘max
K
2+ |
increases :
-7 decreases |
' |
|
I
O pr7 :
90°
-
_| S
IMAGINARY
-2 BOUNDARY
“Amax //
_3 —

Fig. 17-5. Domain of flight in the (y , \) space,
Case of constant sinking speed.

In the figures we plot -y in abscissa to show the variation of the
flight path angle in absolute value. In Fig. 17-5, we also plot the
curve A = 0 for stationary value of y . By the constraint (1_7-61),
it is also the locus of points for stationary value of the speed v
From Eq. (17-60), with dy/dx = 0 , we have
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. 2
z sin y - \ (17-68)
KZ cos y

Hence, the curve A = 0 is in the positive N space. Combining this
equation with Eq. (17-62) we have the equation for the curve A =0

\2 o+ 2Ex tany A +1 = 0 (17-69)

In the (y, \) space, this curve delimits the region inside which the
absolute value |y| , from here on referred to as the glide angle, is

decreasing. The line -y = 90° is the asymptote of the curve. The
point where the tangent to the curve is vertical is the point

AN =1, tany = -1/Ex% (17-70)

From inspection of the figure, it can be deduced that the glide angle
can never tend to 90°

Another curve of interest is the B = 0 curve, that is the curve
of stationary of the angle-of-attack. By taking the derivative of
Eq. (17-62) with respect to x , using Egs. (17-60) for the derivative
of y and z , we have

an E*B

dx = - z sin Yy cos Y(E* COSY- \ Sil’lY) (17-71)
where
2 .4 2 2
i - 2
e -
K

Since E* cosy- X siny > 0 in the domain of flight, the lift
coefficient is increasing or decreasing according to B positive or
negative. In particular, if K> 1 , the lift coefficient decreases
monotonically along the flight path. When K< 1, )\ passes through
a stationary value when B = 0 , thatis,

. 2
Eﬂ;u = i _.)\_ (17-73)
K 2 2
cos y-K

Using the (+) sign and substituting into Eq. (17-62), we have the equa-
tion of the B = 0 curve in the positive N\ region

sin vy )\2 + 2E* [ - cos y] A +siny= 0
2 2

cos y-K (17-74)
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A detailed discussion of the B curve for both the flat planet and the
spherical planet case is given in Ref. 1. This section follows the
results for flat planet case analyzed in Ref. 3. For small values of

K (low sinking speed), the allure of the B curve is shown in Fig.
17-6a. Figure 17-6c represents the case of large values of K (high
sinking speed). Of course the B curve disappears when K>1 (very
high sinking speed). Figure 17-6b is the transition case for a critical
value of K, K= KC

A A
i (=
K< K¢ K= K
0 2, 7
90° \__/ 90°
a) b)
A \/
1
K > K
7
o]
90°
c)

Fig. 17-6. Behavior of the B = 0 curve as function of K.

For a prescribed value of E* , this critical value of K is obtained
by first solving the quintic equation

E*3TS + (1 - E*Z)T4 + E’l<(3+2153*2)1-3 + E*ZTZ+ZE*3T- E*2 =0
(17-75)
to obtain

T = -tany > 0 (17-76)

Then Kc is given by

3
- Ex* *

KCZ _ Q-E TH1 + E¥*17) (17-77)

(1+E55) (1 + 192

We can now discuss the characteristics of flight for glide at constant
sinking speed.
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17-4.3. Glide at Very High Sinking Speed

This is the case in which K> 1 . The B curve for stationary
A 1is nonexistent and the lift coefficient decreases continuously along
the flight path (Fig. 17-7). The limiting trajectory T is obtained
by integrating the equations of motion forward and backward from the
point X\ =1 , tany = -1/E* . In terms of the variation of the glide
angle, there are three types of trajectories:

Type 1: Trajectories along which the glide angle increases
continuously.

Type 2: Trajectories along which the glide angle first
decreases, passes through a minimum, and then
increases.

Type 3: When \ > 1 , we have a third type of tra-
jectoriegnafl%ng which the glide angle first increases,
passes throug a relative maximum, then decreases,
passes through a relative minimum, and finally
increases until the end.

A |
E* =2 I
A=0
K> 1 '|
|
Amux
g4 /12‘
T, \\3 |
1 |
1S |
2 |
|
I
[
|
i |
o o
90° o
Z,=0
IMAGINARY
/ BOUNDARY
-| —_
Z, #0
/. 77
“Amax

Fig. 17-7. Flow of trajectories for very high
sinking speed, K> 1

17-4. 4. Glide at High Sinking Speed

The case where

K < K< 1 (17-78)
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is depicted in Fig. 17-8. The limiting trajectory T, is obtained by
integrating the equations of motion forward and backward from the
point of relative maximum of X onthe B curve. Then, there are
the following types of trajectories in terms of the variation of the lift
coefficient:

Type 1 : If the initial point is in region I, the lift coefficient
decreases continuously.

Type 2: If the initial point is in region II, the lift coefficient
first increases, passes through a maximum, and
then decreases.

Type 3: If the initial point is in region III, the lift coefficient
first decreases, then increases, and finally
decreases again.

In terms of the variation of the glide angle, the classification of
the trajectories is the same as for the case of very high sinking speed.

A

Amax

7/’ IMAGINARY
BOUNDARY
_2 —

A |
o Y i

Fig. 17-8. Flow of trajectories for high
sinking speed, K <K<1,.
c

17-4. 5. Glide at Low Sinking Speed

This is the case widely used in practice. We have

0 < K < Kc (17-79)
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The flow of trajectories is depicted in Fig. 17-9. Among all the tra-
jectories starting with a positive lift, there are three types:

Type 1: If the initial point is in region I (to the right of the
B curve), then the lift coefficient decreases contin-
uously.

Type 2: If the initial point is in region II (inside the B
curve), then the lift coefficient first increases,
passes through a maximum, and then decreases.

Type 3: If the initial point is in region III {to the left of the
B curve), then the lift coefficient first decreases,
passes through a relative minimum, increases
until it reaches a relative maximum, and finally
decreases until the end.

In terms of the variation of the glide angle, the classification of
the trajectories is the same as for the case of very high sinking speed.

A
A=0
4 E* =
B=0 K=02
1
B=0
3 -
|
Amax 1 1
A I
21 INCREASES A DECREASES J
(mf |
I
1
4 I
|
|
[o},
¢ 190° o
|
-+ |
i |
l |
iy IMAGINARY | l
BOUNDARY l |
“Amax /// 1 I
1

Fig. 17-9. Flow of trajectories for low sinking speed, K < KC .
17-5. CONCLUSIONS

In this chapter we have examined two flight programs subject
to constraint. The analysis shows that a complete analytical investi-
gation can be carried out and properties of any specific flight program
can be displayed explicitly. The discussion shows that the properties
of the flight depend specifically on two parameters. The first para-
meter is the maximum lift-to-drag ratio E* which is the most im-
portant vehicle characteristic. The second parameter relates to the
flight program adopted. It is the constant flight path angle Y; for
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the first problem and the constant sinking speed K for the second
problem. The types of trajectories are classified according to either
the variation of a state variable, speed or flight path angle, or the
variation of the control variable, the lift coefficient. The variations of
these variables along the trajectory depend on the initial condition.

Two accessory parameters are involved in the discussion,
namely, the maximum rescaled lift coefficient \ and the vehicle
sea-level parameter w_ or z_ ., These paramé?eal}'{s have no influence
on the behavior of the trsajectorsy. They only limit the domain of flight
either in the physical plane or in the control plane.
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Chapter 18

Lateral Maneuvers

18-1. INTRODUCTION

One interesting aspect of lifting entry is that the vehicle can rotate
the lift force out of the vertical plane, thus creating a lateral component
which can be used to change the heading., In this final chapter we shall
consider such lateral maneuver. Of particular interest is the maximum
lateral range which can be attained from a prescribed entry condition.
Further consideration will be given to a maximum area on the surface
of the planet which can be reached by the entry vehicle.

For convenience, we reproduce the dimensionless equations of
motion for entry into a nonrotating spherical atmosphere derived in
Chapter 16, using a parabolic drag polar. We have

dZ

Fri Br Z tan vy

dv  _ \VBr Zv (1+)\2) (2-v) tan
ds - E* cosy - lesvitany

dy _ Aprz [)\cos,+_22ﬂ_(1_1:|

=)
ds cosy v
Vﬁr Z

dae cos

ds cos ¢

L S

as sin

%i’ _ ABrzsing cos ¢ tan & (18-1)
cos Yy

where by definition

345
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E
, p SCL B
2m B

2
\
v = —g'? (18-2)

The product pr characterizing the atmosphere will be considered as
constant with the value fr = 900 for the Earth. The controls are the
bank angle o and the rescaled lift coefficient

C
X = E:—L (18-3)
L
where C_* is the lift coefficient corresponding to maximum 1ift-

to-drag ratio E* . For a hypervelocity entry vehicle E* is in the
range 1-3 . The independent variable s is the dimensionless arc
length

t oy
s = f — cosydt . (18-4)

18-2. EQUILIBRIUM GLIDE CONDITION

For entry from low altitude orbit, the initial speed is nearly
circular. Furthermore, for moderate lift, the flight path angle can be
kept small and nearly constant. This is the condition of equilibrium
glide discussed previously. Hence, we shall take y ® 0 and have
the reduced equations

av _ przvan’

ds ~ T E*

i@_ _ cos

ds = cos ¢

dﬁ = i

P sin

:is = l\/ﬁr Z )\ sing - cos { tan¢ (18-5)

We recall that 6 is the longitudinal range, ¢ 1is the lateral range, or
latitude if the reference plane is taken as the equatorial plane. The
angle | is the heading angle measured from the reference plane. The
equation for y becomes the equilibrium equation

Ncose = =¥ (18-6)

Ver z v
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This equation shows that the vertical component of the lift force is used
to balance the combined gravity and centrifugal force. The equation is
used to evaluate the "altitude" Z in terms of the kinetic energy v
Upon substituting into Eqs. (18-5), we have

dv (1-v)(1 +)\2)

ds =~ T E*\cosc

de  _ cos

ds cos &

g

3s sin

dy (1-v)

s - v tano - cos y tané (18-7)

18-3. MAXIMUM LATERAL RANGE

The equations (18-7) constitute the state equations for the four
main variables v, 0 , ¢4 and ¢ . For equilibrium glide from circu-
lar speed we have at the initial time

v =1, 8 =09 =0, ¢ =0 (18-8)

It is proposed to use lift and bank control, in the variables N\ and o
to achieve a maximum lateral range when the speed has reduced to a
final low speed v, = 0. A full treatment will require the tool of
modern optimum control theory and we refer to Ref. 1. A sub-optimum
control law will be discussed in this chapter.

First, from the equation for v , it is seen that the speed
decreases continuously. In atmospheric maneuvers at high speed, the
kinetic energy is an important element since it can be used for an ex-
change with the potential energy, hence gaining the necessary altitude
to extend both longitudinal and lateral ranges. Then, for a given bank
angle, to minimize the decrease in the speed, we minimize the right-
hand side of the equation for v , the first of Eqs. (18-7), with respect
to the lift control X . This gives

o= 1 (18-9)

The optimal glide should be performed at maximum lift-to-drag ratio.
To achieve a maximum lateral range, the bank angle must be
modulated in an optimum manner. In general, for maximum lateral
range the optimum bank angle varies as a function of the time from a
maximum permissible value, ¢ = , at the initial time, to the
value zero at the final time (Refs., 1 ern *We shall assume that there
exists a certain average constant value for the bank angle providing
comparable performance. Furthermore, in order to obtain an analytic
integration of the equations of motion, we shall assume that both the
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changes in the heading ¢ , and latitude ¢ are small so that
tan¢g = ¢ , cosdb =1 , siny = ¢, cosy = 1 (18-10)

With these simplifications and using X\ =1 in Eqgs. (18-7) we have

dv  _ 2(1-v)
ds " Etcosc

2oy

ds

4 . U-v) .

Is - tan o ¢ (18-11)
We note that, for small ¢ and ¢ , d8/ds= 1, and the variable

s becomes the range angle ©
For constant bank angle, the first of the Eqs. (18-11) can be
integrated immediately. We have

v o= 1 -(1-v) exp [Eﬁ—] (18-12)

From this formula, it is seen that we must take v # 1 to avoid the
indetermination. For all practical purpose, we cantake v_= O, 995 .
For entry from circular speed, this is the point where the a?mosphere
has become sensible such that lifting force is effective. The expres-
sion (18-12) can be substituted into the equation for ¢ and this equa-
tion and the equation for ¢ can be integrated as has been done in
Ref. 2. Here, we shall follow Ref. 3 and rewrite the two equations
using the speed v as independent variable. Then, we have the equa-
tions

do E* cos o "

dv. ~ 7 2(1-v)

dy - . E* sing¢ E* coso

dv 2v * 2(1-v) ¢ (18-13)

By taking the derivative of the first equation, using the second equation
of this system, we have a linear second-order differential equation
for the lateral range

dzg 1 dé E*Z coszv o = E*2 sing cosa (18-14)
T Q- 2 ST av(i-v) -
dvz (1-v) dv 4(1-v) 4v(l-v)

By the change of independent variable
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l-v=r (18-15)

and dependent variable

s = ¢ (18-16)

2 .
E* sing coso

we put the equation in the simpler form

d E*% - 1
d Zslz + 1 ___d¢ + ____...CZOS CAN P (18-17)
dr T T 4T T

The homogeneous equation

2— — 2
d 1 d E* cos o —

92 + 2 d.t_ T (18-18)
dr 4T

is an Euler equation and the change of variable

r o= et (18-19)

transforms it into a linear equation with constant coefficient

2— 2 2
E:{: —
d¢ 2T T =0 (18-20)

dp

Hence, we have the general solution of the homogeneous equation

—_ 3k Ex
¢ = < cos [E—;os—o; log-r] + <, sin [%{ log 'r]
(18-21)
where ¢ and c are two arbitrary constants of integration. To
obtain a particular solution of Eq. (18-17), since by the definition
(18-15) , T< 1 , we can use binomial expansion to write the equa-
tion as
2" - 2 - 2. 3
47 6 +47H + E* coszo-¢ =T+7T +T +... (18-22)

where the prime denotes derivative with respect to T . A particular
solution to this equation can be constructed in the form of a power
series

3 - a T (18-23)
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By substituting this series into Eq. (18-22) and equating coefficients
of like powers in T , it is found that

a = 1 (18-24)

2 2 2
Ex cos o+ 4n

In summary, the solution for the latitude is

¢ E* coso . E* cosa
——————— = ¢, cOS [——-— log-r:[ + ¢, sin [————— log T}
*x2 . 1 2 2 2
E sing cos &
[os}
1 n
g Z (E cosc-)Z 2 (18-25)
+ n
n=1
1
By using the initial condition, Tv=7 , ¢ =0, ¢é = 0 we

can evaluate the constants of integrafgon c. © and <, and obtain the
solution for ¢ as function of the kinetic energy v

el
n
¢ .1 T
3 =
E* sino coseo 4 n=1 (E* cosa >2 2
+ n
2
n
1§ os [ELE050 10 T ]
4 z : 2 ¢ 2 &7
<E coso-) 2 o
n= +n
2
n
. [E* coso _'r]
® 2E* coso E (E coso- 2 sin 2 &7
+n o
(18-26)
This formula is to be used for entry at any arbitrary speed, T =1-v
provided that the equilibrium glide condition is realized. For (e)ntry
from near circular speed T = 0 , and we can neglect the contri-
bution of the harmonic terms., Furthermore, for low final speed
v, = 0, 7. = 1l-v_, = 1 , we have the expression for the final
range as given in Ref. f2
w
E"-‘Z . 1
6 = 4~ sinc cosc E > (18-27)
2 Ex
n n + 7 cos o
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We can write the summation as

B 2
n=1 n + 7 cos o n=1
©
2 2
- E;—%giii 2 12 (18-28)
2 [ 2 Ex 2 ]
n=1 n n + 2 cos ¢
Noticing that the value of the first sum is 2/ 6 , we have the final
formula
22 ®
489 = sin2e¢ I:l 3E* cos o Z: 1 }
2 2 - 2 2
Ex“q 2w 2r 2 Ex
n=1 n[n+Tcos o']

(18-29)

Neglecting the summation, an assumption which is valid for small

values of E* , we have the formula as given by Eggers (Ref. 4)
2 2
_ Exq .
¢ = 15 sin 2¢ (18-30)

From this, it is seen that the best value for the bank angle is

e = 45° (18-31)

Figure 18-1, presents the plot of Eq. (18-30), and Eq. (18-29) using
two terms of the series with ¢ = 45° , Curve (a) is Eggers solution
and curve (b) is the present solution with two terms. On the figure
we also plot in curve (c) the numerical solution of system (18-7) using
o = 45° . In this integration, whenever the heading angle reaches 90°
we change the bank angle ¢ into zero .. Finally curve (d) is taken
from Ref. 1. It shows the true maximum lateral range. It is obtained
by modulating the bank angle according to the law

(1-v) cos ¢ sin (ef-e)

v cos(Of-G)sin¢-cos¢ sind sin(6

tan o =

Z9)

£ (1s-32)
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where the constant 6, is the final longitudinal range, selected such

that we have perfect matching when v = ve = 0.001.

90°F Pmax .
60} g
30 r

0 | 2 3 E’:

Fig. 18-1. Lateral range versus E* .

It is obvious that optimum modulated bank angle gives better
lateral range than constant bank angle[ curve (d) as compared to curve
(c)] . It must be emphasized here that solutions (a) and (b) are only
approximate analytic solutions. Nevertheless, since the solution (b),
as given by Eq. (18-29), gives a good estimate of the lateral range,
it can be used to find an improved optimum constant bank angle to
maximized the lateral range. A numerical study in Ref. 5 has shown
that approximate solution agrees with numerical solution for values of
maximum lift-to-drag ratio up to 1.5. We consider the function on the
right-hand side of Eq. (18-29) using one term of the series

2
f(o0) = sin 20 [1 - %—"—— } (18-33)
l+—:';—cos o
where
2
3E*
€ = (18-34)
2
2w
This function is maximized when df/dec = 0 . Carrying out the
derivation, we have
2 2
£l 2
cos2¢ = S oL [cos 200 (1 + ) coszv)-Zsin O':I

( o 2 )2 (18-35)
1+ T cos ¢«
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Let
@ = cos ¢ (18-36)
We write the equation as
2 2
o1 € o [ Ex Ex° 2 ]
a = - - _—“_———;:2 5 3.(4- 1 ) o - 5@ (18-37)
2(1+ 1 - @)

For low maximum lift-to-drag ratio, € is small, and to the zero order,

€ =0 , we have the solution

For higher order, Eq. (18-37) is of the form

a = pte gla) (18-38)
and by Lagrange's expansion, we have the solution
oo} n-1
en (d ) n
a = p + E; o \ap [ g(p] (18-39)
n=1
To the order of € 3 , we have the solution
2
2 4
cos’s =%- 16 =5 - El = (2+E=:=+§12E=:=)
4(1+—8- ExT) 16(1+ = E*)
3 2 19 4 1 6 1 8
& (4t2Ex 4 L BT — Ex 4+ Ex°)
64(1+l E*Z)S 16 16 1024
8 (18-40)

This expression shows that the optimum constant bank angle is greater
than 45° . This explicit solution is accurate for values of E* up to
3. For large values of E* , we can solve the exact equation (18-37)

which is a cubic equation in o written as

4 2
Ex* 6 3, .2 Ex 6 2
=0 -=5)e + B - S -5 ) e

™ ™

1 >‘:2 2 :{:2 _6_ -
+ [Z(8+E‘ ) - SE (1-“2) ]oz-l = 0 (18-41)
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Another approximate solution to this equation can be obtained by putting

¢ = + 6 , 6&<< 1 (18-42)

T
4

Then, by series expansions and to the order of § 2 included

2

1
cos g = L(1-6-—2-6)
Va2
1
a = 2(1-25)
1 2
012 = — (1-485 +46)
4
a3 = %(1-66+1262) (18-43)

Upon substituting into Eq. (18-41), we have a quadratic equation in §

1
62-2(1+a—2)6 +—-—ti—-2— = 0 (18-44)
E* (8+E*")
where
a = 8172
- 2
™ -6
b = 6 (18-45)
2
™ -6
Upon solving, we have the solution
1 b
a=—§(1+iz) 1- /1- 264 — (18-46)
Ex (8+E* )(1+ - )
=

This solution is identical to the approximate solution obtained by
Shkadov in Ref. 2. He used the Eq. (18-42) to expand the function f(o )
as given by Eq. (18-33) in series in & before maximizing.

The exact solution for the optimum bank angle obtained by
solving the cubic equation (18-41) is plotted in Fig. 18-2 versus the
maximum lift-to-drag ratio. In the range of E* considered,

E* < 3.5, both the explicit solutions (18-40) and (18-46) are in
excellent agreement with the exact solution.
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55°F O opt

45 1 1 1 1 1 |
0] | 2 3

m
*I—

Fig, 18-2. Optimum bank angle as function of
maximum lift-to-drag ratio.

18-4. FOOTPRINT OF REENTRY VEHICLE

The footprint of a reentry vehicle is the maximum area on the
surface of the Earth the vehicle can reach in gliding flight. Using the
equatorial plane as the initial plane of motion, if the point of departure
is not specified, then the maximum area reachable is obviously a zone
between the latitudes -¢ and ¢ where ¢ is the maxi-

ax . ma . max s ps
mum lateral range. The construction of the footprint ffom a specified
point of departure is a difficult problem. Fig. 18-3 from Ref. 1 plots
the footprint as function of the maximum lift-to-drag ratio.

81 ¢,rad. E%2.0

Fig. 18-3. Footprint for different values of E* when
the point of departure is specified.
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For a given value of E* , consider a footprint in Fig. 18-3. The
problem consists of maximizing the lateral range for each prescribed
final value of the longitudinal range. Within the assumption of equilib-
rium glide, the optimum control law for the modulation of the bank
angle is given by Eq. (18-32). If the lateral range is small, we can

use the simplification sin¢ = 0 , cos¢ = 1 to have the approxi-
mate law
tan(0 _.-96)
(1-v) £
= -4
tan g ” Sin v (18-47)

This is the approximate law obtained by Fave (Ref. 6). Using Fave's
simplification in Eqs. (18-7) with v as independent variable, and
A =1 for flight at maximum lift-to-drag ratio, we have

dae E* cos ¢ cosy
dv 2(1 - v}

dé E* coso sinsf

dv 2(1 -v)

dy E*x sing

= - . /= -48

dv 2v (18 )
Then, for each estimated value 6, , the control law (18-47) is used

for the integration of the equations of motion (18-48) until the final
value v, = 0.001. The final value of 6 obtained must equal the
initial guessed value. This leads to the final bank angle ¢ = 0.
Fave's analysis is in good agreement with pure numerical analysis for
low values of the maximum lift-to-drag ratio.
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