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Numbers . . . are known only by their laws, the laws

of arithmetic, so that any constructs obeying those

laws—certain sets, for instance—are eligible . . .

explications of number. Sets in turn are known

only by their laws, the laws of set theory . . . arith-

metic is all there is to number . . . there is no say-

ing absolutely what the numbers are; there is only

arithmetic.

Quine [1969, 44–45]

If in the consideration of a simply infinite system

. . . set in order by a transformation . . . we entirely

neglect the special character of the elements; sim-

ply retaining their distinguishability and taking

into account only the relations to one another in

which they are placed by the order-setting trans-

formation . . . , then are these elements called

natural numbers or ordinal numbers or simply

numbers.

Dedekind [1888, §73]
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3

This book has both an old topic and a relatively new one. The old topic is the onto-
logical status of mathematical objects: do numbers, sets, and so on, exist? The rela-
tively new topic is the semantical status of mathematical statements: what do math-
ematical statements mean? Are they literally true or false, are they vacuous, or do
they lack truth-values altogether? The bulk of this book is devoted to providing and
defending answers to these questions and tracing some implications of the answers,
but the first order of business is to shed some light on the questions themselves. What
is at stake when one either adopts or rejects answers?

Much contemporary philosophy of mathematics has its roots in Benacerraf [1973],
which sketches an intriguing dilemma for our subject. One strong desideratum is that
mathematical statements have the same semantics as ordinary statements, or at least
respectable scientific statements. Because mathematics is a dignified and vitally
important endeavor, one ought to try to take mathematical assertions literally, “at
face value.” This is just to hypothesize that mathematicians probably know what they
are talking about, at least most of the time, and that they mean what they say. An-
other motivation for the desideratum comes from the fact that scientific language is
thoroughly intertwined with mathematical language. It would be awkward and
counterintuitive to provide separate semantic accounts for mathematical and scien-
tific language, and yet another account of how various discourses interact.

Among philosophers, the prevailing semantic theory today is a truth-valued ac-
count, sometimes called “Tarskian.” Model theory provides the framework. The
desideratum, then, is that the model-theoretic scheme be applied to mathematical and
ordinary (or scientific) language alike, or else the scheme be rejected for both dis-
courses.

The prevailing model-theoretic semantics suggests realism in mathematics, in two
senses. First, according to model-theoretic semantics, the singular terms of a mathe-
matical language denote objects, and the variables range over a domain-of-discourse.
Thus, mathematical objects—numbers, functions, sets, and the like—exist. This is

Introduction



4 INTRODUCTION

what I call realism in ontology. A popular and closely related theme is the Quinean
dictum that one’s ontology consists of the range of the bound variables in properly
regimented discourse. The slogan is “to be is to be the value of a variable.” The sec-
ond sense of realism suggested by the model-theoretic framework is that each well-
formed, meaningful sentence has a determinate and nonvacuous truth-value, either
truth or falsehood. This is realism in truth-value.

We now approach Benacerraf’s dilemma. From the realism in ontology, we have
the existence of mathematical objects. It would appear that these objects are abstract,
in the sense that they are causally inert, not located in space and time, and so on.
Moreover, from the realism in truth-value, it would appear that assertions like the
twin-prime conjecture and the continuum hypothesis are either true or false, inde-
pendently of the mind, language, or convention of the mathematician. Thus, we are
led to a view much like traditional Platonism, and the notorious epistemological prob-
lems that come with it. If mathematical objects are outside the causal nexus, how
can we know anything about them? How can we have any confidence in what the
mathematicians say about mathematical objects? Again, I take it as “data” that most
contemporary mathematics is correct. Thus, it is incumbent to show how it is pos-
sible for mathematicians to get it right most of the time. Under the suggested real-
ism, this requires epistemic access to an acausal, eternal, and detached mathematical
realm. This is the most serious problem for realism.

Benacerraf [1973] argues that antirealist philosophies of mathematics have a more
tractable line on epistemology, but then the semantic desideratum is in danger. Here
is our dilemma: the desired continuity between mathematical language and every-
day and scientific language suggests realism, and this leaves us with seemingly in-
tractable epistemic problems. We must either solve the problems with realism, give
up the continuity between mathematical and everyday discourse, or give up the pre-
vailing semantical accounts of ordinary and scientific language.

Most contemporary work in philosophy of mathematics begins here. Realists grab
one horn of the trilemma, antirealists grab one of the others. The straightforward,
but daunting strategy for realists is to develop an epistemology for mathematics while
maintaining the ontological and semantic commitments. A more modest strategy is
to argue that even if we are clueless concerning the epistemic problems with math-
ematics, these problems are close analogues of (presumably unsolved) epistemic
problems with ordinary or scientific discourse. Clearly, we do have scientific and
ordinary knowledge, even if we do not know how it works. The strategy is to link
mathematical knowledge to scientific knowledge. The ploy would not solve the
epistemic problems with mathematics, of course, but it would suggest that the prob-
lems are no more troublesome than those of scientific or ordinary discourse. The
modest strategy conforms nicely to the seamless interplay between mathematical and
ordinary or scientific discourse. On this view, everyday or scientific knowledge just
is, in part, mathematical knowledge.

For a realist, however, the modest strategy exacerbates the dichotomy between
the abstract mathematical realm and the ordinary physical realm, bringing the prob-
lem of applicability to the fore. The realist needs an account of the relationship be-
tween the eternal, acausal, detached mathematical universe and the subject matter of
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science and everyday language—the material world. How it is that an abstract, eter-
nal, acausal realm manages to get entangled with the ordinary, physical world around
us, so much so that mathematical knowledge is essential for scientific knowledge?

Antirealist programs, on the other hand, try to account for mathematics without
assuming the independent existence of mathematical objects, or that mathematical
statements have objective truth-values. On the antirealist programs, the semantic de-
sideratum is not fulfilled, unless one goes on to give an antirealist semantics for
ordinary or scientific language. Benacerraf’s observation is that some antirealist pro-
grams have promising beginnings, but one burden of this book is to show that the
promise is not delivered. If attention is restricted to those antirealist programs that
accept and account for the bulk of contemporary mathematics, without demanding
major revisions in mathematics, then the epistemic (and semantic) problems are just
as troublesome as those of realism. In a sense, the problems are equivalent. For ex-
ample, a common maneuver today is to introduce a “primitive,” such as a modal
operator, in order to reduce ontology. The proposal is to trade ontology for ideol-
ogy. However, in the context at hand—mathematics—the ideology introduces
epistemic problems quite in line with the problems with realism. The epistemic dif-
ficulties with realism are generated by the richness of mathematics itself.

In an earlier paper, Benacerraf [1965] raises another problem for realism in on-
tology (see also Kitcher [1983, chapter 6]). It is well known that virtually every field
of mathematics can be reduced to, or modeled in, set theory. Matters of economy
suggest that there be a single type of object for all of mathematics—sets. Why have
numbers, points, functions, functionals, and sets when sets alone will do? However,
there are several reductions of arithmetic to set theory. If natural numbers are mathe-
matical objects, as the realist contends, and if all mathematical objects are sets, then
there is a fact concerning which sets the natural numbers are. According to one ac-
count, due to von Neumann, the natural numbers are finite ordinals. Thus, 2 is {φ,
{f}}, 4 is {f, {f}, {f, {f}}, {f, {f}, {f, {f}}}}, and so 2 ∈ 4. According to Zermelo’s
account, 2 is {{f}}, 4 is {{{{f}}}}, and so 2 ∉ 4. Moreover, there seems to be no
principled way to decide between the reductions. Each serves whatever purpose a
reduction is supposed to serve. So we are left without an answer to the question of
whether 2 is really a member of 4 or not. Will the real 2 please stand up? What, after
all, are the natural numbers? Are they finite von Neumann ordinals, Zermelo nu-
merals, or other sets? From these observations and questions, Benacerraf and Kitcher
conclude that numbers are not objects, against realism in ontology. This conclusion,
I believe, is not warranted. It all depends on what it is to be an object, a matter that
is presently under discussion. Benacerraf’s and Kitcher’s conclusion depends on what
sorts of questions can legitimately be asked about objects and what sorts of ques-
tions have determinate answers waiting to be discovered.

The philosophy of mathematics to be articulated in this book goes by the name
“structuralism,” and its slogan is “mathematics is the science of structure.” The sub-
ject matter of arithmetic is the natural-number structure, the pattern common to any
system of objects that has a distinguished initial object and a successor relation that
satisfies the induction principle. Roughly speaking, the essence of a natural number
is the relations it has with other natural numbers. There is no more to being the natu-
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ral number 2 than being the successor of the successor of 0, the predecessor of 3, the
first prime, and so on. The natural-number structure is exemplified by the von
Neumann finite ordinals, the Zermelo numerals, the arabic numerals, a sequence of
distinct moments of time, and so forth. The structure is common to all of the reduc-
tions of arithmetic. Similarly, Euclidean geometry is about Euclidean-space struc-
ture, topology about topological structures, and so on. As articulated here, structur-
alism is a variety of realism.

A natural number, then, is a place in the natural-number structure. From this per-
spective, the issue raised by Benacerraf and Kitcher concerns the extent to which a
place in a structure is an object. This depends on how structures and their places are
construed. Thus, in addition to providing a line on solving the traditional problems
in philosophy of mathematics, structuralism has something to say about what a math-
ematical object is. With this, the ordinary notion of “object” is illuminated as well.

The first part of the book, “Perspective,” takes a broad approach and examines gen-
eral matters in philosophy of mathematics. Its purpose is to set the stage for the de-
tailed elaboration and argument in the rest of the book. I propose that the varieties of
realism and antirealism be understood not so much in terms of rhetoric or slogans
but as competing, sober programs. They look for answers to philosophical questions
in different places. All of the programs have prima facie difficult problems to solve.
It may be that two competing programs can both succeed, each by its own lights, but
this remains to be seen.

Chapter 1, “Mathematics and Its Philosophy,” deals with the relationship between
the practice of mathematics and the philosophy of mathematics. Although the disci-
plines are interrelated in important ways, they are roughly autonomous. One cannot
“read off” the correct way to do mathematics from the true philosophy, nor can one
“read off” the true ontology, epistemology, or semantics from mathematics as
practiced.

My orientation demurs from two extremes, one old and one relatively new. For
some time, philosophers and mathematicians held that ontology and other philosophi-
cal matters determine the proper practice of mathematics. Accordingly, the philoso-
pher must first figure out what we are talking about, by describing or discovering the
metaphysical nature of mathematical entities. For example, are they objective or mind
dependent? Only on completion of this philosophical chore do we know what to say
about mathematical objects, in mathematics itself. Call this the philosophy-first prin-
ciple. This orientation, which goes back at least to Plato, underlies many modern
debates over items like the law of excluded middle, the axiom of choice, impredicative
definition, and the extensional nature of functions and sets. Antirealists rejected such
items, claiming that they presuppose the independent existence of mathematical
objects. However, philosophy-first is not true to the history of mathematics. Classi-
cal logic, impredicative definition, and so on, are so thoroughly entrenched in the
contemporary practice of mathematics that practitioners are often unaware of when
those principles are applied. An advocate of philosophy-first would think that the
realists won. However, at no time did the mathematical community decide that math-
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ematical objects really exist, independent of the minds of mathematicians, and for
that reason decide that it was all right to engage in the erstwhile questionable meth-
odologies. The techniques and inferences in question were accepted because they
were needed for mathematics. It is not much of an exaggeration to claim that mathe-
maticians could not help using the techniques and inferences and, with hindsight,
we see how impoverished mathematics would be without them. Of course, to point
out that philosophy-first is not true to practice is not to refute it as a normative claim,
but the normative matter is not on the present agenda.

The opposite of philosophy-first is a view that philosophy is irrelevant to mathe-
matics. From this perspective, mathematics has a life of its own, independent of any
philosophical considerations. Call this the philosophy-last-if-at-all principle. Sadly,
this has something to recommend it. Most mathematicians are not in the least inter-
ested in philosophy, and it is mathematicians, after all, who practice and articulate
their field. Some philosophers have expressed sentiment for philosophy-last. A popu-
lar view today is naturalism, characterized by Quine [1981, 72] as “the abandonment
of first philosophy” and “the recognition that it is within science itself . . . that real-
ity is to be identified and described.” The first clause is the rejection of philosophy-
first, and the second may be read as an endorsement of philosophy-last-if-at-all. Some
philosophers (not Quine) do lean in this direction, applying naturalism to mathemat-
ics and declaring that it is and ought to be insulated from any inquiries that are not
resolved by mathematicians qua mathematicians.

I suspect that philosophy-last is unhealthy for mathematics, but this weak norma-
tive line is not pursued here. Even if philosophy-last is correct, and should be cor-
rect, as far as the health of mathematics is concerned, it does not follow that philoso-
phy of mathematics is worthless. The interests of philosophers are sometimes
contiguous with those of their colleagues in other departments, but they are different
interests. The philosopher must say something about mathematics, something about
mathematical language, and something about mathematicians. How do we manage
to do mathematics? How is it possible for humans to know and teach mathematics,
and how is mathematics applied in the sciences? These important questions are not
entirely mathematical matters.

The second chapter, “Object and Truth: A Realist Manifesto,” articulates the as-
pirations and main problems of realism as a philosophical program concerning mathe-
matics. Several “grades” of realism are distinguished. I define a working realist to
be someone who uses or accepts the inferences and assertions suggested by tradi-
tional realism, items like excluded middle, the axiom of choice, impredicative defi-
nition, and general extensionality. As such, working realism is not a philosophical
view. It is a statement of how mathematics is done, or perhaps a statement of how
mathematics ought to be done, but there is no attempt to answer the important philo-
sophical questions about mathematics. Working realism, by itself, has no conse-
quences concerning the semantics, ontology, and epistemology of mathematics, nor
the application of mathematics in science. The strongest versions of working real-
ism are no more than claims that mathematics can (or should) be practiced as if its
subject matter were a realm of independently existing, abstract, eternal entities.
Working realism does not go beyond this “as if.” Indeed, it is consistent with anti-
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realism. Anyone who is not out to revise contemporary mathematics on philosophi-
cal grounds is probably a working realist at some level.

Philosophical realism, or realism simpliciter, is a more full-fledged philosophi-
cal program. It is a plan for structuring part of the ship of Neurath—the part con-
cerning mathematics—and showing how that part relates to the rest of the ship. Tra-
ditionally, of course, realism is the view that mathematical objects exist independently
of the mathematician and that mathematical truth is objective, holding (where it does)
independent of the mind and language of the mathematical community. This would
be the conjunction of realism in ontology and realism in truth-value. The program of
realism starts here, asserting the independent existence of a realm of mathematical
objects and the objectivity of mathematical truth. But this is only a start. The realist
must go on to say something about the nature of this realm and how we manage to
obtain knowledge about it.

From these characterizations, one may take philosophical realism to be the de-
fault philosophy, or the first guess, of the working realist. The straightforward ex-
planation of why X happens as if Y is that Y is in fact the case. Working realism char-
acterizes how the philosophical realist would practice mathematics. However, the
proof is in the philosophical pudding. Without plausible answers to the philosophi-
cal questions, realism is no more than an empty promissory note.

In line with Benacerraf’s desideratum, I propose that model-theoretic semantics
is the central frame of philosophical realism. In model theory, one specifies a range
of the variables of a mathematical discourse—an ontology—and then one specifies
extensions for the predicates and relations. This determines satisfaction conditions
for the complex formulas of the language and truth conditions for the sentences, via
the familiar program. The point here is that if realism is correct, then model theory
provides the right picture, or “model,” of how mathematical languages describe
mathematical reality. According to realism, the relationship between language and
reality is analogous to the relationship between a formal language and a model-
theoretic interpretation of it. Of course, how we manage to “specify” the domains
and the various extensions, without vicious circularity, is a major problem with
realism.

This chapter provides a context to illuminate several Quinean themes, as they apply
to philosophical realism. I have in mind naturalism, ontological relativity, and the
thesis that ontology is marked by the range of bound variables. Each of these doc-
trines amounts to something different at the levels of working realism and philosophi-
cal realism.

Part II has the same title as the view to be articulated, “Structuralism.” Chapters 3
and 4 develop the positive philosophical account, executing part of the realist pro-
gram. I try to say what mathematics is about, how we come to know mathematical
statements, and how we come to know about mathematical objects. I show that at
least some traditional problems for realism are dispelled. Other problems are no more
intractable than other puzzles whose solution is usually presumed, if not known. Along
the way, some of the general items of philosophy are illuminated, both as applied to
mathematics and in general. Chapter 5 sketches some themes in the history of mod-
ern mathematics, showing a trend toward mathematics as the science of structure.
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Chapter 3, “Structure,” articulates structuralism, with focus on ontological mat-
ters. As noted, the structuralist holds that the subject matter of, say, arithmetic, is a
single abstract structure, the natural-number structure. Natural numbers are the places
of this structure. Structures are prior to places in the same sense that any organiza-
tion is prior to the offices that constitute it. The natural-number structure is prior to
“6,” just as “baseball defense” is prior to “shortstop” or “U.S. Government” is prior
to “vice president.”

Even though a structure is a reified “one-over-many” of sorts, structures are not
mobilized to play the kind of explanatory or justificatory roles for which universals
have been invoked. Structuralists do not claim, for example, that the reason the sys-
tem of finite, von Neumann ordinals is a model of arithmetic is that it exemplifies
the natural-number structure, nor do we argue that the fact that this system exempli-
fies this structure is what justifies us in using the system as a model of the natural
numbers. If anything, it is the other way around.

Two interrelated groups of ontological questions arise, one concerning structures
themselves and the other concerning places in structures. In line with a partial anal-
ogy with universals, there are several ontological views concerning structures. One
can be a Platonist, an Aristotelian, a nominalist, and so on. Without pretending to be
exhaustive, I develop three alternatives. The first takes structures, and their places,
to exist independently of whether there are any systems of objects that exemplify
them. The natural-number structure, the real-number structure, the set-theoretic hier-
archy, and so forth, all exist whether or not there are systems of objects structured
that way. I call this ante rem structuralism, after the analogous view concerning
universals.

The second option is a more in re approach. Statements of arithmetic, like “2 + 3
= 5,” are not about specific objects denoted by “2,” “3,” and “5.” Rather, each such
statement is a generalization over all natural-number systems: “2 + 3 = 5” comes to
“in every natural-number system, the object in the 2 place added to the object in the
3 place yields the object in the 5 place.” When understood like this, a seemingly bold
ontological claim, like “0 exists,” comes to the innocuous “every natural-number
system has an object in its 0 place.” In other words, on this in re view, statements
whose surface grammar indicates that they are about numbers are actually generali-
zations. Advocates may deny that the natural-number structure exists, or else they
will insist that there is no more to the natural-number structure than natural-number
systems. There is no more to the natural numbers than countably infinite collections
with a distinguished initial object, and so on. Destroy all the systems and the natural-
number structure is itself destroyed. This view is called eliminative structuralism. It
is a structuralism without structures.

Notice that eliminative structuralism requires a background ontology to fill the
places of the various structures. Suppose, for example, that there are only finitely
many objects in the universe. Then there are no natural-number systems, and every
sentence in the language of arithmetic turns out to be true. For example, the above
rendering of “2 + 3 = 5” is true because there are no natural-number systems, but the
renderings of “2 + 3 = 0” and “2 + 3 ≠ 5” are also true. If the background ontology
is not big enough, then mathematical theories will collapse into vacuity. In particu-



10 INTRODUCTION

lar, statements of arithmetic are vacuous unless the universe is infinite; statements of
real analysis are vacuous unless the universe contains a continuum of objects; and
set theory is vacuous unless the universe contains a proper class—or at least an inac-
cessible number of objects. Because there are probably not enough physical objects
to keep some theories from being vacuous, the eliminative structuralist must assume
there is a large realm of abstract objects. Thus, eliminative structuralism looks a lot
like traditional Platonism.

Our third option, modal structuralism, patches the problem of vacuity. It is an
eliminative program with a wrinkle. Instead of taking a statement of arithmetic to be
about all natural-number systems, the theorist asserts that the statement is about all
possible natural-number systems. Our example, “2 + 3 = 5,” comes to “in every pos-
sible natural-number system, the object in the 2 place added to the object in the 3
place yields the object in the 5 place.” On this option, there is an attenuated threat of
vacuity. According to the modal structuralist, arithmetic is vacuous unless it is pos-
sible for there to be a countably infinite system of objects, and real analysis is vacu-
ous unless it is possible for there to be a system the size of the continuum. Modal
eliminative structuralism is elaborated and defended in Hellman [1989].

The other group of ontological questions concerns the status of individual math-
ematical objects—places in structures. Notice first that on the eliminative and modal
options, natural numbers, for example, are not individual objects. Singular terms that
seem to denote numbers, such as numerals, are disguised bound variables ranging
over objects in systems. In contrast, the ante rem structuralist holds that natural num-
bers exist as bona fide objects. These objects are the places of the natural-number
structure. In sum, numbers are offices rather than officeholders. The same goes for
real numbers and members of the set-theoretic hierarchy. So ante rem structuralism
is a realism in ontology. Eliminative structuralism and modal structuralism are
antirealist in ontology. All three are realist in truth-value.

In ordinary language, there are different ways that positions in patterns are treated.
Most of the time, the positions of a pattern are offices, which can be occupied by
various sorts of objects and people. In many ways, words that denote offices act like
predicates. For example, we speak of different people who have held the office of
Speaker of the House, different people who have played shortstop, and different pieces
of wood and plastic that have played the role of white queen’s bishop. I call this the
places-are-offices perspective. In other contexts, however, we treat positions of a
pattern as objects in their own right. When we say that the Speaker presides over the
House and that a bishop moves on a diagonal, the terms “Speaker” and “bishop” are
singular terms, at least grammatically. Prima facie, they denote the offices themselves,
independent of any objects or people that may occupy the offices. This is the places-
are-objects perspective. The ante rem structuralist holds that natural numbers are
places in the natural-number structure, and the theory of arithmetic treats these num-
bers from the places-are-objects perspective. Numerals are genuine singular terms,
semantically, as well as grammatically.

Clearly, there is an intuitive difference between an object and a place in a struc-
ture—between an office and an officeholder. The ante rem structuralist respects this
distinction but argues that it is a relative one. What is an office from one perspective



INTRODUCTION 11

is an object—and a potential officeholder—from another. In arithmetic, the natural
numbers are objects, but in some other theories natural numbers are offices, occu-
pied by other objects. Thus, in set theory we say that the finite von Neuman ordinals
and the Zermelo numerals both exemplify the natural-number structure. In one sys-
tem, {φ, {φ}} occupies the 2 place, and in the other {{φ}} occupies that place. Some-
times, we take the places of the natural-number structure from both the places-are-
offices and the places-are-objects perspectives in the same breath. We say, for
example, that the even natural numbers exemplify the natural-number structure. The
ante rem structuralist interprets this as follows: the even natural numbers, construed
from the places-are-objects perspective, are organized into a system, and this system
exemplifies the natural-number structure. In the system in question, 0 occupies the 0
place, 2 occupies the 1 place, 4 occupies the 2 place, and so on.

In effect, the notion of “mathematical object” is relative to a structure. What is an
object from one perspective is a place in a structure from another. Some structures
are exemplified by places from other structures, and there are structures of structures.
The various dichotomies and notions of relativity are related to others prevalent in
the literature, most notably the abstract/concrete dichotomy, ontological relativity,
and the inscrutability of reference.

In sum, the ante rem structuralist interprets statements of arithmetic, analysis,
set theory, and the like, at face value. What appear to be singular terms are in fact
singular terms that denote bona fide objects. Moreover, ante rem structuralism ac-
commodates the freestanding nature of mathematical structures. Anything at all can
occupy the places of the natural-number structure, including natural numbers them-
selves. Thus, I hold that ante rem structuralism is the most perspicuous account of
contemporary mathematics.

Nevertheless, there is a sense in which ante rem structuralism is equivalent to
eliminative structuralism over a sufficiently large ontology, and to modal structural-
ism with sufficiently robust “possible-existence” assumptions. There is a straight-
forward “translation” between the frameworks, such that anything said by an advo-
cate of one of the views corresponds to statements acceptable to advocates of each
of the other two views.

The chapter closes with a brief account of some connections between structural-
ism and functionalism in the philosophy of mind. I suggest that many functionalist
theses can be understood in the structuralist terms of this chapter. Functionalism is
an eliminative structuralism, of sorts.

Chapter 4, “Epistemology and Reference,” takes up epistemological and semantical
matters. Because the problems of epistemology are among the most serious and
troublesome for realism, this chapter is central to the case made in this book.

Several different strategies are applied to the epistemological problems, depend-
ing on the size and complexity of the structures in question. Small, finite structures
are apprehended through abstraction via simple pattern recognition. A subject views
or hears one or more structured systems and comes to grasp the structure of those
systems. Of course, we do not have direct causal contact with structures, because
they are abstract. The idea is that we grasp some structures through their systems,
just as we grasp character types through their tokens.
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To be sure, pattern recognition represents a sticky problem for psychology and
cognitive science. There is no consensus among scientists as to how it works. Never-
theless, humans clearly can recognize at least some patterns. The philosophical prob-
lem is to show how pattern recognition can lead to knowledge about freestanding,
ante rem structures.

Even if this strategy were successful, it would not go very far. To grasp a struc-
ture via simple pattern recognition, one must see or hear a system that exemplifies it.
This limits the technique to small, finite structures. The next task is to extend the
epistemological scheme to larger finite structures. For this, I propose a few exten-
sions of pattern recognition, beyond simple abstraction. As above, the subject, per-
haps a small boy, comes to grasp small, finite structures via pattern recognition. He
grasps the 2 pattern, the 3 pattern, and the 4 pattern. The subject then sees that these
small, finite structures themselves come in sequence, one after another, and he ex-
tends the sequence to structures he has not seen exemplified. Clearly, we do have
some sort of grasp of the 14,792 pattern and the 1,000,000 pattern, even if we have
never seen systems that exemplify these structures. Again, the philosophical prob-
lem is to see how this extended pattern recognition can lead to knowledge of the struc-
tures themselves.

Moving on, our subject, no longer a child, grasps the concept of a finite cardinal
structure as such, and he realizes that these structures themselves exemplify a struc-
ture. This is the natural-number structure, our first infinite pattern. Notice that I do
not claim that the natural numbers are the finite cardinal structures, that 4 is the 4
pattern, for example. The natural numbers are places in the natural-number struc-
ture, and the finite cardinal patterns exemplify this structure. The subject may also
notice that the natural-number structure is exemplified by the system of numerals
and other sequences of abstract objects.

From here, the subject can apprehend other countably infinite structures as varia-
tions on this one. Conceivably, we get to the real numbers by considering sets of
natural numbers, and perhaps we can proceed through the levels of type theory.
However, these techniques are unnatural at the more advanced levels. We surely do
not apprehend the complex-number structure this way. Moreover, even our extended
pattern recognition is limited. We are nowhere near the set-theoretic hierarchy. Our
other epistemic techniques make a direct appeal to language and language acquisi-
tion. A subtheme of this book is that many metaphysical and epistemological mat-
ters are closely tied to language.

The next strategy employs an abstraction similar to one developed in Kraut [1980]
and Wright [1983] (see also Hale [1987]). It begins with a version of the Leibniz
principle of the identity of indiscernibles. If two items cannot be distinguished—if
anything true of one is true of the other—then they can be or should be identified.
The items are one, rather than two. A relativity of sorts emerges when we add Kraut’s
observation that indiscernability depends on available resources. Some items can be
distinguished in one framework but not in another.

Our final epistemic strategy is implicit definition, a common and powerful tech-
nique of modern mathematics. For present purposes, implicit definition is the most
speculative of all the strategies, and it yields knowledge of very large structures.
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Typically, the theorist gives a collection of axioms and states that the theory is about
any system of objects that satisfies the axioms. As I would put it, the axioms charac-
terize a structure or a class of structures, if they characterize anything at all. The subject
matter of the theory is that structure or class of structures.

An implicit definition characterizes a structure or class of structures by giving a
direct description of the relations that hold among the places of the structure. The
second-order Peano axioms characterize the natural-number structure, the second-
order axioms of real analysis characterize the real-number structure, and the axioms
of group theory characterize the class of group structures.

A purported implicit definition characterizes at most one structure if it is categori-
cal—if any two models of it are isomorphic to each other. A purported implicit defi-
nition characterizes at least one structure if it is coherent, but here things are not so
clear. Unlike isomorphism, coherence is not a rigorously defined mathematical no-
tion, and there is no noncircular way to characterize it. Because the envisioned back-
ground metatheory is second-order, it will not do to define coherence as deductive
consistency. When it comes to structures, consistency does not imply existence, contra
Hilbert. Some consistent second-order theories have no models (see Shapiro [1991,
chapter 4]). Surely, such theories are not coherent. A better explication of coherence
is satisfiability, but now the circularity is apparent. Satisfiability is defined in set
theory, and we structuralists take set theory to be about a particular structure—the
set-theoretic hierarchy. I develop the various circularities and argue that they are not
vicious. Satisfiability is a model of coherence, not a definition of it.

To complete the picture, then, if an implicit definition is coherent and categori-
cal, then a single structure is characterized. According to ante rem structuralism, the
variables of the theory range over the places of that structure, the singular terms denote
places in that structure, and the relation symbols denote the relations of the structure.

The chapter closes with a brief account of reference and other semantic matters.
I show that the schematic, model-theoretic notions of reference and satisfaction are
particularly suited to mathematics, construed as the science of structure. A general
understanding of language acquisition and use is sufficient to understand an implicit
definition and sufficient to grasp reference to the places of the structure. I thus make
good on the suggestion that model theory provides the central framework of philo-
sophical realism. The present framework of ante rem structuralism also fulfills
Benacerraf’s desideratum that there be a uniform semantics for mathematical and
ordinary or scientific languages—to the extent that model-theoretic semantics is
appropriate for ordinary or scientific languages.

Chapter 5, “How We Got Here,” provides some historical sketches and precur-
sors to the idea that mathematics is the science of structure. Originally, the focus of
geometry was space—matter and extension—and the subject matter of arithmetic was
quantity. Geometry concerned the continuous, whereas arithmetic concerned the
discrete. The nineteenth century saw a gradual liberation of both fields from these
roots.

The early sections of this chapter give a bare sketch of the complex transition from
geometry as the study of physical or perceived space to geometry as the study of
freestanding structures. One early theme was the advent of analytic geometry, which
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served to bridge the gap between the discrete and the continuous. Projective geome-
try was a response. Another theme is the attempt to accommodate ideal and imagi-
nary elements, such as points at infinity. A third thread is the assimilation of non-
Euclidean geometry into mainstream mathematics and into physics. These themes
contributed to a growing interest in rigor and the detailed understanding of deduc-
tion as independent of content. Structuralism is little more than a corollary to these
developments.

The liberation of geometry from physical and perceived space culminated around
the turn of the twentieth century, when Poincaré and Hilbert each published an ac-
count of geometry. Both authors argued that concepts like “point,” “line,” and “plane”
are defined only in terms of each other, and they are properly applied to any system
of objects that satisfies the axioms. Despite their many philosophical differences, these
two mathematicians thus approached an eliminative structuralism (Hilbert more than
Poincaré). Each found spirited opposition from a different logicist who maintained
the dying view that geometry essentially concerns space or spatial intuition. Russell
disputed Poincaré, and Frege disputed Hilbert. The two debates illustrate the emerg-
ing idea of mathematics as the science of structure.

Although neither Frege nor his interpreters speak in structuralist terms, the devel-
opment of arithmetic in Frege [1884] (as articulated by Dummett [1981], [1991];
Wright [1983]; and Hale [1987]) goes some way toward structuralism. Frege ap-
proached full ante rem structuralism, not the eliminative variety suggested by Hil-
bert. Frege held that numerals are genuine singular terms that denote natural num-
bers. We can at least motivate structuralism by combining this with some of his other
theses, such as the context principle. The envisioned view avoids the infamous pit-
falls of Frege’s logicism. Of course, structuralism is far from Frege’s own philoso-
phy of mathematics—by any stretch of the exegetical imagination.

A direct forerunner of ante rem structuralism is another logicist, Dedekind. His
development of the notion of continuity and the real numbers, in [1872], his presen-
tation of the natural numbers via the notion of Dedekind infinity, in [1888], and some
of his correspondence constitute a structuralist manifesto, as illustrated by the pas-
sage from [1888 §73] that appears as an epigraph to this book: “If in the considera-
tion of a simply infinite system . . . set in order by a transformation . . . we entirely
neglect the special character of the elements, simply retaining their distinguishabil-
ity and taking into account only the relations to one another in which they are placed
by the order-setting transformation . . . then are these numbers called natural num-
bers or ordinal numbers or simply numbers. . . .”

Part III of this book, “Ramifications and Applications,” extends the scope of
structuralism to other aspects of mathematics and to science and ordinary language.
Along the way, I evaluate other views in the philosophy of mathematics in light of
structuralism.

Chapter 6, entitled “Practice: Construction, Modality, Logic,” concerns an inter-
esting and illuminating gap between the practice of mathematics and its current philo-
sophical and semantic formulations. Mathematicians at work speak and write as if
they perform dynamic operations and constructions. Taken literally, this language
presupposes that mathematicians envision creating their objects, moving them around,
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and transforming them. In contrast to this dynamic picture, the traditional realist in
ontology, or Platonist, holds that the subject matter of mathematics is an indepen-
dent, static realm. In a deep metaphysical sense, this mathematical realm is eternal
and immutable, and so the universe cannot be affected by operations, constructions,
or any other human activity.

To belabor the obvious, then, the traditional Platonist does not take dynamic lan-
guage literally. In contrast, the traditional intuitionists do take the constructional lan-
guage literally, and they deny the static elements of mathematical practice. Intuitionists
hold that this perspective requires revisions in the practice of mathematics. They
demur from the law of excluded middle and other inferences based on it. In present
terms, intuitionists are not working realists.

We can bring intuitionism and classical dynamic language under a common frame-
work by thinking in terms of an imaginary, idealized constructor who can perform
various operations, such as drawing lines and applying functions. Neither the intu-
itionistic constructor nor his classical counterpart has bounds on his lifetime, atten-
tion span, and so on. The classical constructor is idealized further, in that he has a
greater omniscience and has the ability to complete infinite tasks. There is an inti-
mate three-way connection between the logic of a mathematical system, the meta-
physical nature of its objects, and the moves allotted to the ideal constructor.

In this framework, structuralism provides a single umbrella for the various static/
dynamic, classical/intuitionistic systems. Structuralism has the resources to assess
and compare the different systems, by using a common measure.

Dummett [1973], [1977] provides another, semantic route to intuitionistic logic.
He argues that reflections on the learnability of language and its role in communica-
tion demand that an assertabilist semantics replace a truth-valued semantics. Following
Heyting [1956], sentences should be understood in terms of their “proof conditions”
rather than their truth conditions. Dummett’s argument concludes that this perspec-
tive requires revisions in the practice of mathematics.

A philosopher of mathematics might find a Heyting-style, assertabilist semantics
attractive, because “proof” or “assertability” may prove more tractable than “mathe-
matical truth” on the sticky epistemic front. It may be more natural (or more realis-
tic) to speak of the “assertion abilities” of the ideal constructor, taking this to be an
extension of the abilities of human mathematicians. The idea is to use this notion in
the semantics. However, revisionism is a steep price to pay, moving us back to the
philosophy-first principle. The question before us is whether an assertabilist seman-
tics is compatible with working realism.

Dummett’s path from assertabilism to revisionism depends on how the idealized
modal notions of provability or assertability are to be understood. One is forced to
revisionism only if assertabilist semantics is coupled with a certain pessimism about
human epistemic powers (or the epistemic powers attributed to the ideal construc-
tor). A more optimistic viewpoint leads to classical logic, and allows the antirealist
to speak as if mathematical assertions have objective truth-values. However, under
this plan, the notion of “provable sentence” of, say, arithmetic, is just as complex
and semantically intractable as classical “truth.” So if this alternative is taken, there
is no gain on the epistemic front.
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Chapter 7, “Modality, Structure, Ontology,” concerns programs of antirealism in
ontology, realism in truth-value. The defenders of these programs maintain that
mathematics is not about an independently existing realm of abstract objects, but once
mathematical assertions are properly interpreted, they have nonvacuous truth condi-
tions that hold or fail independent of the mathematician. In the end, mathematics—
or a surrogate—is substantially correct. The advocates of such programs constitute
the loyal opposition.

I do not attempt an exhaustive survey of the relevant antirealist literature. I focus
on authors whose strategy is to reduce ontology by introducing (or invoking) some
ideology, typically a modal operator. The authors include Hartry Field [1980], Charles
Chihara [1990], and Geoffrey Hellman [1989], as well as some nominalists who in-
voke George Boolos’s [1984], [1985] account of second-order quantifiers as plural
quantifiers. Hellman [1989] is especially relevant to the present project, because he
develops a modal structuralism.

It is common, both now and throughout the history of philosophy, to interpret
modal operators as quantifiers. This is an analysis of modality in terms of ontology.
The programs under study here reverse this trend, reducing ontology by invoking
modality, or some other ideology. None of the authors envision a realm of possible
worlds, a realm of possibilia, or a model theory to explicate the notions in question.
The notions are just used, without apology—as mathematical notions are used with-
out apology by us realists.

The ontological antirealist programs have promising beginnings, because the
epistemology of the various notions may be more tractable than an epistemology of
abstract objects like sets. However, the contention of this chapter is that, when ap-
plied to mathematics, the epistemological problems with antirealist programs are just
as serious and troublesome as those of realism. There is no real gain on the most
intractable problems in the philosophy of mathematics.

In each case, I show that there are straightforward translations between the set-
theoretic language of the realist and the language with added ideology. The transla-
tions preserve warranted belief, at least, and probably truth (provided, of course, that
we accept both viewpoints, at least temporarily). The contention is that, because of
these translations, advocates of one of the systems cannot claim a major epistemo-
logical advantage over advocates of the other. Any insight that antirealists claim for
their system can be immediately appropriated by realists and vice versa. The problem,
however, lies with the “negative” consequences of the translations. Epistemological
problems with realism get “translated” as well. The prima facie intractability of knowl-
edge of abstract objects indicates an intractability concerning knowledge concerning
the “new” notions, at least as they are developed in the works in question here.

To be sure, the notions invoked by our antirealists do have uses in everyday lan-
guage, and competent speakers of the language do have some pretheoretic grasp of
how they work. The antirealists are not inventing the ideology. However, the pre-
theoretic grasp of the notions does not support the extensively detailed articulations
that are employed in the antirealist explications of mathematics. We do in fact have
a decent grasp of the extensively articulated notions, but this understanding is not
pretheoretic. It is mediated by mathematics, set theory in particular.
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As I see it, set theory and modal notions like logical consequence illuminate each
other. It is unfair to reject set theory, as our antirealists do, and then claim that we
have a pretheoretic grasp of modal notions that, when applied to mathematics, ex-
actly matches the results of the model-theoretic explication of them.

Several important philosophical issues lie near the surface of the critical remarks.
One general matter is the issue of ontology and ontological commitment. The pre-
vailing criterion, due to Quine, is that the ontology of a theory is the range of its bound
variables. This is plausible enough, but recall that Quine insists on a fixed, and very
austere ideology. Anything beyond the resources of extensional, first-order formal
languages is out of bounds. When this constraint is relaxed, as our present antirealist
authors (rightly) propose, things get murky. How are the disputes to be adjudicated?
Each side proposes to eliminate or reduce the most basic notions used by the other.
Typical remarks about judging the matter on holistic grounds are not very helpful,
unless these grounds are elaborated and defended. Structuralism has the resources to
formulate a further articulation of—or an alternative to—the Quinean criterion. In-
stead of speaking of the “ontology” of a theory, the philosopher should speak of the
strength of the ontology and ideology combined. The notion of the equivalence of
two structures plays a central role in this criterion. The ontology/ideology criterion
completes the case for the contention, from chapter 3, that the three articulations of
structuralism—ante rem, eliminative, and modal—are equivalent.

The final chapter 8, “Life outside Mathematics: Structure and Reality,” is a brief
account of some extensions of structuralism beyond mathematics, to science and to
ordinary discourse. As noted earlier, one major problem for philosophy of mathemat-
ics is to account for the application of mathematics to the material world. Structural-
ism has a line on a partial account. Put simply, mathematics is applied when the theorist
postulates that a given area of the physical world exemplifies a certain structure. In
nearly all scientific theories, the structures of physical systems are modeled or de-
scribed in terms of mathematical structures.

One consequence of this perspective is a blurring of the boundary between mathe-
matics and science. Typically, (pure) mathematics studies structures as such, inde-
pendent of whether they are exemplified or not. The focus is on the structures them-
selves. Empirical science is usually concerned with which structures are exemplified
where. The focus is on the structured. There are many intermediate perspectives, and
there is no need to draw a sharp boundary. The same goes for the boundary between
mathematical and ordinary discourse. There is no sharp distinction between the
mathematical and the mundane. To speak of objects at all is to impose structure on
the material world, and this is to broach the mathematical.

One recurring theme in the book is that many of the standard tools that the con-
temporary philosopher uses to approach a subject matter were developed and honed
with mathematics in view. Examples include the usual model-theoretic semantics and
the concomitant notions of reference and logical consequence. The tools work best
with mathematical languages precisely because mathematical objects are structural.
It is in the context of these tools that such theses as “to be is to be the value of a
bound variable” are formulated. Model-theoretic semantics is also a good model for
ordinary discourse, because, for many purposes, ordinary objects can be viewed as
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structural. However, the match between model-theoretic semantics and ordinary lan-
guage is not perfect. An attempt to overextend the analogy and the blind application
of model theory results in some artificial puzzles.

This brings us back to where we started, the Benacerraf [1973] desideratum that
there should be continuity between the semantic accounts of mathematical and ordi-
nary or scientific languages. To some extent, the desired continuity depends on the
extent to which ordinary objects resemble mathematical ones. Structuralism has a
lot to say about what mathematical objects are—they are places in structures. The
book closes with some speculative remarks on the extent to which ordinary objects
can be construed as places in structures.

I am greatly indebted to many friends, teachers, colleagues, and students who read
and criticized early incarnations of various parts of this book. Given their generous
effort, I can only conclude that the remaining errors are due to my own stubborn-
ness. I especially thank Michael Resnik, who twice acted as referee for Oxford Uni-
versity Press for this project. One other referee can only be acknowledged anony-
mously. Penelope Maddy and Jill Dieterle provided extensive comments on the bulk
of the book, for which all readers should be grateful. I also thank the University of
St. Andrews for allowing me to run a seminar based on the penultimate version of
this book. Many improvements resulted. The main participants were Roy Dyckhoff,
Janet Folina, Michele Friend, Stephen Ferguson, Ben Geis, Stephen Read, Penny
Rush, and Crispin Wright. An incomplete list of others who have graciously given
of their time and expertise includes Paul Benacerraf, George Boolos, Charles Chihara,
Peter Clark, Roy Cook, John Corcoran, David Galloway, Bob Hale, Geoffrey
Hellman, Catherine Hyatt, Peter King, Jeffrey Koperski, Robert Kraut, Timothy
McCarthy, David McCarty, Colin McLarty, Pierluigi Miraglia, Gregory H. Moore,
Calvin Normore, Diana Raffman, Joe Salerno, Michael Scanlan, George Schumm,
Mark Silcox, Neil Tennant, Michael Tye, Alan Wescoat, and Mark Wilson. I apolo-
gize for omissions from this list. This project has taken a long time to come to frui-
tion. I gave papers on related topics to the Eastern Division of the American
Philosophical Association, The Center for Philosophy of Science at the University
of Pittsburgh, and the Philosophy Research Seminar at the University of St. Andrews.
Thanks to the audiences, who listened carefully and provided invaluable feedback.
Robert Thomas, editor of Philosophia Mathematica, gave permission to use some
material originally published there. I thank Angela Blackburn, Cynthia Read, and
Lisa Stallings of Oxford University Press for encouraging me to pursue this project
and guiding it through the publication process.

Words cannot express my appreciation for my wife, Beverly Roseman-Shapiro,
for her loving support and tolerance. Her impatience for the excesses of analytic
philosophy constantly saves my humanity. I dedicate this book to her.
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1

Mathematics and Its Philosophy

1. Proclus [485, 125] credits a nephew of Plato, named Speusippus, and a pupil of Eudoxus, named
Menaechmus, with noteworthy accomplishments on this issue.

For a long time, many philosophers and some mathematicians believed that philo-
sophical matters, such as metaphysics and ontology, determine the proper practice
of mathematics. Plato, for example, held that the subject matter of mathematics is an
eternal, unchanging, ideal realm. Mathematical objects are like the Forms. In Book
VII of the Republic, he chided mathematicians for not knowing what they are talk-
ing about and, consequently, doing mathematics incorrectly: “[The] science [of
geometry] is in direct contradiction with the language employed by its adepts. . . .
Their language is most ludicrous, . . . for they speak as if they were doing something
and as if all their words were directed toward action. . . . [They talk] of squaring and
applying and adding and the like . . . whereas in fact the real object of the entire sub-
ject is . . . knowledge . . . of what eternally exists, not of anything that comes to be
this or that at some time and ceases to be.” The geometers of antiquity did not take
Plato’s advice, as witnessed by just about every source of ancient geometry, Euclid’s
Elements included. They use constructive, dynamic language: lines are drawn, fig-
ures are moved around, and so on. If Plato’s philosophy is correct, this makes no
sense. Eternal and unchanging objects are not subject to construction and movement.
According to Proclus [485], the “problem” of dynamic language occupied those in
Plato’s Academy for some time.1 Proclus tried valiantly to reconcile mathematical
practice with the true philosophy. The task, as he saw it, was to figure out “how we
can introduce motion into immovable geometric objects.”

At first glance, one might think that the one-way dispute between the Platonists
and the geometers concerns little more than terminology. Euclid wrote that between
any two points one can draw a straight line, and Hilbert [1899] made the Platonistically
correct assertion that between any two points there is a straight line. Presumably,
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Hilbert and Euclid said the same thing, if their languages are properly understood.
However, the situation is not this simple on either mathematical or philosophical
grounds. Prima facie, the long-standing problems of trisecting an angle, squaring a
circle, and doubling a cube are not questions of existence. Did ancient and modern
geometers wonder, for example, whether there is an angle of twenty degrees, or was
it a question of whether such an angle could be drawn and, if so, with what tools? It
is not easy to formulate problems like this in static language.2

In the twentieth century, debates over intuitionism provide another clear and
straightforward example of a philosophical challenge to mathematics as practiced.
The traditional intuitionists held that mathematical objects are mental constructions,
and mathematical statements must somehow refer to mental constructions. Brouwer
[1948, 90] wrote, “The . . . point of view that there are no non-experienced truths . . .
has found acceptance with regard to mathematics much later than with regard to
practical life and to science. Mathematics rigorously treated from this point of view,
including deducing theorems exclusively by means of introspective construction, is
called intuitionistic mathematics. . . . [I]t deviates from classical mathematics . . .
because classical mathematics believes in the existence of unknown truths.” And
Heyting [1931, 53], [1956, 1, 2, 10]:

[W]e do not attribute an existence independent of our thought, i.e., a transcendental
existence, to the integers or to any other mathematical objects. . . . [M]athematical
objects are by their very nature dependent on human thought. Their existence is guar-
anteed only insofar as they can be determined by thought. They have properties only
insofar as these can be discerned in them by thought. . . . Faith in transcendental . . .
existence must be rejected as a means of mathematical proof.

Brouwer’s program . . . consisted in the investigation of mental mathematical construc-
tion as such. . . . In the study of mental mathematical constructions, “to exist” must be
synonymous with “to be constructed”. . . . In fact, mathematics, from the intuitionistic
point of view, is a study of certain functions of the human mind.

Heyting expresses a subjectivism toward mathematical objects, holding that they do
not exist independently of the mind. Esse est fingi. Brouwer seems more concerned
with mathematical assertions, stating that they do not have mind-independent truth
conditions.3 Contemporary intuitionists, like Dummett [1973], [1977] and Tennant
[1987], begin with reflections on language acquisition and use, drawing conclusions
about the truth conditions for mathematical assertions.

The intuitionists contend that the philosophy has consequences concerning the
proper practice of mathematics. Most notably, they reject the law of excluded middle
and other inferences based on it. These methodological principles are symptomatic
of faith in the transcendental existence of mathematical objects or the transcendental
truth of mathematical statements. Let P be a property of numbers. For an intuition-

2. See chapter 6 (and Shapiro [1989]) for more on the static/dynamic dichotomy in mathematical
language.

3. Despite the subjectivist tone of these passages, Brouwer indicates a Kantian perspective in which
mathematics is mind-dependent but still objective in some sense (see Posy [1984]).
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ist, the content of the expression 5œxPx is that it is refutable that one can find a con-
struction that shows that P holds of each number; the content of ›x5Px is that one
can construct a number x and show that P does not hold of x. The latter expression
cannot be inferred from the former because, clearly, it is possible to show that a prop-
erty cannot hold universally without constructing a number for which it fails. Heyting
notes that a realist, someone who does hold that numbers exist independently of the
mathematician, will accept the law of excluded middle and related inferences (but
see Tennant [1987]). From the realist’s perspective, the content of 5œxPx is simply
that it is false that P holds universally, and ›x5Px means that there is a number for
which P fails. Both formulas refer to numbers themselves; neither has anything to
do with the knowledge-gathering abilities of mathematicians, or any other mental
feature of them. From the realist’s point of view, the two formulas are equivalent.

Before Brouwer, Kronecker held that at least some mathematical entities do not
exist independently of the mathematician, as indicated by his much-quoted slogan,
“God made the integers, everything else is the work of man.” He proposed that this
ontological view suggested, indeed demanded, revision of mathematical practice (see
Stein [1988] and Edwards [1988]). After Heyting, there is Bishop [1975, 507] and
constructivism: “There is a crisis in contemporary mathematics, and anybody who
has not noticed it is being willfully blind. The crisis is due to our neglect of philo-
sophical issues.”

There are several other methodological battlegrounds that were once thought to
turn on philosophical considerations. A definition of a mathematical entity, such as
a particular number, is impredicative if it refers to a collection that contains the de-
fined entity. Poincaré launched a systematic attack on the legitimacy of impredicative
definitions in set theory (beginning in [1906] and continuing throughout his career;
see Goldfarb [1988] and Chihara [1973]). The critique was based on the idea that
mathematical objects, such as sets, do not exist independently of the mathematician.
Poincaré rejected the actual infinite, insisting that the only sensible alternative is the
potentially infinite. Accordingly, there is no static set of, say, all real numbers, de-
termined prior to the mathematical activity. From this perspective, impredicative
definitions are circular. One cannot construct an object by using a collection that
already contains it. From the other side, Gödel [1944] is an explicit defense of
impredicative definition, against Russell’s “vicious circle principle.” The argument
is tied to Gödel’s philosophical perspective, realism:

[T]he vicious circle . . . applies only if the entities are constructed by ourselves. In this
case, there must clearly exist a definition . . . which does not refer to a totality to which
the object defined belongs, because the construction of a thing can certainly not be
based on a totality of things to which the thing to be constructed belongs. If, however,
it is a question of objects that exist independently of our constructions, there is noth-
ing in the least absurd in the existence of totalities containing members, which can be
described (i.e., uniquely characterized) only by reference to this totality. . . . Classes
and concepts may . . . be conceived as real objects . . . existing independently of us
and our definitions and constructions. It seems to me that the assumption of such ob-
jects is quite as legitimate as the assumption of physical bodies and there is quite as
much reason to believe in their existence. (p. 456)



24 PERSPECTIVE

4. An anecdote: My first year in graduate school in mathematics, I made a nuisance of myself by
asking, almost constantly, where choice principles are employed. My teachers did not always know,
but to their credit, they would patiently figure it out (or ask someone else) and tell me later. The excep-
tion was an annoyed visiting logician, who told me to always assume that choice was employed.

5. The axiom of choice holds in some constructivist contexts, but that is because the antecedent is
understood in constructivist terms. The principle is “if one can construct a set of nonempty sets, then
one can construct a choice function on the set.” The issue of choice in constructive mathematics is
rather complex. In intuitionistic real analysis, the axiom of choice undermines Brouwer’s theorem that
every function is continuous.

According to Gödel’s realism, a definition does not represent a recipe for construct-
ing, or otherwise creating, an object. Rather, it is a way to characterize or point to an
already-existing thing. Thus, an impredicative definition is not viciously circular, no
more so than using the expression “the old fart” to refer to the oldest member of the
faculty.

Russell himself did not hold a constructivist philosophy of mathematics. His re-
jection of impredicative definitions was due to metaphysical views on the nature of
propositions and to his assimilation of classes to propositions and propositional func-
tions (see Goldfarb [1989]).

Another example is the axiom of choice. One version says that for every set A of
nonempty sets, there is a function whose domain is A and whose value, for every
a ∈ A, is a member of a. The existence of the function does not depend on a me-
chanical method for picking out, constructing, or even uniquely characterizing a
member of each member of A. Today, virtually every mathematician accepts the
axiom of choice and, in fact, most are not explicitly aware of cases in which it (or a
weaker version) is applied.4 But it was not always like this. When the axiom was
explicitly formulated in Zermelo’s [1904] proof of the well-ordering theorem, it was
opposed by many, probably most, leading mathematicians, notably Baire, Borel, and
Lebesgue. Their opposition often focused on fundamental philosophical considera-
tions that concern the nature of cardinality, functions, and sets. Typically, the
opponents adopted antirealist perspectives. Lebesgue [1971], for example, divided
mathematicians into two camps: “empiricists,” who admit only the existence of real
functions that are (uniquely) definable; and “idealists,” who admit the existence of
functions that are not definable, presumably, functions that exist independently of
us and our abilities to define mathematical objects. Lebesgue and fellow “empiri-
cists” reject the axiom of choice, whereas “idealists,” like Cantor and Zermelo,
accept it (see Moore [1982]).

Lebesgue’s terminology is nonstandard, of course, but his battle lines do seem
correct. His “idealists” are realists, holding that the universe of sets exists indepen-
dently of the mathematician. These people do not require an algorithm or other method
for uniquely characterizing a choice set before they will believe that the set exists.
Indeed, from the realist perspective, the axiom of choice is an obvious truth, and thus
its designation as an “axiom.” Lebesgue’s “empiricists” are antirealists, perhaps
constructivists.5

A closely related item is the extensional notion of function, as an arbitrary corre-
spondence between collections. The same goes for the notion of set, as an arbitrary
collection. In both cases, one might think that traditional philosophical issues are
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involved. If mathematical objects are mind-dependent, as an antirealist might con-
tend, then it would seem that the notions of “set” and “function,” like all mathemati-
cal notions, should be closely tied to some characterization, perhaps an algorithm or
a description in a particular language. The mind does not have direct access to
infinitary objects. Thus, our antirealist would not speak directly of functions and sets
themselves but of function and set presentations (see Shapiro [1980]). This would
make the notions of “function” and “set” inherently intensional and quite different
from their contemporary, extensional treatment. A realist, on the other hand, would
consider functions and sets themselves, as divorced from any descriptions, algorithms,
or names of them. The descriptions describe something.

The orientation suggested by these examples is that philosophy determines and
thus precedes practice in some sense. One first describes or discovers what math-
ematics is all about—whether, for example, mathematical entities are objective or
mind-dependent. This fixes the way mathematics is to be done. One who believes in
the independent existence of mathematical objects is likely to accept the law of ex-
cluded middle, impredicative definitions, the axiom of choice, extensionality, and
arbitrary sets and functions. As we have seen, many of these methodological prin-
ciples have been resisted on antirealist grounds and subsequently defended on real-
ist grounds. Let us call the perspective here the philosophy-first principle. The idea
is that we first figure out what it is that we are talking about and only then figure out
how to talk about it, and what to say about it. Philosophy thus has the noble task of
determining mathematics.

Despite the above examples, the philosophy-first principle is not true to the history
of mathematics. Classical logic, impredicative definition, the axiom of choice, exten-
sionality, and arbitrary functions and sets, are thoroughly entrenched in the practice of
modern mathematics. Substantially, the battles are over (at least in mathematics). But
at no time did the mathematical community don philosophical hats and decide that
mathematical objects—numbers, for example—really do exist, independently of the
minds of mathematicians, and for that reason decide that it is all right to engage in the
erstwhile questionable methodologies. If anything, it is the other way around.

The history of the axiom of choice makes an interesting case study (again, see
Moore [1982]). Some of its early proponents, like Zermelo and Hilbert, pointed out
that the axiom codifies a principle often used in mathematics. This observation turned
out to be insightful, and decisive. The first half of this century saw an intensive study
of the role of the axiom of choice in such central fields of mathematics as analysis,
algebra, and topology. It was learned that the principle is essential to the practice of
these branches as they had developed at the time. Ironically, implicit, but necessary,
uses of choice principles permeate the work of Baire, Borel, and Lebesgue, the major
opponents of the axiom of choice.6 In short, the principle of choice was not accepted

6. According to Taylor [1993], Zermelo (and Hilbert) held that the fact that choice principles are
entrenched in mathematical practice and are applied without thought is evidence that the axiom of choice
is self-evident. The self-evidence of choice is not automatically refuted by the fact that many intelli-
gent theorists balked at the principle once it was explicitly formulated. If Taylor is correct, then we
have here a substantive argument over whether something is self-evident. This is a much richer notion
of self-evidence than the bland one of obviousness.
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because realism sanctions it, but because it is needed. In a sense, mathematicians could
not help using it, and with hindsight, we see how impoverished mathematics would
be without it.

Similarly, the contemporary extensional notion of function as an arbitrary corre-
spondence and the notion of set as an arbitrary collection did not emerge from bla-
tant philosophical considerations. The notions developed from their intensional an-
cestors because of internal pressures within mathematics, mathematical physics in
particular. First principles were not involved. The extensional notions made for a
smoother and more useful theory. The tie to language, or to intensional items like
propositional functions, proved to be artificial and unproductive.7

The same goes for the other disputed principles, such as excluded middle and
impredicative definition. The extensive mathematical study of logical systems that
lack these tools shows just how different mathematics would be without them. Many
subtle distinctions must be made, definitions must be constantly checked for con-
structive or predicative pedigree, and the mathematician must pay close attention to
language. Crucially, many important results must be given up. Mathematicians do
not find the resulting systems attractive.8 The reasons for this may not be clear, but
it is not tied to traditional philosophy. It is noteworthy that most of the metatheory
used to study intuitionistic and predicative systems is itself nonconstructive.

The opening paragraph of Dedekind’s [1888] treatise on the natural numbers
explicitly rejects the constructivist perspective. Then there is a footnote: “I mention
this expressly because Kronecker not long ago . . . has endeavored to impose certain
limitations upon . . . mathematics which I do not believe to be justified; but there
seems to be no call to enter upon this matter with more detail until the distinguished
mathematician shall have published his reasons for the necessity or merely the expe-
diency of these limitations” (§2). Of course, Kronecker did state his reasons, but they
were philosophical. Dedekind apparently wanted to know why the mathematician,
as such, should restrict his methods. Philosophy, by itself, does not supply these
reasons.

Bernays [1935] is another interesting illustration of the present point. Although
his title is “Sur le platonisme dans les mathématiques” there is little concern with
traditional philosophical issues. Bernays notes at the outset that some people speak
of a “foundational crisis” in mathematics, but it “is only from the philosophical point
of view that objections have been raised.” This is an interesting contrast to the pas-
sage quoted earlier, from Bishop [1975, 507], which was written forty years later (in
another context, of course). Both speak of “crisis” in mathematics. For Bishop, the
problem was the unchecked use of nonconstructive methods. He thought that the
“crisis” was real but mostly unnoticed because of the neglect of philosophy. For
Bernays, on the other hand, the situation was the aftermath of various antinomies

7. See Stein [1988] and Wilson [1993a] for illuminating discussions of this historical development,
particularly through the work of Dirichlet.

8. An anecdote: An intuitionist once told me that he enjoys teaching graduate-level logic courses.
He praised the elegance and power of the Henkin proof of the completeness theorem but then added,
with a sigh, “too bad I can’t believe it.” Too bad indeed.
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and formal contradictions. However, Bernays saw no real crisis. In short, Bishop
saw an unnoticed but actual emergency, whereas Bernays saw a noticed but merely
apparent one.

The primary subject matter of Bernays [1935] is the dispute over impredicative
definitions and principles like excluded middle. As we have seen, the methodologi-
cal principles would be endorsed by realism. Bernays wrote, “The tendency of which
we are speaking consists in viewing the objects as cut off from all links with the re-
flecting subject. Since this tendency asserted itself especially in the philosophy of
Plato, allow me to call it ‘platonism’” (p. 259). The principles occur almost every-
where: “[T]he application is so widespread that it is not an exaggeration to state that
platonism reigns today in mathematics.” This is not a statement of the ontological
views of mathematicians in 1935, at least not directly. It is a statement of how mathe-
matics is done. Bernays concedes that the principles in question have led to trouble
within mathematics. For example, the view that all mathematical objects exist inde-
pendently of the mathematician and the view that all collections of mathematical
objects are themselves mathematical objects suggest an unrestricted comprehension
principle. Russell’s paradox follows and that, at least, is a real problem. One response
would be to reject the techniques sanctioned by Platonism and, in effect, to adopt
constructivism. This, however, is a “most radical” solution, because if it were fol-
lowed, mathematics would be crippled: “[M]athematicians generally are not at all
ready to exchange the well-tested and elegant methods of analysis for more compli-
cated methods unless there is an overriding necessity for it” (p. 264). Philosophical
arguments against realism do not amount to “overriding necessity,” nor does Russell’s
paradox. For Bernays, the real moral of the antinomies is to avoid the tendency to
draw rigid philosophical and methodological conclusions from the “Platonistic”
mathematics: “We have set forth . . . a restricted platonism which does not claim to
be more than . . . an ideal projection of a domain of thought. But the matter has not
rested there. Several mathematicians and philosophers interpret the methods of
platonism in the sense of conceptual realism, postulating the existence of a world of
ideal objects containing all the objects and relations of mathematics. . . . It is this
absolute platonism which has been shown untenable by the antinomies. . . . We must
therefore give up absolute platonism. But . . . this is almost the only injunction which
follows from the paradoxes” (p. 261). In short, there is a middle ground between
intuitionism and “absolute Platonism,” or there should be: “[T]he characteristic fea-
ture of intuitionism is [that of being founded] on the relation of the reflecting and
acting subject. . . . This is an extreme methodological position. It is contrary to the
customary manner of mathematics, which consists in establishing theories detached
as much as possible from the thinking subject. . . . For even if we admit that the ten-
dency away from the [thinking] subject has been pressed too far under the reign of
platonism, this does not lead us to believe that the truth lies in the opposite extreme”
(pp. 266–267). Note the constant attention to methodology.

Even in Gödel’s philosophical writing, the philosophy-first principle is not a domi-
nant theme. The purpose of Gödel [1944] is to respond to an explicit, philosophi-
cally based attack on mathematical principles. Gödel’s argument is that methodologi-
cal criticisms are based on a philosophy that one need not adopt. Other philosophies
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support other principles. Gödel did not argue for realism on the grounds of first prin-
ciples, prior to practice. His philosophical papers [1944], [1964] are lucid articula-
tions of realism, together with arguments that realism conforms well to the practice
of mathematics and, perhaps, arguments that realism provides a good guide to prac-
tice. Gödel is noted (and notorious) for the argument that the case for the existence
of mathematical objects is an exact parallel of the case for the existence of physical
objects. As I see it, Gödel’s point is that we draw both conclusions on the basis of
articulated and successful (mathematical and physical) theories. This is far from
philosophy-first.

It would probably beg the present question to reject the philosophy-first principle
just because it is not true to mathematical practice, or to the history of mathematics.
One can always concede the “data” of practice and history, while maintaining a nor-
mative claim that mathematics ought to be dominated by philosophy and, with Plato,
Bishop, and others, be critical of mathematicians when they neglect or violate the
true philosophical first principles. To pursue this normative claim, the philosopher
might formulate a telos for mathematics and then argue either that mathematicians
do not accept this telos but should, or else that mathematicians implicitly accept it
but do not act in accordance with it. We may be off on a regress, or it may come
down to a verbal dispute over what gets to be called “mathematics.” In any case, the
matter of normativity is a central and baffling item on the agenda of contemporary
philosophy. I do not know how this dialectic should continue.

Let us briefly examine a theme opposite to philosophy-first, the thesis that phi-
losophy is irrelevant to mathematics. On this perspective, mathematics has a life of
its own, quite independent of any philosophical considerations. A view concerning
the status of mathematical objects or statements is at best an epiphenomenon that
has nothing to contribute to mathematics, and is at worst a meaningless sophistry,
the rambling and meddling of outsiders. If philosophy of mathematics has a job at
all, it is to give a coherent account of mathematics as practiced up to that point. Phi-
losophers must wait on the mathematician (perhaps in two senses) and be prepared
to reject their own work, out of hand, if developments in mathematics come into
conflict with it. Call this the philosophy-last-if-at-all principle.

It must be admitted that philosophy-last has something to recommend it. The fact
is that many mathematicians, perhaps most, are not in the least interested in philoso-
phy, much less in specific questions of ontology or semantics; and it is mathemati-
cians, after all, who practice and further articulate their field. For better or for worse,
the discipline carries on quite independently of the musings of us philosophers.

It might be added that some mathematicians who do “don philosophical hats,” as
a hobby, present views at odds with their own practice. Cantor’s notorious psy-
chologism is but one example. Hersh [1979] suggests that it is typical for a math-
ematician to be a Platonist during the week, when doing mathematics, and a formal-
ist “on Sunday,” when there is leisure to think about mathematics. Carnap [1950]
uses a similar metaphor: “A physicist who is suspicious of abstract entities may per-
haps try to declare a certain part of the language of physics as uninterpreted and
uninterpretable, that part which refers to real numbers, . . . functions, limits, etc. More
probably he will just speak about all these things like anybody else, but with an un-
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9. Carnap’s perspective is considered further in chapter 2.

easy conscience, like a man who in his everyday life does with qualms many things
which are not in accord with the high moral principles he professes on Sundays”
(p. 241). This suggests that it is conducive to mathematics as such to treat, say, num-
bers as if they are part of an eternal, mind-independent realm, even if traditional
Platonism, as an articulated philosophy, causes discomfort. For example, the mathe-
matician will wonder how it is possible to know anything about this eternal realm.
After failing to solve this standard problem with Platonism, our Sunday philosopher
is led to views like formalism or psychologism, which are at odds with practice. The
practice is resumed Monday morning, as if nothing had happened. Nothing did hap-
pen, really.

As indicated by the above quote, there is some sentiment for philosophy-last from
philosophers. The writings of the Vienna Circle contain pronouncements against tra-
ditional philosophical questions, especially those of metaphysics. For Carnap, ques-
tions concerning the real existence of mathematical objects are sometimes declared
to be “external” to the mathematical language and, for this reason, they are mere
“pseudoquestions.”9

A popular view today is naturalism, characterized by Quine [1981, 72] as “the
abandonment of first philosophy” and “the recognition that it is within science itself
. . . that reality is to be identified and described” (see also Quine [1969]). The first
clause is, of course, the rejection of philosophy-first. The second may be read as an
endorsement of philosophy-last-if-at-all, but Quine himself does not go this far. He
regards science and philosophy as a seamless web. If he is right, our question loses
much of its force, if not its sense. Moreover, Quine’s naturalism focuses on science,
not mathematics. For Quine, the modern empiricist, the goal of the science/philoso-
phy enterprise is to account for and predict sensory experience—irradiations on our
nerve endings. Science has the only plausible line on this. Mathematics is accepted
only to the extent that it is needed for the scientific/philosophical enterprise (per-
haps with a little more mathematics thrown in, for “rounding things out”). The parts
of mathematics, such as advanced set theory, that go beyond this role are not accepted
(as true). Moreover, Quine himself makes proposals to mathematicians, based on
 this overall philosophy of mathematics and science. He suggests, for example, that
V = L be accepted in set theory because it makes for a cleaner theory. Presumably,
we are to ignore the fact that most set theorists are skeptical of V = L. This is in the
spirit of philosophy-first with respect to mathematics, even if it is science/philosophy-
first.

Some philosophers, like Burgess [1983] and Maddy [1990], [1998], do lean to-
ward philosophy-last with respect to mathematics. They apply naturalism to mathe-
matics and thereby declare that mathematics is and ought to be insulated from much
traditional philosophical inquiry, or any other probes that are not to be resolved by
mathematicians qua mathematicians. Philosophy-last follows, if one adds that only
considerations of methodology matter.

With characteristic wit, and with considerable professional modesty, David Lewis
[1993, 15] also explicitly rejects any thought of philosophically based revisions to
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mathematical practice: “I laugh to think how presumptuous it would be to reject
mathematics for philosophical reasons. How would you like to go and tell the mathe-
maticians that they must change their ways . . . ? Will you tell them, with a straight
face, to follow philosophical argument wherever it leads? If they challenge your cre-
dentials, will you boast of philosophy’s other great discoveries: That motion is im-
possible, . . . , that it is unthinkable that anything exists outside the mind, that time is
unreal, that no theory has ever been made at all probable by evidence, . . . , that it is
a wide-open scientific question whether anyone has ever believed anything, . . . ?
Not me!” Well, me neither. But perhaps this need not be philosophy-last-if-at-all.

The present antirevisionist attitude reflects an important difference between phi-
losophy of mathematics and, say, political theory and philosophy of religion. A phi-
losopher of politics is not to be dismissed for suggesting a moral error in an actual
government, like that of Kuwait. We would not expect a philosophical critic to
begin “How would you like to go down to the palace and tell them they must change
their ways?” Or, to the philosopher of religion, “How would you like to go to the
synagogue and tell them they must change their ways?” In both cases, it is standard
practice to recommend that the practitioner “follow philosophical argument wher-
ever it leads,” in full knowledge that this suggestion will be ignored, if it is heard at
all. Examples like these indicate a difference in attitude (if nothing else) between
mathematics/science on the one hand and politics/religion on the other. Many con-
temporary philosophers, including me, believe that scientists and mathematicians
usually know what they are doing, and that what they are doing is worthwhile. I do
not attempt to further articulate and defend this deferential attitude here.10

On the other hand, in adopting an antirevisionist perspective, I do not mean to
worship mathematics and mathematicians. No practice is sacrosanct. As fallible
human beings, mathematicians do occasionally make mistakes, even systematic mis-
takes; and some errors can be, and have been, uncovered by something recognizable
as philosophy. The present orientation is that any given principle used in mathemat-
ics is taken as correct by default, but not incorrigibly. The correctness of the bulk of
mathematics is a well-entrenched, high-level theoretical principle.11

10. To address this problem, one might argue that philosophy of science and philosophy of mathe-
matics are descriptive, not normative theories (see Burgess [1992]). Without further elaboration, how-
ever, this maneuver does not help. Notice, first, that much of philosophy of religion is descriptive, as
well. It deals with actual religions, not (only) what the philosopher thinks religion should be. More-
over, the subject matter of philosophy of mathematics is itself substantially normative, namely, cor-
rect mathematics, and good mathematics. The logic of mathematical discourse is an important philo-
sophical topic, and logic—the study of correct reasoning—is normative if anything is (see Shapiro
[1998]). A natural rejoinder might be to distinguish a descriptive theory of such norms from a norma-
tive theory of norms. The former deals with what the norms are, whereas the latter deals with what the
philosopher thinks they should be. I do not pursue this regress further here.

11. The antirevisionist spirit would also suggest that it is unhealthy to use philosophy (alone) to
restrict oneself or the mathematical community to classical mathematics. If one decides, for whatever
reason, that realism is true, it is still a bad move to conclude that there is something toxic about
intuitionistic, constructive, or predicative mathematics. There is no reason to oppose a nonclassical
program unless it is taken to replace classical mathematics. In chapter 6, I join Heyting in urging a
more eclectic approach to our subject. Let many flowers try to blossom.
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Historically, of course, there has not always been an intellectual wall separating
mathematicians and philosophers. Traditionally, most philosophers were aware of
the state of mathematics in their time and took it seriously for their work. Parsons
[1983, essay 1], for example, notes that rationalism is an attempt to extend the (per-
ceived) methodology of mathematics to all of science and philosophy. Their major
opponents, the empiricists, realized that mathematics does not readily fit their mold,
and they went to some lengths to accommodate it, sometimes distorting mathemat-
ics beyond recognition.

From the other side, recall that many major mathematicians were themselves major
philosophers, notably Descartes, Leibniz, perhaps Pascal, and, in more recent times,
Bolzano, Russell, Whitehead, Hilbert, Frege, Church, and Tarski. It must be conceded,
of course, that some of these thinkers subscribed to a version of philosophy-first.
Detailed historical analyses, beyond the present scope, would be needed to deter-
mine whether they practiced what they preached in this regard or, indeed, to trace
the mutual influence between their philosophy and their mathematics.

In any case, at least some mathematicians were concerned with philosophy and
used it at least as a guide to their work. Examples were discussed earlier in connec-
tion with the philosophy-first principle. Even if there are no philosophical first prin-
ciples, philosophy can set the direction of mathematical research. Bernays [1935],
for example, can be read as a rejection of philosophy-last, when he wrote that the
“value of platonistically inspired mathematical conceptions is that they furnish models
[that] stand out by their simplicity and logical strength.” In many minds, the current
state of mathematics is not good. It is a highly specialized and disoriented discipline,
with experts even in related fields unable to understand each other’s work. One often
hears complaints that mathematics, as a whole, lacks direction. Philosophy, includ-
ing ontology, might help provide orientation and direction, even if it does not supply
first principles.

For a striking example, Gödel claimed that his realism was an important factor in
the discovery of both the completeness of first-order logic and the incompleteness
of arithmetic. The completeness theorem is an easy consequence of some of Skolem’s
results. With hindsight, one must do little more than pose the question. Yet Skolem
did not do this. The reason can be traced to the different orientations that Skolem
and Gödel had toward mathematics, orientations that might loosely be described as
philosophical.12 However, this and other happy cases should be tempered with his-
torical examples of the negative influence of philosophy on mathematics, inspiring
researchers to form sects divorced from the mainstream, on the basis of proposals
that would inhibit the growth of mathematics.

Once again, someone might attempt to bypass all of this historical analysis and
argue for a normative claim, either that mathematics should not be influenced by
philosophy, even if it sometimes is, or that mathematics should be influenced by
philosophy, even if it usually is not. As before, it is not clear how the normative
question is to be resolved. My aim is different. Despite the foregoing antirevisionism,

12. See Gödel’s letters to Hao Wang, published in Wang [1974], and the introductions, by Burton
Dreben and Jean van Heijenoort, to the completeness results in Gödel [1986]. See also Gödel [1951].
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I doubt that the extreme of philosophy-last-if-at-all is healthy, on balance, for either
mathematics or philosophy. Whatever one’s view on this, however, it does not fol-
low that philosophy of mathematics is a mere handmaiden to mathematics. Philoso-
phers have their own interests, beyond those of their colleagues in other departments,
and the pursuit of those interests is interesting and worthwhile. The work of the phi-
losopher of mathematics should dovetail, and sometimes merge, with that of the
mathematician, but at least part of it is different work. One job of the philosopher is
to give an account of mathematics and its place in our intellectual lives. What is the
subject matter of mathematics? What is the relationship between the subject matter
of mathematics and the subject matter of science that allows such extensive applica-
tion and cross-fertilization? How do we manage to do and know mathematics? How
can mathematics be taught? How is mathematical language to be understood? In short,
the philosopher must say something about mathematics, something about the appli-
cations of mathematics, something about mathematical language, and something about
ourselves. A tall order.

Although it may be misleading to put it this way, the primary task of philosophy
of mathematics is to interpret mathematics and thus illuminate its place in the world
view. Because much interpretation is linguistic, a prima facie focus is the language
of mathematics. What do mathematical assertions mean? What is their logical form?
What is the best semantics for mathematical language? The answers to these ques-
tions determine the terms in which the other questions are to be addressed.

Antirevisionism can be formulated in this framework: it is mathematics that is to
be interpreted, and not what the philosopher hopes mathematics can be or should be,
and not what a prior (or a priori) philosophical theory says mathematics should be.
In general, interpretation can and should involve criticism, but here at least, criti-
cism does not come from outside—from preconceived first principles.

It will help illustrate the perspective here to distinguish three types of philosophi-
cal issues and tasks. Of course, the borders are rough, even indiscernible in some
cases.

First, there are very general philosophical issues, typically concerning all of math-
ematics. Most of these questions come from general philosophy: matters of ontol-
ogy, epistemology, and semantics. In this regard, mathematics is a case study for the
philosopher, one among many. Some of the problems and issues on the main agenda
of contemporary philosophy have remarkably clean formulations when applied to
mathematics.

The second group of issues consists of attempts to interpret specific mathemati-
cal or scientific results. In recent times, examples come from mathematical logic:
the Löwenheim-Skolem theorems, Gödel’s completeness and incompleteness theo-
rems, compactness, and the wealth of independence results. To some extent, ques-
tions concerning the applications of mathematics fit here, as well. What can a theo-
rem tell us about the natural world studied by science? There are (or were) those who
take mathematics to be no more than a meaningless game played with alphanumeric
characters, but everyone else holds that mathematics has some sort of independent
meaning. But what is this meaning? And when results like the Löwenheim-Skolem
theorem and the incompleteness theorems come along, what exactly do they say or
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imply about the nonmathematical world, about human knowability, and so on? Typi-
cally, philosophers cannot go very far in addressing such questions before encoun-
tering the more general ones.

The third group of issues consists of attempts to articulate and interpret particular
mathematical theories and concepts. Foundational work in arithmetic and analysis
fits here. Sometimes, this sort of activity has ramifications for mathematics itself,
and thus challenges and blurs the boundary between the disciplines. Interesting and
powerful research techniques are often suggested by foundational work that forges
connections between mathematical fields. Besides mathematical logic, consider, for
example, the embedding of the natural numbers in the complex plane, via analytic
number theory. Indeed, whole branches of mathematics have been spawned by foun-
dational activity. Wilson [1992] shows how much of the mathematical foundational
activity consists of finding “natural settings” for various structures and concepts—
the environment that best illuminates the items under study.

From another perspective, sometimes developments within mathematics lead to
unclarities as to what a certain concept is. The example developed in Lakatos [1976]
is a case in point. A series of “proofs and refutations” left interesting and important
questions over just what a polyhedron is, and this led to foundational work that is at
least in part philosophical. Again, consider the task of accommodating or understand-
ing the status of dynamic language in geometry. The attempt to understand the “al-
lowed moves” of compass and straightedge construction led to important insights.
For yet another example, recall that work leading to the foundations of analysis led
to unclarities over just what a function is, ultimately yielding the modern notion of
function as arbitrary correspondence. The questions are at least partly ontological,
and so perhaps philosophy can set the direction for at least some of this type of work.

This third group of issues underscores the interpretive feature of philosophy of
mathematics. We need to figure out what a given mathematical concept is and what
a stretch of mathematical discourse says. The Lakatos [1976] study, for example,
begins with a “proof” that consists of a thought experiment in which one removes
one of the faces of a given polyhedron, stretches the remainder out on a flat surface,
and then draws lines, cuts, and removes the various parts—keeping certain tallies
along the way. It is not clear a priori how this blatantly dynamic discourse is to be
understood. It is not a lab report of an experiment. What is the logical form of the
discourse, and what is its logic? What is its ontology? Much of the subsequent math-
ematical/philosophical work addresses just these questions.

Similarly, can one tell from surface grammar alone that an expression like dx is
not a singular term that denotes a mathematical object, whereas dy/dx may very well
denote something (a function, not a quotient)? The history of analysis shows a long
and tortuous process of showing just what expressions like this mean.

Of course, mathematics can often go on quite well without this interpretive work,
and sometimes the interpretive work is premature and is a distraction at best.
Berkeley’s famous and logically penetrating critique of analysis was largely ignored
among mathematicians—so long as they knew “how to go on,” as Wittgenstein might
put it. In the present context, the question is whether mathematicians must stop mathe-
matics until they have a semantics for their discourse fully worked out. Surely not.
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On occasion, however, tensions within mathematics lead to the interpretive philo-
sophical/semantic enterprise.13 Sometimes, mathematicians are not all that sure how
to “go on as before,” nor are they sure just what the concepts are. Moreover, we are
never certain that the interpretive project is accurate and complete and that other
problems are not lurking ahead.

These considerations temper the antirevisionism urged earlier. Suppose philoso-
phers decide that a certain inference or technique T is illegitimate and should not be
used in mathematics. Even if they are right, they cannot go on to criticize an actual
piece of mathematics unless they know that T has been employed in it. However,
one typically does not know which principles have been used until at least some of
the foregoing interpretive work is complete. Live mathematicians do not speak and
write in formal languages, and the underlying logic and ontology of mathematical
discourse is not always near the surface. Because lines in mathematical discourse
are not usually justified by citing inference rules from a logic text, even attributing a
rule of inference to a mathematician involves some interpretation. The Lakatos ex-
ample, the emerging notion of function, the rigorization of analysis, and the solution
of the construction problems in geometry are all cases in point.

To be sure, many mathematicians are interested in the more general philosophi-
cal matters, and perhaps one can argue that they should be. Specialization is a good
thing, but it can go too far when impenetrable walls are built. It is a question of
emphasis and focus. As we have seen, some mathematicians are too quick to accept
a philosophy, and some philosophers do not look closely enough at real mathematics.

As far as I can tell, the perspective urged here does not have a preexisting label,
and I do not propose to coin one. The word “holism” is so overworked as to be al-
most meaningless, but I do embrace some holistic elements. Philosophy and mathe-
matics are intimately interrelated, with neither one dominating the other. One can-
not “read off” the correct way to do mathematics from the true ontology, nor can one
“read off” the true ontology from mathematics as practiced. The same goes for se-
mantics, epistemology, and even methodology. Quine [1960] opens with a quota-
tion from Neurath [1932]: “We are like sailors who have to rebuild their ship on the
open sea, without being able to dismantle it in dry dock and reconstruct it from the
best components.” Quine was right to omit the next sentence in Neurath’s text, which
is “Only metaphysics can disappear without trace.” Metaphysics is an integral part
of the “ship” and cannot be exorcized from it. Quine’s view, of course, is that there
are no sharp borders between philosophy, mathematics, and science, and I agree with
this much. Presumably, a philosophical view that is totally divorced from mathematics
as practiced should be rejected, and traffic along and across the blurry border is to be
encouraged.

So much for my “holism.” Notice, on the other hand, that the foregoing considera-
tions are not compatible with many typical “holistic” pronouncements, such as those
labeled “epistemological holism” and “meaning holism,” nor are they compatible
with some of Quine’s central theses. Mathematics and philosophy are related and

13. I have benefited considerably from discussion with Mark Wilson.
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connected, to be sure, but they are not part of a seamless web that is ultimately an-
swerable to (and only to) sensory perception (see Resnik [1998]). There are seams,
even if they are fuzzy and even if it sometimes does not matter where they are. More
important, sensory perception is not the be-all and end-all of epistemology. Neither
the philosopher nor the mathematician faces (only) that tribunal. I agree with the
opponents of holism that mathematics and its philosophy are autonomous disciplines,
each commanding respect, but I agree with the holist that mathematics and philoso-
phy are interlocked. I propose the metaphor of a partnership or a healthy marriage,
rather than a merger or a blending—a stew rather than a melting pot.

As I conceive it, philosophy of mathematics is done by those who care about
mathematics and want to understand its role in the intellectual enterprise, in the ship
of Neurath. A mathematician who adopts a philosophy of mathematics should gain
something by this, an orientation toward the work, some insight into its perspective
and role, and at least a tentative guide to its direction—what sorts of problems are
important, what questions should be posed, what methodologies are reasonable, what
is likely to succeed. The difference between this and first principles is that theses on
such matters are defeasible, as mathematics develops and evolves.
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2

Object and Truth

A Realist Manifesto

1. An anecdote: I once found myself chatting with a logician about a student of his who had just
completed a dissertation that defended antirealism in set theory. As luck would have it, the student
walked in a few minutes later. After introductions, I suggested that we get together for an argument
sometime before he left town. He growled at me, and we never did discuss the matter.

1 Slogans

The topic of this chapter is the matter of realism and antirealism in philosophy of
mathematics. What is at stake when one adopts or rejects a view on these matters?
Things have gotten murky lately, despite a wealth of illuminating activity in the
philosophy of mathematics.

Traditionally, a realist about numbers is someone who earnestly says, or explic-
itly or implicitly believes, that numbers exist. The antirealist opposition says or be-
lieves “Oh no, they don’t.” Passions run high over this, about as high as they get in
contemporary philosophy.1 Curiously, there is not much attention directed at the
questions themselves. It is as if everyone already understands what “existence,” “ob-
ject,” and “objectivity” come to here. Armed with this understanding, we are ready
to take up arms over the matter. What are we fighting about?

I propose that realism and antirealism be understood not so much in terms of slo-
gans and rhetoric but as types of competing, sober programs. Their proponents look
for answers to philosophical questions in different places. Both programs begin with
the same questions, those enumerated in the previous chapter. What is the seman-
tics, and logical form, of mathematical statements? What is mathematics about (if
anything)? How can it be known? How is mathematics applied in the study of the
physical world? There are also problems unique to each program. The deepest prob-
lems for realism are on the epistemic front: how is it possible for humans to know
anything about an eternal (or timeless), abstract, mathematical realm? Conceivably,
a realist program and an antirealist program can both succeed, each by its own lights.



OBJECT AND TRUTH: A REALIST MANIFESTO 37

2. As intuitionists, these truth-value antirealists demand changes in the way mathematics is done
(see chapter 1). In chapter 6, I explore the possibility of truth-value antirealism without revisionism.

That is, each program might provide good answers to all outstanding problems, an-
swers at least acceptable to its advocates. From a neutral perspective, there would be
a standoff. In the meantime, the rhetoric might be submerged and adjudication post-
poned until the programs have been further executed. Let all of the flowers try to
blossom.

Even at the level of slogans, there are two different realist themes. The first is that
mathematical objects exist independently of mathematicians, and their minds, lan-
guages, and so on. Call this realism in ontology. The second theme is that mathematical
statements have objective truth-values independent of the minds, languages, conven-
tions, and so forth, of mathematicians. Call this realism in truth-value.

Realism in ontology is sometimes called “platonism,” with a lowercase “p.”
Hellman [1989] dubs the view “objects platonism.” The connection with Plato sug-
gests a quasi-mystical connection between humans and an abstract and detached
realm, a connection denied by most realists in ontology. Here, I prefer the more cum-
bersome expression “realism in ontology.” On the contemporary scene, realism in
truth-value is sometimes just called “realism.”

The traditional battles in philosophy of mathematics focused on ontology. Onto-
logical realism stands opposed to idealism, nominalism, and the like. Kreisel is often
credited with shifting attention toward realism in truth-value, proposing that the in-
teresting and important questions are not over mathematical objects, but over the
objectivity of mathematical discourse.

A survey of the recent literature reveals no consensus on any logical connection
among the different realist theses or their negations. Each of the four possible posi-
tions is articulated and defended by established and influential philosophers of mathe-
matics. Once the key notions are developed a little further, this book articulates a
variety of realism in both ontology and truth-value. In many respects, my views are
a variant of those of Resnik [1981], [1982]. Maddy [1990] and Gödel [1944], [1964]
also accept both forms of realism. Chihara [1990] and Hellman [1989] each develop
programs best characterized as antirealism in ontology, realism in truth-value. Their
idea is to cast mathematics in a language that contains modal operators, with the re-
sult that mathematics has no distinctive ontology. However, statements with the modal
operators have objective, nonvacuous truth-values (see chapter 7). Dummett [1973],
[1977] and the traditional intuitionists are antirealists in both ontology and truth-value
(although as we saw in chapter 1, Heyting spoke more of antirealism in ontology,
with Brouwer and Dummett defending antirealism in truth-value). I am aware of only
one example of a realist in ontology, antirealist in truth-value, Tennant [1987].2

It is time to move beyond slogans. The next section characterizes a methodologi-
cal position, called “working realism,” which has been confused with realism in
ontology. Working realism is a description of how mathematics is done, but there is
little attempt to answer the questions that motivate philosophy of mathematics.
Working realism, by itself, has few or no consequences for semantics, ontology, and
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how mathematics is applied in the sciences. The strongest versions of working real-
ism amount to claims that mathematics can (or should) be pursued as if its subject
matter were a realm of independently existing, abstract, and eternal (or timeless)
entities. But that is all. Working realism is consistent with antirealism in ontology
and with antirealism in truth-value. Anyone who is not out to revise current mathe-
matics is probably a working realist at some level.

Section 3 articulates a more robust program, called “philosophical realism” or
“realism” simpliciter, a combination of realism in ontology and realism in truth-value.
Philosophical realism is a plan for understanding the structure of part of the ship of
Neurath, the part concerning mathematics. The idea is to start the philosophical pro-
cess by asserting the objectivity of mathematical truth and the independent existence
of a realm of mathematical objects. As such, philosophical realism is only a start.

Section 4 is a brief account of antirealist programs, for purposes of contrast. In
section 5, some Quinean concepts and ideas on the agenda of contemporary philoso-
phy are woven into the fabric of realism so construed. These include the relativity of
ontology, the inscrutability of reference, and the thesis that ontology is determined
by the range of bound variables. The closing, section 6, further elaborates the con-
trast between working realism and philosophical realism by relating that distinction
to some formally similar contrasts in the literature on metaphysics and philosophy
of science, specifically Carnap’s internal/external questions, Arthur Fine’s natural
ontological attitude, and Putnam’s internal realism.

2 Methodology

I define a working realist to be a person (or community) who uses or accepts the
mathematical inferences and assertions suggested by traditional realism and rejected
by others on antirealist grounds. The methodological principles in question were
discussed in chapter 1: impredicative definitions, the axiom of choice, general ex-
tensionality, arbitrary functions and sets, and classical logic. Working realism is a
view concerning mathematical practice or, to be precise, a view concerning how
practice is to be described. Resnik [1980, 162] calls this view “methodological
platonism.”

There are, to speak (very) roughly, several levels of working realism. Each level
includes those below it, and the boundaries between them are not sharp. The first,
and weakest, level applies to those mathematicians whose practice can be character-
ized as conforming to the aforementioned principles and inferences. This working
realism is purely descriptive and, moreover, such mathematicians themselves may
or may not accept the description, were it offered to them. One is a working realist in
this sense if one seems to use excluded middle, the axiom of choice, and the like,
uncritically, even if one does not acknowledge or otherwise admit that one’s prac-
tice adheres to these principles. We might call this “third-person working realism,”
because the characterization of practice may be disputed by those who engage in the
practice. To continue a point from chapter 1, the analysts Baire, Borel, and Lebesgue
were working realists in this weak sense, at least in part. Choice principles, or equiva-
lents, occurred subtly but essentially throughout their work, even though these mathe-
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maticians explicitly rejected the axiom of choice once it was explicitly formulated.
Certainly, they would not accept the characterization of themselves as working realists.

The next level of working realism occurs when mathematicians acknowledge that
their current work (more or less) conforms to the items in question. This is “first-
person working realism.” Because there may be no commitment that their future work
will so conform, this working realism is still descriptive. Such theorists agree that,
so far, they have been using excluded middle, the axiom of choice, and so on, and all
is well; but who knows what the future may bring? This is first-person working
realism.

The third level of working realism is normative. The principles and inferences in
question are accepted as templates to guide further research and as grounds for criti-
cizing others. These mathematicians hold, for whatever reason, that mathematics
should conform to classical logic, impredicative definition, choice, and so forth. As
we have seen, Dedekind, Bernays, and Gödel were self-acknowledged working
realists in this third sense. Baire, Borel, and Lebesgue were not.3

There are, perhaps, borderline cases between the various levels of working real-
ism. A “cautious working realist” might make full use of excluded middle, the axiom
of choice, and the like, but will keep track of such uses, just in case, and may devote
effort to eliminating them, in the interests of security. The normative working realist
may take such activity to be a waste of time, energy, and talent.4 In any case, we do
not need this fine a taxonomy here.

As noted in chapter 1, philosophy of mathematics is an interpretive enterprise.
One must engage in at least some interpretation in order to arrive at working real-
ism. Mathematicians do not speak or write in the formal language of mathematical
logic, and the underlying logical forms of real mathematical assertions are not right
on the surface. Neither are the rules of inference. The theorist must interpret a given
stretch of mathematical discourse as a sequence of well-formed formulas. Even after
a piece of mathematics has been rendered in a formal language, it may not be clear

3. The differences between the levels of working realism echoes a distinction in cognitive science
between “rule-describable behavior” and “rule-following behavior.” The former is activity performed
as if the subject were following a particular rule, with no position on how the activity is actually per-
formed (or should be performed). In the present context, the “rules” are classical logic, impredicative
definition, and the like. Advocates of the weaker forms of working realism hold that the practice of
mathematics is rule-describable, whereas the strong normative version takes mathematics to be rule-
following activity. Of course, there are a number of distinctions to be made here: rules can be explicit
or implicit, conscious or unconscious; and there are Wittgensteinian criticisms of rule-following to be
dealt with.

4. Questions about what is interesting and worthy of pursuit have ramifications for methodology
and for the development of mathematics. In part, this is because such matters weigh on editors at least
as much as (if not more than) correctness. Moore [1982, 215] reports an interesting anecdote. In the
early 1920s, Tarski proved that the axiom of choice is equivalent to the statement that for every infi-
nite cardinal k, k2 = k. He sent the report to Lebesgue, asking him to submit it to a journal of the Paris
Academy of Science. Lebesgue rejected the note, on the grounds that he opposed the axiom of choice.
Trying to be helpful, Lebesgue suggested that Tarski send the note to Hadamard. When Tarski fol-
lowed this advice, Hadamard also rejected the note, saying that because the axiom of choice is true,
there is no point in proving it from the equation.
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which principles and rules of inference have been invoked, nor do we automatically
know what caveats and restrictions the principles and rules are supposed to have.
Logic teachers usually require students to justify each line with an explicit, previ-
ously articulated rule, but mathematicians do not write that way. Typically, the rules
themselves are not part of the discourse being interpreted. The philosopher or logi-
cian understands the discourse as an instance of excluded middle, countable choice,
and so on.

The situation here is a matter of matching theory to data—curve fitting. The
“theory” is working realism and the “data” is actual (correct) mathematical discourse.
Kreisel [1967] remarks that it is rare for mathematicians to dispute individual infer-
ences, as they occur in practice. The serious and sustained disagreements are usually
at the level of axioms and rules of inference. Kreisel’s historical claim may be an
overstatement, but it does highlight the important distinction between arguments over
the correctness of a given piece of mathematical discourse and arguments over how
that discourse is to be described and codified. Working realism is a global position
in the latter debate, and as an interpretive project, it is in part philosophical.

Nevertheless, working realism, even the bold normative version of it, is not a full
philosophy, at least not by itself. It is a scant beginning to a philosophical program.
Working realism is a theory of how mathematics is done and, in the bold articula-
tion, a theory of how mathematics ought to be done, but so far there is no attempt to
answer the philosophical questions about mathematics that motivate our enterprise
in the first place. There is no ontology, no epistemology, no semantics, and no ac-
count of application. Working realism, at all levels, is silent on these matters. The
normative version is a statement of how mathematics should be pursued, but noth-
ing yet is added as to why it should be pursued that way. Working realism may give
the norms, but it does not give the telos.

To use an overworked term, working realism is more or less “internal” to mathe-
matics, limited to methodology, and it does not do what philosophy of mathematics
is supposed to do. We do not get any perspective on the place of mathematics in the
ship of Neurath. If there is a coherent antirealist program that does not require revi-
sions in how mathematics is to be done (see chapter 6), working realism is consistent
with antirealism. For that matter, it may not even be compatible with realism if that
philosophical program is thwarted. When I stated that working realism is only a scant
beginning to a program of philosophy of mathematics, this holds for realism and the
various forms of antirealism alike.

One might ask about the orientation of working realism toward statements, like
the continuum hypothesis and various determinacy principles, which are indepen-
dent of set theory. In less foundational terms, the issue concerns statements that are
logically independent of whatever is held by consensus of mathematicians working
in certain fields.

Notice, first, that no one is troubled by the fact that the commutativity of multi-
plication is independent of the axioms of group theory. This is because, on all ac-
counts, group theory is not about a single structure that is unique up to isomorphism.
Rather, group theory is about a class of related structures. The same goes for field
theory, topology, and so on. I call such fields “algebraic.” The status of independent
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statements arises (if it does) only in fields like arithmetic, analysis, and perhaps set
theory. Mathematicians sometimes call fields like arithmetic and analysis “concrete,”
but that term has other uses in philosophy. The idea is that each such field is about a
single structure, or isomorphism type. For lack of a better term, I call the fields
“nonalgebraic.”

Of course, I just put the distinction between algebraic and nonalgebraic fields in
terms of intended subject matter. This raises matters of ontology, and thereby goes
beyond working realism. The problem is to account for the difference between alge-
braic and nonalgebraic fields in terms of mathematical practice alone.

The orientation toward independent statements is potentially important for the
practice of mathematics. If I hold (for whatever reason) that a given statement has a
determinate truth-value, then I may devote some effort to figuring out this truth-value
(never mind how). If, on the other hand, I do not think the statement has a truth-value,
and yet I take the statement to be significant, then I will assert it or not, depending on
which option produces the best, the most convenient, the most useful, or even the
most elegant theory. By way of analogy, in algebraic areas, one may study theories
without the “disputed” item, theories with it, and theories with its negation. At this
point, it is not clear whether the criteria one mathematician would use for determin-
ing the “truth” of the disputed item are the same as those another would adopt for
determining what is best or most convenient.5

Again, a working realist is one who accepts (at some level) principles and infer-
ences like the law of excluded middle, impredicative definition, and the axiom of
choice. So far, this carries no commitment to there being a fact of the matter con-
cerning, say, the continuum hypothesis (CH). Such mathematicians may assert that
CH has a truth-value, that it does not, or even that they do not know (or care) whether
CH has a truth-value. Because our working realists do accept the law of excluded
middle, they will accept “CH or not-CH,” but this is different from the assertion that
CH has a determinate truth-value. To pursue our analogy, notice that excluded middle
holds in algebraic fields. For example, it follows from the axioms of group theory
that either multiplication is commutative or it is not:

œxœy(xy = yx) w ›x›y(xy ≠ yx),

but there is no group-theoretic fact of the matter whether multiplication is commuta-
tive. It is commutative in some groups and not in others. In semantic terms, excluded
middle and bivalence are not equivalent.

Of course, semantic bivalence does follow from excluded middle together with
the main principles of Tarskian semantics. That is, if we take the so-called
“T-sentences” as premises and we define F(A) as T(5A), then A w 5A is equivalent
to T(A) w F(A) (in intuitionistic logic). The latter seems like a good (object-lan-
guage) rendering of the statement that A has a truth-value. This suggests that the
distinction between algebraic and nonalgebraic fields may be articulated in terms
of semantics, but here again we go beyond working realism. I conclude that work-

5. See Maddy [1990] for a lucid account of the methodological role of independent statements. I
am indebted to Maddy for pressing this issue.
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ing realism, as articulated so far, does not entail that independent statements have
a truth-value.

Traditional Platonists often remark that, on their view, mathematical objects and
ordinary physical objects are the same kind of thing. Resnik [1980, 162], for example,
defines an “ontological platonist” to be someone who holds that ordinary physical
objects and, say, numbers are “on a par.” For working realism there is some truth to
this slogan, but it is potentially misleading. In the first place, working realism is not
a view about the ontological status of mathematical objects. Working realism is lim-
ited to methodology. So, the phrase “on a par” must be restricted to analogies be-
tween how mathematical discourse and reasoning is best described and how ordi-
nary discourse and reasoning is best described. The working realist may contend that
nouns and variables function much the same way in both contexts. This would de-
pend on whether ordinary discourse conforms to the items in question: extensional-
ity, arbitrary functions and sets, impredicative definition, choice, and classical logic.

When it comes to ordinary language, most of the items are straightforward. Clearly,
there are extensional contexts in ordinary discourse, and there is no problem with
arbitrary functions and sets. Moreover, impredicative definitions are allowed with-
out controversy in ordinary discourse, as noted in chapter 1. If, for example, some-
one defines the “old fart” to be “the oldest member of the faculty,” there would be
no raised eyebrows, or at least none motivated by philosophy. In ordinary discourse,
the axiom of choice is also moot, but even in mathematics there is no problem with
choice principles when all the domains are finite. Outside of mathematics, one rarely
wonders about choice functions for infinite collections. Indeed, if such a question
did come up in, say, physics, one would be inclined to think that it is really mathe-
matics that is being done (even if we agree that there is no sharp border between
mathematics and physics).

To finish the analogy between ordinary and mathematical discourse (for now),
the major remaining theme of working realism is that the logic of mathematics is
classical. The logic of ordinary discourse, however, is not at all straightforward. Logic
teachers quickly become adept at showing beginning students how classical logical
connectives differ from their counterparts in ordinary language. The largest gap is
probably that between the truth-functional conditional and the various conditionals
of, say, English. The two statements, “If Nixon had been more belligerent in Viet
Nam, the Communists would have backed down” and “If Nixon had been more bel-
ligerent in Viet Nam, a world war would have started” are not both true, and cer-
tainly not both true just because the antecedents are false. Of course, those too steeped
in elementary logic may think otherwise. To some extent, every truth-functional
connective differs from its counterpart in ordinary language. Classical conjunction,
for example, is timeless, whereas the word “and” often is not. The inference, from
A & B infer A, is not refuted by pointing out that “Larkin is at first and there is a

ground ball up the middle” does not entail “Larkin is at first.” Similarly, “Socrates
runs and Socrates stops” is not equivalent to “Socrates stops and Socrates runs.”6

6. A previous referee pointed out that temporality can be invoked without mentioning conjunction.
The locution “Socrates stops. Socrates runs” is not equivalent to “Socrates runs. Socrates stops,”and
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Here, perhaps, we can make classical logic fit ordinary discourse by introducing
time parameters. “Larkin is at first at t1, and there is a ground ball up the middle at
t2” does clearly entail “Larkin is at first at t1.” The conditional is not handled so eas-
ily, however. A casual survey of the literature reveals no consensus on the logic of
conditional sentences. Moreover, ordinary language has features like ambiguity,
vagueness, and modality, and again there is no agreement that we can make every-
thing fit classical logic.

There are several possible diagnoses for this situation, but for present purposes
they all point in the same direction. First, one may hold that classical connectives
and classical logic somehow capture the “deep structure” of both ordinary and
mathematical discourse. If so, it is closer to the “surface” in the case of mathemat-
ics. A second diagnosis is that classical connectives are highly simplified math-
ematical models of their counterparts in both ordinary and mathematical discourse.
On this view, the logic of both contexts is only “more or less classical.” Even so,
the approximations are much better in the case of mathematics. Statements of pure
mathematics, for example, are not usually inflected for tense, even implicitly
(if we ignore dynamic language, Turing-machine talk, etc., see chapters 1 and 6).
Furthermore, mathematical predicates are not usually vague, and modality is not
invoked in a nontrivial, substantive manner. In contrast, one must do a consider-
able amount of contentious philosophical/semantic analysis in order to get ordi-
nary discourse even approximately into the mold of classical logic. A third diag-
nosis is that the connectives of both ordinary and mathematical discourse are
“stronger” than the truth-functional ones, but this extra strength does not matter in
the case of mathematics. The idea is that the semantics of the conjunction always
has a temporal component, but this component makes no difference in the case of
mathematics, because there are no time-bound mathematical events. Or perhaps
the truth of a conditional always requires some sort of connection between ante-
cedent and consequent, but this connection is moot in the case of mathematics.
Accordingly, the semantics of both mathematical and ordinary discourse is non-
classical, but the logic of mathematics looks classical, because the nonclassical
elements play no role there.7

Under each of the diagnoses, then, classical logic describes mathematical discourse
better than it does ordinary discourse. Thus, it is not helpful, and is potentially mis-
leading, to characterize working realism as the linguistic, or logical, treatment of
mathematical objects “on a par with” ordinary physical objects. In effect, the orien-
tation of working realism is that mathematical objects are to be treated more like the

 “Larkin is at first. There is a ground ball up the middle.” does not entail “Larkin is at first.” This sug-
gests another mismatch between traditional logic and reasoning in ordinary, nonmathematical contexts.
In ordinary contexts, the order of the premises sometimes matters. The practice of taking premises to
be unordered sets may work reasonably well in modeling mathematical reasoning, but for studying of
ordinary discourse, it may be better to structure premises into ordered sequences.

7. I thank a previous referee for the last suggestion. The major tools of both proof theory and model
theory were developed in large part by paying attention to mathematical language (from the perspec-
tive of working realism) and not by focusing on ordinary language. This theme recurs throughout this
book.
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kinds of things traditional Platonists say they are. That is, mathematical objects are
to be treated as if they are timeless, eternal, and independent of the mathematician;
and as if mathematical properties and relations are absolutely precise. This orienta-
tion serves to eliminate the complicating features of ordinary discourse, such as tem-
porality and vagueness, and it sanctions impredicative definition, classical logic, and
so on.8 But, as Hans Vaihinger [1913, 73] reminds us, to treat mathematical objects
as if they are a certain way is not to hold that they are that way: “We are dealing with
a closely woven net, a fine tissue of . . . concepts in which we envelop reality. We
achieve a passable success; but that does not mean that the content must take the form
of the net woven around it.” Once again, adopting working realism may not rule out
antirealism.

3 Philosophy

There is a more full-fledged version of realism, which I call philosophical realism,
or realism simpliciter. In line with the conclusions of chapter 1, this philosophy does
not provide first principles for mathematics, nor is it a foundation in bedrock, nor
does it provide the ultimate justification for mathematics. Rather, realism is a type of
program for structuring part of the ship of Neurath, the part concerning mathemat-
ics. It provides a framework for addressing philosophical questions about mathemat-
ics: to characterize its subject matter (if it has one); to account for how mathematics
is learned, communicated, and extended; and to delineate the place of mathematics
in our overall intellectual lives, science in particular.

As above, realism has traditionally been characterized as the view that mathemati-
cal objects exist independently of the mathematician or the view that mathematical
statements have objective, nonvacuous truth conditions also independently of the
mathematician. These views, which I call “realism in ontology” and “realism in truth-
value” respectively, are a good place to start. Our philosophical realist attacks the
philosophical questions by postulating an independently existing realm of mathemati-
cal objects and suggesting that mathematical discourse is objective.

There is a natural, if not inevitable, link between working realism and philosophical
realism. In endorsing classical logic, and the like, the working realist proposes that
the formal languages of now-standard logic texts give something like the deep struc-
ture of mathematical discourse—at least for the purposes of describing the method-
ology of mathematics. Philosophical realism is just the attempt to take these formal
languages at face value. Taken literally, the variables of mathematical discourse range
over a domain of discourse. This domain is the ontology, or at least a gesture in that
direction. Standard semantics suggests genuine, bivalent, nonvacuous truth condi-
tions for the sentences in the language. Thus, philosophical realism is the received
view or the first guess or the default philosophy suggested by the combination of
working realism and standard logical theory.

8. To pursue this characterization of working realism, one can state that the mathematician treats
independent statements as if they have determinate truth-values.
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To reiterate the obvious, then, the philosophical realist does believe that mathe-
matics has a subject matter. It is about the items in the range of the variables of the
formal languages. The first item on the agenda of this program is an account of the
nature of the postulated objects. What, after all, are these numbers, sets, and so on?
The account would presumably yield truth conditions for the statements of mathe-
matics. For the program to succeed, we also need to be told how a language with
these truth conditions can be learned and how humans manage to exchange informa-
tion about the mathematical realm. How do mathematicians make true assertions most
of the time? Clearly, philosophical realism needs an epistemology. That is the sec-
ond item on the agenda.

At just this point, the Benacerraf [1973] dilemma raises its head. It looks like we
cannot accomplish both jobs and remain realists. How can there be a plausible epis-
temology in which living, breathing organisms come to know anything substantial
about an atemporal realm of mathematical objects, all of which are outside the causal
nexus? I take it that some humans do have mathematical knowledge. How can this
knowledge be squared with the ontological claims of philosophical realism? How
can we say anything about mathematical objects and have any confidence that what
we say is true?

To briefly summarize familiar material, these questions have been developed into
outright objections to philosophical realism by arguing for an epistemological claim
that it is impossible for thoroughly biological organisms to get information about an
acausal realm. The premier exemplar of this claim is the so-called causal theory of
knowledge, a thesis that one cannot know about a particular kind of object unless
there is some causal link between the knower and at least samples of the objects.
Ordinary objects, it is claimed, are known via causal links, but according to realism
mathematical objects cannot be. Even though the causal theory is not the only, or
even the most prominent, epistemology nowadays,9 the Benacerraf challenge remains.
How can we have mathematical objects and know about them? I take the develop-
ment of an epistemology to be the central problem facing the program of philosophical
realism.

Another major item on the philosopher’s agenda is a plausible account of how
mathematics is applied in science. After all, mathematics is an important ingredient
in most of our best efforts to study physical and human reality. Thus, our realist needs
to show us how the mathematical objects relate to the physical and human world, so
that mathematical truth can figure in scientific truth, and mathematical knowledge
can figure in scientific knowledge.

For realism, the question of applications is a double-edged sword, supporting real-
ism and yet indicating a deep problem for it. First, it is widely agreed that the con-
nection with science is a motivation for realism. Mathematics is thoroughly entrenched
in the practice of science, to the point that many hold that there is no sharp border
between them. Thus, it is natural to attempt a uniform semantics for both mathemati-

9. See Dieterle [1994, chapter 2] for an application of “reliabilist” epistemology to a realism simi-
lar to the present one.
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cal and scientific languages. If our best interpretation of science points toward real-
ism, then the desire for a uniform semantics would suggest realism in mathematics,
as well.

A much-discussed argument for realism, attributed to Quine and Putnam, focuses
on the connections between mathematics and science (see, for example, Putnam
[1971]). Because mathematics is indispensable for science and because the basic
principles of science are (more or less) true, most of the basic principles of mathe-
matics are true as well. This is realism in truth-value. Moreover, if we take the lan-
guage of mathematics, as reformulated in the idiom of mathematical logic, at face
value, then we are committed to the existence of numbers, sets, and so forth, and
have endorsed realism in ontology. This is a variant of our path from working real-
ism to philosophical realism.

The conclusion here is tentative, at best. Pressure can be applied at either of two
joints. First, the desire for a uniform semantics can be fulfilled by developing a simi-
lar antirealism for both mathematics and science. The philosophical literature con-
tains a number of antirealist proposals in the philosophy of science. Second, a phi-
losopher can reject the uniformity and develop separate semantics for mathematical
and scientific languages. Then one would show how the two languages “link up.” In
other words, the semantics can be complementary, if not uniform (see Tennant [1987],
[1997]).

Thus, it is much too cozy to leave things at the Quine–Putnam indispensability
argument. We encounter the other edge of the sword. The realist must provide an
account of exactly how mathematics is applied in science. Indeed, from the perspec-
tive of philosophical realism, the main premise of the Quine–Putnam indispensabil-
ity argument is a big mystery. What does an abstract, acausal, atemporal realm of
numbers and sets have to do with the physical world studied in science? We cannot
honestly sustain the conclusion of the Quine–Putnam indispensability argument until
we know this. It is not enough for the philosopher to note the apparent indispensabil-
ity and then draw conclusions that spawn more questions than they answer.

In sum, the program of philosophical realism is a tall order. These considerations,
and others, have led some philosophers to reject the program and attempt antireal-
ism. In chapters 6 and 7, we will look at some samples to see if there is progress on
the common problems, and if there are other problems with these programs that are
just as intractable as those of realism.

Because, as noted in chapter 1, philosophy of mathematics is primarily an inter-
pretive enterprise, semantics plays a central role. Philosophical realism is well served
by a bivalent, model-theoretic framework, sometimes called “Tarskian.”10 To execute
the program, one must somehow specify an ontology, which is to be the range of the
variables of suitably formalized mathematical discourse. Presumably, one would
specify extensions (if not intensions) for the predicates, relations, and functions of
the language. This, in effect, is a model-theoretic interpretation of the language. In

10. See Tarski [1933], [1935]. There is some controversy over Tarski’s role in the historical emer-
gence of model theory in logic. See, for example, Etchemendy [1988]; Sher [1991]; and Shapiro [1998].
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the now-familiar manner, the interpretation determines Tarskian satisfaction condi-
tions for the formalized sentences.

The role of model-theoretic semantics here is not a deep one. Model theory was
developed to study (or model) various logical notions, like consequence and consis-
tency. Its central notion is “truth in a model.” The only point here is that according to
philosophical realism, the relationship between mathematical language and mathe-
matical reality—between word and world—is analogous to the relationship between
a formal language and a model-theoretic interpretation of it. The conditions for truth
in a model match the ways that meaningful (mathematical) statements get their truth-
values. In other words, the conditions for truth in a model represent truth conditions.
As Hodes [1984] elegantly puts it, truth in a model is a model of truth; at least for a
philosophical realist it is.

The focus on model-theoretic semantics highlights the main problems with philo-
sophical realism. Although the notion of “satisfaction” and the concomitant notion
of “reference” are the crucial elements of the semantic picture, model-theoretic se-
mantics has very little to say about these concepts. Model theory provides only the
bare structure of how the semantic notions relate to each other. There is a general
problem of explaining how mathematical languages are understood—perhaps as a
case study for how any language is understood. There is also a problem of under-
standing how formal languages relate to the natural languages of mathematics. Model
theory itself does not address these questions. Thus, even if model-theoretic seman-
tics is the central framework for philosophical realism, by itself it is an empty frame-
work. Model theory is the structure around which answers are developed. The task
of the program of philosophical realism is to say more precisely what the domain of
discourse is and how we come to know things about it.

Tarski [1944, 345] himself was aware that semantics alone does not provide gran-
diose solutions to global philosophical problems: “It is perhaps worthwhile saying
that semantics as it is conceived in this program . . . is a sober and modest discipline
which has no pretensions of being a universal patent medicine for all the ills and
diseases of mankind. . . . You will not find in semantics any . . . illusions of gran-
deur. . . . Nor is semantics a device for establishing that everyone except the speaker
and his friends is speaking nonsense.” Tarski claimed only that his system provides
a method to overcome some traditional difficulties with semantic notions and the “pos-
sibility of a consistent use of semantic concepts.” Here the framework is part of a
philosophical research program, not a solution in and of itself.

In contemporary philosophy, Tarskian semantics has been put to a number of
different uses, and it is worth sorting some of these out.11 There is, first, the Davidson
project of giving a theory of meaning for a natural language, like English, in terms
of a notion of truth. On this program, “truth” is presupposed as unproblematic. In
contrast, Tarski’s purpose was to give a coherent, rigorous definition of “truth” and
other semantic notions, because such notions had fallen into disrepute (due to the

11. I thank a referee for this point, as well as some of the detail that follows.
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antinomies). Tarski’s work focused on formal languages. Of course, the “conven-
tion T” is common to both programs. Consider one clause:

F w Y is true (or true in M) if either F is true (in M) or Y is true (in M).

On the Davidson project, this is part of what one must grasp in order to understand
the notion of disjunction, truth being presupposed. On the Tarski project, this is part
of what one must grasp in order to understand the notion of truth, or truth in M, dis-
junction being presupposed.

The present orientation is closer to Tarski’s. As a working realist, I assume that
formal languages more or less accurately render the languages and logical forms of
mathematics. Moreover, I assume that these languages are understood—somehow.
The model-theoretic semantics is erected on these languages, and in terms of these
languages. Put otherwise, from working realism we have that standard formal lan-
guages capture something about real mathematical languages. The philosophical
realist takes at least some of these languages to be about the mathematical universe.
Tarski’s work then provides the relevant semantic notions in a remarkably straight-
forward and unproblematic manner.

I do not claim that a realist is somehow forced to develop a model-theoretic se-
mantics. If one is interested only in semantic notions, like the concept of truth, then
there are interesting alternatives available, and some philosophers eschew semantics
altogether. In the spirit of naturalism, some wonder whether the central relations
between words and the world—reference and satisfaction—are philosophically
occult or otherwise lack scientific respectability. Those who hold that “truth” is
“robust” are opposed by those who call themselves “deflationists” and “minimalists”
(see, for example, Horwich [1990]; Wright [1992]; and Kraut [1993]). The debate
rages on. Here, I have nothing to offer on this question of metaphysics. My present
concern is with realism in mathematics, and I make a modest proposal to invoke a
certain framework. The notion of truth is a straightforward by-product of this frame-
work. Notice that if one believes that there is a realm of mathematical objects and
that (formalized) languages of mathematics are about this realm, then there is no
further impediment to developing a model-theoretic, truth-valued semantics. Tarski
established this much. One simply adds a predicate for satisfaction to a language that
one presumably already understands and uses, and then defines the semantic no-
tions in the textbook manner. If the defined notions are deflationary then so be it,
and if they are robust then so be it.

It might be added that model-theoretic semantics does not characterize realism.
The model-theoretic program is so benign that there is nothing to prevent an antirealist
from carrying it out. Presumably, the program itself would get an antirealist inter-
pretation. Moreover, model-theoretic semantics, by itself, does not even sanction the
inferences and principles of working realism, unless those same principles are used
in the metatheory. For example, one can develop a model theory for an intuitionistic
language within intuitionistic set theory, and it should not be surprising that only
intuitionistic logic is sound for this semantics. Of course, such a model theory does
not play any role in articulating intuitionistic philosophy. No one would take the
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relationship between language and model to be a significant analogue of how sen-
tences of intuitionistic languages are to be understood.

In model-theoretic semantics, the practice is to separate object language and meta-
language. The former is the formal language we are giving a semantics for, whereas
the latter is the informal or semiformalized language in which the semantics is carried
out. This distinction may not be necessary or even desirable for characterizing seman-
tic notions,12 but here it is convenient. The framework, conceptual scheme, or simply
the language in which a program of philosophical realism is cast need not be the frame-
work about which it deals. The latter is mathematics itself, or one of its branches. Philo-
sophical realism, as I have formulated it so far, has a truth predicate for mathematics,
or for the branch in question. Thus, if the languages are sufficiently formalized and
sufficiently rich, then in light of Tarski’s theorem on the undefinability of truth, the
metalanguage must properly extend the resources of the object language.

Typically, the object language can be faithfully translated into the metalanguage.
Because the envisioned metalanguage of philosophical realism should have the re-
sources to make substantial assertions about the ontology that is attributed to the ob-
ject language, this metalanguage must also contain a faithful representation of the
object language. For example, the philosopher should be able to state that there are
infinitely many primes and be able to formulate the Goldbach conjecture and the con-
tinuum hypothesis.

This observation underscores the rejection of philosophy-first in chapter 1. Phi-
losophy does not supply first principles for mathematics nor a foundation in any-
thing nonmathematical. Its goal is to interpret the mathematics done by real mathe-
maticians, and, in a sense, the interpretation begins from within. On the other hand,
someone might feel cheated by philosophical realism. In a sense, one interprets
mathematics and outlines its ontology by using (a facsimile of) that same mathemat-
ics. An all-too-cozy and all-too-lazy philosopher might just say that “6” refers to 6,
that the variables of arithmetic range over the natural numbers, and leave it at that.
But such a philosopher should not pretend to have shed any light on anything. One
ought to feel cheated if the realist has done no more than provide a model-theoretic
semantics, especially if it is done in much the same terms as the object language. If
that is all the philosopher is willing to say, then one can wonder what it means to be
a realist. The “all-too-cozy” pronouncements are surely deflationary or minimal and
are not of much use on the philosophical questions under study here.13 One cannot
hope to answer every philosophical question about every subject all at once, but one

12. There have been a number of interesting attempts to develop rich, formal languages that con-
tain their own semantical notions (e.g., Kripke [1975]; Gupta and Belnap [1993]). Some of these in-
volve a many-valued semantics and reject the law of excluded middle (and so are prima facie inconsis-
tent with working realism). For purposes of characterizing semantical notions, it may also be possible
to get by without a comprehensive truth predicate. For example, for any natural number n, there is a
formula of set theory that characterizes “truth for set-theoretic formulas with fewer than n symbols.”

13. Wright [1992] is an insightful account of what sense can be made of the realist/antirealist de-
bate in light of such “minimalist” conceptions of truth.
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can demand some progress of philosophy and ontology, some dissolution of puzzles.
Model-theoretic semantics, by itself, does not provide such progress.

The model-theoretic framework allows a relatively neat distinction between
algebraic and nonalgebraic branches of mathematics. A field is nonalgebraic if it has
a single “intended” interpretation among its possible models or, more precisely, if
all of its “intended” models are isomorphic (or at least equivalent). This, together
with excluded middle (in the object-language theory) yields bivalent truth conditions
in the usual manner. Every sentence, including those independent of the axioms, has
a truth-value. In such branches, “truth” amounts to “truth in the intended models.”
Of course, the philosophical puzzle now concerns how we manage to apprehend, pick
out, or communicate the intended interpretations, and how we manage to know things
about it (or them)—of which more later. A field is algebraic if it has a broad class of
(nonequivalent) models. Group theory, for example, is about all groups. In practice,
however, the mathematician does not use the language of group theory. The group
theorist works in a (set-theoretic) metatheory in order to study groups. It is an open
question whether this metatheory is itself algebraic or, for that matter, whether there
are any nonalgebraic fields.

What of the philosophical metalanguage, the framework in which philosophical
realism is developed? One can start the grades-of-realism discussion at this level. In
particular, one can be a working realist about the framework, explicitly or implicitly
adopting classical logic, impredicative definition, and so on. A more ambitious project,
perhaps, would be a program of philosophical realism for the metalanguage, which
would include a metasemantics, metaepistemology, and so forth. This would be philo-
sophical realism about the language of philosophical realism. The grades-of-realism
discussion can be restarted yet again, this time about the metaphilosophical meta-
metalanguage. Alternately, one can adopt a program of antirealism at one of the
advanced stages. No doubt, it would seem odd to give an antirealist interpretation to
a metalanguage that is itself used for a realist program for an object-language theory
of mathematics. One with realist leanings might feel cheated or betrayed by such a
move. But this possibility cannot be ruled out a priori.14

In any case, the regress of metalanguages cannot go on forever. Life is too short.
Eventually, usually rather quickly, one comes to a metalanguage that is just used,
and used without benefit of more semantics, epistemology, and the like. At some
point we stop interpreting. To paraphrase Quine, perhaps this is where theorists
“acquiesce” into their “mother tongue.” Here, the “mother tongue” is our back-
ground mathematical and philosophical vernacular. One can be a working realist
about this language, of course, even a bold, normative working realist, because
working realism is more or less internal. It is just a matter of adopting standard
renderings of accepted practice. Moreover, it is not that we cannot go on to pro-

14. Hellman [1983] suggests that realism (in philosophy of science) should be formulated in such
a way that antirealists cannot reinterpret everything the realist says (“from within”) to their own satis-
faction. The situation brings to mind Berkeley’s claim that he can accept everything the materialist (or
dualist) says about physical objects, suitably (re)interpreted of course. I do not see a need to stop con-
temporary counterparts of Berkeley in their tracks, and the attempt to do so may be futile.
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vide a semantics and epistemology for this framework. If pressed, we might take
on a program of philosophical realism at this stage. But we do not. To paraphrase
Wittgenstein, surely out of place, one might say that the background language is
used without the “justification” of more semantics and more philosophy. We use
the language without (more) interpretation, but this is not to say that we use it
“without right.” We understand the language without interpreting it. In the chosen
metaphor of holism, everyone must stand somewhere on the ship of Neurath. This
metalanguage is where the philosopher stands.

The old formalist Curry (e.g., [1950, 11–12]) puts the role of the “mother tongue”
well:

Whenever we talk about a language it is said that we must do so in a second language. . . .
[T]he first language is called the object language, the second the metalanguage. If then
one talks about the metalanguage, one has to do so in a third, meta-metalanguage and
so on. But this way of speaking ignores one particular fact: viz., that any investigation
. . . has to be conducted, not in an arbitrary metalanguage but in the communicative
language which is mutually understood by speaker and hearer. I shall call this lan-
guage the U-language, i.e., the language being used. . . . It is not enough to say that
the U-language is English. . . . [The U-language] is a growing thing. As we proceed
we shall modify it, add to, and refine it. . . . We can never transcend [the U-language]—
whatever we study we study by means of it. It cannot be exhaustively described, and it
can lead to contradiction if carelessly used. . . . It follows from the foregoing that there
is no such thing as a meta-U-language.

Here, I follow Curry’s advice and his terminology. The U-language contains the lan-
guage of mathematics, and yet we use it to try to make progress on philosophical
questions. The circle is not vicious.

This dovetails with the conclusions of chapter 1. Philosophy of mathematics does
not supply first principles for mathematics, nor does philosophy operate from a privi-
leged, more secure perspective. Mathematics and philosophy of mathematics are
interlocked but autonomous disciplines. In philosophy, we try to interpret the lan-
guage of mathematics and try to understand its role in the intellectual enterprise.

4 Interlude on Antirealism

From the present, programmatic perspective, let me briefly contrast philosophical
realism with the loyal opposition, the various antirealist programs. This is a preview
of coming attractions, in chapters 6 and 7. The concern of this book is only with views
that take the full range, or almost the full range, of contemporary mathematics seri-
ously. It is a basic datum that the bulk of mathematics is legitimate, whatever this
legitimacy may turn out to be, and it is a basic datum that mathematics plays a sig-
nificant role in our intellectual lives, however that role is ultimately characterized
and understood. Mathematics, and its role in our overall theorizing, is something to
be interpreted and explained, not explained away.

Given the antirevisionist theme of this book (see chapter 1), I limit my attention
to views that accept working realism. It is real mathematics that is to be interpreted
and explained, not what a philosopher says mathematics should be. Working real-
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ism is just the result of accepting the common rendering of mathematical discourse
into the idiom of logic books, as least as an attempt to describe the methodology.
Our question is what to make of the mathematics. The various programs make dif-
ferent things out of working realism.

Philosophical realism is a type of research program. In like manner, I would de-
scribe antirealism as another type of program, one that attempts to answer philosophi-
cal questions about mathematics and its place in our intellectual life without postu-
lating that mathematical truth is objective, bivalent, and nonvacuous, and without
postulating that the subject matter of mathematics is an objective, mind-independent
realm. Often, this involves a non–model-theoretic semantics for mathematical lan-
guages. To put it baldly, if the variables of a language of mathematics are not to be
understood as ranging over a domain of discourse, then they must be understood in
some other way—if, as presumed here, the language is understood at all. This yields
antirealism in ontology. And if the bulk of the justified assertions of mathematics
are not true, then some other account of which assertions are warranted or legitimate
is requisite—if, as presumed, mathematics is significant. This is antirealism in truth-
value. Either way, then, a non–model-theoretic semantics is appropriate.

On the contemporary scene, I believe that the main motivation behind antirealist
programs is the prima facie difficulty of obtaining an epistemology that squares with
its ontology. Some antirealist programs do begin with what appears to be a more trac-
table line on the epistemological front. Some, like Field [1980], [1984], regard mathe-
matical knowledge as a variant of “logical knowledge,” and others, like Hellman
[1989] and Chihara [1990], invoke logical modality (see chapter 7). Still others, like
Tennant [1987] and Dummett [1973], attempt to replace the notion of mathematical
truth with proof, or warranted assertability (never mind, for now, that these last two
are revisionist programs; see chapter 6). At least prima facie, an epistemology of
logical knowledge is not problematic, and warranted assertability may not be either.
It depends on what a warrant is. With each program, the goal is to show how its epis-
temology can underwrite a mathematics rich enough for science and its foundations,
and to do so without introducing notions as problematic as those of realism. In short,
the goal is to reproduce a rich mathematics while keeping the epistemology tractable.

This, I believe, is a tall order, about as tall as the demands on a program of real-
ism. I submit that it is not wise to adjudicate the simple question of realism versus
antirealism without detailed consideration of the specifics of one or another of the
programs.

5 Quine

I propose to weave some familiar Quinean themes into the fabric of realism, partly
in a non-Quinean way. I have in mind the relativity of ontology, the inscrutability of
reference, and the thesis that ontology consists of the range of bound variables (see,
for example, Quine [1969]). Each doctrine amounts to something different at the levels
of working realism and philosophical realism.

Let us begin with working realism. Quine himself has remarked that his thesis
that relates ontology to bound variables is not deep. The idea is only that the existen-
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tial quantifier of classical logic is a good gloss on the ordinary word for existence (in
the U-language). A term denotes something just in case it can be replaced by a vari-
able in existential generalization, and if a variable can be replaced by it in universal
instantiation. An object exists, or is in our ontology, just in case it is in the range of
a bound variable. Now, working realists surely have a predicate for “natural num-
ber,” call it N, and there is a term for zero, 0. They hold that zero is a number: N0. It
follows by logic that ›xNx. Thus, for the working realist, numbers exist. Period.

Of course, things are rarely this simple. Ordinary languages, even those used by
mathematicians, are not sufficiently articulated to make it determinate just what the
ontology is. For example, there are surely parts of the language that one does not
wish to take literally or at face value. Those parts are not to be rendered in a formal
language in the syntactically most straightforward way. If I say that Bob Dole has
only a few leadership qualities in common with Ronald Reagan, I am not automati-
cally committed to qualities; when Three Dog Night says that one is the loneliest
number, they may not be embracing numbers, and certainly not lonely numbers. The
criterion for ontology seems designed for languages like those in logic books, and
the criterion “works” only for such languages. Quine [1981, 9] himself notes that the
notions of ontology and ontological commitment do not comfortably fit ordinary
discourse: “The common man’s ontology is vague and untidy. . . . We must . . . rec-
ognize that a fenced ontology is just not implicit in ordinary language. The idea of a
boundary between being and nonbeing is . . . an idea of technical science in the broad
sense. . . . Ontological concern is . . . foreign to lay culture, though an outgrowth of
it.” This is of a piece with Curry’s remarks that one cannot precisely describe the
U-language.

Quine allows ontologists room to regiment their language, by paraphrasing parts
of it and eliminating others. The process of regimentation is to systematically render
sentences of natural language into the idiom of logic. Truth be told, ontologists are
only supposed to pretend or envision that they have regimented their language, be-
cause no one actually speaks in a regimented language. Quine and his followers con-
tinue to write in ordinary English. The purposes of the regimentation exercise in-
clude elucidating the logic and assessing the ontology. One of the goals is economy.
For example, variables that range over numbers can be replaced by variables that
range over sets, so we need not hold that both numbers and sets exist, just sets. If we
are “ontologically committed” to sets anyway, we need not embrace numbers as well,
because some sets will do as numbers.

Ontological relativity and the inscrutability of reference arise at this level because
there may be more than one way to regiment the same part of a given language.
Because regimentation is akin to translating the language into the idiom of logic, the
theses in question are corollaries of the indeterminacy of translation. Famously, real
numbers can be thought of as Cauchy sequences of rational numbers (and those in-
terpreted as pairs of integers), or else real numbers can be thought of as Dedekind
cuts, certain sets of rational numbers. Thus, it is inscrutable whether “π” in the mathe-
matical vernacular refers to a certain Dedekind cut or to an equivalence class of
Cauchy sequences. Ontological relativity relates to the fact that the entire range of
the variables can differ in different regimentations, and there is no fact of the matter
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which is correct. In a well-known illustration, Quine suggests that one can paraphrase
an entire language of physics so that all variables range over sets. According to that
regimentation, the only things that exist are sets.

All this is at the level of working realism. One need not envision a model-theoretic
semantics (in a separate metalanguage or U-language) in order to tighten up a stretch
of discourse or render it into the idiom of logic. For example, a decision to take real
numbers to be Dedekind cuts can amount to no more than an allowed paraphrase.
Although we surely have too many grades of realism on our chart already, this ob-
servation suggests one more. Committed working realists are theorists who envision
that their language, after regimentation, will still have variables ranging over some
mathematical objects, typically numbers or sets. Committed working realism is, in
effect, a decision to use mathematical language and take at least some of it at face
value, not to recast the ontology in nonmathematical terms.

Quine insists that a fully regimented language be extensional and first-order and
that it employ classical logic. Against this, some theorists favor higher-order logic
(Shapiro [1991]), and some adopt primitive modal terminology (e.g., Field [1984],
[1991]; Hellman [1989]; Chihara [1990]; see also Shapiro [1985] and chapter 7).
Because the U-language (à la Curry) certainly contains such items, the question is
whether the disputed terminology is to be used in the envisioned regimentation—in
the idiom into which the vernacular is rendered.

Any of these options would alter and complicate the picture of ontology through
bound variables, because decisions concerning the resources in the regimented lan-
guage affect the ontology. Typically, one can reduce ontology by, in effect, increas-
ing ideology. For example, some theorists suggest that a primitive modal operator
eliminates a need for mathematical entities. With intuitionistic mathematics, things
are not even this simple. Perhaps, with Parsons [1983, essay 1], each kind of quan-
tification marks a different kind of “ontological commitment.” Presumably, the trade-
offs involved in the various alternatives are to be judged on some sort of holistic
grounds and, once again, there is no reason to think that there will always be a clear
winner. It is not even clear what the rules of this holistic game are. In any case, the
relativity of ontology seems to be the relativity of ontology/ideology.

From the internal perspective of (committed) working realism, one can specify
what kinds of mathematical entities exist, but there is a limit to the ability to circum-
scribe the extent of these entities or, in other words, there is a limit to one’s ability to
specify the range of the variables. Generally, one can describe ontology for termi-
nology that has been paraphrased into something else. For example, if, through regi-
mentation, terminology for numbers is cast in terms of sets, then one can assert that
the extension of “the natural numbers” is the finite ordinals, and one can specify that
the extension of “the real numbers” is the Dedekind cuts. There is, however, a limit
to the working realist’s ability to state the range of variables that are taken at face
value, not paraphrased. For example, it is typical for set theory to be taken as the
language of foundations. In effect, one envisions that the whole of mathematics is
regimented into the language of set theory. The ontology is V. Working realists who
accept this can, of course, assert the existence of sets or even particular sets, such as
0# or a measurable cardinal. They can also relate this ontology to certain items within
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the ontology: “V consists of the empty set, its powerset, the powerset of that, and so
on—through the ordinals.” But, with Russell, if asked the general question, “which
sets exist?” or “which ordinals exist?” our working realist has but one answer, “all of
them.” If asked “how many sets exist?” or “how many ordinals exist?” the answer is
“a proper class.” Not very helpful.

Normally, variable ranges are specified in semantics. The central component of
model theory is the domain of discourse. That is what the language is about. Model
theory is typically done in a separate metalanguage or U-language, and we turn to
the perspective of philosophical realism. To be sure, Quine’s own writings are filled
with attacks on ordinary semantical notions, like “meaning” and “synonymy.” Model-
theoretic semantics is, of course, a respectable mathematical enterprise, but even this
is not emphasized in Quine’s works concerning logic.

Nevertheless, the theses under consideration here—ontology through variables,
the relativity of ontology, and the inscrutability of reference—are meaningful in the
context of philosophical realism and are substantially correct.15 The ontology of a
(nonalgebraic) theory consists of the range of its variables. That is, the ontology is
the domain of discourse of the interpretation of the object language. The relativity of
ontology and the inscrutability of reference begin with the fact that one can give
different models for the same theory, and in some cases there is no fact of the matter
which one is correct. Because a model-theoretic interpretation can be understood as
a translation of the object language into the informal language of set theory, the two
theses are again seen to be corollaries of the indeterminacy of translation.

In effect, no object-language theory determines its ontology all by itself. In any
model-theoretic semantics worthy of the name, isomorphic structures are equivalent
(see Barwise [1985]). This is a manifestation of the slogan that logic is “formal.”
Thus, given any model of a fully regimented language, one can specify a different
but equivalent model. It is a simple matter of changing the referents of some of the
terms and making straightforward adjustments, a routine exercise for those who have
had a course or two in mathematical logic. The best one can achieve is that all mod-
els of a theory are isomorphic, in which case the ontology is determined “up to iso-
morphism,” and we get this much only if the domain of discourse is finite, or else the
ideology of the object language is stronger than first-order. With first-order object
languages and infinite domains, the Skolem paradox rears its (ugly) head at this point.
If an object-language theory has at least one infinite model, then, by itself, it cannot
even determine the cardinality of its ontology, let alone the extension of it.

To pick up a recurring subtheme of this book, theses like the inscrutability of ref-
erence and the relativity of ontology may be artifacts of the fact that formal (or regi-
mented) languages of logic books are the philosophical paradigms of natural lan-
guages (or U-languages) and that model theory is the philosophical paradigm of

15. In chapter 4, I will show that if we construe a language of mathematics as about a structure or
a class of structures, then there is no inscrutability. In effect, the insights behind the inscrutability of
reference are shared by structuralism, but different conclusions on the nature of objects and reference
ensue.
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semantics. If ordinary discourse does have mechanisms to fix ontology and to make
reference “scrutable,” these mechanisms are not registered in formal or regimented
languages, nor in model theory. Now, as before, I suggest that formal languages, and
mathematical logic in general, were developed with focus on the languages of math-
ematics and not on ordinary discourse. As I argue in subsequent chapters (3 and 4),
in mathematics reference and ontology really are determined only “up to isomor-
phism.” Structure is all that matters. So, in this respect, formal languages and model-
theoretic semantics are good models for the U-languages of mathematics. The ex-
tent to which this technique for assessing ontology (and logic) apply to ordinary and
scientific discourse remains to be seen (see chapter 8).

Potentially, there are differences (and possibly conflicts) in assessing ontology at
the various levels of realism. In the framework of philosophical realism, the ontol-
ogy of an object language is typically specified in a metalanguage (or the U-language).
If the metalanguage is sufficiently regimented, then it has its own ontology, the val-
ues of its variables. There is no a priori reason to insist that the ontology of the
metalanguage be the “same” as that of the object language. Presumably, the meta-
theory must contain at least a rudimentary theory of sets, in order to characterize
domains of discourse. Even if the object language also countenances sets, it is pos-
sible that the metatheory countenances “more” of them.

To take an example, suppose that an object-language theory contains substantial
set theory, say ZFC (Zermelo-Fraenkel set theory plus the axiom of choice). An
interesting puzzle arises. By assumption, the regimented object language contains
variables that range over sets and, of course, it has a universal quantifier, “for every
set, . . .” The working realist who adopts this language will surely say “sets exist.”
Moreover, from this perspective, the quantifier is taken literally—it ranges over all
sets. What else is a working realist going to say? This is what it is to use the language
of set theory, and take it at face value. But suppose now that one becomes a philo-
sophical realist and develops a metatheory. On the present account, a domain is speci-
fied for the variables of set theory. That is, in the metatheory the domain of ZFC is
an object. Russell’s paradox indicates that this domain cannot be a member of itself.
So the metatheory countenances at least one collection of sets that, according to this
same metatheory, is not in the domain of set theory. Indeed, from the perspective of
the object-language theory, the domain of the original theory is not a set and, thus,
from the perspective of ZFC, the domain does not exist (as a set). It is a theorem of
ZFC that 5›xœy(y ∈ x). So much for the idea that the ontology of the object-language
theory includes every collection.

The moral, I believe, is that in adopting a metatheory, one can expand ontology.
In effect, we may require more sets in order to provide a set-theoretic interpretation
of the original theory. This is in line with Curry’s observation that a U-language is a
“growing” thing and that it is impossible to describe it with the precision of a logic
text. Of course, one can take the variables of a regimented metalanguage to range
over “all sets,” for, again, this is just to use the metalanguage, and take it literally.
But there is nothing (except boredom or disinterest) to prevent the formulation of a
meta-metalanguage with an even greater ontology. One cannot, in the same breath,
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take set variables to range over all sets and have a fixed domain, a set, in mind as the
range of the variables.16 This is the danger of what Bernays calls “absolute platonism.”

Notice, on the other hand, that an increase in ontology with a move from an object
language to an adequate metalanguage, or from working realism to philosophical
realism, is not inevitable. There are other ways to go about it. Suppose that the
object-language theory is regimented as second-order set theory with variables rang-
ing over both sets and (proper) classes and relations. As far as ontology goes, a
model-theoretic semantics for this language does not require any more than sec-
ond-order set theory, with the same universe of discourse and the same class of
proper classes. On this plan, we introduce a notion of satisfaction defined over
proper classes, and so models whose domains are proper classes are countenanced.17

Notice that this satisfaction relation cannot be formulated in ordinary (object-lan-
guage) second-order set theory. Indeed, because set-theoretic truth is just “satis-
faction by the universe,” truth (for the object language) can be defined from “class
satisfaction.”

Tarski’s theorem indicates that a metatheory must have resources beyond those
of its corresponding object-language theory. Here we have a choice between an in-
creased ontology (more sets) and an increased ideology (a richer satisfaction rela-
tion). It seems that there are many trade-offs in this enterprise, and these must be
compared somehow.

6 A Role for the External

I have emphasized that working realism is more or less internal to mathematics. The
working realist accepts some erstwhile disputed methodological principles. To ar-
rive at working realism, one must do some philosophical interpretation but not much.
There is no attempt to answer philosophical questions about mathematics: what it is
about, how it is known, how it relates to science, and so on. The common goal of the
programs of philosophical realism and the various antirealisms is to address such
questions. Thus, in a sense, those programs are external to mathematics. The ques-
tions are not necessarily addressed by mathematicians as such and are not to be de-
cided by mathematical techniques.

Other writers have delimited internal/external contrasts. Typically, the “internal”
perspective is internal to something acceptable, whereas the “external” perspective
is rejected as illegitimate, or even incoherent. Examples include Carnap’s internal
questions versus external pseudoquestions, Arthur Fine’s natural ontological attitude
versus realism, and Putnam’s internal realism versus metaphysical realism. It will

16. See Hellman [1989] and Parsons [1983, essays 10–11] for a similar account of the variables of
set theory.

17. See Shapiro [1991, especially chapters 5–6]. The present plan works only for the “standard
semantics” of second-order languages, in which the predicate variables range over every subclass of
the domain of discourse. For nonstandard, Henkin semantics, one needs to specify a range of the predi-
cate (and relation) variables, and in large models this is a class of proper classes, a third-order item.
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prove instructive to contrast these distinctions with the present one between work-
ing realism and philosophical realism. Of course, I do not claim to do full justice to
the detailed and subtle work of these authors.

One important disanalogy between the present perspective and those of the
others is that I regard the external perspective to be legitimate. This section serves to
link the theme of the present chapter with that of chapter 1. One conclusion there
was that mathematics and its philosophy are interlocked but autonomous disciplines.
Philosophical realism is a program for one of those disciplines.

It is natural to start with Carnap (e.g., [1950]), despite any disrepute his program
may be under. According to Carnap, there is a crucial prerequisite to asking onto-
logical questions like “Do numbers exist?” and “Do electrons exist?” The philoso-
pher, mathematician, or scientist must first formulate an appropriate “linguistic frame-
work” with explicit and rigorous syntax and rules of use. In the case of mathematics,
a linguistic framework is similar to a formal language and deductive system. For
example, first-order Peano arithmetic can be a framework for arithmetic. For scien-
tific or everyday discourse, empirical rules that involve observation would be added.
In a sense, the notion of linguistic framework is a precursor to regimentation in the
program of Quine, Carnap’s student. Here, too, I presume that it is a question of
envisioning a framework, rather than actually using one for serious communication.
We do not really get out of Curry’s U-language.

Once a framework has been formulated, there are two sorts of ontological ques-
tions one might ask; or, better, there are two senses to questions of ontology. Sup-
pose one asks, “Are there natural numbers?” On one level, this may be regarded as a
simple version of a question like “Is there a prime number greater than one million?”
In this case, the ontological question is internal to the natural-number framework
and the answer is “yes,” on utterly trivial grounds. Carnap says that in the internal
sense, the existence of numbers is an analytic truth, because it is a consequence of
the rules of the framework. This is similar to the working realist’s assertion that num-
bers exist—although working realism does not make reference to this or that linguistic
framework.

In traditional philosophy, the question about the existence of numbers is regarded
as anything but trivial. One asks whether numbers really exist, or whether numbers
exist independently of the mind and independently of any given linguistic frame-
work. In asking the traditional question, we do not wonder whether “numbers exist”
is a theorem of a particular formal deductive system but whether it is true. In present
terms, the traditional question is whether the envisioned natural-number framework
accurately describes an intended domain of discourse. This, Carnap says, is the ex-
ternal question, which he sometimes calls a “pseudoquestion.” When considering a
framework as a whole, the only legitimate question we may ask is whether to accept
or adopt the framework, but this is a pragmatic matter, not susceptible to an all-or-
nothing, yes-or-no answer: “The acceptance of a new kind of entity is represented . . .
by the introduction of a framework of new forms of expression to be used according
to a new set of rules. . . . The acceptance cannot be judged as true or false because it
is not an assertion. . . . [T]he acceptance of a linguistic framework must not be
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regarded as implying a metaphysical doctrine concerning the reality of the entities
in question” (Carnap [1950, 249–250]).

To illustrate this program, Carnap envisions a “thing” framework for making or-
dinary assertions about ordinary objects:

If someone decides to accept the thing language, there is no objection against saying
that he has accepted the world of things. But this must not be interpreted as if it meant
his acceptance of a belief in the reality of the thing world; there is no such belief or
assertion or assumption, because it is not a theoretical question. To accept the thing
world means nothing more than to accept a certain form of language, in other words,
to accept rules for forming statements and for testing, accepting, or rejecting them. . . .
But the thesis of the reality of the thing world cannot be among those statements, be-
cause it cannot be formulated in the thing language or, it seems, in any other theoreti-
cal language. (Carnap [1950, 243–244])

In other words, the good “theoretical” questions must be internal to a more or less
explicit linguistic framework. Traditional ontological questions fail this test, miser-
ably. In this regard, an opponent, a metaphysician “might try to explain . . . that it is
a question of the ontological status of numbers; the question of whether or not num-
bers have a certain metaphysical characterization called reality . . . or status of
‘independent entities.’ Unfortunately, these philosophers have so far not given a for-
mulation of their question in terms of the common scientific language. Therefore . . .
they have not succeeded in giving to the external question . . . any cognitive content.
Unless and until they supply a clear cognitive interpretation, we are justified in our
suspicion that their question is a pseudo-question” (Carnap [1950, 245]).

Let us pretend that there is an explicit, rigorous linguistic framework for mathe-
matics, or for one of its branches. Call the framework L. For Carnap, the legitimate
pragmatic question is whether to accept L. An affirmative answer is a main thesis of
working realism, and this much is beyond question here. One can still ask whether L
captures mathematics as practiced, at some level, but even this question is not raised
here—especially because L is something of a philosopher’s fiction. I do not know
the Carnapian status of questions of how a given linguistic framework relates to
a preformal practice, the time before the rules of the framework were explicitly
formulated.18

To be sure, the present programs of philosophical realism and the various anti-
realisms are “external” to mathematics in Carnap’s pejorative sense. The philosophical
programs are attempts to reach beyond both the internal questions and the pragmatic
questions. So this book runs afoul of the Carnap program. Nevertheless, the discrep-
ancy can be tempered and, I think, usefully explained. A closer look at some of
Carnap’s writing reveals that in attacking external questions, much of his fire is

18. In a collection of notes entitled “What does a mathematical proof prove?” (published post-
humously in [1978]), Lakatos distinguishes three stages in the evolution of a branch of mathematics:
the preformal stage, the formal stage, and the postformal stage. The issue of how a formal system relates
to the practice it formalizes is an inherently informal matter in the last stage. See chapter 6 of this book.
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directed at what I call the philosophy-first principle, a thesis that philosophical prin-
ciples determine the proper practice of mathematics (see chapter 1). On such a view,
the philosopher either provides the ultimate justification for mathematics as prac-
ticed, or else demands revisions in mathematics, to get it to conform to the true phi-
losophy. Carnap takes external questions to have just this motivation:

[T]hose philosophers who treat the question of the existence of numbers as a serious
philosophical problem . . . do not have in mind the internal question. . . . [I]f we were
to ask them: “Do you mean the question as to whether the framework of numbers, if
we were to accept it, would be found to be empty or not?”, they would probably reply:
“Not at all; we mean a question prior to the acceptance of the new framework.”
(p. 245)

Many philosophers regard a question of this kind as an ontological question that must
be answered before the introduction of the new language forms. The latter introduc-
tion, they believe, is legitimate only if it can be justified by an ontological insight sup-
plying an affirmative answer to the question of reality. (p. 250)

They believe that only after making sure that there really is a system of entities of the
kind in question are we justified in accepting the framework. (p. 253)

As in chapter 1, I join Carnap in rejecting the philosophy-first orientation. The
program of philosophical realism is not prior to mathematics in any sense. If any-
thing, the metaphor is that philosophical realism comes after mathematics, or during
mathematics. However, it does not follow from the rejection of philosophy-first that
there is no legitimate perspective from which to ask at least some traditional-sounding
philosophical questions. Are the questions themselves out of order, or is the prob-
lem with the explanatory and justificatory role that philosophy once took upon
itself? On the present view, the philosopher stands somewhere on the ship of Neurath
(where else?) and tries to shed light on another part. One does not have to embrace
philosophy-first in order to regard questions of the ontology, epistemology, and ap-
plication of mathematics as serious and substantial questions. And they are not en-
tirely mathematical questions.

There has been a lot of criticism of the Carnap program, and I do not wish to add
any more (even if I could). Notice, however, that despite Carnap’s antimetaphysical
attitude, his program does presuppose substantive answers to some traditional philo-
sophical questions. Because a linguistic framework has an explicitly formulated syntax
and explicit rules of use, it is like a deductive system in a formal language. Natural
languages of mathematics do not seem to have such neat rules and, even if they do,
the rules are not explicit. Carnap seems to hold that the practice of mathematics re-
sembles—or ought to resemble—moves in an explicit linguistic framework. Indeed,
the thesis seems to be that rule-following is of the essence of mathematics. Do we
have philosophy-first here? Should mathematicians suspend their comfortable, but
sloppy and informal practice in the U-language until that practice is rendered in an
explicit linguistic framework? What if the practice resists such treatment? The rela-
tionship of mathematics to science is also delimited in Carnap’s work (and that of
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other logical positivists). Their idea is to envision a linguistic framework for science—
or a branch of it—and to see how its rules relate to the rules of mathematical frame-
works.

Notice also that if the linguistic rules for a framework of mathematics are those of
a formal system (e.g., Carnap [1934]), then his views look a lot like formalism or
perhaps logicism (see Carnap [1931]). If instead the “rules” are put in a context like
model theory (Carnap [1942]), we may find something close to a structuralist phi-
losophy of mathematics (of which more later, of course). Both of these are substan-
tial philosophical positions.

We turn to a more contemporary internal/external contrast, Arthur Fine’s [1986]
natural ontological attitude (NOA), as contrasted with what he calls “realism” and
with what he calls “antirealism.” For our purposes, there are interesting similari-
ties with Carnap. Fine’s sketch of NOA begins with what he calls the “homely line”:
“[I]f the scientists tell me that there really are molecules, and atoms . . . then so be
it. I trust them and, thus, must accept that there really are such things with their
attendant properties and relations. . . . [We] accept the evidence of one’s senses
and [we] accept, in the same way, the confirmed results of science . . . we are being
asked not to distinguish between kinds of truth or modes of existence. . . . [We]
accept the certified results of science as on a par with more homely and familiarly
supported claims” (pp. 127–128). In short, the NOA advocate trusts science to tell
us what exists. So do I. I also trust mathematicians. In the present context, NOA
counterparts might reason, “if the mathematicians tell me that there really are num-
bers, then so be it” or at least they would if they paid to mathematics the same
homage that the NOA advocates pay to science (and if they forget that mathema-
ticians rarely use the word “really” when speaking of existence). So far, then, NOA
resembles working realism.

Despite Fine’s claim, NOA is not completely internal to science. Like working
realism, NOA invokes some interpretation of mathematics/science. In particular,
scientists do not speak a language sufficiently regimented to delimit the existen-
tial claims. To paraphrase Quine, a “fenced ontology is just not explicit” in the
“vague and untidy” language of the scientist. Sure we trust the scientists, but it is
not always clear just what they say. Moreover, scientist-mathematicians qua
scientist-mathematicians do not claim that their results are on a par with ordinary
claims and that the two are to be accepted in the same way—unless a certain type
of semantics and philosophy is part of mathematics/science. The NOA advocate
urges that scientific language, once regimented, be interpreted the same way as
ordinary language (once that is regimented, as well).

Fine himself agrees that a brand of semantics is involved in NOA:

When NOA counsels us to accept the results of science as true, . . . we are to treat truth
in the usual referential way, so that a sentence . . . is true just in case the entities re-
ferred to stand in the referred-to relations. Thus, NOA sanctions ordinary, referential
semantics and commits us, via truth, to the existence of individuals, properties, rela-
tions, processes, and so forth. (p. 130)
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NOA recognizes in “truth” a concept already in use and agrees to abide by the stan-
dard rules of usage. These rules involve a Davidsonian-Tarskian referential semantics
and they support a thoroughly classical logic of inference. (p. 133)

The main theme of Fine [1986] is that NOA falls short of both realism and antireal-
ism. How is NOA different from realism? It is not that the realist holds that science
is, for the most part, true, because the NOA advocate holds that as well; and it is not
that the realist holds that theoretical scientific entities exist, because the NOA advo-
cate holds that, too. Fine wonders “whether there is any necessary connection mov-
ing us from acceptance of the results of science as true to being a realist” (p. 128).
To distinguish NOA from realism, Fine first invokes an auditory metaphor:

What . . . does [the realist] add to his core acceptance of the results of science as really
true? . . . [T]he most graphic way of stating the answer [is] that the realist adds . . . a
desk-thumping, foot-stomping shout of “Really!” . . . “There really are electrons,
really!” (p. 129)

[W]hat of the “external world”? How can I [the NOA advocate] talk of reference and
of existence claims unless I am talking about reference to things right out there in the
world? And here, of course, the realist . . . wants to stamp his feet. (p. 131)

I do not think that the philosophical realist, in the sense of this book, needs to get so
excited that he stamps his feet, especially because the program is so daunting.

More seriously, Fine joins Carnap in invoking an internal/external metaphor.
Realism and, for that matter, antirealism are external to science: “The realist, as it
were, tries to stand outside the arena watching the ongoing game and then tries to
judge (from the external point of view) what the point is. It is, he says, about some
area external to the game” (p. 131). To some extent, the same goes for the present
program of philosophical realism. One goal is to say what the point of mathematics
is. I would think, however, that an advocate of NOA would accept at least the last
sentence of the above passage. Suppose we were to ask an NOA advocate or a work-
ing scientist, “Were there molecules before molecular theory was formulated?” or
“Had there been no molecular theory, would there still be molecules?” Affirmative
answers, quite in line with common sense, seem to make the subject matter of mo-
lecular theory “external” to the game of science. Where else are the molecules? It
would be helpful to have a more literal reading of this particular internal/external
metaphor or perhaps an argument that there is something wrong with the questions
themselves.

The fact is that many theses that Fine says are constitutive of realism are simple
consequences of NOA. For example, we read, “First, realism holds that there is a
definite world; that is, a world containing entities with relations and properties that
are to a large extent independent of human acts and agents. . . . Second, according to
realism, it is possible to obtain a substantial amount of reliable and relatively ob-
server independent information concerning this world and its features, information
not restricted, for example, to just observable features” (pp. 136–137). Again, it is
hard to imagine a working scientist, and thus an NOA advocate, denying this (cer-
tain interpretations of quantum mechanics aside).



OBJECT AND TRUTH: A REALIST MANIFESTO 63

Fine is aware that the realist and the NOA advocate seem to say the same things:
“[I]t is not the form of a claim held true that marks off realism, it is rather the signifi-
cance or content of the claim” (p. 139). The difference between NOA and realism,
then, seems to lie at the level of semantics. This much accords with a theme of this
chapter. We have seen that NOA advocates accept a Tarskian–Davidsonian account
of their language. What of Fine’s realist? The most common theme that Fine attributes
to this character is an “extratheoretic” or “correspondence” notion of truth. The fol-
lowing is a sampling: “[T]he realist wants to explain the robust sense in which he
takes . . . claims to truth and existence; namely as claims about reality—what is
really, really the case. The full blown version of this involves the conception of truth
as correspondence with the world, . . . .The realist adopts a standard, model-theoretic
correspondence theory of truth” (pp. 129, 137).

There is, presumably, a difference between the Tarskian–Davidsonian semantics
of NOA and the model-theoretic one of realism. The contrast between robust corre-
spondence accounts and deflationary accounts is both deep and complex, and as noted
already, I would like to steer clear of it as much as possible. In previous sections, I
take a model-theoretic semantics to be the central framework of philosophical real-
ism, but, by itself, it is an empty framework—in line with Tarski’s own orientation.
To be sure, the central notions of reference and satisfaction (and thus truth)—shared
by the NOA advocate and the philosophical realist—do point to interesting philo-
sophical puzzles, but we should not prejudge all resolutions to be metaphysically
“robust” in a pejorative sense.

Another recurring theme in Fine [1986] is that the realist and the antirealist both
insist on providing some sort of theory, analysis, or interpretation of science, whereas
the NOA advocate does not. Again, a sample:

[A] distinctive feature of NOA . . . is [its] stubborn refusal to amplify the concept of
truth by providing a theory or analysis (or even a metaphorical picture). (p. 133)

What binds realism and anti-realism together is [that they both] see science as a set of
practices in need of an interpretation, and they see themselves as providing just the
right interpretation. (pp. 147–148)

The quickest way to get a feel for NOA is to understand it as undoing the idea of inter-
pretation. (p. 149)

[W]e could certainly agree with the physicists that there are quarks without necessar-
ily imposing on the conclusion the special interpretive stance of realism. (We might . . .
follow NOA’s recommendation and not adopt any special stance at all.) (p. 152)

In light of my characterization of the philosophical enterprise as interpretive, these
are fighting words. I have argued that, like working realism, NOA involves some
(philosophical) interpretation. Fine does not deny this. He only rejects a special kind
of interpretation. What kind? We are brought back to the internal/external metaphor:
“I do not suggest that science is hermeneutic-proof, but rather that in science, as else-
where, hermeneutical understanding has to be gained from the inside” (p. 148n). The
question is, inside what? What is inside and what is outside?
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If there is a divergence between Fine’s perspective and the present one, it can be
tempered if we look at Fine’s most compelling arguments against realism. We will
find out what Fine’s realist believes by seeing exactly where Fine thinks the critter
goes wrong. Like Carnap, much of Fine’s attack is directed at what I call “philosophy-
first.”19 His realist is not just out to interpret science but to give some extrascientific
justification or grounding to the scientific enterprise. The realist tries to tell us what
the scientist means in order to figure out whether the science is true: “For the prob-
lem of the external world (so-called) is how to satisfy the realist’s demand that we
justify the existence claims sanctioned by science (and, therefore, by NOA) as claims
to the existence of entities ‘out there’” (p. 132). The operative item here, I believe, is
not the phrase “out there” in scare quotes, but the word “justify.” For Fine’s realist,
scientific justification for molecules is not enough. Fine’s realists see themselves as
providing the ultimate justification.

The chapter on NOA begins with an intriguing and revealing analogy with the
Hilbert program. Fine praises Hilbert for having the correct idea that “Metatheoretic
arguments must satisfy more stringent requirements than those placed on the argu-
ments used by the theory in question, for otherwise the significance of the reasoning
about the theory is simply moot” (p. 114). The same goes for Fine’s realist, who must
support realism with arguments more stringent than those of science: “Hilbert’s maxim
applies to the debate over realism: to argue for realism one must employ methods
more stringent than those in ordinary scientific practice. . . . [T]he form of argument
used to support realism must be more stringent than the form of argument embedded
in the very scientific practice that realism itself is supposed to ground” (pp. 115, 116n).

Well, it depends on what one is trying to do. Hilbert’s program was designed to
put mathematics on a firm foundation, and so Hilbert was trying to ground mathemat-
ics, in a strong epistemological sense. Here is the rallying cry: “The goal of my theory
is to establish once and for all the certitude of mathematical methods. . . . No one shall
drive us out of the paradise which Cantor has created for us” (Hilbert [1925, 191]).
Thanks to Gödel, of course, the program failed—in this purpose. With Fine, Quine,
and others, it is now hard to imagine a perspective more secure than that of science
and mathematics, taken very generally. Epistemological foundationalism is dead, and
if Fine’s realist embraces it, then we can agree on a “do not resuscitate” order. But it

19. Fine has other lines, of course. He argues, for example, that the realist’s “extratheoretic” cor-
respondence is “unverifiable” and that the realist requires “genuine access to the relation of correspon-
dence.” This is reminiscent of arguments against realism in ontology in mathematics, on the ground
that no one has access to abstract objects like numbers and sets. In either case, we need more informa-
tion on what the relation of “access” is and why the various realisms are committed to it. Fine also
discusses the relationship between realism and scientific practice, an analogue of the main topic of
chapter 1. He suggests that Einstein’s early antirealism, under the influence of Mach, played a crucial
motivating factor in the development of relativity theory, and Fine argues that Einstein’s later adop-
tion of realism was stifling. Fine commends the pioneers of quantum mechanics for ignoring Einstein’s
philosophical advice. However, he later shows that virtually any (consistent) scientific theory is sub-
ject to both a realist and an antirealist interpretation. The upshot is that, as far as practice goes, phi-
losophy is idle. In the end, Fine seems to embrace what I call the philosophy-last-if-at-all view (see
chapter 1).
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does not follow that there is no role for foundational activity. To borrow the title from
my other book, can there be foundations without foundationalism? The philosopher
of mathematics or science has interesting and important questions to attack. We can
try to make sense of mathematics and its place in our intellectual lives, even if we
cannot ground it in something more secure—and even if we have to work on less
sturdy ground than that of mathematics/science itself. The only concession we need,
so far, is that it may be possible for a program of philosophical realism to make some
progress on some worthwhile front.

Our third instance of the internal/external metaphor is Hilary Putnam’s “internal
realism” (or “internalism”) and its ugly cousin “metaphysical realism” (Putnam
[1981], [1987]; see also [1980]). This distinction does not match the present one
between working realism and philosophical realism and, indeed, much of what Putnam
says about internalism resonates well with structuralism.

“Internal” is, of course, a relative term. The present working realism is, roughly,
internal to mathematics and its methodology. Carnap’s internal ontological questions
are internal to a given linguistic framework, and Fine’s NOA is internal to science,
broadly conceived. In contrast, Putnam’s internal realism is internal to our total “con-
ceptual scheme,” the entire range of conceptual resources with which we approach the
world. In Wittgensteinian terms, internalism is internal to our “form of life.” It is hard
to imagine a perspective external to that, but this, I suppose, is Putnam’s point.

According to Putnam, the main thesis of metaphysical realism is that “the world
consists of some fixed totality of mind-independent objects. There is exactly one true
and complete description of ‘the way the world is’” ([1981, 49]). The key term here
is “fixed.” According to metaphysical realism, the objects, properties, and relations
of the universe are determined independently of whatever language and theory we
happen to hold. The “one true and complete description” of the world has terms that
name those objects and refer to those predicates and relations.

So, according to metaphysical realism, the aim of science/philosophy is to come
up with this “one true and complete description,” or at least to approach it as an ideal.
The view presupposes that there is “a God’s Eye view of truth, or, more accurately,
a No Eye view of truth—truth as independent of observers altogether” ([1981, 50]).
This supposed “view” is the perspective of the single, complete description of the
universe.

There is no reason why the present program of philosophical realism must pre-
suppose this God’s-eye view of reality. The program involves a metalanguage or,
better, a U-language à la Curry, but there is no commitment that this language is
“uniquely correct,” whatever that might mean. We have already endorsed Curry’s
metaphor that the U-language is a growing thing. One can, perhaps, wonder whether
there is a fixed totality of mathematical objects, the cumulative hierarchy V perhaps.
One might hold that this totality is uniquely correct. A rejection of this idea is what
distinguishes the thorough structuralism articulated here from a more limited ver-
sion (see chapter 3).

A corollary of Putnam’s rejection of the single, correct description, God’s-eye
view, is an ontological relativity: “[I]t is characteristic of [internal realism] to hold
that what objects does the world consist of? is a question that it only makes sense to
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ask within a theory or description” ([1981, 49]). In Putnam [1987], internalism is
characterized as a “conceptual relativity”:

[W]e cannot say—because it makes no sense— . . . what the facts are independent of
all conceptual choices. (p. 33)

We can and should insist that some facts are there to be discovered and not legislated
by us. But this is something to be said when one has adopted a way of speaking, a
language, a ‘conceptual scheme’. (p. 36)

Putnam temporarily invokes a metaphor of the universe as a rolled-out dough, with
conceptual schemes as various cookie cutters. The schemes produce different batches
of objects out of the same universe. Even this metaphor is rejected, however, be-
cause there is no theory-neutral way of asking what the dough is like or, in particu-
lar, what the parts of the dough are—or whatever the literal counterparts of these
questions might be.

Like Fine’s realist, the metaphysical realist endorses the dreaded “correspondence”
account of truth. And like Fine, Putnam speaks of the metaphysician’s need for “ac-
cess” to the truth, in order to figure out just what reference is (see note 19). What is
the relationship between “Fido” and Fido? This is not a problem for the internal real-
ist: “[A] sign that is actually employed . . . by a . . . community of users can corre-
spond to particular objects within the conceptual scheme of those users. ‘Objects’ do
not exist independently of conceptual schemes. We cut up the world into objects when
we introduce one or another scheme of description. Since the objects and the signs
are alike internal to the scheme of description, it is possible to say what matches
what. . . . But [the metaphysical realist] does not regard such statements as telling us
what reference is. For him finding out what reference is; i.e. what the nature of the
‘correspondence’ between words and things is, is a pressing problem” ([1981, 52]).
This much is reminiscent of Carnap. The “internal” question of reference is trivial;
the external one appears hard but is really a meaningless pseudoquestion.

As part of the argument, Putnam invokes the fact that in standard model-theoretic
semantics, no (formal) language determines its interpretation. At best, a given theory
determines its models only up to isomorphism. This, Putnam says, shows that meta-
physical realists do not really have any access to the correspondence they postulate:20

“[C]ouldn’t there be some kind of abstract isomorphism, or . . . mapping of concepts
onto things in the (mind-independent) world? Couldn’t truth be defined in terms of
such an isomorphism or mapping? The trouble with this suggestion is . . . that too
many correspondences exist. To pick out just one correspondence between words or
mental signs and mind-independent things we would have to already have referen-

20. To bolster this point, Putnam [1980] invokes the Löwenheim-Skolem theorem, which suggests
an intriguing analogy between his own conceptual relativity and the sort of relativity invoked by Skolem
(e.g., [1922]). However, the only thing that Putnam needs is the less fancy fact that isomorphic inter-
pretations are equivalent. The Löwenheim-Skolem theorems apply only to first-order languages, whereas
the equivalence of isomorphic models holds in any model-theoretic semantics worthy of the name. See
Shapiro [1991].
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tial access to the mind-independent things. . . . This simply states in mathematical
language the intuitive fact that to single out a correspondence between two domains
one needs some independent access to both domains” ([1981, 72–74]).

The model-theoretic semantics invoked by the present philosophical realist seems
to involve only the internal perspective that Putnam endorses. What other perspec-
tive is there? The present program is carried out in a U-language; the philosopher
starts on the ship of Neurath. In a sense, structuralism is built around Putnam’s in-
sights, pitched at a more local level. We end up with at least an “internal relativity of
ontology”—a relativity to a theory or, better, to a structure (rather than to a grand
conceptual scheme). The fact that formal, and mathematical, theories characterize
their models only up to isomorphism does not make reference impossible to grasp,
nor is reference as trivial as Putnam indicates.21 The question is “reference to what?”
Structuralism has interesting ramifications concerning what it is to be a mathemati-
cal object. It is well past time to turn our attention in that direction.

21. There are important differences between Putnam’s internal realism and the present program of
philosophical realism, structuralism in particular. The most-discussed aspect of Putnam [1981] is his
endorsement of an epistemic account of truth. Truth, Putnam says, “is some sort of (idealized) rational
acceptability. . . . [T]o claim a statement is true is to claim it could be justified. . . . Truth is ultimate
goodness of fit” (pp. 49, 56, 64). In contrast, this book invokes an ordinary model-theoretic notion of
truth. For all we know, some truths may be independent of rational acceptability. Notice, incidentally,
that the truth-is-rational-acceptability thesis does not appear in Putnam [1987]. There, he attacks the
very dichotomy between parts of discourse that have objective truth conditions and parts that have only
conditions for warranted assertion (again, see Wright [1992]; also Kraut [1993]). Another theme of
Putnam [1987] is that words like “object” are equivocal: “The device of reinterpretation [recognizes]
that one person’s ‘existence’ claim may be another person’s something else. . . . The notions of ‘ob-
ject’ and ‘existence’ are not treated as sacrosanct, as having just one possible use . . . there are no stan-
dards for the use of even the logical notions apart from conceptual choices” (pp. 34–36). This may be
only a matter of terminology, but my view is that once the language is regimented, “object” and “exis-
tence” are univocal, but these notions are relative to a conceptual scheme, theory, or structure.
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3

Structure

1 Opening

Every theory, philosophical or otherwise, must take some notions for granted. The
philosopher inherits a fully developed language, a U-language in Curry’s sense (see
the previous chapter). Nevertheless, in both historical and contemporary philosophy,
the most basic concepts of discourse are open to articulation and analysis. Every notion
or principle in the inherited U-language is up for scrutiny and perhaps revision, at
least in principle—even if one cannot revise every notion, all at once. In Neurath’s
metaphor, the philosopher is at work rebuilding parts of the floating ship of concepts.
The notions of existence, object, and identity occur in just about every philosophical
work, usually without further ado. Indeed, it is hard to imagine writing philosophy
without invoking and presupposing these notions. Should we conclude that every-
one already has clear and distinct ideas of them? Is any attempt to articulate such
notions a waste of time and effort?

Presumably, one cannot go about articulating basic notions without presupposing
and even using them. We have to start somewhere. This part of the book exhibits what
is sometimes called a “dialectical” approach. We begin by using certain notions.
As we go, some of these notions get refined and even modified. This tempers some of
the very statements we use in getting the procedure off the ground. As the notions get
further modified, the statements used to make the modifications themselves get modi-
fied. In the end, the original statements should be regarded as first approximations.

Structuralism has interesting consequences for the basic building blocks of ontol-
ogy. Among other things, structuralists have something to say about what an object
is and what identity is, at least in mathematics. Along the way, we speculate about
how far the structuralist notion of object carries over to ordinary, nonmathematical
contexts (see also chapter 8). The problem, however, is that structuralism cannot be
articulated without invoking the notion of object, and so I ask for the reader’s dialec-
tical indulgence.
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My structuralist program is a realism in ontology and a realism in truth-value—
once the requisite notions of object and objectivity are on the table. Structuralists
hold that a nonalgebraic field like arithmetic is about a realm of objects—numbers—
that exist independently of the mathematician, and they hold that arithmetic asser-
tions have nonvacuous, bivalent, objective truth-values in reference to this domain.

Structuralism is usually contrasted with traditional Platonism. Ultimately, the dif-
ferences may not amount to much when it comes to ontology, but the contrast is a
good place to begin our first approximation. Like any realist in ontology, the Platonist
holds that the subject matter of a given nonalgebraic branch of mathematics is a col-
lection of objects that have some sort of ontological independence. The natural num-
bers, for example, exist independently of the mathematician. As I noted in the previ-
ous chapter, Resnik [1980, 162] defines an “ontological platonist” to be someone
who holds that ordinary physical objects and numbers are “on a par.” Numbers are
the same kind of thing—objects—as beach balls, only there are more numbers than
beach balls and numbers are abstract and eternal.

To pursue this analogy, one might attribute some sort of ontological independence
to the individual natural numbers. Just as each beach ball is independent of every
other beach ball, each natural number is independent of every other natural number.
Just as a given red beach ball is independent of a blue one, the number 2 is indepen-
dent of the number 6. An attempt to articulate this idea will prove instructive. When
we say that the red beach ball is independent of the blue one, we might mean that the
red one could have existed without the blue one and vice versa. However, nothing of
this sort applies to the natural numbers, as conceived by traditional Platonism. Ac-
cording to the Platonist, numbers exist necessarily. So we cannot say that 2 could
exist without 6, because 6 exists of necessity. Nothing exists without 6. To be sure,
there is an epistemic independence among the numbers in the sense that a child can
learn much about the number 2 while knowing next to nothing about 6 (but having it
the other way around does stretch the imagination). This independence is of little
interest here, however.

The Platonist view may be that one can state the essence of each number without
referring to the other numbers. The essence of 2 does not invoke 6 or any other num-
ber (except perhaps 0 and 1). If this notion of independence could be made out, we
structuralists would reject it. The essence of a natural number is its relations to other
natural numbers. The subject matter of arithmetic is a single abstract structure, the
pattern common to any infinite collection of objects that has a successor relation with
a unique initial object and satisfies the (second-order) induction principle. The num-
ber 2, for example, is no more and no less than the second position in the natural-
number structure; 6 is the sixth position. Neither of them has any independence from
the structure in which they are positions, and as places in this structure, neither num-
ber is independent of the other. The essence of 2 is to be the successor of the succes-
sor of 0, the predecessor of 3, the first prime, and so on.

Plato himself distinguishes two studies involving natural numbers. Arithmetic
“deals with the even and the odd, with reference to how much each happens to be”
(Gorgias 451A–C). If “one becomes perfect in the arithmetical art,” then “he knows
also all of the numbers” (Theatetus 198A–B; see also Republic VII 522C). The study
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called logistic deals also with the natural numbers but differs from arithmetic “in so
far as it studies the even and the odd with respect to the multitude they make both
with themselves and with each other” (Gorgias 451A–C; see also Charmides 165E–
166B). So arithmetic deals with the natural numbers, and logistic concerns the rela-
tions among the numbers. In ancient works, logistic is usually understood as the theory
of calculation. Most writers take it to be a practical discipline, concerning measure-
ment, business dealings, and so forth (e.g., Proclus [485, 39]; see Heath [1921, chapter
1]). For Plato, however, logistic is every bit as theoretical as arithmetic. As Jacob
Klein [1968, 23] puts it, theoretical logistic “raises to an explicit science that knowl-
edge of relations among numbers which . . . precedes, and indeed must precede, all
calculation.”

The structuralist rejects this distinction between Plato’s arithmetic and theoreti-
cal logistic. There is no more to the individual numbers “in themselves” than the
relations they bear to each other. Klein [1968, 20] wonders what is to be studied in
arithmetic, as opposed to logistic. Presumably, the art of counting—reciting the nu-
merals—is arithmetic par excellence. Yet “addition and also subtraction are only an
extension of counting.” Moreover, “counting itself already presupposes a continual
relating and distinguishing of the numbered things as well as of the numbers.” In the
Republic (525C–D), Plato said that guardians should pursue logistic for the sake of
knowing. It is through this study of the relations among numbers that their soul is
able to grasp the nature of numbers as they are in themselves. We structuralists agree.1

The natural-number structure is exemplified by the strings on a finite alphabet in
lexical order, an infinite sequence of strokes, an infinite sequence of distinct moments
of time, and so on. Similarly, group theory studies not a single structure but a type of
structure, the pattern common to collections of objects with a binary operation, an iden-
tity element thereon, and inverses for each element. Euclidean geometry studies
Euclidean-space structure; topology studies topological structures, and so forth.2

One lesson we have learned from Plato is that one cannot delineate a philosophical
notion just by giving a list of examples. Nevertheless, the examples point in a certain
direction. To continue the dialectic, I define a system to be a collection of objects
with certain relations. An extended family is a system of people with blood and marital

1. Klein [1968, 24] tentatively concludes that logistic concerns ratios among pure units, whereas
arithmetic concerns counting, addition, and subtraction. In line with the later dialogues, it might be
better to think of logistic as what we would call “arithmetic,” with Plato’s “arithmetic” being a part of
higher philosophy. I am indebted to Peter King for useful conversations on this historical material.

2. Sometimes mathematicians use phrases like “the group structure” and “the ring structure” when
speaking loosely about groups and rings. Taken literally, these locutions presuppose that there is a single
structure common to all groups and a single structure common to all rings. Here, I prefer to use “struc-
ture” to indicate the subject of nonalgebraic theories, those that mathematicians call “concrete.” To
say that two systems have the same structure is to say that they share something like an isomorphism
type. This is what allows us to speak of numbers as individual objects. So, in the present sense, group
theory is not about a single structure, but rather a class of similar structures. My fellow structuralist,
Michael Resnik (e.g. [1996]) denies the importance of this distinction. For Resnik, it seems, all math-
ematical theories are algebraic, none are “concrete” (or to be precise, there is no “fact of the matter”
whether a given structure is “concrete”).
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relationships, a chess configuration is a system of pieces under spatial and “possible-
move” relationships, a symphony is a system of tones under temporal and harmonic
relationships, and a baseball defense is a collection of people with on-field spatial
and “defensive-role” relations. A structure is the abstract form of a system, high-
lighting the interrelationships among the objects, and ignoring any features of them
that do not affect how they relate to other objects in the system.

Although epistemology is treated in the next chapter, it will help here to mention
a few ways that structures are grasped. One way to apprehend a particular structure
is through a process of pattern recognition, or abstraction. One observes a system, or
several systems with the same structure, and focuses attention on the relations among
the objects—ignoring those features of the objects that are not relevant to these rela-
tions. For example, one can understand a baseball defense by going to a game (or
several games) and noticing the spatial relations among the players who wear gloves,
ignoring things like height, hair color, and batting average, because these have noth-
ing to do with the defense system. It is similar to how one comes to grasp the type of
a letter, such as an “E,” by observing several tokens of the letter and focusing on the
typographical pattern, while ignoring the color of the tokens, their height, and the
like.

I do not offer much to illuminate the psychological mechanisms involved in pat-
tern recognition. They are interesting and difficult problems in psychology and in
the young discipline of cognitive science. Nevertheless, it is reasonably clear that
humans do have an ability to recognize patterns.3 Sometimes, ostension is at work.
One points to the system and somehow indicates that it is the pattern being ostended,
and not the particular people or objects. That is, one points to a system that exempli-
fies the structure in order to ostend the structure itself. Similarly, one can point to a
capital “E,” not to ostend that particular token but to ostend the type, the abstract
pattern. Ordinary discourse clearly has the resources to distinguish between pattern
and patterned, the psychological problems with pattern recognition and the philo-
sophical problems with abstracta notwithstanding.

A second way to understand a structure is through a direct description of it. Thus,
one might say that a baseball defense consists of four infielders, arranged thus and
so, three outfielders, and so on. One can also describe a structure as a variation of a
previously understood structure. A “lefty shift defense” occurs when the shortstop
plays to the right of second base and the third baseman moves near the shortstop
position. Or a “softball defense” is like a baseball defense, except that there is one
more outfielder. In either case, most competent speakers of the language will under-
stand what is meant and can then go on to discuss the structure itself, independent of
any particular exemplification of it.4

3. Dieterle [1994, chapter 3] contains a brief survey of some of the psychological literature on pat-
tern recognition, relating the process to structuralism. She argues that pattern recognition is the central
component of a reliabilist epistemology of abstract patterns. I return to this in chapter 4.

4. An anecdote: Several years ago, I was called on to observe a remedial mathematics class. The
students were among the worst prepared in mathematics. While waiting for the class to begin, I over-
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For our first (or second) approximation, then, pure mathematics is the study of
structures, independently of whether they are exemplified in the physical realm, or
in any realm for that matter. The mathematician is interested in the internal relations
of the places of these structures, and the methodology of mathematics is, for the most
part, deductive. As Resnik puts it:

In mathematics, I claim, we do not have objects with an ‘internal’ composition arranged
in structures, we have only structures. The objects of mathematics, that is, the entities
which our mathematical constants and quantifiers denote, are structureless points or
positions in structures. As positions in structures, they have no identity or features
outside a structure. ([1981, 530])

Take the case of linguistics. Let us imagine that by using the abstractive process . . . a
grammarian arrives at a complex structure which he calls English. Now suppose that it
later turns out that the English corpus fails in significant ways to instantiate this pat-
tern, so that many of the claims which our linguist made concerning his structure will
be falsified. Derisively, linguists rename the structure Tenglish. Nonetheless, much of
our linguist’s knowledge about Tenglish qua pattern stands; for he has managed to
describe some pattern and to discuss some of its properties. Similarly, I claim that we
know much about Euclidean space despite its failure to be instantiated physically.
([1982, 101])

Of course, some of the examples mentioned above are too simple to be worthy of
the mathematician’s attention. What can we prove about an infield structure, or about
the type of the letter “E”? There are, however, nontrivial theorems about chess games.
For example, it is not possible to force a checkmate with a king and two knights against
a lone king. This holds no matter what the pieces are made of, and even whether or
not chess has ever been played. This fact about chess is a more or less typical mathe-
matical theorem about a certain structure. Here, it is the structure of a certain game.

Most of the structures studied in mathematics have an infinite, indeed uncount-
able, number of positions. The set-theoretic hierarchy has a proper class of positions.
It is contentious to suggest that we can come to understand structures like this by
abstraction, or pattern recognition, from perceptual experience. That would require
a person to view (or hear) a system that consists of infinitely many objects. There is
thus an interesting epistemological problem for structuralism, which will be dealt
with in due course (chapter 4). My present purpose is to point to the notion of struc-
ture and to characterize mathematics as the science of structure.

There is a revealing error in Hartry Field’s Science without numbers [1980]. The
purpose of that book is to articulate a view, now called “nominalism,” that there are
no abstract objects. According to Field, everything is concrete (in the philosophers’
sense of that word). Because, presumably, numbers are abstracta par excellence, the

heard a conversation between two of them concerning the merits of a certain basketball defense. The
discussion was at a rather high level of abstraction and complexity, at least as great as that of the sub-
ject matter of the class that day (the addition of fractions). It seems to me that there is not much differ-
ence in kind between abstract discussions of basketball defenses and the addition of fractions (but see
section 5).
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nominalist rejects the existence of numbers. A central item on Field’s agenda is to
show how science can proceed, at least in principle, without presupposing the exist-
ence of numbers and other abstract objects. He develops one example, Newtonian
gravitational theory, in brilliant detail. The ontology of Field’s nominalistic theory
includes points and regions of space-time, but he argues that points and regions are
concrete, not abstract, entities. There is no need to dispute the last claim here (but
see Resnik [1985]). Whether abstract or concrete, Field’s Newtonian space-time is
Euclidean, consisting of continuum-many points and even more regions. Space-time
exemplifies most (but not all) of the structure of ú4, the system of quadruples of real
numbers. Field himself insightfully exploits the fact that any model of space-time
can be extended to a model of ú4 by adding a reference frame and units for the metrics.
Each line of space-time is then isomorphic to ú, and so addition and multiplication
can be defined on a line. So something like addition and multiplication, as well as
the calculus of real-valued functions, can be carried out in this nominalistic theory.
All of this is supposed to be consistent with nominalistic rejection of abstracta.

Field considers the natural objection that “there doesn’t seem to be a very signifi-
cant difference between postulating such a rich physical space and postulating the
real numbers.” He replies, “[T]he nominalistic objection to using real numbers was
not on the grounds of their uncountability or of the structural assumptions (e.g.,
Cauchy completeness) typically made about them. Rather, the objection was to their
abstractness: even postulating one real number would have been a violation of nomi-
nalism. . . . Conversely, postulating uncountably many physical entities . . . is not an
objection to nominalism; nor does it become any more objectionable when one pos-
tulates that these physical entities obey structural assumptions analogous to the ones
that platonists postulate for the real numbers” (p. 31). The structuralist balks at this
point. For us, a real number is a place in the real-number structure. It makes no sense
to “postulate one real number,” because each number is part of a large structure. It
would be like trying to imagine a shortstop independent of an infield, or a piece that
plays the role of the black queen’s bishop independent of a chess game. Where would
it stand? What would its moves be? One can, of course, ask whether the real-number
structure is exemplified by a given system (like a collection of points). Then one could
locate objects that have the roles of individual numbers, just as on game day one can
identify the people who have the roles of shortstop on each team, or in a game of
chess one can identify the pieces that are the bishops. But it is nonsense to contem-
plate numbers independent of the structure they are part of.

It is common for mathematicians to claim that mathematics has not really been
eliminated from Field’s system. Even if the title, Science without numbers, is an ac-
curate description of the enterprise, it is not science without mathematics.5 Some
philosophers might be inclined to let the response of the mathematicians settle the

5. This response was made by the mathematicians who attended an interdisciplinary seminar I once
gave on Science without numbers. In correspondence, Field himself reported similar observations from
colleagues in mathematics departments. Of course, mathematicians are not the only ones to balk at the
claim that Field’s system does not significantly reduce the mathematical presuppositions of Newtonian
gravitational theory. A number of philosophers and prominent logicians have joined the chorus.
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matter. After all, mathematicians should be able to recognize their subject when they
see it. In response, Field could point out that these mathematicians are simply not
interested in questions of ontology, or that they do not understand or care about the
distinction between abstract and concrete. This, of course, may be true. But observa-
tions about the typical interests of mathematicians miss the point. Field concedes that
nominalistic physics makes substantial “structural assumptions” about space-time,
and he articulates these assumptions with admirable rigor. Although Field would not
put it this way, the “structural assumptions” characterize a structure, an uncountable
one. This is a consequence of the fact that (the second-order version of) Field’s theory
of space-time is categorical—all of its models are isomorphic. Field’s nominalistic
physicist would study this structure as such, at least sometimes. Field himself proves
theorems about this structure. As I see it, he thereby engages in mathematics. The
activity of proving things about space-time is the same kind of activity as proving
theorems about real numbers. Both are the deductive study of a structure, no more
and certainly no less.

Field might reply that he is interested in one particular (concrete) exemplification
of the structure, not the structure itself. This is fair, but it misses the point. As far as
mathematics goes, it does not matter where, how, or even if the relevant structure is
exemplified. The substructure of ú4 is in the purview of mathematics, and both Field
and his nominalistic physicist use typical mathematical methods to illuminate this
structure, along with the concrete system that exemplifies it. I suggest that these
observations underlie the mathematicians’ response to Field. They are correct.

2 Ontology: Object

On the ontological front, there are two groups of issues. One is the status of whole
structures, such as the natural-number structure, the real-number structure, and the
set-theoretic hierarchy, as well as more mundane structures like a symphony, a chess
configuration, and a baseball defense. The other issue concerns the status of mathe-
matical objects, the places within structures: natural numbers, real numbers, points,
sets, and so on.

We begin with the issue concerning mathematical objects. The existence of struc-
tures will be addressed directly later, but because of the interconnections, we will go
back and forth between the issues. Once again, a natural number is a place in the
natural-number structure, a particular infinite pattern. The pattern may be exempli-
fied by many different systems, but it is the same pattern in each case. The number
2 is the second place in that pattern. Individual numbers are analogous to particular
offices within an organization. We distinguish the office of vice president, for ex-
ample, from the person who happens to hold that office in a particular year, and we
distinguish the white king’s bishop from the piece of marble that happens to play
that role on a given chess board. In a different game, the very same piece of marble
might play another role, such as that of white queen’s bishop or, conceivably, black
king’s rook. Similarly, we can distinguish an object that plays the role of 2 in an
exemplification of the natural-number structure from the number itself. The number
is the office, the place in the structure. The same goes for real numbers, points of
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Euclidean geometry, members of the set-theoretic hierarchy, and just about every
object of a nonalgebraic field of mathematics. Each mathematical object is a place in
a particular structure. There is thus a certain priority in the status of mathematical
objects. The structure is prior to the mathematical objects it contains, just as any
organization is prior to the offices that constitute it. The natural-number structure is
prior to 2, just as “baseball defense” is prior to “shortstop” and “U.S. Government”
is prior to “vice president.”

Structuralism resolves one problem taken seriously by at least some Platonists—
or realists in ontology—and which has been invoked by its opponents as an argu-
ment against realism. Frege [1884], who has been called an “arch-Platonist,” argued
that numbers are objects. This conclusion was based in part on the grammar of num-
ber words. Numerals, for example, exhibit the trappings of singular terms. Frege went
on to give an insightful and eminently plausible account of the use of number terms
in certain contexts, typically forms like “the number of F is y,” where F stands for a
predicate like “moons of Jupiter” or “cards on this table.” But then Frege noted that
this preliminary account does not sustain the conclusion that numbers are objects.
For this, we need a criterion to decide whether any given number, like 2, is the same
or different from any other object, say Julius Caesar. That is, Frege’s preliminary
account does not have anything to say about the truth-value of the identity “Julius
Caesar = 2.” This quandary has come to be called the Caesar problem. A solution to
it should determine how and why each number is the same or different from any object
whatsoever. The Caesar problem is related to the Quinean dictum that we need cri-
teria to individuate the items in our ontology. If we do not have an identity relation,
then we do not have bona fide objects. The slogan is “no entity without identity.”
Frege attempted to solve this problem with the use of extensions. He proposed that
the number 2 is a certain extension, the collection of all pairs. Thus, 2 is not Julius
Caesar because, presumably, persons are not extensions. This turned out to be a tragic
maneuver, because Frege’s account of extensions (in [1903]) is inconsistent. With
the wisdom that hindsight brings, Frege should have quit while he was ahead.6

Paul Benacerraf’s celebrated [1965] and Philip Kitcher [1983, chapter 6] raise a
variation of this problem. After the discovery that virtually every field of mathemat-
ics can be reduced to (or modeled in) set theory, the foundationally minded came to
think of the set-theoretic hierarchy as the ontology for all of mathematics. An economy
in regimentation suggests that there should be a single type of object. Why have sets
and numbers when sets alone will do? But there are several reductions of arithmetic
to set theory, an embarrassment of riches. If numbers are mathematical objects and
all mathematical objects are sets, then we need to know which sets the natural num-

6. A number of writers have shown that the essence of Frege’s account of arithmetic is consistent
(e.g., Boolos [1987]). The idea is to speak of numbers directly, not mediated by extensions. But then
the Caesar problem remains unsolved. One can also consistently identify numbers with extensions, as
long as one does not maintain that every open formula determines an extension and that two formulas
determine the same extension if and only if they are coextensive (cf. Frege’s infamous Principle V). I
return to Frege’s notion of “object” in chapter 5.
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bers are. According to one account, due to von Neumann, it is correct to say that 1 is
a member of 4. According to Zermelo’s account, 1 is not a member of 4. Moreover,
there seems to be no principled way to decide between the reductions. Each serves
whatever purpose a reduction is supposed to serve. So we are left without an answer
to the question, “Is 1 really a member of 4, or not?” What, after all, are the natural
numbers? Are they finite von Neumann ordinals, Zermelo numerals, or some other
sets altogether? From these observations and questions, Benacerraf and Kitcher con-
clude, against Frege, that numbers are not objects. This conclusion, I believe, is not
warranted. It all depends on what it is to be an object, a matter that is presently under
discussion.7

I would think that a good philosophy of mathematics need not answer questions
like “Is Julius Caesar = 2?” and “Is 1 ∈ 4?” Rather, a philosophy of mathematics
should show why these questions need no answers, even if the questions are intelli-
gible. It is not that we just do not care about the answers; we want to see why there
is no answer to be discovered—even for a realist in ontology. Again, a number is a
place in the natural-number structure. The latter is the pattern common to all of the
models of arithmetic, whether they be in the set-theoretic hierarchy or anywhere else.
One can form coherent and determinate statements about the identity of two num-
bers: 1 = 1 and 1 ≠ 4. And one can look into the identity between numbers denoted
by different descriptions in the language of arithmetic. For example, 7 is the largest
prime that is less than 10. And one can apply arithmetic in the Fregean manner and
assert, for example, that the number of cards in a deck is 52. But it makes no sense to
pursue the identity between a place in the natural-number structure and some other
object, expecting there to be a fact of the matter. Identity between natural numbers is
determinate; identity between numbers and other sorts of objects is not, and neither
is identity between numbers and the positions of other structures.

Along similar lines, one can ask about numerical relations between numbers, re-
lations definable in the language of arithmetic, and one can expect determinate an-
swers to these questions. Thus, 1 < 4 and 1 evenly divides 4. These are questions
internal to the natural-number structure. But if one inquires whether 1 is an element
of 4, there is no answer waiting to be discovered. It is similar to asking whether 1 is
braver than 4, or funnier.

Similar considerations hold for our more mundane structures. It is determinate
that the shortstop position is not the catcher position and that a queen’s bishop can-
not capture the opposing queen’s bishop, but there is something odd about asking
whether positions in patterns are identical to other objects. It is nonsense to ask whether
the shortstop is identical to Ozzie Smith—whether the person is identical to the po-

7. In chapter 2, we encountered an argument of Putnam [1981, 72–74] against metaphysical real-
ism: “[C]ouldn’t there be some kind of abstract isomorphism, or . . . mapping of concepts onto things
in the (mind-independent) world? . . . The trouble with this suggestion is . . . that too many correspon-
dences exist. To pick out just one correspondence between words or mental signs and mind-independent
things we would have to already have referential access to the mind-independent things.” Again, it all
depends on what it is to be a “thing,” and it depends on what “reference” is.
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sition. Ozzie Smith is, of course, a shortstop and, arguably, he is (or was) the quint-
essential shortstop, but is he the position? There is also something odd about asking
whether the shortstop position is taller or faster or a better hitter than the catcher
position. Shortness, tallness, and batting average do not apply to positions.

Similar, less philosophical questions are asked on game day, about a particular
lineup, but those questions concern the people who occupy the positions of short-
stop and catcher that day, not the positions themselves. When a fan asks whether
Ozzie Smith is the shortstop or whether the shortstop is a better hitter than the catcher,
she is referring to the people in a particular lineup.8 Virtually any person prepared to
play ball can be a shortstop—anybody can occupy that role in an infield system (some
better than others). Any small, moveable object can play the role of (i.e., can be) black
queen’s bishop. Similarly, and more generally, anything at all can “be” 2—anything
can occupy that place in a system exemplifying the natural-number structure. The
Zermelo 2 ({{f}}), the von Neumann 2 ({f, {f}}), and even Julius Caesar can each
play that role. The Frege–Benacerraf questions do not have determinate answers, and
they do not need them.

One can surely ask the Frege–Benacerraf questions. Are Julius Caesar or {f, {f}}
places in the natural-number structure? Do the monarch and the ordinal have essen-
tial properties relating them to other places in the natural-number structure? If the
question is taken seriously, the answer will surely be “of course not.” The retort is
“How do you know?” or, to paraphrase Frege, “Of course these items are not places
in the natural-number structure, but this is no thanks to structuralism.” A structural-
ist could reply that Julius Caesar and {f, {f}} have essential properties other than
those relating to other places in the natural-number structure, but that would miss
the point.

We point toward a relativity of ontology, at least in mathematics. Roughly, math-
ematical objects are tied to the structures that constitute them. Benacerraf [1965,
§III.A] himself espoused a related view, at least temporarily. In order to set up his
dilemma, he “treated expressions of the form n = s, where n is a number expression
and s a set expression as if . . . they made perfectly good sense, and . . . it was our job
to sort out the true from the false. . . . I did this to dramatize the kind of answer that
a Fregean might give to the request for an analysis of number. . . . To speak from
Frege’s standpoint, there is a world of objects . . . in which the identity relation [has]
free reign.” Benacerraf’s suggestion is to hold that at least some identity statements
are meaningless: “Identity statements make sense only in contexts where there exist
possible individuating conditions. . . . [Q]uestions of identity contain the presuppo-
sition that the ‘entities’ inquired about both belong to some general category.” We
need not go this far, but notice that items from the same structure are certainly in the
same “general category,” and there are “individuating conditions” among them.
Whether Benacerraf has given the only ways to construe identity statements remains

8. In professional baseball, shortstops are generally faster than catchers, and they are better hitters
(even though there are notable exceptions). Statements like this have to do with the particular skills
needed to play each position well.



STRUCTURE 81

to be seen. He concluded, “What constitutes an entity is category or theory-dependent.
. . . There are . . . two correlative ways of looking at the problem. One might con-
clude that identity is systematically ambiguous, or else one might agree with Frege,
that identity is unambiguous, always meaning sameness of object, but that (contra-
Frege now) the notion of object varies from theory to theory, category to category.”
In mathematics, at least, the notions of “object” and “identity” are unequivocal but
thoroughly relative. Objects are tied to the structures that contain them. It is thus
strange that Benacerraf should eventually conclude that natural numbers are not
objects. Arithmetic is surely a coherent theory, “natural number” is surely a legiti-
mate category, and numbers are its objects.9

Suppose that mathematicians develop a new field. Call its objects “hypernumbers.”
Analogues in (reconstructed) history are the study of negative, irrational, and com-
plex numbers, and quaternions. It would surely be pompous of the philosopher to
suggest that the field of hyperarithmetic is somehow illegitimate and is destined to
remain so until we know how to individuate hypernumbers. The mathematicians do
not have to tell us, once and for all, how to figure out whether, say, the additive iden-
tity of the hypernumbers is the same thing as the zero of arithmetic or the zero of
analysis or the empty set. It is enough for them to differentiate hypernumbers from
each other.

As hinted earlier, there is an important caveat to this relativity. I do not wish to go
as far as Benacerraf in holding that identifying positions in different structures (or
positions in a structure with other objects) is always meaningless. On the contrary,
mathematicians sometimes find it convenient, and even compelling, to identify the
positions of different structures. This occurs, for example, when set theorists settle
on the finite von Neumann ordinals as the natural numbers. They stipulate that 2 is
{f, {f}}, and so it follows that 2 ≠ {{f}}. For a more straightforward example, it is
surely wise to identify the positions in the natural-number structure with their coun-
terparts in the integer-, rational-, real-, and complex-number structures. Accordingly,
the natural number 2 is identical to the integer 2, the rational number 2, the real num-
ber 2, and the complex number 2 (i.e., 2 + 0i). Hardly anything could be more straight-
forward. For an intermediate case, mathematicians occasionally look for the “natu-
ral settings” in which a structure is best studied. An example is the embedding of the
complex numbers in the Euclidean plane, which illuminates both structures. It is not
an exaggeration to state that some structures grow and thrive in certain environments.
This phenomenon will occupy us several times, in chapters 4 and 5. The point here
is that cross-identifications like these are matters of decision, based on convenience,
not matters of discovery.

Parsons [1990, 334] puts the relativity into perspective:

[O]ne should be cautious in making such assertions as that identity statements involv-
ing objects of different structures are meaningless or indeterminate. There is an obvi-

9. I will return to this relativity throughout the book, notably in section 6 of chapter 4 on episte-
mology, section 3 of chapter 5 on Frege, and chapter 8. I am indebted to Crispin Wright and Bob Hale
for pressing the Caesar issue.
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ous sense in which identity of natural numbers and sets is indeterminate, in that differ-
ent interpretations of number theory and set theory are possible which give different
answers about the truth of identities of numbers and sets. In a lot of ordinary, mathe-
matical discourse, where different structures are involved, the question of identity or
non-identity of elements of one with elements of another just does not arise (even to
be rejected). But of course some discourse about numbers and sets makes identity state-
ments between them meaningful, and some of that . . . makes commitments as to the
truth value of such identities. Thus it would be quite out of order to say (without ref-
erence to context) that identities of numbers and sets are meaningless or that they lack
truth-values.

Even with this caveat, the ontological relativity threatens the semantic uniformity
between mathematical discourse and ordinary or scientific discourse. Of course, this
depends on what is required for uniformity, of which more later (section 9 of chapter
4, on reference). The threat also depends on the extent to which ordinary objects are
not relative. I briefly return to this in chapter 8.

On a related matter, Azzouni [1994, 7–8, 146–147] accuses structuralists of
being “ontologically radical” in the sense that we “replace the traditional metaphysi-
cally inert mathematical object with something else.” It depends on what one thinks
was there to be accepted or replaced. Structuralism is a view about what the objects
of, say, arithmetic are, not what they should be, and we claim to make sense of what
goes on in mathematics. Mathematicians do not usually use phrases like “metaphysi-
cally inert.” Perhaps Azzouni’s view is that we structuralists are being radical with
respect to traditional philosophies of mathematics, Platonism in particular. I leave it
to the reader to determine the extent to which I am proposing a replacement or fur-
ther articulation of prior realist philosophies of mathematics.

One slogan of structuralism is that mathematical objects are places in structures.
We must be careful here, however, because there is an intuitive difference between
an object and a place in a structure, between an officeholder and an office. We can
accommodate this intuition and yet maintain that numbers and sets are objects by
invoking a distinction in linguistic practice. There are, in effect, two different orien-
tations involved in discussing structures and their places (although the border be-
tween them is not sharp). Sometimes the places of a structure are discussed in the
context of one or more systems that exemplify the structure. We might say, for ex-
ample, that the shortstop today was the second baseman yesterday, or that the cur-
rent vice president is more intelligent than his predecessor. Similarly, we might say
that the von Neumann 2 has one more element than the Zermelo 2. Call this the places-
are-offices perspective. This office orientation presupposes a background ontology
that supplies objects that fill the places of the structures. In the case of baseball de-
fense and that of government, the background ontology is people; in the case of chess
games, the background ontology is small, movable objects—pieces with certain col-
ors and shapes. In the case of arithmetic, sets—or anything else—will do for the
background ontology. With mathematics, the background ontology can even consist
of places from other structures, when we say, for example, that the negative, whole
real numbers exemplify the natural-number structure, or that a Euclidean line exem-
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plifies the real-number structure. Indeed, the background ontology for the places-
are-offices perspective can even consist of the places of the very structure under
discussion, when it is noted, for example, that the even natural numbers exemplify
the natural-number structure. We will have occasion later to consider structures whose
places are occupied by other structures. One consequence of this is that, in mathe-
matics at least, the distinction between office and officeholder is a relative one. What
is an object from one perspective is a place in a structure from another.

In contrast to this office orientation, there are contexts in which the places of a
given structure are treated as objects in their own right, at least grammatically. That
is, sometimes items that denote places are bona fide singular terms. We say that the
vice president is president of the Senate, that the chess bishop moves on a diagonal,
or that the bishop that is on a black square cannot move to a white square. Call this
the places-are-objects perspective. Here, the statements are about the respective struc-
ture as such, independent of any exemplifications it may have. Arithmetic, then, is
about the natural-number structure, and its domain of discourse consists of the places
in this structure, treated from the places-are-objects perspective. The same goes for
the other nonalgebraic fields, such as real and complex analysis, Euclidean geom-
etry, and perhaps set theory.

It is common to distinguish the “is” of identity from the “is” of predication. The
sentence “Cicero is Tully” does not have the same form as “Cicero is Roman.” When,
in the places-are-objects perspective, we say that 7 is the largest prime less than 10,
and that the number of outfielders is 3, we use the “is” of identity. We could just as
well write “=” or “is identical to.” In contrast, when we invoke the places-are-
offices perspective and say that {{f}} is 2 and that {f, {f}} is 2, we use something
like the “is” of predication, but here it is predication relative to a system that exem-
plifies a structure. Let us call this the “is” of office occupancy. We are saying that
{{f}} plays the role of 2 in the system of Zermelo numerals and that {f, {f}} plays
the role of 2 in the system of finite von Neumann ordinals. When we say that Ozzie
Smith is the shortstop, or that Al Gore is the vice president, we also invoke the “is”
of office occupancy.

This does not exhaust the uses of the copula in mathematics. I noted earlier that
for convenience, mathematicians sometimes identify places from different structures.
For example, when set theorists settle on the von Neumann account of arithmetic,
and thereby declare that 2 is {f, {f}}, they invoke what may be called the “is of identity
by fiat.”

The point here is that sometimes we use the “is” of identity when referring to
offices, or places in a structure. This is to treat the positions as objects, at least when
it comes to surface grammar. When the structuralist asserts that numbers are objects,
this is what is meant. The places-are-objects perspective is thus the background for
the present realism in ontology toward mathematics. Places in structures are bona
fide objects.

My perspective thus presupposes that statements in the places-are-objects perspec-
tive are to be taken literally, at face value. Bona fide singular terms, like “vice presi-
dent,” “shortstop,” and “2” denote bona fide objects. This reading might be ques-
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tioned. Notice, for example, that places-are-objects statements entail generalizations
over all systems that exemplify the structure in question. Everyone who is vice presi-
dent—whether it be Gore, Quayle, Bush, or Mondale—is president of the Senate in
that government. Every chess bishop moves on a diagonal, and none of those on black
squares ever move to white squares (in the same game). No person can be shortstop
and catcher simultaneously; and anything playing the role of 3 in a natural-number
system is the successor of whatever plays the role of 2 in that system. In short, places-
are-objects statements apply to the particular objects or people that happen to oc-
cupy the positions with respect to any system exemplifying the structure. Someone
might hold, then, that places-are-objects statements are no more than a convenient
rephrasing of corresponding generalizations over systems that exemplify the struc-
ture in question. If successful, a maneuver like this would eliminate the places-are-
objects perspective altogether. The apparent singular terms mask implicit bound
variables. This rephrasing plan, however, depends on being able to generalize over
all systems that exemplify the structure in question. To assess this idea, we turn to
our other main ontological question, the status of structures themselves.

3 Ontology: Structure

Because the same structure can be exemplified by more than one system, a structure
is a one-over-many. Entities like this have received their share of philosophical at-
tention throughout the ages. The traditional exemplar of one-over-many is a univer-
sal, a property, or a Form. In more recent philosophy, there is the type/token di-
chotomy. In philosophical jargon, one says that several tokens have a particular type,
or share a particular type; and we say that an object has a universal or, as Plato put
it, an object has a share of, or participates in a Form. As defined above, a structure
is a pattern, the form of a system. A system, in turn, is a collection of related objects.
Thus, structure is to structured as pattern is to patterned, as universal is to subsumed
particular, as type is to token.

The nature and status of types and universals is a deep and controversial matter in
philosophy. There is no shortage of views on such issues. Two of the traditional views
stand out. One, due to Plato, is that universals exist prior to and independent of any
items that may instantiate them. Even if there were no red objects, the Form of Red-
ness would still exist. This view is sometimes called “ante rem realism,” and univer-
sals so construed are “ante rem universals.” The main alternative, attributed to
Aristotle, is that universals are ontologically dependent on their instances. There is
no more to redness than what all red things have in common. Get rid of all red things,
and redness goes with them. Destroy all good beings, all good things, and all good
actions, and you destroy goodness itself. A sobering thought. Forms so construed
are called “in re universals,” and the view is sometimes called “in re realism.” Advo-
cates of this view may admit that universals exist, after a fashion, but they deny that
universals have any existence independent of their instances.

Of course, there are other views on universals. Conceptualism entails that univer-
sals are mental constructions, and nominalism entails that they are linguistic con-
structions or that they do not exist at all. For present purposes, I lump these alternate
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views with in re realism. The important distinction is between ante rem realism and
the others. Our question is whether, and in what sense, structures exist independently
of the systems that exemplify them. Is it reasonable to speak of the natural-number
structure, the real-number structure, or the set-theoretic hierarchy on the off chance
that there are no systems that exemplify these structures?

One who thinks that there is no more to structures than the systems that exem-
plify them—an advocate of an in re view of structures—might be attracted to the
program suggested at the very end of the previous section. Recall that from the struc-
turalist perspective, it is the places-are-objects perspective that sanctions the thesis
that numbers are objects. On the program in question, however, places-are-objects
statements are not taken at face value but are understood as generalizations in the
places-are-offices perspective. So “3 + 9 = 12” would come to something like “in
any natural-number system S, the object in the 3 place of S S-added to the object in
the 9 place of S results in the object in the 12 place of S.” When paraphrased like
this, seemingly bold ontological statements become harmless—analytic truths if you
will. For example, “3 exists” comes to “every natural-number system has an object
in its 3 place,” and “numbers exist” comes to “every natural-number system has
objects in its places.”

In sum, the program of rephrasing mathematical statements as generalizations is
a manifestation of structuralism, but it is one that does not countenance mathemati-
cal objects, or structures for that matter, as bona fide objects. Talk of numbers is
convenient shorthand for talk about all systems that exemplify the structure. Talk of
structures generally is convenient shorthand for talk about systems. A slogan for the
program might be “structuralism without structures.”10

Dummett [1991, chapter 23] makes the same distinction concerning the nature of
structures. According to “mystical” structuralism, “mathematics relates to abstract
structures, distinguished by the fact that their elements have no non-structural prop-
erties” (p. 295). Thus, for example, the zero place of the natural-number structure
“has no other properties than those which follow from its being the zero” of that
structure. It is not a set, or anything else whose nature is extrinsic to the structure.
Dummett’s mystical structuralist is thus an ante rem realist about structures. The other
version of structuralism takes a “hardheaded” orientation: “According to it, a mathe-
matical theory, even if it be number theory or analysis which we ordinarily take as
intended to characterize one particular mathematical system, can never properly be
so understood: it always concerns all systems with a given structure” (Dummett [1991,
296]). If the hardheaded structuralist countenances structures at all, it is only in an in
re sense.

Parsons [1990, §§. 2–7] presents, but eventually rejects, a hardheaded view like
this, which he dubs eliminative structuralism: “It . . . avoids singling out any one . . .
system as the natural numbers. . . . [Eliminative structuralism] exemplifies a very
natural response to the considerations on which a structuralist view is based, to see
statements about a kind of mathematical objects as general statements about struc-

10. This slogan was adopted by Hellman [1996], after he read a draft of this chapter.
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tures of a certain type and to look for a way of eliminating reference to mathematical
objects of the kind in question by means of this idea” (p. 307). Benacerraf [1965,
291] settles on a hardheaded, eliminative, in re version of structuralism, when he
writes, “Number theory is the elaboration of the properties of all structures of the
order type of the numbers.” This, of course, is of a piece with his rejection, noted
earlier, of the thesis that numbers are objects.11

Thus, the eliminative structuralist program paraphrases places-are-objects state-
ments in terms of the places-are-offices perspective. Recall that the places-are-
offices orientation requires a background ontology, a domain of discourse. This do-
main contains objects that fill the places in the requisite (in re) structures. In the case
of baseball defenses, the background ontology consists of people ready to play ball;
in the case of chess configurations, the ontology consists of pieces of marble, wood,
plastic, metal, and so on, manufactured in a certain way. In the case of mathematics,
any old objects will do—so long as there are enough of them.

The main stumbling block of the eliminative program is that to make sense of a
substantial part of mathematics, the background ontology must be quite robust. The
nature of the objects in the final ontology does not matter, but there must be a lot of
objects there. To see this, let F be a sentence in the language of arithmetic. Accord-
ing to eliminative structuralism, F amounts to something in the form:

(F') for any system S, if S exemplifies the natural-number structure, then F[S],

where F[S] is obtained from F by interpreting the nonlogical terminology and re-
stricting the variables to the objects in S. If the background ontology is finite, then
there are no systems that exemplify the natural-number structure, and so F' and (5F)'
are both true. Because mathematics is not vacuous, this is unacceptable. We do not
end up with a rendering of arithmetic if the background ontology is finite. Similarly,
an eliminative-structuralist account of real analysis and Euclidean geometry requires
a background ontology whose cardinality is at least that of the continuum, and set
theory requires a background ontology that has the size of a proper class (or at least
an inaccessible cardinal).

I suppose that one can maintain that there are infinitely many physical objects, in
which case an eliminative account of arithmetic may get off the ground with a physi-
cal ontology. As we have seen (section 1), Field [1980] holds that each space-time
point is a physical object. If this claim is plausible, then an eliminative structuralist
might follow this lead with an account of analysis and geometry. Nevertheless, it
seems reasonable to insist that there is some limit to the size of the physical universe.
If so, then any branch of mathematics that requires an ontology larger than that of
the physical universe must leave the realm of physical objects if these branches are
not to be doomed to vacuity. Even with arithmetic, it is counterintuitive for an ac-
count of mathematics to be held hostage to the size of the physical universe.12

11. Here, Benacerraf uses “structure” as I use “system.”
12. See Parsons [1990]. This is why Field [1980] himself does not attempt to reduce analysis and

geometry to a theory of space-time points and regions. Incidentally, according to the view developed
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There are three structuralist responses to this threat of vacuity. One is to maintain
an eliminative program but postulate that enough abstract objects exist for all of the
structures under study to be exemplified. That is, for each field of arithmetic, we
assume that there are enough objects to keep that field from being vacuous. I call
this the ontological option.

On this program, if one wants a single account for all (or almost all) of mathemat-
ics, then the background ontology of abstract objects must be quite big. As noted
earlier, several logicians and philosophers think of the set-theoretic hierarchy as the
ontology for all of mathematics. The universe is V. If one assumes that every set in
the hierarchy exists, then there will surely be enough objects to exemplify just about
any structure one might consider. Because, historically, one purpose of set theory
was to provide as many isomorphism types as possible, set theory is rich fodder for
eliminative structuralism. A structure, on this account, is an order type of sets, no
more and no less.

The crucial feature of this version of eliminative structuralism is that the back-
ground ontology is not understood in structuralist terms. If the iterative hierarchy is
the background, then set theory is not, after all, the theory of a particular structure.
Rather, it is about a particular class of objects, the background ontology V. Perhaps
from a different point of view, set theory can be thought of as the study of a particu-
lar structure U, but this would require another background ontology to fill the places
of U. This new background ontology is not to be understood as the places of another
structure or, if it is, we need yet another background ontology for its places. On the
ontological option, we have to stop the regress of system and structure somewhere.
The final ontology is not understood in terms of structures, even if everything else in
mathematics is.

To be sure, there is nothing sacrosanct about Zermelo-Fraenkel set theory.
Foundationalists have shown that mathematics can be rendered in theories other than
that of the iterative hierarchy (e.g., Quine [1937]; Lewis [1991], [1993]). Among
these are a dedicated contingent of mathematicians and philosophers who hold that
the category of categories is the proper foundation for mathematics (see, for example,
Lawvere [1966]).13 The ultimate background ontology for eliminative structuralism
can thus be the domain of any of several set theories or category theories.

A structuralist might be tempted to step back from this competition of background
theories and wonder if there is a structure common to all of them. However, on the
ontological option, this temptation needs to be resisted. The structures studied in two
theories can be compared only in terms of a more inclusive theory.

Of course, eliminative structuralists need not consider their most powerful theory
(or theories) to be about the background ontology. They may regard, say, ZFC and

in Maddy [1990, chapter 5], if the transitive closure of a set s contains only physical objects, then s
itself is a physical object. It follows that there is a proper class of physical objects, and there are sys-
tems of physical objects that exemplify the set-theoretic hierarchy. Such systems are located where the
original objects are. The thesis that sets of physical objects are themselves physical objects is criti-
cized by Chihara [1990, chapter 10] and Balaguer [1994].

13. McLarty [1993] is a lucid and insightful start of a structuralist program in terms of category
theory—topos theory in particular.
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topos theory both as theories of specific structures. On the present version of elimi-
native structuralism, they do need to acknowledge the existence of the ultimate back-
ground ontology, but they need not develop a formal theory of this system.

On all versions of structuralism, the nature of the objects in the places of a struc-
ture does not matter—only the relations among the objects are significant. On the
ontological option, then, the only relevant feature of the background ontology is its
size. Are there enough objects to exemplify every structure the mathematician might
consider? If a theory of this ontology is developed, the only relevant factor is the
size of the ontology.

In correspondence and conversation, some nominalists express sympathy with a
structuralist account of mathematics, but they quickly add that one should speak of
“possible structures” rather than just structures. Our second option pursues this sug-
gestion by modalizing eliminative structuralism. Instead of saying that arithmetic is
about all systems of a certain type, one says that arithmetic is about all possible sys-
tems of a certain type. Again, let F be a sentence in the language of arithmetic. Ear-
lier, on behalf of eliminative structuralism, I rendered F as “for any system S, if S
exemplifies the natural-number structure, then F[S].” With the present option, F is
understood as

for any possible system S, if S exemplifies the natural-number structure, then F[S],

or

necessarily, for any system S, if S exemplifies
the natural-number structure, then F[S].

The problem, of course, is to keep arithmetic from being vacuous without assuming
that there is a system that exemplifies the structure. The solution here is to merely
assume that such a system is possible. The same goes for real analysis and even set
theory. Unlike the ontological option, here we do not require an actual, rich back-
ground ontology. Instead, we need a rich background ontology to be possible. I call
this the modal option.

Hellman [1989] carries out a program like this in meticulous detail. The title of
the book, Mathematics without numbers, sums things up nicely. It is a structuralist
account of mathematics that does not countenance the existence of structures—or
any other mathematical objects for that matter. Statements in a nonalgebraic branch
of mathematics are understood as generalizations inside the scope of a modal opera-
tor. Instead of assertions that various systems exist, Hellman has assertions that the
systems might exist.

Probably the central issue with the modal option is the nature of the invoked
modality. What are we to make of the “possibilities” and “necessities” used to ren-
der mathematical statements? I presume that thinking of the possibility as physical
possibility is a nonstarter, for reasons already given. Perhaps it is physically possible
for there to be a system that exemplifies the natural-number structure, the real-number
structure, or Euclidean space, but it is stretching this modal notion beyond recogni-
tion to claim that a system that exemplifies the set-theoretic hierarchy is physically
possible (Maddy [1990, chapter 5] notwithstanding; see note 12 above). The relevant
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modal operator is not to be understood as metaphysical possibility either. Intuitively,
if mathematical objects–like numbers, points, and sets–exist at all, then their exis-
tence is metaphysically necessarily. According to this intuition, “the natural num-
bers exist” is equivalent to both “possibly, the natural numbers exist” and “necessar-
ily, the natural numbers exist” (assuming that the modal logic system S5 is sound for
metaphysical necessity). Now, recall that on the first, ontological option there must
be a sufficiently large realm of objects. Presumably, the items in the ontology are
not metaphysically different from natural numbers. Thus, the existence and the pos-
sible existence of the items in the background ontology are equivalent. Thus, the use
of metaphysical modality does not really weaken the ontological burden of elimina-
tive structuralism (for an elaboration of a similar point, see Resnik [1992]).

For this reason, Hellman mobilizes the logical modalities for his eliminative struc-
turalism. Our arithmetic sentence F becomes

for any logically possible system S, if S exemplifies
the natural-number structure, then F[S].

This maneuver gives the modal option its best shot. The modal structuralist needs to
assume only that it is logically possible that there is a system that exemplifies the
natural-number structure, the real-number structure, and so on.

Recall that in contemporary logic textbooks and classes, the logical modalities
are understood in terms of sets. To say that a sentence is logically possible is to say
that there is a certain set that satisfies it. According to the modal option of elimina-
tive structuralism, however, to say that there is a certain set is to say something about
every logically possible system that exemplifies the structure of the set-theoretic
hierarchy. This is an unacceptable circularity. It does no good to render mathemati-
cal “existence” in terms of logical possibility if the latter is to be rendered in terms of
existence in the set-theoretic hierarchy. Putting the views together, the statement that
a sentence is logically possible is really a statement about all set-theoretic models of
set theory. Who says there are such models? Once again, we have a menacing threat
of vacuity. Hellman accepts this straightforward point, and so he demurs from the
standard, model-theoretic accounts of the logical modalities. Instead, he takes the
logical notions as primitive, not to be reduced to set theory. I return to this exchange
of ontology for modality in chapter 7.

The third option avoids the eliminative program altogether and adopts an ante rem
realism toward structures. Structures exist whether they are exemplified in a
nonstructural realm or not. On this option, statements in the places-are-objects mode
are taken literally, at face value. In mathematics, anyway, the places of mathemati-
cal structures are as bona fide as any objects are. So, in a sense, each structure exem-
plifies itself. Its places, construed as objects, exemplify the structure.

First, a disclaimer: In the history of philosophy, ante rem universals are some-
times given an explanatory primacy. It might be said, for example, that the reason
the White House is white is that it participates in the Form of Whiteness. Or what
makes a basketball round is that it participates in the Form of Roundness. No such
explanatory claim is contemplated here on behalf of ante rem structures. I do not
hold, for example, that a given system is a model of the natural numbers because it
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exemplifies the natural-number structure. If anything, it is the other way around. What
makes the system exemplify the natural-number structure is that it has a one-to-one
successor function with an initial object, and the system satisfies the induction prin-
ciple. That is, what makes a system exemplify the natural-number structure is that it
is a model of arithmetic. In much of the current literature, types do not carry this sort
of explanatory burden, either. Thus, in this respect, ante rem structures are like types.

Michael Hand [1993, 188] states that an ante rem structuralist is indeed commit-
ted to structures that bear the explanatory burden: “Admittedly, . . . [t]he motivation
behind structuralism has nothing to do with the possible explanatory function of
abstract patterns. . . . Nonetheless, the structuralist is committed to more than [the]
limited motivation suggests. After all, abstract patterns, structures, are not entities
newly posited by the structuralist. . . . Instead, the structuralist is making use of things
we already know something about, and that we already put to use metaphysically in
various ways. Since this is so, she is responsible . . . to the metaphysical uses to which
we already put them.” The idea behind this pronouncement seems to be that since
we ante rem structuralists are using a notion like the traditional one-over-many, we
are committed to all of the features and uses of ante rem universals as traditionally
conceived. Hand goes on to argue, quite insightfully, that nothing can bear the ex-
planatory burden, and he concludes that structures do not exist. According to his
pronouncement, it seems, once a (philosophical) notion has been debunked, no one
is allowed to use a variation on that notion—even a variation that survives the de-
bunking. Readers sympathetic with this pronouncement are invited to construe struc-
tures as a new sort of notion, one that is similar in some ways to traditional ante rem
universals but does not bear their explanatory burden. To paraphrase Kripke, call
structures “shmuniversals.” Hand suggests that this maneuver leaves ante rem struc-
turalism unmotivated. I take this book to provide some motivation, and I leave it to
the reader to judge the matter.

To sum up, the three options are ontological eliminative structuralism, modal elimi-
native structuralism, and ante rem realism. I believe that the ante rem option is the
most perspicuous and least artificial of the three. It comes closest to capturing how
mathematical theories are conceived. Nevertheless, I do not mean to rule out the other
options. Indeed, it follows from the thesis of structuralism that, in a sense, all three
options are equivalent. As will be shown, each delivers the same “structure of struc-
tures.” The next section provides a brief account of each option and a defense of their
equivalence (see also chapter 7).

4 Theories of Structure

No matter how it is to be articulated, structuralism depends on a notion of two sys-
tems that exemplify the “same” structure. That is its point. Even if one eschews struc-
tures themselves, we still need to articulate a relation among systems that amounts
to “have the same structure.”

There are several relations that will do for this. I mention two, both of which are
equivalence relations. The first is isomorphism, a common (and respectable) mathe-
matical notion. Two systems are isomorphic if there is a one-to-one correspondence
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from the objects and relations of one to the objects and relations of the other that
preserves the relations. Suppose, for example, that the first system has a binary rela-
tion R. If f is the correspondence, then f(R) is a binary relation of the second system
and, for any objects m, n, of the first system, R holds between m and n in the first
system if and only if f(R) holds between f(m) and f(n) in the second system. Infor-
mally, it is sometimes said that isomorphism “preserves structure.”

Isomorphism is too fine-grained for present purposes. Intuitively, one would like
to say that the natural numbers with addition and multiplication exemplify the same
structure as the natural numbers with addition, multiplication, and less-than. How-
ever, the systems are not isomorphic, for the trivial reason that they have different
sets of relations. The first has no binary relation to correspond with the less-than
relation, even though that relation is definable in terms of addition: x < y if and only
if › z(z ≠ 0 & x + z = y). There is, in a sense, nothing new in the “richer” system.
Similarly, we would like to say that the various formulations of Euclidean plane
geometry with different primitives all exemplify the same structure.

Resnik [1981] has formulated a more coarse-grained equivalence relation among
systems (and structures) for this purpose. First, let R be a system and P a subsystem.
Define P to be a full subsystem of R if they have the same objects (i.e., every object
of R is an object of P) and if every relation of R can be defined in terms of the rela-
tions of P. The idea is that the only difference between P and R is that some defin-
able relations are omitted in P. So the natural numbers with addition and multiplica-
tion are a full subsystem of the natural numbers under addition, multiplication, and
less-than. Let M and N be systems. Define M and N to be structure-equivalent, or
simply equivalent, if there is a system R such that M and N are each isomorphic to
full subsystems of R. Equivalence is a good candidate for “sameness of structure”
among systems.14

Notice that structure equivalence is characterized in terms of definability, a bla-
tant linguistic notion. One consequence is that equivalence is dependent on the re-
sources available in the background metalanguage (or the U-language). For example,
in a standard first-order background, the natural numbers with successor alone are
not equivalent to the natural numbers with addition and multiplication, because ad-
dition cannot be defined from successor in the first-order theory. However, the theo-
ries are equivalent in a second-order background (see Shapiro [1991, chapter 5]).
The dependence on the background theory and, in particular, on its language should
not be surprising. A recurring theme in this book is that a number of ontological
matters are tied to linguistic resources.

Let us briefly consider what would be involved in rigorously developing each of
the three options for structuralism: the ontological in re route, the modal in re route,
and the ante rem route. Recall that the ontological option presupposes an ultimate
(nonstructural) background ontology for all of mathematics. The first item on the
agenda would thus be a detailed account of this background ontology. As above, the
set-theoretic hierarchy V is a natural choice for the background, in which case there

14. Structure equivalence is analogous to definitional equivalence among theories (see chapter 7).
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already is a developed theory—Zermelo-Fraenkel set theory. Next, we need an ac-
count of systems in this background ontology. This, too, has been done already, via
standard model theory. An n-ary “relation” is a set of n-tuples and an n-place func-
tion is a many-one set of (n + 1)-tuples. A system is an ordered pair that consists of
a domain and a set of relations and functions on it. Model theorists sometimes use
words like “structure,” “model,” and “interpretation” for what I call a “system.” In
set theory, isomorphism and structure equivalence are also easily defined, thus com-
pleting the requisite eliminative theory of structuralism. In other words, using
common model-theoretic techniques, set theorists can speak of systems that share
a common structure. Notice that we do not find what I am calling “structures” in the
ontology. All we have is isomorphism and structure-equivalence among systems.
Recall that the slogan of eliminative structuralism is “structuralism without
structures.”

Because isomorphism and structure-equivalence are equivalence relations, one
can informally take a structure to be an isomorphism type or a structure-equivalence
type. So construed, a structure is an equivalence class in the set-theoretic hierarchy.
Notice, however, that each nonempty “structure” is a proper class, and so it is not in
the set-theoretic hierarchy. The relevant notions could be expanded to include proper
class systems, but then we could not take a structure to be an equivalence class of
systems unless we moved to a third-order background.

With admirable rigor and attention to detail, Hellman [1989] develops the modal
option. Modal operators are added to a standard formal language, and the aforemen-
tioned notions of “system” and isomorphism are invoked. A sentence of arithmetic,
say, is rendered as a statement about all possible systems that satisfy the (second-
order) Peano axioms.15 Although the program is correctly characterized as “struc-
turalist,” there is no notion of structure in the official modal language.

Finally, the ante rem option requires a theory of structures. The plan is to stop the
regress of system and structure at a universe of structures. Because structures them-
selves are in the ontology, we need an identity relation on structures. Resnik [1981]
seems to hold that there is no such identity relation, arguing that there is no “fact of
the matter” as to whether two structures are the same or different, or even whether
two systems exemplify the same structure (but see Resnik [1988, 411 note 16]). Notice
that this goes against the Quinean dictum “no entity without identity.” Quine’s the-
sis is that within a given theory, language, or framework, there should be definite
criteria for identity among its objects. There is no reason for structuralism to be the
single exception to this. If we are to have a theory of structures, we need an identity
relation on them. Perhaps Resnik demurs at the development of such a theory (see
Resnik [1996]). It seems to me, however, that if one is to speak coherently about
structures and avoid the ontological and modal options, then such a theory is needed,
at least at some stage of analysis. In Quinean terms, the need to regiment one’s infor-

15. Hellman’s account avoids the use of the notion of “possible system,” because he does not
countenance an ontology of possibilia. The program also does not directly use semantic notions like
“satisfaction.”



STRUCTURE 93

mal language applies to its philosophical parts as well as the more respectable scien-
tific neighborhoods.

When Resnik states that there is no “fact of the matter” concerning the identity of
structures, he may just mean that the ordinary use of the relevant terms does not
determine a unique identity relation. This much is quite correct. To regiment our
language, we would need to define the requisite identity relations, but there is no
uniquely best candidate for this. Like the identification of places from different struc-
tures (see section 2), the identity relation we need is more a matter of decision or
invention, based on convenience, rather than a matter of discovery. But we do need
to decide.

We take identity among structures to be primitive, and isomorphism is a congru-
ence among structures. That is, we stipulate that two structures are identical if they
are isomorphic. There is little need to keep multiple isomorphic copies of the same
structure in our structure ontology, even if we have lots of systems that exemplify
each one.16 We could also “identify” structures that are structure-equivalent, but it is
technically inconvenient to do so.

With the ontological option just delimited, systems are constructed from sets in
the fashion of model theory, and structures are certain equivalence types on systems.
For the ante rem option, we axiomatize the notion of structure directly. The envi-
sioned theory has variables that range over structures, and thus a quantifier “all struc-
tures.” Each structure has a collection of “places” and relations on those places. Once
again, the places-are-objects perspective is taken seriously. The theory thus has a
second sort of variable that ranges over places in structures.

The category theorist characterizes a structure or a type of structure in terms of
the structure-preserving functions, called “morphisms,” between systems that exem-
plify the structures. For many purposes, this is a perspicuous approach (see McLarty
[1993]), but here I provide an outline of a more traditional axiomatic treatment. In
effect, structure theory is an axiomatization of the central framework of model theory.

Because it appears to be necessary to speak of relations and functions on places,
I adopt a second-order background language (see Shapiro [1991]). An alternative to
this would be to include a rudimentary theory of collections as part of the theory.

First, a structure has a collection of places and a finite collection of functions and
relations on those places. The isomorphism relation among structures and the satis-
faction relation between structures and formulas of an appropriate formal language
are defined in the standard way. We could stipulate that the places of different struc-
tures are disjoint, but there is no reason to do so. Our first axiom, concerning the
existence of structures is simpleminded but ontologically nontrivial:

Infinity: There is at least one structure that has an infinite number of places.
Because structures, places, relations, and functions are the only items in the on-

tology, everything else must be constructed from those items. Thus, a system is de-
fined to be a collection of places from one or more structures, together with some

16. The sequence of natural numbers contains many isomorphic copies of itself, but there is only
one natural-number structure. In structure theory, the copies are systems.
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relations and functions on those places. For example, the even-number places of the
natural-number structure constitute a system, and on this system, a “successor” func-
tion could be defined that would make the system exemplify the natural-number struc-
ture. The “successor” of n would be n + 2. Similarly, the finite von Neumann ordi-
nals are a system that consists of places in the set-theoretic hierarchy structure, and
this system also exemplifies the natural-number structure, once the requisite rela-
tions and functions are added. Other systems consist of the places of several struc-
tures, with relations defined on their “objects.” For example, a nonstandard model
of simple first-order arithmetic (with successor alone) consists of the natural num-
bers “followed by” the integers.

The places of a given structure—considered from the places-are-objects perspec-
tive—are objects. As characterized here, then, each structure is also a system.

Our next axioms concern what may be called “substructures”:
Subtraction: If S is a structure and R is a relation of S, then there is a structure S'

isomorphic to the system that consists of the places, functions, and relations of S
except R. If S is a structure and f is a function of S, then there is a structure S''
isomorphic to the system consisting of the places, functions, and relations of S
except f.

Subclass: If S is a structure and c is a subclass of the places of S, then there is a struc-
ture isomorphic to the system that consists of c but with no relations and functions.

Addition: If S is a structure and R is any relation on the places of S, then there is a
structure S' isomorphic to the system that consists of the places, functions, and rela-
tions of S together with R. If S is a structure and f is any function from the places of
S to places of S, then there is a structure S'' isomorphic to the system that consists of
the places, functions, and relations of S together with f.

That is, one can remove places, functions, and relations at will; and one can add func-
tions and relations.

The remaining objective for my theory is to assure the existence of large struc-
tures. The next axiom is an analogue of the powerset axiom of set theory:

Powerstructure: Let S be a structure and s its collection of places. Then there is a struc-
ture T and a binary relation R such that for each subset s' f s there is a place x of T
such that œz(z ∈ s' / Rxz).

Each subset of the places of S is related to a place of T, and so there are at least as
many places in T as there are subsets of the places of S. Thus, the collection of places
of T is at least as large as the powerset of the places of S. The powerstructure axiom
can be formulated in the second-order background language.

So far, structure theory resembles what is called Zermelo set theory. We have the
existence of the natural-number structure, the real-number structure, a structure whose
size is the powerset of that, and so on. The smallest standard model of the theory has
the size of V2w, the smallest standard model of Zermelo set theory.

To get beyond the analogue of Zermelo set theory, my next item is the analogue
of the replacement principle:

Replacement: Let S be a structure and f a function such that for each place x of S, fx is
a place of a structure, which we may call Sx. Then there is a structure T that is (at
least) the size of the union of the places in the structures Sx. That is, there is a func-
tion g such that for every place z in each Sx there is a place y in T such that gy = z.
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The idea is the same as in set theory. There is a structure at least as large as the result
of “replacing” each place x of S with the collection of places of a structure Sx. With
this axiom, every standard model of structure theory is the size of an inaccessible
cardinal. In effect, structure theory is a reworking of second-order Zermelo-Fraenkel
set theory.

The main principle behind structuralism is that any coherent theory characterizes
a structure, or a class of structures. For what it is worth, I state this much:

Coherence: If F is a coherent formula in a second-order language, then there is a struc-
ture that satisfies F.

The problem, of course, is that it is far from clear what “coherent” comes to here.
The question of when a theory is coherent, and thus describes a structure (or class of
structures), will occupy us later several times (e.g., section 5 of this chapter, and
chapter 4).17 Notice, for now, that because we are using a second-order language,
simple (proof-theoretic) consistency is not sufficient to guarantee that a theory
describes a structure or class of structures. Because the completeness theorem fails,
there are consistent second-order theories that are not satisfiable (see Shapiro [1991,
chapter 4]). Consider, for example, the conjunction P of the axioms of Peano arith-
metic together with the statement that P is not consistent. Contra Hilbert, consistency
does not imply existence even for a structuralist. We need something more like
satisfiability, but the latter is usually formulated in terms of the set-theoretic hierar-
chy (or some other ontology): a theory is satisfiable if there is a model for it. There
is no getting away from this problem, but perhaps the circle is not vicious.

We can, of course, add an axiom that, say, second-order ZFC is coherent, and thus
conclude that there is a structure the size of an inaccessible cardinal. Another, less
ad hoc route to large structures is to assume that structure theory itself is coherent,
and so is any theory consisting of structure theory plus any truth of structure theory.
This suggests a reflection scheme. Let F be any (first- or second-order) sentence in
the language of structure theory. Then the following is an axiom:

Reflection: If F, then there is a structure S that satisfies the (other) axioms of structure
theory and F.

Letting F be a tautology, the principle entails the existence of a structure the size of
an inaccessible cardinal. Letting F be the conjunction of the other axioms of struc-
ture theory (or ZFC) plus the existence of a structure the size of an inaccessible car-
dinal, the reflection principle entails the existence of a structure the size of the sec-
ond inaccessible cardinal, and it goes on from there.18

One might think that I am inviting a version of Russell’s paradox. Is there a struc-
ture of all structures? The answer is that there is not, just as there is no set of all sets.
Because a “system” is a collection of places in structures (together with relations),

17. A more general principle is that every coherent collection G of formulas is satisfied by a struc-
ture, but to be picky, one should add a proviso that G is not the size of a proper class.

18. A variation of the reflection principle, along the lines of Bernays [1961], entails the existence
of structures the size of a Mahlo cardinal, a hyper-Mahlo cardinal, up to an indescribable cardinal. A
suitable reflection also entails the powerstructure and replacement axioms. See Shapiro [1987] and
Shapiro [1991, chapter 6] for a study of higher-order reflection principles. See also Levy [1960].
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some systems are “too big” to exemplify a structure. This defect could be avoided,
as it is in set theory, by stipulating that there are no systems the size of a proper class.
The relevant axioms would be that for every system S, there is no function from the
places of S onto the class of all places in all structures.

The point is that structuralism is no more (and no less) susceptible to paradox than
set theory, modal structuralism, or category theory. Some care is required in regi-
menting the informal discourse, but it is a familiar sort of care. One can ascend to
another level and interpret the objects of the domain of the structure language as the
places in a superstructure. But, as with set theory, we cannot take this structure to be
in the range of the (structure) variables of the original theory. The ontology changes
as we go to a metalanguage. This, however, is rarified analysis. Normally, there is
little need to ascend beyond the original structuralist language, at least not in this
way, just as there is little need to ascend to some sort of superset theory.

Enough on the details of structure theory. For someone familiar with axiomatic
set theory, everything is straightforward. The reason the development goes smoothly
is that structure theory, as I conceive it, is about as rich as set theory. It has to be if
set theory itself is to be accommodated as a branch of mathematics. In a sense, set
theory and the envisioned structure theory are notational variants of each other. In
particular, structure theory without the reflection principle is a variant of second-order
ZFC, and structure theory with the reflection principle is a notational variant of set
theory with a corresponding reflection principle.

Nevertheless, for present purposes, structure theory is a more perspicuous and less
artificial framework than set theory. If nothing else, structure theory regards set theory
(and perhaps even structure theory itself) as one branch of mathematics among many,
whereas the ontological option makes set theory (or another designated theory) the
special foundation. However, even this is not a major advantage, because the equiva-
lence and mutual interpretability of the frameworks are straightforward. Anything
that can be said in either framework can be rendered in the other. Talk of structures,
as primitive, is easily “translated” as talk of isomorphism or equivalence types over
a universe of (primitive) sets. In the final analysis, it does not really matter where we
start.

The same goes for the modal option, but the articulation and details of that equiva-
lence will be postponed (chapter 7). The upshot is the same as with set theory and
structure theory. Anything that can be said in the modal structural system (of Hellman
[1989]) can be rendered in either the set language or the structure language.

In short, on any structuralist program, some background theory is needed. The
present options are set theory, modal model theory, and ante rem structure theory.
The fact that any of a number of background theories will do is a reason to adopt the
program of ante rem structuralism. Ante rem structuralism is more perspicuous in
that the background is, in a sense, minimal. On this option, we need not assume any
more about the background ontology of mathematics than is required by structural-
ism itself.19 But when all is said and done, the different accounts are equivalent.

19. McLarty [1993] makes the same claim on behalf of a category-theoretic foundation of mathe-
matics.
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The smooth translations between the various theories also suggest that none of
them can claim a major epistemological advantage over the others. The sticky
epistemic problems get “translated” as well. Probably the deepest epistemic prob-
lem with standard set theory is how we can know anything about the abstract, acausal
universe of sets. Which sets exist? How do we know? Formidable problems indeed.
In the case of structure theory, the corresponding problems concern how we can know
anything about the realm of structures. Which structures exist? How can we tell? The
very same problem, in the case of modal structuralism, is how we know anything
about the various possibilities. Which structures are possible? How can we tell?

The upshot of this section, then, is that there are several ways to render structur-
alism in a rigorous, carefully developed background theory, and there is very little
to choose among the options. In a sense, they all say the same thing, using different
primitives. The situation with structuralism is analogous to that of geometry. Points
can be primitive, or lines can be primitive. It does not matter because, in either case,
the same structure is delivered. The same goes for structuralism itself. Set theory and
structure theory are equivalent, in the sense defined above. To speak loosely, the same
“structure of structures” is delivered. Modal structuralism also fits, once the notion
of “equivalence” is modified for the modal language.

5 Mathematics: Structures, All the Way Down

I articulate the picture of ante rem structuralism here, to demonstrate why this ac-
count is more perspicuous than the others, and to continue the dialectic of articulat-
ing the notions of structure, theory, and object.

Thus far, I have spoken freely of ordinary, nonmathematical structures, such as
baseball defenses, governments, and chess configurations, along with mathematical
structures like the natural numbers and the set-theoretic hierarchy. One might won-
der whether the word “structure” is univocal across these uses. What if anything dis-
tinguishes mathematical structures from the others?

One possible answer is that in principle, there is no difference in kind between
mathematical and nonmathematical structures. This has a clean, holistic ring to it—
at least on the ontological front. A cocky holist might go on to claim that the only
difference between the “mathematical” structures and the others is that the former
are the ones studied by mathematicians qua mathematicians. If enough mathemati-
cians took a professional interest in baseball defenses, then baseball defenses would
be mathematical structures. If mathematicians took a professional interest in chess,
then chess configurations would be mathematical structures. Typically, the structures
studied by mathematicians are complex and interesting, but this does not mark a dif-
ference in kind.20

A slightly more cautious claim would be that the difference between mathemati-
cal and ordinary structures is not so much in the structures themselves but in the way

20. Mea culpa. In the past, when responding to questions, I would usually take this cocky holistic
line. This would be greeted with frowns and incredulous stares from my audiences—with the possible
exception of ontic holists.
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they are studied. Mathematics is the deductive study of structures. The mathemati-
cian gives a description of the structure in question, independently of any systems
this structure may be the structure of. Anything the mathematician, qua mathemati-
cian, goes on to say about the structure must follow from this description. Ordinary
structures are not usually studied this way, or not studied this way exclusively. Re-
call the passage from Resnik [1982] in section 1. When the imaginary linguists dis-
cover that Tenglish is not the structure of spoken English, presumably by comparing
the structure as defined to the spoken language, they lose interest in the structure.
Their methodology is focused on what Tenglish is supposed to be a structure of. In
contrast, if Tenglish is internally coherent, a mathematician can go on to study the
structure, independently of whether it is exemplified in any real or even possible lin-
guistic community. On this orientation, ontic holism is maintained, but mathematics
is distinguished by its deductive epistemology.

This account is not cautious enough. Although there are interesting borderline cases
between mathematical and ordinary structures, which will further occupy us when
we get to applications (chapter 8), there are important differences between the two
types of structures. A vague border is still a border.

One difference between the types of structures concerns the nature of the rela-
tions between the officeholders of exemplifying systems. Consider our standby, the
baseball-defense structure. Imagine a system that consists of nine people placed in
the configuration of a baseball defense but hundreds of miles apart—the “right fielder”
in New York, the “center fielder” in Detroit, and so on. This system does not exem-
plify the structure of baseball defense, although one might say that it simulates or
models the structure. There is an implicit requirement that the player at first base be
within a certain distance of first base, the pitcher, and so forth. If not, then it is no
baseball defense. In mathematical structures, on the other hand, the relations are all
formal, or structural. The only requirements on the successor relation, for example,
are that it be a one-to-one function, that the item in the zero place not be in its range,
and that the induction principle hold. No spatiotemporal, mental, personal, or spiri-
tual properties of any exemplification of the successor function are relevant to its
being the successor function.

Although these examples may point in a certain direction, there is a problem of
precisely formulating this notion of a “formal” relation. There are clear cases of for-
mal relations and there are clear cases of nonformal relations. Surely, if a relation
involves a physical magnitude like distance or a personal property like intelligence
or age, then it is not formal. Being thirty-five years of age or older is not a formal
property. One can leave things at this intuitive level, letting borderline cases take
care of themselves. Accordingly, the border between mathematical and nonmathe-
matical structures may not be sharp. Perhaps we can do better. If each relation of a
structure can be completely defined using only logical terminology and the other
objects and relations of the system, then they are all formal in the requisite sense. A
slogan might be that formal languages capture formal relations. This is still not an
adequate definition of “formal” or “structural” relation, however, because it is not
clear how to formulate the logical/nonlogical boundary without begging any ques-
tions (see Shapiro [1997]).
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Tarski [1986] proposed a criterion for the logical/nonlogical boundary that seems
particularly apt here—whatever its fate in the philosophy of logic (see Sher [1991]
for an insightful elaboration). His idea is that a notion is logical if its extension is
unchanged under every permutation of the domain. Thus, for example, the property
among sets of being nonempty is logical, because any permutation of the domain
takes nonempty sets (of objects in the domain) to nonempty sets, and any such per-
mutation takes the empty set to itself. The property of being thirty-five years of age
or older is not logical, because there are permutations of the domain (of people) that
take someone older than thirty-five to someone younger.

Because, in a permutation, any object can be replaced by any other, a notion that
is invariant under all permutations ignores any nonstructural or intrinsic features of
the individual objects. In these terms, the present proposal is that a relation is formal
if it can be completely defined in a higher-order language, using only terminology
that denotes Tarski-logical notions and the other objects and relations of the system,
with the other objects and relations completely defined at the same time. All rela-
tions in a mathematical structure are formal in this sense.

If this definition of “formal” is adopted, then it is immediate that any relation that
is logical in Tarski’s sense is formal. However, it does not follow that all formal
relations are logical. For example, neither 0 nor the successor function is Tarski-
logical, because there are permutations of the natural numbers that take 0 to some-
thing else and there are permutations that do not preserve the successor function. Sup-
pose, however, that we go up a level. Notice that any permutation of the natural
numbers takes the successor function to the successor function of a (possibly differ-
ent) natural-number system on the same domain. Likewise for 0. That is, if f is a
permutation of the natural numbers, then f(0) occupies the 0 place in a new system S,
and m is the successor of n in S if f ¯1(m) is the successor of f ¯1(n) in the original
natural numbers. The new system S exemplifies the natural-number structure. Thus,
the notion of natural-number system <N, 0, s> is logical in Tarski’s sense: any per-
mutation of the domain takes a natural-number system to a natural-number system.
In general, for any mathematical structure S, the notion of “exemplifies structure S”
is logical in Tarski’s sense. This is a pleasing feature of the combination of structur-
alism and the given account of logical notions. It manifests the two slogans that math-
ematics is the science of structure, and that logic is topic-neutral.

Another important difference between mathematical and ordinary structures con-
cerns the sorts of items that can occupy the places in the structures. Imagine a sys-
tem that consists of a ballpark with nine piles of rocks, or nine infants, placed where
the fielders usually stand. Imagine also a system of chalk marks on a diagram of a
field, on which a baseball manager makes assignments and discusses strategy. Intu-
itively, neither of these systems exemplifies the defense structure. A system is not a
baseball defense unless its positions are filled by people prepared to play ball. Piles
of rocks, infants, and chalk marks are excluded. Prima facie, these requirements on
the officeholders in potential defense systems are not “structural.” For example, the
requirement that the officeholders be people prepared to play is not described solely
in terms of relations among the offices and their occupants. The system of rock piles
and the system of chalk marks can perhaps be said to model or simulate the baseball-
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defense structure, but they do not exemplify it. Similarly, there is no possible system
that exemplifies the U.S. government (before the year 2017) in which my eldest
daughter is president. The president must be thirty-five years of age, chosen by the
electoral college, and be a native-born citizen. The age, birth, and election require-
ments are not structural, in that those requirements are not described in terms of re-
lations of the officeholders to each other. There are, again, systems that model or
simulate the government, and my daughter has the office of president in some of these,
but simulating and exemplifying are not the same thing.

In contrast, mathematical structures are freestanding. Every office is character-
ized completely in terms of how its occupant relates to the occupants of the other
offices of the structure, and any object can occupy any of its places. In the natural-
number structure, for example, there is no more to holding the 6 office than being
the successor of the item in the 5 office, which in turn is the successor of the item in
the 4 office. Anything at all can play the role of 6 in a natural-number system. Any
thing. There are no requirements on the individual items that occupy the places; the
requirements are solely on the relations between the items. A consequence of this
feature is that in mathematics there is no difference between simulating a structure
and exemplifying it.21

The freestanding nature of mathematical structures and the “formal” or “struc-
tural” nature of their relations are connected to each other. Suppose that a structure
S has a nonformal relation, say, one that involves a physical magnitude, such as dis-
tance. For example, let it be required that the occupants of two particular places be
ninety feet apart. Then S cannot be free-standing. The places of S that bear the dis-
tance relations cannot be filled with abstract objects, for example, because such ob-
jects do not have distance relations with each other. Similarly, if some relations of S
require the objects to be movable, then objects that cannot be easily moved, like stars,
cannot fill those places. If, on the other hand, all of the relations in a structure are
formal, then any objects at all can fill the places. Insofar as the relations are formal,
the structure is freestanding.

As we have seen, the places in the natural-number structure can be occupied by
places in other structures (like finite von Neumann ordinals). Even more, the places
in the natural-number structure can be occupied by the same or other natural num-
bers. The even numbers and the natural numbers greater than 4 both exemplify the
natural-number structure. In the former, 6 plays the 3 role, and in the latter 8 plays
the 3 role. In the series of primes, 7 plays the 3 role. The ante rem account of struc-
tures easily accommodates this freestanding feature of mathematical structures. Places
of structures, considered from the places-are-objects perspective, can occupy places
in the same or in different structures.

As noted earlier, there is one trivial example. In the system of natural numbers, 3
itself plays the 3 role. That is, the number 3, in the places-are-objects perspective,
occupies the 3 office. The natural-number structure itself exemplifies the natural-

21. I am indebted to Diana Raffman and Michael Tye for several insightful conversations on these
matters.
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number structure. Hand [1993] argues that the freestanding feature of structures,
construed ante rem, invites a Third Man regress. It is a Third w. Both the system of
finite von Neumann ordinals and the system of Zermelo numerals exemplify the
natural-number structure. So do the natural numbers themselves, qua places-are-
objects. Thus, the argument goes, we need a new structure, a super natural-number
structure, which the original natural-number structure shares with the finite von
Neumann ordinals and the Zermelo numerals. Actually, we need no such thing. The
best reading of “the natural-number structure itself exemplifies the natural-number
structure” is something like “the places of the natural-number structure, considered
from the places-are-objects perspective, can be organized into a system, and this
system exemplifies the natural-number structure (whose places are now viewed from
the places-are-offices perspective).” In each case, there is no need for a Third.22 The
natural-number structure, as a system of places, exemplifies itself. The Third w is
the first w.

Eliminative in re structuralist programs do not fully accommodate the freestand-
ing nature of mathematical structures. As we have seen, on both eliminative options,
there is no places-are-objects perspective. On this view, numbers are not objects, and
so cannot be organized into systems. Strictly speaking, on either eliminative program,
neither the natural-number structure nor numbers exist (as objects), and so such items
cannot fill the places of structures.

On the other side of the ledger, there is not even a prima facie Third Man concern
with eliminative in re structuralism. In general, if a structure is not freestanding, then
there is no problem with a Third. No one would say, for example, that the baseball-
defense structure is itself a baseball defense. You cannot play ball with the places of
a structure; people are needed. Thus, if one is still bothered by the possibility of a
Third w, it might be best to eschew freestanding structures and adopt an eliminative
program.

Parsons [1990] delimits an important distinction between different levels of
abstracta: “Pure mathematical objects are to be contrasted not only with concrete
objects, but also with certain abstract objects, that I call quasi-concrete, because they
are directly ‘represented’ or ‘instantiated’ in the concrete. Examples might be geo-
metric figures (as traditionally conceived), symbols whose tokens are physical utter-
ances or inscriptions, and perhaps sets or sequences of concrete objects” (p. 304).
Parsons’s contrast is aligned with the matters under discussion here. His quasi-
concrete objects are naturally organized into systems; his point is that the structures
of such systems are not freestanding. Prima facie, only inscriptions of some sort can
exemplify linguistic types, and, at least traditionally, only points in space can exem-
plify geometric points.

Parsons argues that a “purely structuralist account does not seem appropriate for
quasi-concrete objects, because the representation relation is something additional

22. See Dieterle [1994, chapter 1] for a further discussion of the Third Man argument in the con-
text of structuralism and a more detailed reply to Hand [1993]. Dieterle relates the present issue to some
contemporary treatments of the traditional Third Man problem.
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to intra structural relations.” Because quasi-concrete objects “have a claim to be the
most elementary mathematical objects,” structuralism is not the whole story about
mathematics. There is more to mathematics than what is indicated by the slogan “the
science of structure.”

Several responses to Parsons’s charge are available. First, the structuralist might
argue that quasi-concrete objects are not really mathematical objects. This is surely
counterintuitive, because sets, geometric figures, and strings seem to be mathemati-
cal if anything is. Second, one might argue that Parsons’s distinction is ill founded.
There are not really any levels of abstracta to accommodate. As indicated, I demur
from this option. The distinction is well taken, if not precise. Third, and less radi-
cally, one might claim that structures of quasi-concrete abstracta lie on the border
between mathematical and ordinary structures and that the structures of quasi-
concrete abstracta can be replaced with freestanding, formal ones. As far as math-
ematics goes, this replacement is virtually without loss. In particular, we can con-
cede Parsons’s point and try to delimit the role of quasi-concrete objects, showing
how they are perhaps restricted to motivation and epistemology. The latter strategy
is consistent with Parsons’s own conclusions.

A brief look at the history of mathematics shows that the structures of quasi-
concrete objects have been gradually supplanted by freestanding structures whose
relations are formal. Consider geometry. From antiquity through the eighteenth cen-
tury, geometry was the study of physical space, perhaps idealized. The points and
lines of Euclidean geometry are points and lines of space. Thus, they are concrete or
quasi-concrete, and their structure is not freestanding. Moreover, relations like “be-
tweenness” and “congruence” are not formal. For point B to be between A and C, it
must lie on a line connecting them, with A (physically) on one side and C on the other.
For two line segments to be congruent, they must be the same length. Because of
various internal developments, however, geometry came to be construed more and
more formally, and thus more and more structurally. Along the way, nonspatial sys-
tems were construed as exemplifying the structure of various geometries. In analytic
geometry, for example, the structure of Euclidean geometry is exemplified with a
system of triples of real numbers. There is, of course, a “betweenness” relation of
real analysis, in which p is between 3.1 and 3.2. This relation is similar to the “be-
tweenness” of geometry, but the similarity is just structural, or formal. Real numbers
are not actually parts of locations in space—but, as we now know, the structures are
the same.23 The subsequent use of idealized “points” and the use of analogues of com-
plex analysis in geometry provided the crucial motivation for the move to a formal,
structural construal of geometry. It became ever more difficult to understand the tech-
niques, “constructions,” and even the ontology of geometry as connected essentially
to physical space. In chapter 5, I take a further look at some of these developments.

Unlike geometry, string theory does not have a long and hallowed history, but
one can see a similar, if abbreviated development. Intuitively, strings are linguistic

23. Dedekind [1872] effectively exploited the structural similarities between the points on a line
and real numbers in his celebrated treatment of continuity.
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types, the forms of written marks. Because only written marks can be tokens of these
types, the structures are not freestanding. Moreover, the central operation of the theory
is concatenation, which is not formal. Two strings are concatenated when they are
placed (physically) next to each other. Thus, strings are quasi-concrete. Neverthe-
less, it is not much of a stretch to see a more formal look to contemporary string theory.
For one thing, it is now common to consider more abstract models of string theory.
With Gödel numbering, for example, logicians consider natural numbers or sets to
be strings, in which case concatenation is given an interpretation as an arithmetic or
set-theoretic operation. In other words, systems of numbers or sets exemplify the
structure of strings. Moreover, logicians now regularly consider infinitely long strings
in a variety of contexts. Surely those strings cannot be instantiated with physical or
spoken inscriptions. I return to the nature of strings and their role in epistemology in
chapter 4.

Set theory is a most interesting case study for ante rem structuralism, and Par-
sons himself treats it at some length (in [1990] and in much more detail in [1995]).
Like geometry and string theory, the intuitive ideas that underlie and motivate
current axiomatic set theory are not structural. Teachers and elementary textbooks
usually define a set to be a collection of its elements. Although it is quickly added
that a set is not to be thought of as the result of a physical or even a mental collect-
ing, there still seems to be more to membership than a purely formal relation be-
tween officeholders. Parsons and others note that there are actually different con-
ceptions of “set” that are invoked in the motivation of axiomatic set theory.24 One
of them “is the conception of a set as a totality ‘constituted’ by its elements, so that
it stands in some kind of ontological dependence on its elements, but not vice versa.
This would give to the membership relation some additional content, still very
abstract but recognizably more than a pure structuralism would admit” (Parsons
[1990, 332]). A second motivating notion is the idea of a set as the extension of a
predicate, so that each set is somehow ontologically dependent on the predicate
and not on its elements. Parsons argues that neither of these motivating notions
quite matches the one delivered in Zermelo-Fraenkel set theory. The Zermelo-
Fraenkel notion departs “from concrete intuition at least when it admits infinite
sets,” and it departs from the predicative notion when it “admits impredicatively
defined sets” ([1990, 336]). The upshot is that it may be best to view the structure
delivered in modern set theory as freestanding and formal: “The result of these
extensions . . . is that the elements of the original [nonstructural] ideas that are
preserved in the theory have a purely formal character. For example, the priority
of the elements of a set to the set, which is usually motivated by appealing to the
first of [the] two informal conceptions is reflected in the theory itself by the fact
that membership is a well-founded relation” (p. 336). Well-foundedness can be
characterized in a second-order language using no nonlogical terminology: a rela-
tion E is well-founded if and only if œP[›xPx 6 ›x(Px & œy(Eyx 6 5Py))] (see

24. Parsons is a major contributor to a substantial literature on the philosophical underpinnings of
axiomatic set theory. See Benacerraf and Putnam [1983, part 4].
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Shapiro [1991, chapter 5]). Thus, well-foundedness is a formal property in the
Zermelo-Fraenkel structure, and it replaces the quasi-concrete notion of “priority.”

Parsons’s careful conclusion is that one can and should overcome some intuitive,
prereflective reasons for taking the domain of Zermelo-Fraenkel set theory non-
structurally. The “universe of sets” is a collection of places “related in a relation called
‘membership’ satisfying conditions that can be stated in the language of set theory”
(Parsons [1990, 332]). The set-theoretic hierarchy is a freestanding structure.25

This conclusion generalizes to all of mathematics, or at least to all of pure mathe-
matics: “A structuralist view of higher set theory will then oblige us to accept the
idea of a system of objects that is really no more than a structure. But then there is no
convincing reason not to adopt it in other domains of mathematics, in particular in
the case of the natural numbers. It would be highly paradoxical to accept Benacerraf’s
conclusion that numbers are not objects and yet accept as such the sets of higher set
theory” (Parsons [1990, 332]). Amen. The path urged here, via ante rem structural-
ism, is to accept both numbers and sets, on a par, as objects. They are places-as-objects.
Parsons comes close to the same conclusion: “The absence of notions whose non-
formal properties really matter . . . makes mathematical objects on the structuralist
view continue to seem elusive, and encourages the belief that there is some scandal
to human reason in the idea that there are such objects. My claim is that something
close to the conception of objects of this kind, already encouraged by the modern
developments of arithmetic, geometry, and algebra, is forced on us by higher set
theory” (p. 335).

So far, so good; but where is the problem? We have spoken of the “transition . . .
from dealing with domains of a more concrete nature to speaking of objects only in
a purely structural way.” The problem is that this transition “leaves a residue. The
more concrete domains, often of quasi-concrete objects, still play an ineliminable
role in the explanation and motivation of mathematical concepts and theories. . . .
The explanatory and justificatory role of more concrete models implies . . . that [struc-
turalism] is not the right legislation even for the interpretation of modern mathemat-
ics” (p. 338). So Parsons proposes a caveat to structuralism. If we kick away the lad-
der of the concrete or quasi-concrete objects, then we cannot motivate or even justify
some mathematical theories. For example, teachers often refer to sequences of lin-
guistic types in order to motivate the natural-number structure. Hilbert [1925] him-
self invoked a collection of sequences of strokes, a quasi-concrete structure, to de-
fine the objects of finitary mathematics. Parsons also notes that at least the lower
portions of the set-theoretic hierarchy have quasi-concrete instantiations. The quasi-
concrete seem to be a main exemplar of mathematical structures.

Maddy [1990, 174–175] makes a related point, claiming that there is an episte-
mological disanalogy between arithmetic and set theory. She agrees that a structur-
alist understanding of the natural numbers is “appealing partly because our under-
standing of arithmetic doesn’t depend on which instantiation of the number structure

25. Hellman [1989, 53–73] also treats set theory structurally, but not as the theory of a freestand-
ing structure.
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we choose to study.” Set theory is different: “Experience with any endless row might
lead us to think that every number has a successor, but it is experience with sets them-
selves that produces the intuitive belief that any two things can be collected into a
set. . . . [T]hough any instantiation of the natural number structure can give us access
to information about that structure, our information about the set-theoretic hierarchy
structure comes from our experience with one particular instantiation.”

I can put the point in present terms. Recall the coherence principle in the develop-
ment of structuralism in section 4:

If F is a coherent formula in a second-order language,
then there is a structure that satisfies F.

This is a central (albeit vague) principle of structuralism. There is no getting around
the fact that systems of quasi-concrete objects play a central role in convincing us
that some mathematical theories are coherent and thus characterize well-defined struc-
tures (especially because consistency is not sufficient for coherence). The best way
to show that a structure exists is to find a system that exemplifies it. At some point,
we have to appeal to items that are not completely structural (unless somehow every-
thing—every thing—is completely structural; see chapter 8). And at some point, we
have to appeal to items that are not completely concrete, given the size of most math-
ematical structures. So we appeal to the quasi-concrete. If we completely eschew
quasi-concrete systems, we lose any motivation or intuitive justification that even
arithmetic and geometry (and string theory) are well motivated or even coherent.

Another reason to think that the quasi-concrete cannot be eliminated is that I have
appealed to quasi-concrete items in order to characterize the very notion of a struc-
ture. Recall that a structure is the form of a system, and a system is a collection of
objects under various relations. The notion of “collection” is an intuitive one. There
is something fishy about appealing to the set-theoretic hierarchy, as a freestanding
ante rem structure, in order to explicate the notion of “collection” in the characteri-
zation of “system” and thus “structure.” Where did we get on this merry-go-round,
and how do we get off?

A related point concerns the practice of characterizing specific structures using a
second-order language. Such languages make literal use of intuitive notions like
“predication” or “collection.” A crucial step in the defense of second-order languages
is that we have a serviceable, intuitive grasp of notions like “all subsets” (see Shapiro
[1991]). This notion is also quasi-concrete. Boolos [1984] (and [1985]) has proposed
an alternate understanding of monadic, second-order logic, in terms of plural quan-
tifiers, which many philosophers have found attractive. Parsons [1995] contains an
insightful discussion of pluralities in the context of structuralism. He shows that we
are dealing with yet another quasi-concrete notion.

In all cases, then, the conclusion is the same. We can try to hide the quasi-concrete,
but there is no running away from it. Parsons’s caveat is well taken. However, the
caveat does not undermine the main ontological thesis of ante rem structuralism, the
idea that the subject matter of a branch of pure mathematics is well construed as a
class of freestanding structures with formal relations. The role of concrete and quasi-
concrete systems is the motivation of structures and the justification that structures
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with certain properties exist. The history of mathematics shows a trend from con-
crete and quasi-concrete systems to more formal, freestanding structures. There is
no contradiction in the idea of a system of quasi-concrete objects’ exemplifying a
freestanding ante rem structure. Nevertheless, Parsons’s caveat is a reminder not to
forget the roots of each theory. Without reference to the quasi-concrete, some mathe-
matical theories are left unmotivated and unjustified. In the next chapter, I turn to
the epistemology of structuralism. However, to recall the dialectical pattern of this
book, I am not finished with ontological matters. First, a brief interlude to note a
connection with the philosophy of mind.

6 Addendum: Function and Structure

In contemporary philosophy, several views go by the name of “functionalism.” If
we limit ourselves to philosophy of mind and philosophy of psychology, the frame-
work of this chapter provides convenient terminology in which to recapitulate some
common themes. Functionalism is an in re structuralism of sorts.

Ned Block [1980] describes three types of functionalism. First, functional analy-
sis is a research strategy aimed at finding explanations of a certain type: “A func-
tional explanation is one that relies on a decomposition of a system into its compo-
nent parts; it explains the working of the system in terms of the capacities of the parts
and the way that the parts are integrated with one another. For example, we can explain
how a factory can produce refrigerators by appealing to the capacities of the various
assembly lines, their workers and machines, and the organization of these compo-
nents” (p. 171). Block uses the word “system” to refer to a collection of related objects
or people, just as I do here. A functional explanation is an account of what a system
is like and what it does. The explanation begins by noting that the system exempli-
fies a certain structure and then invokes features of the structure itself, ignoring prop-
erties of the system (and its constituents) that do not relate to the structure. In the
sketch cited, the only relevant facts about the people on the assembly lines are their
relationships to each other and to the items playing other roles in the structure. Their
hair color and gender do not matter. I take it that an explanation of why a shift defense
is effective against a left-handed pull hitter is also a functional analysis.

Second, Block defines computation-representation functionalism to be a special
case of functional analysis in which “psychological explanation is seen as akin to
providing a computer program for the mind. . . . [F]unctional analysis of mental pro-
cesses [is taken to] the point where they are seen to be composed of [mechanical]
computations. . . . The key notions . . . are representation and computation. Psycho-
logical states are seen as systematically representing the world via a language of
thought, and psychological processes are seen as computations involving these rep-
resentations” (p. 179). Again, the connections with structuralism are straightforward.
According to computation-representation functionalism, the theorist is to find an
equivalence between psychological processes and something like a natural language,
a formal language, or a computer language. This equivalence is of a piece with iso-
morphism and structure equivalence. The plan is to establish a systematic correla-
tion between microprocesses and something like grammatical transformation rules
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or machine-language instructions. The brain is an ensemble of microprocesses and
is seen to be “equivalent” to either the functioning of language as a whole or to the
function of a programmed computer. Much of the work in the emerging discipline
of cognitive science can be seen as an attempt to fit this mold.

Block’s third theme, metaphysical functionalism, has the most interesting con-
nections with structuralism. This functionalism is not, or is not merely, a theory of
psychological explanation but is rather a theory of the nature of the mind and mental
states like pain, belief, and desire. The metaphysical functionalist is “concerned not
with how mental states account for behavior, but with what they are” (p. 172). Ac-
cording to the metaphysical functionalist, mental states are functional states. In present
terms, the metaphysical functionalist characterizes a structure, and identifies mental
states with places in this structure. In other words, a functional state just is a place in
a structure. As Block puts it, “Metaphysical functionalists characterize mental states
in terms of their causal roles, particularly, in terms of their causal relations to sen-
sory stimulations, behavioral outputs, and other mental states. Thus, for example, a
metaphysical functionalist theory of pain might characterize pain in part in terms of
its tendency to be caused by tissue damage, by its tendency to cause the desire to be
rid of it, and by its tendency to produce action designed to separate the damaged part
of the body from what is thought to cause the damage” (p. 172). According to meta-
physical functionalism, then, pain is to be characterized in terms of its relation to
other mental states and to certain inputs and outputs. This is not much different from
characterizing a natural number in terms of its relations to other numbers. Of course,
the characterization of the natural numbers is rigorous and precise, whereas the above
characterization of pain is admittedly inadequate. The metaphysical functionalist
envisions a program for filling it in, much as the Peano postulates fill in the details of
the natural-number structure.

Block describes this functionalist program in terms much like those of the present
chapter. He envisions that we start with a psychological theory T that describes the
relations among pain, other mental states, sensory inputs, and behavioral outputs.
Reformulate T as a single sentence, with mental-state terms all as singular terms. So
T has the form

T(s1, . . . , sn),

where s1, . . . , sn are the aforementioned singular terms for mental states. Now, if si

is the term for “pain,” then we can define an organism y to be in pain as follows,
adapting the technique of Ramsey sentences:

y has pain if and only if ›x1 . . . ›xn(T(x1, . . . , xn) and y has xi).

In other words, y is in pain if and only if y has states that relate to each other in vari-
ous ways and tend to produce such and such outputs when confronted with thus and
so inputs. Block illustrates this with a nonmental example: “Consider the ‘theory’
that says: ‘The carburetor mixes gasoline and air and sends the mixture to the igni-
tion chamber, which, in turn . . . ’ [Block’s ellipsis] Let us consider ‘gasoline’ and
‘air’ to be input terms, and let x1 replace ‘carburetor’, and x2 replace ‘ignition cham-
ber’” (p. 175). Then, according to the metaphysical functionalist, we can say that y is
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a carburetor if and only if “›x1 . . . ›xn[(The x1 mixes gasoline and air and sends the
mixture to the x2, which, in turn, . . . ) and y is an x1]” (p. 175).

Block thus uses the term “functional state” for something like the present “place
in a structure.” To continue the automotive examples, “valve-lifter” is a functional
term, because anything “that lifts valves in an engine with a certain organizational
structure is a valve-lifter.” Similarly, “carburetor” is a functional term, as are mental-
state terms like “pain,” “belief,” and “desire.” They all denote places in structures.
Block uses “structural term” to refer to something like an officeholder. For example,
“camshaft” is said to be a structural term, relative to “valve-lifter,” because a “cam-
shaft is one kind of device for lifting valves” (p. 174). In contemporary philosophy,
“C-fiber” would be a structural term.

Presumably, the theory of pain is more sophisticated than the theory of carburation,
but the form of the metaphysical functionalist analysis is the same. Notice that the
structuralist definition of the natural numbers also has this form. We say that a given
object z plays the 2 role in a certain system S if and only if S satisfies the Peano axi-
oms and z is the S-successor of the S-successor of the zero object of S.

The structures delimited by metaphysical functionalism are not freestanding, and
most of their places are not formal. Carburetors must mix gasoline and air. One can-
not locate a carburetor in anything but an internal-combustion device. Computers
and humans do not have systems that mix gasoline and air in preparation for com-
bustion, and so computers and humans do not have carburetors. In the case of (physi-
cal) pain, the indicated inputs and outputs must also be held fixed. If an organism
does not have something like the capacity for tissue damage, then it is not capable of
pain. We can locate the exemplification of the pain structure in humans and animals,
and perhaps we can locate a pain system in extraterrestrials and in future machines,
but certainly not in abstract objects or planets.

If the concepts given functional definitions are made a little more formal and free-
standing—along the lines of the development of geometry—then borderline cases
of the concepts are produced. Eventually, the boundary with mathematics is crossed.
Suppose there were a device that mixed two things other than gasoline and air, and
sent the mixture to an ignition chamber. The functional definition would be some-
thing like this:

›w1›w2›x1 . . . ›xn[(The x1 mixes w1 and w2 and sends the mixture to the x2,
which, in turn, . . . ) and y is an x1].

Would the y be a carburetor? Perhaps. Suppose it did not mix the two things but did
something else to them, and rather than sending the result somewhere, did something
else with it:

›X›w1›w2›z1 . . . ›zm›x1 . . . ›xn[(Xx1w1w2 & . . . ) & y = x1].

Clearly, this does not define “carburetor” in any sense of the word. At the limit, we
would produce a purely formal definition, which characterizes a freestanding struc-
ture. In theory, any object could play the x1 role, including the number 2 and Julius
Caesar. There would be systems of sets and numbers that exemplify the resulting
structure. “Carburetor” would be an object of pure mathematics, and carburetor theory
would have gone the route of geometry, dealing with an ante rem structure.
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4

Epistemology and Reference

1 Epistemic Preamble

For a philosopher who takes the full range of contemporary mathematics seriously,
the most troublesome issues lie in epistemology. The situation is especially acute for
traditional realism in ontology. Almost every realist agrees that mathematical ob-
jects are abstract. Although there is surprisingly little discussion of the abstract/con-
crete dichotomy in the literature,1 the idea seems to be that abstracta are not located
in space-time and are (thus) outside the causal nexus. We do not bump up against
abstract objects, nor do we see them or hear them. If mathematical objects are like
this, then how can we know anything about them? How can we formulate warranted
beliefs about mathematical objects and have any confidence that our beliefs are true?
Most of us believe that every natural number has a successor, and I would hope that
at least some of us are fully justified in this belief. But how?

Benacerraf’s celebrated [1973] develops this difficulty into an objection to real-
ism in ontology by invoking the so-called causal theory of knowledge. According to
this epistemology, there is no knowledge of a type of object unless there is some sort
of causal connection between the knower and at least samples of the objects. On this
account, it seems, knowledge of abstracta is impossible, because, by definition, there
is no causal contact with such objects. In recent decades, the causal theory of knowl-
edge has been roundly criticized from several quarters, and not just by friends of
abstracta. There is no consensus on any epistemology, causal or otherwise. There is
no leading contender.

1. One very notable exception to the lack of discussion on the abstract/concrete dichotomy is the
fine study in Hale [1987]. See also Zalta [1983]. As noted in previous chapters, mathematicians use
the “abstract/concrete” label for a different distinction. For them, arithmetic is a “concrete” study,
because its subject is a single structure (up to isomorphism). Group theory is more “abstract.” The
mathematicians’ “abstract/concrete” is my “algebraic/nonalgebraic.”
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In the present climate, then, one cannot claim (without further ado) that realism
in ontology has been refuted simply because there is no causal contact with abstract
objects. Nevertheless, the problem remains. Whatever the fate of the causal theory,
Benacerraf is quite correct that there is something troublesome about ontological
realism on the epistemic front. The realist cannot note the lack of consensus and
cheerfully declare, “What, me worry?” nor can he make a simple announcement that
he will produce an epistemology for mathematics as soon as epistemologists are
finished.

To sharpen the critique of realism in ontology, note that the causal theory of knowl-
edge is an instance of a widely held genre called “naturalized epistemology,” whose
thesis is that the human subject is a thoroughly natural being situated in the physical
universe. Any faculty that the knower has and can invoke in pursuit of knowledge
must involve only natural processes amenable to ordinary scientific scrutiny. The
realist thus owes some account of how a physical being located in a physical uni-
verse can come to know about abstracta like mathematical objects. There may be no
refutation of realism in ontology, but there is a deep challenge to it.2 The burden is
on the realist to show how realism in ontology is compatible with naturalized
epistemology.

One option is to follow Gödel [1964] and postulate an epistemic faculty that al-
lows humans to grasp or otherwise understand how things are in the realm of math-
ematical objects. This faculty, sometimes called “intuition,” is said to be analogous
to sense perception. Prima facie, a special faculty of mathematical intuition is at odds
with naturalized epistemology. What natural process can illuminate a causally iso-
lated realm of objects? Antirealists are fond of pointing out how ad hoc and other-
wise unsupported the special-faculty hypothesis is, often poking fun at Gödel’s philo-
sophical ideas. Maddy [1990] proposes another tactic, arguing that at least some
mathematical objects are concrete and are apprehended by ordinary sensory percep-
tion. Here, at least, there is no conflict with naturalism. A third strategy is an indirect
approach to epistemology. Mathematical objects are taken to be posits, something
like theoretical entities of science (e.g., Putnam [1971]; Resnik [1990]; and, again,
Maddy [1990]). Current scientific theory tells us that some physical entities, like
electrons, quarks, and black holes, cannot be perceived either—and so are in the same
class as mathematical objects as far as epistemology goes. According to this third
strategy, the existence of mathematical objects is justified by the same sorts of crite-
ria that apply to ordinary scientific posits, whatever those criteria might be.

Advocates of some contemporary strategies thus propose to square mathematics
with naturalized epistemology by showing that the boundary of the natural extends
to include the mathematical. Numbers, points, Hilbert spaces, and maybe even the
set-theoretic hierarchy are natural objects within the bounds of ordinary scientific
scrutiny. Mathematics is part of science and cannot be exorcized from it. Notice,
incidentally, that if there is a significant overlap between the mathematical and the

2. Field [1989, essay 7] develops a related argument against realism in ontology.
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natural, then even the Gödelian strategy may be a live option. Mathematical intu-
ition might be found sufficiently similar to ordinary perception or to other epistemic
mechanisms to remove its stigma as a philosophically suspect faculty. We may not
know much about how the mechanisms function, but perhaps they do not violate
reasonable naturalistic scruples. But we should not forget the cliché about pudding
and proof. There is work to be done.

One upshot of most epistemic proposals brought by contemporary realists in on-
tology (concerning mathematics) is a blurring of the abstract/concrete boundary (see
Resnik [1985]; Maddy [1990]). In a sense, this blurring is endorsed, articulated, and
defended both in the discussion of epistemology and reference to follow and in the
treatment of applications in chapter 8. It is not that there is no difference—a fuzzy
border is still a border—but the difference is not a sharp one and does not allow for
crisp philosophical pronouncements, or easy answers to deep questions. Perhaps it
is reasonable to shift the burden to defenders of the abstract/concrete boundary. Why
is the distinction important? What role does it play?

One motivation for the dichotomy may be the long-standing view that mathemati-
cal knowledge is, or can be, a priori. Because most knowledge about individual con-
crete objects is a posteriori, mathematical objects are not individual concrete objects.
Thus, they are abstract. To be sure, the notion of a priori knowledge is under such
severe attack today (especially in North America) that many philosophers do not take
the notion seriously. The assault dates to Quine [1951] (see Kitcher [1983] for an
instance directed at mathematical knowledge). A priori knowledge is lumped with
the analytic/synthetic distinction and put on the philosophical scrap heap. Notice,
incidentally, that it follows from the causal theory that all knowledge of objects is a
posteriori, because on that theory such knowledge depends on matters of causality.
We cannot be as definite about naturalized epistemology generally, but it is at least
prima facie difficult to square a priori knowledge with it.

Nevertheless, an important and influential group of ontological realists maintain
that mathematical knowledge is a priori. One prominent project is an attempt to sus-
tain the thesis that mathematical knowledge is of the same general kind as logical
knowledge, so that mathematical knowledge is based on pure thought. This view,
called “logicism,” dates to Frege [1884] and is pursued in Wright [1983] and Hale
[1987].

The notion of a priori knowledge is thus alive, if not well. Whatever the fate of
the logicist project, one burden on the philosopher of mathematics is to explain the
appeal of the idea that mathematical objects are abstract and mathematical knowl-
edge is a priori. Even if these theses are mistaken, what is it about mathematics that
led so many to accept them?

To get down to the business of this daunting task, this chapter contains three ways
that structures are apprehended and knowledge of them obtained. The first is simple
abstraction or pattern recognition. With processes much like—or even identical to—
ordinary sensory perception, a subject comes to recognize and learn about patterns.
The subject does not see or hear patterns themselves, of course. We do not literally
see or hear abstract entities. Our subject comes to recognize a pattern by observing
patterned systems. The mechanisms involved pose deep and interesting problems for
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cognitive psychology and the budding field of cognitive science, but pattern recog-
nition is, I believe, philosophically unproblematic. The interesting and speculative
part of this approach is the thesis that we come to understand some patterns to be
freestanding, and ultimately ante rem.

However speculative and tentative this may be, it is a scant beginning. Most of
the structures studied in mathematics are infinite, and all but a few of those are un-
countable. It is contentious, to say the least, to claim that infinite structures are ap-
prehended by pattern recognition. To grasp a structure this way, the subject would
have to perceive an infinite system and then abstract a pattern from it. I suggest varia-
tions of pattern recognition that can lead to knowledge of small infinite structures,
such as the natural-number structure and perhaps the continuum. This, however, is
about as far as anything resembling pattern recognition can take us. We do not get
anywhere near the set-theoretic hierarchy via that route. Any grasp of those patterns
must come from another source. I propose two further techniques for arriving at struc-
tures. One is a linguistic abstraction, of sorts, and the other is implicit definition. Note
that both of these are linguistic. This tie to language is one source of the longstanding
belief that mathematical knowledge is a priori—to the extent that the grasp of lan-
guage and the knowledge of logical consequence are a priori. The epistemological
development leads to the discussion of reference and semantics in the closing sec-
tion of the chapter. I finally make good on the suggestion, from chapter 2, that model-
theoretic semantics is the hallmark or central framework of realism in ontology and
realism in truth-value.

The strategies sketched here are not tied to any particular global epistemology.3

To be sure, mathematical objects—places in structures—are abstract and causally
inert. Thus, the present program is not compatible with crude versions of the causal
theory of knowledge. In line with chapter 1, I take the existence of mathematical
knowledge to be something close to a philosophical datum, just about incorrigible.
If an epistemology entails that mathematical knowledge is impossible, I would be
inclined to reject the epistemology. Of course, the confidence in mathematical knowl-
edge does not guarantee that a successful epistemology will be consistent with struc-
turalism, or with the particular epistemic tactics invoked below.

2 Small Finite Structure: Abstraction and Pattern Recognition

In contemporary philosophical jargon, the phrase “abstract object” means something
like “object that is not part of space-time” (but see Hale [1987, chapter 3]). Numbers
are the paradigms of abstract objects. However, the etymology of the word “abstract”
indicates the results of a process of abstraction. According to the Oxford English
Dictionary, the adjective “abstract” is derived from “abstracted.” In this sense, col-

3. See Dieterle [1994, chapter 2] for a defense of structuralism in terms of a reliabilist epistemol-
ogy, the view that a belief P is knowledge if P is true and the belief was produced by a reliable process
(see, for example, Goldman [1986]). Dieterle argues that if the ontological themes of structuralism are
true, then certain psychological processes are reliable and thus do produce knowledge of structures.
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ors, shapes, and types are paradigm cases of abstract objects. The plan here begins
by bringing this traditional usage of “abstract” in line with the contemporary, at least
in part. Some nonspatiotemporal objects are in fact apprehended (but not perceived)
by abstraction. In particular, one process for apprehending small structures is pat-
tern recognition. I do not claim to understand the psychological mechanisms involved,
but pattern recognition is a faculty that humans clearly do have.4 My modest pur-
pose is to illustrate a few instances of the procedure at work, showing how it can
lead to an apprehension of freestanding, ante rem structures.

Let us start with the recognition of letters, numerals, and short strings. This is about
as mundane as the type/token dichotomy gets. Some realists argue that simple types
can be apprehended through their tokens, via abstraction. We see (or hear) the to-
kens and somehow obtain knowledge of the types. If this idea is sustained, then we
have at least one case of knowledge of (abstract) objects with no causal, or any other,
contact with them. We do not see or hear types; the contact is only with the tokens.
Antirealists might regard this maneuver as invoking magic, much as they criticize
Gödelian intuition. Here, however, realism does not seem quite so ad hoc. In the first
place, pattern recognition is not philosophically occult. To sustain the realists’ intu-
ition, however, we must see what pattern recognition delivers and we must examine
how types can be construed as objects.

The primary mechanism for introducing characters to the uninitiated is ostensive
definition. A parent points to several instances of, say, a capital “E” and pronounces
“eee.” Eventually, the child comes to understand that it is the letter—the type—that
is ostended, and not the particular tokens. Wittgenstein [1953] is noted for his re-
minder that the practice of ostension presupposes abilities on the part of both teacher
and learner. They must already be able to recognize the sorts of things being
ostended—whatever those sorts of things might be. Again, I do not propose to shed
much light on the relevant psycholinguistic faculties involved. The more modest task
is to show how these faculties might lead to knowledge of abstracta.

At this point, of course, some antirealists object that the child has merely learned
to apply the predicate “capital E.” Although it is hard to quibble with this assess-
ment just yet, the maneuver does not help in the end. The difference between an object
and a predicate extension (or a property) is a relative one, depending on context. It is
similar to the relativity of system and structure, as presented in chapter 3. For now,
however, this is just a promissory note. Stay tuned (section 5).

If our antirealists concede that there are character types and string types, they will
claim that such types are in re. There is no more to the type “E” than the sum of written

4. Dieterle [1994, chapter 2] surveys some of the relevant psychological literature, relating the re-
sults to the apprehension of small structures. Resnik [1990] is more speculative, delimiting a process
by which our “ancestors” (and us) may have become “committed” to (small) abstract structures. Although
the “genetic” part of Resnik’s account seems to involve the recognition of patterns, he does not invoke
abstraction. Resnik follows Quine in holding that both mathematical and physical entities are postu-
lated, and their existence is justified on holistic grounds. A detailed contrast between abstraction and
postulation is beyond the scope of this book.
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capital “E” tokens. Destroy all the tokens and the type goes with them. In terms of
the previous chapter, however, there is a tendency toward thinking of character and
string types as freestanding. Throughout the learning process, each character type is
seen to be exemplified by more and more kinds of objects. At first, of course, the
child associates the type “E” with tokens that have roughly the same shape: a straight
vertical line with three smaller horizontal lines protruding to the right. Soon, how-
ever, the child learns to identify tokens with different shapes, such as “õ ,” as capital
“E”s. The child then learns that there is a type whose tokens include both capital and
lowercase “E”s.

At this point, there is nothing like a common shape to focus on, and so we have
moved beyond simple abstraction. An opponent might insist that we are no longer
dealing with a single type but a loose conglomeration of types (the “E” type, the “õ ”
type, etc.). There is no need to adjudicate the proper use of the word “type” here.
The reader is free to use a different word. The important point is that we must leave
the simple property/object dichotomy and think in terms of places in a pattern or
structure. What the various “E”s have in common is that they all have the same role
in an alphabet and in various strings. That is, our child has learned to recognize an
alphabet structure and “E” as a place in it—the fifth place.

Thus far, all of the various “E” tokens are physical inscriptions, consisting of hunks
of ink, graphite, chalk, burned toner, pixels, moisture on glass, and so on. But the child
also learns that there are tokens among certain sounds. The sound “eee” is also an “E.”
There is a short “E,” a long “E,” and so forth. When it comes to phonemes, we also
supplant the simple property/object dichotomy with places in a pattern. What makes a
phoneme recognizable as a short “E” has something to do with its place in a larger
system, because the very same wave pattern can sound different when embedded in
different words. The relevant psycholinguistic studies would take us too far afield.

For the ontologist, the important point is that our child eventually comes to see all
kinds of objects as tokens of “E.” In addition to those listed above, there is sign lan-
guage, flag semaphores, smoke signals, and Morse code. At play, our child might
make up an alphabet that consists of balls of different sizes and colors. In coding, a
character might even be tokened by (tokens of) other characters. “Look Watson, the
‘H’ here is an ‘A,’ the ‘C’ is a ‘B’ . . .” In structuralist terms, I would say that a code
is a case in which certain types are used as tokens of other types. Holmes discovered
a system that exemplifies the alphabet structure in which “H” plays the “A” role and
“C” plays the “B” role. We have a direct analogue of the fact that the even numbers
themselves exemplify the natural-number structure.

Returning to our eager child, if she is fortunate enough to take a course in ad-
vanced logic and learns about Gödel numbering, she will see how characters and
strings can have natural numbers as tokens. By then, it should be clear that strings
and natural numbers share a common structure.

The process outlined here may not go all the way to characters and strings as com-
pletely freestanding abstract objects, but the development goes pretty far in that di-
rection. Presumably, nothing philosophically occult or scientifically disrespectable
has been invoked along the way. In the end, we either demystify numbers or we
mystify more mundane items.
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Let us consider another simple sort of pattern, small cardinal numbers. For each
natural number n, there is a structure exemplified by all systems that consist of ex-
actly n objects. For example, the 4 pattern is the structure common to all collections
of four objects. The 4 pattern is exemplified by the starting infielders on a baseball
team (not counting the battery), the corners of my desk, and two pairs of shoes. We
define the 2 pattern, 3 pattern, and so on, similarly. Let us call these “cardinal struc-
tures,” or “finite cardinal structures.” The finite cardinal structures have no relations
and so are as simple as structures get. We include the 1 pattern as a degenerate case.
It is exemplified by a “system” that consists of a single object under no relations.
The 0 pattern is an even more degenerate case. It is exemplified by a degenerate system
that consists of no objects.

In part, our child starts to learn about cardinal structures by ostensive definition.
The parent points to a group of four objects, says “four,” then points to a different
group of four objects and repeats the exercise. Eventually, the child learns to recog-
nize the pattern itself. Virtually everything said here about characters and strings
applies mutatis mutandis to (small) cardinal structures.

The freestanding nature of cardinal structures is even more prominent than that
of strings. At first, perhaps, our child may believe that the 4 pattern applies only to
systems of physical objects that happen to be located near each other, but she soon
learns to count all kinds of systems and sees that the 4 pattern applies universally.
We count the planets in the solar system, the letters in a given word, the chimes of a
clock, the colors in a painting, and even properties: “Justice and mercy are two car-
dinal virtues.” Because anything can be counted, systems of all sorts exemplify the
cardinal patterns. Cardinal structures are paradigms of freestanding structures. We
even count numbers when we note that there are four primes less than 10. That is,
systems of numbers like {2, 3, 5, 7} exemplify finite cardinal structures. As noted,
this is a motivation for thinking of cardinal structures as ante rem.

The freestanding nature of cardinal structures seems to underlie Frege’s [1884]
contention that numbers are logical objects. Although he does not speak of patterns
directly, the idea is that cardinal structures are topic-neutral and universally appli-
cable. If one can speak of objects at all, then one can count them. Consider, for ex-
ample, Frege’s argument against the view (which he attributes to Mill) that arith-
metic truths are empirical generalizations. According to the view under attack, the
equation “1 + 2 = 3” is a statement that any object and any pair of objects can always
be rearranged as the vertices of a triangle. This generalization is verified empirically.
Frege noted that this simple-minded view does not account for larger numbers, and
it does not touch the application of number to things that cannot be moved. We can-
not arrange one clock chime and a pair of chimes to make a triangle. Moreover, if
Frege is right that properties are not objects, then even some nonobjects can be
counted. In structuralist terms, cardinal structures are exemplified beyond the realm
of objects (see section 5).

We should distinguish finite cardinal structures from what may be called finite
ordinal structures. The ordinal 4 pattern, for example, is the structure of any sys-
tem of four objects considered in a particular order—a first, a second, a third, and
a fourth. This pattern is exemplified by my sister-in-law’s children, in birth order;
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by those same children arranged according to the alphabetical order of their middle
names; by the numbers 6, 7, 12, 15 in numerical order; and by the first four infinite
cardinal numbers, in reverse cardinal order (i.e., <a3, a2, a1, a0>). In mathemati-
cal terminology, we are speaking here of (the structures of) finite sequences, as
opposed to finite unordered sets.

One might argue that the ordinal is the primary number concept. The usual way
to determine the cardinality of a collection of objects is to count it, which imposes an
order on the collection and thus makes it an instance of the corresponding ordinal
pattern. Dummett [1991, 293] chides Frege for focusing on cardinal numbers rather
than ordinals:

[Frege’s] definition of the natural numbers did not achieve the generality for which he
aimed. He assumed . . . that the most general application of the natural numbers is to
give the cardinality of finite sets. The procedure of counting does not merely establish
the cardinality of the set counted: it imposes a particular ordering on it. It is natural to
think this ordering irrelevant, since any two orderings of a finite set will have the same
order type; but, if Frege had paid more attention to Cantor’s work, he would have
understood what it revealed, that the notion of ordinal number is more fundamental
than that of cardinal number. . . . [A]fter all, when we count the strokes of a clock, we
are assigning an ordinal number rather than a cardinal. . . . [Frege] was well aware that
Cantor was concerned with ordinal rather than cardinal numbers; but . . . he dismissed
the difference as a mere divergence of interest, and never perceived its significance.

This priority issue does not concern me here. Both number notions are taught to
children, and everything said about cardinal numbers and strings applies to ordinals
as well. In a sense, the system of finite cardinal patterns, the system of finite ordinal
patterns, and the system of strings have the same structure, namely, the natural-number
structure. I will get to this infinite structure soon, but first I briefly deal with larger
finite structures.

Notice, incidentally, that by itself pattern recognition does not deliver anything
resembling a priori knowledge. To obtain knowledge of strings and number struc-
tures via pattern recognition, our subject must encounter tokens and collections of
objects. To be sure, no particular specimens are necessary—any token of the relevant
type and any collection of the right size will do. Someone might argue that we have
a priori knowledge of certain facts about finite structures: just as we can know a priori
that all green objects are colored, we can know a priori that any system exemplify-
ing the 4 pattern is larger than any system exemplifying the 3 pattern. Still, I will
look elsewhere for the sources of the idea that mathematical knowledge is a priori.

3 Long Strings and Large Natural Numbers

It is widely believed that the serious epistemic problems with mathematical objects
concern infinite systems. I argued in section 2 that because we can see or hear in-
stances of types and finite patterns, these structures are not all that removed from us,
and so their epistemology is perhaps tractable. But this applies only to small finite
structures, such as individual characters, short strings, and the first few finite cardi-
nal and ordinal structures. What of the larger ones?
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At some point, still early in our child’s education, she develops an ability to
understand cardinal and ordinal structures beyond those that she can recognize all
at once via pattern recognition and beyond those that she has actually counted, or
even could count. What of the 9,422 pattern, and the quadrillion pattern? No one
has ever seen a system that exemplifies the quadrillion pattern, nor has anyone
counted such a system. Life is too short, and the eyes are too dim. Surely, we do
not learn about and teach such patterns by simple abstraction and ostensive defini-
tion. The parent does not say, “Look over there, that is 9,422” or “Look at the na-
tional debt, counted in mills. That is the quadrillion pattern a few times over.” Yet
we speak of large numbers with ease. We learn about the number of molecules in
physical objects and the distance to other galaxies. The rules for determining draws
entail that there are only finitely many possible chess games, but it is a mind-bog-
gling number. We calculate how much memory is required to look ahead, say,
twenty moves in a brute-force strategy—more bits than there are particles in the
known universe. We do not come to know about such finite cardinal structures
through the workings of a simple abstractionist epistemology. Nevertheless, humans
clearly are able to recognize, discuss, and manipulate large, finite cardinal struc-
tures and large, finite ordinal structures.

The same goes for strings. Long sequences of characters are not apprehended by
simple abstraction. During linguistic development, our child learns to parse tokens
of strings she has never seen. Indeed, the ability to parse extends to strings that never
had any tokens, and may never have any. Moreover, some strings and some gram-
matical sentences are so long that there is not enough ink and paper in the universe
to make a token of them. The Gödel sentence for a standard first-order Peano arith-
metic may not be quite that long, but it falls in the same category. Yet that string can
be comprehended and coherently discussed. Logic treatises are full of information
about this particular string.

Thus, for anyone who invokes only simple abstraction in the epistemology of
mathematics, many of the features that make the infinite problematic are shared by
the large finite. Even at this stage, the structuralist needs epistemic strategies other
than simple pattern recognition. Here we get more speculative.

Returning to our learning child, perhaps she reflects on the sequence of numer-
als, eventually noting that the sequence goes beyond the collections she has actu-
ally counted.5 She then sees that any finite collection can be counted and thus has
a cardinality.

5. An anecdote: My own children seemed to learn about numbers through numerals. They first
learned to count by rote, reciting numerals in order—to the delight of us and their grandparents. They
began to get the point of the exercise when they later learned how to count objects, by reciting numer-
als while pointing to different objects. That is, the children became competent in reciting the numerals
well before they could count even small collections of objects. Of course, during this process, they
learned more and more numerals. Eventually, they will understand that the numerals do not run out,
and thereby begin to get the idea of the natural-number structure. Even if my children’s development
is typical, I do not pretend that this is even a hint of a psychological account of learning the numbers.
Surely, other crucial skills are being acquired and refined during this process.
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A related possibility is that humans have a faculty that resembles pattern recogni-
tion but goes beyond simple abstraction. The small finite structures, once abstracted,
are seen to display a pattern themselves. For example, the finite cardinal structures
come in a natural order: the 1 pattern, followed by the 2 pattern, followed by the 3
pattern, and so on. We then project this pattern of patterns beyond the structures
obtained by simple abstraction. Consider our child learning the patterns represented
by the following:

, , , .

For present purposes, we can think of these patterns either as strings, as finite cardi-
nal structures, or as finite ordinal structures. Reflecting on these finite patterns, the
subject realizes that the sequence of patterns goes well beyond those she has seen
instances of. Perhaps this is her first hint of an ante rem structure. Our subject thus
gets the idea of a sequence of 9,422 strokes, and she gets the idea of the 9,422 pat-
tern. Soon she grasps the quadrillion pattern. I assume that the reader, realist or other-
wise, understands these strings and sequences, and I will not bother giving tokens
and instantiations of them. The cost in ink would drive up the cost of this book.

Somewhere along the line, antirealists might concede that pattern recognition and
the other psycholinguistic mechanisms lead to belief in (perhaps ante rem) structures,
and they may concede that we have an ability to coherently discuss these structures.
But antirealists will maintain that these mechanisms do not yield knowledge unless
the structures (or at least their places) exist. Have we established this last, ontologi-
cal claim? Can this be done without begging the question?

I do not mean to take the philosophical high ground and simply scoff at the
antirealist’s serious and earnest charges, but I do request the reader’s indulgence. In
this book, I present an account of the existence of structures, according to which an
ability to coherently discuss a structure is evidence that the structure exists (see, for
example, section 8). This account is perspicuous and accounts for much of the
“data”—mathematical practice and common intuitions about mathematical and or-
dinary objects. The argument for realism is an inference to the best explanation. The
nature of structures guarantees that certain experiences count as evidence for their
existence.

4 To the Infinite: The Natural-number Structure

Given the aforementioned routes to large finite structures (construed ante rem), the
simplest infinite structure is near at hand. Our subject, no longer a child, continues
to reflect on the sequence of larger and larger finite structures and grasps the notion
of a finite sequence per se. The finite sequences are ordered as follows:

, , , , . . .

Our subject learns that the sequence of sequences goes on indefinitely. She sees that
the system of finite ordinal structures has a pattern. For each sequence, there is a unique
next-longest sequence, and so there is no longest sequence. The system of finite se-
quences is potentially infinite. Eventually, the subject can coherently discuss the struc-
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ture of these finite patterns, perhaps formulating a version of the Peano axioms for
this structure. We have now reached the structure of the natural numbers.

Of course, the same point can be reached by reflection on the finite sequences of
strokes or the finite cardinal structures. The system of finite ordinal structures, the sys-
tem of finite cardinal structures, and the system of strokes all exemplify the same struc-
ture—the natural-number structure. Even strings on a finite alphabet will work. From
a structuralist point of view, there is not much difference between strings on a finite
alphabet and natural numbers. In terms of the previous chapter, the system of strings
on a finite (or countable) alphabet is structure-equivalent to the natural numbers.

To briefly reiterate, then, we first contemplate the finite structures as objects in
their own right. Then we form a system that consists of the collection of these finite
structures with an appropriate order. Finally, we discuss the structure of this system.
Notice that this strategy depends on construing the various finite structures, and not
just their members, as objects that can be organized into systems. It is structures that
exhibit the requisite pattern. Ante rem structuralism provides the most straightfor-
ward line on this. If one takes a more in re (or eliminative) approach, the move to the
natural-number structure might not work, because there might not be enough finite
structures.

We have a new wrinkle on the structure/system dichotomy here. What is struc-
ture from one point of view—the perspective of finite cardinal structures—is object
from another. The finite structures are themselves organized into a system, and the
structure of that system is contemplated. The 4 pattern itself plays the role of 4 in the
natural-number structure.

Another route to the natural-number structure is for our subject to reflect on ever-
increasing sequences of strokes and formulate the notion of a sequence of strokes
that does not end (in one direction). This is an infinite string, and so I cannot give a
token of it in this finite book. The practice is to write something like this instead:

 . . .

The point is that students eventually come to understand what is meant by the el-
lipses “. . .” The students can coherently discuss the infinite pattern and can teach it
to others. When they do, they have grasped (an instance of) the natural-number struc-
ture. Perhaps the same point can be reached by reflecting on the passage of time. If
the time line is thought of as divided into discrete moments, one second apart, then
the moments from now on exemplify the natural-number structure. This is not too
far removed from the approach of Kant and the traditional intuitionists.

After a given structure is understood, other structures may be characterized and
understood in terms of it. To return to our favorite example from chapter 3, one can
describe a “lefty shift defense” as one in which the shortstop plays to the right of
second base, and the other infielders move to the right, with the player at first base
guarding the line. Those who know about baseball will understand what is meant
even if they have never seen this defense. Similarly, once the natural-number struc-
ture is understood, then other infinite structures can be described in those terms. The
integer structure, for example, is like the natural-number structure, but unending in
both directions:
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 . . .  . . .

Again, students eventually understand what is meant and can discuss the structure
coherently. The rational-number structure is the structure of pairs of natural num-
bers, with the appropriate relations.

Notice that this technique invokes the structure/system relativity described in the
previous chapter. The places of a given structure—here the integer structure—are
treated as objects in their own right. Such objects are arranged into a system of pairs
and collections of pairs. The structure of the constructed system is then apprehended.

So far, we have only denumerable structures. To obtain larger ones, our subject
can contemplate certain sets of rationals, as in Dedekind cuts, or she can contem-
plate certain infinite sequences of rationals, as in Cauchy sequences (assuming that
such talk of sets or sequences is coherent). These two techniques differ, of course,
but the same structure results, the structure of the real numbers. The presentation is
often a pedagogical challenge, but once the student acquires some facility working
within the structures, in the appropriate language, no problems arise. We have at least
the appearance of communication, and on the present account, it is communication
of facts about structures. We are on our way to type theory.

The technical development here is well known, of course. Perhaps the philoso-
phy has gone a bit too fast, however. The antirealist will surely balk here, arguing
that at best I have only pointed toward belief in the respective structures. And again,
I refer to our theory of sections 8 and 9, according to which the ability to coherently
discuss a structure is evidence that it exists.

Notice, as an aside, that in the foregoing development, there is an ambiguity in
the reference of numerals. The term “4” has been used to denote a certain finite car-
dinal structure (the pattern common to any collection of four things), and it has been
used for the corresponding ordinal structure. The same word is also used to denote
the appropriate place in the natural-number structure. The very same numeral is also
used to denote a place in the structure of the integers, a place in the real-number struc-
ture, a place in the complex-number structure, and even a place in the set-theoretic
hierarchy,6 where it denotes a finite ordinal {0, 1, 2, 3}, or to be precise {f, {f}, {f,
{f}}, {f, {f}, {f, {f}}}}.

5 Indiscernability, Identity, and Object

Although Robert Kraut’s “Indiscernability and ontology” [1980] is not aimed at
mathematics and does not explicitly deal with structures, the work provides another
epistemic route to structures. Along the way, Kraut lends insight into the notions of
object and identity, at least as the notions are construed in structuralism. His starting
point is the Leibniz principle of the identity of indiscernibles: if two items cannot be

6. Are all of these 4s one and the same? Chapter 3 contains a discussion of the sense in which one
can and should identify the places in different structures. There is no problem with identifying these
places, nor is there a problem with keeping them separate or, in some contexts, in refusing to consider
the question. It is a matter of decision, based on convenience.
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distinguished—if anything true of one is true of the other—then the objects can be
or should be identified. The objects can be taken as (or they are) one rather than two.
Kraut combines this thesis with the observation that what is “discernible” depends
on the conceptual resources available. The result is a theory relativity of objects, quite
consonant with the present relativity of objects and the relativity of system and
structure.7

The following pieces of philosophical fiction are not entirely coherent, but bear
with me. Consider an imaginary economist who, while at work, speaks an impover-
ished version of (technical) English, a language that does not have the resources to
distinguish between two people with the same income. Anything she says about a
person P applies equally well to anyone else Q who has the same income as P. If she
notes that P cannot afford the tuition at Harvard and that P is likely to get audited,
then the same goes for Q. Someone who interprets the economist’s language might
apply the Leibniz principle and conclude that for those stuck with the impoverished
resources, P = Q. That is, from the standpoint of the economist’s scheme, people
with the same income are identified and treated as a single object. To be fanciful, if
the interpreter sees a certain woman, he might say (on behalf of the economist), “There
is the $35,000.” If a man with the same income walks by, the interpreter might re-
mark, “There it is again.” The economist herself might make the identification if she
knows that the two are indiscernible and does not envision a framework for distin-
guishing them.

Of course, in the full background language, English, the two people can be distin-
guished in lots of ways: by gender, age, spatial location, and so on. By hypothesis,
however, these resources are not available to our economist (while at work). In that
context, people in the same income level are indiscernible. Nothing is lost by inter-
preting her language as being about income levels and not people (assuming sharp
boundaries between levels, of course). A singular term, like “the Jones woman,”
denotes an income level.

Similarly, consider someone who speaks an impoverished version of English in
which equinumerous collections of objects are not discernible. Call him a number
person. In his language, anything true of one collection of objects is also true of any
other collection with the same cardinality. So, following the Leibniz principle,
equinumerous collections get identified, and numbers become objects. If our inter-
preter sees a clump of three trees, he might say, “For the number person, there is
three.” If three people walk by, he might remark, “There is three again.”

A standard technique in algebra and number theory can be understood in these
terms. Imagine a mathematician who decides to speak an impoverished language that
cannot distinguish two integers if their difference is divisible by 7 (or, equivalently,
if the numbers produce the same remainder when divided by 7). On her behalf, we
make the indicated identifications: 2 is identified with 9, 16, -5, and so forth, whereas
3 is identified with 10. We interpret our mathematician as saying that 5 + 4 = 2. Of

7. Kraut [1980] contains an insightful and compelling account of what is right and what is wrong
with Geach’s ([1967], [1968]) “relativity of identity.”
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course, 5 + 4 = 9 as well because, in her system, 2 and 9 are indiscernible and thus
identical. Under this interpretation, “identity” is what we call “congruence modulo
7.” The locution “2 = 9” can be rendered as “2 / 9 (mod 7)” in the background
language.

To be sure, Kraut’s economist and our number person and mathematician are too
far-fetched. In practice, no one forgets or suspends the background language to speak
one of these impoverished languages. No one could. If someone did manage to for-
get the background framework and stick to the impoverished one, the thought ex-
periment would probably fail, if it made sense at all. An aspect of Frege’s [1884]
aforementioned attack on simple-minded empiricism is relevant here (see section 2
of this chapter). Suppose that our number person looks at two decks of cards and we
interpret him as saying “There is two.” Then we assume that, at some level, the num-
ber person knows that it is the decks and not the cards or the colors that are being
counted. Nothing in the hunk of mass itself determines that it is 2, 104, or any other
number for that matter. If the subject loses the use of sortals like “deck,” he will not
see the stuff as 2. In other words, to see the decks as 2, the subject must be aware of
the decks and must distinguish the two decks from each other.8 Similarly, if he looks
at two people and says “There is two again,” it is the people and not the arms or the
molecules that are relevant.

I submit that a better way to view the situation is that income levels and numbers
are places in structures. If our economist’s theory—including the background—is
correct, it shows that an income-level structure is exemplified (more or less) in our
economic system. The level roles are played by individual people or groups of people.
In terms of chapter 3, this is called the “places-are-offices” perspective. The frame-
work of our number person is understood similarly. If there are enough objects in
the background ontology, equinumerous collections exemplify the natural-number
structure. The role of 3 is played by either the higher-order property of being three-
membered or the class of all three-membered classes. When we focus on the impov-
erished sublanguages and interpret them with the Leibniz principle, we take the places
of the structure—income levels and numbers—as objects in their own right.

The “impoverishment” indicated here is a two-staged affair. We start with an in-
terpreted base language or theory. This framework already has an ontology, in that
there are objects in the range of its variables. Next, we focus on an equivalence rela-
tion over the ontology of the base language.9 For our economist, the relationship is
“sameness of income” between people. If the borders between levels are sharp, “same
income” is an equivalence. The relation of equinumerosity, between collections of
objects (or properties), is also an equivalence, as is the relation of congruence modulo

8. Frege’s answer to “What is it that we number?” is concepts. The concept “decks before me” has
number 2, whereas the concept “cards before me” has number 104. For Frege, the notion of “object” is
bound up with that of “concept” (of which more later).

9. A relation R is reflexive if, for every x in its domain, Rxx holds; R is symmetric if, for every x, y,
if Rxy then Ryx; and R is transitive if, for every x, y, z, if Rxy and Ryz, then Rxz. A relation is an equiva-
lence if it is reflexive, symmetric, and transitive.
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7. Any equivalence relation divides its domain into mutually exclusive collections,
called “equivalence classes.” Two items are in the same equivalence class if and only
if the relation in question holds between them. The idea here is to see the equiva-
lence classes as exemplifying a structure and to treat the places of this structure as
objects.

Our next step is to formulate a sublanguage of the base language for which the
equivalence is a congruence. Two conditions are necessary: if F(x) is a predicate of
the sublanguage and p, q are in the same equivalence class (i.e., the equivalence re-
lation holds between them), then F(p) iff F(q). That is, members in the same equiva-
lence class cannot be distinguished in the sublanguage. If two items are equivalent,
they are indiscernible. Second, if two items m, n are not equivalent, then there should
be a predicate Y(x) of the sublanguage that holds of one and fails of the other:10 Y(m)
but not Y(n).

In such cases, I suggest that in the sublanguage, the equivalence relation is the
identity relation. The idea here is that the language and sublanguage together char-
acterize a structure, the structure exemplified by the equivalence classes and the re-
lations between them formulable in the sublanguage. It is thus possible to invoke the
places-are-objects orientation, in which case the places in this structure are rightly
taken to be its objects.

One further example of the sublanguage procedure closes a circle. In the previ-
ous chapter, a system is defined to be a collection of objects related in various ways.
In attempting to characterize the relation of “having the same structure,” we encoun-
tered two equivalence relations on systems, namely, isomorphism and structure
equivalence. Suppose that we begin with one of these relations and apply the fore-
going procedure to it. Is there an interesting sublanguage in which either isomor-
phism or structure equivalence is a congruence? Perhaps the framework of pure
mathematics (properly regimented) might be such a sublanguage, as would the envi-
sioned structure theory of chapter 3. According to this plan, structures themselves
are seen to be objects in their own right.

10. I am being loose with some of the terminology. First, the envisioned sublanguage is called a
“sublanguage” because it is constructed with a subset of the vocabulary from the base language. Al-
though both languages are interpreted, they do not have the same ontology. The base language may
not have the resources to refer to equivalence classes, and the sublanguage may not have the resources
to refer to the objects of the base language. Second, in a formal language, a “predicate” is a formula
F(x) with a free variable x. If we restrict ourselves to formulas with only one free variable, then no
structure larger than the continuum is produced by the foregoing procedure (unless the language has
uncountably many terms). Here we do allow the formula F(x) to contain other free variables. Suppose,
for example, that F also contains y free. Then we say that F does not distinguish p and q only if
œy[F(p, y) ≡ F(q, y)]. That is, no matter what value for the parameter y is chosen, F holds of p if and
only if F holds of q. Notice, incidentally, that if the sublanguage contains the identity symbol (from
the base language), then any two different objects in the original ontology can be distinguished in the
sublanguage. If m ≠ n, then the predicate “x = m” distinguishes them or, to be precise, the predicate
“x = y” distinguishes them when the parameter y has the value m. Thus, if the sublanguage contains the
identity symbol, then the only congruence is the identity relation, and the sublanguage procedure does
not yield anything new.
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The Kraut sublanguage procedure is remarkably similar to one elaborated in Wright
[1983] and Hale [1987], on behalf of Fregean logicism. Their thesis is that we can
introduce abstract objects by abstraction over an equivalence relation on a base class
of entities. Frege himself suggested that directions might be obtained from lines in
this manner:

The direction of l is identical to the direction of m if and only if l is parallel to m.

Closer to home, numbers are obtained from concepts via a thesis sometimes called
Hume’s principle:

The number of F is the number of G if and only if F is equinumerous with G.

Wright proposes that one requirement on the procedure is the formulation of a
sublanguage in which the designated equivalence is a congruence.

The Frege–Wright–Hale project is a defense of logicism and thus of the long-
standing view that arithmetic can be known a priori. Because the basic principles of
arithmetic follow from Hume’s principle (via second-order logic), arithmetic is a priori
if Hume’s principle and second-order logic are. Hume’s principle, they argue, is
grounded in our grasp of the relevant concepts. I return to Frege’s development of
arithmetic in chapter 5.11

Although the Kraut sublanguage procedure sketched above begins with the ob-
jects in a background framework, virtually the same process can start with items that
are not objects. Because properties are notoriously difficult to individuate, many
authors hold that properties are not objects. However, the sublanguage procedure does
not require a clear identity relation on the items in the field of the equivalence rela-
tion. The above number language, for example, can start with properties, just as the
Frege–Wright–Hale formulation does. For the purposes of the procedure, it does not
matter how properties are individuated or even whether there is an explicit identity
relation on them. All we need is a determinate equinumerosity relation on the prop-
erties. This relation is an equivalence, and a sublanguage in which it is a congruence
provides all the resources we need to speak of indiscernability and identity among
numbers.

Some writers take numbers themselves to be properties and, thus, I suppose, not
objects. Harold Hodes [1984], for example, argues that Frege was too quick to con-
clude that numbers are objects (and thus to consider the question whether 2 is Julius
Caesar). Rather, numbers are higher-order properties, that is, properties of proper-
ties (see also Maddy [1981] and Luce [1988]). Accordingly, 5 is the property of (or-
dinary) properties of having five items in its extension. The number 5 thus applies to

11. The Kraut sublanguage procedure and the Frege–Wright–Hale procedure are also similar to
one that Tait [1986, 369 n. 12] calls “Dedekind abstraction” (see chapter 5 in this volume). Notice,
incidentally, that the procedures in question invoke an inference from an equivalence relation to the
existence of certain objects. Quine [1951] applies the converse of this inference in his arguments against
meaning: if there were such a thing as the meaning of a sentence, then the relation of “same meaning”
or “synonymy” would be an equivalence relation on sentences. Quine then argues that there is no such
equivalence relation.
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the property of being a starting player on a particular basketball team, and 9 applies
to the property of Supreme Court justice at the beginning of 1989. Individual num-
bers are second-order properties, and the property of being a number is a third-order
property, as are arithmetic operations and relations like addition, multiplication, less-
than, and prime. Of course, the ordinary language of arithmetic does not read like
this. In arithmetic, first-order variables range over numbers, and so numbers are
treated as objects. Hodes says that this language/theory is a convenient fiction that
simulates the relations between the aforementioned second-order number properties.
In other words, the relations expressed in ordinary arithmetic are a convenient code
for third-order arithmetic relations.

As a structuralist, I can accept second-order number properties, exactly as devel-
oped by Hodes on behalf of Frege. The resulting framework is useful and insightful,
at least as far as it goes. If there are enough objects in the domain of the base lan-
guage (or if one allows possible objects), Hodes’s higher-order number properties
exemplify the natural-number structure. Against Hodes, however, there is nothing
fictional about the ordinary language of arithmetic. Its objects are the places in this
structure.

Hodes’s account does not go far enough. We do not just count objects at the
base level. We also count across types. We say that there are four primes less than
10. What does this numeral “4” refer to? Type distinctions entail that this “4” can-
not refer to a second-order number property, because it is numbers, second-order
properties, that are being counted. I suppose we can formulate high-number prop-
erties along Hodes’s lines: high-6, for example, would be a fourth-order property,
which applies to a third-order property P just in case P applies to exactly six (second-
order) number properties. But high-6 cannot be the same as 6, because high-6
is fourth-order and 6 is second-order. Strictly speaking, we should say that the
high-number of primes less than 10 is high-4. No doubt, high-arithmetic is coher-
ent. It is obtained by applying the foregoing process of impoverishment to
the language of arithmetic. We can also develop linguistic resources for properties
of mixed type, like “being a corner of my desk or a prime less than 10,” and we
could have numbers to count these. There is no point to this exercise, however,
because high-arithmetic and ordinary arithmetic (and mixed arithmetic) are equiva-
lent. They all describe the same structure. The natural-number structure is the form
common to second-order number properties, fourth-order high-number properties,
and so on.

A central item from chapter 3 is relevant here. In the early stages, we can be neu-
tral about whether the structure yielded by the sublanguage procedure is best con-
strued in re or ante rem. At first, of course, a structure characterized by a sublanguage
is not freestanding. Its places are filled only by items from the original background
ontology. Income levels are instantiated only by people, partnerships, corporations,
and the like. If someone or something does not have an income, then it cannot oc-
cupy an income level (other than the zero level). In Frege’s first example, only lines
have directions. And at first only objects in the original ontology can be counted and
only properties of those objects have numbers. However, as emphasized earlier, once
a structure is characterized, it is sometimes taken to be freestanding in the sense that
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it is exemplified by objects beyond those of the original ontology. This is a distinc-
tive feature of mathematical structures. In the case at hand, the natural-number struc-
ture is soon seen to be exemplified by systems of objects that are not (explicitly) in
the original background framework. We see that anything can be counted, including
numbers themselves. That is, once the natural-number structure is identified, it can
be applied to count items beyond those in the background language used to charac-
terize the structure in the first place.

6 Ontological Interlude

Before presenting my last epistemic route to structures, I pause and reflect on rami-
fications for the basic ontological notions of object and identity, at least in mathe-
matics. How mathematical structures are grasped tells us something about what they
are. I confirm and reinforce some of the ontological theses proposed earlier. The more-
philosophical conclusions are anticipated in Kraut [1980], which speaks of objects
and identity generally.

Various relativisms recur throughout this book. What is structure from one per-
spective is system from another. What is office from one point of view is officeholder
from another. The present considerations suggest a variation on this theme. “Math-
ematical object” is to be understood as relative to a theory, or, loosely, to a back-
ground framework. Natural numbers are objects of arithmetic, but “natural numbers”
may not designate objects in another theory or framework. In particular, natural
numbers may not be objects in the original background language from which we
began. They may be offices.

To what extent are the objects “produced” by the Kraut sublanguage procedure
(and the Frege–Wright–Hale procedure) new? In particular, are numbers already
in the background ontology from which we begin? On the present view, the num-
bers so produced are the places of a structure. I have spoken of the identity be-
tween the places of different structures and of the identity between the places of a
structure and other items. My proposal is that there is a determinate statement of
identity, one with a truth-value to be discovered, only if the context is held fixed—
only if the terms on both sides of the identity sign denote places in the same struc-
ture. Otherwise, the identity is a matter of invention or stipulation, based on con-
venience. Of course, mathematicians sometimes find it convenient to identify the
objects in different structures. In some cases, like that of embedding the natural
numbers in the reals, a single identification suggests itself. The identification of
the “2” of the natural numbers with the “2” of the reals seems inevitable. Notori-
ously, however, there are cases in which there is no single preferred identification.
One such case is the embedding of the natural-number structure in the set-theoretic
hierarchy. We discover that 162 = 256, whereas we either stipulate that  2 = {f,
{f}}, or we stipulate that 2 … {f, {f}}, or we insist that the identity has no truth-
value and speak of the “is of office occupancy” instead.

Applying this to the sublanguage procedure, there is nothing demanding that a
theorist identify the “new” numbers with objects in the old framework, the background
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ontology. Nor is there anything to prevent such an identification, provided only that
the domain is infinite.12 For example, if the background includes set theory, one can
proceed with Zermelo or von Neumann and identify numbers with certain sets. With
proper care, one can also proceed along the lines of Frege and Russell. However,
there are instances of the foregoing sublanguage procedure in which a similar ma-
neuver is not available. One of them has considerable historical and philosophical
interest in its own right.

Two properties P, Q are coextensive if they apply to exactly the same objects: œx(Px
/ Qx). Coextensiveness is clearly an equivalence relation among properties. More-
over, in a purely extensional language or sublanguage, like that of classical mathe-
matics, coextensiveness is a congruence. By the foregoing sublanguage procedure,
we can identify properties with the same extension.13 Under this interpretation, ex-
tensions become bona fide objects, and coextensiveness serves as the identity on
extensions. That is, the sublanguage procedure characterizes an extension structure,
and extensions are its places.

In this case, however, we cannot invoke a convention and locate the “new” ob-
jects in the original ontology, on pain of contradiction. Cantor’s theorem entails that
(under certain assumptions) there are more property extensions than objects. Thus,
there are not enough objects in any domain to serve as extensions for that domain. In
short, Frege’s view that numbers are objects (in the original ontology) led to the Caesar
problem. Frege’s assumption that extensions are objects (in the original ontology)
led to contradiction (I return to Frege in chapter 5).

The view here is starkly un-Fregean. Numbers are objects in the language of our
number person, but numbers need not be objects in the original framework. Exten-
sions are objects in extension theory but cannot be objects in the original background
framework (on pain of contradiction). Our conclusion is that in mathematics, at least,
one should think of “object” as elliptical for “object of a theory” (see Resnik [1975]).
This is of a piece with the tie between individual objects and structures. Formal theo-
ries describe structures. Within arithmetic, numbers are objects and any well-formed
identity in the language of arithmetic has a truth-value. It refers to the places in the
natural-number structure. But there is no unique, preferred superstructure that has
numbers and sets, nor is there a unique superstructure that contains numbers and
people. The idea of a single, fixed universe, divided into objects a priori, is rejected
here.

12. If the background ontology is finite, then it does not contain enough objects to serve as num-
bers. Hume’s principle is not satisfied on any finite domain, but it is satisfiable on any infinite domain.
So if we insist, with Frege, that natural numbers are objects in the original domain, then Hume’s prin-
ciple is an axiom of infinity. See Wright [1983] and Boolos [1987].

13. It is constitutive of extensional contexts that coextensiveness be a congruence. As early as
[1941], Quine attacked the use of properties (or attributes, or propositional functions) in Principia
mathematica, arguing that they have no clear criteria of identity. Quine proposed that extensional classes
be used instead. The procedure sketched here delivers that result.
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The [1987] version of Putnam’s internal realism is a “conceptual relativity” that
has many elements in common with the foregoing theses.14 Here is a passage that
we encountered in chapter 2 of this volume: “The device of reinterpretation . . .
recogniz[es] that one person’s ‘existence’ claim might be another person’s some-
thing else” (p. 34). When our interpreter took our economist to be accepting the
existence of income groups, along with an identity relation on groups, speakers
who use the full background framework correctly understand them to be talking
about people, and the economist’s “identity” is an equivalence relation on that
“ontology.” Putnam speaks loosely of relativity to “conceptual schemes.” He notes
that in going from framework to framework, we are reinterpreting the logical ter-
minology, the identity sign and the existential quantifier in particular. It follows
that “the notions of object and existence are not treated as sacrosanct, as having
just one possible use. It is very important to recognize that the existential quanti-
fier can be used in different ways—ways consonant with the rules of formal logic”
(p. 35). Putnam seems to agree that identity and existence have the same logic in
each context. In that sense, the terms are always used the same way internally. The
point is that when we interpret one discourse in another framework, the “translation”
of the logical terminology is not homophonic. One person’s identity is another’s
equivalence. The equivalence relation has the logic of identity in the sublanguage,
because the equivalence is a congruence there. Our economist’s first-order vari-
ables are taken to range over income groups where the variables of the background
language range over people.

Putnam concludes that it would be a mistake to go on to “single out one use of the
existential quantifier . . . as the only metaphysically serious one.” Again, if “use” here
is understood as something like “extension,” then Putnam is rejecting the idea of a
single universe of discourse, fixed once and for all. So do I, at least for mathematics.
Putnam concludes that in cases like ours, if you “take the position that one will be
equally ‘right’ in either case [then] you have arrived at the position I have called ‘in-
ternal realism’” (p. 35). If I have accurately interpreted Putnam’s suggestive remarks,
then in mathematics at least, ante rem structuralism is a version of the [1987] incar-
nation of internal realism.

It is tempting to follow Putnam and apply the theory-relative conception of ob-
ject outside of mathematics—to science and even to (properly regimented) ordi-
nary discourse. The thesis would be that the universe does not come, nor does it
exist, divided into objects a priori, independent of our language, or framework, or,
to use another Wittgensteinian phrase, form of life. The complex web of beliefs,
concepts, and theories that determines how we perceive and understand the world
also determines what its objects are and when two of them are the same or differ-
ent. This temptation will be resisted, at least until we turn to applications of mathe-
matics in chapter 8.

14. Putnam’s earlier characterization of internal realism, in [1981, chapter 3], includes an epistemic
account of truth (as rational acceptability under ideal conditions). See also Putnam [1980]. This theme
is not relevant here.
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7 Implicit Definition and Structure

There are limits to the sizes of structures that can be apprehended by any of these
epistemic techniques. First, as noted, one cannot grasp a structure S by simple pat-
tern recognition unless one can perceive a system that exemplifies S. Such a struc-
ture can have at most a small, finite number of places. In sections 3–4, I suggested
some extensions of pattern recognition beyond simple abstraction. These faculties
yield knowledge of large, finite structures, denumerably infinite structures, and per-
haps structures with continuum-many places, but not much more. If the Kraut
sublanguage technique starts with an equivalence relation on the objects in the back-
ground ontology, it yields only structures of the same or smaller cardinality. For
example, if the background ontology is denumerable, then only denumerable and
finite structures are delivered by the technique. If the sublanguage procedure begins
with an equivalence relation on properties, it can yield a structure as large as the
powerset of the original ontology. So if we start with a denumerably infinite ontol-
ogy, the technique might yield a structure the size of the continuum. One can then
perform the sublanguage procedure on the properties in a language of this larger struc-
ture and produce a structure whose size is the powerset of the continuum. Continu-
ing, one can work one’s way through the finite levels of simple type theory, which
will deliver enough structure to simulate most of classical mathematics. At this point,
the theorist might follow one of the aforementioned extensions of pattern recogni-
tion and formulate the idea of a level in the type hierarchy per se. That is, we focus
on the pattern of producing ever-larger structures and combine the results into a super-
structure that contains all of the finite types. The theorist can go on from there, to
transfinite levels.

Clearly, however, these routes to large structures are artificial and ad hoc, because
the structures do not look at all like the ones studied in mathematics. Moreover, we are
left well short of the set-theoretic hierarchy. Our final technique for apprehending and
grasping structures is the most powerful and the most speculative and problematic.

One way to understand and communicate a particular structure is through a di-
rect description of it. To return to the standard example from chapter 3, someone
might describe a baseball defense like this: “There are three outfielders, arranged
as the vertices of a triangle; there are four infielders, arranged thus and so; there is
a pitcher in the middle of the infield and there is a catcher behind the plate.” Simi-
larly, the structure of the U.S. government can be described by listing the various
offices and the ways that the various officeholders relate to each other. In either
case, of course, listeners may misunderstand and think that a particular system is
being described. They may display this confusion with inappropriate questions, like
“What is the name of the centerfielder’s mother?” or “Is the senior senator from
South Carolina a Republican?” Eventually, however, a properly prepared listener
will understand that it is the structure itself, and not any particular instance of it,
that is being described. Again, I do not claim to illuminate the psycholinguistic
mechanisms that underlie this understanding. There is a whole host of presupposi-
tions on the part of the listener. Nevertheless, it is clear that at least some listeners
get it.
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We have here an instance of implicit definition, a technique familiar in mathemati-
cal logic.15 Notice that a direct description can succeed in communicating a struc-
ture even if no instance of the structure is displayed. One may describe a variation of
a baseball defense or a government that has not been tried yet. Someone might won-
der how it would go if there were two presidents, one of whom is commander in chief
of the armed forces and the other vetoes legislation. Structures described this way
need not be freestanding, of course, but they clearly can go beyond those exempli-
fied in the actual physical world that we all know and love. Structures successfully
described by implicit definition are naturally construed as ante rem (if they exist at
all, of course).

Notice also that in characterizing a structure by implicit definition, one uses sin-
gular terms to denote the places of the structure. That is, “the centerfielder” and “presi-
dent” are definite descriptions or proper names. However, the terms do not denote
people; they denote places in the respective structures. They denote the offices, not
the officeholders. In chapter 3, this orientation toward the structure is called “places-
are-objects.”

The mathematical cases are more pristine. In the opening pages of a textbook on
number theory, we might read that each natural number has a unique successor, that
0 is not the successor of any number, and that the induction principle holds. Simi-
larly, a treatise in real analysis might begin with an announcement that certain mathe-
matical objects, called “real numbers,” are to be studied. The only thing we are told
about these objects is that certain relations hold among them. We may be informed,
for example, that the numbers have a dense linear ordering, that there are associative
and commutative operations of addition and multiplication, and so on. One easily
gets the impression that the objects themselves do not matter; the relations and
operations or, in a word, the structure is what is to be studied.16 Implicit definition
and structuralism go together like hand and glove.

15. There is an ambiguity in the phrase “implicit definition.” In one sense, an implicit definition
presupposes that all but one of the terms of a language already has fixed meaning. Let L be a language
and T a theory in L. Let c be a singular term that does not occur in L. A purported implicit definition of
c is a set S of sentences that contains the new constant. It succeeds if, in each model of T, there is ex-
actly one way to assign a denotation to c to make every member of S true. So, for example, “c is a
perfect number and c < 10” is an implicit definition of 6 in arithmetic. This is not the sense of “implicit
definition” used here. In the present context, an implicit definition is a simultaneous characterization
of a number of items in terms of their relations to each other. In contemporary philosophy, such defi-
nitions are sometimes called “functional definitions” (see chapter 3, section 6).

16. To be sure, most mathematics texts do not have such austere beginnings. A study may begin
by defining a particular subclass of previously understood mathematical objects, such as the analytic
complex-valued functions or the partial recursive functions. Alternately, the book may indicate that its
objects are constructed out of familiar mathematical material. For example, it may deal with sequences
of real-valued functionals. These works can also be given a straightforward structuralist interpretation,
because the objects they start with (e.g., functions or functionals) are the places of a structure. In terms
of chapter 3, systems whose objects are the places of other structures are defined, and the structures of
those systems are studied.
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A traditional Platonist might take the early remarks in these mathematics books
as giving the reader some truths about a particular collection of abstract objects—
the natural numbers or the real numbers. The opening sections have a practical,
epistemic purpose. To do deductions and learn more about the particular objects under
study, we need a list of “axioms” with which to begin. We cannot prove everything.
Nevertheless, on the traditional Platonist view, there is an important autonomy be-
tween the axioms and the subject matter. Moreover, it is not the purpose of the open-
ing sections of the books to uniquely characterize anything. It is enough that the
axioms be true of the intended subject matter. The fact that other systems of objects
satisfy the axioms is irrelevant. We structuralists reject this autonomy between the
axioms and the subject matter.

Because on the traditional Platonist view, the axioms are statements about a par-
ticular realm of objects, it is possible that the axioms can be mistaken. Perhaps there
are natural numbers other than zero that have no successors. Perhaps the successor
function is not one-to-one. As a thought experiment, try to consider the skeptical
possibility that all of the Peano axioms are false of the natural numbers. A traditional
Platonist is faced with such a possibility.17 Because the referent of “the natural num-
bers” is somehow independent of the characterization in the language of arithmetic,
any given belief and, indeed, every (nonlogical) belief we have about numbers might
be false. For the structuralist, on the other hand, this extreme skeptical possibility
can be dismissed out of hand. It is conceivable, barely, that arithmetic is incoherent,
in which case no structure is characterized. Perhaps the theory of arithmetic is not
categorical, in which case more than one structure is characterized. But it is non-
sense to claim that the theory of arithmetic does successfully refer to a single, fixed
structure (or a fixed class of structures) but says hardly anything true about it (or
them). On our view, the language characterizes or determines a structure (or class of
structures) if it characterizes anything at all.18

Suppose that a reader wonders whether 2 is Julius Caesar or whether 2 is {f, {f}}.
As we have seen, on the traditional Platonist view, these queries have determinate
answers, even if the information is useless and perhaps unknowable, and even if there
is no information available to help answer the questions. By contrast, for us structur-
alists, the queries represent a misunderstanding of what is being accomplished at the
early stage. In an implicit definition, asking about Julius Caesar is similar to the afore-
mentioned listener who is wondering about the name of the centerfielder’s mother.
The speaker was describing a structure, not a system of particular people. The mathe-

17. This is an instance of the general charge that realism allows the possibility of global error. A
Platonist might wonder how it is possible to successfully refer to the natural numbers and yet manage
to get just about everything wrong about them. Of course, the matter of reference is another sticking
point for virtually any realist account (of mathematics or anything else). A structuralist account of ref-
erence is sketched in section 9.

18. Implicit definition has played some role in the development of mathematics. Some of this his-
tory is recounted in chapter 5.
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matics book is not describing a system of sets or Platonic objects or people. It de-
scribes a structure or a class of structures.

Some readers might find it strange that deduction or proof is not treated at any
length in this chapter on the epistemology of mathematics. After all, deduction is
the main technique for advancing mathematical knowledge, and the focus on de-
duction cannot be attributed entirely to a brute concern for rigor. I do not have much
to add to the many fine studies of deduction. My present purpose is to help under-
stand what it is that formal and informal proofs prove. Clearly, to see how we use
deduction to extend knowledge of the subject matter of mathematics, we need some
account of what that subject matter is. Given my emphasis on implicit definition
and the role of language use, the present account would “predict” a central role for
deduction. A structure is like a universal, a one-over-many of sorts, and we con-
ceive of mathematical structures as freestanding and ante rem. Thus, one would
expect mathematical epistemology to use a topic-neutral technique. It does not
matter what objects, if any, fill the places of mathematical structures. Because, in
principle, a deduction is independent of its subject matter, deduction fits structur-
alism well. If the axioms are part of a successful implicit definition, then they char-
acterize a structure (or a class of structures) and are true of it (or them). So the
theorems are also true of the structure(s), and of every system that exemplifies it
(or them). That is, we study the structure itself via the logical consequences of the
axioms of an implicit definition.

Implicit definition, together with deduction, also supports the long-standing be-
lief that mathematical knowledge is a priori. Again, an implicit definition character-
izes a structure or class of structures if it characterizes anything. Thus, if sensory
experience is not involved in the ability to understand an implicit definition, nor in
the justification that an implicit definition is successful, nor in our grasp of logical
consequence, then the knowledge about the defined structure(s) obtained by deduc-
tion from implicit definition is a priori. I return to what is involved in understanding
implicit definitions in section 9 of this chapter.

8 Existence and Uniqueness: Coherence and Categoricity

At its root, then, an implicit definition is a collection of sentences, which we can call
“axioms.” Of course, not every set of sentences successfully characterizes a struc-
ture, even if someone intends to use it for that purpose. I have not said much yet about
what it takes for an implicit definition to succeed. This is where the structuralist ac-
count is most speculative. There are two requirements on an implicit definition. The
first is that at least one structure satisfies the axioms. Call this the “existence condi-
tion.” The second requirement is that at most one structure (up to isomorphism) is
described. This is the “uniqueness condition.”

Uniqueness is less important, but let us start with that. Consider an implicit defi-
nition of the natural numbers. Some philosophers and logicians insist that the axi-
oms do not characterize the natural-number structure, because no theory character-
izes any infinite structure up to isomorphism. The Löwenheim-Skolem theorems show
that any theory with an infinite model has a model of every infinite cardinality. So
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unintended or nonstandard models of any substantial implicit definition cannot be
ruled out.

This, of course, is the “Skolem paradox” (see Shapiro [1995]). The structuralist is
free to accept the conclusion. Nothing in the philosophy entails that there is but one
natural-number structure. One can maintain that each model of first-order Peano
arithmetic is a natural-number structure. Just as group theory applies to many
nonisomorphic structures and systems, so does arithmetic. In the terminology of
chapter 2, on this view every branch of mathematics (with at least one infinite model)
is algebraic. None are “concrete.”19

I reject this concession to the Skolem paradox. The Löwenheim-Skolem theorems
apply only to first-order formal theories. Thus, the Skolemite presupposes that first-
order model theory captures everything that is relevant about reference in ordinary,
informal mathematical discourse. Elsewhere, I argue that the informal language of
mathematics has the resources to distinguish standard from nonstandard models
(Shapiro [1991, especially chapter 8]). Mathematicians themselves commonly make
and exploit the distinction, and I presume that they are not deluding themselves. In
the case of arithmetic, either informal resources go beyond those captured in formal
logic, or we have a sufficient grasp of the second-order induction axiom. That is, we
understand the second-order quantifier well enough to see that all models of arith-
metic are categorical.

For present purposes, then, I maintain the conclusion of Shapiro [1991] that
second-order model theory provides a good picture of the semantics of mathemati-
cal languages (of which more in section 9). Thus, categorical characterizations of
the prominent infinite mathematical structures are available. Because isomorphism,
among systems, is sufficient for “same structure,” a categorical theory characterizes
a single structure if it characterizes anything at all.

The tools for resolving the uniqueness requirement are thus found in mathemat-
ics itself. The same goes for the question of the existence of structures, but that mat-
ter is not handled as easily. Several times in the early sections of this chapter, I in-
ferred the existence of a pattern from an ability to coherently discuss the pattern. The
same goes for implicit definitions. A structure is characterized if the axioms are co-
herent. Recall the coherence axiom presented as part of structure theory, in section 4
of chapter 3: if F is a coherent sentence in a second-order language, then there is a
structure that satisfies F. It is time to tighten up this admittedly vague usage. What is
it to be “coherent” in this sense?

The coherence principle is an attempt to address the traditional problem concern-
ing the existence of mathematical objects and, with that, the problem of reference.
No small feat. Mathematical objects are tied to structures, and a structure exists if
there is a coherent axiomatization of it. A seemingly helpful consequence is that if it

19. Some of Resnik’s published work suggests this orientation to structuralism. His view that there
is no determinate identity relation among structures is of a piece with his acceptance of first-order logic
and his views on the Skolem paradox. In addition to his works already cited, see Resnik [1966]. On the
other hand, see Resnik [1988] and [1996].
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is possible for a structure to exist, then it does. Once we are satisfied that an implicit
definition is coherent, there is no further question concerning whether it character-
izes a structure. Thus, structure theory is allied with what Balaguer [1995] calls “full-
blooded platonism” if we read his “consistency” as “coherence.” It is misleading to
put things this way, however, because the modality that we invoke here is nontrivial,
about as problematic as the traditional matter of mathematical existence. Balaguer
holds that we can be sanguine and wait for an antirealist to develop an account of
coherence/consistency—because the antirealist presumably needs this notion any-
way. It is not fair to leave it like this, however. To flirt with paradox, structuralism
will falter if the notion of “coherence” is incoherent. Moreover, it is not obvious that
a notion of “consistency” suitable for an antirealist program will work here. In any
case, more can be said about coherence.

A first attempt would be to read “coherent” as “consistent” and to understand
consistency in deductive terms. On this view, then, the analogue of “coherence” for
formal languages is “deductive consistency.” The thesis would then be that if one
cannot derive contradictory consequences from a set of axioms, then those axioms
describe at least one structure. The slogan is “consistency implies existence.” In his
famous correspondence with Frege, Hilbert adopted a version of this slogan (see
chapter 5).

The “consistency-implies-existence” thesis does get support from Gödel’s com-
pleteness theorem: if a set of sentences in a first-order language is deductively con-
sistent, then it has a model. The slogan and the completeness theorem together seem
to provide a clean solution to the “existence problem” for structuralism and math-
ematics generally—if one sticks to first-order languages. Even so, the matter is not
completely straightforward. First, the completeness theorem is a result in mathemat-
ics, set theory in particular. The various models for consistent axiomatizations are
found in the set-theoretic hierarchy, another structure. Perhaps this circle is toler-
able, because we are not out to put mathematics on a firm, extramathematical foun-
dation. We can find support for structuralism within mathematics, even if the sup-
port is corrigible.

There is a second circularity in this coherence-is-consistency maneuver. Consis-
tency is usually defined as the nonexistence of a sort of deduction. Surely, the con-
sistency of an axiomatization does not follow from the lack of concrete tokens for
the relevant deduction. On the contrary, consistency is the nonexistence of a certain
type. As noted earlier, the structure of strings is the same as that of the natural num-
bers. We cannot very well argue that the natural-number structure exists because
arithmetic is consistent if this consistency is understood as a fact about the structure
of the natural numbers. Or can we? An alternative would be to define consistency in
terms of “possible deduction tokens” or perhaps one can take consistency as an
unexplicated primitive. It is not clear what this move to modality buys us. We would
have a problem about the “possible existence” of strings and of structures. Under
what circumstances can we conclude that a structure is possible? This “possible-
structure-existence” problem seems awfully close to the present “structure-existence”
problem (see chapter 7 for an elaboration of this point).
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The situation is worse on the present, higher-order orientation to implicit defini-
tions. There is no completeness theorem for standard higher-order logic (see Shapiro
[1991, chapter 4]). Let P be the conjunction of the second-order axioms for Peano
arithmetic and let G be a standard Gödel sentence that states the consistency of P. By
the incompleteness theorem, P & 5G is consistent, but it has no models. Indeed,
because every model of P is isomorphic to the natural numbers, G is true in all mod-
els of P. Clearly, P & 5G is not a coherent implicit definition of a structure, despite
its deductive consistency.

The relevant formal rendering of “coherence,” then, is not “deductive consistency.”
A better analogue for coherence is something like “satisfiability.” It will not do, of
course, to define coherence as satisfiability. Normally, to say that a sentence F is
satisfiable is to say that there exists a model of F. The locution “exists” here is under-
stood as “is a member of the set-theoretic hierarchy,” which is just another structure.
What makes us think that set theory itself is coherent/satisfiable?

Perhaps the problem could be resolved if we were to define “coherent” as the
existence of a structure within the structure theory of chapter 3. This, however, is a
mere cosmetic maneuver. One of the axioms of structure theory invokes the notion
of coherence. Moreover, how do we know that structure theory is true, or even co-
herent? Do we find a model of it in structure theory or somewhere else? The prob-
lem is that structure theory will be as ontologically rich as set theory, especially if
set theory itself is to be accommodated as the theory of a structure.

There is no getting around this situation. We cannot ground mathematics in any
domain or theory that is more secure than mathematics itself. All attempts to do so
have failed, and once again, foundationalism is dead (see Shapiro [1991, chapter 2]).
The circle that we are stuck with, involving second-order logic and implicit defini-
tion, is not vicious and we can live with it. I take “coherence” to be a primitive, intui-
tive notion, not reduced to something formal, and so I do not venture a rigorous
definition.

Of course, we are not exactly in the dark about coherence. The notion can be use-
fully explicated. The set-theoretic notion of satisfiability is a good mathematical model
of coherence. That is, satisfiability is a rigorous mathematical notion that captures
much of the structure of coherence. Moreover, the extension of satisfiability seems
to be reasonably close to the extension of the intuitive notion of coherence. The idea
is that satisfiability is to coherence pretty much as recursiveness is to computability.
We have something like a “coherence thesis” analogous to Church’s thesis.20 Of

20. The analogy with Church’s thesis is not perfect, because the extensions of coherence and
satisfiability may not exactly match. As noted, “satisfiable” is understood to be “satisfiable by a mem-
ber of the set-theoretic hierarchy.” But there is no set that is isomorphic (or structure-equivalent) to the
set-theoretic hierarchy itself. Thus, if there are no inaccessibles, then second-order Zermelo-Fraenkel
is not satisfiable, but it is presumably coherent. A better model of “coherent” would be something like
“satisfiable by a set or a proper class” (see Shapiro [1987]; and Shapiro [1991, chapter 6]). For most
purposes, however, the ordinary notion of satisfiability will do. Recall that we are not out to define
coherence as satisfiability. That would be an intolerable circle.
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course, I cannot prove that coherence is (close to) satisfiability, nor can I give an
argument that will convince a skeptic. But there is still progress. Coherence is the
intuitive notion that serves as the criterion for structure existence. Satisfiability is a
rigorous mathematical analogue.

In mathematics as practiced, set theory (or something equivalent) is taken to be
the ultimate court of appeal for existence questions. Doubts over whether a certain
type of mathematical object exists are resolved by showing that objects of this type
can be found or modeled in the set-theoretic hierarchy. Examples include the “con-
struction” of erstwhile problematic entities, like complex numbers.21 This much is
quite consonant with structuralism. To “model” a structure is to find a system that
exemplifies it. If a structure is exemplified, then surely the axiomatization is coher-
ent and the structure exists. Set theory is the appropriate court of appeal because it is
comprehensive. The set-theoretic hierarchy is so big that just about any structure can
be modeled or exemplified there. Set theorists often point out that the set-theoretic
hierarchy contains as many isomorphism types as possible. That is the point of the
theory.

Surely, however, we cannot justify the coherence of set theory itself by modeling
it in the set-theoretic hierarchy. Rather, the coherence of set theory is presupposed
by much of the foundational activity in contemporary mathematics. Rightly or
wrongly (rightly), the thesis that satisfiability is sufficient for existence underlies
mathematical practice. One instance of this is the use of set-theoretic hierarchy as
the background for model theory and mathematical logic generally. Structuralists
accept this presupposition and make use of it like everyone else, and we are in no
better (and no worse) of a position to justify it. The presupposition is not vicious,
even if it lacks external justification.

According to Hallett [1990], Hilbert’s position during his correspondence with
Frege was that if an axiomatization accords with mathematics as developed thus far,
then its “objects” exist. A smooth fit of the “new” theory into existing practice is all
that is needed to establish existence. According to Hallett, Hilbert took the proof-
theoretic notion of “consistency” to be a good gloss on this notion of “smooth fit” or
“accordance with practice.” He never took consistency to be a wholesale replace-
ment of the intuitive criterion for existence. Proof-theoretic consistency is mathemati-
cally tractable, and a fruitful research program emerged. However, with the hind-
sight that Gödel provided, we see that consistency is not a good model for the criterion
of existence, especially in light of Hilbert’s advocacy of higher-order logic. My ex-
ample above, P & 5G, is consistent, but we see that the “theory” does not accord
with practice. The existence of a model for P &5G is inconsistent with how the higher-
order quantifiers are understood.22

21. See Wilson [1993] for other manifestations of this “existence question.” I am indebted to Wil-
son for his insistence on this question. See also chapter 5 in this volume.

22. I return to Hilbert in chapter 5.
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9 Conclusions: Language, Reference, and Deduction

Most of these epistemic techniques suggest a tight link between grasp of language
and knowledge of structures. This is especially true for implicit definition. For the
fields of pure mathematics at least, grasping a structure and understanding the lan-
guage of its theory amount to the same thing. There is no more to understanding a
structure and having the ability to refer to its places than having an ability to use the
language correctly. Recall that a structure is not determined by the places in it, con-
sidered in isolation from each other, but rather by the relations among the places. In
essence, these relations are embodied in the language. In fact, the correct use of the
language determines what the relations are.

Many realists, such as the traditional Platonists, balk at this epistemic link between
ontology and language. They hold that the contents and the nature of the universe
exist independently of us and our linguistic lives. Our language, if successful, more
or less accurately tracks the true ontology, but we do not create the ontology with
this language. To be sure, I agree with the spirit of this reflection. Structuralism is
not a general skepticism nor a conventionalism. Mathematics is objective if anything
is. The natural-number structure has objective existence and facts about it are not of
our making. The point is that the way humans apprehend structures and the way we
“divide” the mathematical universe into structures, systems, and objects depends on
our linguistic resources. Through successful language use, we structure the objec-
tive subject matter. Thus, language provides our epistemic access to mathematical
structures.

The close link between linguistic resources and epistemic grasp attenuates at least
some of the standard epistemological and semantic puzzles concerning mathemat-
ics. Consider the simplest infinite structure, the natural numbers. Arithmetic is the
theory of this structure. The epistemology of the natural numbers is especially trac-
table, because a typical language of arithmetic contains a system of numerals. Pre-
sumably, on all accounts, we do learn and understand a language of arithmetic. In
accomplishing this, we learn how to generate and recognize the numerals. And, of
course, the numerals exemplify the structure being characterized and studied.

I do not claim that the natural-number structure is somehow grasped by abstrac-
tion from numerals. This simple-minded idea puts the cart well before the horse. The
point is that understanding a language that contains a (full) system of numeration—
understanding how to work with the numerals—presupposes everything needed for
arithmetic. This is especially true of the standard Arabic notation. Working with the
base system of numerals itself involves addition and multiplication. In short, under-
standing how to use the language of arithmetic is sufficient for understanding and
referring to a system that exemplifies the natural numbers. To grasp the natural-
number structure itself, there is little more that one has to learn or do.23

23. The introductory essay of Parsons [1983] makes much of this observation in an account of
mathematical intuition. The transparency of the natural-number structure, via a system of numerals,
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One might think that this sketch is undermined by the fact that it is possible to
give a categorical theory of the natural numbers without using numerals. Quine makes
much of the fact that formal theories need not have any singular terms at all. This is
quite beside the point here, however. The natural-number structure is not usually
introduced with such an austere theory, and we know by experience that arithmetic
is not usually learned that way, even if it could be.

Another common observation is that even if a language of arithmetic has a sys-
tem of numerals, it need not refer to numbers. The first-order quantifiers of arith-
metic can be construed substitutionally. This detail is also irrelevant to the present
thesis. I do not claim that one who can successfully use a language of arithmetic is
thereby “committed” to the existence of the natural numbers. The point is that those
who grasp the workings of the language in question have just about everything they
need to grasp the natural-number structure. The epistemology of arithmetic is trac-
table, because each number has a (canonical) name. Understanding and working with
the language involves an understanding of (an exemplification of) the natural-
number structure. There is no more to the natural-number structure than the relations
embodied in the language and exemplified by the numerals.24

The situation in more advanced branches of mathematics is not quite as straight-
forward. Simple cardinality considerations entail that there is no (standard) model
of analysis among the terms of the language of analysis or in any language that can
be grasped and used by humans. Because there are uncountably many real numbers,
the structure is not exemplified in the language itself, unless uncountably many terms
are somehow introduced.25

Nevertheless, the general claim of this section stands. There is no more to under-
standing the real-number structure than knowing how to use the language of analy-
sis. In learning the language, one comes to acquire facility with quantifiers over real
numbers—one learns how to use them. This is about all that is involved in under-
standing the statements of analysis. In working with language, one learns the axioms
of the implicit definition. These axioms, or the other descriptions of the real num-
bers, determine the relationships between real numbers, such as the operations on
them and the continuity and Archimedean properties. The theme of this book is that

was probably a factor in Hilbert’s adoption of finitary arithmetic as the epistemic basis for his pro-
gram. The idea is that the structure of strings is necessary for any thinking at all. There is no more
privileged standpoint than that of finitary arithmetic/string theory. See Sieg [1990, section 2]; Tait
[1981]; and Hallett [1994]. For a similar idea, see Benacerraf [1965, §III.C].

24. An anecdote: A few years ago, a friend of mine, who is a civil engineer, saw my copy of Field’s
Science without numbers [1980] and, intrigued by the title, asked me about the book. I did my best to
explain the program and, in particular, the thesis that numbers do not exist. My friend, who is extremely
intelligent and remarkably patient, asked me whether there are numbers printed at the top of each page.
I then explained the difference between numbers and numerals, but I think he was unimpressed. On the
view defended here, he was right to be unimpressed.

25. On the other hand, the Henkin proof for the completeness theorem yields a model for any con-
sistent first-order theory constructed from linguistic items like constants and predicates. For most theo-
ries, however, this produces an unnatural, ad hoc (nonstandard) model, and once again, the technique
is limited to first-order axiomatizations.
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these relations characterize the structure. There is no more to “the real numbers” than
these relations. As is well known, the axioms determine the cardinality of the struc-
ture, setting it at the continuum. Similar considerations apply to complex analysis,
and even set theory.

I briefly turn from epistemology to the related matter of semantics. Recall the
conclusion from chapter 2, that model-theoretic semantics is an appropriate tool for
realism in ontology and realism in truth-value. The central notion of model theory,
of course, is the relation of “satisfaction,” sometimes called “truth in a model.” For
a realist, the relation between a model and a sentence in a formal language is a de-
cent mathematical model of the relationship between the world and a language that
describes it. Our premise here is that understanding ordinary language involves some
sort of grasp of relations like those of model theory.

Probably the most baffling, and intriguing, semantic notion is that of reference.
The underlying philosophical issue is sometimes called the “‘Fido’—Fido problem.”
How does a term come to denote a particular object? What is the nature of the rela-
tionship between a singular term (“Fido”) and the object that it denotes (Fido), if it
denotes anything? Notice that model theory, by itself, has virtually nothing to say on
this issue. In textbook developments of model theory, reference is taken as an
unexplicated primitive. It is simply stipulated that an “interpretation” includes a func-
tion from the individual constants to the domain of discourse. This is a mere shell of
the reference relation.

In effect, model theory determines only the relations between truth conditions,
the reference of singular terms, the extensions of predicates, and the extensions of
the logical terminology. Model theory is thus a functional (or structural) definition
of these semantic terms. To see a given system as a model-theoretic interpretation of
a (formal) language, one needs only to think of the terms of the language as (some-
how) referring to the domain of discourse, and to see the first-order quantifiers as
ranging over that domain. As far as the model-theoretic scheme goes, it does not matter
how this “reference” is to be accomplished or whether it can be accomplished in
accordance with some theory or other. There is nothing problematic in the abstract
consideration of models whose domains are beyond all causal contact. As far as model
theory goes, reference can be any function between the singular terms of the lan-
guage and the ontology. In the terminology of chapter 3, the relations of model theory,
notably reference, are freestanding.

It is fair to say that when it comes to mathematics and theories of other abstracta,
realism in ontology often falters over reference (about as much as it falters over epis-
temology). If we assume that ordinary languages are understood and if we accept
the premise that model theory captures the structure of ordinary interpreted languages,
then we can do better. There is, of course, no consensus on how reference to ordi-
nary physical objects is accomplished. The theories are legion. I do presume, how-
ever, that reference to proverbial medium-sized physical objects is accomplished.
Most of the time, speakers of natural language do manage to use names of people,
places, and things to refer to those very people, places, and things—common errors
and failures of reference notwithstanding. Understanding how to use ordinary lan-
guage involves an understanding, at some level, of reference (however it works). Thus,
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if a model-theoretic definition is supplemented with the correct account of reference,
we get a decent approximation to the truth conditions of those natural-language sen-
tences that come closest to the formulas in a formal language. Perhaps model theory
is not earth-shattering, but it is no small feat either.

Because mathematics is the science of structure, the “schematic” or structural
semantic notions of model theory are all that we need. The details of the correct ac-
count of reference to physical objects are irrelevant.26 Let us return to real analysis.
Let S be any system that has the array of operations and relations needed to be a model-
theoretic interpretation of the language of analysis. That is, S has a pair of binary
functions, two designated elements, a binary relation, and so on. In the jargon of model
theory, S has the “signature” of analysis. It does not matter how S is “given” or to
what extent S can be grasped by someone. I submit that a subject’s grasp of how her
native mathematical language works is enough for her to see what it would be for S
to be a model of real analysis, that is, for the theory of analysis to be “true of” S. It is
just for the axioms to be true when the quantifiers range over the domain of S and for
the singular terms and predicates to refer as S indicates that they do. As noted, the
student already understands reference and quantification, at least schematically. She
may not know that there are any models of the theory, but she does grasp what it
would be for a system to be such a model. Now, because the theory is categorical
and coherent, all of its models share a common structure. The suggestion of this book
is that we think of real analysis as being about that very structure. Its variables range
over the places of that structure, and its singular terms refer to some of those places.
Knowing what it would be for a system to be a model of the axioms is to know what
the real analysis structure is. Schematic knowledge about how language works leads
to knowledge about structures.

We end up with a model-theoretic interpretation of analysis. The variables range
over the places of a structure, and the singular terms refer to individual places in that
structure. The rest is familiar model-theoretic semantics. Once we realize what the
ontology is, we have realism in ontology.

If we insist on categorical characterizations of nonalgebraic theories, then we also
have realism in truth-value. A categorical theory T is semantically complete in that
for every sentence F in the language, either T Ö F or T Ö 5F. Semantically complete
theories yield a straightforward bivalent model-theoretic semantics. If we stick to
categorical (or semantically complete) theories, realism in ontology, as construed here,
thus leads to realism in truth-value.27

My conclusions here are consonant with the earlier remarks on implicit defini-
tion. The “axioms” characterize a class of structures if they characterize anything at
all. If the theory is categorical, then only one structure is delivered. When we move

26. This underscores the observation from chapters 1 and 2 that many of the tools of contemporary
philosophy and logic were developed with mathematics, and not ordinary discourse, in mind.

27. Of course, to insist on categorical theories of rich mathematical structures, we require resources
beyond first-order logic. Let A be any first-order axiomatization of arithmetic. If F is deductively in-
dependent of A, then there is no “fact of the matter” whether F is true in A. Indeed, F holds in some
models and fails in others. The sentence F is a legitimate assertion in the theory, and yet it lacks a
truth-value. Thus, realism in truth-value is not delivered without semantic completeness.
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to the “places-are-objects” perspective, the freestanding, schematic notions captured
by model theory give the reference to places in that structure. All that is required is
a general and commonplace, if sophisticated, grasp of the workings of language. In
other words, in learning some languages, one learns structures, and can refer to their
places. To learn the language—and shift to the places-are-objects perspective—is to
grasp the structure. On my view, understanding mathematics is not philosophically
occult—no more so than our ability to learn and use a language. To the extent that
knowledge of model theory is a priori, so is mathematical knowledge.

To close this long epistemological chapter, it will prove instructive to contrast the
present conclusions with Quine’s thesis of the inscrutability of reference. There are
many structuralist tendencies in Quine’s understanding of discourse, but ironically,
his thesis of inscrutability blocks the final ratification of structuralism.

On the ante rem view of structures advocated here, there is little, if any, inscruta-
bility of reference. Once we accept the Peano axioms as an implicit definition of the
natural-number structure, the numeral “27,” for example, refers to a place in this
structure. There is no room for doubt or inscrutability concerning just which place
this is.28 Start at the 0 place and begin counting. If you count correctly, you will ar-
rive at the 27 place, and no other, at the proper moment. Of course, as noted, there is
some indeterminacy or, if you like, inscrutability, when the places from different
structures are identified. It is convenient for some purposes to locate the natural
numbers in the set-theoretic hierarchy, but there is no unique best way to accom-
plish this. Any of several identifications will do. Nevertheless, within arithmetic—
within the natural-number structure—reference is determinate and scrutable.

No doubt, it is “inscrutable” whether ante rem structuralism is the uniquely cor-
rect account of mathematics. Notice, however, that on both an eliminative and a modal
construal of structuralism there is no inscrutability of reference either, because, strictly
speaking, there is no reference at all. The numeral “27” does not denote an object.
When it occurs in context, the numeral represents a variable that ranges over a par-
ticular place in any natural-number system (see chapter 3).

A full-blown inscrutability of reference occurs if there is a single ontology for all of
science and if the natural numbers, for example, are located somewhere in that ontology.
On this perspective, numbers are objects, but we do not know and cannot know which
objects they are. Quine seems to embrace just this combination of views. His thesis
that “existence” is univocal suggests a single ontology for the entire “web of belief,”
and his realism toward arithmetic entails that numbers are objects. But which objects?
We cannot know. This has at least a family resemblance to Frege’s Caesar problem.

In a note [1992], Quine turns his attention to structuralism. He opens with a few
remarks about arithmetic: “We are familiar with three adequate but incompatible ways
of modeling number theory in . . . the theory of classes. We bandy our numbers with-
out caring which classes we are bandying from among this wealth of alternatives.
We are just content that we are operating somewhere within the ontology of classes
to which we have committed ourselves anyway for other purposes. . . . [The] struc-

28. I am indebted to Pierluigi Miraglia for pointing out how a structuralist ontology alleviates the
inscrutability of reference.
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turalist treatment of number . . . is just a way of eliminating an idle question—‘What
is number?’—and a gratuitous decision among indifferent alternatives” (p. 5). So far,
so good. It looks like inscrutability crops up once we decide that the natural-number
structure needs to be “located” in the set-theoretic hierarchy. There is no unique way
to do the locating. Quine goes on to discuss a structuralistic account of classes, due
to David Lewis [1991] (see also Lewis [1993]). He likes the idea: “Structuralism for
classes, hence for all abstract objects, is undeniably congenial. They are things that
are known anyway only by their structural role in cognitive discourse; never by
ostension. . . . Your class of cats and mine can . . . be different things, and your mem-
bership relation and mine can be different, if it makes any sense to say so, though we
see eye to eye on every cat. Such is the appeal of structuralism concerning abstract
objects” (p. 6).

Quine thus endorses a major theme of this book. He then proposes a breathtaking
extension, well beyond the scope of the present treatment: “My own line is a yet more
sweeping structuralism, applying to concrete and abstract objects indiscriminately”
(p. 6). This “sweeping” view is then illustrated and defended with familiar Quinean
themes concerning observation sentences, reification, the evidence for scientific state-
ments, and proxy functions: “[I]f we transform the range of objects of our science in
any one-to-one fashion . . . the entire evidential support of our science will remain
undisturbed. . . . The conclusion is that there can be no evidence for one ontology as
over against another, so long as we can express a one-to-one correlation between
them. Save the structure and you save all. . . . For abstract objects this is unsurprising,
and quite in the spirit of Ramsey, Lewis, and Benacerraf” (p. 8). As noted earlier,
this very observation is a motivation for ante rem structuralism. Quine, however, stops
just short of this: “My global structuralism should not . . . be seen as a structuralist
ontology. To see it thus would be to rise above naturalism and revert to the sin of
transcendental metaphysics. My tentative ontology continues to consist of quarks and
their compounds, also classes of such things, classes of such classes, and so on . . .”
(p. 9). The thesis of naturalism is that we should look to our best science for a de-
scription of the contents of the universe (see chapter 1). This science speaks of quarks,
classes, and numbers, but, supposedly, it does not speak of structures and their places.
So we are left with the inscrutability of reference.

Putting physical objects aside for now, I certainly agree with Quine that numbers
exist and that they are pretty much as the scientist/mathematician says they are. Quine
takes it to follow that natural numbers should not be construed as places in the natural-
number structure and that there is something wrong with an ontology of structures
generally. This is a non sequitur. Quine’s own considerations suggest that nothing
mathematicians say can rule out interpreting them as talking about the places of a
structure. That is the point. It is the burden of this book to show that the ante rem,
structuralist interpretation of modern mathematics is consistent with the practice of
mathematics. Moreover, it provides a compelling account of that very same prac-
tice. The places of the natural-number structure, from the places-are-objects perspec-
tive, are objects with just the properties and relations that the mathematician attributes
to the natural numbers. If this is “transcendental metaphysics,” then so be it, but it is
not pernicious.
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5

How We Got Here

1. Of course, similar issues apply to philosophical accounts of virtually any ongoing human activ-
ity. Can anything enlightening be said about the entire span of artistic activity? In this regard, the situ-
ation with mathematics is a lot less severe than that of other disciplines. The contemporary mathema-
tician does not have to undergo a major paradigm shift in order to read, say, Euclid or Archimedes.
There is more than a mild family resemblance between contemporary and Greek mathematics. There
are differences, of course, but they are more subtle.

1 When Does Structuralism Begin?

Sooner or later, the philosopher of mathematics needs to ponder the historical scope
of his or her proposed account. Is the claim that mathematics is the science of struc-
ture meant to include the work of Euclid, Archimedes, Descartes, Leibniz, Gauss,
Cauchy, and Lebesgue, not to mention Thales and Mac Lane? Were these mathema-
ticians engaged exclusively in the study of structures, whether they thought so or
not? Should the portion of their work that does not fit the mold of structuralism be
dismissed as nonmathematics? Certainly not. Mathematics has a long history, and it
is still evolving. One would be hard put to come up with a single philosophical ac-
count of mathematics that accommodates every time slice from its roots in antiquity
until today, let alone the future.1 Structuralism is (only) a perspicuous account of the
bulk of contemporary mathematics, putting its ontology, epistemology, and applica-
tions in perspective. The purpose of this chapter is to recount some historical themes
and precursors to the thesis that mathematics is the science of structure. Structural-
ism is the natural outcome of some developments in mathematics and in philosophy.

The nineteenth century was a watershed for mathematics. Stein [1988, 238] claims
that during this period, mathematics underwent “a transformation so profound that it
is not too much to call it a second birth of the subject,” the first birth having been in
ancient Greece. Contemporary mathematics has a reputation for being a cut-and-dried
discipline, lacking any unclarity or controversy. Whether this is accurate or not, an
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impartial observer would not make similar claims about mathematical activity in the
nineteenth century. The friendly beast that we now call “classical mathematics” is
the result of battles that took place then. In the next section, I take on the modest task
of recounting some themes in the development of Euclidean, projective, and non-
Euclidean geometry in the nineteenth and early twentieth century. There was a gradual
transformation from the study of absolute or perceived space—matter and extension—
to the study of freestanding, ante rem structures.

The same period also saw important developments in philosophy, with mathemat-
ics as its case study. According to Coffa [1991, 7], for “better or worse, almost every
philosophical development since 1800 has been a response to Kant.” A main item on
the agenda was to account for the prima facie necessity and a priori nature of math-
ematics without invoking Kantian intuition. Can we understand mathematics inde-
pendently of the forms of spatial and temporal intuition? Coffa argues that the most
successful approach to this problem was that of the “semantic tradition,” running
through the work of Bolzano, Frege, the early Wittgenstein, and Hilbert, culminat-
ing with the Vienna Circle, notably Schlick and Carnap. The plan was to understand
necessity and a priority in formal terms. These philosophers located the source of
necessity and a priority in the use of language. Necessary truth is truth by definition.
A priori knowledge is knowledge of language use. In one way or another, this philo-
sophical tradition was linked to the developments in mathematics. One legacy left
by both the developments in mathematics and the semantic tradition in philosophy
is mathematical logic, model-theoretic semantics in particular. As we saw in the pre-
vious chapters, the emergence of model theory and the emergence of structuralism
are, in a sense, the same.

The second part of my narrative includes sketches of early-twentieth-century theo-
rists who either developed structuralist insights, or opposed these moves, or both.
The list includes Dedekind, Poincaré, Russell, Frege, and Hilbert. I conclude with a
brief account of the Bourbaki group.

2 Geometry, Space, Structure

The transition from geometry as the study of physical or perceived space to geometry
as the study of freestanding structures (see chapter 3) is a complex tapestry.2 One early
theme is the advent and success of analytic geometry, with projective geometry as a
response. Another is the attempt to accommodate ideal and imaginary elements, such
as points at infinity. A third thread is the assimilation of non-Euclidean geometry into
mainstream mathematics and into physics. These themes contributed to a growing in-
terest in rigor and the eventual detailed understanding of rigorous deduction as inde-
pendent of content. Anything beyond a mere sketch of a scratch of this rich and won-
derful history is beyond the scope of this book—and my own competence.

2. Much of this chapter draws from Nagel [1939]; Freudenthal [1962]; Coffa [1986], [1991, chap-
ters 3 and 7]; and Wilson [1992]. Most of the translations are from Nagel [1939]. Readers interested in
these episodes of mathematical history are urged to consult those excellent works.
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The traditional view of geometry is that its topic is matter and extension. The truths
of geometry seem to be necessary, and yet geometry has something to do with the
relations between physical bodies. A philosopher may find it difficult to reconcile
these two features. Kant’s account of geometry as synthetic a priori, relating to the
forms of perceptual intuition, was a heroic attempt to accommodate both the neces-
sity and the empirical applicability of geometry.

The traditional view of arithmetic is that its topic is quantity. Arithmetic was
thought of as the study of the discrete, whereas geometry was the study of the con-
tinuous. The fields are united under the rubric of mathematics, but one might won-
der what they have in common other than this undescribed genus. The development
of analytic geometry went some distance to bridge the gap between the two subjects
and to loosen the distinction between them. Mathematicians learned that the study
of quantity can shed light on matter and extension. Good for mathematics, but this
compounds the philosophical problem. Of course, Kant held that arithmetic is also
synthetic a priori.

One result of the development of analytic geometry was that synthetic geometry,
with its reliance on diagrams, fell into neglect. Lagrange even boasted that his cele-
brated treatise on mechanics did not contain a single diagram—although one might
wonder how many of his readers appreciated this. The dominance of analytic geom-
etry left a void that affected important engineering projects. For example, problems
with plane representations of three-dimensional figures were not tackled by mathe-
maticians. As the slogan goes, necessity is the mother of invention. The engineering
gap was filled by the emergence of projective geometry (see Nagel [1939, §§7–8]).
Roughly, projective geometry concerns spatial relations that do not depend on fixed
distances and magnitudes, or on congruence. In particular, projective geometry dis-
penses with quantitative elements, like a metric.

Although all geometers continued to identify their subject matter as intuitable,
visualizable figures in space, the introduction of so-called ideal elements, such as
imaginary points, into projective geometry constituted an important move away
from visualization. Parallel lines were thought to intersect, at a “point at infinity.”
Desargues proposed that the conic sections—circle, ellipse, parabola, and hyper-
bola—form a single family of curves, because they are all projections of a com-
mon figure from a single “improper point,” also located at infinity. Circles that do
not intersect in the real plane were thought to have a pair of imaginary points of
intersection. As Nagel put it, the “consequences for geometrical techniques were
important, startling, and to some geometers rather disquieting” (p. 150). Clearly,
mathematicians could not rely on the forms of perceptual intuition when dealing
with the new imaginary elements. The elements are not in perceivable space; we
do not see anything like them.

The introduction and use of imaginary elements in analytic and projective geom-
etry was an outgrowth of the development of negative, transcendental, and imagi-
nary numbers in arithmetic and analysis. With the clarity of hindsight, there are es-
sentially three ways that “new” entities have been incorporated into mathematical
theories (see Nagel [1979]). One is simply to postulate the existence of mathemati-
cal entities that obey certain laws, most of which are valid for other, accepted enti-
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ties. Complex numbers are like real numbers but closed under the taking of roots,
and ideal points are like real points but not located in the same places. Of course,
postulation begs the question against anyone who has doubts about the entities. Re-
call Russell’s quip that postulation has the advantages of theft over honest toil. In
reply, an advocate might point out the usefulness of the new entities, especially for
obtaining results about established mathematical objects. But this benefit can be
obtained with any system that obeys the stipulated laws. Thus, the second method is
implicit definition. The mathematician gives a description of the system of entities,
usually by specifying its laws, and then asserts that the description applies to any
collection that obeys the stipulated laws (see chapter 4). At this point, the skeptic
might wonder whether there are any systems of entities that obey the stipulated laws.
The third method is construction, in which the mathematician defines the new enti-
ties as combinations of already-established objects. Presumably, this is the safest
method, because it settles the question of whether the entities exist (assuming the
already-established objects do). Hamilton’s definition of complex numbers as pairs
of reals fits this mold, as does the logicist definition of natural numbers as collec-
tions of properties.

One can think of the proposed constructions as giving fixed denotations to the
new terms. The imaginary number i just is the pair <0, 1>. This is unnatural, because,
to echo Benacerraf [1965], the pair has properties one would be loath to attribute to
the complex number. A fruitful outlook would be to take implicit definition and
construction in tandem. A construction of a system of objects establishes that there
are systems of objects so defined, and so the implicit definition is not empty. More-
over, the construction also shows how the new entities can be related to the more
established ones and may suggest new directions for research. Wilson [1992] shows
that in some cases, construction is a search for the “natural setting” in which the struc-
ture is best studied. That is, the construction might provide the mathematical envi-
ronment in which both the new field and the old one grow and thrive.

Nagel notes that all three methods were employed in the development of ideal
points and points at infinity in geometry. In the early decades of the nineteenth cen-
tury, imaginary numbers were scandalous but known to be useful. The problem was
to figure out what to make of these pesky items. Poncelet came close to the method
of postulation. In trying to explain the usefulness of such numbers in obtaining re-
sults about the real numbers, he claimed that mathematical reasoning can be thought
of as a mechanical operation with abstract signs. The results of such reasoning do
not depend on any possible referents of the signs, so long as the rules are followed.
Perhaps this is a version of formalism or mechanism. Having thus “justified” new
sorts of numbers in analysis, Poncelet went on to argue that geometry is equally
entitled to employ abstract signs—with the same freedom from interpretation. He
held that synthetic geometry is crippled by the insistence that everything be cast in
terms of drawn or visualizable diagrams.

With hindsight, we see steps away from the traditional conception of geometry as
the study of space. However, Poncelet himself was steeped in that tradition. He held
that the introduction of ideal elements was a powerful tool for shedding light on spatial
extension—just as imaginary numbers shed light on real numbers. Thus, to continue
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our hindsight, we might add instrumentalism to the views he expressed. Poncelet was
surely correct that the introduction of ideal elements unifies projective geometry and
gives it direction, but he did not see that this fruitful development also moved geom-
etry further from its connection with matter and extension. When he declared that a
straight line always has two points of intersection with a circle, even though the
“usual” sort of straight line does not always intersect the “usual” sort of circle, he
unwittingly contributed to a transformation of both the subject matter of geometry
and the character of mathematical inquiry (see Nagel [1939, §§13–20]).

Poncelet’s contemporaries were aware of the shortcomings of such bare postula-
tion. Nagel cites authors like Gergonne and Grassmann, who more or less prefigured
the method of implicit definition. Their work furthered the concern with rigor and
the abandonment of the traditional view of geometry as concerned with extension.
We move closer to the view of geometry as the study of structures.

By way of contrast, Euclid defines a “point” to be “that which has no parts,” a
“line” as a “length without breadth,” and a “straight line” as a line “which lies evenly
with the points on itself.” Because these definitions play no role in the subsequent
mathematical development, the modern reader might wonder why Euclid included
them. Of course, he did not write the Elements for the modern reader doing this
wondering. These definitions are in the mold of the traditional conception of geom-
etry as the study of space.

Grassmann’s Ausdehnungslehre of 1844 developed geometry as “the general sci-
ence of pure forms,” considered in abstraction of any interpretation the language may
have. He characterized the terms of geometry only by stipulated relations they have
to each other: “No meaning is assigned to an element other than that. It is completely
irrelevant what sort of specialization an element really is. . . . [I]t is also irrelevant in
what respect one element differs from another, for it is specified simply as being
different, without assigning a real content to the difference” (Grassmann [1972, 47]).

In this work, Grassmann dubbed the new study “the general science of pure
forms”—to be considered independently of any intuitive content the theory might
have. He distinguished “formal” from “real” sciences, along the same lies as the
present distinction between pure and applied mathematics (see chapter 8). Traditional
geometry is a real science—an applied mathematics—and so this geometry

is not to be regarded as a branch of mathematics in the sense that arithmetic [is]. For
geometry refers to something given by nature (namely, space) and accordingly there
must be a branch of mathematics which develops in an autonomous and abstract way
laws which geometry predicates of space. [In this mathematics], all axioms expressing
spatial intuitions would be entirely lacking. . . . [T]he restriction that it be limited to
the study of a three-dimensional manifold would . . . be dropped. . . . Proofs in formal
sciences do not go outside the domain of thought into some other domain. . . . [T]he
formal sciences must not take their point of departure from axioms, as do the real sci-
ences, but will take definitions instead as their foundation. (ibid., 10, 22)

Writing in 1877, almost thirty years later, Grassmann explained that his Ausdeh-
nungslehre is “the abstract foundation of the doctrine of space. . . . [I]t is free from
all spatial intuition, and is a purely mathematical discipline whose application to space
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yields the structure of space. This latter science, since it refers to something given in
nature (i.e., space) is no branch of mathematics, but is an application of mathematics
to nature. . . . For while geometry is limited to the three dimensions of space, [the]
abstract science knows no such limitation” (ibid., 297). As Nagel [1939, §36] put it,
Grassmann was one of the first mathematicians who “explicitly recognized that
mathematics is concerned with formal structures.”

Grassmann’s work did not achieve widespread attention until the 1870s. Much of
the response the Ausdehnungslehre did generate was negative. Nagel [1939, §37]
cites a number of his contemporaries who expressed serious misgivings about the
dismissal of spatial intuition as the foundation of geometry. Even Grassmann agreed
that geometry should be applicable to the study of space. Ideal elements remain prob-
lematic for the “real science” that corresponds to pure geometry. What in space is to
answer to the ideal elements? How does the new formal science of geometry relate
to the traditional study?

To resolve this, we move to the third method of accommodating ideal elements,
construction. This time, our hero is von Staudt, who showed that if we interpret the
imaginary points as complex constructions of real points on real lines, then all of the
theorems of the new projective geometry come out true. In modern terms, von Staudt
discovered a model of the new theory. It is a particularly useful model, because the
supposed intended interpretation of original geometry—space—is a part of it.

Notice that with this construction, von Staudt not only ignored Euclid’s defini-
tion of a point as that which has no parts, he contradicted it. When projective geom-
etry is embedded in von Staudt’s system, points have a complex internal structure.
Some points do have parts.

This development furthered the idea that in studying geometry as such, it is im-
material how its “elements” are regarded, as long as the stipulated “definitions” are
satisfied. They can be things with no parts, or they can be things with parts, or they
can be configurations of things. Nagel concludes that von Staudt’s method of con-
struction supplements and reinforces the method of implicit definition (but see Wil-
son [1992]).

The discovery of duality in projective geometry marks a closely related develop-
ment. We are accustomed, even today, to think of a line as a locus of points. How-
ever, one can just as well think of a point as a locus of lines. In projective geometry,
with the ideal elements added, the symmetry between points and lines is deep. If the
terminology for “points” and “lines” is systematically interchanged, all theorems still
hold. Notice that with this duality, we once again contradict Euclid’s definition of a
point as that which has no parts. Interpreted via duality, the points do have parts.

Impressed with this duality and extending it, Plücker [1846, 322] wrote that geo-
metric relations have validity “irrespective of every interpretation.” When we prove
a theorem that concerns, say, straight lines, we have actually proved many theorems,
one for each interpretation of the theory. The analogy with algebraic equations is
apparent. Chasles conceded that in light of the duality of projective geometry, the
field should not be construed as the science of magnitude but as the science of order
(see Nagel [1939, §55, §59]). The logical insight is that, with sufficient rigor, the
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derivation of theorems should depend only on the stipulated relations between the
elements and not on any features of this or that interpretation of them.

Whether or not primitive terms are to be understood in terms of spatial or tempo-
ral intuition, the emergence of rigor led to the idea that the inferences of a branch of
mathematics should be independent of intuition. The long-standing idea that logic is
a formal and topic-neutral canon of inference has concrete application in the present
story. The topic neutrality of logic dovetails with, and reinforces, the emancipation
of geometry from matter and extension. Even if topic neutrality had been expressed
earlier in the history of mathematics and logic, it was carried out in some detail for
geometry in Pasch [1926].3 He made the aforementioned complaint that when Euclid
declared that a point has no parts, and so on, he was not “explaining these concepts
through properties of which any use can be made, and which in fact are not employed
by him in the subsequent development” (pp. 15–16). Pasch thought it important that
geometry be presented in a formal manner, without relying on intuition or observa-
tion when making inferences:

If geometry is to be truly deductive, the process of inference must be independent in
all its parts from the meaning of the geometrical concepts, just as it must be indepen-
dent of the diagrams; only the relations specified in the propositions and definitions
may legitimately be taken into account. During the deduction it is useful and legiti-
mate, but in no way necessary, to think of the meanings of the terms; in fact, if it is
necessary to do so, the inadequacy of the proof is made manifest. If, however, a theo-
rem is rigorously derived from a set of propositions . . . the deduction has value which
goes beyond its original purpose. For if, on replacing the geometric terms in the basic
set of propositions by certain other terms true propositions are obtained, then corre-
sponding replacements may be made in the theorem; in this way we obtain new theo-
rems . . . without having to repeat the proof. (p. 91)

As suggested by this passage, this development was an important factor in the emer-
gence of model theory as the main tool in mathematical logic. Pasch expresses the
idea of geometry as a hypothetical-deductive endeavor, what he calls a “demonstra-
tive science.” Nagel [1939, §70] wrote that Pasch’s work set the standard for (pure)
geometry: “No work thereafter held the attention of students of the subject which
did not begin with a careful enumeration of the undefined or primitive terms and
unproved or primitive statements; and which did not satisfy the condition that all
further terms be defined, and all further statements proved, solely by means of this
primitive base.” This sounds much like the modern axiomatic method.

Concerning the source of the axioms, however, Pasch held that geometry is a natu-
ral science—an applied mathematics. He was a straightforward, old-fashioned empiri-
cist, holding that the axioms are verified by experience with bodies. Pasch’s empiri-
cism died out; the need for formality and rigor did not. Structuralism is the result.

Similar axiomatic programs came up in other branches of mathematics. In Italy,
for example, Peano’s influence led to a project to systematize all branches of pure

3. The first edition appeared in 1882, Leipzig, Tuebner.
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mathematics. Pieri, a member of this school, explicitly characterized geometry as a
hypothetical-deductive enterprise. The subsequent development of n-dimensional
geometry was but one fruit of this labor and constituted another move away from
intuition. Even if spatial intuition provides a little help in the heuristics of four–
dimensional geometry, intuition is an outright hindrance for five-dimensional geom-
etry and beyond.

My final topic in this section is the emergence of non-Euclidean geometry. Here
we see other steps toward a model-theoretic understanding of theories and thus an-
other precursor to structuralism. I must be even more sketchy.

Michael Scanlan [1988] shows that the early pioneers of non-Euclidean geom-
etry did not see themselves as providing models of uninterpreted axiom systems—in
the present mold of model theory. The geometers were still thinking of their subject
matter as physical or perceived space. Beltrami, for example, took Euclidean geom-
etry to be the true doctrine of space and, in that framework, he studied the plane
geometry on various surfaces. “Lines” on surfaces are naturally interpreted as geo-
desic curves.4 In a flat space, like a Euclidean plane, the geodesic curves are the straight
lines, and the geometry of such a plane is Euclidean. Beltrami showed how the
geometries of some curved surfaces differ from Euclidean, thus moving toward non-
Euclidean geometry. To be sure, Beltrami’s procedure did involve some reinterpret-
ing of the terms of geometry, and so it is a move in the direction of model theory and
structuralism, but Scanlan shows that it is a small move. Beltrami could easily main-
tain that the terms all have their original meanings, transposed to the new contexts.
“Line” means “geodesic curve,” which is what it always meant anyway; “between”
still means “between,” and so on. The meanings of the terms are not as fixed as they
were in Euclid, but the structures are not freestanding either. It seems fair to think of
the items in Beltrami’s geometries as quasi-concrete in the sense of Parsons [1990]
(see chapter 3). The “point places” are still filled by points. Eventually, of course,
mathematicians began to consider more interpretations of the primitives of geom-
etry, in less purely spatial contexts. The formal, or structural, outlook was the natu-
ral outcome of this process.

On most of the views available, one important scientific question was whether
physical space is Euclidean. Because several theories of space were out in the open,
the question of how one is to adjudicate them naturally arises. Which one describes
the space we all inhabit? The surprising resolution of this question further aided the
transition of geometry to the study of freestanding, ante rem structures.

At first blush, it looks like the question of whether physical space is Euclidean is
an empirical matter. Simply draw a triangle and carefully measure the angles to see
if they add up to two right angles, or carefully measure the sides and see if the
Pythagorean theorem holds.

4. Roughly, a geodesic on a surface P is a curve l with the property that, for any two points a, b on
l, the shortest distance on P from a to b lies along l. If the earth were a sphere, then longitudes would
be among the geodesic curves for its surface. The shortest distance from the North Pole to London on
the surface would be along the longitude. The real shortest distance would be a line through the earth.
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In an article entitled “Über den Ursprung und die Bedeutung der geometrischen
Axiome” (1870), Helmholtz presented a thought experiment that eventually cast doubt
on this simpleminded resolution (see Helmholtz [1921]). Consider a large spherical
mirror that reflects events in our world (presumed to be Euclidean), and imagine a
world in which physical objects are shaped and behave exactly as they appear to do
in the mirror. For every object in our world, there is one in the mirror world repre-
sented by its image. The mirror world does not appear (to us) to be Euclidean—lines
are not “straight,” the “angles” of each “triangle” do not seem to total two right angles,
and so on.

How would we confirm that our world is Euclidean? A person E draws a triangle
and measures its sides with a ruler. They come to six, eight, and ten meters respec-
tively, and so E concludes that the Pythagorean theorem holds and his world is
Euclidean. So far so good, but when we look in the mirror world during the mea-
surement, we see a funny-looking person E' (resembling E, sort of) measuring what
looks to us like a curved triangle with a curved ruler. The person E' and his ruler
(appear to us to) change shape as the measurement is performed, but lo and behold,
the sides come to six, eight, and ten meters respectively. The mirror geometer E' uses
exactly the same reasoning as above and concludes that his world is the Euclidean
one. If E could somehow shout into the mirror world and tell E' that this conclusion
is in error, announcing that the mirror ruler is curved and changes size during the
measurement, E' would shout back that he saw no such change in size. Moreover, E'
sees that the ruler of E is curved and changes size as it moves.5

Helmholtz himself did not officially stray from the empiricist view of geometry
that his thought experiment apparently refutes. The practical application of a metric
depends on the observation of congruence, and this presupposes freely movable, rigid
bodies. Helmholtz adopted an axiom of “free mobility,” which states that geometric
objects can be moved around and placed on top of each other without changing their
size or shape. Notice that many demonstrations in Euclid depend on this free mobil-
ity. Helmholtz held that free mobility is confirmed by observation, perhaps not real-
izing that his own thought experiment undermines this claim. Both E and E' see that
their respective rulers are straight and do not change size during movement, and each
sees that the other’s ruler is curved and changes size as it moves. Which one is right?
Which one performs measurements and observations that conform to true free
mobility? In a sense both do, and this has ramifications for the nature of space and
its study.

Although Helmholtz was not consistent in his philosophy of geometry, he fore-
shadowed the move away from observation and intuition. For an empiricist, the axi-
oms must be tested through observation. Helmholtz noted, however, that to “test”
the axioms, we must first know which objects are rigid and which edges are straight,
and “we only decide whether a body is rigid, its sides flat and its edges straight, by
means of the very propositions whose factual correctness the examination is sup-
posed to show.” Consider the postulate that if two magnitudes are identical to a third,

5. Helmholtz’s thought experiment is described in Coffa [1991, chapter 3].
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they are identical with each other. According to Helmholtz, this is “not a law having
objective significance; it only determines which physical relations we are allowed to
recognize as alikeness.” This is an embryonic form of a structuralist insight. In ap-
plying geometry, we impose a structure on physical reality. Straightness, magnitude,
and congruence are relations in such a structure. Physical space does not come with
a metric; the geometer/physicist imposes one.

Through the Erlangen program, Felix Klein extended Helmholtz’s insights, and
made even more trouble for the question of which geometry is physically correct.
Klein observed that the differences between Euclidean and non-Euclidean geometries
lie in the different definitions of congruence, or the different measurements of dis-
tance, angle, and area. Each geometry can be imposed on the same domain of points.
Moreover, Klein showed that with appropriate units, the numerical values of the dif-
ferent metrics do not differ appreciably from one another in sufficiently small neigh-
borhoods. Consequently, if the issue of which geometry is correct still makes sense,
it cannot be decided in practice. That is, even if we agree on the freely mobile, rigid
measuring sticks, intuition and observation are not sufficiently precise to adjudicate
the question of whether space is Euclidean. According to Klein, axiomatic systems
introduce “exact statements into an inexact situation” (see Nagel [1939, §81–82]).
His results show that our inexact intuitions are compatible with the assertion of dif-
ferent, technically incompatible, geometries: “Naive intuition is not exact, while re-
fined intuition is not properly intuition at all, but rises through the logical develop-
ment of axioms considered as perfectly exact.” Thus, “It is just at this point that I
regard the non-Euclidean geometries as justified. . . . From this point of view it is a
matter of course that of equally justifiable systems of axioms we prefer the simplest,
and that we operate with Euclidean geometry just for that reason” (Klein [1921, 381]).

A main theme of the Erlangen program was that different geometries can be char-
acterized in terms of their “symmetries,” in other words, properties that are left fixed
by certain isomorphisms. This focus on interpretation and isomorphism is of a piece
with the rise of model theory and the emergence of structuralism.

3 A Tale of Two Debates

Klein joined Helmholtz in adopting an official empiricist philosophy of geometry,
although his own work apparently refuted this philosophy. At this point, it seems,
even the proponents of non-Euclidean geometry were not ready to drop intuition and
perception entirely. Freudenthal [1962, 613] pointed out that the non-Euclidean de-
velopments were opposed on the ground that the authors did not take intuition and
perception seriously enough. In an amusing historical irony, some opponents dubbed
the new science “meta-mathematics” or “meta-geometry.” They meant these terms
in a strong, pejorative sense: non-Euclidean geometry is to respectable mathematics
as metaphysics is to physics. It took some doing to exorcize intuition and perception
entirely.

The advocates of non-Euclidean geometry won the war, but Euclidean geometry
survived. As Coffa [1986, 8, 17] noted, this posed a problem:



HOW WE GOT HERE 153

During the second half of the nineteenth century, through a process still awaiting ex-
planation, the community of geometers reached the conclusion that all geometries were
here to stay. . . . [T]his had all the appearance of being the first time that a community
of scientists had agreed to accept in a not-merely-provisory way all the members of a
set of mutually inconsistent theories about a certain domain. . . . It was now up to phi-
losophers . . . to make epistemological sense of the mathematicians’ attitude toward
geometry. . . . The challenge was a difficult test for philosophers, a test which (sad to
say) they all failed.

For decades professional philosophers had remained largely unmoved by the new de-
velopments, watching them from afar or not at all. . . . As the trend toward formalism
became stronger and more definite, however, some philosophers concluded that the
noble science of geometry was taking too harsh a beating from its practitioners. Per-
haps it was time to take a stand on their behalf. In 1899, philosophy and geometry fi-
nally stood in eyeball-to-eyeball confrontation. The issue was to determine what, ex-
actly, was going on in the new geometry.

What was going on, I believe, was that geometry was becoming the science of struc-
ture. Final blows to a role for intuition and perception in geometry were dealt by
Poincaré and Hilbert. Each encountered stiff resistance from a logicist, Russell against
Poincaré and Frege against Hilbert.6 Despite the many differences between Poincaré
and Hilbert and between Russell and Frege, the debates have a remarkable resem-
blance to each other.

3.1 Round one: Poincaré versus Russell

Poincaré [1899], [1900] carried the thread of Helmholtz and Klein to its logical con-
clusion. With Klein, Poincaré argued that it is impossible to figure out whether physi-
cal space is Euclidean by an experiment, such as a series of measurements. We have
no access to space other than through configurations of physical objects. Measure-
ments can only be done on physical objects with physical objects. How can we tell
whether the instruments themselves conform to Euclidean geometry? For example,
how can we tell which edges are really straight? By further measurements? Clearly,
there is a vicious regress.

Poincaré then echoed Klein’s conclusion that there is no fact about space express-
ible in Euclidean terms that cannot be stated in any of the standard non-Euclidean
systems. The only difference is that things covered by one name (e.g., “straight line”)
under one system would be covered by different names under the second. Helmholtz
could have drawn the same conclusion. Poincaré [1908, 235] wrote: “We know rec-
tilinear triangles the sum of whose angles is equal to two right angles; but equally we
know curvilinear triangles the sum of whose angles is less than two right angles. The
existence of the one sort is no more doubtful than that of the other. To give the name

6. In section 4, I consider a third logicist, Dedekind, who embraced and extended the structuralist
insights.
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of straights to the sides of the first is to adopt Euclidean geometry; to give the name
of straights to the sides of the latter is to adopt the non-Euclidean geometry. So that
to ask what geometry is proper to adopt is to ask, to what line is it proper to give the
name straight?” Poincaré noted that the various geometries are fully intertranslatable.
In the terminology of chapter 3, Euclidean space is structure-equivalent to the non-
Euclidean spaces. Thus, the choice of geometry is only a matter of a convention. All
that remains is for the theorist to stipulate which objects have straight edges and which
do not. Space itself has no metric; we impose one. Poincaré held that it is meaning-
less to ask whether Euclidean geometry is true:7 “As well ask whether the metric
system is true and the old measures false; whether Cartesian coordinates are true and
polar coordinates false. One geometry cannot be more true than another; it can only
be more convenient” ([1908, 65]).

In sum, Poincaré’s view was that to adopt Euclidean geometry is to accept a se-
ries of complicated “disguised definitions” for specifying what sorts of configura-
tions we will call “points,” “lines,” “triangles,” and so forth. These “definitions” have
at least a family resemblance to implicit definitions. Strictly speaking, the Euclidean
“definitions” do not tell us what a point is. Instead, they specify how points are re-
lated to lines, triangles, and so on. For Poincaré, words like “point” and “line” have
no independent meaning given by intuition or perception. A point is anything that
satisfies the conditions laid down by the axioms of the adopted geometry. In [1900,
78], he wrote, “I do not know whether outside mathematics one can conceive a term
independently of relations to other terms; but I know it to be impossible for the ob-
jects of mathematics. If one wants to isolate a term and abstract from its relations to
other terms, what remains is nothing.” This looks like a structuralist insight, but we
are not there yet. Poincaré held that geometry is about space and that we have intui-
tions about space. These intuitions, however, do not determine whether we should
use Euclidean or non-Euclidean geometry. In modern terms, the intuitions under-
determine the theory. The geometer adopts a convention concerning terms like “point”
and “line.” This convention determines which metric structure we are going to im-
pose on space, and so the convention determines the geometry.8

As part of his conventionalism, Poincaré held that the theorems of geometry are
not propositions with determinate truth-values. This took some philosophers by sur-
prise. The young Russell took issue with Poincaré’s conventionalism and the idea

7.  Like Klein, Poincaré believed that Euclidean geometry would remain the most convenient theory,
no matter what direction science took: “In astronomy ‘straight line’ means simply ‘path of a ray of
light.’ If therefore negative parallaxes were found . . . two courses would remain open to us; we might
either renounce Euclidean geometry, or else modify the laws of optics and suppose that light does not
travel rigorously in a straight line. It is needless to add that all the world would regard the latter solu-
tion as the most advantageous.” From the structuralist perspective, Poincaré and Klein had the options
correct even if their predictions were not. The problem is that a Euclidean metric on space-time would
require the existence of some strange forces.

8. I am indebted to Janet Folina and Peter Clark for insights into Poincaré’s philosophy of math-
ematics. Much of what follows draws on Coffa [1991, 129–134] and Coffa [1986]. Most of the trans-
lations are from Coffa [1991].
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that the axioms of geometry are disguised definitions. The debate concerned the
metaphysical nature of the basic “undefined” elements of geometry—points, lines,
planes, and so on—and our epistemic access to them. Russell thought that Poincaré
was confused about the nature of geometry and the nature of definitions.

To set the stage, note that although Russell was no friend of Kantian intuition, he
maintained that geometry was about space, and as such he was critical of the intro-
duction of imaginary elements: “If the quantities with which we end are capable of
spatial interpretation, then, and only then, our result may be regarded as geometri-
cal. To use geometrical language in any other sense is only a convenient help to the
imagination. To speak, for example, of projective properties which refer to the cir-
cular points, is a mere memoria technica for pure algebraic properties; the circular
points are not to be found in space. . . . Whenever, for a moment, we allow our ordi-
nary spatial notions to intrude, the grossest absurdities arise—everyone can see that
a circle, being a closed curve, cannot go to infinity” (Russell [1956, 45], first pub-
lished in 1897). Along similar lines, Russell held that words like “straight” and “dis-
tance” have fixed meanings, referring to real properties in real space. Here is where
the clash with Poincaré emerges. Russell held that in redefining “line” and “straight”
to interpret non-Euclidean geometry, the mathematician does not show that the par-
allel postulate, say, might be false, but only that the words that we use to express the
axioms might mean something different from what they do mean.

Russell’s statement prefigured debates over the nature of logical consequence, as
part of the development of model theory. Russell came out on the losing side here,
as well. To the contemporary logician, in interpreting non-Euclidean geometry, we
do show that the parallel postulate is not a consequence of the other axioms—and
thus that it might be false. In other words, the way we show that a given sentence is
not a consequence of other sentences is by reinterpreting the nonlogical terminology.

In a long, critical review of Russell’s An essay on the foundations of geometry,
Poincaré [1899] challenged the philosopher to explain the meanings of primitive terms
like “point,” “line,” and “plane.” Russell [1899, 699–700] replied that “one is not
entitled to make such a request since everything that is fundamental is necessarily
indefinable. . . . I am convinced that this is the only philosophically correct answer.
. . . [M]athematicians almost invariably ignore the role of definitions, and . . .
M. Poincaré appears to share their disdain.”

According to Russell, there are two uses of the word “definition.” A mathemati-
cal definition, part of knowledge by description, identifies an object as the only one
that stands in certain relations to other items, presumed to be known already. Such
mathematical definitions are “not definitions in the proper and philosophical sense
of the word.” To really define a word, one must give its meaning and in at least some
cases, this meaning cannot consist in relations to other terms. It is part of Russell’s
atomism that when it comes to simples, no proper definition is possible—thus his
retort to Poincaré’s request for a definition of geometric primitives. Russell makes
an analogy between defining and spelling. One can spell words, but not letters: “These
observations apply manifestly to distance and the straight line. Both belong, one might
say, to the geometric alphabet; they can be used to define other terms, but they them-
selves are indefinable. It follows that any proposition . . . within which these notions
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occur . . . is not a definition of a word. When I say that the straight line is determined
by two points, I assume that straight line and point are terms already known and
understood, and I make a judgement concerning their relations, which will be either
true or false” (pp. 701–702).

According to Russell, then, neither Poincaré’s conventions nor so-called implicit
definitions are definitions in the proper and philosophical sense, and they may not
be mathematical definitions either. Russell thus did not see the point of Poincaré’s
request. The two agree on a conditional: if the axioms have truth-values, then we
must be able to detect the meanings of the primitive terms prior to the theory. Poincaré
adopted conventionalism, because he could not see how to satisfy the consequent.
How do we determine the meaning of the primitives? Thus, he used the conditional
in a modus tollens, rejecting the antecedent. The axioms do not have truth-values.

In contrast, Russell did a modus ponens with the conditional, arguing that we do
determine the meanings of the primitives—via the epistemic faculty of acquaintance.
In [1904, 593], he wrote that it is “by analysis of perceived objects that we obtain
acquaintance with what is meant by a straight line in actual space.” Here, Poincaré
was sarcastic: “I find it difficult to talk to those who claim to have a direct intuition
of equality of two distances or of two time lapses; we speak very different languages.
I can only admire them, since I am thoroughly deprived of this intuition” ([1899,
274]).

Poincaré also attacked Russell’s assertion that the principle of free mobility is an
a priori truth. He tried to set Russell straight, echoing the Helmholtz–Klein develop-
ment: “What is the meaning of ‘without distortion’? What is the meaning of ‘shape’?
Is shape something that we know in advance, or is it, by definition, what does not
alter under the envisaged class of motions? Does your axiom mean: in order for
measurement to be possible figures must be susceptible of certain motions and there
must be a certain thing that will remain invariant through these motions and that we
call shape? Or else does it mean: you know full well what shape is. . . . I do not know
what it is that Mr. Russell has meant to say; but in my opinion only the first sense is
correct” (p. 259). Of course, Russell took the second sense. Coffa [1991, 134] sides
with Poincaré: there “is really nothing we can say about the meaning of the geomet-
ric primitives beyond what the axioms themselves say.” So does the structuralist, for
much the same reason.

Of course, the internal mathematical development of geometry favored Poincaré
against Russell. Eventually, Russell understood and incorporated the emerging needs
and perspectives of mathematics and science. Coffa [1986, 26] noted, “Russell, like
Carnap—and unlike Frege and Wittgenstein—always had a hunch that scientists knew
what they were doing.” In Russell [1993, chapter 6] (first published in 1919), the mathe-
matician is urged to adopt a version of structuralism, even if the philosopher cannot:

[T]he mathematician need not concern himself with the particular being or intrinsic
nature of his points, lines, and planes, . . . . [A] “point” . . . has to be something that as
nearly as possible satisfies our axioms, but it does not have to be “very small” or “without
parts.” Whether or not it is those things is a matter of indifference, so long as it satis-
fies the axioms. If we can . . . construct a logical structure, no matter how complicated,
which will satisfy our geometrical axioms, that structure may legitimately be called a
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“point”. . . . [W]e must . . . say “This object we have constructed is sufficient for the
geometer; it may be one of many objects, any of which would be sufficient, but that is
no concern of ours . . .” This is only an illustration of the general principle that what
matters in mathematics, and to a very great extent in physical science, is not the intrin-
sic nature of our terms, but the logical nature of their interrelations. . . .

We may say, of two similar relations, that they have the same “structure”. For
mathematical purposes (though not for those of pure philosophy) the only thing of
importance about a relation is the cases in which it holds, not its intrinsic nature.
(pp. 59–60)

Except for the parenthetical qualification concerning “pure philosophy,” amen.

3.2 Hilbert and the emergence of logic

The program executed in Hilbert’s Grundlagen der Geometrie [1899] marked both
an end to an essential role for intuition in geometry and the beginning of a fruit-
ful era of metamathematics. Structuralism is little more than a corollary to these
developments.

Hilbert was aware that at some level, spatial intuition or observation remains the
source of the axioms of geometry. In Hilbert’s writing, however, the role of intuition
is carefully and rigorously limited to motivation and heuristic. Once the axioms have
been formulated, intuition is banished. It is no part of mathematics, whether pure or
applied. The epigraph of Hilbert [1899] is a quotation from Kant’s Critique of pure
reason (A702/B730), “All human knowledge begins with intuitions, thence passes
to concepts and ends with ideas,” but the plan executed in that work is far from
Kantian. In Hilbert’s hands, the slogan “passes to concepts and ends with ideas” comes
to something like “is replaced by logical relations between ideas.” In the short intro-
duction, he wrote, “Geometry, like arithmetic, requires for its logical development
only a small number of simple, fundamental principles. These fundamental principles
are called the axioms of geometry. The choice of the axioms and the investigation of
their relations to one another . . . is tantamount to the logical analysis of our intuition
of space.”

One result of banishing intuition is that the presented structure is freestanding,
in the sense of chapter 3. Anything at all can play the role of the undefined primi-
tives of points, lines, planes, and the like, so long as the axioms are satisfied. Otto
Blumenthal reports that in a discussion in a Berlin train station in 1891, Hilbert said
that in a proper axiomatization of geometry, “one must always be able to say, in-
stead of ‘points, straight lines, and planes’, ‘tables, chairs, and beer mugs.’”9

As noted earlier, Pasch and others had previously emphasized that the key to
rigor is this requirement that the structure be freestanding. The slogan is that logic
is topic-neutral. With Hilbert, however, we see consequences for the essential na-
ture of the very subject matter of mathematics. We also see an emerging metamath-

9. “Lebensgeschichte” in Hilbert [1935, 388–429]; the story is related on p. 403. See Stein [1988,
253]; Coffa [1991, 135]; and Hallett [1990, 201–202].
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ematical perspective of “logical analysis,” with its own important mathematical
questions.

Hilbert [1899] does not contain the phrase “implicit definition,” but the book clearly
delivers implicit definitions of geometric structures. The early pages contain phrases
like “the axioms of this group define the idea expressed by the word ‘between’” and
“the axioms of this group define the notion of congruence or motion.” The idea is
summed up as follows: “We think of . . . points, straight lines, and planes as having
certain mutual relations, which we indicate by means of such words as ‘are situated’,
‘between’, ‘parallel’, ‘congruent’, ‘continuous’, etc. The complete and exact descrip-
tion of these relations follows as a consequence of the axioms of geometry” (§1).

To be sure, Hilbert also says that the axioms express “certain related fundamental
facts of our intuition,” but in the subsequent development of the book, all that re-
mains of the intuitive content is the use of words like “point” and “line,” and the
diagrams that accompany some of the theorems.10 Bernays [1967, 497] sums up the
aims of Hilbert [1899]:

A main feature of Hilbert’s axiomatization of geometry is that the axiomatic method is
presented and practiced in the spirit of the abstract conception of mathematics that arose
at the end of the nineteenth century and which has generally been adopted in modern
mathematics. It consists in abstracting from the intuitive meaning of the terms . . . and
in understanding the assertions (theorems) of the axiomatized theory in a hypothetical
sense, that is, as holding true for any interpretation . . . for which the axioms are satis-
fied. Thus, an axiom system is regarded not as a system of statements about a subject
matter but as a system of conditions for what might be called a relational structure. . . .
[On] this conception of axiomatics, . . . logical reasoning on the basis of the axioms is
used not merely as a means of assisting intuition in the study of spatial figures; rather
logical dependencies are considered for their own sake, and it is insisted that in rea-
soning we should rely only on those properties of a figure that either are explicitly
assumed or follow logically from the assumptions and axioms.

Interest in metamathematical questions surely grew from the developments in non-
Euclidean geometry, as a response to the failure to prove the parallel postulate. In
effect (and with hindsight), the axioms of non-Euclidean geometry were shown to
be satisfiable. Hilbert [1899] raised and solved questions concerning the satisfiability
of sets of geometric axioms. Using techniques from analytic geometry, he employed

10. According to the emerging demands of rigor, diagrams may be dangerous. A reader who relies
on a diagram in following a demonstration cannot be sure that the conclusion is a logical consequence
of the premises. Intuition may have crept back in. Apparently, Hilbert did not want to go so far as to
echo Lagrange’s boast that his work did not contain a single diagram (see section 2). The presence of
diagrams in Hilbert [1899] may be a concession to either the human difficulty in following logical proofs
or the continuing need to interpret the results in space, or at least to illustrate the application of the
results to space. Hilbert coauthored a second geometry book, whose aim is to “give a presentation of
geometry . . . in its visual, intuitive aspects” (Hilbert and Cohn-Vossen [1932]). Hilbert contrasts this
“approach through visual intuition” with the tendency toward “abstraction” (in Hilbert [1899]) that
“seeks to crystallize the logical relations inherent in the maze of material that is being studied.”
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real numbers to construct a model of all of the axioms, thus showing that the axioms
are “compatible,” or satisfiable. If spatial intuition were playing a role beyond heu-
ristics, this proof would not be necessary. Intuition alone would assure us that all of
the axioms are true (of real space), and thus that they are all compatible with each
another. Geometers in Kant’s day would wonder what the point of this exercise is.
As we will see, Frege also balked at it.

Hilbert then gave a series of models in which one axiom is false, but all the other
axioms hold, thus showing that the indicated axiom is independent of the others. The
various domains of points, lines, and so forth, of each model are sets of numbers,
sets of pairs of numbers, or sets of sets of numbers. Predicates and relations, such as
“between” and “congruent,” are interpreted over the given domains in the now-
familiar manner.

The second of Hilbert’s [1900] famous “problems” extends the metamathemati-
cal approach to every corner of mathematics: “When we are engaged in investigat-
ing the foundations of a science, we must set up a system of axioms which contains
an exact and complete description of the relations subsisting between the elemen-
tary ideas of that science. The axioms set up are at the same time the definitions of
those elementary ideas.” Once again, the “definition” is an implicit definition.

The crucial concept employed in this perspective is that of “truth in a model,”
the central notion of contemporary model theory—and structuralism (see Hodges
[1985]). The theorist treats a group of sentences as if they were uninterpreted—
even if the sentences were originally suggested by intuition, observation, or what-
ever. A domain of discourse is stipulated, and the singular terms and predicate and
relation symbols are given extensions over this domain. Although the procedure
is now commonplace, the insights were hard-won, historically. Once it is allowed
that any domain at all can serve as an interpretation of a given formal language—
even a set of tables, chairs, and beer mugs—the structures are freestanding. The
relationship between this notion of “truth in a model” and “truth” simpliciter is still
a central item on the agenda of philosophy (see chapters 2 and 4, and Shapiro
[1998]).

One consequence of the axiomatic, metamathematical approach is that isomor-
phic models are equivalent. If there is a one-to-one function from the domain of one
model onto the domain of the other that preserves the relations of the model, then
any sentence of the formal language that is true in one model is true in the other. So,
if intuition or perception via ostension is banned, then the best a formal theory can
do is to fix its interpretation up to isomorphism. Any model of the theory can be
changed into another model just by substituting elements of the domain and renam-
ing.11 The best we can do is a categorical axiomatization, one in which all the mod-
els are isomorphic to each other. Weyl [1949, 25–27] put it well:

11. This is one of the main motivations for the Quinean doctrines of the inscrutability of reference
and the relativity of ontology (see chapters 2 and 4 in this volume). Quine argues that reference is not
determinate even if techniques that involve observation are added to the model-theoretic conception.
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[A]n axiom system [is] a logical mold of possible sciences. . . . One might have thought
of calling an axiom system complete if in order to fix the meanings of the basic con-
cepts present in them it is sufficient to require that the axioms be valid. But this ideal
of uniqueness cannot be realized, for the result of an isomorphic mapping of a con-
crete interpretation is surely again a concrete interpretation. . . . A science can deter-
mine its domain of investigation up to an isomorphic mapping. In particular, it remains
quite indifferent as to the “essence” of its objects. . . . The idea of isomorphism demar-
cates the self-evident boundary of cognition. . . . Pure mathematics . . . develops the
theory of logical “molds” without binding itself to one or the other among possible
concrete interpretations. . . . The axioms become implicit definitions of the basic con-
cepts occurring in them.

This is essentially a structuralistic manifesto.
Hilbert’s metamathematical approach, of course, did not come out of the blue.

His competitors included the Italians Padoa, Pieri, and Peano.12 Here, there is no need
to elaborate the similarities and differences nor to join arguments of priority. Hilbert’s
influence was due to the clarity and depth of his work. He led by example. Freudenthal
[1962, 619, 621] sums things up:

The father of rigor in geometry is Pasch. The idea of the logical status of geometry
occurred at the same time to some Italians. Implicit definition was analyzed much ear-
lier by Gergonne. The proof of independence by counter-example was practiced by
the inventors of non-Euclidean geometry, and more consciously by Peano and Padoa.
. . . [I]n spite of all these historical facts, we are accustomed to identify the turn of math-
ematics to axiomatics with Hilbert’s Grundlagen: This thoroughly and profoundly
elaborated piece of axiomatic workmanship was infinitely more persuasive than pro-
grammatic and philosophical speculations on space and axioms could ever be.

There is no clearer evidence for the persuasiveness of Hilbert’s Grundlagen, for the
convincing power of a philosophy that is not preached as a program, but that is only
the silent background of a masterpiece of workmanship.

In America, the first few decades of the twentieth century saw the emergence of
a school of foundational studies. The members, dubbed “American postulate theo-
rists,” included Huntington, E. H. Moore, R. L. Moore, Sheffer, and Veblen (see
Scanlan [1991]). Their program was to axiomatize various branches of mathemat-
ics, such as geometry, arithmetic, and analysis, and then to study the axiomatizations
as such. Their perspective was even more metatheoretic than that of their counter-
parts across the Atlantic. Huntington [1902] established that his axiomatization of
analysis is categorical, and Veblen [1904] did the same for his axiomatization of
geometry. Each took the result to establish that the theory has “essentially only one”
interpretation.

12. Padoa [1900], for example, wrote, “[D]uring the period of elaboration of any deductive theory
we choose the ideas to be represented by the undefined symbols and the facts to be stated by the un-
proved propositions; but, when we begin to formulate the theory, we can imagine that the undefined
symbols are completely devoid of meaning and that the unproved propositions . . . are simply condi-
tions imposed upon the undefined symbols” (p. 120).
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The model-theoretic notions of consequence and satisfiability emerge through this
work. In his 1924 presidential address to the American Mathematical Society, Veblen
announced that “formal logic has to be taken over by mathematicians. The fact is
that there does not exist an adequate logic at the present time, and unless the mathe-
maticians create one, no one else is likely to do so” (Veblen [1925, 141]). Many
extraordinary minds, including Veblen’s student, Alonzo Church, took up the call.
These logicians and their students delivered model theory and proof theory as we
know them today. Coffa [1986, 16] wrote that “in the early decades of our century
logic evolved, adjusting to the picture of knowledge that has emerged from geometry.”

3.3 Round two: Frege versus Hilbert

Although the spirited correspondence between Frege and Hilbert is thoroughly treated
in the literature,13 I briefly recapitulate some of the exchange here, to emphasize the
striking resemblance to the clash between Russell and Poincaré. The correspondence
is published in Frege [1976] and translated in [1980]. Like Russell did to Poincaré,
Frege lectured Hilbert on the nature of definitions and axioms. According to Frege,
axioms should express truths and definitions should give the meanings and fix the
denotations of certain terms. With an implicit definition, neither job is accomplished.
In a letter dated December 27, 1899, Frege complained that Hilbert [1899] does not
provide a definition of, say, “between,” because the axiomatization “does not give a
characteristic mark by which one could recognize whether the relation Between
obtains. . . . [T]he meanings of the words ‘point’, ‘line’, ‘between’ are not given, but
are assumed to be known in advance. . . . [I]t is also left unclear what you call a point.
One first thinks of points in the sense of Euclidean geometry, a thought reinforced
by the proposition that the axioms express fundamental facts of our intuition. But
afterwards you think of a pair of numbers as a point. . . . Here the axioms are made
to carry a burden that belongs to definitions. . . . [B]eside the old meaning of the word
‘axiom’, . . . there emerges another meaning but one which I cannot grasp” (pp. 35–
36). Frege went on to remind Hilbert that a definition should specify the meaning of
a single word whose meaning has not yet been given, and the definition should em-
ploy other words whose meanings are already known. In contrast to definitions, axi-
oms and theorems “must not contain a word or sign whose sense and meaning, or
whose contribution to the expression of a thought, was not already completely laid
down, so that there is no doubt about the sense of the proposition and the thought it
expresses. The only question can be whether this thought is true and what its truth
rests on. Thus axioms and theorems can never try to lay down the meaning of a sign
or word that occurs in them, but it must already be laid down” (p. 36). Frege’s point
is a simple one. If the terms in the proposed axioms do not have meaning before-
hand, then the statements cannot be true (or false), and thus they cannot be axioms.
If they do have meaning beforehand, then the axioms cannot be definitions. He added

13. See, for example, Resnik [1980]; Coffa [1991, chapter 7]; Demopoulos [1994]; and Hallett
[1994].
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that from the truth of axioms, “it follows that they do not contradict one another,”
and so there is no further need to show that the axioms are consistent.

Hilbert replied just two days later, on December 29. He told Frege that the pur-
pose of Hilbert [1899] is to explore logical relations among the principles of
geometry, to see why the “parallel axiom is not a consequence of the other axi-
oms” and how the fact that the sum of the angles of a triangle is two right angles is
connected with the parallel axiom. Frege, the pioneer in mathematical logic, could
surely appreciate this project. The key lies in how Hilbert understood the logical
relations. Concerning Frege’s assertion that the meanings of the words “point,”
“line,” and “plane” are “not given, but are assumed to be known in advance,”
Hilbert replied, “This is apparently where the cardinal point of the misunderstand-
ing lies. I do not want to assume anything as known in advance. I regard my expla-
nation . . . as the definition of the concepts point, line, plane. . . . If one is looking
for other definitions of a ‘point’, e.g. through paraphrase in terms of extension-
less, etc., then I must indeed oppose such attempts in the most decisive way; one is
looking for something one can never find because there is nothing there; and
everything gets lost and becomes vague and tangled and degenerates into a game
of hide and seek” (p. 39). This is an allusion to definitions like Euclid’s “a point is
that which has no parts.” To try to do better than a characterization up to isomor-
phism is to lapse into “hide and seek.” Later in the same letter, when responding to
the complaint that his notion of “point” is not “unequivocally fixed,” Hilbert wrote,

[I]t is surely obvious that every theory is only a scaffolding or schema of concepts
together with their necessary relations to one another, and that the basic elements can
be thought of in any way one likes. If in speaking of my points, I think of some system
of things, e.g., the system love, law, chimney-sweep . . . and then assume all my axi-
oms as relations between these things, then my propositions, e.g., Pythagoras’ theo-
rem, are also valid for these things. . . . [A]ny theory can always be applied to infi-
nitely many systems of basic elements. One only needs to apply a reversible one-one
transformation and lay it down that the axioms shall be correspondingly the same for
the transformed things. This circumstance is in fact frequently made use of, e.g. in the
principle of duality. . . . [This] . . . can never be a defect in a theory, and it is in any
case unavoidable. (pp. 40–41)

Note the similarity with Hilbert’s quip in the Berlin train station. Here it is elabo-
rated in terms of isomorphism and logical consequence.

Because Hilbert did “not want to assume anything as known in advance,” he re-
jected Frege’s claim that there is no need to worry about the consistency of the axi-
oms, because they are all true: “As long as I have been thinking, writing and lectur-
ing on these things, I have been saying the exact reverse: if the arbitrarily given axioms
do not contradict each other with all their consequences, then they are true and the
things defined by them exist. This is for me the criterion of truth and existence”
(p. 42). He then repeated the role of what is now called “implicit definition,” noting
that it is impossible to give a definition of “point” in a few lines, because “only the
whole structure of axioms yields a complete definition.”

Frege’s response, dated January 6, 1900, acknowledged Hilbert’s project. Frege
saw that Hilbert wanted “to detach geometry from spatial intuition and to turn it into



HOW WE GOT HERE 163

a purely logical science like arithmetic”14 (p. 43). Frege also understood Hilbert’s
model-theoretic notion of consequence: to show that a sentence D is not a conse-
quence of A, B, and C is to show that “the satisfaction of A, B, and C does not con-
tradict the non-satisfaction of D.” However, these great minds were not to meet. Frege
said that the only way to establish consistency is to give a model: “to point to an
object that has all those properties, to give a case where all those requirements are
satisfied.” The later Hilbert program, of course, supplied another way to prove con-
sistency results.

In the same letter, Frege mocked implicit definitions, suggesting that with them,
we can solve problems of theology:

What would you say about the following:
“Explanation. We imagine objects we call Gods.
Axiom 1. All Gods are omnipotent.
Axiom 2. All Gods are omnipresent.
Axiom 3. There is at least one God.” (p. 46)

Frege did not elaborate, but the point is clear. Hilbert said that if we establish the
consistency of his axiomatization, we thereby establish the existence of points, lines,
and planes. If we establish the consistency of the theology axioms, do we thereby
establish the existence of a God? In the terminology of chapter 3, the difference is
that Euclidean geometry is a freestanding structure, or at least Hilbert saw it that way.
Anything at all can occupy its places. Further, the relations of geometry are formal,
completely characterized by the axioms. In contrast, the theology structure (if it makes
sense to speak this way) is not freestanding. Not just anything can occupy the God
office. Even more, the central properties of omnipotence and omnipresence are not
formal. A consistency proof does not establish that the nonformal structure is
exemplified.

Frege complained that Hilbert’s “system of definitions is like a system of equa-
tions with several unknowns” (p. 45). This analogy is apt, and Hilbert would surely
accept it. A system of equations does characterize a structure, of sorts. Frege wrote,
“Given your definitions, I do not know how to decide the question whether my pocket
watch is a point.” Again, Hilbert would surely agree, but he would add that the at-
tempt to answer this question is to play the game of hide and seek. Frege’s question
is reminiscent of the so-called Caesar problem, raised in his Grundlagen der
Arithmetik [1884] (see chapter 3). To state the obvious, Frege did not think in terms
of “truth in a model.” For Frege, the quantifiers of mathematics range over every-
thing, and a concept is a function that takes all objects as arguments. Thus, “my pocket

14. Frege’s logicism did not extend to geometry, which he regarded as synthetic a priori. Like
Russell, Frege worried about the ideal elements introduced into geometry. In his inaugural dissertation
(of 1873), he wrote, “When one considers that the whole of geometry ultimately rests upon axioms,
which receive their validity from the nature of our faculty of intuition, then the question of the sense of
imaginary figures appears to be well-justified, since we often attribute to such figures properties which
contradict our intuition” (Frege [1967, 1]; see Kitcher [1986, 300]). Wilson [1992] provides an insightful
account of the connection between Frege’s logicism and his concern with the ideal elements of geometry.
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watch is a point” must have a truth-value, and our theory must determine this truth-
value.

Neither of them budged. On the following September 16, a frustrated Frege wrote
that he could not reconcile the claim that axioms are definitions with Hilbert’s view
that axioms contain a precise and complete statement of the relations among the ele-
mentary concepts of a field of study (from Hilbert [1900], quoted above). For Frege,
“there can be talk about relations between concepts . . . only after these concepts have
been given sharp limits, but not while they are being defined” (p. 49). On September
22, an exasperated Hilbert replied, “[A] concept can be fixed logically only by its
relations to other concepts. These relations, formulated in certain statements I call
axioms, thus arriving at the view that axioms . . . are the definitions of the concepts.
I did not think up this view because I had nothing better to do, but I found myself
forced into it by the requirements of strictness in logical inference and in the logical
construction of a theory. I have become convinced that the more subtle parts of
mathematics . . . can be treated with certainty only in this way; otherwise one is only
going around in a circle” (p. 51). I cannot think of a better formulation of structural-
ism. An implicit definition characterizes a type of structure—a single structure if the
axiomatization is satisfiable and categorical.

Hilbert took the rejection of Frege’s perspective on concepts to be a major inno-
vation. In a letter to Frege dated November 7, 1903, he wrote, “[T]he most important
gap in the traditional structure of logic is the assumption . . . that a concept is already
there if one can state of any object whether or not it falls under it. . . . [Instead, what]
is decisive is that the axioms that define the concept are free from contradiction”
(pp. 51–52). The opening paragraphs of Hilbert [1905] contain a similar point, ex-
plicitly directed against Frege.

For his part, Frege used his own logical system to recapitulate much of Hilbert’s
orientation. In the January 6, 1900 letter, Frege suggests that Hilbert (almost) suc-
ceeded in defining “second-level concepts.” The axiomatization does not provide an
answer “to the question ‘What properties must an object have in order to be a point
(a line, a plane, etc.)?’, but they contain, e.g., second-level relations, e.g., between
the concept point and the concept line” (p. 46). Frege was correct. Hilbert did not
give necessary and sufficient conditions for an arbitrary object to be a point. Instead,
he showed how points are related to each other and to lines, planes, and the like. He
gave necessary and sufficient conditions for systems of objects to exemplify the struc-
ture of Euclidean geometry.

In subsequent lectures on geometry ([1903a], [1906], translated in Frege [1971]),
Frege formulated these second-level relations with characteristic rigor. He replaced
the geometric terms—the items we would call nonlogical—with bound, higher-
order variables. In Frege’s hands, Hilbert’s implicit definition is transformed into an
explicit definition of a second-level concept.15 Frege also used his logical system
to recapitulate something like Hilbert’s model-theoretic notion of independence.

15. This is similar to a technique in contemporary philosophy, often traced to Ramsey [1925]. See
chapter 3, section 6, in this volume.
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An assertion in the form “the satisfaction of A, B, and C does not contradict the
nonsatisfaction of D” is rendered as a formula in Frege’s system.

Thus, it is not quite true that model theory was foreign to Frege’s logical system.
Because his language was designed to be universal, anything could be expressed in
it—even statements about models of axiomatizations with noted nonlogical terminology.

In sum, Frege and Hilbert did manage to understand each other, for the most part.
Nevertheless, they were at cross-purposes in that neither of them saw much value in
the other’s point of view. The central feature of Hilbert’s orientation is that the main
concepts being defined are given different extensions in each model. This is the con-
temporary notion of a nonlogical term (see Demopoulos [1994]). Frege’s own land-
mark work in logic, the Begriffsschrift [1879], contains nothing like nonlogical ter-
minology. Every lexical item has a fixed sense and a fixed denotation or extension.
Everything is already fully interpreted, and there is nothing to vary from interpreta-
tion to interpretation. This feature, shared by the other major logicist Russell, has
been called “logic as language,” whereas Hilbert’s approach is “logic as calculus”
(see, for example, van Heijenoort [1967a] and Goldfarb [1979]).

Demopoulos adds that a related source of the cross-purposes is the Fregean prin-
ciple that the sense of an expression completely determines its reference. Anyone who
grasps the sense of an expression like “point” or “natural number” has the means to
determine of anything whatsoever whether it is a point or a natural number. Hallett
[1990] (and [1994]) calls this the “fixity of reference.” A related Fregean (and Russel-
lian) principle is that every well-formed sentence in a proper mathematical theory makes
a fixed assertion about a fixed collection of objects and concepts. Each proposition has
a truth-value determined by the nature of the referenced objects and concepts. Coffa
[1991] calls this “propositionalism.” For geometry, as well as other mathematical theo-
ries, Hilbert (and Poincaré) rejected both the fixity of reference and propositionalism.

In the terminology of this book (chapter 3), Hilbert was an eliminative structur-
alist. To reiterate, eliminative structuralism is a structuralism without structures.
Hilbert’s rejection of the fixity of reference and propositionalism indicates that he
did not join the logicists and take, say, numerals as genuine singular terms. Thus,
according to Hilbert, there is no single object denoted by “zero” and there is no single
collection of objects that is the extension of “the natural numbers.” Instead, “the natural
numbers” refers to a type of system. If this interpretation is correct, then when Hil-
bert speaks of “existence,” as entailed by consistency, he is not using the term in the
same sense as, say, “Jupiter exists.” This is highlighted by Frege’s quip about the
existence of God. With eliminative structuralism, mathematical assertions are really
generalizations over a type of system, and so they do not have the same “deep struc-
ture” as ordinary assertions about ordinary physical (or theological) objects.

3.4 Frege

Recall from chapter 3 that ante rem structuralism is an attempt to have it both ways.
According to this view, numerals are genuine singular terms that denote places in
the natural-number structure. The ante rem structuralist maintains propositionalism
and the fixity of reference.
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Although neither Frege nor his interpreters speak in structuralist terms, the devel-
opment of arithmetic in Frege [1884] goes some way toward structuralism. The struc-
turalism that Frege approached is not the eliminative variety just attributed to Hil-
bert but full, ante rem structuralism. Let there be no mistake, however. I do not mean
to attribute structuralism to Frege himself. I propose a starkly un-Fregean modifica-
tion of the Fregean program.

As noted, Frege held that numerals are genuine singular terms that denote natural
numbers. To explicate this, several commentators, such as Dummett [1981], [1991];
Wright [1983]; and Hale [1987], attribute a certain “syntactic-priority thesis” to Frege
[1884]: if a sentence S is true and if a lexical item t in S is a singular term, then there
is an object that t denotes. Once matters of grammar, syntax, and truth are fixed, there
can be no further question of deciding which of the singular terms really pick out
objects in the world. As Wright put it, “The injunction that we should never ask after
the Bedeutung of a term in isolation but only in the context of a proposition is to be
understood as cautioning us against the temptation to think that . . . after we are
satisfied that, by syntactic criteria, . . . expressions are functioning as singular terms
in sentential contexts, a further genuine question can still remain about whether their
role is genuinely denotative” (p. 14). According to the syntactic-priority thesis, all
that is needed to establish ontological realism for arithmetic is to show that numerals
are singular terms and that sentences containing numerals are true. As part of his
argument for ontological realism, Frege cited sentences like “the number of moons
of Jupiter is four.” If some such sentences are true—and some surely are—and if the
numerals in them are genuine singular terms, then the syntactic-priority thesis en-
tails that numerals denote something. Because numbers are whatever the denotata of
numerals are, Frege concluded that numbers exist. Again, Wright says, “[I]t must
not be coherent to suggest the possibility of some sort of independent, language-
unblinkered inspection of the contents of the world, of which the outcome might be
to reveal that there was indeed nothing there capable of serving as the referents of
what Frege takes to be numerical singular terms” (pp. 13–14).

Frege is thus at odds with both eliminative and modal structuralism, as these pro-
grams are articulated in chapter 3. According to the in re structuralisms, a statement
that appears to be about numbers is a disguised generalization about all natural-number
sequences. Numerals are bound variables, not singular terms. According to Frege,
however, for any concept F, the locution “the number of F” denotes something, a
number in particular.

To develop arithmetic, Frege made use of a thesis now called “Hume’s principle”:16

For all concepts F, G, the number of F is identical to
the number of G if and only if F is equinumerous with G.

Frege went on to define 0 as the number of an empty concept, and he defined the
successor relation among numbers. Then he defined an object n to be a natural num-

16. Wright [1983] and Hale [1987] suggest a Fregean program in which equivalence relations in-
dicate the existence of (abstract) objects. In chapter 4, this program is compared to one described in
Kraut [1980].
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ber if n bears the ancestral of the successor relation to 0. The natural numbers are 0,
the successor of 0, the successor of the successor of 0, and so on. Frege then showed
that the standard Peano postulates hold of the natural numbers so construed. That is,
each natural number has a unique successor, the successor function is one-to-one on
the natural numbers, and induction holds. In present terms, Frege established that
his natural numbers exemplify the natural-number structure. This part of Frege’s
system is consistent (see Wright [1983] and Boolos [1987]).

Notice that Frege’s syntactic-priority thesis looks a bit like the aforementioned
pronouncement of Hilbert, directed against Frege (translated in Frege [1980, 42]):
“[I]f the arbitrarily given axioms do not contradict each other with all their conse-
quences, then they are true and the things defined by them exist. This is for me the
criterion of truth and existence.” To be sure, a crucial difference between Hilbert’s
statement and the syntactic-priority thesis is that Frege insists that the sentences
be true before one can draw inferences concerning ontology, whereas Hilbert re-
quires only that the axioms be consistent. To identify truth and consistency at this
stage would surely beg the question in favor of Hilbert. Moreover, truth and falsity
are properties of single sentences, whereas consistency is a (holistic) property of entire
theories.

Hallett [1990] attempted to temper this difference between Frege and Hilbert (see
also Hallett [1994]). Notice first that in order to sustain the Dummett–Wright–Hale
interpretation of Frege, we need to be told how the “truth” clause should be under-
stood. If Frege had something like a model-theoretic picture of truth in mind, then
his criterion for existence would be useless. To decide whether a sentence is true, the
theorist would have to first determine what its singular terms denote. This violates
Frege’s context principle to never ask for the Bedeutung of an expression except in
the context of a sentence in which it occurs. It reverses the priority.

The acceptability of a sentence is, of course, not an infallible guarantee of its truth.
Humans do err on occasion. However, acceptability in a serious practice is surely
evidence of truth. In mathematics, at least, error is not rampant. If we note this and
allow the slide from single sentences to theories, the Fregean syntactic-priority the-
sis becomes, “If a body of sentences S is acceptable according to the canons of ac-
ceptability laid down, then there must be objects to which the singular terms of the
S-sentences purport to refer” (Hallett [1990, 185]). Let us call this the “acceptability
thesis.”

As noted in chapter 4, Hallett [1990, 240] also argued that Hilbert’s “consistency”
requirement was meant to be a mathematically tractable gloss on “acceptability” and
not a wholesale replacement for it. If “acceptability” replaces “consistency” in
Hilbert’s message to Frege, the acceptability thesis results. Thus, there may be a little
common ground between Frege and Hilbert.

Whatever the value of this tenuous bridge, there is a more far reaching difference
between Frege’s version and Hilbert’s version of the acceptability thesis. To be pre-
cise, there is a difference in the role played by the acceptability thesis (or theses).
For Hilbert, once the coherence of a theory is established, there is no need to go on
to say what its objects are. As far as ontology goes, there is nothing more to say. As
Hilbert emphasized over and over, the axioms of Euclidean geometry give the rela-
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tions of points, lines, and planes to each other, and the axioms of arithmetic give the
relations of the numbers to each other. Those relations are all there are to points, lines,
planes, and numbers. What you see is what you get, or, to be precise, what you get in
the implicit definition is all there is. This is Hilbert’s eliminative structuralism. Any
attempt to go on to say what the numbers are or what the Euclidean points are is to
play “a game of hide and seek” and to go “around in a circle.”

Frege, of course, thought otherwise. For him, once the acceptability thesis, or the
syntactic-priority thesis, assures us that, say, numbers exist, there is work to be done.
We must then figure out what the numbers are. Numerals are singular terms and occur
in true sentences. Thus, we know that there are objects denoted by numerals. Now
we have to figure out which objects those numbers are. This extra burden is indi-
cated by Frege’s Caesar problem. Until we have figured out which objects the num-
bers are, we do not know whether the number 2 is identical to, or different from,
Julius Caesar. Until we have figured out which objects the Euclidean points are, we
do not know whether a given pocket watch is a point. Dummett [1991, 239] wrote,
“Frege never advanced the context principle as having the advantages conceded by
Russell to the method of postulation: it merely indicated what honest toil was called
for.”

From the Fregean perspective, Hilbert’s method does claim the advantages of theft
over toil, but this assumes that Hilbert took numbers to be objects. Earlier, I ven-
tured the barbarous anachronism of interpreting Hilbert as an eliminative structural-
ist. On that view, as articulated here, numerals are not singular terms, and numbers
are not objects. Frege held that the objects delivered by his version of the acceptability
thesis exist in exactly the same sense as any other objects, including horses, planets,
Caesars, and pocket watches. All objects, whether abstract or concrete, belong to a
single, all-inclusive domain, and the first-order variables of a proper Begriffsschrift
range over this domain. Given all this, Frege had to take questions like “Is Julius
Caesar = 2?” and “Is my pocket watch a point?” seriously.17

Frege held that arithmetic is part of logic, and so he tried to locate the natural
numbers among the objects of logic. Numbers are certain extensions. Of course, the
discovery that Frege’s theory of extensions is inconsistent brought his program down
in ruins. Dummett [1991, 225] took Russell’s paradox to refute the context principle
“as Frege had used it.” Frege himself may have come to the same conclusion, be-
cause, as Dummett pointed out, after the discovery of the antinomy, logical objects
“quietly vanished” from Frege’s ontology. Dummett concluded that it “was [Frege’s]
error and his misfortune . . . to have misconstrued the task, an error for which he paid
with the frustration of his life’s ambition.” Sad.

To allow Frege to quit while he is ahead, suppose that we simply drop the extra
ontological burden of Frege’s version of the acceptability thesis but maintain the bulk
of the rest of the program—including the syntactic-priority thesis. My proposed un-
Fregean rescue is to give up the idea of a single, all-inclusive domain that contains
all objects of mathematics. The result fits ante rem structuralism, and even suggests

17. I am indebted to Crispin Wright and Bob Hale for useful discussion of the Caesar problem.
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it. Numerals are genuine singular terms, not disguised variables. We have bona fide
reference. Numerals denote numbers. But what are these numbers? All we can say
about them is what follows from their characterization via Hume’s principle and the
various definitions. To repeat what I said about Hilbert, what you see is what you
get, or what you get from the characterization is all there is. And what you get from
the characterization are the relations of the numbers to each other and to concepts
with finite extensions.

I submit that it is natural to think of the numbers, so construed, as an ante rem
structure. When it comes to mathematics, the Fregean all-inclusive domain gives way
to the ontological relativity urged here. Each mathematical object is a place in a par-
ticular structure, and statements of identity are determinate only if the terms flank-
ing the identity sign denote places in the same structure. Otherwise, the identity is a
matter of decision, based on convenience.

Dummett [1991, 235] himself suggested a similar maneuver in discussing what is
left of Frege’s project. He wrote that “the referents of the newly introduced terms
cannot be thought of in any other way than simply as the referents of those terms.”
Notice the similarity between this remark and what he elsewhere attributes to the
“mystical” (i.e., ante rem) structuralist: the zero place of the natural-number struc-
ture “has no other properties than those which follow from its being the zero” place
of that structure. It is not a set, or anything else whose nature is extrinsic to the struc-
ture. As Dummett says on behalf of the mystical structuralist, abstract structures are
“distinguished by the fact that their elements have no non-structural properties.”
Practically speaking, this is what we get from the Fregean program minus the Caesar
question.18

Dummett concluded, however, that the rescued program is not all that healthy.
The notion of reference that emerges from the maneuver is “thin” and falls
short of ordinary reference. If numerals are understood in terms of the syntactic-
priority thesis and Hume’s principle, then they are significantly different from sin-
gular terms that denote ordinary objects. When reference is “thin,” no genuine
objects are picked out. According to Dummett, we must give up the dream, noted
earlier, that the objects delivered by the syntactic-priority thesis exist in the same
sense as all other objects. The ontological realism vanishes with the single, all-
inclusive domain.

But does it? I take the reference of a singular term in mathematics to be genuine
reference to a place in a structure. The extent to which this reference is “thin” de-

18. That and a bit more. Notice that even with the fateful reference to extensions eliminated, Frege
delivered more than the natural-number structure—more than the relations of the natural numbers to
each other (see Wright [1983, 117–129]; Hale [1987, 216–217]; and Hallett [1994, 175–176]). Frege
successfully accommodated the application of the natural-number structure to finite cardinalities. An
implicit definition does not, by itself, show how the defined structure or structures can be applied. Thus,
a Hilbert-style treatment of the natural numbers would have to be supplemented with an account of
how arithmetic can be used to compare and determine cardinalities. Of course, both accounts have to
be supplemented with applications to what I call “finite ordinal structures” in chapter 4. Dedekind
accomplished this—stay tuned.
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19. Dieterle [1994, chapter 3] develops a “neo-Fregean” position that rejects the Caesar problem
on structuralist grounds. Her main innovation is that the object/concept (or saturated/unsaturated) dis-
tinction be taken as relative to a background framework. Perhaps Wright’s [1983, 124] own notion of
a “relatively sortal” predicate can be put to use here.

20. See Sieg [1990] and Stein [1988] for illuminating accounts of Dedekind’s influence on Hil-
bert. I am also indebted to Kitcher [1986]; Parsons [1990]; Hallett [1990]; McCarty [1995]; and Tait
[1997].

pends on how similar ordinary reference is to mathematical reference. I argue in
chapters 3 and 4 that model theory provides the right picture in both cases. More-
over, in ordinary discourse, we do sometimes refer to the places of a structure or
pattern, using singular terms, via the places-are-objects perspective. This occurs when
we discuss an organization or pattern independently of any exemplifications it may
have. Perhaps Dummett would retort that this latter reference is also thin. If so, then
I am content to leave the dialogue at this juncture. Mathematical reference is no less
robust than at least some ordinary reference.

Notice also that Dummett’s conclusion about “thin” reference also depends on
the extent to which places in a structure are similar to ordinary objects. Is it clear that
there is a single, all-inclusive domain of all nonmathematical objects? Is it even clear
that there is a sharp border between the mathematical and the mundane? I briefly
return to ordinary objects in chapter 8.19

4 Dedekind and ante rem Structures

To locate a more direct forerunner of ante rem structuralism, I back up a bit and
turn to another logicist, Richard Dedekind.20 His Stetigkeit und irrationale Zahlen
[1872] contains the celebrated account of continuity and the real numbers. The
opening paragraph (§1) sounds the familiar goal of eliminating appeals to intuition:
“In discussing the notion of the approach of a variable magnitude to a fixed limit-
ing value . . . I had recourse to geometric evidences. Even now such resort to geo-
metric intuition in a first presentation of the differential calculus I regard as ex-
tremely useful. . . . But that this form of introduction into the differential calculus
can make no claim  to being scientific no one will deny. . . . The statement is so
frequently made that the differential calculus deals with continuous magnitude, and
yet an explanation of this continuity is nowhere given.” In order to facilitate the
rigorous deduction of theorems, the mathematician needs a precise formulation of
the central notion of “continuous magnitude.” How can this be accomplished with-
out appeal to intuition?

Dedekind motivated the problem by noting that the rational numbers can be
mapped one-to-one into any straight line, given only a unit and a point on the line as
origin. Thus, the arithmetical property of “betweenness” shares many (structural)
features with its geometrical counterpart. The ancient lesson of incommensurables
is that there are points on the line that do not correspond to any rational number. In
other words, there are holes or gaps in the rational numbers. Consequently, the ratio-
nal numbers are not continuous.
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According to Dedekind, even if an appeal to spatial or temporal intuition were
allowed at this point, it would not help. Do we have intuitions of continuity? Lipschitz
wrote to Dedekind that the property of continuity is self-evident and so does not need
to be stated, because no one can conceive of a line as discontinuous. Dedekind re-
plied that he, for one (and Cantor, for two) can conceive of discontinuous lines
(Dedekind [1932, vol. 3, 478]; see Stein [1988, 244]). In [1872, §3], Dedekind wrote
that “if space has at all a real existence it is not necessary for it to be continuous,”
and in the preface to the first edition of his later monograph on the natural numbers
[1888], he gave a nowhere-continuous interpretation of Euclidean space. His point
is that we do not see or intuit the line as continuous; we attribute continuity to it. But
we have as yet no rigorous formulation of continuity. Thus, Dedekind sought an
“axiom by which we attribute to the line its continuity.”

Dedekind defined a cut to be a division of the rational numbers into two sets (A1,
A2) such that every member of A1 is less than every member of A2. If there is a ratio-
nal number n such that n is either the largest member of A1 or the smallest member
of A2, then the cut (A1, A2) is “produced” by n. Of course, some cuts are not pro-
duced by any rational number—thus the discontinuity of the rational numbers.
Dedekind’s plan is to fill the gaps: “Whenever, then, we have to do with a cut (A1,
A2) produced by no rational number, we create a new, an irrational number a, which
we regard as completely defined by this cut (A1, A2); we shall say that the number a
corresponds to this cut, or that it produces this cut.” The language in [1872] suggests
that he did not identify the real numbers with the cuts. Instead, the “created” real
numbers “correspond” to the cuts. It is not clear what he meant by the phrase “create
a new number,” and I will return to this shortly. Of course, a structuralist would say
that the cuts exemplify the real-number structure.

The opening paragraphs of Dedekind’s later monograph on the natural numbers
[1888] continue the rejection of intuition: “In speaking of arithmetic (algebra, analy-
sis) as a part of logic I mean to imply that I consider the number-concept entirely inde-
pendent of the notions or intuitions of space and time.” This echoes a passage in the
earlier work [1872, §1]: “I regard the whole of arithmetic as a necessary, or at least
natural, consequence of the simplest arithmetic act, that of counting, and counting it-
self as nothing else than the successive creation of the infinite series of positive inte-
gers in which each individual is defined by the one immediately preceding; the sim-
plest act is the passing from an already-formed individual to the consecutive new one
to be formed.” The “counting” here is not the technique of determining the cardinality
of a collection or concept extension. Dedekind’s counting is the “creation” of the natu-
ral numbers, one after another. Thus, his starting point is different from Frege’s.

Dedekind [1888, §5] defined a set S and function s to be a “simply infinite system”
if s is one-to-one, there is an element e of S such that e is not in the range of s (thus
making S Dedekind-infinite), and the only subset of S that both contains e and is closed
under s is S itself.21 In effect, a simply infinite system is a model of the natural numbers.

21. The closure condition is formulated with the notion of a “chain,” which is quite similar to Frege’s
ancestral.
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At this point, Dedekind defined the “natural numbers” with language that is
music to the ears of the structuralist:

If in the consideration of a simply infinite system N set in order by a transformation f
we entirely neglect the special character of the elements, simply retaining their distin-
guishability and taking into account only the relations to one another in which they are
placed by the order-setting transformation f, then are these numbers called natural
numbers or ordinal numbers or simply numbers. . . . With reference to this freeing the
elements from every other content (abstraction) we are justified in calling numbers a
free creation of the human mind. The relations or laws which are derived entirely from
the conditions . . . are always the same in all ordered simply infinite systems, whatever
names may happen to be given to the individual elements.

Like Frege [1884], Dedekind went on to establish that “the natural numbers” satisfy
the usual arithmetic properties, such as the induction principle. He defined addition
and multiplication on “the natural numbers” and proved that definitions by primi-
tive recursion do define functions. Finally, he gave straightforward applications of
“the natural numbers” to the counting and ordering of finite classes. That is, he char-
acterized the finite cardinal structures and the finite ordinal structures in terms of his
“natural numbers.”

The sentence just quoted suggests a reading of Dedekind as a protoeliminative
structuralist, perhaps like Hilbert. Parsons [1990] proposes, but eventually drops, such
an interpretation (see also Kitcher [1986, e.g., 333]). Dedekind’s published works,
[1872] and [1888], are more or less neutral on the distinction between eliminative
and ante rem structuralism. Either interpretation fits most of the text. Dedekind did
use the letter “N” as a singular term, and there are phrases like “we denote numbers
by small italics” (§124), which suggests an ante rem reading, but his locution could
mean something like “in what follows, we use ‘N’ to denote an arbitrary (but un-
specified), simply infinite set, and we use small italics to denote the members of N.”
It is similar to a contemporary algebraist saying “let G be an arbitrary group, and let
e be the identity element of G.”

The theorem in §132 is “All simply infinite systems are similar [i.e., isomor-
phic] to the number series N and consequently . . . also to one another.” On an elimi-
native reading, this is awkward and redundant. It would be better to say (and prove
directly) that all simply infinite systems are isomorphic to each other. The same
goes for other passages, like that in §133, but again, this does not rule out an elimi-
native reading. To further understand Dedekind’s views on these matters, we turn
to his correspondence.

Dedekind’s friend Heinrich Weber had suggested that real numbers be identified
with Dedekind cuts and that natural numbers be regarded as finite cardinals and iden-
tified with classes—along the lines of Frege or Russell and Whitehead. Dedekind
replied that there are many properties of cuts that would sound very odd if applied to
the corresponding real numbers (January 1988; in Dedekind [1932, vol. 3, 489–490]).
Similarly, there are many properties of the class of all triplets that should not be ap-
plied to the number 3. This is essentially the same point made in Benacerraf’s [1965],
much discussed in chapters 3 and 4. Notice how far Dedekind’s approach is from
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that of his fellow logicist Frege. Rather than wonder whether 2 is Julius Caesar,
whether 2 ∈ 4, and whether my socks are members of 2, Dedekind did not want to
even ask the questions.

In the same letter, he again invoked the mind’s creativity:

If one wished to pursue your way—and I would strongly recommend that this be car-
ried out in detail—I should still advise that by number . . . there be understood not the
class (the system of all mutually similar finite systems), but rather something new (cor-
responding to this class), which the mind creates. We are of divine species and with-
out doubt possess creative power not merely in material things . . . but quite specially
in intellectual things. This is the same question of which you speak . . . concerning my
theory of irrationals, where you say that the irrational number is nothing else than the
cut itself, whereas I prefer to create something new (different from the cut), which
corresponds to the cut. . . . We have the right to claim such a creative power, and be-
sides it is much more suitable, for the sake of the homogeneity of all numbers, to pro-
ceed in this manner.

Thus, for Dedekind numbers are objects.22

As noted earlier, it is not clear what Dedekind meant by the “creativity” meta-
phor. Matters of charity preclude attributing some sort of subjectivism to this great
mathematician. He surely did not think that the existence of the real numbers began
at the moment he had the idea of “creating” them from cuts. Moreover, mathematics
is objective if anything is; his numbers are the same as any mathematician’s. In ad-
dition, he was no constructivist. As noted in chapter 1, Dedekind [1888, §1] explic-
itly adopted excluded middle.

Some commentators, like McCarty [1995] suggest a Kantian reading of Dedekind’s
“creativity,” relating it to the categories rational beings invoke in order to think. This
squares nicely with his logicism. On this interpretation, he was broadly Kantian, but
he joined Frege in moving the source of arithmetic and analysis from spatial and
temporal intuition to the rational mind’s ability to deal with concepts. Stein [1988]
relates “free creation” to the mind’s ability to open and explore new conceptual pos-
sibilities, a theme that occurs often in Dedekind’s writings.

The most common interpretation is that Dedekind’s “free creation” is an abstrac-
tion of sorts, perhaps like the account sketched in chapter 4. Tait, for example, wrote
of “Dedekind abstraction.” Starting with, say, the finite von Neumann ordinals, “we

22. Nevertheless, Dedekind did not insist on thinking of numbers as objects. In a letter to Lipschitz
(June 10, 1876, in Dedekind [1932, §65]), he wrote, “[I]f one does not want to introduce new numbers,
I have nothing against this; the theorem . . . proved by me will now read: the system of all cuts in the
discontinuous domain of all rational numbers forms a continuous manifold.” This alternate reading is
consonant with eliminative structuralism. Hallett [1990, 233] remarks that Dedekind did not insist on
numbers being objects, because the existence of numbers as objects is not part of the meaning of “real
number.” What does matter is “the holding of the right properties,” that is, the structure. It is conve-
nient and perspicuous to take numbers to be new objects, but such a view is not required. This is of a
piece with the present thesis that eliminative, modal, and ante rem structuralism are equivalent to each
other (see chapters 3 and 7).
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may . . . abstract from the nature of these ordinals to obtain the system N of natural
numbers. In other words, we introduce N together with an isomorphism between the
two systems. In the same way, we can introduce the continuum, for example, by
Dedekind abstraction from the system of Dedekind cuts. In this way, the arbitrari-
ness of this or that particular ‘construction’ of the numbers or the continuum . . . is
eliminated” ([1986, 369]). If two systems are isomorphic, then the structures obtained
from them by Dedekind abstraction are identical. This highlights the importance of
the categoricity proof in Dedekind [1888] and explains why he had no objection to
other ways of defining the real and natural numbers, and even encouraged that alter-
nate paths be pursued. In the preface to [1888], he agreed that Cantor and Weierstrass
had both given “perfectly rigorous,” and so presumably acceptable, accounts of the
real numbers, even though they were different from his own and from each other.23

What the accounts share is the abstract structure.
In a letter to Hans Keferstein (February 1890; translated in van Heijenoort [1967,

99–103]), Dedekind reiterated that he regarded the natural numbers to be a single
collection of objects. He wrote, “[The] number sequence N is a system of individu-
als, or elements, called numbers. This leads to the general consideration of systems
as such.” He called the number sequence N the “abstract type” of a simply infinite
system. In response to Keferstein’s complaint that he had not given an adequate defi-
nition of the number 1, he wrote, “I define the number 1 as the basic element of the
number sequence without any ambiguity . . . and just as unambiguously, I arrive at
the number 1 . . . as a consequence of the general definition. . . . Nothing further may
be added to this at all if the matter is not to be muddled.” Note the similarity of the
last remark to Hilbert’s quip that any attempt to get beyond structural properties is to
go around in a circle. Dedekind took the numbers—the places in the natural-number
structure—to be objects. As noted in chapters 3–4, one advantage of ante rem struc-
turalism is that the language of arithmetic is taken at face value. The mind “creates”
the numbers as paradigm instances of the abstract type. The abstraction fixes both
the grammar and the subject matter of the branch in question.24

Cantor also spoke of a process of abstraction, which produces finite and transfi-
nite cardinal numbers as individuals. His language is similar to Dedekind’s: “By the
‘power’ or ‘cardinal number’ of M we mean the general concept, which arises with
the help of our active faculty of thought from the set M, in that we abstract from the
nature of the particular elements of M and from the order they are presented. . . .
[E]very single element m, if we abstract from its nature, becomes a ‘unit’; the cardi-
nal number [of M] is a definite aggregate composed of units, and this number has
existence in our mind as an intellectual image or projection of the given aggregate
M” ([1932, 282–283]). Cantor gave a similar account of order types, starting with an
ordered system: “[W]e understand the general concept which arises from M when

23. However, Dedekind wrote that his approach is “somewhat simpler, I might say quieter” than
those of Cantor and Weierstrass.

24. I am indebted to Tait [1997] and McCarty [1995] for this way of putting the point, and to Tait
[1997] for pointing to the material that follows.
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we abstract only from the nature of the elements of M, retaining only the order of
precedence among them. . . . Thus the order type . . . is itself an ordered set whose
elements are pure units” (p. 297). Cantor thus shared with Dedekind a notion of free
creation. Numbers and order types are individual objects, quite similar to the finite
cardinal and ordinal structures presented in chapter 4.

Russell [1903, 249] took both Cantor and Dedekind to task:

[I]t is impossible that the ordinals should be, as Dedekind suggests, nothing but the
terms of such relations as constitute a progression. If they are to be anything at all,
they must be intrinsically something; they must differ from other entities as points from
instants or colours from sounds. . . . Dedekind does not show us what it is that all pro-
gressions have in common, nor give any reason for supposing it to be the ordinal num-
bers, except that all progressions obey the same laws as ordinals do, which would prove
equally that any assigned progression is what all progressions have in common. . . .
[H]is demonstrations nowhere—not even where he comes to cardinals—involve any
property distinguishing numbers from other progressions.

Russell’s complaint here looks like Frege’s Caesar problem. Frege [1903, §§138–
147] himself launched a similar attack on Dedekind’s and Cantor’s “free creation.”
Unlike the other logicists, Dedekind felt no need to locate the natural numbers and
the real numbers among previously defined or located objects. This crucial aspect of
“free creation” is shared with the present ante rem structuralism.

Although Dedekind was at odds with Russell and Frege, he was still a logicist.
The preface to Dedekind [1888] states that arithmetic and analysis are part of logic,
claiming that the notions are “an immediate result from the laws of thought.” This is
a prominent Fregean theme. Dedekind added that numbers “serve as a means of
apprehending more easily and more sharply the difference of things.” The same idea
is sounded in the 1890 letter to Keferstein: “[My essay is] based on a prior analysis
of the sequence of natural numbers just as it presents itself in experience. . . . What
are the . . . fundamental properties of the sequence N . . . ? And how should we
divest these properties of their specifically arithmetic character so that they are sub-
sumed under more general notions and under activities of the understanding without
which no thinking is possible at all but with which a foundation is provided for the
reliability and completeness of proofs and for the construction of consistent notions
and definitions?” The preface to Dedekind [1888] lists some of the relevant “more
general notions”: “If we scrutinize what is done in counting an aggregate or number
of things, we are led to consider the ability of the mind to relate things to things, to
let a thing correspond to a thing, or to represent a thing by a thing, an ability without
which no thinking is possible.”

The general notions, then, are “object,” “identity on objects,” and “function from
object to object.” The first two of these are clearly presupposed in standard first-
order logic, and the third is a staple of second-order logic (see Shapiro [1991]). These
notions are sufficient to define the notion of “one-to-one mapping” and thus “simply
infinite system.” Except for the infamous “existence proof” (§66) and the bit on “free
creation,” Dedekind’s treatment of the natural numbers (and the real numbers) can
be carried out in a standard second-order logic—with no nonlogical terminology. In
other words, once superfluous properties are jettisoned, the only remaining notions
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are those of logic. The relations of the structure are formal, and the structure is
freestanding.

5 Nicholas Bourbaki

Among mathematicians, the name of “structuralism” is often associated with a re-
markable group of mathematicians who call themselves Nicholas Bourbaki. I do not
pretend to do justice to their accomplishments nor to their underlying philosophy.25

Under the influence of Hilbert and the American postulate theorists, Bourbaki
focused on the idea of implicit definition. In Bourbaki [1950], a much-quoted infor-
mal exposition, they praise the axiomatic method as providing a unifying theme for
the diverse branches of mathematics. The axiomatic method makes mathematics
intelligible. Contrary to a common belief, the value of the enterprise is not the rigor
it affords. Bourbaki wrote that the value of the axiomatic method is that it allows the
systematic study of the relations between different mathematical theories. For
Bourbaki, “structure” emerges as a central notion of mathematics. In working with
axiomatic theories, we see how mathematical structures may be embedded in each
other. For Bourbaki, relations among structures are a natural setting for mathemati-
cal studies.26

Bourbaki uses the word “structure” to mean something like a form characterized
by a natural group of axioms: “It can now be made clear what is to be understood, in
general, by a mathematical structure. The common character of the different con-
cepts designated by this generic name, is that they can be applied to sets of elements
whose nature has not been specified; to define a structure, one takes as given one or
several relations, into which these elements enter . . . then one postulates that the given
relation, or relations, satisfy certain conditions (which are explicitly stated and which
are the axioms of the structure under consideration)” (p. 225–226). In a footnote,
they sound a theme we saw in the development of geometry: “It goes without saying
that there is no longer any connection between this interpretation of the word ‘axiom’
and its traditional meaning of ‘evident truth.’” Axioms are now more like definitions,
implicit definitions in particular.

According to Bourbaki, there are three great types of structures, or “mother struc-
tures”: algebraic structures, such as group, ring, field; order structures, such as par-
tial order, linear order, and well-order; and topological structures, which “furnish an
abstract mathematical formulation of the intuitive concepts of limit, neighborhood
and continuity, to which we are led by our idea of space” (p. 227).

25. See, for example, Corry [1992] and the references therein. In a number of places, Bourbaki
expressed scorn for philosophy.

26. In another popular article [1949, 2], Bourbaki wrote that logic was developed with mathemat-
ics and, for the most part, only mathematics in mind: “It serves little purpose to argue that logic exists
outside mathematics. Whatever, outside mathematics, is reducible to pure logic is invariably found, on
close inspection, to be nothing but a strictly mathematical scheme . . . so devised as to apply to some
concrete situation.” This is a subtheme of this book; see chapters 1, 2 and 8.
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Bourbaki called a theory of a structure in the present sense, such as arithmetic
and analysis, “univalent.” The theory concerns a single structure, unique up to iso-
morphism. Such structures lie at the “cross-roads, where several more general math-
ematical structures meet and react upon one another” (p. 229). They note that the
first axiomatic treatments, those that “caused the greatest stir,” dealt with these uni-
valent theories. The axiomatizations could not be “applied to any theory except the
one from which they had been extracted.” If the axiomatic enterprise had not evolved
beyond such univalent theories, “the reproach of sterility brought against the axiom-
atic method, would have been fully justified” (p. 230).

The article closes with the idea that their notion of structure is part of a research
program within mathematics (p. 231):

From the axiomatic point of view, mathematics appears thus as a storehouse of ab-
stract forms—the mathematical structures. . . . Of course, it cannot be denied that most
of these forms had originally a very definite intuitive content; but, it is exactly by de-
liberately throwing out this content, that it has been possible to give these forms all the
power they were capable of displaying and to prepare them for new interpretations and
for the development of their full power.

It is only in this sense of the word “form” that one can call the axiomatic method a
“formalism”. The unity which it gives to mathematics is not the armor of formal logic,
the unity of a lifeless skeleton; it is the nutritive fluid of an organism at the height of its
development, the supple and fertile research instrument to which all the great mathe-
matical thinkers since Gauss have contributed.

Notice the continuing theme of purging intuition from mathematics.
Bourbaki’s monumental and influential mathematical work appeared over sev-

eral decades, illustrating this theme in practice. Although their Theory of sets [1968]
contains a precise mathematical definition of “structure,” Corry [1992] shows that
this technical notion plays almost no role in the other mathematical work, and only
a minimal role in the book that contains it. The notion of “structure” that underlies
the work of Bourbaki and contemporary mathematics, is inherently informal:

The concept of mother-structures and the picture of mathematics as a hierarchy of struc-
tures are not results obtained within a mathematical theory of any kind. Rather, they
belong strictly to Bourbaki’s images of mathematics; they appear only in nontechni-
cal, popular articles . . . or in the myths that arose around Bourbaki. (Corry [1992, 340])

[T]he rise of the structural approach to mathematics should not be conceived in terms
of this or that formal concept of structure. Rather, in order to account for this develop-
ment, the evolution of the nonformal aspects of the structural image of mathematics
must be described and explained. (Corry [1992, 342])

This book is a contribution to the program described by that last sentence.
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6

Practice

Construction, Modality, Logic

1 Dynamic Language

At the beginning of chapter 1, I mentioned a gap between the practice of mathemat-
ics and its current philosophical and semantic formulations.1 Mathematicians speak
and write as if dynamic operations and constructions are being performed: they draw
lines, they move figures, they make choices, they apply functions, they form sets.
Taken literally, this language presupposes that mathematicians envision creating their
objects, moving them around, and transforming them. This manner of speaking goes
back to antiquity. Euclid’s Elements contains statements that express the capabili-
ties of mathematicians to effect geometrical construction or, in other words, the
potentialities of geometrical objects to be created or affected by mathematicians. One
of the postulates is “Given any two points, to draw a straight line between them.”
Taken literally, assertions like this are statements of permission, or of what combi-
nations of moves are possible.

In contrast to the dynamic picture, the traditional Platonist holds that the subject
matter of mathematics is an independent, static realm. Accordingly, the practice of
mathematics does not change the universe of mathematics. In a deep, metaphysical
sense, the universe cannot be affected by operations, constructions, or any other human
activity, because the mathematical realm is eternal and immutable. There can be no
permission to operate on such a domain.

To belabor the obvious, then, the traditional Platonist does not take dynamic lan-
guage literally. Euclid’s Elements also contains static language, statements about
existing geometrical objects. One postulate is “All right angles are equal.” For the
Platonist, this is the philosophically correct way to speak.

The passage from Book VII of the Republic, in which Plato scolds his mathemati-
cal colleagues, is worth repeating: “[The] science [of geometry] is in direct contra-

1. Much of this chapter is a successor to Shapiro [1989].
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diction with the language employed by its adepts. . . . Their language is most ludi-
crous, . . . for they speak as if they were doing something and as if all their words
were directed toward action. . . . [They talk] of squaring and applying and adding
and the like . . . whereas in fact the real object of the entire subject is . . . knowledge
. . . of what eternally exists, not of anything that comes to be this or that at some time
and ceases to be.” Of course, the geometers in Plato’s time did not take his advice,
and neither do contemporary mathematicians.

With the clarity of hindsight, one might think that this dispute over language is,
pardon the expression, merely verbal. Hilbert’s [1899] treatment of Euclidean ge-
ometry is written almost entirely with static language. He makes no reference to the
capabilities of mathematicians or to the potentialities of objects to be created and
acted on. For example, he says that between any two points there is a straight line.
One might say that in Hilbert’s geometry, there is no geometer. Statements of per-
mission are replaced with statements of existence.

The straightforward interpretation of Hilbert [1899] is that it establishes facts about
the geometric realm, and so his language (if not his philosophy) conforms to realism
in ontology and to realism in truth-value. Yet, for all of that, Hilbert’s treatment is
easily recognized as Euclidean. Except for a few logical axioms and inferences, many
statements in Hilbert [1899] correspond to those in the Elements. A contemporary
student of logic can routinely “translate” most of Euclid’s Elements into the static
language of Hilbert [1899].

The situation is not as simple as this, on either mathematical or philosophical
grounds. Consider, for example, the long-standing problems of trisecting an angle,
squaring a circle, and doubling a cube. One instance of the first problem is: “Is it
possible to construct an angle of twenty degrees?” Applying the reformulation of
dynamic language, the question becomes “Does there exist an angle of twenty de-
grees?” Clearly, this last is not what the geometers (or the oracle) wanted to know in
posing the original construction problem. They proposed a more or less literal ques-
tion of whether a given angle can be drawn. This problem presupposes another ques-
tion: “What tools are allowed in constructing our angle?” Each set of construction
tools results in a different batch of construction problems. In the case at hand, of
course, the original problem was to draw an angle of twenty degrees using only a
compass and unmarked straightedge. Ancient geometers knew how to trisect an ar-
bitrary angle using a compass and a marked straightedge.

Perhaps the static statements and problems are equivalent to their dynamic coun-
terparts when there are no restrictions on construction tools. To draw an angle of
twenty degrees, one need only draw a circle and then draw two lines from the center
that cut off exactly one-eighteenth of the circumference. These instructions are de-
terminate, if not effective. We “can” square the circle and double the cube in a simi-
lar fashion.

Thus we bring the static and the dynamic together by expanding the dynamic,
allowing extensive tools. Another way to connect the discourses is to restrict the static.
A constructivist might insist that the way to interpret the Elements is that the only
objects that exist are those that can be constructed from an original set of points, using
a compass and straightedge. So an angle of twenty degrees does not exist (assuming
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that the Abel–Galois result is available to our constructivist). This perspective is also
problematic. One Euclidean axiom allows the drawing of a circle given any center
and radius. If every point on the circumference of such a circle exists, then there will
be two such points exactly twenty degrees apart. Another axiom allows the drawing
of a line from each of these points to the center of the circle. There is our angle. Is
our constructivist interpreter to hold that a circle exists but that some points on its
circumference do not?2

The upshot is that it is not obvious how static and dynamic language are to inter-
act. The conflation articulated by Hilbert [1899] is that the locution “one can draw”
be understood as “there exists.” On making this move, however, one loses the ability
to formulate some of the original construction problems. The static language has no
resources to speak of what can be constructed with this or that set of tools. The other
extreme, the constructive route to conflating the languages, is to fix a set of tools and
restrict the ontology to what can be constructed with these tools.

As articulated here, structuralism is a realism in truth-value and a realism in on-
tology. Thus, a structuralist might join Plato and hold that only the static language is
literally correct. The universe of structures is a Platonic heaven (or haven). This would
be a mistake, because structuralism should aim for an account of all mathematics,
not just those parts that dovetail nicely with traditional Platonism.

Some of the construction problems were resolved in the negative only when math-
ematicians articulated the structure of Euclidean construction as such and embed-
ded this structure in a richer one. The situation is somewhat analogous to the devel-
opment of computability in the early decades of this century. Mathematicians could
draw conclusions about what cannot be computed only after they articulated the struc-
ture of computability and embedded this structure in a richer one (see Shapiro [1983b];
Gandy [1988]; and Sieg [1994]). The problem for the present project is to show how
one can meaningfully speak of the structure of dynamic systems (like geometric
construction and algorithmic computation), and to bring such structures under the
banner of structuralism. Along the way, we encounter important issues of ontology
and the nature and role of logic.

2 Idealization to the Max

On all accounts, the constructions suggested by dynamic language are idealized. The
Elements, for example, make no allowances for points that are so far apart one can-
not draw a line between them without falling asleep or having the straightedge slip
or decay. Euclidean lines have no width, even though such lines cannot be drawn.
For the sake of discussion, I propose that we think of the constructions as performed
by an imaginary, idealized constructor, obtained in thought by extending the abili-
ties of actual human constructors. Then we can sharpen dynamic language and the

2. This issue is related to the one of the supposed gaps in the Elements, a principle of continuity.
Euclid gave no axiom to sanction an inference that if a line l goes from the outside of a circle to the
inside, then l intersects the circle at some point.
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various “construction problems” by articulating exactly what abilities and permis-
sions are attributed to the ideal constructor.

Lakatos [1976] describes the historical development of a proof that in any poly-
hedron, the number of vertices minus the number of edges plus the number of faces
is 2 (V − E + F = 2). The reader is invited to take an arbitrary polyhedron, of any
size, remove one of the faces, stretch the remaining figure out on flat surface, draw
some lines on it, and remove the lines one at a time, keeping certain tallies along the
way. With the clarity of hindsight, each of these moves is licensed by a principle of
topology. There is thus a connection between construction principles—powers at-
tributed to the ideal constructor—and mathematical principles and logical inferences.
As Lakatos shows, however, the path to this retrospective clarity was not smooth.
The details of the connection were hard-won.

In the dynamic language of contemporary mathematics, the abilities attributed to
the ideal constructor are quite remarkable. Consider the following pair of fanciful
film clips:

SCENE 1. Professor A, an expert in analysis, is lecturing to a class in advanced calculus.

PROFESSOR A: Next I will prove the Bolzano-Weierstrass theorem: every bounded
infinite set has at least one cluster point. Let S be an arbitrary, bounded infinite
set. To prove the theorem,3 we must produce a point p with the property that
every neighborhood of p contains infinitely many points in S . . . We divide C0

into four equal squares by intersecting lines. One of these smaller squares must
contain infinitely many points of S . . . Choosing such a subsquare, label it C1.
We have C0 f C1 and both are closed and bounded. Now repeat this process.
Divide C1 into four squares . . . By continuing this, we generate a sequence of
closed squares Cn . . . Appealing to the nested set property, there must be a point
p that lies in all the sets Cn. This is the point that will turn out to be a cluster
point for S . . .

At this moment, a student with a double major in mathematics and philosophy raises
her hand and is recognized.

STUDENT: You are using a constructional language in this lecture. You do not ac-
tually mean that you or some ideal mathematician has done this construction, do
you? How can anyone do an infinite number of things, and then after all of them—
on the basis of all of them—do something else, in this case pick the point p?

PROFESSOR A: Do not take this lecture literally. Of course, there is no such con-
structional process. I am describing a property of the plane. From principles of
cardinality, I infer the existence of infinitely many points in some square C1, and
then in C2. The axiom of replacement implies the existence of the whole sequence
<Cn>. Finally, from the nested-set property, I deduce the existence of a point in
all of the Cis. I let p be the name of one such point. Now this is what I mean by
this lecture; the constructional language makes it easier for you to see.

3. From here until the end of this speech, Professor A has copied from Buck [1956, 38]. The dots
indicate the omission of material that is of no concern here. Fortunately for us, Professor A knows some
logic and some set theory. In scene 2, most of the opening speech is copied from Crossley et al. [1972,
71–72].
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SCENE 2. Professor T is lecturing on set theory. The same student is in this class.

PROFESSOR T: Intuitively, this is what is going on in the formation of the construct-
ible sets. As we pass each ordinal, we assign to it a set Ma in the following way.
First, M0 = f. At the ordinal a + 1, which is next after a, we put for Ma+1 the
immediately preceding Ma together with the set of all sets definable in this pre-
ceding Ma . . . When we come to a limit ordinal b, we collect together every-
thing we have obtained so far . . . Now, finally, a set is constructible if . . .

STUDENT: Hold it. What do you mean “finally”? Just like Professor A, you are
using constructional language. How do you construct your way to step ω, let alone
through all of the ordinals?

PROFESSOR T: Patience. You will soon see that all of this is justified. If there is
time (and you still insist), I will do it formally next week, with no operative lan-
guage. I will describe, by transfinite induction, a series of functions on ordinals.
I will use the axioms of union and replacement at each stage. However, if I did
that without giving this lecture first, none of you would see what is going on.

If the student in these scenes had encountered constructive or intuitionistic mathe-
matics in her education, she would have questioned Professor A’s ability to “pick”
the squares C1, C2, and so on. The ideal constructor knows that it is not the case that
each of the four squares in the divided plane has only finitely many points, but un-
less he knows which square has infinitely many such points, how can he do any pick-
ing? How does the constructor know which square to pick for C1, C2, and so forth?
Professor A would no doubt appeal to the principle of excluded middle (of which
more later). Because it is not possible for all four squares to have only finitely many
points, then one of them must have infinitely many. The constructor names, or picks,
one such square.

The point here is that when the mathematics is reformulated in static language,
many of the moves allowed to the ideal constructor correspond to logical inferences.
It is not obvious that all such moves should be permitted. This observation, together
with the fact that the “translation” to static language is not straightforward, suggests
that logic is not as universal and topic-neutral as has been thought. Logic, ontology,
and allowed construction are intimately bound up with each other. Here I try to sort
things out.

3 Construction, Semantics, and Ontology

The standard formalisms of each branch of mathematics reflect the static orientation
to our subject. In model theory, a nonalgebraic branch of mathematics is taken to be
about a fixed domain of discourse, and inferences are checked by examining what
holds in all (static) models of the premises. Except for some constructivists, most
theorists take it as obvious that classical logic is sound for this semantics, and thus
for all of mathematics.

Historically, of course, the formalization of a branch of mathematics and the
metamathematical study of formal systems have illuminated and even furthered sev-
eral branches of mathematics. With respect to practice, however, formalization is
unnatural. Deduction represents little more than the ultimate standard of justifica-
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tion in mathematics. Were one interested in establishing a theorem beyond the doubts
of all but the most obstinate skeptic, one would present it as the result of a deduction
from (agreed on) axioms or previously established theorems. Mathematicians at work
however, are not usually concerned with ultimate justification but with understand-
ing and explanation. Their aim is to gain insight into the mathematical structure at
hand in order to understand why a particular theorem is true. Formal deduction often
does not contribute to this understanding and sometimes obscures it. I suggest, there-
fore, that philosophers who are attempting to understand mathematics concentrate
less on the little used standards of ultimate justification and more on the actual work
of mathematicians. It is at least prima facie plausible that the language and techniques
active in mathematical understanding and explanation are good indicators of the nature
of mathematics itself. Indeed, how a given subject matter is grasped should have
something to do with what it ultimately is. Recalling the advice from chapter 1 about
the philosophy-first principle, we should pay some attention to mathematics as
practiced.

As we have seen, for a traditional realist in ontology—as for Plato himself—only
the static mathematical universe has objective existence. Any literal interpretation
of the “constructions” is denied. The only end of the operative language is to pro-
vide picturesque ways of expressing corresponding static statements. A realist in
ontology might concede that dynamic language is somehow necessary for us mor-
tals to understand and gain insight into the mathematical universe. But even if dy-
namic language is a psychological or a methodological necessity, no inferences con-
cerning the essential subject matter of mathematics should be drawn. As indicated
by the film clips, when classical mathematicians use operative language, they claim
to be speaking informally and, if pressed, justify the operative motivation by relying
on axioms in a formal (presumably static) language. Constructions correspond to
existence statements. According to the received views, mathematical practice is the
discussion of, or motivation for, deductions from true axioms.

In contrast, there is a philosophy of mathematics that takes dynamic language se-
riously. For an intuitionist, constructions and operations are the essence of (legiti-
mate) mathematics, and dynamic language is the only literally correct way to depict
mathematics. According to the intuitionist, each apparently static statement is to be
understood as reporting a construction. In arithmetic, for example, the intuitionist
employs the same formulas as the Platonist, but the former interprets them as abbre-
viated forms of speech, which, when fully paraphrased, are operative statements.
Heyting [1956, 8], for example, wrote, “‘2 + 2 = 3 + 1’ is taken as an abbreviation of
‘I have effected the mental construction indicated by “2 + 2” and “3 + 1” and I have
found that they lead to the same result.’”

The intuitionist is thus committed to reinterpreting the static aspects of mathemati-
cal discourse as dynamic. From the present perspective, this is the exact opposite of
our Platonist. Moreover, on this view, classical mathematics (if taken more or less at
face value) is legitimate only to the extent that it can be straightforwardly interpreted
as operative. At this point, battles over logic are joined. In present terms, however,
the disputes concern just what sorts of powers are attributed to the ideal constructor.
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Classical constructors and their intuitionistic counterparts are both idealized, but
classical constructors are idealized more.4

One crucial difference between the classical constructive mode of thought and
the intuitionistic mode is that the former seems to presuppose that there is a (static)
external mathematical world that mirrors the constructs. A traditional Platonist (such
as Proclus) might claim that the existence of the mathematical world is what justifies
or grounds the constructs. However, to stay in line with the modest orientation of
this book, I just note that classical construction proceeds as if there were an external
universe that mirrors it. Classical mathematics does not need the sort of justification
that the Platonist attempts.

Whatever its metaphysical status, the supposition of an external world suggests
certain inferences, some of which are the nonconstructive parts of mathematical prac-
tice rejected by intuitionism. For example, if a classical mathematician proves that
not all natural numbers lack a certain property (i.e., she proves a sentence in the form
5œx5F), she can infer the existence of a natural number with this property (›xF).
Following existential instantiation, she can then give a “name” to some such number
and do further constructional operations on it. In the proof of the Bolzano-Weierstrass
theorem, in scene 1 earlier, we have a similar instance of excluded middle at work.
At each stage, the constructor knows that at least one of four squares has infinitely
many points from the given set, but he may not know which one. Nevertheless, the
constructor can pick one such square, and go on from there.

Intuitionists demur from such inferences and constructions because they under-
stand the principles as relying on the independent, objective existence of the domain
of discourse. For them, every assertion must report (or correspond to) a construc-
tion. In the present example, an intuitionist cannot assert the existence of a natural
number with the said property, because such a number was not constructed. The in-
tuitionist cannot choose a square with infinitely many points from the given sets,
because such a square was not identified. Bishop [1967] understands the law of ex-
cluded middle as a principle of omniscience.

Another related difference between the classical constructive mode and the
intuitionistic mode is that the former allows the completion of infinite processes. We
saw this in the film clips. In scene 1, the constructor produces an infinite sequence of
squares and then picks one point in each. In scene 2, the constructor runs through the
ordinals.5

4. There is an ambiguity in mathematical (and metamathematical) discourse, which comes to the
fore in the present context. In the mathematics literature, words like “construction” are used for both
the classical dynamic processes under study here, as depicted in the film clips, and the intuitionistic
use, with its specific restrictions. For example, a classical author may refer to the “Bolzano-Weierstrass
construction.” For the present, context or explicit reference indicates which use is intended.

5. Consider a man who turns on a light at a given moment. One second later, he turns it off; a half
second after that, he turns it back on; a quarter second later, off, and so on. After two seconds, is the
light on or off? Compared to the accomplishments of our (classical) constructor, these “supertasks”
seem tame.



188 RAMIFICATIONS AND APPLICATIONS

This language abounds. Crossley et al. [1972, 63] give this gloss on the axiom of
choice: “If I have a set of non-empty sets, then I can choose one member from each
set and put the chosen elements together into a set.” If the set is infinite, then this
“axiom” licenses the constructor to do an infinite amount of choosing and then after
that, do something else. In discussing the iterative notion of set, Gödel [1944] wrote,
“The phrase is meant to include transfinite iteration; i.e., the totality of sets obtained
by finite iteration is considered to be itself a set and a basis for the further applica-
tion of the operation ‘set of.’”

The supposition that there is a static mathematical universe that mirrors the dy-
namic language sanctions these infinitary procedures. Consider, once more, the afore-
mentioned proof of the Bolzano-Weierstrass theorem, in scene 1. On the classical
view, each construct refers to a fact in the static mathematical world. The construc-
tion of the first square C0 reflects the existence of a corresponding square in the plane.
A more neutral way to put it is that the construction proceeds as if there were a cor-
responding square in the plane. Similarly for C1 and C2. From the discourse, it be-
comes clear that the construction could be continued as far as one wished. This re-
flects the existence of a square that corresponds to Cn for any particular natural number
n. The crucial supposition is that the corresponding squares exist whether or not the
construction is actually performed. The existence of the entire sequence of squares
is then deduced. By the nested-set theorem, there is a point p in all of the Cns. The
proof concludes with a demonstration of some facts about p.

In this example at least, the supposition allows one to proceed as if an infinite
process had been completed—more precisely, the supposition of a static universe
suggests that one can infer the existence of what would be the result of such a pro-
cess, in this case a point in every element of the infinite sequence of squares. In the
jargon of mathematics, we pass to the limit.

Because, as noted, intuitionistic construction proceeds without this supposition,
its ideal constructors are not endowed with the ability to finish infinite tasks. Beth
wrote (Beth and Piaget [1966, 47]), “[I]n classical mathematics, it often happens that,
in the course of a demonstration, a construction occurs which requires the introduc-
tion of an infinite series of successive operations, whilst the demonstration contains
a certain inference depending on the result of this construction, that cannot be judged
before the infinite series of operations is completed. . . . Such a manner of reasoning
is inadmissible from a strictly constructivist point of view; this viewpoint does not
allow the use of the result of a construction unless the construction can be completed;
now it is clear that one can never carry out a construction consisting of an infinite
series of successive operations.” Sort of. As Beth was aware, the intuitionist does
accept certain constructions that represent the completion of infinite processes, once
the construction is restated in classical terms. The difference lies in the classical and
intuitionistic conceptions of items like numbers, sequences, and sets. To speak
roughly, an intuitionistic real number is a Cauchy sequence of rationals. If one gives
a rule for a Cauchy sequence, one has given the number. The constructor does not
have to carry out a sequence or pass to the limit to “arrive” at the number. In a sense,
the sequence itself is the number. In general, intuitionists accept the potential infi-
nite, in the form of procedures for continuing indefinitely, but they do not accept the



CONSTRUCTION, MODALITY, LOGIC 189

actual infinite, which for them would be the completion of an infinitary procedure.
These differences in ontology provide a challenge to the present attempt to bring
intuitionistic mathematics into the fold of structuralism (see section 5).

4 Construction, Logic, and Object

My conclusion, thus far, is that classical and intuitionistic mathematics differ in the
different types of “construction” that are countenanced; in other words, they allo-
cate different powers to the ideal constructor. When cast in dynamic terms, the meth-
odological principles that separate the camps become different sets of permissions
allowed in construction. This subsumes the difference in logic.

There is thus an intimate, three-way link between the ontology that best fits a given
stretch of mathematical discourse, the allowed constructions in that area, and the
proper or best logic of the discourse. Never mind, for now, what the proper meta-
physical, epistemic, and explanatory priority relations among these three might be.
Tait [1986, 600–601] endorses a similar connection:6 “I believe that it is possible to
argue that . . . logical principles of proof are the same as principles of construction
or definition of objects. . . . [T]here is no natural distinction between mathematics
and the logic of mathematics.”

Kitcher [1983] articulates and defends a view of mathematics that focuses on
construction-type activity. He suggests that in antiquity (and with children), math-
ematical knowledge began (begins) by focusing on the human ability to assemble
and manipulate collections of objects. From this “protomathematical” start, the en-
terprise of mathematics evolves through a series of idealizations. The focus shifts
from the capabilities of actual people to those of an ideal observer-constructor who
lacks certain limitations on humans. As above, the adoption of classical logic can be
understood in these terms. As we have seen, the dynamic law of excluded middle is
an idealization on the knowledge of the constructor. The current results of this evolv-
ing process are the branches of abstract mathematics that we study today.

Although Kitcher does not make the connection, there is an affinity between his
view and some work on the origins of mathematical concepts in children. Some of
the psychological literature takes such concepts to be both dynamic and structural.
Cooper [1984], for example, writes, “Consider number development as learning about
the space of number. In this space, one must learn where things are, and how to get
from one place to another. For purposes of the analogy, the locations are specific
numerosities and the actions (transformations) to get from one place to another are
additions and subtractions. . . . [C]hildren learn about this space of numbers by trav-
eling in it. It is through experiences of moving in this space of numbers (by addition

6. The conclusions of Tait [1981] are also consonant with the present orientation. Tait proposes
that the natural numbers be construed as constructions, or iterations of a construction procedure. He
then argues that for the Hilbert program, finitism is the restriction of reasoning about numbers to those
methods implicit in the very construction of numbers. Nonfinitary reasoning is the application of methods
derived from other sources to the natural numbers.
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and subtraction) that children learn its ordinal structure” (p. 158). See also Piaget’s
half of the aforementioned Beth and Piaget [1966].

Prima facie, the connection between logic, ontology, and construction runs counter
to the widely held view that logic is the study of the canons of correct inference com-
mon to all systems, no matter what their “objects” might be. The slogan is “logic is
topic-neutral.” Accordingly, either the classical mathematician or the intuitionist is
using the wrong logic. The classical constructor is too strong or his intuitionistic
counterpart is too weak.

A full-scale attack on the “logic-is-topic-neutral” thesis would take us too far afield,
but perhaps a statement of my perspective on logic and ontology is in order. This
part of this book serves as a partial defense.

There are at least two versions of the topic-neutrality theme. I reject one of them
outright and leave the other open but severely qualified. The view to be repudiated is
a strong thesis that there is but one correct logic—period. Call this view logical ab-
solutism. An advocate of this position may claim that this logic is established through
a soundness theorem that concerns the model-theoretic semantics common to all
language, or at least all language that is sufficiently regimented. Or perhaps the po-
sition may be supported by proof-theoretic studies. The most common version of the
view is that standard, classical, first-order logic is the one true logic, but some argue
for intuitionistic logic as the one true logic; Tennant [1987] endorses intuitionistic
relevant logic. The various arguments presuppose that there is a single model-
theoretic-type semantics common to all language or a single notion of logical form
or a single notion of objects and reference.

Against this, I urge a more eclectic attitude concerning logic, and that intuitionistic
and classical systems both be regarded as legitimate branches of mathematics. The
perspective delimited earlier is that some inference rules are tied to permissions and
abilities attributed to an ideal constructor. My proposal amounts to a suggestion that
different sets of permissions and abilities be investigated. I see no reason, other than
philosophical prejudice, to restrict the development of mathematical systems to one
sort of logic. Let a thousand flowers (try to) bloom.7

In support of this eclectic orientation, notice that classical mathematicians and
intuitionistic mathematicians do not ultimately have trouble understanding each other,
following each others’ proofs, or even contributing to each others’ school—keeping
in mind, of course, that mutual understanding is not an absolute, all-or-nothing mat-
ter. To be sure, classical mathematicians often have trouble following intuitionistic
discourse at first, but if prejudice is submerged and an honest effort is made, it is not
difficult to get used to it. From the other perspective, many remaining intuitionists
find themselves in ordinary departments of mathematics and philosophy, and so are

7. Unlike Brouwer, Heyting (e.g., [1956]) sometimes took an eclectic view toward mathematics.
In his conciliatory moments, he urged a place for intuitionistic mathematics “alongside” classical mathe-
matics. In chapter 1, I repudiated the view, called “philosophy-first,” that philosophy should deter-
mine the proper direction for mathematics. Philosophy should not attempt to restrict the mathemati-
cian to classical logic either. The intuitionistic differences between actually infinite, potentially infinite,
and unbounded might be helpful in modeling linguistic competence.
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required to teach standard courses in mathematics and logic. By and large, they do it
in good conscience, and they do a fine job. Occasionally, they come up with new
results within classical mathematics.

The point here is that in most cases, classical mathematicians recognize the
intuitionist’s work as mathematics, even if they reject its underlying restrictions.
Intuitionists must also see at least a tight family resemblance between their work and
that of classical colleagues. Thus, I take it as a desideratum that a philosophy of
mathematics accommodate both and not reject either one as incoherent. If the theme
of structuralism is to be maintained, the structure of nonclassical systems ought to
be countenanced.

A second, weaker version of the logic-is-topic-neutral thesis allows multiple log-
ics in some sense but adopts a version of the Kuhnian doctrine of incommensurabil-
ity between the logics (see Kuhn [1970]). If different “conceptual schemes” employ
different logics, then neither scheme is comprehensible to the other. Logic is still
topic-neutral in the sense that it applies universally within its “scheme.” On this ar-
ticulation, then, all systems within a given conceptual framework have the same logic,
and importantly, any system from a rival framework (with a different logic) is inco-
herent from the point of view of the first. Classical and intuitionistic systems are each
incoherent from the perspective of the other.

On this view, there can be no common framework to compare and relate the
schemes and the logics. Indeed, a common framework would undermine the incom-
mensurability, and the neutrality of each logic. There may be a classical-logic frame-
work and, perhaps, an intuitionistic framework (and a quantum framework, a
predicative framework, a relevant framework, etc.) but never the twain shall meet.
Indeed, if there were a single theory for grasping both classical and intuitionistic
systems, what would its logic be?

Davidson [1974] argues against the very possibility of different conceptual
schemes, especially if they are taken to be incommensurable in an extreme form. In
any case, if the incommensurability can be sustained at all, it must be tempered. Notice,
first, that on the Kuhnian view, interpretation across frameworks is possible. Kuhn
himself provides lucid accounts of paradigms that are no longer accepted. If the
rival schemes were totally incommensurable, we would not understand Kuhn’s own
work. In the present case, the various interpretations of classical systems into their
intuitionistic counterparts (via double negation, etc.) and the Kripke semantics for
intuitionistic systems are two examples (see Kripke [1965]). In each case, the lan-
guage of one scheme is translated into the language of the other, so that theorems are
preserved. To be sure, these interpretations do not exhibit equivalence in any straight-
forward sense. Logical structure is not preserved, of course—that is the point. In short,
the mutual interpretation is partial at best.

I just noted that classical mathematicians and intuitionists can and do under-
stand each other, for the most part. I submit that this mutual understanding is not
accomplished by one of the aforementioned interpretations. That would take too
long. Each mathematician simply learns directly how to work in the other frame-
work. It is similar to someone who can speak two languages without constantly
translating between them, or even without being able to translate between them
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very well. I do not see anything in the anti-incommensurability arguments to rule
this out.

This weak version of the separate-and-incommensurable thesis must be further
qualified. The goal of the present articulation of structuralism is to accommodate all
structures, including those with intuitionistic logic. So the philosophical framework
of structuralism must be able to talk about systems with either kind of logic. Struc-
turalism should have its own logic, and that logic is not neutral. Presumably, the logic
of structuralism is classical and, in any case, the logic of this book is classical.

Thus, I do not embrace what may be called logical relativism, a vague claim to
the effect that all logics are equal. This relativism may be incoherent, because it re-
quires a neutral framework from which to make the relativistic assertion—a neutral
framework that is supposed to hold good for all the frameworks. I fully accept clas-
sical logic and use it (without apology) in discussing structures and structuralism—
even structures with nonclassical logic.8

In sum, then, we must distinguish the internal logic of a system or structure from
the external logic of structuralism itself. By way of analogy, consider the distinction
between the logic of an object-language theory and the logic of the metatheory. It is
quite common to study intuitionistic systems, such as Heyting’s arithmetic, using a
classical metatheory. In topos theory, there is also a distinction between the “inter-
nal logic” of a topos and the “external logic” of topos theory itself. I take it, then,
that it is coherent to speak of different structures with different logics in the same
breath. That is to say, there is a philosophical or metatheoretic framework for struc-
turalism that fits both classical and intuitionistic systems and structures. We have at
least this much commensurability.

Turning to objects, there are two different views that ontology does not depend
on language and logic. One has objects determining the logic; the other has objects
independent of logic. The first orientation is a thesis that the appropriate logic for a
given subject matter is determined by the objects (and relations) under study. So far,
this view is consistent with the present eclectic attitude that classical arithmetic and
intuitionistic arithmetic are each legitimate branches of mathematics, provided that
we hold that the two arithmetics have different subject matters. The former studies
classical numbers, and the latter studies intuitionistic numbers (and proofs, construc-
tions, etc.). The different logics are a consequence of this difference in subject mat-
ter. We first figure out what it is we are talking about, and this determines how we
are to talk about it.

On the other hand, one who accepts this objects-determine-logic thesis and also
holds that there is only one “kind” of object will embrace logical absolutism, against
the eclectic attitude. Frege and Quine both adopt this combination of views, holding
that there is only one kind of object and only one logic (see Parsons [1965], [1983]).

8. I am indebted to the discussion of Carnap’s relativism in Friedman [1988]. Carnap attempted to
formulate various logical frameworks from a neutral background theory of syntax. Friedman argues
that this program failed because there cannot be a neutral framework that accomplishes all of Carnap’s
aims.
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A different orientation to ontology is that subject matter is independent of logic.
Accordingly, if there are rival logics, they represent different ways of discussing or
reasoning about the same objects and relations. Thus, intuitionistic arithmetic and
classical arithmetic represent different modes of studying the same things—numbers.
Such a view underlies the common suggestion that intuitionistic mathematics is
mathematics with an epistemic logic (see, for example, Shapiro [1985]).

To follow the conclusions from the previous sections, I firmly reject the second
articulation, the independence of object and logic. As argued in chapters 3–4 (and
chapter 8), the mathematical universe does not come to us, nor does it exist, already
“divided” into objects, waiting to be studied. If anything, it is the other way around—
the type of discourse and its allowed inferences determine (at least in part) the nature
of the objects. How we are to talk about the objects partially determines what they
are. Thus, I also reject the priority of object over logic. The mutual dependence of
object and logic is clearest when one focuses on dynamic mathematical practice, in
which the inferences allowed in the reasoning of a branch of mathematics are di-
rectly related to the sorts of moves available to the ideal constructor.

The conclusion is that intuitionistic numbers, intuitionistic construction, and
intuitionistic logic are closely interrelated and interdependent. None are autonomous.
Similarly, classical numbers, classical construction, and classical logic are also inter-
related and interdependent. The problem is to bring both trinities under the purview
of structuralism.

5 Dynamic Language and Structure

The time has come to embed the foregoing conclusions into the main theme of this
book, mathematics as the science of structure. I have spoken of dynamic systems as
being equivalent to static ones. My goal in this section is to lend some precision to
this claim.

Let me briefly review the situations in which two systems exemplify the same
structure. As developed in chapter 3, there are two different relations among sys-
tems that can be used for “sameness of structure.” The first and most common is iso-
morphism. Systems S1 and S2 are isomorphic if there is a one-to-one function f from
the objects and relations of S1 onto the objects and relations of S2 such that f pre-
serves all of the relations of the systems. Notice that two systems are isomorphic only
if they have the same number of functions and relations of the same degree. The second
“sameness of structure” relaxes that situation. Let R be a system and P a subsystem.
Define P to be a full subsystem of R if they have the same objects (i.e., every object
of R is an object of P) and if every relation of R can be defined in terms of the rela-
tions of P. The only difference between P and R is that some definable relations are
omitted in P. Let M and N be systems. Define M and N to be structure-equivalent, or
simply equivalent, if there is a system R such that M and N are both isomorphic to
full subsystems of R.

We learn from model theory that isomorphic interpretations (of the same language)
satisfy the same sentences and corresponding open formulas. Similarly, if two sys-
tems are equivalent, then there is a straightforward translation from the language and
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objects of one to the language and objects of the other that preserves both logical
structure and satisfaction.

To return to the matter at hand, the dynamic perspective in mathematics can be
brought under the purview of structuralism if “dynamic systems”—and their struc-
tures—are countenanced. The idea is that the relationships of a system may include
constructions and dynamic operations. Notice, however, that after an operation is
performed, new objects may have been created. Thus, the collection of objects asso-
ciated with a dynamic system may not stay fixed.

The dynamic nature of the collection of objects raises problems for the applica-
tion of isomorphism and structure equivalence to such systems. Consider the notion
of function in the metatheory. In the official model-theoretic formalizations of mathe-
matics, a function is a set of ordered pairs; in other words, a function is a static set.
Each function has a fixed domain and a range. If the domain of a system does not
stay put, then how can there be functions on the system? Recall, however, that the
notion of function also has a dynamic interpretation: a function is an operation or
perhaps a construction. On dynamic construals of arithmetic, for example, the suc-
cessor function is a procedure for producing a new natural number from a given
number. The logical truth that every natural number has a successor (œx›y(sx = y))
corresponds to a power attributed to the ideal constructor: given any number, he can
construct its successor.

If our plan is to succeed, we need a way to bridge this gap between static and
dynamic functions. If we make two global assumptions about dynamic mathemati-
cal systems, then there is a structural equivalence between the two notions of func-
tion, so that it does not matter which one is employed. These assumptions concern
the stability of systems, and they hold for intuitionist and classical dynamic practice
alike.

The first assumption is that the ideal constructor cannot destroy objects: within a
dynamic system, no operation reduces the collection of objects. The ideal construc-
tor does not have an eraser. According to this assumption, the collection of objects
associated with a system is nonreducing over time. The second assumption is one of
internal global coherence: within a dynamic system, once the constructor has an
operation S available, then no activity can preclude the performance of S. Of course,
it may happen that other operations make S superfluous, but in any future scenario,
S can still be executed. Suppose, for example, that the ideal Euclidean geometer has
points B and C available, so that a line connecting B and C may be drawn. According
to the assumption at hand, there are no operations the geometer can perform that
prevent this line from being drawable.9

9. These global assumptions are registered in standard Kripke structures for intuitionistic predi-
cate calculus (see Kripke [1965]). If an object n exists at a node, then n exists at all “future” nodes.
Once an object is constructed, it exists forever. Second, if a formula F is satisfied at a given node (under
a certain assignment to the variables), then F is satisfied at all future nodes (under the same assign-
ment). Once true, always true. Notice, incidentally, that the global assumptions fail in systems of quan-
tum mechanics. Suppose that a “quantum constructor” is in a position to determine the momentum of



CONSTRUCTION, MODALITY, LOGIC 195

These stability assumptions provide a straightforward framework for extending
structuralism to dynamic mathematics. Roughly, define a dynamic system to be a
collection of potential objects, or possible objects, together with certain relations,
functions, and operations on them. The functions and operations transfer appropri-
ate sequences of actual and possible objects into other possible objects. Given the
global stability assumptions, we can speak of the “collection” of objects associated
with a dynamic system. This collection consists of the results of every operation the
ideal constructor can perform. It serves as the “domain” of the dynamic system.

At least on an informal level, we thus have a framework to compare and relate
dynamic and static systems. The latter have only actual objects in the collection,
whereas the former may include “potential objects” or “merely possible objects.”
Nevertheless, we can coherently speak of a function from a dynamic system to a static
one, and vice versa. A function can have both actual and potential objects in its do-
main and range, and the function itself can be construed as static or dynamic at will.
We can then speak of isomorphism and equivalence between dynamic and static
systems.

For present purposes, I wish to avoid (as much as possible) questions concerning
the ontology of possibilia. This metaphysical conundrum may not be as central here
as it is elsewhere, because present focus is on the structure of (static and dynamic)
systems. Structures are at least somewhat independent of the status of the objects in
systems—whether they are abstract or concrete, actual or potential.

Notice that if one is a realist concerning possibilia (as Lewis [1986], for example)
and regards them as static, then under the present treatment, dynamic systems have
been reduced to static ones. The static collection of objects associated with a dynamic
system is the collection of possible objects the ideal constructor is capable of pro-
ducing. With this reduction, however, we lose the distinction between the potentially
infinite and the actual infinite, and this distinction is essential for intuitionism. In
any case, the reduction of dynamic objects is not essential and not desirable here. All
we need is a framework for discussing and comparing the structures of static sys-
tems and dynamic systems.

Under certain conditions, a dynamic system and a static system can exemplify
the same structure—the systems can be structure-equivalent. One example, noted
above, is traditional Euclidean geometry and its static reformulation in Hilbert [1899].
The same goes for classical arithmetic construed dynamically and classical arithmetic
construed statically. For another example, a Turing machine, viewed as a system, is
dynamic. Its tape is operated on in various ways, and the underlying theory is meant
to capture at least some of the structure of the activity of computation. Turing [1936]
contains a detailed argument that common operations that a human computist per-
forms with pencil and paper can be simulated on a Turing machine. Nevertheless,
one can easily redefine Turing machines in static language. That is, one can define a

a given particle. If she does not, but measures its position instead, then she can no longer determine the
momentum. Some theorists once claimed that quantum mechanics requires a nonstandard logic, one
that differs from both classical and intuitionistic (and relevant) logic. This much is consonant with the
present theme that logic is tied to available construction.
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different class of mathematical objects with the same structure as Turing machines.
Turing himself does not do this, but Rogers [1967, 14] does (if we assume that num-
ber theory is static): “It is easy to define Turing machine in more orthodox mathe-
matical language. Let T = {0, 1} and S = {0, 1, 2, 3}. Then a Turing machine can be
defined as a mapping from a finite subset of ù H T into S H ù. Here T represents the
conditions of a tape cell, S represents operations to be performed, and ù gives the
possible labels for internal states.” This passage is little more than a gesture toward
official rigor. Other than these four sentences, Rogers’s book deals with Turing
machines only as dynamic systems. It seems that for pedagogical and explanatory
purposes, the dynamic model is preferred, even if the official semantics calls for a
more static treatment.

There are more mundane examples as well. Deduction is a dynamic activity, be-
cause the mathematician writes the lines of a derivation in sequence. Presumably,
reasoning is a dynamic activity. Formal deductions are supposed to capture the
human activity of correct reasoning. In mathematical logic, by contrast, a derivation
is understood to be a sequence of strings. A deduction is thus understood as an ab-
stract object, an item from string theory. The transformation works because the struc-
ture of derivations, suitably idealized, is exemplified in string theory. Similarly, a
chess game is a dynamic activity, and so the system of possible chess games is also
dynamic. But one can “identify” each game with the string that consists of the moves
as recorded in a standard notation. Again, we have a dynamic system sharing a struc-
ture with a static one.

Suppose that a structure S is exemplified by two systems P1 and P2 (so that P1 and
P2 are either isomorphic or structure-equivalent). Then either system can shed light
on the structure S. It does not matter whether mathematicians focus on P1 or P2. As
long as they limit their language, reference, and so forth, to the elements and rela-
tions of P1 or they limit their language to the elements and relations of P2, their re-
sults hold of S. The choice is only a matter of which system they prefer—which sys-
tem is more conducive to explaining, grasping, developing insights, and so on. If
care is taken, a mathematician may use both systems P1 and P2 to study S.

Of course, the cases under study here are those in which one system is static and
the other dynamic. The foregoing considerations (and the film clips of section 2, the
tone of Rogers [1967], etc.) indicate that for purposes of presentation and explana-
tion, some structures lend themselves to dynamic interpretation. Other structures lend
themselves to static interpretation. In set theory, it seems, both sorts of interpreta-
tions are used, perhaps for different aspects of the field. Parsons [1977], for example,
wrote that one should speak of the elements of a set as prior to the set, and he adds
that for “motivation and justification . . . it is important to ask in what this ‘priority’
consists.” But none of this is relevant to mathematics itself: “for the practice of set
theory . . . only the abstract structure of the relation matters” (p. 336).10

10. Parsons goes on to give a static, modal account of set theory, which he argues is more coherent
than the dynamic “genetic” account. On the other hand, Chihara [1984], [1990] develops a dynamic
interpretation of simple type theory as an alternative to common static interpretations, and he argues
that the dynamic interpretation is to be preferred on ontological grounds. If, as it appears, Chihara’s
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We have seen that in the official model-theoretic semantics of mathematical lan-
guages, a domain of discourse is a static collection. This suggests that the result of
formalizing a branch of (classical) mathematics is always a static system, regardless
of whether the branch as practiced is dynamic or static. In other words, the metamathe-
matical study of a structure seems to require that it be recast in static terms. A dy-
namic system is more conducive to developing and communicating insights about
the places and relations of a structure, insights internal to the structure; but in order
to take a broader perspective and develop and communicate insights about the struc-
ture itself—how it relates to other structures, what the correct logic for studying it is,
and so on—one prefers a static reformulation. The important point is that it is one
and the same structure.

The conclusion, thus far, is that some dynamic systems are structure-equivalent
to static ones or, in other words, some dynamic systems exemplify the same struc-
ture as static ones. However, not every dynamic system shares a structure with a static
one. To put it differently, some dynamic systems are not structure-equivalent to any
static system, at least not in any obvious or straightforward manner. This conclusion
is a corollary of the present thesis that ontology, inference, and construction are in-
timately related.

Consider, for example, intuitionistic arithmetic, a paradigm example of a dynamic
system. To start a reductio, suppose that P were a static system that is structure-
equivalent to intuitionistic arithmetic. What would P be like? Presumably, its ob-
jects would constitute a countable set (putting the domain of proofs aside). Thus, we
might as well identify the domain of P with the natural numbers. The relations of P
would have the defining conditions of the ordinary successor, addition and multipli-
cation functions, the less-than relation, and the like. In short, then, P has the same
elements and relations as classical arithmetic. It is hard to avoid the conclusion that
P is isomorphic to the classical natural-number structure, in which case it exempli-
fies the same structure. Yet, one might suggest that, by hypothesis, P does not ex-
emplify the classical natural-number structure, because P has a different logic. The
law of excluded middle does not apply to P.

There is the rub. In making the identification, we gloss over the distinction be-
tween potential infinity and actual infinity. The problem, on the surface, is one inter-
nal to structuralism: what is the most natural relationship between logic and the (ad-
mittedly relative) structure/system dichotomy? Yet, the situation is a manifestation
of a deep issue concerning the status or priority of logic. The crux of the problem
concerns the extent to which “objects” are independent of the way they are constructed
and studied. As indicated in the previous section, my view is that with dynamic dis-
course, the sorts of objects studied by a branch of mathematics—the sorts of struc-
tures—are determined by the allowed constructions and sanctioned inferences. In
short, the logic and the objects share a common source: the permissions and the pos-

system has the same structure as the classical one, then on my view there is no relevant difference
between the two systems—they exemplify the same structure. This question of ontological commit-
ment is revisited in chapter 7.
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sible moves allowed to the ideal constructor. My eclectic attitude toward logic is part
and parcel of this thesis. We cannot separate logic and structure.

Recall that when abstracting from a system to its structure, one is to ignore fea-
tures of the objects that do not concern the interrelations. In dynamic systems, the
available constructions are certainly part of the interrelations of the objects. In large
part, the allowed moves constitute the interrelations. Given the present view that the
logic of a system is directly related to those constructions, it follows that in moving
from system to structure, logic is not something to be abstracted from. That is, “same
structure” implies “same logic.” Consequently, we cannot conflate the potentially
infinite with the actually infinite.

I conclude, then, that no system that exemplifies intuitionistic arithmetic can sat-
isfy classical logic. As noted earlier, classical logic is appropriate for static systems.
Thus, no static system can exemplify the same structure as intuitionistic arithmetic.
Brouwer [1948, 90–91] reached a similar conclusion: “[E]ven in those mathemati-
cal theories which are covered by a neutral language . . . either school operates with
mathematical entities not recognized by the other one: there are intuitionistic struc-
tures which cannot be fitted into any classical logical frame, and there are classical
arguments not applying to any introspective image.”

6 Synthesis

Thus we see that some dynamic systems are equivalent to static ones, whereas others
are not, depending on what constructional and knowledge-gathering powers are allotted
to the ideal constructor. In this section and the next, I turn to dynamic systems that are
equivalent to static ones, and thus systems that satisfy classical logic, the axiom of choice,
impredicative definition, and so on. In the prevailing nonconstructive climate, these
are the systems that get the bulk of attention from mathematicians.

The plan here is to give a brief account of the conditions under which a given
dynamic system satisfies the usual classical, nonconstructive inferences and prin-
ciples. What must be assumed about a system of possible constructs and their con-
structor in order to treat them as if they were a bunch of eternal, static objects—at
least as far as inference is concerned? Just how much idealizing must we do? This
section provides what may be called an ontic route to classical logic, impredicative
definition, and the like, that focuses on the creative powers allotted to the construc-
tor. The next section turns to the so-called Heyting semantics for intuitionistic logic
and provides an epistemic or semantic route to classical logic.

The simplest cases are those in which all of the operations together, iterated in-
definitely, produce only finitely many new objects—and the relations are all finite
in extent. Consider, for example, a dynamic account of the cyclic group of order four
trillion. The constructor starts with an initial object e and keeps on making new ob-
jects, using a successor construction. At some point, the constructor produces the
first object e again. Because the intuitionist agrees that classical logic is appropriate
for such thoroughly finite systems, these cases are apparently unproblematic.

In these finite cases, we simply assume that the constructor has in fact completed
all possible constructions and, thus, we treat the system as if it were static. Because
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everything is decidable, we also assume that the constructor can (or has) determined
the truth-value of any sentence about the system. Notice that these easy finite cases
still involve an idealization on the abilities of the constructor: no finite bounds are
placed on his ability to perform the operations. The ideal constructor has unbounded
time, space, and materials at his disposal. This idealization is readily made through-
out mathematics and is shared by all of the traditional philosophies, save only the
strictest finitism. Virtually everyone agrees that there is no difference in principle
between small natural numbers and astronomical natural numbers, and no one com-
plains about large triangles in geometry. But we are idealizing. This point is related
to the observation, in chapter 4, that many of the traditional problems with the infi-
nite arise when it comes to the large finite. We have no causal contact with systems
of four trillion. It takes a thought experiment, stretching the imagination, to compre-
hend constructing a system that large.11

Next, consider cases in which all the operations together, iterated indefinitely,
produce a denumerably infinite number of new objects. This will occur, for example,
if the system has only a finite (or countable) number of operations, each of which
takes a finite input. The paradigm case is elementary arithmetic, which can be lim-
ited to a single operation (successor) that acts on a single input. The ideal construc-
tor produces the natural numbers with this operation, starting with an initial object 0.
At most, countably many natural numbers can be constructed this way. For such a
system to be straightforwardly equivalent to a static one, we assume that the con-
structor can complete the entire process and construct the infinitude of new objects.
The constructor has the wherewithal to produce an actual infinity. This assumption
allows full reference to the entire set, thus permitting a standard Tarskian semantics,
classical logic, and impredicative definitions. Suppose, for example, that one tries to
define a number or set of numbers with reference to the entire range of natural num-
bers. The definition is coherent, because we speak as if the constructor has finished
the constructing and can, as it were, survey the range of his creation—all of the natu-
ral numbers. He is in position to determine the truth-value of any given sentence of
arithmetic.

To belabor the obvious once again, this case is more of an idealization than that
of the previous one. There, it was assumed that the constructor has no finite bounds
on his ability, but it was not assumed that he can complete an infinite number of
constructions. Here, the natural numbers are no longer regarded as a mere potential
infinity.

Given the present idealization, the constructor can produce the integers if he forms
“differences” among natural numbers and introduces variables that range over these
differences. The constructor can produce the rational numbers by forming quotients
of integers, and he can produce the algebraic numbers by producing roots of equa-
tions. As yet, we have not left the countable.

The next cases are those in which some operations have infinite inputs. That is to
say, the operations deal with infinite sets, sequences, and so on. Now we encounter

11. Well, we did manage to “construct” the national debt.
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the possibility of an uncountable number of constructed objects. In real analysis, for
example, the ideal constructor can take a Cauchy sequence of rational numbers and
construct a limit of the sequence. He can pass to the limit. Or the constructor can
take a bounded set of real numbers and construct the least upper bound of the set. A
more grandiose, and perhaps far-fetched, example is the dynamic understanding of
set theory, in which the constructor can form the union of any collection of objects
formed at any stage, and he can form a set whose elements are the range of any func-
tion whose domain is (already formed as) a set. We saw this idealization in action in
scene 2 of the film clips (section 2). The axiom of replacement is usually motivated
in terms much like this. The very name “replacement” calls up an image of a con-
structor taking a given set and replacing its elements one by one. Because, after some
training, many mathematicians find the axiom of replacement compelling, there may
be something to the metaphor. Wang [1974, 186] wrote, “Once we adopt the view-
point that we can in an idealized sense run through all members of a given set, the
justification of [replacement] is immediate. That is, if, for each element of the set,
we put some other given object there, we are able to run through the resulting mul-
titude as well. In this manner, we are justified in forming new sets by arbitrary re-
placements. If, however, one does not have this idea of running through all members
of a given set, the justification of the replacement axiom is more complex.” If unre-
stricted, our constructor has the potential to produce a proper class of constructed
objects.

Admittedly, this metaphor stretches the analogy with everyday, nonmathematical
construction in time. Nevertheless, mathematicians do speak that way, and I presume
that what they say is coherent, if not literal. On the other hand, one may wonder
whether there is anything left of our original intuitions concerning ordinary construc-
tion (see Parsons ([1977], [1983, essays 10–11]).

Nevertheless, we will press on for a bit. There are two issues here. One concerns
the status of the collections of objects that serve as the inputs to the indicated opera-
tions; the other concerns the outputs. Starting with the former, the most natural route—
the route that is conducive to a static interpretation—is to consider the inputs them-
selves as completed or actual infinities. If we assume that the constructor can “get
at” the whole of any relevant sequence or set, then the operations in question may be
applied universally. On this assumption, neither the constructor nor us mortals needs
to worry about whether a given Cauchy sequence can be defined (in a finite language)
before passing to its limit. The assumption at hand thus accords with the tendency in
mathematics to move away from the definable toward the extensional (see Maddy
[1993]). Mathematicians typically do not check their constructions for any connec-
tions to the language they may be using at the time.

The intuitionists, of course, have the opposite tendency. They do not recognize
actual infinities, and they restrict the application of operations to those elements that
can be constructed, in their restricted sense of construction. In his early writing,
Brouwer took a real number to be a Cauchy sequence determined by a rule. Later, he
augmented rule-governed sequences with free-choice sequences, but even then the
attitude is that Cauchy sequences are potential, not actual infinities.

Some very nonclassical results follow from the intuitionists’ perspective. Brouwer
showed, for example, that every function defined on a closed interval is uniformly
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continuous. For an intuitionist, a function f is a mapping from Cauchy sequences to
Cauchy sequences. Let c be any real-number sequence. Remember that c is only a
potentially infinite sequence. To pursue the present metaphor, the intuitionistic con-
structor never sees the entire sequence c all at once. Thus, the constructor has to be
able to give initial segments of fc based only on finite, initial segments of c. In par-
ticular, to approximate fc within a fixed bound, one should need to know only a fixed,
finite, initial segment of c. Technically, the requirement is that for every e, there is
an n such that the approximation of fc to within e depends only on the first n values
of c. The function f would thus give the same approximation to fd, for any real num-
ber d that has the same first n values as c. This requirement precludes a discontinuity
in f. Indeed, if f were discontinuous, then for some inputs c, the constructor would
not be able to approximate fc unless he knew the entire sequence c—and this would
be to treat c as an actual, not merely potential infinity. For example, let gx = 1 if x <
1 and gx = 0 otherwise. Let c be the Cauchy sequence <.9, .99, .999, . . . >, which
converges to 1. So gc = 0. But there is no finite initial segment of c that is sufficient
to determine an approximation of gc to within .3. In order to know that gc > .7, the
ideal constructor must have a look at the entire sequence. So for an intuitionist, g is
not an acceptable function. Classically, of course, discontinuous functions are easily
defined and have proven useful in the sciences.

Our second issue concerns the status of the results of the constructions. Consider
the extreme case, set theory.12 One crucial item sanctioned by static interpretations
is impredicative definition. In set theory, this is manifest in the axiom scheme of sepa-
ration, œx›yœz(z ∈ y / z ∈ x & F(z)). Because F might contain quantifiers over all
sets, our scheme allows definitions that refer to sets of arbitrarily high rank. Indeed,
one can define a set in terms of all sets. With dynamic systems, perhaps one can sanc-
tion such inferences by further extending the previous idealization and allowing the
constructor to have performed all the possible constructions—a proper class of them.
The idea is to treat the entire set-theoretic hierarchy as if it were an actual or com-
pleted infinity. In this case, an impredicative definition is treated as it is in static
systems. It refers to an “already-constructed” collection in order to characterize one
of its elements. In Zermelo-Fraenkel set theory, this “already-constructed” collec-
tion is a proper class.

This is a mind-boggling idealization. Suppose we think of the ideal constructor as
having somehow completed the work and produced the entire set-theoretic hierarchy,
complete in all of its glory. He has before him, as it were, all sets. Then why does the
constructor fail to go on to consider collections of sets—proper classes—and then pro-
duce classes of such classes? This, after all, would only be for the ideal constructor to

12. There are, of course, other theories worthy of consideration in this regard. Type theory, for
example, is often given a dynamic interpretation, at least at the level of heuristics (see Hazen [1983];
Chihara [1984], [1990]). Most accounts of simple type theory employ classical logic, and they allow
impredicative definitions without restriction. Ramified type theory, of course, does not sanction
impredicative definition, but it employs classical logic. In the ramified theory, impredicative defini-
tions might be allowed if an axiom of reducibility is sanctioned. Construed dynamically, this axiom
gives the constructor the power to construct (the extension of) every element of every type using only
lower-type objects.
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go on as before. Is there any reason the constructor should not just keep going? But the
constructor was not to stop until he had completed all possible constructions.

The upshot of this consideration is that, contrary to the suggestion under study,
there can be no natural stopping place for the ideal constructor when it comes to set
theory. One resolution of this difficulty is to extend the distinction between actual
infinity and potential infinity to the transfinite. The idea is to accept the dynamic
classical perspective of the ideal constructor producing sets by collecting their ele-
ments, and assume that for any given ordinal a, the constructor can produce the rank
Va as a completed, actual infinity, but he cannot produce the entire set-theoretic hier-
archy (at once). This amounts to taking each rank as an actual infinity but not the
entire universe. This is a stretched analogy to the intuitionist concession that because
the constructor can produce any given natural number n, there is no harm in taking
each number n as if it were an actually existing thing. But the constructor never fin-
ishes the natural-number system, so w is only potential. The idea here is that each Va

can be taken as an actuality. The constructor can get that far, but V itself is only po-
tentially infinite.

Some of Cantor’s remarks suggest a picture like this. Although he held that indi-
vidual cardinals are actual infinities, in his much-quoted [1899], he calls the collec-
tion of all sets an “inconsistent multitude,” because one cannot conceive of this col-
lection as “one finished thing.” Even today, it is common for set theorists to balk at
considering the entire hierarchy as one finished thing.13

The main methodological issue here is whether impredicative definitions are al-
lowed. Under the Cantorian conception of set theory, is there any reason to think
that an impredicative definition succeeds in characterizing something? Notice that
the conception of the system does not immediately sanction the unrestricted axiom
of separation. Without further justification, one is not justified in defining a set with
a formula that has variables that range over the entire universe, because the latter
does not (i.e., never does) exist as a completed entity. The constructor does not have
access to all of V. However, this consideration does not preclude the possibility of
impredicative definition. It turns out that the legitimacy of impredicative definition
is a substantial set-theoretic principle. In the present framework, the ideal construc-
tor, and thus a human counterpart, can define sets by reference to any fixed rank Va.
That is, a definition is legitimate if its variables are restricted to a fixed rank. This
allows some impredicative definitions, and it may allow all. If the underlying lan-
guage is first-order, then there is a reflection theorem to the effect that if a formula is
true at all, then it is true at some sufficiently large rank. Thus, the ideal constructor
never has to reach “arbitrarily high” in the hierarchy in order to characterize a set.
This sanctions each instance of the axiom of separation and allows full impredicative
definition.14 Wang [1974, 209] reached a similar conclusion: “The concept of an
unfinished or . . . unfinishable totality . . . permits the classical interpretation of the

13. The same considerations motivate the static modal accounts of set theory mentioned in note 10.
14. If the background framework is second-order, with standard semantics, then the reflection prin-

ciple is independent of set theory (if consistent with it). The so-called strong reflection principles imply
the existence of (small) large cardinals. See Shapiro [1987] and Shapiro [1991, chapter 6].
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quantifiers. . . . We may . . . appeal to the reflection principle to argue that the un-
bounded quantifiers are not really unbounded.”

7 Assertion, Modality, and Truth

Our second path to the equivalence of dynamic systems with static counterparts fo-
cuses on semantics. I begin with a review of some global arguments for intuitionistic
logic.

As presented in chapter 2, antirealism in truth-value is a type of program to under-
stand and evaluate mathematical statements and theories in terms other than truth.
According to these philosophies, good or acceptable mathematics is not necessarily
true mathematics. For assertabilism, the alternative to truth is warranted assertability,
or proof in the case of mathematics. In place of truth conditions, one provides
assertability conditions for each sentence, conditions under which a mathematician
is warranted in asserting the sentence.15 Of course, to be true to antirealism, the
assertability conditions should not presuppose too much. It will not do, for example,
to propose that an arithmetic sentence F is assertable just in case the mathematician
has good reason to believe that F is true of the natural numbers. To state the obvi-
ous, this is not a real alternative to standard realism in ontology and realism in truth-
value.

Assertabilism is consonant with the dynamic approach to mathematical practice
under study in this chapter. If we are thinking of a mathematical statement as report-
ing the results of an ideal constructor, then perhaps it is best to understand and evaluate
these statements in terms of what the ideal constructor is in a position to assert rather
than whether the statement is true of some independent reality. This way of putting
the matter highlights the fact that on all accounts, the relevant notion of assertability
is an idealized one. There lies the problem.

Like all programs, assertabilism promises progress on philosophical problems
associated with mathematics. Perhaps an assertabilist epistemology is tractable.
Assertion is, after all, a human endeavor, and it is humans who are the producers of
mathematics. We evaluate mathematics in human terms, not in relation to some
abstract, detached realm. To fulfill this promise, however, the notion of assertability
must be articulated in such a way that assertabilism can approach both human com-
petence and mathematics as practiced. My contention is that if assertabilism is to be
true to both of these masters, then the promise is not delivered. Assertabilism is not
an improvement over ordinary truth-valued semantics on the epistemic front.

Michael Dummett [1973], [1977] argues that reflections on the role of language
in communication, and the learning of language, suggest the development of an
assertabilist semantics rather than a truth-valued semantics—in general, not just for
mathematics. One who understands a sentence must grasp its meaning, and one who
learns a sentence thereby learns its meaning. As Dummett puts it, “a model of mean-

15. Because assertability is a modal notion, we see that with these programs, modality is brought
to the aid of antirealism. See chapter 7.
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16. A realist might agree that a complete fake, or even a large fake, is impossible in some epistemic
sense. Plato’s own Socratic method seems to presuppose that if one fails to grasp a concept, then there
is a situation in which one cannot give intelligent responses. I owe this observation to Allan Silverman.

ing is a model of understanding” ([1973, 98]). This at least suggests that the mean-
ing of a statement is to be somehow determined by its use:

[I]f two individuals agree completely about the use to be made of [a] statement, then
they agree about its meaning. The reason is that the meaning of a statement consists
solely in its rôle as an instrument of communication between individuals. . . . An indi-
vidual cannot communicate what he cannot be observed to communicate: if an indi-
vidual associated with a mathematical symbol or formula some mental content, where
the association did not lie in the use he made of the symbol or formula, then he could
not convey that content by means of the symbol or formula, for his audience would be
unaware of the association and would have no means of becoming aware of it. ([1973,
98])

To suppose that there is an ingredient of meaning which transcends the use that is made
of that which carries the meaning is to suppose that someone might have learned all
that is directly taught when the language of a mathematical theory is taught to him,
and might then behave in every way like someone who understood the language, and
yet not actually understand it, or understand it only incorrectly. ([1973, 99])

Dummett’s point is that one cannot completely fake understanding.16 He concludes
that accepting these possibilities makes “meaning ineffable, that is, in principle
uncommunicable.”

Like many slogans, the phrase “meaning is use” can be misleading. So far, there
is no positive view of meaning, no semantics, and not much has been said about “use”
either. For present purposes, the important insights concern understanding. Dummett
identifies an important criterion for any semantics that is to play a role in philoso-
phy: understanding should not be ineffable. One understands the concepts invoked
in a language if and only if one knows how to use the language correctly. Call this
the use thesis. If, as Dummett suggests, a semantics is a model of understanding, then
any plausible semantics should accommodate the use thesis—it should not make
understanding ineffable. The use thesis is a plausible and important constraint on any
account of language. However, to foreshadow my conclusion below, it is real human
understanding that must be accommodated, not the understanding of a grossly ideal-
ized constructor.

Dummett argues that there is a natural route from the use thesis to assertabilist
semantics, and thus to what I am calling “antirealism in truth-value,” and he argues
that assertabilist semantics leads to the rejection of classical logic, and thus to a de-
mand for major revisions in mathematics. There is no need here to challenge the al-
leged connection between the use thesis and assertabilist semantics. Assertabilism
does represent an alternative for philosophical semantics, an option we can afford to
keep open for now. However, Dummett’s link between assertabilist semantics and
classical logic is quite relevant to present concerns. If he is right, then assertabilist
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semantics leaves no room for mathematics as practiced. Assertabilism would be at
war with the prevailing antirevisionist theme of this book, and it would not be com-
patible with what I call “working realism” (see chapters 1 and 2).17

Advocates of “meaning is use” are often criticized for leaving “use” vague. Surely,
some account is needed if this notion is to have such a central role in philosophy. As
Wittgenstein [1978, 366–367] put it, “It all depends [on] what settles the sense of a
proposition. The use of the signs must settle it; but what do we count as the use?”

Some articulations of “use” make it absurd to motivate the revision of practice by
invoking the use thesis. If everything the mathematician does (and gets away with)
is considered to be legitimate use, then the law of excluded middle is as legitimate as
anything. For better or for worse, classical logic has won the day among mathema-
ticians. That is how the enterprise of mathematics is pursued nowadays. On a view
like this, it seems, all use is sacrosanct.

There are at least two orientations toward mathematical language that would sug-
gest an interpretation of “use” along these strongly antirevisionist lines. One is for-
malism, the idea that correct mathematical practice can be codified into formal de-
ductive systems. If classical logic is an ingredient of the appropriate deductive systems,
then the issue of classical logic is settled. I will not add here to the many attacks against
formalism. Suffice it to note that when Dummett argues for assertabilist semantics,
he explicitly states, in several places, that “proof” does not mean “proof in a fixed
formal system.” For Dummett, proof is inherently informal. In this, Dummett fol-
lows virtually every intuitionist, including Brouwer and Heyting.

A second understanding of “use” that undermines revision is what Dummett calls
a “holistic” account of mathematical language: “On such a view it is illegitimate to
ask after the content of any single statement. . . . [T]he significance of each state-
ment . . . is modified by the multiple connections it has . . . with other statements in
other areas of language taken as a whole, and so there is no adequate way of under-
standing the statement short of knowing the entire language” ([1973, 100]). In light
of Dummett’s thesis that to understand a sentence is to grasp its meaning, the view
in question is a combination of semantic holism and epistemic holism. Dummett’s
point is that, on a view like this, there is no way to criticize a particular statement,
such as an instance of the law of excluded middle, short of criticizing the entire lan-
guage. This is not quite correct. On a holistic view, mathematics can be criticized,
and it can respond to criticism. Quine envisions changes in mathematics as coming
from recalcitrant empirical data. Clearly, however, on a holistic view, criticism of
practice does not come from semantics nor from reflections on meaning and under-
standing generally. Dummett [1991a] argues that the whole enterprise of semantic
theory does not go well with holism.

17. There is thus an important difference between Dummett’s agenda and the present one. Dummett
is looking for a philosophical rationale for revising classical mathematics, whereas I am exploring
philosophical programs underlying classical mathematics, in which working realism—classical logic,
impredicative definition, and so on—is assumed. It is a working hypothesis here, if not for Dummett,
that most of modern mathematics is correct, whatever this correctness amounts to.
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Typically, semantics is compositional, or what Dummett calls “molecular.” The
semantic content of a compound statement is analyzed in terms of the semantic con-
tent of its parts. Tarskian semantics, for example, is compositional, because the satis-
faction of a complex formula is defined in terms of the satisfaction of its subformulas.
Dummett’s proposal is that the lessons of the use thesis be incorporated into a com-
positional semantics. Assertability, or provability, is to replace satisfaction, or truth,
as the main constituent of a compositional structure. The semantic content of a for-
mula is its assertability condition.

Dummett’s proposal invokes the central theme of Heyting’s semantics for intu-
itionistic logic (see Heyting [1931]; Dummett [1977, 12–26]). Instead of providing
truth conditions of each formula, Heyting proposes that proof or computation condi-
tions be supplied. I sketch three clauses:

A proof of a formula in the form F w Y is a proof of F or a proof of Y.
A proof of a formula in the form F 6 Y is a procedure that can be

proved to transform any proof of F into a proof of Y.
A proof of a formula in the form 5F is a procedure that can be proved to

transform any proof of F into a proof of absurdity; a proof of 5F
is a proof that there can be no proof of F.

By consensus, Heyting semantics sanctions the inferences of intuitionistic math-
ematics, items like F & Y | F. Heyting and Dummett both argue that, on a seman-
tics like this, the law of excluded middle is not universally upheld. A proof of a sen-
tence of the form F w 5F consists of a proof of F or a proof that there can be no
proof of F. Heyting and Dummett claim that one cannot maintain, in advance, that
for every sentence F, there is such a proof. This is the main contention before us
now. If Heyting and Dummett are wrong, then a Heyting-type semantics can sanc-
tion the inferences of classical logic. We would have a viable antirealist program that
is not revisionist.18

Notice, first, that the proposed revision of practice depends on what one means
by “proof” and “procedure.” Who, after all, is doing the proving, and who is doing
the computing? As noted, virtually every intuitionist is clear that “proof” does not
refer to the derivations in a fixed, formal deductive system. So what do “proof” and
“procedure” amount to here?

The problem can be illuminated with a quick look at two extremes. First, con-
sider the possibility that “proof” refers to the correct proof tokens actually written

18. The potential compatibility between classical logic and assertabilist, Heyting-type semantics
is elaborated in Barbara Scholz’s essay “Assertabilism without revision” (winner of the Fink Prize in
Philosophy, Ohio State University, 1987). Many of the foregoing considerations are sketches of ideas
originally developed there (although Scholz does not agree with my ultimately negative conclusion).
Notice, incidentally, that it is not obvious that assertabilism is, in the end, an antirealism. Heyting se-
mantics has variables ranging over proofs and over procedures, and some of the clauses, such as the
ones given above for negation and the conditional, are impredicative. In articulating intuitionism and
Heyting semantics, McCarty [1987] proposes what may be called a “realist” interpretation of things
like proofs and procedures. He calls them “probjects” or, in later work, “data objects.”
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down, spoken, or otherwise explicitly considered by mathematicians. On this option,
we do not idealize at all, and we take “provable” to be just “proved.” If Heyting se-
mantics is interpreted this way, then the law of excluded middle is surely not univer-
sally valid. There are many sentences that have been neither proved nor refuted, and
there always will be. Some sentences are just too long. But on Heyting semantics so
construed, modus ponens is not sanctioned either. At any given time, there is likely
to be a conditional such that both it and its antecedent have been proved, but no one
has bothered to prove the consequent. The principle of universal instantiation is not
sanctioned either, so long as there is some correctly asserted, universally quantified
sentence in which the variable ranges over a large domain.

The other extreme is the opposite of this one. The idea is to take a “procedure” to
be a function, as understood in classical mathematics. That is, a procedure is an ar-
bitrary correspondence between members of various collections. As for “proof,”
notice that in the statement of Heyting semantics, the only unanalyzed uses of this
term concern the proofs of atomic formulas and proofs that some “procedures” do
certain jobs. The above clauses concerning the conditional and the negation are typical.
In cases like this, just read “proof” as “correct statement.” Clearly, on this “articula-
tion” of Heyting semantics, provability and classical truth are conflated. Heyting
semantics becomes a mere rewording of classical, Tarskian semantics, just using the
word “provable” for “true.” We do not have a genuine alternative to realism in truth-
value.

The first of these extremes highlights the fact that some idealization of the no-
tions of “proof” and “procedure” is necessary. This is where modality enters the pic-
ture. We are not limited to the actual productions by human mathematicians. Rather,
in the theme of this chapter, we look at productions by ideal constructors. Once again,
our question becomes what assertion powers are to be attributed to these ideal mathe-
maticians. How much do they know? The second extreme serves as a reminder that
the idealization should remain true to assertabilism. Idealized proof and idealized
procedure should have something to do with actual human abilities to prove and
compute. If they do not, then we will lose the epistemic promise of assertabilism. If
the abilities attributed to our ideal constructor are too far removed from the human
constructors that we all know and love, then the assertabilist cannot claim any major
epistemic gains over realism in truth-value. We must sort out modal notions, and the
going gets rough at just this point.

A start on a middle ground between our two extremes would be to construe a “proof”
to be a “rationally compelling argument.” Suitably trained humans do seem to have
some sort of ability to recognize proofs. The issue is whether this can be idealized and
controlled in an appropriate manner, without falling back into holism and losing the
advantages of compositionality. Remember that, in practice, what counts as a correct
proof depends heavily on historical context, or on what have already been accepted as
correct proofs. What is needed here is an a priori conception of “rationally compelling
argument” (perhaps along the lines of Myhill [1960] or Wagner [1987]). Then we would
try to square this account with a compositional, Heyting-type semantics. We could then
turn to excluded middle. The question would be whether the general principle F w 5F
is sanctioned by Heyting semantics so construed.
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19. The word “demur” was chosen carefully. Intuitionists do not actually reject excluded middle,
in the sense of accepting a sentence in the form 5(Φ w 5F). Such a sentence is a contradiction in
intuitionistic logic. The law of excluded middle is rejected by intuitionists only in the sense that they
fail to accept it as universally valid.

Some expositors (not intuitionists themselves) have “argued” against excluded
middle by citing items like the twin-prime conjecture and the Goldbach conjecture
(and, perhaps ironically, Fermat’s last theorem and the four-color problem), which
have been neither proved nor refuted. These arguments do not work with Heyting
semantics on our idealized notion of proof. The examples are undecided now, but
how do we know that they are undecidable? Suppose the twin-prime conjecture and
the Goldbach conjecture were decided next year. The mathematical community seems
to be on a roll. The expositor will, of course, pick another example of an undecided
problem. There are plenty to choose from. But the new example can be undermined
similarly, with luck or hard work. On our idealized notion of proof, the expositor
must come up with an example and show that there can be no rationally compelling
argument establishing it and no rationally compelling argument refuting it. Such an
example, however, is impossible. According to the above clause of Heyting seman-
tics for negations, to establish that there is no rationally compelling argument that
establishes a sentence Φ is to refute Φ and establish 5Φ. In short, to show that Φ
cannot be proven is to prove 5Φ.

Call a sentence Φ absolutely decidable if either there is a rationally compelling
argument that establishes Φ or one that refutes Φ. That is, Φ is absolutely decidable
if the ideal constructor can decide Φ. The point is that Heyting semantics does not
give a reason to demur at the law of excluded middle unless one can demur at the
prospect that all unambiguous mathematical sentences are absolutely decidable.19 This
demurral is a sort of pessimism, transferred to ideal constructors. We acknowledge
or impose a limit on their epistemic powers. In sum, Heyting semantics plus pessi-
mism undermine classical logic. This conclusion echoes one in Posy [1984], who
argues that Brouwer did embrace this sort of pessimism. Posy also argues that Kant’s
orientation toward mathematics is best understood in terms of Heyting semantics
without the pessimism, and I now turn to that combination.

Define optimism to be the belief that every sentence of every unambiguous,
nonalgebraic mathematical theory is absolutely decidable—at least by an ideal con-
structor. I propose that Heyting semantics presently construed plus optimism sanc-
tions excluded middle and classical mathematics. If this is a viable alternative, the
result would be what Blackburn [1984] calls “quasi-realism.” It is an antirealist pro-
gram that allows one to speak (in the object language) as if one were a realist. In
present terms, we would have an antirealist program that sanctions the very infer-
ences and principles challenged by the intuitionists on antirealist grounds. We would
have an antirealist program for mathematics as practiced, an antirealism in truth-value
that is consistent with the methodological principles of working realism.

If one takes historical data to be relevant to the issue of optimism and pessimism,
it goes both ways. The optimist can point out examples of problems, like the four-
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color result and Fermat’s last theorem, which have received generally accepted so-
lutions. The pessimist can point out examples of very old problems, like the Goldbach
conjecture, which remain open to this day.

It might be argued, in light of this standoff, that the best course is to remain ag-
nostic on the matter of optimism and pessimism. The law of excluded middle would
not be undermined by assertabilism, but neither would it be sanctioned. If so, then
some philosophers may urge that mathematicians play it safe and stick to intuitionistic
logic—a fragment of classical logic accepted by both camps. That way, we are less
likely to go wrong. But mathematics is not always well served by caution. Bold as-
sertions and principles are needed on occasion.

From a bold perspective, one may propose that optimism is something of a regu-
lative ideal that underlies the practice of mathematics, and the law of excluded middle
codifies this ideal.20 Why, after all, would anyone pose problems and devote so much
energy to their solutions if it is not held that the problems are ultimately solvable?

As great a mind as Gödel endorsed optimism (Wang [1974, 324–325]; see also
Wang [1987]): “[H]uman reason is [not] utterly irrational by asking questions it cannot
answer, while asserting emphatically that only reason can answer them. . . . [T]hose
parts of mathematics which have been systematically and completely developed . . .
show an amazing degree of beauty and perfection. In those fields, by entirely unsus-
pected laws and procedures . . . means are provided not only for solving all relevant
problems, but also solving them in a most beautiful and perfectly feasible manner.
This fact seems to justify what may be called ‘rationalistic optimism.’” The opening
of Hilbert’s celebrated “Mathematical problems” lecture [1900] is also an enthusias-
tic endorsement of optimism:21 “However unapproachable these problems may seem
to us and however helpless we stand before them, we have, nevertheless, the firm
conviction that the solution must follow by . . . logical processes. . . . This convic-
tion of the solvability of every mathematical problem is a powerful incentive to the
worker. We hear the perpetual call: There is the problem. Seek its solution. You can
find it . . . for in mathematics there is no ignorabimus.”

Notice that if the law of excluded middle is accepted in the context of Heyting
semantics and if, as assumed here, “provable” means something like “provable by
the ideal constructor,” then up to Church’s thesis, one can rigorously sustain the
intuitionistic (and antiformalist) thesis that the notion of “provable sentence” of

20. On this view, perhaps, one might balk at calling the law of excluded middle a principle of logic,
because the regulative ideal is not analytic, a priori, a matter of form, or obvious. The location and
importance of the border between mathematics and logic is beyond my present concern.

21. In the same lecture, Hilbert envisions the possibility of our discovering that a certain problem
has no solution in the sense originally intended. This seems to bear on excluded middle, vis-à-vis Heyting
semantics. I am indebted to Michael Detlefsen for making this point. As for Gödel, one should not
forget that he was a realist concerning mathematics, and so, for him, a solution to an unambiguously
stated problem is the discovery of a mind-independent fact about the mathematical realm. That is,
Gödel’s optimism may be grounded in his realism. On the other hand, one might think of realism as an
outgrowth—an epiphenomenon—of optimism. If the assertabilist program could be sustained, it would
show that the outgrowth is not necessary.
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22. For each natural number n, let Fn be the statement that the Turing machine with Gödel number
n halts when given n as input; and let K be {n  Fn}. Let T be {Fn  n 0 K} c {5Fn  n ó K}. Presum-
ably, optimism entails that every member of T is “provable” by the ideal constructor. If there were an
effective formal system that codified all and only the “provable” sentences in this language, then the
set K would be recursive—which it is not. Gödel draws essentially the same conclusion. He argues that
either there are absolutely undecidable propositions—optimism is false—or the human mind is not a
machine. This, together with Gödel’s optimism, yields his antimechanism.

23. McCarty [1987] provides another, more natural route to the demurral of excluded middle via
Heyting semantics. The idea is to accept Church’s thesis and identify a procedure with a Turing machine.

arithmetic cannot be captured by any effective deductive system. Under the present
assumptions, it follows from the unsolvability of the halting problem that the
extension of “provable sentence” is not recursively enumerable, and thus cannot
be formalized.22

Thus much, of course, is not surprising. However, the situation concerning the
epistemic tractability of the extension of “provable by the ideal constructor” is much
worse than this. It can be shown that, under optimism, “provable sentence” of arith-
metic has virtually all of the formal properties of classical truth. Indeed, it has the
same extension as classical truth. Literal analogues of the Tarski T-sentences,

F is provable iff F,

can be derived from optimism and a reflection principle,

if F is provable, then F.

Thus, the extension of “provable sentence” of arithmetic cannot occur anywhere in
the Kleene hierarchy. According to optimism, the extension of “provable sentence”
of arithmetic, analysis, set theory, and the like, is just as complex as the extension of
“true sentence” in the corresponding realist theory. In effect, we would be saddled
with one of the extreme views noted above, the one in which “procedure” is ren-
dered “function,” classically conceived, and “provable” amounts to “true.” In that
case, Heyting semantics is little more than a rewording of classical, truth-valued
semantics.

In sum, then, by moving to Heyting semantics and adopting optimism, we are
attributing to the ideal constructor the ability to detect classical truth. Recall that the
promise of assertabilism was that there may be gains on the epistemic front.
Assertability was supposed to be more tractable than classical truth, because asser-
tion (unlike truth) is a human endeavor. We do not gain anything, however, when
we idealize assertability so much that all and only classical truths are assertable by
the ideal constructor.

All this is grist for Dummett’s revisionism. If “provable sentence” is to be
epistemically tractable, or less intractable than classical truth, then optimism seems
to be ruled out. If we opt for assertabilism and pessimism, then there is a principled
reason to demur at the law of excluded middle and, thus, to demand revisions to
mathematics.23 But one person’s modus ponens is another’s modus tollens. Things
do not look good for assertabilism as a quasi-realism, an antirealist philosophy under-
lying mathematics as practiced.
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Perhaps we should not close the door on this antirealist, nonrevisionist program.
It seemed like such a good idea. The challenge is to develop notions of “use,”
“assertability,” and “rationally compelling argument,” that can simultaneously sup-
port a notion of “provability” that is every bit as rich and noneffective as classical
“truth” yet more tractable than “truth” on the epistemic front.

8 Practice, Logic, and Metaphysics

Previous sections dealt with a relationship between mathematical practice and mathe-
matical philosophy. The purpose of this final section is to relate these considerations
to the more global perspective concerning mathematics and its philosophy. I further
articulate the conclusions of chapter 1.

Once again, the practice of a given branch of mathematics uses either a static lan-
guage or a dynamic language, many appearing to prefer the latter. By itself, dynamic
language is more or less neutral on matters of semantics, ontology, and at least to
some extent, logic. Semantics, ontology, and logic can be related to the moves and
knowledge attributed to the ideal constructor. Static language is conducive to classi-
cal logic and standard Tarskian semantics, and realism in ontology is consonant with
classical logic and Tarskian semantics. With dynamic systems, this realism “sanc-
tions” the sorts of constructions sufficient to regard the systems as if they were static.
Thus, we have a relationship of mutual support between realism and static language.

The question here is whether realism is the chicken or the egg vis-à-vis the prac-
tice. Some hold that realism is what ultimately grounds the mathematics—philoso-
phy-first. This view, however, is at odds with the historical development of math-
ematics. If anything, the roles go the other way around. To extend the metaphor,
realism (in ontology and truth-value) is an egg that grew into a chicken. More liter-
ally, the sorts of constructions and inferences sanctioned by realism were originally
accepted on more or less internal mathematical grounds, in some cases after a struggle.
In such contexts, classical logic and Tarskian semantics were formulated, developed,
and established. This pragmatic orientation is called “working realism” in chapter 2.
Once established, however, the principles and semantics take on a normative role
and affect the continued development of mathematical practice, thus producing an
advanced, normative stage of working realism.24

Today, working realism is well established and has proven fruitful, and I do not
wish to suggest that there was or is anything irrational or unjustified in adopting it,
either by an individual or by the mathematical community itself. Quite the contrary.
I do claim, though, that working realism was not a foregone conclusion in the his-
tory of mathematics. It is not a priori. Moreover, there is no guarantee that the math-
ematical community will always be, or should always be, dominated by working

24. Dictionary writing provides an analogy. At first, the enterprise is descriptive of the accepted
norms of spelling and word usage. Once a successful dictionary is in place, however, it can come to
constitute the norms in the sense that the dictionary becomes the source of correct spelling and word
usage.



212 RAMIFICATIONS AND APPLICATIONS

realism. Conceivably, it may come to be rational to abandon or severely alter the
methodological framework.

To be sure, there is no way to substantiate this claim concerning the possible fu-
ture directions of the mathematical community, unless of course it happens—but even
that might not settle the matter. In the futuristic scenario, the philosophical opposi-
tion can claim that the mathematical community made a big mistake. I might add
that I am not at all anxious for any changes in the current logical/semantical/onto-
logical framework. It is too insightful, fruitful, and compelling. Like Hilbert, I am
not looking to leave Cantor’s paradise. Nevertheless, the first part of my claim—that
the framework of working realism was not a foregone conclusion—does receive some
support from mathematical development, both on an individual level and on the com-
munity level. Gödel [1964] is correct that the axioms of set theory “force themselves
on us as true,” but the axioms do not force themselves on a first (or second, or third)
reading. For virtually any branch of mathematics, the psychological necessity of the
axioms and inferences, and the feeling that the axioms are natural and inevitable,
comes only at the end of a process of training in which the student acquires consid-
erable practice working within the given system, under the guidance of teachers.

The fact that commonly accepted axioms and inferences are not psychologically
compelling at first is also reflected in mathematics courses at the college level. For
many students, even bright ones, the most difficult aspect of mid-level mathematics
courses is the emphasis on understanding and writing proofs. Moreover, many pro-
fessors find teaching proofs to be among their most challenging pedagogical tasks.
One explanation is that the students do not find even the most basic inferences as
natural and compelling as trained mathematicians do.

In the historical development of mathematics, we find periods of ambivalence
followed by near unanimity and certainty. One generation of mathematicians struggles
and the next generation of philosophers takes the winners to be expounding self-
evident, a priori truths. Today, nearly all mathematicians are thoroughly comfort-
able with such items as the axiom of choice, impredicative definition, and excluded
middle. Most, in fact, are not always aware of the situations in which these items are
invoked, and, when they are, they do not seem to care whether the uses are neces-
sary. According to the current framework of working realism, this is as it should be.
The most fundamental assumptions are those least likely to be questioned. Yet one
does not have to do an extensive review of the relevant histories to remember that
the items in question were not always so obvious and natural, and they were accepted
by the mathematical community only after long and sometimes hard-fought struggles.
Some examples were discussed in chapter 1. Classical mathematics as construed here
—excluded middle, impredicative definition, completed infinite processes—is
scarcely a century old (see chapters 1 and 5).

Much of Lakatos’s historical work concerns disagreements among mathematicians.
In a collection of notes entitled “What does a mathematical proof prove?” (published
posthumously in Lakatos [1978]), he makes a distinction between the preformal
development and the formal development of a branch of mathematics. A preformal
proof is not best seen as a formal proof with missing steps. Rather, it is a heuristic,
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explanatory, and exploratory device. The examples he develops (e.g., in [1976])
indicate that the preformal proofs are dynamic and often rely on vague analogies with
what may be called nonmathematical “construction.” His favorite example, attrib-
uted to Cauchy, relates the dynamic properties of polyhedra to those of physical
objects made from rubber sheets (see section 2). Lakatos shows that during the his-
torical development, it is just not clear what a polyhedron is. The development high-
lights unclarities and vagueness in the preformal notion. According to Lakatos, the
subsequent process of “proofs and refutations” ended with the official definitions
we have today—the “formal development” of solid geometry.

Putting the Popperian themes aside, Lakatos is quite correct that the preformal
development of a branch of mathematics differs from its formal articulation in sig-
nificant ways. During the preformal period, mathematical objects are not rigorously
defined (in terms of other rigorously defined objects). Instead, objects are character-
ized by ostension in terms of paradigm cases. In Lakatos’s prime example, a “poly-
hedron” is little more than “something like a cube or tetrahedron” or, perhaps, “some-
thing like a polygon, but three dimensional.” The series of proofs and refutations
deal with borderline cases of this vague characterization. Other examples are not hard
to find. In ancient Greece, a “magnitude” is “something like a line segment or an
area”; more recently, a “complex number” is “something like a real number, but closed
under roots”; and a “continuous function” is “a function whose graph is smooth.”
Even more recently, a “computable function” is one “that can be executed in some-
thing like mechanical fashion.” Among other things, the preformal development
serves to clear ambiguity and vagueness from the intuitive notions.

In structuralistic terms, I propose that the preformal period of a branch of mathe-
matics is a time when the community is attempting to formulate and study a struc-
ture (or group of structures) before the exact relations are completely articulated. At
the outset, it is neither established nor determined just what the structure is and, in
some cases, just what the logic is. Sometimes, the structure is indicated by vague
reference to (more or less understood) structures of physical reality—the structures
of moving objects, stretchable rubber sheets, knots, collections of objects, pencils
and paper, and so forth. In these cases (at least), preformal mathematics is not all
that different from natural science (see chapter 8 and Shapiro [1983a], [1993]). In
other cases, the structures are identified by vague abstraction from other mathemati-
cal structures. For example, mathematicians began to ask what happens if the square-
root operation is extended to negative numbers, or how multiplication might work
on infinite cardinal numbers. In short, preformal proofs are inherently informal.
The reason, I would suggest, is that it does not become determinate until later
what is to count as acceptable construction and, thus, as correct inference. The struc-
ture, including the extensions of the concepts and the logic, has not been fully
articulated yet.

Preformal structures are usually dynamic. I suggest that the preformal period is
best characterized as one of experimenting with the possibilities of various moves
within the unarticulated vague structures—that is, moves attributed to the ideal con-
structor. What are the consequences of allowing such a move? What are the presup-
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positions of such a move? Which kinds of moves are incompatible with which? One
focus of the preformal period is the codification of aspects of the paradigm cases
that are essential to the structure whose articulation is evolving.

The ultimate answers are determined in part by the nature of the physical or math-
ematical reality under study (as articulated at a given point), but the answers also
serve to determine and fix the mathematical structure or structures at hand. In short,
the successful moves serve to articulate and (eventually) to rigorously formulate these
structures. On the dynamic account, the successful moves determine the relevant logic,
semantics and ontology. Ultimately, the successful moves determine the framework
in which formalization is to take place and, to reiterate one of the present conclu-
sions, the successful moves determine the logic.

Following Kitcher [1983], I propose that there is no universal, a priori notion of
success by which all constructions or attempted idealizations are to be judged. Rather,
adjudications are made in response to internal pressures within the evolving mathe-
matical community in response to problems and goals, previously taken to be im-
portant. This, in turn, is at least partly determined by the reasons the structures are
being articulated and the role they play in the intellectual community at large.

One should not conclude from this, of course, that all practice is sacrosanct. The
practice of a given branch can be and has been successfully modified, both on prag-
matic and on philosophical grounds. The philosophy that dominates a given period
grows from the practice of the period (or significant components of it) as an attempt
at explanation and codification. Once established, however, methodological prin-
ciples, like those of working realism, can take on a normative role and can help to
sanction, reject, and even suggest new practices. That is, philosophy is sometimes
part of the practice. The criteria relate to the goals of practice taken to be important
by a given community.

For philosophers, the overriding concern is to account for the historical data and
to put it in perspective. The philosophies that are traditionally called Platonism hold
that the ontological and semantic views are primary. Accordingly, philosophical real-
ism (in ontology and truth-value) was a foregone conclusion, and this philosophy is
what ultimately grounds the semantics and logic of the various branches of mathe-
matics. Temporary ambivalence, both individual and community, is the result of
(some) mathematicians’ failure to grasp and adopt the correct philosophy. Our
Platonist might concede that the productivity of the relevant inferences played a role
in convincing mathematicians and philosophers of the correct philosophy but will
add that the inferences, semantics, and so forth, are productive only because they are
sanctioned by the correct philosophy. The order of subjective justification is not the
true epistemic order. The Platonist may even admit that the decisions about the vari-
ous inferences could have turned out otherwise but would add that if that happened,
the mathematical community would have made a serious, wrongheaded move. Again,
philosophy-first.

I do not know how to refute this view of the situation. At best, I have only con-
trasted it with (the sketch of) another view. I endorse Kitcher’s [1983] metaphor of
an “evolutionary” epistemology. The analogy with biology is apt. To modify Kuhn’s
well-known remarks concerning science, it is obvious to all—Platonist, intuitionist,
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formalist, and so on—that both mathematical philosophy and mathematical practice
have changed over time. This includes subject matter, standards of rigor, and even
logic. Analogously, most people interested in biology do admit that species have
changed over time. The theory of evolution, however, regards species change as
primarily due to pressures within a changing environment, including the develop-
ment of other species. Evolutionary mathematical epistemology regards mathemati-
cal practice, and mathematical philosophy, as evolving primarily in response to de-
velopments within the mathematical community and, to some extent, the intellectual,
economic, and political communities at large.
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7

Modality, Structure, Ontology

1 Modality

Modal notions, in various guises, were invoked throughout this book.1 Earlier, one
of the formulations of structuralism (chapter 3) involved a notion of “possible struc-
ture,” as an alternative to both ante rem structuralism and eliminative structuralism
over a domain of abstracta (see section 3 of this chapter). Along these lines, some
antirealists have expressed sympathy with structuralism, but they quickly noted that
it is possible structures and not actual structures that must be invoked. The purpose
of this penultimate chapter is to see what, if anything, is added (or subtracted) with
this qualifier. I make good on the claim that there are no real gains on the epistemic
front with maneuvers like these. The deep interaction between modality and struc-
ture makes an interesting case study for philosophy.

Contemporary philosophy of mathematics and, to some extent, metaphysics and
epistemology contain two schools of thought. One group favors a comprehen-
sive mathematical theory, such as set theory. Members of this school hold that set-
theoretic assertions, say, should be taken more or less literally. Philosophically, this
is the double realism of ontology and truth-value. Members of this group include
Quine (e.g., [1981]); Putnam [1971]; Resnik [1981]; Maddy [1990]; and me.

Some, but not all, of these philosophers are skeptical of modality or, at any rate,
do not think modal notions can play central roles in philosophical explanations.
Quine’s influential views are near the extreme: “We should be within our rights in
holding that no part of science is definitive so long as it remains couched in idioms
of . . . modality. . . . Such good uses as the modalities are ever put to can probably be
served in ways that are clearer and already known” ([1986, 33–34]). For many phi-
losophers, the logical notions of possibility, necessity, and consequence are notable
exceptions to this skepticism. This may be because the logical modalities have

1. Many of the ideas and arguments of this chapter were first published in Shapiro [1993a].
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(presumably) been reduced to set theory, via model theory—despite the prevail-
ing antireductionist spirit. For example, a sentence or proposition F is said to be
logically possible if and only if there is a model that satisfies F. To paraphrase Quine,
model theory via set theory is presumably clearer and already known and can serve
the purposes of the logical modalities.

Skepticism toward modality is not universal within the first school. Philosophers
use powerful set-theoretic tools in a rich and extensive literature on various modal
notions. There is more than a family resemblance between model theory and these
possible-worlds analyses of alethic and epistemic modalities. The possible-worlds
semantics is an attempt to extend the success of model theory to other modal
notions.

The second school in the philosophy of mathematics is the opposite of the first.
Its members are skeptical of set theory and other mathematical disciplines, at least if
they are taken at face value, and members of this school accept at least some forms
of modality. To be precise, these philosophers are less skeptical of modality than they
are of set theory. So they set out to reformulate mathematics, or something to play
the role of mathematics, in modal terms. Prominent members of this school include
Field [1980], [1984]; Hellman [1989]; Chihara [1990]; Dummett [1973], [1977];
Blackburn [1984]; and possibly Putnam [1967].

The purpose of these enterprises is to see how far we can go in mathematics and
science without asserting the existence of abstract objects like sets (or categories or
structures). The members of this school are thus antirealists in ontology. Many of
the authors, however, are realists in truth-value, holding that statements of mathemat-
ics, or close surrogates, have objective truth conditions that hold or fail independently
of the conventions, minds, and so on, of mathematicians. In many of the systems, for
example, there is a version of the continuum hypothesis that is objectively true or
objectively false, although the statement is deductively independent of the axioms
and other basic statements of its system. As with the first school, even if no one knows
whether the continuum hypothesis is true or false, it is true or false just the same.

Of course, there are also philosophers who are antirealists in truth-value, some of
whom are out to revise mathematics on philosophical grounds (see chapters 1 and
6). My present focus, however, is on ontological antirealist programs that agree with
the first, realist school that the bulk of contemporary mathematics (or a surrogate) is
to be taken seriously, and that most of the assertions of mathematicians are objective
and nonvacuously true, when properly understood. In short, my concern in this chapter
is with the combination of realism in truth-value and antirealism in ontology. For the
programs under study, it is a basic datum that the language of mathematics is under-
stood—somehow—by mathematicians and scientists, and mathematicians get it right
most of the time.

Many of the antirealist programs invoke modality in order to reduce ontology. It
must be emphasized that the modal notions used by the members of the second school
are primitive. In part, this means that the modal terminology is taken at face value,
not reduced to something nonmodal. The members of the school differ among them-
selves concerning what the modal primitive is, but none of them envisions a realm
of possible worlds, a realm of possibilia, or a model theory to explicate the modality.
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This stance is a counterpart to the other orientation that takes mathematics at face
value, without envisioning a reduction to something nonmathematical. For the first
school, set theory is primitive; for the second modality is primitive. Thus, we are
invited to consider a trade-off between a vast ontology and an increased ideology.

Some philosophers favor the reduction of ontology on grounds of economy. Less
ontology is better. But one can ponder the purpose of this economy. What, after all,
is at stake with the general issue of ontology and ontological commitment? What are
we doing when we assert or deny the existence of mathematical objects? More im-
portant, how are we to evaluate our competing claims? The prevailing criterion of
ontological commitment, due to Quine (e.g., [1969]), is that the ontology of a theory
is the range of its bound variables. This criterion is straightforward only if the ideol-
ogy is held fixed. The programs under study here violate this constraint, and things
get obscure at this point. With the ideology in flux, one can wonder whether the
Quinean criterion tracks any useful property. Each side proposes to eliminate or re-
duce the most basic notions used by the other. Typical remarks about judging the
ontology/ideology trade-offs on some sort of “holistic” grounds are not very helpful
unless these grounds are elaborated and defended. The interest of this question goes
well beyond structuralism in the philosophy of mathematics, but as shall be seen
(section 5), structuralists have something to say about the resolution, at least for the
philosophy of mathematics.

The (ontological) antirealist programs under study here do have promising be-
ginnings. The epistemology of the various modal notions may be more tractable than
an epistemology of abstract objects like sets. With fewer things to know about, there
is less to accommodate, and less can go wrong. However, like the conclusion con-
cerning assertabilism, in chapter 6, the contention here is that the promise is not de-
livered. The epistemological problems with the antirealist programs are just as seri-
ous and troublesome as those of realism in ontology. Moreover, the problems are, in
a sense, equivalent to those of realism. No gain is posted—and sometimes there is a
loss. Perhaps the source of the epistemological difficulties lies in the richness of
mathematics itself.

I do not attempt a comprehensive account of all current philosophies of mathe-
matics that fit our scheme of realism in truth-value and antirealism in ontology.
The projects are all rich and complex, and there is not sufficient space to give them
the attention they deserve. The next, and longest section concerns Hartry Field’s
modal fictionalism, whereas sections 3 and 4 provide brief accounts of some other
programs in the present purview, namely, Hellman [1989]; Chihara [1990]; and
Boolos [1984], [1985]. Hellman’s account is especially relevant here, because it is
a modal structuralism.

In each case, the structure of the argument is the same. I show that there are straight-
forward, often trivial, translations from the set-theoretic language of the realist to
the proposed modal language and vice versa. The translations preserve warranted
belief, at least, and probably truth (provided, of course, that both viewpoints are
accepted, at least temporarily). Under certain conditions, the regimented languages
are definitionally equivalent, in the sense that if one translates a sentence F of one
language into the other, and then translates the result back into the original language,
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the end result is equivalent (in the original system) to F. The contention is that, because
of these translations, neither system has a major epistemological advantage over the
other.2 Any insight that modalists claim for their system can be immediately appro-
priated by realists and vice versa. Moreover, the epistemological problems with real-
ism get “translated” as well. The prima facie intractability of knowledge of abstract
objects indicates an intractability concerning knowledge of the modal notions, at least
as they are developed in the works in question here. To be sure, the modal notions
invoked by our antirealists do have uses in everyday (nonmathematical) language,
and competent speakers of the language have some pretheoretic grasp of how they
work. By itself, however, this pretheoretic grasp does not support the extensively
detailed articulation of the modal notions as they are employed by our antirealists in
their explications of mathematics. Our grasp of the detailed articulations of the modal
notions is mediated by mathematics, set theory in particular. For example, one item
concerns the relationship between model theory and the intuitive notion of logical
consequence. Of course, everyone who reasons makes use of logical consequence,
and so there is some pretheoretic grasp of this modal notion. How does this pre-
theoretic notion relate to model-theoretic consequence? The question at hand concerns
the extent to which our antirealists are entitled to the hard-won, model-theoretic
results.

The truth is that logical consequence and set theory illuminate each other. It is
unfair to reject set theory, as our modalists do, and then claim that we have a pre-
theoretic understanding of the modal notions that, when applied to mathematics,
exactly matches the results of the model-theoretic explication. The burden on the
antirealist is to show how we come by the detailed articulation.

Where, then, is the burden of proof between the schools? Other things equal, it
would be nice to take the languages of mathematics, set theory in particular, liter-
ally. Mathematics is, after all, a dignified and vital endeavor, and we would like to
think that mathematicians mean what they say and know what they are talking about.
This is to take mathematics at face value. Other things equal, it would also be nice to
avoid the epistemological problems that seem to dog realism. However, the one thing
that everyone agrees on is that other things are not equal.

2 Modal Fictionalism

We have spoken of the program in Field [1980] in several earlier places. The plan of
Field’s book is to accomplish enough of an eliminativist project to avoid an onto-
logical “commitment” to mathematical entities. Field’s goal is to show that science
can be done without mathematics, albeit in a terribly inconvenient manner. As Field
sees it, the role of mathematics is to facilitate inferences from physical premises to
physical conclusions, what may be called “nominalistic arguments.” His claim is that
mathematics is conservative over science, in the sense that any nominalistic argu-
ment that can be derived with the help of intermediate mathematical statements is

2. I am indebted to a referee for suggesting that the point be put this way.
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itself logically valid. Thus, the role of mathematics in science is to facilitate the logic.
Field points out that conservativeness is not the same thing as truth. So if the fictionalist
program succeeds, there is no need to regard the mathematics as literally true. Be-
cause mathematics is, in principle, dispensable, its assertions may be regarded as
statements about fictional entities, much like what we read in novels. Natural num-
bers and sets are the same kinds of entities as Oliver Twist and Jean-Luc Picard.

There is, of course, a sizable literature on the semantics of fiction, but, at least
prima facie, users of fiction are not committed to a fictionalist ontology. Thus, to
belabor the obvious, Field proposes a reduction of ontology. He does hold that state-
ments of mathematics are to be taken literally, at face value, but most of the state-
ments are vacuous. For example, “all natural numbers are prime” comes out true,
because, for Field, there are no natural numbers. On Field’s view, of course, these
vacuous truth-values play no role in determining the acceptability of mathematics or
the role of mathematics in science. Mathematicians are not exhorted to assert the truth.
In effect, statements of mathematics might as well have no truth-value (see Hale [1987,
chapter 5, n. 1]). Thus, Field is allied with antirealists in truth-value, at least in spirit.
But, as we will see, Field does develop a close surrogate for much mathematics and
there are objective, nonvacuous truth conditions for the surrogate mathematical
assertions.

There are two parts of the fictionalist program. The first is to develop a nominal-
istic version of each worthwhile science. This is needed because typical scientific
assertions and laws invoke mathematical entities. The second part of the program is
the conservativeness result. Our fictionalist should show that adding mathematics
(and “bridge principles” that connect mathematical and physical terms) to a nomi-
nalistic theory does not yield any “new” nominalistic theorems. It would follow that
even though mathematics is useful and, in fact, practically necessary, it is theoreti-
cally dispensable.

To illustrate the first part of the program, Field develops a nominalistic version of
Newtonian gravitational theory in some detail, with an admirable level of rigor. The
ontology of Field’s mechanics includes a continuum of space-time points and even
more space-time regions. Nominalistic space-time has the same size and much of
the structure of ú4, the set of quadruples of real numbers.3 So Field is not a finitist,
not by a long shot. Nevertheless, he argues that points and regions are concrete, not
abstract entities, and so his nominalistic version of space-time is not mathematics. I
will not pause to evaluate this argument here.

Part of Field’s surrogate mathematics deals directly with space-time. In the nomi-
nalistic theory, there are analogues of the continuum hypothesis and various

3. In the theory that Field develops, space-time has no preferred frame of reference and no units on
which addition, multiplication, etc, are defined. The difference between Field’s space-time and ú4 is
similar to the contrast between the synthetic geometry of Euclid’s Elements and contemporary ana-
lytic geometry, done in terms of real numbers. In present terms, Field’s work highlights a distinction
between the structure actually exemplified by space-time and further structure added for theoretical
study. See Burgess [1984].
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determinacy principles. These nominalistic surrogates are formulated with reference
to space-time points and regions only, but they clearly make the same structural state-
ments as the original mathematical prototypes. For Field, the truth-values of the surro-
gate statements are not vacuous, and the statements are deductively independent of
the nominalistic and mathematical theories combined. The surrogate statements are
just as objective as the realist thinks the corresponding mathematical principles are.

The role of nonsurrogate mathematics in Field’s nominalistic theory is straight-
forward. By invoking the resources of set theory, a physicist can define sets of points
and then apply geometric and physical axioms to the regions of space-time consti-
tuted by these sets—to be precise, to the regions that would be constituted by these
sets if the sets existed. This works because the mathematical theories have much of
the structure that Field attributes to physical reality. Mathematicians know how to
use set theory to study structure.

So we turn to conservativeness. Let P be a variable for collections of assertions of
nominalistic physics, q for single nominalistic assertions, and S for collections of
mathematical assertions and bridge principles connecting mathematics and physics.
Then, to paraphrase Field, mathematics is conservative over the physics if and only
if whenever q is a consequence of the combined P + S, q is a consequence of P alone.
However, there are at least two articulations of this, depending on how the notion of
“consequence” is understood. The mathematics is deductively conservative if, when-
ever q can be deduced from P + S, q can be deduced from P alone; and the mathe-
matics is semantically conservative if q is true in all models of P + S only if q is true
in all models of P.

Because mathematical entities apparently have no interaction with concrete ones,
one would expect mathematics to be semantically conservative over any nominalis-
tic theory, at least if we ignore the bridge principles. Field gives a proof of semantic
conservativeness for his system (including the bridge principles) from plausible pre-
mises. The proof is carried out in a mathematical metatheory. So far, so good. How-
ever, for the fictionalist program, deductive conservativeness seems to be the more
relevant notion. If deductive conservativeness holds, then any conclusion that mathe-
matical physicists derive can be obtained by their nominalist counterparts, albeit in
a more long-winded fashion. If nominalists know that mathematics is deductively
conservative, then they can use mathematics with a clear conscience, knowing it is
dispensable in principle.

Field’s first exposition of the nominalistic physics is second-order. First-order
variables range over points, and monadic predicate variables range over regions,
which are taken to be mereological sums of points. Like standard second-order logic,
the logic of Field’s system is inherently incomplete (see Shapiro [1991, chapter 4]).
In another work (Shapiro [1983]), I show that mathematics is not deductively con-
servative over this physics. One can formulate a Gödel sentence G in the nominalis-
tic language, such that G is not provable in the physics but is provable in the set theory
(via the bridge principles). The mathematics is, however, semantically conservative,
for the reasons that Field gives. In particular, the sentence G is a model-theoretic
consequence of the physics alone. This is not surprising, however, because Field’s
theory of space-time (i.e., the geometry) is categorical and so is semantically com-
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plete: every truth about the geometry of space-time is a model-theoretic consequence
of the nominalistic physics. In short, the mathematics allows us to derive (semantic)
consequences of the physical theory that cannot be deduced without the mathemat-
ics.4 In some cases, mathematics is necessary to see what the consequences are. Is
this tolerable to a nominalist?

The proper conclusion here is that mathematics sheds light on the model theory
that underlies the semantics of our scientific languages. Mathematics illuminates the
relevant relations among structures and thus helps us to determine what is a logical
(semantic/model-theoretic) consequence of what. The notion of logical consequence
is accurately explicated in terms of model theory. In this way mathematics indirectly
sheds light on the physical world, against Field. It allows us to see what the conse-
quences of our various theories are.

The problem here is that a fictionalist cannot accept this moral, at least not lit-
erally. How does the nominalist determine what follows from what? In particular,
what sense can a fictionalist make of the various notions of consequence? Surely,
the semantic, model-theoretic notion of consequence runs counter to the antirealist
theme. If one has doubts about positing a realm of abstract objects as the subject
matter of real analysis (and part of the subject matter of physics), one will certainly
have qualms about the set theory that lies behind the semantic notions. How can
talk about fictional entities be essential for determining consequences about the
real, concrete world? This is a trivial point, of course, and Field accepts it. He also
points out that even the notion of deductive consequence is prima facie trouble-
some for a nominalist, because the straightforward definition of this notion has
variables that range over deductions, which are at least prima facie abstract ob-
jects. Indeed, if the statement of deductive conservativeness is understood in terms
of actual, concrete deduction tokens, it is clearly false in virtually every nontrivial
case. There are written deductions of physical conclusions from physical and math-
ematical premises for which no one has bothered to write a deduction of the same
conclusion from the same physical premises alone. For an antirealist, an ontology
of abstract deductions, or of possible physical deductions, is about as dubious as
an ontology of numbers.

In sum, the fictionalist thesis of conservativeness is stated in terms of logical con-
sequence, and the two best historical explications of consequence are unavailable to
our fictionalist. One resolution would be to take the notion of logical consequence
as primitive. Field’s own solution is similar. He takes the notion of logical possibil-
ity as primitive. So, of course, possibility is not to be explicated in terms of models
or deductions. It is not to be explicated at all. Logical consequence can then be de-
fined: q is a consequence of P if the conjunction of the items in P with the negation
of q is not possible.5

4. See Shapiro [1983] and Field’s reply [1985] for an account of the first-order versions of Field’s
system.

5. Presumably, logical possibility is a property of sentences or propositions. Again, our fictionalist
cannot restrict attention to actual, concrete sentence tokens, and postulating the existence of types would
undermine nominalism. The move to modality helps here, at least for single sentences (and finite sets
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Field argues that to account for the applicability of mathematics, we need to as-
sume little more than the possibility of the mathematics, not its truth. If his plan works,
then the fictionalist can safely maintain that everything that actually exists is con-
crete, even while enjoying the benefits of mathematics. In effect, we reduce our
ontology by envisioning that we insert possibility operators into our regimented lan-
guage. I say “envisioning” because no one is to use the nominalistic physics. We are
to take comfort in the mere existence, or should I say the mere possibility, of the
nominalistic physics.

Let us take stock. Traditional realism has a large ontology, consisting of num-
bers, sets, and the like. Logical possibility is explicated in set-theoretic terms, either
as consistency or, more likely, satisfiability (or both). Field proposes a trade-off
between this ontology and an unexplicated ideology. With fictionalism, abstract
objects—like sets and numbers—are exchanged for a primitive notion of logical
possibility (and uncountably many points and regions). The adjudication between
realism and fictionalism, if there is to be one, is to be made on some sort of holistic
grounds, yet to be specified.

Field concedes that there are puzzling philosophical questions concerning possi-
bility, epistemological questions in particular. However, he argues that, in this re-
gard, fictionalism is no worse than traditional realism. For example, the fictionalist
must believe (with good reason) that the axioms for set theory are jointly possible,
whereas the realist must believe (with good reason) that they are true. In either case,
we are at a loss to figure out what counts as a “good reason.”

This is a fair point. The epistemic problems with possibility are seen as trade-offs
of epistemic problems with realism. But trade-offs like this can go both ways. Is the
fictionalist any better off than the realist? As noted above, it is widely agreed that
there are major epistemic problems with realism, whether or not my efforts in chap-
ter 4 bear fruit. The promise of fictionalism is that an epistemology of the concrete
may be more tractable than an epistemology of the concrete and abstract. However,
we now see that the fictionalist requires an epistemology of the actual and possible,
to be secured without the benefits of model theory. It is not clear that the fictionalist
has made any progress. Is fictionalism any more promising than the enterprise of
realism? I would suggest that fictionalism faces direct counterparts of every epistemic
problem with realism, and thus the proposed trade-off undermines the fictionalist
program.

To help see this, notice that there are direct, trivial translations from our fic-
tionalist’s language into the realist’s and vice versa. The translation from realism to
fictionalism is surely a matter of inserting modal operators in appropriate places, and
perhaps conjoining axioms. For example, the translation of a sentence F would be
of the form ‘(c & F*), where c is a conjunction of axioms from the background

of sentences). Putting matters of use and mention aside, our fictionalist speaks of possible tokens. The
problem is aggravated when, in the later [1991], Field invokes substitutional quantifiers as a device
for infinitary quantification (in order to accommodate consequences of theories that are not finitely
axiomatizable).



224 RAMIFICATIONS AND APPLICATIONS

mathematical theory and F* is a variant of F, with possibility operators inserted.
This is the main idea behind the program. For the converse, fictionalism to realism,
simply replace possibility with satisfiability. A subformula of the form “Y is pos-
sible” becomes “Y is satisfiable.”

With any proposed reduction or elimination like this, there is a question of what
the translations are supposed to “preserve.” I do not claim that the present “transla-
tions” preserve meaning. According to Field, the translations also do not preserve
ontological commitment—that is the point. If anyone thinks that these facts disqualify
the proposed “translations” as translations, another term, like “transformation” or
“function,” can be used.

It is not easy to say just what the translations do preserve. For a first approxima-
tion, let us speak loosely in a joint perspective of the realist and the modalist/
fictionalist. Let us temporarily assume that it is meaningful and nonvacuous to speak
of “truth” in both the realist and the modal languages. Of course, this is not a toler-
able end position. The joint perspective takes on both the realist’s ontology and the
fictionalist’s unexplicated modality, and so it assumes the shortcomings of both phi-
losophies and can claim the benefits of neither of them.6 Still, on the joint perspec-
tive, the claims behind the translations are these: (1) For every sentence F in the
realist’s language, if F is true, then the translation F' of F into the fictionalist lan-
guage is true. (2) For every sentence Y in the language of fictionalism, Y is true if
and only if the translation Y' of Y into the language of realism is true. Although Field
does not speak of “translation,” claim (1) is of a piece with the main thrust of his
[1980], [1984], and [1991] (ignoring subtle modifications). Claim (2) follows from
the (presumed) explication of logical possibility and consequence in terms of model
theory.

The reason claim (1) is not a biconditional is that if the realist’s theory is not se-
mantically complete, there may be a sentence F such that F' and (5F)' are both true.7

However, under certain conditions, the translations represent a tighter connection
between the theories, what is sometimes called “definitional equivalence.” Let F be
a sentence in the realist’s language, and let F' be the result of translating F into the
modal language of the fictionalist. Let F'' be the result of translating F' back into the
realist’s language. Is F'' equivalent to F in the realist’s theory? It is if (i) the back-
ground mathematics (of the realist) is finitely axiomatized, so that the same c will do
for all the translations; (ii) the background mathematics is semantically complete;
and (iii) there is a reflection principle, to the effect that if a sentence F is true then F
is satisfiable.8 For the other direction, translate a sentence Y from the modal lan-

6. I am indebted to Ty Lightner and Ben Theis for pressing this point.
7. Notice that (5F)' is ‘(c & (5F)*) and 5 (F') is 5‘(c & F*). So (5F)' may not be equivalent to

5 (F'), and (5F') may not be contrary to F'.
8. In first-order Zermelo-Fraenkel set theory, conditions (i) and (ii) fail, but (iii) holds. In second-

order set theory, condition (i) holds. Condition (ii) is independent, unless an axiom that limits the size
of the hierarchy is added. Condition (iii) is equivalent to an axiom of infinity, implying the existence
of so-called small large cardinals (see Shapiro [1987] or [1991, chapter 6]).
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guage of the fictionalist into the realist’s language, and then translate the result back
to the modal language. Is the resulting sentence, Y'', equivalent to Y in the modal
theory? Yes, if (i) the realist’s axioms are jointly possible and (ii) there is a modal-
reflection principle to the effect that if F is possible then it is possible that F is sat-
isfiable. I return to definitional equivalence in section 5.

So much for the unappealing joint perspective of the realist and the modal fic-
tionalist. What can we make of the translations without it? We speak in terms of the
two parties separately and what would be reasonable for each to hold concerning the
translations. Let us think in terms of a neutral observer who has learned both frame-
works and is trying to decide between them.

Notice, first, that the definitional equivalence of the frameworks, if it holds, can
be appreciated by either party. The equivalences are formulated in the separate lan-
guages and theories: F/F" in the realist’s framework and Y/Y'' in the fictionalist’s.
So each of the disputants has some reason to see the frameworks as equivalent. Com-
munication between them will be smooth.

Whether the theories are definitionally equivalent or not, we can reformulate the
central claims (1) and (2) in terms of belief or warranted belief. That much is avail-
able to the neutral observer and to the combatants themselves. The new theses are:
(1*) The neutral observer sees that if the realist finds good reason to believe F, ac-
cording to his own lights, then the fictionalist can find good reason to believe F' in
her framework. (2*) The neutral observer sees that the fictionalist has a good reason
to believe Y if and only if the realist has a good reason to believe Y'. Again, claim
(1*) is of a piece with Field’s own work, and he surely would accept this way of
putting the point. Claim (2*) goes along with the presumed model-theoretic explica-
tion of the logical modalities.

Claim (1*) might be disputed by the realist. Suppose, for example, that our realist
believes that he has an ability to intuit truths about the set-theoretic hierarchy, via a
communion with it. He might claim that he just sees that F is true, without being
able to give any other justification. The modal fictionalist has the option of taking
the realist’s intuition as evidence for F', but it is more natural for her to simply deny
that the realist has a good reason to believe F—if not by the realist’s own lights,
then by what those lights should be. I presume that the neutral observer will agree
that invoking an unexplained intuition is an epistemic nonstarter—and of course most
realists also do not invoke unexplained intuition. In justifying their assertions, they
speak of proof, definition, heuristic argument, and so on, just as mathematicians do,
and those epistemic tools do “translate.”

The fact that there are such smooth and straightforward transformations between
the ontologically rich language of the realist and the supposedly austere language of
the fictionalist indicates that neither of them can claim a major epistemological ad-
vantage over the other. There is a positive side to the equivalence and a negative
aspect. The fictionalist can (and does) argue that unless the realist invokes some sort
of nonnatural direct apprehension of the mathematical realm, any sort of evidence
he can cite for believing in a mathematical assertion F can be invoked by the fic-
tionalist in defense of belief in F', the joint possibility of F with some axioms. How-
ever, given the other translation—fictionalism to realism—the reverse applies as well.
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Any insight claimed by the fictionalist can be appropriated by the realist. If the sys-
tems are definitionally equivalent, the standoff is even tighter. Every sentence of either
language is equivalent (in its own framework) to a translation of a sentence from the
other.

The negative side of the equivalence is even more troublesome. My contention is
that with the translations, the major philosophical problems with realism get “trans-
lated” as well. For example, let F be a mathematical assertion. A fundamental prob-
lem for the realist is “How do we know F?” or, to be philosophically explicit, “How
do we know that F holds of the highly abstract ontology?” For us structuralists, the
problem is “How do we know that F holds in the indicated structure?” Under the
translation, these questions become “How do we know that F is possible?” or “How
do we know that the conjunction of F with axioms of the background theory is pos-
sible?” There is, after all, no acclaimed epistemology for either language. In short, it
is hard to see how adding primitive possibility operators to the formation of epistemic
problems can make them any more tractable, and, consequently, it is hard to see how
the fictionalist has made any progress over the realist on the sticky epistemic problems.

Against this, Field claims that the beliefs needed to support fictionalism are weaker
than the beliefs needed to support realism. Again, let F be a statement of mathemat-
ics. The realist must believe F, whereas the nominalist need only believe that the
conjunction of F and the mathematical axioms is possible. The latter is, presumably,
weaker. However, our realist and our fictionalist do not understand the locution “is
possible” the same way, and there is no neutral framework in which to state and
evaluate this claim of relative strength. For the fictionalist, the possibility operator is
a primitive and “F (and the axioms) is possible” is indeed weaker than F itself. How-
ever, under the translation, “F (and the axioms) is possible” becomes something like
“F (and the axioms) is satisfiable.” This may be weaker than F, but in the cases at
hand, it is not much weaker (and sometimes it may be stronger).9 It is hard to see
how our neutral observer can adjudicate the claim of relative strength. Recall that on
the present structuralist view, mathematical knowledge is mediated by knowledge
of what is coherent.

So far, I have described the situation between realism and fictionalism as a bal-
anced standoff, but there is an important asymmetry in the positions. The fictionalist
proposes that we reject the realist’s system—regarding it as no more than a work of

9. If the languages are second-order and “satisfaction” is given its usual reading, in terms of models
whose domains are sets, then “F is satisfiable” may be stronger than F. Let Z be the axioms of second-
order Zermelo-Fraenkel set theory. Then “Z is satisfiable” implies the existence of an inaccessible
cardinal, whereas Z itself does not. This observation represents a complication in the aforementioned
translations between the fictionalist’s and the realist’s languages. Suppose, for example, that there are
no inaccessible cardinals. Field correctly holds that the axioms of second-order set theory are jointly
possible, but under the supposition, there is no set that is a model of those axioms. That is, the axioms
would not be jointly satisfiable. To avoid this problem, the realist can either assume a reflection prin-
ciple or else define satisfaction in terms of (possibly proper) classes. See Shapiro [1987], [1991, chap-
ter 6].
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fiction—whereas the realist accommodates the modal language, via the model-
theoretic explications. The important point is that once the model-theoretic explica-
tion is in place, the realist has a lot to say about logical possibility and logical conse-
quence. It is a gross understatement to point out that mathematical logic has been a
productive enterprise. The challenge to the fictionalist is to show how she can use
the results of model theory, as they bear on the primitive modal notion.

There is an interesting irony in Field’s development of fictionalism. As noted, he
shows in rigorous detail that under reasonable assumptions, mathematics is seman-
tically conservative over nominalistic physics. Field’s proof uses a substantial amount
of set theory, in the spirit of reductio. By assuming the mathematics, Field shows
that, in a sense, the mathematics is not necessary for science. For the sake of this
argument, he also assumes the correctness of the model-theoretic explication of logical
consequence. Indeed, the very statement that mathematics is not necessary for sci-
ence is rendered in set-theoretic terms. The problem, once again, is that fictionalists
cannot accept the explication, for they deny the background set theory.

For illustration, consider an imaginary philosopher who is initially skeptical about
mathematics, because of its apparent ontology of abstracta. However, she sees that
mathematics appears to be necessary for science. At this stage, there is no clear ex-
plication of this “necessity thesis,” but it seems correct. Science is typically done
with mathematics and, as far as she knows, there is no alternative. So she reluctantly
accepts mathematics and the set-theoretic foundation of it. On doing so (and after
taking a course or two), she learns and comes to accept the prevailing model-theoretic
explication of logical possibility and logical consequence. Field shows that she now
has the resources to further articulate the thesis that mathematics is necessary for
science. She can give a precise rendering of this necessity thesis in model-theoretic
terms, with all the precision of mathematics. Moreover, after reading Field [1980],
our imaginary philosopher can establish that the thesis is not true. In short, she can
show that mathematics is not necessary for science, once she understands the neces-
sity in model-theoretic terms. Supposedly, this discovery undermines her initial, re-
luctant acceptance of mathematics. However, if mathematics is rejected, then so is
the explication of consequence and, with that, the “refutation” of the necessity of
mathematics in science. That is, if the philosopher does reject the mathematics, she
is no longer in a position to see the falsity of the thesis that mathematics is necessary
for science. Indeed, she no longer has a clear idea of what the necessity amounts to.

The upshot of this is that even if Field’s analysis is correct, it is not clear that one
should reject mathematics. With mathematics, we get more than some help with sci-
ence. We also get a reasonable explication of the logical notions, the very items used
to articulate the thesis that mathematics is necessary for science. The fictionalist alter-
native is to accept a primitive notion of possibility, and we are left with very little
idea of what this notion comes to.

In later works ([1984], [1991]), Field addresses this situation. His idea is that
fictionalists can use model theory to shed light on (logical) possibility for the same
reason they can use mathematics in science. The strategy is to restart the fictionalist
program at the level of the metatheory, what is sometimes called “metalogic.” One
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uses mathematics to explicate possibility and consequence and then argues that this
use of mathematics is conservative; so it, too, can be regarded as fictional. A rele-
vant bridge principle is that a sentence is possible just in case it is satisfiable. Of course,
one can then wonder what this conservativeness amounts to. Presumably, it invokes
a notion of consequence as well. If Field’s strategy is pursued, then the foregoing
standoff between fictionalism and realism becomes a regress, as we ascend through
a hierarchy of metalanguages.10

3 Modal Structuralism

Chapter 3 contains a modal alternative to ante rem structuralism. Instead of speak-
ing of the existence of structures, we speak of the possible existence of them. Hellman
[1989] is a detailed and insightful articulation of this program. In that chapter, I in-
dicated that the modal program is equivalent to both the ante rem program and an
eliminative program applied to an ontology of abstracta. The equivalence is delim-
ited here, in much the same terms as that of the previous section.

Unlike Field, Hellman is an avowed realist in truth-value. He holds that the
statements of mathematics, properly interpreted, have objective, nonvacuous
truth conditions that hold or fail independently of the minds, conventions, and so
on, of mathematicians. Hellman and I have much in common. We are both advo-
cates of second-order logic (see Shapiro [1991]), and we are both structuralists.
Hellman contrasts his modal structuralism with a more traditional view, called
“objects platonism,” which holds that arithmetic, say, is about a particular collec-
tion of objects, the natural numbers. Here he also parts company with the ante rem
structuralist.

Hellman’s plan is to characterize a version of structuralism that does not presup-
pose the existence of structures, a structuralism without structures. He notes, first,
that second-order languages allow categorical characterizations of important math-
ematical structures. For example, there is a second-order formula AR(X, s), which
has only the variables X and s free (and has no nonlogical terminology), that asserts
that <X, s> is a model of the natural numbers. Like Field [1980], the ideology of
Hellman [1989] consists of operators for logical possibility and logical necessity.
Hellman claims that the modal part of the language allows him to avoid ontological
commitments. Instead of asserting that there is a natural-number structure, he asserts
only that it is possible for there to be such a structure:

‘›X›s(AR(X, s)).

So, like Field’s modal fictionalism, ontology is somehow reduced by envisioning
that we have inserted boxes and diamonds into our regimented language. Moreover,
like the Field program, it is not clear that there is a gain over realism. Even if we
eschew an ontology of possible objects, we surely need an epistemology of possible
objects—just as the traditional realist needs an epistemology of actual abstract ob-

10. See Hale [1987, 256–257, n. 12] for a criticism of Field’s strategy.
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jects. How do we know what is possible? No reason is given to think that the modal
route is any more tractable than the realist one—and there is reason to think it is not
more tractable.

Notice that, once again, there are direct, straightforward translations from the
realist’s language to the language of the modal structuralist and vice versa. Hellman
himself provides the translation from realism to modal structuralism, in careful de-
tail. For the other direction, replace possibility with satisfiability and necessity with
logical truth, as before. Hellman [1989, 36–37] suggests this translation as well. In
the present case, there is enough detail to establish that the translations provide an
equivalence of sorts between the systems (see section 5). Start with a sentence F of,
say, arithmetic. Translate F into a sentence F' in modal structuralism, and then trans-
late F' into F'', back in the language of the realist. Because of the reference to satis-
faction, F'' is a sentence of set theory, not arithmetic. So, in a sense, the stakes are
raised. Nevertheless, in set theory, it can be shown that F'' is equivalent to F; to be
precise, F'' is equivalent to the result of restricting the quantifiers of F to w and re-
placing the arithmetic terminology with set-theoretic counterparts. The equivalence
occurs because Hellman (quite correctly) employs a second-order language, and
second-order arithmetic is categorical.11

A similar exercise can be carried out in the other direction. Translate a given sen-
tence Y of the modal structuralist language into the language of realism and then
translate the result back to the language of modal structuralism, producing Y''. The
equivalence of Y and Y'' depends on a modal-reflection principle that if a sentence
is satisfiable then it is possible.

Because of the translations, the earlier remarks against Field apply here. If one
accepts the perspectives of both the realist and the modal structuralist, or if one adopts
a neutral perspective between the frameworks, then any insight claimed for an advo-
cate of one system is immediately available to the other. Moreover, the traditional
epistemological problems with realism also get transferred to the modal structural
system. Finally, because Hellman is out to drop the realist perspective, it is not clear
why he is entitled to the traditional, model-theoretic explications of the modal op-
erators of logical necessity and logical possibility. For example, the usual way of
establishing that a sentence is possible is to show that it has a model. For Hellman,
presumably, a sentence is possible if it might have a model (or if, possibly, it has a
model). It is not clear what this move brings us.12

11. If one starts this process with a sentence of set theory, things are not quite this straightforward,
because second-order set theory is not categorical. The equivalence between a sentence and its “double
translation” depends on a reflection principle, yielding so-called small, large cardinals. See Shapiro
[1987], and Shapiro [1991, chapter 6]. See also Hellman [1989, 71].

12. In set theory, there are some important advantages to the Hellman project. Ordinary second-
order set theory has quantifiers that range over proper classes, which are collections of sets that are not
themselves sets (see Shapiro [1991, chapter 5], and chapter 6 of this volume). Admittedly, this is a
rather inelegant way to avoid Russell’s paradox. Because Hellman does not envision a realm of possibilia
nor a realm of possible worlds, his system has no unrestricted quantifiers, and there are no (absolutely)
proper classes. In the metaphor of possible worlds, the classes of one world are sets in another. This, I
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4 Other Bargains

This section concerns Chihara’s neoconstructivism and Boolos’s plural quantifica-
tion, two other specimens of the trend to reduce ontology by increasing ideology.
Like Hellman, and unlike Field, the authors discussed here are avowed realists in
truth-value.

Though the approach is different, Chihara [1990] suffers a fate similar to that of
Hellman [1989]. Chihara’s innovation is another modal primitive, a “constructibility
quantifier.” Syntactically, it behaves like an ordinary quantifier: if F is a formula
and x a certain type of variable, then (Cx)F is a formula, which is to be read “it is
possible to construct an x such that F.” It turns out that the semantics and the proof
theory of constructibility quantifiers are also much the same as those of ordinary,
existential quantifiers.

According to Chihara, ordinary quantifiers (œ, ›) mark ontological commitment,
but constructibility quantifiers do not. Common sense supports this—to the extent
that the notion of ontological commitment is part of common sense. If I say, for ex-
ample, that it is possible to construct two new arenas in Columbus, I am not assert-
ing the existence of such arenas, nor of possible arenas, nor of a possible world that
contains such arenas. I make a statement only about what it is possible to do—here
in this world.

The formal language developed in Chihara [1990] has infinitely many sorts. Level
0 variables range over ordinary (presumably material) objects. These variables can
be bound by standard existential and universal quantifiers and not by constructibility
quantifiers. Level 1 variables range over open sentences satisfied by ordinary ob-
jects. For each n > 1, level n variables range over open sentences satisfied by the
items in the range of level n−1 variables. All of the open-sentence variables can be
bound by constructibility quantifiers and not by ordinary quantifiers. The symbol
for the semantic notion of satisfaction is another primitive of the system.

Chihara (of [1990]) may be called a “neoconstructivist,” because he is not out to
revise mathematics. Like Hellman, Chihara’s program is an attempt to have the bulk
of contemporary mathematics come out true on an ontologically austere reading. He
goes to some length to guarantee extensionality and other classical features. For
example, like simple type theory, but unlike his earlier [1973], the system here has
impredicative comprehension principles at each level: if F(x) is any formula in which
the level 1 variable x occurs free, there is an axiom that asserts that it is possible to
construct an open sentence (of level 2) that is satisfied by all and only the level 1
open sentences that would satisfy F (if only they existed). The formula F may con-
tain bound variables of any level. It is this feature of the system that allows classical,
nonconstructive mathematics to be developed in it, and it is this feature that puts the
system at odds with intuitionism and predicativism.

think, is a tidy feature of the modal structural system. One cost, however, is that with Hellman’s desire
to avoid intensional entities, he is unable to formulate a general notion of isomorphism, one that would
apply to structures in “different worlds” (see my review in Nous 27 (1993): 522–525). A similar modal
set theory is developed in Parsons [1983, essays 10, 11].



MODALITY, STRUCTURE, ONTOLOGY 231

All told, then, Chihara’s [1990] system is quite similar to that of ordinary, simple
type theory or, equivalently, the theory of a noncumulative set-theoretic hierarchy
up to level w, with urelements. Chihara shows how to translate any sentence of type
theory into his system: replace variables over sets of type n with level n variables
over open sentences, replace membership (or predication) with satisfaction, and re-
place quantifiers over variables of level 1 and above with constructibility quantifiers.

With admirable attention to detail, Chihara goes on to develop arithmetic, analy-
sis, functional analysis, and so on, in pretty much the same way as they are devel-
oped in simple type theory. For example, there is a theorem that it is possible to con-
struct an open sentence (of level 2) that is satisfied by all and only the level 1 open
sentences that are satisfied by exactly four objects. This open sentence plays the role
of the number 4 in the account of arithmetic. To be specific, the system of (possible)
open sentences that corresponds to the natural numbers exemplifies the structure of
the natural numbers. Once again, that is the point.13

In Chihara’s system, there is a sentence equivalent to the following:

For every level 3 open sentence a, if a can be satisfied by uncountably
many surrogate natural-number open sentences, then a can be satisfied

by continuum-many such open sentences.

Such a sentence is obtained by translating a type-theoretic version of the continuum
hypothesis into Chihara’s language. This sentence is fully objective, and, of course,
it is independent of the axioms of the system.

As with Field [1980] and Hellman [1989], there are routine translations between
Chihara’s neoconstructive language and a formal language for ordinary, simple type
theory, which we may call the “language of realism.” This time, the translations are
immediate. As above, Chihara himself provides the translation from type theory to
his system. For the other direction, replace the variables that range over level n open
sentences with variables that range over type n objects, replace the symbol for satis-
faction with that of membership (or predication), and, of course, replace constructi-
bility quantifiers with existential quantifiers. That is, to translate from Chihara’s lan-
guage to the standard one, just undo Chihara’s own translation. The two systems are
definitionally equivalent. So my earlier remarks against modal fictionalism and modal
structuralism apply here, as well. From this perspective, Chihara’s system is a nota-
tional variant of simple type theory. An advocate of one of the systems cannot claim
an epistemological advantage over an advocate of the other. Does the ontological
advantage matter, and is the ontology offset by added ideology? I return to this mat-
ter in section 5.

13. Chihara provides a second, rather interesting and insightful development of real analysis in
terms of the possibility of constructing objects of various lengths. Each axiom of real analysis, includ-
ing the completeness principle, corresponds to a statement of which constructions are possible. Again,
the relevant system of possible open sentences exemplifies the real-number structure. The relationship
between Chihara’s real analysis and the standard one is similar to that between Euclid’s geometry and
Hilbert’s.
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Another point against Field [1980] and Hellman [1989] applies here. Is Chihara
entitled to the now-standard set-theoretic explications of what sorts of sentences can
be constructed? Clearly, constructibility quantifiers are established parts of ordinary
language, and competent speakers do have some grasp of how they work. For ex-
ample, we speak with ease about what someone could have had for breakfast and
what a toddler can construct with Lego building blocks. Moreover, there is no ac-
claimed semantic analysis of these locutions, model-theoretic or otherwise, as they
occur in ordinary language. These observations seem to underlie Chihara’s proposal
that the locutions are “primitive.” We use them without a fancy model-theoretic analy-
sis. Chihara proposes to use the same locutions to give an ontologically clean ren-
dering of type theory. However, I do not think the everyday notions in question are
sufficiently determinate and precise to extend them to mathematics in the way Chihara
does, at least not without further argument. For Chihara’s construction to proceed to
level 4 open sentences, for example, we need to be shown how the structure of the
powerset of the continuum is implicit in the ordinary uses of constructibility quanti-
fiers. I submit that we understand how the constructibility locutions work in Chihara’s
application to mathematics only because we have a well-developed theory of logi-
cal possibility and satisfiability. Again, this well-developed explication is not primi-
tive or pretheoretic. The articulated understanding is rooted in set theory, via model
theory. Set theory is the source of the precision we bring to the modal locutions. Thus,
this (partial) account of the modal locutions is not available to an antirealist, not
without further ado. In short, we need some reason to believe that, when applied to
the reconstruction of mathematics, constructibility quantifiers work exactly as the
model-theoretic semantics entails that they do.

Along these lines, both Chihara and Hellman occasionally invoke a possible-worlds
semantics, but they regard it as a heuristic, not to be taken literally. Neither of them
believes that possible worlds exist. The role of the semantics is to help the reader
grasp the intended logic of the formulas and to see what does and does not follow
from what. As Chihara puts it, “[T]his whole possible worlds structure is an elabo-
rate myth, useful for clarifying and explaining the modal notions, but a myth just the
same” (p. 60). The operative phrase here is “clarifying and explaining.” If the struc-
ture really is a myth, then I do not see how it explains anything. One cannot, for
example, cite a story about Zeus to explain a perplexing feature of the natural world,
such as the weather. To be sure, the very notion of explanation represents a deep and
complex philosophical problem, one that I do not attempt to resolve here. In corre-
spondence, Chihara pointed out that fictional entities, such as frictionless surfaces
and point masses, do occur as part of ordinary scientific explanations of physical
phenomena (see, for example, Cartwright [1983] and van Fraassen [1980]).14 It is
not clear that the same goes for philosophy, and philosophical explanation—what-
ever that is. Intuitively, to explain something is to give a reason for it or, according
to Webster’s New twentieth century unabridged dictionary, to clear from obscurity

14. Chihara also noted that we sometimes tell fictional stories to explain moral principles. I take it
that the stories help us to see physical or emotional consequences of various actions.
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and make intelligible. In everyday life, a purported explanation must usually be true,
or approximately true, in order to successfully explain. I take it that frictionless sur-
faces, and the like, are parts of respectable scientific explanations of physical phe-
nomena because they approximate actual physical objects. If they did not, then it is
hard to see any explaining. It is not clear what, if anything, possible worlds approxi-
mate vis-à-vis the modal notions at hand—if not the possibilities themselves or the
structure of the possibilities. In any case, I propose that the burden here is on Chihara
to tell us more about the modal notions and more about explanation before we can
see how possible worlds can clear the modal notions of obscurity and make them
intelligible.

To be sure, a myth of possible worlds can clarify some things. For example, in
modal logic, the structure of possible worlds is often used as a tool to determine which
inferences are acceptable and which are not. To show that a given inferences in a
modal language is invalid, we describe a system of possible worlds in which the
premises hold and the conclusion fails. Chihara and Hellman both make effective
use of this tool. From the antirealist perspective, however, the structure does not
explain or justify any inferences. How can it? Moreover, the fact that a myth of pos-
sible worlds happens to produce the correct modal logic is itself a phenomenon in
need of explanation. That is, from the antirealist perspective, the success of possible
worlds adds to the philosophical puzzle.

I might add that there is something ironic about Chihara’s (mythical) possible-
worlds semantics. As he describes the system, in a given model, the variable ranges
are dutifully distributed into different possible worlds, but this fact plays no role in
the definition of satisfaction in the modal system he develops. Every object (and every
predicate) is rigid and world-bound, and each constructibility quantifier ranges over
all objects (of appropriate type) in all worlds. Thus, the worlds themselves do not get
used anywhere—just the objects in them. In short, the (mythical) semantics that
Chihara develops is just ordinary model theory, with some irrelevant structure thrown
in. Thus, my contention is that the constructibility quantifier has virtually the same
semantics as the ordinary, existential quantifier.

Chihara [1993] begins to address the situation concerning possible worlds. His
plan is to paraphrase (or translate) talk of possible worlds into a modal idiom. For
example, “there is a possible world in which” becomes “there is a way the world
could have been, such that, had the world been that way.” On the surface, this locu-
tion has a quantifier, “there is a way,” and the locution exhibits anaphoric reference,
“had the world been that way,” which usually signals a bound variable. Chihara, of
course, does not understand the terminology this way. He does not believe that “ways
the world might be” are objects. Presumably, we have another modal primitive at
work here, one that is not to be explicated via model theory. I submit that this ploy
only pushes the problem up one level—to the philosophical metalanguage. How is
the new locution to be understood? What is its logic?

Our last ontology-for-ideology ploy does not involve a modal primitive. George
Boolos [1984], [1985] has proposed an alternate way to understand, or interpret,
monadic, second-order languages, promising to overcome objections to second-order
logic that are based on its presumed ontological commitments (see Quine [1986]).
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According to standard semantics (see Shapiro [1991, chapter 3]), a monadic, second-
order existential quantifier can be read “there is a class” or “there is a property,” in
which case, it seems, the locution invokes classes or properties. Against this, Boolos
suggests that the quantifier be understood as a plural quantifier, like “there are ob-
jects” or “there are people.” The following, for example, is sometimes called the
Geach–Kaplan sentence:

Some critics admire only one another.

It has a (more or less) straightforward, second-order reading, taking the class of crit-
ics as the domain of discourse:15

›X(›xXx & œxœy((Xx & Axy) 6 (x … y & Xy))).

According to standard semantics, this formula would correspond to “there is a
nonempty class X of critics such that for any x in X and any critic y, if x admires y,
then x … y and y is in X.” Notice that this analysis implies the existence of a class of
critics, whereas the original “Some critics admire only one another” apparently
does not.

Natural languages, like English, do allow the plural construction and, in particu-
lar, they contain the plural quantifier. So the informal (natural) metalanguage that
we use to develop formal semantics also contains this quantifier, just as natural lan-
guage contains the constructibility quantifiers invoked by Chihara. Boolos’s proposal
is to employ plural quantifiers to interpret monadic, second-order existential quanti-
fiers. Construed this way, he claims, a monadic, second-order language has no onto-
logical commitments beyond those of its first-order sublanguage. To shore up this
claim, Boolos [1985] develops a rigorous, model-theoretic semantics along these lines.
The metalanguage has second-order quantifiers—read as plural quantifiers—but no
terminology for sets (other than what may be in the first-order part of the language).

Although Boolos himself is not an antirealist concerning most mathematical ob-
jects, the move to plural quantifiers has been invoked by others to reduce ontology.
For example, Lewis [1991], [1993] invokes the plural construction to develop an
eliminative structuralism. The idea is to provide second-order characterizations of
some structures and thus gain the expressive resources of second-order logic, while
maintaining that the second-order variables do not add any ontological commitment.

The situation here is analogous to the previous, modal cases. Here, too, there are
straightforward translations between the standard metalanguage, with classes and no
plurals, and the classless language with plural quantifiers. Boolos himself provides
the translations. As above, I do not see what our antirealist purchases with the ideol-
ogy. Epistemic qualms about second-order variables become epistemic qualms about
plural quantifiers. Moreover, like the situation with Chihara’s neoconstructivism, it

15. The given formula holds if there is a single critic who does not admire anybody. This, of course,
is not intended by the original “Some critics admire only one another.” The problem is that plural
quantifiers, like “some critics,” imply (or implicate) that there are at least two. This feature can be
accommodated in the formalism. Just replace the subformula ›xXx with ›x›y(Xx & Xy & x … y).
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is not clear a priori that plural quantifiers of ordinary language are sufficiently deter-
minate and precise to be used exactly as second-order quantifiers with standard,
model-theoretic semantics.

Resnik [1988a] argues against the Boolos program, suggesting that plural quanti-
fiers of natural language should themselves be understood in terms of classes (or sets).
Resnik and Boolos both acknowledge that this sort of dispute leads to a standoff or
a regress. Anything that either side says can be reinterpreted by the other, perhaps
via the translation. This applies also to the typical epistemic problems with realism
and second-order logic, and proposed solutions to the problems. The issue of second-
order languages turns on whether we have a serviceable grasp of second-order vari-
ables and quantifiers, taken at face value, sufficient for use in foundational studies.
With the Boolos program, the issue concerns whether we have a serviceable grasp of
plural quantifiers. Boolos claims that we do, citing the prevalence of plurals in ordi-
nary language. Resnik seems to claim that we do not, suggesting that whatever
understanding we do have of plural quantifiers is mediated by our understanding of
sets and classes (see Shapiro [1991, chapter 9]).

In favor of Resnik, it might be noted that plurals in general seem to be rather
complex, and there is no consensus among linguists concerning how they are to be
understood (see, for example, Landman [1989]). But Boolos does not invoke the full
range of plural nouns, only plural quantifiers. These are understood reasonably well,
about as well as monadic, second-order quantifiers. Resnik, of course, would reiter-
ate that even this is mediated by (first-order) set theory. Once again, I think we have
lost our bearings.

5 What Is a Structuralist to Make of All This?

In the preceding tour, we are asked to ponder the legitimacy of our pretheoretic grasp
of a plural quantifier, a constructibility quantifier, and an operator for logical possi-
bility; then we are to contrast this with ontology or what has been called “ontologi-
cal commitment.” We are not given much guidance in evaluating the trade-offs, or
even on what the game is. What are we trying to do in cutting down ontology or cutting
down ideology? In this concluding section, I will add some perspective to the ques-
tion and, hopefully, shed light on the enterprise.

According to the prevailing criterion of ontology and ontological commitment
(e.g., Quine [1969]), one’s ontology consists of whatever lies in the range of the bound
variables in one’s envisioned regimented language. The slogan is “to be is to be the
value of a variable.” Phrases like “you have to quantify over” have become stan-
dard, professional philosophical jargon. For his part, Quine does not regard the
ontology-via-bound-variables doctrine to be a deep one. It is just an observation that
the existential quantifier is a gloss on the ordinary word for existence.

Despite complications like ontological relativity and the inscrutability of refer-
ence, the prevailing criterion of ontology is reasonably clear for Quine and his fol-
lowers, because they insist on an austere ideology. The regimented language is to be
first-order, with no modal terminology. Comparing two such systems is more or less
straightforward. For example, one might pit a language with variables that range over
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sets only against a language with variables that range over space-time points, physi-
cal objects, and sets.

In contrast, the programs just considered all invite us to expand the ideology of
the envisioned, regimented language well beyond Quinean limitations. That is why
we lose our bearings. Our antirealists are quite correct that Quine’s restrictions on
ideology are too severe, and, in any case, the restrictions are not universally accepted
on the contemporary philosophical scene. Many philosophers, myself included, pay
serious attention to modality and higher-order languages, and we have made signifi-
cant use of them in philosophical theorizing.

This raises several questions. If we are to maintain some version of the ontology-
via-bound-variables doctrine, then what limits should be placed on the ideology to
be used? And, once again, how are trade-offs to be adjudicated? If we are to jettison
the ontology-via-bound-variables doctrine, then what, if anything, should replace it?

There is one straightforward response from the antirealist camps. For the many
philosophers who have not followed Quine in being skeptical of modality, it is not a
choice between ideology and ontology. Rather, it is a choice between ontology/ide-
ology and ideology alone, an ideology that both sides accept anyway. In the case of
Field [1980], for example, the choice is between a concrete ontology/ideology and
an abstract (“platonist”) ontology plus the same ideology and the same concrete
ontology. Clearly, the argument concludes, ideology alone or ideology plus the con-
crete is preferred.

The rejoinder to this argument goes to the heart of the matter. In philosophy,
Occam’s razor should not be wielded blindly. The cutter should show that there is
some philosophical gain in the proposed reduction of ontology or ideology. The
austere theory should explain more or have a more tractable epistemology—some-
thing more tangible than cutting for the sake of cutting. As noted earlier, the pro-
grams under study here do have promising beginnings on the epistemic front. The
most baffling problem with realism is to show how we can know anything substan-
tial about a realm of abstracta. An epistemology of the possible, or of the construct-
ible, or of plural quantification, may be more plausible, especially because we man-
age to invoke such items in everyday conversation (never mind that we also manage
to invoke mathematics every day). To recapitulate the conclusions of previous sec-
tions, however, there is no real gain in cutting for the cases at hand. The various trans-
lations indicate that, when applied to mathematics, the problems with realism have
direct counterparts in the reduced theories. Inserting boxes and diamonds into for-
mulas or changing the quantifiers does not, by itself, add epistemic tractability.

The position of the antirealist is even less tenable. If there is to be no philosophi-
cal gain, then there should at least be no loss in the reduced theory (to be precise, no
loss that is not compensated for by gains in other areas). The antirealist needs this
much just to claim a standoff with the realist. In the cases at hand, however, mathe-
matics has come to play a central role in the standard scientific, modal, and linguis-
tic systems. We cannot get by just as well without the abstracta. For example, much
of what we know about logical modality is obtained by the connection with set theory,
via model theory. That knowledge must be preserved in any reduction, but, as far as
I can tell, it is lost in the cases at hand. Consider, for example, the following modal
assertions:
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First-order set theory together with the assertion that there are
exactly 124 infinite cardinals less than the continuum is possible.

First-order set theory, together with the assertion that
every set is constructible, is possible.

If there is a huge cardinal, then it is possible that there is a supercompact cardinal.

These assertions follow from the standard accounts of logical possibility via set theory.
The various theories are possible because they have models. I presume that Field
and Hellman would also accept these modal assertions. Otherwise, there is a net
epistemic loss in adopting their theories. Dropping mathematics would cost us our
ability to negotiate the modalities. However, it is hard to see what grounds our
antirealists would use to support the modal assertions, given that they do not believe
in models. One can launch a similar attack on Chihara and those who wish to use the
Boolos interpretation of second-order logic to reduce ontology, by citing examples
in which model theory is used to determine what can be constructed or examples in
which it is used to clarify the second-order consequence relation.

At this point, Field and Hellman might reply that they can obtain the modal asser-
tions by using a modalized version of set theory (see, for example, Field [1991]).
Presumably, the modalized set theory is justified on the same (or analogous) grounds
that the realist uses in defense of ordinary set theory, whatever those grounds may
be. But this ploy only pushes the problem back one level, and I do not see what it
buys.

Notice, incidentally, that because Chihara [1990] only recapitulates simple type
theory, w-order logic, the appeal to modalized set theory is not available.16 As for
plural quantifiers and second-order languages, Shapiro [1991] contains a lengthy
defense of the Quinean thesis that there is a fair amount of mathematics underlying
second-order logic (but, contra Quine, this is not a defect of second-order logic).

Rather than rely on the model-theoretic explications of the invoked ideology, the
antirealist programs under study invite us to consider adopting modal or plural ter-
minology construed as “primitive.” What is the force of this word? The proponents
claim that the terminology is found in ordinary language, the informal framework in
which we do philosophical, logical, and metamathematical work. This is surely cor-
rect. Ordinary language is full of possibility talk, constructibility talk, and plural
quantification. Our ontological antirealists are not making anything up—they use what
they find. Nevertheless, a pressing question concerns how this terminology is under-
stood. What makes the locutions primitive? For one thing, our proponents do not
explicate the terminology. They just use it, without apology, as part of the background
language—just as the realist uses mathematical terminology, without apology, in
model-theoretic semantics. To be sure, there is no acclaimed model-theoretic analy-
sis or reduction of nonlogical modality, nor is there a rigorous analysis of con-
structibility quantifiers and plural constructions as they appear in ordinary language.
Where analyses have been attempted, they are fraught with controversy. Despite this,
we do manage to use the notions. As argued earlier, however, our everyday modal

16. Nolt [1978] is a development of full set theory along lines similar to those of Chihara [1990].
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and plural notions, by themselves, are too vague to support the detailed applications
to surrogates of set theory or type theory, as envisioned by our ontological antirealists.
Moreover, in practice, our grasp of modal and plural terminology as applied to mathe-
matics is mediated by mathematics, set theory in particular. We inherit the language/
framework, with the connections to set theory already forged. Surely, our antirealists
do not claim that we still have some sort of pretheoretic intuitions of these notions,
intuitions that remain uncorrupted or unmodified by set theory.

When beginning students are first told about logical possibility and logical con-
sequence, most of them seem to have some idea of what is meant, but consider how
much their initial intuitions differ from our refined ones. The antirealist owes us some
account of how we plausibly could come to understand the notions in question (as
applied here) as we in fact do, independent of our mathematics. Without such an
account, it is empty to use a word like “primitive,” and, without an account, we can-
not give a positive assessment of progress to the antirealist programs or even a judg-
ment that they have achieved a balanced trade-off.17 As far as I know, the task at
hand has yet to be attempted.

Recall Quine’s [1981, 9] claim that ontology and ontological commitment are not
notions of everyday natural language (see chapter 2 of this volume): “The common
man’s ontology is vague and untidy. . . . We must . . . recognize that a fenced ontol-
ogy is just not implicit in ordinary language. The idea of a boundary between being
and nonbeing is . . . an idea of technical science in the broad sense. . . . Ontological
concern is . . . foreign to lay culture, though an outgrowth of it.” I suggest that the
same goes for what may be called “ideological concern.”

So we need a new tool to assess the ontology/ideology of a philosophical/scien-
tific/mathematical theory. If the ideology is not held fixed, the Quinean ontology-
via-bound-variables doctrine fails. The criterion is useless and outright misleading.
What we need instead is a criterion for ontology and ideology combined. If we re-
strict attention to mathematics, structuralism has the resources for this.

As a first approximation, the proposed criterion of ontology/ideology is this: a
theory is committed to at least the structure or structures that it invokes and uses. If
two theories involve the same structures or if the systems described by them exem-
plify the same structures, then, at least as far as mathematics goes, their ontologies/
ideologies are equivalent.

To apply this criterion, of course, we need an account of identity among struc-
tures or, better, a criterion for when two systems exemplify the same structure. Resnik
(e.g., [1981]) suggests that there is no “fact of the matter” whether two structures are
identical or whether two systems exemplify the same structure (see chapter 3 of this
volume). If he is right and the structure-identity relation is vague, then there is vague-
ness in ontology/ideology assessment as well. That is, if it is not determinate whether

17. This echoes a point made by John Burgess in a recent conference. It is far-fetched for someone
who learned about logical possibility in high-powered courses in mathematical logic, using books like
Schoenfield [1967], to go on to claim a “primitive,” pretheoretic status for this notion. The same goes
for constructibility assertions, if not plural quantifiers.
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two structures are identical or whether two systems exemplify the same structure,
then it also may not be determinate whether two theories have the same ontology/
ideology. This is not problematic, because ontology/ideology comparison may be a
matter of degree not an absolute, all-or-nothing affair.

We can still make progress. In previous chapters, two criteria for structure iden-
tity were formulated: isomorphism and Resnik’s structure equivalence. Isomorphism
is too tight a relation for present purposes. Two systems are isomorphic only if they
have the same number of relations of the same type. It follows that two systems are
isomorphic only if they have the same ideology. To briefly review the definition of
structure equivalence, let R be a system and P a subsystem. Then P is a full subsystem
of R if they have the same objects (i.e., every object of R is an object of P) and if
every relation of R can be defined in terms of the relations of P. Let M and N be
systems. Then M and N are structure-equivalent, or simply equivalent, if there is a
system R such that M and N are each isomorphic to full subsystems of R.

The thesis here, then, is that if two theories invoke equivalent structures, then they
are equivalent on the ontology/ideology scale. In other words, if two theories char-
acterize equivalent structures, then neither one is to be preferred to the other on on-
tological/ideological grounds alone.

I have not explicitly brought modality into the picture yet. Before turning to that,
notice that my conclusions thus far echo a theme of Wilson [1981]. Let ZF be ordi-
nary Zermelo-Fraenkel set theory and let ZP be a “Zermelo-type set theory erected
over the natural numbers as urelements.” According to the original Quinean crite-
rion, ZF and ZP have different ontologies. The former is committed to sets only,
whereas the latter has both sets and numbers (not to mention sets of numbers, etc.).
Wilson, quite correctly, notes that “many (or most) mathematicians would probably
demur, arguing that the ontology of ZF actually does include the numbers, etc. be-
cause it includes an w-sequence and methods for building the needed sets from it”
(pp. 413–414). In present terms, the intended structure of ZF is structure-equivalent
to the intended structure of ZP. Moreover, any model of ZF is structure-equivalent
to a model of ZP and vice versa. With Wilson, I take this as an additional reductio
against the Quinean criterion. For a second example, compare a theory that identi-
fies real numbers with Dedekind cuts or Cauchy sequences of rational numbers with
a theory that does not. The latter theory keeps the real numbers as separate entities,
noting only that they are correlated with Dedekind cuts and Cauchy sequences. Intu-
itively, the theories are the same, at least as far as ontology goes. As we saw in chap-
ter 5, Dedekind himself thought so. Wilson notes, parenthetically, that “any notion
that the reals should not be identified with sets represents as great a misunderstand-
ing of mathematical ontology as the claim that they should” (p. 415). Structure is
what matters.

We now have the resources to deal, in part, with Field’s Science without numbers
[1980]. The system of space-time, as described in Field’s nominalistic physics, is
structure-equivalent to that of ú4 under certain synthetic relations (and is equivalent
to the full structure of ú4 if an arbitrary frame of reference and unit of measure is
added to the physics or if the language has the e-operator for picking them out; see
note 3). The situation here is the mirror image of another conclusion of Wilson [1981],
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that there is no ontological savings in theories that get rid of unwanted physical
items—properties, for example—by replacing them with mathematical constructions,
like sets. Field does the opposite of this, removing some unwanted mathematical
ontology, replacing it with items in the physical ontology. There is no gain, because
the structures are equivalent. Despite Field’s argument that space-time is concrete,
the regimented theories have the same ontology/ideology.

This still does not accommodate Field’s use of more-powerful mathematics hid-
den behind the modality operators, nor does it accommodate the programs of Hellman,
Chihara, and those antirealists who use the Boolos proposal.

As noted at the outset of this chapter, there is a trend to understand modality in
terms of abstract objects. The model-theoretic explication of logical possibility is a
case in point. Let us call Tarski’s thesis the statement that a set of sentences is logi-
cally possible if and only if it is satisfiable. The various possible-worlds semantics
are similar explications of modality in terms of ontology. Chapter 6 concerns other,
more-straightforward cases, in which the possible existence of some objects is
structure-equivalent to the actual existence of abstract objects.

Another example is string theory. Strings are abstract objects that represent pos-
sible tokens. Each possible token corresponds to a string, and each string represents
a class of possible tokens. Call this the string thesis. The same goes for possible de-
duction tokens and abstract deduction types. Notice that an advocate of the string
thesis need not claim that the notion of “string” somehow captures the meaning of
“possible token.” One need not claim that the relevant theory is an analysis of pos-
sible string tokens (whatever that would be). The relevant claims are something like
claims of extensional equivalence, in the form “every A corresponds to a B and vice
versa.” This is all the “reducing” that we want or need.

Another much-discussed example is Church’s thesis, which states that recur-
siveness and Turing computability are extensionally equivalent to computability.
As indicated by the suffix “ability,” computability is prima facie a modal notion.
A function f is computable if one can compute all of its values or if it is possible
for a human or machine to compute f (ignoring finite limitations on memory and
lifetime). Recursiveness and Turing computability, on the other hand, at least ap-
pear to be nonmodal. A Turing machine is a set of ordered quadruples with a cer-
tain structure, and a function f is Turing computable if there is a Turing machine
with a given relation to f. The relation is defined in terms of sequences of configu-
rations, which are ordered n-tuples with a certain structure. No modality here. Simi-
larly, a function f is recursive if there is a finite sequence of functions whose last
member is f and such that each member of the sequence is either one of a certain
class of initial functions or bears a certain relation to earlier functions in the
sequence. Again, no modality.

The string thesis can hardly be denied, and Tarski’s thesis and Church’s thesis are
widely accepted among mathematicians and logicians today. To be a little more care-
ful, the theses in question would be denied only by a nominalist, who holds that either
there are no abstract objects at all (because models, strings, and Turing machines are
abstract) or there are not enough tokens to represent every possibility.
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All of these theses represent exchanges of modality for ontology. Instead of speak-
ing of what is possible, we speak of what occurs in an abstract but actual mathemati-
cal structure. With Church’s thesis, for example, the claim is that the possibilities of
computation are reflected accurately in a certain arithmetic or set-theoretic structure.
This is the direct opposite of the trend of the school of philosophers represented here
by Field, Hellman, and Chihara. These thinkers try to eliminate ontology by invoking
modality. In response, I claim that the same structures are involved in each exchange,
and the theme of this book is that, as far as mathematics is concerned, structure is all
that matters. As Putnam [1975, 70] notes in a different context, “[m]athematics has
. . . got rid of possibility by simply assuming that, up to isomorphism anyway, all
possibilities are simultaneously actual—actual, that is, in the universe of ‘sets.’”

The conclusion is that the modal option is structure-equivalent to the ontological
one. To sharpen this, we could extend the notion of structure to the modal realm and
speak of possible structures and the structure of possible systems. This strategy was
pursued in chapter 6, motivated from other quarters. For present purposes, however,
it might be better to look directly at theories themselves, and only indirectly at the
structures they invoke. Wilson speaks of the “formal strength” of theories. His cen-
tral notion is “interdefinability” which can be put as follows: “T and T' are inter-
definable theories if and only if when T and T' are rewritten to share no non-logical
vocabulary, a theory T'' exists which represents a definitional extension of both T
and T'.” For nonmodal theories, at least, there is a straightforward relationship be-
tween the interdefinability of theories and the present notion of structure equivalence:
If T is interdefinable with T', then for any model of one theory there is an equivalent
model of the other.

Wilson proposes that, under certain conditions, interdefinability serves as part of
the criteria for having the same (mathematical) ontology:

The general point is that the ontology of a mathematician is to be determined by the
formal properties of the structure he postulates. . . . The claim that any two theories
meeting the conditions . . . share an ontology, I shall call structuralism, since this the-
sis represents a plausible reading of the jingle “Mathematics is only interested in struc-
ture up to isomorphism.”

Accepting structuralism provides a different assessment of ‘ontological change’ . . .
than many of us were taught, dazzled as we were by adroit slashings of Occam’s
razor. . . . [I]f one accepts a theory of a certain formal strength, one cannot deny its
standard ontology, no matter in what syntactic guise its assertions may appear. (p. 414)

The last passage is the theme of this chapter. Given our broader context, we speak in
terms of ontology/ideology, but the point is the same. To encompass our modal and
plural cases, the terminology needs to be extended. Again, two theories T and T' are
definitionally equivalent if there is a function f1 from the class of sentences of T into
the class of sentences of T', and a function f2 from the class of sentences of T' into the
class of sentences of T, such that (1) f1 and f2 both preserve truth (or warranted
assertability, or theoremhood) and (2) for any sentence F of T, f2f1(F) is equivalent
to F in T, and for any sentence Y of T', f1f2(Y) is equivalent to Y in T'. Recall that,
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under certain conditions, the “translations” of previous sections represent such func-
tions f1, f2.

Definitional equivalence is a natural generalization of Wilson’s interdefinability.
In the nonmodal cases, for example, if T is definitionally equivalent to T' and if the
translation functions f1 and f2 consist of applying explicit definitions to the nonlogi-
cal vocabulary of T and T', respectively, then T is interdefinable with T', and so
every model of one is equivalent to a model of the other. Thus, I propose that defini-
tional equivalence serve as a criterion of the formal strength of modal and nonmodal
theories and, with Wilson, that this notion be used as an indication that the intended
structures, and thus the ontology/ideology of different theories, are the same. If
T is definitionally equivalent to T', then neither is to be preferred to the other on
ontological/ideological grounds.18

My conclusion is now concise. I showed in sections 2–4 that the theories devel-
oped in Field [1980]; Hellman [1989]; Chihara [1990]; and Boolos [1984], [1985]
are each, under certain (plausible) conditions, definitionally equivalent to a standard,
“realist” theory. Thus, the intended structure—and the ontology/ideology—of each
theory is the same as that of the corresponding realist theory.

The same goes for the various formulations of structuralism itself, from chapter 3
of this volume. Ante rem structuralism, eliminative structuralism formulated over a
sufficiently large domain of abstract objects, and modal eliminative structuralism are
all definitionally equivalent, and neither is to be preferred to any other on ontologi-
cal/ideological grounds. I hold that the ante rem version is more perspicuous and fits
mathematical practice more smoothly, but the approaches are equivalent on the cru-
cial ontological/ideological front. They are also indistinguishable on the troublesome
epistemological front.

18. When put so baldly, this conclusion is limited to mathematics. Suppose, for example, that a
language of ordinary physical objects were definitionally equivalent to one that refers only to sense-
data. With this “evidence,” a materialist would conclude that there is no need for mental items like
sense-data, because those have been “reduced” to material objects. Likewise, an idealist (or phenom-
enalist) would claim that there is no need for material objects in our ontology. If other things were
equal, there would be a standoff, of sorts, at least on the epistemological front. Nevertheless, I would
not conclude that the physical and the mental are equivalent on the ontological/ideological front. Part
of the difference between this situation and those under discussion here is that, in mathematics, struc-
ture (and so theory strength) is all that matters. The next chapter briefly treats extensions of structural-
ism beyond mathematics.
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8

Life Outside Mathematics

Structure and Reality

This concluding chapter is a brief treatment of some extensions of structuralism be-
yond mathematics, to science and to ordinary discourse. Since at least Benacerraf
[1973], one desideratum for philosophy of mathematics is to provide a uniform
semantics for mathematical and ordinary discourse. This has guided much of the
present book. In the preferred ante rem structuralism, the uniform semantics is a truth-
valued, model-theoretic framework, one in which mathematical statements are taken
at face value. The connection with ordinary or scientific language would be weak-
ened, however, if the target of the semantics were very different in the cases of mathe-
matical, scientific, and ordinary discourse. This may happen if scientific systems,
structures, and objects radically differ from their counterparts in mathematics.

One main concern here is a partial account of the applications of mathematics to
the sciences. At least some applications consist of incorporating mathematical struc-
tures into physical theories, so that physical systems exemplify mathematical struc-
tures. What is almost the same thing, in some theories, the structures of physical
systems are modeled or described in terms of mathematical structures. The book closes
with a brief account of some possible extensions of the structuralist notion of object.

1 Structure and Science—the Problem

To comprehend the nonmathematical universe scientifically, one must master a con-
siderable amount of mathematics.1 Consider, for example, the amount of mathemat-
ics presupposed by virtually any branch of the natural or social sciences. In most
universities, mathematics departments are among the largest just because of the use
of mathematics throughout the disciplines.2 At least at the outset, the philosopher

1. Shapiro [1983] is a precursor of some of the ideas presented in this section and the next.
2. In American universities, only English departments are likely to be as large, and this is because

English is presupposed even more widely than mathematics is. Both are sometimes called “service
disciplines.”
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must assume that there is a relationship between the subject matter of mathematics
and the subject matter of science, and that it is no accident that mathematics applies
to material reality. Any philosophy of mathematics or philosophy of science that does
not provide an account of this relationship is incomplete at best. The thesis of this
book is that the subject matter of mathematics is structure. Thus, the present prob-
lem is to delimit the relationship between mathematical structure and the subject matter
of science.

A friend once told me that, during an experiment in a physics lab, he noticed a
phenomenon that puzzled him. The class was looking at an oscilloscope, and a funny
shape kept forming at the end of the screen. When he asked for an explanation, the
lab instructor wrote something on the board (probably a differential equation) and
said that the phenomenon occurred because a solution has a zero at a particular value.
My friend noted that he became even more puzzled that the occurrence of a zero in
a function should count as an explanation of a physical event.

This example indicates that much of the theoretical and practical work in science
consists of constructing or discovering mathematical models of physical phenom-
ena. Many scientific and engineering problems are tasks of finding the right differ-
ential equation, the right formula, or the right function to be associated with a class
of phenomena. A scientific explanation of a physical event often amounts to no more
than a mathematical description of it—whatever that means.

As mentioned in chapter 7, the philosophical literature on scientific explanation
is long, deep, and troubled. Suffice it to note that, strictly speaking, a mathematical
structure, description, model, or theory cannot serve as an explanation of a non-
mathematical event without some account of the relationship between mathematics
per se and scientific reality. Lacking such an account, how can mathematical/scien-
tific explanations succeed in explaining anything? One cannot begin to understand
how science contributes to knowledge without some grasp of what mathematical/
scientific activity has to do with the reality of which science contributes knowledge.

The problem can occur on several levels. First, one may wonder how it is pos-
sible for a particular mathematical fact to serve as an explanation of a particular
nonmathematical event. My friend’s puzzlement is on this level. How does a zero of
a function explain a pattern on an oscilloscope? An adequate response would be a
detailed description of the relevant scientific theory that associates a certain class of
functions with a class of physical phenomena. The questioner might be advised to
take a few courses. A question could then be raised as to what a class of mathemati-
cal objects, such as real-valued functions, can have to do with physical phenomena.
This takes the query to a different level. Now we wonder about the relevance of the
given mathematical/scientific theory as a whole. Why does it work? A possible reply
to this second question would be to point out that similar uses of mathematics have
an important role in scientific methodology. If the questions persist, we can note the
vast success of this methodology in predicting and controlling the world.

This last reply explains why one might engage in mathematical/scientific research,
and it provides assurance that the methodology will continue to predict and control,
assuming we solve or ignore standard problems with induction. In the spirit of Hume,
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I do not wish to question the entire mathematical/scientific enterprise, much less to
raise doubts about it (see the rejection of the philosophy-first principle in chapter 1).
Surely, there is no more preferred standpoint than the methodology of science. How-
ever, the problem of understanding how the enterprise works, in its own terms, is a
legitimate philosophical enterprise.

As noted several times previously, a popular argument for realism for mathemat-
ics focuses on the connections between mathematics and science (see, for example,
Putnam [1971]). One premise is that mathematics is indispensable for science, and
another is that the basic principles of science are (more or less) true. From Quinean
holism, the argument concludes that mathematics is true as well—realism in truth-
value. If we also take the assertions of mathematics at face value, then we are com-
mitted to the existence of numbers, sets, and so on, the ontology of mathematics—
realism in ontology. However, even if the premises are true and even if the Quine–
Putnam indispensability argument is convincing, it is much too cozy to leave things
at this stage. To shore up the argument, the realist must provide an account of exactly
how mathematics is applied in science. The first premise of the argument is itself a
mystery. What does the realm of numbers and sets have to do with the physical world
studied in science? How can such items shed light on electrons, bridge stability, and
market stability? We cannot sustain the conclusion of the Quine–Putnam indispens-
ability argument until we know this. As I concluded in chapter 2, the philosopher
should not be content to simply note the apparent indispensability and then draw
conclusions that spawn more questions than they answer. By itself, the indispens-
ability argument has the advantages of theft over toil.

Gödel also recognized the importance of the connections with physical reality. In
his famous (or infamous) defense of realism, he wrote that a probabilistic “criterion
of truth” for a mathematical proposition like the continuum hypothesis (or its nega-
tion) is its “fruitfulness in mathematics and . . . possibly also in physics” ([1964, 485],
my emphasis). Clearly, fruitfulness in physics cannot be a criterion for mathemati-
cal truth unless the mathematical realm is related somehow to the physical realm.
How else can a mathematical proposition be fruitful in physics? Gödel goes on to
suggest that “the ‘given’ underlying mathematics is closely related to the abstract
elements contained in our empirical ideas” (p. 484). He adds an intriguing footnote:
“[T]here is a close relationship between the concept of set . . . and the categories
of pure understanding in Kant’s sense. Namely, the function of both is ‘synthesis’,
i.e., the generating of unities out of manifolds” (n. 26). This remark is consonant with
the present conclusion that there is no sharp border between the mathematical and
the mundane, and that the very notion of “object” is at least partially structural and
mathematical.

Until recently, some philosophers and mathematicians might have dismissed the
issue of application with a quip that they are concerned only with pure mathematics.
Because most mathematics is not directly aimed at understanding the nonmathematical
world, it may be possible to account for its activity and goals without even mention-
ing a relationship with nonmathematical reality. Such remarks seem to presuppose
that there is a difference in kind between pure mathematics and what is called “ap-
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plied mathematics”—mathematics aimed at the nonmathematical world. Applied
mathematics would constitute a separate subject and would call for a separate phi-
losophy, if anyone wanted to stoop so low as to work on one.3

However, the border between pure and applied mathematics is not sharp. In one
sense, the term “applied mathematics” refers to particular branches of mathematics,
such as numerical analysis and the theory of differential equations. These branches
often form parts of scientific theories and, in some cases, are prerequisites for the
study of those theories. This administrative distinction is important to some funding
agencies, but philosophically it is artificial. The practice, writings, and textbooks of
the various branches show more similarities than differences concerning such basic
aspects as aims, techniques, logic, and even subject matter. Moreover, the applied
branches are firmly embedded in the pure ones and typically rely on techniques and
results from the pure branches.

Although the day-to-day work of the pure mathematician is not directly aimed at
understanding nonmathematical reality, the branches of applied mathematics do not
have a monopoly on relevance to science. As Nicolas Goodman [1979, 550] put it,
“[M]ost branches of mathematics cast light fairly directly on some part of nature.
Geometry concerns space. Probability theory teaches us about random processes.
Group theory illuminates symmetry. Logic describes rational inference. Many parts
of analysis were created to study particular processes and are still indispensable for
the study of those processes. . . . It is a practical reality that our best theorems give
information about the concrete world.” Occasionally, areas of pure mathematics, such
as abstract algebra and analysis find unexpected applications. The roads connecting
mathematics and science are rich and varied, and traffic goes in both directions (see
Polya [1954], [1977] for a wealth of examples).

If we stick to standard formalizations of any branch of mathematics—pure or
applied—we may conclude that no applications are possible. Official renderings use
formal languages in which all nonlogical terminology is mathematical. As such, the
mathematical theories have no substantial logical consequences that contain nonlogi-
cal terminology (other than logical truths and the like). In general, if there is no overlap
between the nonlogical terminologies of two theories, then one can be applied to the
other only if certain bridge principles are added. The bridge principles connect the
terminologies of the two theories.

Once plausible bridge principles are added, virtually every branch of mathemat-
ics has some empirical consequences. For example, it follows from Zermelo-Fraenkel
set theory (ZFC) that, say, functional analysis is consistent. So far, of course, we are
still internal to mathematics. Consistency is a mathematical property of formal de-
ductions. However, the bridge principles connect deduction strings to possible in-
scriptions written in accordance with certain rules. With these bridge principles, ZFC

3. In unguarded moments, some platonists have taken pride in the separation of the mathematical
universe from the mundane world we all live in. To think about connections to the physical world is to
soil the lofty enterprise of mathematics. Plato seemed to hold that the material world is the way it is so
that we will see its mathematical nature and be led to contemplate the pristine realm of mathematics
and then the realm of Forms.
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entails that there can be no written deduction of a contradiction in functional analy-
sis. Imagine a computer C that is programmed to search through the theorems of an
axiomatization of functional analysis looking for a contradiction. If it finds one, the
computer prints “oops” and halts. ZFC and the bridge principles predict that C will
never print “oops” and halt.4

A second use of the phrase “applied mathematics” concerns the informal use of
quasi-mathematical concepts and methods in science, engineering, and everyday life.
This includes such activities as balancing checkbooks and calculating physical con-
stants and tolerances. The methods and concepts in question do not always bear a
close resemblance to the methodology of pure mathematics. For example, scientists
and engineers often rely on informal curve fitting and an estimation procedures, some-
times derided as “fudge factors.” Much of the reasoning is inductive. However, even
this “mathematics” is ultimately rooted in pure mathematics. The mathematical con-
cepts involved include natural and real numbers, number-theoretic functions, and
related numerical constructions. The estimation procedures are expedients that should
ultimately be dispensable in principle or, let us hope, justified by considerations from
mainstream mathematics. I conclude that it would be a mistake to adopt a philosophy
that divorces even this use of mathematics from the work of the pure mathematician.

2 Application and Structure

First, a pair of disclaimers. I do not claim that the sketch given in this section ac-
counts for every application of mathematics.5 Indeed, the present account does not
illuminate the more interesting and philosophically troubling applications. For
example, I have little to say about the use of complex analysis in quantum mechan-
ics. As far as I can determine, there is no satisfactory account of this, unless one
considers instrumentalism to be an account. In effect, to adopt instrumentalism and
to refuse to wonder why the instrument works is to give up on our problem. In light
of the growing contingent of physicists (and philosophers of physics) who have
adopted an instrumentalist philosophy for quantum mechanics, perhaps this case
is intractable.

I also have little to say about the uncanny ability of mathematicians to come up
with structures, concepts, and disciplines that find unexpected application in science.

4. This result is an instance of the fact that powerful mathematical theories have consequences for
the nonsolvability of Diophantine equations. Incidentally, I do not mean to claim that we have the
makings here of an empirical test for ZFC (whatever that might mean). Suppose that someone did try
to implement C on a supercomputer, and suppose that after a year of running, it printed “oops” and
quit. It would follow that either functional analysis is inconsistent, ZFC is inconsistent, one of the bridge
principles is false, there is a bug in the software, some component of the hardware malfunctioned, or
the person hit a wrong key while trying to implement C. Can anyone who has experience with modern
computers rule out the last three disjuncts? Would anyone in their right mind find inconsistency to be
the most probable explanation of the result?

5. I do not remember if I intended a grandiose claim for the account in Shapiro [1983a], although
Chihara [1990, 125–131, 135–142] plausibly interprets me that way. I am indebted to Chihara’s care-
ful analysis of my early, somewhat naive attempt.
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The following scene has played itself out repeatedly. Mathematicians study a given
structure. They extend it to another structure for their own, internal purposes; then
the newly defined structure finds application somewhere in science. As Weinberg
[1986, 725] put it, “It is positively spooky how the physicist finds the mathematician
has been there before him or her.” And Feynman [1967, 171]: “I find it quite amaz-
ing that it is possible to predict what will happen by mathematics, which is simply
following rules which really have nothing to do with the original thing.” From the
mathematical camp, the same sentiment was echoed by Bourbaki [1950, 231]:
“[M]athematics appears . . . as a storehouse of abstract forms—the mathematical
structures; and it so happens—without our knowing why—that certain aspects of
empirical reality fit themselves into these forms, as if through a kind of preadaption.”
I do not venture an explanation of this phenomenon.6

Returning to the more modest matter at hand, the present partial account of the
relationship between mathematics and science begins with the observation that the
contents of the nonmathematical universe exhibit underlying mathematical structures
in their interrelations and interactions. According to classical mechanics, for example,
a mathematical structure much like the inverse-square variation of real numbers is
exemplified in the mutual attraction of physical objects. In general, physical laws
expressed in mathematical terms can be construed as proposals that a certain mathe-
matically defined structure is exemplified in a particular area of physical reality.

If this account is combined with the preferred ante rem perspective on structural-
ism, then the relationship between mathematics and material reality is, in part, a spe-
cial case of the ancient problem of the instantiation of universals. Mathematics is to
reality as universal is to instantiated particular. As noted in chapter 3, the “univer-
sal” here is a pattern or structure, and the “particular” is a system of related objects.
More specifically, mathematics is to reality as pattern is to patterned.7

The same account is available to one who adopts an in re view of structures,
construed over systems of abstract objects (see chapter 3). The idea is that some
structures are exemplified by both systems of abstracta and systems of concreta.
A similar account of application is also available to a traditional Platonist. Instead
of speaking of structures that underly physical reality, our Platonist could appeal
to isomorphisms (or structure equivalences) between systems of physical objects
and systems of mathematical objects. Gödel [1953, 353–354, n. 44] himself wrote,
“[I]t should be noted that the second reality, although completely separated from
the first one, nevertheless might help us considerably in knowing the latter, e.g., if
in some respects, or as to certain parts, it happened to be similar or isomorphic to
it. In fact this would correspond closely to the manner in which mathematics is
applied in theoretical physics.”

6. Steiner [1989] is an extensive and compelling account of this problem.
7. I do not claim that a pattern explains why a system is patterned a certain way. Incidentally, ac-

cording to Turnbull [1978], Plato himself may have held a structuralism of sorts. Turnbull proposes
that Platonic Forms be understood as “principles of structure,” with the Form of X being the mathe-
matical structure of X. Turnbull relies on an interpretation of the later Dialogues, including the geo-
metric description of physical reality in the Timaeus.



LIFE OUTSIDE MATHEMATICS 249

A first attempt to articulate the present thesis would be that science proceeds by
discovering exemplifications of mathematical structures among observable physi-
cal objects. Some applications do have this form (see Barbut [1970]). For example,
Lévi-Strauss [1949] discovered a certain class structure, the Kariera system. A tribe
is divided into four classes, and there is a certain function for determining the class
of a child from the classes of his or her parents. There is an “identity class” in the
sense that when a member of this class mates with any member of the tribe, the off-
spring are members of the other’s class. If two members of the same class mate, then
their offspring are of the identity class. The classes and the function exemplify the
Klein group, a well-known finite structure (see Barbut [1970, 381]).

This simple example illustrates a central feature of the application of mathemat-
ics via structure exemplification (or isomorphism). The properties of a structure apply
to any system that exemplifies it. The Klein group has an identity element, and so
the Kariera system has an identity class. Because the Klein group is abelian, we see
that in one respect, the Kariera system is egalitarian. If the classes of two parents
were switched, the class of the children would remain the same. In general, when the
scientist learns that the mathematician “has been there before,” the scientist can apply
everything the mathematician has figured out about the structure to the physical sys-
tem under study. In a physics textbook, Geroch [1985, 1] expresses this idea (see
Chihara [1990, 128]): “What one often tries to do in mathematics is to isolate some
given structure for . . . study: what constructions, what results, what definitions, what
relationships are available in the presence of a certain mathematical structure . . . ?
But this is exactly the sort of thing that can be useful in physics, for, in a given physi-
cal application, some particular mathematical structure . . . arises from the physics
of the problem. . . . The idea is to isolate mathematical structures . . . to learn what
they are and what they can do. Such a body of knowledge, once established, can then
be called upon whenever it makes contact with the physics.”

The foregoing sketch more or less fits Frege’s [1884] account of the applica-
tions of arithmetic to ordinary counting (see chapters 4 and 5 of this volume). Al-
though Frege would not put it this way, Hume’s principle shows how the natural-
number structure is exemplified by equivalence classes of finite extensions, under
equinumerosity.

Most applied structures are not as simple as the Klein group or even the natural
numbers. Moreover, many of the applications that are that simple are not very useful
in the sciences. Knowledge about simple structures can be reacquired each time. Most
of the structures actually invoked in science are uncountably infinite. There is a con-
tinuum of space-time points and even more regions. We cannot find exemplifica-
tions of such structures among observable physical objects or systems of such objects.

Notice also that, when it comes to physical science, the simple account of direct
exemplification works only if all of the places of the exemplified structure are filled
with physical objects (or systems). Otherwise, the structures are not fully exempli-
fied. However, some mathematical structures find application even if some places
of the structure do not correspond to anything physically real. A case in point is com-
plex analysis. The very name “imaginary number” suggests that no straightforward
physical interpretation of these mathematical structure positions is forthcoming. Yet
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complex analysis is useful in physics and engineering. A related phenomenon is the
use of a physically uninterpreted theory, such as set theory, to solve problems that
are undecidable in a weaker theory, such as arithmetic. As indicated earlier, some of
these results have applications in recursive function theory and thus in computabil-
ity. One would be hard put to find a physical exemplification of the set-theoretic
hierarchy, let alone an exemplification that relates to computability.

In sum, my simple account of application must be extended. First off, I return to
a recurring theme of this book: modality. Typically, science is not limited to actual
systems. Rather, the scientist studies all possible systems of a certain type. The clas-
sical physicist does not directly study the attractions of actual physical objects but
rather laws governing the attraction of all possible physical objects or, better, laws
governing the attractions of idealized counterparts to physical objects.

This point is forcefully defended in Chihara [1990, 6–15], against Quine’s insis-
tence on purely extensional, nonmodal languages. Science could not get by on
Quinean austerity. The scientist typically studies how physical objects would behave
under certain idealized conditions—conditions that are never met in practice (see also
Cartwright [1983]). Physical laws have implicit or explicit clauses that “other things
are equal” or, better, “other things are absent.” In reality, other things are never equal,
and other things are never absent. Like it or not, modality is always with us, and the
scientist invokes modality, despite Quine’s admonition to avoid it. The structures of
science match actual physical systems only approximately, hopefully to within ex-
perimental error.

Recall that the notion of the structure of possible systems was invoked in previ-
ous chapters to accommodate mathematical construction, dynamic language, and the
use of modality in philosophical programs. I put this notion to work here as well.
Another way that mathematics gets applied is that the theorist describes a class of
mathematical objects or structures and claims that this class represents the structures
of all possible systems of a certain sort. Relations among the objects or structures
represent relations among the possible objects. If the claim is (more or less) correct,
then theorems about the class of structures will correspond to facts about the pos-
sible systems—about what is and what is not possible. Such claims can be tested in
practice, as the ideal conditions are approximated.

Here, then, is one way that large infinities enter the physicist’s picture—at least
large infinities from the perspective of the physicist. Classical mechanics entails that
there is at least a continuum of possible configurations of physical objects. There is
even a continuum of possible pairs of point masses. We do not have to reify the “pos-
sibilities”; we speak of their structure instead.

As mentioned in chapter 7, some psychologists speak in terms much like this when
describing the acquisition of psychological concepts. The natural-number structure
represents relations among possible collections of objects. As in Hellman [1989],
the principle of infinity is replaced with a principle of possible infinity: there is no
limit to the size of possible collections of objects. Chomsky seems to hold a structur-
alist view like this, in that he believes that the human mind exemplifies structures of
transformational grammar. These innate systems account for human linguistic per-
formance, which concerns those sentences that can be recognized as grammatical.
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Crowell and Fox [1963] is a mathematics book about knots—twisted pieces of
rope. In the introduction, they discuss the problem of using mathematics to study
these physical objects or, better, the possible manipulations of these physical objects:

Definition of a Knot: Almost everyone is familiar with the simplest of the common
knots, e.g., the overhand knot . . . and the figure-eight knot. . . . A little experimenting
with a piece of rope will convince anyone that these two knots are different: one can-
not be transformed into the other without . . . “tying” or “untying”. Nevertheless, fail-
ure to change the figure-eight into the overhand by hours of patient twisting is no proof
that it can’t be done. The problem that we shall consider is the problem of showing
mathematically that these two knots . . . are distinct from one another. Mathematics
never proves anything about anything except mathematics, and a piece of rope is a
physical object and not a mathematical one. So before worrying about proofs, we must
have a mathematical definition of what a knot is. . . . This problem . . . arises whenever
one applies mathematics to a physical situation. The definitions should define mathe-
matical objects that approximate the physical objects under consideration as closely as
possible. (p. 3)

When Crowell and Fox suggest that some mathematical objects can resemble or
“approximate” physical objects like pieces of rope, they clearly do not mean that some
mathematical objects are solid, flexible, and flammable. You cannot twist or burn a
number, even approximately. Their claim is that possible relationships and intercon-
nections of pieces of rope formed into knots can be described or modeled in the re-
lationships of a mathematical structure, a topological space in this case. Pieces of
rope formed into knots exemplify the structures delimited in the book. The purpose
of the enterprise is to prove theorems about possible knots, about what can or cannot
be done with rope. If Crowell and Fox are correct in their assumptions about the
exemplified structures, then it would follow that particular mathematical theorems
represent facts about possible knots. In particular, a theorem that one particular to-
pological configuration cannot be transformed into a second by specified mathemati-
cal operations and constructions corresponds to a fact that a figure-eight knot cannot
be transformed into an overhand knot without untying and retying it.

Turing’s [1936] original argument for the Church–Turing thesis also fits this mold,
insofar as he regards the computational process to be subject to mathematical inves-
tigation. He makes some straightforward claims that the possible instructions and
materials of a human who is following an algorithm have properties that are exem-
plified by certain mathematical structures. Let us look at one small part of Turing’s
argument, his proof that a language used in computation must have a finite alphabet.
He assumes at the outset that each symbol can be understood or defined to be a set of
points in a unit square of a standard metric space. This presupposes that there is some
upper bound on the size of a single symbol. There is, after all, a limit to how much
space a human can scan at once. Turing also assumes that the set of points that cor-
respond to each symbol is measurable. He then defines a natural metric among the
set of possible symbols, so construed. With the induced topology, the symbols form
a conditionally compact space. It then follows, by mathematics, that “if we were to
allow an infinity of symbols, then there would be symbols differing to an arbitrarily
small extent.” When we add a premise that there is some limit to the human ability to
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distinguish among tokens, it follows that an alphabet used in computation must be
finite. A structuralist reading of this piece of applied mathematics is straightforward
(see Shapiro [1983b] for other, related examples).

The aforementioned physics textbook, Geroch [1985], contains a similar sketch
of applications of topology to physics (see Chihara [1990, 140]):

We imagine some physical system that we wish to study. . . . We introduce the notion
of “the state of the system”, where we think of the state of the system as a complete
description of what every part of the system is like at a given instant of time. (For ex-
ample, the state of a harmonic oscillator is specified by giving its position and mo-
mentum.). . . . By an extended series of manipulations . . . we “discover all the states
that are available to [the system]”, that is, we introduce a set G whose points represent
the states of our system. Thus, our mathematical model of the system so far consists
simply of a certain set G.

We next decide that, more or less, we know what it means physically to say that
two states of the system (i.e., two points of G) are “nearby”. Roughly speaking, two
states are “nearby” if “the system does not have to change all that much in passing
from the first state to the second”. We wish to incorporate this physical idea as mathe-
matical structure on the set G. The notion of a topology seems to serve this purpose
well. Thus, we suppose that the set of states, G, of our system is in fact a topological
space, where the topology on G reflects “physical closeness” of states.

In present terms, what Geroch calls a “system” is the set of possible states of a physical
object or configuration of objects. The topological space represents the relevant re-
lationships among these possible states, and theorems about the topological space
represent facts about what is and what is not possible for the physical configurations
in question.

According to the so-called semantical approach (e.g., van Fraassen [1980]), a
scientific theory is not a collection of sentences but a collection of models. The models
represent possible configurations of physical systems, often idealized. If the models
are mathematical structures, then the semantical approach dovetails with the present
account (even though the ontology of structuralism may be inconsistent with van
Fraassen’s other views).8

The use of real analysis or geometry in physics makes an interesting case study.
The application can be understood in different ways, depending on how points are
construed in the physical theory. Of course, the status of space points and time points
(or space-time points) is an old issue in the interpretation of physics. There are two
main positions in the debate. One of them, substantivalism, holds that points are
physically real and that physical space (or space-time) literally consists of points. A
structuralist interpretation of substantivalism is most straightforward, because there
is no detour through modality. Applying Euclidean geometry, for example, amounts
to postulating uncountably many physical points. Classical physics, so construed,
entails that Euclidean structure is literally exemplified in space or space-time. The
situation might be described as a scientific theory that incorporates a mathematical
structure.

8. I am indebted to Chihara [1990, 139] for pointing out this connection.
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Whatever the fate of his ontological theses, Field’s [1980] account of the applica-
tion of mathematics in substantival field theories is correct. Avoiding a technical
device that Field employs (of no concern here), let N be a nominalistic theory that
refers only to space-time points and relations definable on them. Let S be a mathe-
matical theory, such as analysis or set theory, together with bridge principles that
connect the mathematics to the physics. According to Field, the way mathematics is
usually applied is that in the combined theory N + S, each nominalistic statement F
(in the language of N) is proved to be equivalent to a statement F' in the language of
the mathematical theory S. Field calls F' an abstract counterpart to F. The mathe-
matics can then be used to derive consequences of nominalistic statements. Suppose
that, using the powerful mathematical theory, we see that F' follows from the ab-
stract counterparts of the nominalistic theory. We can conclude F.

Although Field would not put it this way, the abstract counterparts establish that
a system of physical objects exemplifies a mathematical structure. In working with
the abstract counterparts, the nominalistic scientist is following the recipe of trans-
ferring information about a structure to a system that exemplifies it. In Field’s devel-
opment of Newtonian gravitational theory, abstract counterparts are developed by
establishing a structure equivalence between the mathematical structure and the physi-
cal system. He proves in the combined theory that there is a structure-preserving one-
to-one function f from the class of space-time points onto ú4, the set of quadruples of
real numbers. For example, if a, b, c, d are space-time points, then <a, b> is congru-
ent to <c, d> if and only if the distance in ú4 between f (a) and f (b) is identical to the
distance in ú4 between f (c) and f (d). The function f is sometimes called a represen-
tation function. Because of this isomorphism, one can translate any statement about
space-time points into an equivalent statement about real numbers.

The alternative to substantivalism, called relationalism, is the view that space (or
time or space-time) points are not physically real. The physics only describes rela-
tions between (possible) extended physical objects. Proponents of relationalism claim
that there is no need to postulate a realm of points that fill space-time in order to
describe the relevant relations among actual and possible physical objects. Instead,
the relations are directly described in mathematical terms. For example, one might
take “distance in meters” as a primitive function from pairs of physical objects to
real numbers.

From a relationalist perspective, the account of applications follows the modal
route. In describing relations among possible physical objects, the scientist is charac-
terizing a class of systems of physical objects. The mathematics is used to both de-
scribe and study the structures of those systems. The relevant feature here is that the
relations among the possible physical objects are described in mathematical terms.
That is, physical relations like distance and force are characterized with the places of
standard mathematical structures.

Field’s nominalism is related to his substantivalism. In particular, nominalism
requires that every structure exemplified in physical reality be completely describ-
able in a language with variables that range over places within that structure, nonempty
classes of such places, and perhaps other concrete objects. This guarantees that all
the theoretical entities postulated by a given branch of science conform to nominal-
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istic scruples. Both the entities that answer to the places of the structure and entities
that are needed to describe the structure are physically real. Typically, relationalists
do not meet such scruples. For them, the physical structures are described in terms
of mathematical structures. As Field might put it, the substantivalist builds the rele-
vant structure right into the physical systems, by postulating space-time points as
physical entities.

The situation with ú4, geometry, and physical space-time illustrates our final case,
the application of structures when some of their relations or places do not have physi-
cal interpretations. With relationalism, the points themselves are not physically inter-
preted. With substantivalism, space-time itself has no preferred units and no frame
of reference, nor is there addition and multiplication. Moreover, as we saw in chap-
ter 5, space-time may have no metric. These items are supplied by ú and ú4, as ap-
plied to space-time.

Recall the embeddings that came up repeatedly in previous chapters, when focus
was restricted to mathematics. The natural-number structure is contained in the real-
number structure, which is contained in the complex-number structure. Thus, for
example, the natural-number structure is illuminated via analytic number theory.
Virtually every mathematical structure is contained in the set-theoretic hierarchy, and
so set theory illuminates just about every structure. Some scientific applications are
like these applications of mathematics to mathematics. A structure that may or may
not be physically instantiated is embedded or modeled in a rich mathematical struc-
ture. Consideration of the rich structure sheds light on one of its substructures. The
rich structure thereby also illuminates any system exemplified by this substructure.
If the substructures have physically real, idealized, or modalized physical instan-
tiations, then the rich mathematics indirectly applies to physical reality (see Chihara
[1990, 129–130]). As we saw earlier, even set theory has empirical consequences,
once suitable bridge principles are added.

The phenomenon of structure embedding helps deflect the following objection.
According to structuralism, natural numbers are places within the natural-number
structure. This structure is infinite. Thus, according to structuralism, someone who
uses small natural numbers in everyday life presupposes an infinite structure. It seems
absurd to suggest that every child who learns to count his toes applies an infinite
structure to reality, and thus presupposes the structure.

The reply dovetails with an epistemic strategy broached in chapter 4. Simple ap-
plications of arithmetic do not require the entire natural-number structure but only
various finite cardinal or ordinal structures. In any given case, a sufficiently large
finite structure will do. For example, when a child learns to count to twenty and thus
learns to count small collections of objects, she is learning a certain finite pattern,
the ordinal 20 pattern. She may even learn to enrich this structure with addition and
multiplication (as partial functions). Later, the child learns that this pattern can be
extended to a larger one, with hundreds of places. If all goes well, she eventually
learns that these finite structures themselves have a pattern, and she learns that each
of the finite patterns can be embedded in a structure with infinitely many places. Here
again, the larger structure is used to shed light on its substructures and on systems
that exemplify the substructures.
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3 Borders

With Quine, I hold that the boundary between mathematics and science is a blurry
one, and there is no good reason to sharpen it. Nevertheless, a blurry border is still a
border. This section concerns some fuzzy differences between mathematics and other
scientific endeavors.

One difference between the disciplines concerns how structures are presented and
studied. In the mature branches of mathematics, structures are described abstractly,
independently of anything they may be structures of. Ultimately, mathematical struc-
tures are characterized axiomatically (as implicit definitions), or they are defined in
set theory. So construed, structures can be studied deductively, allowing full rigor
when necessary. In other words, because the mathematical structures are character-
ized without reference to anything they may be structures of, they can be illuminated
in a topic-neutral way, via formal deduction. As we saw in chapter 4, this is one source
of the idea that mathematical knowledge is a priori. In contrast to this, scientists are
occasionally concerned with systems that are exemplified by the structures, and they
may alter the description of a structure accordingly, perhaps in response to empirical
data.

Along similar lines, Resnik [1982, 101] distinguishes between types of theories
of particular structures: “A pure theory of a pattern is a deductively developed or
developable theory which is based upon axioms which purport to characterize the
pattern in question. Its assertions do not extend to claims concerning whether, where
or how the pattern is instantiated, and they are true of that pattern regardless of its
applicability. . . . An applied theory of a pattern [involves] claims stating how the
pattern is instantiated.” Notice, however, that this provides a rough distinction at best,
and it does not separate mathematics from empirical science. First, scientists them-
selves occasionally invoke deduction in developing a structure, perhaps as part of a
hypothetical-deductive inference. Presumably, they are doing mathematics at those
moments. Second, as emphasized before, mathematicians often concern themselves
with exemplifications of their structures—in other structures. For example, an ana-
lyst may study the structure of analytic, complex-valued functionals, or a geometer
may study the structure of the conic sections or timelike surfaces or light cones. As
emphasized earlier, embedding structures in one another is an essential part of both
mathematical and scientific methodology.

Some fields lie on—and challenge—the border between mathematics and science.
To return to previous examples, Crowell and Fox [1963] is a book about knots, pieces
of rope. Turing’s original work [1936] is aimed at human computation ability and,
perhaps, mechanical computing devices. So, if librarians were to focus on the in-
tended subject matter, they would classify the works within empirical science. Yet
these works are routinely classified as mathematics and used in mathematics courses.
Indeed, knot theory and computability are branches of “pure” mathematics. Of course,
I do not mean to quibble with the classification. Turing [1936] and Crowell and Fox
[1963] are mathematics par excellence. In each case, all but a few lines are devoted
to developing and studying the respective structures as such. The few exceptions
concern the connections with physical reality, such as Turing’s claim that character
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tokens exemplify the structure of measurable sets of points. There is little effort to
support these empirical claims; they are obvious. In Resnik’s terminology, knot theory
and computability are, for the most part, pure theories of their respective structures.
The connection with physical reality may be what originated the inquiry into these
structures, but this relationship is of little concern in the study itself.

There are more mainstream examples of fields that straddle the blurry border.
Originally, geometry was a theory of physical space, and yet geometry has always
been cast as a branch of mathematics (see chapter 5). One would be hard put to dis-
tinguish much of the contemporary work in physics—both quantum mechanics and
relativity—from mathematics (putting funding agencies aside).

To confirm an observation made at the start of this chapter, branches of pure
mathematics and branches of applied mathematics have a common type of subject
matter—structures. The interplay between them is a result of modeling one structure
within another or, in other words, using one structure to study another structure. The
difference between pure mathematics and applied mathematics is, at least in part, an
accident of history. Applied mathematics studies structures that traditionally form
part of particular scientific theories. There is a continuous grading off from applied
mathematics to theoretical science and from there to experimental science. Think of
a continuum with, say, set theory at one end, applied mathematics and theoretical
science toward the middle, and experimental science at the other end. Applications
are found everywhere, and so is the deductive study of structures as such.

4 Maybe It Is Structures All the Way Down

The time has come to speak of ordinary things—of people, stones, cookie crumbs,
cards, decks, and events. I will be brief and even more speculative than usual. First,
the boundary between mathematics and ordinary discourse is at least as fuzzy as the
boundary between mathematics and science. Maddy [1988, 281] correctly notes that
one result of the structuralist perspective is a healthy blurring of the distinction be-
tween mathematical and ordinary objects:9 “Are there two realities, one mathemati-
cal, one physical, and, if so, why should the theory of the one be relevant to the theory
of the other? . . . [S]tructuralism [has] moved away from the more familiar platonistic
picture of a realm of mathematical objects completely divorced from the physical
world. According to the structuralist, physical configurations often instantiate mathe-
matical patterns. . . . I mention this . . . for the benefit of the naturalistically minded,
those for whom any physical/mathematical dualism is a challenge to eliminate all
but the physical. I want to suggest that the two might be seen as so interdependent
that no separation, let alone elimination, is possible.” Natural numbers are places in
the natural-number structure, the structure of counting. What is it that we count?
Objects. Introducing or individuating objects, at any level, is intimately tied up with

9. Maddy is not a structuralist and does not accept the views on ordinary objects sketched in this
section. The passages cited here are part of an argument that some virtues of structuralism are shared
by her own view, called “set-theoretic realism.” See also Maddy [1990, chapter 5].
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counting, and this individuation is scarcely distinguishable from the imposition of
structure. Maddy continues:

[I]magine the purely physical world. This would have to be a giant aggregate com-
posed of all the physical stuff in the universe. There is nothing nonphysical in this, but
most philosophers, even nominalists, prefer a less amorphous characterization; they
begin with all physical objects, or all particles, or all space-time points. . . . [T]o add
even this small amount of structure—the differentiation of the amorphous mass into
individuals of some kind—is already to broach the mathematical. If we were to con-
sider the mass of physical stuff divided into finite collections, everyone would agree
that we have more than the physical. . . . [T]he same is true when the physical stuff is
simply divided into individual objects. . . . The only way to confine ourselves to the
purely physical is to refrain from any differentiation whatsoever. . . . Could there be a
physical world with absolutely no mathematical structure? Whatever our level of suc-
cess or failure in this shamelessly philosophical imagining . . . it is plain that our world
is not one such. Our reality is structured in many ways, into individual objects, into
natural kinds, into patterns and structures of many sorts. . . . [T]he idea that physical
reality can stand alone, that it comes first and that mathematics is separate, secondary
or imposed, must be rejected. (p. 282)

This is a far-reaching idea. To speak of objects at all, we must “structure” the uni-
verse, and this structuring is a move toward the mathematical. We find parts of the
world structured into continua, into Klein groups, and, to use my favorite example
from chapters 3 and 4, baseball defenses. We also find the world structured into objects
and systems of objects—into crumbs and cookies.

This theme dovetails with a conclusion from chapter 4. Structuring a chunk of
space-time into a system of objects involves mobilizing linguistic and other concep-
tual machinery. As argued earlier, this mobilization is all that is needed to formulate
and discuss structures as such. Along these lines, Frege is known for the idea that we
do not have objects without concepts. Without concepts, there is nothing—no things—
to count. The use of language involves an ability to manipulate predicates and sin-
gular terms, which denote concepts and objects. Frege showed how to construct natu-
ral numbers from this raw material.

So far, so good. The temptation, at this point, is to extend the structuralist per-
spective about mathematical objects to objects generally. This would be a pleasing
articulation of my conclusions concerning fuzzy borders. We have seen that Quine
[1992] himself embraces a global structuralism, of sorts (see chapter 3 of this vol-
ume). Notice, however, that the theses of this book do not require such a bold exten-
sion of structuralism. The prevailing desideratum is that there be a uniform semantics
for mathematics and sufficiently regimented ordinary discourse. Under structural-
ism, the relevant semantics for mathematics is model theory. The uniformity condi-
tion is satisfied if the nonmathematical discourses enjoy a model-theoretic seman-
tics, provided that we have some grasp of how mathematical structures relate to
physical systems. As long as singular terms refer to objects and predicates express
relations, the uniformity is assured—even if reference and satisfaction must be un-
derstood differently in the various discourses.
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Nevertheless, it would be nice if structuralism could be extended beyond mathe-
matics. Thus, I throw caution to the wind and close this book with some tentative
remarks on what a global structuralism would involve and how far it can go. I beg
the reader’s indulgence.

Structuralism entails a relativity of objects. Rather than objects simpliciter, we
speak of objects of a structure. Each mathematical object is implicitly or explicitly
tied to the structure of which it is a place. Structures, in turn, are characterized by
coherent theories, via devices like implicit definition (see chapter 4). Recall the struc-
turalist responses to Frege–Benacerraf questions (chapter 3). Is 2 identical to Julius
Caesar? Is 2 identical to {{f}} or to {f, {f}}? Is 3 ∈ 5? Some of these questions
inquire after the identity between items from different structures. There are no deter-
minate a priori answers to be found. Sometimes answers to such questions not needed
and not wanted. In other cases, answers are desirable, and even natural. Consider,
for example, identifying the zero of the natural numbers with the zero of the inte-
gers. But it is always a matter of decision not discovery. The same goes for the ques-
tion of whether 3 ∈ 5. It is like asking whether 3 is funnier than 5. Membership and
relative humor are not relations in arithmetic, and so there is no determinate answer
to these questions waiting to be discovered.

Notice that one can raise Frege–Benacerraf questions about ordinary objects. Can
we discover whether a deck is really identical with its fifty-two cards, or whether a
person is identical with her corresponding time-slices, molecules, or space-time
points? In philosophy, a lot of ink and toner has gone into figuring out whether an
event is or is not identical with a chunk of space-time, or whether the event of
Socrates’s death is or is not identical with the event of Xanthippe’s becoming a widow.
Similar puzzles arise with theories of properties, universals, possible worlds, mind
states, and brain states. The outlook developed here would suggest that answers to
such questions are not always forthcoming. In some cases, answers may be desirable
and even natural, but it is a matter of decision based on convenience. The questions
are direct analogues of the attempts to determine whether a place within one struc-
ture, like the number 2, is or is not identical with a place in another structure, like
{{f}}, or something else, like Julius Caesar.

Further Frege–Benacerraf questions arise from asking questions about the places
of structures by using terminology from outside the theory of the structure. Suppose
that during a class on the U.S. Constitution, a student asks about the age of the presi-
dent (as opposed to the age of Bush or Clinton). Similarly, consider questions about
the hair color or batting average of the shortstop (as opposed to the hair color or batting
average of a person playing that position on game day). The questions indicate a
confusion of the subject matter.

Recall the distinction, in chapters 3 and 4, between the places-are-objects and the
places-are-offices perspectives. With places-are-offices, the positions in structures
or patterns are taken to be filled with objects or people, drawn from a given ontol-
ogy. With places-are-objects, the places themselves are treated as bona fide objects.
As we saw, this occurred by restricting the language to the theory of the structure, a
language limited to terms for the places and relations of the structure in question.
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The present plan is to apply the objects/offices dichotomy universally. All objects
are places in structures. For each stone, there is at least one pattern such that the stone
just is a position in that pattern. When that pattern is considered from the places-are-
objects perspective, the stone is treated as an object. This perspective presupposes
that there is, or could be, another perspective according to which the stone is an of-
fice, to be filled with objects drawn from another ontology. Perhaps the stone office
can be filled with a collection of space-time points or a collection of molecules.

Dieterle [1994, chapters 4 and 5] pursues a program aimed at providing the de-
tails of such a global structuralism, drawing on work by Robert Kraut (e.g., [1980]).
She defines a “theory” to be a stretch of discourse (from natural language) that dis-
plays some sort of “conceptual homogeneity.” The assertions of the theory show how
the referents of the terms and predicates of the theory are related to each other. This
admittedly vague notion is what plays the role of mathematical axiomatizations in
implicit definitions of structures. According to Dieterle, a coherent theory charac-
terizes a structure. The places and relations of the structure are the denotata of the
singular terms and predicates of the theory. Each object referred to in a natural lan-
guage is tied to (one or more) “theories,” and so each object is a place in (one or
more) structures. Things are admittedly vague here. Structuralism depends on being
able to isolate the theories of different structures. This is not as plausible when it
comes to scientific or ordinary discourse.

As with mathematics, the system/structure dichotomy is a relative one. What is
system from one perspective is structure from another. There is thus a potential re-
gress of theories, each one encompassing the objects of the one before, turning these
objects into the places of an exemplified structure. Does the regress end? Is there a
natural stopping place, a universal “theory”? If there were, it would be the entire web
of natural language, or scientific English—our proverbial mother tongue—suitably
regimented. Let us assume that this all-encompassing framework is a (more or less)
coherent theory. If so, then the totality of all objects that we talk about with this
superframework and all relations that we impose on these objects form a structure.
Every object is an object of this theory, and so every object is a place of this gigantic
structure. These ultimate structure places, of course, are treated from the places-are-
objects perspective, and the envisioned super structure is freestanding (in the sense
of chapter 3). Still, this current mother-tongue structure could be treated from the
places-are-offices point of view, by embedding its “theory”—our entire web of
belief—into another theory. If the main Quinean theses are correct, there is more than
one way to regiment our full web of belief. Any of several superstructures will do,
and so there is a thorough relativity of ontology.

Enough of this speculation. Let us put the envisioned superstructures aside and
think in terms of smaller theories. Dieterle, of course, is aware of the differences
between mathematical and ordinary objects, but she holds that the differences are
not significant. In the terms of this book, mathematical objects are places in free-
standing structures, whose relations are formal. Ordinary objects are presumably
places in nonfreestanding structures. Thus, the structures characterized by Dieterle’s
“theories” are exemplified only by certain systems of objects, taken from a back-
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10. There is an interesting issue concerning how the nonfreestanding nature of ordinary structures
should be incorporated into Dieterle’s framework. Let G be the envisioned “U.S. government theory.”
As noted, relative to G, “president” is a singular term that denotes an object. What are we to make of
the statement that the president must be thirty-five years of age? If this is part of G, then we can speak
in the language of G about the age of the president, and so we have an embarrassing matter of deter-
mining just what the age of the president is. This is a Frege–Benacerraf question that is formulable in
the language of the theory of G. One way out is to insist that the statement that the president must be
thirty-five years old is not part of G. The theory G just concerns the relations between the officehold-
ers. The age requirement is an extratheoretic statement about which systems can exemplify the structure.

ground framework. One of her examples is the structure of the U.S. government.
Within the envisioned theory, “president” is a singular term that denotes an object, a
place in that structure. However, the structure is not freestanding. It can be exempli-
fied only by certain systems of people. Moreover, no one can play the president role
unless the person is a native-born citizen, is over thirty-five years of age, and is either
elected to the office or succeeds to it.10

In other words, with ordinary (pure) mathematics, a given theory is an implicit
definition of a freestanding structure or a class of freestanding structures. With the
model-theoretic semantics, the formal theory itself determines which systems exem-
plify the structure. Ordinary objects and ordinary structures are not like this. The
theories alone do not determine which systems exemplify the structures, even if the
theory is augmented with a general model-theoretic semantics. Thus, beyond mathe-
matics, there is more to reference and satisfaction than is captured in model theory.
For ordinary language, model theory must be supplemented with accounts of refer-
ence and satisfaction.

On the structuralist perspective, what is an object in a given context depends on
what concepts or predicates are in use, and this depends on what concepts or predi-
cates are available. It is through language that we organize the world and divide it
into objects. A global consequence of this relativity is that the universe does not come,
nor does it exist, divided into objects a priori (so to speak), independent of our lan-
guage, our framework, or, to use another Wittgensteinian phrase, our form of life.
The complex web of beliefs, concepts, and theories that determines how we perceive
and understand the world also determines what its objects are and when two of them
are the same or different.

Variations on this theme are popular among contemporary philosophers. The idea
is part of Quine’s views concerning the web of belief and his aforementioned global
structuralism. The same thesis is central in Putnam’s ([1981], [1987]) internal real-
ism, especially the later versions of it (see chapter 2 of this volume).

Once again, Frege held that ontology is tied to concepts and that linguistic resources
track the realms of concepts and objects. Of course, he did not embrace any sort of
relativity, because he held that there is a single, absolute realm of concepts and objects.
Accordingly, there is, or should be, a single universal language—a Begriffsschrift—
with variables that range over all objects whatsoever and variables that range over
all concepts whatsoever (see Dieterle [1994, chapter 3]). However, a Fregean, or a
traditional Platonist for that matter, might admit that what we are able to identify as
objects depends on what concepts we manage to grasp and articulate. Dummett
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[1973a, 503–505] wrote that “what objects we recognize the world as containing
depends upon the structure of our language” and “our apprehension of reality as
decomposable into discrete objects is the product of our application to an original
unarticulated reality of the conceptual apparatus embodied in our language.” Hale
[1987, 156] elaborates: “The thought is that we are able to discern objects of any
given kind only because we have mastered general, sortal terms whose associated
criteria of identity constitute the necessary conceptual apparatus by means of which
we can ‘slice up’ the world in a particular way; and that we can at least conceive the
possibility of language users for whom the world would divide up into objects of
different kinds, because they employed general sortal terms with quite different cri-
teria of identity.” This last surely depends on our language and background “theory.”

From a different perspective, a conventionalist about mathematics holds that
mathematical ontology is dependent on language, but the realm of physical objects
is not. The perspective of this book is that there is no sharp boundary between the
mathematical and the physical. In both cases, the way the universe is divided into
structures and objects—of all kinds—depends on our linguistic resources. Just about
everything that relates to ontology is tied to language.

The foregoing thesis is not meant to be an affront to objectivity. Quite the con-
trary. I remain an unrepentant philosophical realist, in the sense of chapter 2. It is
surely correct to maintain that if there had never been any language (or any people),
there would be trees, planets, and stars. There would also be numbers, sets of num-
bers, and Klein groups, if not baseball defenses. Such is the nature of ante rem struc-
tures. Once a language and a theory impose a structure and sort the universe into
objects—be they abstract or concrete—one can sometimes speak objectively about
those objects, and we insist (surely correctly) that at least some of the objects were
not created by us.11 Counterfactuals about the ways the world would be must them-
selves be formulated in our language and form of life—for we know no other. Trivi-
ally, had there never been any language, there would be no means of discussing, say,
stars, as distinguished from the particles they contain and the galaxies that contain
them. However, the lack of sortals available to speakers in a given possible world
has nothing to do with which objects that world contains.

11. I am indebted to Michael Resnik for suggestions of how to formulate this point
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