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I. INTRODUCTION

In this volume, Sachs [I] has demonstrated, using irreducible representations of
the Einstein group, that the electromagnetic field can propagate only in curved
spacetime, implying that the electromagnetic field tensor can exist only when
there is a nonvanishing curvature tensor K,,“.  Using this theory, Sachs has shown
that the structure of electromagnetic theory is in general non-Abelian. This is the
same overall conclusion as reached in O(3) electrodynamics [2], developed in the
second chapter of this volume. In this short review, the features common to Sachs
and O(3) electrodynamics are developed. The B”’ field of O(3) electrodynamics
is extracted from the quatemion-valued LP”’ equivalent in the Sachs theory; the
most general form of the vector potential is considered in both theories, the
covariant derivatives are compared in both theories, and the possibility of
extracting energy from the vacuum is considered in both theories.
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II. THE NON-ABELIAN STRUCTURE OF THE FIELD TENSOR

The non-Abelian component of the field tensor is defined through a metric qp  that
is a set of four quatemion-valued components of a 4-vector, a 4-vector each of
whose components can be represented by a 2 x 2 matrix. In condensed notation:

qcL = (qpo,q~11q)L2~qp3) (1)

and the total number of components of qp is 16. The covariant and second
covariant derivatives of qp vanish [I] and the line element is given by

ds = q’L(x)dxp (2)

which, in special relativity (flat spacetime), reduces to

ds  = o”dx, (3)

where ~9’  is a 4-vector made up of Pauli matrices:

In the limit of special relativity

where * denotes reversing the time component of the quaternion-valued qp. The
most general form of the non-Abelian part of the electromagnetic field tensor in
conformally curved spacetime is 1

f-p’” = !.QR(q!Jq”  - q”qp*) (6)

To consider magnetic flux density components of Fp”,  Q must have the units of
weber and R, the scalar curvature, must have units of inverse square meters. In
the flat spacetime limit, R = 0, so it is clear that the non-Abelian part of the field
tensor, Eq. (6), vanishes in special relativity. The complete field tensor Fpv
vanishes [l] in flat spacetime because the curvature tensor vanishes. These
considerations refute the Maxwell-Heaviside theory, which is developed in flat
spacetime, and show that O(3) electrodynamics is a theory of conformally curved
spacetime. Most generally, the Sachs theory is a closed field theory that, in
principle, unifies ail four lields:  gravitational, electromagnetic, weak, and strong.
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There exist generally covariant four-valued 4-vectors that are components of
9'1,  and these can be used to construct the basic structure of O(3) electro-
dynamics in terms of single-valued components of the quaternion-valued metric
qp. Therefore, the Sachs theory can be reduced to O(3) electrodynamics, which
is a Yang-Mills theory [3,4].  The empirical evidence available for both the
Sachs and O(3) theories is summarized in this review, and discussed more
extensively in the individual reviews by Sachs [ 11 and Evans [2]. In other words,
empirical evidence is given of the instances where the Maxwell-Heaviside
theory fails and where the Sachs and O(3) electrodynamics succeed in descri-
bing empirical data from various sources. The fusion of the O(3) and Sachs
theories provides proof that the 8(3) field [2]  is a physical field of curved
spacetime, which vanishes in flat spacetime (Maxwell-Heaviside theory [2]).

In Eq. (5), the product qFq”* is quaternion-valued and noncommutative, but
not antisymmetric in the indices u and v. The BC3’  field and structure of O(3)
electrodynamics must be found from a special case of Eq. (5) showing that O(3)
electrodynamics is a Yang-Mills theory and also a theory of general relativity
[l]. The important conclusion reached is that Yang-Mills theories can be
derived from the irreducible representations of the Einstein group. This result is
consistent with the fact that all theories of physics must be theories of general
relativity in principle. From Eq. (1) it is possible to write four-valued, generally
covariant, components such as

qx = (4;74:7q:Tqi) (7)

which, in the limit of special relativity, reduces to

Similarly, one can write

qy = (q;,q:>q2v>q:)-  (0707aY,O) (9)

and use the property

qxq;-qvq;  --+DXGY  - CY(JX (10)

in the limit of special relativity. The only possibility from Eqs. (7) and (9) is that

I 2*
4X9Y

- q’,q:*  = 2iqs

1
oxcry - GYOX  = 2io2

(11)
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where qi  is single valued. In a 2 x 2 matrix representation, this is

Similarly

42;: [ii:  -;4:] --toy=  [; J

4:= [ga;  -“v:]  dcrz= [:,  -:I
(13)

(14)

Therefore, there exist cyclic relations with O(3) symmetry

1 2t
4X4Y

- qtqk  = 2iqi
2 3*

qvqz
- qiq2;  = 2iql (15)

3 I *
qzqx

- qiqg  = 2iqc

and the structure of O(3) electrodynamics [2] begins to emerge. If the space basis
is represented by the complex circular ((l),(2),(3))  then Eqs. (15) become

qwq(4*
x Y -qY  9x

(2) (I)*  = 2iq~)

(2)  (3)*
4Y qz

_ qg)qr)*  = 2iq$) (16)

qpqp*
- 4 x  qz

(I) (3)*  = 2iqt2)

These are cyclic relations between single-valued metric field components in the
non-Abelian part [Eq. (6)] of the quaternion-valued P”. Equation (16) can be put
in vector form

q(‘)  x q C2) = iqC3)*

q(2)  x q C3) = iq(‘)* (17)
q(3)  x q Cl) = iqC2)*

where the asterisk denotes ordinary complex conjugation in Eq. (17) and
quaternion conjugation in Eq. (16).

Equation (17) contains vector-valued metric fields in the complex basis
((l),(2),(3)) [2]. Specifically, in O(3) electrodynamics, which is based on the
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existence of two circularly polarized components of electromagnetic radiation
PI

1
q(l)  = z (ii + j) exp (i+)

qc2)  = &(-ii + j) exp (i+)

(18)

(19)

giving

a n d

q(3)*  = k (20)

B(3)  = A QRq(3)
8

(21)

Therefore, the BC3’  field [2]  is proved from a particular choice of metric using the
irreducible representations of the Einstein group [I].  It can be seen from Eq. (21)
that the BC3’  field is the vector-valued metric field qc3’  within a factor $  QR. This
result proves that BC3’ vanishes in flat spacetime, because R = 0 in flat spacetime.
If we write

then Eq. (17) becomes the B cyclic theorem [2] of O(3) electrodynamics:

B(l) x  B(2)  = #)&3)*

. .

(22)

(23)

Since O(3) electrodynamics is a Yang-Mills theory [3,4], we can write

q = q(‘)i + q(2)j  + q(3)k (24)

from which it follows [5]  that

fY(D,q) = 0; D,q  = 0 (25)

Thus the first and second covariant derivatives vanish [ 11.
The Sachs theory [I] is able to describe parity violation and spin-spin

interactions from first principles [6]  on a classical level; it can also explain
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several problems of neutrino physics, and the Pauli exclusion principle can be
derived from it classically. The quaternion form of the theory [1], which is the
basis of this review chapter, predicts small but nonzero masses for the neutrino
and photon; describes the Planck  spectrum of blackbody radiation classically;
describes the Lamb shifts in the hydrogen atom with precision equivalent to
quantum electrodynamics, but without renormalization of infinities; proposes
grounds for charge quantization; predicts the lifetime of the muon state;
describes electron-muon mass splitting; predicts physical longitudinal and time-
like photons and fields; and has bult-in P, C, and T violation.

To this list can now be added the advantages of O(3) over U(1) electro-
dynamics, advantages that are described in the review by Evans in Part 2 of this
three-volume set and by Evans, Jeffers, and Vigier in Part 3. In summary, by
interlocking the Sachs and O(3) theories, it becomes apparent that the advan-
tages of O(3) over U(1) are symptomatic of the fact that the electromagnetic
field vanishes in flat spacetime (special relativity), if the irreducible represen-
tations of the Einstein group are used.

III. THE COVARIANT DERIVATIVE

The covariant derivative in the Sachs theory [1] is defined by the spin-affine
connection:

D p  = 8’  + W’ (26)

where

(27)

and where I&  is the Christoffel symbol. The latter can be defined through the
reducible metrics g,,  as follows [ 11:

In O(3) electrodynamics, the covariant derivative on the classical level is
defined by

D,  = a, - igAp  = a, - igM”AE (29)

where M”  are rotation generators [2]  of the O(3) group, and where Q is an internal
index of Yang-Mills theory. The complete vector potential in O(3) electro-
dynamics is defined by

A = A(l)e(2)  + ,4(2)e(‘)  + A(3443) (30)



THEORIES OF ELECTRODYNAMICS 475

where e(t), e(*),  ec3)  are unit vectors of the complex circular basis ((l),(2),(3)) [2].
If we restrict our discussion to plane waves, then the vector potential is

A(‘)  = ‘3 (ii i-j) exp (i+)

where + is the electromagnetic phase. Therefore, there are O(3) electrodynamics
components such as

A(‘)  = ----X
iA  ci+j

Jz
; AI-L)  -‘J ,(i+)

In order to reduce the covariant derivative in the Sachs theory to the O(3)
covariant derivative, the following classical equation must hold:

This equation can be examined component by component, giving relations such
as

(1)  _-&A, - -; (Dx&‘)Al” (34)

where we have used

&’ = +#

Using [2]
K

g=A(o)

we obtain

iKYX(‘1  = ; (Dxst”)& = - $ (Dx&))&)

so that the wavenumber K is defined by

K = -$#

Therefore, we can write

DXYV(1) = ~,~l(l)  = alyl(l)  + r:,$(‘)

(35)

(36)

(37)

(38)

(39)
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and the wavenumber becomes the following sum:

K  =  -; (r;,ql(l)  +  r;#))

Using the identities

l(l) = q(l) = I,4
9 x

Jz

9
2(l) = qp = I,;+

Jz

the wavenumber becomes

1 il?’

(
L,i++ r:lei+

K=-4  Jz Jz >

(40)

(41)

(42)

(43)

Introducing the definition (28) of the Christoffel symbol, it is possible to write

Cl  =  ;P(%al  +  ~1m  - hg11)

1
= g3a,g1,  +. . .

so that
i

K=-8d2
-g13azg,,ei+  + . . .

This equation is satisfied by the following choice of metric:

g,,  = 1; g’3 zz -S&  e-‘6

Similarly

Cl = i$Yalgh, + algzA  - akg12)

= &13azg12  + . .

so that the wavenumber can be expressed as

K  =  --&13gl#i+

(44)

(45)

(46)

(47)

(48)
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an equation that is satisfied by the following choice of metric:

g,* = ;; $3 = -gJz  e-i4

Therefore, it is always possible to write the covariant derivative of the Sachs
theory as an O(3) covariant derivative of O(3) electrodynamics. Both types of
covariant derivative are considered on the classical level.

IV. ENERGY FROM THE VACUUM

The energy density in curved spacetime is given in the Sachs theory by the
quaternion-valued expression

where AM is the quaternion-valued vector potential and J;  is the q u a t e r n i o n -
valued 4-current as given by Sachs [I]. Equation (50) is an elegant and deeply
meaningful expression of the fact that electromagnetic energy density is
available from curved spacetime under all conditions; the distinction between
field and matter is lost, and the concepts of “point charge” and “point mass” are
not present in the theory, as these two latter concepts represent infinities of the
closed-field theory developed by Sachs [l]  from the irreducible representations
of the Einstein group. The accuracy of expression (50) has been tested [l] to the
precision of the Lamb shifts in the hydrogen atom without using renormalization
of infinities. The Lamb shifts can therefore be viewed as the results of
electromagnetic energy from curved spacetime.

Equation (50) is geometrically a scalar and algebraically quaternion-valued
equation [l], and it is convenient to develop it using the identity [l]

quqK*  +qcq; = 20°F; (51)

with the indices defined as

y=lc=p (52)

to obtain

qpq; = o& (53)

Using summation over repeated indices on the right-hand side, we obtain the
following result:

qpq; = 400 (54)
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In the limit of flat spacetime

where the right-hand side is again a scalar invariant geometrically and a
quaternion algebraically.

Therefore, the energy density (50) assumes the simple form

ApJJ;  = 4A&o. (56)

Aa  and J;  are magnitudes of At’  and 1;. In flat spacetime, this electromagnetic
energy density vanishes because the curvature tensor vanishes. Therefore, in the
Maxwell-Heaviside theory, there is no electromagnetic energy density from the
vacuum and the field does not propagate through flat spacetime (the vacuum of
the Maxwell-Heaviside theory) because of the absence of curvature. The BC3’
field depends on the scalar curvature R in Eq. (21), and so the BC3’  field and O(3)
electrodynamics are theories of conformally curved spacetime. To maximize the
electromagnetic energy density, the curvature has to be maximized, and the
maximization of curvature may be the result of the presence of a gravitating
object. In general, wherever there is curvature, there is electromagnetic energy
that may be extracted from curved spacetime using a suitable device such as a
dipole [7].

Therefore, we conclude that electromagnetic energy density exists in curved
spacetime under all conditions, and devices can be constructed [S] to extract this
energy density.

The quaternion-valued vector potential Al’  and the 4-current J; both depend
directly on the curvature tensor. The electromagnetic field tensor in the Sachs
theory has the form

F,v = a,A: - &A; + $QR(q,q: - es;, (57)

where the quaternion-valued vector potential is defined as

A, = $9; (Kpkq*  + $K$)  drp

The most general form of the vector potential is therefore given by Eq. (58), and
if there is no curvature, the vector potential vanishes.

Similarly, the 4-current .I; depends directly on the curvature tensor lcpk  [I],
and there can exist no 4-current in the Heaviside-Maxwell theory, so the
4-current cannot act as the source of the field. In the closed-field theory,
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represented by the irreducible representations of the Einstein group [ 11, charge
and current are manifestations of curved spacetime, and can be regarded as the
results of the field. This is the viewpoint of Faraday and Maxwell rather than
that of Lorentz. It follows that there can exist a vacuum 4-current in general
relativity, and the implications of such a current are developed by Lehnert [9].
The vacuum 4-current also exists in O(3) electrodynamics, as demonstrated by
Evans and others [2,9]. The concept of vacuum 4-current  is missing from the flat
spacetime of Maxwell-Heaviside theory.

In curved spacetime, both the electromagnetic and curvature 4-tensors may
have longitudinal as well as transverse components in general and the
electromagnetic field is always accompanied by a source, the 4-current J ; . In
the Maxwell-Heaviside theory, the field is assumed incorrectly to propagate
through flat spacetime without a source, a violation of both causality and
general relativity. As shown in several reviews in this three-volume set,
Maxwell-Heaviside theory and its quantized equivalent appear to work well
only under certain incorrect assumptions, and quantum electrodynamics is not a
physical theory because, as pointed out by Dirac and many others, it contains
infinities. Sachs [ 1] has also considered and removed the infinite self-energy of
the electron by a consideration of general relativity.

The O(3) electrodynamics developed by Evans [2], and its homomorph, the
SU(2) electrodynamics of Barrett [lo],  are substructures of the Sachs theory
dependent on a particular choice of metric. Both O(3) and SU(2) electro-
dynamics are Yang-Mills structures with a Wu-Yang phase factor, as discussed
by Evans and others [2,9]. Using the choice of metric (17), the electromagnetic
energy density present in the O(3) curved spacetime is given by the product

End  =A.j

where the vector potential and 4-current are defined in the ((l),(2),(3)) basis in
terms of the unit vectors similar to those in Eq. (2) and as described elsewhere in
this three-volume set [2]. The extraction of electromagnetic energy density from
the vacuum is also possible in the Lehnert electrodynamics as described in his
review in the first chapter of this volume (i.e., here, in Part 2 of this three-volue
set). The only case where extraction of such energy is not possible is that of the
Maxwell-Heaviside theory, where there is no curvature.

The most obvious manifestation of energy from curved spacetime is
gravitation, and the unification of gravitation and electromagnetism by Sachs
[l]  shows that electromagnetic energy emanates under all circumstances from
spacetime curvature. This principle has been tested to the precision of the Lamb
shifts of H as discussed already. This conclusion means that the electromagnetic
field does not emanate from a “point charge,”  which in general relativity can be
present only when the curvature becomes infinite. The concept of “point
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charge” is therefore unphysical, and this is the basic reason for the infinite
electron self-energy in the Maxwell-Heaviside theory and the infinities of
quantum electrodynamics, a theory rejected by Einstein, Dirac, and several
other leading scientists of the twentieth century. The electromagnetic energy
density inherent in curved spacetime depends on curvature as represented by the
curvature tensor discussed in the next section. In the Einstein field equation of
general relativity, which comes from the reducible representations of the
Einstein group [l], the canonical energy momentum tensor of gravitation
depends on the Einstein curvature tensor.

Sachs [l] has succeeded in unifying the gravitational and electromagnetic
fields so that both share attributes. For example, both fields are non-Abelian
under all conditions, and both fields are their own sources. The gravitational
field carries energy that is equivalent to mass [ 1 I], and so is itself a source of
gravitation. Similarly, the electromagnetic field carries energy that is equivalent
to a 4-current,  and so is itself a source of electromagnetism. These concepts are
missing entirely from the Maxwell-Heaviside theory, but are present in O(3)
electrodynamics, as discussed elsewhere 12,101.  The Sachs theory cannot be
reduced to the Maxwell-Heaviside theory, but can be reduced, as discussed
already, to O(3) electrodynamics. The  fundamental reason for this is that special
relativity is an asymptotic limit of general relativity, but one that is never
reached precisely [l].  So the Poincare  group of special relativity is not a
subgroup of the Einstein group of general relativity.

In standard Maxwell-Heaviside theory, the electromagnetic field is thought
of as propagating in a source-free region in flat spacetime where there is no
curvature. If, however, there is no curvature, the electromagnetic field vanishes
in the Sachs theory 111, which is a direct result of using irreducible
representations of the Einstein group of standard general relativity. The
empirical evidence for the Sachs theory has been reviewed in this chapter
already, and this empirical evidence refutes the Maxwell-Heaviside theory. In
general relativity [1], if there is mass or charge anywhere in the universe, then
the whole of spacetime is curved, and all the laws of physics must be written in
curved spacetime, including, of course, the laws of electrodynamics. Seen in
this light, the O(3) electrodynamics of Evans [2] and the homomorphic SU(2)
electrodynamics of Barrett [12] are written correctly in conformally curved
spacetime, and are particular cases of Einstein’s general relativity as developed
by Sachs [ 11. Flat spacetime as the description of the vacuum is valid only when
the whole universe is empty.

From everyday experience, it is possible to extract gravitational energy from
curved spacetime on the surface of the earth. The extraction of electromagnetic
energy must be possible if the extraction of gravitational energy is possible, and
the electromagnetic field influences the gravitational field and vice versa. The
field equations derived by Sachs [ 1] for electromagnetism are complicated, but
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can be reduced to the equations of O(3) electrodynamics by a given choice of
metric. The literature discusses the various ways of solving the equations of
O(3) electrodynamics [2,10],  analytically, or using computation. In principle,
the Sachs equations are solvable by computation for any given experiment, and
such a solution would show the reciprocal influence between the electro-
magnetic and gravitational fields, leading to significant findings.

The ability of extracting electromagnetic energy density from the vacuum
depends on the use of a device such as a dipole, and this dipole can be as simple

as battery terminals, as discussed by Bearden [13]  The principle involved in
this device is that electromagnetic energy density Ap  ./; exists in general
relativity under all circumstances, and electromagnetic 4-currents and 4-
potentials emanate form spacetime curvature. Therefore, the current in the
battery is not driven by the positive and negative terminals, but is a
manifestation of energy from curved spacetime, just as the hydrogen Lamb
shift is another such manifestation. A battery runs down because the chemical
energy needed to form the dipole dissipates.

In principle, therefore, the electromagnetic energy density in Eq. (50) is
always available whenever there is spacetime curvature; in other words, it is
always available because there is always spacetime curvature.

V. THE CURVATURE TENSOR

The curvature tensor is defined in terms of covariant derivatives of the spin-
affine connections R,, and according to Section (III), has its equivalent in O(3)
electrodynamics.

The curvature tensor is

KpA.  = -Qp = Qp:A  - a.:,
=aAo2,  -a,n,+~~~n,-R,R,,

and obeys the Jacobi identity

which can be written as

where
D,,iP”  z 0

(6’3)

(61)

(62)

(63)

is the dual of ~~~~
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Equation (4) has the form of the homogeneous field equation of O(3)
electrodynamics [2,10].  If we now define

then

DpKph  =  (a,  +  fl,)((@  +  fiA)fip  - (ap  +  flp)fih)

ELk#O (65)

has the form of the inhomogeneous field equation of O(3) electrodynamics with a
nonzero source term L k in curved spacetime.

The curvature tensor can be written as a commutator of covariant derivatives

and is the result of a closed loop, or holonomy, in curved spacetime. This is the
way in which a curvature tensor is also derived in general gauge field theory on
the classical level [l 11. If a field 4 is introduced such that

44x) = W(x) (67)

under a gauge transformation, it follows that

and that

The expression equivalent to Eq. (68) in general gauge field theory is [ 111

2%)  = igM“A”,dxh) (70)

where M”  are group rotation generators and A; are vector potential components
with internal group indices a. Under a gauge transformation

(a,  f $)O’  = w, + %I)4 (71)

leading to the expression

f2;  = mt,P  - (a,s)P (72)
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The equivalent equation in general gauge field theory is

A;  =SA,S-' -$,S)S-' (73)

Equations (72) and (73) show that the spin-affine connection R, and vector
potential A, behave similarly under a gauge transformation. The relation
between covariant derivatives has been developed in Section III.

VI. -GENERALLY COVARIANT 4-VECTORS

The most fundamental feature of O(3) electrodynamics is the existence of the
,BC3’  field [2], which is longitudinally directed along the axis of propagation, and
which is defined in terms of the vector potential plane wave:

A(‘)  = A(2)* (74)

From the irreducible representations of the Einstein group, there exist 4-vectors
that are generally covariant and take the following form:

BK  = (Bjp’,  B$),  By,  @)1

B ;  = (By,  B’:‘,  sp,  Bf’) (75)

BP  = (B~',B$'&',B;')3

All these components exist in general, and the BC3’  field can be identified as the
BL3)  component. In O(3) electrodynamics, these 4-vectors reduce to

By = (O,$),BjZ),O)

B; = (O,B(:),$),O) (76)

B;  = (B~),O,O,@)

so it can be concluded that O(3) electrodynamics is developed in a curved
spacetime that is defined in such a way that

Bc3)  = -i@(l)  x A(‘) (77)

In O(3) electrodynamics, there exist the cyclic relations (23), and we have seen
that in general relativity, this cyclic relation can be derived using a particular
choice of metric. In the special case of O(3) electrodynamics, the vector

BP = (By),@,By,By)
3 (78)
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reduces to
B; = (BF’,O,O,@)

Similarly, there exists, in general, the 4-vector

(79)

A ;  = (AF),A$),A~),A~)) VW

which reduces in O(3) electrodynamics to

A; = (AT),O,O,Ag)) (81)

and that corresponds to generally covariant energy-momentum.
The curved spacetime 4-current is also generally covariant and has

components such as
jy  = (jf’, jf’, jy,  jf’)

(0)  .(I)  .(a  .(3)
i;=cjy  7/Y ,lY ,JY ) (84
Jo = (Jo',  Jo',  Jo',  j$')

which, in O(3) electrodynamics, reduce to

jy = (0, jt', jf',O)

jg = (0, jv', jr’,O) (83)

jy = (j!j', O,O,  jy’)

The existence of a vacuum current such as this is indicated in O(3) electro-
dynamics by its inhomogeneous field equation

D,G”” = J” (84)

which is a Yang-Mills type of equation [2]. The concept of vacuum current was
also introduced by Lehnert and is discussed in his review (first chapter in this
volume; i.e., in Part 2).

The components of the antisymmetric field tensor in the Sachs theory [ 1] are

(85)
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each of which is a 4-vector that is generally covariant. For example

BgB,z  = invariant w

So, in general, in curved spacetime, there exist longitudinal and transverse
components under all conditions. In O(3) electrodynamics, the upper indices
((l),(2),(3)) are defined by the unit vectors

e(l)  = l&i - ij)

e(2) = 5 (i + ij)

e(3) = k

which form the cyclically symmetric relation [2]

(87)

where the asterisk in this case denotes complex conjugation. In addition, there is
the time-like index (0). The field tensor components in O(3) electrodynamics are
therefore, in general

Fo’  = -F’O  = (0,  Ey,  iFy  ,O)

Fo*  = -F*O = (O,E~),&O)

p = 4-30  = (Ep,  o,o,  Ey)

F2’  = -F’* = (@, o,O, By))

F13  zz  -F”’ = (0,  $), IIf),  0)

F32  = -Fz3  = (0,  @,  B;), 0)

and the following invariants occur:

(89)

(90)
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From general relativity, it can therefore be concluded that the Bc3’ field must exist
and that it is a physical magnetic flux density defined to the precision of the
Lamb shift. It propagates through the vacuum with other components of the field
tensor.

VII. SACHS THEORY IN THE FORM OF A GAUGE THEORY

The most general form of the vector potential can be obtained by writing the first
two terms of Eq. (57) as

Fpy.l  = apA;  - a,A; (91)

The vector potential is defined as

A; = $ J (‘$;iq’  + 9i;K;k)9;  dxp (92)

and can be written as

A; = $9;
J

($~9~ + 9’K$)  dxp

In order to prove that

J 9; dxp  = 9; J dxp

(93)

(94)

we can take examples, giving results such as

9;  = (-9f’,  9;’ ,9F’,  9:))

= (-9y,o,o,qp)

J q;dX=q;  dXJ
(95)

because 9; has no functional dependence on X. The overall structure of the field
tensor, using irreducible representations of the Einstein group, is therefore

FP,  = m,9;  - a,9;> + D(Yp9;  - 9y9,,) (96)

where C and D are coefficients. This equation has the structure of a quaternion
valued non-Abelian gauge field theory. The most general form of the field tensor



THEORIES OF ELECTRODYNAMICS 4 8 7

and the vector potential is quaternion-valued. If the following constraint holds

D .
-=
c2  - -8

the structure of Eq. (96) becomes

F,, = a&  - a,A’, - ig[AE,A;] (98)

which is identical with that of gauge field theory with quaternion-valued
potentials. However, the use of the irreducible representations of the Einstein
group leads to a structure that is more general than that of Eq. (98). The rules of
gauge field theory can be applied to the substructure (98) and to electromagnet-
ism in curved spacetime.

VII I . ANTIGRAVITY EFFECTS IN THE SACHS THEORY

Sachs’ equations (4.16) (in Ref. 1)

t (K&7’  + 4;*K&)  + ;Rq,  = kT,

- ; (K;#$*  + q’*-Kpy)  + $Rq;  = kT;
(99)

are 16 equations in 16 unknowns, as these are the 16 components of the
quaternion-valued metric. The canonical energy-momentum T,  is also quater-
nion-valued, and the equations are factorizations  of the Einstein field equation. If
there is no linear momentum and a static electromagnetic field (no Poynting
vector), then

T,  = (~p,O,W) (1W

so we have the four components pa,q,Ti, and q.  The q component is a
component of the canonical energy due to the gravitoelectromagnetic field
represented by q!.  The scalar curvature R is the same with and without
electromagnetism, and so is the Einstein constant k.

Considering q In Eq. (99), we obtain

kz  = $ Rq; + $ (KOhq)‘  + q’K&) (101)

and if we choose a metric such that all components go to zero except qi,  then

1
kq  --f -Rq;

8 (102)

I I
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However, R also vanishes in this limit, so

T+O (103)

So, in order to produce antigravity effects, the gravitoelectromagnetic field must
be chosen so that only qz exists in a static situation. Therefore, antigravity is
produced by 47, qi, and qi all going to zero asymptotically, or by

This result is consistent with the fact that the curvature tensor KO~ must be
minimized, which is a consistent result. The curvature is

and is minimized if

If p = 0, then Ra:k  NN  !&,a.  This minimization can occur if the spin-aftine
connection is minimized. We must now investigate the effect of minimizing KO~

on the electromagnetic field

Fpy = t? (Kpd?;  + d*‘%)i  + &$$I; + q&d*)  + $ k&q; - q&P 1(107)
We know that R -+ 0 and p = 0, so

Fey = Q (108)

and the Fey  component must be minimized. This is the gravitoelectric component.
Therefore, the gravitomagnetic component must be very large in comparison
with the gravitoelectric component.

IX. SOME NOTES ON QUATERNION-VALUED METRICS

In the flat spacetime limit, the following relation holds:
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where

(110)

Therefore, the quaternion-valued metric can be written as

In the flat spacetime limit

q”+oo=  ([:  $0.0.0)

(113)
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This means that in the flat spacetime limit

Checking with the identity:

q+f* + qyq;  = 2006; (11%

then

qx#*  + 6(q; = 2006;  = 200

(&I2 + (&2  + (8,” + (&’  = Go
(116)

which is a property of quaternion indices in curved spacetime. In flat spacetime:

that is

(t Y)=(h  ;) (118)

The reduction to O(3) electrodynamics takes place using products such as

4: 0=2 [ 10 4:
that is

q; = 9:4;

(119)

(120)
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In flat spacetime, this becomes

1=1

If the phases are defined as

q;  = @; q’; = e-i4

then the Bc3’ field is recovered as

(121)

(122)

B(3) = IQ,
8 (123)

Applying Eq.  (99), it is seen that Tp has the same structure as qp:

3-p  = ([T; ;o].  [;, T;‘]T  [$*  -i(y2]7  [‘u”’  -ip3])

(124)

Therefore, the energy momentum is quaternion-valued. The vacuum current is

(125)

where Q and ~‘/47t  are constants. We may investigate the structure of the
4-current j, by working out the covariant derivative:

Tz  = a”To  + @T, + a*T2  + a3Ts  + I&Ic  + Iy,T’  + I;,T’  + I,P,T3 (126)

The partial derivatives and Christoffel symbols are not quaternion-valued, so we
may write

T;  = (a0  + r&,To  - (a’  + r:$-, - (a’ + I;$T:!  - (a3  + I$,)T3 (127)

Therefore the vacuum current in general relativity is defined by

iu  = $$a0  + Qp)To  - (al  + r&)T, - (a2  + rgT2  - (a3 + gp)T3jq;
+ sJ@’  + r,“,>To + (a’  + r&m  + (a*  + rgr2  + (a3  + rgT3))

(128)

This current exists under all conditions and is the most general form of the
Lehnert vacuum current described elsewhere in this volume, and the vacuum
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current in O(3) electrodynamics. In the Sachs theory, the existence of the
electromagnetic field tensor depends on curvature, so energy is extracted from
curved spacetime. The 4-current j,, contains terms such as

j Y?0  = g((a”  + rp )T
4x op oq;  + %(a0 + r;,)To)

+(aO+r,P,) ([z ;]q;+q$  ;I) (129)

We may now choose y = 0, 1,2,3 to obtain terms such as

= -(a0  + roppk;~(ox  + (3o))
#O

There are numerous other components of the 4-current density ju that are
nonzero under all conditions. These act as sources for the electromagnetic field
under all conditions. In flat spacetime, the electromagnetic field vanishes, and so
does the 4-current density jr.

A check can be made on the interpretation of the quaternion-valued metric if
we take the quatemion conjugate:

which must reduce, in the tlf  flat space-time limit, to:

This means that the flat spacetime metric is

1 [ 1 0
, 0 -1 I) (132)

(133)
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which is the negative of the metric gp” of flat spacetime, that is, Minkowski
spacetime.

If we define

qp*=  ([4b”  ;o],  -[$ $1, -[$* -,p2]7
then we obtain

[ 1 0 0 0

“MV 0 - 1 0 0

- --P= 0 0 -1 0
0 0 0 - 1 I

-
[q: $31)

(134)

(135)

in the flat spacetime limit. This is the usual Minkowski metric
To check on the interpretation given in the text of the reduction of Sachs to

O(3) electrodynamics, we can consider generally covariant components such as

q,y = (q;,q:,q:,q;)  --$ (~“dd~3)

qy = (q”,, q:, q;, q:>  -+ (co, c+  3 021  0))

q; = (-q;,q:,q;,q;>  + (-~“d,~2T~3)  *
(136)

It follows that
qxq;  - qyq; -+ crxoy - OYGX  = 2io.z (137)

and that:

Note that products such as GXCTY  must be interpreted as single-valued, because
products such as

0 0 0 01

give a null matrix. Therefore, the quateion-valued product 4x4;  must also be
interpreted as

as in the text.

qxq; - qyq>  ---f  0x0~ - (3ycrx  = 2ioz (140)
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