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To Sylvia

You endured my obsession 

with these “old dead friends” of mine

—while you took care of the living.
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Prelude

This is unabashedly an idiosyncratic look at science. Based heavily upon my
research and publications—and hence personal interests—it expresses, perhaps,
my quirky side.

Ever since switching fields in graduate school, from physics to studying its
history, I have come to recognize—and especially appreciate—what a thorny
matter it is for the apparently simple laws of science to immerge out of the shad-
ows of history. This, in turn, made me realize how remarkable and unobvious the
expositions in today’s science textbooks are; what is eventually straightforward
and transparent today was not so in the past. I did not appreciate the astonishing
elegance of many science textbooks; that is, not until I studied the contrasting
history of the subject. The subject of this book, however, is not textbook science;
the textbook is the foil. A scientific idea, law, discovery, or experiment as expli-
cated in a textbook is really a distillation of a multifaceted and often-intricate and
convoluted historical narrative, with many missed starts, dead ends, mistakes,
even sophistries and deceptions—a labyrinth of ingenuity and error that looks
linear only after the fact.

The book thusly is directed at the reader who is curious about science but
whose exposure has been primarily from science courses and their accompanying
textbooks—thus devoid of real history. This book is also intended for those who
take pleasure in carefully studying pictures, illustrations, diagrams, of which
there are scores in this book, and who are willing to spend the time required to
compare and comprehend figure and text, so as to follow the historical narrative
and scientific argument. A significant segment of what purports to be writings on
science directed beyond the classroom and academy is done so under the stricture
that the text should read rather like a novel—as if, God forbid, one might need to
stop and ponder a picture or think about an idea. I expect that anyone reading this
book “like a novel” is wasting one’s time.

The overall structure of the book is plain. Sandwiched between two chapters on
the doggedness of Einstein are ten more in approximately chronological order,
beginning with an ancient astronomical measurement followed by episodes from
the Scientific Revolution (Copernicus through Newton), with accompanying
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background narratives from ancient science, telling tales revealing some quirky
sides of scientists. The format is simple: every chapter constitutes more or less an
essay unto itself; furthermore, each is divided into subsections, which are occa-
sionally followed by boxed-in essays on specific peripheral topics. To preserve
the integrity of the argument of each chapter while concomitantly avoiding too
much duplication, I have cross-referenced relevant material from elsewhere in
the book by section number, for example, “see section 2.3” means section 3 of
Chapter 2. Accordingly, the book may be read in any order. So, begin browsing,
perusing, reading—wherever you wish.

2 Prelude



1
Tenacity and Stubbornness: Einstein 
on Theory and Experiment

3

One of the common images of Einstein is this: lost in thought, he scribbles
esoteric equations on the back of an envelope and creates a new world. Out of the
mathematics on the envelope emerges a theory that he is so convinced is true, no
experiment is required for proof. There are many stories of Einstein’s disdain for
experiments, especially when the experiments contradicted his theories. But a
deeper look into the matter reveals a more complex attitude toward experimenta-
tion. Especially interesting is a little-known tale of Einstein himself engaged in an
experiment to test one of his own theories—and how he confronted his own data.
One of the guiding factors in all this was Einstein’s tenacity for sticking with a
scientific problem, following wherever it leads, and stubbornly not straying from
the quest.

1.1. Tenacity

When once asked how he discovered the laws of physics, Newton said it was
straightforward—he just thought about the problem, constantly. Confronted with
a problem, Newton became obsessed until he solved it. But most of his life was
not spent cracking what today we would consider problems in science; indeed, his
interest in science was infrequent. Newton mostly was occupied with theology,
church history, and alchemy, although for him they were all of a piece.

Einstein, too, once he began, seemingly never stopped thinking about physics.
But, in contrast to Newton, science was mostly what he pursued throughout his
life. He had little commitment to his family, and except for his involvement with
various social concerns (socialism, Zionism, the world-government movement),
his life was spent zealously preoccupied with matters of physics. He tells us in his
autobiography that at about the age of 16 he thought about a paradox concerning
how light would appear if he traveled along with the light beam, and this imagi-
nary ride led, about 10 years later, to what we now call the special theory of
relativity. The resolution of the paradox entailed two principles: the relativity of
motion and the invariant speed of light. In that year, 1905, he not only published
two papers on relativity (in the second deducing E � mc2) but also laid the



foundations of the quantum theory of light (from the photoelectric effect and
other light-related phenomena) and provided further evidence for the existence of
atoms, whose real existence was neither fully confirmed nor held at the time.
With these accomplishments, he could have rested on his laurels.

But not Einstein. Special relativity was confined to the case of motion where an
observer moves at a constant speed in a straight line (later labeled an “inertial
system”). But what about the more general case of an observer changing speed, or
accelerating? How may the relativity principles apply to this “noninertial system”?
While writing a summary article on relativity in 1907, a thought occurred to him,
which offered an answer. The thought was this: the physical experience of a person
in free-fall in a gravitational field is the same as if gravity were turned off.
Although the person is falling, and hence accelerating, her experience is identical
to someone floating in outer space, away from any gravity. And, concomitantly, if
a person is in a local environment without gravity (image a spaceship far from any
other masses), but it is accelerating (thus being a noninertial system), he experi-
ences a force identical to being in a gravitational field (Fig. 1.1).

Our experience in an elevator readily reproduces this: as the elevator goes up,
we feel heavier, as if gravity were increased; the opposite occurs as the elevator
goes down—we feel lighter. An extreme case would be an elevator in free-fall,
where we would be weightless, as if floating in free space. Similarly, someone in
an elevator in free space that is accelerating “up” with respect to the top would
experience the equivalence of a gravitational force. Interestingly, the modern
elevator first appeared in the mid-19th century; hence the experience perhaps was
familiar to Einstein from his childhood.

From this famous thought experiment Einstein concluded that gravitational force
might ultimately be a form of inertial force, since the person in the accelerating

4 1. Tenacity and Stubbornness

FIGURE 1.1. The equivalence of gravitational and inertial forces. Left: Experiencing a
gravitational field is equivalent to being in a noninertial frame of reference that is acceler-
ating (a) at the same rate (distance/time-squared) as gravity (g). Right: Experiencing
weightlessness in empty space is equivalent to falling freely, hence accelerating, in a
gravitational field.



elevator is experiencing the equivalence of gravity because of her inertia—that is,
her mass is resisting the change of speed. Another way of saying this is that inertial
mass is equivalent to gravitational mass. That there is proportionality between iner-
tial mass and gravitational mass was inferred by Galileo and Newton from physical
experiments, but Einstein’s thought experiment revealed something more funda-
mental. It permitted him to generalize the relativity principle to all cases of motion
(inertial and noninertial systems), and hence elevate the equivalence notion to an a
priori “principle.” He later called this “the happiest thought of my life.”

He pondered and developed the consequences of this for nearly the next
decade. The principle of equivalence (between inertia and gravity) was the cor-
nerstone of what he called the general theory of relativity, which he completed
and published late in 1915, producing a now-classic review article in 1916. The
theory posited that gravity is not a force in space (as Newton said) but a property
of space. To Newton gravity was an example of what the ancients called action-at-
a-distance—namely, the ability of one mass to transmit information instanta-
neously across space to another mass. Einstein once called action-at-a-distance
“spooky.” Instead, he proposed that space itself is the cause of gravity; the ability
of space to wrap, warp, or bend around matter is what gives rise to masses in
space moving toward each other; gravitational attraction, therefore, is nothing
more than the distortion of space. Many theorists have deemed Einstein’s general
relativity as the most beautiful theory ever conceived. Pictorially it is relatively
simple to conceive in a two-dimensional world: for the two-dimensional “person”
in Figure 1.2, the distortion of space around the large mass is interpreted as a

1.1. Tenacity 5

FIGURE 1.2. Warped space: two-dimensional analogue. Matter distorts the immediate space
around it. For the 2D “person,” the behavior of the moving smaller mass as it curves
around the larger mass is perceived as being due to a force acting between the masses, and
thus a gravitation attraction is postulated. Einstein, accordingly, reduced gravity to the
curvature of space.



force, since the thrown object seems to be attracted to the large mass and hence
the “person” posits a force between them.

Likewise, for us, gravity, therefore, is due to a distortion of our three-
dimensional space. In contrast to the conception, the mathematical execution was
formidable, requiring the mastering of tensor calculus in order to describe motion
in a distorted (technically non-euclidean; see section 12.2) space. That Einstein
thus explained gravity without spooky forces was perhaps why he called the
equivalence principle the happiest thought of his life.

After years of calculating tensor equations and achieving the general theory,
Einstein may well have rested for a while. But not he: the very next year (1917)
we find him publishing what eventually will be another landmark paper—this one
on a model of the universe as inferred by general relativity. This cosmological
model became the foundation of modern cosmology (see section 12.2).

Reaching this plateau, would Einstein now take a break? Indeed, what more was
there to do? Well, tucked deep within the 1916 review article on general relativity
was the notion of merging gravity with electricity under one theory. Over 30 years
later, in his autobiography, Einstein recalled that this thought arose out of his
derivation of the field equation of general relativity. “Not for a moment,” he wrote,
“did I doubt that this formulation [of general relativity in 1915–16] was merely a
makeshift [one]. . . . For it was essentially no more than a theory of the gravitational
field, which was isolated somewhat artificially from a total field of as yet unknown
structure.” There was more to the physical universe than gravitational force alone,
since there were also forces of electricity and magnetism. This led to his quest for
the unification of gravitation and electromagnetism—to find, as he called it, this
total field of “unknown structure.” In a lecture delivered at the University of Leiden
in 1920, he spoke of electricity and gravity as “two realities which are completely
separated from each other conceptually” but if coupled “together as one unified
conformation” would constitute a “great advance,” since “the whole of physics
would become a complete system of thought.” A fusion of the two became his
scientific mission; the goal was a unified field theory. At the age of 22, in a letter to
his close friend, Marcel Grossmann, he wrote: “It is a glorious feeling to perceive
the unity of a complex of phenomena which appear as completely separate entitles
to direct sensory observation.” Pages of calculations toward a unified field theory
(which he never achieved, despite devoting over half his life toward it) were found
on the night table next to his bed when he died in 1955.

6 1. Tenacity and Stubbornness

A Unity in Mind, Only: Linnaeus and Taxonomy

Einstein’s quest remains just that—a fundamental scientific pursuit, since no one
has yet found the unity between gravity and electricity. Perhaps there is none,
although few physicists would agree (an exception is Freeman Dyson, professor
emeritus of physics at the Institute for Advanced Study). The story in Chapter 9
tells of Newton’s misguided quest for a unity among color, light, and sound.



1.2. Stubbornness

When convinced of a theory, Einstein could be very stubborn—even in light of
seemingly empirical falsification. In March 1914, when in the midst of calcula-
tions involving his theory of general relativity, he wrote to another good friend,
Michele Besso, on the possibility of testing his theory by measuring the bending
of the light from stars during a solar eclipse: “Now I am completely satisfied and
no longer doubt the correctness of the whole system, regardless of whether the
observation of the solar eclipse will succeed or not. The logic of the thing is
too evident.” Usually he was right about these hunches—we are speaking of
Einstein!—and so historians and others are prone to tell and retell those typically
“Einsteinian” stories and anecdotes in which he disdained the role of experiment.

One of the most repeated anecdotes is this. The solar eclipse test of general
relativity was finally performed under the direction of the Royal Society of
London in 1919, and with a positive result—namely, the light from the stars near
the sun was bent an amount within the experimental error of Einstein’s prediction.
A student of Einstein’s at the time reports that she queried him as to the

1.2. Stubbornness 7

Here is another example, this from the history of taxonomy. A landmark
publication on the subject is the Systema Naturae of Carl Linnaeus. From the
first edition in 1735 and proceeding through 12 editions (the last in 1766–8)
Linnaeus’s masterpiece laid the groundwork for the modern system of classi-
fying all living things. His categories were, starting with the largest: kingdom,
class, order, genus, and species. Phylum and family were added by Georges
Cuvier in the early 19th century. Within this structure, each category branches
out into further subcategories, never to be linked again. To Linnaeus this order
was the rational framework in the mind of God, an arrangement based on the
similarities and differences among the various species created by the Deity.
Darwin subsequently transformed this logical ordering into a chrono-logical
sequence, viewing the structure as a tree; hence, the metaphor entailed the
branching as being literal.

In the latter editions of the Systema, Linnaeus extended this taxonomic
structure to include rocks and human diseases. In antiquity Aristotle had
divided nature into three kingdoms, animal, vegetable (plants), and mineral
(rocks). Linnaeus, likewise, conceiving these three as part of the whole of
nature, and, drawing on the belief that God would only create the diversity of
nature within some one overall array, Linnaeus also classified rocks and even
diseases as similar branching categories (which, of course, is erroneous since
this “order” only applies to organic things because the basis of the sequence is
evolution). Nevertheless, within the 18th century framework of a static picture
of nature, the holistic framework of Linnaeus’s fusion of rocks with animals
and plants was reasonable.



possibility of theory not being confirmed by the solar eclipse. To which, she
reports, he responded: “Then I would have been sorry for the dear Lord. The
theory is correct.” Perhaps because of the invocation of the Creator, writers on
Einstein have been drawn to this quote—indeed, here I am telling it, again. More-
over, it is seemingly reinforced by other statements, such as that to Besso (quoted
above). But I must also report that this “dear Lord” story most probably is a myth.
In a meticulously researched study of the story, Klaus Hentschel has convinced
me the event never happened, and that it was a reconstruction by the student much
later than the event (in the 1950s) to support her view that Einstein shared her
philosophical (neo-Kantian) viewpoint (which he did not).

In his important article, Hentschel also makes a strong case for a modification
of the widespread notion of antiempiricism in Einstein’s ideology. There were
numerous occasions where he clearly asserted a crucial role for experiments to
make or break a theory; in fact, he recognized that they could be and often were
the ultimate arbiters of scientific certainty. So, despite Einstein’s remark to Besso
(above), we find him as early as 1911, when he first derived the prediction that
gravity bends light, exerting his influence to find someone willing to perform the
solar eclipse test of the theory.

Hentschel especially emphasizes the role of a cluster of experiments (rather
than one isolated case) as important to Einstein. Listen, for example, to this sen-
tence from the introduction to his landmark paper of 1905 on his “quantum” (later
photon) theory of light, a paper he referred to at the time as “very revolutionary”:

Indeed, it seems to me that the observations of “blackbody radiation,” photoluminescence,
production of cathode rays by ultraviolet light, and other related phenomena associated
with the emission or transformation of light appear more readily understood if one
assumes that the energy of light is discontinuously distributed in space.

Note the list of phenomena (the details are not of interest here) supported by
experiment, leading Einstein to his hypothesis. Other such examples abound in
his writings.

On the other hand, one experiment alone may not carry much weight. Before
an experiment may be accepted as constituting the final test of a theory, it too
must be scrutinized for possible flaws in design and execution. A case in point
involved, indeed, the first experimental test of the special theory of relativity. The
one prediction of the theory that was possible to test around 1905 was an increase
in the mass of matter moving near the speed of light. At the time experiments on
“beta rays,” which were identified as very fast electrons, were being performed in
Germany by Walter Kaufmann; in 1906 he published the results of several years
of experiments, and they showed that the measured mass of the fast electrons did
increase, although not by the amount predicted by Einstein. Kaufmann inter-
preted his experiments as thus disproving Einstein’s theory.

About this time Einstein was writing the review article on relativity, mentioned
above. It was commissioned by the experimentalist and Nobel Prize winner
Johannes Stark for a journal he edited. (Stark would later become a major nemesis,
being a vitriolic anti-Semitic Nazi, accusing Einstein of corrupting pure-Aryan
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physics with his “Jewish physics.”) In his manuscript for the journal, Einstein
stressed, as he wrote to Stark, the importance of “intuitiveness and simplicity of
the mathematical developments” of the theory, thus putting forth what later
became his familiar emphasis upon the role of aesthetics in evaluating a theory. So
when the article was published in 1907, he commented upon Kaufmann’s experi-
ments this way: “Whether there is an unsuspected systematic error or whether the
foundations of relativity theory do not correspond with the facts one will be able
to decide with certainty only if a great variety [mannigfaltigeres, my italics] of
observational material is at hand.” In short, experiments (a cluster of them) can
overthrow a theory; but one alone is not sufficient. His guess of systematic error
turned out to be correct, but not until 1916, when experiments by others confirmed
Einstein’s theory.

1.2. Stubbornness 9

Seeing and Knowing

Einstein is notorious for seizing on the internal consistency of a theory—or,
in a sense, its beauty—as a decisive criterion for assessing its validity. In a
famous story, Werner Heisenberg reports on a meeting with Einstein in 1926,
shortly after Heisenberg had formulated his theory of quantum physics, in
which he purposely eliminated a physical model of the atom with electrons in
orbit, since they are unobservable entities and hence only hypothetical. In so
doing, he believed he was following the principle set forth by Einstein in his
theory of relativity of only positing observable magnitudes. But Heisenberg
was jolted by Einstein’s reply; Einstein said that it was wrong to avoid unob-
servable magnitudes, since it is “the theory which decides what we can
observe.” From a psycho-perceptual viewpoint Einstein was right: what we
know can influence what we see.

Here is a stark example involving geology from Charles Darwin. In his
autobiography he recalls a trip to Wales with the geologist Adam Sedgwick
during his student years at Cambridge. The year is 1831, about a decade
before Louis Agassiz put forward his theory of the movement of glaciers and
the idea of ice ages. Darwin writes: “This tour was of decided use in teaching
me a little how to make out the geology of a country. . . . On this tour I had a
striking instance how easy it is to overlook phenomena, however conspicu-
ous, before they have been observed by anyone. We spent many hours in
Cwm Idwal, examining all the rocks with extreme care, as Sedgwick was
anxious to find fossils in them; but neither of us saw a trace of the wonderful
glacial phenomena all around us; we did not notice the plainly scored rocks,
the perched boulders, the lateral and terminal moraines. Yet these phenomena
are so conspicuous [in retrospect] that . . . a house burnt down by fire did not
tell its story more plainly than did this valley.” Darwin put this succinctly
once in a letter saying that “without the making of theories I am convinced
there would be no observations.”



1.3. Einstein’s Experiment

There is another story of Einstein stubbornly ignoring empirical data that was con-
trary to his theory. This one is a little more complex and perhaps more interesting
than the others, since here Einstein himself was involved in performing the exper-
iment. The circumstances around this experiment, known as the Einstein–de Haas
effect, took place in Berlin, early in 1915. It was a significant period in his life, for
several reasons. He had moved to a prestigious position in Berlin in the spring of
1914, returning to the country he had departed, supposedly forever, at the age of
15. He moved with his wife and two sons, only to have his wife soon return to
Zurich with their sons as she commenced divorce proceedings. In August, World
War I began, with Einstein, although living in Germany, essentially rooting for the
other side. Most important to his scientific life, in 1915 he was (as we now know)
in the final stages of his calculations of the general theory of relativity, which he
completed near the end of the year. Thus it is rather surprising finding him
involved in, of all things, performing an experiment on electromagnetism. Maybe
it was a distraction from the tedium of calculating seemingly endless tensor
calculus equations.

There also was a personal factor. Einstein was a close friend of the Dutch physi-
cist H.A. Lorentz, whose son-in-law, W.J. de Haas, had a temporary appointment
(1913–1915) at a laboratory in Berlin; apparently, as requested by Lorentz, the joint
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Speaking of missing something in front of one’s eyes, here’s another exam-
ple also involving Darwin. His and Alfred Russel Wallace’s theories of evolu-
tion were presented at the meeting of the Linnean Society on July 1, 1858.
At the end of the year the president’s report contains this sentence: “The 
year . . .has not, indeed, been marked by any of those striking discoveries
which at once revolutionize, so to speak, the department of science on which
they bear.”

A final example, this one from astronomy. The realization of the role of
knowledge in perception, particularly as mediated by a telescope, was put by
way of an analogy with music by William Herschel. He writes: “Seeing is in
some respects an art which must be learnt. To make a person see with such a
power [through my telescope] is nearly the same as if I were asked to make
him play one of Handel’s fugues upon the organ. Many a night I have been
practicing to see, and it would be strange if one did not acquire a certain dex-
terity by such constant practice.” The mention of Handel is not surprising,
since Herschel, like George Frideric Handel, was initially also a German
musician working in England; Handel made his mark early in the 18th cen-
tury, and Herschel arrived in midcentury, but with his discovery of the planet
Uranus he received a regular salary from the king and was able to devote his
entire time to his hobby, astronomy.



experiment was undertaken partly as a sort of make-work project. De Haas had
worked on magnetism in Leiden and, as will be seen, the experiment had relevance
to atomic matters of interest to Einstein. And so he took de Haas under his wing,
with the result being the Einstein–de Haas effect. (This has nothing to do with the
Haas effect in physiology, which is about how we hear the spacing of sounds.)

The essence of the effect can be easily understood by a simple phenomenon.
Consider a garden hose wound up on a reel and connected to a water source.
When turning on the tap, a sort of “kick” (really a torque) is produced as the water
winds its way through the hose; as a result, the hose rotates on the reel in the
opposite direction of the flowing water. It is a case of Newton’s action/reaction
law. Einstein proposed that the same thing should occur when an electric current
flows through a coil of wire. He devised this experiment to test it: An iron rod is
suspended on a thin wire, with the rod hanging vertically through an electric coil;
when an electric current flows through the coil, the induced magnetism in the iron
should make the suspended rod rotate—like the water in the hose reel. Einstein
predicted a value for the rotation from the laws of mechanics and electromagnet-
ism. The prediction was g � 1, called the gyromagnetic ratio.

For the interested reader, here is a simple version of the calculation. Consider an
electron of charge e and mass m, rotating in circle of radius r with velocity v and
period T. The “current” is, by definition, e/T. Since v � 2�r/T, then the current is
ev/2�r. The magnetic moment (M) is the current times the area orbit; namely,
ev/2�r � �r2 � evr/2. The angular momentum (A) is mvr. By definition, the
gyromagnetic ratio (g) is the ratio (M/A); that is, e/2m, which is set to unity.
Therefore, the prediction was g � 1 for an orbiting electron.

The French scientist André-Marie Ampère, who made several important
contributions to electromagnetic theory, had proposed a similar effect in the early
19th century, since he conceived of magnetism as due to the circular motion of
electricity. Indeed, several failed attempts at measuring the effect were made
throughout the 19th century.

Although reasonably simple in principle, in execution the experiment was quite
thorny. Einstein and de Haas began working on it late in 1914, for we find
Einstein writing to his friend Paul Ehrenfest in early December, “I am just in the
process of starting an interesting experimental investigation with de Haas.”
Einstein wrote to his friend Besso in February: “The experiment will be coming
to an end soon. With it the existence of zero point energy has also been proven in
a single instance. A wonderful experiment; what a pity that you can’t see it. And
how treacherous (heimtükkisch) nature is, when you want to deal with it experi-
mentally! Experimenting is becoming a passion for me even in my old age.”
(“Old age”? Einstein was not quite 36!) Zero-point energy was an idea of
Max Planck’s that Einstein was particularly interested in. Based on quantum
theory, Planck proposed that an atom at absolute zero still possessed energy.
Einstein believed that an orbiting electron was a model for this zero point energy.
Moreover, this had relevance to a key issue in Niels Bohr’s atomic model of 1913,

1.3. Einstein’s Experiment 11



namely that an electron moves in a fixed orbit around the nucleus, even though
classical physics predicts that an orbiting (and hence accelerating) electron
should radiate energy and in time spiral into the nucleus. These were fundamental
problems at the time, so perhaps the experiment was more than a diversion from
tedious tensor calculus calculations.

Einstein and de Haas finished the experiment early in 1915, before de Haas left
Berlin in April. They performed two sets of experiments, obtaining g � 1.45 and
g � 1.02; since the latter was close to that predicted by theory, the first they dis-
carded. The second value was published in 1915. Bohr was very pleased; he saw
the result as “direct support” for his model.

Subsequent experiments by others over the next few years, however, resulted in
values for g around 2. Einstein insisted g � 1, as predicted by theory. But he was
wrong. The correct value for g is, in fact, around 2, and the reason was not known
until the early 1920s, with the discovery of what became known as electron
“spin.” It is the angular momentum of the electrons themselves, not their orbital
motion, that is the cause of the gyromagnetic ratio, and this spin theory deduces a
value for g around 2 (that is, M/A � e/m). Ironically then, if Einstein and de Haas
had not thrown away their first experimental value, and perhaps performed fur-
ther experiments, it is possible they may have reconsidered their theory and even
predicted something like electron spin. But Einstein’s stubbornness prevailed.

12 1. Tenacity and Stubbornness

Einstein’s Curious Sentence

Einstein’s thought experiment about riding a beam of light is known from
only one source, his autobiography, drafted in 1946. Putting pen to paper in
his late 60s, he recalled this event from about the age of 16. The passage has
become famous, and efforts to interpret it abound, but one point has been
somewhat overlooked—the peculiarity of the last sentence. Let me begin by
quoting the entire passage, minus that sentence.

If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should
observe such a beam of light as an electromagnetic field at rest though spatially oscil-
lating. There seems to be no such thing, however, neither on the basis of experience
nor according to Maxwell’s equations. From the very beginning it appeared to me
intuitively clear that, judged from the standpoint of such an observer, everything
would have to happen according to the same laws as for an observer who, relative to
the earth, was at rest.

So far, so good. We see Einstein setting forth a contradiction between riding a
beam of light at (obviously) the known speed of light and the principle of rel-
ativity, the latter implying that one’s absolute motion cannot be experimen-
tally measured. Einstein will resolve this paradox about 10 years later in his
first paper on what became his special theory of relativity (1905) by postulat-
ing both the principle of relativity (for inertial systems) and the constant
speed of light (in a vacuum, and independent of the motion of the source).
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These two postulates ultimately formed the essential starting points for all of
relativity, and hence their importance loomed large. Now, what does Einstein
say in conclusion to the above argument? Here it is:

For how should the first observer know, or be able to determine, that he is in a state of
fast uniform motion?

What? The observer is not supposed to know or determine his absolute
motion, since that would contradict the principle of relativity. Whether at rest
or moving in a straight line at constant speed, the observer should experience
the same phenomenon. Moreover, why is Einstein ending this argument with
a question? Rather, Einstein ought to be saying something like this: “For oth-
erwise the observer will determine his absolute motion and this contradicts
the principle of relativity.” How could Einstein be so confused about such a
historically and conceptually important linchpin of his theory?

When I noticed this conundrum, the obvious avenue I first explored was
the translation of the passage from the original. Here is the German:

Denn wie sollte der erste Beobachter wissen bezw. konstatieren können, dass er sich
im Zustand rascher gleichförminger Bewegung befindet?

The translation seems proper.
Being satisfied that the translation was accurate, the thought occurred to

me that a mistake was made in the transcription from Einstein’s original
handwritten manuscript. With the help of Gerald Holton of Harvard Univer-
sity I obtained from the ongoing Einstein Papers project a copy of the requi-
site page in Einstein’s hand. But it proved disappointing. Except for a minor
correction by Einstein—apparently when writing the next to last word, he
started writing Beobachter (observer) again but then wrote over what he had
written and changed it to Bewegung (motion). So the transcript was correct.

I am thus left with a puzzle: how could Einstein misconstrue this important
argument that was fundamental to the genesis of his theory of relativity?
Holton agreed and pointed me toward an essay by the late Banesh Hoffmann,
who likewise had noticed Einstein’s curious sentence; Hoffmann called it
“garbled.”

I find it difficult to believe that Einstein would make such a crucial error in
writing on this matter, but there seems to be no other explanation. I guess
some questions just do not have reasonable answers.
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2
Convergence or Coincidence: 
Ancient Measurements of the Sun 
and Moon—How Far?

15

If two experiments measure the same phenomena from two different viewpoints
and both get the same result (within, of course, experimental error) it stands to
reason they are converging toward the correct answer. Why would anyone think
otherwise? This chapter discusses the modern convergence of several measure-
ments of the speed of light and compares this case with the ancient converging
measurements of the relative distances of the moon and sun from Earth. The
former was a real convergence. The latter was a coincidence. Could scientists at
either time have known which is which?

2.1. The Speed of Light

Enter a dark room. Light a candle and the room seems instantaneously bright,
dispelling the darkness. But is it instantaneous? One thing we can conclude from
observation: the light is not evenly distributed over the room because it is
brighter or more concentrated closer to the candle. This means that the light’s
intensity decreases with recession (the distance, D) from the source; that there is
a mathematical law for this was first worked out by the German mathematician-
astronomer Johannes Kepler in the 17th century. He showed that the intensity (I)
of light obeys an inverse-square law (that is, I ˜ 1/D2). This seemed to imply that
light is not instantaneous—for, if it were, the room would be uniformly lit. But
can it be proven that the speed of light is finite?

The question about the possible instantaneous speed of light was debated
over the ages, at least since the ancient Greeks. Little changed on this matter in
the Middle Ages and Renaissance. Kepler’s Italian contemporary, Galileo, tried
to test it. Placing himself and an assistant on two distant hilltops at night with
lanterns, he thought that by opening one’s lantern when seeing the other’s flash
would result in a visible delay if the speed were finite. But the experiment was
inconclusive: there was no time lag, which meant either that light moves instan-
taneously or the speed is too fast to measure by this experiment. In his last
book, Two New Sciences (1638), Galileo wrote: “If not instantaneous, light is
very swift.”



Galileo, nevertheless, with his discovery of the moons of Jupiter in January
1610, bequeathed another method of measuring the speed of light. A study of the
motions of the moons revealed that when Jupiter’s moons passed behind the planet,
the measured intervals of time were different at different times of the year, which
corresponded to Jupiter being at different distances from Earth. Over three
decades after Galileo died, the Danish astronomer Olaf Rømer concluded that
this difference seemed to point to a time lag in the light from the moons reaching
Earth—the sort of thing Galileo was looking for if the speed is finite. The Dutch
scientist Christiaan Huygens used Rømer’s data to calculate a value for the speed
of light. The details of the experiment are not of concern here, only the result:
the value was 124,000 miles/sec, which is extremely fast. This was the first
empirical evidence that the speed of light is finite. The only question was the
accuracy of this value.

In the early 18th century the Englishman James Bradley measured the speed of
light from a different point of view, based on his discovery of what he called the
aberration of light. He realized that in looking at stars through a telescope he had
to adjust the angle of the sighting to take into account the motion of Earth; this
was analogous to tilting an umbrella when walking through rain in order to keep
dry. Again the details of the experiment are not of interest, only the value for the
speed of light, which was186,233 miles/sec. Since both his and Huygens’s values
were within the same broad range, these two measurements were assumed to be
“correct” in that the speed of light was indeed finite and that the task at hand was
to measure it to closer and closer accuracy. This conviction was based on the fact
that both numbers were arrived at by entirely different means, so it was reason-
able to assume that these scientists were in fact measuring the same thing in dif-
ferent ways—that is, it was case of the convergence of data. Both measurements
had been astronomical, and it is not surprising that the first measurements would
be so, given the extreme speed of light.

In the next century the certainty in convergence was reinforced by some
“tabletop” experiments. In mid–19th century the Frenchman H.L. Fizeau per-
formed a laboratory experiment on light using a rotating cogwheel and got
194,000 miles/sec. Later the American Albert Michelson used a revolving mirror
and, performing the experiment on several occasions, obtained an average value
of 186,281 miles/sec.

Today the value is 186,290 miles/sec (299,790 km/sec). There is no doubt that
in these cases of measuring the speed of light by different means, there was a con-
vergence around and toward the correct value. As well, the speed of light is the
fastest propagation of anything that we know of. In Galileo’s experiment, the hills
were only about a mile apart: no wonder his experiment was inconclusive!

This story of the measurement of the speed of light is by way of prefacing the
account of a similar convergence of measurement made in ancient astronomy.
This was a measurement of the relative distances of the sun and moon from Earth.
To tell this tale I need to sketch some background information about everyday
naked-eye astronomy and the ancient model of the universe.
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2.2. Ancient Astronomy: Ptolemy

If science is, as purported to be, firmly rooted in careful observation, a systematic
accumulation of empirical data, and the ability to predict further observations, then
the ancient astronomers got it right. We now know that even in prehistoric times
we humans carefully studied the motions of the heavens, especially the sun and
moon, and occasionally a planet such as Venus (see section 4.1). Archaeological
sites throughout the world attest to this seemingly fundamental human quest:
Stonehenge in England, Chichén Itzá and other Mayan temples in the Yucatán
peninsula, Medicine Wheels of the Aboriginal people of North America, and
many more—their alignments to celestial events mark significant times of the year,
such as solstices and equinoxes. In the Western tradition, beginning with the
Babylonians and proceeding through the Greeks and Romans, we find a systematic
study of the motions of the heavens, with further emphasis on the planets Venus,
Mars, Jupiter, Saturn, and Mercury, which are visible to the naked eye.

A careful and systemic study of these motions, in all their details, permitted
ancient astronomers to predict forthcoming celestial events. As well, the same
naked eye observations were coupled to a commonsense view of the cosmos. If
we accept the aphorism, “If something looks like a duck, walks like a duck, and
quacks like a duck, then it’s obviously a duck,” then the cosmos is as the ancients
pictured it. Their perception was their conception: the stars are fixed to a celestial
sphere that rotates daily east to west around the central Earth. (Note how we use a
hemisphere in a planetarium to reproduce an illusion of the sky; lights projected
onto the interior of the dome look like stars because the night sky looks like that.)
The moon, sun, and all the planets are carried by this motion and therefore rotate
around Earth, daily rising in the east and setting in the west. But they also have a
slower counter motion—(west to east) their intrinsic motion—and hence these
bodies appear to back up, west to east, “through” the stars on regular cycles called
sidereal periods (from the Latin, sidereus, pertaining to the stars). The fastest is
the moon’s sidereal period of 27 days. The sun’s sidereal period (let’s call it the
solar year) is 365 days (in late antiquity this was fine-tuned to 3651/4). The moon
also goes through a cycle of phases every 291/2 days (crescent, full, etc.), the only
body visibly doing so. The latter two cycles have been and are conveniently used
by many cultures to divide the year into what we call a calendar.

We know, of course, that the changing phases of the moon are due to the rela-
tive positions of the moon and the sun, since the moon shines mainly by light
reflected from the sun. But this was not obvious in antiquity; it is an inference
drawn from observation. Just as the sun produces its own light (although this was
not ubiquitously believed, either), so the moon may likewise generate its own
light. It was alternately thought that the moon was two-toned (half black and half
white), the phases thus being caused by a monthly rotation. (Note that this erro-
neous assumption entails a correct one; namely, that the moon is a sphere, which
likewise is not obvious by mere observation.) Eventually a careful study of the
moon’s phases and the relative positions of it with respect to the sun led to
the general agreement in very late antiquity that indeed the phases are caused by
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the sun’s light reflected from the moon. This is the first important inference
essential to the ancient measurement to be discussed here.

The planets also have sidereal periods and these were recognized as clues to
the order of the cosmos. The periods of Venus and Mercury are the same as the
sun’s, namely one solar year. This is because these two planets always remain
near the sun in the sky as either so-called morning stars or evening stars; they
either rise before or with the sun in the morning or set with or after the sun in the
evening. They are therefore never visible overhead at midnight, as are the other
three planets. The sidereal periods of Mars, Jupiter, and Saturn form a hierarchy
of 687 days, 12 years, and 30 years, respectively. These numbers came in handy
for the ancient Greeks when they tried to frame a physical picture of the cosmos,
something apparently the Babylonians never did. The Greeks knew that the
moon was closer than the sun, since the moon passes in front of the sun during a
solar eclipse. Thus they made the inference that, since the moon’s sidereal period
is less than the sun’s, then all heavenly bodies are arranged according to the hier-
archy of their periods. This meant Saturn is the farthest planet, followed closer
by Jupiter and then Mars.

But then a problem arises because Venus, Mercury, and the sun have the identi-
cal sidereal periods of one solar year. How can we infer a hierarchy if the numbers
are the same? In early Greek astronomical texts there is no consensus on their
arrangement; one finds all possible permutations of these three bodies. Plato, it
seems, placed Venus and Mercury, in that order, beyond the sun and below Mars,
as did Archimedes. The Alexandrian astronomer Ptolemy in the 2nd century AD set
what became the conventional arrangement carried down through the Middle Ages
and Renaissance. In his Almagest, a work that became the reference of
astronomers for over a millennium, he put forth this arrangement, beginning with
the central Earth: the moon, Mercury, Venus, the sun, Mars, Jupiter, and Saturn.
His rationale for the sun’s position: “By putting the sun in the middle [of the
grouping, between Venus and Mars], it is more in accordance with the nature [of
the bodies] in thus separating those which reach all possible [angular] distances
from the sun [namely, Mars, Jupiter, and Saturn] and those which do not do so, but
always move in its vicinity [namely, Mercury and Venus].” The sun thus separated
two classes of planets according to their behavior with respect to the sun. Ptolemy
is surely stretching for an answer, but what was he to do when the order was not
directly given by the data? Yet, there was a further problem: what were the relative
positions of the two closest planets? Ptolemy placed Mercury closer to Earth than
Venus, based on a fact and an assumption. The motion of Mercury in all its details
is the most complex of the visible planets. Also, the moon, because of the various
wobbles it makes, displays the most complex motion of all these bodies. So,
because of the complexity of their motions, Ptolemy chose to keep the moon
and Mercury close together, as if that were the way the Creator arranged such
things, from the simplest motions near the stars to the more complex near the
central Earth.

So Mercury and Venus, in that order, were between the moon and sun, with
Mars, Jupiter, and Saturn extending to the sphere of the fixed stars. And that was
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as far as he explored such physical issues in the Almagest, which is primarily a
treatise for predicting celestial events—not understanding them. Of course these
numbers and the logic alone determined only the hierarchical arrangement of the
bodies, not their distances.

2.3. Aristarchus’s Measurement and Ptolemy’s Model

Half a millennium before the Almagest, the search for celestial distances made a
leap forward in the work of Aristarchus. Living in the 3rd century BC, he was
sandwiched between two generations: after Euclid’s synthesis of mathematics in
the longest-running textbook of all time, The Elements [of Geometry], and before
the brilliant mathematical-physicist Archimedes. In Aristarchus’s only surviving
work, On the Sizes and Distances of the Sun and Moon, he cleverly devised a way
of measuring the relative distances among Earth, the moon, and the sun, based on
a simple geometrical rule and knowledge that the moon’s phases are due to light
being reflected from the sun. He realized that when the moon is half-lit (say, in its
first quarter after the new moon, called quadrature) imaginary lines from Earth
to the moon and then from the moon to the sun form a right angle (Fig. 2.1).
This meant that by measuring angle �, the ratio EM/ES could be obtained from
similar triangles, that is the relative distances of those bodies. Setting EM to 1 unit
(unity) he was therefore able to measure how much farther the sun is from Earth
than the moon.

In principle this is a straightforward measurement; in actuality myriad problems
arise. Since the sun and moon are both moving through their sidereal periods, the
measurement must not only be made on the day of the first quarter, but within
about a minute or so of quadrature; otherwise the result will be grossly in error.
Another source of error is clear from a consideration of the triangle. Figure 2.1 is

FIGURE 2.1. Aristarchus: relative distances of the sun and moon. When the angle EMS is a
right angle (during the first or third quarters of the moon), the triangle is Pythagorean, and
by measuring the visual angle � the ratio EM/ES follows. For �, Aristarchus got 87º, and
setting EM = 1, he deduced ES = 19.  
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not drawn to scale; the actual triangle is very long and narrow because � is close to
90°. This means that for even minor changes in the measurement of �, just frac-
tions of a degree, there are major differences between EM and ES. Recognizing
this, as well as perhaps the lack of precision of Aristarchus’s measuring instru-
ment, we should not be surprised to find that the relative numbers he obtained were
far from correct. He probably obtained a range of numbers, and it seems that he
erred toward what seemed physically reasonable. The measurement he published
was � � 87°. Trigonometry was not yet invented, so he could not directly convert
this to an exact number; he said the sun was 18 to 20 times farther than the moon
(with EM � 1). This was often rounded off to 19. We assume this “reasonable”
value was near the small end of the range of numbers, since he needed room for
three more planets beyond the sun to fit into this geocentric cosmos. Aristarchus’s
value was generally accepted in late antiquity and after.

Another reason Aristarchus probably chose the smaller value follows from
the next measurement he made. Recall the title of his work, On the Sizes and
Distances of the Sun and Moon. The sizes are relative sizes (i.e., visual diame-
ters) of the moon and sun. A dime held at arm’s length covers the full moon.
(Try it, if you don’t believe me.) What does this tell us about the actual size of
the moon? Absolutely nothing. In astronomy, as in terrestrial surveying, size
and distance are coupled together. Both the full moon and the sun occlude the
same angle (about 1/2 degree of arc) of our visual field, but their actual sizes are
a function of how far away they are. That they cover (or eclipse) the same visual
disk in the sky is why solar eclipses are so spectacular on Earth, since the moon
just covers the sun. (There are often slight variations of this, since planetary
orbits are not perfect circles.)

This amazing coincidence, from a modern viewpoint, is worth pondering
briefly. There are four variables that make this so: the relative sizes of the sun and
moon and their distances from Earth. Change any one of these and the moon’s disk
is visually either much larger or much smaller than the sun. For us, the accidental
nature of this is especially remarkable when contemplating the evolution of our
sun-centered solar system. But in earlier times, when it was believed that the uni-
verse came into existence all at once, such perfect fits were often seen as part of the
Creator’s purposeful design. This idea lingered as late as the 17th century in the
mind of Johannes Kepler, who believed this arrangement was made by God so that
humans may enjoy the breathtaking spectacle of solar eclipses (see section 6.2).

Figure 2.2 shows how Aristarchus used this fact to measure the relative sizes
of the sun and moon. It follows from the geometry of similar triangles that their
relative sizes are the same as their relative distances (r/d � R/D). Thus the sun
must be 19 times larger than the moon, which is quite a significant difference. If
he had chosen a larger number for the relative distance, say 100, then the sun
would have to be that much larger than the moon. We thus conclude that
Aristarchus made a realistic deduction from the data, picking what seemed
physically plausible for these astronomical magnitudes, namely the smaller
sizes and corresponding distances.
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So how close were the measurements? Nowhere near. The sun is actually about
400 times further than the moon. The exact measurement is � � 89° 51 minutes,
only 9 arc-minutes away from being a right angle. (As noted, a small change in
angle � can make a large difference in the relative distances, since the triangle is
extremely elongated.) It also means that the sun is about 400 times larger than the
moon. But such an idea was almost unthinkable in antiquity. Even today, in trying
to fathom ourselves as ancient astronomers and thinking in terms of a common-
sense view of the possible sizes of things moving in the celestial realm, around
19 seems close to a maximum value for these measurements (at least, I think it
seems to be so).

A curious thing happened when Aristarchus’s measurements later got into the
hands of Ptolemy. The astronomy of the Almagest is confined to relating observa-
tional data to a geometrical system of circles upon circles from which future
observations can be predicted. It’s what may be called a mathematical model of
the cosmos. (Some of the details are in section 3.1). As a first approximation
(considering the major motions of the planets only) this model fits the data and
affords valid predictions from the model—or, as the ancients said, it “saves the
appearances.”

In a later work, a small treatise titled the Planetary Hypotheses, Ptolemy
went beyond merely “saving appearances,” to speculating on the physical
nature of the heavens. Here he put forward what may be called a physical
model—although, as the title indicates, hypothetically. Conceiving of the
circles of the Almagest as actual physical entitles, such as wheels or spheres, he
constructed a sort of scale model of the cosmos from observational data (I will

FIGURE 2.2. Aristarchus: relative sizes of the sun and moon. Since both the sun and moon
occlude the same visual angle (1/2°) in the sky (namely, a dime held at arms’ length), this
diagram shows that their corresponding sizes are the same ratio as their relative distances.
That is, d/r = D/R, and therefore d/D = r/R. From Figure 2.1, it follows that the sun is
19 times larger than the moon. 
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call it the nesting-spheres model). Here’s how it works. As noted, the first two
planets (Mercury and Venus) have the same sidereal period as the sun, yet they
move in the morning and evening sky away from and toward the sun in a regu-
lar cycle. Venus’s average elongation from the sun is about 46°. (He knew
Venus ranged from a bit less than 45° to a bit more than 47°. Ptolemy’s average
was the same as today’s value rounded to the nearest whole number.) The aver-
age of Mercury’s elongation is about one half of that; Ptolemy used 21° (today
it’s about 23°). One more assumption yields the scale model: the celestial
spheres are tightly nested together; there are no gaps, so that where one ends the
next one begins. Now, recall the hierarchy from Earth: moon, Mercury, Venus,
sun. Therefore, using the rounded-off numbers, the model looks like Figure 2.3.

This scale model is obtained by first drawing the circle for Venus and then
nesting-in the axes h-k at about 92° (46° � 2). Bisecting angle h-k twice gives the
range of Mercury, p-q, so its circle can be nested into the space touching lines
p and q and the epicycle of Venus. This, finally, specifies the circle for the moon,
just touching Mercury’s epicycle. Hence the circles have been drawn to scale
based on the supposition of there being perfectly nesting spheres. The data are
correct, the geometry is correct, and, given the nesting-spheres assumption, it por-
trays the relative distances of the bodies.

FIGURE 2.3. Ptolemy’s scale model: Mercury and Venus. The epicycle of Venus is drawn to
scale, from h to k (about 90º). By assuming the nesting-spheres model, the epicycle of
Mercury is forced into the space between p and q (since its extent of distance from the sun
is about half of Venus’s), and the relative size of the moon’s circle around Earth then fol-
lows. Using a similar construction, Ptolemy deduced that the sun is 19 times further from
Earth than the moon. 
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Setting EM for the radius of the Moon’s orbit, and ES for the Earth to sun
distance, one can measure the ratio EM/ES from the diagram. The larger the
drawing the more accurate it is, but using a standard 81/2� � 11� sheet of paper,
with the diameter of Venus’s epicycle of about 17 cm, I obtained EM � 1.4 cm
and ES � 20.6 cm. Setting EM to 1 gives ES � 14.7 or about 15. Today we
might call this a ballpark figure. My reconstruction of Ptolemy’s measurement
of the ratio EM/ES is a simplified version of Ptolemy’s more complex method,
since it appears that he never made an actual scale drawing. Using instead a
computational method, he obtained a range of values from 18 to 181/2.

This brings us to the crux of this story. All these values, especially Ptolemy’s,
are in the same range of that derived earlier by Aristarchus using an entirely dif-
ferent method. Both yield the same approximate number 19! For the late antique
world this was a clear-cut case of the “convergence of data” and is thus further
evidence for the correctness of both Aristarchus’s measurement and Ptolemy’s
model. After all, if we measure the same thing two different ways and get about
the same number, it’s reasonable to assume that the two measurements reinforce
each other because they are both correct. Just as scientists measuring the speed of
light by different methods were sure that they were converging toward the more
precise value, so ancient astronomers were convinced that the 1/19 ratio was near
the real value.

What is reasonable now was reasonable then. Whether in ancient times or
today, the logic is the same. Yet for us this ancient result is astonishing, since we
know that it is nowhere near the real ratio of about 1/400. It was a mere historical
accident—a coincidental concurrence—that these two measurements converged.

Beyond the moral of this story—that matching data do not necessarily converge
toward reality—there is an irony too. It is not surprising that throughout the
Middle Ages and Renaissance—namely, for about a millennium and a half after
Ptolemy—the convergence of these measurements was a potent argument not only
for the 1/19 ratio but also that the geocentric model of the universe was indeed
correct—namely, the one made by God. Nevertheless, the name Aristarchus also
conjures up another astronomical model of considerable import: the heliocentric
(or sun-centered) system. As far as we know he was the first to put forward the
notion that Earth moves around the sun. (He was not the first to conceive of a
moving Earth, however; Pythagoras did that about 250 years earlier, but his Earth,
along with the sun, moved around a fire centered on the sphere of the fixed stars.)
Unfortunately, we do not have Aristarchus’s words on this, since the treatise in
which it appeared is lost. We only know about it from what Archimedes later
reports in his work, The Sand-Reckoner. There he says that Aristarchus put
forward the hypothesis that Earth moves in a circular orbit about the sun and that
the sphere of the fixed stars is extremely large. The reason for the later assertion is
this: if Earth really moves, then it follows that every half-year there should be a
visible shift in the positions of the stars (called stellar parallax).

In Figure 2.4 notice that this angular shift should be 2�. But no such parallax is
observed; therefore, in order still to hold to a moving Earth, Earth’s orbit must be
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extremely small compared to the distance of the stars, so small that the parallax is
not perceptible. Said otherwise, in Figure 2.4, angle � is so small as to be unde-
tectable. Needless to say, and on the contrary, over the centuries the lack of stellar
parallax was almost always interpreted as proof that Earth did not move, rather than
that the stars were an enormous distance from Earth and the sun (see section 5.1).

In the end Aristarchus’s name was persistently associated with the idea, how-
ever wrong it might have been thought to be, of a heliocentric cosmos, while at
the same time his measurement of the Earth–moon–sun distance reinforced the
geocentric system. Logically the irony only holds if the measurement were neces-
sarily coupled with heliocentrism, but it is not. Instead, the measurement alone is
based only on the relative positions of the three bodies and hence is independent
of the system used. It works for either the geocentric or the heliocentric model, or
any other compatible one.
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FIGURE 2.4. Stellar parallax. A star seen from a moving Earth should visually shift in the sky
by twice angle � every half-year.   
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A prevalent textbook view of scientific change often appeals to the role of anomalies:
contradictions that sometimes arise between new empirical data and the conven-
tional model at the time. One would think, therefore, that when Copernicus put
forward the radical idea that Earth really moves around the sun, in contradiction
to our experience of a fixed Earth, he would have been forced to do so by some
anomaly in the astronomical data. In fact, however, there was no pressing anomaly;
there was nothing new or troubling under the sun or in the night sky in the early 16th
century. Furthermore, and contrary to what some books say (including, as we will
see, Copernicus himself!), the geocentric model was working well, perhaps as good
as it ever did, having been fine-tuned by Renaissance astronomers. So how could
Copernicus justify such an extreme idea, rejecting thousands of years of common
sense? This chapter provides an answer.

3.1. Planetary Motion: Geocentrism

The idea of a heliocentric (sun-centered) universe was first put forward in the third
century BC by Aristarchus (see section 2.3). Although rejected at the time, and for
good reasons, the idea was never forgotten. From late antiquity through the
Renaissance, his name was associated with this curious but obviously wrong
model of the heavens that entails a moving Earth. When Copernicus in the 16th
century seriously put forward the heliocentric model, he was, in one sense, merely
proposing a revival (renaissance) of Aristarchus’s model. Why Copernicus did so
remains an unanswered question today, despite decades of work on his life as well
as numerous attempts to reconstruct his thought processes. (There are various
hypothetical reconstructions, but still no consensus among historians of science.)
But we do have Copernicus’s justification for believing the model to be true.
Essentially it was based on the motions of the planets, and his solution to what
probably was seen as a puzzle when first observed by ancient astronomers.

The geocentric viewpoint, today and in prehistoric times, entails the follow-
ing behavior for the planets. As do the sun and moon, the planets slowly move
through the background of the stars from west to east (the cycle being their



sidereal periods), at the same time as they daily rise and set from east to west
(see section 2.2). For the sun this motion generates the solar year. But the plan-
ets do more: as they move through the stars from west to east they also periodi-
cally reverse this motion (called retrograde motion by the ancients), producing
periodic loops through the sky (Fig. 3.1). This is why the Greeks called them
“planets,” that is, wanderers. The repeatable cycle of time between loops is
called a synodic period. In addition, during this retrograde motion, the planets
become brighter, indicating that they are closer to Earth. (These two cycles,
sidereal and synodic, comprise the major motions of the planets on the geocen-
tric system; we are ignoring various other minor shifts.)

The sidereal periods through the stars and the accompanying synodic periods
are unique for each planet (see the first two columns in Table 3.1). However, they
are not entirely arbitrary, for there is a singular and nonarbitrary parameter among
the planets linking these motions. To see this we need to construct the mathemat-
ical model for the planets used in the second century AD by Ptolemy in his
Almagest. Ptolemy used an epicyclical system—attributed to Apollonius in the
third century BC—where two circles suffice to generate the major observed
motions of a planet.

In Figure 3.2 the large circle is called the deferent, and the small circle the
epicycle; the planet is attached to the epicycle and hence the combination of the
two continuously rotating motions produces the required loops. Note how this
model at once accounts for retrograde motion and the corresponding change
of brightness. To view an animation of this and other models in motion see the
Web site of Dennis Duke cited in the notes at the end of the chapter.

Considering these major motions, parameters in the model are quantitatively
correlated with two sets of observational data of the planets: the times from west
to east through the stars (the sidereal periods, Tsid) and the times between retro-
grade motions (the synodic periods, Tsyn). Transforming, or correlating, these
motions to the model, it is obvious that the observed sidereal period is simply the
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FIGURE 3.1. Retrograde motion. Planets, as they cycle from west to east through the back-
drop of the stars, periodically reverse this motion, making a loop in the sky. 



period of rotation of the model’s deferent. Correlating the retrograde (synodic)
period to the model may seem trivial, too; merely correlate the synodic period
with the period of rotation of the epicycle—but that is, in fact, wrong. To see why,
look closely at Figure 3.3, and the planet’s motion from P to Q to R. Notice that
the time for epicycle to make one rotation around its own center (from P to Q) is
less than the time required to complete a retrograde loop (P to R). The time from
P to Q (not R) is the epicycle’s period because the lines from the center of the
epicycle to the planet are parallel. Note also that the way I have drawn this exam-
ple applies primarily to Saturn and Jupiter (as the keen reader may surmise from
Table 3.1). Conveniently, and importantly, there is a simple formula for calculat-
ing an epicycle’s period (Tepi) from the data: Tepi � (Tsyn � Tsid)/(Tsyn � Tsid).
(It is an interesting geometrical problem to derive this formula, which I leave for
the inquisitive readers.) Using it, results in the numbers in the third column in
Table 3.1. Note that the parameter of one solar year appears throughout the table.
This is the nonarbitrary link I mentioned at the start. Why is it there?

Let’s begin with Mercury and Venus, where the reason is quite obvious (see
section 2.3). Since both planets are always only visible in either the morning or
evening, they do not stray far from the sun, and hence their sidereal periods must
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FIGURE 3.2. Epicyclical motion: deferent and epicycle. A model for retrograde motion
involves two circles: a larger deferent and smaller epicycle, with the planet attached to the
latter. Combining these two rotational motions produces the requisite retrograde loop of
the planet (see Fig 3.1) from the point of the view of a central Earth. 



be the same as the sun’s, for even it they drifted only a bit, then in time they even-
tually would be overhead at midnight, which they never are. On the other hand,
when the remaining planets, Mars, Jupiter, and Saturn, are overhead at midnight,
they are in the middle of their retrograde motion: that is, they are closest to Earth
and at their brightest intensity.

Perhaps I should be more precise about that phrase “overhead at midnight.”
There is an important imaginary line of sight called the meridian: starting from
due north on the horizon passing through the zenith (the point directly over-
head) and terminating directly south to the horizon, this line slices the sky in
half. When we face south, celestial objects arc across the sky during the night
from east to west, reaching their highest point when crossing the meridian.
Therefore, when a planet is in “opposition,” that is, the sun is exactly opposite
on the other side of Earth, it is obviously midnight, and if the planet crosses the
meridian at this time, then it is in the middle of its retrograde loop and also
closest to Earth. Using Ptolemy’s model, at opposition a line from the center of
the epicycle to the planet would continue through Earth and meet the sun on the
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FIGURE 3.3. Epicyclical motion: synodic and epicycle periods. As the planet moves from
P to R, it passes through Q. At Q the lines to P and Q from the centers of the epicycles are
parallel, and therefore the epicycle made one complete loop around its own center from
P to Q. This is the period of the epicycle. This diagram shows that the synodic period, from
P to R, differs from, and is in fact greater than, the period of the epicycle. 

TABLE 3.1. Ptolemy’s system.

Planet Tsid Tsyn Tepi

Mercury 1 year 116 days 88 days
Venus 1 year 584 days 225 days
Sun 1 year — —
Mars 687 days 780 days 1 year
Jupiter 12 years 399 days 1 year
Saturn 30 years 378 days 1 year



other side. This means, furthermore, that for all three planets these lines are
always parallel to a line from Earth to the sun (as in Fig 3.4). This corresponds
to the fact that the periods of the epicycles of Mars, Jupiter, and Saturn are all
the same 1 year. This is important, as shall be seen, especially when converting
to the heliocentric model. Nonetheless, and unfortunately, I have seen purport-
edly Ptolemaic models drawn incorrectly in textbooks, that is, without these
lines being drawn parallel.

I should also point out that when facing south and a star or planet reaches the
top of its arc at the meridian, this is another way to find the meridian—that is, due
south. As well, when facing north, the stars arc the other way, reaching their low-
est point at the meridian, and likewise this specifies due north. From these two
directions, due east and west can likewise be reckoned—all without a compass.

The 1-year parameter or link among the planets was recognized over the ages, as
far as we know, as merely that—a common parameter connecting the planets,
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FIGURE 3.4. Ptolemy’s scale model. This is a scaled diagram of the nesting-spheres model.
Note that the lines from the centers of the epicycles to the planets Mars, Jupiter, and Saturn
are all parallel to the line from Earth to the sun. This accounts for the correlation of these
planetary motions with that of the sun; namely, at opposition they cross the meridian at
midnight. In contrast, the centers of the epicycles of Mercury and Venus are on a line with
the sun (see Fig 2.3) since they always are only visible in the morning or evening, never
straying far from the sun.



such that their motions are not entirely arbitrary. The overall pattern of their
motions was thus more system-like than not. Significantly, we have no evidence
that it was viewed as a puzzle or an anomaly.

3.2. Heliocentrism: The Hierarchy of the Planets

Let us now look at the transformation from Ptolemy’s model to that of
Copernicus, for there is a widespread misconception that is related to the previ-
ously noted erroneous diagram. Converting the geocentric model into the helio-
centric model, the sun, not Earth, becomes fixed at the center of the stellar sphere,
and the planets, now including Earth, all orbit the sun. Therefore, Earth subsumes
the sun’s yearly (geocentric) motion, and the 1-year (geocentric) parameter
among the planets disappears, except for the orbit of Earth. Specifically, the def-
erents of Mercury and Venus become Earth’s year, and their epicycles become
their periods around the sun; correspondingly, the epicycles of Mars, Jupiter, and
Saturn are replaced by Earth’s year, and their deferents become their periods
around the Sun. Table 3.1 is therefore transformed into Table 3.2.

Having transferred the Ptolemaic (geocentric) model to the Copernican (helio-
centric) model, and moreover believing the heliocentric model to be true, the
reason for the 1-year parameter in the geocentric model becomes transparent. It is
Earth’s (yearly) motion that is linking the motions of the planets as we observe
them from a seemingly fixed position. Said another (geometrical) way, the retro-
grade motions of Mars, Jupiter, and Saturn are due to the relative motions of the
planets and a moving Earth (Fig. 3.5). Their apparent backing-up is an illusion, as
Earth, with the faster orbit, passes a planet. (This may be one of the first cases of
what is later important for Galileo and Einstein, namely, the relativity of motion.)
And Mercury and Venus are always observationally near the sun in the geocentric
model because they really do orbit the sun between it and us. What was geocen-
trically a common link among the planets becomes a clue to the structure of the
universe. Is this heliocentric model, therefore, not more system-like? Is this not a
simpler explanation of the planetary motions? In retrospect, was not the 1-year
parameter really an anomaly in the geocentric model? Affirmative answers to
these questions are alone very compelling reasons for the authenticity of the
Copernican model.
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TABLE 3.2. Copernicus’s system.

Planet Period

Mercury 88 days
Venus 225 days
Earth 1 year
Mars 687 days
Jupiter 12 years
Saturn 30 years



This brings me to a frequent misconception, or myth. It is often noted, correctly,
that both Ptolemy’s and Copernicus’s systems are observationally equivalent: this is
obviously true, otherwise each model would not work! But this fact is then some-
times generalized to positing that geocentrism and heliocentrism are equivalent,
that they are the same geometrically or mathematically or even exactly the same; in
a phrase, there is an isomorphism between them. Such assertions are often found
within the context of arguing for the relativity of scientific explanation, as if replac-
ing Ptolemy with Copernicus was a mere change of perspective or viewpoint (or a
paradigm shift, in the trendy vernacular). But this is patently false. Only some types
of Earth-centered deferent-epicycle systems can be transformed into Copernican-
type sun-centered systems. In fact, only geocentric systems that have parallel lines
as shown in Figure 3.4 can be transformed into a sun-centered system. For all oth-
ers it is impossible. (See section 5.2 on the Tychonic system.) Said another way,
Ptolemy’s system may be transformed into a heliocentric one because our system
really is heliocentric! That is why there is the 1-year parameter in Ptolemy’s model.
As noted, in retrospect, this was as clue that heliocentrism should have been taken
seriously. Alas, it took a long time for astronomers to realize this.

Comparing Tables 3.1 and 3.2 also expose other ways Copernicus’s model is sim-
pler than Ptolemy’s. Where Ptolemy required two circles (deferent and epicycle)
for the major motions of the planets, Copernicus used only one for the same motions,
because Earth’s motion, so to speak, accounted for the difference. Also the resulting
single column of Copernicus casts light upon (or solves, if you believe him) an
ancient problem—namely the hierarchy of the planets (see section 2.2). Notice how
there no longer is an option for the planet closet to the center (here the sun); all are
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FIGURE 3.5. Retrograde illusion. Assuming the heliocentric model, retrograde motion is
understood as an illusion caused by the relative motion of Earth and the planet. In this case,
Mars appears to back up through the stars as Earth passes it. 



arranged in a hierarchy from the closest and fastest (with an 88-day orbit) to the
farthest and slowest (a 30-year orbit). This is another compelling (and simplifying)
reason for the acceptance of the heliocentric model.

3.3. Heliocentrism: Planetary Distances

There is more. As a sort of bonus, Copernicus was able to deduce the relative dis-
tances of the planets from the sun, directly. This is important, because it differs
fundamentally from the way in which Ptolemy estimated planetary distances
using the nesting-spheres hypothesis.

Look at the geometry of the Copernican scale model for Venus (Fig. 3.6, drawn
when Venus is at its maximum visual elongation from the sun). Note the right
triangle EVS; since by observation angle � � 46° (see section 2.3), we may
derive the ratio SV/SE. Setting SE to unity, results in the SV � 0.72. The
Earth–sun distance is called the astronomical unit (AU), which is customarily set
to 1. A similar calculation gives the distance of Mercury as 0.36. Thus between the
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FIGURE 3.6. Copernicus’s scale model: Venus. On the heliocentric model the relative scale
of Venus is the same as on the geocentric model (compare Fig. 2.3); however, the sun is
placed at the center of the orbit of Venus, and of course, Earth is moving around the sun.
The planet’s epicycle on the geocentric model is now its orbit around the sun.



sun and Earth, Mercury is about one-third the distance and Venus about three-
fourths the distance. The method for deriving the planetary distances of Mars,
Jupiter, and Saturn is more complex (but a fine exercise in geometry and algebra,
for the inquisitive reader). Doing so result in all the following relative distances:
Mercury (0.36), Venus (0.72), Earth (1), Mars (1.5) Jupiter (5), and Saturn (9). The
hierarchy of these distances parallels the hierarchy of their periods: 88 days,
225 days, 1 year, 687 days, 12 years, and 30 years, respectively. In the first chapter
of De Revolutionibus (1543), Copernicus waxes poetic on the aesthetics of these
orders: “In this arrangement . . .we discover a marvelous symmetry of the uni-
verse, and an established harmonious linkage between the motion of the spheres
[that is, the period of the planet] and their size [that is, the relative distance], such
as can be found in no other way.” He is right (well almost; see section 5.2). There
truly is a remarkable parallel between these two sequences of numbers.

It is important, too, that they are derived directly from the geometrical structure
of the heliocentric model, without introducing any assumptions. This is in con-
trast to the (additional and ad hoc) assumption of nesting spheres in Ptolemy’s
derivation of distances. Finally, the clincher is this: the sequence of distances that
follow from Copernicus’s model were not accessible on Ptolemy’s model,
because there is no right triangle among Earth, the sun, and the planets from
which to deduce corresponding ratios (compare Figures 2.3 and 3.6; note that in
Fig. 2.3 there is no position of Venus where there is a right angle between it and
Earth and the sun). From the Pythagorean (right) triangles in Copernicus’s model
the planetary distances follow directly. The only assumption, of course, is the
heliocentric model.

There is another contrast between the models that is not well known. Computing
the distances to Saturn in terms of Earth–sun distances, Ptolemy obtained a range
of 12 to 17 AU, for an average value of about 14 AU. (Ptolemy really used the
radius of Earth as a unit on his geocentric model, but I am converting this to AU
for comparison with Copernicus’s data.) It is of more than passing interest to note
that Copernicus’s calculation of the distance to the last planet, Saturn (9 AU), is
much less than the distance arrived at by Ptolemy’s nesting-spheres hypothesis.
This is generally not known; indeed it is often said that the old geocentric system
was smaller and more compact than the heliocentric model.

But Ptolemy’s system is larger only for the planets. Since the celestial sphere is
nested right after Saturn’s, the distance to the stars is thus about 14 AU. Now
recall that Archimedes mentioned that Aristarchus, in putting forth the heliocen-
tric model, also affirmed that the sphere of the fixed stars is extremely large.
The reason was the absence of a visible stellar parallax that should be perceived if
Earth moved (see Fig. 2.4). So Copernicus, in order to account for the absence of
a semiannual parallax, says that the space between Saturn and the stars is “vast.”
When we include the stars, then Copernicus’s cosmos is much, much larger than
Ptolemy’s.
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3.4. Copernicus and Simplicity

Returning to the singular, aesthetic unity—the fundamental simplicity—of the
Copernican system, the two hierarchies (planetary periods and distances)
impart a distinct oneness to Copernicus’s model. In contrast, this is not true for
Ptolemy’s model; as seen, each planet’s motions remained very nearly distinct,
so it is not really a system after all. Copernicus recognized this contrast and
pounced on it right at the start of his book. In his preface he asserts that the aim
of astronomy is to “deduce . . .the structure of the universe and the true sym-
metry of its parts,” and he contrasted this with the methodology of those who
use the Ptolemaic model, and, interestingly enough, he employed a metaphor
borrowed from art theory. The Ptolemaic method, he writes, is “just like some-
one [making a drawing of a person and] taking from various places hands, feet,
a head, and other pieces, very well depicted, it may be, but not for the repre-
sentation of a single person; since these fragments would not belong to one
another at all, a monster rather than a man would be put together from them.”
Ancient astronomy had produced a monster, but Copernicus slew it by deduc-
ing “the true symmetry of its parts.” Listen to this definition of beauty from
Leon Battista Alberti, a key theorist of the early Renaissance, taken from his
treatise “On Architecture” (1452): “I shall define Beauty to be a harmony of all
the parts . . .fitted together with such proportion and connection, that nothing
could be added, diminished or altered, but for the worse.” Now let me quote
Copernicus, again: “In this arrangement . . .we discover a marvelous symme-
try of the universe, and an established harmonious linkage between the motion
of the spheres and their size, such as can be found in no other way.” Both
are what may be called a holistic viewpoint. Such an aesthetic maxim Alberti
also applied to the depiction of the human body, for in his earlier treatise “On
Painting” (1435) he called for the parts of the body to “go well together” so as
to “correspond to a single beauty.” The underlying objective was not without
foundation; it was common practice for novice Renaissance artists to be taught
to draw by depicting individual body parts, such as plaster casts of feet or arms
(often based on classical sculpture). Giorgio Vasari, the Renaissance biogra-
pher of artists, and Michelangelo’s friend, speaks of achieving “the greatest
possible beauty” by “joining together these most beautiful things, hands,
heads, bodies, and legs.”

Indeed Copernicus (1473–1543) lived in the age of the High Renaissance
giants in art: Leonardo died in 1519, Raphael in 1520, and Michelangelo in 1564.
Copernicus had spent the years 1496 to 1503 in Italy pursuing postsecondary
degrees in law, medicine (which entailed anatomy), and the liberal arts (including
astronomy and mathematics). There is also evidence that he was an amateur
painter. It is not surprising, therefore, to see him borrowing a principle of unity
from art theory to bolster his astronomical model.
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3.5. Copernicus and Complexity

Having made a case for Copernicus’s model based on its geometrical and mathe-
matical simplicity vis-à-vis Ptolemy’s, I now contrarily gum up the argument by
pointing to some of the complexities in Copernicus’s model. As I hope to show, in
the context of the times it was not as simple as it may appear today, which was at
least one reason why it did not catch on quickly.

It is true that ultimately Copernicus’s work on the heliocentric system formed the
basis of a revolution in the history of astronomy, and in this sense the word revolution
in the title of his treatise, On the Revolutions, is appropriate. Copernicus, however,
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Copernicus and Michelangelo

Another connection between Copernicus and art has been put forward by
Valerie Shrimplin-Evangelidis. Her thesis is this: the composition of
Michelangelo’s Last Judgment fresco on the altar wall of the Sistine Chapel
reflects the heliocentric cosmos of Copernicus.

She asserts that Copernicus and Michelangelo were influenced by various
ideologies of the Renaissance, especially neoplatonism, with its emphasis on
sun symbolism and the analogy of the Deity with the sun. The idea appears in
the text of Copernicus’s De Revolutionibus (1543), in a famous passage com-
paring the sun with a god, although the later Copernican scholar Edward
Rosen has convinced me that this has nothing to do with neoplatonism.
Copernicus also put forward a brief sketch of the idea of heliocentrism much
earlier, in a private work, the Commentariolus. The date of composition is
unknown, but numerous handwritten copies of it were circulating among
students of astronomy from about 1514.

In 1533 Michelangelo received his commission for the fresco from Pope
Clement VII, who was knowledgeable of the Copernican system, which we
know was being discussed at the time among Vatican philosophers and
astronomers. The following year he died, being replaced by Pope Paul III to
whom Copernicus dedicated De Revolutionibus. Michelangelo began the first
cartoons (that is, full-scale drawings) for the fresco in the autumn of 1535 and
completed it in November 1541. The source of heliocentrism, therefore, could
only be the Commentariolus, not De Revolutionibus.

Although Michelangelo’s composition of the Last Judgment comprises the
traditional right–left � good–evil and up–down � heaven–hell symmetry,
these dualisms are overridden by the more dominant circular motif, with Jesus
placed at the center. This circular composition, untypical for the Last
Judgment theme, Shrimplin-Evangelidis believes reflects Michelangelo’s alle-
giance or reference to the heliocentric cosmos. What I find to be the most con-
vincing evidence for her thesis is the yellow-golden halo of light behind Jesus
and Mary near the center of the circles.



used the term literally: the work was about how the spheres revolve. Despite its
modernity in positing the motion of Earth, Copernicus’s De Revolutionibus is con-
ceptually steeped in the ancient world, which was not uncommon in Renaissance
treatises. The work is organized in a format parallel to Ptolemy’s Almagest.
Moreover, he conceived of the planets as being attached to rotating spheres in their
motions around the sun. This means that since Earth is ever tilted to the plane of its
orbit, then a problem arises within the model as our planet orbits the sun.

To see this problem, begin with the geocentric system (see Fig. 4.5). The fixed
stars appear as if attached to a sphere rotating daily around an axis at the pole star
(Polaris, near N) and accordingly there is an imaginary celestial equator around
this sphere 90° from Polaris. The sun’s yearly motion from west to east (its side-
real period), traces out a line in the heavens called by the ancients the ecliptic
(since eclipse take place about it). The ecliptic, moreover, is tilted 231/2° to the
celestial equator. All this is observationally true, even today, from the viewpoint
of a fixed Earth. When this datum is transferred to the heliocentric model, the
daily motion of Earth on its axis accounts for the daily rotation of the stellar
sphere (which is now fixed), and the annual solar year becomes the period of
Earth revolving around the sun, with the important stricture that Earth’s axis
accordingly must be tilted 231/2° to a perpendicular to the plane of its orbit in
order to account for the (geocentric) tilt in the ecliptic. Significantly, Earth must
remain fixed in this position throughout its annual motion (Fig. 3.7).

36 3. The Rationality of Simplicity

FIGURE 3.7. The tilt of the earth: Copernicus. To account for the (231/2°) tilt of the ecliptic
to the stellar equator when transferring from the geocentric to the heliocentric model,
Copernicus tilted Earth by the same amount to the plane of motion around the Sun. Four
positions are marked: summer and winter solstices, and vernal and autumnal equinoxes.
Earth remains in this fixed tilted position, except for the very slow precessional motion that
is shown in the diagram by the conical loop (a to b). 



This is a necessary consequence of the model fitting the observational data. But
a problem arises if, as is Copernicus’s conception, a revolving sphere is the source
of this motion; then the tilt would have to change constantly (it may help to visu-
alize this by thinking of the sun as the hub of a wheel); otherwise, for example,
beginning at the winter solstice (ws), in half a year at the summer solstice (ss)
Earth would be at position b (tilted 231/2° the wrong way), whereas it should be at
position a. Therefore, to preserve the tilt of Earth, Copernicus was forced to intro-
duce a third motion (in addition to its daily and annual motions). Earth maintains
its requisite tilt only if it also makes an annual conical motion in the opposite
direction to its revolution around the sun (see the arrow at the summer solstice in
Fig. 3.7). It is recommended that the reader physically test this by using one’s arm
held outward horizontally and hold in one’s fist, say, a pen or pencil at an angle.
Rotate the fist clockwise as the arm moves counterclockwise around the body; in
order to keep the tilt fixed, the fist must perform this clockwise conical motion
with the same period as the rotating arm.

At first this extra motion appears cumbersome and arbitrary and seemingly
complicates an otherwise simple model. True enough. But it was fortuitous, too,
because there was one more celestial motion, not mentioned so far, that
Copernicus also had to account for heliocentrically. This is a very slow conical
motion of the stellar sphere (with a 26,000-year period) called the precession of
the equinoxes (for details, see section 4.4). From a heliocentric viewpoint, with the
stars absolutely fixed, Earth then must assume this slow conical wobble otherwise
ascribed to the stellar sphere; in other words, the motion illustrated in Fig. 3.7 for
Earth at the summer solstice is precisely the motion it must perform to account for
the precession of the equinoxes. Since Copernicus, as just seen, imparted such a
conical (third) motion to Earth because of the physicality of the spheres implied in
his model, then he simply had to add a tiny bit of slippage to this annual conical
motion to give Earth one extra rotation (namely one every 26,000 years—tiny
indeed) and thus accounted for the precession phenomenon. In fact, he deemed
this as being so important that he devoted a major section of his book to it.

Lastly another complexity entailed in heliocentrism was forced upon him
because of his resoluteness to the ancient principle of circularity. Without getting
too bogged down in details, the problem is plainly seen in reverse chronology: the
planetary orbits we know, since Kepler, are elliptical. Thus only for the major
motions (as discussed so far) will the use of circles (deferents and epicycles) suf-
fice to fit the data. Nevertheless, to account for all the data, the major and various
minor motions, Copernicus was required to extend the model further. To under-
stand his solution we must first review how Ptolemy dealt with the problem.

Obviously the same problem arose in ancient astronomy in the geocentric con-
text. Thus, for example, it was known by Hipparchus in second century BC that the
sun appears to change its speed over the course of the year (for example, the time
from the vernal to the autumnal equinox is about a week less than that from
the autumnal back to the vernal), and he explained this apparent contradiction to
the canon of in uniform circular motion by placing the center of the sun’s circle
off-center (eccentric) to Earth. Similar departures of uniform rotation among the
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planets led to their deferents also being placed eccentric to Earth. Even this
fiddling with the model, however, was not sufficient to fit all the data of the
planets, so smaller epicycles (call them epicyclets, since they account for
the minor motions, not retrograde motion) were thus introduced, and these further
fine-tuned the model in accommodating the data to the model—almost, but not
quite. Having used eccentrics and epicyclets, and seemingly exhausted the flexibil-
ity of the model, Ptolemy made one more change—perhaps in desperation. He
separated the center of (uniform) motion and the (eccentric) center of the circle,
thus splitting for the first time two centers that had been assumed to be coinciden-
tal (Fig. 3.8). Now there were three points of reference: Earth, the eccentric
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FIGURE 3.8. Ptolemy’s equant. The distance between the equant point and the center of the
deferent (the eccentric point) equals the distance between the same (eccentric) point and
Earth. The center of the planet’s epicycle moves with uniform rotational motion only
around the equant. Accordingly, rotations of the epicycle’s center around Earth and around
the eccentric point are nonuniform. The planet’s rotation on its epicycle, however, is
uniform. 



(the center of the deferent), and the new point that Ptolemy called the equant (the
center of uniform rotational motion). Only from the point of view of the equant is
there uniform rotation with respect to the deferent. (The planet, incidentally, still is
uniformly rotating about its epicycle.) The reason the equant worked—and it
did—was not clear until Kepler (see section 6.3), but in the meantime astronomers
were often uncomfortable or even perplexed by the equant, yet they were forced to
use it to make the data and the model fit perfectly.

By Copernicus’s time, the equant was taken for granted as an integral part of
Ptolemaic astronomy, but he was not convinced. There is some evidence that
Copernicus’s quest for an alternative cosmology was motivated by a desire to rid
astronomy of the equant. By switching to the heliocentric model the equant could
be eliminated and still fit the data; nevertheless, he still needed eccentrics and
epicyclets—but no epicycles (since retrograde motion is an illusion) or equants.
(There is a caveat here: see the last paragraph in section 6.3.) In this sense, his
model was not as complex as Ptolemy’s, which was another reason for supporting it.

Initially this rejection of the equant may be viewed as a refutation of the
ancient system, thus betraying an element of modernity in Copernicus’s world-
view. Maybe, but really not so. Here is his reasoning in the Commentariolus.
After observing that Ptolemy’s model fits the data, he mentions the equant as a
“difficulty.” This makes Ptolemy’s system “neither sufficiently absolute [a phase
whose meaning is not immediately clear] nor sufficiently pleasing to the mind
[this now-famous phrase is clearly directed toward the aesthetic nature, or lack
thereof, of a model].” The meaning of the former phase is explained, I think, sub-
sequently. He goes on to say that he tried to correct the “defects” in Ptolemy’s
system by a “more reasonable arrangement of circles” in which “everything
would move uniformly about its proper center [namely, the center of the circle,
not the equant], as the rule of absolute motion [my italics] requires.” This
“arrangement,” of course, was heliocentrism. The motivation, there is little doubt,
was therefore to eliminate the equant and return the model to its unspoiled
“absolute” beauty—namely, all motion being in circles, and all motion being uni-
formly about their geometrical centers; that’s what he means by the phrase “suffi-
ciently absolute.” Thus it was not just a step forward, beyond Ptolemy, but more
so a step backward to the initial Greek aesthetic framework. Hence the meaning
of the phrase “everything would move uniformly about its proper center, as the
rule of absolute motion requires” is evident. Spoken like a true Renaissance man,
in the original sense of the term. This is—if I were asked to speculate—the reason
Copernicus moved the sun. And speaking of the Renaissance, do not forget that
heliocentrism itself was an old idea, first put forward, as far as Copernicus knew,
by Aristarchus about 500 years before Ptolemy, and now retrieved and reasserted
by Copernicus.

Copernicus’s model thus was simpler than Ptolemy’s, but complex nonethe-
less. Yet not as simple as his one big-picture diagram in De Revolutionibus
(Fig. 3.9), illustrating the heliocentric model from the central sun, through
the planets (including Earth) to the stars. This famous diagram, to be sure, is
neither complete (since it only includes the major circles) nor (obviously not)
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to scale. It is what we may call a conceptual diagram of the system. The first
detailed and scaled diagram would not be drawn until the work of Kepler (for
example, Fig. 5.2).

Notes and References

I have used G.J. Toomer’s translation of Ptolemy’s Almagest (New York & Berlin: Springer-
Verlag, 1984). The correlation of the epicycle periods of Mars, Jupiter, and Saturn with
the sun is found on pp. 424–425 and 480–484, although Ptolemy’s “formula” is in a dif-
ferent format than mine. I wish to thank Dennis Duke (Physics, Florida State University)
for these references in Ptolemy. His superb Web site displays animated versions of vari-
ous astronomical systems: http://www.csit.fsu.edu/�dduke/models.
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FIGURE 3.9. Copernicus: heliocentric diagram. A sketch of Copernicus’s diagram of the
heliocentric system, based on his manuscript for De Revolutionibus. Note that it is a con-
ceptual diagram; that is, it is not drawn to scale. 



I have used Edward Rosen’s translation of Copernicus’s On the Revolutions (Baltimore:
Johns Hopkins University Press, 1978), quotations from pages 4 and 22. Copernicus’s
Commentariolus is in Three Copernican Treatises, translated by Edward Rosen (New
York; Dover, 1959), quotations from pp. 57–58.

The myth of the equivalence of Ptolemy and Copernicus is clearly presented in, Keith
Hutchison, “Sunspots, Galileo, and the Orbit of the Earth,” Isis, 81 (1990), pp. 68–74.

On the nonanomalous view of the motion of the planets before Copernicus, as well as an
insightful discussion of anomaly itself, see Alan Lightman and Owen Gingerich, “When
Do Anomalies Begin?,” Science, 255 (Feb. 7, 1991), pp. 690–695.

Years ago I noticed the striking similarly between Copernicus’s concept of astronomical
aesthetics and Alberti’s definition of beauty and decided to explore it someday; and
there it sat on the backburner of my research endeavors. In the meantime someone else
(Jeroen Stumpel) also spotted the similarity and, I am pleased to say, pursued the
research, producing the article from which I have drawn most of my information; see
his, “On Painting and Planets: A Note on Art Theory and the Copernican Revolution,”
in Three Cultures: Fifteen Lectures on the Confrontation of Academic Cultures (The
Hague: Universitaire Pers Rotterdam, 1989), pp. 177–202. Quotations of Alberti and
Vasari are in Elizabeth Gilmore Holt (ed.), A Documentary History of Art (New York:
Doubleday, 1957), vol. I, pp. 212 and 230 (Alberti), vol. II, p. 26 (Vasari).

On Michelangelo and Copernicus, see Valerie Shrimplin-Evangelidis, “Sun-Symbolism
and Cosmology in Michelangelo’s Last Judgment,” Sixteenth Century Journal, 21,
No. 4 (1990), pp. 607–644, and Valerie Shrimplin, “Michelangelo and Copernicus:
A Note on the Sistine ‘Last Judgment,’” Journal for the History of Astronomy, 31
(2000), pp. 156–160, which she expanded in her book, Sun Symbolism and
Cosmology in Michelangelo’s “Last Judgment” (Missouri: Truman State University
Press, 2000). See Edward Rosen, Copernicus and the Scientific Revolution (Malabar,
FL: Robert E. Krieger Publishing Company, 1984), pp. 66–69 on the myth the influ-
ence of neoplatonism.
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4
The Silence of Scientists: Venus’s
Brightness, Earth’s Precession, 
and the Nebula in Orion

43

The deliberate suppressing of data contrary to one’s theory is considered fraud in
science today. There is, nevertheless, a gray region between the legitimate assess-
ment of the validity of some data and the outright dishonest tossing out of bona
fide information contrary to one’s belief system (see section 1.3). Here are three
stories of the suppression, or near suppression, of data contrary to the theories
held strongly by Copernicus and Galileo.

4.1. Ptolemy on Venus

Venus, when visible, is the brightest object in the sky—after the sun and the
moon. This is the reason why it probably was the first planet studied systemati-
cally by prehistoric astronomers.

Venus follows a repeatable and therefore predictable course of motion through the
sky from our fixed point of view. Sometimes it rises in the east before the sun,
whence it is called the morning star, lasting about 263 days; it is then lost in the glare
of the sun for about 50 day, after which it reappears in the west and sets after the sun
as the evening star, for another 263 days; after which it is lost in the sun’s light again,
this time for about 8 days, until it reappears in the east as the morning star, to begin
this 584-day cycle (263 � 50 � 263 � 8) once more (note the 584-day synodic
period in Table 3.1). For reasons discussed forthwith, Venus holds a special place in
the history of our knowledge of the solar system, from Ptolemy through Copernicus
to Galileo.

In his Almagest, the ancient compendium of observational astronomy, Ptolemy
continued the earlier Babylonian tradition of mathematically modeling the motions
of the sun, moon, and planets in order to predict their forthcoming positions. In
ancient Babylon, astronomy sustained astrology, hence the compulsion to predict
celestial events, but without a desire it seems to fathom the physical nature of the
heavens. Ptolemy, too, had his hand in astrology, since it flourished in the Roman
Empire during his lifetime, but he kept the topic apart from astronomy. There is no
astrology nor mention of it in the Almagest; instead, he wrote another, separate,
book on the topic. The Almagest was primarily a treatise on a mathematical model



of heavenly motions, with minimal discussion of any physical structure; instead,
he speculated on this structure in a shorter work, the Planetary Hypotheses (see
section 2.3). In it his aim was to sketch what a physical model of the universe might
(hypothetically) look like by assuming the planets being attached to physical
spheres; he made the further assumption that all the spheres from the moon to the
stars were tightly nested together, with virtually no spaces between them. By draw-
ing the planetary circles to scale, it is possible to obtain astronomical distances.

Drawing a scale model of the major motions of Venus, ignoring the minor
motions, is straightforward (see Fig. 2.3). Observationally the planet stays near the
sun in its yearly motion through the zodiac, moving a maximum of about 46°.
Interpreting this in Ptolemy’s geocentric model results in a scale model, where the
period of the deferent is a solar year (since Venus stays with the sun in its motion
through the ecliptic), and the epicycle has a period of 225 days. Interestingly, the
model accounts for asymmetry of the 584-day cycle—263 � 50 � 263 � 8 days—
revealing why Venus disappears (50 and 8 days) when it is in the line of sight of the
sun. (I leave it to the reader to see this by looking at Fig. 2.3.) Thus it is sufficient
to predict the major motions of Venus. Ptolemy, as noted, used this model in the
Planetary Hypotheses to measure astronomical distances.

Does this mean that the model is reality? That is, did Ptolemy think this scale
model was a model of the actual structure of the heavens? Venus was the key
planet for answering this question. Over the course of its cycle toward and away
from the sun, its relative distance from Earth changes considerably, more so than
any other planet. From the geometry of Figure 2.3, and considering the maximum
and minimum distances for Venus from Earth, we obtain a range of relative dis-
tances of about 1 to 7 from perigee to apogee (closest to furthest from Earth,
respectively). Of course, Venus is not visible when at the maximum and minimum
distances (being in the glare of the sun), so its actual visible change of distance is
less than this; the relative change is about 1 to 6, rounding this conservatively to a
whole number. But this leads to a problem. If we conceive of Venus visually as a
disk, then by the geometry of similar triangles the relative sizes of the subtended
angles of the planet are proportional to their relative distances, namely 1 to 6.
From this it follows that the relative differences in areas of Venus, between its
closest visible distance to Earth and its farthest, should be at least about 1 to 36
(that is, 12 to 62, since the area of a circle is proportional to the square of its
radius). A prediction therefore follows from the model: the change in the relative
brightness of Venus from minimum to maximum in its 584-day cycle should be,
when visible, at least about 1 to 36.

How does this measure up to observation? Not at all. When visible—and away
from the glare of the sun—Venus barely changes in relative brightness. When visible
its brightness is essentially fixed, thus contradicting the model. Since the model
does not fit the data, it does not correspond to reality. This indeed was Ptolemy’s
conclusion.

Why then did he still apply the model to the Planetary Hypotheses? I think the
answer is this: When the ancient astronomers said that a model “saved the appear-
ances,” they meant that it predicted the positions of the celestial objects; they did

44 4. The Silence of Scientists



not expect it to fit the world in all ways. After all, Ptolemy used the term hypothe-
ses (namely partial theses in Greek) in the title to his small book (see section 2.3).

It is imperative that I address at once what may seem a contradiction between this
hypothetical interpretation of the model, and the realistic version of the calculation of
the distance among Earth, the moon, and the sun using the model (see section 2.3).
My appeal is to an analogy from the history of the development of quantum theory in
the early 20th century (before the maturation of quantum mechanics after about
1925); although quantum theory could not account for the full range of atomic phe-
nomena, scientists nevertheless were convinced that in cases where it worked
(regarding specific experiments), it worked because it was correct. Similarly, I
believe, Ptolemy—indeed, many astronomers throughout the Middle Ages and
Renaissance—used the nesting-spheres model to compute relative distances of
celestial bodies in the cosmos, even as, all the while, realizing that it was flawed
for at least one planet (Venus). Accordingly, over the ages, as Ptolemaic astronomy
was taught and manuscripts were copied, the brightness of Venus was brought to
bear as evidence for conceiving of models of the heavens as hypothetical, not real.
Furthermore, it was not uncommon to put this into a theological context. The
argument went thusly: we are forever limited in our knowledge of heavenly things,
unless Holy Scripture tells us otherwise. In short, theology was truth; science was
opinion—that is, theology was the queen of the sciences. This belief and attitude pre-
vailed to the time of Copernicus, and after.
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Stellar Brightness: Hipparchus’s Scale

The relative brightness of celestial objects is based on a scale for stars invented
by the astronomer Hipparchus in the 2nd century BC and popularized by
Ptolemy in his Almagest. The scale’s range is from 1 (called first magnitude,
for the brightest stars visible with the naked eye) to 6 (or sixth magnitude,
for the faintest seen with the naked eye). The scale is a nonlinear gradient
(logarithmic, like the Richter scale in seismology); it was recalibrated in the
mid-19th century such that a first magnitude star is 100 times a sixth magni-
tude one. Until the invention of modern instruments to measure brightness,
accuracy was based on the skills of astronomers experienced in the art of per-
ceiving relative brightness, not unlike the skills of good piano tuners today
using their ears rather than a tuning instrument.

Today the scale is based on a formula involving the light’s wavelength. For
objects brighter than first magnitude, the scale uses negative numbers. Hence
the two brightest stars, Sirius and Canopus, are �1.4 and �0.7 magnitude,
respectively. Specifically relevant to this story is Venus: when visible, it is
between �4.7 and �3.9, a change in brightness that is barely noticeable to
most viewers.



4.2. Copernicus on Venus

The heliocentric model of the heavens, put forward by Copernicus in the mid-16th
century, commenced the Scientific Revolution. This implied a rearrangement of
the planets as conceived since antiquity, since (among other things) Earth was now
moving among them with the sun fixed at the center (see Chapter 3).

Regarding the matter of the brightness of Venus in Copernicus’s model, first
we must transform the scaled version of the geocentric model to the heliocentric
system. The observational data are obviously the same; only the physical or
geometrical interpretation is different. The fact that Venus remains observation-
ally near the sun is due to its motion now around the sun; hence its (geocentric)
epicycle becomes its (heliocentric) orbit of the sun. And so Figures 2.3 and 3.6 do
not change in scale, only the arrow for the motion of the sun in 2.3 is eliminated
and replaced by one showing Earth moving around the sun (3.6); also, the sun’s
position is moved to the center of the 225-day circle, and, although Earth is now
moving around the sun, the relative visual angles remain the same. This means,
importantly, that the problem of the brightness of Venus likewise accompanies
Copernicus’s system; or said another way, the heliocentric model does not solve
the problem of the brightness of Venus from a realist viewpoint. The heliocentric
system accordingly also predicts for Venus a 1 to 36 relative change in brightness,
and so this model too contradicts observation. Does this not falsify Copernicus’s
model, if conceived of realistically?

Contrary to some historical narratives, Copernicus did take his model seriously.
He did not interpret his heliocentric model as just another alternative way of
“saving the appearances.” We know that he firmly believed Earth actually went
around the sun, and, like Galileo later, he (also a Catholic) hoped to convince the
Vatican to adopt what he believed to be the correct model. But he surely knew that
that reality was contradicted by Venus’s brightness. So how did Copernicus deal
with this? Quite simply, he ignored it. Nowhere in his writings, and especially in
his magnum opus, De Revolutionibus Orbium Coelestium (On the Revolutions of
the Celestial Spheres), is there even a passing mention of this problem.

Why the total silence on Venus? Of course we do not know, since he does not
mention it! But the matter certainly is ripe for speculation. The late Copernican
scholar Edward Rosen spoke of it as a “prudent silence.” How one wishes to
interpret Rosen’s judgment depends on what one reads into the word prudent.
Galileo once commented on it, which shows that the silence of Copernicus did
not render the matter inconspicuous. What he said, however, I will leave for
later, since I believe it sheds light on an example of another silence from Galileo
himself.

The primary reason the problem was not inconspicuous is because of some-
thing written at the opening of Copernicus’s De Revolutionibus (1543). At the
start of the book, before the preface dedicated to Pope Paul III, there is a short,
unsigned commentary directed “To the Reader Concerning the Hypotheses of
this Work.” Most readers at the time naturally thought Copernicus wrote it,
although there are clues hinting otherwise. It is written in the third person,
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whereas the formal preface is in the first person. Moreover, it puts forward the
argument that the heliocentric model should only be conceived of hypotheti-
cally, whereas the rest of the text (as the reader soon realizes) clearly looks at
the model as real; indeed, in the formal preface alone Copernicus says that he
will “ascribe certain motions to the terrestrial globe” and speaks of his work as
aiming “to prove the earth’s motion.” It was the astronomer Kepler who first
argued that Copernicus did not write the introductory essay: Kepler fingered
the Protestant theologian and scholar Andreas Osiander, who had corre-
sponded with Copernicus, and most importantly assisted in proofreading
the manuscript during the last phases of the printing process when Copernicus
was quite ill, following a stroke. Kepler was right, as confirmed by modern
scholarship.

In his short introduction Osiander contends that the motions of Earth in
Copernicus’s book should be viewed only hypothetically, and hence they “need
not be true nor even probable.” At most, the model must fit the data, or, as
he says, “provide a calculus [that is, a method of calculating] consistent with
the observations, [and] that alone is enough,” which is another way of saying
the model “saves the appearances.” Osiander then supports his claim with this
argument: according to the model, Venus should change in brightness much
more than seen by “experience.” Since it does not, the model cannot be inter-
preted as real. The brightness of Venus, therefore, contradicts the reality of the
heliocentric system.

So Osiander lets the cat out of the bag right at the start! Before the reader has
barely cracked the book, Osiander loudly announces the contrary evidence that
Copernicus keeps silent about. His rationale for bringing this up was probably
more theological than methodological, for he ends by saying that astronomers
cannot know reality because truth only comes from divine revelation; namely,
science is deferential to theology—not a surprising conclusion from a theologian.

(An aside: my metaphor of “cracking a book” is probably misplaced, since
books at the time could not necessarily be cracked. They were not bound when
purchased, only the pages were bought; the binding was left to the discretion of
the buyer.)

Independently of the theological context of Osiander’s attitude, from a modern
(methodological) point of view, Osiander was right. Not that the problem of
Venus fully falsified Copernicus’s idea, yet it did throw some doubt upon it, in
revealing an apparent anomaly inherent in the model. Copernicus could have
argued that the overall structure of the model was too good to be dismantled by
one (although not small!) anomaly. Nevertheless he remained silent.

An obvious question arises here: Did Copernicus see Osinander’s now-infamous
introductory essay? The book’s publication was completed in mid-April 1543
and Copernicus died on the 24th of May. A copy from the printer at Nuremberg
apparently reached him as he lie dying in Frauenburg, Prussia. Even so, we do not
know how his faculties were affected by the stroke. Ultimately what he saw of
Osiander’s essay remains a tantalizing question.
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4.3. Galileo on Venus

Eventually, in 1610 Galileo solved the problem of Venus’s brightness, and in
Copernicus’s favor. The solution followed simply and clearly from Galileo’s
telescopic discovery that Venus, like the moon, goes through periodic phases.
Diagrams convey this best: Figure 4.1 shows that Venus does not always “shine”
with the same (constant) intensity of light because as it orbits the sun it displays
phases from the viewpoint of Earth. When it is closer to us it is more of a crescent
and hence it reflects less light than when farther and full; the compensating factor
implies that from the vantage point of Earth, Venus always gives off about the
same amount of light when visible and out of the sun’s glare. It is an obvious fact
today, which follows from another fact—that Venus shines by reflected light from
the sun, without any internal light. But, to repeat a mantra of this book, what is
obvious today was not so in the past.

In addition to falsifying Osiander’s objection to the Copernican system, the
discovery of the phases of Venus proved that it orbits the sun. Comparing the
geometrical arrangements in Figure 4.2, it is clear that only in Copernicus’s
system does Venus pass through all four phases: first quarter, full, third quarter,
and new. In Ptolemy’s there are two new phases but no full one. This was strong
evidence for the Copernican system, as Galileo doggedly noted. This alone,
however, did not constitute proof of heliocentrism, since Venus was assumed to
orbit the sun on Tycho Brahe’s system too. Put forward in 1588 as a compro-
mise between those of Ptolemy and Copernicus, Tycho’s model kept Earth fixed
at the center of the stellar sphere, with the sun revolving around it, but, in turn,
he placed the planets in orbit around the sun (see Figure 5.1; more on this in
section 5.2).
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FIGURE 4.1. The brightness of Venus: Galileo. This diagram illustrates how Galileo’s
discovery of the phases of Venus explains why Venus (when clearly visible) shines by a
constant light to the naked eye. Notice how the planet is closer at the crescent phase, yet it
gives off less light than when it is full.
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FIGURE 4.2. The phases of Venus: Ptolemy and Copernicus. A comparison of the phases of
Venus as seen on Ptolemy’s and Copernicus’s systems. Note that there is no “full” Venus
on Ptolemy’s system. Venus goes through all four phases only if it orbits the sun.



So Figures 4.1 and 4.2 amply show how the ancient problem of the brightness
of Venus was resolved—seemingly simply and clearly, as any textbook may pres-
ent. But a theme of this book is the complexity of history, which does not always
follow a clear-cut logical path. For example, since ancient times there was no
unambiguous view on the possible self-luminosity of the planets. Although
Ptolemy did not address the matter, medieval and Renaissance writers raised it,
proposing four possibilities for the planets: opaque, self-luminous, trans-parent,
or a combination of transparency and self-luminosity. Throughout the Middle
Ages, the constant brightness of Venus was generally interpreted as evidence of
its self-luminosity, ignoring in the process, however, the ensuing geometrical
problem. By Galileo’s time, the combination hypothesis was common. So the
issue of the brightness of Venus was tied not only to its celestial placement but
also to its constitution. Galileo acknowledged this in his writings on Venus. Yet
the entangled matters around Galileo’s work on the phases of Venus are often less
about actual history and more so involving historiography—that is, debates
among historians.

At the annual meeting of the (U.S.) History of Science Society in 1983, the now
late and eminent science historian Richard S. Westfall presented the provocative
thesis that Galileo stole from a student the idea that the phases of Venus would
prove its orbit around the sun. Published in 1985 in the society’s journal under the
title, “Science and Patronage: Galileo and the Telescope,” the paper went on to win
the journal’s award as the outstanding article of the year. The paper is a mine of
information on the social conditions of scientists at the time. Working from the
texts of Galileo’s writings and correspondence, Westfall paints a fascinating
picture of Galileo’s scientific pursuits within the context of securing the favors
of patrons—all as a means of trying to leave his low-paying job as professor of
mathematics at the University of Padua. The ploy worked; he named the four
moons of Jupiter that he discovered with his telescope in January 1610 after the
four Medici brothers, for which he obtained a prestigious position at the Medici
court in Florence, to which he moved in September 1610 (see section 7.1).

Westfall’s accusation is grounded on a letter Galileo received from a former
student, Benedetto Castelli, dated December 5, 1610, in which the student alerts
Galileo to the possibility of Venus exhibiting phases, which, he points out, would
settle the issue of Ptolemy versus Copernicus. Westfall assumes that Galileo had
neither thought of this possibility nor had he looked at Venus through his telescope
before receiving this letter. From Westfall’s viewpoint, Galileo at the time was
not pursuing a consistent observational program of the sky; instead, he used the
telescope primarily as a means of procuring patrons—note the juxtapositioning of
the main title (on patronage) and subtitle (on the telescope) of Westfall’s paper. He
writes, “Galileo seems to have used his telescope to further his advancement rather
than Copernicanism.” Indeed, Galileo did not reply to his student until December
30, when he said that he had been observing Venus in detail for the past three
months and that he had, indeed, discovered the phases. But Westfall contends that
Castelli’s suggestion actually inspired Galileo to look at Venus for the first time.
Westfall reinforces his case by pointing to the fact that, in the meantime, on
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December 11, Galileo sent an anagram to the astronomer Kepler, which contained
the (predicted) discovery of the phases of Venus. In the context of his new job,
there was considerable pressure on Galileo to make more discoveries for the court;
he did not want someone else to announce the discovery before him, but he also
did not want to be wrong—hence the cipher. (I should point out that the use of
ciphers was common practice at the time, rather like prepublication notices today,
but with an air of mystery.) The encrypted anagram read, Haec immatura a me iam
frustra leguntur o y, which means, “These, premature from me, are at present
deceptively gathered together.” The decoded anagram read: Cynthiae figuras
aemulatur mater amorum, which means, “The mother of love [Venus] imitates the
shapes of Cynthia [the moon].”

Astronomer-historian Owen Gingerich and others quickly challenged
Westfall’s thesis. They reconstructed how Venus actually appeared from the sum-
mer through December 1610, by slightly blurring the images to conform to what
Galileo may have seen in his crude telescopes. Paolo Palmieri recently made a
more meticulous visual reconstruction. What his images show is that there was
nothing particularly interesting about Venus in the summer and into early fall, but
beginning in October its shape began to change, appearing slightly flattened on
one side. It was not until near the end of December that visual confirmation of the
phases would have been attainable, as Venus clearly approached a crescent phase,
just when Galileo replied to his student.

In contrast to Westfall’s thesis, the more plausible scenario is this: from
November 1609, when Galileo first turned his telescope to the moon, he consis-
tently observed the night sky. In January he studied Jupiter, as it was then visible,
and he discovered the four moons. Mars was later visible too, but nothing special
to behold. Saturn was not visible until July, when we know Galileo observed its
“strange countenance,” with lumps in either side. (Over 40 years later, the Dutch
astronomer-mathematician Christiaan Huygens would resolve the rings of
Saturn.) In the summer, as Venus became visible in the evening sky, Galileo
turned his telescope to it when in Padua; after moving to his new job in Florence,
he resumed his observations, just about in time for the transformation of the
planet. Upon seeing the flattening of the side he became more diligent in his
viewing. In the letter to Castelli, Galileo says he has been observing Venus in
detail for the last 3 months; this is consistent with his having casually observed
the planet since the summer but only systematically since October. Hence there is
no reason to accuse Galileo of dishonesty.

On January 1, 1611, Galileo revealed to Kepler the meaning of the cipher.
Importantly, and correctly, he declared that this discovery solves two “great ques-
tions” at once: the issue of Venus’s orbit of the sun and the nature of the planet,
which unquestionably is opaque—implying that the other planets are opaque, too.
He was particularly pleased to resolve the latter, which “up until now was unclear to
the greatest minds of the world” (“sin qui dubbie tra i maggiori ingeni del mondo”).

As a coda (or is it the clincher?) to this story, I add this account of Gingerich’s
face-to-face meeting with Westfall (which appeared in Gingerich’s obituary of
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“Sam,” as Westfall was know to friends). Gingerich writes: “I pointed out [to
Westfall] that Galileo would surely have looked at Venus as soon as it was visible
in the evening sky, since it is the third brightest astronomical object after the sun
and moon. ‘Really?’ Sam exclaimed. ‘But I am not astronomer!’”

If there is a moral to this tale, it is that historians of astronomy should not rely
exclusively on written texts. Or, said another way, they should get outside more
often and look at the heavens.

4.4. Galileo, Sunspots, and Precession

Having exonerated Galileo from Westfall’s accusations, I now turn the tables on
Galileo and accuse him of being less than honest on a different matter, in the
course of which I return to the topic of the title of this chapter.

In his Dialogue on the Two Chief World Systems (1632), the book that got
him into deep trouble with his church, Galileo put forward his best arguments
for the Copernican system. (The book’s format is a “dialogue” over four days
among three interlocutors, so Galileo is ostensibly giving equal time to both
viewpoints, helio- and geocentrism.) Near the end of the book (on the fourth
day) he sums up the “strong evidence in favor of the Copernican system,” by
presenting three “very convincing” phenomena: the explanation of retrograde
motion, the theory of the tides, and the motion of sunspots. The first is the most
well known and is found in most textbooks today. From a heliocentric point of
view, the planet’s retrograde motion is more simply explained by the motion of
Earth bypassing the planet; thus the planet (geocentrically) only appears to
move backward (see Fig. 3.5). A comparison of the two viewpoints displays
what became known as the relativity of motion. The second, involving the tides,
makes the case that the back and forth motions of the tides are caused by the
simultaneous rotation of Earth on its axis and its likewise revolution around the
sun; moreover, if true, any mysterious (action-at-a-distance) powers or forces
between Earth and the moon purported as causing the tides, such as was specu-
lated by astrologers and other mystics, were purged and therefore Galileo
believed he had secured gravity as being only a local power near Earth.
Of course, Newton’s tidal theory ultimately replaced Galileo’s, which because
of its errors is usually dismissed in historical writing. The third—and the
focus of attention here—is the sunspots argument, seldom found in textbooks
and probably the least studied “proof.” Nevertheless, there have been commen-
taries and scholarly probes of Galileo’s argument, but they are fraught with
much confusion and debate. Part of the reason is the admittedly (by Galileo
himself) slightly confusing and obscure presentation of it in the Dialogue.
There is evidence that this is at least partially because he inserted the sunspots
proof as the last piece in his manuscript. Whereas he had been pondering the
proof from the tides for years, it seems he came upon the sunspots proof rather
suddenly when finishing the manuscript and it was inserted during the final
stages of publication.
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Galileo was not the first to see sunspots; there are reports of possible markings
on the sun going back at least to the Middle Ages. Nor was he the first to study
them and their motions with a telescope. The heliocentric interpretation, however,
was uniquely his. He first mentions sunspots in a letter to his artist friend,
Lodovico Cigoli, October 1, 1611 (see section 7.1), in which he implies that he
has been observing them for some time; historians think he probably first saw
them early in 1611. His first discussion of sunspots centers on their nature and the
question of their apparent contradiction with the idea of the incorruptibility of the
heavens, as held by Aristotelians. This led to one of the major scientific disputes
in Galileo’s life, for the idea of the perfection of the heavens was firmly
entrenched among Aristotelians, and the sun was an especially powerful symbol
of this flawlessness. For example, one alternative interpretation was that the
“spots” were really small planets in orbit between Mercury and the sun. In
defense, Galileo drew on his knowledge of perspective and art, pointing to the
fact that the sunspots change their shape as they move across the face of the sun,
such that they become narrow near the edges; he interpreted this as a foreshorten-
ing of the spots, implying that they are on the sun’s surface.

Following the motion of the sunspots he concluded that the sun is rotating with
an approximate 1-month period. His systematic study further revealed a changing
pattern of motion across the sun’s surface over the course of a year. It was this pat-
tern that he found was most naturally explained on the heliocentric model. The
proof is quite strikingly seen with the help of diagrams. Over a year there are four
patterns of sunspots from left to right across the sun, as shown in Figure 4.3: a
upward path, an arc, a downward path, and another (opposite) arc. Assuming the
sun’s axis is tilted to Earth’s plane around the sun, as in Figure 4.4, then with a
little visualization from four different seasons (A, B, C, D), it is possible to “see”
the four monthly patterns of Figure 4.3. It is no wonder that he declares this helio-
centric interpretation of the data to be “a more solid and convincing theory of
the sun and earth than has ever been offered by anybody.” Indeed it is all the more
remarkable if indeed Galileo came upon this proof not long before completing the
manuscript. As it stands, the proof seems ironclad.

But, of course, given the format of the dialogue, the geocentric viewpoint
demanded equal time. And so voice is given to an explanation of the observed
pattern from a fixed Earth. The result is complex and difficult to conceive. It
involves four different motions for the sun; particularly problematic, according to
Galileo, is that these motions are both clockwise and counterclockwise—and thus
“incongruous with each other.” 

Here are the details. There has been some confusion, as well as downright
errors committed by scholars, about the motion of sunspots as seen from a fixed
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FIGURE 4.3. Sunspots: yearly patterns. There are
four distinct patterns (A, B, C, D) of sunspots
across the face of the sun over approximately
equal intervals during the course of a year.



Earth. Indeed it takes quite a bit of mental gymnastics to conceptualize Galileo’s
argument against the geocentric explanation of the motion of sunspots. A diagram
(Fig. 4.5) helps. First, the sun (S) must make a daily circuit around Earth; the
celestial equator revolving clockwise around the North Celestial Pole (N)
produces this motion. Second, the sun makes an annual circuit counterclockwise
along the ecliptic, which is tilted 231/2° to the celestial equator. Compounding
these two motions produces path P (parallel to the celestial equator) on a given
day; accordingly, over the course of a year, path P moves north and south,
between the solstices, being coincident with the celestial equator at the
equinoxes.

Third (and this is perhaps the trickiest one to conceive), the sun must also
perform an annual clockwise conical motion around an axis perpendicular to the
plane of the ecliptic; this motion is required to explain the fact that the sun
remains tilted at the same angle throughout the year. And, fourth, the sun monthly
rotates counterclockwise on its own axis. Hence the sun makes four motions—
two clockwise and two counterclockwise. Is it any wonder that Galileo declares
this model to be too cumbersome to be true?

In contrast, the heliocentric model involves only Earth rotating (daily) on its
axis and, importantly, in the same direction as it revolves (annually) around the sun
(counterclockwise): in Galileo’s words, “two simple noncontradictory motions
[are] assigned to the earth.” The differences between Ptolemy and Copernicus thus
involve contrasts: complexity versus simplicity, and incongruity versus congruity,
respectively.

At this stage of the argument Copernicus seems to win, hands down.
Nevertheless, when all necessary motions are considered, in order to preserve
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FIGURE 4.4. Sunspots: heliocentric viewpoint. This diagram provides an explanation of the
patterns of sunspots (see Fig. 4.3) on the heliocentric model. Notice how the four positions
of Earth around the sun (A, B, C, D) correspond to the four patterns.



the aesthetic quality of the Copernican system (with its simplicity/congruity),
Galileo must perform a slight of hand. To explain, we must return to ancient
astronomy.

About 1800 years before the Dialogue, Hipparchus discovered that the equinoxes
(spring and fall) come earlier (preceding) every year by a very, very small
amount; hence the phenomenon was dubbed the “precession of the equinoxes”
(see section 3.5). On the ancient geocentric model, this observation required the
addition of another motion (and hence another sphere) for the heavens; in this
case a conical motion exercised by the celestial sphere was sufficient. It may take
a little mental gymnastics to see this too. In Figure 4.6 I have drawn the ecliptic

4.4. Galileo, Sunspots, and Precession 55

FIGURE 4.5. Sunspots: geocentric viewpoint. This geometrical construction (placing the
celestial equator horizontal in the diagram) is helpful for seeing how the motion of
sunspots may be explained on the geocentric model. Four motions of the sun (S), two
clockwise and two counterclockwise, are required to produce the phenomena as seen from
a geocentric viewpoint. They are a daily clockwise circuit along path P around Earth, an
annual counterclockwise circuit along the ecliptic, an annual clockwise conical motion,
and a monthly counterclockwise rotation.



horizontal to the page, which I hope makes this motion easier to see. First men-
tally fix the ecliptic; now notice that if the sun is to arrive at the equinox a bit ear-
lier each year, then the celestial sphere must perform a conical motion as
indicated. Since this motion is continuous, the conical motion is periodic, taking
26,000 years for a cycle. (Hipparchus apparently rounded off his data to 1°/century,
resulting in a 36,000-year period that was generally used over the ages. Galileo
uses the 36,000-year period in his Dialogue, although Copernicus had computed
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FIGURE 4.6. Precession of the equinoxes. This orientation of the celestial model is helpful
for explaining the precession of the equinoxes from a geocentric viewpoint. The ecliptic
is fixed and the celestial sphere makes a conical motion as displayed by the looping
arrow. Accordingly, the North Celestial Pole makes a loop over the 26,000-year period
(see Fig. 4.7).



a value of 25,816 years in De Revolutionibus.) The value is extremely large
because the yearly “preceding” equinox is very small. True, the precession is
small, but not irrelevant. In the ancient (geocentric) cosmos, therefore, there were
usually two spheres beyond Saturn: one performing this conical motion and
another performing the requisite diurnal (daily) motion, since all visual phenomena
must be accounted for.

Switching to the heliocentric model, where the celestial sphere is fixed, a conical
motion, therefore, must be assigned to Earth to account for precession (just as a
daily motion is assigned to Earth to account for the diurnal motion of the heavens).
Specifically, in addition to its daily rotation on its axis and an annual revolution
around the sun, Earth also performs a conical motion about an axis perpendicular to
the plane of its orbit (similar to that in Fig. 3.7, except with a 26,000- or 36,000-year
period, rather than 1 year). Indeed, because of this, all such conical motion is
now called precession, such as a rotating top; see essay on Newton and precession
(section 11.1).

Now here’s the kicker: whereas the two motions of Earth that account for the day
and the year on the Copernican model are both in the same (counterclockwise) direc-
tion, and hence accommodate Galileo’s aesthetic criterion of congruity, the conical
motion necessary to explain the precession of the equinoxes, on the contrary, is
clockwise. So Earth must perform three motions (two counterclockwise, one clock-
wise) on the Copernican model. This means that the very lack of harmony that led to
the falsification of the Ptolemaic model for the motion of sunspots—recall Galileo
complaining of the “incongruity” among the motions—now appears in the
Copernican model when precession is added. A key feature of the aesthetics of
Copernicus’s model has evaporated. Here, then, is an important problem that Galileo
must confront. How does he deal with the “incongruous” nature of these motions?

Like Copernicus in his stratagem on the problem of the brightness of Venus,
Galileo plays the silent game. Nowhere in the Dialogue does he explicitly con-
front the reader with the fact that a conical motion of Earth is required to explain
the precession of the equinoxes. He does, though, mention the phenomenon of
precession, but almost exclusively within the context of the Ptolemaic model.
Moreover, it is brought up in order to find fault with geocentrism, for the motions
(precessional and diurnal) of the last two spheres break the harmony of the model.
How ironic. Or, how cynical?

Let’s look more closely as what Galileo says about precession. It is mentioned
only four times in the Dialogue. It first appears within a discussion of the order-
ing the planets and stars, and he notes that beyond Saturn in the Ptolemaic model
“many thousands of years” (i.e., the 36,000 years) are required for the period of
the stellar sphere that accounts for precession; beyond this is the last sphere
accounting for the daily motion, thus destroying any hierarchical and sequential
(temporal) order. That is all he says; the fact that this must translate into a motion
for Earth on the Copernican model is not disclosed.

The second appearance of precession is within an attempt to calculate the dis-
tance of the stars based on the hierarchical ordering of the celestial bodies with
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increasing periods of revolution from the center. The context of the discussion is
the anti-Copernican argument that if Earth really moves, then stellar parallax
should be observed (see section 2.3). Galileo’s defense is to provide evidence for
an enormous distance to the stars. The calculation rests on what appears as a
rather strange fusion (or is it a confusion?) of both models.

On Copernicus’s model, setting Earth–sun distance to unity (1 AU) makes Saturn,
for example, 9 AU from the sun (see section 3.3). Using the Ptolemaic system, the
relative distances are obtained using the nesting-spheres model (see section 2.2),
and Ptolemy arrived at a range of values (for example, Saturn was 12 to 17 AU,
with a central Earth). Now here’s where Galileo’s fusion/confusion arises. Noting
the hierarchical correlation between planetary distances and periods (see section
3.2 and Table 3.2), he adds the stellar sphere, using the 36,000-year precessional
motion as its period. Even though Copernicus did not abandon the concept of a
stellar sphere, by using the 36,000-year precessional motion for the sphere Galileo
is, in fact, incorporating the geocentric viewpoint, since Earth’s conical motion
accounts for the precession of the stars on Copernicus’s model and hence the
stellar sphere is fixed. But Galileo proceeds by using Copernicus’s data for the
following calculation, which thus mixes the two models. He derives the distance to
the stars this way: since the period of Saturn is 30 years and the period of the stel-
lar sphere as 36,000 years, then the equation 9/30 � x/36,000, yields x � 10,800
AU for the distance of the stars. He makes similar calculations using Jupiter and
Mars and arrives at two more large numbers, 15,000 AU and 27,000 AU, respec-
tively (he errs here; the latter should be even larger, about 28,700 AU). These give
him what we might call ballpark figures (or a range thereof) for the stellar distance,
large enough, at once, to refute the anti-Copernican argument and supposedly
support Copernicus.

Can this mixing of the geo- and heliocentric models be justified? If Galileo used
Ptolemy’s numbers and model (of nesting spheres), he would necessarily set the
stars just beyond the sphere of Saturn and of course not support Copernicus. Only
on Copernicus’s model is there a gap between Saturn and the stars. Nevertheless
the 36,000-year period for the stars may only be applied to the geocentric system,
since Earth performs this precessional motion on the heliocentric model, but, as
noted, this Galileo conveniently ignores. Thus the fusion of the two models renders
the entire argument and calculation spurious, at best. If, as I suspect, he was fully
aware of this, then there was no confusion, nor even a delusion; we are, instead,
observing a classic case of sophistry.

Lastly, and not surprisingly, he again points to the lack of an ordered hierarchy
between the last two spheres (since the one after Saturn, having a 36,000-year
period, is followed by the last with only a daily period, thus destroying the
hierarchy); these he calls “monstrosities.” In the end, and for a second time, a
precessional motion is noted, but without acknowledging this motion for Earth.

Incidentally, the alert reader will note that Galileo’s calculation is wrong from
another (although probably anachronistic) viewpoint: he is assuming a direct
proportion between the periods and the distances of the planets. Kepler’s third
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law, however, states that the square of the period is proportional to the cube of the
distance. This he published in 1619, but it was not yet commonly known when
Galileo published his Dialogue (1632), since the law was buried in his treatise
on The Harmony of the World that many, and Galileo in particular, considered
essentially a foray into mysticism (see section 6.4).

One of the visual manifestations of precession (that is, observationally, and hence
independent of the system used) is that the North and South Celestial Poles are
not fixed in the heavens, but over the 26,000-year cycle (using today’s value) they
each make circles in the sky. For the Northern Hemisphere, due to the conical
motion in Figure 4.6, from the fixed Earth the North Celestial Pole rotates as in
Figure 4.7. In other words, that there is now a pole star (called appropriately, for a
time, Polaris) near the North Celestial Pole is merely a chance occurrence, just as
there is no pole star at present in the Southern Hemisphere. (In about 12,000 years
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FIGURE 4.7. Motion of the celestial pole. This diagram charts the counterclockwise motion
of the North Celestial Pole through the stars over its 26,000-year period. Although Polaris is
now the North Star, it was not and will not always be so. For example, in about 12,000 years
Vega will be the closest star to the Pole. The closest it gets to Polaris will be in 2102.



Vega will be the pole star in the Northern Hemisphere, or at least will be the
nearest star to the pole.) This motion of the poles is mentioned in the Dialogue in
the third reference, where the requisite motion of Earth is acclaimed (for the first
time!) in this phrase: “It is true that such points in the heavens [i.e., the Celestial
Poles] are changed when the transposition of the earth is carried out in such a way
that its axis points to other parts of the immovable celestial sphere.” That’s it, a
phrase, not even a complete sentence, and no more is said. Galileo fails to inform
the reader that “the transposition of the earth” specifically entails a conical
motion within the Copernican model.

The fourth and final reference to precession is the most direct. It appears in the
context of a discussion of the tilt of Earth in the Copernican model and the fact
that the additional (“third”) motion Copernicus postulated for Earth is now
unnecessary (see section 3.5). Let me explain this before specifically looking at
this last reference to precessional motion.

At this place in the Dialogue Galileo presents a wonderful argument for elimi-
nating the third motion of Copernicus (see Fig. 3.7). The background to it is
twofold. In the late 16th century, the Danish astronomer Tycho Brahe made a
strong case against the real existence of the celestial spheres based on the appar-
ent path of comets moving right through them; this left physical astronomy (on
any model) with a problem: What keeps the planets in orbit? In addition, in the
early 17th century Galileo arrived at the concept of what later would be called
inertia to explain motion (see section 8.2). Essentially Galileo realized that any
object in motion stays in motion or stays at rest unless changed by an external
force or pressure (say, a medium slowing it down if it is moving, or by some
direct impact moving it or changing its motion).

Now in the Dialogue Galileo submits a splendid little experiment that anyone
can do and that has direct bearing on the third motion problem. Here it is: all you
need is a bowl of water and a ball; it helps if the ball has some marks on it so you
may keep track of its orientation. Carefully place the ball in the bowl of water,
and, keeping it near the center (avoid having it touch the side), now rotate the
bowl with respect to the room. You will find (perhaps surprisingly) that the ball
does not move (rotate) with the bowl and water; instead, the ball’s orientation
remains fixed with respect to the room as the bowl and water are rotating. This is
inertia: namely, the ball stays in its state of rest with respect to the room despite
the motion of the medium around it. Galileo then applies this to the Copernican
model, but without the spheres, this way. Earth has two motions around the sun
(daily and annual); it also remains fixed at the 231/2° to the perpendicular to the
plane of its orbit. And due to inertia, Earth needs no extra (third) motion because,
like the ball in bowl, it indeed remains fixed at this angle independently of the
other motions (see Fig. 3.7, without the conical motion). Inertia eliminates the
need for a third motion in the absence of celestial spheres.

From today’s viewpoint this is an obvious application of an experiment to
solve a potential problem with a model. In the 17th-century context, however,
Galileo’s application was quite radical. Recall that in the Aristotelian framework
there was an essential distinction between the two cosmic worlds: terrestrial and
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celestial. Applying something from one realm to the other was thus meaningless.
So arguing that the behavior of a ball in water on Earth had relevance to the
motion of the planets in the heavens was most probably seen as rather comical—
and, of course, dead wrong. But Galileo’s Copernican framework entailed the
breakdown of that division, since the terrestrial “world” (Earth and the moon)
was now in orbit around the sun. The cosmos was one—a holistic, homogeneous
view, seen, for example, in the moon’s surface being more like Earth than ever
thought (see section 7.1).

This finally brings me back to the precession of Earth and the fourth refer-
ence. It appears in one sentence, as follows: “This [tilt of Earth] remains perpet-
ually the same, except for some small variation in many thousands of years
which is not significant in the present connection.” The “connection,” namely the
context of the discussion, is Galileo’s realization that Earth remains tilted by
inertia, and hence Copernicus’s extra motion is unnecessary; indeed, it is to this
topic that the discussion returns, focusing on the “immutable” tilt of Earth, with-
out, accordingly, pursuing the matter of the “small variation” in the tilt. Being
such a small motion compared to the diurnal and annual motions, Galileo thus
dismisses Earth’s precession as “not significant.” And that is all he says on the
precession of Earth.

There is another way of looking at this last reference. Galileo’s removal of
the third motion of Copernicus may have been a factor in his silence on Earth’s
precessional motion on the Copernican model. As seen, Copernicus used the
third motion to account for the precession of Earth, by giving it a slight slip-
page. Without the third motion, Galileo had no feasible way to add the preces-
sional motion; there was nothing to give a slippage to. Consequently, he had to
add another entirely new motion—really a different (although very small) third
motion—to account for the precession of the equinoxes. Thus the relative
silence?

To summarize, of the four references in the Dialogue to precessional motion,
only the last two mention Earth’s motion: an allusion in a passing phrase and a
dismissal in a single sentence. That’s Galileo total output on the conical motion of
Earth on the Copernican system, a topic to which Copernicus devoted a signifi-
cant part of his De Revolutionibus.

This is not quite the silence of Copernicus on the brightness of Venus, but
nearly so. Interestingly, Galileo comments on Copernicus’s silence about Venus
in the following sentence, which, if I am permitted some psychological specula-
tion, may be read as justification for his own relative silence on precession: “I
believe this [silence] was because he was unable to rescue to his own satisfaction
an appearance so contradictory to his view; yet being persuaded by so many other
reasons, he maintained that view and held it to be true.” Put another way, Galileo
and Copernicus looked toward the “big picture” and thus avoided or ignored
small anomalies that contradicted their greater visions. A similar justification
appears earlier in the Dialogue when Galileo discusses Copernicus’s silence on
the problem of how birds can keep up with a moving Earth. I think we may find
the same subconscious significance in this declaration: “Perhaps Copernicus
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himself was unable to find a solution which entirely satisfied him, and for that
reason he remained silent on it.” How intriguing and possibly insightful it is to
observe Galileo explicitly commenting on the silence of Copernicus, while we
catch him in the act himself.

Galileo’s own dismissal of the precession of Earth is only exceeded by the silence
of the handful of scholars who have studied his argument on sunspots. Several
years ago, when pursing research on this topic and discovering Galileo’s dismissal,
I searched in vain for someone else to have noticed Galileo’s lack of reference to
this motion of Earth. Surprisingly, even the most recent article on the topic by Paul
Mueller, seemingly the most detailed to date, perpetuates the silence by ignoring
precession.

Mueller’s article was published after my article disclosing Galileo’s dismissal
appeared; specifically, Mueller saw my article while his was in press, and he
curtly dismissed my argument in a footnote. 

His rejection is based on his belief (and he admits it is a belief) that Galileo
made a clear and sharp distinction between two criteria for assessing models—
simplicity and congruity. Moreover, according to Mueller, Galileo himself only
believed in the simplicity criterion; congruity was the criterion of the
Aristotelians. So in the Dialogue Galileo cleverly set a trap for the Aristotelians
by showing that the Ptolemaic model was incongruous and the Copernican was
simple; Mueller writes, “[If the Aristotelians] opt for the Ptolemaic explanation of
sunspot motions, they will have to admit that an astronomical system with incon-
gruous motions can be physically plausible. If on the other hand they embrace the
Copernican explanation of sunspot motion, they will have to admit that a mobile
Earth is physically plausible.” Mueller’s thesis is a most seductive one, to be sure.
He then turns it against me, since I show that precession of Earth involves incon-
gruous motions; but, according to Mueller, this has no bearing against Galileo,
since he does not really believe in this (Aristotelian) criterion. It is as if Galileo
has special dispensation: he may wield the verbal weapons of simplify and con-
gruity in the mouths of the three discussants in the Dialogue at will, but I may not
turn one (incongruity) on him; he is impervious to its arrows. Contrary to
Mueller, I find it exceedingly difficult to be this generous to Galileo, however
much I would like to be.

4.5. Galileo and Nebulae

As a coda to this chapter’s topic, here is yet another case of Galileo’s silence. It
appears in his Sidereus Nuncius, in his discussion of the nebulae sighted through
his telescope. Whether in ancient times or now, about half a dozen or so nebulae
are visible with the naked eye. Because they appear as blurred or fuzzy stars,
ancient astronomers called them nebulous stars (see section 12.1). Ptolemy lists six
and Copernicus five in their catalogues of the stars. Galileo describes his
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telescopic viewing of them right after his explication of the Milky Way. Ever since
ancient times the Milky Way was thought to be made of vapors suspend below the
sphere of the moon because of its continuum-like appearance and its changing
countenance over the year. But Galileo’s telescope resolved its discrete nature. As
he writes, “The [Milky Way] Galaxy is nothing else than a congeries of innumer-
able stars distributed in clusters.” Having found the apparent continuum of the
Milky Way to be really discrete stars packed closely together, he goes on to reveal
what he saw of the nebulae. “Moreover—and what is even more remarkable—the
stars that have been called ‘nebulous’ by every single astronomer up to this day
are swarms of small stars placed exceedingly closely together.” As is the Milky
Way, so are the nebulae. Specifically he describes, and provides diagrams of, two
nebulae: that in Orion’s head, and Praesepe (today the Beehive cluster, M44) in
Cancer, both mentioned by Ptolemy and Copernicus.

This commentary on the Milky Way and the nebulous stars follows his discussion of
the innumerable stars revealed by the telescope beyond naked eye observation. As an
example, he discusses, with a diagram, the many stars in the Pleiades, beyond the seven
visible with the naked eye (the so-called Seven Sisters). Relevant here is his viewing of
the constellation Orion, which he says he first intended to depict completely, “but over-
whelmed by the enormous multitude of stars and a lack of time, I put off this assault
until another occasion [which never transpired]. For there are more than five hundred
new stars around the old ones.” In the end he confines himself to depicting the numer-
ous stars around the three visible stars in Orion’s belt and the six in the sword: “I have
added eighty others seen recently, and I have retained their separations as accurately as
possible.” The point of all this, of course, is the appreciation of the multifold nature of
the stars beyond the few thousand we see with the naked eye. Nevertheless, Galileo’s
actual diagram of Orion’s sword, to a knowledgeable viewer, poses an obvious ques-
tion: Where is the nebula? For one of the conspicuous nebulae in the winter sky is that
found in Orion’s sword. But it is not in Galileo’s diagram nor is it mentioned in the text.
Why not? Surely, as he carefully counted the stars in Orion’s belt and sword, he saw
this nebula through his telescope. So why is he ignoring it?

Before presenting my answer, I should point out that another quite interesting
explanation for this has been proposed: namely, that the nebula was not really
there in the early 17th century! Instead it was a star that later exploded. This is
logically a plausible answer; however, Owen Gingerich, in a well-research article,
has convinced me that there is no evidence to support this thesis.

If, as seems to be true, the nebula was indeed refracted through Galileo’s tele-
scope in 1610, why then the silence? We know today that this nebula is really what
we still call a nebula, that is, a region of hot gases, not a star cluster. So when
Galileo set his telescopic sights on it, expecting no doubt to see a star cluster (as
were the Milky Way and the other two nebulae mentioned above), he was either
surprised or disappointed (or both) that it remained a visual continuum. He may
have believed that his telescope was just not powerful enough to resolve the indi-
vidual stars or he may have thought that this nebula really was a continuum. In
either case—or perhaps he had some other hypothesis, it does not matter—he does
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not mention it. His silence, therefore, seems to be based on his belief that this nebula
is either temporarily or potentially a counterexample to his newly concluded
conjecture on the discrete nature of the nebulous stars, and he is not predisposed to
question it so soon. Why disclose a counterexample that may be explained away in
due time? In this instance, at least, I am willing to concede that Galileo’s silence
may be labeled as being “prudent.”

Finally, another intriguing, albeit tentative, hypothesis has been put forward by
Thomas R. Williams of the Galileo Project at Rice University in Houston.
Attempting to reproduce Galileo’s results using a similar telescope, he concluded
that perhaps Galileo did not even see the nebula because of the small field of view
of his telescope. Many of Williams’s students who used a “replicate” telescope
were unable to see the nebula, although he concedes that light pollution (not a
problem for Galileo) may be factor today.

64 4. The Silence of Scientists

Galileo and Holy Scripture

Galileo was fond of quoting the aphorism (not of his own coining) freely
translated as: “Religion tells you how to go to heaven; science tells you how
the heavens go.” I believe Galileo embraced this viewpoint that science and
religion have dominion over different realms and hence should not inherently
be in conflict. It could thus be used as an excuse to stay out of any dispute
between religion and science. Nevertheless, we still find Galileo wading into
the fray of debating the apparent clash between passages of Scripture and the
Copernican cosmology (some scholars say he was dragged into it).

A well-known example involves the biblical passage in the Book of Joshua,
where Joshua commands the sun to stand still in order to prolong the day;
theologians obviously interpreted this as embodying the truth of the Earth-
centered model with the sun moving around it, not vice versa. Galileo’s
response is so clever that when I first read it, I laughed out loud.

Galileo begins by making the case that we must take the words of Holy
Scripture as absolutely true since the word of God cannot be a lie. Therefore,
Joshua did command the sun to stand still to lengthen the day. With this pre-
amble it would seem that Galileo is painting himself into a corner, but surely
he is too clever for that. There follows a lesson in astronomy, Ptolemaic
astronomy. The actual and only true motion of the sun in the geocentric
system is its yearly motion through the ecliptic. The daily rising and setting of
the sun is caused by the motion of the stellar sphere, which is the source of all
diurnal celestial motions (of the moon, planets, and so forth). Thus, to stop
the day (namely, the daytime), one would have to command the starry sphere
to stop, not the sun (Fig. 4.5). To further nail his point, Galileo spells out that
since the yearly motion of the sun is from west to east across the sky, then to
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stop the sun during the day would, in fact, stop this westward drift and conse-
quently increase the eastward motion; in the end, stopping the sun actually
decreases the length of the day!

Galileo’s point is that if we take a literal interpretation of the Bible, then it
follows that (what may be called) a literal interpretation of Ptolemaic astron-
omy is in order, and that is precisely what he has done.

I believe he knew that all this was really an exercise in sophistry, but he
evidently enjoyed the game. That it was sophistry is revealed, I would argue,
by Galileo’s next move, arguing that Joshua’s command actually supports the
Copernican model.

He presents the heliocentric model this way: drawing on his discovery of
the rotation of sunspots, he makes the case that the sun’s rotation is the source
of the motions of the entire planetary system. Hence “stopping the sun”
(interpreted now as stopping its rotation on its axis) would halt all other
motions of the entire system of the planets, entailing the stopping of the day.
So Joshua’s command supports Copernicus.

How are we to assess this argument? What does he mean that the sun is the
source of motion? First, Galileo is not speaking of gravity, since we know that
he wanted gravity to be locally confined to Earth, otherwise shades of occult
powers between Earth and the moon (for example, to explain the tides) might
follow, and he was adamantly against that. Kepler had put forward his model
of magnetic powers between the sun and the planets (see Fig. 11.2), but that
too smacked of occultism for Galileo. At best, it seems, this idea of the sun as
the heart (his term) of the cosmos was more of a metaphorical model. He put
forward this idea of the sun’s rotation being the source of the motions of the
planets about this same time in an unpublished letter, but importantly he calls
it a speculation. Some scholars take this seriously, but I think it shows how far
Galileo had to stretch things in order to support Copernicus within the context
of a biblical passage.
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5
Progress Through Error: 
Stars and Quasars—How Big, 
How Far?

67

With the announced discovery of quasars in 1963, a controversy arose around
their size and distance. A very similar controversy took place in the Scientific
Revolution around the size and distance of the stars. Moreover, at the center of
each dispute were two conflicting models of the cosmos.

This story is of even more interest for a quirky reason: as implied in the title of this
chapter, the earlier discovery was grounded on a mistake. Did history repeat itself?

5.1. Copernicus and the Distance of Stars

When Copernicus adopted the heliocentric system, the relative distances of the
planets were calculated from the geometrical relations among them. This was a
direct method of obtaining such distances, unlike the ancient assumption of assum-
ing nesting spheres (see section 3.2 and Table 3.2). The distance Copernicus deduced
from the centered sun to Saturn, the last visible planet, was much less than (almost
half of) that for the centered Earth to Saturn on Ptolemy’s geocentric model. Thus,
contrary to what is often said about the difference between the “cozy” medieval cos-
mos and the modern one, the planetary system of Copernicus was actually smaller.
But this was only true for the planetary system; when he added the stars, the cosmos
expanded indefinitely. He said the entire cosmos was “vast.” Why?

In the nesting-spheres model of Ptolemy, the stellar sphere is placed just
beyond the sphere of Saturn. Copernicus, however, deduced the distance to the
stars by another method, based on the geometry of the heliocentric model.
Assuming a moving Earth, then in our semiannual motion around the sun, the
stars should visually appear to shift their position by at least the angle 2� (see
Fig. 2.4). Moreover, and importantly, the geometry implies that by measuring
this angle and knowing the distance between Earth and the sun (the astronomical
unit, 1 AU), we can deduce stellar distances. Any such relative shift in an object
caused by motion is called parallax; in this case it is stellar parallax, a parallax of
a star. But here is the rub: no stellar parallax was observed—not by ancient
astronomers, not throughout the Middle Ages and Renaissance, and not by
Copernicus. Indeed the absence of stellar parallax was seen as proof that Earth



does not move, ever since Aristarchus proposed such an idea, if not before (see
section 2.3).

Copernicus, however, turned this “proof” on its head. From Figure 2.4, note
that as the distance to the stars increases, the angle � decreases. Mentally
extended this distance indefinitely and � approaches zero. So if the stars were
extraordinarily far away, stellar parallax would be too small to be seen. This, in
essence, was Copernicus’s defense. Earth moves around the sun but we don’t see
the resulting stellar parallax because the stars are extremely far away in compari-
son with the size of Earth’s orbit, resulting in angle � being imperceptible. Hence
the cosmos is “vast.”

Of course, this is not a proof that Earth moves; on the contrary, in a sense
Copernicus was advocating changing the world (specifically, the size of the uni-
verse) in order to fit his theory. But the idea did potentially thwart the disproof of
heliocentrism. In this way, then, Copernicus enlarged the cosmos, and the idea of
an enormous distance to the stars accompanied the heliocentric system.

Astronomers, however, did not initially take up the possible reality of a moving
Earth; at most they used his system for making calculations, while ignoring the
physical implications. Only some poets and mystics were inclined to exult over a
moving Earth in an immense cosmos.

68 5. Progress Through Error

On Being Skeptical About Skepticism

The study of the history of science—and especially the way ideas taken as
common sense at one time turn out to be wrong later—may lead one to an
extreme form of skepticism, believing that all seemingly definitive knowledge
is ultimately fallible. The logic is this: since humans have been shown to be
wrong so much of the time, then they are at present probably wrong and will
continue to be wrong into the future. A person holding such a position may be
called a radical fallibilist.

But this viewpoint is not completely consistent: to be so one should be
equally skeptical about being wrong—and thus, accordingly, accept the pos-
sibility that humans may indeed be right in many cases, too. In other words,
turning things around, our certainly about the fallibility of knowledge may be
wrong. This is the standpoint I fancy. Concretely put, maybe many of our
present scientific beliefs will prove to be true for all time. (Some candidates:
the general spherical [really oblate] shape of Earth and its motion around
the sun, the path of projectiles, geometrical optics, the periodic table of the
elements, the role of DNA in heredity, the measurements of various constants
[even if not absolutely constant] of nature.) This position may be categorized
as an optimistic form of skepticism, counter to its usually more pessimistic
version.

The philosopher Colin McGinn writes of this sensibly optimistic version of
fallibilism this way: “Fallibilism says that we cannot be certain what the truth



5.2. Tycho and Parallax

In the latter years of the 16th century, the most important observational
astronomer in Europe was the Dane Tycho Brahe. Initially attracted to astronomy
through astrology, he found that the published tables predicting forthcoming
celestial events (such as conjunctions of planets) were far off the mark. So he set
for himself the goal of correcting these errors. His subsequent meticulous meas-
urements of the heavens, using very large instruments, were the most accurate
ever made, surpassing those of Hipparchus in the late ancient world. (The paucity
of astronomical measurements from the time of Hipparchus to Tycho is dramati-
cally acknowledged by Owen Gingerich, who reports that less than a dozen
observations of the planets are found in manuscripts over this long time period.)

Tycho devoted his life to making precise astronomical measurements, and his
strict empirical proclivity precluded giving credence to the reality of a moving
Earth. Nevertheless, Tycho could not completely ignore Copernicus’s work, since
it was being used for astronomical calculations. Moreover, there was the rather
elegant deduction of the planetary distances accompanying the model, something
even an empiricist like Tycho appreciated (see section 3.3); as he wrote, the helio-
centric model “expertly and completely circumvents all that is superfluous or
discordant in the system of Ptolemy.” But however much its mathematical
elegance was attractive, the model’s accompanying moving Earth was likewise
repugnant, since Earth is a “hulking, lazy body, unfit for motion,” as he brusquely
put it. Earth must surely remain fixed at the center of the sphere of the fixed stars.

If only Copernicus’s mathematical order could be preserved without resorting to
a moving Earth, something Copernicus believed was impossible. In key passages
in De Revolutionibus, on the harmonious nature of the heliocentric system, he
speaks of his “arrangement” as displaying “a marvelous symmetry of the universe,
and an established harmonious linkage between the motions of the spheres and
their sizes.” Here Copernicus is referring to the hierarchical order of the relative
distances of the planets from the sun, and the corresponding and correlating hierar-
chical periods of revolution of the planets, something that was not deduced on the
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status of our beliefs is, and this leaves room for the possibility that an enormous
amount of what we believe is perfectly sound and will never be revised (in
fact, I think this is very likely to be the case). A fallibilist cannot consistently
maintain that he is sure that our current beliefs will eventually be shown false,
since he does not think we can be sure of anything. Fallibilists tend to stress the
pessimistic possibility, but the optimistic possibility cannot be ruled out, by
their own lights.”

I think this optimistic version of skepticism and the fallibility of knowledge
is more concordant with the history of science, or, at least, my reading of it, as
I hope this book demonstrates



Ptolemaic system (see sections 3.2 and 3.3). Specifically the relative distances of
the sun, Mercury, and Venus were unknowable in Ptolemy’s model. So Copernicus
is right to point to this deduction from his system as a first. And he concludes—
this being a continuation of the previous quoted phrase—with this assertion: “Such
as can be found in no other way.” That is, he thought his arrangement was unique;
it was the only way to preserve the mathematical elegance.

In 1588 Tycho put forward an alternative cosmological model, a sort of compro-
mise between the Ptolemaic and Copernican models, in which Earth remained
fixed at the center of the stellar sphere, with the sun therefore revolving around
Earth, but the planets, in turn, revolved around the moving sun, resulting in an
asymmetrical and rather inelegant sort of motion (mentally rotate the spheres in
Fig. 5.1 and you’ll see what I mean). Tycho preferred this model because, he
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FIGURE 5.1. Tychonic system. Tycho’s geo-heliocentric model. The sun revolves around a
stationary Earth, while the planets revolve around the sun. Note that it is not drawn to scale.



wrote, it “offended neither the principles of physics [namely, a stationary Earth]
nor Holy Scripture.”

Tycho’s model was offhandedly rejected by those (such as Galileo and
Kepler) predisposed toward a more symmetrical sense of order. But there was
one important feature of the model of particular importance here: it preserved
the mathematical deductions of Copernicus. This is clearly seen in a diagram of
1619 taken from a work by Kepler (Fig. 5.2), who became Tycho’s assistant the
year before he died in 1601. This is an important diagram in the history of visu-
alization in astronomy, for Kepler shows the relative planetary distances drawn
to scale, something Copernicus never did (compare Fig. 3.9). (Kepler is the first
to draw scaled heliocentric diagrams; another one is found in the Mysterium
Cosmographicum; see Fig. 6.4.) There are details in this diagram I leave
for later (see section 6.3), but note the important element here: the depicted
(average) distances from the centered-sun to the planets correspond to the rela-
tive distances listed in Table 3.2; see section 3.2). True, the diagram depicts the
heliocentric model; indeed, Kepler was perhaps the first astronomer (even
before Galileo) to profess publicly his belief in the Copernican system. So how
does this relate to Tycho’s model? Well, a closer look reveals a dotted circle,
centered on Earth and passing through the sun, labeled (translated into English)
the “path of Tycho’s sun.” In other words (and this requires a bit of mental gym-
nastics), this is really a dual diagram, concurrently exhibiting the Copernican
and Tychonic systems, the latter probably in homage to his mentor. (When
Tycho was dying, Kepler is said to have promised to adopt Tycho’s system.) I
believe this is how Kepler interpreted the diagram, for here is what he says:
“These speculations about [heliocentric] harmonies also find a place in the
hypotheses of Tycho Brahe, because that author has everything else which
relates to the arrangements of the bodies and the combination of their motions
in common with Copernicus.” If Earth is fixed with the sun orbiting us, the
Copernican scheme for the ordering of the planets may still be applied. Tycho
was thus able to combine the mathematical hierarchy of the Copernican system
with, what was for him, an Earth-centered reality. Most importantly, this explic-
itly shows, contrary to Copernicus’s assertion, that the same relative distances
of the planets are compatible with both systems. Of course, there probably was
no way Copernicus could have conceived of this when he penned his phrase
lauding what he (erroneously) believed to be the uniqueness of his deduction.

A caveat: Bernard Goldstein of the University of Pittsburgh, supported by
Owen Gingerich, has made the case that such an argument is anachronistic.
Tycho’s system is geocentric and as such the periods of the planets must be
viewed from that perspective. As Gingerich writes, “The only way to handle the
planetary periods in the Tychonic scheme without being anachronistic is to use
the obvious reference frame provided by the earth-sun line. In that case the
planetary periods are their Synodic periods, and the numbers are (Mercury to
Saturn): 116 days, 584, 780, 399, 378 [see Table 3.1]. The pattern is far from
showing a rhythmic [hierarchical] arrangement.” (If this is not transparent, try

5.2. Tycho and Parallax 71



FIGURE 5.2. Kepler’s scaled diagram: Copernicus (and Tycho). A sketch of a diagram of the
heliocentric model drawn to scale as presented by Kepler in his Harmonices Mundi (1619).
Not only are the orbits to scale, but the eccentricities of the planarity orbits are shown to
scale (showing the range from perihelion to aphelion). These are the result of the elliptical
shape of the orbits, first discovered by him. The diagram also includes Kepler’s belief that
the planets are nested between the Platonic solids (see Figs. 6.3 and 6.4) and his homage to
Tycho, with the dotted line around Earth and through the sun, illustrating Tycho’s path for
the sun on his geo-heliocentric model.
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this: Consider Kepler’s diagram, Fig. 5.2, at the time of opposition for the Mars,
Jupiter, or Saturn. Hence a straight line—vertical in the diagram—connects the
sun, Earth, and the planet. The next time they will be lined up again would be
the next opposition, and this would constitute a “period” for the planet in this
framework. By definition, this is the synodic period. The same argument
applies for Mercury or Venus, starting with each lined up with the sun, the
planet, and Earth in the vertical line. The synodic period would constitute the
time back to the same position, this being one period for the planet in this
scheme.) Thus there is no hierarchical sequence of numbers for the periods of
the planets in Tycho’s model.

True enough. Indeed, this may be one reason that Galileo and others found the
model so odious. Nevertheless, it also is an historical fact (witness Kepler’s expli-
cation above) that the Copernican harmonies are still, so to speak, embedded
Tycho’s system. It is not only we historians who are finding (or imposing) these
numbers within the scheme. Yet I do concede—and furthermore, I hope this chap-
ter emphatically makes the case—that Copernicus’s model is aesthetically pleas-
ing—to his, and to my, mind.

A fixed Earth was the cornerstone of Tycho’s scheme. And he had further evi-
dence for this geocentric component of his model. Not only was Earth immovable
due to its ponderous physical nature, he also convinced himself that he found a
way of countering Copernicus’s case against the “disproof” of heliocentrism
based on the absence of stellar parallax. Let me explain.

Stellar distance is coupled with size. Recall that a dime held at arm’s length
covers the full moon. Hence the farther away the stars are, the larger in size
(volume) they must be (thus we apply Fig. 2.2 to a star). If Copernicus’s model
is adopted, and accordingly the stars are placed at the minimum distance
from the moving Earth such that stellar parallax is not visible, it is possible to
estimate roughly a minimum size for the stars. Tycho began by measuring the
visual angles of the stars (that is the angle of occlusion) and obtained about 2 to
3 minutes of arc for a first magnitude star (2 minutes being just about the obser-
vational limit of his very large instruments with the naked eye). Now using the
minimum distance to the stars and this angle of occlusion, Tycho was able to
estimate their size, because a most interesting deduction neatly follows from
Figure 2.4. Think of the eye now placed at the star; from the geometry, the angle
of occlusion of Earth’s orbit is 2�. Therefore the size of the star must be the size
of Earth’s orbit—namely, 2 AU in diameter—if the stars are the far enough for
the absence of stellar parallax. So Tycho deduced that if the Copernican model
were true, then the stars would have to be enormous, as large as (or probably
even larger than) the orbit of Earth itself. Unquestionably this was physically
impossible; moreover, there would be thousands of these immense objects, at
vast distances from Earth, beyond the expansive space past Saturn, which was
all too improbable, bordering on the unimaginable. On the other hand, if the
stars were closer (as entailed on Tycho’s model), they could reasonably and
conceivably be smaller and still occlude the same angle. Tycho concluded that
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this was so. “Hulking, lazy” Earth remained at rest and the stars were still of
reasonable sizes.

Tycho believed he had exposed the error in Copernicus’s defense against 
the disproof of heliocentrism, hence undermining Copernicus’s argument. 
Heliocentrism was once more shown to be false, unless, of course, one were will-
ing to accept a reality of vast celestial distances and monstrous stars. Even
Galileo (as we shall see) could not fathom the latter.
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Tycho’s Model in Motion

There were criticisms directed toward Tycho’s model from the start. Just
looking at the asymmetry of it should raise theological question about
God’s wonky sense of order. Furthermore, if you conceive of it in actual
motion, it presents a rather wobbling display of celestial rotations. (Today
we can do more than conceive this motion, thanks to computer animation;
see the Web site of Dennis Duke for this and other systems, as cited in the
notes.) The major problem at the time was the overlapping of the path of
Mars with that of the sun. At first one might conclude that these bodies
could collide; a little inspection, however, reveals that that cannot happen,
since Mars is always going around the sun. Nevertheless, there was a
related problem: because of this overlap, it was deemed impossible for
celestial spheres to rotate. As far as I know, this problem was conceived of
as fundamentally lethal to the reality of celestial spheres from Tycho
onward. Yet, recently, due to the clever insight of psychologist Howard
Margolis of the University of Chicago, this deduction has been reassessed.
Calling the problem a 400-year illusion, he argues that moving spheres are
compatible with Tycho’s model by only using spheres for each of the plan-
ets, not the sun. All planets then move around the sun on their correspon-
ding spheres while the sun, in turn, moves around Earth, its path thus
merely being an imaginary line (such as the equator on Earth). The planets
then pull the sun along its prescribed path and there is no need for the sun to
have its own sphere. Interestingly, such a model will work, but is it histori-
cally relevant? I say no. In the first place, the argument is irrelevant in that
Tycho had abandoned the use of spheres. Of course, others may wish to
retain the spheres, but even so there is still a problem. Margolis’s version
must assume that the planets have an internal source of power. But such a
model is redundant in the sense that there is then no need for spheres; why
not just let the planets move in their predetermined path? More importantly,
historically the motions of the planetary-spheres model was based on the
assumption that the cause of motion originate at the stellar sphere and this
“first cause” of motion was then transmitted between the contiguous
spheres from Saturn through Mercury. Such a physical mechanism is not
compatible with Tycho’s model.



5.3. Galileo on the Stars

In the early years of the 17th century, few astronomers (besides Kepler) believed in
the reality of the Copernican system. More were increasingly inclined toward
Tycho’s system (except for those who felt it violated their sense of symmetry), and
by midcentury it was widely used and essentially replaced the Ptolemaic model.

Galileo viewed Tycho’s system, with its asymmetrical form and corresponding
erratic and off-center motions, as cumbersome and ugly. Perhaps as early at the
1590s, and certainly by the start of the new century, Galileo was thinking more
and more from a Copernican viewpoint, especially trying to demonstrate a
physics of motion that would “work” on a moving Earth (see section 8.3). When
Kepler published his affirmation of the heliocentric model, Galileo (in a letter to
Kepler) praised his courage. But he himself did not profess it in print.

It was not until his telescopic sightings that Galileo seems to have become fully
convinced of the truth of the Copernican system, which he made public in
Sidereus Nuncius (1610), his book on the celestial revelations perceived through
his telescope. Of the many discoveries disclosed in that small but wonderful
book, one is specifically germane to the topic here. In looking at individual stars,
Galileo notes that they appear, not as uniform disks, but with distinct haloes
around them. In his words, “When the stars are observed with the naked eye, they
do not show themselves according to their simple and, so to speak, naked size, but
rather surrounded by a certain brightness and crowned by twinkling rays. . . .
Because of this they appear much larger than if they were stripped of these extra-
neous rays, for the visual angle is determined not by the primary body of the star
but by the widely surrounding brilliance.” So the visual angle does not measure
only the physical star, but the star plus its halo; measuring only the physical size,
Galileo found a first magnitude star’s diameter to be about 2 seconds of arc, about
1/24 or 1/36 of Tycho’s determination. Thus, the actual star is really much smaller
in diameter, and hence in volume too, than previously thought.

This had immediate bearing on Tycho’s “disproof” of Copernicus. The stars
need not be of enormous size to be at the required (“vast”) distance for the
absence of stellar parallax. The physical basis of Tycho’s argument, therefore, is
discredited and the disproof collapses. Copernicus’s system is no longer falsified
and thus it remains a viable model of reality.

This argument, however, does not constitute a proof of the Copernican system.
To be logically consistent, it only eliminates a disproof of the Copernican model;
proof would require further independent confirmation. Tycho’s system, for exam-
ple, is still compatible with Galileo’s discovery. Thus both systems are back on
equal empirical footing, so to speak.

What is most fascinating about this entire controversy is that it was based on
a commonly accepted “fact,” which we now know to be dead wrong, namely,
that the stars cannot be of enormous size. Neither scientist questioned this
assumption; both Tycho and Galileo agreed on the physical impossibility of an
object the size of the orbit of Earth. In his Dialogue (1632), Galileo put the
idea in the month of Simplicio, the interlocutor holding to the geocentric
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model, this way: “Such bulks are truly too vast, and are incomprehensible and
unbelievable.” This was surely the position of Galileo, too, since the
Copernican speaker never questions this “fact.”

Today we know, and freely accept, the reality of stars even larger than this. Of
course, we know that Galileo was ultimately right about the Copernican system,
and hence his disproof of Tycho was an important step toward the ultimate
acceptance of the Copernican system. Yet along this progressive path was an erro-
neous assumption about the physical nature of the stars. Hence an error was an
agent in what in the end was a correct deduction. How ironic!

(We know today there was a deeper error: the halos were diffraction rings and
that Galileo was not measuring stellar diameters, which were actually about 100
times smaller than his 2 seconds of arc.)
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Stellar Distances and Parallax

Galileo’s telescope revealed that there were many more stars in the sky than
visible to the naked eye. Where were these other stars? There were two possi-
bilities: either they were on the stellar sphere but much smaller than the other
stars, or there was no stellar sphere and they were farther away and hence just
appeared smaller. Both deductions were logically possible on the Copernican
system but not the Ptolemaic system.

On the geocentric system, where the stars and everything else in the heav-
ens must rotate once a day, the only logical framework is the stellar sphere.
Assuming the stars to be distributed in space but still rotating around us so as
to remain “fixed” with respect to each other would entail an extraordinarily
complex celestial mechanism that adjusted their motions such that their dis-
tances and rotational speeds were correlated. The model of the stellar sphere
is very much a simpler one.

When Copernicus postulated a rotating Earth to account for the daily rota-
tions of the heavens, then the fixed stars were literally fixed, not only with
respect to each other, but with respect to the fixed central sun. This meant that
it is logically possible to assume that the stars are not attached to a sphere but
that they may extend into space, and without postulating a complex mecha-
nism for their daily rotation (which was taken up by Earth). Copernicus could
have made this assumption, but he did not; instead, he elected to keep the stel-
lar sphere in his system. (Incidentally, Kepler too remained committed to the
stellar sphere.) But others who adopted the heliocentric model, such as the
mystic Giordano Bruno, freely seized on the idea of the stars extending into
space, and espoused an infinite universe. This led to the speculation that our
sun was just another star and that the stars were really other possible planetary
“worlds” in an infinite universe, which was surely science fiction for the times.

Thus when Galileo viewed numerous additional stars beyond those
amenable to naked eye observation, the possibly arose that these other stars



5.4. Quasars and Cosmology

There is a most interesting parallel between the debate over the sizes and dis-
tances of the stars from Tycho to Galileo and one that took place in the 1960s
and after, with the discovery of quasars. First appearing on radio telescopes as
point-like (and therefore star-like) sources of radio energy, they were initially
called “quasi-stellar objects,” from which the shorter term quasar came. Later
they were seen through optical telescopes too. What struck (and even dazzled)
astronomers was the fact that quasars seemed to embody an enormous amount of
energy (comparable to millions of stars) in a relatively small space (like a star).
With so much energy, they could not be stars. But they were not galaxies either,
for it was soon noticed that they changed in brightness over short periods of time
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were farther away than the visible ones, thus supporting the elimination of
the stellar sphere. What was his position on this? In the Dialogue he has the
Copernican say, “I do not believe that the stars are spread over a spherical
surface at equal distances from one center; I suppose their distances from us
to vary so much that some are two or three times as remote as others.”
Indeed, from this he proposes a way of measuring stellar parallax, using a
more distant star as a reference point to measure the motion of a nearer one.
Nevertheless, the fundamental conceptual framework of the Copernicans
system, as presented in the Dialogue, is based on circularity, both for terres-
trial and celestial motions, as I show in some detail (see section 8.4). A stel-
lar sphere, accordingly and fittingly, complements this, providing the
endmost circular framework holding the universe together. In a letter he once
wrote, “It is as yet undecided (and I believe that it will ever be so for human
knowledge) whether the universe is finite or, on the contrary, infinite.” In the
end, it seems, he remained ambivalent.

Ultimately, through the works of especially René Descartes and Isaac
Newton, the infinite universe prevailed. By the 18th century it was the
accepted picture of the cosmos, along with the Copernican system for the
planets. It was not until 1838 that the mathematician-astronomer Friedrich
Bessel discovered a small parallactic shift (0.3 seconds of arc) in the star 61
Cygni, in the constellation Cygnus (the swan). Having found parallax, it was
now possible to calculate directly stellar distances by measuring the parallax
of a star against the background of the other fixed stars (measuring � and
knowing 1 AU in Fig. 2.4, the star’s distance is deduced). The star 61 Cygni
turned out to be about 11 light-years away (using the distance-measurement
scale later adopted). Over the course of the 19th century, further parallactic
shifts were measured and the celestial distances increased greatly. Science
fiction was transformed into factual science as Copernicus’s “vast” space was
at last being surveyed.



(from weeks to months), and it is impossible for a galaxy to pulse this way (for
example, it takes about 100,000 years for light to get from one end of our galaxy
to the other, and our Milky Way is of modest size). In other words, these objects
seemed to possess the energy of a galaxy within about the volume of a star. It
was as if an archaeologist found a fossil in an unsuspected place, and the fossil
did not fitting anywhere in the taxonomic system. Totally unexpected and unpre-
dicted, the first quasars were announced in 1963.

A personal anecdote: I was an undergraduate student majoring in physics and
mathematics at the time of this discovery, and I can still recall the hoopla about
quasars. I attended a lecture on these strange quasi-stellar objects by an undoubt-
edly eminent visiting physicist/astronomer whose name I don’t recall, but I do
remember that he proposed a mechanism for their energy based somehow on
gravitational forces. From the lecture and the ensuing discussion, I had the sense
that the scientists were merely groping for an answer.

Subsequently dozens more and ultimately thousands of quasars were found
over the years, along with an important discovery: their light shifted toward the
red end of the spectrum, exhibiting redshift. What did this mean?

By the early1930s Edwin Hubble and his assistant, Milton Humason, working at
Mt. Wilson observatory, had shown that the light from most of the galaxies exhib-
ited redshift (although they were not the first to observe this) and importantly they
found a correlation between this redshift and the distances of the galaxies.
(Hubble really spoke of nebulae, because the distinction that we use today
between nebulae and galaxies was not yet made.) The result was a nearly linear
relationship between the redshifts and the distances to these galaxies (see section
12.3). As to the origin of the redshift, one candidate was the Doppler shift.
Although this analogy between light and sound was questioned in the 19th cen-
tury, the optical Doppler effect was reinforced by Einstein’s relativity theory in
1905. Not only did he postulate that the speed of light was independent of the
motion of the source (as was true for sound waves), but (not often recognized) he
deduced from electromagnetic theory a relativistic (optical) Doppler effect. As
relativity was eventually embraced by the community of physicists, so was the
optical Doppler principle. That did not mean, however, even as late as the 1930s,
that the redshifts of the galaxies were indeed identified as Doppler shifts. Not
only Hubble had doubts; the astronomer and physicist Fritz Zwicky at the
California Institute of Technology admitted the validity of the optical Doppler
effect locally, but questioned applying it to the total universe. Recognizing that
light is bent by gravity in general relativity (see section 1.1), Zwicky made the
argument that light, as it travels though space at a finite speed over eons of time,
may be retarded as it recurrently passes and is bent by large masses; he called this
“the gravitational drag of light” (it was later called by others the “tired-light”
hypothesis). Zwicky proposed another interesting objection (interesting from
today’s viewpoint, I think): since Einstein had not completed the unified field the-
ory (see Chapter 1), then general relativity is incomplete, perhaps only locally
valid, and therefore any deductions about the total universe are uncertain. (Well,
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the unified theory is still incomplete today and yet general relativity forms the
foundation of present-day cosmology.)

For those others in the early 1930s who accepted the redshifts of the galaxies
as Doppler shifts, this redshift was a measure of recessional velocity, a result
eventually called Hubble’s law (see Fig. 12.2). Written as, v � Hd, it is a simple
linear relationship, where v is velocity and d is distance, with the constant H
(after Hubble). Moreover, it followed from this that the universe (conceived of as
composed mostly of galaxies) would be expanding in time, a deduction that fit
into one of the variations of Einstein’s theory of general relativity (see section
12.4). In the 1930s, therefore, there was a loose consensus among cosmologists
holding to this model of an expanding universe but not without some self-doubt.
One key source of doubt was the contradiction between a deduction from the
model and an apparent fact from another branch of physics. In Hubble’s law, 1/H
has the unit of time, and hence it is possible to deduce the age of the universe—
that is, the time of expansion—from the law. The result was under 2 billion
years, which may seem to be a reasonably large number. But it was not large
enough, since physicists using radioactive decay to date the age of Earth were
getting numbers around 3 to 4 billion years. Earth being older than the universe
would be analogous to you being older than your mother. The result was a dead-
lock: two branches of physics seemed to contradict each other. The doubts about
the redshifts by Hubble and Zwicky, among others, were thus justified.

In 1946, three young Cambridge scientists attended a ghost movie titled Dead of
Night, in which five stories were linked such that the film’s beginning became
the end; time was in a loop. Supposedly inspired by this, they published in 1948
a paper boldly putting forward an alternative cosmological model, chiefly to
resolve the contradiction in time scale entailed in the expanding model. Named
the steady-state model, it assumed no beginning or end to the universe (a view,
incidentally, that goes back, at least, to Aristotle). Matter is minutely but contin-
ually being created in the space left by the receding galaxies, so that over a long
time scale, the universe looks essentially the same. This solved the problem of
Earth’s age versus that of the universe; it also eliminated the need to postulate a
beginning—an extra-scientific feature of the expanding model, which some
viewed as more theological than scientific. Finally, in a display of rather sopho-
moric exuberance, one of them bestowed on the rejected expanding model a
derogatory name—the Big Bang model, an appellation that unfortunately stuck.
The term is unfortunate in another way (independently of sexual innuendos):
the “bang” suggests an explosion at the beginning of the universe (a popular mis-
conception). The model, however, implies no such thing; instead, in the begin-
ning all the energy (and space and time) is compacted together, after which the
expansion proceeds as space and time arise concurrently with energy converting
to mass (E � mc2)—all this going on continuously. An analogue: a balloon
blowing up does not begin with a bang (although it may end as such).

In the 1950s cosmologists had a choice between these two universes. Both the
steady-state and the Big Bang models had staunch adherents throughout the decade
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and into the next, even after the contradiction in time scale was eliminated. In the
mid-1950s, using data mainly from the large telescopes high in the California
mountains (e.g., Mt. Palomar), Hubble’s law was recalibrated, with a corresponding
change in the value of H; in Figure 12.2, the slope decreased. As a result the uni-
verse’s age on the Big Bang model increased considerably, to 10 billion years and
more. At that time Earth’s age was measured at about 4.5 billion years, and so the
contradiction was no more. Nonetheless, for mainly conceptual, aesthetic, and per-
haps even theological reasons, many cosmologists still found the steady-state model
appealing.

Incidentally, Hubble died in 1953, just before the time scale was extended. A
study of his writings from the 1930s to his death indicates that he never accepted
the redshift of the nebulae as a Doppler shift, and hence he rejected the expanding
universe. As a confirmed empiricist (rather like Tycho), he felt the model went
beyond the data. We can only speculate about what he would have thought after
the contradiction was removed.

Which brings me back to quasars. When they were discovered, the conflict
between the two models came to the fore, since quasars exhibited redshift.
Indeed, their redshifts were extremely large (at first about one-fourth the speed of
light; later some were found close to the speed of light); using Hubble’s law, this
placed them at extreme distances, perhaps near the creation of the universe on the
Big Bang model. Quasars surely were strange objects of tremendous energy,
compact and pulsing, perhaps over 10 billion light-years away—and still visible,
no less. Predictably, the question arose: How can such gigantic objects, which
seem to defy the present laws of physics, even exist?

Sound familiar? Indeed: this question is an analogue to that put forward by
Tycho on the nature of the stars on the Copernican model. His answer was that the
stars are in fact much closer and hence not so large as to defy physical reality, and
accordingly, Earth was at rest at the center of the cosmos. So, in the 1960s an
answer to the problem of the quasars was, likewise, that quasars are much closer
and hence need not require so much energy as to contradict the present physical
laws. This also meant that redshifts were not Doppler shifts. Such a viewpoint
contradicted the Big Bang model but was compatible with the steady-state model.
This tilted the evidence in favor of the steady-state model, although the issue of
explaining redshift was a liability. Hypotheses to explain away redshift were put
forward, such as assuming redshift in quasars was due to internal forces (maybe
gravitation) “stretching” the light toward the red end of the spectrum; in any case,
this assumption was seen as less a “stretch” of the imagination than the enormous
energy required for the quasars being 10 to 15 billion light-years away. Does this
also not sound familiar? Recall, for example, the arguments of Zwicky in the
1930s to get around the problem of redshift. By the mid-1960s it seemed that the
steady-state model had won the day.

Then in 1965 another empirical discovery was made. Like the discovery of
quasars, this too was unexpected, but as it turned out, this one was not unpre-
dictable. Throughout space, in all directions, it was discovered that the cosmos
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seemed to be filled with microwave radiation. An antenna tracking signals from
satellites detected this radiation as background noise. The measured temperature
(�273° C) was found to fit the Big Bang model as residual energy “left over”
after billions of year. This radiation (sometimes erroneously referred to as an echo
of the Big Bang) was predictable (in the sense that it fit previous calculations of
the Big Bang model made in the 1940s), although no one had thought to follow it
up by actually looking for it! So the discovery was made, by accident. It became
known as cosmic background radiation. Because of the mathematical fit, there
was much incentive to establish it as evidence for the Big Bang model.

In time the Big Bang was eventually the dominant model, but its acceptance was
not immediate, contrary to what is often proclaimed in textbooks. Well into the
1970s and later, there were still sundry astronomers questioning whether redshifts
are Doppler shifts and staunchly supporting the steady-state model. It seems that it
was not until around the 1980s that a consensus was reached among astronomers
supporting the Big Bang model, with cosmic background radiation as the main
evidence, and that those still holding to the steady-state model were increasingly
viewed as retroactive cranks. In 1980, for example, in a summary article written
for the journal Science, the celebrated astronomer, Vera Rubin, who, incidentally,
was the first woman permitted to use the great telescope on Mt. Palomar, felt con-
fident enough to write, “Most astronomers accept as a model a universe which has
expanded and cooled from an initial hot, dense state.” At most she made a passing
reference to the alternative model. In a subsequent issue of the journal, a letter
appeared from a supporter of the steady-state model doubting her assertion that
“most astronomers” accepted the Big Bang model and the corresponding explica-
tion of redshift. But this was increasingly a minority view, and by the mid-1980s
only a few established astronomers clung to the steady-state model.

An aside: I wish to point out that the late Fred Hoyle, one of the creators of the
steady-state model, although considered wrong on this today, was right about
something else; namely, his postulate, with others, that the heavier elements in the
periodic table were formed by the nuclear processes in supernovae.

So what of the analogy with Tycho and Galileo? Can we carry it any further,
into the story of quasars? Prima facie, it breaks down; although the two stories are
parallel, history does not seem to be repeating itself. The shift to the Big Bang
model was not the result of a discovery about the size of the quasars, as happened
with the conversion to Copernicus. Rather, it seems that, supported by cosmic
background radiation, the Big Bang model rode roughshod over the steady-state
model and won the day by a slow inculcation. But the problem of the energy of
the quasars remained, and I think this was one reason why the adoption of the Big
Bang took so long, despite the evidence from cosmic background radiation, so
that those supporting the model fumbled around to devise mechanisms to explain
it. (And there have been, and continue to be, many explanations: the latest, as I
write this, is that quasars are the result of Black Holes sucking stars from the cen-
ter of galaxies, with the stars giving off intense energy due to the conversion of
mass to energy as they accelerate into the Black Hole.)
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Is this where the parallel ends? So far no error that we know of has led to
progress apropos the place of quasars in the universe. But we are too close to the
events to see things clearly. The issue of the source of the quasar’s energy needs
to be settled before we can dismiss the historical parallel entirely. I believe the
drama is not over.

82 5. Progress Through Error

More Thoughts on Skepticism

One dominant mode of skepticism in Western thought is the humanist thread
based on logic and epistemology from the pre-Socratics to the present, asso-
ciated primarily today with academic philosophy: the ideas of Descartes,
Hume, Kant, et al. Another variation, but not always independent of the dom-
inant mode, I call theological skepticism; it is based on the Judeo-Christian
premise that God’s knowledge is infinite and infallible, whereas human
knowledge is finite and subject to doubt, however certain we may think we
are about something. Pope Urban VIII expressed this humility and intellec-
tual diffidence in the face of God in his famous meeting with Galileo (when
they were still friends), requesting that Galileo put this theological maxim in
his book. Galileo did so, only he placed it at the end of the Dialogue (1632)
and in the mouth of Simplicio, the discredited spokesman for Aristotle and
Ptolemy. The insult, in part, led to Galileo’s trial before the Inquisition.

An interesting modern variant of skepticism comes from Charles Darwin.
Of course, he was no skeptic when it came to evolution, but he did express
self-doubt about his certainty on things theological. It appears in his short
autobiographical essay where, appropriately, he is discussing the existence of
God. His argument is this: since humans evolved from primates, we are still
linked with them and their primitive ways; we have, in other words, not yet
evolved very far, and hence we cannot be fully secure in our knowledge of
things. Darwin explains his doubt this way: “Can the mind of man, which has,
as I fully believe, been developed from a mind as low as that possessed by the
lowest animal, be trusted when it draws such grand [theological] conclu-
sions?” The parallel with theological skepticism is most interesting; the
human limit with respect to the Divine (below the angels, above the beast) is
now replaced with the human limit in light of its “recent” evolution from (and
hence not far above) the lower creatures.

I would add one more version: my own, which I call historical skepticism.
The meaning should be quite clear for anyone reading this book. The study of
history reveals the vicissitudes of certainty, knowledge, and belief, and thus
inexorably leads toward a healthy (I believe) skepticism about most things,
tempered, however, with my own doubt about my doubting (see On Being
Skeptical About Skepticism, section 5.1).
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6
The Data Fit the Model 
but the Model is Wrong: Kepler 
and the Structure of the Cosmos

85

I may be going out on a limb, but I’m convinced that science often is daydream-
ing constrained by reality (and logic). I hope this chapter convinces you of this
outrageously sounding proposition.

6.1. Neutrinos and Sydney’s Opera House

When I was a student in the 1960s reading art history, I came across something
I found odd. Pictures of the Sydney Opera House in Australia were always repro-
duced as drawings or scale models, not photographs. A little research quickly
explained why: the building did not exist. The following musings are grounded on
that discovery.

In 1930 a problem arose in physics centered on experiments involving something
called beta decay. Beta particles were really fast-moving electrons emitted by the
nuclei of radioactive material. The problem with beta decay was that the energy
before and after the decay was not the same. This seemed to contradict the law of
the conservation of energy. Established in the 19th century, the law asserted that
during all processes in nature (such as, say, transforming water into steam), the
energy before and after the change was the same. The law was modified in the early
20th century to accommodate Einstein’s E � mc2, but otherwise remained one of
the foundations of all physical as well as chemical processes. How could beta decay
be explained without violating a law of nature?

The physicist Wolfgang Pauli proposed a solution. It came in the form of a
letter sent to a conference on radioactivity, a conference that he did not attend
because he was needed—he said he was “indispensable”—at a ball. He referred
to his solution as “a desperate way out” of the problem. Briefly put, he postulated
the existence of an as-yet-unknown particle that carried just the right amount of
energy to balance the conservation equation. At the time only three elementary
particles were known to exist: the electron, the proton, and the photon (or quan-
tum of light). The radical nature of this postulate for the time is revealed by the
reaction of Niels Bohr, who had put forward the quantum explanation of the atom



in 1913. Bohr was more comfortable abandoning the energy conservation law in
nuclear processes than in adding another particle to the physical world.

Pauli originally called his particle a “neutron,” since it entailed only a very
small quantity of mass (and therefore energy); otherwise it was neutral, that is,
without electrical charge, unlike the electron (negative) and proton (positive). But
by 1932 the term was usurped when the “real” neutron was discovered, and hence
another word was coined for Pauli’s particle: Enrico Fermi called it a “neutrino,”
from an Italian word for a little neutral object.

Of more than passing interest are the tumultuous events in Pauli’s life at the time
of his “desperate” solution. He was distressed by the recent suicide of his mother,
he had divorced his wife several days before writing the letter, and he was drinking
heavily. Two months before he died in 1958 he recalled the now-famous letter, and
called the neutrino “that foolish child of the crises in my life.” Foolish or not, ulti-
mately the neutrino was eventually found in nature, providing a Nobel Prize for
two experimental physicists, Fred Reines and Clyde Cowan. Today talk of neutri-
nos is as commonplace among physicists as electrons and protons, along with
quarks and other fundamental things. But—and here is the crux of the matter—the
experimental confirmation, which was transmitted by telegraph from Reines and
Cowan to Pauli (“We are happy to inform you that we have definitely detected
neutrinos”), is dated June 14, 1956, that is, 26 years after Pauli postulated his
“foolish child.” In the meantime the neutrino existed only as an entity in scientific
writings; nevertheless, its eventual physical being was seldom doubted because
few scientists (beyond Bohr) were willing to tinker with the law of energy conser-
vation. Over those years, the neutrino existed, but only on paper.

In September 1955 an architectural competition was announced in the city of
Sydney for designs for a center for the performing arts. In December 1956, about
six months after the discovery of the neutrino, the winner of the competition was
announced, Jørn Utzon of Denmark. From the start it was a controversial deci-
sion; the design seemed frivolous, disorderly, and unworkable. Yet Utzon insisted
there was an underlying order to the proposed arching vaults, that they were, in
fact, individual sections of a sphere, he claimed. Ground was broken in 1959 but
the work was not completed until late in 1972 with the official opening in October
1973—almost 17 years after Utzon received the commission. (There were numer-
ous delays and setbacks. Utzon quit at one point. Indeed, the project was almost
terminated several times.) Throughout that period the existence of the Center for
the Performing Arts (later shortened to the Sydney Opera House) was confined to
art books, as I discovered sometime in the 1960s.

Both the neutrino and the opera house existed on paper between their conceptu-
alizations and eventual realizations for the same reason—some imagery is so
good that it must exist. A conservation law in science is essentially a law of
harmony, a balance between two entities; the latent neutrino preserved that equi-
librium. The potential opera house was a marvelous example of an antifunctional
piece of contemporary architecture suited for inclusion in an art book (Sigfried
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Giedion, in the 1967 edition of his classic, Space, Time, and Architecture,
devoted over 15 pages to it).

And this leads me to the main story of this chapter, on Kepler and the structure
of the cosmos.

6.2. Kepler and God’s Mind

In March 1610, Johannes Kepler, “Imperial Mathematician” to Rudolf II in
Prague, received a report that Galileo discovered four new “planets” using a “per-
spicillum” (later called a telescope, note its etymological connection with perspec-
tive). Kepler was sure these “planets” were not objects on a par with Venus,
Jupiter, and the like, but rather were smaller “moons” circling the planets, like our
moon. (As an aside, Kepler later coined the term “satellite.”) Being a Copernican
and therefore thinking of the universe as homogeneous, he presumed that Galileo
had discovered a moon around each of the planets, from Venus through Saturn; he
further surmised—Kepler was prone to excessive speculation on meager data—
that Galileo did not yet see the moon of Mercury because the planet is so close to
the sun. Later, after obtaining a copy of Galileo’s Sidereus Nuncius, Kepler learned
that he was correct in his deduction of the “planets” actually being moons; how-
ever, Galileo had found that all four moons circled Jupiter alone. Ah ha! This sent
Kepler now thinking this way: since Earth has one moon and Jupiter four, then
probably Mars has two and Saturn has either six or eight; as well, Mercury and
Venus have one each. To be sure, Kepler was thinking in terms of sequences: 1, 1,
1, 2, 4, 6 or 1, 1, 1, 2, 4, 8. Nature was ordered; in particular, this order was math-
ematical (either arithmetical or geometrical), having its ultimate origin in the mind
of God. Kepler’s science, as we will see, was a branch of theology.

Interestingly, Kepler’s prediction was partially correct: Mars does have two
moons, which (being so small) were not discovered until the late-19th century.
Moreover, so far as we know, it has only these two (Demos and Phoebus), whereas
Jupiter and Saturn have several dozen each, as we have found in recent years.

Let us back up about 11/2 decades to Kepler’s first work in astronomy. As a student
at the University of Tübingen in Germany, Kepler was enrolled to study theology
with the goal of entering the Lutheran church. But he also excelled in mathematics,
and at about the time he obtained his master’s degree, a teaching position in
mathematics (which included astronomy) opened at an affiliated seminary in Graz,
Austria. Kepler was recommended for the job since he was the best-qualified
student, but he balked at the offer because astronomy was not his chief interest. As
well, he said it was his worst subject; he received an A�, whereas all his other
grades were As! Nevertheless, he was eventually persuaded to accept the job.

The move sealed his fate. Although his duties at Graz were more astrological
than astronomical (he cast horoscopes to predict the weather and the like), they
were not onerous, and he had much spare time in which to think—and think he
did, about astronomy. The astronomy he was asked to teach was, of course,
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geocentric—Ptolemy’s system. But Kepler’s teacher at Tübingen had exposed
him to Copernicus’s heliocentric model, and he was especially attracted to it. So
the astronomy he was contemplating (but not teaching) was Copernican, and this
deliberation eventually led to his first book, published with money out of his own
pocket.

The key idea in the book grew out of his belief in a mathematical order of the
universe coupled with a “fortuitous” (Kepler’s word) event in July 1595. Most of
that summer Kepler had been pondering this question: Why are the planets at
their relative distances from the sun (based on, of course, the Copernican sys-
tem)? To answer this he was looking for some pattern to the numerical sequence
for the planets from Mercury to Saturn, setting Earth–sun distance to 1 AU: 0.36,
0.72, 1, 1.5, 5, 9 (see section 3.2 and Table 3.2). He assumed there was an arith-
metical law embedded in it (as we saw he would later do with Galileo’s moons).
But nothing worked and he “wasted” (he tells us) the summer on it. Then, he
writes, “I thought it was by divine intervention that I gained fortuitously what I
was never able to obtain by any amount of toil; and I believed that all the more
because I had always prayed to God that if Copernicus had told the truth things
should proceed in this way.” The latter clause is crucial to understanding the mind
of Kepler. As a way of testing the validity of the Copernican model, he made a
wager with God, who would give him a sign if heliocentrism were true.

The sign came in the form of a geometrical diagram. While teaching a class
on the conjunctions of the planets Saturn and Jupiter, which occur almost every
20 years, Kepler drew a diagram showing where the conjunctions occur along
the zodiac, namely a little less than 240° apart. (Since Saturn’s period is
30 years, and 20/30 � 240/360, then each conjunction occurs along the Zodiac
almost every 240°.) If it were exactly 20 years, the result would be an equilat-
eral triangle. But being a bit less than 20 years, there results a series of quasi-
triangles as in Figure 6.1. What struck Kepler about this diagram was the
approximate circle that was inscribed by the quasi-triangular lines.

This led him to another image: if an equilateral triangle is inscribed in a circle
and another circle within it (Fig. 6.2), then the ratio of the radii of the two circles
is fixed at 2 to 1 for all cases, independently of the absolute sizes of the circles.
(I leave it for the reader to prove this; hint, think of similar triangles.) Now 2 to
1 is close to the ratio of the distances of Saturn and Jupiter, namely 9 to 5.
Perhaps God used such a geometrical pattern for fitting the planets in their
orbits? Kepler’s mind, as always, raced ahead: so next would be Jupiter to Mars,
and the fitting of a square; then Mars to Earth, and a pentagon, and so forth to
Venus and Mercury, with corresponding polygons within the spacings. When he
tried fitting a square between Jupiter and Mars, the ratio of the radii of the outer
to inner circles (1 to 1/√–2; or 1 to 0.707, setting the outer radius to unity) was
nowhere near the predicted value (5 to 1.5; 1 to 0.333). He tried combinations of
polygons (e.g., a square within a triangle), but this didn’t work, either; nor did
adding pentagons, and, hence, after much toil, he gave up on this “useless
attempt” to penetrate the mind of God. Neither arithmetic nor geometry seemed
to unveil a cosmic pattern.
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Just as he was about to abandon the entire project, something clicked. He real-
ized that not only was he searching for the reason for the distances of the planets,
but a parallel question arose: Why are there just six planets, “rather that twenty or
a hundred”? This pattern of circles within polygons implied that, using one poly-
gon between each planet, the total pattern required only five figures. Moreover,
although he had been trying to fit polygons to circles, for the planetary system
itself the mathematical forms were really three-dimensional, or as Kepler put it,
“solid bodies” between “solid spheres.” The idea of five solid forms, “for anyone
having a slight acquaintance with geometry,” Kepler reminds us, “there would
immediately come to his mind the five regular solids.” Of course, the so-called
five Platonic solids! As Euclid proved, these are the only regular (symmetrical)
solids that are formed by using just one polygon for each face (Fig. 6.3). Since
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FIGURE 6.1. Kepler: the conjunctions of Jupiter and Saturn. A sketch of Kepler’s geometri-
cal diagram of the conjunctions of Jupiter and Saturn from which he conceived of the nest-
ing of the spheres between geometrical forms (see Fig. 6.2).



ancient times these five forms were symbols of perfection. Kepler reports he then
“made a vow to Almighty God” that if this scheme worked, he would write a
book (“I would proclaim among men in public print this wonderful example of
his wisdom”). And it did work! It was as if he had found the answer to the ques-
tion as to “what hooks the sky is hung on to prevent it from falling,” as he
metaphorically put it.

And so it was that Kepler published his first book, in 1596: the complete title
(in English) being, “Forerunner of the Cosmological Essays, Which Contains the
Secret of the Universe (Mysterium Cosmographicum); On the Marvelous
Proportion of the Celestial Spheres, and on the True and Particular Causes of
the Number, Size, and Periodic Motions of the Heavens; Established by Means
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FIGURE 6.2. Kepler: fitting polygons between the planets. An example of the concept of
nesting planets, in this case in 2D. Using an equilateral triangle results in a unique ratio for
the sizes of the circles. Nonetheless, the ratios of 2D polygons did not fit the planetary
data, so Kepler tried 3D forms.



of the Five Regular Geometric Solids.” Historians simply call it Mysterium
Cosmographicum, which entails the notion of cracking the mystery or secret of the
shape or pattern (or cosmography) of the cosmos. In essence Kepler found God’s
archetype.

The preface begins, “It is my intention, reader, to show in this little book that the
most great and good Creator, in the creation of this moving universe, and the
arrangement of the heavens, looked to those five regular solids, . . .and that he fit-
ted to the nature of those solids, the number of the heavens, [and] their propor-
tions”—a scheme easily visualized with a diagram (Fig. 6.4). The outer sphere is
Saturn’s, with the cube between it and Jupiter’s sphere; the tetrahedron is next,
followed by Mars’s sphere; between it and Earth is the dodecahedron; after that
the diagram is difficult to differentiate, since the planets converge quickly, but the
icosahedron is between us and Venus; with lastly the octahedron between Venus
and Mercury, thus completing the pattern. (Figure 5.2, which was published a
later book [1619], is helpful here, since the relative distances are more easily
seen. Of course this diagram came after Kepler discovered the elliptical paths of
the planets, and hence embodies this fact.) Note that Kepler has some wiggle
room to fit the model to the data; remember that ratios, such as 9 to 5, are only
averages, since the planets still require eccentrics and small epicyclets for the
model to fit the data accurately (see section 3.3). Although he speaks of solid

6.2. Kepler and God’s Mind 91

FIGURE 6.3. The five platonic solids. The 3D forms eventually used by Kepler, the Platonic
solids. These are the only 3D forms that have a unique polygon for each face and are sym-
metrical. They are the cube (or hexahedron: i.e., having six units or sides), dodecahedron
(12 sides), tetrahedron (four sides), octahedron (eight sides), and icosahedron (20 sides).



FIGURE 6.4. Kepler: the cosmic secret. A sketch from Kepler’s illustration of the nesting of
the five Platonic solids between the orbits of the six planets in his Mysterium
Cosmographicum (1596). I have added the bottom diagram, since the nesting quickly con-
verges toward the center (sun), and in the top diagram it is difficult to see the icosahedron
between Earth and Venus, and the octahedron between Venus and Mercury.
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spheres and solid (Platonic) bodies, it is questionable whether he is conceiving of
actual physical things. More likely he was using the term simply to imply three-
dimensional forms. We know that Kepler, as did Tycho, had serious doubts about
the reality of crystalline spheres holding the planets in their orbits. He would
eventually conceive of another mechanism, based on powers between the sun and
the planets, controlling the motions of the universe, this being the first “celestial
physics” (Kepler’s term). All this, however, came later and perhaps at the time of
the Mysterium he was still hedging his bets (see section 11.1). 

Perhaps the most interesting aspect of the model is how it harkens back to the
nesting spheres concept of Ptolemy, which, recall, Copernicus had eschewed by
deducing directly the relative planetary distances (see sections 2.3 and 3.3). How
ironic that Kepler reintroduces this similar conceptualization of the universe. In the
end, the important empirical question is: Does the model fit the data? 

Before looking at how well Kepler’s scheme actually worked, let’s consider
some of the constraints entailed in the task. First are the given ratios of the
outer and inner spheres for each of the five solids. This follows from geometry
alone. For the tetrahedron it is 1 to 1/3 (or 1 to 0.333), where the outer radius
is set at unity. For the cube and octahedron, the ratios are both 1 to 1/√–3 (or
1 to 0.577), the identity of which is certainly not intuitively obvious. Neither is
the fact that the ratios for both the dodecahedron and icosahedron are also the
same, namely 1 to 1/√–

15 � 6√−5) (or 1 to 0.795). Only three ratios, therefore, are
available for fitting the five solids within the six planets, thus limiting at the
start the model’s ability to fit the data. The project may appear hopeless at this
point, yet it did not stop Kepler. 

Now, what were the data? Using Book V, Chapters 9 to 27 of Copernicus’s
De Revolutionibus, Kepler first compiled the numbers for the range of distances
of each planet from the sun (namely, the aphelion and perihelion, the closest and
farther points, respectively) using Earth to sun distance as unity (the astronomical
unit). To convert these data to ratios that would correspond to the ratios of the
solids, he used (for example), the inner number for Jupiter set to unity over the
outer number for Mars, and got 0.333. Clearly this meant that the tetrahedron was
placed between these two planets. Completing this task with Copernicus’s data
resulted in the ratios in sequence as follows:

Saturn 0.635 Jupiter 0.333 Mars 0.757 Earth 0.794 Venus 0.723 Mercury

This left Kepler with obvious placements, some options, and a problem.
As seen, the tetrahedron was a no-brainer: it fit between Jupiter and Mars. Also

both 0.757 and 0.794 are closest to 0.795, so (from above) the dodecahedron and
the icosahedron should be placed between Mars and Earth and Earth and Venus,
but in which order? At some time during this exercise in fitting the model to the
data, Kepler came upon this geometrical attribute of the solids: the five may be
subgrouped into two classes as follows. At any vertex of the cube, tetrahedron,
and dodecahedron three faces meet, whereas four faces meet for the octahedron
and five for the icosahedron. Moreover, for the first group, each has a different
polygon for faces (namely, a square, triangle, and pentagon); for the octahedron
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and icosahedron all faces are triangle. Hence, in a throwback to geocentrism,
which, incidentally hearkens back to Ptolemy’s rationale for placing the sun
between Venus and Mars (see section 2.2), Kepler used Earth to separate these
two classes of solids; thus he placed the dodecahedron between Mars and Earth
(since the tetrahedron was between Jupiter and Mars) and therefore the icosahe-
dron was between Earth and Venus.

This therefore forced the cube between Saturn and Jupiter and the octahedron
Venus and Mercury. But 0.577 was not very close to 0.635 (for the former) and 0.577
is nowhere near 0.723 (for the latter). Nevertheless, these were all that remained and
they had to fit; that is, they had to fit if this was the scheme in the mind of God in the
beginning. That, however, was not in doubt: “For certainly it cannot be accidental
that the proportions of the solids are so close to these [planetary] intervals”—well, at
least some of them are.

As we know, the final placement (Fig. 6.4) set the sequence this way:

Saturn cube Jupiter tetrahedron Mars dodecahedron Earth icosahedron Venus octahedron
Mercury

So, how did Kepler justify the placements of the cube and octahedron? For the fit-
ting of the cube between Saturn and Jupiter he acknowledges the “undue discrep-
ancy” (0.577 versus 0.635), but he dismisses the problem with this remark
(which, frankly, I cannot make sense of): “However[,] at such a great distance
[from the sun this] should surprise nobody.” Recall Ptolemy’s contention that the
planetary motions get more complex near the center; Kepler seems to be arguing
something like the opposite, that the order may begin to break down farther from
the central sun.

Lastly, there is the fitting of the octahedron between Venus and Mercury,
where he does admit that the numbers are much too far apart (0.577 vs. 0.723)
to be correct. Kepler, here, makes everything fit by modifying the model. As in
the other cases, the outer sphere still touches the vertices of the solid, but here
he changes the placement of the inner sphere; instead of touching the faces of
the octahedron it touches the sides of the square within the octahedron. This is
seen in Figure 6.5, where I have drawn a triangle whose base is half of the
square within the octahedron, and the hypotenuse is one of its faces. The height
of the triangle is set as unity (the radius of the outer sphere) and the base is then
the radius of this new inner sphere, which is 1/√–2, rather than 1/√–3. Thus, 1 to
1/√–2 is 1 to 0.707, which is a rather good fit, much closer to 0.723 than the
former 0.577. Indeed, under this scheme all the solids between the planets fit
the data within 5% accuracy, except for the cube. These were the hooks in the
sky upon which the Creator hung the planets—in a word, God’s archetype
according to Kepler.

One may scoff at Kepler’s naïveté with this scheme. How could the great
astronomer, who went on to discover the three laws of motion found in every
mechanics textbook today, take such fudging seriously? In his defense, one could
make reference to more recent examples of similar manipulations of data to fit
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preconceived schemes. An example that comes to mind is the way physicists tried
to find some mathematical order to the subatomic particles. Before World War II
only the electron, proton, and neutron (along with the photon) were known to
exist, and from them the chemical elements were constructed. In 1930 Pauli pre-
dicted the neutrino, as discussed above. In 1935 another particle (the muon) was
predicted, but not detected until after the war. The new particles (the muon, pion,
and later neutrino) were initially found in cosmic rays, but with the invention of
high-energy accelerators (called “atom smashers” in the vernacular) a new world
of elementary particles (the kaon, lambda, sigma, et al.) proliferated over the next
few decades. By the 1960s, the aggregation was dubbed the “elementary particle
zoo.” I was a physics student at the time, and remember the quest to find
some order to this diverse aggregate of subatomic particles, with their assorted
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FIGURE 6.5. Kepler: fitting the octahedron between Mercury and Venus. This triangle
shows how Kepler modified his construction to fit the data. The hypotenuse is a face of the
octahedron, and the base is one-half the square within. The inner sphere touches the side of
the square (imparting a radius of 1/√–2) rather than touching the face (which would give a
radius of 1/√–3). The result is a closer fit.



properties. A major effort involved the use of higher mathematics, especially
sundry variations of group theory, as a way of providing a sort of taxonomic
structure to the hundreds of supposedly fundamental particles. Some schemes fit
better than others but none fit perfectly. Kepler would have been right at home
playing with these arrangements—both for archetypical reasons and the fudging
of data entailed. By the new millennium, there has been a shift toward two other
models: the quark theory, dividing the “elementary” particles into smaller units,
and string theory, picturing elementary particles as something like almost
infinitely small vibrating strings. This is where the matter stands.

As a validation of Kepler’s “discovery” of the secret of the universe, let’s leave
quarks and strings. Instead, I think the scheme may be seen to stand on its own.
After all, the fit was—and still is—extraordinarily close, even with the modifica-
tions involved. It is hard to dismiss entirely Kepler’s observation, as quoted above,
that “certainly it cannot be accidental that the proportions of the solids are so close
to these [planetary] intervals.” The fit was close; the data fit the model, even if we
know today that the model was wrong. But this was not apparent at the time. Also,
given especially Kepler’s theological mind set, the search for a static geometrical
order as God’s archetype for the universe was an exceedingly likely goal.

Mysterium was dated 1596, although it did not actually appear in print until
1597. By 1619, during more than two decades of intense and relentless work,
Kepler published what today we call the three laws of planetary motion, yet he
never abandoned his fundamental belief in the role of the Platonic ideal. (Notice
how in Fig. 5.2, from 1619, he incorporates the ellipses into the archetype.) At
some time over those 20 years he must have reasoned something like this. If I were
God, I would have set the planets in circular orbits with the five Platonic solids
between them, since these are the only forms with the properties of symmetry and
one polygon per face; hence the number and distances of the planets would be eter-
nally set. We know, however, that God did not assemble the universe exactly this
way (bear in mind the 5% variance); thus, the Platonic scheme was only an ideal, a
starting point for the final overall configuration in all its details. This leads to a
deeper question: Why then did God depart from this perfect design? In a real
sense, Kepler’s astronomical efforts were directed to figuring this out.

6.3. Kepler and the Equant

Every student of astronomy learns Kepler’s three law of planetary motion. Yet
Kepler himself neither numbered them nor identified them as “laws.” To him they
were harmonic relations among astronomical parameters; otherwise his focus was
on the larger scheme of things. The concept of laws and the 1, 2, 3 numbering
scheme used today came about in the 18th century, as mechanics was being for-
malized in various textbooks.

The second law—that the planets sweep out equal areas in equal times—was
actually discovered first, as Kepler was wrestling with Tycho Brahe’s data on
Mars, which he acquired upon the death of Tycho. Kepler had come to Prague in
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October 1600 to work with Tycho; one year to the month later, Tycho died. In the
meantime Kepler had become Tycho’s favored assistant and when he died Kepler
got his job as Imperial Mathematician to Rudolf II (although not Tycho’s larger
salary). Tycho had amassed considerable data on the positions of Mars, the most
difficult planet to fit into circles (after the elusive planet Mercury). Hence late in
1601 Kepler began what he called his “war with Mars” and made a bet that he
would crack the problem of the planet’s orbit in a few days. It took, instead, over
3 years; around Easter 1605 he discovered the elliptical path of Mars, after having
uncovered the law of areas in the process. These appeared, after much difficulty
with the publication process, in 1609 in his Astronomia Nova—by today’s stan-
dards, his greatest book. The third law was discovered in 1618 during the writing
of the Harmonice Mundi (see next section).

The history of the finding of the first two laws is considerably complex, as his-
torians in recent decades have themselves been wrestling with Kepler’s texts. A
fascinating part of that story is what I wish to tell here, involving another law of
the motion of the planets using the Copernican system, but this from the point of
view of the empty focus. But first we need to recall some historical background.

First is a brief review of the equant (see section 3.5). Ptolemy’s effort to fit
astronomical data for the planets into his geocentric system of circles upon circles
(epicycles on deferents and eccentric motion) was not completely successful
using only circles whose motions were centered on the centers of the circles. The
model closely, but not exactly, fit the data. He could only fully fit the data by
introducing a radical modification to the model: namely, that neither the center of
the deferent nor the eccentric point were the center of uniform rotation; rather,
another point opposite the eccentric to Earth was such a point (see Fig. 3.8). He
called this point an equant, and astronomers used it, some with considerable mis-
givings, over the ages. Therefore, on the one hand, Ptolemy preserved the ancient
Greek scheme of using circles and uniform rotation; on the other hand, by sepa-
rating the previous coincidental nature of those two points, he raised the question
of how far a model may be modified or stretched, so to speak, before it no longer
is persuasive. Note that only the deferent requires an equant; the epicycle does not
change; thus the uniform rotation of the equant is with respect to the center of the
epicycle.

Copernicus surely found the equant extraordinarily unaesthetic, and one of the
chief reasons for exploring alternative models of the heavens was to avoid the
need for such a point. In his final construction of the heliocentric model, the cen-
ters of all the circles are points of uniform rotation. Indeed Copernicus, as a true
Renaissance man, was delighted to eliminate the dreaded equant and return
astronomy to its ancient pristine beauty.

Enter Kepler and his war with Mars. In struggling to fit Tycho’s data to a mean-
ingful orbital shape, he used not only circles but also ellipses as mathematical
approximations of the correct shape. Ellipses were obvious mathematical shapes
to use since they were classical forms, along with parabola and hyperbolas; all
three had experienced a revival when ancient texts were reproduced in the
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Renaissance. In the course of his war, however, it did not immediately occur to
Kepler to try an ellipse as the physical shape. One reason for this was the structure
of the ellipse, which is defined as the locus of points, the sums of whose distance
from two fixed points (the foci) is a constant. A simple way of drawing ellipses
follows from the definition (Fig. 6.6): draw the closed path by stretching a string
of given length (the constant) tied to two pins (the foci), and the resulting oval is
an ellipse. This technique is found in late antique texts and was revived by Kepler
and others. The elongation of the ellipse (called its eccentricity) is a function of
the distance between the two foci and the constant; note that if the foci are coinci-
dental, the path is a circle. Since an ellipse has two foci, Kepler was not sure what
physical objects or parameters each focus would correspond to. Keep in mind that
within his theological view of astronomy, everything had to have a purpose.

It is time to look more closely at Fig. 5.2, which has been referred to several times
throughout this book. I am holding a facsimile copy of Kepler’s Harmonices
Mundi, and the diagram is isolated on a separate page (between pages 186 and
187). The pages are about 19.5 � 29 cm, with the diagram being only about
6 � 15 cm. As noted before, I believe it is the first diagram of the Copernican
system that is drawn to scale. The numerical sequence of the relative distances of
planets is (within the accuracy of the small drawing) drawn from the central sun to
the medium of each planet. The eccentricity of the elliptical orbits is also
marked by the specifications of the aphelion and perihelion of each planet. The
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FIGURE 6.6. Ellipse construction. Kepler conceived of this handy way of constructing an
ellipse, using a string tightly pulled between two pins.



amount of eccentricity of a planet becomes the ratio of the aphelion-perihelion
range over the AU distance. Note how Venus is a thin line and that even though
Saturn has the largest absolute range, Mars and Mercury each have a greater
eccentricity. Kepler has not, however, drawn an actual ellipse for each planet,
except for one, Mars. Looking closely, there is a dotted path from Mars’s aphelion
to the perihelion; really it is an eccentric circle, since given the size of the drawing
he could not make an exact ellipse to scale. That he chose Mars may seen symbolic
since it was the first planet for which he discovered the elliptical law; yet a more
prosaic reason is clearly seen in the diagram—it was the only planet for which
there was room to draw such a path! Finally, and of course, the longevity of the
archetype from his first book is blatant in its specifications of the Platonic forms
between the planets.

Returning now to Kepler’s war, in the course of finding that the orbit of Mars
actually fit an ellipse, with the sun at one focus, he also found that the other focus
(what today we called the “empty” focus, since we are not burdened with Kepler’s
theological strictures) was an equant. Around the sun the planets speed up and
slow down, moving fastest at the perihelion and slowest at the aphelion, but from
the point of view of the other focus all the planets rotate with constant speed.
Alas, poor Copernicus must have turned in his grave, for the equant returned to
astronomy, albeit and ironically from a heliocentric point of view, as Kepler’s
astronomical relationships were gradually adopted. This law of the equant was
often part of the elliptical law, as Kepler’s laws worked their way through astro-
nomical textbooks. It was still used as a foundational rule into the 19th century.

What ultimately happened to this “other” law? Was he right? If so, why is it not
taught today? Kepler’s “other” law is not exactly correct, but it is extraordinary close
to being true. The calculation goes this way. Consider an ellipse with eccentricity �;
this is a measure of the elongation of the ellipse, where � � 1 for all ellipses, and � �
0 is a circle. Next, set up the rate of rotation of any planet from the empty focus in
terms of polar coordinates around that point; doing the math results in the following
equation for that rotation as a ratio (R) of two terms, the minimum speed over the
maximum speed:

R � 1 � �2.

The closer R is to unity, the closer the planet’s empty focus is to being a true
equant. Note that for the redundant case of a circle (� � 0) the motion is, as it
should be, constant—a perfect equant, with R � 1.

The chart below is for all the planets, but remember, of course, that Kepler only
knew of the first six. The first thing that stands out among these data is how amaz-
ingly close, even today, the empty foci are to being true equants. (I am sure there are
many other practical “laws” of science still used today that are much less accurate
than this.) In pre-Uranus astronomy, the empty focus for all the planets, except
Mercury, was within 99% of being an equant. This alone must be a major reason why
this “law” was considered true for so long. Even today only Pluto (along with
Mercury) has an empty focus that departs from 99%, and yet both are not that far off.
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A very interesting point I wish to make about this fact of planetary motion—
and I think this is a fascinating fact—relates back to Ptolemy. Without getting
bound up in the mathematics of vector rotations and the like, let me remind you
that there are ways of geometrically transforming data from the geocentric system
to the heliocentric system. Keeping this in mind, here’s my point: the fact that the
empty focus on the heliocentric model is almost an equant vindicates Ptolemy for
introducing it on the geocentric model, for this means that on both systems there
really (almost) is an equant. Or put another way, in light of the mathematical com-
patibility of the two systems, Kepler’s (heliocentric) discovery of the empty focus
as a near equant vindicates Ptolemy’s (geocentric) use of it.

And the realization of all this leads to one more question: If there really is an
equant, how did Copernicus eliminate it and still make his system work? Without
getting into the geometrical details, the short answer is this: technically speaking,
Copernicus retained the equant in his geometrical system although it was substi-
tuted (or, maybe, better said, accounted for) by two circles (a deferent and an
epicyclet, both of uniform rotation about their own centers), and so he preserved
the pre-Ptolemaic ancient aesthetic principle.

6.4. Kepler’s Music of the Heavens, and Beyond

What we call Kepler’s third law he called a harmonic relationship between the
periods and distances of the planets: namely, that the squares of their periods
(T) are proportional to the cube of the average distances from the sun (D), that is,
T2 

r D3. This was discovered in March 1618 while writing the manuscript for the
Harmonice Mundi (The Harmony of the World) published in 1619 (incidentally,
from which came Fig. 5.2). The word world (Mundi) was still a synonym for what
is later called the universe, but the key semantic matter here is about “harmony.”
If the word has a musical ring, you are right.

Western music has its theoretical origins in the 6th century BC, with Pythagoras’s
alleged discovery of a mathematical basis to musical harmony. For identical
plucked strings of equal tension, the ratios of their lengths are as follows: 1/2 for
the octave, 2/3 for the perfect fifth, and 3/4 for the fourth. All other ratios were
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Planet � R

Mercury 0.206 0.9576
Venus 0.007 0.99995
Earth 0.067 0.9955
Mars 0.093 0.9914
Jupiter 0.048 0.9977
Saturn 0.056 0.9969
Uranus 0.047 0.9978
Neptune 0.009 0.99992
Pluto 0.250 0.9375



deemed dissonant. Today these numbers can be correlated to frequencies. For
example, on a piano the ratio of the frequency of middle C to the next C an octave
higher is approximately 1/2. It is an approximation today because the original
Pythagorean obsession with only the whole numbers 1, 2, 3, 4 was later modified.
Such changes began in 16th-century music theory and practice, several genera-
tions before Newton. For example, Galileo’s father, Vincenzio Galilei, made a
major contribution to the subject; in 1581, he published Dialogue on Ancient and
Modern Music in which he critiqued the prevailing theory of using only the
ancient doctrine of number theory. One modification was to augment the system
to include 5 and 6, so that the thirds and sixths would be considered consonant
too. Anyone with a keyboard nearby may hear these “harmonies” by simultane-
ously hitting these notes: C and the next C (octave), C and G (perfect fifth), C and
F (fourth), C and E (third), and C and A (sixth). Another even more radical idea,
which Vincenzio proposed, was to depart from the strict confines of whole num-
bers. The reason was this. If, say, a piano is tuned according to the whole numbers
starting with middle C, the piano will be in perfect tune only for music played in
the key of C; but if a piece of music is played in any other key, it will be out of
tune. And, of course one cannot re-tune an instrument every time a new piece is
played in a different key. (Today, I’ve been told, this not a problem for advanced
electronic keyboards.) This problem became increasing evident with the develop-
ment of polyphonic music in the late Renaissance and Baroque eras. So
Vincenzio proposed a compromise: instruments were tuned by departing slightly
from the perfect whole numbers such that each key sounded nearly in tune. This
method became known as tempering (see Galileo and Music, below).

Some readers may be familiar with Johann Sebastian Bach’s Well-Tempered
Klavier, written in the 18th century. The complete work consists 48 preludes and
fugues; it is divided into two “books” written at different times; each book con-
sists of 24 pieces, each in a different key (12 � 2: the 12 tones of the chromatic
scale, namely all black and white notes, and the major and minor keys). Bach,
too, worked on the problem of tempering, and he wrote these sets of fugues to
show that his tuning system worked. His contribution to the tempering problem
was the culmination of about a century and a half of debate, and formed the basis
of tuning today.

Incidentally, my example of using a piano is partially anachronistic since key-
boards in the 16th and 17th centuries were essentially harpsichords that pluck
strings; the term clavier is a generic term for various varieties of keyboards. The
piano, where hammers strike the strings, was invented in Bach’s lifetime and he
became an accomplished master of the new instrument.

An aside: Pythagoras supposedly believed his discovery of the consonant ratios
1/2, 2/3, 3/4 (i.e., octave, fifth, fourth, respectively) constituted a universal law of
human nature. In modern terms we would say the perfect fifth is innate; or in
today’s jargon it is hardwired into our brain, or in our genes. Is this true? The
argument that musical harmony is not innate is based, in part, on the variety of
musical scales in music throughout the world, and hence the thesis that the
Western scale is universal is seen as another example of Euro-centrist thinking.
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But some musicologist point out that, despite the fact that the Western scale, as a
whole, is not universal, in most musical scales throughout the world there are
found some similar harmonies, such as the perfect fifth. Furthermore, recent
experiments exposing infants to various harmonies show them responding posi-
tively to the perfect fifth, too. Yet, the jury is still out, and more research is needed
before we affirm the innateness of Pythagoras’s ratios.

Now, to link this to Kepler’s idea of harmony. Within the Pythagorean cosmology
was the idea that the harmonic musical ratios were implanted in the distances of
celestial objects from the center. This conception became known as the “music of
spheres,” and its allure captivated many a scholar over the ages. The greatest to be
seduced was Kepler; the essence of the Harmonice Mundi is the principle that
there are musical ratios within various parameters of the Copernican model. After
the discovery of the first two laws Kepler still passionately held to the Platonic
archetype: in the Harmonice Mundi he remarks that “the reader should remember
what I published in The Secret of the Universe, 22 years ago, that the number of
the planets . . .was taken by the most wise Creator from the five regular solid fig-
ures.” (Again: compare Figs. 5.2 and 6.4.) He notes further the very close but not
exact fit of the Platonic solids to the spheres: “However, it [the model] is not def-
initely equal [that is, exact], as I once dared to promise for eventually perfected
astronomy.” Thus there must be a deeper order to the heavens—“more basic prin-
ciples are needed in addition to the five regular solids”—without abandoning the
Platonic ideal, “for the Creator . . . does not stray [far?] from his own archetype.”
The eccentricity of the orbits (now due to their elliptical forms) becomes the
focus of attention in answering why God modified the original pattern. In partic-
ular, Kepler searches for ratios of variables fitting musical (harmonic) ones. After
trying various possibilities, the successful program began with the discovery that
the ratio of the daily speeds of Saturn at aphelion and perihelion was about 4/5—
that is, the major third. Kepler went on to find (or force?) similar musical ratios
among the same parameters of the other planets. For short, each planet plays a
melody as it orbits the sun in its elliptical path; the greater the eccentricity of the
orbit, the greater the range of notes in the tune (refer to the table with planetary
eccentrics �, above). Thus, for example, Venus, whose orbit is almost a perfect
circle, plays one note; Mercury has the widest range (Fig. 6.7; by the way,
Mercury’s tune should be symmetrical as the other planets but Kepler ran out of
room in the diagram). This is why God departed from using only circles: employ-
ing the archetype alone would result in monotonous monotonic music. This was
Kepler’s final discovery, the culmination of a life’s work. The “secret” and the
“harmony” form the bookends of his scientific life, and almost hidden within are
what scientists treasure today—the three laws of planetary motion.

Despite the collapse of the bookends today, the three laws (and only these laws,
although the “other” law of the equant is close) remain standing, propped up
now by Newton’s work on gravity. By assimilating Kepler’s three laws into
the inverse-square law of gravity, Newtonian mechanics ultimately formed the
core of the physics of motion as it evolved into the 18th century and after.
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Nevertheless, the idea of an underlying order to the arrangement of the planets
was slow in disappearing. The aesthetic and abstract attraction of Kepler’s
scheme was not outrightly rejected. Even today, when I contemplate his idea (the
Platonic ideal, minus the music), I find myself sometimes disappointed that it is
not true. Figure 6.4 is a beautiful daydream, but then there is the constraint of
reality.

Recall that before Kepler hit upon the geometrical scheme for the distances of
the planets, he tried various numerical approaches. They all came to naught, but
in the course of the endeavor he noted the relatively large gap between Mars and
Jupiter, and for a time he thought another undiscovered planet might be there.
With the subsequent fitting of the five Platonic solids to the cosmos, however, a
seventh planet was impossible in Kepler’s mind.

But others later toyed with a numerical order to the planets, the most long-lived
being that conceived in 1766 by Johann Daniel Titius, professor at Wittenberg.
The following table neatly summarizes the framework, process, and result:

Consider this sequence of numbers: 0 3 6 12 24 48 96
Add 4 to each term: 4 7 10 16 28 52 100
Divide by 10: 0.4 0.7 1.0 1.6 2.8 5.2 10.0
Correlate the distances of the planets: 0.36 0.72 1.0 1.5 — 5 9
The planets therefore are: —

For anyone not familiar with the symbols, the key is as follows: 
� Mercury, � Venus, � Earth, � Mars, � Jupiter, and � Saturn.

Hence, there is a near-perfect fit for Mercury, Venus, Earth, and Mars, with a gap,
and then a further fit for Jupiter and Saturn. This rule was picked up by another
German astronomer, Johann Elert Bode, who in 1772 incorporated the idea into
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FIGURE 6.7. Kepler: music of the planets. A sketch of the tones played by each of the five
planets and the moon in Kepler’s conception of the music of the planets. Taken from his
Harmonices Mundi (1619), it uses 17th century musical notation. Mercury should be sym-
metrical as the other planets, so it seems Kepler had to squeeze it in order to fit the diagram
on the page. Note the correlation of the range of notes to the eccentricity of each planet
(see Fig. 5.2).



his introductory astronomy textbook, and it became known as the Titius-Bode law
or often just Bode’s law. (It should be pointed out that, despite the fitting of the law,
it is a bit of a fudge at the start of the sequence, from 0 to 3.)

The glaring gap between Mars and Jupiter implied the possible existence of
another planet. Of course belief in this law demanded a disbelief in Kepler’s
Platonic scheme, for which only six planets were possible. Nevertheless, I see the
history of Bode’s law as a history of the continued commitment to Kepler’s aes-
thetic framework for science (Kepler’s spirit, if you wish)—namely, searching for
a static, formal mathematical order to nature. Accordingly, some astronomers
actually looked for the missing planet but were unsuccessful during the remainder
of the 18th century. In the meantime, however, another planet was discovered by
a German musician working as an organist in the town of Bath, England, who, in
his spare time, was an amateur astronomer—this being William Herschel who, in
1781, discovered Uranus. Of course, the new planet was not between Mars and us
but beyond the orbit of Saturn. As expected the query arose whether the new
planet fit Bode’s law. Let’s do the math: 96 � 2 � 192; adding 4 � 196; dividing
by 10 gives 19.6. The calculation of Uranus’s average distance was 19 AU—a
near-perfect fit. “Kepler’s spirit lives!” might be the bumper-sticker slogan today.

Not surprisingly this discovery was followed by an eager search to find the
missing planet, coming to fruition on New Year’s Day 1801, when Giuseppe
Piazzi, at Palermo Observatory, found it (to the delight of Bode). Piazzi named it
Ceres, after the goddess of Sicily. It took observations over the rest of the year to
confirm its planetary nature, but early calculations gave its distance as 2.7 AU—
right on target. A study of its size, however, revealed that it was extremely small.
Moreover, in the following year another small planet between Mars and Jupiter
was found; then two more in 1804 and 1807. For awhile, these new objects were
classified as planets, so that mid-19th century celestial catalogues listed up to 18
planets. Herschel, however, called them “asteroids,” estimating that they were a
good deal smaller that our moon. By the late 19th century more asteroids were
found, numbering in the hundreds, and hence Herschel’s classification prevailed;
today there are hundreds of thousands, and by estimates the total mass of them all
is still much less than the mass of our moon (although, interestingly, the mass of
Ceres alone is about 30% to 40% of all the asteroids).

Bode’s law predicted a planet between Mars and Jupiter. The discovery of the
asteroids was, at least, a confirmation of some thing or things orbiting in that
space. In fact, Bode’s law continued to be applied into the 19th century. A major
discovery in astronomy was the prediction and confirmation of yet another planet,
Neptune, beyond the orbit of Uranus. The prediction was based on anomalies in
the orbit of Uranus that seemed to be due to either a modification of Newton’s law
of gravity at extreme distances from the sun or the possibly of a gravitational pull
of something (presumably another planet) beyond Uranus. The latter hypothesis
necessitated extremely complex mathematical calculations; these were performed
about the same time by Urbain Le Verrier in France and John Couch Adams in
England, independently. Both employed Bode’s law in their calculations, reveal-
ing its longevity. Did the eventual discovery of Neptune (1846) further confirm
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Bode’s law? Let’s see: 192 � 2 � 384; adding 4 gives 388; dividing by 10 gives
38.8. Neptune’s distance was 30 AU, too far off. Accordingly, the demise of
Bode’s law began and by the early 20th century it was almost forgotten.

An interesting sidelight: not long after Neptune’s confirmation, an anomaly in
the orbit of Mercury evidently led to the postulation of a planet between it and
the sun. After all, the anomaly in Neptune was explained by the planet Uranus,
so it follow that the same should apply to Mercury’s anomaly; indeed, the postu-
lated planet was given a name (Vulcan, after the god of fire, appropriately), since
some astronomers were sure it existed. There is, however, no such planet and it
took Einstein’s general theory of relativity to explain, by a different theory, the
anomaly. The moral of this: there are no presubscribed methodological patterns
in scientific discovery.

As far as I know, when the last planet, Pluto, was discovery in 1930, no one con-
sidered its possible fit to Bode’s law, which is a pity, since Pluto’s distance is 39.5
AU—rather close to the original prediction for Neptune. A true believer may
“save” Bode’s law by arguing that Pluto was, indeed, one of the original planets
and Neptune was later captured. But in August 2006 the International
Astronomical Union meeting in Prague proposed a new category for bodies in the
solar system. Pluto was deemed to be a member of a type named dwarf planets
(small spherical bodies with long eccentric orbits outside of Neptune’s orbit). The
body UB313 (now called Eris, first seen in 2003) was also classed as such. It has
a very eccentric orbit ranging from about 38 to 97 AU, making a Bode’s law cal-
culation rather meaningless, I should think. And finally, Ceres, the largest aster-
oid, became a dwarf planet too. How ironic: recall that in the late-19th century
Ceres had been demoted from being a planet to being an asteroid.
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Galileo and Music

Galileo scholar Stillman Drake of the University of Toronto put forward the sug-
gestive hypothesis that Galileo’s exploration of experimental verification of his
scientific ideas had its roots in his father’s work on music theory. By criticizing
the prevailing Pythagorean theory, his father was both undermining the authority
of ancient texts and putting the theory of tuning to an experiential/experimental
test—namely, to evaluate it by exposing it to the critical ear of the musician. An
interplay between mathematics and experience, with the concomitant rejection
of ancient authorities such as Aristotle, is echoed in the son’s work on the
physics of motion, especially the important role of experimentation.

A concrete example of the application of Galileo’s musical skill to his sci-
ence Drake argues is found in his experiment with falling bodies. By rolling
spheres down very slightly inclined planes, Galileo was able to slow the
motion enough demonstrate that the “falling” bodies were accelerating and to
measure intervals of time and space, and thus deduce the mathematical law
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underlying this motion. Using frets from musical instruments, which, rather
like rubber bands today, were not fixed, he placed the frets along the included
plane so that the rolling balls made a slight click as they passed over them.
With his musical sense of timing, he adjusted the frets so that the rolling balls
made the clicks at equal time intervals. When he achieved this for several
balls, he measured the distances between the internals and found, what he
called, the rule of odd numbers. That is, setting the first interval to 1 unit, the
second was 3 units, the third 5 units, and so forth. This meant that the ball was
surely accelerating, and also obeying a mathematical law.

From this we get Galileo’s law of falling bodies in the modern form as fol-
lows. The first time interval results in 1 unit of distance. After the second time
interval the ball has traveled the 1 unit plus 3 units for a total of 4 units. After
third time interval the total is 9 units. Continuing this way there are 16 distance
units after 4 time intervals, and so forth. Quickly a pattern emerges: the
distance units (D) traveled are equal to the time intervals (t) squared; that is,
D r t2, a fundamental law of motion today.

There is some question as to which came first, the theoretical deduction of
the law or the experimental verification. Drake thinks Galileo (inductively)
found it first through this experiment and then later was able to deduce it
mathematically (really by geometry). Otherwise why use movable frets? If
you know what you are looking for, just set it upon the included plane with the
odd number rule, and prove it. But it seem to me that even if one deduces such
a rule from theory, it behooves the experimenter not to force the matter, but to
perform the experiment as if the rule is not known and see how, in this case,
the movable frets are placed using the ear alone.
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Near the end of his life Galileo said a peculiar thing: that he wished he had been
an artist rather than scientist. (Einstein said he might have been a musician had he
not been a physicist.) In truth, Galileo was an accomplished artist (better at his
alternative craft than Einstein at his, as far as we know); he produced lovely
watercolor drawings of the moon portraying his sightings through the telescopic
he built (Fig. 7.1). (I do not believe there are any recordings of Einstein playing
the fiddle.) While living in Florence Galileo taught art, and one of his students
was a now-celebrated artist with whom, I believe, Galileo shared one of his great
discoveries. In turn, she incorporated that discovery into a painting—today her
most famous one. This is the story of how that probably happened.

7.1. Galileo and Cigoli

In 1610 Galileo obtained a court position as chief mathematician and philosopher
to the Grand Duke, Cosimo II, and in September he moved from his university
professorship in Padua to Florence; there he became a member of the Accademia
del Disegno (Academy of Drawing or Design), where he taught. The academy
was a meeting place for artists, sculptors, and architects, where they conversed on
matters pertaining to the arts and sciences. Important to the visual arts was geom-
etry and its application to anatomy and linear perspective—the latter Galileo
taught. At the academy he also could put forward his ideas about literature and
philosophy. He wrote literary criticism and was an art critic and collector, prefer-
ring the older “classical Renaissance” style to newer movements. Scholars of Ital-
ian literature deem Galileo’s Dialogo (The Dialogue on the Two Chief World
Systems, one of the first scientific works written in the vernacular rather than
Latin) a masterpiece. It was for Italian literature what Cervantes’s Don Quixote
was for Spanish. No doubt Galileo was an eclectic scholar of the 17th century.

The move to Florence was a step up the social hierarchy, from a lowly (and
relatively low-paid) mathematics professor to a gentleman and philosopher of
the Medici court. Galileo had craved such a job for years. When, in the spring
of 1610, he published his initial telescopic discoveries in Sidereus Nuncius



(The Starry Message), he sought such a patronage appointment by naming his
major discovery, the moons of Jupiter, after the Duke’s sons: he called them
the Medicean stars—and the ploy worked. Galileo’s book was not only his
ticket to Florence (by birth he was a Florentine on his father’s side) and to
court life among the nobility; it likewise propelled him into the limelight. One
might say he was the first celebrity of science; of course, because of his later
treatment before the Catholic Inquisition, some have also called him a martyr
of science. His telescopic observations were the springboard to this fame
but, in fact, Galileo was not an astronomer at heart. Before he built a series of
telescopes beginning in the summer of 1609, his original work in science prin-
cipally involved what we may call mathematical and experimental physics.
A major breakthrough was his discovery of the law of projectile motion.

Galileo’s discovery of the law of projectile motion (see details in Chapter 8)
entailed a rejection of Aristotle’s law that projectiles move first in a straight line
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FIGURE 7.1. Copy of Galileo: drawings of the moon. Galileo was a skilled draftsman, and
he made several watercolor depictions of the moon as seen through his telescope.



from their source of motion and, after slowing down, fall vertically to the ground
(Fig. 8.1). Galileo instead showed that the path was symmetrical and he per-
formed a series of experiments to prove it. He made this discovery around 1608,
when he was a professor of mathematics at the University of Padua. An important
document for this story is the letter dated February 11, 1609, to a potential patron,
which contains a diagram of projectile motion drawn by Galileo (Fig. 7.2).
Although he did not get the patronage appointment he was seeking, the letter
reveals that he knew of the symmetrical law by this time. In 19 months he was liv-
ing in Florence as a member of the Medici court and teaching at the Accademia.
(Interestingly, Galileo had once applied for a job at the academy, without success;
that was in 1588, a year before he obtained his first teaching position in mathe-
matics, at the University of Pisa.)

One of his many friends was the artist Lodovico Cigoli, who said that Galileo
was his master at perspective. They had met as students of the same teacher of
mathematics. About the time Galileo arrived in Florence, Cigoli was complet-
ing a major commission in Rome; between 1610 and 1612 he painted a series of
frescoes in the Basilica of Santa Maria Maggiore. One painting is especially
relevant here: his depiction of the Assumption of the Virgin on the dome of the
new Pauline Chapel in the church. According to conventional iconography the
Virgin’s foot rests on a smooth crescent moon, this being one of her symbols.
But Cigoli’s depiction of the moon, in partial shadow, was like none ever seen
in art. The line separating light from darkness was jagged, and the lit area pre-
sented a rough, pockmarked surface (Fig. 7.3). Why did Cigoli portray the
moon this way?

In the Aristotelian cosmological framework, the moon is the dividing object
between the perfect celestial world and the imperfect terrestrial world. To the naked
eye it appears as moderately smooth and round yet having a slightly blemished
surface—just as expected for a transitional entity lying between perfection and
imperfection. But beginning in November 1609 Galileo made a series of observa-
tions with the telescopes he built. Looking first at the moon, he made the watercolor
drawings depicting its cratered surface (Fig. 7.1). Another artist later copied these
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FIGURE 7.2. Galileo: drawing of parabolic projectiles. Galileo’s drawing of parabolic
shapes of projectiles, revealing their symmetrical forms (although the one to the far right
seems to be cut off, perhaps due to a lack of space on the sheet). Detail from a letter of 
February 11, 1609.
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FIGURE 7.3. Cigoli’s moon. A sketch of the Assumption of the Virgin by Lodovico Cigoli in
the Pauline Chapel of the Church of Santa Maria Maggiori (Rome, 1610–1612). In this
painting, the Virgin’s foot rests upon a Galilean moon.
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Figure 7.4. Engravings of the moon: Sidereus Nuncius. Galileo’s original watercolor
sketches (see Fig. 7.1) were copied as engravings by another artist for the book.

drawings for the engravings in Sidereus Nuncius (Fig. 7.4). This then was the new
understanding of the moon’s surface, described in Galileo’s book as “uneven,
rough, and full of cavities and prominences.” He reported seeing mountains and
valleys, as well as seas and oceans, although he eventually scrapped the latter. The
depiction of the moon under the Virgin’s foot on the dome in the Pauline Chapel
by Galileo’s artist-friend Cigoli was therefore the first artistic version of what
Galileo saw.

The Visual and the Sensual in Western Thought: A Primer

Galileo’s extensively employed visual imagery in his first two major works,
the Sidereus Nuncius (1610) and the Letters on Sunspots (1613). But this
came to an abrupt end. His later publications, such as his celebrated Dialogue
(1632) and Discourse (1638), rely more on written text than on visual docu-
mentation. The change was related to his career change, from a professor-
mathematician (Pisa and Padua) to a gentleman-philosopher (Florence). In
the exposition of his later work he tried to distance himself from the material
world of visualization.
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Another version of this aversion of the visual appears in post-Galilean
physics, in the context of mathematical physics; often the attempt was made
to derive the formulae of mechanics within a completely algebraic format,
with no illustrations or diagrams. A prime example is one of the major texts in
the history of mechanics—the Analytical Mechanics of Joseph Louis
Lagrange (1788), a work containing, among other things, what today is called
“Lagrange’s equation.” He was proud that his entire treatise contained no dia-
grams and few examples or applications. A later mathematician called this
work a “scientific poem.”

This rather odd notion is based on an idea that runs through Western
thought. Its origin can be traced, at least, to Plato’s idealism, which stressed
mind over body. Only ideas are real; vision can play tricks on us, witness
optical illusions. Indeed anything material is an illusion (recall his famous
metaphor of the cave). Accordingly, the visual and mechanical arts, and their
practitioners, had a low status. This may have been a factor in the dearth of
experimental science from the ancient world and throughout the Middle
Ages. Renaissance art theorists tried to rectify this by linking the study of
perspective to the liberal arts through geometry, and, in turn, raising the social
status of artists. This continued among the various academies of art that
subsequently arose, but even there a remnant of Plato’s dualism is found in
the idea (especially popular in the French Academy of the 17th century and
the English Academy of 18th century) that drawing is superior to painting.
Why? Because drawing, emphasizing the line, is geometrical and relies more
on the rational faculty; color, however, is more sensual and hence material,
appealing to the emotions. This idea persists right into the 19th century where
the famed neoclassical French artist Jean-Auguste-Dominique Ingres said
that he could not adequately judge a painting without seeing the engraved
(black and white) copy of it. The Impressionists, needless to say, rejected this
idea with a vengeance.

We find this demoting of sensual experience even in music. For example,
the French composer Hector Berlioz prided himself on being able to compose
entirely in his head, not requiring the crutch of actually hearing the music—
an idea that I find utterly bizarre, since music ultimately is meant to be heard.
Beethoven, of course, had no choice, once he went deaf.

Galileo’s rejection of the visual/sensual is a part of this story. Yet, in light
of it, his statement about regretting not having chosen an artistic career seems
even more peculiar.

A strange twist to this theme is found the chapter “Abstract Theories and
Mechanical Models,” in Pierre Duhem’s otherwise masterful book on the
philosophical debate about science at the turn of the last century, The Aim and
Structure of Physical Theory (1906). Distinguishing between two approaches
to science, abstraction versus visualization, he puts the dichotomy in nation-
alistic term. The French mind is “strong enough to be unafraid of abstraction
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7.2. Galileo and Artemisia

In the summer of 1611, while Cigoli was working high on the scaffolding in Santa
Maria Maggiore, a visitor strolled through the church studying the frescoes. She
was a young artist, Artemisia Gentileschi, sent by her father to study several
churches in Rome. Her father, Orazio, was a successful artist working in the pop-
ular style of Caravaggio, who had a flare for dramatic depictions of biblical sto-
ries. When visiting the church, she probably saw Cigoli’s depiction of Galileo’s
moon. Little did she know that a chain of events that began (horrifically) in the
spring would lead to her meeting the scientist who inspired Cigoli and that she
too would depict another of his scientific discoveries in a work that posterity
would eventually deem as one of her masterpieces.

Most women artists of the Renaissance were, like Artemisia, daughters of an
artist. And she was gifted too. Her earliest extant work is a depiction of the story
of Susanna and the Elders, done in 1610 when she was about age 17; until fairly
recently the work was attributed to her father—it is that good. Sometime after
completing this work, Orazio hired an artist, Agostino Tassi, to give Artemisia
lesson in perspective. In May 1611 Tassi raped her. The summer trip, ostensibly
to view the frescoes, may have had a more therapeutic purpose. In March 1612
her father filed suit against Tassi with the Catholic Church. Many of the details of
the subsequent trial are known through extant Church records. What this meant,
among other things, was that Artemisia’s rape became public knowledge. It is not
surprising, therefore, that not long after this ordeal we find her married off and
leaving Rome.

Early in 1613 she and her husband arrived in Florence. She subsequently
attended the academy, and in few years was elected a member—one of the few
women ever accepted. Recall that Galileo had also recently moved to Florence to
work for the Duke, and in October 1613 he became a member of the academy,
teaching perspective. He probably was her teacher. We know they met, for among
her 28 extant letters is one written to Galileo many years later.

She also worked for the Duke. In particular he commissioned a painting of the
biblical story of Judith and Holofernes. When she arrived in Florence she had with
her a canvas on this theme on which she had started working sometime in 1612;
she completed the painting during her first year in Florence. The story of the heroic

and generalization, but too narrow to imagine anything complex”—think of
the Lagrange tradition (mentioned above). In contrast, the English mind is
“ample but weak” and hence dependent on visuals models. Writing about a
British book on electrical theory he exclaims, “We thought we were entering
the tranquil and neatly ordered abode of reason, but we find ourselves in a
factory.” The final irony of this is that Duhem was, in fact, quite an accom-
plished artist.



FIGURE 7.5. Artemisia: Judith Beheading Holofernes (first version). Oil on canvas, 62 3–10 by
49 1–5 inches (c. 1612–1613), Museo Nazionale di Capodimonte, Naples. In this work the
blood of Holofernes oozes out, staining the bedsheets.
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Judith saving her people by seducing the enemy general Holofernes in his tent,
getting him drunk, and then cutting off his head, is interpreted (not surprisingly) by
some historians as an act of psychological retribution for the rape (Fig. 7.5). True
or not, surely the way she depicts Judith hacking off the general’s head
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was grotesque and powerful, quite unlike the way most male artists portrayed her.
Usually Judith was shown as a squeamishly meek young thing disgusted with the
job she had to do and cringing at the sight of blood. This, for example, was the way
her father’s mentor, Caravaggio, portrayed her in a famous work (Judith Behead-
ing Holofernes, 1598–9). But Artemisia shows Judith going at it with gusto; even
her maidservant joins in the slaughter, rather than just standing back (as in Car-
avaggio’s work) and literally holding the bag (for Holofernes’s head).

Obviously, Cosimo in due time saw her painting and for whatever reason like it
and commissioned a copy in 1620, which she completed the following year just
before the Duke’s death (Fig. 7.6). She was duly paid for the work, but only with
the help of Galileo. We know this from that one letter to him, dated October 9,
1635, by which time he was living under house arrest following his trial before
the Inquisition. In it she is requesting his help in getting paid for a work recently
sent to Cosimo’s successor, Ferdinand II. The reason for the appeal to Galileo:
she reminds him that once before she “obtained an excellent remuneration” for
“the painting of that Judith which I gave to His Serene Highness the Grand Duke
Cosimo” because of Galileo’s help. Clearly she is referring to the second Judith
and Holofernes (1620–1), for which she informs us that Galileo’s intercession
resulted in her getting paid. The importance of this letter is that it reveals that
Galileo knew of Artemisia’s painting of Judith. Probably he saw both versions.
(What forays Galileo made on her behalf in 1635, whether she ever got paid, and
even what this later unpaid painting was, we do not know.)

A comparison between the 1612–3 and the 1620–1 versions of Judith
(Figs. 7.5 and 7.6) reveals several differences, the most striking surely being the
introduction of the splattering blood in the latter work. Let us look closely at the
blood, less from a visceral and more from a geometrical point of view. Note how
the streams form a series of arcs, mostly symmetrical and quite similar to the
projectiles drawn by Galileo (Fig. 7.2). If we trace these arcs as geometrical
abstractions, they appear as in Figure 7.7. In transferring these arcs to graph
paper and identifying individual (x,y) pairs, I found that they closely fit equa-
tions for parabolas (namely, y � Qx2, where the constant Q is a function of the
particular shape of the arc of the given parabola). The one shape that does depart
most from a perfectly symmetrical parabola, interestingly enough, is similar to
the one asymmetrical arc drawn by Galileo (Fig. 7.2), which may have been due
simply to a lack of space on the page. Otherwise, the fits, I am convinced, are
just too close to be entirely accidental. This gushing blood I thus believe
discloses yet another link, a quite fascinatingly subtle and pictorial one, between
Artemisia and Galileo.

The second Judith was executed after Artemisia met Galileo. We know that
he discovered the parabolic shape of a projectile about 1608. But he did not
publish it until 1638, when it appeared in Two New Sciences. He writes of his
discovery, his first published presentation of this important law, this way: “It
has been observed that missiles or projectiles trace out a line somewhat curved,
but no one has brought out that this is a parabola. That it is . . .will be demon-
strated by me.” Galileo probably penned that sentence about 1630 or 1631, in
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FIGURE 7.6. Artemisia: Judith Beheading Holofernes (second version). Oil on Canvas, 78
by 63 inches (c.1620–1621), Uffizi, Florence. In this work, the artist moves further away
from the subjects of the first version, and adds the gushing blood spraying onto Judith’s
arms and breasts.

the first draft of the manuscript of his book. Then in 1632, Bonaventura Cava-
lieri, a mathematician who studied under one of Galileo’s best pupils, published
a book on parabolas in which he put forward Galileo’s projectile law, complete
with a diagram of the symmetrical arc. Galileo was extremely upset; after all,
the law was still in his manuscript. But he was placated when learning that
Cavalieri mistakenly thought that Galileo had already announced the law. This



incident shows that although Galileo was saving his law for his book, he was
not hiding his discovery from his students. We may, accordingly, include
Artemisia in this group. Moreover, although Cavalieri’s diagram has been
called the first published illustration of Galileo’s discovery—and it surely is the
first scientific illustration—yet, we may add the caveat that it is not the first
depiction of the parabolic arc.

Hence we arrive at the following scenario. In her second version of the Judith,
executed after she met Galileo and after he shared his projectile law with her,
Artemisia pictorially recorded this law in her painting by depicting the spewing
blood as parabolic arcs. Perhaps her motivation was to achieve a heightened
realism, a goal synonymous with the Caravaggio school of art. Like Cigoli in his
depiction of Galileo’s moon, Artemisia was likewise informed by a discovery
of Galileo, and she presented the first artistic rendering of it—indeed, the first
“published”/public visualization. Cigoli’s art came after the publication of the
Sidereus Nuncius. Artemisia’s “illustration” was made about midway between the
discovery and Galileo’s publication of the law of projectiles.

Unfortunately, none of this sheds light on questions that must remain forever
unanswered: What did Galileo think of Artemisia’s Judith, and especially what
was his view of the spurting blood? We do know something about his view of the
art of the time. It comes as no surprise to hear that he preferred art exhibiting
order, simplicity, and balance and objected to various distortions favored among
the more experimental artists (the so-called “Mannerists”) of his time. In this
Galileo shows himself to be a classicist, which perhaps reflects his love of geom-
etry. It certainly tells us something about what sort of artist he would have
become had he pursued that career instead.
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FIGURE 7.7. Parabolas of blood: Judith and Holofernes. Tracings of the paths of the spurt-
ing blood from Artemisia’s second version of Judith.
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The Parallel Fallacy

Many years ago after taking a course in classical mechanics, I was browsing
in the university library and came across Newton’s Principia (in English).
Pulling it off the shelf I perused it for some time with a sense of befuddlement
mixed with incomprehension. (Note: this was when I was a science student
and before I had been exposed to any real history of science.) I had expected
to find, at least, Newton’s law of motion, F � ma, or his law of gravity,
F � GmM/r2, but neither was transparently spotted. Little did I know at the
time that Newton’s laws of motion as we write them today were not put
forward until the mid-18th century. And that the law of gravity is buried in the
text, and hence not expressed in the Principia as above (see Newton,
Cavendish, and Newton’s Laws, in Chapter 10). Later, when I pursued the
history of the subject, I realized that there is a disjunction between original
scientific writings and the distillation that takes place as textbook writers
abstract and synthesize what scientists have wrought. Much of this is a theme
of this book. It also offers some insight into what I believe is a fallacy often
put forward about the differences between art and science.

My argument has it origin in statements made about art and science that are
of this form: An artwork Y would not exist without the artist X, whereas a
scientific theory Q would (eventually) exist without the scientist P. Some con-
crete examples:

X � Leonardo Y � Mona Lisa

X � Handel Y � Messiah

P � Darwin Q � theory of evolution

P � Einstein Q � theory of relativity

The fallacy is based on the truism that without the individual artists and
musicians no one would have painted the Mona Lisa or written the Messiah
whereas eventually someone would have discovered the laws of evolution or
relativity or mechanics. The fundamental problem with this line of reasoning,
however, is this: the entities being compared are not the same category of things
in the arts and sciences. To make this concrete: the physical painting Mona Lisa
and the musical score Messiah should instead be compare to the book Origin of
Species and the scientific article “On the Electrodynamics of Moving Bodies,”
and other articles by Einstein. If Newton had not lived (indeed, he almost died,
having been born prematurely), the Principia surely would not exist. In this way
comparisons are among what I called artifacts, the actual works of the creators,
and these are unique to each of them. Although scientific theories, of course,
have their origins in their artifacts, it is a fallacy to compare the theories of sci-
ence with the artifacts of art, the result being what I call the parallel fallacy.

This deduction raises further questions, such as this: Is there a category in
the artistic realm that corresponded to that of “theory” in science? There are
“theory” books in the arts, such as sketchbooks, workbooks, how-to-draw
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books in the visual arts, as well as music books on harmony, and so forth. So
I do see a parallel here between the arts and sciences, but I would not wish to
push this too far. For there is a propensity, once the similarities between them
are broached, to overstate the similitude. Certainly there is not the whole
realm of empiricism and experimentation in most of what constitutes the arts.
Also, much of the beauty of music can be perceived on the aural plane alone,
with little or no knowledge of pitch, rhythm, sonority, musical texture, or
form, let alone the underlying chord progressions, or even especially the
mathematical underpinnings of these harmonies. With science, however,
there is no aural plane for the novice to comprehend; science cannot be appre-
ciated as music and art can. Historically put, notwithstanding Kepler’s effort
(see section 6.4 and Fig. 6.7), there is no music of the heavens, and, despite
Newton (see section 9.3), no music of the spectrum of colors.
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Galileo is credited—and rightly so—with a momentous discovery in the physics
of motion. A projectile, thrown by hand or shot from a cannon, moves along a sym-
metrical path that traces the arc of a parabola. Such perfect mathematical motion
takes place only in an ideal world with no friction, yet a projectile approximates this
in the real world. This discovery was an important component in the development
of what in time became—to use the vernacular—rocket science.

What is not widely known, is this: Galileo did not truly believe in the parabolic
path; instead, he thought it was only an approximation to the true geometrical form.
Moreover, it was embedded in a theory that asserted that gravity is an illusion.

8.1. The Problem with Projectiles

The motion of projectiles, like most everything else in what constitutes ancient
physics of motion, had its origin in the writings of Aristotle. All motion near
Earth was categorized either as natural (up and down only, namely, gravity and
levity) or unnatural (requiring a continuous and contingent push). An understand-
ing of a projectile’s path, Aristotle correctly realized, requires that its motion be
divided into two components; erroneously, however, he thought that these two
components could not act at the same time, believing that the stronger one would
always overpower the weaker one. As a consequence, he described a projectile as
initially moving along a straight line from its source of motion until it slows
toward a stop; only then, as this power weakens, will downward natural motion
prevail, so that the projectile then falls vertically to the ground. Aristotle’s writ-
ings are not always clear on the cause of the initial straight-line motion, but it
seems that he thought this unnatural motion was propelled by whirlpools of air
circling around the object, giving it the required contingent and continuous push.
This theory of projectile motion prevailed from the late ancient world through the
Renaissance with little change and only a few challenges.

How projectiles move was not merely an intellectual exercise for the 17th cen-
tury. It had a practical application in warfare and the development of cannons.
The key problem was to know the correct angle to aim a cannon in order to hit its



target. Diagrams illustrating Aristotle’s two-part motion, some found in military
manuals, appear well into Galileo’s time (Fig. 8.1). Galileo himself was aware of
such applications; when he taught at the universities of Pisa and Padua, many of
his students were young noblemen pursuing a military career. He said that he
learned much of practical value from conversing with the artisans and engineers
who worked at the Arsenal in Venice. The University of Padua was essentially
the university of the Venetian Republic, and Venice was only about a half-day’s
journey from Padua. The Arsenal was a military workshop and naval dockyard
that one historian has characterized as “an industrial assembly line for ships,
sails, and weaponry centuries before Henry Ford cobbled together his first
Model T.”

Galileo’s teaching duties, however, did not explicitly include Aristotelian physics.
This may seem strange today, but Galileo taught in the faculty of mathematics,
which was separate from philosophy, and the latter was the domain of (Aristotelian)
physics. Nevertheless, when Galileo taught the mathematics of the heavens (that is,
astronomy) the physical nature of the cosmological model must have been broached,
and this would require some discussion of terrestrial motion. We also know that to
supplement his income (mathematicians, incidentally, were at the bottom of the
university hierarchy), he tutored a number of students, and he exposed them to his
new ideas and experiments on the physics of motion. These new ideas departed
radically from what the Aristotelians were teaching.
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FIGURE 8.1. Projectile motion: 17th-century diagram. A sketch of the illustration of projec-
tile motion from a 17th-century military textbook, indicating the longevity of Aristotle’s
concept of motion.



8.2. Galileo’s Abstraction

Galileo’s innovation in mechanics begins with an abstraction. In order ultimately
to derive a mathematical foundation for motion in the real world of earth, water,
and air, Galileo abstracted a pristine world of simple objects moving along
geometrical shapes in a void. He was convinced that only in this ideal world could
the laws of nature come to light, otherwise they got gummed up with real-world
friction and the like.

Two more intellectual breakthroughs led to the first correct law of projectiles.
Kepler had coined the term inertia (Latin for inert or lazy) for the fact that heavy
objects require a push to get them moving; but he also thought, as Aristotle had,
that a force or power was thus required to keep an object in motion. Galileo,
conceptualizing within an abstract world devoid of all resisting media (such as
friction), reasoned that an object, once given an initial push, would move indefi-
nitely until and unless an external force stopped it. The introduction of a resisting
medium only slows the object to a stop. Inertia thus entails the propensity of a
body both to stay at rest and (importantly) to stay in motion. Here it is in Galileo’s
own words (although I should point out that the context is rotational motion, the
importance of which will loom large later): in a vacuum, “a heavy body . . . will
maintain itself in that state in which it has once been placed; that is, if placed in a
state of rest, it will conserve that [state]; and if placed in movement . . . it will
maintain itself in that movement.” Sounding modern, this is a lucid definition of
inertia seemingly right out of a textbook today. (Although Galileo never actually
used the term “inertia” he did express the concept, and I henceforth will call
it such.)

Galileo corrected Aristotle’s other error: he persuaded himself that more than one
power may act on a moving body at the same time. For example, if an object is
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An Experiment in Perception

Although not specifically applicable to the subject of this chapter, I find the
following exceedingly interesting for reasons that will be immediately clear.

In human visual perception there is a phenomenon called “binocular rivalry.”
It is confirmed by the following experiments. In the first case, a different picture
is shown at the same time to each eye of a subject; the result is that the subject
sees only one of the pictures. For example, if one eye is shown horizontal lines
and the other vertical lines, the subject sees only either the vertical or horizontal
lines, not a grid. Thus the two images are not combined; only one “wins.” In the
second case, if one eye is shown a steady image and the other a different flash-
ing image, the subject sees only the flashing one; apparently the novelty of the
flashing image dominates the perception. Again, there is no combination of the
images in the actual perception—one takes over in human visual experience.



pulled simultaneously by two powers or forces in two different directions 90° apart,
it will move between them, along a diagonal path. “Such motions,” he wrote, “in
mixing together do not alter, disturb, or impede one another.” Thus Galileo realized
that a projectile is moved by two simultaneous powers: inertia and gravity. Consider
a projectile launched horizontally: there is a horizontal (inertial) component of
motion, moving the object along at a constant rate, and a vertical (gravitational)
component, accelerating the object downward. That the latter motion is accelerated
he had also deduced from the abstract world of motion in a void, for without a
resisting medium, a falling body would continually change speed and hence (by
definition) accelerate. The combination of these two powers acting simultaneously
on the body results in the path of the projectile being the arc of a parabola—one of
the fundamental mathematical curves from ancient geometry.

In the early 1970s, Stillman Drake discovered in Galileo’s manuscripts at the
National Central Library of Florence that Galileo did more than logically
deduce the law of projectile motion. He actually performed a series of delicate
experiments in which he measured the paths of projectiles in his laboratory.
This hands-on approach was consistent with Galileo’s practical bent, as seen in
his acquaintance with the artisan-engineers at the Arsenal in Venice.

Figure 8.2 is from a key page of these manuscripts, revealing Galileo’s meas-
urements of the parabolic paths. Drake set the date of this page at 1608, possibly
in the summer. This was much earlier than previous scholars had proposed for
this discovery, which Galileo did not publish for another 30 years.
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FIGURE 8.2. Galileo: manuscript on projectile experiments. A detail from an important
page (c.1608) from Galileo’s notebooks, revealing his experiments on projectile motion,
and showing their parabolic paths.



Further evidence for the earlier date of Galileo’s manuscript comes in the form
of the diagram drawn by Galileo (see Fig. 7.2) in the letter to a potential patron
dated February 11, 1609. This diagram, depicting projectiles launched at various
angles, more clearly reveals the symmetrical paths of the projectiles. An impor-
tant consequence of Galileo’s discovery is that a projectile launched at a 45° angle
produces the maximum distance. The military application of this to cannonballs
was not to be lost on a possible patron; however, the letter did not have the desired
result, since Galileo did not get the job.

Much later, in 1638, the law appeared in Two New Sciences, Galileo’s last
and arguably his major work, published in Holland from a manuscript smug-
gled out of Italy when he was under perpetual house arrest following his trial
before the Inquisition. Of his discovery he writes: “It has been observed that
missiles or projectiles trace out a line somewhat curved, but no one has
brought out that this is a parabola. That it is . . .will be demonstrated by me.”
And so, about 30 years after discovering this important law, Galileo formally
(and finally) published the correct path of projectiles, advancing scientific
knowledge and technical application. (On this law and the artist Artemisia
Gentileschi, see the previous chapter.)
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Deriving the Parabola

The following is a thoroughly modern derivation of the law of the parabolic pro-
jectile. Although Galileo worked exclusively within a geometrical framework,
his deduction is easily derived in modern algebraic notation. The horizontal
component of a horizontally launched projectile moves over equal distances (x)
in equal times (t), due to inertia; thus its constant speed v is, v � x/t. The vertical
(“falling”) component, moving y distances, is accelerating, so that y is propor-
tional to t2. (See essay on Galileo and music, Chapter 6. This law of falling bod-
ies Galileo discovered along with the fact that objects fall independently of their
weight.) It thus follows that y is proportional to x2, clearly a parabolic function.

Scholars poring over Galileo’s manuscripts have not yet reached a consensus
on exactly how he arrived at it.

8.3. The Relativity of Motion and the Rotating Earth

From his discovery of the parabolic path of a projectile Galileo made one of the
most important deductions in the science of motion, which became the core of the
principle of relativity. He applied this to his defense of Copernicus, where he was
bound to explain how our everyday earthly experience takes place on an Earth
rapidly moving around the sun.

One of the key arguments against a moving Earth (beyond the lack of stellar
parallax; see section 2.3), an argument also found in antiquity, is based on falling



bodies. A stone dropped from a tower should not fall directly to the bottom if
Earth moves; rather, it should fall somewhere “behind” the tower, so the logic
goes. But Galileo countered this with the following thought experiment. He
presented it in the context of motion on a moving ship. (Einstein would later
use trains and elevators.) Galileo argued that a stone at the top of the mast of a
moving ship not only would be compelled to move downward (by gravity) but—
and this is the key insight—there also would be a component of inertia in the
direction of motion of the ship, since both the ship and the stone share this
motion; when dropped, this horizontal component would act on the stone just as
if it were a thrown projectile. This horizontal component, along with gravity act-
ing vertically, simultaneously moves the stone along a projectile path such that
the stone hits the deck of the ship at the spot directly below the mast, as the mov-
ing ship catches up with it. From the point of view of an observer on the mast, the
stone just falls vertically to the bottom (Fig. 8.3). So, extrapolating from the ship
to the moving Earth, despite our moving through space, objects dropped on Earth
appear to fall straight down. As noted, Galileo’s insight contains the foundation of
the modern principle of the relativity of motion.

A modern stroboscopic photograph beautifully illustrates Galileo’s insight
(Fig. 8.4), by sort of dissecting the temporal sequence of motion. Two balls are
simultaneously ejected: ball A is dropped and ball B is a projectile shot horizon-
tally. Note that although ball B is moving along a parabolic path, its vertical
component is following the same law of fall as ball A (namely, the distance being
proportional to the time squared) and independently of its horizontal (inertial)
motion. This also shows the principle of relativity, since the same path would be
followed if ball B were dropped from a moving source, and hence from the point
of view of that source, the ball would appear merely to fall straight down.

An aside: some of the most reproduced stroboscopic pictures of motion found
in science textbooks were taken by Berenice Abbott, a 20th century photographer
famous for her cityscapes, especially of Paris and New York, but who also was

128 8. Ensnared in Circles

FIGURE 8.3. Galileo: relativity of motion. This thought experiment illustrates the relativity
of motion. As the boat moves with uniform speed S through the water, the ball, whether
remaining at the top of mast or falling, also moves horizontally (by inertia) with speed S. If
falling, it follows a path from left to right, from the top of the mast, reaching the deck as
the boat moves with the same speed S. From the point of view of someone on the boat, the
ball merely falls straight down.



greatly influenced by science. Mainly in the 1940s and 1950s she produced
memorable photographs demonstrating various physical laws of nature.

Having provided a justification for a moving Earth, Galileo was left with a
problem: if Earth really rotates once a day, why are we not flung off it? To
answer this correctly requires an understanding of what later is called centri-
fugal force (see section 11.2), and for this a clear concept of linear inertia is
imperative. What is extraordinarily interesting about Galileo’s reasoning on this
question is the mélange of insight and error.

He begins with the case of a bottle of water tied to a cord and being spun in a
circle. If there is a hole in the bottle, the water will “spurt forth.” The same sort of
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FIGURE 8.4. Stroboscope photograph of motion. A sketch of a stroboscope photograph
illustrating the independence of the horizontal and vertical components of projectile
motion. Note that the rate of fall (acceleration) is the same for both balls.



motion, he points out, is involved in slingshots, with which boys can throw rocks
at great distances. So why are not things on the spinning Earth, especially at the
equator, flung toward the sky? To answer this Galileo first analyzes rotational
motion: importantly and correctly he reasons that a rock released from a slingshot
moves tangent to the circular motion. This is a critical insight; it was commonly
held that such motion was outward along a radius—an intuitive mistake that even
Newton initially made (see section 11.2). Perhaps Galileo’s correct knowledge is
due to his own experience (or experiments) with slingshot as a boy.

With his insight, the problem of objects on the rotating Earth should then
reduce to combining this tangential motion with the vertical power of gravity, as
he did in the case of falling bodies. But this is not what he does. Instead, an
insight is followed by an error: he states that for an object to be projected off the
rotating Earth, the motion along the tangent must “prevail over the tendency” to
fall. Amazingly, with this affirmation, he is harking back to Aristotle’s theory, by
assuming that two powers cannot act simultaneously. It is strange and rather
disconcerting to see Galileo revert to a principle that he had shown to be false
when he derived the parabolic path of a projectile and the corresponding principle
of relativity. I find it almost unfathomable that he does not see his error. Neverthe-
less, he goes on to assert that since gravity is always stronger than the tangential
motion (the legitimacy and details of this claim are not relevant here), everything
therefore stays on Earth. Hence nothing flies off the rotating Earth—but, of
course, the “proof” is specious. Nonetheless, Galileo comes ever so close to the
modern theory of deducing centrifugal force from linear inertia and gravity as
continuous and simultaneous powers.

8.4. Galileo’s Inertia in Context

Close, however, only has meaning as Galileo’s insights are filtered through
Newton’s physics. In Galileo’s mind his discoveries led to an explanation of
celestial motion and gravity, at once. Here’s how.

The previous quotation on inertia, recall, was about circular motion. A concrete
example of Galileo’s realization of inertia in action is a delightful experiment
anyone can perform (see section 4.4), which appears in Dialogue on the Two
Chief World Systems (1632). Float a ball in the center of a bowl of water and care-
fully rotate the bowl. One finds that the ball’s orientation with respect to the room
remains fixed despite the rotational motion of the water and bowl in which it
floats; this neatly illustrates inertia with respect to rotation, since the ball remains
at rest. Concomitantly, an object in circular motion will retain that motion unless
it is externally suppressed. Certainly the concept of inertia was central to
Galileo’s maturing scientific thought, but the question arises as to the nature of
this concept. It seems that he did not conceive of it as today’s textbooks do—
namely, as linear motion. This is a matter of some debate among historians but I
am convinced that the consensus is right: Galileo’s conceived of inertia only as a
circular phenomenon.
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The framework of Galileo’s work in mathematical physics was the Copernican
system, specifically the simplified heliocentric model. Here the sun sits at the center
of the sphere of the fixed stars, and the planets, which now include Earth, move in
circles around this center. As a first approximation—for example, accounting for the
yearly motion of Earth or the 12-year period of Jupiter—the model is sufficient; for
a complete explanation, however, more circles (eccentrics and epicyclets) are needed
because of numerous other minor motions (see section 3.5). Just as Galileo
abstracted and simplified the physics of motion to arrive at his mathematical laws, so
he condensed and reduced cosmology to circles centered on the sun, thus ignoring
Kepler’s discovery of elliptical planetary orbits. Combining this abstraction with
that of inertia as a circular phenomenon results in a celestial physics as follows: the
planets orbit the sun by inertia alone, not requiring, therefore, any other powers such
as Kepler had proposed between the sun and the planets or even the planets and their
moons (see section 11.1). All traces of occultism (action-at-a-distance) Galileo thus
banished from the cosmos. In this framework, only gravity, as a local power of
unknown cause, remained.

But there’s more: Galileo even found a way of eliminating gravity completely.
Consider the following fascinating argument on the relativity of motion applied to the
entire rotating Earth. It appears as a geometrical proof in the Dialogue. In Figure 8.5,
A is the center of Earth, BI is on the surface of Earth (therefore AB is Earth’s radius),
and CB is a tower. As Earth rotates, the top of the tower moves through points
F, G, H, etc. Now if a stone is released from the top the tower, it falls on the moving
(rotating) Earth along the path of an arc from C to I, terminating at the surface of
Earth; assuming a transparent Earth, ideally the stone would proceed to the center of
Earth, point A, making a half-circle centered on point E. Although in the end this
argument is wrong, it does contain the clever artifice of geometrically conceiving of
a transparent Earth, something that Robert Hooke later utilized in his significant
contribution to a celestial physics, which influenced Newton (see section 10.4).

However wrong, Galileo’s deduction from this geometrical demonstration is
worth looking into, since it is a window deep into his frame of mind on the
physics of motion. He proves that the distances between arcs C, F, G, through D,
centered on the semi-circle A, are equal to the arcs from C to I centered on a semi-
circle at E. (I leave it to the reader to confirm his proof; it’s a neat problem in
geometry.) From this he infers that there is no difference between the stone stay-
ing on the tower (moving from C to D as Earth turns) and the stone falling to
Earth (from C to I); in both cases they move along circles through equal arcs. In
his words, “Whether remaining on the tower or falling,” the stone “moves always
in the same manner; that is, circularly, with the same rapidity, and with the same
uniformity.” He speaks of his proof as a series of “curiosities.” As well, he calls
it a “marvel,” for this means that the straight-line (vertical) power of gravity is
eliminated, being really a deception due to the motion of Earth. Indeed “the true
and real motion of the stone is never accelerated [namely, falling] at all, but is
always equable and uniform” in its circular motion. Accordingly, everything is
subsumed under circular inertia, and hence “straight line motion [both vertical
and horizontal] goes entirely out the window and nature never makes any use of it
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at all.” All that remains is natural (rotational or circular) motion, since the stone
“really moves in nothing other than a simple circular motion, just as when it
rested on the tower it moved with a simple circular motion.”

This is a remarkably ingenious and attractive model. It is easy to see why
Galileo found it so appealing and convincing. If true, it would be a “marvel”: it
beautifully unites a terrestrial physics with a celestial motion on the Copernican
system, thus eliminating the dualism inherent in the vertical motion of gravity
and the circular motions of moons and planets. Or, said another way, gravity is an
illusion. Too bad it is wrong. (Just as it is too bad that Kepler’s “secret of the
universe” is wrong; see Chapter 6.)

So what is wrong with the proof? The ultimate fault is this: rotational motion
itself really is accelerated motion. But this was not fully comprehended until the
later conceptualization of linear inertia among Descartes, Huygens, Hooke,
Newton, and others, which further supports the view that Galileo only conceived
of circular inertia.
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FIGURE 8.5. Galileo: the illusion of gravity. Geometrical diagram for explaining Galileo’s
(ultimately erroneous) argument that gravity is an illusion. Point A is the center of Earth
and therefore the surface of Earth is the circle B to I, etc. The falling stone starts from point
C, and as the stone falls from C to I on a rotating Earth, it is really moving in a circle
toward the center of Earth (A). All motion is circular, and hence gravity (as straight-line
motion toward Earth) is an illusion.



Independently of this retrospective error, however, there are problems within
Galileo’s own framework. First, he is not being consistent in the way he applies
circular inertia. Consider the case of moons orbiting planets or planets orbiting
the sun. It is true that from the point of view of circular inertia, these circular
motions entail no explicit occult powers between the orbiting objects and those at
the centers; nevertheless, there is an implicit connection in that the orbiting
objects move in their particular circles around the central bodies, rather than in
any other circle about any other geometrical center (and there are an infinite
number of possibilities). Put simply, our moon orbits Earth rather than moving in
some other circle because Earth is there! And this brings me back to Figure 8.5
and point E. Although the falling stone is moving toward the center of Earth
(point A, which is a physical, namely gravitational, center) the stone is “orbiting”
point E, which is only a geometrical point, with no physical meaning. Why
orbit around E? This seems to contradict the way circular inertia is applied to
planets and moons.

Second, there is Galileo’s omission of the parabolic projectile path. Should not
the path of the falling stone from C to I be identified as a parabolic arc? As noted
above, there is a strange 30-year gap between his discovery of the law (about
1608) and its publication in 1638. So obviously it does not appear in the Dialogue
of 1632. Yet Galileo does make a cryptic remark after the equal arcs proof: he
queries whether heavy bodies fall exactly this way and hints that maybe they do
not. He writes, “I shall only say that if the line described by a falling body is not
exactly this, it is very near to it.” That’s it; there is no further commentary, but I
suspect he is thinking of the parabolic projectile. Why he does not mention it here
is rather odd. Perhaps he does not wish to introduce a contradiction here; he is
keeping things simple (and circular) in the debate over heliocentricity, which is
essentially what the Dialogue is all about. Of course, Galileo was confronted with
the problem when he eventually published his parabolic law in Two New Sciences
(1638). Thus we now turn to Galileo’s last book, looking particularly at the
context of the law of parabolic projectile motion.

Here he first correctly states the law this way: “When a projectile is carried in
motion compounded from equable horizontal and from naturally accelerated
downward [motions], it describes a semi-parabolic line [i.e., a partial arc of a
parabola] in its movement.” But a few pages later a question is raised about the
termination of this motion. A vertically falling body moves toward the center of
Earth, but since a parabolic line “goes ever widening from its axis,” the projectile
would not end at Earth’s center. Galileo maintains that the projectile must termi-
nate at the center of Earth, but surely it cannot if its path is parabolic, which
(unlike circles and ellipses) is an open curve. Hence, to reach the center of the
Earth “the path of the projectile would be transformed into some other [curved]
line, quite different from the parabola.”

Galileo’s answer to this problem is a bit obscure but as I interpret his remarks
the point is this: the projectile law is only a local law; it does not apply to Earth as
a whole. For local phenomena “the distances we employ are so small in compari-
son with the great distance to the center of our terrestrial globe that [for example]
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we could treat one minute of a degree at the equator as if it were a straight line,
and two verticals hanging from its extremities [also at the equator] as if they were
parallel.” So locally inertia appears linear, falling bodies move vertically, and
hence a projectile appears to trace the line of a parabola. But these are only (local)
approximations: for the whole Earth there are neither straight nor parallel lines;
and therefore the true law is, not surprisingly, the circular law of motion (that is,
rotational inertia). As visually displayed in Figure 8.5, an arc that locally may
appear to be a parabola is really globally part of a circle. Just as gravity is an illu-
sion in the larger context, so the parabola morphs into a true circle. As before,
everything is subsumed under the rule of the simple and perfect circle, about
which, it seems, Galileo exhibited a case of mental inertia. How Aristotelian!

In one sense Galileo was right. The parabolic law is a local approximation—
not, however, to the rule of circles but to the law of ellipses discovered by Kepler
in 1609, a discovery that Newton fruitfully exploited (see section 10.2) but
Galileo chose to ignore—for obvious reasons, though at his peril.

An aside: Galileo’s obsession with circles, and the corresponding rejection of
ellipses, may have relevance to his attitude toward the art of his time. His alle-
giance to the more classical artistic style and his denunciation of Mannerism (see
section 7.2) is a reflection of this, for the circle was a ubiquitous “classical”
Renaissance motif, whereas Mannerist distortions often involved various ovals
(shades of Kepler?) and other stretched (anamorphic) shapes. Both in art and
science Galileo was fixated on the circular form.

Looking at the history of science anachronistically, earlier discoveries often
appear obvious and mistakes seem foolish. But looking at these matters in their
context—by attempting to immerse ourselves into the past and even trying to
think within the earlier framework—allows us to appreciate the difficulties
even geniuses had in extricating themselves from preconceived viewpoints. This
intellectual exercise goes a long way to explaining why the breakthroughs of indi-
viduals, geniuses though they may be, are usually only partial breaks with the
past, and why it often takes the combined ingenuity of several scientists to make
a clean break. Galileo, despite his insights, newfangled ideas, and discoveries,
was, as seen, very much still ensnared in the circles of Aristotle.

I add two caveats to this chapter. In a letter of 1637 Galileo dismissed his proof of
the illusion of gravity, calling it a “jest” and a “poetic fiction” and pointing to his
comment in the Dialogue that the proof is only a series of “curiosities” (bizzaria).
But this letter was penned after his recantation before the Inquisition and should
be read in that context. The unreasonableness and downright cruelty of the repres-
sive system of house arrest to which he was subject may be gleaned by an exam-
ple: when Galileo was suffering with a painful hernia and asked to visit
his doctors, his request not only was rejected but the Inquisitor told him that any
further petitions would result in imprisonment. Accordingly Galileo must have
been extraordinarily cautious, especially when writing on scientific matters.
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Most scholars are sure Galileo took the proof seriously—I think very seriously.
Also, he wrote the 1637 letter while he was working on Two New Sciences, which
contains the law of parabolic projectiles. Now I have interpreted Galileo’s oblique
references to differences between local and nonlocal phenomena (with respect to
Earth) as implying the circle to be exact and the (local) parabola an approxima-
tion. Some scholars, however, have put forward the opposite argument. Recall
Galileo’s cryptic comment after the proof in the Dialogue, namely, “I shall only
say that if the line described by a falling body is not exactly this [circle], it is very
near to it.” The implication here is that (at this time) Galileo believed the parabola
is the exact path and hence the circle is an approximation.

Did he later change his mind? And, if so, why did he not clarify it in Two New
Sciences? An answer to the latter is implied in the letter of 1637: he was com-
pelled to distance himself from direct arguments supporting Copernicus. At most,
he would make things obscure, perhaps trusting that the reader would read
between the lines. As to the former question, this is how I read between the lines
in Galileo’s passages in Two New Sciences—the parabola is a local approxima-
tion to the true cosmological circle.
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Real-World Physics: Lost and Regained

Galileo was well aware that the laws he was abstracting from nature would
not submit exactly to experimental tests. In a sense Aristotle’s physics was
more real, since he was concerned with physical objects moving in media, as
they do on and about our Earth.

Using an obvious intuitive argument, Aristotle concluded that heavy objects
should fall faster than lighter ones, since (holding them in our hands) we can feel
the heavier one striving harder to reach Earth. Moreover, the resisting medium
retards that motion, so the speed of the fall should be inversely proportional to
this resistance. Indeed, his law of falling bodies was qualitatively correct; falling
in the same medium, heavy objects do fall faster than lighter ones. If two other-
wise similar spheres, say weighing 12 pounds and one-quarter pound, are
dropped from a 100-foot tower, when the heavier sphere hits the ground the
lighter one will still be about 15 feet away. The problem for Aristotelian physics
is that quantitatively this does not fit Aristotle’s law, since he (again, intuitively)
assumed that their speed of fall was proportional to their weight. If this were so,
then when the 12-pound sphere hit the ground the one-quarter-pound sphere
should only have fallen a few feet. Does this mean that the theory should be
abandoned?

Galileo thought so, and often pointed to such discrepancies as evidence
against Aristotle’s theory. His solution was to abstract to an imaginary world
where things move in a vacuum, so the resistance is zero. Only in this ideal
world, he believed, could we find the perfect, mathematical (namely, geometri-
cal) laws of nature. And he did: he deduced that heavy objects fall independently
of their weight, that they accelerate as they fall, and that the distance they fall is
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proportional to the elapsed time squared. But Galileo was under no deception
that objects in the real world would obey these laws exactly. That’s why some
historians contend that Galileo never actually tested his hypothesis by dropping
two different weights from the Leaning Tower of Pisa. For decades historians
declared it was a myth; I was taught this in graduate school. Stillman Drake,
however, has convinced me that Galileo did perform this celebrated experiment
to falsify Aristotle quantitatively and to verify his own law as an approximation.
This was not so much a controlled experiment as a public demonstration directed
to philosophers. The two weights hit the ground close enough to being simulta-
neous that Galileo could openly conclude that they would do so in the limit of no
resisting medium.

Newton and others immortalize Galileo’s achievement in the history of
science, mainly through their further elaborations and expansions. But what
about the physical world of objects moving a medium? Newton groped with
this problem in the second part of his Principia, but with little success. He
only laid the groundwork for what proved to be a formidable and complex
matter that was later developed by several brilliant mathematical physicists.
Thus, the seemingly simple case of a sphere falling in a medium was not
completely solved until the mid-19th century by the Irish physicist George
Gabriel Stokes.

There is a delightful irony in his solution. If we write Aristotle’s law for a
weight falling in a medium as a proportion (although he only worked in
ratios), it appears as

S r W/R,

where S is the speed of fall, W is the weight, and R is the resistance of the
medium.

Stokes’s law applies to a sphere of radius r and density d, falling in a
medium of density � and viscosity �. After initially accelerating briefly, the
falling sphere reaches a terminal speed S, due the resistance of the medium,
and falls at this constant rate, such that

S r r2 (d � �) / �.

Of course this law was deduced over two millennia after, and is a far cry more
accurate than, Aristotle’s. Moreover, Stokes’s law is based on Galileo’s
abstract law of falling bodies, although now augmented to taken into account
real-world friction of a medium. Nevertheless, note the formal similarity
between the two real-world laws. Stokes’s law entails a “weight” in the
numerator (the density of the sphere) and the resistance of the medium (now,
the more sophisticated concept of viscosity) in the denominator. Ironically,
it’s more like Aristotle’s law than Galileo’s law.
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9
Aesthetics and Holism: Newton 
on Light, Color, and Music

139

Newton is famous for showing that Galileo’s (correct) physics of motion combined
with Kepler’s three laws of planetary motion are consequences of the inverse-
square law of gravity. Like scientists today, Newton siphoned off these three
laws from Kepler’s life work, leaving behind seemingly remnants of mysticism.
Nonetheless, and surprisingly, Newton’s mind set was closer to Kepler’s than
Galileo’s. I will illustrate this by looking at Newton’s study of light.

9.1. Newton Creates the Spectrum

Science students often make up mnemonics for Newton’s seven colors of the
spectrum. Memorized and repeated like a chant, the colors are red, orange,
yellow, green, blue, indigo, and violet (or the mnemonic ROY G BIV).
But, why seven? After all, the spectrum literally displays a continuum of
colors, one blending into another from the reddish side to the bluish side. So
where did the canonical seven come from? In his Opticks (1704), Newton
admits that the spectrum is a continuum but still delineates the sequence of
seven colors. The spectrum, he writes, is “tinged with this series of colours,
violet, indigo, blue, green, yellow, orange, red, together with all their interme-
diate degrees in a continual succession perpetually varying.”

What is not commonly known is that when he first studied the spectrum
Newton saw only five colors. Shortly thereafter he added two more. The story of
why he did this, and more, reveals how Newton’s thinking about the world,
despite its seeming modernity, was move closely aligned with Kepler’s.

His systematic study of light began, he tells us, in the mid-1660s when, as a
student at Trinity College, he bought some prisms at a country fair. Prisms
were toys, artifacts for amusement, like kaleidoscopes; the viewer held them in
front of the sun and looked at the rainbow of colors. But Newton turned this
toy into a scientific instrument by doing something that rarely was done
before: he darkened his room and allowed a beam of sunlight to shine through
the prism, thus projecting the colors onto the opposite wall. The few who tried



this, projected an image only a few inches. But Newton reports that the wall
was 22 feet from the prism with the resulting spectrum of light being 131⁄4
inches long and 25⁄8 inches wide.

Newton went on to perform a variety of experiments with colored spectra. One
of the most famous in the entire history of optics he called his experimentum cru-
cis (crucial experiment). Using a second prism, he individually cast each specific
color onto the wall after the first prism had separated them. The colors did not
change: picking up (say) the color green, it remained green even when refracted
through the second prism. This experiment is shown in an often-reproduced
drawing by Newton (Fig. 9.1), which sometimes mistakenly is thought to be an
original sketch from the 1660s. Actually it was made many years later; he
sketched it 1721 (in his late 70s) for the second French edition of the Optiques.
Nevertheless, we assume it records—in general, if not faithfully—what Newton
did in the 1660s. This experiment he believed unambiguously disclosed the parti-
cle (or discrete) nature of light, since whatever is carrying the color through the
first prism is not modified by the second one. Newton writes on the sketch, nec
variant lux fracta colorem (that is, light does not change color when refracted [the
second time]); the phrase appears thrice, although curiously it is crossed out once.
(I have not reproduced this text in my diagram.)
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FIGURE 9.1. Newton: optical experiment. A sketch of Newton’s diagram of his famous
experiment on the refraction of light through a prism, from which he deduced the colored
division of the spectrum and the inference that light has a particulate nature. Newton’s
diagram, it should be pointed out, was a reconstruction from memory made many years
later. Of interest is his depiction of five distinct colors in the diagram, harking back it his
original division of the spectrum.



If light has a wave- or pulse-like nature, which was what his later arch-rival
Robert Hooke assumed, then one would expect that as the light is refracted while
passing through the first prism, whatever causes the colors to arise would likewise
refract the colored light through the second prism and produce another set of
colors. Instead something discrete seems to preserve the color as it passes through
the second prism. From this point of view the first prism acts like a filter, separat-
ing the discrete colors apparently already within the white light from the sun. It is
not surprising that posterity has agreed with Newton in calling his experiment
“crucial,” for it still convinces just about everyone when first confronted with it.
At the very least, science textbooks present the argument as ironclad.

In fact, however, everyone did not initially see it that way. When Newton first
made known his hypothesis publicly in 1672, Hooke countered with this line of
reasoning: assuming the colors to be already in the white light is like saying that
sounds are in strings before they are plucked. Rather, white light is a homogeneous
entity and the colors are due to modifications to the light made by the prism as
the light is refracted; in short, the prism makes the colors. This was the dominant
view of light, often a symbol of God, hence its pure and flawless nature. Newton,
contrariwise and hence very radically, viewed the white light as heterogeneous
(instead, the colors were homogeneous), so that the prism separated the colors
according to their degrees of refraction.

From Hooke’s point of view Newton’s experiment did not confirm anything.
Simply because the white beam is modified in passing through the first prism
does not necessarily imply that the colored beam should likewise be modified.
The prism may act differently on a colored beam than a white beam. Moreover,
the property acquired by the now-modified beam after being refracted by the first
prism may not be similarly affected by the further refraction through the second
prism. The debate over the nature of light was the first of many clashes between
Newton and Hooke.
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Newton, Hooke, and the Giants

One of the famous quotations by Newton, often interpreted as revealing his
humility, is this: “If I have seen further [than others], it is by standing on the
shoulders of giants.” The metaphor was not unique to him. It has been attrib-
uted to earlier writers, perhaps as far back as the Roman poet Lucan. At least
it is found in Bernard of Chartres, an early-12th-century theologian-scholar
whose admiration of the ancients provoked this comment: “We, like dwarfs
on the shoulders of giants, can see more and farther, not because we are
keener and taller, but because of the greatness by which we are carried and
exalted.” Most intriguing in this context are several images on the celebrated
stained-glass windows of Chartres Cathedral. The Gothic cathedral was
rebuilt (1194–1220) after a fire destroyed the original Romanesque structure.
The images depict the four New Testament evangelists literally riding on the
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backs of four Old Testament prophets, for example, Luke on the shoulders of
Jeremiah, which may be deemed as visualizations of the famed aphorism
(Fig. 9.2). In Newton’s time the phrase is found in the widely read Anatomy of
Melancholy (1621) by Robert Burton.

Newton’s version appears in a letter to Hooke in response to one from him.
The background to this exchange is a previous acrimonious exchange initiated
by Hooke’s attacks in which he accused Newton of plagiarism and errors.
Hooke writes on January 20, 1676, that he wants to correspond privately on

FIGURE 9.2. Window: Chartres Cathedral.
A sketch of St. Luke on the shoulders of
Jeremiah from a stained glass window.



9.2. Newton Counts the Colors

When and why did Newton identify seven colors? What do we know precisely?
We have no direct documentation of his first optical experiments; the earliest
material is dated a few years after the experiments were performed. In the fall
of 1669 Newton was appointed Lucasian Professor of Mathematics at Trinity
College and he immediately planned a series of lectures on light and color,
the subject on which he had been working on and off for about 5 years. These
lectures, written between 1670 and 1672, are the earliest sources of Newton’s
thoughts about light.

In the first lecture he presents his celebrated experiment of projecting a beam
of light through a prism in a darkened room. The resulting spectrum he describes
this way: “Hence, insofar as the rays are so disposed that some are refracted
[by the prism] more and more than others, they generate in order these colours,
red, yellow, green, blue, and purple, together with all the intermediate ones that
can be seen in the rainbow.” (Recall that in the above quotation from the Opticks
he used violet; throughout his writings he uses “purple” and “violet” interchange-
ably.) Here he recognizes a continuum of colors, as mentioned later in the
Opticks, but he also identifies as specific colors only five, not seven. So where are
orange and indigo? They do not appear until the eleventh lecture, revealing that
Newton originally delineated only five distinct colors in the spectrum—or said
prosaically, those five are what he initially saw.

In the eleventh lecture he goes back to the spectrum, which he now casts onto
a piece of paper. He tells us that he marked with a pen the boundaries between
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some contentious matters of science, specifically research that he had begun
but did not complete, and about which Newton had “gone further” in pursuing.
The letter appears to be an attempt at reconciliation. In his reply Newton
(February 5, 1676) agrees about the private exchanges and, apparently in
response to Hooke’s remark about Newton having “gone further” than he,
Newton refers to the work of Descartes as providing a basis for optics and also
mentions Hooke’s work on “ye colours of thin plates” (see section 9.3).
Newton then says: “If I have seen further it is by standing on ye sholder of
Giants.” In light of previous caustic exchanges between them, it has been sug-
gested that the statement is really a put-down—unquestionably a particularly
nasty one—diminishing Hooke’s work with a concomitant assault on his
physical deformity, for Hooke was a very short and hunchbacked man.

In fairness I should point out that Newton’s biographer, Richard Westfall,
would not agree. He writes, “I do not accept the interpretation that the
[”shoulder of giants”] . . . phrase was a deliberate, oblique reference to
Hooke’s twisted physique. As Newton said once before in regard to Hooke,
he avoided oblique thrusts. When he [Newton] attacked, he lowered his head
and charged.”



the colors; in addition, he marked where each color was the strongest (“the most
perfect colours of their kind”). This was followed with a quantification of the
spacing of the colors, by dividing the spectrum into 60 equal parts. The result-
ing ratios are as follows: violet or purple (16/60), blue (14/60), green (10/60),
yellow (11/60), and red (9/60). As such, the colors are not equally spaced across
the spectrum. He then identifies the colors he sees at the boundaries between
the colors as follows: between purple and blue is indigo, between blue and
green is sea green, and between yellow and red is orange (no color is designated
between green and yellow). This is the first appearance of indigo and orange,
and they are introduced as boundary colors only. I have reconstructed these
observations in Figure 9.3. Newton points out that he made a concerted effort to
make sure that he was being objective in these observations; he tells us that he
asked “others” to verify that his markings were correct (“trusting not only my
own senses”). Moreover, he drew yet another scale figure of the spectrum and
“projected the colored light onto this figure to confirm once more whether
every color would be confined within the limits assigned,” and he found that
they all fit as he had drawn it. No doubt Newton was being meticulous in his
quantification of the light.

As noted, he was not only interested in the boundaries between the colors, but
also marked where each color peaked in intensity. A close look revealed that
these “peaks” were not at the centers of their intervals. The brightest part of each
color he located as follows (see the horizontal arrows in Fig. 9.3): the “most bril-
liant” blue was shifted toward the middle of the spectrum; the “fullest” yellow
was also shifted toward the center (or green); red and purple, however, were
shifted away from the center; and, finally, “green alone sprang up in the middle”
of its boundaries. Newton then examined the proportional arrangement of these
colors, noting that colors were crowded near the center and spread out near the
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FIGURE 9.3. Newton: colors of the spectrum. A reconstruction of Newton’s division of the
spectrum, showing his original division of five colors, his quantification of the colors, and
the subsequent introduction of indigo and orange as boundary colors. The arrow indicates
the shifting of the brightest parts of individual colors, thus opening gaps for indigo and
orange to assume full status, resulting in the famous seven-colored spectrum taught today.



edges. As the horizontal arrows I’ve drawn reveal, there are gaps where indigo
and orange constitute boundary colors. At this point Newton fills in these gaps
with the boundary colors. This, consequently, is where he made the transforma-
tion from the original five to the seven colors of the spectrum. Indigo and orange
are transformed from boundary colors to individual colors of the spectrum.
Why? He tells us: so as “to divide the [spectral] image into parts more elegantly
proportioned to one another.” After all, indigo and orange are the next brightest
(“eminent”) colors and by filling these gaps a spectrum of more equal division
among the colors is created, so that “everything turns out proportionate to the
quantity of green with a more refined symmetry.” Listen to Newton’s language:
elegance, proportion, and symmetry—aesthetic terms usually associated more
with art than science. Nevertheless, we have heard such language from Coperni-
cus and Kepler, among others.

So there it is. It began as a careful observation of five distinct colors. After
quantifying the spectrum, Newton filled in what he saw as two gaps with bound-
ary colors, with the resulting now-canonical seven-color spectrum. Sea green,
incidentally, remained a boundary color. And if what Newton says in the Optical
Lectures is what actually happened a few years before—and I cannot find any rea-
son to doubt him on this—then he justified the change for aesthetic reasons.

Henceforth Newton affirmed the seven-color spectrum. Now look again at
the famous sketch of the so-called crucial experiment (Fig. 9.1) made in 1721,
about 55 years after the first experiments. It delineates only five colors
emerging from the first prism. Why only five, when the Opticks specifies
seven? Was Newton just being careless in his drawing—he certainly was no
artist, as was Galileo—or was this an unconscious slip of the pen, harking back
to the original experiment performed as a student? There does not seem to be
any way of answering this question.
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Newton and Indigo

Newton used purple and violet interchangeably but they really are different.
Purple has ancient origins, associated with royalty; kings and queens were
often clothed in purple. The dye came from the Purpura mollusk; hence the
word purple, which was sometimes used for a deep red. Violet is a Middle
English word vaguely used for the color of the flowers. Indigo was a much
more recent word, introduced in English in the mid-16th century. The dye
came from a plant (genus, Indigofera), obviously imported from India.
Apparently it was a popular color at the time. It is a bit odd that Newton
would introduce this color into his spectrum, since in his mind God implanted
these colors into the sunlight. Why pick a trendy color?



9.3. From Colors to Music

Returning to and continuing with the Optical Lectures: having delineated the
seven-color spectrum, Newton immediately moves on to something else in the next
paragraph. The previous paragraph ended with the seven-color spectrum having “a
more refined symmetry.” The next paragraph begins, “Consequently . . .”—as if
what he is going to say follows logically from the aesthetically motivated spec-
trum of seven colors. So, says Newton, “Consequently, after these colours had been
interspersed, I once more made observations” of the division of the spectral image
and found that “the colors were proportional to a string divided so it would
cause the individual degrees of the octave to sound.” This is what we may call
the color–sound analogy, and it needs to be explained. (By the way: this has no
relevance to Hooke’s plucked string analogy in his critique of Newton’s interpreta-
tion of the spectrum.)

Music was fundamental to the Western educational system. It was one of the
seven liberal arts, which formed the basis of university education from the late
ancient world into the 19th century. Specifically “music” was music theory,
not performance; indeed it was called “harmony.” Elegance, proportionality,
and symmetry were the evocative words used by Newton to justify the expan-
sion of the colors in the spectrum. With the color–sound metaphor we hear
Newton extend the language to include the “harmonies of color.” An aesthetic
phrase, to be sure, but “harmony” can also be taken literally in this case.
In fact, it was a subject (music � harmony) he studied as a student at Trinity
College. His student notebooks from 1664–1666 reveal his familiarity with
various schemes of temperament (see section 6.4). Not surprisingly, the first
seven-tone scale that he identifies in the spectrum of light came from his note-
books. The details do not concern us here but it is interesting to look at its
form: the intervals are 8/9, 15/16, 9/10, 8/9, 9/10, 15/16, 8/9. Note the symme-
try, which makes it a palindrome. In other words, he postulates that the inter-
vals of the seven tones of the musical scale correspond to the intervals of the
seven colors of the spectrum.

All this is a bit of a fudge, and Newton concedes as much. The palindrome
scale does not quite fit, since the spectrum is not (as we know) perfectly symmet-
rical, despite Newton’s imposition of some symmetry with the additions of indigo
and orange. He reports that, in fact, another scale “fits”—a scale that likewise is
taken from his student notebooks. Both scales only approximate the data, how-
ever; neither fits better. There is thus no empirical reason to choose one over the
other. Yet Newton makes a choice; he prefers the palindrome because it seems to
reveal a closer affinity between the “concordances of sounds” and the “harmonies
of colours.” Exactly what he means by this is not clear, but there is a hint in the
following parenthetical phrase after “harmonies of colours”: he writes, “such as
painters are not altogether unacquainted with, but which I myself have not yet
sufficiently studied.” It seems that something about the way artists use colors
contains a clue to understanding this problem.
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Now, hold that thought: I want to back up a bit. After enlarging the spectrum,
Newton immediately links it to a musical scale, and then draws upon his student
notebook on harmony. Why? Why make the analogy at all? What drove him
toward such an idea? The answer is found, in part, in other experimental work on
the optics of thin films.

Newton learned about the colors of thin films from Hooke, who had revealed a
periodicity within the colors. Newton was the first to measure this periodicity, and
his later publication of this led to another dispute with Hooke. Newton specifically
studied the colored rings in the thin film of air between a (convex) lens and a sheet
of glass (or a planar convex lens); he spoke of these—in a phrase that rings poetic
to 21st-century ears—as “ye coloured circles twixt two contiguous glasses.” Today
they are called interference fringes—or, we just call them “Newton’s Rings”—and
are explained on the wave model of light. Although Newton is most famous for his
introduction of the particle model of light, he also used a quasi-wave model to
account for certain optical phenomena that did not fit the discrete or particle
model. Such was the case for thin films; he attributed the periodicity of the colors
to vibrations of the medium. Nevertheless, his was a primitive effort by today’s
standards toward what the 19th century would discover about the complex nature
of the interference of light in different media.

The relevance of this to our story is that Newton believed he discovered in the
periodicity of thin films the ratio 2/1 for the “vibrations” of red to violet. Empiri-
cally, this numerical ratio was the ratio of the thickness of the air twixt the glasses
at the red and the violet rings. Of course, 2/1 is the musical octave! Here, it
seemed, was a numerical ratio, fundamental to music (see section 6.4), springing
up in an optical phenomenon. This must have set him thinking something like
this: the octave is composed of a seven part scale (C, D, E, F, G, A, B, and then C�
to complete the “octave”); the optical spectrum contains seven colors; moreover,
the same 2/1 ratio as the musical octave is found between the colors red to violet.
(Of course, this too is a bit of a fudge, since the 2/1 corresponds to the C�/C cycle,
for which there is no corresponding analog in light.) Nevertheless, and appar-
ently, this was the catalyst for the color–sound analogy, which in turn stimulated
him to seek in his student notebooks a scale that might fit the spectral data. The
work on thin films provided the initial justification for the color–sound analogy,
and perhaps even for fudging the ratios to fit. It was certainly an act of intellectual
syncretism, if Newton had not already thought of the analogy.
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Hertz and Holism

Newton’s introduction of orange and indigo into the spectrum of colors was
guided by a sense of aesthetics. Sometimes such guidance is fruitful, some-
times not.

The important experimentalist and theorist Heinrich Hertz in 1890 attempted
a reformulation of Maxwell’s equations for electromagnetism, which contain



9.4. Newton’s Holism

Was Newton’s color–sound analogy just that? Was it an accident that colors and
sound seemed to fit? In an unpublished letter of 1672 he sketched a hypothesis based
on the argument that as air vibrations produce sound, and harmonious sounds are due
to mathematical ratios (such as 2/1 for the octave), so light vibrations strike the retina
and excite the bodily ether therein, traveling to the brain, and affecting the soul in the
same manner as do sound vibrations from the ear. To get around the problem of
comparing the seven-part spectrum to the eight-part octave, noted above, Newton
includes the rounded ends of the color spectrum, in which there are deep red and
deep violet, so that the spectrum may be divided into about eight parts. “To which
end I would suppose the vibrations causing the deepest scarlet to be to those causing
the deepest violet as two to one; . . . and the reason why the extreames of colours
purple and scarlet resemble one another would be the same that causes octaves (the
extreames of sounds) to have in some measure the nature of unisons.” It is curious to
speculate that if Newton had transformed the sea green from a boundary color to an
individual color, as he did with indigo and orange, he would have had the necessary
eight (octave) colors for the spectrum. 

Newton then published this in a paper, “An Hypothesis Explaining ye Properties
of Light” (dated December 7, 1675). In it he reiterates that as sound is produced by
“vibrations in the air,” so light in some cases is “vibrations in the ether.” When light
strikes the eye the vibrations travel “through the optic nerves into the sensorium,”
just as sound travels in a trumpet. Both are caused by the same mechanism, namely
matter in motion. Thus the connection between color and sound is more than a mere
analogy. They are part of the same mechanism. They reveal a holistic/unity of nature.

Einstein spent about half of his life searching for a unity between gravity and
electricity. He never found it (see section 1.1). Many of his colleagues thought he
was an old fool for pursuing this quest. A young J. Robert Oppenheimer, then a
colleague at the Institute in Princeton, declared him to be “completely cuckoo.”
But Einstein never wavered. About 20 years after his death scientists picked up
the quest, and the search for a unified field theory is now the major goal of some
of the best minds in physics.

These 17th-century notions about color and music may seem strange today, but
frankly they were based on a similar holistic worldview. The extent to which
Newton would go in his quest is seen, for example, by his obsession with the
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an asymmetry between the electric charge in one equation (as a source of the
electric field) and merely magnetic fields in another equation. (Recall that a
magnet is always polarized, with both positive and negative poles; cut a magnet
in half and it still is polarized.) So Hertz put forward the concept of a magnetic
“monopole” (or magnetic charge)—namely, a positive or negative pole alone.
But, however much Hertz’s modified equations are symmetrical, experimental
science has yet to detect any such sources of magnetism. Magnetic monopoles
have yet to be found in nature.



whole number ratios of the octave/spectrum equivalence. It seems that a closer
look at the measurements of the red/violet thickness of the air between thin films
revealed a breakdown in the 2/1 ratio. Instead it was about 14/9. Thus in the Opticks
he again asserts the unity of the seven colors and seven notes, but now submits that
the numbers for the colors relate to sounds as the cube roots of their squares. An
example is the extreme case, deep red/deep violet (14/9) corresponding to
the octave (2/1). Let’s do the math: [(2/1)2]1/3 � (4/1)1/3 � 1.587/1 � 14.283/9 �
14/9. Clearly this relationship between the color and sound ratios—as Newton
seemingly, and desperately, fiddled with numbers—is not exact, but it is close.

In any case, having “discovered” a connection between color and sound, he
carried his quest further. As affirmed in the Optical Lectures, he wanted to
explore what artists do and how this relates to the color–sound analogy.

This therefore brings us back to Newton’s phrase “harmonies of colors.” What
does it mean? He doesn’t tell us in the Optical Lectures. But he does in the 1675
paper, where he argues that sound and light are both based on the motion of matter.
Since we know that the mixtures of various sounds produce either concord
(harmony) or discord, it follows then that there should be a corresponding harmo-
nious or dissonant mixing of colors. Our ears reveal the harmonies of the octave
and perfect fifth, for example. What about colors? What are the harmonious and
dissonant mixtures? In 1675 Newton presents just one case of each: the harmony
of blue (or indigo) and gold (or yellow), and the discord of blue and red.

Where did he get these? Frankly, no one knows; there seems to be no such
conceptions of these particular color pairs in any color theory of the time. Later,
in the Opticks (1704) he merely reiterated the 1675 hypothesis about vibrations of
the optic nerve and the harmony of “gold and indigo.”

There is, however, an important unpublished document that was a draft for a
proposition that never was added to the Opticks, perhaps because of its speculative
nature, although Newton certainly was not averse to publishing his speculations.
This document, I think, is a clue to the source of his color–sound ideas. The argu-
ment is based on the analogy between the sequence of colors (red, orange, yellow,
green, blue, indigo, violet) and the sequence of notes C, D, E, F, G, A, B, C�, with
the seven to eight comparison giving Newton some wiggle room. For sound, two
adjacent notes produce a discord. In color, he writes, “For instance green agrees
with neither blew nor yellow for it is [only] distant from them but a note or tone
above and below[.] Nor doth orange for the same reason agree with yellow or red,”
since they are all adjacent colors. For sound, C to G is the perfect (concord) fifth.
Thus, in color, Newton’s continues, “But Orange agrees better with an indigo blew
than with any other colour for they are fift[h]s. And therefore painters[,] to set off
gold[,] do use to lay it upon such a blew.” I assume the latter is an analogy with the
concord of the third, say C to E. This explains the published “harmony” of gold
and blue (or indigo). In short, the perfect fifth and third in music have correlating
analogues in art. But the next sentence contains a puzzle: “So red agrees well with
a sky-coloured blew for they are fift[h]s and yellow with violet for they are also
fift[h]s.” True, both yellow to violet and red to blue are “fifths,” yet in the 1675
hypothesis Newton spoke of the discord of blue and red! Perhaps it was a mistake,
for recall that in the Opticks he mentions only the harmony of “gold and indigo.”
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These unpublished speculations shed some light on how he arrived at his
ideas on the harmony and discord of colors, which seem to be unique to him.
Why he went no further may be gleaned from the next and last sentence, in
which he brings up an important difference between sounds and colors. As I
interpret it, sounds are pure (a plucked string produces a single note) but pig-
mented colors are not pure (green, for example, may be a mixture of blue and
yellow). “But this harmony and discord of colours is not so notable as that of
sounds because in two concord sounds there is no mixture of discord ones,
[whereas] in two concord colours there is a great mixture, each colour being
composed of many others.”

In the Optical Lectures, recall, when Newton introduced the concept of “har-
monies of colours,” he wrote, “such as painters are not altogether unacquainted
with, but which I myself have not yet sufficiently studied.” My discussion of
“Newton’s Holism” is, as far as I know, as far as he went.

The concept of color harmony, of course, is not strange today. Interior designers
use variations of it. Moreover, just as the issue of whether musical harmonies,
such as the perfect fifth, are innate or learned remains open, so the objectivity/
subjectivity of color combinations is open to debate. But one thing we do
know—the way colors mix. Most importantly, the way optical (prismatic) colors
mix is different from the way pigments of colored powders mix. For pigments
the primary colors are red, yellow, and blue; so, for example, mixing blue and
yellow produces green; and mixing all colors would ideally (if the pigments
were pure) produce gray (although one usually gets brown, due to impure
pigments). For prismatic colors the primary colors are red, green, and blue; thus,
mixing red and green produces yellow; and mixing all together produces white
(like Newton’s prism experiment in reverse). Incidentally, Newton’s conflation
of violet and purple was erroneous; they are distinct, since purple is not a
spectral color.

An aside: One of the earliest sources of color theory is Aristotle’s idea of two
primaries, black and white, with all colors coming from a mixture of them. We do
not know much about the actual practice of color mixing from ancient times
through the Middle Ages. Possibly little mixing was done among artists, since
mainly unmixed colors were used in painting. Color mixing began around 1400,
about the time oil painting was invented. Several theories of colors are found in
Renaissance treatises on art, which reject Aristotle’s concentration on only black
and white. There is a four-color theory (red, green, blue, and yellow); a three-
color theory (red, yellow, and green); and a five-color one (red, yellow, blue,
green, and brown). About the time that Galileo was becoming a celebrity with this
telescopic discoveries (1609–13), the modern three-color theory was put forward
independently by three scholars. A number of Baroque painters adopted it; we
find in sundry paintings by mid-17th century (such as those of Nicolas Poussin) a
prominence of red, yellow, and blue. Artisans, especially dyers, were using it as
well. Thus Newton, as a student, had access to the correct theory of the mixing of
colored pigments.
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The profoundly important difference between optical mixing and the mixing of
pigments was only fully understood by the mid-19th century. In Newton’s time,
they were thought to obey the same laws. Color was color; light rays and
pigments were two sides of a unified vision. This is not a peculiar notion; surely
it is not obvious that colored light and colored pigments are intrinsically different.
But what is astounding is that we find 17th-century experimental confirmation
of this erroneous theory. Distinguished scientists such as Newton’s English
contemporary Robert Boyle performed experiments with colored glassed and
“verified” that, for example, optically mixing blue and yellow (using colored
glass and prisms) produced green and mixing red and blue produced purple,
which is patently impossible! Apparently he saw what he wanted to see. It was
not until the mid-19th century, under controlled experiments, that blue and yellow
light were mixed producing white.

Another aside: if you wish to see optical mixing, a simple procedure with a
television with a picture tube will show you how it works. All you need is a
magnifying glass and preferably having the TV hooked up to a VCR or DVD
player. Put in the tape or disk and when there is a scene with a variety of colors,
press “pause.” Now use the magnifying glass to look closely at the screen. You
will find little rectangular modules containing various combinations of the
primary optical colors. By comparing the modules under the magnifying glass
with the resulting colors on the screen, you will see how different optical mixing
produces different colors. Thus, for example, when all three colors are on the
modules, the resulting “color” is white.

Newton, of course, was convinced of the unity of sound and color, and
accordingly affirmed the unity of optical color theory and the way pigments
mix. In fact, Newton presented some rudimentary ideas on this as early as
the Optical Lectures. Recall the eleventh lecture (when he still envisaged
the spectrum as composed of just five colors), where he delineates the relative
positions of the colors, their boundaries, and the shifting of the color peaks
(see again Fig. 9.3, and especially the horizontal arrows). He makes three
deductions from this. Blue and yellow are shifted toward the green; this is
because mixing blue and yellow produces green. Thus the optical spectrum of
prismatic colors reveals something about pigments. Although wrong today, it
was, at this point in the argument, a reasonable conclusion within the 17th-
century framework. He then observes that the red and green are shifted away
from the yellow; this is because red and green “do not compound yellow well.”
Needless to say they do not; mixing red and green certainly will not make yel-
low. Lastly he points to the purple and green shifted from the blue; this is
because purple and green do not “compound blue well.” True too. And so he
concludes, “Whence the reason is clear why” pigments combine as they do,
which is surely a grand leap from the meager amount of data entailed in these
three cases. Indeed, if, after introducing orange as an individual color, Newton
had looked again at the evidence from the spectrum, he would have noted this:
yellow and red are shifted away from orange. But a mixture of yellow and red
do produce orange; thus they should—according to the logic of the previous

9.4. Newton’s Holism 151



argument—be shifted toward each other, not away as they are. If this fact does
not falsify the theory, at least it raises an important empirical counterexample.
This should have been a warning to Newton about his conflation of pigments
and optical colors. But as far as I know, Newton never noticed this—at least,
he never commented on it. Is this yet another example of a silence by a scien-
tist (see Chapter 4)? Newton did, however, concern himself with the disparity
between only three primary pigments in contrast to seven optical colors, but he
never doubted the unequivocal unity among the colors and sound.

Ultimately, his certitude prevailed. Newton, like Einstein, was “completely
cuckoo” about a unified/holistic view of nature.

152 9. Aesthetics and Holism

Bach, not Schubert

A recent dramatization from the BBC of Einstein’s search for a unified field
theory is titled “Einstein’s Unfinished Symphony.” But this is a poor musical
analogue: Franz Schubert’s Eighth Symphony was not unfinished because he
died while writing it. A better analogue might be J. S. Bach’s last fugue.

There are various arguments as to why Schubert’s symphony has only two
movements, but the key point here is that it came within his career; written at
the age of 25, he would complete another symphony six years later in the year
of his death. Thus the Eighth Symphony was not terminated by death.

Bach’s last fugue was: it literally stops in the middle of a musical
phrase—a stark thing to hear. For this reason, it is seldom performed or
recorded. As with Schubert’s work, there are hypotheses as to Bach’s possi-
ble intended abrupt ending, which I will leave for musicologists to debate.
Suffice to say I wish to make one point, which I admit may be a bit of a
stretch. Einstein’s unification quest, which was not fulfilled and ended
abruptly with his death, was very personal, since he was virtually the only
scientist pursuing this problem at the time. Bach’s last fugue also bears his
personal stamp. The main theme is based on these four notes: B-flat, A, C,
B-natural. In the German notation of the time, B-flat was written as just B,
and B-natural was written as H!
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whole number ratios of the octave/spectrum equivalence. It seems that a closer
look at the measurements of the red/violet thickness of the air between thin films
revealed a breakdown in the 2/1 ratio. Instead it was about 14/9. Thus in the Opticks
he again asserts the unity of the seven colors and seven notes, but now submits that
the numbers for the colors relate to sounds as the cube roots of their squares. An
example is the extreme case, deep red/deep violet (14/9) corresponding to
the octave (2/1). Let’s do the math: [(2/1)2]1/3 � (4/1)1/3 � 1.587/1 � 14.283/9 �
14/9. Clearly this relationship between the color and sound ratios—as Newton
seemingly, and desperately, fiddled with numbers—is not exact, but it is close.

In any case, having “discovered” a connection between color and sound, he
carried his quest further. As affirmed in the Optical Lectures, he wanted to
explore what artists do and how this relates to the color–sound analogy.

This therefore brings us back to Newton’s phrase “harmonies of colors.” What
does it mean? He doesn’t tell us in the Optical Lectures. But he does in the 1675
paper, where he argues that sound and light are both based on the motion of matter.
Since we know that the mixtures of various sounds produce either concord
(harmony) or discord, it follows then that there should be a corresponding harmo-
nious or dissonant mixing of colors. Our ears reveal the harmonies of the octave
and perfect fifth, for example. What about colors? What are the harmonious and
dissonant mixtures? In 1675 Newton presents just one case of each: the harmony
of blue (or indigo) and gold (or yellow), and the discord of blue and red.

Where did he get these? Frankly, no one knows; there seems to be no such
conceptions of these particular color pairs in any color theory of the time. Later,
in the Opticks (1704) he merely reiterated the 1675 hypothesis about vibrations of
the optic nerve and the harmony of “gold and indigo.”

There is, however, an important unpublished document that was a draft for a
proposition that never was added to the Opticks, perhaps because of its speculative
nature, although Newton certainly was not averse to publishing his speculations.
This document, I think, is a clue to the source of his color–sound ideas. The argu-
ment is based on the analogy between the sequence of colors (red, orange, yellow,
green, blue, indigo, violet) and the sequence of notes C, D, E, F, G, A, B, C�, with
the seven to eight comparison giving Newton some wiggle room. For sound, two
adjacent notes produce a discord. In color, he writes, “For instance green agrees
with neither blew nor yellow for it is [only] distant from them but a note or tone
above and below[.] Nor doth orange for the same reason agree with yellow or red,”
since they are all adjacent colors. For sound, C to G is the perfect (concord) fifth.
Thus, in color, Newton’s continues, “But Orange agrees better with an indigo blew
than with any other colour for they are fift[h]s. And therefore painters[,] to set off
gold[,] do use to lay it upon such a blew.” I assume the latter is an analogy with the
concord of the third, say C to E. This explains the published “harmony” of gold
and blue (or indigo). In short, the perfect fifth and third in music have correlating
analogues in art. But the next sentence contains a puzzle: “So red agrees well with
a sky-coloured blew for they are fift[h]s and yellow with violet for they are also
fift[h]s.” True, both yellow to violet and red to blue are “fifths,” yet in the 1675
hypothesis Newton spoke of the discord of blue and red! Perhaps it was a mistake,
for recall that in the Opticks he mentions only the harmony of “gold and indigo.”
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These unpublished speculations shed some light on how he arrived at his
ideas on the harmony and discord of colors, which seem to be unique to him.
Why he went no further may be gleaned from the next and last sentence, in
which he brings up an important difference between sounds and colors. As I
interpret it, sounds are pure (a plucked string produces a single note) but pig-
mented colors are not pure (green, for example, may be a mixture of blue and
yellow). “But this harmony and discord of colours is not so notable as that of
sounds because in two concord sounds there is no mixture of discord ones,
[whereas] in two concord colours there is a great mixture, each colour being
composed of many others.”

In the Optical Lectures, recall, when Newton introduced the concept of “har-
monies of colours,” he wrote, “such as painters are not altogether unacquainted
with, but which I myself have not yet sufficiently studied.” My discussion of
“Newton’s Holism” is, as far as I know, as far as he went.

The concept of color harmony, of course, is not strange today. Interior designers
use variations of it. Moreover, just as the issue of whether musical harmonies,
such as the perfect fifth, are innate or learned remains open, so the objectivity/
subjectivity of color combinations is open to debate. But one thing we do
know—the way colors mix. Most importantly, the way optical (prismatic) colors
mix is different from the way pigments of colored powders mix. For pigments
the primary colors are red, yellow, and blue; so, for example, mixing blue and
yellow produces green; and mixing all colors would ideally (if the pigments
were pure) produce gray (although one usually gets brown, due to impure
pigments). For prismatic colors the primary colors are red, green, and blue; thus,
mixing red and green produces yellow; and mixing all together produces white
(like Newton’s prism experiment in reverse). Incidentally, Newton’s conflation
of violet and purple was erroneous; they are distinct, since purple is not a
spectral color.

An aside: One of the earliest sources of color theory is Aristotle’s idea of two
primaries, black and white, with all colors coming from a mixture of them. We do
not know much about the actual practice of color mixing from ancient times
through the Middle Ages. Possibly little mixing was done among artists, since
mainly unmixed colors were used in painting. Color mixing began around 1400,
about the time oil painting was invented. Several theories of colors are found in
Renaissance treatises on art, which reject Aristotle’s concentration on only black
and white. There is a four-color theory (red, green, blue, and yellow); a three-
color theory (red, yellow, and green); and a five-color one (red, yellow, blue,
green, and brown). About the time that Galileo was becoming a celebrity with this
telescopic discoveries (1609–13), the modern three-color theory was put forward
independently by three scholars. A number of Baroque painters adopted it; we
find in sundry paintings by mid-17th century (such as those of Nicolas Poussin) a
prominence of red, yellow, and blue. Artisans, especially dyers, were using it as
well. Thus Newton, as a student, had access to the correct theory of the mixing of
colored pigments.
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The profoundly important difference between optical mixing and the mixing of
pigments was only fully understood by the mid-19th century. In Newton’s time,
they were thought to obey the same laws. Color was color; light rays and
pigments were two sides of a unified vision. This is not a peculiar notion; surely
it is not obvious that colored light and colored pigments are intrinsically different.
But what is astounding is that we find 17th-century experimental confirmation
of this erroneous theory. Distinguished scientists such as Newton’s English
contemporary Robert Boyle performed experiments with colored glassed and
“verified” that, for example, optically mixing blue and yellow (using colored
glass and prisms) produced green and mixing red and blue produced purple,
which is patently impossible! Apparently he saw what he wanted to see. It was
not until the mid-19th century, under controlled experiments, that blue and yellow
light were mixed producing white.

Another aside: if you wish to see optical mixing, a simple procedure with a
television with a picture tube will show you how it works. All you need is a
magnifying glass and preferably having the TV hooked up to a VCR or DVD
player. Put in the tape or disk and when there is a scene with a variety of colors,
press “pause.” Now use the magnifying glass to look closely at the screen. You
will find little rectangular modules containing various combinations of the
primary optical colors. By comparing the modules under the magnifying glass
with the resulting colors on the screen, you will see how different optical mixing
produces different colors. Thus, for example, when all three colors are on the
modules, the resulting “color” is white.

Newton, of course, was convinced of the unity of sound and color, and
accordingly affirmed the unity of optical color theory and the way pigments
mix. In fact, Newton presented some rudimentary ideas on this as early as
the Optical Lectures. Recall the eleventh lecture (when he still envisaged
the spectrum as composed of just five colors), where he delineates the relative
positions of the colors, their boundaries, and the shifting of the color peaks
(see again Fig. 9.3, and especially the horizontal arrows). He makes three
deductions from this. Blue and yellow are shifted toward the green; this is
because mixing blue and yellow produces green. Thus the optical spectrum of
prismatic colors reveals something about pigments. Although wrong today, it
was, at this point in the argument, a reasonable conclusion within the 17th-
century framework. He then observes that the red and green are shifted away
from the yellow; this is because red and green “do not compound yellow well.”
Needless to say they do not; mixing red and green certainly will not make yel-
low. Lastly he points to the purple and green shifted from the blue; this is
because purple and green do not “compound blue well.” True too. And so he
concludes, “Whence the reason is clear why” pigments combine as they do,
which is surely a grand leap from the meager amount of data entailed in these
three cases. Indeed, if, after introducing orange as an individual color, Newton
had looked again at the evidence from the spectrum, he would have noted this:
yellow and red are shifted away from orange. But a mixture of yellow and red
do produce orange; thus they should—according to the logic of the previous
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argument—be shifted toward each other, not away as they are. If this fact does
not falsify the theory, at least it raises an important empirical counterexample.
This should have been a warning to Newton about his conflation of pigments
and optical colors. But as far as I know, Newton never noticed this—at least,
he never commented on it. Is this yet another example of a silence by a scien-
tist (see Chapter 4)? Newton did, however, concern himself with the disparity
between only three primary pigments in contrast to seven optical colors, but he
never doubted the unequivocal unity among the colors and sound.

Ultimately, his certitude prevailed. Newton, like Einstein, was “completely
cuckoo” about a unified/holistic view of nature.

152 9. Aesthetics and Holism

Bach, not Schubert

A recent dramatization from the BBC of Einstein’s search for a unified field
theory is titled “Einstein’s Unfinished Symphony.” But this is a poor musical
analogue: Franz Schubert’s Eighth Symphony was not unfinished because he
died while writing it. A better analogue might be J. S. Bach’s last fugue.

There are various arguments as to why Schubert’s symphony has only two
movements, but the key point here is that it came within his career; written at
the age of 25, he would complete another symphony six years later in the year
of his death. Thus the Eighth Symphony was not terminated by death.

Bach’s last fugue was: it literally stops in the middle of a musical
phrase—a stark thing to hear. For this reason, it is seldom performed or
recorded. As with Schubert’s work, there are hypotheses as to Bach’s possi-
ble intended abrupt ending, which I will leave for musicologists to debate.
Suffice to say I wish to make one point, which I admit may be a bit of a
stretch. Einstein’s unification quest, which was not fulfilled and ended
abruptly with his death, was very personal, since he was virtually the only
scientist pursuing this problem at the time. Bach’s last fugue also bears his
personal stamp. The main theme is based on these four notes: B-flat, A, C,
B-natural. In the German notation of the time, B-flat was written as just B,
and B-natural was written as H!
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pp. 269–279. Also useful is Alan E. Shapiro, “Artists’ Colors and Newton’s Colors,” Isis
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the spectrum support my view that the musical analog was not the source of the seven-
color division, but a consequence.
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10
Missing One’s Own Discovery 
Newton and the First Idea 
of an Artificial Satellite

155

Newton’s picture of how successive projectiles launched from Earth can eventu-
ally orbit our planet is arguably the most famous diagram in the history of
physics. It comes from a sketch originally drawn by him (Fig. 10.1). A later
engraving of the sketch (Fig. 10.2) appears in innumerable textbooks and thus has
been seen by countless student over the years. But, surprisingly, Newton himself
never saw this engraving!

At first this may seem both strange and puzzling. How could he not see it, if it
appeared in his Principia? The answer to this is elementary: contrary to many
erroneous citations, the diagram does not come from that book. The reason why it
is not there and why he did not see it is part of the history of the writing of the
Principia. Also, in telling this story, there arises the possibility of little lie by
Newton—or at least a conscious deception.

The picture begets another story, a tale that ultimately questions the extent of
Newton’s understanding of his own discovery. It seems that his interpretation of
the diagram did not entail the physics of motion that we derive today; amazingly,
he may not have realized the full significance of what he drew.

10.1. The Principia Project: Origin and Execution

How Newton came to write his masterpiece begins with a discussion among
three Englishmen sometime in 1684: Edmund Halley, the astronomer and
mathematician (later one of Newton’s few friends); Robert Hooke, the
ingenious polymath of the time (one of Newton’s key adversaries); and
Christopher Wren, a mathematician and architect (more famous today for the
latter profession). The three were mulling over a model of celestial physics.
They all agreed, probably based on Hooke’s persuasion, that the planets move
about the sun in elliptical orbits through a combination of linear inertia and an
attractive force between the sun and the planets. Moreover, by an analogy with
the inverse-square law for light (see section 2.1), they also concluded that this
attractive force might likewise obey an inverse-square law. What they could not
do, however, was actually derive this as a mathematical deduction. Isaac
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FIGURE 10.1. Newton’s original projectile
sketch. A sketch of Newton’s drawing found
in his manuscript at Cambridge University
(MS Dd.4.18 f.1v). The circle is a mere 38 mm
in diameter.

FIGURE 10.2. Published engraving from Newton’s sketch. A sketch of the engraving made
of Newton’s projectile diagram, published posthumously in On the System of the World.



Newton’s name was mentioned in the ensuing discussion and Halley agreed to
go up to Cambridge to consult the young scholar.

Supposedly Halley went in August, met with Newton, and asked him this ques-
tion: “What would be the orbit of a planet that was attracted to the sun by a force
inversely proportional to the square of its distance from the sun.” Newton replied,
“An ellipse.” When the astonished Halley asked how he knew, Newton said he
had calculated it. This meant, thought Halley, that this young man had solved a
key problem that had eluded some of the best minds of the day. Naturally, Halley
asked to see the solution. Amidst his cluttered milieu Newton could not find it.
But he promised to send it promptly.

The solution arrived by post in November in the form of a short treatise,
written as series of lectures, which Newton called De Motu (On Motion). The
timing raises a number of questions. Why did it take Newton so long to find
the solution or to calculate it again? Why did he not just send the solution?
What was the point of writing a longer and more formal treatise?

One thing we do know: this set in motion the writing of the Principia. Halley
prodded and eventually convinced Newton to expand De Motu into a longer trea-
tise on the physics of motion. Newton began the project late in 1684, working
seemingly without stopping, especially for two years starting in the spring of
1685. The Principia was published July 1, 1687.

What about the time gap between Halley’s visit in August and the receipt of De
Motu in November 1684? One possible answer is found by comparing the first
two editions of the Principia. The calculation discussed with Halley, namely
deducing the elliptical orbit from the inverse square law, does not appear in the
first edition. Instead Newton deduces the latter from the former. It turns out that
the mathematical deduction of the inverse square law from the elliptical path is a
much easier calculation. Newton obviously was aware of this deficiency in his
book, for in the next edition (1713) he added a section making the former calcu-
lation, which was the original query of Halley.

But there is more: some historians contend that Newton’s solution to Halley’s
query in the second edition of the Principia still is not sufficient, that the proof
is not correct, and that he therefore did not fully complete the deduction. Defend-
ers of Newton disagree, arguing that the gaps in Newton’s proof were intuitively
obvious to him. This debate is not yet settled, but one thing does emerge: it
seems clear that Newton did not have the proof of the original problem (deducing
the ellipse from the inverse-square law) when Halley visited him in 1684, if he
ever had it.

In further defense of Newton, the case has been made that Halley did not actu-
ally pose the original problem. Undoubtedly Halley made such a visit, but since
we know of it from a second-hand account, we cannot be sure of the specific
question Halley asked. Even if it were the easier problem (deriving the inverse-
square law from the ellipse), which Newton did solve in De Motu, there still
arise unanswered questions. Why was there a time lag in sending his answer?
Why did he send a short treatise rather than just the solution? And indeed why
could he not just show the solution to Halley at the time of the visit?
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Accordingly, the evidence points more toward Newton being confronted
with the original problem. After all, he did attack this problem in the second
edition of the Principia. A possible scenario may have played out this way:
when Halley posed the question, Newton realized the significance of the prob-
lem and let his ego get the best of him. He thus boasted that he had solved it,
whereas he had not. Put bluntly, he lied. He thus put himself into the situation
where he was forced to come up with a solution. We know he did not solve the
original problem at this time, despite apparently making a concerted effort.
This would explain the 3-month time lag between Halley’s visit and De Motu.
Actually that gap in time may be even longer, for some historians place the
meeting with Halley as far back as May. In either case, whether 3 or 6 months,
the time gap may explain why Newton sent Halley the short treatise rather than
the actual solution. Unable to solve the original problem, Newton could not
admit defeat, especially having smugly said he had solved it, and so he cloaked
the easy solution in a treatise on motion, hoping that among all the sundry cal-
culations, the reader would not notice that the requested solution was not
really there.

It seemingly worked on Halley, who not only was the catalyst for the writing
of the Principia but also footed the bill. Although the Royal Society agreed to
publish Newton’s manuscript, it had no money for such work, having just spent
its budget on a lavish natural history tome, with numerous expensive illustra-
tions, on fishes. Halley hence paid for the publication out of his pocket—what a
friend! (A rather amusing sidelight: due to its financial woes, the society often
paid Halley’s salary, as clerk, in copies of the fishes book; they tried the same
with Hooke, who was secretary, but he refused, accepting only cash.)

We do not know the exact historical sequence of the writing of the Principia, but
we can reconstruct some of it from the letters Newton sent to Halley keeping him
informed of his progress. His first plan was to divide the work into two sections
(not separate volumes) called “books.” Book I was to be an expansion of De Motu,
a mathematical study of the motion of bodies under forces in empty space. Book II
was to be a popular account applying the physics of Book I to the heliocentric
model of the sun and the planets. That Newton conceived of and wrote a draft of
Book II is intriguing; he clearly thought that the common reader was an important
audience for his ideas. Perhaps he was thinking of Galileo, who wrote the first
popular work on science, Sidereus Nuncius (1610), announcing his discoveries
with the telescope. Much later Einstein would write a short book explaining his
theory of relativity to a lay audience.

But something happened to change Newton’s mind. The popular account
was replaced by a detailed mathematical treatment of the motion of bodies
applied to the solar system, although he did incorporate large parts from the
popular draft. This section, which he called “The System of the World,”
became Book III, not II; the reason was that he also added another (different)
section, Book II, on the motion of bodies in resisting media between the origi-
nal Book I and the “System.” Some historians think these changes had their
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origin in a quarrel with Hooke. Whatever the reason, the final Principia
(published as one volume) was composed of three sections (books) thusly:
I, The Motion of Bodies; II, The Motion of Bodies (in Resisting Media); and
III, The System of the World (about one third of the latter is about comets;
see section 11.2). (Incidentally, the term solar system was coined later by
Newton’s friend John Locke.)

The draft of the popular account Newton deposited in Cambridge Univer-
sity Library. When? We do not know. Possibly as early as the autumn of 1687;
at least it was there when he left Cambridge for his civil service job at the
Mint in London in 1698. This draft remained in the library, and unpublished,
until his death in 1727. A year later the executors of his estate retrieved the
manuscript from the library and published it. They bestowed upon it the
unfortunate title, A Treatise on the System of the World, using the same phrase
as the third section of the Principia, and thus created the muddle and confu-
sion with that book ever since. They also spawned the confusion over the
famous diagram, because it was for the popular account that Newton drew it.
Newton’s sketch appears only there, and hence it is not in the Principia.
Surely one reason why the famous diagram is often erroneously cited as being
from Newton’s Principia is the similar title of the published popular account
to that of Book III. And, of course, all this is why Newton never saw the
engraved version. When he deposited the manuscript in the library it was, it
seems, the last time he saw his hand-drawn sketch, and it unquestionably was
the only version he ever saw.
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Ex Ungue Leonem!

Newton loved mathematical challenges. His niece tells this marvelous story.
The Swiss mathematician Johann Bernoulli once posed a problem

directed to all the mathematicians of Europe. Newton learned of it through
the Royal Society. The problem was to find the curve followed by a bead
falling down a frictionless wire in the shortest time. Today this is a classic
problem called the brachistochrone problem (from the Greek for “shortest
time”). At the time Newton was working at the Mint, after relinquishing
his academic position at Cambridge, and had seemingly given up pursing
science. Indeed, it has been speculated that Bernoulli was really directing
the problem specifically to Newton, testing the stamina of his mathematical
acumen. The day he received the challenge he came home tired from a very
exhausting day at the Mint. Yet he spent the night working on the problem,
which he solved before morning. The solution, which he sent to the Royal
Society, was printed anonymously. But upon seeing the form of the solution
Bernoulli knew the author and thus exclaimed: Ex ungue leonem! “By the
claw, we know the lion.”



10.2. Newton’s Sketch—and the Problem

I first saw Newton’s original sketch of the projectile path (Fig. 10.1) in the won-
derful book, The Ring of Truth, by the late Philip and Phylis Morrison. Although
this was the only place I had ever come across Newton’s own drawing, I naively
assumed its whereabouts were well known, so I sent a letter to the University
Library at Cambridge inquiring about obtaining a copy. The sketch of this
most famous diagram I thought would have pride of place in their library. To my
surprise, a librarian replied that he had no idea where it was. Accordingly, I wrote
to Professor Morrison, who kindly went through his files and found the manu-
script number. When I sent this to the library, the staff forwarded it to Mr. Adam
Perkins, Royal greenwich observatory (RGO) archivist in the Department of
Manuscripts, who subsequently sent me the following description of Newton’s
manuscript and made arrangements for the copy of the diagram I requested.

The manuscript is approximately 203 mm by 306 mm, and 10 mm thick; it is
bound between two boards, with the title, “IS:NEWTON De Motu Corporum
Lib:II” on the front board, betraying its original aim as Book II of the Principia.
On the first page of the manuscript Newton has again written, “De Motu Corporum
Liber Secundus,” but “Secundus” is crossed out showing its subsequent rejection
as the second (secundus) book (liber). On the back (verso) of the first page, which
is otherwise blank, and near the bottom is the small diagram drawn by Newton
(Fig. 10.3).

Looking rather desolate on that empty page, it is his original sketch. The diameter
of Earth is only about 38 mm. Why Newton drew such a miniature diagram is a
mystery.

The engraved version of the diagram (Fig. 10.2) is reproduced today in countless
textbooks, for it succinctly illustrates the range of a projectile and its potential
continuum into a satellite. A simple way to see this is to conceive of Earth as
being transparent (which is analogous to its mass being concentrated at its
center), and then think of the circumference of Earth as a dotted line. The projec-
tile is shot horizontally from a mountaintop, and through a combination of
inertia and gravity, it falls to Earth. As Galileo discovered, assuming no resisting
medium and for the local approximation of a flat Earth, the path is a parabola
(see section 8.2). Looked at globally, however, the path is an ellipse. The rela-
tionship between the projectile and Earth (its mass concentrated at the center) is
analogous to a planet and the sun. According to Kepler, a planet orbits the sun in
an elliptical path, with the sun at one focus. As drawn in Figure 10.2, the projec-
tile’s path is also an ellipse, with the center of Earth as a focus. The difference,
of course, is that the projectile does not complete its elliptical path; instead it hits
Earth at points D, E, F, and G. The elegance of Newton’s diagram drawn this
way is brought out when we look at the symmetry among the potential closed
paths. Consider the projectile hitting point G: if the initial speed is then
increased by an infinitesimal amount, the projectile will just glance off the
surface of Earth at G and return to the mountaintop, completing an elliptical
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FIGURE 10.3. Page from Newton’s manuscript. Copy of the entire page from Newton’s
manuscript illustrating the scale of the projectile drawing (see Fig. 10.1). The rectangle
measures approximately 203 by 306 mm. Why, pray tell, did Newton draw a such a
small circle?!



orbit, and remain in orbit as a satellite. This also means that it is impossible to
fire a horizontal projectile to hit point B, unless, of course, it is fired in the oppo-
site direction. (Alternately, B can be reached by firing the projectile at an angle,
which the reader may wish to verify by drawing such an ellipse on a transparent-
Earth diagram. But our concern here is only with Newton’s case of horizontal
projectiles.)

In conclusion, the maximum range for a horizontal projectile fired from a
mountaintop at the North Pole is the South Pole. Any further increases in initial
speeds put the projectiles into permanent orbits. Did Newton know this? It
certainly is one of the key deductions we make from his diagram today. It also
seems to be embodied in his drawing, since the projectile to point G is the last one
he drew.

A close look, however, reveals that the projectile to G is only drawn in the
engraving, which was not seen by Newton. In his original sketch he drew projectiles
to D, E, and F. Seemingly he conceived of a projectile to G; indeed, he marked
the point. Yet he also marked B, so did he conceive of a projectile reaching there?
Or is B denoting something else? The diagram alone is rather cryptic. Perhaps the
accompanying text will clarify the matter.

An aside: there may be a simple reason why Newton never drew path VG. If
you try to reproduce this diagram to scale with a compass, you find that path VG
is extraordinary close to VF, and realizing that Newton was using a 17th century
ink pen, the two paths would easily merge or smear together. By enlarging the
figure you also discover that he not only used his compass to draw the round
Earth but, not unexpectedly, he drew the paths, too, with the compass. Thus VD
and VE are arcs of circles, not ellipses. He began VF with an arc of a circle but
extended point F about 8° further. This left little room for path VG.

The engraver also did not draw ellipses, which is readily verified by enlarg-
ing the figure and studying its geometry. The outer oval must have been drawn
free-hand; the next two are circles, and the projectiles hitting the Earth are also
free-hand drawings. Note that the engraver avoided Newton’s problem by
moving VF 90° from V, thus leaving enough space to draw path VG.
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Newton, Cavendish, and Newton’s Laws

Just as Newton never saw the famous diagram of projectile motion, he never
saw the just as famous equation, F � ma. Although this equation is synony-
mous with Newtonian physics, perhaps surprisingly it is not found in the
Principia. In fact, it is nowhere in Newton’s writings. The brilliant Swiss
mathematician Leonhard Euler first presented this modern form of Newton’s
second law in 1750. In the Principia, Newton denotes parameters as ratios or
proportions. He thus presents his law of motion as this statement: “A change
of motion is proportional to the motive force impressed and takes place along
a straight line in which that force is impressed.” To see how this relates to the
law as we know it, the reader must refer back to a (previous) definition of



10.3. The Projectile Path: What Did Newton Know?

As we know, Newton’s diagram was meant for the (unpublished) popular System,
so let us begin with Newton’s description of projectiles from that text, our first
documentation of his reflections on this. The key section is this:

Let AFB represent the surface of the Earth, C its center, VD, VE, VF, the curve[d] lines
which a body would describe, if projected in an horizontal direction from the top of an high
mountain, successively with more and more velocity. And, because the celestial motions are
scarcely retarded by the little or no resistance of the spaces in which they are performed; to
keep up the parity of cases, let us suppose either that there is no air above the Earth, or at
least that it is endowed with little or no power of resisting. And for the same reason that the
body projected with a less velocity, describes the lesser arc VD, and with a greater velocity,
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motion: “Quantity of motion is a measure of motion that arises from the
velocity and the quantity of matter jointly.” Hence a change of motion entails
a change of velocity (namely acceleration), which, along with the quantity of
matter (“mass”), is proportional to the force.

Newton also never presented his law of gravity in the format found in
textbooks today, namely, F � GmM/r2. The proportionalities between grav-
itational force and mass he presented in the Principia in Book III, Proposi-
tion 7, Theorem 7; in Corollary 2 he included the inverse-squared
relationship of gravity and distance. At the end of the Principia, he summa-
rized these propositions this way (I quote from the General Scholium to the
third [1726] edition): “This force [of gravity] arises from some cause that
penetrates as far as the centers of the sun and planets without any diminu-
tion of its power to act, and that acts . . .in proportion to the quantity of
solid matter, and whose action is extended everywhere to immense dis-
tances, always decreasing as the squares of the distances.”

Presented in this manner, the law does not entail the constant of propor-
tionality G, usually referred to as “big G.” Instead, the English scientist
Henry Cavendish (1731–1810) is usually credited in textbooks as having
been the first to measure G. It is true that he used a torsion balance for a
series of very precise experiments on the attraction of masses (the cele-
brated Cavendish experiment); performed at age 67, from 1797–8, they
were his last published experiments. But in these celebrated experiments he
was not seeking a determination of the constant of proportionality. Like
Newton, Cavendish worked in ratios and proportions; moreover, the title of
his publication betrays its real objective: “Experiments to Determine the
Density of the Earth,” or “weighing the world,” as he usually called it. In
fact, performing the Cavendish experiment to measure “big G” was not
done until the late-19th century. By then, physical laws were expressed as
algebraic equations and a unit of force (the dyne) was invented.



the greater arc VE, and augmenting the velocity, it goes farther and farther to F and G; if the
velocity was still more and more augmented, it would reach at last quite beyond the circum-
ference of the Earth, and return to the mountain from which it was projected.

Does this text convey a clear comprehension that point G is the maximum range of
a projectile before it goes into orbit? The answer, unfortunately, is not apparent. We
need to study the text in detail. Start with point G; even though Newton did not draw
the projectile to G, he clearly conceived of it since it is mentioned in the text. What
then of point B? It is not referred to in the text as a target point of the projectile but
only as a point delineating the surface of Earth; however, that does not necessarily
eliminate it as a target, since point F is also first cited as surface point but then is a
target, too. There is no clear answer to our question, yet.

Next look at the sequence of projectiles. First is VD; then, by augmenting the
initial velocity, there follows VE, VF, and VG. Having now shot the projectile to
the South Pole, we reach the last crucial clause in the quotation. Newton writes,
“If the velocity was still more and more augmented [why not just one ‘more
augmented’?], it would reach at last quite beyond the circumference of the earth
[that is, it would not hit the surface of the earth], and return to the mountain
[top?] from which it was projected [if so, it would go into orbit].” The key phrase
is “still more and more augmented.” We know that, after hitting point G, only
one infinitesimal augmentation is needed to put the projectile into orbit; thus the
extra augmentations seem suspiciously redundant, as if Newton is thinking of
further augmentations of the initial velocity resulting in the projectile hitting
points such as B, between G and the mountaintop (note: this could also include
returning only to the bottom of the mountain). In these cases the projectile would
be spiraling toward Earth (as it would if there were a resisting medium) rather
than moving in an ellipse. It may or may not be consequential, but note that
nowhere does he mention that the shapes of the paths should be ellipses. Of
course this may have been obvious to Newton, and the phrasing was solely a
matter of style. Sometimes he merely spoke of the planets moving in “circles”
about the sun. At most we can say that there is a potential ambiguity between the
diagram and the text in the System.

Next are the three editions of the Principia. Interestingly, the projectile passage
is not in the first published edition (1687). Rather, we next find it in Newton’s own
annotated and interleaved copy of the first edition. (After the publication of the
first edition, Newton had his copy interleaved with blank pages facing the original
pages, so he could add corrections and additions on these sheets.) His version
of the projectile’s paths in his annotated copy was then published in the second
edition of the Principia (1713). It is a variation of the passage from the System:

If a lead ball were projected with a given velocity along a horizontal line from the top of
some mountain by the force of gunpowder and went in a curved line for a distance of two
miles before falling to the earth, then the same ball projected with twice the velocity would
go about twice as far and with ten times the velocity about ten times as far, provided that
the resistance of the air were removed. And by increasing the velocity, the distance to
which it would be projected could be increased at will and the curvature of the line that it
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would describe could be decreased, in such a way that it would finally fall at a distance of
10 or 30 or 90° or even go around the whole earth before it falls, or, lastly, so that it might
never fall to the earth but go off into the heavens and continue indefinitely in this motion.
[The reason for the italicized phrases, by me, will be explained below.]

The military metaphor probably speaks to significant improvements in cannons at
the time.

The similarity between this and the passage in System is striking. In both, the
increasing initial velocities produce longer paths, hitting Earth further and further,
until the projectile finally goes into orbit. There is no specification of the paths; in
the Principia he speaks of the “curvature of the line”—a strange phrase if he is
thinking of ellipses, but which would likewise embrace spirals.

What of the differences, do they cast any light on our question? In the Principia he
writes of the lead ball going from 10° to 90° but does not include 180°. Recalling that
no figure accompanies this text, this means that nowhere is Newton mentioning this
crucial case. It would seem that if he knew this was the last strike on Earth before
the ball went into orbit then he would isolate this case. Moreover, after specifying
the 90° case, and before mentioning that the projectile goes back to the mountaintop
and hence into orbit, Newton speaks of the ball going “around the whole earth before
it falls.” Note that he does not say halfway around Earth. Therefore, there seems to be
only one way to interpret this: that the ball spirals around Earth and lands near the
base of the mountain, since it both falls and circles the entire Earth.

This, of course, is mathematically wrong. There is no such spiraling of a
projectile in a vacuum. Spirals only result when a medium is introduced. If
Newton is thus speaking of a spiraling motion, it would means that he is not
aware of point G (the South Pole) as the maximum projectile target.

Regarding the italicized phrases in the quoted passage, this brings me to the
third edition, for these phrases Newton deleted from the last edition (1726). At
first blush this seems to show that Newton caught his error; he realized that there
was no spiral path, and thus eliminated the phrase about “falling.” But a closer
read reveals otherwise. There is still the case of the ball going “around the whole
earth” followed by the case of its going into orbit. These two cases have not been
linked together, and, importantly, there is no indication of any knowledge of the
maximum target of 180°. At best it seems that Newton made these changes to
eliminate what he saw as merely redundant phrasing. So the third edition of the
Principia, written shortly before he died, does not contradict my assertion that
Newton was unaware that the South Pole was the maximum range of a projectile
shot horizontally from a mountaintop at the North Pole.

Although physicists surely know that all such projectiles are ellipses, some histori-
ans have made Newton’s error. I have found quite a few books (and, now, Internet
sites) that reproduce a version of Newton’s diagram with projectiles spiraling from
the mountaintop to points further than 180° (such as Fig. 10.4). It is an easy mistake
to make, by extending Newton’s thought experiment, say, this way: Start with
Galileo’s law of a (local) parabolic projectile; increase the initial velocity so that the
projectile is shot further and further; inductively one constructs a series of spirals
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around Earth until the crucial velocity is reached when it goes into orbit. This is
one reason some historians may have drawn the wrong conclusion and hence the
inaccurate diagram. Alternately, or even concurrently, they too may have read
Newton’s text as indeed describing spiraling paths. The more important issue, how-
ever, is whether Newton ever was aware of his error, if (as I believe) he actually
made it.

A reader may ask: Could not these tedious and detailed analyses of Newton’s
every word ultimately be irrelevant and meaningless, not really penetrating the
mind of the writer? I think not: Newton was meticulously careful with words,
persistently editing and re-editing his writings. My answer to the above question
is, therefore, no.
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FIGURE 10.4. Erroneous diagram of projectiles. An example of the type of erroneous
diagrams of projectiles shot horizontally from Earth as found in various textbooks. I should
point out that all the examples I found were in history of science books, not science textbook.
The caption to the diagram I have copied reads: “Normally, a projectile (A) will soon fall to
the ground. But, argued Newton, if its speed is increased sufficiently (B, C, D, E . . .) it will
eventually circle the Earth completely.”



The argument presented above—that Newton made this error and died without
realizing it—was published in 1999 by me and a colleague in physics, Dwight
Vincent. When subsequently several Newton scholars promptly challenged it, we
were not surprised. One must be careful when knocking heroes off their pedestals,
and Newton, especially, time and again will have his defenders. What began as a
series of cordial email exchanges resulted in the publication of a defense of
Newton by Michael Nauenberg of the University of California at Santa Cruz,
which was followed by our rejoinder.

As I see it, the main challenge by Nauenberg to our thesis is his pointing out
(correctly!) that the Principia actually contains the mathematical formulation that
the South Pole is the maximum target point. It appears in Book I, Proposition 45.

Before presenting Newton’s exposition, let me remind the reader that Newton’s
geometrical approach to solving problems in dynamics is a far cry from the
analytical method found in textbooks today. Just as Newton probably would
comprehend little in a textbook on Newtonian mechanics today, however strange
that may sound, only scholars steeped in 17th-century science can read much of
the mathematics of Newton’s Principia.

Here is the formulation: For a projectile under a central force (1/rn) launched per-
pendicular to the radial direction, where � is the polar angle relative to the initial
radial direction, the formula from Proposition 45 (as Nauenberg writes it) is

� � 180° /√–3 � n.

(Actually, even this is a simplified and modern version of Newton’s much more
cumbersome notational system.) Thus for n � 2, that is, the inverse square law
(hence, gravity), � � 180°. So Nauenberg is right: the fact that the South Pole is
the maximum range for the horizontal projectile is in the Principia.

Does this therefore falsify our argument? Maybe, but not necessarily, because
there is still one more question to be answered: Was Newton aware of this? This
question is not as odd as it may seem at first. That a scientist could be aware of
some consequence of his work, or even should be aware, is no guarantee that he is
aware. James Clerk Maxwell, for example, died of cancer at the age of 48 without
realizing the full significance of his theory, particularly the production and detec-
tion of electromagnetic waves. He certainly could have realized this, since it was
entailed in his equations. But he did not. A truism from the history of science is a
mantra of this book: often things are clear only in retrospect.

Let’s look at the context of Newton’s formulation of the projectile problem.
What does he say about it? In Proposition 45, after deriving the above general
formula, he considers three specific “examples”: where r is constant (n � 0), an
inverse force (n � 1), and n � 11/4. Note that none of these apply to gravity and
hence the projectile problem. The apparent reason for his interest in these other
forces—rather than the inverse square force (n � 2), which we ascertain should be
his focus of attention—seems to be that he was especially curious about the geom-
etry (not the physics) of the various “examples”: thus, for n � 11/4, � � 360°.

So where in the Principia is the specific (and explicit) result that the South Pole
is the maximum target point? In the course of deriving the previous examples,
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Newton mentions in passing that “a body in an immobile ellipse . . . completes
the angle VCP [i.e., � in the above notation used by Nauenberg] (so to speak)
of 180°.” Stop; read that phrase again, because that’s it! Again: “a body in an
immobile ellipse . . . completes the angle VCP (so to speak) of 180 °.” I’m sure
only a very attentive reader of the Principia would notice that this is the case we
are pursuing. One reason it is not transparent is that the reader must remember,
from a previous derivation in Proposition 44, Corollary 2, that the “immobile
ellipse” entails the inverse-square law! Without recalling this, the significance of
the quoted phrase is lost. And Newton does not help, since he does not point this
out. Hence there is no clear indication that this short phrase buried within a
longer sentence about a different example, is the case of a projectile fired halfway
around Earth. Moreover, why he uses the parenthetical phase “so to speak”
remains a mystery: the angle is 180°. Is Newton confused about this? Is this
further reason to doubt his awareness the consequences of his formula? One thing
I can say: I am not convinced of Nauenberg’s argument.

Most importantly, and furthermore, there is nothing else to show unequivocally
that Newton fully understood the physical significance of his derivation. One would
think that if he did, then at least by the third edition of the Principia, when editing
the projectile passage, he would have changed it to something like this: “ . . . until
at last it should fall at the distance of 10, 30, 90, or 180°, or even might go quite
round the whole earth.” But in the absence of a definitive statement of this, coupled
with the implied spirals in the projectile passage, I maintain my skepticism about
Nauenberg’s challenge.

Accordingly, I assert that although Newton could and should have known that
the South Pole is the maximum target for a projectile fired horizontally from the
North Pole, he did not. At least, nowhere does he present explicit evidence of a
physical awareness of this most profound deduction from his theory.

Until further evidence is forthcoming, the dispute seems to be at an impasse. I will
close, however, with one more argument. In the Principia Newton demonstrates
how the inverse-square law of gravity accounts for a two-body system, such as the
sun and a planet. He also introduces what today we call the three-body problem.
As he conceived it, the regular motions of any three bodies (involving, say, the sun
and two planets or the sun–Earth–moon system) would be almost impossible to
preserve due to the unstable equilibrium among their mutual gravitational inter-
actions. Hence he believed that God intervenes, keeping the solar system from
degenerating into chaos.

Now if Newton indeed knew that a horizontal projectile that reaches the South Pole
requires only a small increase in its initial speed in order to go into orbit, he could
have made the deduction that these orbits are much more stable than he otherwise
assumed. Such knowledge would have saved him considerable fretting over unstable
orbits. Yet, that he continued to worry about this problem seems to imply that he still
thought in terms of many spiral projectiles extending beyond the South Pole.

In conclusion, no matter how much I try to give Newton the benefit of the
doubt, he keeps bringing me back to those spirals.
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10.4. Newton and Hooke: A Debate Over a Spiral

The following story is a sort of coda to this chapter: it also constitutes a transition
to the next.

If need be, further support for my thesis (above) may be gleaned from the
exchange between Newton and Hooke that transpired from November 24, 1679, to
January 17, 1680. This important disputation, the various details of which I shall not
be exploring here, has been exhaustedly studied by historians. I will, however, be
relating this debate to the projectile motion issue, and for that I think I am the first to
make that specific connection. I especially wish to emphasize regarding the ensuing
debate that I am concerned neither with who is right nor with what historian’s inter-
pretation is correct. My focus is only directed toward what light this may or may not
throw on the projectile motion topic.

Hooke initiated the exchange, which stimulated Newton to think deeply on the
subject of celestial motion and especially of a celestial physics. Hooke stimulat-
ing Newton to think about science? What gives? Did Newton not inaugurate the
topic with his celebrated thought experiment about an artificial satellite many
years earlier?

Of course, and surely recalling the famous story of Newton and the apple
is appropriate here. It is true that the insight into what became his mathematical
theory of gravity came about when he realized that the same force acting on a
falling body near Earth might also apply to the moon in its orbit. This event took
place, Newton tells us, during the period (1665–1666) he spent on his mother’s
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Newton vs. Leibniz

Mentioning the three-body problem brings up one of the delightful double
ironies in the history of science. Gottfried Leibniz, in Germany, was another
of Newton’s antagonists. They clashed on the nature of forces; Leibniz
accused Newton of introducing occult powers back into science. Newton
(wrongly) accused Leibniz of stealing the calculus from him. (Newton called
his mathematical system fluxions.)

The development of Newtonian mechanics, along with the solution of the
three-body problem—such that the solar system remains stable without the
need of God’s constant intervention—took place during the 18th century
through the work of a series of Continental mathematicians (the Bernoulli
family, Euler, D’Alembert, Lagrange, and Laplace) using and developing the
calculus as formulated by Leibniz, because Newton’s fluxions was much
too cumbersome. So Newton’s concept of force (repugnant to Leibniz) was
filtered through Leibniz’s calculus (offensive to Newton) and ultimately led
to the version of Newtonian mechanics found in any textbook today—much
to the chagrin, I suspect, of both of them.



farm when Cambridge University was closed due to a plague. Whether the story
is apocryphal or not, and even if it actually involved a falling apple (which
Newton does not mentioned), we do not know. But clearly the famous projectile
diagram embodies the essential insight of Newton. So if it came about in 1666,
and I see no reason to doubt Newton on this, why then the significance of
Hooke’s rekindling the topic of a celestial physics? Well, for one, because
Newton essentially had ignored it over those years. From the plague years to
Hooke’s letter, Newton devoted little effort to the topic; instead his prime
intellectual effort was directed primarily toward theological and alchemical
studies. (The next intellectual catalyst, as we know, was Halley’s visit in 1684.)
At most, Newton speculated on a possible cause of gravity, thinking in terms of
an all-pervading ether filling space and providing the contingent mechanism for
the pressure of gravity. Such an ether model was a common hypothesis in the
17th century, since it entailed what was viewed as a mechanical explanation
based on direct contact rather than action-at-a-distance. The specific model
Newton favored was borrowed, in part, from Descartes: the gravitational action
around the sun, for example, arose from a vortex of ether swirling around it.
Otherwise Newton’s thoughts over more than a dozen years were on what we
would consider non-scientific matters. Those insights during the plague had
remained dormant.

Hooke’s first letter (November 24, 1679) set forth two issues: introducing
Newton to a hypothesis of his for celestial motion, and pursuing ways of prov-
ing the motion of Earth—both matters conceived of within the Copernican sys-
tem. Hooke’s hypothesis was a brilliant insight into celestial physics, using
linear inertia and the realization that in circular motion the centrifugal force is
caused by a tangential inertial power. Most historians are convinced that this is
how Newton came to correct his previous erroneous assumption about rota-
tional motion, and for this reason Hooke did more, much more, than just stimu-
late Newton’s intellectual curiosity (see section 11.2). In his reply (November
28, 1679) Newton put forward a thought experiment (“a fansy of my own”)
directed toward proving the rotating Earth. We know that Galileo’s insight into
the relativity of motion had shown that an object dropped from a tower falls to
the bottom despite the movement of Earth. As before, this result was true
locally, where one need only approximate the result as if the motion were linear.
But taking Earth as a whole, with its rotational motion, what would be the path
of a falling body assuming a transparent Earth where the body falls to the cen-
ter? Newton maintained that the falling body would first fall slightly to the east
(since Earth rotates from west to east, and the tangential speed at the top of the
tower is greater than at the bottom), after which, in passing through Earth, it
would spiral toward the center. A spiral motion was compatible with his etheral
vortex model.

Hooke replied (December 9, 1679) with an ingenious argument using Kepler’s
orbits, which clearly shows that the falling body attracted toward Earth’s center
would be constrained to follow an elliptical path. It seems that Newton recognized
Hooke’s insight, and perhaps thought he himself had made a mistake, for Newton
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did not defend his spiral in his last letter to Hooke (December 13, 1679). Newton,
nevertheless, was not prone to accepting defeat, and in a terse reply he acknowl-
edges that the path would not be a spiral, but argues that, in a rotating frame of ref-
erence, it would not be Hooke’s exact ellipse either. The next two letters from
Hooke (January 6 and 17, 1680), Newton did not reply to, at least  not immedi-
ately, although a brief reference was made much later in the year in a letter to
Hooke on December 3, 1680.

We find, significantly, in the ensuing writings of Newton, an ambivalence, or
a hedging of bets, in his explanations of gravity. Is it an attractive force or an
etheral pressure? The exchange with Hooke opened up these possibilities. Con-
sider the following remarks taken from Newton’s correspondence. Writing to
Thomas Burnet, who had published a popular book on a hypothesis for the origin
of Earth, Newton speaks of “ye pressure of ye vortex or of ye moon upon ye
waters” (December 24, 1680). He repeats this twofold explanation in the next
letter sometime in January, using the phrase “ye pressure of ye moon or vortex,
etc. may promote ye irregularity of ye causes of hills.” In short, either a vortex of
ether or a gravitational power of the moon may explain the phenomenon. The
next month (February 28, 1681), in a letter to the Astronomer Royal, John Flam-
steed, on the comet of 1680 (see next chapter), he begins a sentence with, “The
attraction of ye earth by its gravity,” but a sentence later refers to “ye motion of
ye vortex.” This vacillation continued during the writing of the Principia,
although with its publication there was a loss of confidence in the vortex model.
Thus, at the end of Book II (on the motion of bodies in resisting media) he math-
ematically proves that Kepler’s third law will not hold if a vortex around the sun
is postulated, and he concludes that “the hypothesis of vortices can in no way be
reconciled with astronomical phenomena.” Significantly, in a letter to Halley
during the writing of his treatise (July 27, 1686) he speaks of Hooke “correcting
my Spiral”—an admission of a mistake which is not customarily part of New-
ton’s demeanor.

Had Newton thus completely given up on the vortex model? Am I therefore in
error for reading a spiral into Newton’s projectile passages right through third
edition of Principia published just before his death? Surely not, for we find in
various published and unpublished writings after the first edition of the Principia
Newton still speculating on sundry etheral models to explain gravity and other
forces in nature. The most obvious are the ether conjectures found in his work on
optics (see section 9.3), such as the queries added to the subsequent editions of
the Opticks (see Chapter 9); moreover, over these same years he was revising the
Principia, and still (I assert) hedging his bets in the projectile passage. [As the
Principia went through three editions between 1687 and 1726, the Opticks went
through five editions (two Latin and three English) between 1704 and 1721.]
There is no reason to make a disjunction between Newton’s thinking in the
Principia and the Opticks, however much they differ methodologically. They both
expressed his conceptual worldview.

Let me give the last remark to Newton. Over 30 years after the exchange with
Hooke, Newton recalled the debate. As we have seen in a letter to Halley in 1686,
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he seemingly admitted to the spiral being a mistake, and hence conceded his error
as being caught by Hooke. But the memory still smarted, it seems; it was not a mere
spat over a spiral. For Newton, who never could get over being admonished by
Hooke, is later quoted as dismissing the spiral as “a negligent stroke” of his pen!
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11
A Change of Mind:
Newton and the Comet(s?) 
of 1680 and 1681

173

I am holding a facsimile copy of the first edition of Isaac Newton’s Philosophiae
Naturalis Principia Mathematica. Published in 1687 it is commonly referred to
simply as the Principia, as if there were no other “principles.” The book, without
a doubt, represents the culmination of the Scientific Revolution begun in the 16th
century, when Copernicus proposed that the sun, not Earth, was at the center of
the universe.

As I leaf through the book, I glance at numerous abstract geometrical diagrams
with labeled triangles, circles, arcs of curves, and the like. Such illustrations
would be expected in a book on the “mathematical [namely, geometrical] princi-
ples of natural philosophy [that is, science, in modern terminology].” After all,
Newton’s Principia was the foundation for what today is called Newtonian
(or classical) mechanics.

Near the end of the book, between pages 496 and 497, I find a foldout illustra-
tion displaying Newton’s drawing of the “great comet” of 1680–81 (Fig. 11.1).
It is a picture, unlike the other abstract geometrical diagrams. It is doubly
unique: it is the only foldout and the only actual picture in the entire book. When
opened it measures 36 cm by 24.5 cm, twice the size of a page of the book. This
important drawing appears near the end of the first edition of the Principia since
the motion of comets was the conceptual culmination of the theory developed
therein.

The image drawn by Newton depicts the comet as he observed it from November
1680, when it first became visible, into March 1681. In late November it had
disappeared in the glare of the sun only to reappear in mid-December. Of course,
during this time it swept around the sun, as is indeed drawn by Newton. But in
the autumn and winter of 1680–1, while observing the comet, he did not make
this deduction. In fact, he thought the comet that appeared in December was a
different one from that which had disappeared in November. It was not obvious
to him, nor to his friend Edmund Halley, that the comets were one and the same,
because, in part, both men thought comets traveled in straight lines. (Inciden-
tally, this was not “Halley’s comet”; that one came the following year, 1682.)
This chapter is about the transition in Newton’s mind from the two- to the
one-comet theory.



11.1. Comets and a Celestial Physics

Newton’s conviction that there were really two comets had ancient roots. Aristotle
placed comets below the moon, because they were assumed to be unpredictable,
transient, and ephemeral entities. Only the heavens were perfect, permanent, and
unchanging. As well, within the astrological tradition, comets were seen as omens
of disasters, and the modern separation of astrology from astronomy was only
taking place during Newton’s life.

The late 16th century saw the transition toward the modern theory of comets.
Tycho Brahe, in attempting to measure the parallax of several comets (starting
with the great comet of 1577), concluded that they were beyond the moon, within
the celestial world of the sun and planets. It was also noted among astronomers
that the tails of comets always point away from the sun; this comet–sun connection
reinforced the celestial placement.

At the time it was still assumed that planets were attached to celestial spheres,
which provided the mechanism for planetary motions. Tycho concluded from the
apparent paths of the comets, however, that celestial spheres did not exist, for the
comets seemed to pass right through them. This was ostensibly a reasonable
conclusion and certainly would be convincing today. Yet it was not the only
possible explanation at the time. Just as it was not obvious that comets orbited the
sun, it was not obvious that they were material entities. If, say, they were merely
made of a light-like substance, then, being essentially a beam of light, comets
could pass right through celestial spheres in any direction. One hypothesis of a
comet’s tail: it was light refracted through a translucent body (visualize the reflec-
tion of the setting sun over a body of water). Today we know that tails are the result
of the evaporation of ice heated by the sun and swept away by the solar wind;
hence the tails always point away from the sun. This heating increases as the comet
rounds the sun producing a longer tail during recession, as is indeed illustrated in
Newton’s diagram, even if he did not realize the significance. Rather, it seems the
differences in appearance supported there being two different comets.
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FIGURE 11.1. Newton: diagram of comet. A sketch of Newton’s drawing of the great comet
of 1680–1681, displayed as a fold-out in the first edition of the Principia. Note how the
diagram shows the fact that the comet’s tail increases on it return trip from the sun.



Newton accepted the celestial abode for comets but initially believed they were
transient bodies, betraying a remnant of Aristotle’s cosmology. It is therefore not
unexpected that he thought the comet of November 1680 was on a linear path,
and the “new” comet of December 1680 to March 1681 was another one on a
different straight path. Both Kepler and Galileo held to the linear path of comets.

But, as seen in the foldout, Newton had a change of mind, at least by the time
he published the Principia. When and why?

In the spring of 1681 John Flamsteed, the first Astronomer Royal at Greenwich
Observatory, put forward the notion that the two comets were one and the same and
that its path was bent by the sun. A source of his supposition was his belief that the
sun possessed a magnetic power that acted on the comet, first attracting it toward
the sun, and then repelling it away. The idea of magnetic powers in the heavens was
common at the time, ever since another Englishman, William Gilbert in 1600, had
discovered that Earth is a magnet. (On Kepler’s speculations, see below.) Newton
rejected Flamsteed’s mechanism, however. Since Gilbert reported that magnetized
iron loses its power after being placed in a red-hot fire, Newton was sure the heat
from the sun would destroy any magnetic powers possessed by comets. A letter
exchange between Newton and Flamsteed, however, did get Newton thinking about
the need for some sort of mechanism if the two comets were really one.

Importantly, at this time Newton was also working on the problem of a mechanism
for the motion of the planets around the sun. Today the mechanism is simple and
obvious, but it was not so then. The best scientific minds were pondering this
problem, and the solution emerged from several false starts. Let’s review the
germinal thinkers. Kepler was one of the first to conceive of a “celestial physics”;
the term was used in the subtitle of his 1609 Astronomia Nova (The New Astron-
omy), a book containing his discovery of the elliptical orbits of the planets and the
law that the planets sweep out equal areas in equal times. This was probably the
most radical departure from ancient astronomy since Copernicus switched Earth
and the sun. Inherent heavenly circular motion was taken for granted since ancient
times, witness Galileo’s circular obsession (see Chapter 8).

Perhaps almost as significant as Kepler’s break from the hegemony of circular
celestial motion was his concept of a celestial physics. To see why, you must steep
yourself in the ancient cosmos, especially as conceived by Aristotle, where the divi-
sion between the terrestrial world (below the moon) and the celestial world (beyond)
was absolute. These two “worlds” were not only composed of different substances
(earth, water, air, and fire down here, and ether filling up the heavens) but entirely
different laws governed their motions. Circular motion was natural in the heavens,
whereas natural physical motion on Earth was either toward Earth (gravity, from the
Latin gravitas, or heavy) or away from it (levity, such as air rising in water). This
meant that whatever physical laws controlled motion on Earth, they had no bearing
on the motions of the planets. By speaking of a “celestial physics” (an oxymoron to
Aristotelians), Kepler proposed a unity to the universe, a conception that allowed an
earthly mechanism to be a model for celestial motion. Such an idea would have made
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no sense to Aristotle, or for that matter, almost any Aristotelian since antiquity (recall
Galileo’s demonstration with a ball in a bowl of water; see sections 4.4 and 8.4).

Kepler’s celestial mechanism was based on Gilbert’s discovery of Earth’s
magnetic power. Because of Kepler’s homogeneous view of the Copernican
universe, he thought that all the planets therefore must possess such powers
(Earth was not unique under his interpretation of the Copernican system; after all,
it was another planet). Hence there were magnetic attractions and repulsions
directly between the sun and each planet. These powers caused the planets to
move closer and further from the sun as they orbited in their elliptical paths,
although Kepler simplified it to merely an eccentric one. To make this model
work, Kepler used the fact of Earth’s tilt; thus one magnetic pole predominates
with respect to the sun. He then was forced to assume that the sun’s magnetism
was unipolar, not bipolar (see Fig. 11.2). As the planet orbits the sun, either the
north–south interaction between them predominates, resulting in an attraction, or
a north–north interaction leads to repulsion. In addition, a power (transverse to
the magnetic push and pull) is needed to move the planets around in their orbits;
this power, which he called the anima motrix (vital motion), emanated from the
sun rather like spokes from a wheel, as (he hypothesized) the sun rotated. (Galileo
later provided evidence for this when he saw sunspots move across the face of the
sun; Kepler was delighted to find that the sun indeed rotated, as he predicted.)
The resulting motion of each planet was therefore due to a combination of these
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FIGURE 11.2. Kepler: celestial physics conception. Based on the discovery of the magnetic
power of Earth, Kepler postulated magnetic powers between the sun and all the planets, and
accordingly tried to account for the eccentric nature of their orbits. Since Earth is tilted in its
orbit, it acts as a magnet with respect to the sun with either N or S predominating. To make
the model work, however, it is necessary to assume the sun’s magnetism is a monopole.



two powers: the anima motrix sweeping the planet around the sun, and the
magnetic force pushing and pulling it into its eccentric orbit.

Kepler also coined the word inertia to describe the need for the constant anima
motrix. This was partially right, since bodies at rest do tend to stay at rest. It was
Galileo who added the next piece, conceiving of inertia as not only the tendency of
a body to stay at rest but also the tendency of a body once set in motion to stay in
motion (in a vacuum), without the need for a constant force. He then applied this to
the vacuum of the heavens, arguing that the planets, once given the required push,
would move in perpetual circles. Thus although Galileo has corrected Kepler’s
conceptual error on inertia, he erroneously deduced that the resulting motion
would be circular. Moreover, he ignored Kepler’s discovery of elliptical orbits.
Such was the robustness of the ancient circles; to his dying day Galileo stubbornly
held to circular motion for the planets (see Chapter 8).

This was straightened out by the Frenchman, René Descartes, who presented
the first clear (modern) definition of linear inertia in his Principia Philosophiae.
(Note how the full title of Newton’s Principia was a variation of Descartes’s
work, as if Newton were writing the mathematical formulation that Descartes
could not achieve. In the end, as noted, Newton’s Principia ultimately became the
Principles.) Descartes’s Principia was published in 1644, and 20 year later the
young Newton scrutinized it in detail, while reading works that were not on
the curriculum at Trinity College. It most probably was his source of the concept
of linear inertia. The weighty problem was how to work linear inertia into a model
of a celestial physics.

I must confess that my previous description of Kepler’s celestial physics is a bit of a
caricature. The essence is true: he postulates both a rotational power sweeping the
planets along and an independent magnetic power attracting and repelling them out
of a circular orbit centered on the sun; moreover, his source of magnetism is Gilbert’s
discovery of the magnetism of Earth, which Kepler notes as being directed along a
north–south axis of Earth, and from this he infers the magnetic power of all the plan-
ets and the sun. Yet the entire discussion is presented in a cryptic, convoluted, and
often dense exposition entailing what most would call today physics mixed with
fantasy, astrology, and theology. One problem, for example, clearly arises from his
diagram of celestial physics (Fig. 11.3) as presented in his Epitome of Copernican
Astronomy (1618–1621). Using arrows for the magnetic axes, he draws them in the
plane of the planet’s orbit, as if he is merely flattening my diagram (Fig. 11.2) for
simplicity. But nowhere does he explicitly relate the direction of the arrow to Earth’s
axis (or those of the other planets); that is, he does not explicitly connect the tilting of
Earth to the magnetic orientation in his diagram. Worse still, the directions of
Kepler’s arrows in the plane are wrong; if we flatten Figure 11.2, the arrows should
point in the direction along the perihelion-aphelion axis. His arrows, however, are
perpendicular to that axis, from which he still infers the noncircular orbit. It seems to
me, on the contrary, that magnets in this direction will not result in the planet coming
closest at the perihelion and furthest at the aphelion, while the anima motrix sweeps
the planet along. It only works for the arrangement in Fig. 11.2.
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All this confusion cannot be attributed to a lack of knowledge by Kepler. He
knows about the tilt of Earth, its orientation in the plane of the orbit, and the
precession of the equinoxes. Indeed, I wish to close this matter by relating it to an
extremely interesting footnote in the second edition (1621) of the Mysterium
Cosmographicum. The section in question involves Copernicus adding the coni-
cal “third motion” to Earth to account for its fixed orientation over a year (such
that, in Kepler’s words, “It always slopes towards the same point in the universe”),
except for the small slippage to explain the precession of the equinoxes (see sec-
tion 3.5). In the first edition (1596) he restates Copernicus’s argument, since
Kepler too is still thinking within the celestial spheres model. After presenting the
basic argument he concludes by pointing to the consequential elimination of
the (extra) conical motion of the (extra) celestial sphere—“that vast, monstrous,
starless [and unnecessary] ninth sphere.” Twenty-five years later, in the second edi-
tion, he adds a footnote to this section. Since writing the first edition Kepler has
recognized Tycho’s rejection of celestial spheres. As he puts it, “Tycho Brahe
rightly accused me of this ancient and erroneous belief about the solidity of the
spheres, and when he had read my little book wrote to me on this topic.” Without
the spheres, the third motion is eliminated, but what then supports Earth’s tilt
“towards the same point in the universe”? Here, I assert, Kepler comes close to
Galileo’s concept of inertia as a cause. It is true that when Kepler introduced the
term inertia, his conception was not far from Aristotle’s, namely, to characterize a
body’s resistance to being moved and retaining the need for a constant power to
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FIGURE 11.3. Kepler: celestial physics diagram. Fig. 11.2 is a conceptualization of Kepler’s
idea of a celestial physics. This sketch, however, is Kepler’s diagram of the model, and the
arrows, strangely, pointing in the wrong direction. From his Epitome of Copernican
Astronomy (1618–1621).



keep the body moving (hence the anima motrix). Thus when Kepler posits a power
in Earth to maintain its orientation, he breaks the limits of Aristotle’s conception,
shifting toward Galileo’s idea of the body also resisting a change in orientation.
(Again recall Galileo’s experiment with the ball in the bowl of water.)

Nevertheless, and not surprisingly, it is not this simple. We are dealing with
Kepler! As I read the passage quoted below, Kepler gives three reasons for the
fixed slope of Earth: inertia, magnetism, and rotation. That is, in addition to the
natural (inertial) power of matter to remain in place (and hence Earth’s fixed tilt),
there is something about magnetism itself that keeps it in its place, and further-
more the daily rotation of Earth entails mechanical principles that have the same
effect. He seems to be saying that all three are necessary to maintain Earth’s tilt;
or maybe all three work together toward that end, although I think he is just hedg-
ing his bets by putting forth all possibilities. Here is how he puts it:

While the Earth’s globe travels round in its annual motion about the sun, all the time it
keeps its axis of revolution always parallel to itself in its various positions, on account of
the natural [inertial?] and magnetic tendency in its inner parts towards staying at rest, or
even on account of the continuity of the diurnal rotation about its axis, which holds it
upright, as happens with a top which has been set in motion and is spinning. Consequently
just as this [fixed orientation] is not truly a motion, but is rather rest, similarly there is no
need of an imaginary little [conical] circle [that is, the third motion].

This passage, especially the last sentence, I assert, borders upon Galileo’s argu-
ment. Yet, of course, there is the faulty mixture of magnetism and rotation. Perhaps
the most fascinating and ironic part of all this is the mention of a rotating top. Is it
not ironic that he brings up the image of toy top to explain Earth’s fixed position?
He seems to believe that there are mechanical principles operating such that the
rotating body maintains its given orientation. This is not only patently false, but as
we know (see below), the motion of a rotating top is indeed conical and the source
of Newton’s explanation of the precession of the equinoxes. So here is Kepler
bringing up the image of a toy top in the context of a discussion of Earth’s tilt,
which he knows has an ever-so-small conical motion. As a child did he not notice
a top’s conical motion? How close can one come to a discovery and still miss it?
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A Celestial Toy: Newton and Precession

About 1652 the Dutch artist Rembrandt van Rijn produced one of his most
poignant etchings of Jesus Preaching. At the feet of Jesus, and in the
foreground of the picture, are two contrasting figures: an old man, with his
eyes raised and a hand across his month, pondering the words of the young
sage; and a little boy, lying on the ground, facing away from Jesus and
foreshortened toward the viewer, who is drawing with his finger in the sandy
soil, doubtlessly ignoring the words being preached. Next to the boy is his toy
top—presently, but conceivably only recently, at rest—with the string follow-
ing a serpentine path around the top and across the ground. The toy top is the
closest object to the viewer in the pictorial space.



When Rembrandt was scratching this etching on a copper plate, across the
channel Isaac Newton was about ten years old, a likely age for a boy to play
with a top. It is a fantasy of mine that Newton not only played with tops but
also pondered their motion—the curious conical motion. We do know, of
course, that a conical motion (like that of a top) is entailed in the motion of
Earth to account for the precession of the equinoxes, and that the physical
laws underlying this motion have their origin in Newton’s Principia. (I have
found an instance where Newton explicitly mentions a toy top, using the
phrase, “such as boys play with,” but the context is optics, not mechanics; he
tells of painting a top with “divers colours” and spinning it so as to mix them,
thus producing a white or gray. See also section 9.4.)

Most textbooks discuss the motion of a top in the section on the conservation
of angular momentum. A qualitative explanation, using the right-hand rule,
twice, is this: if the top is spinning counterclockwise, mentally bend the fingers
of your right hand around the top and hence in the direction of rotation; now
make three right angles with your thumb, forefinger, and middle finger, aligning
your thumb long the rotational axis and your forefinger downward (by gravity)
toward the floor; your middle finger then points toward the torque moving the
top counterclockwise in a conical motion. Hence the top precesses in the same
(counterclockwise) direction that it rotates. Now applying the same principles to
the rotating Earth: the rotational axis still points “up,” namely north, but the
gravitational force is from the moon and the sun, trying to aligning Earth’s axis
perpendicular to their planes of orbit (rather than “falling,” as the top) and thus
the torque points in the opposite direction, propelling Earth in a clockwise coni-
cal motion. So Earth precesses in the opposite direction that it rotates (Fig. 11.4).
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FIGURE 11.4. Newton: precession of a top and
Earth. A diagram illustrating that the forces
used to explain the conical motion of a toy
top are similar to those acting on the spinning
Earth, and thus providing a mechanical
explanation of Earth’s precessional motion.
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Newton appropriately is given credit for first working this out. But his
results were only rudimentary; his attempt at a detailed calculation was
doomed to failure because he did not have the concept of angular momentum,
and he was not able to deal with rotational motion of rigid bodies. According
to Richard Westfall, Newton “doctored” the calculations “in his effort to
create an illusion of great accuracy.” In short, Newton’s original mechanics
was nowhere nearly as rigorous as that presented in modern textbooks of
Newtonian mechanics.

Nevertheless, in light of the separation of the terrestrial and celestial
worlds since ancient times as well as the gradual embracing of mechanical
models for both earthly and celestial phenomena in the 17th century, I think
this story of the conception (even if the execution was faulty) of Earth as a
spinning top—the mental image alone is marvelous—is one of the most
extraordinary case studies in the rise of a viable celestial mechanics.

11.2. Newton’s Struggle with a Celestial Physics

One of Newton’s early attempts at a celestial physics was based on the interaction
between a centrifugal force outward and a centripetal force inward. Take a weight
attached to a rope and spin it in a circle; there is a centrifugal force outward, as the
spinning weight pulls on the rope. The very idea that such an “earthly” motion could
be applied to the planets at once embodies Kepler’s notion of a celestial physics and
was anathema to Aristotelian physics. Newton was looking for a celestial physics
based on the mechanism of the weight on a spinning rope, but he was not sure how
this would work, since he thought of inertia in this system as only pulling away radi-
ally in a straight line from the center. Therefore, there was a balance between the
centrifugal force (outward) and the centripetal pull (inward) by the rope.

The Dutchman Christiaan Huygens coined the term centrifugal. Newton first
used the word centripetal for the force inward (by the rope) in his little treatise
De Motu (On Motion; see section 10.1). Both men independently deduced the
important mathematical formulation that for such a circular rotation, these forces
are proportional to the speed squared divided by the radius. From this Newton
probably first deduced the inverse-square law.

Assume a body is moving in a circle of radius r with speed s, and making one
revolution during a period of time T. The distance traveled in T is the circumference
2�r. Using the above-mentioned formula (F r s2/r), results in F r 4�2r2/T2r,
which reduces to, F r r/T2, since constants can be eliminated from this proportion.
Here Newton applies Kepler’s third law (T2

r r3). The result is

F r 1/r2.

This is the famous inverse-square law, which later formed the mathematical
foundation of his theory of gravity.



When Newton actually first derived this law is a matter of dispute among histo-
rians, the earliest being the so-called “plague years” (1665–6) when Cambridge
University was closed and Newton was home on his mother’s farm. It is important
to note that this result is only an approximation for a circle. To derive this for an
ellipse was a formidable mathematical problem (see section 10.1). Most signifi-
cant is that Newton here applies a planetary law (Kepler’s) to a mechanical
(terrestrial) problem. This reveals further that he was thinking within the frame-
work of a celestial physics.

Returning to the “balance” between centrifugal and centripetal forces, there is
a common misconception about such motion. Ask a novice what happens if the
rope is released, and the usual answer is that the weight will fly off in a (radial)
line in the direction of the centrifugal force. Such was Newton’s first model
applying linear inertia to rotational motion. But it is wrong; when released, the
weight actually flies off tangent to the circle, since a tangential linear inertia is
the source of both the circular motion and the centrifugal force. The centrifu-
gal force is really caused by an imbalance between inertia and the pull of the
rope. Initially, in thinking about mechanical motion applied to the heavens,
Newton was thinking like a novice (Galileo grappled with this too; recall
section 8.3).

It is no wonder that when confronted with the comet problem of 1680–1
Newton did not leap to the conclusion that the two comets were really one comet
orbiting the sun, since as yet he had no clear mechanism even for the planets. It
was not apparent to him how to deal with the powers and forces acting on the
planets as they move around the sun.

Yet, as a matter of fact, Robert Hooke provided the answer a year before,
during the significant exchange of letters with Newton in the winter of
1679–80 (see section 10.4). Hooke realized that a celestial physics could be
simplified by combining linear inertia as a power tangent to the orbiting
body’s path at each point with an attractive power (later Newton’s centripetal
force) toward the sun. Hooke’s insight conceptualizes a body’s path as “that of
compounding the celestiall motions of the planetts [by means] of a direct [iner-
tial] motion by the tangent and an attractive motion [or force] towards the cen-
trall body.” Centrifugal force consequently ensues (seemingly created by the
motion) as the tendency of the planet to depart continually from its linear path,
with inertia being the power “sweeping” it along. Simple and brilliant—a
mechanism found in any textbook today—but, and here’s that mantra again,
only obvious in retrospect.

Hooke’s gift came with a bonus. He brilliantly showed that such a mechanism
would also work for an elliptical (or at least an oval) motion, using the example of
a pendulum—another earthly mechanical device (like a spinning top). He begins
with the observation that an oscillating pendulum bob suspended from a wire, and
given a slight lateral motion, moves in an oval. Analyzing the forces on this pendu-
lum reveals that the oval motion alone is due to a force directed toward the center.
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Here’s how it works. Looking at the oval motion of a pendulum, two compo-
nents of force (g and F) act on the bob (Fig. 11.5). Force g is the gravitational
force; force F is on the wire. But F can be decomposed into e and f, and since e is
balanced by g, then f alone provides the force inward. Hence force f (directed
toward the center of the oval) and inertia (tangent to the oval) are sufficient
components that explain the oval motion of the bob. This, Hooke argues, is
analogous to the elliptical motions of the planets.

Hooke, and eventually Newton, became convinced of the truth of Kepler’s
elliptical orbits. Hence arose the possibility that the elliptical motions of the
planets could be caused solely by a pressure or force directed toward the center of
motion, along with inertia.

An aside: later, when Newton came to write his Principia, he showed that
Hooke’s physical intuition could be subordinated to mathematical analysis; he
specified the magnitude of the centripetal force and demonstrated that for an
elliptical motion this force would be directed not toward the center of the ellipse,
as Hooke thought, but to one of the foci, where Kepler placed the sun.

Strangely, in the late autumn and winter of 1680–1, a year after this vital
exchange with Hooke, Newton did not apply this solution of a working model for
a celestial physics to the problem of the comet (or comets). We find him still
waffling about the mechanism. This is revealed in letters (and drafts of letters)
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FIGURE 11.5. Hooke: elliptical motion. The
force of gravity (g) and the tension (F) in the
wire act on the pendulum as it moves in an
oval plane. The force (F) can be reduced to its
two components: e and f. Since e � g, and f is
directed toward the center of the oval, then
Hooke inferred that the elliptical paths of the
planets could be explained by one central force
(including inertia).



sent to Flamsteed in the spring of 1681. Recall, Flamsteed proposed that there
was only one comet and its motion was based on a magnetic power between it and
the sun. Newton remained more committed to the two-comet theory but he did
entertain the possibility of there being just one comet and mentioned possible
mechanisms. He writes that the comet’s motion around the sun may be due to a
compounding of the centrifugal and centripetal forces—the erroneous model.
Perhaps even more bizarre from a modern viewpoint, he speculates that the comet
may turn around across the front of the sun (not behind it, as we know today), due
apparently to some repulsive force between the comet and the sun. Obviously
Newton was still grappling with what was for him a staggering problem.

It was not until the autumn of 1684, about four years later, in what became a draft
of the Principia (the little treatise, De Motu) that we can document Newton using
the correct model for the planets (see section 10.1). Unfortunately, we do not
know what moved him, but clearly something happened to persuade him that
Hooke’s solution might be correct. Significantly for this story, he also attempted
to compute the orbit of comets, as if they too (like the planets) travel around the
sun and move in ellipses. It was a formidable mathematical problem and the
result was incomplete. Consequently, he was still not convinced of the one-comet
hypothesis. This can be seen from a remarkable letter to Flamsteed in September
1685, written while he was working on the section of the Principia on comets. He
says he is in the process of calculating the orbits of comets, particularly that of
1680–1, because, “it seems very probable that those of November and December
were ye same comet.” It is almost farcical to picture Newton, writing what we
know will be his masterpiece, the culmination of which was the application of his
model to comets (one third of the third section was devoted to the topic in the first
edition), and realize he still is waffling a bit, yet conceding that the one-comet
idea is “very probable.”

Almost amusingly, too, we find that in the original copy of the letter the phrase
quoted above is underlined twice (apparently by Flamsteed, upon receipt of the
letter), who also wrote in the margin: “He [Newton] would not grant it [namely,
that Flamsteed was correct] before [,] see his [Newton’s] letter of 1681 [above].”
Flamsteed was gratified; Newton was finally coming around to his view.

Indeed he did. Comets make their appearance at the end of the Principia,
where Newton applies his mathematical skills to their orbits and proclaims
their elliptical forms. Specifically the comet of 1680–1 is studied, with the
accompanying picture (Fig. 11.1).

To flesh out this story, here are Newton’s comments on the comet of 1680–1 in the
various versions of the Principia. In the draft of the popular account of the theory,
which was never published in his life (but posthumously titled, A Treatise on the
System of the World; see section 10.1), he conceded that “hitherto [I] considered
those comets as two, yet, from the coincidence of their perihelions and agreement
of their velocities, it is probable that in effect they were but one and the same.” In
the manuscript to, and in the first edition of, the Principia he spoke of one comet
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around the sun. In the second edition (1713) he wrote, “It is abundantly proven that
it was one and the same comet that descended towards the sun in November as
ascended from it in the following months.” Curiously, he crossed out this sentence
in his annotated copy of the second edition. Finally, in the third and last edition,
written about a year before his death in 1727, he reiterated that “it was one and the
same comet that appeared in the whole time from the 4th of November [1680]
to the 9th of March [1681].” What first he thought were two comets turned out to
be really “one and the same.” And of course that was how it was depicted in the
foldout picture of the one great comet of 1680–1, drawn by Newton himself.
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Newton and the Theology of Comets

The modern physics of comets, as seen, is indebted to the genius of Newton.
Moreover, during Newton’s time other aspects of what ultimately constitutes
modern science emerged: the separation of alchemy from chemistry, and
astrology from astronomy, with alchemy and astrology eventually relegated
to the realm of pseudoscience. In addition, comets were no longer portents of
disaster, at least in the folk sense of predicting plagues, wars, the deaths of
kings and queens, and the like.

Nevertheless, a continuing fascination with comets arose amid a flurry
of hypotheses about comets as the cause of historical cataclysms, especially
biblical events such as the plagues of Egypt and the Deluge. Newton knew of
these ideas and took them seriously, very seriously. In this context, comets
remained emissaries of disaster, not unlike the present-day argument about
the extinction of the dinosaurs and other species around 65 million years ago
caused by either a comet or an asteroid.

Having worked out that comets, like planets, may orbit the sun, Newton
was confronted with a potential problem. Since their orbits were not within
the ecliptic (namely, the plane of planets), the physics of motion alone
entailed the possibility of a collision of a comet with Earth. For Newton this
was a theological problem. How could a benevolent God permit such a
malevolent deed? Such questions were more important to Newton than mere
scientific puzzles. In fact, most of Newton’s intellectual life was spent
pondering issues anathema to today’s science, such as matters of alchemy,
biblical chronology, and church history. Actually only a very small part of his
life’s work was spent on science. As in the Middle Ages, theology was still
the queen of the sciences for Newton.

So at length Newton produced a theology of comets too, based on his
conviction of a benevolent Creator. Comets are actually divine agents, their
“exhalations” restoring the solar system of needed substances otherwise
being continually exhausted, such as water for Earth and fuel to the sun.
Adopting modern jargon, this hypothesis may be seen as supporting a steady-
state model of the solar system, one that does not run down or change over
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time, with Providence acting through comets to resupply the needed
materials. Such an idea may also bring to mind the present-day notion of
matter being created out of the vacuum of space, which incidentally was part
of the steady-state model (see section 5.4).

One more point on the comet of 1680–1. Newton believed that this comet
almost grazed the sun and that it would eventually crash into it. (Note how he
drew its perihelion close to the sun.) A direct hit would over-fuel the sun, pro-
ducing a conflagration (indeed, the final conflagration!) that would destroy
Earth. He calculated the period of this comet as 575 years, and thus the “end
of the world” was predicted as some multiple of 1680 � 575 x, where x is an
integer. Thus for x � 1, the end is 2255. I have already seen some reports in
the popular media on this prediction, coming with the authority of Newton,
no less. In fact, however, the great comet of 1680 probably will never return;
its period is extraordinarily long, so long that astronomers cannot predict its
return. Incidentally, and finally, Halley’s comet of 1682, which of course does
return, is the only naked-eye comet with a rather short period.



12
A Well-Nigh Discovery: 
Einstein and the Expanding Universe
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Einstein’s stubbornness about his theories and his attitude toward experiments
were explored in Chapter 1. Here I return to Einstein, with the focal point
being his obstinacy over his cosmological model. This personal drama played
itself out in the context of the cosmological revolution of the 20th century—a
change, I shall show, that was as extensive and momentous as that initiated by
Copernicus in the 16th century.

12.1. Nebulae and Galaxies

On a clear night, far from city lights, the sky is filled with thousands of stars,
the moon may be seen in one of its phases, one or more of five planets are often
visible, the Milky Way may stretch across the heavens, and, if one looks very,
very closely, a few little blurs or smudges may be barely seen among the stars.
The ancients bestowed the term nebula (plural nebulae) upon these several
indistinct objects, from which is derived the English word nebulous. In the
Northern Hemisphere two prominent nebulae are visible in the constellations of
Orion and Andromeda; that they always remain within each constellation indi-
cates that they are fixed in the heavens, rather like the stars (unlike, say, comets
or meteors), yet their indistinct (non-starry, non-twinkling) nature puzzled the
ancients. Since only a few existed, little effort, therefore, was directed toward
understanding them.

The history of these little blurs occupies a most extraordinary story, for they
are at the center of nothing short of a cosmological revolution that transpired
in the last century. Some of these blurs subsequently were found to be entire
galaxies; that revelation led to a rearrangement of the universe and the reloca-
tion of galaxies from being remote celestial objects to being fundamental
cosmological entities, center stage as they replaced stars as a key structural
component of the universe. By the 1930s they were the buildings, the stars
were the bricks, and, indeed, clusters of galaxies were the neighborhoods in
the landscape of the cosmos as it came to be understood by the 20th century
and bequeathed to us.



An outline of that story begins in the 17th century with the invention of the
telescope and the awareness of two things: that there are more nebulae than the
few visible with the naked eye, and that the Milky Way is not as it appears—it is
actually a dense collection of stars, not a continuous cloudy mass (see section 4.5).
Over the following two centuries, the number of nebulae discovered increased
from hundreds to thousands. Obviously, speculation about their nature accompa-
nied this work. Since some nebulae were shown to be dense concentrations of
stars (as was the Milky Way) initially a number of astronomers assumed that all
nebulae were merely star clusters. Yet many nebulae stubbornly continued to
appear blurred, even as telescopes were improved, implying that they were
probably just masses of hot gases.

A most important astronomer in this story was William Herschel, most
famous for having discovered the first planet (Uranus) not visible to the naked
eye. Herschel devoted much of his observational time to the nebulae; he dis-
cerned various odd shapes among the nebulae, as he and his sister Caroline
catalogued about 2500 of them. He made another discovery that later would
prove important to this story—that the Milky Way is not actually a massive
concentration of stars “out there” but that we (namely, our solar system of the
sun and planets) are within it. Herschel, moreover, asserted that we were near
the center of this massive star cluster. Copernicus may have shifted the posi-
tions of Earth and the sun, but Herschel centralized our sun-system within the
Milky Way.

Since the Greek term for milky-like is galaxias, the Milky Way was often also
called the galaxy. With Herschel’s discovery, some speculation arose about the
possible existence of other such galaxies beyond ours, and not surprisingly likely
candidates were the nebulae—that perhaps nebulae were other galaxies, clustering
masses of numerous stars. The term island universe was coined for this notion that
a nebula was a galaxy like ours. Most scientists, however, became more convinced
that nearly all nebulae were composed only of hot gases and thus were not star
clusters; at most, nebulae were proto–solar systems, rotating gases within our
Milky Way. Further conformation of this came after the Herschels, especially by
the mid-19th century when very large telescopes (in Ireland and England) revealed
for the first time the spiral nature of many nebulae. Thus talk of island universes
was then seen as mere speculation, more like science fiction than fact.

12.2. Einstein’s Cosmological Model

From a theoretical point of view the cosmological revolution of the last century
begins with the landmark paper by Albert Einstein in 1917. The idea for it grew
out of his theory of general relativity, a theory of gravity, completed late in 1915
(see section 1.1). Just as relativity constituted a radical break with classical
physics, Einstein’s cosmological model was profoundly different from the
Newtonian cosmos of the 17th century. (For convenience we call the latter
Newtonian, just as we call the ancient one Aristotelian, even though elements of
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it were drawn from the ideas of Descartes and others throughout the Scientific
Revolution.) In Newton’s universe Euclidean space extends infinitely in all
three dimensions (or, at least, “indefinitely,” so as not to impose upon the terri-
tory of God, the only true infinite). Space was a passive receptacle for (inert)
matter (possessing inertia) and forces (such as gravity), the latter filling space.
Space, matter, and force were the trinity of Newton’s universe.

Newton’s cosmology, generally accepted by the mid-18th century, replaced the
ancient cosmos, sustained throughout the Middle Ages and the Renaissance. The
ancient model, expounded by Aristotle (among others) and supported later by
philosophers and astronomers, was not only Earth-centered but also finite in size
(volume), and encompassed by the sphere of the fixed stars—an impenetrable
boundary comprising the edge of the universe. During the Scientific Revolution,
this cosmos was altered in two fundamental ways: first, the sun switched posi-
tions with Earth as the central body and second, the center disappeared as the
stellar sphere was shattered and the stars were envisaged as being scattered
throughout space. The sun-centered solar system was hence somewhere or any-
where or nowhere (!) within this infinite and unbounded universe. The contrast
with the finite and bounded cosmos was overwhelming: Newton’s cosmos had
obliterated Aristotle’s.

Einstein’s paper of 1917 is entitled, “Cosmological Considerations of General
Relativity.” In simple physical terms, here is what Einstein said. General relativity
replaced the concept of gravitational force as an instantaneous action-at-a-distance
with a field model, where gravitational force, like electromagnetism, is propagated
at the finite speed of light. Moreover, the field emanating from matter is really a
geometrical distortion of space by matter itself. Empty space alone, without
matter, is Euclidean; the presence of matter distorts or warps space, and such a
space is non-Euclidean. We do not directly see any of this because the distortion is
into another (fourth) invisible dimension.

An analogy facilitates a mental picture: consider a two-dimensional person living
in a flat (Euclidean) surface; a distortion of this space would not directly be seen by
the flat person, but the distortion may be inferred by the behavior of objects moving
in it; the behavior of moving objects entails an apparent force around the objects as
they get caught up in the warping of the local space (see Fig. 1.2). For the flat
person, the non-Euclidean warping of space into a third dimension is the cause of
the illusionary force. Analogously, a concomitant deformation of space into a fourth
dimension constitutes the gravitational field for us, as three-dimensional persons.
Space is distorted by the presence of matter—apples, Earth, the sun, or stars—and
this we perceive as gravitational force.

Having deduced this explanation for gravity (the fundamental component of
general relativity), Einstein next asked this question: What happens to the entire
universe if one sums up all the local distortions of space around matter? This
summing up is essentially what Einstein did in the 1917 paper. Beginning with
the equation of local gravity according to general relativity, he found that the
summation of all local matter bending local spaces results in the warping of the
totality of space into a finite yet unbounded universe.
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Finite and unbounded, how can that be? Recalling the contrast between
Aristotle’s (finite and bounded) model and Newton’s (infinite and unbounded)
model, is this not a contradiction? Again, an analogy with our flat person’s expe-
rience helps form a mental picture. Consider this person now living on a sphere:
the space of this universe is surely finite (like Aristotle’s universe and unlike
Newton’s), for the amount of space corresponds to the finite surface area of the
sphere (the entire surface area being a function of its radius). Traveling in this
space in a straight line the flat person would never come upon a boundary but
would travel along the arc of a great circle, and hence the space experienced is
unbound (like Newton’s, and unlike Aristotle’s). For us, therefore, as three-
dimensional persons traveling in a straight line in a four-dimensional space, we
would, in time (depending on the radius of our universe), return to the starting
point, since the total space is finite. Thus, the universe as a whole forms an
unbounded and finite non-Euclidean space.

There was, however, a glitch in Einstein’s deduced equation of the universe.
Besides being finite and unbounded, the universe seemed to be unstable. This was
a strange deduction—so strange, in fact, that Einstein dismissed it as being
impossible and immediately corrected the equation by adding a stabilizing term.
The added term he called the “cosmological constant.” Both the Aristotelian and
Newtonian universes were static, since the notion that the universe as a whole is
stable was an a priori postulate in all cosmological theories. So was Einstein’s
universe. He believed that his cosmological constant might be on par with other
fundamental constants of nature, such as the speed of light.
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Empty Space and Nothing

Since Aristotle’s universe was of finite extent, a logical question arises: What is
beyond the stellar sphere? It is a logical question from a modern point of view
but it really makes no sense in ancient thought. The finite universe was all that
there was; that was everything, so nothing was beyond the stars. Of course,
I realize that in saying “nothing” I will not necessarily convey the real meaning,
since today there is usually no semantic distinction between nothing and empty
space. Thus saying that nothing is beyond the stars means, in the mind of many
readers I should think, that the ancient universe was conceived of as a sphere
floating in empty space. But that would be utterly wrong. “Nothing” is not
empty space. Nothing means nonexistence. Anyone transported into “nothing”
would not return. In contrast one may travel into empty space; as astronauts do
(although in space suits with an oxygen supply), and they return. Hence, to con-
ceptualize the ancient model one needs to keep in mind the essential distinction
between empty space and nothing; indeed, the notion of empty space does not
exist at all in Aristotle’s science, since his finite universe was filled with air,
water, earth, fire, and ether. At most there was the idea of a potential void but
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this was ultimately impossible, as air immediately rushes in to fill the void—
hence, the medieval law that “nature abhors a vacuum.”

Another way of conceptualizing this universe is realizing that the space of
the spherical universe was not necessarily Euclidean (of course, neither was
it non-Euclidean, in the modern sense); throughout the ancient, medieval, and
Renaissance eras Euclid’s space only existed in geometry texts. (Non-Euclidean
geometry was invented in the 19th century by three mathematicians at about the
same time, and although initially rejected as meaningless, it was accepted
into the fold of conventional mathematics by the end of the century.) With the
so-called breaking of the stellar sphere in the 17th century, and the correspond-
ing idea of the entire universe extending far off in three dimensions, the space of
this universe could only then be comprehended as a Euclidean space.

Einstein’s use of non-Euclidean space in general relativity demonstrated
that the distinction between nothing and empty space is not merely a trivial
semantic one. In his theory, it is the geometrical property of space, specifi-
cally its (non-Euclidean) bending around matter, that constitutes gravity. So
this space is not a passive receptacle for matter; instead, it is an active protag-
onist interacting with matter. Matter bends space, and the distortion results in
matter appearing to have an attractive (gravitational) power. Thus there really
is no “spooky” (see section 1.1) attractive force: Newton’s trilogy of space,
matter, and force is replaced by the dualism of matter and space, or really just
energy (or mass-energy) and space, since E � mc2.

Hence, a deep significance of Einstein’s theory of general relativity is that
space indisputably is not “nothing.” On this, Aristotle was right.

12.3. Observational Astronomy in the Early 20th Century

Einstein, of course, was free to make abstruse calculations about the cosmos
on the back of an envelope, but in the end it all had to jive with the real world
of observational astronomy. We left that world (section 12.1, above) in the
mid-19th century, with we humans comfortably at the center of our Milky Way
and speculating about possible galaxies beyond. Maybe comfortably, but also
trapped, because the first measurements of the distances of the stars, made
possible with the improvements in telescopes, were made by a triangulation
technique involving parallax (see Stellar Distances and Parallax, in Chapter 5).
But by the late-19th century, astronomers realized that this method had a limit,
due to number of causes (the orbit of Earth, the laws of optics for resolving
light, and so forth). In short, the method can measure celestial distances only
to around 500 light-years. Anything beyond that can not be measured, and
importantly this empirical limit is well within the confines of our Milky Way.
Hence, cosmologists (or poets) could speculate about the universe beyond our
Milky Way but astronomers knew better. Our Milky Way really does embrace



an “island universe” – at least, so thought the best astronomers at the term of
the last century.

This parallax limit, however, was broken in the early part of the 20th century
with a discovery by Henrietta Leavitt of the photometry department of the
Harvard College Observatory, who studied a class of stars of regularly changing
intensity. They were called Cepheid variables, since she first noticed them in the
constellation Cepheus the king; subsequently they were found everywhere, yet
the term stuck. The periods of fluctuation of these stars ranged from days to
months. Another key discovery was made when several Cepheids were found
within star clusters; by measuring their fluctuation periods it became clear that
there was a correlation between the average intensities of the Cepheids and their
periods, since all these clustered Cepheids were at the same relative distance
from us. As she wrote, it is “worthy of notice that . . . brighter variables have the
longer periods.”

This important discovery was put to use by the astronomer Harlow Shapley at
Mt. Wilson Observatory in California, who calibrated the scale of relative intensi-
ties to convert it into absolute values. This required knowledge of local Cepheids,
that is, close enough to measure their distance by parallax; then, using the
inverse-square law of the intensity of light, the absolute value of the Cepheids
follows. (Here is an analogy if this is not immediately apparent: if you know the
distance to a light bulb, then by measuring its observed intensity you can deduce
its actual intensity, say 100 watts, since light intensity decreases inversely as the
distance squared.) The result was a correlation between the periods and absolute
intensities (or actual luminosities) of Cepheid variables, now known as the
period-luminosity law (Fig. 12.1).
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FIGURE 12.1. Period-luminosity law. A schematic diagram of Leavitt’s law, showing the
increase in the average luminosity of the Cepheid variables verses the periodic cycles of
their change in brightness.



This law broke the 500 light-year limit. Here’s how it works: observe a
Cepheid variable and measure its period. From the period-luminosity law you
obtain its absolute intensity or luminosity. Likewise the distance of the
Cepheid is deduced. (Using the analogy again, you see a light at a distance and
know its actual wattage, say 100 watts. Comparing this wattage with the
observed intensity and using the inverse-square law you obtain the distance.)
Thus, as long as we can see a Cepheid, we can measure its period, and hence
obtain its distance. Cepheid variables became the first new signposts of the
universe for the early 20th century. Importantly, Shapley used them to make
the first real measurement of the size of our Milky Way and he discovered that
it is about 100,000 light-years in diameter. (Actually, his initial calculation
was too large by a factor of three, due to an erroneous calibration of the period-
luminosity law.) But most significantly (and contrary to Herschel) he found
that our solar system is really near the edge, not the center of the galaxy. By
the 1920s this was the revised picture of our place in the Milky Way. But
where were we in the universe?

Before pondering this question, there is another story in early 20th century
observational astronomy that I have skipped—a discovery by the astronomer Vesto
M. Slipher working at the Lowell Observatory in Arizona. Whereas Leavitt’s
discovery had immediate application, Slipher’s was initially puzzling.

Starting in 1909, Slipher worked on spectroscopy of nebulae (essentially
looking at the spectral colors of their light), believing they were proto–solar
systems. He discovered that their light exhibited a shift toward either the red or
blue ends of the spectrum. The first measurements were of the nebula in the
constellation Andromeda, and he found the light shifting toward the blue. By
around 1914 he had measured 15 nebulae, finding most shifting to the red; by
1917 he measured 25 nebulae and again most (22) were shifting toward the red.
Today such red or blue shifts are obvious cases of things either receding or
advancing from us, respectively; moreover, his discovery is seen as major step
toward our knowledge of the expansion of the universe.

Looking at this from a pre-1920s viewpoint, however, Slipher’s findings were
more of a puzzle. First, the only known galaxy was still our Milky Way; true,
there was speculation as far back as the 18th century that various nebulae may be
other island universes, but this was more in the realm of science fiction. At the
beginning of the 20th century most observational astronomers worth their salt
were sure we were trapped in the Milky Way (within the 500 light-year limit),
until Leavitt’s discovery in the second decade. Second, although some nebulae
were shown to be composed of stars (hence really star clusters, not just hot gases),
nearly all still seemed to be just swirling masses of gases, and, as well, within our
galaxy. Third, it was not widely accepted that the spectral shifts in light were
caused by motion—namely Doppler shifts. Here is the historical background.
(Note: some of the following discussion overlaps with, but also supplements, that
in section 5.4.)

The Austrian physicist Christian Doppler in the mid-19th century discovered a
shift in the wavelength of sound caused by the motion of the source. For an
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approaching wave, the wave is squeezed and hence the wavelength is shortened,
and vice versa—a receding wave is stretched, lengthening the wavelength. (Since
frequency is the inverse of wavelength, an approaching siren goes up in pitch and
then goes down as it recedes.) By analogy then, light would shift toward the
(shorter) blue as the source approaches and shift toward the (longer) red with
recession. But there was no consensus among scientists on this analogy between
light and sound. True, at the time they both entailed a wave model; however, light
waves were transverse (think of a vibrating string) and sound waves were mainly
longitudinal (think of a vibrating spring). Thus, many scientists did not interpret
the red/blue shifts for light as Doppler shifts, and the mainly red shifts of the neb-
ulae were a puzzle. Slipher first announced his discovery at the meeting of the
American Astronomical Society (AAS) in August 1914; moreover, he interpreted
the spectral shifts as Doppler shifts, but thought this implied that there was a rel-
ative motion of our galaxy through the universe. In the audience was a research
assistant from Yerkes Observatory of the University of Chicago—Edwin Hubble.

Hubble finished his Ph.D. in 1917 and went to war. Returning in 1919, he
landed a job at Mt. Wilson Observatory. His first few years overlapped with
Shapley’s last years there, for in 1921 Shapely moved to Harvard Observatory
(see Shapley’s Blunder, below). Despite the overlap, it seems they had little
collaboration; apparently there was some tension between them. Instead,
Hubble worked with his very able assistant, Milton Humason, using a recently
constructed telescope, which was the largest in the world at the time. (Domi-
nance in observational astronomy shifted from Great Britain and Europe to the
United States in the 20th century, fueled largely by research funds from philan-
thropists.) In October 1923 Hubble found a Cepheid variable in the nebula
in Andromeda. He later found more, and using the period-luminosity law
(Fig. 12.1), he measured the nebula’s distance, obtaining one million light-
years (actually it is about 21/2 times that, the error due to a miscalibration of the
period-luminosity law again). The result was astounding: there was little doubt
that this nebula was external to our galaxy. Our isolation within our island
universe was no more; for the first time there was empirical evidence, not
just poetic speculation, that something exists outside the Milky Way—and so
possibly did other nebulae. In January 1925 Hubble announced the discovery
at the AAS meeting. In the following years Hubble and Humason found other
external nebulae.

But this was only the beginning. Hubble and Humason also commenced a
program built upon Slipher’s work, by measuring the spectral shifts of dozens of
external nebulae. Most exhibited a red shift in their spectra. And they found
something else: for nebulae close enough to measure their distance, a correlation
was found between the amount of red shift and the distance. Plotting these vari-
ables, Hubble found a linear relationship, which he first published in 1929 using
data from 46 nebulae; later, with data from 40 more nebulae, he further confirmed
the linear law in a second paper of 1931 (Fig. 12.2). How were these data to be
interpreted? Hubble was cautious. One possibility was that the red shifts were
Doppler shifts and hence all these galaxies were receding from us, with only a
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few (e.g., the galaxy in Andromeda) advancing. Some scientist jumped to this
conclusion; if so, it seemed to imply that the universe is expanding, as some
theorists (as we shall see below) had proposed. Others suggested different causes
for the red shifts: that light slows down by the gravitational pull of the stars and
nebulae as it travels and bends through space, the so-called tired-light hypothesis
(see section 5.4).

While Hubble was pondering these matters at Mt. Wilson, he met Einstein,
who, in the winter of 1930–31, was on the first of what became three annual
sojourns to California. How did their meeting go? Before looking into this we
need to go back to where we left off in theoretical cosmology.
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FIGURE 12.2. Hubble’s law.
A schematic diagram of Hubble’s
discovery of the linear correlation
between the red shift of galaxies and
their distances.

Shapley’s Blunder

The following incredible but undocumented story has circulated among
astronomers for decades.

When Hubble discovered a Cepheid variable in the Andromeda nebula,
he wrote to Shapley, who was now at Harvard, announcing his discovery.
(Shapley had landed the directorship position of the Harvard Observatory,
where Henrietta Leavitt worked. When he moved there in April 1921, sadly
she was dying of cancer. Unfortunately, she could not work very much, so
there was little collaboration, but he was with her at her death. In his auto-
biography he calls her “one of the most important women ever to touch
astronomy.”) Hubble’s letter announcing his discovery to Shapley was
written in February 1924.

Here is the undocumented part of the story. Earlier, around 1920, when
Shapley was still working at Mt. Wilson, Humason came to him one day with
a photographic plate of the Andromeda nebula, which he had marked in a few
places, and told Shapley that he thought the marked spots might, in fact, be



12.4. Einstein Defends His Cosmological Constant

Einstein’s cosmological model, as he presented it in 1917, had no immediate rele-
vance to the work of observational astronomers. Yet a Dutch astronomer, Willem
de Sitter, interpreted Einstein’s cosmic equation differently, producing a model
that was still fundamentally static but that entailed an apparent recession of all the
stars. Due to the disruption in scientific communication during the First World
War, de Sitter was not aware of Slipher’s work on the redshift of the nebulae. But
de Sitter did correspond with Einstein on the model. Einstein realized that an
expansion of the stars, whether real or apparent, contradicted the stability assump-
tion of his paper. After several exchanges between them, Einstein remained
committed to a stable universe. In the chronology of the letters to de Sitter,
Einstein remarked that de Sitter’s model “corresponds to no physical possibility”;
that its geometrical structure “does not make sense”; and that the possible
consequence of a beginning to a nonstable universe “irritates me.” Note the
progressively narrow-mindedness of these responses.

A second argument for a nonstable universe came forth from the Russian mathe-
matician, Aleksandr Friedmann, in two papers (1922 and 1924). The papers were
on purely mathematical aspects of Einstein’s equations of 1917, with no physical
applications; nevertheless, Friedmann’s result showed that a nonstatic solution,
which ignored the cosmological constant, was logically possible. Einstein again
balked at the implication. Only a stable model was compatible with his conception
of the universe.

A third assault on his model came in 1927. Unaware of Friedmann’s work, the
Belgian physicist Georges Lemaître showed that an expanding universe was
implied if one eliminated the cosmological constant, and he offered the red shifts
of the nebulae as evidence. Einstein remained adamantly opposed to a nonstatic
universe. He and Lemaître met in Brussels in October 1927 at a scientific confer-
ence, where he told Lemaître of Friedmann’s work, but of course Einstein had not
changed his mind about either of them. Lemaître later recalled one of Einstein’s
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Cepheid variables. Shapley is said to have rubbed the marks away with a
comment that they could not be stars since the nebula is solely a spiral of
hot gases. Not surprisingly, upon reading Hubble’s letter in 1924, Shapley is
reported to have remarked: “Here is the letter that has destroyed my universe.”

Owen Gingerich, a colleague of Shapley’s at Harvard who knew the story,
asked him about it in the 1970s, and Shapley replied—although by now his
memory was less than reliable—that the story was possibly true. If so, then
Shapley literally rubbed out one the great discoveries in astronomy of the last
century. Had he not, that wonderful telescope orbiting our Earth as I write this
might have been called the “Shapley” (not “Hubble”) space telescope.



comments (which echoed the exchange with de Sitter): “Your calculations are
correct, but your physical insight is abominable.”

On his trip to California in the winter of 1930–31, Einstein was accompanied
by his second wife, Elsa, his secretary, and an assistant. On December 30, 1930,
Einstein and his entourage sailed into San Diego harbor to much fanfare, for by
now he was a scientific celebrity. They were taken to Pasadena the next day
where, at the California Institute of Technology (Caltech) and the Mt. Wilson
Observatory, he would spend the next two months. He had been invited by Robert
A. Millikan, president of Caltech, whose experimental work on the photoelectric
effect had confirmed Einstein’s 1905 prediction of the particle nature of light; for
this, plus his measurement of the electron’s charge, Millikan received the Nobel
Prize in 1923. Ironically, Millikan’s experiment on the photoelectric effect was
initially performed to disprove Einstein’s model, and even when the results con-
firmed it, Millikan remained skeptical of the theory, because of the efficacy of the
wave theory of light; in addition, he had doubts about the 1919 solar eclipse
experiment as confirming Einstein prediction of the bending of light around the
sun, saying that the apparent deflection of light may be due to refraction by gases
around the sun. Nevertheless, with these annual winter visits, Millikan was trying
to attract Einstein to a permanent position at Caltech. Einstein came a second time
(1931–32), and during a third visit (1932–33) the Nazis came to power and he
never returned to Germany. Ultimately, despite Millikan’s pursuit of Einstein,
Caltech lost to the newly created Institute for Advanced Study in Princeton, New
Jersey, where Einstein remained for the rest of this life (1933–1955).

During Einstein’s first visit to Caltech in 1931, he met other physicists and
particularly astronomers associated with the observatory. There was Walter S. Adams,
who worked on the gravitational red shift of the star Sirius B. General relativity
predicted that large gravitational fields from massive stars should cause escaping light
to be lengthened, and hence shifted to the red end of the spectrum (a deduction that,
importantly, is independent of the “other” redshift due to motion). Charles E. St. John
was also looking for this gravitational redshift from the sun. William W. Campbell
had measured the bending of light during the 1922 solar eclipse, confirming further
(beyond the famous 1919 experiment) Einstein’s prediction (despite, like Millikan,
being initially skeptical of the theory).

Most consequential was his meeting with Hubble and his assistant Humason;
1931 was a propitious time for them because they were preparing their second
paper with further data confirming the linear relationship between redshifts and
distances of the nebulae. The key question was: Are the redshifts Doppler shifts?
Hubble toyed with this idea at the time. Ultimately he abandoned it. He was a
stanch empiricist, and believed that the redshift–distance relationship (which was
not called Hubble’s law until the 1950s) was no more than an empirical correla-
tion, providing a means to measure distances beyond the Cepheid limit; to Hubble
anything else was mere speculation, not hard science. This apparently was his
assessment even at his death in 1953 (see section 5.4).
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What of Einstein in 1931? What did he take from his meetings with Hubble? I
have not been able to find any documents from him, nor from the other scientists,
on his view at the time. Sadly his diary addresses mundane matters. But Einstein
was then a celebrity, and thankfully the New York Times had a reporter snooping
around Caltech writing almost daily dispatches, from which I’ve been able to
glean these remarks. In early January Einstein is quoted as saying: “New observa-
tions by Hubble and Humason . . . concerning the redshift of light in distant nebu-
lae make the presumptions near [i.e., make it appear likely] that the general
structure of the universe is not static.” Here is the first intimation from Einstein of
his budging from his steadfastness to a stable/static model. Then in early Febru-
ary the Times reported that he announced at a lecture that he dropped the idea of a
closed (and, hence, stable) universe. A week later he confessed, “The redshift of
distant nebulae has smashed my old [theoretical] construction like a hammer
blow,” and at the lecture he said this in an animated manner while “swinging
down his hand to illustrate.” No doubt that swing of the hand had a cathartic
effect, liberating Einstein from his stubborn allegiance to the stable model and its
cosmological constant. He was much later quoted as saying that the postulation of
the cosmological constant was “the greatest blunder of my life.”

I therefore suspect that at some time during this crucial visit to Caltech the
thought must have occurred to Einstein that if he had not been so quick to intro-
duce the cosmological constant, and instead explored the consequences of the
equations of general relativity without it, he may have predicted the expanding
universe, independently of and before de Sitter, Friedmann, and Lemaître, which
surely would have been a crowning achievement in his already illustrious career.

In light of the “book-ends” chapters of this book (1 and 12), Einstein’s tenacity
and stubbornness were surely a double-edged sword—at once a source of success
and failure in his scientific life.

As a coda to this chapter, I should mention that in recent years a hypothesis
about an inflationary element in the expanding universe has been gaining favor.
Empirical evidence is mounting that the rate of expansion (over about the last
5 billion years) has been increasing, and hence there is the requisite postulation of
an additional energy (called dark energy) within the vacuum of space to account
for it. This dark energy acts like a repulsive force (counter to gravity) and thus,
not surprisingly, reference is often made to Einstein’s cosmological constant as a
forerunner of this. Perhaps Einstein’s “blunder” was not so far off?
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Galaxies and the Naked Eye

In the night sky, how far can we see with the naked eye? Almost everything
we see is, in fact, within our Milky Way.

All the nebulae that are (gaseous) nebulae are in our galaxy. The nebula in
the Andromeda constellation, seen in the Northern Hemisphere, is a galaxy.
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So are the two clouds of Magellan, visible in the Southern Hemisphere.
Despite present-day light pollution, some observers claim they can see the
Spiral in Triangulum, another galaxy near Andromeda. These nearby galaxies
constitute what is called our local group. Otherwise everything else we see
with the naked eye at night is within our Milky Way.

Of course, a supernova in another galaxy could be visible, as was the one
appearing in 1987 in the large cloud of Magellan. Two of the famous novae in
history, so-called Tycho’s nova of 1572 and Kepler’s of 1604, however, were
both within our galaxy.
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One of the themes of this book has been the disjunction between, on the one hand,
the image of science that appears in science courses and textbooks, and, on the
other hand, that uncovered by a study of the actual history. As seen, there is a
sharp distinction between the complex and often-muddled process of wrestling
with nature in the search for order (which the scientist pursues and which the his-
torian subsequently probes and tries to reconstruct) and the selective image that
emerges after nature, so to speak, reveals its secret. The uncovered order usually
appears as an abstract, succinct, and elegant summary of a facet of nature, and is
presented thusly in textbooks.

Regretfully, the alternate (historical) depiction of science sometimes entails
aspects of the behavior of scientists that is less than exemplary, as was seen in
many of the stories told here. Ideals and idols may become suspect and tarnished
by history, for there is an iconoclastic side to the history of science—indeed, this is
true of a good deal of historical work. Because of this there has arisen the accusa-
tion that historians are out to debunk science, that they are aligned with the so-
called postmodernists, some of whom assert that all knowledge—including, and
especially, Western scientific thought, with its claim to objectivity—is actually a
subjective enterprise grounded in and reflective of the embedded culture (some-
times referred to as “socially constructed”), and is thus on equal footing or of equal
truth value with other “ways of knowing,” such as astrology or psychic experi-
ences. This viewpoint has given “contextualism” a bad name. On the other hand,
and in reaction to postmodernism, there has arisen a coterie of very vocal science
zealots, aggressively defending the hegemony of science seemingly over all
matters of knowledge. Whereas the postmoderns tend to be naïve about science,
the zealots, I find, are naïve about the history of science. Perhaps they are partially
blinded by the simple beauty of science as seen only through the textbook.

I admit that this book may raise serious doubts about the objectivity of some
specific episodes told here. As seen, I confess to being a skeptic, yet a skeptic
grounded in the study of history (recall the short essays on skepticism in Chapter 5).
At the same time, I am convinced there is truth-content in the study of history as
in science. The historical records provide the empirical constraints within which
I work, these being analogous to epistemological constraints entailed by the natural



world for the scientist. The following quotation by Richard Jenkyns, professor of
the classical tradition at Oxford, splendidly concurs with my viewpoint on historical
methodology:

Somehow we need to keep in balance our sense that history-writing is a creative and imag-
inative process with our belief that the good historian is in search of truth and understand-
ing. The historian’s personal character and beliefs are instruments that can be used well or
ill. [Edward] Gibbon’s Decline and Fall [of the Roman Empire] is pervaded by his skepti-
cism: it is one of the sources of his greatness, but there are occasions when it led him to
distortion, and at those moments he was the lesser historian. We are not purely at the mercy
of our prejudices: every scholar has known the times when the evidence has commanded
him to abandon a position dearly held. At such a moment the bad historian cheats; the good
one reconsiders, even at the cost of demolishing what he has built. But if there were noth-
ing to the inquiry but the free flow of subjectively, such a dilemma could not arise.

I have faced that dilemma many times in my work. In my research on Newton and
the colors of the spectrum (Chapter 9), I initially set out to show that the musical
metaphor was the source of the seven colors, but the primary documents forced
me to see that the aesthetic argument came first, with the musical analogy follow-
ing. The same occurred in my research on Galileo and sunspots. I wanted to vin-
dicate Galileo from some nefarious accusations made by Arthur Koestler in his
popular book, The Sleepwalkers. In the course of finding an error in Koestler and
hence vindicating Galileo, I uncovered Galileo’s less than honest exposition of
the role of the precession of the equinoxes (see section 4.4). As a historian, I try
to reconstruct what really happened, akin to a scientist looking for what the world
is really like. Otherwise, why bother?

In the long run, I believe, science is the best and most powerful means we have
of fathoming the external world. In the short run, however, the fundamentally all-
too-human and less-than-rational characteristics of scientists are more manifestly
obvious, revealing, to use a phrase, their quirky side.
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