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Truly the gods have not from the beginning revealed
all things to mortals, but by long seeking, mortals make
progress in discovery.
—Xenophanes of Colophon (c. 500 b.c.)



I canna change the laws of physics, Captain!
—“Scotty” Montgomery Scott to Captain Kirk, in “The

Naked Time,” Star Trek TV series

It is indeed a surprising and fortunate fact that nature
can be expressed by relatively low-order mathematical
functions.—Rudolf Carnap, classroom lecture

Perhaps an angel of the Lord surveyed an endless sea
of chaos, then troubled it gently with his finger. In this
tiny and temporary swirl of equations, our cosmos took
shape.—Martin Gardner, Order and Surprise

The great equations of modern physics are a permanent
part of scientific knowledge, which may outlast even the
beautiful cathedrals of earlier ages.
—Steven Weinberg, in Graham Farmelo’s It Must Be

Beautiful
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lishing the Dictionary of Scientific Biography” by Charles Scribner, Jr.,



published in Proceedings of the American Philosophical Society, 124(5):
320–322, October 10, 1980.

I also reread many dusty and crumbling physics textbooks that I had
saved in my basement since my college days, despite my family’s occa-
sional suggestion that they might be discarded to create a less cluttered
bookshelf. Related useful works include Robert Krebs’s Scientific Laws,
Principles, and Theories, Michael Hart’s The 100: A Ranking of the Most
Influential Persons in History, Lawrence Krauss’s Fear of Physics, Freder-
ick Bueche’s Introduction to Physics for Scientists and Engineers, Arnold
Arons’s Development of Concepts of Physics, Martin Gardner’s Order
and Surprise, Michael Guillen’s Five Equations That Changed the World,
Graham Farmelo’s It Must Be Beautiful: Great Equations of Modern Sci-
ence, Richard Feynman’s The Character of Physical Law, and John Casti’s
Paradigms Lost.

The frontispiece illustration (accompanied by Xenophanes’ quotation)
and illustration at the end of this book are from Gerogius Agricola’s De
re metallica, originally published in 1556. De re metallica was the first
book on mining and metallurgy to be based on field research and careful
observations. The book is available today from Dover Publications. The
astronomer with compass on the initial quotation page is by Albrecht
Dürer, from the title page of Messahalah, De scientia motus orbis (1504).

A NOTE ON TERMINOLOGY AND SYMBOLS

At the end of each entry in this book, under “Further Reading,” I list
references that are targeted to specific laws. While many entries mention
primary sources, I have often explicitly listed excellent secondary refer-
ences that most readers can obtain more easily than older primary sources.
Readers interested in pursuing any subject can use the references as a
useful starting point.

The text within gray boxes denotes historical events that occurred when
a law was discovered. The large symbols used when introducing a law
(atom, flask, telescope, and π symbols) denote the subject areas of physics,
chemistry, astronomy, and mathematics, respectively.

Mathematical variables or constants that assume values are italicized.
Subscripts for variables that do not assume values are typeset in a nonitalic
font. For example, the T in TL is italicized because it assumes a value for
temperature; however, the subscript L is not italicized because it stands for
the word “low.”

The scientific literature appears to be divided when referring to Ein-
stein’s theory as either the “General Theory of Relativity” or the “Theory

viii | a c k n o w l e d g m e n t s



of General Relativity.” Similarly, I found many instances of the “Spe-
cial Theory of Relativity” and the “Theory of Special Relativity.” I have
decided to use the phrases “General Theory of Relativity” and “Special
Theory of Relativity,” which Einstein used to title the main sections of his
book Relativity: The Special and General Theory, first published in 1916.

In 1676, Isaac Newton explained his accomplishments
through a simple metaphor. “If I have seen farther it is by
standing on the shoulders of giants,” he wrote. The image
wasn’t original to him, but in using it Newton reinforced
a way of thinking about scientific progress that remains
popular: We learn about the world through the vision of
a few colossal figures.
—Peter Dizikes, “Twilight of the Idols,” New York Times

Book Review, November 5, 2006
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INTRODUCTION AND BACKDROP
Isaac Newton was born into a world of darkness, obscu-
rity, and magic . . . veered at least once to the brink of
madness . . . and yet discovered more of the essential core
of human knowledge than anyone before or after. He was
chief architect of the modern world. . . . He made knowl-
edge a thing of substance: quantitative and exact. He
established principles, and they are called his laws.
—James Gleick, Isaac Newton

At every major step, physics has required, and frequently
stimulated, the introduction of new mathematical tools
and concepts. Our present understanding of the laws of
physics, with their extreme precision and universality, is
only possible in mathematical terms.
—Sir Michael Atiyah, “Pulling the Strings,” Nature

THE LAWS OF NATURE

It is now generally accepted that the universe evolves
according to well-defined laws. The laws may have been
ordained by God, but it seems that He does not intervene
in the universe to break the laws.
—Stephen Hawking, Black Holes and Baby Universes

Albert Einstein once remarked that “the most incomprehensible thing
about the world is that it is comprehensible.” Indeed, we appear to live in
a cosmos that can be described or approximated by compact mathematical
expressions and physical laws.

In this book, I discuss landmark laws of nature that were discov-
ered over several centuries and whose ramifications have profoundly
altered our everyday lives and understanding of the universe. These
laws provide elegant ways for characterizing natural phenomena under
a variety of circumstances. For example, as you’ll learn in greater detail,
Bernoulli’s Law of Hydrodynamics, v2/2 + gz + p/ρ = C, has numer-
ous applications in the fields of aerodynamics, where it is considered
when studying flows over airplane wings, propeller blades, and ship rud-
ders. Fick’s Second Law of Diffusion, (∂c/∂t)x = D(∂c2/∂x2)t , can be
used to explain insect communication through pheromones, the migra-
tion of ancient humans, or diffusion in soils contaminated with petroleum
hydrocarbons. Forensic police sometimes use Newton’s Law of Cooling,



T(t) = Tenv + [T(0) – Tenv]e−k, to determine the time of death of corpses
discovered in seedy motel rooms.

The laws enable humanity to create and destroy—and sometimes they
change the very way we look at reality itself. In the 1940s, Graham’s
Law R1/R2 = (M2/M1)

1/2 helped scientists make the atomic bomb that
was dropped on Japan. The various laws dealing with electromagnetism
enabled technologists to unite the world through both wired and wireless
communications. For many scientists today, the Heisenberg Uncertainty
Principle, �x�p ≥ �/2, means that the physical universe literally does not
exist in a deterministic form but is rather a collection of probabilities. All of
these relatively simple expressions impress us with their brevity and utility.

I side with Martin Gardner and others who seem to suggest that nature
is usually describable by simple formulas and laws—not because we have
invented mathematics and laws, but because nature has some hidden math-
ematical aspect. For example, Gardner writes in his classic 1950 essay
“Order and Surprise”:

If the cosmos were suddenly frozen, and all movement ceased, a
survey of its structure would not reveal a random distribution of
parts. Simple geometrical patterns, for example, would be found in
profusion—from the spirals of galaxies to the hexagonal shapes of
snow crystals. Set the clockwork going, and its parts move rhythmi-
cally to laws that often can be expressed by equations of surprising
simplicity. And there is no logical or a priori reason why these things
should be so.

Here Gardner suggests that simple mathematics governs nature from
molecular to galactic scales. Isaac Newton likened our quest to discover
the fundamental laws of science to a child looking for a pretty pebble on
an infinite beach. Albert Einstein felt he was like a child entering an infinite
library with books in foreign languages. The child cannot understand most
of the books but senses or suspects a mysterious order to the arrangement
of books.

Similarly, theoretical physicist Paul Steinhardt writes in John
Brockman’s What We Believe but Cannot Prove:

Recent observations and experiments suggest that our universe is
simple. The distribution of matter and energy is remarkably uni-
form. The hierarchy of complex structures, ranging from galaxy
clusters to subnuclear particles, can be described in terms of a few
dozen elementary constituents and less than a handful of forces, all
related by simple symmetries. A simple universe demands a simple
explanation.
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Centuries ago, most of the lawgivers saw God’s hand in nature’s laws.
For example, British scientist Sir Isaac Newton (1642–1727) and many of
his contemporaries believed that the laws of the universe were established
by the will of God, who acted in a logical manner. In the preface to the
second edition of Newton’s Principia (1713), English mathematician Roger
Cotes wrote:

Without all doubt, this world, so diversified with that variety of
forms and motions we find in it, could arise from nothing but the
perfectly free will of God directing and presiding over all.

From this fountain . . . the laws of Nature have flowed, in which
there appear many traces indeed of the most wise contrivance, but
not the least shadow of necessity. These, therefore, we must not seek
from uncertain conjectures, but learn them from observations and
experiments.

George Stokes (1819–1903), famous for Stokes’s Law of Viscosity,
wrote in his book Natural Theology:

Admit the existence of God, of a personal God, and the possibility
of miracles follows at once. If the laws of nature are carried out in
accordance with His will, He who willed them may will their suspen-
sion. And if any difficulty should be felt as to their suspension, we
are not even obliged to suppose that they have been suspended.

Because the laws of nature provide a framework in which to explore
the nature of reality, and because laws allow scientists to make predictions
about the universe, the discoveries of the laws are among humanity’s great-
est noetic, or intellectual, achievements. In order to formulate the laws
of nature, scientists usually needed to perform significant observations,
invent creative experimental designs, or show vast insight—and for these
reasons, the lawgivers in this book were often among the most capable
scientists in their fields.

At first glance, this book may seem like a long catalogue of isolated
laws with little connection between them. But as you read, I think you’ll
begin to see many linkages. Obviously, the final goal of scientists and math-
ematicians is not simply the accumulation of facts and lists of formulas;
rather, they seek to understand the patterns, organizing principles, and
relationships between these facts to form laws.

For this book, I selected a number of scientific laws from a larger
possible set, with an eye toward those laws that strongly influenced
the world. Candidates for this collection usually satisfy the following
criteria:

i n t r o d u c t i o n a n d b a c k d r o p | 3



� They are laws, rules, and principles that have broad explanatory
power to account for facts, observations, or phenomena—and they
are widely accepted in a particular discipline.

� The laws, rules, and principles are named after a person, which
usually means that a particular scientist was instrumental either in
the discovery of that law or in bringing the law to wide scientific
attention.

Just imagine the amazing adventures these passionate people had as they
sought, discovered, and tested elegant formulations of phenomena at the
heart of reality. In the end, these lawgivers changed the way we imagine
and categorize our universe.

THE LAWGIVERS

The scientist’s religious feeling takes the form of a rap-
turous amazement at the harmony of natural law, which
reveals an intelligence of such superiority that, compared
with it, all the systematic thinking and acting of human
beings is an utterly insignificant reflection. This feeling is
the guiding principle of his life and work. . . . It is beyond
question closely akin to that which has possessed the
religious geniuses of all ages.
—Albert Einstein, Mein Weltbild, 1934

According to the American sociologist Robert K. Merton (1910–2003), the
practice of eponymy—the naming of laws, theories, and discoveries after
their discoverers—dates back to the time of Galileo. Science often places
a premium on rewarding those scientists who are first to make a discovery,
propose a natural law, or just happen to be at the right place at the right
time with respect to an experimental finding.

Because this book focuses on eponymous laws, be sure to use the index
when hunting for a favorite law or equation, which may be discussed in
entries for laws that you might not have expected. I have not confined
myself to laws that have affected the present status of science—influence
on past generations is taken into account, as well. In the interest of space,
some of the most famous “equations” of science—which are usually not
referred to as “laws” for historical or other reasons—may be found in the
“Final Comments” section at the end of this book.

I remind the reader that my focus on eponymous laws is not meant to
suggest that eponymous laws cover all the important findings in physics—
surely many of the laws and principles discovered in modern times,
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although named in a more general descriptive fashion, are of paramount
importance for understanding the nature of the universe. In fact, the rela-
tive paucity of eponymous laws after 1900 is discussed further in the “Final
Comments” section, where I give examples of powerful physics concepts
that do not have main entries in this book. Nevertheless, I hope that my
focus on eponymy will help introduce the general reader to a bit of the
history behind important laws and the colorful characters who took part in
their discovery over the course of several centuries.

The scientists who gave their names to these laws in this book are a
fascinating, diverse, and sometimes eccentric group of people. Many were
extremely versatile polymaths—human dynamos with a seemingly infinite
supply of curiosity and energy and who worked in many different areas
in science. For example, French physicist Jean-Baptiste Biot (1774–1862)
made advances in applied mathematics, astronomy, elasticity, electricity,
magnetism, optics, and mineralogy. Not only is a law of magnetic force
named after him, but so is the shiny mineral biotite. His partner Félix
Savart (1791–1841) embarked on a medical career, but during those times
when business was slow, he conducted experiments on the violin and
devoted himself to the study of the acoustics of air, bird songs, and vibrat-
ing solids.

Many individuals had nonconventional educations. For example, the
Swiss-German physicist Johann Lambert (1728–1777) made discoveries
concerning the mathematical constant π and on the laws of light reflection
and absorption, yet he was almost entirely self-taught. The German physi-
cist Georg Ohm (1787–1854) was able to fulfill his intellectual potential
mostly from his private and personal studies, reading the texts of the lead-
ing French mathematicians. The British physicist Michael Faraday (1791–
1867) had almost no formal education. He later wrote, “My education
was of the most ordinary description, consisting of little more than the
rudiments of reading, writing, and arithmetic at a common day school.” At
the age of thirteen, when he could barely read or write, he quit school to
find a job. French physicist Pierre Curie (1859–1906) considered himself to
have a feeble mind and never went to elementary school. He later shared
the Nobel Prize with his wife, Marie.

Despite varied educational backgrounds, many lawgivers displayed
their unusual talents from an early age. The German mathematician and
physicist Carl Friedrich Gauss (1777–1855), for example, was a childhood
prodigy and learned to calculate before he could talk. At age three, he
corrected his father’s wage calculations when they had errors. By age
101/2, French chemist Aléxis Petit (1791–1820) had already completed the
entrance requirements of the École Polytechnique in Paris. Petit had sur-
passed the entrance exam scores of all other candidates at the time. The
Irish mathematician Sir William Rowan Hamilton (1805–1865), mentioned

i n t r o d u c t i o n a n d b a c k d r o p | 5



in the “Great Contenders” section at the end of this book, spoke Hebrew
by age 7, and by 13 he had mastered many classical and modern European
languages such as Farsi, Arabic, Hindustani, Sanskrit, and Malay. French
physicist André-Marie Ampère (1775–1836) was reported to have worked
out long arithmetical sums by means of pebbles and biscuit crumbs before
he was familiar with numbers and their names.

When describing the lives of these creative individuals, I did not
attempt to provide a comprehensive biography, due to space limitations.
In many cases, I mention curious aspects of their lives that may also give
readers a better feel for the times in which these scientists lived. For exam-
ple, I describe the incident in which German astronomer Johannes Kepler
(1571–1630) had to defend his mother from accusations of witchcraft. I dis-
cuss how German mathematical physicist Rudolf Clausius (1822–1888) was
wounded while leading a student ambulance core in the Franco-Prussian
War, which, along with his wife’s death during childbirth, hampered his
scientific progress in the later years of his career.

In fact, a significant number of the lawgivers in this book had wives who
died much earlier then they did. For example, the French chemist Alexis
Petit’s wife became ill six months after he married her and died shortly
thereafter in 1817, and he died before he was thirty years old. Gauss,
Ampère, and French physicist Pierre Weiss (1865–1940) all had wives
who died young. Kepler’s wife Barbara died from typhus in 1611. British
physicist James Joule’s (1818–1889) wife, Alice, died in 1854, leaving him
with two children to raise. In 1869, German physicist Gustav Kirchhoff’s
(1824–1887) wife Clara died, leaving Kirchhoff to raise his four children
alone. The German physicist Max Planck’s (1858–1947) wife Marie died in
1909, leaving him with four children.

As already mentioned, religion also played a role in many of the
lawgivers’ lives. The Irish natural philosopher and chemist Robert Boyle
(1626–1691) was quite devout and loved the Bible. His constant desire to
understand God drove his interest in discovering laws of nature. Boyle
specified that, after his death, his money should be used to found the Boyle
lectures that were intended to refute atheism and religions that competed
with Christianity. Ampère believed that he had proven the existence of the
soul and of God. When Gauss proved a theorem, he sometimes said that
the insight did not come from “painful effort but, so to speak, by the grace
of God.”

Not all lawgivers were traditionally religious. For example, British
physicist William Henry Bragg (1862–1942) said that the Bible brought
him years of misery and fear. He wrote, “From religion comes a man’s
purpose; from science his power to achieve it.”

Men like Faraday, William Thomson (Lord Kelvin), James Clerk
Maxwell, and Joule were particularly religious and motivated by their
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Christian faith. For them, God was glorified whenever humans discovered
scientific laws that God had established. Joule wrote in 1873, in notes for a
lecture he never gave due to poor health:

After the knowledge of, and obedience to, the will of God, the next
aim must be to know something of His attributes of wisdom, power,
and goodness as evidenced by His handiwork. . . . It is evident that an
acquaintance with natural laws means no less than an acquaintance
with the mind of God therein expressed.

Kepler was also motivated by his faith in God. He, too, sought to dis-
cover God’s plan for the universe and to read the mind of God. For Kepler,
mathematics was the language of God. Because humans were made in
the image of God, humans were capable of understanding the universe
that God had created. In Conversation with Galileo’s Sidereal Messenger,
Kepler wrote, “Geometry is unique and eternal, and it shines in the mind of
God. The share of it which has been granted to man is one of the reasons
why he is the image of God.” He also explained, “I had the intention of
becoming a theologian . . . but now I see how God is, by my endeavors, also
glorified in astronomy, for ‘the heavens declare the glory of God.’ ”

Even modern-day physicists muse about the possible role of a god in
establishing the laws of the universe. According to British astrophysicist
Stephen Hawking (b. 1942), all the laws of physics would hold even at
the precise instant the universe formed. If God exists, Hawking suggests,
He may not have had the freedom to choose the initial conditions for the
universe. However, God would “still have had the freedom to choose the
laws that the universe obeyed.” Hawking writes in Black Holes and Baby
Universes:

However, this may not have been much of a choice. There may only
be a small number of laws, which are self-consistent and which lead
to complicated beings like ourselves. . . . And even if there is only
one unique set of possible laws, it is only a set of equations. What
is it that breathes fire into the equations and makes a universe for
them to govern? Is the ultimate unified theory so compelling that it
brings about its own existence?

In 1623, Italian physicist Galileo Galilei (1564–1642) echoed a belief
of many in this book that the universe could be understood using mathe-
matics, writing, “Nature’s great book is written in mathematical symbols.”
Newton supposed that the planets were originally thrown into orbit by
God, but even after God decreed the Law of Gravitation, the planets
required continual adjustments to their orbits. According to New York
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Times columnist Edward Rothstein, “The conviction that there is an order
to things, that the mind can comprehend that order and that this order
is not infinitely malleable, those scientific beliefs may include elements of
faith.”

Many of the laws in this book that excite me the most deal with elec-
trical discoveries of highly religious people. Today, we often hear our age
referred to as the “information age” as a result of the rising importance
of computers and the Internet. But underlying the information age is
our use of electricity. Many scientists have contributed to our knowledge
of electricity, including Ampère, Charles Augustine de Coulomb, Count
Alessandro Volta, Hans Christian Ørsted, Faraday, and Maxwell. Many of
these “electric thinkers” of the eighteenth and nineteenth centuries were
religious Christians whose discoveries led to the building of the first electric
dynamos and eventually to modern electric generators that power our
cities. Michael Guillen writes in Five Equations That Changed the World:

Long before Christians had come to believe in the Father, Son,
and Holy Ghost, natural philosophers had stumbled on their own
trinity: electricity, magnetism and gravitational force. These three
forces alone had governed the universe, they believed. . . . Given the
forces’ disparate behaviors, it was no wonder that philosophers very
early on were left scratching their heads: Were these three forces
completely different? Or were they, like the Christian Trinity, three
aspects of a single phenomena?

In the area of electricity and magnetism, I discuss Frenchman Charles-
Augustin de Coulomb (1736–1806), who hung bar magnets from strings
and who discovered that the force between them diminished as the square
of their separation. He also found that electrically charged objects sus-
pended on strings followed the “inverse square law”—similar to the
law Newton discovered for gravity. I also discuss Faraday’s discovery
that moving magnets actually produce electricity. Inspired by the elec-
trical experiments of Italian experimentalist Luigi Galvani (1737–1798),
Faraday, a Christian theologian, declared “electricity is the soul of the
universe.”

Some of the scientists in this book experienced resistance to their
ideas, causing significant personal anguish. For example, Ohm’s Law was
so poorly received and his emotions scraped so raw that he resigned his
post at Jesuit’s College of Cologne, where he was professor of mathemat-
ics. His work was ignored, and he lived in poverty for much of his life.
One critic said of Ohm’s physics book that its “sole effort is to detract
from the dignity of nature.” The German minister of education said that
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Ohm was “a professor who preached such heresies was unworthy to teach
science.”

Newton was so distressed by criticism from his colleague British physi-
cist Robert Hooke (1635–1703) that Newton decided to withhold publica-
tion of one of his greatest works, Opticks, until after Hooke died. Newton
also went nearly mad in another argument about his theory of colors
with several English Jesuits who had criticized Newton’s experiments. The
correspondence between Newton and these critics lasted until Newton
finally had a nervous breakdown. Faraday’s scientific fame spread to such
an extent that his previous mentor, Humphry Davy, began to despise him
and campaigned that Faraday not be elected to the Royal Society. Like
Newton, Faraday also suffered a nervous breakdown.

Austrian physicist Ludwig Boltzmann (1844–1906) is best remembered
for his work in thermodynamics, heat, and disorder. He used the concept
of the atom to explain how heat was a statistical property of the motions
of many atoms. However, several of his contemporaries, such as Ernst
Mach and Wilhelm Ostwald, argued so forcefully against Boltzmann’s
position that Boltzmann’s depression worsened, and he killed himself in
1906. Boltzmann appeared to have bipolar disorder, and his low emo-
tional periods were only exacerbated by his failing eyesight and argu-
ments with colleagues. All we know for certain about his suicide is
that he hanged himself while on a holiday with his wife and daugh-
ter. Other depressed lawgivers include Petit, Newton, and hypochondriac
Gauss.

Many cutting-edge scientific geniuses in addition to those discussed in
this book had to persevere despite resistance. For example, the revolu-
tionary discoveries concerning antibiotics by Scottish biologist Alexander
Fleming (1881–1995) were met with apathy from his colleagues. Many
surgeons initially resisted English surgeon Joseph Lister’s (1827–1912)
advocacy of antisepsis. American inventor Chester Carlson (1906–1968),
inventor of the Xerox® machine, was rejected by more than twenty compa-
nies before he finally sold the concept. German scientist Alfred Wegner’s
(1880–1930) theory of continental drift was ridiculed by the geologists of
his time.

A number of scientific lawgivers included in this book had to overcome
the strong resistance of their own parents. For example, Coulomb’s mother
wanted him to be a medical doctor, but her son insisted on studying
a more quantitative subject like engineering or mathematics. The dis-
agreements became heated, and his mother virtually disowned him. Sim-
ilarly, physicist and mathematician Daniel Bernoulli (1700–1782) and the
polymath Biot both rebelled against their fathers, who insisted that their
sons pursue careers in business. The father of Scottish chemist Thomas
Graham (1805–1869) had always wanted Graham to become a minister
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in the Church of Scotland and opposed Graham’s growing interest in
chemistry. Luckily for Graham, his mother and sister were supportive
of his interest in science, which helped Graham achieve his scientific
dreams.

The lawgivers in this book often had afflictions of one form or another.
British chemist, physicist, and meteorologist John Dalton (1766–1844) was
color blind. Kirchhoff needed crutches to walk. French mathematician
Joseph Fourier (1768–1830) had an ailment that made him perpetually
cold—he rarely went outside without an overcoat and a servant bearing
another in reserve, even in the middle of summer. Hooke was a sickly child
with constant headaches, and he was not expected to reach adulthood.
Kepler was bow-legged, often afflicted with large boils, and suffered from
poor vision. British chemist William Henry’s (1775–1836) childhood injury
caused him incredible pain throughout his life, and he eventually killed
himself. A number of the lawgivers suffered as a result of their research.
For example, French chemist Pierre Dulong (1785–1838) blew off his fin-
gers and lost an eye during a chemistry experiment.

Chronic physical ailments may have given some individuals the desire
to compensate for their shortcomings, or to leave a mark on the world
and achieve immortality through creative excellence. Perhaps the pecu-
liarities, or even physical defects exhibited by some geniuses, have caused
these individuals to overcompensate through constant creative activity.
For example, when conducting research for my book Strange Brains and
Genius, I found that many creative geniuses have had a sense of physical
vulnerability because they felt that at any moment they could be sick and
without a means of income. Perhaps this unease keeps some individuals on
edge and serves as a source of creative tension.

A surprisingly large number of the scientists included in this book
thought deeply about the existence of extraterrestrial life, and their reli-
giosity convinced them that the universe literally teemed with life. As one
example of the pervasiveness of this thinking, physicist Johann Lambert
believed that all planets, comets, and moons were likely to contain life.
In his Cosmologische Briefe, Lambert asserted, “The Creator is much too
efficient not to imprint life, forces and activity on each speck of dust. . . . All
possible varieties which are permitted by general laws ought to be real-
ized. . . . ” Similarly, astronomer Johann Bode (1747–1826) believed that all
significant objects in space—the Sun, stars, planets, moons, and comets—
were inhabited by intelligent beings. Bode remarked that habitability was
“the most important goal of creation” and that alien life forms throughout
the universe “are ready to recognize the author of their existence and to
praise his goodness.”

Physicist David Brewster (1781–1868), in his book More Worlds Than
One, gave Biblical reasons as to why every star has a planetary system
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similar to ours, and believed that every planet, sun, and moon was inhab-
ited by life forms. The astronomer Kepler even wrote a science-fiction tale,
Somnium, in which the inhabitants of the Moon resembled large serpents
with a spongy, porous skin.

A number of the “lawgivers of reality” in this book grew up in fam-
ilies that almost seemed to have physics in their genes! For example,
father and son Braggs—William Henry Bragg (1862–1942) and William
Lawrence Bragg (1890–1971)—were awarded the Nobel Prize in physics
in 1915 for their pioneering studies in determining crystal structures.
German physicist Friedrich Wilhelm Kohlrausch (1840–1910) collaborated
with his brother, physicist Wilhelm Friedrich Kohlrausch, in the field of
electrochemistry, and their father, Rudolph Kohlrausch, was also a famous
physicist working in related areas of science. The Bernoullis, an extraor-
dinary Swiss family, contained eight outstanding mathematicians within
three generations, and in the seventeenth and eighteenth centuries they
made great contributions to hydrodynamics, differential calculus, prob-
ability theory, geometry, mechanics, ballistics, thermodynamics, optics,
magnetism, elasticity, and astronomy.

As another example of familial brilliance, the genius sons of German
physicist Gustav Wiedemann (1826–1899) had an extremely intellectual
and distinguished pedigree. Their father was famous for the Wiedemann-
Franz Law and was professor of physical chemistry at Leipzig. Their mater-
nal grandfather was Eilhard Mitscherlich (1794–1863), famous for his work
on chemical isomorphism and similarity of crystal structures. Their mother,
Clara, helped translate into German the Irish natural philosopher John
Tyndall’s (1820–1893) Heat as a Mode of Motion. The elder of Gustav’s
sons, Eilhard, became a physicist and historian of science and was the
first individual to use the term “luminescence.” The younger son, Alfred,
became a famous egyptologist.

For two final examples of smart families, consider Adolf Fick (1829–
1901), the German physiologist famous for his laws of diffusion. Fick had
a brother who became a professor of anatomy and another who became a
professor of law. Also consider the physicists Pierre and Marie Curie, who
received the Nobel Prize for Physics in 1903 for their research involving
radiation. Marie received another Nobel Prize in Chemistry in 1911 for,
among other things, discovery of the elements radium and polonium. She
was the first person to win or share two Nobel Prizes. Their elder daughter,
Irène (1897–1956), married French physicist Jean Frédéric Joliot (1900–
1958), and the husband and wife team received the Nobel Prize for Chem-
istry in 1935.

Chance sometimes affected the lawgivers’ lives in important ways. For
example, in 1812, the English chemist Humphry Davy (1778–1829) was
temporarily blinded by a chemical explosion, and as a result, Faraday
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became Davy’s assistant, which became an important stepping stone in
Faraday’s career. In fact, Faraday’s interest in electricity was kindled
earlier by his serendipitous encounter with the 127-page entry “Electricity”
in the Encyclopaedia Britannica, which he happened to be rebinding for a
client.

Author Sherwin B. Nuland suggests that the quirks and personalities of
scientists are valid and important areas of study when trying to understand
the evolution of scientific ideas. In his essay “The Man or the Moment?”
Nuland suggests that historians of science should not write only about the
effect of prevailing social forces on scientific discoveries “because part of
the process is the distinctive personality of the discoverer.” To understand
scientific progress, I believe that we should examine the lives of the people
who made the discoveries, at least to understand more about the kinds of
scientists who may readily incubate the ideas, attitudes, and talents that
foster the discovery of nature’s laws.

IS IT FAIR TO NAME A LAW

AFTER A PERSON?

Good theories [don’t necessarily] convey ultimate truth,
or [imply] that there “really are” little hard particles rat-
tling around against each other inside the atom. Such
truth as there is in any of this work lies in the mathe-
matics; the particle concept is simply a crutch ordinary
mortals can use to help them towards an understanding
of the mathematical laws.
—John Gribbin, The Search of Superstrings, Symmetry,

and the Theory of Everything

In hindsight, we can usually see that if one scientist did not discover a
particular law, some other person would have done so within a few months
or years of the discovery. Most scientists, as Newton said, stood on the
shoulders of giants to see the world just a bit farther along the horizon.
In fact, I give a few examples in this book in which more than one indi-
vidual discovered a law within a few years of one another, but for various
reasons, including sheer luck, history sometimes remembers only the more
famous discoverer. Readers may enjoy noting the frequency with which
this happens in the history of science.

From a more general perspective, it is fascinating the degree to
which simultaneous discoveries appear in great works of science and
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mathematics. As just one example, French chemist and physicist Joseph
Louis Gay-Lussac’s (1778–1850) first publication of his gas law was notable
not only because of its scientific value but also because almost identical
research was carried out simultaneously and independently by Dalton. In
their near-simultaneous publication in 1802 of research on the thermal
expansion of gases, Dalton and Gay-Lussac both concluded that all gases
expand by the same proportion for a particular temperature rise at con-
stant pressure.

As I mention in my book The Möbius Strip, in 1858 the German
mathematician August Möbius (1790–1868) simultaneously and indepen-
dently discovered the Möbius strip along with a contemporary scholar, the
German mathematician Johann Benedict Listing (1808–1882). This simul-
taneous discovery of the Möbius band by Möbius and Listing, just like
that of calculus by Newton and German mathematician Gottfried Wilhelm
Leibniz (1646–1716), may make us wonder why so many discoveries in
science were made at the same time by people working independently.
For another example, British naturalists Charles Darwin (1809–1882)
and Alfred Wallace (1823–1913) both developed the theory of evo-
lution independently and simultaneously. Similarly, Hungarian mathe-
matician János Bolyai (1802–1860) and Russian mathematician Nikolai
Lobachevsky (1793–1856) seemed to have developed hyperbolic geometry
independently and at the same time. (Some legends suggest that both
mathematicians may have learned about this geometry indirectly from
Gauss, who worked in this area.)

The history of materials science is replete with simultaneous discover-
ies. For example, in 1886, the electrolytic process for refining aluminum,
using the mineral cryolite, was discovered simultaneously and indepen-
dently by American Charles Martin Hall (1863–1914) and Frenchman
Paul Héroult (1863–1914). Their inexpensive method for isolating pure
aluminum from compounds had an enormous effect on industry.

Most likely, such simultaneous discoveries have occurred because the
time was “ripe” for such discoveries, given humanity’s accumulated knowl-
edge at the time the discoveries were made. Sometimes, two scientists
are stimulated by reading the same preliminary research of one of their
contemporaries. On the other hand, mystics have suggested that a deeper
meaning exists to such coincidences. Austrian biologist Paul Kammerer
(1880–1926) wrote, “We thus arrive at the image of a world-mosaic or
cosmic kaleidoscope, which, in spite of constant shufflings and rearrange-
ments, also takes care of bringing like and like together.” He compared
events in our world to the tops of ocean waves that seem isolated and
unrelated. According to his controversial theory, we notice the tops of the
waves, but beneath the surface there may be some kind of synchronistic
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mechanism that mysteriously connects events in our world and causes
them to cluster.

Despite simultaneity in science and the quirks of naming laws, the laws
in this book were actually formulated or promoted by the lawgivers for
whom they were named, and we should give them substantial credit for
their work. Thus, every lawgiver in this volume, in my opinion, is a truly
remarkable figure in the history of science—even if a particular scientist
built on ideas of others and even if the discovery was, in some sense, the
result of group intelligence.

Some innovative scientists, such as Einstein and Newton, did not
always discover their laws and theories through their own experiments
and observations, but rather they pondered the implications of other scien-
tists’ observations. When discussing technological inventions, Leslie Berlin
writes in her book The Man Behind the Microchip, “If nearly any inven-
tion is examined closely enough, it almost immediately becomes apparent
that the innovation was not the product of a single mind, even if it is
attributed to one. Invention is best understood as a team effort.” Although
Berlin’s idea may have validity for most inventions, this group effort is
perhaps less pronounced for the discovery of laws, even when scientists
start by studying the work of others. In fact, many laws of science and
mathematics, expressed as a single equation, do derive largely from the
work of a single individual working long hours in relative isolation or who
has a “eureka” moment. Unlike the invention of increasingly complicated
devices such as computers and cars, in the past the “production” of laws
has usually not required the same kind of collaborative team effort in
which several contributors, working in a lab, supply subsets of a tech-
nology invention. While basic science today is often performed in large
teams, the expression of a natural law in terms of a simple formula may
still continue to be the work of specialized individuals with a spark of
insight.

If we move our attention from laws to other kinds of scientific discover-
ies, some historians of science may hesitate about naming such discoveries
after people, and some writers have gone as far as to suggest that scientists
always pick the wrong scientists after whom to name a discovery. Jim
Holt writes in “Mistaken Identity Theory: Why Scientists Always Pick the
Wrong Man”:

Stigler’s Law of Eponymy, which in its simplest form states that
“no scientific discovery is named after its original discoverer,” was
so dubbed by Stephen Stigler in his recent book Statistics on the
Table (Harvard). . . . If Stigler’s law is true, its very name implies
that Stigler himself did not discover it. By explaining that the credit
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belongs instead to the great sociologist of science Robert K. Merton,
Stigler not only wins marks for humility; he makes the law to which
he has lent his name self-confirming.

Robert Merton suggested that “all scientific discoveries are in principle
‘multiples.”’ In other words, when a scientific discovery is made, it is made
by more than one person, but for some reason, the discovery is named
after the “wrong” one of its multiple discoverers. For example, some-
times a discovery is named after the person who develops the discovery
rather than the original discoverer. Stigler has suggested that eponyms are
inaccurately assigned because “eponyms are only awarded after long time
lags or at great distances” by scientists who are not trained in history and
who are more interested in “recognizing general merit than an isolated
achievement.”

Whether or not Stigler’s Law is valid, his law tends to focus on other
kinds of observations and discoveries, and not on scientific laws. For exam-
ple, Halley’s Comet, named after English astronomer Edmond Halley
(1656–1742), was not first discovered by Halley because it had been actu-
ally seen by countless observers even before the time of Jesus. (But let’s
not downgrade Halley, whose calculations enabled earlier references to
the comet’s appearance to be found in the historical record!)

As I have already suggested, when it comes to natural laws, I have
found that lawgivers for whom the laws are named did discover the law
or contribute to the refinement and promotion of the law’s application for
practical scientific purposes. However, some fascinating instances exist of
several people discovering the same law in different forms through the
centuries. As one example, consider Snell’s Law that in 1621 accurately
described the refraction (bending) of light through glass. The law is named
after Dutch mathematician Willebrord van Roijen Snell (1580–1626).
However, perhaps the first person to understand the basic relationship
expressed by Snell’s Law was the Arabian mathematician Ibn Sahl in the
year 984. In 1602, English astronomer and mathematician Thomas Harriot
also discovered the law, but he did not publish his work. Though a quirk of
fate, we call it Snell’s Law today because, in 1662, Dutch scholar and manu-
script collector Isaac Vossius discovered Snell’s writings, and Dutch physi-
cist Christian Huygens referred to the writings in his Dioptrica published
in 1703. Note, however, that the French refer to Snell’s Law as Descartes’s
Law, because René Descartes was the first person to publish the law in
terms of sine functions in his 1637 Discourse on Method, but without
experimental verification. Huygens and others actually accused Descartes
of plagiarism, given that Descartes was in Leiden during and after Snell’s
work, but little evidence exists to support the plagiarism assertion.
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THEORIES AND LAWS

A correct theory is one that can presumably be verified
by experiment. And yet, in some cases, scientific intuition
can be so accurate that a theory is convincing even before
the relevant experiments are performed. Einstein—and
many other physicists as well—remained convinced of
the truth of special relativity even when . . . experiments
seemed to contradict it.
—Richard Morris, Dismantling the Universe

All of the main entries in this book focus on scientific laws and principles.
On the other hand, “theories” are usually only discussed within the main
entries. However, I admit that the line between a scientific theory and a
law is sometimes thin. To my mind, a scientific law exhibits a significant
degree of universality and invariability, and can usually be summarized
by a simple formula. A law is a relatively secure, high-level, and succinct
formulation. But what exactly is a theory? I could have a theory about why
snails in a Mozambique rain forest went through a population surge as a
result of local conditions at the time. This theory might be elevated to the
status of a law if I claimed that those conditions would always produce a
doubling per month for a wide class of animals under given conditions and
if I could provide evidence for this doubling that a majority of scientists
came to accept.

Theories are often used to describe why certain laws work. On the
other hand, a law often shows that the universe works in a certain way, but
does not explain the “why”—and the laws usually do not even explain the
“how.” Knowledge moves in an ever-expanding, upward-pointing funnel.
From the rim, we look down and see previous knowledge from a new
perspective as new theories are formed to explain the universe in which
we live.

Famous scientific theories usually explain facts or behaviors that have
been shown to be true in many independent experiments. However, some-
times a theory exists before it is tested or confirmed. Thus, today many
physicists use the phrase “string theory” when referring to the fundamental
composition of subatomic particles and not the “law of strings.” A law
requires substantial confirmation; that is, we usually do not call a math-
ematical formulation a scientific law until it has been tested many times
and has not been falsified. Nevertheless, even the great scientific laws are
not immutable, and laws may have to be revised centuries later in the light
of new information.

Science progresses mainly because both existing theories and laws
are never quite complete. For example, Newton’s Law of Universal
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Gravitation describes the attraction between two bodies as a force that
depends on the mass of the bodies and the distances between them. This
law predicts with remarkable accuracy the motion of the Moon around
Earth. It allows us to predict the trajectories of bullets and cannon balls.
The law describes gravity in terms of a few variables, but it does not
illuminate what gravity is or the precise mechanism of its action. It also
does not accurately predict the bending of light rays that pass Earth, which
requires us to invoke Einstein’s General Theory of Relativity. Einstein’s
formulation generalizes Newton law and treats gravity as a manifestation
of curved space and time. Today, General Relativity itself is often regarded
as limited and not useful for subatomic distances. Thus, scientific laws
generally account for everything that humans know about a phenom-
enon at a point in time. Philosopher Karl Popper in his Conjectures and
Refutations suggested that all scientific models and laws are only tenta-
tive, and philosopher David Hume in An Enquiry Concerning Human
Understanding asserted that no amount of testing and observations can
absolutely prove a model correct.

I usually think of these evolving laws as incomplete rather than wrong,
because I put great weight on the law’s utility in helping humanity make
predictions at a particular stage of human knowledge. In fact, most of
these old laws, like Newton’s laws, continue to be crucial and help us
predict the functioning of the universe. The newer laws that “replace”
the older laws generally have more predictive power while retaining the
successes of the previous laws and also addressing new experimental obser-
vations. Many laws remind me of oil paintings in which the crucial visual
themes are elucidated early in humanity’s quest for understanding, but
the tiny brush strokes are still to be added in light of new knowledge.
If there were no more brush strokes to come, science would be dead.
Perhaps a better analogy likens the sharpening of laws to the calcula-
tion of the square root of 2. A simple approximation is 1.4. A better
approximation is 1.4142135623. Neither is absolutely correct, but the ear-
lier historical approximation of 1.4 is obviously less refined than the later
value.

Given this brief background, can we articulate the precise relationship
between a law and theory? One way in which the Shorter Oxford English
Dictionary defines a theory is “a scheme or system of ideas or statements
held as an explanation or account of a group of facts or phenomena.”
As just discussed, theories are scientifically backed explanations, includ-
ing overarching conceptual schemes such as Einstein’s General Theory
of Relativity or Darwin’s Theory of Natural Selection. Laws concerned
with optical lenses, for example, which allow technologists to build optical
instruments, can be derived from theories about how light propagates.
Arnold Arons in Development of Concepts of Physics writes:
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There is a kind of symbiotic relationship here between law and
theory. A theory becomes more and more respected and powerful
the more phenomena can be derived from it, and the law describing
these phenomena becomes more meaningful and useful if it can be
made part of a theory. Thus, Newton’s theory of universal gravita-
tion gained greatly in stature because it enabled one to derive the
laws governing the motion of the moon, which had been known by
empirical rules since the days of Babylonian observers.

A majority of scientists consider the major scientific theories and laws
to be true, and scientists use both to make predictions. On the other hand,
a theory is usually more complicated and dynamic than a law. A law may
apply to a single broad observation, whereas a theory explains a set of
related phenomena and can have various subcomponents.

Consider, for example, a rock and a catapult. Both can be used as
weapons. The action of the rock is straightforward and can be expressed
succinctly. The rock is like a law. On the other hand, a medieval catapult
often had numerous plates, cross pieces, cords, wheels, spindle heads,
arms, rollers, supports, and a cup to hold a massive stone. The catapult is
like a theory. Through time, improvements are made to the components.
New kinds of pieces are invented to replace less effective ones. Despite
these enhancements, the catapult’s function remains the same and is use-
ful through time. Few scientists doubt the overall “truth” of the famous
scientific theories, such as the theory of evolution or quantum theory,
although scientists certainly clamor to refine and better understand the
various components.

According to John Casti in Paradigms Lost, the logical structure of
science can be represented by the following sequence:

Observations/Facts
↓

Hypothesis
↓

Experiment
↓

Laws
↓

Theory

Our observations give rise to hypotheses that are studied with experiments.
Hypotheses that are supported by experiments may become empirical
relationships, or laws. Laws may become part of an encompassing theory
with wide explanatory power.
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As an example, consider the observations of French physicist Jacques
Charles (1746–1823), who in 1787 investigated the relationship between
the volume of a gas and how it changes with temperature. After many
careful experiments, he observed precisely how temperature affects the
volume of a gas. Charles’s Law states that the volume of a given amount
of an ideal gas is directly proportional to the temperature, provided the
amount of gas and the pressure remain fixed. This behavior was further
quantified and published in 1808 by Gay-Lussac and can be represented by
the succinct formula V = kT, where V is the volume of gas, k is a constant,
and T is the temperature. This law enabled scientists around the world to
summarize the results of many experiments in a statement that could be
expressed in a formula less than an inch in length. Note that Charles’s Law
does not tell us why the volume and temperature are directly related. We
need the Kinetic Theory of Gases to explain that the behavior results from
molecules in random motion. The moving particles constantly collide with
each other and with the walls of the container. Increasing the temperature
of the gas increases the kinetic energy of the gas particles and thus the
pressure on the walls of the container.

Laws that simply summarize some observed regularity might be called
empirical laws. Examples include Gay-Lussac’s Law of Combining Vol-
umes, Bode’s Law of Planetary Distances from the Sun, Kepler’s Laws of
Planetary Motion, Hooke’s Law of Elasticity, Snell’s Law of Refraction,
Boyle’s Law of Gases, and Ohm’s Law of Electricity—all discussed in this
book.

The laws that impress me the most are those that suggest a more gen-
eral principle that represents the behavior of very different phenomena.
These laws often require us to define fundamentally important or new
concepts. As one example, consider Newton’s Second Law of Motion:
When a net force acts upon an object, the rate at which the momentum
changes is proportional to the force applied. Today, we would express this
as F = dp/dt , where the boldface letters indicate vector quantities that have
both a magnitude and direction. Here, p is the momentum, which is equal
to the mass times the velocity of the object. F is the applied force, and dp/dt
is the rate of change of momentum. Both mass and force are important
concepts that needed either defining or further elucidation before the law
could make sense.

Other related laws represent a general conclusion derived from some
theory. For example, Newton’s Law of Universal Gravitational Attraction,
expressed as F = (Gm1m2)/r2, is a generalization that is in some sense built
upon Kepler’s laws, Newton’s Laws of Motion, and the hypothesis of mass
attraction between bodies, such as the Moon and Earth, with masses m1

and m2. This kind of law can be particularly interesting because it is, in part,
derived from some underlying theory. Often, scientists try to turn empirical
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laws into derived laws over the span of many decades. With empirical laws,
we have less of a sense of what fields they apply to, because we often do
not have an underlying reasoning for them.

DO WE DISCOVER OR INVENT LAWS?

Heisenberg once made the following remark to Einstein:
“If nature leads us to mathematical forms of great sim-
plicity and beauty . . . that no one has previously encoun-
tered, we cannot help thinking that they are ‘true,’ that
they reveal a genuine feature of nature.”
—Paul Davies, Superforce

In my mind, we do not invent laws in mathematics and science, but
rather we discover them. They have an existence independent from us.
My viewpoint is not without controversy, and certainly other points of
view exist. For example, I believe that mathematical laws transcend us
and our physical reality. The statement “3 + 1 = 8” is false. Was the
statement false before the discovery of integers? I believe it was. Numbers
and mathematics exist whether humans know about them or not. Martin
Gardner once stated this idea as: “If two dinosaurs met two other dinosaurs
in a clearing, there would be four of them even though the animals would
be too stupid to know that.” In other words, four dinosaurs are now in the
clearing, whether or not humans are around to appreciate this fact.

G. H. Hardy in his famous A Mathematician’s Apology wrote, “I
believe that mathematical reality lies outside us, that our function is to
discover and observe it, and that the theorems which we prove, and which
we describe grandiloquently as our ‘creations,’ are simply our notes of
our observations.” I think that when we write down laws of nature, we
are taking notes on our discoveries. Law creators are like archeologists,
uncovering treasures as they mine the cosmos for truths.

As discussed above, many scientists feel that “simplicity” is a require-
ment for all “laws.” For example, authors David Halliday and Robert
Resnick suggest in Physics:

One criterion for declaring the program of mechanics to be success-
ful would be the discovery that simple laws do indeed exist. This
turns out to be the case, and this fact constitutes the essential reason
that we “believe” the laws of classical mechanics. If the force laws
had turned out to be very complicated, we would not be left with the
feeling that we had gained much insight into the workings of nature.
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This enduring interest in simplicity is further discussed in the following
section.

SIMPLE MATHEMATICS AND REALITY

The mathematical take-over of physics has its dangers, as
it could tempt us into realms of thought which embody
mathematical perfection but might be far removed, or
even alien to, physical reality. Even at these dizzying
heights we must ponder the same deep questions that
troubled both Plato and Immanuel Kant. What is real-
ity? Does it lie in our mind, expressed by mathematical
formulae, or is it “out there”?
—Sir Michael Atiyah, “Pulling the Strings,” Nature

Our mathematical models of physical reality are far
from complete, but they provide us with schemes that
model reality with great precision—a precision enor-
mously exceeding that of any description that is free of
mathematics.
—Roger Penrose, “What Is Reality?” New Scientist

Marilyn vos Savant has been listed in the Guinness Book of World
Records as having the highest IQ in the world—an awe-inspiring 228.
She is author of several delightful books and wife of Robert Jarvik,
M.D., inventor of the Jarvik 7 artificial heart. One of her readers once
asked her, “Why does matter behave in a way that is describable by
mathematics?” She replied, “The classical Greeks were convinced that
nature is mathematically designed, but judging from the burgeoning of
mathematical applications, I’m beginning to think simply that mathemat-
ics can be invented to describe anything, and matter is no exception.”
Marilyn vos Savant’s response is certainly one with which many peo-
ple would agree. However, as mentioned throughout this Introduction,
the fact that reality can be described or approximated by simple math-
ematical expressions suggests to me that nature has mathematics at its
core.

The laws in this book impress us because of their compactness and
predictive power. I am not suggesting that all phenomena, including sub-
atomic phenomena, are described by simple-looking formulas; however,
as scientists gain a more fundamental understanding, they hope to simplify
many of the more unwieldy formulas. James Trefil in The Nature of Science
writes of this simplicity:
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The laws of nature are the skeleton of the universe. They support
it, give it shape, tie it together. . . . They tell us that the universe is
a place we can know, understand, and approach with the power of
human reason. In an age that seems to be losing confidence in its
ability to manage things, [the laws of nature] remind us that even
the most complex systems around us operate according to simple
laws, laws easily accessible to the average person.

To best understand some of the laws, consider the first great question of
physics: “How do things move?” Imagine a universe called Madness in
which Kepler looks up into the heavens and finds that most planetary
orbits can never be approximated by ellipses but rather by bizarre geo-
metrical shapes that defy his mathematical description. Imagine Newton
dropping an apple whose path requires a 200-term equation to describe.
Luckily for us, we do not live in Madness. Newton’s apple is a symbol of
both nature and simple arithmetic from which reality may naturally evolve.

American theoretical physicist Richard Feynman (1918–1988) in The
Character of Physical Law also suggests that laws should be simple, and he
uses Newton’s Law of Universal Gravitation as an example that has all the
essential ingredients of a natural law:

First, it is mathematical in its expression. . . . Second, it is not exact;
Einstein had to modify it. . . . There is always an edge of mystery,
always a place where we have some fiddling around to do yet. . . . But
the most impressive fact is that gravity is simple. . . . It is simple, and
therefore it is beautiful. . . . Finally, comes the universality of the
gravitational law and that fact that it extends over such enormous
distances. . . .

Theoretical physicist Michio Kaku, in “Parallel Universes, the Matrix,
and Superintelligence,” echoes the belief that scientific laws or formulas
that underlie the basic principles of the universe should be succinct: “Pro-
fessionally, I work on something called Superstring theory, or now called
M-theory, and the goal is to find an equation, perhaps no more than one
inch long, which will allow us to “read the mind of God,” as Einstein
used to say.” To Kaku, brevity is key when describing reality, and he
believes that brevity is possible. Einstein went a step further and thought
that we should be able to simply state all physical theories, irrespective
of the math involved. In fact, he once wrote, “All physical theories, their
mathematical expressions notwithstanding, ought to lend themselves to so
simple a description that even a child could understand them.” Similarly,
American physicist Leon Lederman once said, “If the basic idea is too
complicated to fit on a T-shirt, it’s probably wrong.” His ambition was to
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“live to see all of physics reduced to a formula so elegant and simple that
it will fit easily on the front of a T-shirt.”

Max Tegmark, professor of physics at the Massachusetts Institute of
Technology, wrote, “In 2056, I think you’ll be able to buy a T-shirt on
which are printed equations describing the unified physical laws of our
universe. All the laws we have discovered so far will be derivable from
these equations.” New Zealand born nuclear physicist Ernest Rutherford
(1871–1937) echoed many of these beliefs when he said, “If a piece of
physics cannot be explained to a barmaid, then it is not a good piece of
physics.”

WHAT IS REALITY REALLY?

They came again, so many of them but this time I only
smiled and I didn’t open my eyes. You can come, you
aren’t going to make me jump and wake up. No, you
can come, even if there are so many of you there are no
numbers for you. You come from the place where there
are no numbers.
—Anne Rice, Christ the Lord

We often say that scientific laws describe reality, but what is reality really?
Various schools of thought exist among scientists—such as realism, instru-
mentalism, and relativism—that look at reality from varying perspectives.
Realists believe that reality exists independent of us, and it can be discov-
ered and understood using the tools of science. We describe this reality
with our equations. On the other hand, according to John Casti, the instru-
mentalists “cling to the belief that theories are neither true nor false, but
have the status only of instruments or calculating devices for predicting
the results of measurements.” For relativists, truth is “not a relationship
between a theory and an independent reality” but changes according to
individual perspectives and thus changes from time to time. American
historian of science Thomas Kuhn (1922–1996) suggested in his 1962 book
The Structure of Scientific Revolutions that scientists are not really getting
any closer to a “scientific truth” as they study nature and discover scientific
laws. This means that we cannot even measure scientific progress by the
degree with which it appears to get closer to describing reality. Kuhn says
that as scientists study the universe, they are learning about a “different
universe” each time that their methodology and observations advance.

Hawking holds views that are close to those of the instrumentalists. In
his books Black Holes and Baby Universes and The Nature of Space and
Time, coauthored with Roger Penrose, he writes,
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I don’t demand that a theory correspond to reality because I don’t
know what [reality] is. . . . I take the positivist viewpoint that a physi-
cal theory is just a mathematical model and that it is meaningless
to ask whether it corresponds to reality. All that one can ask is
that its predictions should be in agreement with observations. . . . All
I’m concerned with is that the theory should predict the results of
measurements. . . .

The physicist Victor J. Stenger expresses similar views in his paper “A
Scenario for a Natural Origin of Our Universe”:

What is it that science does when it “explains” some phenomenon?
At least in the case of the physical sciences, it builds a mathematical
model to describe the empirical data associated with the phenom-
enon. When that model works well in fitting the data, has passed
a number risky tests that might have falsified it, and is at least not
inconsistent with other established knowledge, then it can be said to
successfully explain the phenomenon.

Stenger continues by musing on the relationships of mathematical models
to reality:

Further discussion on what the model implies about “truth” or
“ultimate reality” falls into the area of metaphysics rather than
physics, since there is nothing further the scientist can say based on
the data. What is more, nothing further is needed for any practical
applications. For example, not knowing whether or not electromag-
netic fields are real does not prevent us from utilizing the theory of
electromagnetic fields.

BOOK ORGANIZATION AND PURPOSE

I tell them that if they will occupy themselves with the
study of mathematics they will find in it the best remedy
against the lusts of the flesh.
—Thomas Mann, The Magic Mountain

The main entries for the laws in this book are divided into two sec-
tions. The first section provides a brief introduction to the law and the
equation used to represent the law. The second section provides bio-
graphical information for the lawgiver. Also included is a brief “curiosity
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file” that contains fascinating, lesser-known tidbits relating to the law or
lawgiver.

Historical events that occurred at the time when a law was discovered
are highlighted. Additionally, a short “Cross Reference” section indicates
connections to other key laws, equations, or people. Each entry concludes
with an section entitled Interlude: Conversation Starters, which contains
thought-provoking quotations that are related to scientific laws and the
mathematics of reality. For several entries, I have included simple numer-
ical examples and solved problems so that readers may have a more direct
understanding of the application of a law.

My goal in writing Archimedes to Hawking: Laws of Science and the
Great Minds Behind Them is to provide a wide audience with a brief
guide to important scientific ideas and thinkers, with entries short enough
to digest in a few minutes. Most laws are accompanied by an equation.
Readers need not dwell on these formulas to understand the gist of an
idea. Sometimes, simply seeing how the laws are expressed in a mathe-
matical notation gives readers an indication of the compactness of a law.
While a Ph.D. may be required to master some of these laws, only a few
pages are needed to state their essence. Because we are aware of just a
few fundamental laws that appear to rule the cosmos or shape modern
science, this book need not stretch over many volumes in order to give an
overview.

The equation-based entries were chosen in consultation with scientific
colleagues. Not all eponymous laws of science are included in this book,
but I believe that I have included a majority of those with historical sig-
nificance and that have had the greatest influence on science and human
thought. Only “laws of nature,” based on observations of the physical
universe, are discussed in this book. Thus, in the interest of brevity, laws
of economics, psychology, biology, geology, or pure mathematics are not
included as main entries. Similarly, important computing technology laws,
such as Moore’s Law, Amdahl’s Law, or Gustafson’s Law, are not dis-
cussed.

Most laws of nature in this book come from the field of physics.
Lawrence Krauss in Fear of Physics reiterates some of the ideas discussed
above under “Simple Mathematics and Reality,” namely, that physicists
are often able to follow the amazing complexity and depth of modern
physics because the concepts are largely based on the same “handful” of
fundamental ideas and laws. He writes, “Any phenomenon described by
one physicist is generally accessible to any other through the use of perhaps
a dozen basic concepts. No other realm of human knowledge is either so
extensive or so simply framed.”

Several excellent books have catalogued guiding principles of science—
including Trefil’s The Nature of Science, Jennifer Bothamley’s Dictionary
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of Theories, and Robert Krebs’s Scientific Laws, Principles and Theories.
Because these books do not focus exclusively on eponymous scientific laws,
they must be extremely brief in their coverage due to space limitations. For
example, Bothamley’s interesting book usually describes each principle in
two or three sentences. Although I promised to be brief in this volume, I
attempt to delve into more detail than past compendiums when discussing
both the laws and the lives of the lawgivers.

Archimedes to Hawking reflects my own intellectual shortcomings, and
while I try to study as many areas of science as I can, it is difficult to become
fluent in all aspects. Thus I am sure that this book reflects my own personal
interests, strengths, and weaknesses. I am responsible for the choice of laws
included in this book and, of course, for any errors and infelicities. This is
not a comprehensive or scholarly dissertation, but rather is intended as
recreational reading for students of science and interested lay people. The
entries have different lengths, in part because limited biographical material
is available for some of the lawgivers. I welcome feedback and suggestions
for improvement from readers, as I consider this an ongoing project and a
labor of love.

This book is organized chronologically, according to the year that a law
was discovered. In some cases, the literature may report slightly different
dates for the discovery of a law because some sources give the publication
date as the discovery date of a law, while other sources give the actual
date that a law was discovered, regardless of the fact that the publication
date is sometimes a year or more later. In many cases, if I am uncertain
of a precise earlier date of discovery, I have used the publication date for
a law.

In the case of lawgivers such as Newton, a number of years may inter-
vene between the discovery date and the publication date. For example,
Newton claimed that in 1666, while his university was closed due to the
plague and he was isolated at home, he discovered the chromatic compo-
sition of light and discovered the inverse-square principle of the Law of
Universal Gravitation. However, upon critical analysis, the discovery date
that he gave may be a little early because it was in his self-interest to place
his discoveries as early as possible. Some of his ideas on mechanics may not
have fully gelled until around 1685–1687, when he was actually composing
his great book, the Philosophiae Naturalis Principia Mathematica (now
usually referred to as the Principia). Thus, I have listed the date for some
of his laws as 1687, the year the Principia was published. In any case,
despite a very few discrepancies in the dates of laws in the literature, the
reader should get a general sense of the progression of discoveries from
the ordering of laws in this book, even if the precise date may subject to
discussion.
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Some readers may wonder why no eponymous laws for women are
listed in this book. Several reasons for this absence exist. Until the twen-
tieth century, very few women received much education, and the path to
more advanced studies was usually blocked. Many women mathematicians
had to go against the wishes of their families if they wanted to learn. Some
were even forced to assume false identities, study in terrible conditions,
and work in intellectual isolation. Consequently, very few women con-
tributed to mathematics and the scientific laws featured in this book.

In the “Final Comments” and “Great Contenders” sections at the
end of this book, I catalogue a number of additional eponymous laws or
equations. These two final sections are meant to prompt questions from
readers. In particular, have any deserving laws been left out of the main
section? Should, for example, Schrödinger’s and Maxwell’s equations or
E = mc2 be considered “laws” and highlighted in the main section of the
book rather than relegated to the final sections? I welcome comments from
readers for a follow-up book that will focus on great equations of science.

DISTRIBUTION OF LAW DISCOVERIES

THROUGH TIME

Einstein’s fundamental insights of space/matter relations
came out of philosophical musings about the nature of
the universe, not from rational analysis of observational
data—the logical analysis, prediction, and testing coming
only after the formation of the creative hypotheses.
—R. H. Davis, Skeptical Inquirer

In conclusion, I must admit a personal reason for my interest in physical
laws, and I think my reason resonates with a wide audience. Laws give
us a feeling of triumph, understanding, and even being in control of our
destinies. Most of our daily lives are fraught with challenges that have no
clear solutions. Some of our problems have no resolutions at all. We go
through life doing the best we can. However, when discovering laws, the
human race can have a feeling of purpose and pride. With each scientific
law that we uncover and express mathematically, we have a sense that we
have encapsulated the cosmos in neat little packages and wrapped them
with sparkling bows. Will each century bring us new laws?

Table 1 indicates the historical distribution of the laws in the main sec-
tion of this book. Notice that a significant number of the laws were discov-
ered in the nineteenth century. Very few physical principles after 1900 are
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table 1 Time Distribution of Main-Entry Laws

Time Period Number of Laws

250 b.c.–1700 a.d. 10 (20%)

1700–1800 6 (12%)

1800–1900 30 (60%)

1900–2000 4 (8%)

See the “Great Contenders” section at the end of
this book for a similar breakdown of a large number
of additional scientific laws.

commonly called laws. Scientists demand that fundamental physical princi-
ples be defined in terms of experiments, but this demand became a growing
challenge as scientists treaded in the realms of quantum mechanics, parti-
cle theory, and relativity. Of course, with advancing technology, scientists
can and do perform many experiments, but today the experiments are
often more difficult and expensive to perform than those conducted in pre-
vious centuries. (Some degree of subjectivity was involved when creating
Table 1, and sometimes I counted several laws as one when they were
closely related. For example, both of Kirchhoff’s electrical circuit laws
counted toward one law, and I counted only Planck’s Law of Radiation
when considering all the various closely related blackbody radiation laws
in Planck’s time.)

The “Final Comments” section of this book presents additional mus-
ings as to why eponymous laws fade away after 1900. Perhaps this diminu-
tion is caused by the fact that modern science has become increasingly
organized around large, collaborative research projects. Peter Dizikes
writes in “Twilight of the Idols” that “today’s insights are not so much
perceived from the shoulders of giants as glimpsed from a mountain of
jointly authored papers announcing results from large labs, and rapidly
circulated through journals, conferences and the Internet.” James Gleick
writes in his biography of Richard Feynman, “The world has grown too
vast and multifarious for the towering genius of the old kind.”

To place the dates in Table 1 in perspective, consider the scientific
revolution that occurred roughly during the period between 1543 and 1687.
In 1543, Copernicus published his heliocentric theory of planetary motion.
In 1609 and 1618, Kepler established his three laws that described the
paths of the planets about the Sun, and in 1687, Newton published his
fundamental laws of motion and gravity.
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A second scientific revolution occurred between 1850 and 1865, when
scientists introduced and refined various concepts concerning energy and
entropy. Fields of study—such as thermodynamics, statistical mechanics,
and the kinetic theory of gases—began to blossom. In the twentieth cen-
tury, Quantum Theory and Special and General Relativity were among the
most important insights in science to change our views of reality.

The ideas of quantum mechanics flourished after 1925. According to
Paul Quincey, a physicist at the United Kingdom’s National Physical Lab-
oratory, quantum mechanics was not only useful for accounting for the
properties of atoms, but the ideas

were absolutely central to explaining why atoms did not collapse,
how solids can be rigid, and how different atoms combine together
in what we call chemistry and biology. . . . But this triumph of
quantum mechanics came with an unexpected problem—when you
stepped outside of the mathematics and tried to explain what was
going on, it didn’t seem to make any sense.

Physics had finally entered the age of the nonintuitive science, or as Feyn-
man said, “I think I can safely say that nobody understands quantum
mechanics.” Danish physicist Niels Bohr (1885–1962) wrote, “There is no
quantum world. There is only an abstract physical description. It is wrong
to think that the task of physics is to find out how nature is. Physics
concerns what we can say about nature.” Theoretical physicist Jim Al-
Khalili writes in Quantum: A Guide for the Perplexed:

When it comes to the world of the quantum, we really are crossing
into a quite extraordinary domain . . . where it seems we are free to
choose any one of a number of explanations for what is observed,
each of which is in its way so astonishingly strange that it even makes
tales of alien abduction sound perfectly reasonable.

Nonetheless, the mathematical framework of quantum mechanics is pre-
cise, and it accurately predicts the behavior of particles at the atomic and
subatomic levels.

WHERE THE LAWGIVERS LIVED

During the Renaissance . . . the interaction among differ-
ent European cultures stimulated creativity through new
ways of thinking and new paradigms for the observa-
tion of nature. . . . The foundation of scientific academies,
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notably the Accademia dei Lincei, the Royal Society and
the Académie des Sciences, and the establishment of
universities throughout Western Europe, contributed to
scientific progress. . . .
—Maurizio Iaccarino, “Science and Culture”

We may also catalogue the laws in this book by the lawgiver’s countries
of birth, or primary country affiliation (Table 2). Germany, France, and
Great Britain are clearly the most significant contributors.

Historians of science acknowledge that Europe was special for many
reasons when it comes to the discoveries of scientific laws. Richard Koch
and Chris Smith, authors of “The Fall of Reason,” note that

[s]ome time between the 13th and 15th centuries, Europe pulled
well ahead of the rest of the world in science and technology, a
lead consolidated in the following 200 years. Then in 1687, Isaac

table 2 Country Distribution of Main-Entry Laws

Country Number of Laws

Germany 14

France 12

Britain 10

Ireland 2

Netherlands 2

Italy 1

Switzerland 1

United States 1

Hungary 1

Greece 1

See the “Great Contenders” section at the end of this
book for a similar breakdown of additional eponymous
scientific laws.
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Newton—foreshadowed by Copernicus, Kepler, and others—had
his glorious insight that the universe is governed by a few physi-
cal, mechanical, and mathematical laws. This instilled tremendous
confidence that everything made sense, everything fitted together,
and everything could be improved by science.

According to Koch and Smith, many scholars who lived in medieval and
early modern Europe began to feel that the mysteries of the universe
could be solved because God had provided laws of nature that were log-
ical and that made sense. Koch and Smith write, “The full emergence of
science required belief in one all-powerful God, whose perfect creation”
could be understood by rational thought. They go further to suggest the
controversial idea that this condition was special to Christianity of the
time, especially compared with other religions that had a less consistently
rational creator and for religions in which “the universe is inexplica-
ble, unpredictable.” Catholic philosopher Thomas Aquinas (1225–1274)
thought so much about the laws of the universe that he finally decided
to make various categories of laws—such as eternal, natural, human, and
divine laws.

According to Jan Wojcik, author of Robert Boyle and the Limits of Rea-
son, many influential scientist Christians of the seventeenth and eighteenth
centuries believed that reason could be used to address theological ques-
tions. Although reason alone could not be used to discover the mysteries
of Christianity, “reason was considered competent to aid the believer in
understanding the content of what has been revealed.” Wojcik writes:

After the Christian had come to believe that something was true
simply because God had revealed it, the believer could analyze
that truth philosophically in an attempt to determine how it could
be true. Further, reason was seen as playing an important role in
convincing atheists of the truth of Christianity by showing that the
mysteries of Christianity are rationally possible.

Of course, the Christian religion in Europe was not the only motivator
for many of the scientific lawgivers. Newton, for example, was thoroughly
immersed in alchemical and magical thinking, which also contributed to
his interest in the laws of nature. Additionally, starting around 750 a.d.,
science and mathematics flourished under the Abbasid caliphs of Bagh-
dad, and the knowledge learned under Arab-Islamic patronage spread
throughout Europe and central Asia. Going further back in time, pagan
Greek culture produced thinkers ranging from Aristotle and Pythagoras
to Archimedes.
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Maurizio Iaccarino, a scientist at the International Institute of Genetics
and Biophysics of the National Research Council in Naples, Italy, writes in
EMBO Reports:

The Muslims were the leading scholars between the seventh and
fifteenth centuries, and were the heirs of the scientific traditions
of Greece, India and Persia. . . . Participants were Arabs, Persians,
Central Asians, Christians and Jews, and later included Indians
and Turks. The transfer of the knowledge of Islamic science to the
West . . . paved the way for the Renaissance, and for the scientific
revolution in Europe.

Additionally, while Christianity could be conducive to science and serve
as a motivator for many of the lawgivers in this book, the Church could
also have supreme failings in this regard. Sam Harris writes with passion in
“The Language of Ignorance”:

Lest we forget: Galileo, the greatest scientist of his time, was forced
to his knees under threat of torture and death, obliged to recant his
understanding of the Earth’s motion, and placed under house arrest
for the rest of his life by steely-eyed religious maniacs. He worked
at a time when every European intellectual lived in the grip of a
Church that thought nothing of burning scholars alive for merely
speculating about the nature of the stars. . . . This is the same Church
that did not absolve Galileo of heresy for 350 years (in 1992).

Nevertheless, Europe’s economic expansion after 1000 a.d., which resulted
from a growing number of interacting and free cities, led to the develop-
ment of simple industries and their related sciences.

WHEN WILL THE LAST LAW

BE DISCOVERED?

Eternity is a child playing checkers.
—Heraclitus (535–475 b.c.)

Western “faith” in the rationality and logic of the universe faded slightly in
the twentieth century, with the gradual demise of the Newtonian universe,
leading the way to new physical theories that suggested an inscrutable
and uncertain universe. Perhaps the rise of quantum theory is one reason
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among many that fewer eponymous laws are found in the twentieth cen-
tury than in the nineteenth century. As I have already mentioned, exper-
iments that could lend support to new laws are becoming very difficult to
perform. At a Royal Society meeting, Nobel laureate Stephen Weinberg
focused on this challenge, saying, “Quantum gravitation seems inaccessible
to any experiment we can devise. In fact, physics in general is moving into
an era where the fundamental questions can no longer be illuminated by
conceivable experiments. It’s a very disquieting position to be in.”

I conclude this introduction by asking readers, Do you feel that we will
have all the laws of nature in our hands in the next fifty years? Personally,
I think that there will always be more laws for us to uncover. Isaac Asimov
had the right idea about the future of knowledge: “I believe that scientific
knowledge has fractal properties; that no matter how much we learn,
whatever is left, however small it may seem, is just as infinitely complex
as the whole was to start with. That, I think, is the secret of the Universe.”
Hawking has said that he believes that the search for the ultimate laws will
soon come to an end. He notes in his books A Brief History of Time and
Black Holes and Baby Universes that in the early 1900s, many scientists
thought that the universe and its laws could be explained in terms of “the
properties of continuous matter, such as elasticity and heat conduction.”
However, the discovery of subatomic structure and Heisenberg’s Uncer-
tainty Principle led humanity to the next level of understanding. In 1928,
physicist and Nobel Prize winner Max Born (1882–1970) told a group of
visitors to Göttingen University, “Physics, as we know it, will be over in six
months.” Born’s proclamation took place immediately after British theo-
retical physicist Paul Dirac (1902–1984) formulated the Dirac Equation,
which characterizes the behavior of an electron. Hawking explains both
Born’s confidence and folly in Black Holes and Baby Universes:

It was expected that a similar equation [to Dirac’s] would govern
the proton, the only other supposedly elementary particle at that
time. However, the discovery of the neutron and of nuclear forces
disappointed those hopes. . . . Nevertheless, we have made a lot of
progress in recent years, and . . . there are some grounds for cautious
optimism that we may see a complete theory within the lifetime of
some of those reading these pages.
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INTERLUDE: CONVERSATION STARTERS

As measured by the millions of those who speak it
fluently . . . , mathematics is arguably the most success-
ful global language ever spoken. . . . Equations are like
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poetry: They speak truths with a unique precision, con-
vey volumes of information in rather brief terms. . . . And
just as conventional poetry helps us to see deep within
ourselves, mathematical poetry helps us to see far beyond
ourselves.
—Michael Guillen, Five Equations That Changed the

World

There is no reason why the most fundamental aspects of
the laws of nature should be within the grasp of human
minds . . . or why those laws should have testable conse-
quences at the moderate energies and temperatures [of
life-bearing planets]. . . . As we probe deeper into . . . the
nature of reality, we can expect to find more deep results
which limit what can be known. Ultimately, we may even
find that their totality characterizes the universe more
precisely than the catalogue of those things that we can
know.
—John Barrow, Boundaries and Barriers: On the Limits

of Scientific Knowledge

It is the most persistent and greatest adventure in human
history, this search to understand the universe, how it
works and where it came from. It is difficult to imagine
that a handful of residents of a small planet circling an
insignificant star in a small galaxy have as their aim a com-
plete understanding of the entire universe, a small speck
of creation truly believing it is capable of comprehending
the whole.
—Murray Gell-Mann, in John Boslough’s Stephen Hawk-

ing’s Universe

Scientists are remarkably sloppy about their use of the
word “law.” It would be nice, for example, if something
that had been verified a thousand times was called an
“effect,” something verified a million times a “principle,”
and something verified 10 million times a “law” . . . but the
use of these terms is based entirely on historical prece-
dent and has nothing to do with the confidence scientists
place in a particular finding.
—James Trefil, The Nature of Science

The chessboard is the world, the pieces are the phenom-
ena of the universe, the rules of the game are what we call
the laws of Nature.
—Thomas Huxley, “A Liberal Education” in Autobiog-

raphy and Selected Essays
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Time was when all scientists were outsiders. Self-funded
or backed by a rich benefactor, they pursued their often
wild ideas in home-built labs with no one to answer to
but themselves. From Nicolaus Copernicus to Charles
Darwin, they were so successful that it’s hard to imag-
ine what modern science would be like without them.
Their isolated, largely unaccountable ways now seem the
antithesis of modern science, with consensus and peer
review at its very heart.
—Editors of New Scientist, “It Pays to Keep a Little

Craziness,” New Scientist, December 9, 2006

Explaining the simultaneity of invention by different peo-
ple in different places at the same time, Mark Twain said,
“When it’s steamboat time, you steam.”
—Automobile Magazine, September, 2006

The contributions of Muslim scientists typically occurred
in spite of Islam rather than because of it. Orthodox
Islamic scholars absolutely rejected any conception of the
universe that involved consistent physical laws, because
the absolute autonomy of Allah could not be restricted
by natural laws. . . . Catholicism admits the possibility of
miracles and acknowledges the role of the supernatural,
but the very idea of a miracle suggests that the event in
question is unusual, and of course it is only against the
backdrop of an orderly natural world that a miracle can
be recognized in the first place.
—Thomas E. Woods, Jr., How the Catholic Church Built

Western Civilization

Galileo had championed a view of the universe, Coper-
nicus’s [Sun-centered universe], that seemed not only
new but shocking. Many churchmen who had never even
heard of Copernicus now learned that he had fathered
these disturbing ideas. An Italian bishop wanted Coper-
nicus throw in jail and was surprised to learn that he had
been dead for seventy years.
—James C. Davis, The Human Story
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Our experience hitherto justifies us in believing that
nature is the realization of the simplest conceivable math-
ematical ideas. I am convinced that we can discover by
purely mathematical constructions the concepts and the
laws connecting [mathematics and physical reality] with
each other, which furnish the key to the understanding
of natural phenomena. . . . In a certain sense, therefore,
I hold it true that pure thought can grasp reality, as the
ancients dreamed.
—Albert Einstein, “On the Methods of Theoretical

Physics,” 1933

Even stranger things have happened; and perhaps the
strangest of all is the marvel that mathematics should be
possible to a race akin to the apes.
—Eric T. Bell, The Development of Mathematics

As far as the laws of mathematics refer to reality, they
are not certain, and as far as they are certain, they do not
refer to reality.
—Albert Einstein, “Geometry and Experience,” Address

to the Prussian Academy of Sciences, 1921

The essential fact is simply that all the pictures which
science now draws of nature . . . are mathematical pic-
tures. . . . It can hardly be disputed that nature and our
conscious mathematical minds work according to the
same laws.
—Sir James Jeans, The Mysterious Universe

The most important fundamental laws and facts of physi-
cal science have all been discovered, and these are now
so firmly established that the possibility of their ever
being supplemented in consequence of new discoveries
is exceedingly remote.
—Albert Michelson, 1894 dedication address, Ryerson

Physical Laboratory, University of Chicago
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ARCHIMEDES’ PRINCIPLE OF BUOYANCY

The Greek city-state of Syracuse, Sicily, c. 250 B.C. The vertical
force of buoyancy on a submerged object is equal to the weight
of fluid the object displaces.

Cross Reference: Johannes Kepler and Galileo Galilei.

Close to the time when Archimedes discovered his Principle
of Buoyancy, the Septuagint Greek version of the Old Testa-
ment was being written, the La Tène Iron Age people invaded
Britain, the first Roman prison Tullianum was erected, and the
Carthaginian general Hannibal was born.

Imagine that you are weighing an object, like a carrot, that is submerged
in a kitchen sink. If you weigh the carrot by hanging it from a scale,
the carrot would weigh less while in the water then when the carrot is
lifted out of the sink and weighed. The water exerts an upward force that
partially supports the weight of the carrot. This force is more obvious if
we perform the same experiment with an object of lower density, such as a
cube made out of cork, which floats while being partially submerged in the
water.

The force exerted by the water on the cork is called a buoyant force,
and for the cork, the upward force is greater than its weight. This buoyant
force depends on the density of the liquid and the volume of the object,
but not on the shape of the object or the material with which the object
is composed. Thus, in our experiment, it does not matter if the carrot is
shaped like a sphere or a cube. One cubic centimeter of carrot or wood
would experience the same buoyant force in water.

According to Archimedes’ principle, a body wholly or partially sub-
merged in liquid is buoyed up by a force equal to the weight of displaced
liquid. Physicists write this with the compact expression

B = wf,

where B is the buoyant force and wf is the weight of the fluid that the object
displaces.

As another example, consider a small pellet of lead placed in a bathtub.
The pellet weighs more than the tiny weight of water wf it displaces, and
the pellet sinks. A wooden rowboat is buoyed up by the large weight of
water that it displaces, and hence the rowboat floats. Archimedes’ princi-
ple helps us understand how flotation works and is one of the founding
principles of hydrostatics.



Another form of Archimedes’ Principle of Buoyancy can be stated as

B = ρliquidGVsolid

where ρliquid is the density of the liquid, G is the constant of gravitational
acceleration, and Vsolid is the volume of the solid. (The volume of the
displaced fluid is equal to the volume of an object either fully submerged
or to that fraction of the volume below the surface for an object that is
partially beneath the water.)

The buoyant force occurs because the pressure of the liquid at the
bottom of the object is greater than that at the top. If the density of the
object—for instance, the carrot in our example—is greater than that of
the liquid, the object’s weight will be greater than the buoyant force, and
the object will sink if not supported. If the density of a submerged object
is less than the density of the fluid, the object will accelerate upward to
the liquid’s surface. Part of the object will usually rise above the sur-
face so that the weight of the displaced liquid equals the weight of the
object.

A submarine floating in the sea displaces a volume of water that has
a weight that is precisely equal to the submarine’s weight. In other words,
the average weight of the submarine—which includes the people, the metal
hull, and the enclosed air—equals the weight of displaced seawater. When
plesiosaurs (extinct reptiles) floated in the middle of the sea, their average
weights also equaled the weights of the water they displaced. Gastroliths
(stomach stones) have been discovered in the stomach region of skeletons
of plesiosaurs, and these stones may have helped maintain useful buoyancy
for the creatures.

A rowboat lowered into a pond sinks into the pond until the weight of
the water it displaces is equal to its own weight. The buoyant force may
be thought of as acting through the centroid, or center of gravity, of the
displaced fluid volume. The stability of a floating body, like the rowboat,
depends on this location and its relationship to the center of gravity of the
body.

Perhaps it is not intuitive that objects with equal volumes experience
equal buoyant forces when held beneath the water. Imagine that we have
equal-sized cubes of cork, aluminum, and lead that we hold beneath the
water. The buoyant force would be the same on each object because of
the equal amounts of water they displace; however, the behavior of the
three cubes would certainly be different when we release them. The cork
cube would rush upward, the aluminum would sink, and the lead would
sink more rapidly. The various behaviors arise from the different ratios of
buoyant force to object weights.
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Archimedes’ principle has various applications; for example, the prin-
ciple can be used to determine the pressure of a liquid as a function of
depth.

Archimedes of Syracuse (287–212 B.C.), Greek mathematician and inven-
tor famous for his geometric and hydrostatic studies, as well as the
Archimedean screw, still used today to move water.

Archimedes will be remembered when Aeschylus is for-
gotten, because languages die and mathematical ideas do
not. “Immortality” may be a silly word, but probably a
mathematician has the best chance of whatever it may
mean.
—G. H. Hardy, A Mathematician’s Apology, 1941

Give me a place to stand on, and I will move the earth.
—Archimedes, upon discovering the principles of lever-

age (as told by Pappus of Alexandria)

Eureka! Eureka!
—Archimedes, when he realized how to determine if

King Hieron’s wreath was made of pure gold

CURIOSITY FILE: Archimedes was an inspiration to Sophie Germain (1776–
1831), one of the greatest female mathematicians who ever lived. At the
age of thirteen, Sophie read an account of Archimedes’ murder while he
was solving mathematical problems, and she was so moved by this story
that she decided to become a mathematician. Sadly, her parents forbade
her to study mathematics; thus, she had to hide beneath blankets to secretly
study the works of Isaac Newton and mathematician Leonhard Euler.
• Archimedes sometimes sent his colleagues false theorems in order to
trap them when they stole his ideas.

Archimedes, the ancient Greek geometer, is often regarded as the greatest
mathematician and scientist of antiquity and one of the four greatest math-
ematicians to have walked Earth—together with Isaac Newton, Leonhard
Euler, and Carl Friedrich Gauss. Archimedes was the son of an astronomer
named Phidias and spent most of his life in the Greek city-state of Syra-
cuse, where he worked on numerous inventions, including weapons used
against the Romans, Archimedean screws for conveying water upward,
and model planetariums.
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At some point during his life, Archimedes traveled to Egypt and stud-
ied at Alexandria, one of the intellectual centers of Greek scholarship
during his time. Today, he is famous for his inventions, for his geomet-
rical works that included formulas for the volume and surface area of a
sphere, and for mathematical procedures that bordered on more modern
methodologies that involve logarithms and calculus.

The famous legend of Archimedes’ death describes his encounter with
a Roman soldier around 212 b.c., during the capture of Syracuse in the
Second Punic War. The soldier had come upon Archimedes, who was
studying a mathematical diagram drawn in the sand. Archimedes was
annoyed by the soldier’s interruption and allegedly uttered his famous
last words before being killed by the soldier: “Mη µoυ τoυς κύκλoυς

τάραττε” (“Don’t disturb my circles”). According to the Greek writer
Plutarch, Archimedes had asked his friends to engrave a cylinder circum-
scribing a sphere on his grave, along with “the ratio by which the including
solid exceeds the included.”

A lunar crater with a diameter of 82 kilometers was named after
Archimedes in 1935 by the International Astronomical Union General
Assembly. The International Astronomical Union (IAU) is in charge of
reviewing and approving names for most solar system objects, as well as
their surface features. The IAU’s General Assembly formally adopts the
names that scientists and laypersons have submitted.

Although a genius mathematician, Archimedes is perhaps more famous
for his mechanical inventions, including:

� The water snail or Archimedean screw to raise water to help irrigate
crops (mentioned by Greek historian Diodorus Siculus)

� A long screw used to launch a ship (mentioned by Greek writer
Athenaeus)

� The compound pulley used to help move heavy ships with minimal
effort (mentioned by Greek writer Plutarch)

� Globelike planetariums (mentioned by Roman orator Cicero)
� Ballistic defensive devices used to repel the Romans (mentioned by

Greek historian Polybius, Roman historian Livy, and Plutarch)
� Burning mirrors used to repel the Romans (some scholars are

skeptical of the legend of this device)

Regarding Archimedes’ burning mirrors, in 313 b.c. Archimedes was
said to have made a “death ray” consisting of a set of mirrors that focused
sunlight on Roman ships, setting the ships afire. Various individuals have
tried to test the practical use of such mirrors and declared their use to
have been unlikely. However, mechanical engineer David Wallace of MIT
encouraged his students in 2005 to build an oak replica of a Roman warship

44 | a r c h i m e d e s t o h a w k i n g



and focus sunlight on it, using 127 mirrored tiles. Each mirror was about
12 square meters in area, and the ship was about 30 meters away. After ten
minutes of exposure to the focused light, the warship burst into flames!

In 1973, a Greek engineer employed seventy flat mirrors (each about
five feet by three feet in length) in order to focus sunlight onto a rowboat.
In this experiment, the rowboat also quickly burst into flames. However,
while it is possible to set a ship afire with mirrors, this task probably would
have been very difficult for Archimedes if ships were moving.

As an interesting aside, Arthur C. Clark’s short story “A Slight Case
of Sunstroke” describes the fate of a disliked soccer referee. When the
referee makes an unpopular decision, the spectators focus sunlight onto
the referee using their shiny souvenir programs that they hold in their
hands. The shiny surfaces act like Archimedes’ mirror, and the poor man
is burned to ashes.

According to Plutarch, Archimedes’ ballistic weaponry was used effec-
tively against the Romans in the siege of 212 b.c. For example, Plutarch
wrote,

When Archimedes began to ply his engines, he at once shot all sorts
of missile weapons against the land forces, and immense masses of
stone came down with incredible noise and violence, against which
no man could stand for they knocked down those upon whom they
fell in heaps.

Plutarch also writes that Archimedes was so obsessed with mathematics
that his servants had to force him to take baths, and while they scrubbed
him, he would continue to draw geometrical figures. “And while the ser-
vants were anointing of him with oils,” Plutarch writes, “with his fingers
he drew lines upon his naked body, so far was he taken from himself,
and brought into ecstasy or trance, with the delight he had in the study
of geometry.”

Perhaps the most famous legend of Archimedes involves King Hieron,
who needed to check the authenticity of a wreath-shaped crown allegedly
made of pure gold, but which Hieron suspected had silver impurities.
Archimedes used the displacement of water in a bathtub to uncover the
scam, demonstrating that the wreath actually consisted of a mixture of sil-
ver and gold rather than pure gold. Roman architect and engineer Marcus
Vitruvius writes of this incident in De Architectura:

While Archimedes was turning the problem over, he chanced to
come to the place of bathing, and there, as he was sitting down in
the tub, he noticed that the amount of water which flowed over the
tub was equal to the amount by which his body was immersed. This
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showed him a means of solving the problem. . . . In his joy, he leapt
out of the tub and, rushing naked towards his home, he cried out
with a loud voice that he had found what he sought.

In principle, Archimedes could have performed his volume experiment
using a bucket filled to the brim and then measured the volume of water
that overflowed. He is said to have conducted an experiment with equal
weights of gold and silver. Because gold has a greater density than silver,
a gold cube would be smaller than the silver cube of equal weight, causing
less water to spill out of the bucket. Once Archimedes was able to measure
the volumes of water that represented the volumes of the gold, silver, and
the crown, he could determine their relative densities and determine that
the crown was not of pure gold.

The legend of Hieron and Archimedes concludes with the density of the
crown measured to be between 10.5 and 19.3 grams per cubic centimeter,
which are the densities of silver and gold, respectively. This meant that
the wreath was not made out of pure gold, and the royal goldsmith was
executed.

However, today, scholars suggest that this story of the gold and sil-
ver may have been embellished through time because it is unlikely that
Archimedes had measuring equipment of sufficient accuracy to detect the
rather small difference in displacement between a wreath made of pure
gold and one fashioned from gold mixed with other metals.

As for Archimedes’ invention of the Archimedean screw, his creation
of the screw seems plausible, and Vitruvius gives a detailed description of
its operation for lifting water, which required intertwined helical blades.
For example, the bottom end of the screw is immersed in a pond. The
act of rotating the screw raises water from the pond to a higher ele-
vation. Archimedes may also have designed a related helical pump, a
corkscrew-like device used to remove water from the bottom of a large
ship. The Archimedean screw is still used today in societies without access
to advanced technology. It works well even if the water is filled with debris.
The Archimedean screw also tends to minimize damage to aquatic life.
Modern Archimedean screwlike devices are used to pump sewage in water
treatment plants.

As discussed above, Archimedes contributed to mathematics by prov-
ing theorems that concerned areas and volumes, determining the formulas
for the volume and surface area of a sphere (he showed that the surface
area of a sphere is four times the area of a circle that passes through the
sphere’s center), determining an approximation for the value of π, and
discussing the physics of floating bodies. His scientific work on flotation
is the first known work in the field of hydrostatics, the field of physics that
deals with fluids at rest and under pressure.
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Archimedean screw, from Chambers’s Encyclopedia (Philadelphia: J. B.
Lippincott Company, 1875).

Archimedes’ research on the value of π involved inscribing polygons
on the inside and outside of a circle. The greater the number of sides
of the polygon, the more closely they approached the actual edge of the
circle. By calculating the areas of the internal and surrounding polygon, he
determined a value for π that was between 3.140845 and 3.142857 (today,
we know the correct value is 3.14159 . . . ). Beginning with a hexagon, he
worked all the way up to a polygon with ninety-six sides!

Archimedes proved various theorems relating to levers and fulcrums.
He also explained why it is easier to move an object up a long, slop-
ing ramp than to move the same object along a shorter but steeper
ramp to the same height. He discovered that the volume of a sphere
is exactly two-thirds the volume of a cylinder that tightly encloses it.
As I have mentioned, despite the fact that he lived more than eighteen
centuries before Newton, Archimedes came close to formulating inte-
gral calculus but lacked a satisfactory system of mathematical notation
to aid his thinking. In Archimedes’ The Sandreckoner, he proposed a
number system in which humans could express numbers up to 8 × 1063

in modern notation. According to Archimedes, this number is sufficiently
large to count the number of grains of sand needed to fill the entire
universe.

Two favorite puzzles from Archimedes concern geometry and num-
bers, and I discuss these in my book A Passion for Mathematics. The
first of these puzzles is called the Stomachion of Archimedes. In 2003,
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math historians discovered long lost information on the object in an
ancient parchment called the Archimedes Palimpsest, overwritten by
monks nearly a thousand years ago. The puzzle involved combinatorics,
a field of math dealing with the number of ways that a given problem can
be solved. The goal of the Stomachion (pronounced sto-MOCK-yon) was
to determine in how many ways fourteen flat puzzle pieces can be put
together to make a square. In 2003, researchers determined that 17,152
ways exist to solve the puzzle.

In the thirteenth century, Christian monks had ripped apart
Archimedes’ original manuscript, washed it, and covered it with religious
text. Today, we cannot see the Stomachion with the naked eye, and
ultraviolet light and computer imaging techniques are needed to reveal
the hidden mathematical gem. Scholars are uncertain if Archimedes ever
correctly solved the problem. In 2006, experts focused a powerful X-ray
beam from the Stanford Linear Accelerator Center on portions of the
manuscript to cause the iron in the underlying ink to fluoresce and to help
reveal more of Archimedes’ hidden words. In addition to the Stomachion,
the ancient palimpsest contains seven of Archimedes’ treatises, includ-
ing Method of Mechanical Theorems (which is known only through the
Palimpsest document) and the only surviving copy of On Floating Bodies
in the original Greek.

A second puzzle, called Archimedes’ Cattle Problem, can be stated as
follows:

Oh stranger, compute the number of cattle of the Sun, who once
upon a time grazed on the fields of the Thrinacian Isle of Sicily,
divided into four herds of different colors—one milk white, another
glossy black, the third yellow, and the fourth dappled. The number
of white bulls was equal to (1/2 + 1/3) the number of black bulls
plus the total number of yellow bulls. The number of black bulls
was (1/4 + 1/5) the number of dappled bulls plus the total number
of yellow bulls. The number of spotted bulls was (1/6 + 1/7) the
number of white bulls, plus the total number of yellow bulls. The
number of white cows was (1/3 + 1/4) the total number of the black
herd. The number of black cows was (1/4 + 1/5) the total number of
the dappled herd. The number of dappled cows was (1/5 + 1/6) the
total number of the yellow herd. The number of yellow cows was
(1/6 + 1/7) the total number of the white herd.

If you can accurately tell, Oh stranger, the total number of cattle
of the Sun, including the number of cows and bulls in each color,
you would not be called unskilled or ignorant of numbers, but not
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yet shalt thou be numbered among the wise. But understand also
these conditions: [The white bulls could graze together with the
black bulls in rows, such that the number of cattle in each row
was equal and that number was equal to the total number of rows,
thus forming a perfect square. And the yellow bulls could graze
together with the dappled bulls, with a single bull in the first row,
two in the second row, and continuing steadily to complete a perfect
triangle.] If you are able, oh stranger, to find out all these things
and gather them together in your mind, giving all the relations, you
shall depart crowned with glory and knowing that you have been
adjudged perfect in this species of wisdom.

The solution to the full problem is about 7.76 × 10206544 cattle. Not until
1880 did mathematicians find an approximate answer. The more precise
value for the total number of cattle was first calculated in 1965 by Hugh
C. Williams, R. A. German, and C. Robert Zarnke using an IBM 7040
computer. I am not aware of any other numerical problems that required
twenty-two centuries to solve. Note that the Cattle Problem has at least
two versions attributed to Archimedes, and the one just described is a
more complex version. Archimedes obviously never solved this particular
version of the problem. Author Heinrich Dörrie cites four scholars who
suggest that that this version may not actually be due to Archimedes,
but he also cites four authors who believe that the problem should be
attributed to Archimedes.

Unlike the works of the Greek geometer Euclid, Archimedes’ mathe-
matical discoveries did not have a great influence on humanity until the
Arabs rediscovered and revived them in the eighth century. In the 1500s,
his works began to circulate widely and affected the work of Kepler and
Galileo, the latter of whom used Archimedes’ name numerous times in
his writings. Kepler’s method of finding areas was similar to that used by
Archimedes to find the area of a circle or the value of π.

Mathematics has surely come a long way since the time of Archimedes,
and I wonder how much mathematics humanity can ever know. The body
of mathematics has generally increased from ancient times, although this
has not always been true. Most mathematicians in Europe during the 1500s
knew less than Greek mathematicians at the time of Archimedes. How-
ever, since the 1500s, humans have made tremendous journeys along the
vast landscape of mathematics. Today, several hundred thousand mathe-
matical theorems are proved each year.

In the early 1900s, a great mathematician was expected to know nearly
all of the known mathematics. Mathematics was akin to a shallow pool that
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could be inspected by a single individual. Today the mathematical waters
have grown so deep that a great mathematician can be intimate with only a
small percentage of the entire ocean. What will the future of mathematics
be like as specialized mathematicians know more and more about less and
less until they know everything about nothing?
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INTERLUDE: CONVERSATION STARTERS

It is these connections that form the fabric of physics. It is
the joy of the theoretical physicists to discover them, and
of the experimentalist to test their strength. . . . In the end,
what science does is change the way we think about the
world and our place within it. . . . There is a universal joy
in making new connections.
—Lawrence Krauss, Fear of Physics

Archimedes’ principle can be understood in terms of
kinetic theory. . . . When the fluid is displaced by the solid
object, the molecules in the fluid will collide with the
body, exerting the same pressure as they did before the
object was placed there. For a completely submerged
object . . . the molecules of the fluid will be hitting the
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bottom of the object with a greater force than those hit-
ting the top. This is the molecular origin of the upward
buoyant force.
—James S. Trefil, The Nature of Science: An A–Z Guide

to the Laws and Principles Governing Our Universe

Most of the papers which are submitted to the Physical
Review are rejected, not because it is impossible to under-
stand them, but because it is possible. Those which are
impossible to understand are usually published.
—Freeman Dyson, Innovation in Physics

Isaac Newton discovered laws of motion that apply
equally to a planet moving through space and to an
apple falling earthward, revealing that the physics of the
heavens and the earth are one. Two hundred years later,
Michael Faraday and James Clerk Maxwell showed that
electric currents produce magnetic fields, and moving
magnets can produce electric currents, establishing that
these two forces are as united as Midas’ touch and gold.
—Brian Greene, “The Universe on a String,” The New

York Times, October 20, 2006
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KEPLER’S LAWS OF PLANETARY MOTION

Germany, 1609, 1618. Three laws that describe the motions of
planets about the Sun.

Cross Reference: Isaac Newton’s laws, Einstein’s General Theory
of Relativity, and the works of Euclid, Galileo Galilei, and Tycho
Brahe.

The same year that Kepler discovered his Law of Orbits, Henry
Hudson discovered the Hudson Bay. For the first time, the Dutch
East India Company shipped tea from China to Europe. Also
in 1609, Galileo demonstrated his first telescope to Venetian
lawmakers.

German astronomer Johannes Kepler, working with data collected by the
Danish astronomer Tycho Brahe (1546–1601), discovered three laws that
described the elliptical motion of the planets in space. Brahe had made all
his measurements by eye, because the telescope had not yet been invented
when he had studied the sky.

In order for Kepler to formulate his laws, he had to first abandon the
prevailing notion that circles were the “perfect” curves for describing the
cosmos and its planetary orbits. When Kepler first expressed his laws, he
had no theoretical justification for them. They simply provided an elegant
means by which to describe orbital paths obtained from experimental data.
Roughly fifty years later, Newton showed that Kepler’s laws are a direct
consequence of motion under the influence of gravity.

KEPLER’S FIRST LAW

(LAW OF ORBITS, 1609)

All of the planets in our Solar System move in elliptical orbits, with the
Sun at one focus. Written mathematically, we may express this as

Raphelion = a(1 + e), Rperihelion = a(1 − e)

where Raphelion is the distance between the Sun and the most distant point
of the elliptical orbit of the planet (the “aphelion”); Rperihelion is the dis-
tance between the Sun and the closest point of the elliptical orbit (the
“perihelion”); a is the length of the ellipse’s semimajor axis, and e is the
eccentricity of the ellipse. Eccentricity is a measure of the elongation of
the ellipse and has a value of zero for a circle. Pluto, which was designated



a “dwarf planet” in 2006, has an orbit with e = 0.25. The orbit of Venus, on
the other hand, is very close to circular with e = 0.0068. The orbit of Earth
has an eccentricity of e = 0.017. Today, we understand that the elliptical
shape of the orbit arises from the inverse-square principle of Newton’s
Law of Universal Gravitation. Note that the Sun is at one focus of the
ellipse, but no object resides at the other focus of the elliptical orbit.

We may also express the law in terms of the gravitational constant G
(G = 6.67 × 10−11 N·m2/kg2) and the mass of the Sun M:

r = l2/GM
1 + e cos θ

As in the previous formulation, e is the eccentricity of the ellipse. l is
the satellite’s specific angular momentum, that is, the relative angular
momentum per unit mass. (Angular momentum increases with the angular
velocity of rotating body.) The variable r is equal to the distance between
the planet and the focus that is located near the center of the Sun. The
angle θ sweeps from 0 to 360 degrees.

In 1610, only a year after Kepler published his First Law, Galileo
discovered several satellites of Jupiter. These bodies also follow Kepler’s
First Law. In 1687, Newton showed that any satellite that orbits another
body must move along a path described by a conic section (e.g., ellipse,
parabola, or hyperbola), if one body, such as the Sun, attracts the satellite
with a force that varies inversely as the square of the distance between
the bodies. A comet with sufficiently high energy may have a parabolic or
hyperbolic orbit and leave the solar system forever after it has entered. If
the speed of Earth were suddenly increased by approximately a factor of
1.4, the orbital shape would change into a parabola, and Earth would leave
the Solar System.

KEPLER’S SECOND LAW

(LAW OF EQUAL AREAS, 1618)

Kepler observed that when a planet is far from the Sun, the planet moves
more slowly than when it is close to the Sun. Thus, when far from the Sun,
the planet travels a shorter path along the orbit in a given time than it does
when close to the Sun. As the planet travels toward the Sun, it accelerates
due to the gravity of the Sun. An imaginary line that connects a planet to
the Sun sweeps out equal areas in equal intervals of time.

In order to visualize these equal areas, imagine that Earth takes one
day to travel from points A to B on an ellipse. If we draw a line from A to
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the Sun and from B to the Sun, we create a sector of an ellipse (like cutting
a wedge from an apple pie). The area of these sectors will be the same each
day, regardless of where the planet is in its orbit. Of course, in order for the
area being swept to remain constant, for a given interval of time, a planet
must change its speed. (Imagine cars whizzing around a racetrack with the
driver always going faster near one end of the track than the other.)

As was the case with Kepler’s First Law, Newton understood the under-
pinnings of this Second Law and realized that the law is a consequence of
the conservation of angular momentum.

Given Kepler’s first two laws, he no longer needed more complicated
shapes in order to explain orbital paths, such as the “epicycloids” that prior
astronomers had used. Planetary orbits and positions could now be easily
calculated and with an accuracy that matched observations.

KEPLER’S THIRD LAW

(LAW OF PERIODS, 1618)

For any planet, the square of the period of its revolution about the Sun
is proportional to the cube of the semimajor axis of its elliptical orbit.
This law is sometimes known as the Harmonic Law. Today, given our
knowledge of Newton’s Law of Universal Gravitation, Kepler’s Third Law
is sometimes expressed as:

T2 =
[

4π2

G(M + m)

]
a3

where T is the period of the orbiting body (the time required to complete
one orbit), a is the length of semimajor axis of the orbit, G is the gravita-
tional constant, M is the mass of the Sun, and m is the mass of a planet. For
the example of our Solar System, m is so much smaller than M that it can
be removed from this expression for many practical calculations. Thus, the
quantity in brackets may be considered a constant for our Sun, such that
T2/a3 has essentially the same value for all the planets of the Solar System,
namely, 3.00 × 10−19. When Kepler formulated his laws, the masses of the
relevant objects were not in the equations.

In high-level terms, Kepler found that the square of the planet’s “year”
is a multiple of the cube of the planet’s distance from the Sun. Thus,
planets far from the Sun have very long years. For example, Pluto, the
dwarf planet, has a year of 90,410 days, but Mercury, which is close to the
Sun, has a year that is 88 days long. For both of these measurements, the
“days” refer to the durations of Earth days.
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KEPLER’S LAWS (GENERAL)

Kepler’s laws were initially derived for planetary orbits around the Sun,
but they have more general applications and later helped Newton for-
mulate the Laws of Motion and Universal Gravitation, which depended
strongly on Kepler’s work. The laws also apply to artificial satellites, such
as those launched by NASA. In the cases of modern satellites, Earth
replaces the Sun as the main body around which the satellite orbits. Of
course, if a satellite is orbiting too closely to our atmosphere, it will even-
tually heat up and be destroyed as its kinetic energy is converted to heat.

None of the three laws precisely describes the motions of orbiting
planets and moons because the laws neglect any other gravitational inter-
actions that may exist, such as the forces of attraction among planets. For
example, when the Moon orbits Earth, it is affected by the gravitation of
both Earth and the Sun. In the case of planetary orbits, because the Sun
is so much more massive than the planets, the gravitational interactions
between planets are very small and can be neglected for most purposes.
However, when studying other systems, such as orbits that involve double
stars (binary stars), masses of both stars must be considered.

Additionally, as I discuss in the entry on Newton’s laws, we know
that a planet does not orbit around a stationary Sun as Kepler believed.
Instead, both the planet and the Sun orbit around the common center of
mass located between the planet and the Sun, and sometimes this requires
scientists to modify Kepler’s Third Law to make it more accurate.

Kepler’s Laws are among the earliest scientific laws to be established by
humans, and his statements of the laws provided a stimulus to subsequent
scientists who attempted to express the behavior of reality in terms of
simple formulas. Although the laws are slightly modified by Einstein’s
General Theory of Relativity, Kepler’s laws, along with Newton’s Law
of Universal Gravitation, provide the underpinning to practical celestial
mechanics. Kepler believed that simple rules could be used to describe
the motions of planets, and with his three simple laws, he summarized
thousands of years of planetary observations.

Johannes Kepler (1571–1630), German astronomer and theologian-
cosmologist, famous for his laws that describe the elliptical orbits of Earth
and other planets around the Sun.

CURIOSITY FILE: Kepler never numbered his three laws. • He was fas-
cinated by astrology and suggested that the sudden appearance in 1604
of a star, which we now call a “nova,” was God’s way to encourage the
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conversion of Native Americans to Christianity. He urged all sinners to
repent. • By postulating the ray theory of light and showing how images
are formed on the retina, Kepler is considered by some to be the founder of
modern optics. Kepler was also first to explain why both eyes were required
for depth perception. • Kepler wrote a story called “The Dream,” which is
one of the oldest examples of a “modern” science-fiction story.

I wanted to become a theologian. For a long time I was
restless. Now, however, behold how through my effort,
God is being celebrated in astronomy.
—Johannes Kepler, 1595 letter to German astronomer

and mathematician Michael Maestlin

Although Kepler is remembered today chiefly for his
three laws of planetary motion, these were but three
elements in his much broader search for cosmic har-
monies. . . . He left [astronomy] with a unified and physi-
cally motivated heliocentric system nearly 100 times more
accurate.
—Owen Gingerich, “Kepler,” in Dictionary of Scientific

Biography

It should no longer seem strange that man, the ape of
his Creator, has finally discovered how to sing polyphoni-
cally, an art unknown to the ancients. With this symphony
of voices, man can play through the eternity of time in less
than an hour and can taste in small measure the delight of
God the Supreme Artist by calling forth that very sweet
pleasure of the music that imitates God.
—Johannes Kepler, Harmonice mundi (Harmony of the

World), 1619

Johannes Kepler was born in Weil der Stadt, a town now part of Germany.
Max Caspar, author of Kepler, provides a vivid glimpse of the appearance
of the city during Kepler’s life: “The little streets, the spacious market
place surrounded by high gabled houses, the towers and gates of the city
wall . . . [are all situated] in a rolling landscape on the edge of the Black For-
est, surrounded by gardens and meadows, fields and woods. . . . ” Kepler’s
staunch adherence to Lutheranism, and refusal to convert to Catholicism,
forced him to relocate many times during his life, sometimes sacrificing his
career and safety.

From what Kepler wrote, we know that his mother and father were
poor parents. He described his father Heinrich as “criminally inclined.”
When Kepler was three years old, Heinrich became a mercenary, and in
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1588, Heinrich abandoned young Kepler forever. Kepler called his mother
Katharina “bad-tempered,” but later in his life he came to her aid when
she was about to be tortured: Katharina was tried for witchcraft in 1617,
and the adult Kepler spent months helping to prepare a legal defense,
which was eventually successful. During the ordeal, Katharina’s ruthless
questioners showed her torture devices in an attempt to make her confess
that she was a witch. James A. Connor, author of Kepler’s Witch, describes
Kepler’s state of mind during this difficult time:

The executioner showed Katharina Kepler the instruments of tor-
ture, the pricking needles, the rack, the branding irons. Her son
Johannes Kepler was nearby, fuming, praying for it to be over.
He was forty-nine and, with Galileo Galilei, one of the greatest
astronomers of the age—the emperor’s mathematician, the genius
who had calculated the true orbits of the planets and revealed the
laws of optics to the world. . . . He never gave up trying [to stop the
interrogation], and in that he was a good deal like his mother.

Katharina was finally freed in 1621, partly because of her steadfast refusal
to confess under threat of torture.

As a child, Kepler was frequently bullied, and he believed himself to be
ugly. Most if not all of his brothers and sisters suffered from severe mental
and physical handicaps. Kepler himself was bow-legged, often afflicted
with large boils, and suffered from poor vision.

Kepler studied astronomy at the University of Tübingen, where he was
virtually a “straight A” student. In 1591, he received his master’s degree,
and his plan was to study theology and become a clergyman. However,
the local authorities in Graz, Austria, were able to coax Kepler to teach
mathematics at a Lutheran high school, and he soon moved to Austria,
where he taught mathematics and the works of Virgil. While in Graz, he
spent some of his time making futuristic predictions that included topics
ranging from the local weather to politics. His predictions often turned
out to be correct, which elevated his status in the eyes of the towns-
people.

Although Kepler appeared to be quite interested in astrology, he also
could be skeptical, having written in De fundamentis astrologiae certioribus
(1601), “If astrologers sometimes do tell the truth, it ought to be attributed
to luck.” In 1610, he seemed to both praise and condemn astrology in Ter-
tius interveniens: “No one should consider unbelievable that here should
come out of astrological foolishness and godlessness also cleverness and
holiness . . . out of evil-smelling dung, a golden corn scraped for by an
industrious hen.”
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Throughout his life, he attributed his scientific ideas and motivation to
his quest for understanding the mind of God. For example, in his work
Mysterium cosmographicum (The Sacred Mystery of the Cosmos, 1596),
he wrote, “I believe that Divine Providence intervened so that by chance
I found what I could never obtain by my own efforts. I believe this all the
more because I have constantly prayed to God that I might succeed.”

Kepler’s initial vision of the universe rested upon his studies of symmet-
rical, three-dimensional objects known as Platonic solids. Centuries before
Kepler, the Greek mathematician Euclid (325–265 b.c.) showed that only
five such solids exist with identical faces: the cube, dodecahedron, icosahe-
dron, octahedron, and tetrahedron. Although Kepler’s theory in the 1500s
seems strange to us today, he attempted to show that the distances from the
planets to the Sun could be found by studying spheres inside these regular
polyhedra, which he drew nested in one another like layers of an onion. For
example, the small orbit of Mercury is represented by the innermost sphere
in his models. The other planets known at his time were Venus, Earth,
Mars, Jupiter, and Saturn. Here is how Kepler explained his Platonic-solid
model of the Solar System in Mysterium cosmographicum:

We must first eliminate the irregular solids, because we are only con-
cerned with orderly creation. There remain six bodies, the sphere
and the five regular polyhedra. To the sphere corresponds the
heaven. On the other hand, the dynamic world is represented by
the flat-faces solids. Of these there are five: when viewed as bound-
aries, however, these five determine six distinct things: hence the six
planets that revolve about the sun. This is also the reason why there
are but six planets. . . .

I have further shown that the regular solids fall into two groups:
three in one, and two in the other. To the larger group belongs,
first of all, the Cube, then the Pyramid, and finally the Dodeca-
hedron. To the second group belongs, first, the Octahedron, and
second, the Icosahedron. That is why the most important portion of
the universe, the Earth—where God’s image is reflected in man—
separates the two groups. For, as I have proved next, the solids
of the first group must lie beyond the Earth’s orbit, and those of
the second group within. . . . Thus, I was led to assign the Cube to
Saturn, the Tetrahedron to Jupiter, the Dodecahedron to Mars, the
Icosahedron to Venus, and the Octahedron to Mercury. . . .

To explain his theory, Kepler published a diagram showing spheres within
smaller and smaller Platonic solids. An outer sphere surrounds a cube.
Inside the cube is a sphere, followed by a tetrahedron, followed by another
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Johannes Kepler’s Platonic solid model of the solar system, published in Mys-

terium cosmographicum (1596).

sphere, followed by a dodecahedron, followed by a sphere, an icosa-
hedron, sphere, and finally a small inner octahedron. A planet may be
imagined as being embedded in each sphere that defines an orbit of a
planet.

As an example, the regular dodecahedron is situated between Mars
and Earth, the regular icosahedron between Earth and Venus, and the
regular octahedron between Venus and Mercury. For Kepler, the spheres
explained the spacing of the planets. With a few subtle compromises,
Kepler’s scheme worked fairly well as a rough approximation to what was
known about planetary orbits at the time.

Kepler supplemented this initial work with formulas that expressed
relationships between planetary periods and their distances from the Sun.
He understood that planets more distant from the Sun had longer periods
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TABLE 3 Platonic Solids

Platonic Solid F Shape of Faces NF V E Dual

Tetrahedron 4 Equilateral triangle 3 4 6 Tetrahedron

Cube 6 Square 3 8 12 Octahedron

Octahedron 8 Equilateral triangle 4 6 12 Cube

Dodecahedron 12 Regular Pentagon 3 20 30 Icosahedron

Icosahedron 20 Equilateral triangle 5 12 30 Dodecahedron

Abbreviations: F, number of faces; NF, number of faces at each vertex; V,
number of vertices; E, number of edges.

than those closer to the sun, which he felt was due to the diminution of the
Sun’s “driving force.” Owen Gingerich writes in the Dictionary of Scientific
Biography,

Although the principal idea of the Mysterium cosmographicum
was erroneous, Kepler established himself as the first . . . scientist to
demand physical explanations for celestial phenomena. Seldom in
history has so wrong a book been so seminal in directing the future
course of science.

For those readers interested in the precise properties of Platonic solids,
table 3 lists the name of each Platonic solid, the number of faces (F), face
shape, the number of faces at each vertex (NF), number of vertices (V),
number of edges (E), and the “dual,” that is, the Platonic solid that can be
inscribed within the outer solid by connecting the midpoints of the faces.

The Platonic solids were described by Plato in his Timaeus, circa
350 b.c. Pythagoras of Samos (582–507 b.c.), the famous Greek mathe-
matician and mystic, who lived in the time of Buddha and Confucius, was
aware of three of the five regular polyhedra (the cube, tetrahedron, and
dodecahedron). The shapes of some of the Platonic solids have been dis-
covered carved into ancient stones in Scotland and dated to approximately
2000 b.c.

In Mysterium cosmographicum, Kepler resurrected the ancient Greek
idea that the heavens were ruled by simple, geometrical laws. In 1597,
Kepler sent Mysterium cosmographicum to Galileo, but Galileo replied
that he read only the Preface. He also sent a copy to Tycho Brahe, who
said that Kepler’s notion of nesting polyhedrons was clever speculation.
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Let’s return to a discussion of Kepler’s personal life. In 1596, he mar-
ried Barbara Müller, twice widowed before they had met. Gingerich says:

The initial happiness of the marriage gradually dissolved as he real-
ized that his wife understood nothing of his work—“fat, confused,
and simple-minded” was Kepler’s later description of her. The early
death of his first two children grieved him deeply.

In 1600, Kepler started to work for Brahe as part of the research staff in
Brahe’s castle observatory near Prague. Here, Kepler studied the orbit of
Mars. When Brahe died in 1601, Kepler was appointed to Brahe’s position
of imperial mathematician. Kepler continued to wonder how the Sun could
exert an influence on the planets, and he came to think of the Sun as
somehow producing a magnetic “emanation” that drove the planets in
their orbits. For Kepler, the universe was like a clockwork in which all
of the motions arose from a magnetic force, “just as in a clock, all motions
arise from a very simple weight.” Over the next few years, Kepler arrived
at his famous three laws of planetary motion, never understanding the
nature of gravity that Newton would further elucidate years later.

In 1605, Kepler published an article on a new star (a nova) that
appeared in the sky. In his 1606 book De stella nova, he speculated on
the astrological significance of the star, which he believed had appeared
in order to (1) convert the Indians of America, (2) herald the return of
Jesus, or (3) mark the downfall of Islam. In 1609, he published Astronomia
nova, in which he described his theories on planetary orbits, which are now
called Kepler’s first two laws of planetary motion.

In 1611, his wife Barbara Müller died from typhus, and two years
later, Kepler married the 24-year-old Susanna Reuttinger. Being a famous
astronomer must have been quite an allure for women in Kepler’s time.
Gingerich writes of Kepler’s letter to a nobleman:

Kepler details his slate of eleven candidates for marriage and
explains how God had led him back to [woman] number five,
who had evidently been considered beneath him by his family and
friends. The marriage was successful, far happier than the first; but
of their seven children, five died in infancy or childhood.

In his five-part book Harmonice mundi (1618), Kepler established his
grand cosmic vision that involved music (e.g., musical harmonies and
intervals), geometry (e.g., polygons and polyhedrons), astronomy (e.g.,
Kepler’s Third Law), and astrology (e.g., the position of planets had the
power to influence the soul). In Harmonice mundi, he likened the ocean
tides to the breathing of a gigantic organism. So excited was Kepler by his
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book that he said in Harmonice mundi, “I yield freely to the sacred frenzy.”
He wrote that the book was “to be read now or by posterity, it matters not.
It can wait a century for a reader, as God himself has waited six thousand
years for a witness.”

In 1627, he published Tabulae rudolphinae, which contained tables
of astronomical data that were used by astronomers for more than a
hundred years. The book also included Brahe’s catalogue of hundreds of
star positions.

Kepler’s science-fiction work was Somnium, which described a fantasy
journey of a young Icelander named Duracotus to the Moon. Kepler had
actually written the piece in 1609 and sent copies of the manuscript to
colleagues. Because the book contained conversations with a demon, the
witch-hunters made this known at his mother’s witchcraft trial. In 1634,
four years after Kepler’s death, his son Ludwig Kepler finally published
Somnium.

In Somnium, the seventeenth-century astronauts are made more com-
fortable during the process of liftoff from Earth by being put to sleep
with opiates. Their limbs are arranged so as to minimize physical stress of
acceleration. The inhabitants of the moon resemble large serpents with a
spongy, porous skin. Somnium does not contain mathematics, but Kepler
provided many notes that contained astronomical calculations to accom-
pany the fiction.

Kepler died in Regensburg in 1630. His grave was destroyed two years
later because of the Thirty Years War. Today, nothing remains of the
tomb, but scientists have honored him by naming a lunar crater after him.
The crater has a diameter of 31 kilometers, and its name was approved
in 1935 by the International Astronomical Union General Assembly. A
crater on Mars has also been named after Kepler.

Today we remember Kepler not only for his Three Laws of Plane-
tary Motion but also for a number of famous equations. For example,
Kepler’s Orbital Equation can be expressed as M = E − e × sin E, where
e is the eccentricity of an elliptical planetary orbit, M the mean angular
motion about the sun (sometimes called the “mean anomaly”), and E is
the auxiliary angle (sometimes called the “eccentric anomaly”). Kepler’s
equation gives the relation between the polar coordinates of a planet
and the time elapsed from a given initial point. Kepler’s Log Equation,
related to logarithms that are used today, can be expressed in modern
notation as

logKepler(x) = lim
n→∞ 2n

[
1 −

( x
105

) 1
2n

]
· 105

In Matter in Motion, Ernest Abers and Charles F. Kennel suggest that
Kepler could not have achieved his scientific accomplishments without
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reliance on experimental data obtained by others; nevertheless, Kepler’s
laws had a profound effect on science and reinforced the growing belief
that mathematics could be used to explain a vast yet orderly universe:

One man had the imagination and extraordinary patience to extract
from Tycho Brahe’s mountain of observations a truly simple picture
of the planets’ motions. . . . Kepler worked with whatever portions
of Brahe’s data he could cajole out of the Imperial Mathemati-
cian. . . . Kepler would have remained merely an eccentric genius
had his flights of speculative fancy not been confronted by Tycho’s
hard facts. From their brief and tempestuous encounter came a new
cosmic order.
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INTERLUDE: CONVERSATION STARTERS

The Christians know that the mathematical principles,
according to which the corporeal world was to be created,
are coeternal with God. Geometry has supplied God with
the models for the creation of the world. Within the
image of God it has passed into man, and was certainly
not received within through the eyes.
—Johannes Kepler, Harmonice mundi (Harmony of the

World), 1619

The search [for physical laws and particles may] be over
for now, placed on hold for the next civilization with the
temerity to believe that people, pawns in the ultimate
chess game, are smart enough to figure out the rules.
—George Johnson, “Why Is Fundamental Physics So

Messy?” WIRED magazine, February, 2007
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Galileo loved a fight, and he took to calling his opponents
“mental pygmies” and “hardly deserving to be called
human beings.” Two professors at his university hadn’t
even deigned to peer through his telescope. When one
of them died a little later, Galileo wrote that he “did not
choose to see my celestial trifles while he was on earth;
perhaps he would do so now that he has gone to heaven.”
—James C. Davis, The Human Story

Galileo refused to give Kepler one of his telescopes,
although he gave them to many political heads of the
world. . . . Galileo wrote his discoveries to Kepler only in
anagrams, so that Kepler could not understand them,
but Galileo later could prove that these were his dis-
coveries. After this, Galileo broke off all further contact
with Kepler. He totally ignored Kepler’s famous book
Astronomia Nova with the vital proposal of elliptical
orbits. . . .
—Thomas Schirrmacher, “The Galileo Affair: History or

Heroic Hagiography?” Technical Journal, April, 2000

The system which Galileo advocated was the ortho-
dox Copernican system . . . nearly a century before Kepler
threw out the epicycles. . . . Incapable of acknowledg-
ing that any of his contemporaries had a share in the
progress of astronomy, Galileo blindly and indeed sui-
cidally ignored Kepler’s work to the end, persisting in
the futile attempt to bludgeon the world into accepting
a Ferris wheel with forty-eight epicycles as “rigorously
demonstrated” physical reality.
—Arthur Koestler, The Sleepwalkers: A History of Man’s

Changing Vision of the Universe
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SNELL’S LAW OF REFRACTION

Netherlands, 1621. The angle of refraction of light that travels
between two media depends on the refractive indices of the media
and is described quantitatively by Snell’s Law.

Cross Reference: Johannes Kepler and Maxwell’s Equations.

During the year that Snell discovered his law, the English
attempted to colonize Nova Scotia and Newfoundland, and pota-
toes were planted for the first time in Germany. The Mayflower
sailed from Plymouth colony in North America on a return trip
to England.

Light traveling through air bends, or refracts, when it passes into another
material such as glass. When waves such as light waves are refracted,
they experience a change in the direction of propagation due to a change
in their velocities. Refraction typically occurs when a ray of light passes
from one medium to another, and every known material slows light
relative to its speed in a vacuum. In particular, the refraction of light
occurs at the boundary between the media (e.g., between air and water),
at which point the phase velocity of the wave changes, and the light
changes direction of travel. Additionally, the wavelength of light changes
at the interface between media, but the frequency of the light remains
constant.

To understand the concept of phase velocity, imagine a sinusoidal wave
made of a piece of wood and sliding to the right. The phase velocity is
simply the ordinary speed with which the wooden wave is moving. Now
imagine a wave in a pond, in which a leaf on the surface is oscillating
vertically as the wave passes. In this case, the wave pattern moves to the
right with phase velocity vp, just as with the wooden wave, but the leaf may
have no lateral motion at all.

I like to demonstrate refraction to young people by placing my finger
into my aquarium filled with large fish. Because air has a refractive index
of 1.0003, and water has a refractive index of 1.33, when my guests look
at my straight finger that is partially submerged in the water, the finger
appears to bend abruptly at the surface of the water. Before the fish bite
my finger, I explain to my guests that this apparent bending is due to the
bending of light rays as they move from the water to the air. I then scribble
Snell’s Law on a napkin,

n1 sin(θ1) = n2 sin(θ2),



and explain how the law is used to calculate the degree to which light is
refracted when traveling from air to water. (You can demonstrate this
more safely with a pencil in a glass of water.) Here, n1 and n2 are the
refractive indices of media 1 and 2. The angle between the incident light
and a line perpendicular to the interface is called the angle of incidence,
θ1. The light ray continues from medium 1 into medium 2 and leaves
the boundary between the media with an angle θ2 to a line that is per-
pendicular to the boundary. This second angle is known as the angle of
refraction.

Recall that refraction refers to the bending of a wave when it enters a
medium where its speed changes. When light passes from a “fast medium”
to a “slow medium,” refraction bends the light ray toward the normal (the
imaginary perpendicular line) to the boundary between the two media.
The amount of bending depends on n1 and n2 and is described quantita-
tively by Snell’s Law.

The refractive index n of water, glass, air, or any material is the factor
by which the phase velocity of electromagnetic radiation is slowed in that
material, relative to its velocity in a vacuum. n depends on the wavelength
of radiation under study. Some example values for n at a wavelength of
589.3 nm are vacuum, 1; air, 1.00029; liquid water, 1.333; glass, 1.5–1.9; and
diamond, 2.419.

The law of reflection, which in simplified form states that the angle of
reflection of a light ray from a surface is equal to the angle of incidence, and
the law of refraction can be derived from James Clerk Maxwell’s equations
of electricity and magnetism and generally hold for a wide region of the
electromagnetic spectrum. The laws can also be derived from simpler
theories of light, such as those discussed by the Dutch physicist Christiaan
Huygens (1629–1695) in 1678. Huygens used geometrical constructions to
indicate where a given wavefront will be at any time.

Refraction has numerous applications today. For example, a convex
lens makes use of refraction to cause parallel light rays to converge.
Without the refraction of light by the lenses in our eyes, we could not
see properly, and no traditional lenses for cameras would exist. Seismic
waves—for example, the waves of energy caused by the sudden breaking
of subterranean rock—change speed within Earth and are bent when they
encounter interfaces between materials in accordance with Snell’s Law.
Geologists can investigate the layers within Earth by studying the behavior
of refracted and reflected waves.

When a beam of light is transmitted from a material with high index of
refraction to one of low index, the beam can, under some conditions, be
totally reflected. This optical phenomenon is usually called total internal
reflection, and it occurs when light is refracted at a medium boundary to
such an extent that it is reflected back. Such would be the case in certain
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kinds of optical tubes in which the light enters at one end remains trapped
inside until it emerges from the other end.

You can use Snell’s Law to understand and calculate the condition
necessary for total internal reflection. First, set the refracted angle θ2 to
90◦, and then calculate the incident angle. Because we cannot refract the
light by more than 90◦, under this condition, all of the light will reflect
for angles of incidence greater than the angle that gives refraction at
90◦.

The properties of a cut diamond provide an additional example of total
internal reflection. Beams of light are reflected within a properly shaped
diamond crystal so that the diamond sparkles and often emits light in the
direction of the observer’s eye. In other words, the cut of the diamond
makes use of total internal reflections so that a large portion of the rays
entering the diamond will internally reflect within the diamond until they
leave at specific upper faces in order to give diamond its bright sparkle. A
light ray will often undergo total internal reflection several times before
finally refracting out of the diamond.

Total internal reflections makes it possible to confine light so that it
travels along a fiber made of the appropriate material, and thus the fiber
can pipe light around corners. For example, an optical fiber may resemble
a glass “hair” that is so thin that once light enters one end, it can never
strike the inside walls at less than the critical angle that causes total internal
reflection. The light undergoes total internal reflection each time it strikes
the surface of the fiber and finally exits at the end of the fiber. Fiber optic
cables are used to transmit telephone and computer signals and have many
advantages over traditional electrical wires. For example, the optical fibers
can carry more information in a smaller cable faster than wires can, and
the fibers are not sensitive to stray electromagnetic fields in the vicinity
of the fibers. Optical fibers have facilitated an explosion in worldwide
communications during the last twenty years and enabled the proliferating
use of the Internet.

Fiber optics has also been used in medicine as a way to allow physicians
to look inside the body with minimal invasion. Some endoscopes have
made use of two fiber optic lines. An “image fiber” is surrounded by
“light fibers” that carry light down to the end to illuminate the tissue of
interest. In other words, two separate fiber bundles exist in certain flexible
endoscopes, one for viewing and one for light transmission.

Total internal reflection also plays a role in mirages, such as those
that may appear above asphalt or deserts on a hot day. In particular, an
observer can sometimes see inverted images of the landscape and nearby
trees as if they were reflected in a pool of water. Air close to the ground
is hotter than the air farther away and has a lower refractive index than
the lower temperature air. Light traveling downward from any point on
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an object may be refracted away from the normal, and as it passes near
the ground it is totally reflected at a layer of lower refractive index. The
refracted light enters the observer’s eye and can give the appearance of an
image that is below the surface of the ground.

Until the year 2001, all known materials had a positive index of refrac-
tion. However, in 2001, scientists from the University of California at San
Diego described an unusual composite material that had a negative index,
essentially reversing Snell’s Law. This odd material is a mix of fiberglass,
copper rings, and wires that is capable of focusing light in novel ways. Early
tests revealed, for example, that microwaves emerged from the material in
the exact opposite direction from that predicted by Snell’s Law. Physicists
Sheldon Schultz, David R. Smith, and Richard A. Shelby hypothesize that
the new material is more than a physical curiosity because it may one
day lead to the development of novel antennas and other electromagnetic
devices. In theory, a sheet of negative-index material could act as a super-
lens to create images of exceptional detail.

Although most early experiments with these kinds of exotic mate-
rials were performed with microwaves, in 2007 a team led by Henri
Lezec of the California Institute of Technology in Pasadena achieved
negative refraction for visible light. In order to create an object that
acted as if it were made of negatively refracting material, Lezec’s team
built a prism of layered metals perforated by a maze of nanoscale
channels.

This was the first time that physicists had devised a way to make visible
light travel in a direction opposite from the way it traditionally bends when
passing from one material to another. Some physicists suggest that the
phenomenon may someday lead to optical microscopes for imaging objects
as small as molecules and for creating cloaking devices that render objects
invisible.

In 2005, Akhlesh Lakhtakia of Pennsylvania State University and Tom
Mackay of the University of Edinburgh determined that negative refrac-
tion around a rotating black hole can change the apparent location of stars
as viewed from Earth—at least in theory. In other words, a traditional
material like glass or water is not required to cause refraction; for example,
the space around such a black hole can have refractive properties and can
have a negative index of refraction that causes light to refract in a direction
opposite from traditional materials.

In 2007, researchers created a “superblack” surface that was virtu-
ally free of reflections. Ordinarily, light reflects from a surface when it
strikes the boundary between two materials that have different refrac-
tive indices. The greater the difference between the refractive indices
of two materials, the more light is reflected. To prevent such reflec-
tions in their exotic material, a research team at Rensselaer Polytechnic
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Institute in Troy, New York, created a multilayer surface composed of
nanoscale filaments. The topmost surface layer had a refractive index of
1.05, which is close to air’s index of 1.0. The researchers’ especially low-
reflection coating works for wavelengths between near ultraviolet and near
infrared.

Willebrord Snell, also known as Snellius, Snell, Snel van Royen, or
Willebrord van Snel van Royen (1580–1626), Dutch astronomer and
mathematician famous for his Law of Refraction.

CURIOSITY FILE: Snell’s biggest contribution to science, Snell’s Law of
Refraction, was not published until almost seventy years after he died.
• Sophisticated fishermen use the term “Snell’s Window” when referring
to angles above a lake that are within a fish’s vision. Fishermen avoid being
seen by fish by staying outside this window, the dimensions of which are
controlled by Snell’s Law. • Raindrops create rainbows via refraction.
Because various colors of light have different wavelengths, the colors refract
differently when they pass through the water. A rainbow is actually a circle
centered on a point directly opposite the sun from the observer; however,
the observer does not see the full circle because the landscape gets in
the way.

Snell’s law may be derived from Fermat’s principle, which
states that the light travels the path which takes the least
time. . . . In a classic analogy by Feynman, the area of
lower refractive index is replaced by a beach, the area of
higher refractive index by the sea, and the fastest way for
a rescuer on the beach to get to a drowning person in the
sea is to run along a path that follows Snell’s law.
—“Snell’s Law,” Wikipedia

In 1621, a really smart guy with a really funny name
(Willebrord Snell) figured out, through careful experi-
mentation, that the angles between the surface normal
and the original and bent light are related mathemati-
cally.
—Mason McCuskey, Special Effects Game Programming

with DirectX

Willebrord Snell was born in Leiden in the Netherlands. His father was a
mathematics professor. Although Snell studied law, he was fascinated by
mathematics and in 1600 began teaching mathematics at the University of
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Leiden. Shortly thereafter, he met such famous contemporaries as Tycho
Brahe and Johannes Kepler.

In 1602, he studied law in Paris, and a few years later he produced his
first major work related to science—a Latin translation of Simon Stevin’s
(1548–1620) Wisconstighe Ghedachtenissen (Mathematical Memoirs,
1605–1608). Stevin was a Flemish mathematician and engineer whose
memoirs contained his treatises on mathematics, mechanics, the theory
of music, bookkeeping, optics, astronomy, and geography. In 1608,
Snell’s translation was titled Hypomnemata mathematica (Mathematical
Memoranda).

In 1608, Snell married, and over the course of his life had eighteen
children, only three of whom survived to adulthood. In 1613, Snell suc-
ceeded his father as professor of mathematics at the University of Leiden.
In 1615, he investigated a new method of finding the radius of Earth,
which involved a triangulation method. His work Eratosthenes Batavus
(The Dutch Eratosthenes), published in 1617, describes his triangulation
approach that made use of his own house and two local towns, and the
distances between them, to aid in his computations. The value he obtained
for Earth’s circumference was 38,500 kilometers, which is relatively close
to the actual figure of 40,000 kilometers. He continued to improve upon
his calculations with the help of his students, but his early death in 1626
meant that his additional calculations were never formally published.

In 1619, he published papers on comets. Two years later, in Cyclo-
metricus, Snell reported his discovery of a new method for calculating
π by using polygons. In particular, he calculated π to thirty-four deci-
mal places by imagining a polygon with 1,073,741,824 sides, a method
that had been previously used by German mathematician Ludolph Van
Ceulen (1540–1610) but that had never been published. Snell improved
upon the traditional methods of calculating approximations of π by using
polygons, so that, for example, he could use 96-sided polygons to give
the digits of π correct to seven places while the classical method yielded
π only to two places. [For the mathematically inclined reader, Snell used
π ∼ (2/3)n sin(π/n) + (1/3)n tan(π/n) to estimate π, where n is the number
of sides of a polygon that circumscribes a circle.]

In 1624, Snell became an expert on navigation. He investigated a math-
ematical curve called the loxodrome, a path on the sphere that makes a
constant angle with the meridians. (A meridian corresponds to a great
circle on the surface of Earth that passes through the north and south
geographic poles.) His work on loxodromes and navigation is published
in Tiphys batavus. The loxodrome has the shape of a spherical spiral and
is a path taken while traveling when a magnetic compass needle is kept
pointing in a constant direction.
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Today, Snell is most famous for his research on the refraction of
light. Interest in refraction started centuries earlier. For example, Ptolemy
(85–165 a.d.), the most influential of Greek astronomers and geographers
of his time, constructed tables of angle of refraction and the correspond-
ing angle of incidence for various media. He estimated that the ratio of
the two angles was a constant for the two media forming an interface,
or, in other words, θ1/θ2 = k12. Johannes Kepler also made numerous
measurements of angles of incidence and corresponding angles of refrac-
tion for various media interfaces, but he was unable to find the precise
relationship between the angles he measured. In 1621, Snell, who was
then a professor of mathematics at Leiden, found that Ptolemy’s simple
equation was inaccurate, and he soon discovered the correct law through
his experiments. Unlike Ptolemy’s formulation, Snell’s Law employs
the ratio of the sines of the angles instead of the angles themselves.
Snell’s work was circulated privately in manuscript form and was not
published.

According to popular physics text books, such as Arnold Aron’s Devel-
opment of Concepts of Physics, the law apparently came to the attention
of both René Descartes and Huygens, and Descartes published the rela-
tion in modern form in 1637. Many believe that Descartes independently
derived the law, and in France, Snell’s Law is referred to as Descartes’s
Law.

As mentioned in the Introduction of this book, Snell’s Law was discov-
ered by various investigators over the centuries. Perhaps the first person to
understand the basic relationship expressed by Snell’s Law was the Ara-
bian mathematician Ibn Sahl in the year 984. In 1602, English astronomer
and mathematician Thomas Harriot also discovered the law, but he did
not publish his work. In 1621, Snell discovered the law; his unpublished
notes on the subject were discovered by the Dutch scholar and manuscript
collector Isaac Vossius around 1662, and Huygens discussed the law in his
Dioptrica, published in 1703.

Snell, never having formally published his work on the law, died just
a few years after the discovery. Descartes was actually the first person to
publish the law explicitly in terms of sine functions in his 1637 Discourse
on Method (which was originally published in Leiden in French together
with his work Dioptrique). Descartes did not experimentally verify the law.
Huygens and others actually accused Descartes of plagiarism, given that
Descartes visited Leiden during and after Snell’s work, but no evidence
exists to support this assertion.

A lunar crater named Snellius with a diameter of 82 kilometers was
named after Snell and approved in 1935 by the International Astronomical
Union General Assembly.
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INTERLUDE: CONVERSATION STARTERS

It seemed that Earth was being taken and remade, not by
ETs from another arm of the Milky Way . . . but by beings
from another universe where all the laws of nature were
radically different from those in this one. Humanity’s
reality, which operated on Einstein’s laws, and the utterly
different reality of humanity’s dispossessors had collided,
meshed at this Einstein intersection. All things seemed
possible now in this worst of all possible new worlds.
—Dean Koontz, The Taking

The notion of causation does not enter the equation of
Snell’s law. There is no conditional dependence, no tem-
poral asymmetry between cause and effect expressed in
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this law. The incoming beam does not cause the refrac-
tion. It can be asked: “What causes the planets to perform
Keplerian elliptical orbits”? “What causes light beams to
follow Snell’s Law”? . . . In Kepler’s Laws and Snell’s Law
we find examples of deterministic relation, in classical
physics, without any causal component.
—Friedel Weinert, The Scientist As Philosopher: Philo-

sophical Consequences of Great Scientific Discoveries

Physicists had to invent words and phrases for concepts
far removed from everyday experience. It was their fash-
ion to avoid pure neologisms and instead to evoke, even
if feebly, some analogous commonplace. The alternative
was to name discoveries and equations after one another.
This they did also. But if you didn’t know it was physics
they were talking, you might very well worry about them.
—Carl Sagan, Contact

We may in fact regard geometry as the most ancient
branch of physics. Without it I would have been unable
to formulate the theory of relativity.
—Albert Einstein, in his address “Geometry and Experi-

ence” to the Prussian Academy of Sciences, 1921
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HOOKE’S LAW OF ELASTICITY

England, 1660. The size of a material deformation is directly pro-
portional to the deforming force.

Cross Reference: Newton’s Law of Universal Gravitation and
Boyle’s Gas Law.

During the year that Hooke discovered his law, Dutch peas-
ants (Boers) settled in South Africa, and water closets arrived
in England from France. The Irish natural philosopher Robert
Boyle described his research showing that the removal of air
from a chamber extinguishes a flame and kills small animals,
which suggested that combustion and respiration may be related
processes.

Hooke’s Law of Elasticity states that if an object, such as a metal rod or
spring, is elongated by some distance, x, the restoring force F exerted by
the object is proportional to x:

F = −kx

Here, k is a constant of proportionality that is often referred to as the
spring constant when Hooke’s Law is applied to springs. Hooke’s Law is
an approximation that applies for certain materials, such as steel, which
are called Hookean materials because they obey Hooke’s Law under a
significant range of conditions. For other materials, such as aluminum,
Hooke’s Law has a more restricted use that applies only to a portion of the
elastic range of the material. Rubber objects are non-Hookean because of
their very complex responses to applied forces. For example, the stiffness
of rubber is very sensitive to temperature and the rate at which a force is
applied.

Students most often encounter Hooke’s Law in their study of springs
where the law relates the force F , exerted by the spring, to the distance x
that the spring is stretched. The spring constant k is measured in force per
length. The negative sign in F = −kx indicates that the force exerted by
the spring opposes the direction of displacement. For example, if we were
to pull the end of a spring to the right, the spring exerts a “restoring” force
to the left. The displacement of the spring refers to its displacement from
equilibrium position at x = 0.

The spring constant provides an indication of the stiffness of the spring.
A large value for k indicates that the spring is stiff, whereas a low value
for k means that the spring is loose. As another example, consider a mass
hanging from a spring. The initial position of the end of the spring is



located at, for example, 0.300 meters. When a 0.200 kilogram mass is added
to the end of the spring, the spring is stretched to a new location at 0.330
meters. Therefore, the displacement is 0.030 meters. The restorative force
of the spring must balance the weight of the added mass. For this example,
the weight is m × g = 1.96 N, where N stands for newtons. We can then
determine an approximate value for the spring constant k, given that the
spring required 1.96 N to move it a distance of 0.030 meters. Thus, k =
1.96/0.030 = 65.33 N/m.

Hooke’s Law is most accurate for small deformations of an object. The
law is sometimes expressed in terms of stress (the force within a material
that develops as a result of the externally applied force) and strain (the
deformation produced by the stress). Stress is proportional to strain for
small values of stress. Note also that the value of k depends on the material
that composes the object and usually on the dimensions and shape of the
object. When considered in terms of stress and strain, Hooke’s Law is
often formulated as stress/strain = E, where E is the modulus of elasticity,
also known as Young’s modulus, which, for example, may be measured in
pounds per square inch.

We have been discussing movements and forces in one direction.
French mathematician Augustin Louis Cauchy (1789–1857) generalized
Hooke’s Law to three-dimensional forces and elastic bodies, and this more
complicated formulation relies on six components of stress and six compo-
nents of strain. The stress-strain relationship forms a 36-component stress–
strain tensor when written in matrix form.

If a metal is lightly stressed, a temporary deformation may be achieved
by an elastic displacement of the atoms in the three-dimensional lattice.
Removal of the stress results in a return of the metal to its original shape
and dimensions.

Robert Hooke (1635–1702), English physicist and polymath famous for
Hooke’s Law of Elasticity and a variety of experimental and theoretical
work.

CURIOSITY FILE: Hooke was one of the first proponents of biological
evolution during a time when many learned people relied on the book
of Genesis and were confused by the existence of fossils. • Many of
Hooke’s inventions have been lost, partly due to Isaac Newton’s dislike
for the man. In fact, Newton had Hooke’s portrait removed from the
Royal Society and attempted to have Hooke’s Royal Society papers burned.
• Hooke’s design for a marine chronometer was rediscovered in 1950
at the Library of Trinity College, Cambridge. • Hooke’s remains were
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exhumed in the eighteenth century, and their present location is shrouded in
mystery. • Hooke invented an early form of hearing aid called the oto-
cousticon. • In 2006, the Royal Society purchased a seventeenth-century
manuscript by Hooke for $1.75 million. The manuscript was filled with 500
pages of notes recorded during Royal Society meetings. In the notes, Hooke
castigates his rivals Newton and Robert Boyle, whom he claims stole his
ideas. Hooke also wrote that Dutch microscopicst Anton van Leeuwenhoek
found “a vast number of small animals in his Excrements which were most
abounding when he was troubled with a Looseness and very few or none
when he was well.”

Robert Hooke is one of the most neglected natural
philosophers of all time. The inventor of . . . the iris
diaphragm in cameras, the universal joint used in motor
vehicles, the balance wheel in a watch, the originator
of the word “cell” in biology, he was . . . architect, exper-
imenter, [and astronomer]—yet is known mostly for
Hooke’s Law. He was Europe’s last Renaissance man,
and England’s Leonardo.
—Robert Hooke Science Centre, www.roberthooke.

org.uk

Hooke was an unattractive man, disfigured [by smallpox],
orphaned at 13 years of age [by a suicidal father], robbed
of credit for his greatest inspirations and ideas, with many
of his creations almost certainly willfully destroyed or lost
after his death in 1703.
—Maurice Smith, “Robert Hooke: The Inspirational

Father of Modern Science in England”

The tendency to flit from idea to insight without pause
was Hooke’s innate characteristic. . . . He pours out a con-
tinuous stream of brilliant ideas.
—Richard Westfall, “Robert Hooke,” in Dictionary of

Scientific Biography

Instruments enlarge the senses and make them more pre-
cise and reliable; Hooke speaks of “supplying of their
infirmities with instruments, and . . . the adding of artificial
organs to the natural.” He included here not only the
obvious examples like microscopes and telescopes, but
also instruments related . . . to magnetism . . . to investigate
a phenomenon not directly sensible at all.
—J. A. Bennett, “Robert Hooke as Mechanic and Nat-

ural Philosopher”
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Robert Hooke was born on the Isle of Wight, a British island close to
the southern coast of England. His father was religious and expected his
son to enter the ministry. However, because Hooke was a sickly child,
with constant headaches, he was not expected to reach adulthood, and
his parents decided not to bother educating him. Left to pursue his own
interests, Hooke fell in love with mechanical contraptions such as toys and
clocks. When he was young, he created a wooden clock and an intricate
model of a fully rigged ship with working guns.

In 1648, Hooke’s father, who was afflicted with jaundice, decided that
he did not wish to suffer any longer, and he hanged himself. Given that
Hooke was an excellent drawer, the rest of his family decided that he
should move to London to become an apprentice to a portrait painter.

Hooke eventually lost interest in art because he wanted a more compre-
hensive education. He enrolled in Westminster School, where he devoured
the contents of the six books of Euclid’s Elements during the first week of
school. He learned Latin, Greek, and some Hebrew and was an excep-
tional organist.

In 1653, he entered Christ College, Oxford, where he studied astron-
omy and mechanics. During his life, Hooke’s interests ranged far and wide,
covering such topics as physics, astronomy, chemistry, biology, geology,
architecture, and even naval technology. He often had so many ideas in
his head that he simultaneously worked on numerous projects in different
fields.

In 1655, Hooke was employed by Robert Boyle to help construct an air
pump that Boyle used to conduct the experiments necessary to formulate
Boyle’s Gas Law. Some historians of science suggest that it is possible that
it was Hooke who formally stated Boyle’s Law, but Hooke’s precise role
in the experiments is unclear.

At the same time that he was working with Boyle on gases, Hooke also
worked on clocks, particularly those that could keep fairly accurate time
while at sea. Realizing that the pendulum clock could hardly be used on a
rocking ship, he suggested that “springs instead of gravity” be used to drive
the clock mechanism. Beginning his experiments around 1658, Hooke
constructed a clock with a spiral spring and an improved escapement, that
is, the mechanical device that regulates movement.

In 1660, at the same time he worked on clocks, Hooke discovered
what we now call Hooke’s Law of Elasticity, which, among other things,
describes the variation of tension with extension in an elastic clock spring.
However, he made his law public only in 1678. Although Hooke’s Law
may not appear to be a profound discovery, it seems that no one before
him stated the law explicitly.

Hooke, along with Italian astronomer Giovanni Domenico Cassini
(1625–1712) and Dutch mathematical physicist Christiaan Huygens
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Flea, from Robert Hooke’s Micrographia, published in 1665.

(1629–1695), was among the first astronomers to carefully observe the
surface of Jupiter. In 1664, Hooke reported a small spot on the biggest
Jovian belt, which he believed to be a permanent feature of Jupiter and
not simply the shadow of a moon.

In 1665, Hooke became professor of geometry at Gresham College,
London. The position gave him living space at the college and required
him to give lectures in both English and Latin. He was required to be
unmarried during his stay at the college.

In 1665 he published Micrographia, a book that featured breathtaking
microscopic observations and biological speculation on specimens that
ranged from plants to fleas. Hooke was the first to coin the word “cell”
to describe the basic units of all living things. His choice was motivated
by his observations of plant cells that reminded him of “cellula,” which
were quarters in which monks lived. When describing his microscopic
observation of thin slices of cork, he wrote in Micrographia:

I could exceedingly plainly perceive it to be all perforated and
porous, much like a Honey-comb, but that the pores of it were not
regular. . . . these pores, or cells, . . . were indeed the first microscopi-
cal pores I ever saw, and perhaps, that were ever seen, for I had not
met with any Writer or Person, that had made any mention of them
before this. . . .
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About this magnificent work, Robert Westfall writes in the Dictionary
of Scientific Biography:

Robert Hooke’s Micrographia remains one of the masterpieces of
seventeenth century science, [presenting] a bouquet of observations
with courses from the mineral, animal and vegetable kingdoms.
Above all, the book suggested what the microscope could do for
biological science.

Robert Hooke was also a Surveyor to the City of London and helped
to rebuild London after the Great Fire in 1666. He was a famous architect
and designed many buildings such as the Bethlem Royal Hospital and the
Royal College of Physicians. The dome in St. Paul’s Cathedral in London
used Hooke’s method of construction.

Hooke was also fascinated by fossils and geology. His fellow scientists
had proposed a number of theories to explain the origin of fossils. One
strange but commonly held theory suggested that fossils grew within Earth,
somewhat like the incubation of an embryo in the womb. A mysterious
“shaping force” could create the images of living creatures within stones.
Hooke was the first person to use a microscope to study fossils, and he
observed that the structures of petrified wood and fossil seashells bore a
striking similarity to actual wood and shells. In Micrographia, he compared
petrified wood to rotten wood and concluded that wood could be turned
to stone by a gradual process:

This petrify’d Wood having lain in some place where it was well
soak’d with petrifying water (that is, such water as is well impreg-
nated with stony and earthy particles) did by degrees separate abun-
dance of stony particles from the permeating water, which stony
particles, being by means of the fluid vehicle convey’d, not only into
the Microscopical pores . . . but also into the pores or Interstitia . . . of
that part of the Wood, which through the Microscope, appears most
solid. . . .

He also believed that many fossils represented extinct creatures:
“There have been many other Species of Creatures in former Ages, of
which we can find none at present; and that ’tis not unlikely also but
that there may be divers new kinds now, which have not been from the
beginning.”

The public was fascinated by Micrographia, because it provided a new
look at familiar objects such as a fine needle point that looked like a
rough carrot under the microscope. The observations of molds and insects
(including a flea, louse, a bee stinger, and an eye of a fly) provided some
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of the most spectacular images and stimulated the imagination of both
scientists and lay people.

Hooke’s contributions to the field of geology are extolled in Ellen
Drake’s Restless Genius: Robert Hooke and His Earthly Thoughts:

The few geologists who have read Robert Hooke’s Discourse of
Earthquakes have been astonished by his almost clairvoyant pos-
tulations concerning the formation of geomorphological features,
the origin and usefulness of fossils, biological evolution, and all the
dynamic changes that constantly take place on this planet. . . . Hooke
was therefore important in the history of Earth science, as he was in
the development of many other fields of scientific and technological
endeavor.

Hooke was intrigued by the science of respiration and the workings
of the lungs. In one experiment, he was placed in a sealed vessel, from
which the air was gradually pumped! I have not been able to ascertain
the precise purpose of this experiment, but he damaged his ears and expe-
rienced deafness in the process. Most likely, Hooke’s aim was to study,
in a general fashion, the effect of low atmospheric pressure on a human
being.

He also opened the chest of a dog, destroyed the motion of its lungs,
and then used a bellows to provide a stream of air that passed through the
lungs in order to better understand the function of the lungs in the process
of respiration.

As discussed above, Hooke was an extremely prolific inventor in the
area of clocks and probably invented the balance spring that coils and
uncoils with a natural periodicity. He investigated the colors of mem-
branes and of thin plates of mica. He invented or improved meteorological
instruments such as the barometer (for measuring atmospheric pressure),
anemometer (for measuring wind velocity), and hygrometer (for measur-
ing humidity). His invention of the hygrometer stemmed from his obser-
vations of goat beard hairs that would bend when dry and straighten when
wet. Despite his facility with invention, Hooke was sometimes unhappy
with the credit he received. For example, Jim Bennett writes in “Robert
Hooke as Mechanic and Natural Philosopher” that “Hooke’s later lectures
are punctuated by bitter outbursts on the fate of inventors—reviled and
ridiculed, plagued by difficulties and conservatism, denied any benefit
from their work, in the end only to see their inventions carried off by
others.”

We can discuss additional examples of Hooke’s innovations. For exam-
ple, he suggested that scientists use thermometers that assigned 0 degrees
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to the freezing temperature of water. He invented the air pump in a form
that lasted for many years. He constructed the most powerful microscope
at the time, which achieved a 30-fold magnification, as well as the first
practical universal joint and the first Gregorian reflecting telescope (a tele-
scope with a parabolic primary mirror). He was the first person in history
to discover a binary star, that is, two stars orbiting about a common center
of mass. Hooke also postulated the inverse-square principle of gravity but
lacked the mathematical know-how to prove it. Although Hooke did not
discover the Law of Universal Gravitation, he did appear to contribute to
Newton’s thinking on the subject.

Hooke and Newton disliked each other for many years. For example,
Newton was furious when, in 1672, Hooke criticized Newton’s demon-
stration of the use of prisms to split white light into its various colored
components. In 1679, as mentioned above, Hooke mused to Newton about
a possible inverse-square principle of gravitation, but when Newton pub-
lished his Principia mathematica in 1687, he did not credit Hooke. Regard-
ing the inverse-square principle, Newton told Hooke, “Merely because one
says something might be so, it does not follow that it has been proved that
it is.”

In addition to this snub by Newton, 1687 was a particularly sad and
frustrating year for Hooke. Hooke’s niece, with whom he had a romantic
relationship, died this year, and Hooke’s health quickly declined.

Biographer Richard Westfall writes in the Dictionary of Scientific
Biography,

His frame was badly twisted. Add to his wretched appearance,
wretched health. He was a dedicated hypochondriac who never
permitted himself the luxury of feeling well for the length of a full
day. Hooke’s spiny character was nicely proportioned to the daily
torment of his existence.

Today, some physicians have speculated that Hooke was inflicted with
scoliosis, a crippling degenerative disease that causes an unnatural cur-
vature of the spine. Hooke finally died on March 3, 1703, having been
blind from diabetes and bedridden the last year of his life. He left behind
his huge library of more than 3,000 books in Latin, French, and Italian.
Although he was financially well off from the work he performed as
a surveyor, he had never married. Today, the location of his grave is
unknown. A lunar crater with a diameter of 36 kilometers was named
after Hooke and approved in 1935 by the International Astronomical
Union General Assembly. A crater on Mars has also been named after
Hooke.
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Stephen Inwood, author of The Forgotten Genius: The Biography of
Robert Hooke 1635–1703, describes the final scene of Hooke’s death:

Dr. Robert Hooke, Gresham Professor of Geometry and Curator of
Experiments for the Royal Society, lay dead on his bed. In death, as
in life, he was not an attractive sight. His ragged clothes were twisted
about his emaciated body like a winding sheet, and the lice were so
thick on his corpse that “there was no coming near him.” Hooke’s
property passed to his next of kin (probably his cousin), Elizabeth
Stephens, an illiterate woman whose signature was a pirate’s
hook.

Despite all of Hooke’s achievements, Lisa Jardine writes in The Curi-
ous Life of Robert Hooke that he is not remembered for much today:

He is most likely to be remembered, though, as a boastful,
cantankerous, physically misshapen know-all, who was somehow
involved with the early Royal Society and was Sir Isaac New-
ton’s sworn enemy. . . . Although his name crops up regularly in
English seventeenth-century histories of ideas, from anatomical
dissection to cartography, and from architecture to scientific
instrument-making, no single major discovery or monument (apart
from the law of elasticity) is any longer securely attributed to him.
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INTERLUDE: CONVERSATION STARTERS

A flock of sheep consisted of several individual sheep and
was a flock only by convention—the quality of flockness
was put on it by humans—it existed only in some human’s
mind as a perception. Yet Hooke had found that the
human body was made up of cells—therefore, just as
much an aggregate as a flock of sheep. Did this mean that
the body, too, was just a figment of perception?
—Neal Stephenson, Quicksilver

The universe we inhabit, and its operational principles,
exist independently of our observation or understanding;
mathematical models of the universe . . . are descriptive
tools that exist only in our minds. Mathematics is at root a
formal description of orderliness, and since the universe
is orderly (at least on scales of space-time . . . which [we
can] observe), it should come as no surprise that the real
world is well modeled mathematically.
—Keith Backman, “The Danger of Mathematical Mod-

els,” Science, October 20, 2006

In the beginning, God said the four-dimensional diver-
gence of an antisymmetric, second rank tensor equals
zero, and there was Light, and it was good.
—Message on a Berkeley University T-shirt, as told by

Michio Kaku, “Parallel Universes, the Matrix, and
Superintelligence,” KurzweilAI.net

The core of science is not a mathematical model; it is
intellectual honesty.
—Sam Harris, La Jolla meeting, “Beyond Belief 2006:

Science, Religion, Reason, and Survival,” November
2006

I don’t believe there are any fundamental laws or any
final theory. I think the only laws we’ll ever find are the
ones we impose on nature by the way we look at it.
—David Ambrose, Superstition

If we live in a simulated reality, we should expect occa-
sional sudden glitches, small drifts in the supposed con-
stants and laws of Nature over time, and a dawning real-
ization that the flaws of Nature are as important as the
laws of Nature for our understanding of true reality.
—John Barrow, “Living in a Simulated Universe”
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As a Jew, I have no problem whatsoever believing in
intelligent design. . . . I chose to believe that evolution was
packaged with the original matter that resulted in the big
bang. The “designer” can no longer intervene because he
is held by the laws of the universe he willed.
—Marysia Meylan, New York Times
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BOYLE’S GAS LAW

Ireland, 1662. The pressure of a gas varies inversely as its volume
at constant temperature.

Cross Reference: Robert Hooke, Charles’s Gas Law, Avogadro’s Gas
Law, Dalton’s Law of Partial Pressures, Graham’s Law of Effusion,
and the Ideal Gas Law.

In 1662, Charles II sold the harbor city of Dunkirk to France
for £400,000, and the last silver pennies were minted in London.
The British merchant John Graunt published the first book on
statistics. The book contained the London Life Table, the first
table showing the ages at which people are likely to die in a
city. Graunt’s work was a starting point for both statistics and
demography.

In 1662, Robert Boyle—Irish chemist, physicist, and inventor—studied
the relationship between the pressure P and the volume V of a gas in a
container held at a constant temperature. Boyle observed that the product
of the pressure and volume are nearly constant:

P × V = C

This relationship between pressure and volume is called Boyle’s Law in his
honor. For an example application, suppose we have a gas confined in a jar
with a piston at the top. The initial state of the gas has a volume of 5.0 cubic
meters, and the pressure is 1.0 kilopascal. While holding the temperature
and amount of gas (number of moles) constant, we add weights to the
top of the piston to increase the pressure. (The concept of mole is more
fully explained in the entry on Avogadro’s Gas Law.) When the pressure
reaches 4.0 kilopascals, we find that the volume has decreased to 1.25 cubic
meters. The product of pressure and volume remains a constant: 5 m3 ×
1 kPa = 1.25 m3× 4 kPa.

Note that Boyle’s Law is sometimes called the Boyle-Mariotte Law,
because French physicist Edme Mariotte (1620–1684) discovered the same
law independently of Boyle but did not publish it until 1676. Here are
Boyle’s exact words on his own experiments with air that led to Boyle’s
Law, from the second edition of New Experiments Physico-Mechanicall,
Touching The Spring of the Air, and Its Effects:

The pressures and expansions [are] in reciprocal propor-
tion. . . . Common air, when reduced to half its wonted extent,
obtained near about twice as forcible a spring as it had before, so



this thus compressed air being further thrust into half this narrow
room, obtained thereby a spring about as strong again as that it last
had, and consequently four times as strong as that of the common
air.

An ordinary syringe provides another example of a practical applica-
tion of Boyle’s Law. When a physician pushes the plunger on a syringe,
he decreases the volume inside the syringe, increasing the pressure and
causing the medicine to be injected. A balloon inflated at sea level will
expand as it rises in the atmosphere and encounters decreased pressure.
Similarly, when we inhale, our diaphragms move downward, increasing the
lung volume and reducing the pressure so that air flows into the lungs. In a
sense, Boyle’s Law keeps us alive with each breath we take.

Boyle’s Law is most accurate for an ideal gas, which consists of identical
particles of negligible volume, with no intermolecular forces, and with
atoms or molecules that collide elastically with the walls of the container.
Real gases obey Boyle’s Law at sufficiently low pressures, and the approxi-
mation is often sufficiently accurate for practical purposes when describing
real gases.

Scuba divers learn about Boyle’s Law because it helps to explain what
happens during ascent and descent with respect to the lungs, mask, and
buoyancy control device (BCD). For example, as a person descends, pres-
sure increases, causing any air volume to decrease. Divers notice that
their BCDs appear to deflate, and the pressure in the airspace behind the
ears changes. To equalize the ear space, air must flow through the diver’s
Eustachian tubes to compensate for the reduction in air volume.

Other gas laws in this book describe the relationship between temper-
ature, pressure, and volume of gases. If we consider Avogadro’s Law, we
can derive the Ideal Gas Law, PV = nRT, from these other gas laws. Here,
P is the pressure, V is the volume, n is the number of moles of gas, R is the
ideal gas constant (usually in units of L-atm/mol-K or Pa-m3/mol-K), and
T is the temperature in degrees kelvin.

Other important gas laws discussed in this book include Charles’s Gas
Law, Dalton’s Law of Partial Pressures, and Graham’s Law of Effusion.
No real gas obeys these gas laws exactly, because, for example, these laws
assume that gas particles are much smaller than the distance between
particles, and therefore the volume of a gas is assumed to be mostly empty
space and the volume of the gas molecules themselves to be negligible.
These laws also assume that there is no force of attraction between gas
molecules or between the molecules and the walls of the container. To
account for some of the complexities of actual gases, the formula PV =
nRT can be rewritten as a more realistic Van der Waals Equation:
(P + an2/V2)(V − nb) = nRT, where a is a constant used to correct for
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intermolecular attractive forces that may exist, and b is a constant to
correct for volume of individual gas molecules. For example, for helium,
a = 0.034 L2-atm/mol2 and b = 0.024 L/mol. For ammonia (NH3), a = 4.17
L2-atm/mol2 and b = 0.037 L/mol. Deviations from ideal gases are greatest
when the intermolecular attractive forces of gas molecules are greatest
and/or when the mass (and subsequently volume) of gas molecules is large.

Robert Boyle (1626–1691), Irish natural philosopher, famous for his
work on the properties of gases and for his support of the “corpuscular”
view of matter that was a precursor to the modern theory of chemical
elements.

CURIOSITY FILE: Boyle conducted research in alchemy—his goal was not
only to transmute base metals into gold but also to attract angels. For Boyle,
alchemy was both pure science and a defense against growing numbers
of atheists. • Boyle proved that sound transmission was impossible in a
vacuum.

Boyle is charitable to ingenious men that are in want, and
foreign chemists have had large proof of his bounty, for
he will not spare for cost to get any rare secret. At his
own cost and charges he got translated and printed the
New Testament in Arabic, to send into the Mahometan
countries.
—John Aubrey, Brief Lives

Boyle’s interest seems to have been fueled more by his
constant desire to acquire knowledge of God.
—J. J. MacIntosh, “Robert Boyle,” Stanford Encyclope-

dia of Philosophy

Robert Boyle was born at Lismore Castle in Munster, Ireland—the four-
teenth child of the wealthy Richard Boyle, First Earl of Cork. Boyle wrote
of his father, who was probably the richest man in Great Britain, “He, by
God’s blessing on his prosperous industry, from very inconsiderable begin-
nings, built so plentiful and so eminent a fortune, that his prosperity has
found many admirers, but few parallels.” Boyle’s father had constructed
mills, founded towns, and establishing ironworks and other industries.

As a child, Boyle learned to speak Latin and French, and at age 8 he was
sent to Eton College. After spending a few years at the college, he traveled
abroad with a French tutor. In Italy, Boyle had the honor of meeting the
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aging astronomer Galileo. Boyle cherished this meeting, and it provided
an impetus for Boyle to discover more about workings of the world.

Boyle was tutored privately in practical mathematics and other areas of
a liberal education. He also became interested in medicine and chemistry.

In 1654, Boyle joined a small group of eminent English scientists, math-
ematicians, and philosophers who had been meeting weekly in London
and in Oxford since 1645. In 1662, the group became the Royal Society,
which exists today as the oldest continuous scientific society in the world.
The Society’s motto, Nullius in Verba, means “Nothing in Words,” which
suggests that science must be experimentally based.

Boyle had many interests. As just one example, in 1654, he displayed
his fascination with the organ systems of fish when he wrote to a friend:

I am exercising myself in making anatomical dissections of living
animals: wherein I have satisfied myself of the circulation of the
blood . . . and have seen (especially in the dissections of fishes) more
of the variety and contrivances of nature, and the majesty and wis-
dom of her author, than all the books I ever read in my life could
give me convincing notions of.

However, he was a little squeamish about dissections, and his physiological
studies were hampered by the “tenderness of his nature,” which kept
him from doing many anatomical dissections, especially of living animals,
though he knew this kind of work would be “most instructing.”

Boyle wrote on many subjects, including theology, hydrostatics, philos-
ophy, and other areas of science. Although his first love was chemistry,
his first published scientific book, New Experiments Physico-Mechanicall,
Touching the Spring of the Air and Its Effects (1660), was on pneumatics
(the use of pressurized gases to do work). The text of New Experiments
was the result of three years of experimenting using an air pump with the
assistance of Robert Hooke, the English experimental philosopher. Hooke
designed the apparatus, and Boyle used it to make several discoveries—
for example, that a flame required air and that sound did not travel in
a vacuum. In particular, he showed that the sound of a watch in a bell
jar grew fainter as the air was pumped out. The second edition of New
Experiments, published in 1662, contained the pressure–volume inverse
relationship which today we call Boyle’s Law.

He also performed various other experiments:

� He proved that many fruits and vegetables contain air and carbon
dioxide.

� He discovered new chemical reactions and substances. For example,
he produced hydrogen from steel filings and a strong mineral acid.
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� He found that certain plant extracts can be used to distinguish acids
from bases. For example, he observed that all acids turned the blue
syrup of violets red, and that all alkalies turned syrup of violets
green.

� He studied the force that freezing water can produce as it expands.

Boyle emphasized the application of mathematics to the study of chem-
istry, a field that he believed exhibited complexity merely as a result of
simple mathematical laws applied to fundamental particles. Today, Boyle
is most famous for his law that states that if the volume of a gas is
decreased, the pressure increases proportionally. Realizing that his results
could be explained if all gases were made of tiny particles, Boyle tried
to construct a universal corpuscular theory of chemistry. In his 1661 The
Sceptical Chymist, Boyle denounced the Aristotelian theory of the four
elements (earth, air, fire, and water) and developed the concept of primary
particles that came together to produce corpuscles.

Although Boyle believed that the universe could be understood using
mechanical principles, he also believed that this mechanical model was
not counter to a belief in God or that it somehow downgraded God to a
mere mechanic. According to Boyle, a God who could create a mechanical
universe that obeyed laws was to be revered more than a God who created
a universe without scientific laws. Boyle had also come to believe that
angels were created “before the visible World . . . was half completed,” but,
in contrast, God created new human souls daily and worked a “physical
miracle” to attach them to their respective bodies.

Boyle never married, and from the age of 41 lived in his sister
Katherine’s house, where he frequently had visitors. Before he died, he
specified that his money should be used to found the Boyle lectures
that were intended to refute atheism and religions that competed with
Christianity.

Firm in his belief in Christianity, Boyle wanted the words of the Bible to
spread throughout the world; thus, he ensured that the Bible was translated
into a variety of languages, such as Turkish and various Native American
languages. He wrote, “To convert Infidels to the Christian Religion is a
work of great Charity and kindness to men.”

Boyle believed that angels existed, that they were generally smarter
than humans, and that it was possible that God’s primary goal in making
the universe was to provide a universe for the angels. This angel-centric
creation suggested that it was possible that the universe might be forever
too complex for humans to understand. He wrote in 1680, “We presume
too much of our own abilities, if we imagine that the omniscient God can
have no other Ends in the framing & managing of Things Corporeal, than
such as we Men can discover.”

b o y l e ’ s g a s l a w | 89



During the course of his life, he continually sought to improve the well-
being of humanity. For example, he invented ways to improve agriculture
and medicine and was interested in the possibilities of producing fresh
water from salt water and preserving food by vacuum packing.

The following is a sampling of some of his works. I selected titles from
a long list in order to give a sampling of the diversity of his interests:

� 1660, New Experiments Physico-Mechanicall: Touching the Spring
of the Air and Its Effects

� 1661, The Sceptical Chymist
� 1663, Experiments and Considerations upon Colours, with

Observations on a Diamond That Shines in the Dark
� 1666, Hydrostatical Paradoxes
� 1670, Cosmical Qualities of Things
� 1664, Excellence of Theology Compared with Natural Philosophy
� 1675, Some Considerations about the Reconcileableness of Reason

and Religion, with a Discourse about the Possibility of the
Resurrection

A lunar crater with a diameter of 57 kilometers was named after Boyle
and approved in 1970 by the International Astronomical Union Gen-
eral Assembly. Gilbert Burnet, Bishop of Salisbury, gave a sermon at
Boyle’s funeral that emphasized Boyle’s love for both religion and science.
According to Burnet, Boyle, like several other scientists of his era,

directed all their enquiries into Nature to the Honour of its great
Maker: And have joined two things, that how much soever they
may seem related, yet have been found so seldom together, that
the World has been tempted to think them inconsistent; A constant
looking into Nature, and yet more constant study of Religion, and a
Directing and improving of the one by the other.

Michael Hunter in Robert Boyle Reconsidered sums up Boyle’s life:

By any standards, Robert Boyle is one of the commanding figures of
seventeenth-century thought. His writings are remarkable for their
range, their significance, and their sheer quantity: during his life he
published over forty books. . . . In his blending of a commitment to
scientific work with deep piety, Boyle presented almost an ideal type
of “the Christian virtuoso,” . . . a great intellectual innovator who
was at the same time a paragon of godliness and probity.
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INTERLUDE: CONVERSATION STARTERS

It would be entirely wrong to suggest that science is some-
thing that knows everything already. Science proceeds by
having hunches, by making guesses, by having hypothe-
ses, sometimes inspired by poetic thoughts, by aesthetic
thoughts even, and then science goes about trying to
demonstrate it experimentally or observationally. And
that’s the beauty of science, that it has this imaginative
stage but then it goes on to the proving stage, the demon-
strating stage.
—Richard Dawkins, in John Brockman’s What We

Believe but Cannot Prove

If we go back to our checker game, the fundamental laws
are rules by which the checkers move. Mathematics may
be applied in the complex situation to figure out what in
given circumstances is a good move to make. But very
little mathematics is needed for the simple fundamental
character of the basic laws. They can be simply stated in
English for checkers.
—Richard Feynman, The Character of Physical Law

Biology occupies a position among the sciences at once
marginal and central. Marginal because—the living world
constituting but a tiny and very “special” part of the
universe—it does not seem likely that the study of living
beings will ever uncover general laws applicable outside
the biosphere. But if the ultimate aim of the whole of
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science is indeed, as I believe, to clarify man’s relation-
ship to the universe, then biology must be accorded a
central position. . . .
—Jacques Monod, Chance and Necessity

God, we are told, is not a puppet-master in regard either
to human actions or to the processes of the world. If we
are to exist in an environment where we can live lives
of productive work and consistent understanding . . . the
world has to have a regular order and pattern of its own.
Effects follow causes in a way that we can chart, and
so can make some attempt at coping with. So there is
something odd about expecting that God will constantly
step in if things are getting dangerous.
—Rowan Williams, “Of Course This Makes Us Doubt

God’s Existence,” Sunday Telegraph, January 2, 2005
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NEWTON’S LAWS OF MOTION,
GRAVITATION, AND COOLING

England, 1687 (a publication date for the laws of motion and grav-
itation), 1701 (for the law of cooling). Newton’s Laws of Motion
concern relations between forces acting on objects and the motion
of these objects. His Law of Universal Gravitation states that
objects attract one another with a force that varies as the product
of the masses of the objects and inversely as the square of the
distance between the objects. His Law of Cooling states that the
rate of heat loss of a body is proportional to the difference in
temperatures between the body and its surroundings.

Cross Reference: Robert Hooke, Johann Bernoulli, Kepler’s Laws
of Planetary Motion, Newton’s Law of Viscosity, and Einstein’s
General and Special Theories of Relativity.

In 1687, the men who were led by French explorer Robert Cave-
lier de La Salle murdered La Salle while they were desperately
searching for the mouth of the Mississippi River. Five years ear-
lier, La Salle had claimed the entire Mississippi basin for France.
According to the Catholic Encyclopedia, “La Salle’s schemes of
empire and of trade were far too vast for his own generation to
accomplish.”

NEWTON’S LAWS OF MOTION, 1687

Newton’s Laws of Motion revolutionized our basic concepts of physics and
how objects move in the universe. Dudley Williams and John Spangler
write in Physics for Science and Engineering:

These principles form the basis not only of classical dynamics but
of classical physics in general. Although they involve certain defini-
tions and can in a sense be regarded as axioms, Newton asserted that
they are based on quantitative observation and experiment; cer-
tainly, they cannot be derived from other more basic relationships.
The test of their validity involves predictions. . . . The validity of such
predictions was verified in every case for more than two centuries.

Aristotle’s view that a body could be kept in motion only by apply-
ing a force was accepted for more than a thousand years, until Newton



demolished this thinking with his First Law of Motion. Interestingly, Aris-
totle’s ideas did provide a reasonable explanation for his qualitative obser-
vations, but Galileo understood that rigorous measurements of positions
as a function of time required a better theory and a more accurate way
of looking at the world. Of Newton’s Laws of Motion, Ernest Abers and
Charles F. Kennel write in Matter in Motion:

It is a mark of Newton’s genius that of all the possible statements
about motion, he recognized that three and only three completely
define a logically consistent framework within which all problems
of motion can be analyzed quantitatively. These are Newton’s three
laws.

Newton’s First Law of Motion

(Law of Inertia)

The First Law states that bodies do not alter their motions unless forces
are applied to them. A body at rest stays at rest. A moving body continues
to travel with the same speed and direction unless acted upon by a net
force. In other words, an object such as a bowling ball traveling in uniform
motion (i.e., traveling in a straight line at a constant speed) will remain
traveling in uniform motion unless acted upon by a net force.

The term “net force” is important because an object is often acted upon
by numerous forces, but it will remain at a constant velocity whenever the
forces are balanced. For example, a coffee cup sitting on a table has con-
stant zero velocity because the downward force caused by the cup’s weight
is exactly counterbalanced by the upward force that the table applies to
the cup. The net force is zero. However, the cup will obviously move if I
suddenly unbalance the forces acting on it by giving it a push. Consider a
ball that is subject to a constant force of gravity. If I give the ball an initial
push on an infinitely long frictionless road, the ball will never stop rolling.
Of course, in reality, friction always exists between the ball, the surface of
the road, and the air molecules in the path of the ball.

According to the First Law, if an object has constant velocity, we
conclude there is no net external force. A state of rest is a special case
of constant velocity motion where the speed is 0. If a body’s velocity is
changing, we conclude that a net force is acting on the body.

Conceptually, the First Law of Motion would have been considered
quite novel before Newton’s era. As mentioned above, before the time
of Galileo, researchers believed that bodies, such as balls, would move
only as long as a force was applied to the body, and the body would stop
moving when the force was removed. (Of course, this made perfect sense
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to them, given that if one stops pushing a ball, it does indeed stop moving.
The ancients did not think of friction as a force.) A body was considered
in its “natural state” when not moving. Similarly, it was believed that
the application of a continual force was required in order to keep the
planets from coming to rest. However, if we view gravity as acting via a
gravitational force, this force only serves to change the direction of motion
of a planet or motion, but it is not required to keep a planet traveling at
a constant speed—assuming no frictional effects are caused by particles in
interplanetary space.

This law of motion should probably not be attributed solely to Newton,
even though it is commonly referred to as Newton’s First Law. Arnold
Arons notes in Development of Concepts of Physics:

In Newton’s day . . . [some erroneous ideas concerning] the physics
of motion continued to be taught from scholastic textbooks;
pedantry is slow to change in any era. But by the latter part of
the seventeenth century, Galileo’s conception of inertia, refined
and corrected, was accepted and taken for granted by most active,
productive physical scientists. . . . [However,] Newton set the law of
inertia at the head of the laws of motion and gave it the tone of a
proclamation of emancipation from scholastic theory.

In common usage, inertia usually refers to an object’s amount of resis-
tance to change in velocity. If it is not apparent to you that a moving
object does not “naturally” stop moving without an applied force, you
can imagine an experiment in which the face of a penny is sliding along a
smooth horizontal table. Obviously, the penny eventually slows down and
stops. Next, we add a thin film of oil to the surface, and the penny decreases
its speed at a slower rate and travels farther. If we use an even better lubri-
cant, the penny travels farther still. We can extrapolate this experiment
to a point in which all friction is gone in order to realize that the penny
would continue sliding along such an imaginary surface forever. In fact, an
external force would be needed to change the velocity of the sliding penny,
but no more force is needed for it to continue with constant velocity.

Newton’s Second Law of Motion

According to Newton’s Second Law of Motion, when a net force acts upon
an object, the rate at which the momentum changes is proportional to the
force applied. Today, we express this as

F = dp/dt,
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where p is the momentum, which is equal to the mass times the velocity of
the object; F is the applied force, and dp/dt is the rate of change in momen-
tum. (Bold letters indicate vector quantities that have both a magnitude
and direction.) Thus, force is simply defined in terms of momentum. Two
forces are equal if they cause the same rate of change in the momentum of
the object. Notice how the use of dp/dt does not assume that the mass of
the object is constant. In fact, the mass can change when we study problems
such as those involving a raindrop growing as it falls or a rocket expending
fuel as it travels.

The law also ensures that the direction of change in momentum caused
by a force is in the same direction as the force. For an object with constant
mass m, this law may be expressed succinctly as

F = ma,

where F is the net force and a is the acceleration (the rate of change of the
object’s velocity). The units of force are typically given in units of newtons
(N). One N is the magnitude of force acting on a body with a mass of one
kilogram when the particle has an acceleration of one meter per second
per second (m/s2).

For example, if a catapult exerts a constant force of 200 N on a stone of
mass 0.10 kilograms, then the acceleration of the stone is 2,000 m/s2 just as
it leaves the catapult. For a particular value of force, the smaller the mass,
the larger the acceleration.

If many forces act on a body, one can still use this formula to calculate
the size and direction of the resultant acceleration by first determining the
vector sum of all the forces F and using this vector in F = ma. If an object
falls to Earth with zero air resistance, the only force acting on the object
is its weight, which would produce a downward acceleration equal to the
acceleration of gravity (∼9.8 m/s2 near Earth’s surface).

Newton’s Third Law of Motion

Abers and Kennel write in Matter in Motion, “Newton’s first two laws
had been proposed in various forms by Galileo, Hooke, and Huygens.
Newton’s third law is completely original, and makes the laws of mechanics
logically complete.” According to Newton’s Third Law of Motion, for
every action, there is always an equal and opposite reaction. In other
words, all forces occur in pairs of forces that are equal in magnitude and
opposite in direction.

This law is perhaps most apparent when considering objects that touch:
The downward force of a spoon on the floor is equal to the upward force of
the floor on the spoon. The law also holds for objects that gravitationally
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attract one another. For example, a bird in flight actually pulls up on Earth
with the same force that Earth pulls down on the bird. If a person falls to
the ground, the person’s force on Earth is the same as Earth’s force on the
person. However, due to the much larger mass of Earth, Newton’s Second
Law predicts that the acceleration of Earth will be much smaller than the
person’s acceleration. In outer space, not only does a comet accelerate
toward the Sun, but the Sun accelerates toward the comet.

Notice how these examples of Newton’s Third Law employ forces of
the same kind. As another example, if a grassy lawn exerts a frictional force
on the accelerating tires of the toy wagon, Newton’s Third Law predicts
that a frictional force exists corresponding to the tires pushing backward
on the lawn. Newton himself gave an example in his own words: “If you
press a stone with your finger, the finger is also pressed by the stone. If a
horse draws a stone tied by a rope, the horse will be equally drawn back
towards the stone.”

The law is sometimes mathematically written as

FBA = −FBA.

If body A exerts a force FBA on body B, an equal but opposite force FBA

is exerted by body B on A.
One consequence of the Third Law is that the sum of the momenta

of two objects that exert force upon each other remains constant through
time. This statement assumes that no other forces are interacting with the
objects, and it applies reasonably well, for example, to the study of two
billiard balls just before and after collision. In fact, Newton studied the
momenta p1 and p2 of bodies 1 and 2 before and after collisions, and he
understood that the momentum was conserved such that the sum of p1 +
p2 was constant.

Newton’s Third Law even implies that when a basketball player throws
a basketball at the floor, Earth should move! However, the basketball
player does not observe Earth move for several reasons. For simplicity,
assume that the basketball weighs 1 kilogram and moves at 100 kilometers
an hour when it hits the basketball court floor that is coated with glue
so that the basketball sticks upon impact. The momentum of the ball just
before it hits the floor is p = mv = 100 kg · km/s. After the collision, Earth
acquires this momentum. Let’s calculate the change in Earth’s speed. Let
ME be the mass of Earth, and vE its change in speed. Then we have
100 = MEvE or vE = 100/ME. Given that the mass of Earth is very roughly
ME = 5.9742 × 1024 kilograms, the change in the speed of Earth is roughly
vE = 1/(5.9742 × 1022) km/h—a very small change indeed! In fact, this
speed is less than two billionths of a billionth of a centimeter per hour or
a speed equivalent to about a proton-width movement a year. Because the
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mass of Earth is so large, the tiny change in speed is immeasurable. In real-
ity, Earth is not moved at all by the basketball. The interaction between
the ball and Earth is dominated by countless other effects, including the
conversion of some of the energy of interaction to heating the floor at the
point of contact—and the prancing of animals, the crashing of raindrops,
and movement of ocean waves.

Today, if you ask your friends if the planets in our Solar System revolve
around the Sun, most will say yes. However, because of Newton’s Third
law (for every action there is an equal and opposite reaction), we know
that a planet does not does not orbit around a stationary Sun as Johannes
Kepler believed. Instead, Newton suggested that both the planet and the
Sun orbit around the common center of mass located between the planet
and the Sun, and this requires scientists to modify Kepler’s Third Law to
make it somewhat more accurate. However, Newton’s correction is small
because the Sun is much more massive than any of the planets.

For a large planet such as Jupiter, the common center point is actually
located outside of the surface of the Sun. Of course, when viewed from
an even more complete perspective, the situation becomes more complex.
Like all stars, the Sun itself moves through space. It’s fast—20 km/s (45,000
miles/hour) with respect to nearby stars. Think of the Sun as a Ferrari
that drags along nine planets in its interstellar race. When considering
the entire galaxy, the Sun also moves in a nearly circular orbit around the
galactic center—with a speed of 220 km/s.

Many physicists whom I consulted said that Newton’s Third Law was
the most novel and original of Newton’s three Laws of Motion. Arons
writes in Development of Concepts of Physics,

All the other concepts we have encountered had a prior history of
development and discussion, but historians can find no precedent
for Law III in the writings of other investigators, nor is there any
explicit indication of it in any of Newton’s own writings prior to the
Principia in 1687.

These three laws are the foundations of classical dynamics and were
mostly unquestioned until the early 1900s. Today, we know that when
objects have velocities approaching the speed of light, Newtonian dynam-
ics can fail and must be considered within the framework of Einstein’s
Special Theory of Relativity. In particular, for high-speed objects, momen-
tum is not simply the classical p = mv but a slightly more complicated
expression, namely, p = mv/(1 − v2/c2)

1/2, where c is the speed of light in
a vacuum. Similarly, the postulates of quantum theory become important
when considering the realm of the ultrasmall, such as size scales involving
atoms and subatomic particles.
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Technically speaking, the laws of motion are valid only in inertial refer-
ence frames, which are moving at constant velocity. Although the surface
of Earth is not an inertial reference frame—because Earth is rotating on
its axis and revolving around the Sun—for many real-world experiments,
the surface of Earth can be treated as inertial.

Newton’s genius was that he provided a complete system and frame-
work for our understanding of how the universe works for everyday
objects traveling at speeds we encounter in our daily lives. We still use
these laws for practical problems involving bullets, baseballs, and rockets.
While it is true that researchers such as Galileo made significant discov-
eries in classical mechanics, it was Newton who formulated a complete
system.

NEWTON’S LAW OF UNIVERSAL

GRAVITATION, 1687

Every material object attracts any other material object with a force that
varies directly as the product of the masses of the objects and inversely
as the square of the distance that separates the objects. Newton’s Law of
Universal Gravitation is usually written as follows for two point masses,
that is, idealized bodies whose size is very small compared to separation
distances:

F = G
m1m2

r2
,

where F is the magnitude of the gravitational force between the two
masses, G is the gravitational constant, m1 is the mass of one of the point
masses, m2 is the mass of the other point mass, and r is the distance
between the two masses. The value of G is usually given as 6.67 × 10−11

N·m2/kg2. Although Newton knew how, in theory, one could attempt to
measure G accurately, he lacked the precise instrumentation; however, he
did devise a proof for the constancy of G. Henry Cavendish, more than 100
years after the publication of Newton’s Principia, was able to determine a
good approximation using delicate torsion balances.

Gravitational interactions do not exist only between Earth and nearby
objects or between the Sun and other planets. Gravitational interactions
exist between all objects with an intensity that is proportional to the
product of their masses. Thus, as you read this book, you are gravi-
tationally attracted to it, and the book to you. Paul Tipler in Physics
writes:
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It is gravity that binds us to the Earth and that binds the Earth and
the other planets to the Solar System. The gravitational force plays
an important role in the evolution of stars and in the behavior of
galaxies. In a sense, it is gravity that holds the universe together.

Newton used this law to explain the motions of planets, which Kepler
described in a rigorous fashion but did not explain using the forces of
gravity. Newton justified his law, in part, by demonstrating that an inverse-
square force could cause elliptical orbits, thus deriving Kepler’s Laws of
Planetary Motion. Newton, however, never did understand the “cause”
of gravity and how it could propagate through the vacuum of space. Not
until the theories of Albert Einstein did we view gravity as a consequence
of curved space. (Of course, some scientists may similarly suggest that
Einstein did not understand the ultimate “cause” of curved space and
that most scientific explanations simply attempt to organized and predict
observed patterns.) In 1693, Newton admitted his lack of understand-
ing in a letter he wrote to the minister and theologian Richard Bentley
(1662–1742):

I have not yet been able to discover the cause of these properties
of gravity from phenomena, and I frame no hypotheses. . . . It is
enough that gravity does really exist and acts according to the laws
I have explained, and that it abundantly serves to account for all the
motions of celestial bodies. That one body may act upon another
at a distance through a vacuum without the mediation of anything
else, by and through which their action and force may be conveyed
from one another, is to me so great an absurdity that, I believe, no
man who has in philosophic matters a competent faculty of thinking
could ever fall into it.

Newton contemplated the possibility that some kind of magnetic-like
force held the planets to the Sun. French philosopher and scientist René
Descartes (1596–1650), one of his contemporaries, thought that giant
tornado-like forces made the planets spin around the Sun—the planets
were caught in the Sun’s whirlwind like little boats going round and round
in a maelstrom.

Today, astrologers sometimes suggest that the planetary arrangements
can influence our lives due to their gravitational effects. However, using
Newton’s Law of Universal Gravitation, we can show that the gravitational
pull from the planets on our bodies is very weak because of their great
distances. How could the arrangement of planets at the time of your
birth affect your temperament and interests, given that the doctor in the
delivery room had a much greater gravitational effect on you than Mars or
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Venus? If gravity were the force behind astrology, then the Moon would
dominate all the planets combined. Yet, astrologers do not give the Moon
a dominant role in their prognostications.

Returning our attention to Newton and the third book of his Principia,
we find that Newton used his gravitational law to explain the orbits of
planets and moons, the paths of comets, and the motion of the Moon as
perturbed by the gravity of the Sun. His gravitational calculations showed
him that many other possible paths for bodies in outer space existed in
addition to elliptical orbits. As discussed in the entry for Kepler’s Laws of
Planetary Motion, other paths in the shape of conic sections are possible,
depending on the speed of the object in a gravitational field. Some comets
travel on parabolic paths, looping around our Sun and never returning. If
the velocity of Earth were suddenly increased by a factor of roughly 1.4, its
elliptical orbit would become parabolic, and we would shoot off out of the
Solar System. How long could we survive if some cosmic hand gave us this
dreadful push?

Throughout history, Newton’s Law of Universal Gravitation allowed
scientists to make valuable predictions. For example, the law was used to
help discover the planet Neptune. For many years, scientists had observed
strange variations in the motion of Uranus. The French astronomer Urbain
Leverrier (1811–1877) and British astronomer John Couch Adams (1819–
1892) independently used Newton’s Law of Universal Gravitation to pre-
dict the existence of a more distant planet that was affecting the orbit of
Uranus. Neptune was discovered in 1864, traveling in an orbit close to its
predicted position. Arons writes in Development in Concepts of Physics
about the predictive and explanatory value provided by Newton’s Law of
Universal Gravitation:

The theory of gravitational forces, whose main hypothesis is the
attraction of all particles of matter for one another, yields the
derived law of universal gravitation, which in turn explains, as we
have seen, Kepler’s empirical laws and a wealth of other phenom-
ena. Since one purpose of any theory is this type of explanation and
summary, Newton’s theory strikes us as eminently satisfactory.

Note that Newton’s Law of Universal Gravitation applies to point masses
or objects that can be considered as point masses. For more complicated
shapes, the law is an approximation—and the distance r that is used in
the equation is usually not obvious. In examples that involve a uniform
spherical shell, the shell gives rise to gravitational forces outside the sphere
that are identical with the force exerted by a point mass at the center of
the sphere. More generally, an object with a spherically symmetric distri-
bution of mass exerts the same gravitational attraction on other objects
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as if all of the mass of the object were concentrated at a point at its
center.

If we want to accurately use this law for objects with various shapes, we
can regard each extended body as being made of numerous point masses,
and use integral calculus to compute the gravitational forces between such
oddly shaped objects. Interestingly, Newton’s Law of Universal Gravita-
tion is independent of the presence of other bodies in the space between
two objects, and there is no such thing as a “gravity screen” that shields the
gravitational attraction of one object for another.

Although we now know that Einstein’s General Theory of Relativity—
which represents gravitation as curved space—does a better job at describ-
ing motions in high gravitational fields (e.g., the revolution of Mercury
about the Sun), Newtonian mechanics still describes the world of ordinary
experience.

Einstein also suggested that gravitational effects move at the speed of
light. Thus, if the Sun were suddenly plucked from the Solar System, Earth
would not leave its orbit about the Sun until about eight minutes later, the
time required for light to travel from the Sun to Earth. Many physicists
today believe that gravitation must be quantized and take the form of
particles called gravitons, just as light takes the form of photons, which
are tiny quantum packets of electromagnetism.

Let’s review Einstein’s theory of gravity in slightly greater detail. In
1915, ten years after Einstein proclaimed his Special Theory of Relativity
(which suggested that distance and time are not absolute and that measure-
ments of the ticking rate of a clock depend on your motion with respect
to the clock), Einstein gave us his General Theory of Relativity, which
explained gravity from a new perspective. In particular, Einstein made
the startling suggestion that gravity is not really a force like other forces,
but results from the curvature of space-time caused by masses in space-
time. The result is that certain objects, such as the planet Mercury, have
slightly different trajectories in Newton’s and Einstein’s universe. In fact,
before Einstein’s General Theory of Relativity, the 1910 edition of the
Encyclopaedia Britannica actually stated that Newton’s Law of Universal
Gravitation has a relationship involving r2.0000001612 instead of r2 in order
to better predict the motions of the planet Mercury.

To best understand Einstein’s theory of gravity, consider that wherever
a mass exists in space, it warps space. Imagine a bowling ball sinking into
a rubber sheet. This is a convenient way to visualize what stars do to the
fabric of the universe. If you were to place a marble into the depression
formed by the stretched rubber sheet, and give the marble a sideways
push, it would orbit the bowling ball for a while, like a planet orbiting
the Sun. If you rolled a marble on the sheet far from the bowling ball—
where there is no obvious depression in the rubber sheet—the marble
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would not be affected. The warping of the rubber sheet by the bowling
ball is a metaphor for a star warping space. Physicists describe this with
the motto, “Matter makes space bend. Space tells matter how to move.”
Even light rays are bent by the curvature of space. As a result, the apparent
positions of stars that we see in the night sky can be far from their actual
positions.

Time is also distorted in regions of large masses, and, according to
Einstein, the very existence of time depends on the presence of space.
Einstein’s General Theory of Relativity can be used to understand how
gravity warps and slows time, and it explains why time moves slightly
slower for you in the basement of your house than on the top floor where
gravity is slightly weaker. Not only does General Relativity permit time
travel, but it actually seems to encourage time travel in strange ways that
I discuss in many of my books, such as Time: A Traveler’s Guide. All of
these theories are not speculations, but rather they have been verified by
experiments and observations.

I should point out that today a small number of physicists are explor-
ing a controversial alternative to Newton’s Law of Universal Gravitation
called modified Newtonian dynamics, or MOND, in order to explain cer-
tain mysteries of gravity at galactic scales. For many decades, astronomers
have realized that galaxies are spinning so quickly that they should tear
themselves apart, and these astronomers have postulated the existence of
dark matter in order to provide the additional gravity needed to hold galax-
ies together. Supporters of MOND suggest an alternate explanation—that
galaxies may stay intact not because of unseen matter but because gravity
itself does not weaken as suggested by the 1/r2 term in Newton’s Law of
Universal Gravitation. However, most astronomers feel that in order to
posit such a revolutionary change in our understanding of gravity, firmer
evidence is required than we have today.

Today, many physicists suggest that universes exist that are parallel to
ours, like layers in an onion, and that we might detect them by gravity
leaks from one layer to an adjacent layer. For example, light from dis-
tant stars might be distorted by the gravity of invisible objects residing
in parallel universes only millimeters away. Since 1997, scientists at the
University of Colorado at Boulder have conducted experiments to search
for these possible nearby universes. If they can observe deviations in the
inverse-square principle of Newton’s Law of Universal Gravitation, they
feel that this might be evidence for matter in parallel universes or in hidden
dimensions. The whole idea of multiple universes is not as far-fetched as it
may sound. According to a recent poll of seventy-two leading physicists
conducted by the American researcher David Raub, 58% of physicists
(including Stephen Hawking) believe in some form of multiple-universes
theory.
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NEWTON’S LAW OF COOLING, 1701

According to Newton’s Law of Cooling, the rate of heat loss of a body is
proportional to the difference in temperature between the body and its
surroundings. Today, we often write this law as

T(t) = Tenv + [T(0) − Tenv]e−kt ,

where T is the temperature, t is time, Tenv is the temperature of the envi-
ronment, T(0) is the initial temperature of the object, and k is a positive
constant. For example, imagine that you have a pot of boiling tomato soup
and place it in a sink of cold water kept at a constant 4◦C by running
water through the sink. You stir the soup as it cools. The rate of change
of the temperature of the soup is governed by T(0) = 100 and Tenv = 4,
so T(t) = 4 + 96e−kt . If we had an additional measurement, such as the
temperature of the soup after 5 minutes, we could calculate the value of
k and then have a complete equation that specifies the temperature of the
soup at any time t .

My more macabre teachers once explained to me that we could use
Newton’s Law of Cooling to find the time of death for a corpse discovered
in a motel room if we know the temperature of the room, which is assumed
to be constant. For example, you are called to a crime scene at the edge of
town, and you find a woman’s body lying on the carpet of some rundown
motel room. Her name is Monica. She is dead. Her corpse is at a temper-
ature of 80◦F. The temperature of the room is a cool 60◦F. An hour later,
the temperature of the corpse drops to 75◦F. This is all the information you
need to find the approximate time of Monica’s death if you assume she had
a normal body temperature of about 98.6◦F while alive.

In the case of Monica’s corpse, the time of death will only be approx-
imate. Newton’s Law of Cooling assumes a uniform temperature of the
cooling body. However, in reality, a human body is not uniformly warm,
and the skin is certainly cooler than the internal organs. Nevertheless,
Newton’s Law of Cooling gives a good approximation of the time of death
for an individual.

Isaac Newton (1642–1727), British mathematician and physicist famous
for his laws of motion, gravitation, and cooling, his theories on light and
color, and his development of calculus.

CURIOSITY FILE: When Newton’s body was exhumed, scientists discovered
that it contained large amounts of mercury, probably resulting from his
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research in alchemy. • Newton would have kept many of his discoveries to
himself had he not been coaxed by colleagues to publish. • As he became
older, Newton had many portraits painted and seemed concerned with
leaving the image of his face for posterity. • Newton believed that metals
could be considered “living opposites” of trees, growing underground
rather than above ground. • Many thousands of print and Internet sources
suggest that Diamond, Newton’s dog, jumped onto a table and knocked
over a candle, setting Newton’s papers on fire and destroying many years
worth of work. However, biographer Milo Keynes suggests that Newton
never owned a dog and that the story is probably apocryphal. • In the
year 628, the Indian astronomer Brahmagupta suggested that gravity was
a force of attraction. He used the Sanskrit term “gruhtvaakarshan” for
gravity.

Had Newton not been steeped in alchemical and other
magical learning, he would never have proposed forces
of attraction and repulsion between bodies as the major
feature of his physical system.
—John Henry, “Newton, Matter, and Magic,” in John

Fauvel et al.’s Let Newton Be!

Newton was the greatest genius that ever existed and
the most fortunate, for we cannot find more than once
a system of the world to establish.
—Joseph Louis Lagrange, Oeuvres de Lagrange, 1867

God gave . . . the Prophecies of the Old Testament, not to
gratify men’s curiosities by enabling them to foreknow
things, but that after they were fulfilled, they might be
interpreted by the event, and his own Providence, not the
Interpreters, be then manifested thereby to the world.
For the event of things predicted many ages before will
then be a convincing argument that the world is governed
by Providence.
—Isaac Newton, Observations upon the Prophecies of

Daniel and the Apocalypse of St. John, 1733

This law [of gravitation] has been called “the greatest
generalization achieved by the human mind”. . . . I am
interested not so much in the human mind as in the
marvel of a nature which can obey such an elegant and
simple law as this law of gravitation. Therefore our main
concentration will not be on how clever we are to have
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found it all out, but on how clever nature is to pay atten-
tion to it.
—Richard Feynman, The Character of Physical Law

What water is to a fish or air is to a bird, mathematics was
to Newton, the element through which he moved without
effort.
—Richard Westfall, “Newton’s Scientific Personality”

Isaac Newton was an English mathematician, physicist, and astronomer
who invented calculus, proved that white light was a mixture of colors,
explained the rainbow, built the first reflecting telescope, discovered the
binomial theorem, introduced polar coordinates, and showed the force
causing apples to fall is the same as the force that drives planetary motions
and produces tides. He was also author of treatises on Biblical subjects
such as Biblical prophecies. In fact, he devoted more time to the study of
the Bible, theology, and alchemy than to science—and he wrote more on
religion than he did on natural science.

Newton spent a major portion of his life analyzing ancient Biblical
texts, and his scientific discoveries are even more striking considering the
relative amount of time he devoted to them. Economist and philosopher
John Maynard Keynes (1883–1946), who studied Newton’s writings on
alchemy and authored a biographical essay on Newton, wrote “Newton
was not the first of the age of reason: he was the last of the magicians.”

Perhaps less well known is the fact that Newton was a creationist who
wanted to be remembered as much for his theological writings as for his
scientific and mathematical texts. Newton believed in a Christian unity as
opposed to a trinity. In particular, he believed that Jesus was created by
God as a mortal human and not as God incarnate, and he noted, “It is the
temper of the hot and superstitious part of mankind in matters of religion
ever to be fond of mysteries, and for that reason to like best what they
understand least.”

Some of Newton’s nontraditional Christian beliefs are echoed in the
faiths of America’s founding fathers. None of the first five U.S. presidents
was a conventional Christian. For example, John Adams, a Unitarian,
did not accept the notion of the trinity or the divinity of Christ. In 1804,
Thomas Jefferson used a razor to remove all passages of the King James
Version of the New Testament that had supernatural content—such as
the virgin birth, resurrection, or turning water into wine. About one-tenth
of the bible remained, which he pasted together and published as The
Philosophy of Jesus of Nazareth. Apparently, Jefferson admired Jesus as a
teacher and prophet but was not always interested in the cloak of divinity.
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Newton respected the Bible and accepted its account of Creation while
at the same time looking for various Bible codes and hidden messages.
He also wrote works that criticized various Biblical interpretations, such
as An Historical Account of Two Notable Corruptions of Scripture. He
determined that date of the crucifixion of Jesus Christ to be April 3, 33 a.d.,
a date accepted by some today. Newton developed calculus as a means
of describing motion, and perhaps for understanding the nature of God
through a clearer understanding of nature and reality.

Before addressing the events of his life, it is intriguing to achieve a
wider understanding of his diverse interests. An examination of the 1,752
books in Newton’s personal library after his death has verified his strong
interest in occult and religious subjects. The most complete breakdown
I have seen comes from John Harrison’s The Library of Isaac Newton,
which focuses on certain categories of his books and is summarized in
table 4. Notice that only about 12% of the books in the library deal with
the topics for which he is most famous today. He was indeed a biblical
fundamentalist, believing in the reality of angels, demons, and Satan. He
believed in a literal interpretation of Genesis and that Earth was only a
few thousand years old. Newton spent much of his life trying to prove that
the Old Testament is accurate history. His book on the Bible suggested
that Christianity took a wrong turn in the fourth century a.d., when the
first Council of Nicaea promoted erroneous doctrines on the nature of
Jesus.

table 4 Number of Books in Isaac Newton’s
Personal Library, by Topic

Topic Number of Books

Theology 477 (27.2%)

Alchemy 169 (9.6%)

Mathematics 126 (7.2%)

Physics 52 (3.0%)

Astronomy 33 (1.9%)

Source: John Harrison, The Library of Isaac
Newton (Cambridge, U.K.: Cambridge University
Press, 1978).
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One wonders how many more problems in physics Newton would have
solved if he had spent less time on his Biblical studies. Newton appears not
to have had the slightest interest in sex, never married, and, according to
his contemporaries, almost never laughed (although he sometimes smiled).
Newton suffered a massive mental breakdown, and some have conjec-
tured that throughout his life he had manic depression (bipolar disorder),
with alternating moods of sadness and happiness. Some recent historians
of science have suggested that Newton had Asperger syndrome, a high-
functioning form of autism. Milo Keynes writes in “The Personality of
Isaac Newton”:

Isaac Newton was a humorless, solitary, anxious, insecure, and pri-
vate man with obsessional traits. He was poor at human relation-
ships, such as the expression of gratitude, and held unorthodox and
heretical religious beliefs. He was clearly puritanical, with feelings
of guilt, and had little capacity for enjoyment—his only strong liking
appears to have been one for roast beef. . . . He never used the word
“love”. . . .

According to biographer Anthony Storr, “Newton’s preoccupation with
place seeking . . . may be traced to his ambition: his fear of being embroiled
with women to his almost total suppression of sexuality.”

Bill Bryson in A Short History of Nearly Everything focuses on some of
Newton’s quirks:

Newton was a decidedly odd figure . . . famously distracted (upon
swinging his feet out of bed in the morning he would reportedly
sometimes sit for hours, immobilized by the sudden rush of thoughts
to his head), and capable of the most riveting strangeness. . . . Once
he inserted a bodkin [a long leather sewing needle] into his eye
socket just to see what would happen.

Isaac Newton was born in Woolsthorpe-by-Colsterworth, England, on
Christmas Day in 1642, according to the calendar in use when he was
born. Today, we would give the date as January 4, 1643, according to the
corrected Gregorian calendar date now in use. Newton never knew his
father, also named Isaac Newton, who died three months before his son’s
birth. Newton’s father was illiterate and could not even sign his own name.
Richard Westfall writes of the year of Newton’s birth in Never at Rest: A
Biography of Isaac Newton:

Since Galileo, on whose discoveries much of Newton’s own career
in science would squarely rest, had died that year, a significance
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attaches itself to 1642. . . . Born in 1564, Galileo had lived nearly to
eighty. Newton would live nearly to eighty-five. Between them, they
virtually spanned the entire scientific revolution, the central core of
which their combined work constituted.

Newton was so small at birth that the villagers expected him to die. In the
first few years of his life, his neck was weak and required a neck brace to
give his head additional support.

Newton’s mother remarried when he was two and sent him away to be
raised by his grandmother. Newton always hated his mother and stepfather
and as a teenager threatened to burn them alive in their house.

While away from his mother’s home, Newton tended to be rather shy
and quiet. Michael Guillen notes in Five Equations That Changed the
World, “Whenever Newton did socialize, it was with girls; they were tickled
by the doll furniture and other toys he made for them using his customized
kit of miniature saws, hatchets, and hammers.”

When he went to the local Grantham’s Free Grammar School, his
teachers initially called him both idle and inattentive, and he had the next-
to-lowest rank in the entire school! However, later he decided to change
his standing in his class and made his way to first place. A teacher said of
18-year-old Newton, “His genius now begins to mount upwards apace and
shine out with more strength.”

In 1661, Newton entered Trinity College, Cambridge. Although his
mother was wealthy at this point in her life, she refused to pay for Newton’s
tuition, which forced Newton to earn his keep by emptying chamber pots
and grooming the hair of older, richer students. Like other lawgivers in this
book, his initial intent was to seek a law degree, but his interest in science
soon pushed aside everything else. Although he was shy among people, he
was not shy about performing outrageous experiments on himself—such
as the time when he wedged probes between his eye and his eye socket
“as near to the backside of his eyes as possible” so that he could better
understand the workings of the human visual system.

Newton’s interest in mathematics germinated in 1663 when he pur-
chased an astrology book and discovered that he could not understand the
mathematics in the book. He then voraciously tackled several geometry
and algebra books, and received his Bachelor’s Degree from Cambridge
in 1665. His mathematical prowess was not fully apparent at this point in
life—all it would take was a plague to release his inner genius.

In 1665, the Great Plague, also known as the Black Death, struck the
people of London. The plague germs were carried by fleas, which were
carried by rats. At first, authorities ignored the deaths in London, but as
summer approached, more people died, and people panicked. The rich left
the city for their estates in the country, and the merchants followed soon
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after. By June, the roads were flooded with people fleeing London. By
July, more than a thousand people died in London each week. Dogs and
cats were suspected to be carriers, so the Lord Mayor had an estimated
40,000 dogs and 200,000 cats killed. Alas, this caused an increase in the
rat population, so the germs spread more rapidly. An estimated 100,000
people died in London and its vicinities.

Without the Great Plague, Newton may never have discovered his great
laws. Cambridge closed the university in the summer of 1665, and during
this time Newton went home to Woolsthorpe. Here, in relative isolation,
he cogitated upon what he had learned at Cambridge. Newton returned
to Cambridge in March of 1666 when the school reopened after the plague
subsided over the winter. The plague reappeared, so Cambridge was closed
again in June of 1666 until April of 1667, when Newton again returned to
Trinity College.

Today, Newton’s biographers sometimes refer to the 1666 date as his
famous “annus mirabilis,” or year of miracles. During that year, according
to Newton’s later writings, he discovered the chromatic composition of
light and discovered the inverse-square principle of his Law of Universal
Gravitation. He established the foundations of differential and integral
calculus, several years before its independent discovery by German math-
ematician Gottfried Wilhelm Leibniz (1646–1716). However, upon critical
analysis, it is likely that 1666 may be a little early to anchor some of his
great ideas, and it was in Newton’s own self-interest to place his discoveries
as early as possible. It is more likely that some of his ideas on mechanics
did not fully gel until around 1685–1687, when he was actually composing
his book the Principia.

Nevertheless, Newton did indeed devote much of his time during the
plague to the intense study of mathematics and physics, and the seeds of
many of his greatest ideas started to take form. In a period of less than
two years, while Newton was still younger than 25, he began his important
advances in mathematics, optics, and astronomy.

Following his death, Newton’s draft letter to the biographer and
journalist Pierre Des Maizeaux (1673–1745) was found, and it describes
Newton’s recollections of his accomplishments during the plague years.
His letter first describes the year 1665, during which he says he invented
calculus and discovered methods for approximating mathematical series.
In 1666, he says he developed his theories of colors. He explains further
about his discovery of his Law of Universal Gravitation:

[In 1666] I began to think of gravity extending to the orb of the
Moon, and (having found out how to estimate the force with which
a globe revolving within a sphere presses the surface of the sphere)
from Kepler’s rule [Kepler’s Third Law] . . . , I deduced that the
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forces which keep the Planets in their Orbs must be reciprocally
as the squares of their distances from the centers about which they
revolve: and thereby compared the force requisite to keep the Moon
in her Orb with the force of gravity at the surface of the earth, and
found them answer pretty nearly. All this was in the two plague
years of 1665 and 1666. For in those days, I was in the prime of my
age of invention, and minded Mathematics and Philosophy more
than at any time since.

In other words, in 1666, Newton began to consider that Earth’s gravity
influenced the Moon, counterbalancing its centripetal force. From these
thoughts on centripetal force and Kepler’s Third Law of Planetary Motion,
Newton deduced the inverse-square principle.

In the field of mathematics, Newton is generally credited with the
discovery of the binomial theorem, an important formula giving the expan-
sion of powers of sums. Newton discovered what we now refer to as New-
ton’s identities (which describe the roots of a polynomial) and Newton’s
method (a procedure for finding approximations to the roots of a function).
In 1666, Newton also determined π to sixteen places using twenty-two
terms of this series:

π = 3
√

3
4

+ 24
(

1
12

− 1
5·25

− 1
28·27

− 1
72·29

− . . .

)

Regarding this queer formula, in 1666 he wrote, “I am ashamed to tell you
to how many figures I carried these computations, having no other business
at the time.”

In 1687, Newton finally published the Philosophiae naturalis principia
mathematica (Mathematical Principles of Natural Philosophy), now called
the Principia for brevity. During his writing of the Principia, Newton is said
to have spent eighteen months in which he often neglected to eat or sleep
and in which he sometimes remained motionless for hours lost in thought,
never leaving his room. Although Newton had thought about the behavior
of moving bodies and gravitation in 1666, his complete mathematical the-
ory was set down in these eighteen months of writing. According to Abers
and Kennel in Matter in Motion, from Newton’s pen suddenly burst forth

definitions, laws, theorems, the law of universal gravitation, the
explanation of Kepler’s three laws, the theory of motion in a vac-
uum, the theory of motions in fluids (a forerunner of modern aero-
dynamics), the theory of waves in fluids, the study of the tides and of
comets, a theory describing the small deviations of the earth’s shape
from a perfect sphere, an exact calculation of the precession of the
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equinoxes. . . . Single-handedly, Newton demonstrated that science
need not be qualitative, as it was for Aristotle, or mathematically
precise only about ideal situations, as it was for Galileo, but that it
could describe God’s real universe with great precision.

Book I of the Principia discusses the motions of objects in a vacuum,
subject to various forces. In this book, Newton states his three laws of
motion. Book II discusses the motion of fluids and the motions of objects
in resistive media, discussing, for example, how air resistance slows the fall
of a ball as it plummets to Earth. Newton discovered that the faster the
ball falls from a great height, the larger the force of air resistance. At some
point during the descent of the ball, the force of air resistance balances
the force of gravity and the ball stops accelerating. We are lucky to have
this effect, which prevents raindrops from hitting our skulls at hundreds of
miles per hour even though they have fallen for several miles.

Book III of the Principia discuses the force of gravity and how a mutual
attraction is exerted between any two masses, regardless of their sizes.
In Book III, Newton never explained how gravity propagated between
objects. According to Abers and Kennel,

Newton would guess the laws of physics, and then check his guess
by proving that the laws explain everything to which they are to
apply. Newton’s method does not penetrate to “ultimate” reality:
it merely strives to put the observed phenomena of nature into a
logically consistent order.

The Principia concludes with a prose hymn to God, because Newton envi-
sioned that the Principia was a testament both to science and to God, and
as much a contribution to science as to theology.

In his later letters to Minister Bentley, Newton explained why he
believed that an intelligent being created the cosmos. Newton marveled
at the fact that most of the objects that orbit the Sun are contained
with an “ecliptic” plane. Most planets are contained in the same plane as
Earth’s orbital plane, offset by just a few degrees. He reasoned that natural
processes could not create such behavior. This, he argued, was evidence of
design by a benevolent and artistic creator. Today, scientists believe that
the formation process of the Solar System naturally produced a disk of
material out of which formed the Sun and the planets.

Newton also suggested that God was responsible for giving the planets
their initial velocities in orbit, without which the planets would have fallen
into the Sun. What else could have given the planets just the right push to
ensure that they assumed concentric orbits? When he looked at the Solar
System and the stars in the sky, he simply saw too much order to neglect
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the evidence of the helping hand of God. In his book Opticks (1706), he
wrote:

Whence is it that the Sun and Planets gravitate toward one another,
without dense Matter between them? . . . What hinders the fixed
stars from falling upon one another? . . . Does it not appear from
Phenomena that there is a Being, incorporeal, living, intelligent,
omnipresent, who in infinite space . . . sees the things themselves
intimately and thoroughly perceives them, and comprehends them
wholly?

At one point in his life Newton thought of the universe as “God’s Sen-
sorium” in which the objects in the Universe—their motions and their
transformations—were the thoughts of God, literally the activities of His
mind. God’s thoughts were grand, and the speed at which God thought
determined the pace of the universe’s evolution.

Newton’s important contribution to the field of fluid dynamics involved
the development of calculus and his fundamental laws of physics. His name
is also attached to a linear relationship, involving stresses in certain kinds
of liquids. A “Newtonian fluid” flows like water. In particular, a Newtonian
fluid’s shear stress is linearly proportional to the velocity gradient in the
direction perpendicular to the plane of shear. In equation form, we have
τ = µ(dv/dx), where τ is the shear stress exerted by the fluid, µ is the fluid
viscosity and is considered a constant of proportionality, and dv/dx is the
velocity gradient. This is sometimes referred to as Newton’s Law of Vis-
cosity (1687). The viscosity of Newtonian fluids depends on temperature
and pressure but not on the forces acting on the fluid. On the other hand,
an example of a non-Newtonian fluid is the popular Silly Putty toy. It
bounces. It breaks like a solid when a rapid force is applied to it. It can
flow like a liquid. It appears to melt into a puddle over a long period of
time.

Quicksand is another example of a non-Newtonian fluid. If you should
someday find yourself in quicksand and move slowly, the quicksand will act
like a liquid and you will be able to escape more easily than if you move
around very quickly, because fast motions can cause the quicksand to act
more like a solid from which it is harder to escape.

Let us return to Newton’s years immediately after the Great Plague
and after he had returned to Cambridge—a period of time during which
his mathematical abilities started to become well known. In 1669, at the
age of 26, he became Lucasian Professor of Mathematics. (The current
Lucasian Professor of Mathematics is the famous physicist Stephen Hawk-
ing, who was appointed in 1980.) Newton’s interest in optics continued,
and he became convinced that white light was not the single entity that
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Aristotle believed it to be but rather was a mixture of many different rays
corresponding to different colors. The English physicist Robert Hooke
(see “Hooke’s Law of Elasticity,” above) criticized Newton’s work, which
filled Newton with a rage that seemed out of proportion to the comments
Hooke had made. As a result, Newton withheld publication of his Opticks
until after Hooke’s death in 1703—so that Newton could have the last word
on the subject of light and could avoid all arguments with Hooke. In 1704,
Newton’s Opticks was finally published. In this work, Newton discusses his
investigations of colors and the diffraction of light.

I should note that Book III of the Principia almost did not get pub-
lished. Hooke had claimed (perhaps with some justification) that the con-
tent of his letters written to Newton during 1679 and 1680 should justify
Hooke being acknowledged as playing a role in Newton’s discoveries
relating to gravity. Newton was so angry with Hooke that he threatened to
suppress Book III. Newton finally published the work, but systematically
deleted nearly every mention of Hooke’s name from the book. Hooke had
considered the idea of an inverse-square principle of gravity, but he did so
on intuitive grounds and without derivation as Newton had done.

In 1672, Newton was elected a fellow of the Royal Society. In the years
during which he was writing the Principia, his lecture skills at Cambridge
were evidently not impressive—often so few students went to hear New-
ton’s lectures that he read to the walls. According to William Bixby’s The
Universe of Galileo and Newton:

To some students, he was the personification of an absent-minded
professor. He was careless in his manner of dress, often appearing
before his students in a state of disarray. He was unconcerned with
externals—so much so that even if nobody attended one of his
classes, he would deliver his lecture with as much satisfaction as if
the hall had been crowded with listeners.

Newton had more than one nervous breakdown, and after suffering
one in 1693, he retired from research. Some have speculated that his
breakdown was caused by chemical poisoning as a result of his alchemy
experiments (also known as chrysopoeia, the attempt to turn other met-
als into gold) or, discussed above, that he simply suffered from clinical
depression or bipolar disorder. In 1696, Newton left Cambridge to take a
government position in London, becoming Warden of the Royal Mint. It is
interesting to note that Newton would spend more time at the mint than he
did as a productive scientist, and we can wonder how much more the world
would have gained had his depression not plagued him, and thus he might
have been able to spend more of his time at scientific research. At the mint,
he proposed measures to prevent counterfeiting of coins. Unscrupulous
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individuals sometimes trimmed the edges off coins in order to use the
clippings to create new coins. To prevent this trimming, Newton had the
mint create engraved edges, or serrations, on coins so that merchants could
easily confirm that their coins were intact. Today, many of our own coins
have ridged edges.

Legend has it that Newton sometimes put on a disguise and went into
bars and brothels where he would quietly listen to other people’s conversa-
tions in order to trap counterfeiters. One of the most famous counterfeiters
begged Newton for his life before he was hung, drawn, and quartered.

What are we to make of Newton’s total contribution to mathematics
and his mathematical abilities as a young man and later in his life? Accord-
ing to I. B. Cohen in the Dictionary of Scientific Biography,

Newton appears to have had no contact with higher mathematics
until . . . age 23. . . . [Yet] any summary of Newton’s contributions to
mathematics must take account not only of his fundamental work in
the calculus and other aspects of analysis—including infinite series
(and most notably the general binomial expansions)—but also his
activity in algebra and number theory, classical and analytical geom-
etry, finite differences, the classification of curves, methods of com-
putation and approximation, and even probability.

Newton’s mathematical prowess was still great, even in his later years.
One story suggests that in 1696, Swiss mathematician Johann Bernoulli
(1667–1748) (see “Bernoulli’s Law of Fluid Dynamics” in part II) posed
a set of difficult mathematical problems intended for mathematicians to
ponder in the coming century. Bernoulli’s challenge started,

I, Johann Bernoulli, address the most brilliant mathematicians in
the world. Nothing is more attractive to intelligent people than an
honest, challenging problem, whose possible solution will bestow
fame and remain as a lasting monument. . . . If someone communi-
cates to me the solution of the proposed problem, I shall publicly
declare him worthy of praise.

Newton received the list and, one evening after work as Master of the Mint,
chose a problem and solved it before going to bed. He gave the solution
to his secretary at the Royal Society and told him to send it to Bernoulli
anonymously. When Bernoulli saw the solution, he easily guessed that
Newton was the author, and said, “The lion is known by his claw.”

In 1701, Newton’s Law of Cooling was published anonymously in a
paper titled “Scala graduum caloris.” The law states that the rate of heat
loss of an object is proportional to the difference in temperatures between
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the object and its surroundings. Newton’s paper on cooling, published in
the Philosophical Transactions of the Royal Society, also focused on his
attempts to establish a temperature scale, using a thermometer containing
linseed oil.

In 1703 Newton was elected president of the Royal Society, and he was
knighted in 1705. His remaining years were often filled with rage as a result
of his argument with Leibniz as to who discovered calculus. Some have
speculated that Newton’s angry personality had its seeds in his childhood.
John Fauvel and colleagues in Let Newton Be! note, “This separation from
his mother, between the ages of three and ten, [was] crucial in helping to
form the suspicious, neurotic, tortured person of the adult Isaac Newton.”

Newton and Leibniz are generally credited with the co-invention of
calculus, but various earlier mathematicians explored the concept of rates
and limits, starting with the ancient Egyptians who developed rules for
calculating the volume of pyramids and approximating the areas of circles.

During their lives, both Newton and Leibniz puzzled over problems
of tangents, rates of change, minima, maxima, and infinitesimals (unimag-
inably tiny quantities that are almost but not quite zero). Both men
understood that differentiation (finding tangents to curves) and integration
(finding areas under curves) are inverse processes. Newton’s discovery
(1665–1666) started with his interest in infinite sums; however, he was
slow to publish his findings. For example, his early work on calculus, De
methodis serierum et fluxionum, was circulated in a manuscript to several
peers in 1671, but it did not officially appear in print until 1736 as an
English translation.

Leibniz had published his discovery of differential calculus in 1684
and of integral calculus in 1686. He had said, “It is unworthy of excel-
lent men, to lose hours like slaves in the labor of calculation. . . . My new
calculus . . . offers truth by a kind of analysis and without any effort of
imagination.” Newton was outraged. Debates raged for many years on how
to divide the credit for the discovery of calculus, and as a result, progress
in calculus was delayed.

I conclude this entry on Newton with some additional enlightening
comments on his personality, his extreme sensitivity to criticism, and his
scientific achievements. In 1908, W. W. Rouse Ball wrote in the fourth
edition of A Short Account of the History of Mathematics:

As to his manners, he dressed slovenly [and had] extreme absence
of mind when engaged in any investigation. . . . On the few occasions
when he sacrificed his time to entertain his friends, if he left them to
get more wine or for any similar reason, he would as often as not be
found after the lapse of some time working out a problem, oblivious
alike of his expectant guests and of his errand.
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He took no exercise, indulged in no amusements, and worked inces-
santly, often spending eighteen or nineteen hours out of the twenty-four
in writing. . . . With the exception of his papers on optics, every one of his
works was published only under pressure from his friends and against his
own wishes. There are several instances of his communicating papers and
results on condition that his name should not be published.

John Maynard Keynes wrote in “Newton, the Man”:

I believe that the clue to his mind is to be found in his unusual
powers of continuous concentrated introspection. . . . His peculiar
gift was the power of holding continuously in his mind a purely
mental problem until he had seen straight through it. I fancy his pre-
eminence is due to his muscles of intuition being the strongest and
most enduring with which a man has ever been gifted. . . . I believe
that Newton could hold a problem in his mind for hours and days
and weeks until it surrendered to him its secret.

Abers and Kennel suggest in Matter in Motion:

Newton was the one man who was in equal measure a creative
mathematician and a creative physicist. He was one of the few
physicists equally adept at theory and at experiment. His invention
of the reflecting telescope, much less celestial mechanics, would
have ensured him a prominent place in the history of astronomy.
Newton’s contemporaries remarked upon his extraordinary intu-
ition. He seemed to know things that even he could not prove.

Toward the end of his life, Newton was troubled with a painful kidney
stone and perhaps urinary incontinence. He had gout and inflammation
of the lungs. On February 28, 1727, he went to London to preside at a
meeting of the Royal Society, but his health was in sharp decline and his
kidney stone was still torturing him. On March 20, 1727, he died in London
at the age of 84, in great pain from the stone. He was buried in Westminster
Abbey, the first scientist to be accorded this honor. A lunar crater with a
diameter of 78 kilometers was named after Newton and approved in 1935
by the International Astronomical Union General Assembly. Among his
most important published works are the following:

� 1671, De methodis serierum et fluxionum (On the Methods of Series
and Fluxions). (“Fluxion” was Newton’s term for derivative in the
field of calculus.) As mentioned, this work did not officially appear
in print until 1736.
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� 1672, Newton’s edition of Geographia generalis (General
Geography) by the German geographer Varenius.

� 1672–1676, letters on optics.
� 1684, De motu corporum in gyrum (On the motion of bodies in an

orbit).
� 1687, Philosophiae naturalis principia mathematica (published in

Latin in 1687; revised in 1713 and 1726; and translated into English
in 1729).

� 1704, Opticks (a revised edition appeared in Latin in 1706).
Appendices contained discussions of cubic curves, infinite series,
and the method of fluxions.

� 1701–1725, Reports as Master of the Mint.
� 1707, Arithmetica universalis.

The following is a sampling of his works published after his death:

� 1728, The Chronology of Ancient Kingdoms Amended
� 1728, The System of the World
� 1728, Optical Lectures
� 1728, Universal Arithmetic (English version of Arithmetica

universalis)
� 1733, Observations upon the Prophecies of Daniel and the

Apocalypse of St. John
� 1754, An Historical Account of Two Notable Corruptions of

Scripture

Philosopher David Hume (1711–1776) in History of England remarked,
“In Newton, this island may boast of having produced the greatest and
rarest genius that ever rose for the ornament and instruction of the
species.” French mathematician Guillaume L’Hôpital (1661–1704) won-
dered about Isaac Newton, writing, “Does he eat, drink and sleep like
other men? I cannot believe otherwise than that he is a genius, or a celestial
intelligence entirely disengaged from matter.” Patricia Fara in Newton: The
Making of Genius sums up Newton’s unusual breadth of interests and his
contentment to always stay close to home:

Even the briefest survey of Newton’s life unsettles his image as the
idealized prototype of a modern scientist. . . . A renowned expert on
Jason’s fleece, Pythagorean harmonies, and Solomon’s temple, his
advice was also sought on the manufacture of coins and remedies for
headaches. . . . Newton had no laboratory team to supervise . . . and
never traveled outside Eastern England. . . .
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INTERLUDE: CONVERSATION STARTERS

Newton was not the first of the age of reason. He was
the last of the magicians, the last of the Babylonians and
Sumerians, the last great mind which looked out on the
world with the same eyes as those who began to build
our intellectual inheritance rather less than ten thousand
years ago. . . .
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[Newton saw] the whole universe and all that is in it
as a riddle, as a secret which could be read by applying
pure thought to certain evidence, certain mystic clues
which God had laid about the world to allow a sort of
philosopher’s treasure hunt. . . . He regarded the universe
as a cryptogram set by the Almighty. . . .
—John Maynard Keynes, “Newton, the Man,” The Col-

lected Writings of John Maynard Keynes

Newton’s law of universal gravitation was based on a
variety of observations: the paths of planets in their
motion about the sun, the acceleration of objects near
the earth. . . . Physical laws are usually expressed as math-
ematical equations . . . that can be used to make predic-
tions. . . . It is usually easiest to learn the physics and the
necessary mathematics at about the same time since the
immediate application of mathematics to a physical sit-
uation helps you understand both the physics and the
mathematics.
—Paul Tipler, Physics

Some laws are not laws at all but simply definitions. For
example, F = dp/dt (Newton’s second “law” of mechan-
ics) is not a law at all but is a mathematical definition of
force (introduced first by Newton himself).
—“Physical Law,” Wikipedia

Historically there was a change in the nature of scientific
models with Newton. Ptolemy, Copernicus and Newton
all developed models that correctly predicted planetary
motion. While it is sometimes claimed that the Ptolemaic
and Copernican models were only descriptive in contrast
to Newton’s which was explanatory, it is more precise to
say that Newton introduced a higher level of abstraction
using ideas farther removed from the observations. . . .
—Byron Jennings, “On the Nature of Science”

Descartes and Newton both thought of the laws of nature
[as being imposed by God]. . . . According to this tradi-
tional view, material things are bound to act according
to the laws of nature, because such things are themselves
powerless. Only spiritual beings, such as God, human
minds, or angels, were thought to be able to act on their
own account. . . .

In the eighteenth century, secularized versions of the
divine command theory were developed. Instead of
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thinking of God as the source of all power and order,
some natural philosophers of the period began to speak
of the “forces of nature” as the source of nature’s
activity.
—Brian Ellis, The Philosophy of Nature: A Guide to the

New Essentialism

Newton’s aim was to unravel nothing less than God’s
secret messages. . . . Above all Newton was intent on
finding out when the world would come to an end.
Then, he believed Christ would return and set up a
1,000-year Kingdom of God on Earth and he—Isaac
Newton, that is—would rule the world as one among the
saints. . . . [Newton] had calculated the year of the apoca-
lypse: 2060.
—George G. Szpiro, The Secret Life of Numbers

Newton was probably responsible for the concept that
there are seven primary colours in the spectrum—he had
a strong interest in musical harmonies and, since there are
seven distinct notes in the musical scale, he divided up the
spectrum into spectral bands with widths corresponding
to the ratios of the small whole numbers found in the just
scale.
—Malcolm Longair, “Light and Colour,” in Trevor Lamb

and Janine Bourriau’s Colour: Art & Science

That’s still all we have: an understanding of the effect
[of gravity], with almost no grasp of the cause. Is gravity
carried by an elementary particle? . . . Right now, mathe-
matics is the best investigative tool for getting gravity to
square with subatomic forces like electromagnetism. . . .
—John Hockenberry, “What Causes Gravity?” WIRED

magazine, February, 2007

Newton was the greatest creative genius that physics has
ever seen. None of the other candidates for the superla-
tive (Einstein, Maxwell, Boltzmann, Gibbs, and Feyn-
man) has matched Newton’s combined achievements
as theoretician, experimentalist, and mathematician. . . . If
you were to become a time traveler and meet Newton
on a trip back to the seventeenth century, you might find
him something like the performer who first exasperates
everyone in sight and then goes on stage and sings like an
angel. . . .
—William H. Cropper, Great Physicists
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The law of gravity and gravity itself did not exist before
Isaac Newton. . . . And what that means is that that law
of gravity exists nowhere except in people’s heads. It’s a
ghost!
—Robert Pirsig, Zen and the Art of Motorcycle Mainte-

nance
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Where should we look to discover the principles that
underpin reality? In Einstein’s view, while facts reside
in the world, principles reside in the mind. . . . Einstein
insisted that great theories are those that explain the most
facts from the least number of principles. . . . The simpler
the theory, the less it will look anything like the world
we see. The ultimate view of science, he believed, is to
find one all-encompassing, self-evident principle . . . from
which the whole of reality can be deduced.
—Amanda Gefter, “Power of the Mind,” New Scientist,

188(2529): 54, December 10, 2005

According to the General Theory of Relativity, the laws
of motion can be expressed in any inertial or accelerated
frame. Thus the choice between a heliocentric model and
an earth-centric one is not a matter of right or wrong
but one of convention and convenience. What is a model
assumption and what is convention is not always clear.
—Byron Jennings, “On the Nature of Science”

Hofstadter’s Law states: It always takes longer than you
think even when you take Hofstadter’s Law into account.
—Douglas R Hofstadter, Metamagical Themas: Questing

for the Essence of Mind and Pattern

Some men still believe in the mathematical design of
nature. They may grant that many of the earlier math-
ematical theories of physical phenomena were imper-
fect, but they point to the continuing improvements
that not only embrace more phenomena but offer far
more accurate agreement with observations. Thus New-
tonian mechanics replaces Aristotelian mechanics, and
the theory of relativity improved on Newtonian mechan-
ics. Does not this history imply that there is design and
that man is approaching closer and closer to the truth?
—Morris Kline, Mathematics: The Loss of Certainty, 1980
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BERNOULLI’S LAW OF FLUID DYNAMICS

Switzerland (where Bernoulli spent much of his life), 1738. The
total energy of fluid pressure, gravitational potential energy, and
kinetic energy of a moving fluid remains constant. For liquid flow-
ing in a pipe, an increase in velocity occurs simultaneously with
decrease in pressure.

Cross Reference: Bernoulli-Euler Law.

In 1738, German clockmaker Franz Ketterer invented the
cuckoo clock, and Joseph Guillotin (the French physician who
invented the guillotine) was born. When the French government
persisted in naming the execution machine after Guillotin, his
relatives decided to change their family name.

Imagine a fluid flowing steadily through a pipe that carries the liquid
from the top to the bottom of a hillside. The pressure of the liquid will
change along the pipe. Daniel Bernoulli (1700–1782) discovered the law
that relates pressure, flow speed, and height for a fluid flowing in a pipe.
Today, we write Bernoulli’s Law as

v2

2
+ gz + p

ρ
= C,

where v is the fluid velocity, g the acceleration due to gravity, z the eleva-
tion (height) of a point in the fluid, p the pressure, ρ the fluid density, and
C is a constant. Scientists prior to Bernoulli had understood that a moving
body exchanges its kinetic energy for potential energy when the body gains
height. Bernoulli realized that, in a similar way, a moving fluid exchanges
its kinetic energy for pressure.

As with most laws in this book, Bernoulli’s Law holds for an idealized
situation. For example, the formula assumes a steady (nonturbulent) fluid
flow in a closed pipe. The fluid must be incompressible. Because most
fluids are only slightly compressible, Bernoulli’s Law is often a useful
approximation. The fluid should not be viscous, which means that the fluid
should not have internal friction. Although no real fluid meets all these
criteria, Bernoulli’s relationship is generally very accurate for free-flowing
regions of fluids that are away from the walls of pipes or containers, and
especially useful for gases and light liquids. The equation can be general-
ized to a steady compressible flow (in which changes in density play a role)
by adding the internal energy per unit mass to the left-hand side of the
formula.



Bernoulli’s Law often makes reference to a subset of the informa-
tion included in the above equation, namely, that the decrease in pres-
sure occurs simultaneously with an increase in velocity. The idea that an
increase in the speed of a fluid results in a decrease in the pressure is at
the core of many everyday phenomena. Bernoulli’s Law predicts correctly
that a shower curtain is pulled inward when the water first comes out
of the shower head because the increase in water and air velocity inside
the shower causes a pressure drop. The pressure difference between the
outside and inside of the curtain causes a net force on the shower curtain
that sucks the curtain inward.

Bernoulli’s formula has numerous practical applications in the fields of
aerodynamics, where it is considered when studying flow over airfoils—
such as wings, propeller blades, rudders (whose shapes control stability
or propulsion)—and flow in supersonic nozzles. Bernoulli’s Law is used
when designing a Venturi throat—a constricted region in the air passage
of a carburetor that causes a reduction in pressure, which in turn causes
fuel vapor to be drawn out of the carburetor bowl. The term “venturi” is
also applied to a short tube with a constricted region that facilitates the
measurement of fluid pressures and velocities as a fluid flows through the
tube. The fluid increases speed in the smaller diameter region, reducing its
pressure and producing a partial vacuum via Bernoulli’s Law. This Venturi
effect is named after the Italian physicist Giovanni Battista Venturi (1746–
1822). In carburetors, the Venturi effect sucks gasoline into an engine’s
intake air stream. Additionally, Bernoulli’s Law plays a role in the func-
tioning of Pitot tubes used for aircraft speedometers.

I have frequently seen the Venturi effect in action when squeezing a
flexible hose through which water flows. If the flow is sufficiently strong,
the constriction I put in the hose remains in the hose, even when I remove
my hand, because the partial vacuum produced in the constriction is suffi-
cient to keep the hose collapsed.

The fact that pressure falls with increasing velocity is exploited by an
airplane wing, which is designed to create an area of fast flowing air on its
upper surface. The pressure near this area is lower; thus, the wing tends to
be pulled upward.

Daniel Bernoulli (1700–1782), Dutch-born Swiss mathematician, physi-
cist, and medical doctor famous for his wide variety of work in mathemat-
ics, hydrodynamics, vibrating systems, probability, and statistics.

CURIOSITY FILE: Both Daniel Bernoulli and his father, Johann Bernoulli,
had to secretly study mathematics against their respective fathers’ strict
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orders to forget about mathematics and to pursue more prosperous careers.
• Bernoulli wrote on whatever subjects struck his fancy—one of his papers
discussed formulas for computing the relationship between the number of
oarsmen on a ship and the resultant ship velocity. • In 1738, Bernoulli
published “Exposition of a New Theory on the Measurement of Risk,”
dealing with the economic theory of risk aversion and overall happiness
gained from a good or service.

There is no philosophy which is not founded upon knowl-
edge of the phenomena, but to get any profit from this
knowledge it is absolutely necessary to be a mathemati-
cian.
—Daniel Bernoulli, Letter to John Bernoulli III, January

7, 1763

Just as a great river is fed by small streams, some even
barely noticeable . . . , so science and technology proceeds
from small individual contributions until it becomes an
ever-increasing flow of knowledge and techniques. This
big river of fluid mechanics is closely associated with
Daniel Bernoulli, the author of the first textbook in this
field.
—G. A. Tokaty, History and Philosophy of Fluid

Mechanics

Daniel Bernoulli was a member of a truly remarkable
family which produced no fewer than eight mathemati-
cians of ability within three generations, three of whom—
James I (1654–1705), John I (1667–1748), and Daniel—
were luminaries of the first magnitude.
—S. L. Zabell, in John Eatwell et al.’s Utility and Proba-

bility

Daniel Bernoulli is one of the most versatile scientists presented in this
book and comes from a family of extraordinary Swiss mathematicians. Not
only did he study fluid flow, as discussed in the preceding section, but he
also investigated a variety of topics in mathematics, biology, physics, and
astronomy.

Before discussing Daniel, let me discuss his famous father, Johann
(1667–1748). Mathematical genius seemed to be the very essence of the
Bernoulli brain. Swiss mathematician Johann conducted pioneering work
with his brother Jacob Bernoulli (1654–1705) in calculus and many areas
of applied mathematics. Johann’s father tried hard to push Johann into
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a business career, but Johann preferred mathematics and the academic
life. Johann and Jacob’s relationship gradually deteriorated. In particular,
Jacob was jealous of Johann’s friendship with Leibniz and worried that
his younger brother was a better mathematician than he. Jacob did all he
could to slow down the rise of his brother. For example, in 1695, Jacob
convinced the members of the University of Basel’s academic senate to
reject Johann’s application for professorship. When Johann learned of his
brother’s betrayal, he was furious.

Both the meanness and mathematics that were so apparent in Johann’s
generation progressed into the next. Daniel Bernoulli was born in Gronin-
gen, the Netherlands, while his father taught mathematics at the University
of Groningen, and the Bernoulli family returned to their native city of
Basel, Switzerland, when Daniel was five years old. The poor relationship
between Daniel and his dad started from an early age. Just as Johann’s
father had tried to force Johann into a merchant career, Johann did the
same to his son. Johann virtually forbade his son to become educated in
mathematics, which Johann said did not make sufficient money. More-
over, Johann mapped out Daniel’s entire future and even selected the
woman that Daniel must eventually marry. However, Daniel was stubborn.
According to Michael Guillen, author of Five Equations That Changed the
Word:

Daniel Bernoulli decided to stop altogether his pretending to go
along with his father’s astrology-like notions of what God expected
of him—that included the business of becoming a merchant, marry-
ing some preselected girlfriend, and, the nonmathematical charade
he had been carrying on for several years now. Consequently, the
young man broke the bad news to his father and begged for permis-
sion to pursue his love of mathematics.

Johann finally told Daniel that he did not have to become a merchant, but
instead Daniel now must become a medical doctor—and no mathematics
would be allowed. Time passed, and finally Johann relented and agreed
to personally teach Daniel mathematics, as long as Daniel continued his
medical education.

While growing up in Basel, Switzerland, Daniel had managed to study
philosophy and logic, obtaining his master’s degree in 1716. In 1721, he
obtained his doctorate in medicine. His dissertation was on the mechanics
of breathing.

In the meantime, he did pursue mathematics, and his various math-
ematics papers, published in 1724, caused the St. Petersburg Academy,
along with Empress Catherine I of Russia, to invite him for a visit. Daniel’s
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St. Petersburg years (1725–1733) were his most creative, leading to famous
papers on hydrodynamics, oscillations, and probability.

Johann Bernoulli sent the Swiss mathematician Leonhard Euler (1707–
1783) to St. Petersburg in order to work with Daniel, which led to fruitful
and creative discussions. Euler would turn out to be one of the greatest
and most prolific mathematicians who ever lived.

While in Russia, Daniel Bernoulli invented ways for measuring the
pressure flowing through pipes by punching a hole in the wall of a pipe
and attaching a small glass tube to the hole. As the water flowed through
the pipe, it would also enter the glass tube, and the height that it rose in
the upward-pointing tube was a measure of the pressure of the flowing
water. Bernoulli recognized that this approach might be used to measure
blood pressure, and he told his friend Christian Goldbach, “I made a
new discovery that will be very useful in the design of the water supply,
but mainly, it will open a new era in physiology.” Physicians throughout
Europe began to measure blood pressure by sticking pointed-end glass
tubes directly into patients’ arteries. Ouch!

Bernoulli’s fascinating paper on probability, which was finally pub-
lished in 1738, described a paradox now known as the “St. Petersburg Para-
dox.” The puzzle involves coin flips and money that a gambler is to receive
depending on the outcome of the flips. Philosophers and mathematicians
have wondered: What is the fair price for joining this game? How much
would you be ready to pay for joining this game?

Here’s one way to view the St. Petersburg scenario: Flip a penny until it
lands tails. The total number of flips, n, determines the prize, which equals
$2n. Thus, if the penny lands tails the first time, the prize is $21 = $2, and the
game ends. If the penny comes up heads the first time, it is flipped again. If
it comes up tails the second time, the prize is $22 = $4, and the game ends.
And so on. A detailed discussion on the paradox of this game is beyond
the scope of this book, but a rational gambler would enter a game if and
only if the price of entry was less than the expected value of the financial
payoff. According to some analyses of the St. Petersburg game, any finite
price of entry is smaller than the expected value of the game, and a rational
gambler might desire to play the game no matter how large we set a finite
entry price to play the game!

Peter L. Bernstein in Against the Gods: The Remarkable Story of Risk
comments on the mystery and profundity of Bernoulli’s St. Petersburg
Paradox:

His paper is one of the most profound documents ever written, not
just on the subject of risk but on human behavior as well. Bernoulli’s
emphasis on the complex relationships between measurement and
gut touches on almost every aspect of life.
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Daniel’s primary work, Hydrodynamica, was completed around 1734
but not published until 1738. In this book, he discussed fluid pressure and
velocity and presented his famous law stating that fluid pressure increases
as its velocity decreases. The word “hydrodynamics”—which refers to the
branch of modern science that deals with the motion of fluids—derives
from the title of Daniel’s work. His father, jealous of Daniel’s work,
published his own Hydraulica, which may have been predated to 1732 to
make it appear that his work was written before his son’s Hydrodynamica.
Johann had even persuaded Euler to write in the preface of Hydraulica, “I
was thoroughly astounded by the very fluent application of Your principles
to the solution of the most intricate Problems, because of which . . . Your
very distinguished Name will forever be revered among future genera-
tions.” According to Guillen,

Daniel Bernoulli could never prove it, but he would always suspect
his father of plagiarism and his alleged friend Euler of duplicity.
“Of my entire Hydrodynamica, of which indeed I in truth need not
credit one iota to my father,” Bernoulli lamented, “I am robbed all
of a sudden, and therefore in one hour I lose the fruits of work of
ten years.”

Daniel shared the 1735 prize from the Paris Academy of Sciences for his
work on planetary orbits with his father, who promptly threw Daniel out
of the house for obtaining a prize he felt should be his alone. According to
John J. O’Connor and Edmund F. Robertson’s entry on Bernoulli in The
MacTutor History of Mathematics Archive:

Daniel’s father was furious to think that his son had been rated as
his equal, and this resulted in a breakdown in relationships between
the two. The outcome was that Daniel found himself back in Basel
but banned from his father’s house. Whether this caused Daniel to
become less interested in mathematics or whether it was the fact
that his academic position was a non-mathematical one, certainly
Daniel never regained the vigor for mathematical research that he
showed in St. Petersburg.

In 1750, Daniel was appointed chair of physics at Basel, where he taught
until his death in 1782. In many ways, Daniel turned out to be the “Carl
Sagan” of his era, as he enjoyed clarifying science for a general public
and did not confine himself to a single field of knowledge. Ten of his
essays entered in competitions of the Paris Academy won awards. Essay
topics included marine navigation and technology, magnetism, astronomy,
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Frontispiece for Chapter 1 of Daniel Bernoulli’s Hydrodynamica, published in
1738.

planetary orbits, and the optimal shapes for sand-filled hourglasses and
boat anchors.

His hourglass was special in that it was designed to keep good time
even when a ship was rocking in heavy seas. To achieve this, Bernoulli’s
award-winning invention involved mounting an hourglass atop an iron slab
floating in mercury. Even when a ship was in a storm, the density of the
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mercury would help keep the timepiece from becoming too agitated by
the movements of the ship.

Sadly, the precise content of many of his popular science lectures is not
known today. His papers covered so many areas of science that I give a
flavor of their diversity by presenting a sampling of topics:

Medicine
� Mechanics of breathing and muscular contraction
� An elucidation of the shape of the optic nerve at its attachment

point to the retina
� Computing mechanical work done by the heart

Mathematics
� The game of faro (a card game in which the players lay wagers on

the top card of the dealer’s pack)
� Riccati’s differential equations [named after Count Jacopo

Francesco Riccati (1676–1754), these mathematical equations have
the form y′ = q0(x) + q1(x)y + q2(x)y2 and are not easily solved
using standard elementary techniques]

� Lunulae (a class of crescent shapes)
� Divergent sine and cosine series
� Infinite continued fractions
� Probability and statistics applied in the areas of economics, disease

spread, and population statistics

Mechanics
� Theory of rotating bodies
� Friction
� Fluid pressure on pipe walls
� Fluid flow from container holes
� Oscillations of fluids in tubes immersed in water tanks
� Investigations of pumps, windmill sails, and the Archimedean screw
� Atmospheric pressures
� Refraction of light
� Air flow from small openings
� Theories of ocean tides
� The actions of sails and oars
� The mechanics of flexible bodies
� Velaria, lintearia, and catenaria (geometrical curves sometimes

exhibited by natural processes)
� Oscillations of ropes loaded with weights
� Vibrations of threads of uneven thicknesses, plates in water and

organ pipes, and musical instrument strings
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Another less famous law that bears Bernoulli’s name is the Bernoulli-
Euler Law, which is useful in studying, for example, a horizontal beam that
supports a vertical load that causes the beam to bend. The law states that
an elastic beam of thickness t , bent to a radius of curvature R (R > t), has
a bending moment M given by M = EI/R, where E is Young’s modulus for
the material of the beam, and I is the second moment of area of the cross-
section of the beam about an axis that is normal to the plane of bending.
Young’s modulus is a measure of the stiffness of a given material. Bernoulli
suggested the law in 1742 and Leonhard Euler derived it in 1744.

In his 1738 textbook on hydrodynamics, Bernoulli suggested his famous
Bernoulli’s Law of Fluid Dynamics, in which he states that “proportional-
ity” existed between pressure and velocity. He wrote, “It is clearly very
amazing that this very simple rule, which nature affects, could remain
unknown up to this time.” It was not until 1755 that Euler derived the
fuller expression that relates pressure, velocity, density, and height.

I think of both Bernoulli and Euler whenever I squeeze a bulb that sits
atop a perfume bottle. Squeezing the bulb over the liquid perfume creates
a low pressure area due to the higher speed of the air, which then sucks the
perfume up to the opening of the bottle. Similarly, Bernoulli’s Law helps
us understand why house windows often explode outward in a hurricane.
The high speed of the air outside the window pane results in lower pressure
outside than inside, thus pulling the glass outward. If you believe that a
hurricane is approaching, it may wise to open a few windows to equalize
the pressure.

Graham Cleverley, my colleague and a historian of science, in a per-
sonal communication to me, comments on Bernoulli’s Law as it relates to
airplane wings:

Conventional airplanes fly more economically because their design
takes Bernoulli’s principle into account. Without the principle . . . ,
sailing ships wouldn’t be able to sail against the wind. Europeans
would not have discovered America until the nineteenth century.
And when we got there and played baseball, we wouldn’t be able to
throw curveballs or sliders. . . . You wouldn’t be able to bend it like
Beckham. Or serve like Sampras. And table tennis would be very
dull.

Ray Kurzweil writes in John Brockman’s What We Believe but Cannot
Prove:

It is the nature of engineering to take a natural, often subtle effect
and control it, with a view toward greatly leveraging and magnifying
it. . . . Consider, for example, how we have focused and amplified the
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subtle properties of Bernoulli’s principle (that air rushing over a
curved surface has a slightly lower pressure than it does over a flat
surface) to create the whole world of aviation.

Perhaps it may be an exaggeration to say that Bernoulli’s Law “creates
the whole world of aviation.” We do not need Bernoulli’s principle to fly
or to have aircraft. After all, we could all be flying around in Zeppelins,
which do not use the principle. However, standard commercial passenger
aircraft—either jet or propeller-driven—make use of Bernoulli’s principle
to improve stability, control, and efficiency. John Anderson writes in A
History of Aerodynamics:

The fundamental advances in aerodynamics in the eighteenth cen-
tury began with the work of Daniel Bernoulli. Newtonian mechanics
had unlocked, but not opened, the door to modern hydrodynamics.
Bernoulli was the first to open that door, though just a crack. Leon-
hard Euler and others who would follow would fling the door wide
open.
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INTERLUDE: CONVERSATION STARTERS

Until Einstein’s time, scientists typically would observe
things, record them, then find a piece of mathematics
that explained the results. Einstein exactly reverses that
process. He starts off with a beautiful piece of mathe-
matics that’s based on some very deep insights into the
way the universe works and then, from that, makes pre-
dictions about what ought to happen in the world. It’s a
stunning reversal to the usual ordering in which science
is done. . . . [Einstein demonstrated] the power of human
creativity in the sciences. . . .
—Sylvester James Gates, quoted in Peter Tyson’s “The

Legacy of E = mc2”

Mathematics, rightly viewed, possesses not only truth, but
supreme beauty—a beauty cold and austere, like that of
sculpture.
—Bertrand Russell, Mysticism and Logic, 1918

Mathematicians are only dealing with the structure of
reasoning, and they do not really care what they are talk-
ing about. They do not even need to know what they are
talking about. . . . But the physicist has meaning to all his
phrases. . . . In physics, you have to have an understanding
of the connection of words with the real world.
—Richard Feynman, The Character of Physical Law

Enlightenment “natural theology,” presuming the Cre-
ator to have had our best interests at heart when He insti-
tuted nature’s laws and then retired, made no allowance
for either Satanic influence of divine playback for wicked-
ness. God’s indifference . . . was more complete than any
deist had dared to conceive.
—Frederick Crews, “Follies of the Wise,” Skeptical

Inquirer, March/April, 2007

There is no reason why the most fundamental aspects
of the laws of nature should be within the grasp of
human minds, which evolved for quite different purposes,
nor why those laws should have testable consequences
at the moderate energies and temperatures that nec-
essarily characterize life-supporting planetary environ-
ments. . . . As we probe deeper into the intertwined logical
structures that underwrite the nature of reality, we can
expect to find more deep results which limit what can be
known. Ultimately, we may even find that their totality
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characterizes the universe more precisely than the cata-
logue of those things that we can know.
—John Barrow, Boundaries and Barriers: On the Limits

of Scientific Knowledge

Ghosts are unscientific. They contain no matter and have
no energy and therefore according to the laws of science,
do not exist except in people’s minds. Of course, the
laws of science contain no matter and have no energy
either and therefore do not exist except in people’s
minds. . . . It’s best to refuse to believe in either ghosts or
the laws of science.
—Robert Pirsig, Zen and the Art of Motorcycle Mainte-

nance
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LAMBERT’S LAW OF EMISSION

Switzerland/Germany, 1760. The intensity emitted in any direction
from a region of a diffuse surface is proportional to the cosine of
the angle between the direction of radiation and the normal to the
surface.

Cross Reference: Beer’s Law of Absorption, the Lambert-Beer Law,
and the Bouguer-Beer Law.

In 1760, during the French and Indian War, Cherokee natives
allied with French forces and attacked a North Carolina militia
stationed at Fort Dobbs. The Russians occupied and burned
Berlin. German cabinetmaker Kaspar Faber made preparations
for the first commercial production of pencils.

Lambert’s Law of Emission, also known as Lambert’s Cosine Law or the
Cosine Law of Emission, states that the intensity (flux per unit solid angle)
emitted in any direction from a region of a perfect diffuse radiating surface
is proportional to the cosine of the angle between the direction of radiation
and the normal to the surface. (An ideal diffuse surface is usually a rough
surface, like chalk, such that the small variations in the surface cause
an incoming light ray to be reflected in all directions equally.) Thus, the
region, or element, of the surface that obeys Lambert’s Cosine Law will
appear equally bright when observed from any direction.

Here’s another way of stating the law: The total radiant power observed
from a perfect radiating surface is proportional to the cosine of the angle
θ between the observer’s line of sight and a line drawn perpendicular to
the surface. The radiating surface appears equally bright regardless of
the viewing angle because, purely from geometrical considerations, the
apparent size of a portion of the surface is proportional to the cosine of
the angle.

Lambert’s Cosine Law may be stated as

Ie ∝ cos θ,

where Ie is the intensity of emitted light, θ is the angle between the
observed emitted intensity and the normal to the surface, and ∝ means
“is proportional to.”

An untreated piece of lumber from the lumber yard exhibits nearly
Lambertian reflectance (i.e., it obeys Lambert’s Cosine Law), but the same
piece of wood with a glossy coat of varnish is probably not a Lambertian
reflector because the observer will see specular highlights (bright spots



of light that appear on shiny objects when illuminated) when viewing the
wood from specific angles.

Textbooks frequently give additional examples of Lambertian reflec-
tors that include “sand-blasted opal glass” and “scraped plaster of Paris.”
Such surfaces are said to have a “matte” finish. When we have a matte
surface, luminance is sometimes expressed in terms of total luminous flux,
in units of lumens, emitted by a unit area of surface. A surface emitting
one lumen per square centimeter has a luminance of one lambert, named
in honor of Johann Lambert.

An example of Lambert’s law in action can be found in our observa-
tions of visible light from the Sun. Because the Sun is nearly a Lambertian
radiator, its brightness is almost the same everywhere on an image of the
solar disk.

Johann Heinrich Lambert (1728–1777), Swiss-German mathematician
and physicist famous for his work on the mathematical constant π and for
his laws of reflection and absorption of light.

CURIOSITY FILE: Philosopher Immanuel Kant called Lambert “the greatest
genius of Germany.” • Lambert developed theorems regarding conic
sections that made it possible to simplify calculation of the orbits of comets.
• Lambert invented the first practical hygrometer and photometer. • He
introduced the word “albedo” when studying the brightness of planets.
• Lambert’s accomplishments are particularly impressive, considering he
was almost entirely self-taught.

The first object of my endeavors was the means to
become perfect and happy. I understood that the will
could not be improved before the mind had been enlight-
ened.
—Johann H. Lambert, quoted in Dictionary of Scientific

Biography

In geometry, Lambert goes beyond the previously
assumed concept of space, by establishing the properties
of incidence. Lambert’s physical erudition indicates yet
another clear way in which it would be possible to elimi-
nate the traditional myth of three-dimensional geometry
through the parallels with the physical dependence of
functions. A number of questions that were formulated
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by Lambert in his metatheory in the second half of the
18th century have not ceased to remain of interest today.
—J. Folta, “Remarks on the Axiomatic Development

of Mathematics in the Second Half of the Eighteenth
Century”

Johann Lambert is another example of an extreme polymath, having pub-
lished more than 150 works on topics ranging from geometry and proba-
bility to optics, cartography, philosophy, meteorology, astronomy, and per-
spective in art. He is also considered to be the greatest eighteenth-century
logician. When Lambert was asked by the King of Prussia, Frederick the
Great, in which science he was most proficient, Lambert modestly replied,
“All.”

Lambert was born in Mülhausen, which is now Mulhouse, Alsace,
France. Encyclopedias list Lambert variously as a German scientist, a
Swiss-German scientist, or a German-French scientist. (In my country
count in the introduction for this book, I counted him as German.) The
town of Mülhausen was a member of an association of ten free towns
in Alsace that were allied to the Swiss Confederation, which was a free
republic until it was absorbed into France in 1798.

Lambert was one of five sons and two daughters. His father was a tailor.
During Lambert’s preteen years, he had a diverse education with studies
that included Latin and French. At age 12, he left school to help his father
in the tailor shop but studied science on his own whenever time permitted.
At age 17, Lambert worked as a secretary to the editor of a conservative
newspaper, and he studied science, philosophy, and mathematics after
work. His keen interest in these subjects is obvious in a letter that he wrote
while still in his teens:

I bought some books in order to learn the first principles of philos-
ophy. The first object of my endeavors was the means to become
perfect and happy. . . . I studied Christian Wolff’s “On the power of
the human mind,” Nicolas Malebranche’s “On the investigation of
truth,” and John Locke’s “Essay concerning human understanding.”
The mathematical sciences, in particular algebra and mechanics,
provided me with clear and profound examples to confirm the rules
I had learned. Thereby, I was able to penetrate into other sciences
more easily and more profoundly, and to explain them to others,
too.

While in the town of Chur, which was at the time part of the Swiss
Confederation, he was elected to the Literary Society of Chur and to the
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Swiss Scientific Society based in Basel. He made regular meteorological
observations as part of his society responsibilities. In 1755, he published his
first paper, which was on his theories of caloric heat. In 1758, he published
a book dealing with the passage of light through various substances. The
book was followed by his 1760 book Photometria—one of his most famous
works because it contained the emission law that often bears his name.
Christoph Scriba in the Dictionary of Scientific Biography writes:

Lambert carried out his experiments with few and primitive instru-
ments, but his conclusions resulted in laws that bear his name. The
exponential decrease of the light in a beam passing through an
absorbing medium of uniform transparency is often called “Lam-
bert’s law of absorption,” although Bouguer discovered it earlier.
“Lambert’s cosine law” states that the brightness of a diffusely
radiating plane surface is proportional to the cosine of the angle
formed by the line of sight and the normal to the surface.

As alluded to by Scriba, Lambert’s name is also associated with an
absorption law of light. Under “Beer’s Law of Absorption” in part III, I
discuss how, in 1729, French mathematician Pierre Bouguer (1698–1758)
formulated an absorption law for light—namely, that the fraction of light
absorbed by a particular material is directly proportional to the thickness
of the material. In Bouguer’s 1729 paper Essai d’optique sur la grada-
tion de la lumière (“Optical Experiment on the Gradation of Light”), he
defined the quantity of light lost by passing through a given extent of the
atmosphere, and perhaps Bouguer should be considered as the first known
discoverer of “Beer’s Law.” Lambert—a scientist more prominent than
Bouguer—rediscovered and published Bouguer’s law. When additional
careful experiments were made, scientists noticed that the amount of light
absorbed by solutions also probably depended on additional factors. In
1852, August Beer (1825–1863) announced a more complete law of absorp-
tion that is known variously as Beer’s Law, the Lambert-Beer Law, and the
Bouguer-Beer Law. See the entry on “Beer’s Law” for further discussion.

In 1761, Lambert published his cosmological theories in Cosmologische
Briefe über die Einrichtung des Weltbaues (Cosmological Letters on the
Arrangement of the World Structure). Here, he proposed that we live in a
finite universe composed of galaxies of stars. Lambert came to believe that
all planets, comets, and moons in the universe were likely to contain life.
In his Cosmologische Briefe, Lambert asserted,

The Creator is much too efficient not to imprint life, forces and
activity on each speck of dust. . . . [I]f one is to form a correct notion
of the world, one should set as a basis God’s intention in its true
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extent to make the whole world inhabited. . . . All possible varieties
which are permitted by general laws ought to be realized. . . .

According to Lambert, an omnipotent God would populate all parts
of the universe with diverse beings, and humanoids were likely to be
everywhere. In order to protect such life forms, God would rarely allow
collisions between bodies such as planets and comets. Both Immanuel
Kant (1724–1804) and Lambert conceived of a fractal, or hierarchical,
universe of stars clustered into larger systems, which today we call galaxies.
These clusters are clustered into superclusters, and so on, at different size
scales.

Lambert’s philosophical works focus on the nature of human knowl-
edge and thought, mathematical logic, and methods for scientific proof.
In the field of mathematics, Lambert is most famous for being the first
to prove that π is irrational, that is, cannot be written as the ratio of two
integers.

Lambert developed a means of organizing colors by using a triangular
pyramid representation. The triangular base is black at its center with
vertices colored cinnabar (red), yellow, and azurite (blue). As one gazes
upward along the pyramid, the colors increase in brightness until reaching
the white tip at the top. Lambert suggested that his system could help tex-
tile merchants decide which colors they had available. He also hoped that
printers would get ideas for aesthetic combinations of colors by studying
his color pyramid.

Around the year 1772, Lambert developed a map projection that is
now called the Lambert conformal conic projection. The shapes of the
countries on a globe are well preserved when represented in this flat map.
Cartographers still use this projection today and consider it one of the
more useful projections for regions of Earth near the middle latitudes with
an east–west orientation.

Lambert died of tuberculosis in Berlin at age 49, having never married.
A lunar crater with a diameter of 30 kilometers was named after Lambert
and approved in 1935 by the International Astronomical Union General
Assembly. A Martian crater is also named in his honor.

Throughout his life, Lambert had been awed by the power of science
and scientists—and he was concerned about potential dangers from outer
space. Sara Schechner, in Comets, Popular Culture, and the Birth of Mod-
ern Cosmology, comments on Lambert and other scientists of his era with
similar interests:

In affirming a role for comets in the beginning and end of the world,
natural philosophers derived a new sense of power. If comets were
indeed divine tools for reforming the world, it became conceivably
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possible for astronomers to predict when certain scriptural prophe-
cies might be fulfilled.

Lambert had written on these thoughts in 1761 in Cosmologische Briefe:

I was not far from looking at astronomers as authorized prophets
and . . . from seeing in the invention of the telescope and in the rapid
growth of astronomy the herald of an impending disaster. How
could, I thought, a genie suggest to Copernicus the structure of the
world, to Kepler its laws, and to Newton that terrible attraction
and the doctrine about the course and impacts of comets, so that
everything might be available for prediction of the calamity, and
the inhabitants of the Earth might see to it that instead of having all
come to an end, a seed for propagation might remain alive on the
changed Earth.
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INTERLUDE: CONVERSATION STARTERS

Nature is showing us only the tail of the lion, but I have no
doubt that the lion belongs to it even though, because of
its large size, it cannot totally reveal itself all at once. We
can see it only the way a louse that is sitting on it would.
—Albert Einstein to Heinrich Zangger, March 10, 1914

Our attempts at modeling physical reality normally con-
sist of two parts: (1) A set of local laws that are obeyed by
the various physical quantities. These are usually formu-
lated in terms of differential equations. (2) Sets of bound-
ary conditions that tell us the state of some regions of the
universe at a certain time. . . . Many people would claim
that the role of science is confined to the first of these and

142 | a r c h i m e d e s t o h a w k i n g



that theoretical physics will have achieved its goal when
we have obtained a complete set of local physical laws.
—Stephen Hawking, Black Holes and Baby Universes

Science, like life, feeds on its own decay. New facts burst
old rules; then newly divined conceptions bind old and
new together into a reconciling law.
—William James, The Will to Believe and Other Essays in

Popular Philosophy

We materialists don’t deny the force of ideas; we merely
say that the minds precipitating them are wholly situated
within brains that . . . seem to have emerged without any
need for miracles.
—Frederick Crews, “Follies of the Wise,” Skeptical

Inquirer, March/April, 2007
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BODE’S LAW OF PLANETARY DISTANCES

Germany, 1766. The mean distances of planets from the Sun can
be predicted using a simple numerical relationship.

Cross Reference: Astronomer Johann Daniel Titius, the Titius-Bode
Law, and Swiss-German physicist Johann Heinrich Lambert.

In 1766, two English surveyors, Charles Mason and Jeremiah
Dixon, drew the Mason-Dixon Line between Pennsylvania and
Maryland, which would later be used to mark the boundary
between free and slave regions of the United States. In this
same year, the British Parliament repealed the unpopular Stamp
Act that had taxed all documents in the American colonies by
requiring the documents to carry a tax stamp. English chemist
John Dalton (see “Dalton’s Law of Partial Pressures” in part III)
was born.

Bode’s Law, also known as the Titius-Bode Law, expresses a relationship
that describes the mean distances of the planets from the Sun. Consider the
simple sequence 0, 3, 6, 12, 24, . . . , in which each successive number is twice
the previous number. Next, add 4 to each number and divide by 10 to form
the sequence 0.4, 0.7, 1.0, 1.6, 2.8, 5.2, 10.0, 19.6, 38.8, 77.2, . . . Remarkably
(and perhaps strangely!), Bode’s Law states that this sequence gives the
mean distances D of the known and yet-to-be-discovered planets from
the Sun, expressed in astronomical units (AU). An AU is the mean dis-
tance between Earth and the Sun, which is approximately 92,960,000 miles
(149,604,970 kilometers). For example, Mercury is approximately one-
third of an AU from the Sun, and Pluto is about 39 AU from the Sun.

Bode’s Law can be expressed by

D = (N + 4)/10,

where N = 0, 3, 6, 12, 24, 48. . . . We also sometimes see the law expressed
as

D = A+ BCn,

where A= 0.4, B = 0.3, C = 2, and n = 0, 1, 2, 3. . . .
This relationship was discovered in 1766 by the German astronomer

Johann Daniel Titius (1729–1796) of Wittenberg and published by Bode
six years later. At the time, the law gave a remarkably good estimate for
the mean distances of the planets that were then known—Mercury (0.39),
Venus (0.72), Earth (1.0), Mars (1.52), Jupiter (5.2), and Saturn (9.55).
Uranus, discovered in 1781, has a mean orbital distance of 19.2, which also



table 5 Accuracy of Bode’s Law

Object Bode’s Calculation Prediction Actual Distance

Mercury 0.4 + 0 · 0.3 0.4 0.39

Venus 0.4 + 1 · 0.3 0.7 0.72

Earth 0.4 + 2 · 0.3 1.0 1.00

Mars 0.4 + 4 · 0.3 1.6 1.52

Ceres 0.4 + 8 · 0.3 2.8 2.77

Jupiter 0.4 + 16 · 0.3 5.2 5.20

Saturn 0.4 + 32 · 0.3 10.0 9.54

Uranus 0.4 + 64 · 0.3 19.6 19.19

Neptune 0.4 + 128 · 0.3 38.8 30.07

Distances are expressed in astronomical units.

agrees with the law, and its distance was taken as strong evidence of the
correctness and reliability of the law. The large asteroid Ceres, discovered
1801, has mean orbital distance 2.77, which seemed to fill the apparent gap
between Mars and Jupiter. Some astronomers were so impressed by the
apparent success of Bode’s Law that they proposed the name Ophion for
a large planet predicted to lie beyond Uranus at a distance of 38.8 AU.
Table 5 gives an indication of the accuracy of Bode’s Law.

Alas, Neptune, discovered in 1846, has a mean orbital distance of 30.07,
and Pluto, discovered in 1930, has a mean orbital distance of 39.5; these two
planets provide large discrepancies from the predicted values of 38.8 and
77.2, respectively. (Note, however, that 38.8 is close to the actual value of
39.5 for Pluto, as if Bode’s Law skips the location of Neptune.) In 2006, the
International Astronomical Union gave Ceres and Pluto the designation of
“dwarf planets.”

Astronomers have wondered why such a simple sequence should seem
to explain so much about the Solar System. Some astronomers have even
conjectured that the deviation of Neptune and Pluto from their predicted
positions means that they are no longer in their original orbits in the
Solar System. Today scientists have major reservations about Bode’s Law,
and the law is clearly not as universally applicable as other laws in this
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book. The relation may be purely empirical and perhaps represents a
coincidence.

Some astronomers hypothesize that a phenomenon of “orbital reso-
nances,” which is caused by orbiting bodies that gravitationally interact
with other orbiting bodies, can create regions around the Sun that are free
of long-term stable orbits and thus, to some degree, can account for the
spacing of planets. Orbital resonances can occur when two orbiting bodies
have periods of revolution that are in a simple integer ratio such that the
bodies exert a regular gravitational influence on each other.

Johann Elert Bode (1747–1826), German astronomer famous for his
statement of Bode’s Law expressing the proportionate distances of several
planets from the Sun.

CURIOSITY FILE: Bode was responsible for naming the planet Uranus after
the ancient Greek god that came every night to mate with the Earth Mother,
Gaia. The god Uranus had imprisoned Gaia’s youngest children deep within
Earth, fearful of their power. In order to prevent Uranus from fathering any
more children, Gaia had their son Cronus ambush Uranus and castrate him,
tossing the torn testicles into the ocean.

Professor Bode could not explain why the rule worked . . .
but anybody who could add and multiply had no doubt
that it did work.
—Willy Ley, Watchers of the Skies

Bode’s Law is neither Bode’s nor a law.
—Mark Littmann, Planets Beyond

From Mars outward there follows a space . . . in which, up
to now, no planet has been seen. Can we believe that the
Creator of the world has left this space empty? Certainly
not!
—Johann Bode, Instruction for the Knowledge of the

Starry Heavens

Johann Elert Bode (pronounced bō’duh) was born in Hamburg, Ger-
many. His father was a merchant. Little has been published about Bode’s
boyhood. We do know that in 1768, Bode published his popular book,
Anleitung zur Kenntnis des gestirnten Himmels (Instruction for the Knowl-
edge of the Starry Heavens), in which he popularized the empirical law on
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planetary distances, originally discovered by German astronomer Johann
Titius.

Titius had merely presented the law in a footnote to his 1766 German
translation of naturalist Charles Bonnet’s Contemplation de la Nature.
Bode discovered the footnote and inserted it into the new edition of his
own astronomy book, without reference to Titius. Mark Littmann writes
in Planets Beyond: Discovering the Outer Solar System:

This exercise by Titius, buried in another author’s book, would
probably have attracted no attention had not Bode happened across
it. Bode was a young, energetic, self-taught astronomer who, at
the age of 21, had published a very popular introduction to the
heavens. In 1772, he had just been hired by the Berlin Academy
of Sciences to work on its annual astronomical almanac [which was]
selling poorly. Bode quickly transformed it from a money loser to
a high-profit item by correcting the publication’s inaccuracies and
by [supplementing it with] general science news from around the
world.

Bode was also employed by the Berlin Academy of Sciences to perform
laborious mathematical calculations, and he was a director of the Berlin
Observatory. In 1801, while still at the observatory, he published the
Uranographia, a gorgeous celestial atlas showing the positions of stars
and other astronomical objects—and also included artistic depictions of
the constellations. Many of the diagrams are a wonder to behold, with
their drawings of animals and mythic heroes superimposed on the stars.
Bode even introduced new constellations in his Uranographia, such as
a set of stars forming the constellation Machina Electrica along with a
drawing of an electrostatic generator (not quite as majestic an image as
the superhuman gods of yore!). However, Bode’s new constellations never
achieved lasting acceptance.

Uranographia contained eighteen maps and two planispheres (polar
projections with an adjustable overlay to show the stars visible at a par-
ticular time and place). The book showed almost 17,000 stars and 2,500
nebulae and represented all astronomical objects defined by the cartogra-
phers during the previous centuries. Uranographia marked the end of a
long history of artistic representations of the constellations, because soon
the star atlas would no longer be a single work aimed at both the amateur
and professional astronomer. The ideal of one large book that contains all
visible objects in the sky, superimposed with artful constellation drawings,
slowly lost its popularity, and subsequent atlases showed fewer ornate
figures.
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The constellation Virgo, from Johann Bode’s Uranographia, published in 1801.

Together with Johann Heinrich Lambert (see “Lambert’s Law of Emis-
sion,” above), Bode founded the Astronomisches Jahrbuch (Astronomical
Yearbook) and then the Berliner Astronomisches Jahrbuch, which he con-
tinued to publish until his death in 1826.

During his life, Bode discovered several nebulae and star clusters. Alas,
he also added a large number of nonexistent astronomical objects without
verification—more than twenty of his discoveries never actually existed.
He also observed a number of actual comets and calculated cometary
orbits.

Bode was fascinated by Uranus, the new planet discovered by German-
born British astronomer William Herschel (1738–1822) in 1781. Although
Herschel always referred to this planet as “Georgium Sidus” (George’s
Star) to honor King George III of England, Bode proposed the name
“Uranus” after the Greek God—a name that was gradually adopted.
French astronomers actually began calling the planet Herschel before
Bode proposed the name Uranus, which did not come into common usage
until around 1850.

Bode collected the available astronomical observations of Uranus and
published many of them in his beloved Astronomisches Jahrbuch. As he
compiled the information, Bode realized that Uranus had actually been
first observed by German astronomer Tobias Mayer (1723–1762) in 1756
and even earlier in 1690 by English astronomer John Flamsteed (1646–
1719), when it was cataloged as “star” 34 Tauri.
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In 1786, Bode was elected as a member of the Berlin Academy. In 1825,
he retired from the post of Director of the Berlin Observatory, and he died
a year later while working on the Jahrbuch for 1830. A lunar crater with
a diameter of 18 kilometers was named after Bode and approved in 1935
by the International Astronomical Union General Assembly. The asteroid
Bodea, discovered in 1923, was also been named after Bode. The galaxy
M81 that he discovered is popularly known as “Bode’s Nebula” or “Bode’s
Galaxy.”

Author and astronomer David Darling notes that Bode believed
that all significant objects in space—the Sun, stars, planets, moons, and
comets—are inhabited by intelligent beings. Bode remarked that habit-
ability was “the most important goal of creation” and that alien life forms
throughout the universe “are ready to recognize the author of their exis-
tence and to praise his goodness.”

To address the seeming inhospitality of comets, Bode said, “Who can
conceive what special arrangements of the wise Creator in regard to the
climate, zones, dwelling places . . . may not be expected for all those on a
cometary body?” Bode believed that space was probably infinite in extent,
but that the cosmos was finite with God beyond the cosmos.

FURTHER READING
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INTERLUDE: CONVERSATION STARTERS

For me, a hypothesis is a statement whose truth is tem-
porarily assumed, but whose meaning must be beyond all
doubt.
—Albert Einstein to Edward Study, September 25, 1918

I have often made the hypothesis that ultimately physics
will not require a mathematical statement, that in the end
the machinery will be revealed, and the laws will turn out
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be simple, like the checker board with all its apparent
complexities.
—Richard Feynman, The Character of Physical Law

Scientific principles and laws do not lie on the surface
of nature. They are hidden, and must be wrested from
nature by an active and elaborate technique of inquiry.
—John Dewey, Reconstruction in Philosophy

If you’re willing to answer yes to a God outside of nature,
then there’s nothing inconsistent with God on rare occa-
sions choosing to invade the natural world in a way that
appears miraculous. If God made the natural laws, why
could he not violate them when it was a particularly sig-
nificant moment for him to do so?
—Francis Collins, “God vs. Science” (interview), Time,

November 13, 2006

The empirical basis of objective science has nothing
“absolute” about it. Science does not rest upon solid
bedrock. The bold structure of its theories rises, as it were
above a swamp. It is like a building erected on plies. The
piles are driven down from above into the swamp, but
not down to any natural or “given” base; and if we stop
driving the piles deeper, it is not because we have reached
firm ground. We simply stop when we are satisfied that
the piles are firm enough to carry the structure, at least
for the time being.
—Karl Popper, The Logic of Scientific Discovery

If one accepts the premise that all knowledge comes to us
through our senses, Hume says, then one must logically
conclude that both “Nature” and “Nature’s laws” are
creations of our own imagination.
—Robert Pirsig, Zen and the Art of Motorcycle Mainte-

nance

The supreme task of the physicist is to arrive at those
universal elementary laws from which the cosmos can be
built up by pure deduction. There is no logical path to
these laws; only intuition, resting on sympathetic under-
standing of experience, can reach them. In this method-
ological uncertainty, one might suppose that there were
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any number of possible systems of theoretical physics all
equally well justified; and this opinion is no doubt correct,
theoretically. But the development of physics has shown
that at any given moment, out of all conceivable con-
structions, a single one has always proved itself decidedly
superior to all the rest.
—Albert Einstein, “Principles of Research”
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COULOMB’S LAW OF ELECTROSTATICS

France, 1785. The force of attraction or repulsion between two
electric charges is proportional to the magnitude of the charges
and inversely proportional to the square of their separation dis-
tance.

Cross Reference: Newton’s Law of Universal Gravitation, Einstein’s
Special Theory of Relativity, and Coulomb’s Law of Friction.

In 1785, Louis XVI of France signed a law stating that a hand-
kerchief must be square. Frenchman Jean-Pierre Blanchard and
American John Jeffries were the first to cross the English Chan-
nel in a gas balloon. The dollar became the standard currency for
the United States.

Coulomb’s Law states that the magnitude of the force F between two point
charges in free space is given by

F = 1
4πε0

q1q2

r2
,

where q1 and q2 are the magnitudes of the charges in coulombs, r is the
distance between the charges in meters, ε0 is the permittivity of free space
(8.85 × 10−9 farads/meter), and F is given in units of newtons. A coulomb,
denoted by the symbol C, is defined as the amount of charge that flows past
a point in a wire in one second when the current in the wire is one ampere.
In other words, 1 C = 1 A·s. If the charges have the same sign, the force is
repulsive. If the charges have opposite signs, the force is attractive.

By examining the equation, we can see that the magnitude of the force
is directly proportional to the magnitude of the charges of each object and
inversely proportional to the square of the distance between them. The
force exerted by one point charge on the other is along the imaginary line
between the charges.

Charge values may be considered to be additive in instances when
electrons and protons combine to form composite particles or collections
of particles. Except for the case of quarks, which are considered to have
fractional charges, all charges observed in nature are integer multiples of
the charge on the electron (Qe) or proton (Qp), which have these amounts
of charge:

Qe = −(1.60217733 ± 0.00000049) × 10−19 coulombs
Qp = +(1.60217733 ± 0.00000049) × 10−19 coulombs



Nuclear physicist Ernest Rutherford (1871–1937) conducted experiments
with scattered alpha particles that showed that Coulomb’s Law is accurate
even for charged particles having nuclear dimensions and even for r val-
ues as low as 10−12 centimeters. (Alpha particles are helium nuclei, and
they consist of two protons and two neutrons bound together.) In fact,
today, experiments have demonstrated that Coulomb’s Law is valid over
a remarkable range of separation distances, from as small as 10−16 meters
(a tenth of the diameter of an atomic nucleus) to as large as 106 meters.
Coulomb’s Law is accurate only when the charged particles are stationary
because movement produces magnetic fields that alter the forces on the
charges.

Note that a coulomb is an extremely large electric charge compared to
the charge of a single electron or proton. To get a feel for the magnitude,
consider two objects, each with a net charge of +1 coulomb. If you were
to place these objects a meter apart, the repulsive force would be about
nine billion newtons, which corresponds to one million tons! Because the
coulomb is such a huge charge, scientists sometimes use smaller measure-
ment units like the microcoulomb (10−6 C), picocoulomb (10−12 C), or
even simply the charge of the electron, e (1.602 × 10−19 C).

Coulomb’s Law and Newton’s Law of Universal Gravitation are exam-
ples of what physicists sometimes refer to as “action at a distance” laws—
in the sense that when the laws were formulated, no known media-
tor of the interaction existed. Newton’s law describes the gravitational
attraction of masses m1 and m2 separated by a distance r and may be
written Fg = Gm1m2/r2, where Fg is the magnitude of the force due to
gravity.

Even a casual examination of the mathematical formulations of New-
ton’s law and Coulomb’s Law reveals that the two formulas bear strik-
ing similarities. Both the electrostatic force and gravitational forces are
directly proportional to the product of the interacting entities (mass or
charge), and both the forces are inversely proportional to the square of
the distance of separation.

For both Newton’s Law of Universal Gravitation and Coulomb’s Law,
one might think that the respective forces involved are instantaneously
affected by a change in locations of the relevant objects. However, this
is not the case. For example, for Coulomb’s Law, if one of the two charges
is moved, then the force acting on the second charge does not immediately
change. We know from Einstein’s Special Theory of Relativity that signals
do not propagate faster than the speed of light; thus, if one charge is
moved, then a time delay must exist for the second particle to “become
aware” of this movement. Moreover, if the first charge were suddenly
plucked from the experiment, the second charge would be sensitive to this
removal only some time later.
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The same kind of delay applies to masses with a gravitational attraction,
such as the case for Earth circling the Sun. If the Sun were suddenly
removed, Earth would keep orbiting about the missing Sun for several
minutes because the gravitational influence cannot travel faster than light
speed. During the time needed for this influence to propagate, one body
continues to experience an electrical or gravitational influence from the
other body as if the missing object still existed.

Despite some similarities, a noticeable difference exists between
the Newton’s Law of Universal Gravitation and Coulomb’s Law—the
Coulomb force can be attractive or repulsive while the gravitational force
is only attractive. Also, the magnitude of the Coulomb force depends
upon the medium separating the charges, while the gravitational force is
independent of the medium. For example, our first term in Coulomb’s Law
may be written more generally using ε instead of ε0:

k = 1
4πε

,

where the permittivity ε is an electrical property of the medium that
surrounds the two charges. The symbol ε0 denotes the permittivity when
the medium is a vacuum. The value of k, sometimes known as Coulomb’s
constant, is approximately equal to 9 × 109 N·m2/C2 when ε = ε0. Electri-
cally conducting media have permittivity values greater than ε0. Because a
vacuum has no charge carriers, the permittivity is lower for a vacuum than
for any other medium. The permittivity value of dry air is so close to that of
a vacuum that scientists usually treat experiments in the air as if performed
in a vacuum.

The permittivity of a material is usually given relative to that of free
space. If the relative permittivity is denoted by εr, permittivity is then
calculated by multiplying ε0 by εr. Approximate room-temperature relative
permittivity values are given in table 6, and the values may vary according
to temperature and the precise composition of the material under study.
For example, a range of permittivity values exists for different kinds of
paper.

Coulomb’s Law is accurate only for point charges, that is, charges that
are localized to an infinitely small region of space. However, all real-
world experiments are performed with charges on objects that have finite
dimensions. Coulomb’s Law may be used in experiments with such objects
if the dimensions of the charged objects are much smaller than the distance
between their centers. Note that in modern times, the law has been gen-
eralized to integral and differential forms that may be used for nonpoint
charges, and often these generalizations are also referred to as Coulomb’s
Law.
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table 6 Relative Permittivity Values

Material Approximate Relative Permittivity
Values, εr, at 300◦K

Vacuum 1 (by definition)

Air 1.0005

Polyethylene 2.2

Lucite (trade name for a clear
plastic)

2.8

Cocaine 3.1

Paper 3.3

Mica, muscovite 5.4

Rubber, Neoprene 6.6

Bone, cancellous (spongy) 26

Methyl alcohol 32

Brain, gray matter 56

Water (20◦C) 80

Lead titanate 200

Source: Glenn Elert, “Dielectrics,” in The Physics Hypertextbook; see
hypertextbook.com/physics/electricity/dielectrics/.

Although the coulomb repulsive force should be quite strong for pos-
itively charged protons within a nucleus, the protons do not fly apart
because they are held together by another fundamental force, the strong
nuclear force, which is stronger than the coulomb force.

I conclude this section with a short problem that shows a practical
calculation involving Coulomb’s Law. Imagine two small balls, each with
a mass of 0.20 grams. They are each attached to a separate 50-cm-long
thread that is tied to the same point in the ceiling. Because the two
balls have the same charge, they dangle from the ceiling and do not
touch each other. In turns out that in this particular experiment, each
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thread makes a 37-degree angle with respect to a perpendicular to the
ceiling. To help visualize this problem, draw a triangle �. The topmost
point represents the attachment point of the threads, and the left and
right vertices represent the positions of the balls. If we assume that the
charges on each ball are the same, we can determine how large the
charge is.

In order to solve this problem, we can use simple trigonometry, while
realizing that the weight of an object is equal to its mass m times the
acceleration due to gravity, g (which is 9.8 m/s2). First, consider the ball on
the left. Three forces act on the ball: its weight downward (mg), the tension
T on the string, and the repulsion force F due to the charge on the ball at
the right. Because the balls are not moving, forces in the x and y directions
are in balance. Thus, for the force in the x direction, we have Fx – 0.6T = 0.
Considering the forces in the y direction, we have 0.8T – (0.2)(10−3 kg)
(9.8 m/s2) = 0, which yields T = 2.45 × 10−3 N. Then, we can calculate the
force Fx = 1.47 × 10−3 N. This is the force of repulsion between the two
balls. We may substitute this into the formula for Coulomb’s Law to solve
for the charge on the ball:

1.47 × 10−3 = (9 × 109)
q2

(0.60)2

(The distance r between the two spheres is 0.60 m, which can be deter-
mined by trigonometry, given the 50-cm length of string and 37◦ angle.)
Solving for q, we find that q is approximately equal to 2.4 × 10−7 coulombs
or 0.24 µC, where µC is the symbol for microcoulombs.

In a system of many point-charges, charges exert forces on one another,
and the resultant force exerted on any one charge is the vector sum of the
individual forces exerted on that charge by all the other charges in the
system.

Charles-Augustin de Coulomb (1736–1806), French physicist famous for
the law that describes the force between two electrical charges.

CURIOSITY FILE: Coulomb’s engineering skills played a large role in the
fortification of Martinique, a Caribbean island. • yC is the official unit
for yoctocoulomb, which is 10−24 coulombs. • Coulomb won a prize
offered by the Académie des Sciences for the best method of constructing
a compass for a ship.
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Coulomb’s contributions to the science of friction were
exceptionally great. Without exaggeration, one can say
that he created this science.
—I. V. Kragelsky and V. S. Schedrov, Development of the

Science of Friction

Coulomb can be considered one of the great engineers in
eighteenth-century Europe.
—C. Stewart Gillmor, “Charles Coulomb,” in Dictionary

of Scientific Biography

Who could forget “Chuck” Coulomb’s 1773 address to
the Academy of Science in Paris when he discussed pio-
neering soil mechanics theory?
—Terence Meany and Matthew Tirschwell, The Com-

plete Idiot’s Guide to Electrical Repair

Charles-Augustin de Coulomb is one of the preeminent physicists and
engineers of all time who contributed to the fields of electricity, magnetism,
applied mechanics, friction, and torsion. Coulomb was born to a well-to-
do family in Angoulême in southwest France. His family later moved to
Paris, where he entered the Collège Mazarin. Here he received a good
general education in the humanities as well as in mathematics, astronomy,
and chemistry.

At some point, his father lost all his money in financial speculations.
This hardship, along with Coulomb’s disagreement over career plans with
his mother, caused a split in the family, and Coulomb and his father
moved to Montpellier while his mother stayed in Paris. According to some
sources, Coulomb’s mother wanted him to be a medical doctor, but her
son insisted on studying a more quantitative subject such as engineering or
mathematics. The disagreements became heated, and his mother virtually
disowned him.

In 1760, Coulomb entered the École du Génie at Mézières and later
graduated as an engineer with the rank of lieutenant in the Corps du
Génie (Corps of Engineers). Over the next two decades, he was posted to a
variety of locations where he was involved in structural engineering, forti-
fication design, and soil mechanics—for example, he spent several years in
the West Indies as a military engineer—before returning to France, where
he would begin to write his important papers on applied mechanics.

Coulomb created a torsion balance around 1777 in order to measure
electrostatic forces. The torsion balance contains two metal balls attached
to an insulating rod. The rod is suspended at its middle by a nonconducting
filament or fiber. To measure the electrostatic force, one of the two balls is
charged. A third ball with similar charge is placed near the charged ball of
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the balance, causing the ball on the balance to be repelled. This repulsion
causes the fiber to twist by a certain amount. If we measure how much force
is required to twist the wire by the same angle of rotation, we can estimate
the degree of force caused by the charged sphere. In other words, the fiber
acts as a very sensitive spring that supplies a force proportional to the
angle of twist. Coulomb showed that the force varied as 1/r2 for repulsion
between like charges, and attraction between unlike charges, separated by
an initial distance r. It appears that he never actually demonstrated that the
force between charges is proportional to the product of the charge values—
he simply asserted this to be true. C. Stewart Gillmor, writing in Dictionary
of Scientific Biography, indicates the degree to which Coulomb’s balance
affected science for many generations:

Coulomb’s simple, elegant solution to the problem of torsion in
cylinders [with graduated scales] and his use of the torsion balance
in physical applications were important to numerous physicists in
succeeding years. . . . Coulomb developed a theory of torsion in thin
silk and hair threads. Here he was the first to show how the torsion
suspension could provide physicists with a method of accurately
measuring extremely small forces.

In particular, Coulomb showed with his experiment that the exponent of
r (the charge separation distance) was 2 within a few percent uncertainty.
Today, we know that the exponent is 2 within about 2 parts in 109.

In 1779, Coulomb began his research into friction, which eventually
led to his important publication Théorie des machines simples, en ayant
égard au frottement de leurs parties et à la raideur des cordages (“Theory
of Simple Machines, with Regard to the Friction Between their Parts and
the Rigidity of the Linkages”). This work was followed twenty years later
by a memoir on viscosity. Coulomb’s Law of Friction states that for two
surfaces in relative motion, the kinetic friction is almost independent of
the relative speed of the surfaces.

Coulomb’s research in friction was stimulated by a prize offered by the
Academy of Science in Paris for “the solution of friction of sliding and
rolling surfaces, the resistance to the bending in cords, and the application
of these solutions to simple machines used in the navy.” According to Peter
J. Blau, writing in Friction Science and Technology,

Coulomb’s researches and conclusions about the nature of friction
dominated thinking in the field for over a century and a half, and
many of his concepts remain in use. In fact, the term “Coulombic
friction” is still found in publications that interpret the results of
recent experiments. . . .
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Between 1785 and 1791, Coulomb wrote seven important papers on
electricity and magnetism, which he submitted to the Académie des Sci-
ences. Topics included his continued use of the torsion balance to under-
stand attraction, repulsion, distribution of electricity on the surface of
charged objects, and his demonstration of the inverse square law for
magnetic poles. His 1785 work, which described the use of his different
kinds of torsion balances, was published in his Recherches théoriques et
expérimentales sur la force de torsion et sur l’élasticité des fils de metal
(“Theoretical and Experimental Studies on the Twisting Strain and Elas-
ticity of Metal Wires”). Here, he showed that the torsion balance could be
used to accurately measure extremely small forces.

In 1802, Coulomb married Louise Françoise LeProust Desormeaux,
the mother of his two sons who were born before marriage. Louise was
in her twenties. Toward the end of his life, Coulomb particularly enjoyed
being in the country and teaching science to his youngest son, Charles.
During his last days, Coulomb contracted a fever that finally killed him.
His funeral services were held at Abbaye de St.-Germain-des-Prés.

Of Coulomb’s scientific prowess, Ioan James writes in Remarkable
Physicists: From Galileo to Yukawa:

He has been described as the complete physicist, rivaled in the
eighteenth century only by Henry Cavendish, combining experi-
mental skill, accuracy of measurement, and great originality with
mathematical powers adequate to all his demands.

A lunar crater with a diameter of 89 kilometers was named after Coulomb
and approved in 1970 by the International Astronomical Union General
Assembly.

Throughout his career, Coulomb conducted a variety of research and
made contributions to our understanding of

� rupture of masonry piers and beams
� the sheer of brittle materials
� the physics of vaulted arches
� friction of machinery and fluid resistance
� design of windmills
� elasticity of metal and silk fibers and of soil mechanics
� magnetic compass design
� efficiency of human and animals workers (ergonomics)

Several people discovered aspects of Coulomb’s Law before Coulomb. As
far back as 1750, the British Reverend John Michell (1724–1793) published
studies that showed that attraction and repulsion between the poles of
magnets varied inversely as the square of the distance between them.
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Michell’s torsion balance was subsequently used by Henry Cavendish
(1731–1810) to help measure the density of Earth. Coulomb had invented
his torsion balance around 1784, and although Michell’s work probably
preceded Coulomb’s, their discoveries were made independently.

John Robinson (c. 1725–?), a British doctor, measured the electrostatic
forces of attraction and repulsion in 1769, and his experiments suggested
that electrical repulsion had an 1/r2.06 dependency, and electrical attraction
had an 1/rc dependence in which c < 2. From these results, he suggested
that 1/r2 was probably correct. Also, the English chemist Joseph Priestley
(1733–1804) had suggested the 1/r2 law of electric force. Priestly wrote in
The History and Present State of Electricity:

May we not infer from this experiment [with charged hollow con-
ductors] that the attraction of electricity is subject to the same laws
with that of gravitation and is therefore according to the squares of
the distances; since it is easily demonstrated that were the Earth in
the form of a shell, a body in the inside of it would not be attracted
to one side more than another?

Although Priestly offered no convincing proof for Coulomb’s Law, his
speculations were essentially correct. Priestly also independently invented
the torsion balance and used it to show that the force between two mag-
netic poles varies as the inverse square of the distance between the poles.

Today, we call the 1/r2 law Coulomb’s Law in honor of Coulomb’s
independent results gained through the evidence provided by his torsional
measuring system. In other words, Coulomb provided convincing quanti-
tative results for what was, up to 1785, often a good guess.

The Coulomb force is relevant at atomic-size scales, and in fact, it is
instructive to compare the gravitational forces and Coulomb forces for
a hydrogen atom. As an approximation, if we think of the electron as a
point particle orbiting a point-particle proton, with the electron separated
from the proton by a distance of about 5.3 × 10−11 meters on average, the
Coulomb force can be calculated by

kq2

r2
= (9 × 109)(1.6 × 10−19)2

(5.3 × 10−11)2
= 8.2 × 10−8N.

The magnitude of the gravitational force Fg between the proton and elec-
tron can be approximately determined using the mass of the electron me

and proton mp:

Fg = Gmemp

r2
= (6.67 × 10−11)(9.1 × 10−31)(1.67 × 10−27)

(5.3 × 10−11)2

= 3.6 × 10−47N
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Notice that the Coulomb force is significantly greater than the gravitational
force between the two subatomic particles.

In closing, note that the Eiffel Tower in Paris features the names of 72
great French scientists and other thinkers—including Coulomb. Gustave
Eiffel’s original engraving of these names was painted over in the early
1900s but restored in 1987. The letters in the names are approximately 60
centimeters tall. In the following list, I have highlighted in boldface those
people listed on the tower who also have main entries in this book (only
last names appear on the tower):

1. Ampère (André-Marie Ampère, mathematician and physicist)
2. Arago (Dominique François Jean Arago, astronomer and physi-

cist)
3. Barral (Jean-Augustin Barral, agronomist, chemist, physicist)
4. Becquerel (Antoine Henri Becquerel, physicist)
5. Bélanger (Jean-Baptiste-Charles-Joseph Bélanger, mathemati-

cian)
6. Belgrand (Eugene Belgrand, engineer)
7. Berthier (Pierre Berthier, mineralogist)
8. Bichat (Marie François Xavier Bichat, anatomist and physiolo-

gist)
9. Borda (Jean-Charles de Borda, mathematician)

10. Breguet (Abraham Louis Breguet, mechanic and inventor)
11. Bresse (Jacques Antoine Charles Bresse, civil engineer and

hydraulic engineer)
12. Broca (Paul Pierre Broca, physician and anthropologist)
13. Cail (Jean-François Cail, industrialist)
14. Carnot (Nicolas Léonard Sadi Carnot, mathematician)
15. Cauchy (Augustin Louis Cauchy, mathematician)
16. Chaptal (Jean-Antoine Chaptal, agronomist and chemist)
17. Chasles (Michel Chasles, geometer)
18. Chevreul (Michel Eugène Chevreul, chemist)
19. Clapeyron (Émile Clapeyron, engineer)
20. Combes (Émile Combes, engineer and metallurgist)
21. Coriolis (Gaspard-Gustave Coriolis, engineer and scientist)
22. Coulomb (Charles-Augustin de Coulomb, physicist)
23. Cuvier (Baron Georges Leopold Chretien Frédéric Dagobert

Cuvier, naturalist)
24. Daguerre (Louis Daguerre, artist and chemist)
25. De Dion (Albert de Dion, engineer)
26. De Prony (Gaspard de Prony, engineer)
27. Delambre (Jean Baptiste Joseph Delambre, astronomer)
28. Delaunay (Charles-Eugène Delaunay, astronomer)

c o u l o m b ’ s l a w o f e l e c t r o s t a t i c s | 161



29. Dulong (Pierre Louis Dulong, physicist and chemist)
30. Dumas (Jean Baptiste André Dumas, chemist)
31. Ebelmen (Jean-Jacques Ebelmen, chemist)
32. Fizeau (Hippolyte Fizeau, physicist)
33. Flachat (Jeugène Flachat, engineer)
34. Foucault (Léon Foucault, physicist)
35. Fourier (Jean Baptiste Joseph Fourier, mathematician)
36. Fresnel (Augustin-Jean Fresnel, physicist)
37. Gay-Lussac (Joseph Louis Gay-Lussac, chemist)
38. Giffard (Henri Giffard engineer)
39. Goüin (Ernest Goüin, engineer and industrialist)
40. Haüy (René-Just Haüy, mineralogist)
41. Jamin (Jules Célestin Jamin, physicist)
42. Jousselin (Alexandre Louis Jousselin, engineer)
43. Lagrange (Joseph Louis Lagrange, mathematician)
44. Lalande (Joseph Jérôme Lefrançais de Lalande, astronomer)
45. Lamé (Gabriel Lamé, geometer)
46. Laplace (Pierre-Simon Laplace, mathematician and

astronomer)
47. Lavoisier (Antoine Lavoisier, chemist)
48. Le Chatelier (Henri Louis le Chatelier, chemist)
49. Le Verrier (Urbain Le Verrier, astronomer)
50. Legendre (Adrien-Marie Legendre, geometer)
51. Malus (Etienne-Louis Malus, physicist)
52. Monge (Gaspard Monge, geometer)
53. Morin (Jean-Baptiste Morin, mathematician and physicist)
54. Navier (Claude-Louis Marie Henri Navier, mathematician)
55. Petiet (Jules Petiet, engineer)
56. Pelouze (Théophile-Jules Pelouze, chemist)
57. Perdonnet (Albert Auguste Perdonnet, engineer)
58. Perrier (François Perrier, geographer and mathematician)
59. Poinsot (Louis Poinsot, mathematician)
60. Poisson (Simeon Poisson, mathematician and physicist)
61. Polonceau (Antoine-Rémi Polonceau, engineer)
62. Poncelet (Jean-Victor Poncelet, geometer)
63. Regnault (Henri Victor Regnault, chemist and physicist)
64. Sauvage (Jean-Pierre Sauvage, mechanic)
65. Schneider (Jacques Schneider, industrialist)
66. Seguin (Marc Seguin, mechanic)
67. Sturm (Jacques Charles François Sturm, mathematician)
68. Thénard (Louis Jacques Thénard, chemist)
69. Tresca (Henri Tresca, engineer and mechanic)
70. Triger (Jacques Triger, engineer)
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71. Vicat (Louis Vicat, engineer)
72. Wurtz (Charles-Adolphe Wurtz, chemist)
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INTERLUDE: CONVERSATION STARTERS

Individual facts are selected and grouped together such
that their lawful connection becomes clearly apparent. By
grouping these laws together, one can achieve other more
general laws. . . . However . . . the big advances in scientific
knowledge originated [by an inductive method] only to a
small degree. For, if a research were to approach things
without a preconceived opinion, how would he be able to
pick the facts from the tremendous richness of the most
complicated experiences that are simple enough to reveal
their connections through laws?
—Albert Einstein, “Induction and Deduction in Physics,

Berliner Tageblatt

We showed that if general relativity is correct, any rea-
sonable model of the universe must start with a singu-
larity . . . I now think that although there is a singularity,
the laws of physics can still determine how the Universe
began.
—Stephen Hawking, Black Holes and Baby Universes
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The future religion of humanity will be based on scientific
laws.
—Greg Whitefield, quoted in Post B. Basnet’s, “Nepal

Becoming Mecca for Buddhist Studies,” Kathmandu
Post

Scientific laws are merely the algorithms of this program
[of a world simulation]. . . . At the quantum level, we are
looking at machine language, beneath that perhaps the
machine itself, and there are no algorithms at that level,
just the changes in state of the machine that allow the
algorithms to work. This is why quantum particles seem
to behave so erratically and are hard to pin down—they
are not officially “in” the simulation; they are what’s mak-
ing the simulation happen.
—James Platt, personal communication, March 1, 2007

But there it was, the whole history of science, a clear story
of continuously new and changing explanations of old
facts. The time spans of permanence seemed completely
random he could see no order in them. Some scientific
truths seemed to last for centuries, others for less than a
year. Scientific truth was not dogma, good for eternity,
but a temporal quantitative entity that could be studied
like anything else.
—Robert Pirsig, Zen and the Art of Motorcycle Mainte-

nance

Science works because the universe is ordered in an intel-
ligible way. The most refined manifestation of this order
is found in the laws of physics, the fundamental mathe-
matical rules that govern all natural phenomena. One of
the biggest questions of existence is the origin of those
laws: where do they come from, and why do they have
the form that they do? . . . The laws of physics possess a
weird and surprising property: collectively they give the
universe the ability to generate life and conscious beings,
such as ourselves, who can ponder the big questions.
—Paul Davies, “Laying Down the Laws,” New Scientist
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CHARLES’S GAS LAW

France, 1787. At constant pressure, the volume occupied by a fixed
amount of gas is directly proportional to its absolute temperature.

Cross Reference: Joseph Louis Gay-Lussac, Leonardo da Vinci,
Guillaume Amontons, and Amontons’s Law of Friction.

In 1787, American inventor John Fitch launched a steamboat on
the Delaware River. William Herschel discovered two moons
of Uranus, which his sons later named Titania and Oberon.
The Constitutional Convention in Philadelphia adopted the U.S.
Constitution.

Charles’s Gas Law, also known as Gay-Lussac’s Law, states that the vol-
ume occupied by a fixed amount of gas varies directly with the absolute
temperature (i.e., the temperature in degrees kelvin). The law can be
expressed as

V = kT,

where V is the volume at a constant pressure, T is the temperature, and
k is a constant. French chemist and physicist Joseph Louis Gay-Lussac
(1778–1850) first published the law in 1802, where he referenced unpub-
lished work from around 1787 by French chemist and physicist Jacques
Charles.

Physicists have discovered that a gas increases approximately by 1/273
(0.003663) of its volume at 0◦C for each ◦C rise of temperature. Very
slight deviations from 1/273 have been observed, but because they are so
slight, the constant 1/273 is generally used as an approximate expansion
coefficient for gases. For example, French physicist Henri-Victor Regnault
(1810–1878) found values of 0.0036613 for hydrogen and 0.0037099 for car-
bon dioxide. Note that although the coefficients of expansion of different
gases are nearly the same, different solids or liquids have very different
coefficients.

As the temperature of the gas increases, the gas molecules move more
quickly and hit the walls of their container with more force—thus increas-
ing the volume of gas, assuming that the container volume is able to
expand. For a more specific example, consider warming the air within
a balloon. As the temperature increases, the speed of the moving gas
molecules increases inside the surface of the balloon. This in turn increases
the rate at which the gas molecules bombard the surface. Because the
surface of the balloon can stretch, the surface expands as a result of the
increased internal bombardment. The volume of gas increases, and its



density decreases. The act of cooling the gas inside a balloon will have
the opposite effect and cause the pressure to be reduced and the balloon
to shrink.

Charles’s Law is sometimes expressed as

V1

T1
= V2

T2
,

where the subscripts 1 and 2 refer to the volume and temperature of a gas
before and after the volume or temperature has changed. Notice that we
do not need to know the value of the constant k in order to make practical
use of the law when comparing two volumes. For example, let us suppose
we have a sample of gas at 15◦C and at one atmosphere pressure, with a
volume of 2.50 liters. We want to know what volume this gas will occupy at
40◦C at the same atmospheric pressure. In other words, for this problem,
the pressure remains the same, while the volume and temperature change.
Our first step is to convert the temperature in degrees Celsius to degrees
kelvin by adding 273 to both temperature values. Thus, we have 2.50 L ÷
288◦K = V2 ÷ 313◦K; thus, V2 = 2.72 liters. The temperature has increased
slightly, and the volume also increases slightly.

Jacques Charles (1746–1823), French mathematician, physicist, and
inventor who studied the thermal expansion of gases and who was the first
person to ascend in a hydrogen balloon (with Nicolas Robert).

CURIOSITY FILE: In the world of ballooning, Charles invented the nacelle,
the basket suspended beneath the balloon by ropes and held in place by
a hoop. This nacelle holds the passengers and their belongings. • Local
peasants were so frightened by the landing of one of Charles’s balloons
that they tore it apart, believing it to be the work of the devil.

Almost nothing is known of Charles’s family or his
upbringing, except that he received a liberal, nonscientific
education. [Later] Charles published almost nothing of
significance.
—J. B. Gough, “Jacques Charles,” in Dictionary of Scien-

tific Biography

Charles’s view from the balloon was phenomenal, and as
soon as they touched down, the ecstatic Jacques Charles
jumped from the basket, crying out to the assembled
onlookers his newly sworn creed: “I care not what may
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be the condition of the Earth—it is the sky that is for me
now. What serenity! What a ravishing scene!”
—Richard Hamblyn, The Invention of Clouds

Jacques Charles was born in Beaugency-sur-Loire, France, and later con-
ducted research in many fields that ranged from electricity to gases to the
flight of balloons. Very little is known about his family and early life, but
we do know his education was liberal and did not focus on science. His first
job was a low-level position in the bureau of finances in Paris. In 1779, at
the same time that Ben Franklin was in Paris, Charles was fired from his
job and became inspired to learn about those experimental sciences that
did not require much mathematical sophistication.

Less than two years later, Charles had evolved into such a good science
lecturer that his presentations in physics and chemistry attracted large
audiences. He was named a resident member of the Académie des Sciences
in 1795, and later he became professor of experimental physics at the
Conservatoire des Arts et Metiers (Conservatory of Arts and Trades).
In 1804, he married a woman described in the literature merely as an
“attractive young lady.”

Charles was most famous to his contemporaries for his various exploits
and inventions pertaining to the science of ballooning and other practical
sciences. For example, Charles

� promoted the idea of using hydrogen instead of hot air in balloons
� invented the valve line, which enables gas release for balloon

descent
� invented the appendix, a tube that enables gas to escape to prevent

balloon rupture
� invented the megascope, a device for projecting and magnifying

objects
� invented a goniometer for measuring crystal angles
� developed ways to make balloons less porous in order to hold the

hydrogen gas.

His first balloon journey took place in 1783, and his adoring audience
of thousands watched as the balloon drifted. The balloon ascended to a
height of nearly 3,000 feet (914 meters) and seems to have finally landed
in a field outside of Paris, where it was destroyed by terrified peasants. In
fact, the locals believed that the balloon was some kind of evil spirit or
beast from which they heard sighs and groans, accompanied by a noxious
odor.

The initial filling of this balloon had been quite a task. According to
Charles M. Evans’s War of the Aeronauts: The History of Ballooning in the
Civil War,
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Charles used a crude hydrogen generator that consisted of a large
wooden barrel containing iron filings. . . . Hinged doors were fash-
ioned into the top of the barrel, which allowed Charles to pour
sulfuric acid over the filings, causing the chemical reaction that
produced hydrogen. The inflation process . . . took over four days to
complete. More than 200 pints of acid and a ton of iron filings were
consumed. . . .

The balloon craze had thus begun. Here are some quick highlights: In
1784, John Jeffries and Jean-Pierre F. Blanchard flew a hydrogen balloon
at various altitudes above England as they collected temperature and mois-
ture data. In January of 1785, Jeffries and Blanchard crossed the English
Channel from England to France. In June of 1785, Jean-François Pilâtre
de Rozie and Pierre Romain attempted to cross the Channel from France
to England in a double balloon, consisting of an upper gas balloon and a
lower hot-air balloon. At an altitude of about 1,000 meters, the craft burst
into flames, killing both de Rozier and Romain, who were the first to die
in a balloon accident. The first flight made by a woman took place in 1894
when Marie Thible of Lyons, France, ascended to 8,500 feet in a 45-minute
flight. The first balloon flight in America was undertaken by Blanchard in
1793 and witnessed by George Washington.

Charles had started a fad, but despite his initial fame, he rarely pub-
lished his scientific findings, and his famous 1878 gas law was first made
public by Gay-Lussac, who also improved upon Charles’s experimental
procedures.

Note that the relationship P = kT, where P stands for pressure, is a rela-
tionship that is usually not attributed in an eponymous fashion, although
it is often seemingly mistakenly called Gay-Lussac’s Law. Note also that
French physicist Guillaume Amontons (1663–1705) also investigated the
relationship between pressure and temperature in gases, although he did
not have access to accurate thermometers. He did show that that the
pressure of a gas increases as its temperature is raised while holding the
volume and the amount of gas constant.

Amontons also discovered a relationship, which some have called
Amontons’s Law, that characterizes the friction between two surfaces. In
particular, Amontons showed that the frictional force is directly propor-
tional to the force normal (perpendicular) to the surfaces in contact, with
a constant of proportionality (a frictional coefficient) that is constant and
independent of the size of the contact area. These kinds of relationships
were first suggested by Leonardo da Vinci and rediscovered by Amontons.

Several studies have been conducted in the early years of the
twenty-first century to determine the extent to which Amontons’s Law
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actually applies for materials at length scales from nanometers to millime-
ters. In particular, the validity of Amontons’s Law is of concern today
for researchers in the area of MEMS (micro-electromechanical systems),
which make use of tiny devices such as those now used in inkjet printers
and as accelerometers in car airbag systems. MEMS uses microfabrication
technology to integrate mechanical elements, sensors, and electronics on
a silicon substrate. Amontons’s Law, which is often useful when studying
traditional machines and moving parts, may not be applicable to larger
machines, such as those the size of a pinhead and larger. [For additional
principles in this book that relate to the field of tribology (friction), see
Coulomb’s Law of Friction, discussed in the entry for Coulomb.]

Returning to the life of Jacques Charles, his spirit of adventure and zest
for life are exemplified by the joy he felt while traveling in his balloons.
Richard Hamblyn, author of The Invention of Clouds: How an Amateur
Meteorologist Forged the Language of the Skies, describes Charles’s feel-
ings while on one of his solo flights:

Charles rose even higher on this second [flight of the evening],
bringing the Sun back into view, where he stayed aloft until he
watched its second setting, ravished by the sight, “hearing himself
live.” . . . When he finally relanded . . . he emerged from the basket
more rhapsodic than ever, with the image of the twin sunsets,
viewed from the vantage of a soaring balloon, scored indelibly onto
his mind.

A lunar crater with a diameter of 1 kilometer was named after Charles
and approved in 1976 by the International Astronomical Union General
Assembly.
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We now know that there exist true propositions which
we can never formally prove. What about propositions
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whose proofs require arguments beyond our capabilities?
What about propositions whose proofs require millions
of pages? Or a million, million pages? Are there proofs
that are possible, but beyond us?
—Calvin Clawson, Mathematical Mysteries

For the religious, passivism [i.e., objects are obedient
to the laws of nature] provides a clear role for God as
the author of the laws of nature. If the laws of nature
are God’s commands for an essentially passive world . . . ,
God also has the power to suspend the laws of nature,
and so perform miracles.
—Brian Ellis, The Philosophy of Nature: A Guide to the

New Essentialism

The most beautiful thing we can experience is the mys-
terious. It is the source of all true art and science. He to
whom this emotion is a stranger, who can no longer pause
to wonder and stand rapt in awe, is as good as dead: his
eyes are closed.
—Albert Einstein, “What I Believe,” Forum and Century

One can argue that mathematics is a human activity
deeply rooted in reality, and permanently returning to
reality. From counting on one’s fingers to moon-landing
to Google, we are doing mathematics in order to under-
stand, create, and handle things, and perhaps this under-
standing is mathematics rather than intangible murmur
of accompanying abstractions. Mathematicians are thus
more or less responsible actors of human history, like
Archimedes helping to defend Syracuse (and to save a
local tyrant), Alan Turing cryptanalyzing Marshal Rom-
mel’s intercepted military dispatches to Berlin, or John
von Neumann suggesting high altitude detonation as an
efficient tactics of bombing.
—Yuri I. Manin, “Mathematical Knowledge: Internal,

Social, and Cultural Aspects,” March 2007
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Science will continue to surprise us with what it dis-
covers and creates; then it will astound us by devising
new methods to surprise us. At the core of science’s
self-modification is technology. New tools enable new
structures of knowledge and new ways of discovery. The
achievement of science is to know new things; the evolu-
tion of science is to know them in new ways. What evolves
is less the body of what we know and more the nature of
our knowing.
—Kevin Kelly, “Speculations on the Future of Science”

When a distinguished but elderly scientist states that
something is possible, he is almost certainly right. When
he states that something is impossible, he is very probably
wrong.
—Arthur C. Clarke, Profiles of the Future, 1962

When, however, the lay public rallies round an idea that
is denounced by distinguished but elderly scientists and
supports that idea with great fervor and emotion—the
distinguished but elderly scientists are then, after all,
probably right.
—Isaac Asimov, Quasar, Quasar, Burning Bright, 1976

As the nineteenth century drew to a close, scientists could
reflect with satisfaction that they had pinned down most
of the mysteries of the physical world: electricity, mag-
netism, gases, optics, acoustics, kinetics, and statistical
mechanics . . . all had fallen into order before them. They
had discovered the X ray, the cathode ray, the electron,
and radioactivity, invented the ohm, the watt, the Kelvin,
the joule, the amp, and the little erg.
—Bill Bryson, A Short History of Nearly Everything
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DALTON’S LAW OF PARTIAL PRESSURES

England, 1801. Each gas in a mixture of gases exerts a pressure as
if the other gases were not present; the total pressure of the gases
is the sum of the pressures created by each gas in the mixture.

Cross Reference: James Joule, Charles’s Gas Law, the Law of
Multiple Proportions, and the Atomic Theory of Matter.

In 1801, Thomas Jefferson was inaugurated President of the
United States. French inventor and silk weaver Joseph-Marie
Jacquard developed a loom that used punched cards to control
the weaving pattern. (Weavers destroyed his invention because
they feared it would take away their jobs.) German chemist and
physicist Johann Wilhelm Ritter discovered ultraviolet radiation.
Ritter died at 33, perhaps, in part, because he continually used
his own body in high-voltage experiments.

Dalton’s Law of Partial Pressures states that the total pressure Pt exerted
by a mixture of gases in a container is equal to the sum of the separate
pressures that each of the gases would exert if just that single gas occupied
the entire volume of the container. In formula form, Dalton’s Law (also
sometimes called Dalton’s Law of Additive Pressures) may be expressed
as

Pt = pa + pb + pc + . . . ,

where Pt is the pressure produced by a mixture of gases a, b, c, . . . , and
pa, pb, and pc . . . are the partial pressures of the gases in the mixture. As
suggested, the partial pressure of a single gas is the pressure that would be
exerted by that gas if it were to occupy the whole container, at the same
pressure and temperature, in the absence of other gases.

As an example, if we mix different quantities of argon, oxygen, and
helium in a container so that they have partial pressures of 1, 2, and 3
atmospheres, respectively, the total pressure of the mixture is simply

Pt = pargon + poxygen + phelium = 6 atmospheres.

Dalton’s Law implies that we can regard the atmospheric pressure of Earth
as the sum of the partial pressures of its constituent gases, namely, the sum
of a nitrogen pressure, an oxygen pressure, an argon pressure, a carbon
dioxide pressure, a water vapor pressure, and a pressure from rare gases
present in the atmosphere.

John Dalton assumed and suggested that a large amount of space
exists between the gas molecules within a gas mixture, and therefore,



one gas molecule has little influence on the motion of another. This led
him to believe that the pressure of a gas sample is the same whether
it is the only gas in a container or it is among other gases. If gas
molecules begin to interact—as may be the case at very low tempera-
tures and high pressures—deviations from Dalton’s Law can occur. Also,
Dalton’s Law assumes that the gases do not chemically react with one
another.

Although Dalton’s Law may seem trivial, it is one of the more useful gas
laws for scientists. For example, one laboratory method of gas collection
involves displacing water from a bottle. Once all of the water has exited the
bottle, we know that the gas occupies essentially the entire volume of the
bottle, assuming that the gas solubility in the water is not significant in the
experiment. In fact, you may recall from a high-school chemistry class that
you used an inverted bottle filled with water as the bottle sat in a water
bath. A tube from the reaction vessel transfers the gas into the upside-
down bottle into which the gas bubbles to the top and displaces water. The
water is forced out of the mouth of the bottle into the water bath. Note
that the gas now trapped in the container is not composed entirely of the
gas pumped into the bottle—rather, it is a mixture that contains a certain
amount of water vapor. We are able to find the pressure of the dry gas
alone, using Dalton’s Law and by subtracting the pressure of the water
vapor from the total pressure:

P(dry gas) = Ptotal − P(water vapor)

We can easily substitute an actual value for the partial pressure of the
water vapor, P(water vapor), because reference tables exist that show the
pressure of water vapor at various temperatures. For example, the vapor
pressure of water at 20◦C is 2.3 kPa, and at 40◦C the pressure is 7.4 kPa.
(kPa is a unit of pressure and stands for kilopascals.) Thus, for example,
if we have a sample of hydrogen gas collected over water that is at a
temperature of 20◦C and find the resultant pressure is 110 kPa, the pressure
exerted by the dry hydrogen alone is 110 – 2.3 = 107.7 kPa.

Dalton’s Law is of particular interest to scuba divers, because they
want their gas tanks to deliver a partial pressure of 0.20 atmospheres of
oxygen to ensure proper functioning of the respiratory systems of their
bodies. The total pressure must account for the external pressure expe-
rienced by the diver in the water in order to prevent the lungs from
collapsing. Thus, divers use a valve to equalize the pressure inside their
lungs with the external pressure by adding helium gas. The valve, in
effect, uses Dalton’s Law to maintain appropriate pressures and oxygen
levels.
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John Dalton (1766–1844), English chemist, physicist, and meteorologist,
famous for his contributions to the development of atomic theory and one
of the fathers of modern physical science.

CURIOSITY FILE: Red-green color blindness has often been referred to as
“Daltonism,” after John Dalton, who suffered from and researched this
affliction. • Dalton discovered butylene (a gas used today for making
rubber) and determined the correct chemical formula for ether (formerly
used as an anesthetic). • Dalton was exceeding versatile—in 1801, in
addition to his important paper on the properties of gases, he published a
book on English grammar. • In the 1990s, scientists studied one of his
preserved eyes in order to understand the cause of his color blindness.

Matter, though divisible in an extreme degree, is nev-
ertheless not infinitely divisible. That is, there must be
some point beyond which we cannot go in the division of
matter. . . . I have chosen the word “atom” to signify these
ultimate particles. . . .
—John Dalton, A New System of Chemical Philosophy,

1808

Dalton transformed the atomic concept from a philo-
sophical speculation into a scientific theory—framed to
explain quantitative observations, suggesting new tests
and experiments, and capable of being given quantita-
tive form through the establishment of relative masses of
atomic particles.
—Arnold Arons, Development of Concepts of Physics

Chemical analysis and synthesis go no farther than to
the separation of particles one from another, and to
their reunion. No new creation or destruction of matter
is within reach of chemical agency. We might as well
attempt to introduce a new planet into the Solar System,
or to annihilate one already in existence, as to create or
destroy a particle of hydrogen. All the changes we can
produce consist in separating particles that are in a state
of cohesion or combination, and joining those that were
previously at a distance.
—John Dalton, A New System of Chemical Philosophy,

1808
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John Dalton was born in Eaglesfield in northern England. He was a quiet
man who attained his professional success in spite of several hardships:
He grew up in a family with little money, was a poor speaker, never had
a wife to give him emotional support, was severely color blind, and was
considered to be a fairly crude or simple experimentalist. Perhaps some of
these challenges would have presented an insurmountable barrier to any
budding chemist of his time, but Dalton persevered and made exceptional
contributions to the development of atomic theory, which states that all
matter is composed of atoms of differing weights that combine in simple
ratios. During his time, atomic theory also suggested that these atoms
could be considered to be indestructible.

Dalton was the son of a Quaker weaver who lived in the county of
Cumberland, England. Dalton’s childhood years were spent working in
the fields and in his father’s shop, where cloth was made. His sister sold
paper, ink, and pens. When only 12, Dalton helped run the village Quaker
school at which he also taught, and two years later he taught with his
brother at a boarding school in the small town of Kendal. During these
early years, Dalton acknowledged that his love of science was stimulated
by John Gough, a blind natural philosopher. Dalton wrote in a 1783 letter,

John Gough is . . . a perfect master of the Latin, Greek, and French
tongues. . . . Under his tuition, I have since acquired a good knowl-
edge of them. He knows by the touch, taste, and smell, almost every
plant within twenty miles . . . he and I have been for a long time
very intimate; as our pursuits are common—viz. mathematical and
philosophical.

Starting in 1787, Dalton kept a daily meteorological diary, which he contin-
ued to update each day until the very day of his death. This amazing com-
pendium eventually contained roughly 200,000 entries on meteorological
observations for the variable climate of the lake district in which he lived.
Some British scientists, such as John Frederic Daniell (1790–1845), have
called Dalton “the father of meteorology.” Dalton’s obsession for note
taking is also evidenced in his recreational life—even when he played the
English lawn game of “bowls,” he kept meticulous records of hits, misses,
and other scores.

His mathematical prowess increased while at school, and even in his
early years, he had a reputation for solving yearly puzzle competitions of
the Ladies’ Diary and Gentleman’s Diary. His lecture topics at the Kendal
school ranged from mechanics and optics to astronomy and pneumatics.
According to Arnold Thackray’s entry on Dalton in the Dictionary of Sci-
entific Biography, Dalton soon became restless with his exclusive focus on
teaching and argued that “very few people of middling genius or capacity
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for other business” become teachers. He wanted to become a physician,
but this was difficult for a man of his meager finances. Also, his family
thought that his awkward bedside manner would preclude him from being
a great physician.

During his years in Kendal, Dalton collected plants and common
insects. “Some of these,” he wrote, “may be thought puerile; but noth-
ing that enjoys animal life, or that vegetates is beneath the dignity of a
naturalist to examine.”

In 1792, Dalton was appointed a teacher of mathematics and natural
philosophy at New College in Manchester. The Presbyterians had estab-
lished this college in order to give an excellent education to those who
could not attend Cambridge and Oxford, which had been open only to
members of the Church of England.

In 1794, Dalton was elected to the Manchester Library and Philosoph-
ical Society, and within a month of his election, Dalton presented his
first major paper, “Extraordinary Facts Relating to the Vision of Colours,
with Observations.” In this first paper ever published on color blindness,
Dalton offered a systematic study of the affliction. He had discovered his
own color blindness when he realized that flowers looked different to him
than to his colleagues. In particular, when Dalton looked at a flower that
most people saw as pink, he regarded the flower as being blue. (For some
time after he presented his paper, color blindness was even known as
“Daltonism.”)

According to legends, Dalton once bought his mother special stockings
for her birthday. The mother turned to Dalton and exclaimed, “Why did
you buy me scarlet stockings?” Scarlet wouldn’t have been suitable for
a Quaker woman. Dalton had thought they were blue and turned to his
brother to verify their suitable color. However, his brother also saw blue
instead of scarlet, at which point John discovered that both he and his
brother were color blind.

Even though Dalton’s scientific theories on color blindness were not
adequate to account for his inability to see the color red, his skill in giving
a careful account of the phenomenon increased his growing prestige. In
order to account for his color blindness, he wrote in “Extraordinary Facts”
that it was “almost beyond doubt that one of the humours of my eye . . . is a
colored medium.” He asked that his own eye be cut open and studied after
his death to confirm his hypotheses that blue fluids in his eye absorbed the
color red. (The dissection indeed occurred, but did not support his theo-
ries.) About his own color blindness, he noted in “Extraordinary Facts,”

that part of the image which others call red appears to me little more
than a shade or defect of light. After that, the orange, yellow and
green seem one colour which descends pretty uniformly from an
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intense to a rare yellow, making what I should call different shades
of yellow.

In 1800, Dalton opened his private “Mathematical Academy” that
offered students classes in mathematics and chemistry—and made Dalton
a good living. Close to this time, Dalton began to make strides in various
areas that would make him famous:

1. He discovered Charles’s Law, which described the expansion of
gases at constant pressure. (As discussed under “Charles’s Gas
Law” in part II, the law is named after Jacques Charles, who
discovered the law independently and earlier than Dalton.)

2. He formulated the law of additive partial pressures for gases,
which was first published in Meteorological Observations.
Dalton’s Law, as it came to be called, states that every gas acts
as an independent entity in a mixture of gases and that the total
pressure of a mixture of gases equals the sum of the pressures of
the gases in the mixture, each gas acting independently.

3. He promoted chemical atomic theory: All matter is atomic in
nature. (He also calculated relative masses of atoms and elements
such as hydrogen, oxygen, carbon, and nitrogen). According to
Dalton, all elements are composed of tiny, indestructible parti-
cles called atoms that are all alike for a particular element and
have the same atomic weight.

He also formulated the Law of Multiple Proportions that stated whenever
two elements can combine to form different components, the masses of
one element that combine with a fixed mass of the other are in a ratio
of small whole numbers, such as 1:1, 2:1, and 1:2. These simple ratios
provided evidence that atoms were the building blocks of compounds.
Unfortunately, knowledge of such ratios was insufficient to determine the
actual number of atoms in each compound. Nevertheless, Dalton’s atomic
theory set the stage for great advances in decades to come, leading many
to call Dalton the “father of chemistry.”

Dalton did encounter resistance to atomic theory. For example, the
British chemist Sir Henry Enfield Roscoe (1833–1915) mocked Dalton in
1887, saying, “Atoms are round bits of wood invented by Mr. Dalton.”
Perhaps Roscoe was referring to the wood models that some scientists
used in order to represent atoms of different sizes. Nonetheless, by 1850,
the atomic theory of matter was accepted among a significant number of
chemists, and most opposition disappeared.

Through the years, Dalton published essays on diverse subjects, includ-
ing theories on the trade winds, dew points, heat, the aurora borealis,
the solubility of gases in water, variations in barometric pressure, and
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evaporation. Despite prevailing contemporary views, he promoted the
correct idea that the atmosphere was a physical mixture of about 80%
nitrogen and 20% oxygen instead of being a compound of elements. He
published his idea that the air was not a vast chemical solvent in Meteoro-
logical Observations. Neither this publication nor his forthcoming law of
additive partial pressures brought much immediate scientific reaction.

In 1801, he expressed part of his famous law of partial pressures in his
paper “New Theory of the Constitution of Mixed Aeriform Fluids, and
Particularly of the Atmosphere” in the Journal of Natural Philosophy,
Chemistry and the Arts:

When two elastic fluids, denoted by A and B, are mixed together,
there is no mutual repulsion amongst their particles; that is, the
particles of A do not repel those of B, as they do one another.
Consequently, the pressure or whole weight upon any one particle
arises solely from those of its own kind.

Although we now know that Dalton was inaccurate when he said that only
like atoms in a mixture of gases repel and unlike atoms are indifferent
toward each other, Dalton’s basic ideas did point him in the correct direc-
tion, causing him and his followers to reject a commonly held theory that
all atoms in matter were alike. Dalton believed that atoms of different
elements had different sizes and masses and that each element had its own
unique and identical kind of atoms—all key points of his atomic theory.
He maintained that any two molecules of the same chemical compound
are composed of the same combination of atoms. This atomic hypothesis
is essential to the field of chemistry today.

He formally claimed the special status of chemical atoms when he wrote
in A New System of Chemical Philosophy, “We might as well attempt to
introduce a new planet into the Solar System, or to annihilate one already
in existence, as to create or destroy a particle of hydrogen.” Further, he
wrote, “I should apprehend there are a considerable number of what may
be called elementary principles, which can never be metamorphosed, one
into another, by any power we can control.”

Although the total number of atoms in the world was very large, he
suggested that the number of different types of atoms is quite small. His
original writings listed about twenty different elements, which he thought
of as species of atoms. Today, we know of more than one hundred naturally
occurring and manmade elements.

In 1816, Dalton was elected to the position of corresponding member
of the French Académie des Sciences, and in 1822 he visited Paris, where
he met other famous scientists of his time, such as Pierre-Simon Laplace
(1749–1827), Joseph Louis Gay-Lussac (1778–1850), and André-Marie
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Ampère (1775–1836). In 1817, Dalton became president of the Manchester
Literary and Philosophical Society, which he presided over for the remain-
ing 27 years of his life. He was elected to the Royal Society in 1922, and
received the Royal Medal in 1826 in recognition of his chemical atomic
theory. In 1831, he chaired various scientific committees of the British
Association for the Advancement of Science. In 1836, he became vice
president-elect of the association, but his participation was cut short by two
severe paralytic attacks in 1837. He was a partial invalid for the rest of his
life. Thackray writes in the Dictionary of Scientific Biography of society’s
growing respect for Dalton during his final years:

Dalton’s later life also illustrates the growing recognition that soci-
ety was beginning to offer the man of science. Impeccable scientific
credentials, a blameless personal life, and in old age a calm and
equable temperament all combine to make Dalton a peculiarly suit-
able recipient of civil honor.

In 1794, Dalton explained why he had never married and had no progeny:
“My head is too full of triangles, chymical processes, and electrical exper-
iments, etc., to think much of marriage.” His needs were always simple,
which was a reflection of his Quaker faith.

In 1844, he had another stroke. On July 26 of that year, he recorded
with a shaking hand his final meteorological observation. A day later,
he fell from his bed and was found dead. More than 40,000 people filed
past his coffin in Manchester Town Hall. Stores and offices closed for a
day as a mark of respect. Dalton’s funeral procession stretched for two
miles. According to Bill Bryson’s A Short History of Nearly Everything,
Dalton’s entry in Britain’s 1885 Dictionary of National Biography is one of
the longest, “rivaled in length only by those of Darwin and Lyell among
nineteenth-century men of science.”

As Dalton had requested, his eye was cut open, and the liquids of his
eye were found to be normal. One of his eyes was preserved at the Royal
Institution, and in the 1990s, cellular analysis revealed that the eye lacked
the pigment that provides sensitivity to green. Today, we call this form
of color blindness “deuteranope.” Roughly five out of every 100 males is
deuteranomalous to at least some degree.

As another curious aside, in 2006, researchers at Cambridge University
and the University of Newcastle upon Tyne in England discovered that
people afflicted with red-green color blindness actually have a special sen-
sitivity to other hues. For example, the researchers found that color-blind
subjects could actually distinguish between very subtly different tones of
khaki, whereas people with normal vision could not. Elise Kleeman noted,
“The findings lend credence to the theory that people with red-green color
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blindness make good hunters or soldiers because they are not easily fooled
by camouflage.” The researchers suggest that red-green color blindness
could have been retained for evolutionary reasons because it helped early
humans locate predators and food in forests.

Returning our attention to the legacy of Dalton, a lunar crater with a
diameter of 60 kilometers was named after Dalton and approved in 1964 by
the International Astronomical Union General Assembly. Dalton’s con-
tribution to humankind has been considered so great by Michael H. Hart,
author of The 100: A Ranking of the Most Influential Persons in History,
that Hart ranks Dalton as the thirty-second most influential person in all
of history. Hart concludes:

So convincingly did Dalton present his [atomic] theory that within
twenty years it was adopted by the majority of scientists. Further-
more, chemists followed the program that his book suggested: deter-
mine exactly the relative atomic weights; analyze chemical com-
pounds by weight; determine the exact combination of atoms which
constitutes each species of molecule. The success of that program
has, of course, been overwhelming. It is difficult to overstate the
importance of the atomic hypotheses. It is the central notion in our
understanding of chemistry.

Within just a few decades of his death, many Englishmen thought of
Dalton with profound reverence. In 1874, Henry Lonsdale wrote in The
Worthies of Cumberland:

As pilgrims to the shrines of saints draw thousands of English
Catholics to the Continent, there may be some persons in the British
Islands sufficiently in love with science, not only to revere the mem-
ory of its founders, but to wish for a description of the locality
and birth-place of a great master of knowledge—John Dalton—who
did more for the world’s civilization than all the reputed saints in
Christendom.

In 1895, Henry E. Roscoe’s John Dalton and the Rise of Modern
Chemistry forever immortalized Dalton and his fellow great scientist from
Manchester, James Joule, whom I discuss in a separate entry:

In the vestibule of the Manchester Town Hall are placed two life-
sized marble statues facing each other. One of these is that of John
Dalton . . . the other that of James Prescott Joule. . . . Thus the hon-
our is done to Manchester’s two greatest sons—to Dalton, the
founder of modern Chemistry and of the Atomic Theory, and the
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laws of chemical-combining proportions; to Joule, the founder of
modern physics and the discoverer of the law of Conservation of
Energy.

The one gave to the world the final proof . . . that in every kind
of chemical change no loss of matter occurs; the other proved that
in all the varied modes of physical change, no loss of energy takes
place.
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INTERLUDE: CONVERSATION STARTERS

Why do the laws that govern [the universe] seem constant
in time? One can imagine a Universe in which laws are
not truly lawful. Talk of miracles does just this, invoking
God to make things work. Physics aims to find the laws
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instead, and hopes that they will be uniquely constrained,
as when Einstein wondered whether God had any choice
when He made the Universe.
—Gregory Benford, in John Brockman’s What We

Believe but Cannot Prove

Until now, physical theories have been regarded as
merely models which approximately describe the reality
of nature. As the models improve, so the fit between
theory and reality gets closer. Some physicists are now
claiming that supergravity is the reality, that the model
and the real world are in mathematically perfect accord.
—Paul Davies, Superforce

Physical concepts are free creations of the human
mind, and are not, however it may seem, uniquely
determined by the external world. In our endeavor to
understand reality, we are somewhat like a man trying
to understand the mechanism of a closed watch. He sees
the face and the moving hands, even hears it ticking, but
he has no way of opening the case. If he is ingenious, he
may form some picture of the mechanism which could
be responsible for all the things he observes, but he may
never be quite sure his picture is the only one which could
explain his observations. He will never be able to com-
pare his picture with the real mechanism, and he cannot
even imagine the possibility of the meaning of such a
comparison.
—Albert Einstein, The Evolution of Physics

The burgeoning field of computer science has shifted our
view of the physical world from that of a collection of
interacting material particles to one of a seething network
of information. In this way of looking at nature, the laws
of physics are a form of software, or algorithm, while
the material world—the hardware—plays the role of a
gigantic computer.
—Paul Davies, “Laying Down the Laws,” New Scientist
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HENRY’S GAS LAW

England, 1802. The amount of a gas dissolved in a liquid is propor-
tional to the pressure of the gas above the liquid, provided that no
chemical reaction takes place.

In 1802, astronomer William Herschel discovered binary stars
(two stars both orbiting around their center of mass). Today, we
know that a large percentage of stars are part of binary (or multi-
ple) star systems. Also in 1802, German naturalist Gottfried Tre-
viranus coined the term “biology.” The U.S. Military Academy,
also known as West Point, was established. British experimenter
Thomas Wedgwood produced the first photograph. Ludwig van
Beethoven performed “Moonlight Sonata” for the first time.

Henry’s Law is one of the many gas laws discussed in this book. In short,
it states that the amount of a gas—usually taken to mean the mass of the
gas—that is dissolved in a liquid is directly proportional to the pressure of
the gas above the solution. This assumes that the system under study has
reached a state of equilibrium and that the gas does not chemically react
with the liquid. A common formula used today for Henry’s Law is

P = kC,

where P is the partial pressure of the particular gas above the solution, C is
the concentration of the dissolved gas, and k is the Henry’s Law constant.
As just two examples, for dissolved oxygen, k = 4.34 × 104 L·atm/mol, and
for dissolved carbon dioxide, k = 1.64 × 103 L·atm/mol, when these gases
are dissolved in water at 299◦K. Sometimes, Henry’s Law constants are
given in units of (mL gas)/(mL solvent · atm). Henry’s Law is most accurate
for dilute solutions and low gas pressures.

We can visualize why Henry’s Law works in several ways. For example,
consider a scenario in which the partial pressure of a gas above a liquid
increases by a factor of 2. Then, on the average, twice as many molecules
will collide with the liquid surface in a given time interval, and thus, twice
as many gas molecules will enter the solution. Note that different gases
have different solubilities, and this also affects the process, as well as the
value of Henry’s constant. Many Henry’s constants have been published at
25◦C, and they decrease with increasing temperature.

Let’s work on a small problem that involves Henry’s Law. In particular,
let’s determine what the oxygen (O2) content of pure water is in the pres-
ence of air at 20◦C and 1 atmospheric pressure—given a Henry Law’s con-
stant for pure oxygen at 20◦C, which can be expressed as 0.031 mL O2/mL



H2O at 1 atmosphere total pressure. Because air consists of approximately
20% O2, the O2 content of air is only 0.2 atmospheres. Using Henry’s Law,
we find that the solubility of O2 in the presence of air to be 0.2 atm × [0.031
mL O2/(mL H2O · 1 atm)] = 0.0062 mL O2/mL H2O.

Henry’s Law has been used by researchers to better understand the
noise associated with “cracking” of finger knuckles. Gases that are dis-
solved in the synovial fluid in joints rapidly come out of solution as the
joint is stretched and pressure is decreased. This cavitation—the sudden
formation and collapse of low-pressure bubbles in liquids by means of
mechanical forces—produces a characteristic noise.

In scuba diving, the pressure of the air breathed is roughly the same as
the pressure of the surrounding water. The deeper one dives, the higher
the air pressure and the more air that dissolves in the blood. When a diver
ascends rapidly, the dissolved air may come out of solution too quickly
in the blood, and the bubbles in the blood cause a painful and dangerous
disorder known as decompression sickness.

Researchers at Like-A-Fish Technologies are currently trying to use
Henry’s Law to extract breathable oxygen from seawater for divers. Per-
haps someday we can all return to the sea without the traditional scuba
tank—or at least that is the dream of the Israel-based company. The
process works by placing seawater under low pressure, which according
to Henry’s Law will cause dissolved gas to be released from the liquid
for the diver to breathe. The company holds patents in Europe and a
pending patent in the United States. A laboratory model of the device was
developed and successfully tested.

William Henry (c. 1774–1836), British chemist famous for his law that
relates the amount of gas dissolved in a liquid to the pressure of the gas
above the liquid.

CURIOSITY FILE: Gas bubbles leave a soda drink once you open the soda
can due to Henry’s Law. When the can is closed, the carbon dioxide gas
in the can is under pressure and remains dissolved. When opened, the
pressure is removed, and the dissolved gas rapidly leaves the liquid in the
form of bubbles. • Henry’s father, Thomas Henry, was an apothecary
who discovered a new way of making magnesium carbonate, which he
used as an antacid and soon became a popular medicine known as Henry’s
Magnesia. • William Henry killed himself because he could no longer
endure his physical afflictions.
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Henry was somewhat shy and reserved with strangers,
who often thought him cold. This is perhaps not surpris-
ing in a man with such physical infirmities since his youth.
He appears to be a man who could not be induced to
relax. He regretted that his lifelong struggle with pain,
and digestive disorders, had reduced his capacity for
scientific and literary creativity.
—Craig Thornber, “Thomas Henry, FRS and his son,

William Henry, MD, FRS, GS”

William Henry was born in Manchester, England. At age 10, Henry
suffered an injury from a falling beam, which caused him to suffer
from pain throughout his life. The injury also limited his physical activ-
ities; thus, he focused his attention on reading and studying. His son
William Charles Henry later wrote in A Biographical Account of the Late
Dr. Henry:

His fortitude, while yet a child, in supporting the sudden paroxysms
of pain, which were often so intense as to oblige him to rest in the
streets, was most remarkable. In his efforts to banish the perception
of his physical sufferings by an absorbing mental occupation, he
manifested that energy of resolution and purpose, which throughout
life compelled a feeble bodily frame to keep pace with the exertions
of an ardent and unfatigued spirit.

William Charles says nothing about of his father’s marriage or his family
life. We do know that Henry was close friends with John Dalton, the
English chemist, famous for his contributions to the development of atomic
theory. Henry entered Edinburgh University in 1795, received his M.D. in
1807, and later specialized in urinary diseases. Henry worked as a physician
at the Manchester Infirmary, studying bladder stones and writing an essay
on diabetes. He was elected fellow of the Royal Society in 1808, and in
1809, the Royal Society awarded him the Copley Medal.

Henry devoted much of his research time to chemistry, with an empha-
sis on the behavior of gases. He read one of his best-known papers to the
Royal Society in 1802 and published it in 1803. The paper described his
experiments on the amount of a gas absorbed by water at different tem-
peratures and under different pressures. For example, he demonstrated
that if a gas was compressed to twice the normal atmospheric pressure,
twice as much was dissolved. These kinds of observation led to Henry’s
Law, which Linus Pauling rigorously defined in modern terms in General
Chemistry:
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At constant temperature, the partial pressure in the gas phase of
one component of a solution is, at equilibrium, proportional to the
concentration of the component in the solution, in the region of low
concentration. This is equivalent to saying that the solubility of a gas
in a liquid is proportional to the partial pressure of the gas.

Henry published papers that dealt with the composition of hydrochlo-
ric acid and of ammonia, the flammability of mixtures of gases, and the
disinfecting powers of heat. His Elements of Experimental Chemistry,
based on his lectures given from 1798–1799 at Manchester, was published
in 1801, and it went through 11 editions in 30 years. During Henry’s
life, the book was the most popular and successful chemistry text in
English.

Sometime after 1824, Henry underwent surgical operations on his
hands. Through the years, he suffered from chronic ill health and severe
pains that still persisted from his original injury. His problems became so
debilitating that he could no longer sleep, and he killed himself in 1836.
Craig Thornber, a biographer of Henry, writes:

When we look at the summation of William Henry’s interests
in chemistry, botany, geology, medicine, literature and business,
together with his role as one of the founders of the British Asso-
ciation for the Advancement of Science, and as Vice Chairman of
both the Literary and Philosophical Society and the Natural History
Society of Manchester, we perceive that he was at the forefront of
intellectual life in Manchester in a period when it becoming the first
industrial city in the world.
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INTERLUDE: CONVERSATION STARTERS

The supreme task of the physicist is to arrive at those
universal elementary laws from which the cosmos can be
built up by pure deduction.
—Albert Einstein, 1949 interview with Alfred Werner,

Liberal Judaism

When one sees a mathematical truth, one’s consciousness
breaks through into this world of ideas. . . . One may take
the view that in such cases the mathematicians have stum-
bled upon works of God.
—Roger Penrose, The Emperor’s New Mind

The two greatest logical geniuses of the last century
both killed themselves. Alan Turing died after taking
a bite of an apple that was laced with cyanide. Kurd
Gödel . . . refused to eat and consequently starved to
death. Did these two men self-destruct because of their
logical prowess, or in spite of it? . . . And was it just a
coincidence that both were inordinately fond of the Walt
Disney movie “Snow White”?
—Jim Holt, “Obsessive-Genius Disorder,” New York

Times Book Review, September 3, 2006

There is a noble vision of the great Castle of Mathe-
matics, towering somewhere in the Platonic World of
Ideas, which we humbly and devotedly discover (rather
than invent). The greatest mathematicians manage to
grasp outlines of the Grand Design, but even those to
whom only a pattern on a small kitchen tile is revealed,
can be blissfully happy. . . . Mathematics is a proto-text
whose existence is only postulated but which nevertheless
underlies all corrupted and fragmentary copies we are
bound to deal with. The identity of the writer of this
proto-text (or of the builder of the Castle) is anybody’s
guess. . . .
—Yuri I. Manin, “Mathematical Knowledge: Internal,

Social, and Cultural Aspects”

Symmetry doesn’t so much control as it does describe
or account for nature. . . . I give Einstein credit for intro-
ducing symmetry into modern physics. . . with his special
theory of relativity—e = mc2. Wow! The big increase in
knowledge is the statement that the laws of physics apply
to any system that you want; the laws are invariant to
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a change in the velocity of the system—that’s relativ-
ity. . . . Symmetry in fact makes things much more sim-
ple . . . it is the overriding basis of the mathematics of
physics . . . symmetry produces an elegance and a beauty
to the description of nature.
—Leon Lederman, interview, September 22, 2005, in

Siobhan Roberts’s King of Infinite Space

h e n r y ’ s g a s l a w | 189



GAY-LUSSAC’S LAW OF COMBINING
GAS VOLUMES

France, 1808. The volumes of gases that chemically react with
each other, or are produced in reactions, are expressed in ratios
of small, whole numbers.

Cross Reference: Charles’s Gas Law, Avogadro’s Gas Law, John
Dalton, Jean-Baptiste Biot, Alexander von Humboldt, and Louis
Jacques Thenard.

In 1808, the United States prohibited importation of slaves from
Africa, and Napoleon abolished the Inquisition in Spain and
Italy. Ludwig van Beethoven conducted and performed in a
concert that featured the premiere of his Fifth Symphony, Sixth
Symphony, and Fourth Piano Concerto.

Gay-Lussac’s Law of Combining Gas Volumes states that the ratio
between reacting gas volumes and the volume of gaseous product can be
expressed in small whole numbers. In 1811, this law and related experi-
mental data stimulated Italian chemist Amedeo Avogadro (1776–1856) to
state his famous hypothesis that equal volumes of gases, at the same tem-
perature and pressure, contain the same number of particles, or molecules
(see “Avogadro’s Gas Law,” below).

In Gay-Lussac’s 1809 paper, “Memoir on the Combination of Gaseous
Substances with Each Other,” he discusses the law that would someday
bear his name:

It is my intention to make known some new properties in gases,
the effects of which are regular, by showing that these substances
combine amongst themselves in very simple proportions, and that
the contraction of volume which they experience on combination
also follows a regular law. I hope by this means to give a proof
of an idea . . . that we are perhaps not far removed from the time
when we shall be able to submit the bulk of chemical phenomena to
calculation.

Gay-Lussac had performed a number of experiments with Prussian
naturalist Alexander von Humboldt (1769–1859) on the creation of water
vapor by passing sparks through mixtures of hydrogen and oxygen.
Gay-Lussac observed that, for any given volume of oxygen completely con-
verted in the reaction, exactly twice this volume of hydrogen was required.



The measurements were quite precise and pointed to the 2:1 ratio with an
accuracy of about 0.1%. In particular, they found that

2 volumes hydrogen + 1 volume oxygen → 2 volumes water vapor,

with all volumes being measured at the same temperature and pressure.
The reacting volumes and resulting volumes are small whole-number ratios
to each other. He also investigated volume relations for other gaseous
substances and found, for example,

3 volumes hydrogen + 1 volume nitrogen → 2 volumes ammonia gas,

and

1 volume nitrogen + 1 volume oxygen → 2 volumes nitric oxide gas.

Gay-Lussac went on to explain:

Thus it appears evident to me that gases always combine in the
simplest proportions when they act on one another; and we have
seen in reality in all the preceding examples that the ratio of com-
binations is 1 to 1, 1 to 2, or 1 to 3. It is very important to observe
that in considering weights there is no [integral] relation between
the elements of any one compound; it is only when there is a second
compound between the same elements that the new proportion of
the element that has been added is a multiple of the first quantity.
Gases, on the contrary, in whatever proportions they may combine,
always give rise to compounds whose [constituents] by volume are
[integral] multiples of each other.

Not only, however, do gases combine in very simple proportions,
as we have just seen, but the apparent contraction of volume which
they experience on combination has also a simple relation to the
volume of the gases. . . .

These ratios by volume are not observed with solid or liquid
substances, nor when we consider weights, and they form a new
proof that it is only in the gaseous state that substances are in the
same circumstances and obey regular laws.

Gay-Lussac’s Law seemed to support the idea that equal volumes of gases
contain equal numbers of particles, which could account for the simple pro-
portions of reacting volumes. Moreover, Gay-Lussac said that his results
were very favorable to English chemist John Dalton’s (1766–1844) “inge-
nious idea” about the composition of molecules and atomic-molecular
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theory. However, strangely, Dalton never accepted the “round numbers”
of Gay-Lussac.

Simply by carefully studying gas volumes, it became possible for scien-
tists to understand the underlying structure of matter. Maurice Crosland
writes in Gay-Lussac: Scientist and Bourgeois:

The volumetric approach to matter of Gay-Lussac and his succes-
sors could easily be overlooked today. Yet as one of the principal
methods of investigation of the basic problems of chemical compo-
sition and reactions, it influenced much of the chemistry of the first
half of the nineteenth century. When there were so few keys to the
understanding of physical and chemical units, it provided a valuable
means of approach and one which could claim to be solidly based
on experimental evidence.

In 1802, Gay-Lussac also formulated the law that stated that the volume
V of a fixed amount of gas at fixed pressure is directly proportional to its
temperature T in degrees kelvin, that is, V = kT. This law, which was first
published by Gay-Lussac, is today usually known as Charles’s Law because
Gay-Lussac referenced unpublished work by French chemist and physicist
Jacques Charles (1746–1823) from around 1787 (see “Charles’s Gas Law”
in part II).

Joseph Louis Gay-Lussac (1778–1850), French chemist and physicist,
famous for contributions to the physical chemistry of gases.

CURIOSITY FILE: Gay-Lussac invented a portable barometer. • While
working at the Paris Mint, he invented a device for quickly estimating the
purity of silver, which was the only legal measure in France until 1881.
• He went on a balloon flight to a record-setting height of 23,000 feet
to test hypotheses on the magnetic field of Earth and the composition of
the air. • When he mixed metallic potassium with another element, it
exploded, destroying his laboratory and temporarily blinding him.

Probably Gay-Lussac’s greatest single achievement is
based on the law of combining volume of gases, which
he announced at a meeting . . . in 1808. For Gay-Lussac
himself, the law provided a vindication of his belief in reg-
ularities in the physical world, which it was the business
of the scientist to discover.
—Maurice P. Crosland, “Joseph Gay-Lussac,” in Dictio-

nary of Scientific Biography

192 | a r c h i m e d e s t o h a w k i n g



I have not chosen a career that will lead me to a great
fortune, but that is not my principal ambition.
—Joseph Gay-Lussac, quoted in Maurice Pierre

Crosland’s Gay-Lussac: Scientist and Bourgeois

Joseph Louis Gay-Lussac was born in Saint-Léonard-de-Noblat in central
France. His father, Antoine Gay, was a lawyer who used the surname Gay-
Lussac in order to distinguish himself from other people with the last name
of Gay. The father created “Gay-Lussac” by appending the name of the
hamlet of Lussac, in which resided some family property.

Gay-Lussac received his early education at home and went to Paris
in 1794 to prepare for studies at the École Polytechnique. His father was
arrested during the French Revolution.

In 1809, Gay-Lussac became professor of chemistry at the École Poly-
technique. During the same year, he married Geneviève-Marie-Joseph
Rojot. (He had met the beautiful Geneviève earlier when she worked as a
linen shop assistant and while she was surreptitiously studying a chemistry
book.) Gay-Lussac and Rojot had five children.

In 1832, he became professor of chemistry at the Jardin des Plantes,
the main botanical garden in France. Here are some brief highlights of his
accomplishments and interests:

� In 1802, Gay-Lussac formulated the law that a gas expands linearly
with a fixed pressure and rising temperature (which is today usually
known as Charles’s Gas Law, although in 1787 Charles did not
measure the coefficient of expansion). Gay-Lussac concluded that
equal volumes of all gases expanded equally with the same increase
in temperature. He determined that the expansion of gases was
1/266.66 of the volume, at 0◦C, for each degree rise in temperature.
(Today, we know that at a constant pressure a gas expands 1/273.15
of its volume at 0◦C, for each degree Celsius of rise in
temperature.)

� In 1804, Gay-Lussac embarked on a hydrogen balloon ascent to a
height of five kilometers with French physicist Jean-Baptiste Biot
(1774–1862) in order to investigate the atmosphere of Earth. They
concluded that the magnetic intensity decreased with increasing
altitude. During a second trip that year, Gay-Lussac went alone and
repeated his observations of pressure, temperature, humidity, and
magnetism. He reached a height of 7,106 meters above sea level, a
record not broken for another fifty years.

� In 1805, with Prussian naturalist and explorer Alexander von
Humboldt (1769–1859), he discovered that the basic composition of
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the atmosphere does not change with increasing altitude—for the
range of altitudes they were able to explore.

� In 1808, Gay-Lussac and French Chemist Louis Jacques Thenard
(1777–1857) discovered boron. At about the same time, Gay-Lussac
and Thenard suggested that the rate of decomposition of an
electrolyte depends only on the electrical current strength and not
on the size of the electrodes.

� In 1815, Gay-Lussac made cyanogen (C2N2), a toxic chemical used
for the production of insecticides.

� In 1816, Gay-Lussac recognized five oxides of nitrogen, whose
modern formulas are N2O, NO, N2O3, NO2, and N2O5.

It is interesting to note that Gay-Lussac’s first publication on his gas
law was important not only because of its scientific value but also because
almost identical research was carried out simultaneously and indepen-
dently by the English chemist, physicist, and meteorologist John Dalton
(1766–1844). In their near-simultaneous publication in 1802 of research on
the thermal expansion of gases, Dalton and Gay-Lussac both concluded
that all gases expand by the same proportion for a particular temperature
rise at constant pressure.

Perhaps Gay-Lussac’s most important contribution to industry was his
1827 refinement of the lead-chamber process used for the production of
sulfuric acid. The tall absorption towers were known as Gay-Lussac towers
and facilitated the following chemical reaction:

SO2(g) + NO2(g) → SO3(g) + NO(g)

This reaction was carried out in a lead-lined chamber in which the sulfur
trioxide (SO3) was subsequently dissolved in water to produce sulfuric
acid. Gay-Lussac provided a means by which the nitrogen monoxide (NO)
could be recycled after oxidizing to NO2. Sulfuric acid was produced this
way well into the twentieth century.

Crosland reminds us in Gay-Lussac: Scientist and Bourgeois that Gay-
Lussac lived in a special time for France:

Gay-Lussac was in many ways typical of the new men of science
who emerged from post-Revolutionary France. His was the first
generation which could receive a full training in science and go on to
earn a living as a scientist. Before his time, one was fortunate if one
could follow a single course of lectures on some branch of science
to supplement what could be learned from books.

Throughout his life, Gay-Lussac remained passionate about trying to
understand the laws of science, and he wrote, as quoted by Crosland,
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“If one were not animated with the desire to discover laws, they would
often escape the most enlightened attention.” He also emphasized the
interdependence of scientists through history: “A discovery is the product
of a previous discovery, and in its turn it will rise to a further discovery.”

Gay-Lussac’s German chemist friend Justus von Liebig (1803–1873)
recalled the happiest years of his life, which were spent in Gay-Lussac’s
private laboratory:

Never shall I forget the years passed in the laboratory of Gay-
Lussac. When we had finished a successful analysis (you know with-
out my telling you that the method and the apparatus discovered
in our joint memoir were entirely his), he would say to me, “Now
you must dance with me just as [the scientist] Louis Thénard and I
always danced together when we discovered something.” And then
we would dance.

Gay-Lussac died in 1850 in Paris, France. A lunar crater with a diameter
of 26 kilometers was named after Gay-Lussac and approved in 1935 by the
International Astronomical Union General Assembly. His name is one of
72 names of prominent French scientists whom Gustave Eiffel placed on
the Eiffel Tower (see “Coulomb’s Law of Electrostatics” in part II).
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INTERLUDE: CONVERSATION STARTERS

I believe in science. Unlike mathematical theorems, sci-
entific results can’t be proved. They can only be tested
again and again until only a fool would refuse to believe
them. I cannot prove that electrons exist, but I believe
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fervently in their existence. And if you don’t believe in
them, I have a high-voltage cattle prod I’m willing to
apply as an argument on their behalf. Electrons speak for
themselves.
—Seth Lloyd, in John Brockman’s What We Believe but

Cannot Prove

When you discover mathematical structures that you
believe correspond to the world around you . . . you are
communicating with the universe, seeing beautiful and
deep structures and patterns that no one without your
training can see. The mathematics is there, it’s leading
you, and you are discovering it. Mathematics is a pro-
found language, an awesomely beautiful language. For
some, like Leibniz, it is the language of God. I’m not
religious, but I do believe that the universe is organized
mathematically.
—Anthony Tromba, July 2003 UC Santa Cruz press

release

This property of human languages—their resistance to
algorithmic processing—is perhaps the ultimate reason
why only mathematics can furnish an adequate lan-
guage for physics. It is not that we lack words for
expressing all this E = mc2 and ∫ ei S(φ)Dφ stuff . . . ,
the point is that we still would not be able to do any-
thing with these great discoveries if we had only words
for them. . . . Miraculously . . . even very high level abstrac-
tions can somehow reflect reality: knowledge of the world
discovered by physicists can be expressed only in the
language of mathematics.
—Yuri I. Manin, “Mathematical Knowledge: Internal,

Social, and Cultural Aspects,” March 2007
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AVOGADRO’S GAS LAW

Italy, 1811. Equal volumes of gases contain the same number of
molecules.

Cross Reference: Dalton’s atomic theory and Gay-Lussac’s Law of
Combining Gas Volumes.

In 1811, Jane Austen published Sense and Sensibility, and
“Luddites” destroyed factory machines in northern England.
Scottish anatomist Sir Charles Bell published his New Idea of
the Anatomy of the Brain, in which he discusses his discovery of
nerve functions and their relationships to different parts of the
brain.

Avogadro’s Law, named after physicist Amedeo Avogadro, who proposed
it in 1811, states that equal volumes of gases at the same temperature
and pressure contain the same number of molecules, regardless of the
molecular makeup of the gas. This law may be stated simply as

N1 = N2,

where N1 is the number of molecules in one gas, and N2 is the number
of molecules in another gas. The law assumes that the gas particles are
acting in an “ideal” manner, which is a valid assumption for most gases at
pressures at or below a few atmospheres near room temperature.

A variant of the law, also attributed to Avogadro, states that the vol-
ume of a gas is directly proportional to the number of molecules of the
gas. This is represented by the formula V = a × N, where a is a constant,
V is the volume of the gas, and N is the number of gas molecules. Other
contemporary scientists believed such proportionality should be true, but
Avogadro’s Law went further than competing theories because Avogadro
essentially defined a molecule as the smallest characteristic particle of a
substance, and the molecule could consist of several atoms. For example,
he proposed that a water molecule consisted of two hydrogen atoms and
one oxygen atom.

Avogadro’s number, 6.0221367 × 1023, is the number of atoms found
in 1 mole of an element, and more particularly, today we define Avo-
gadro’s number as the number of carbon-12 atoms in 12 grams of
unbound carbon-12. A mole is the amount of an element that contains
precisely the same number of grams as the value of the atomic weight
of the substance. For example, because nickel has an atomic weight of
58.6934, there are 58.6934 grams in a mole of nickel. Note that the



actual number of molecules in 1 mole—now called Avogadro’s number
in honor of Avogadro’s contributions to the theory of gases and molecu-
lar weights—was never actually determined by Avogadro but rather was
computed later by Austrian physicist and chemist Johann Josef Loschmidt
(1821–1895).

Because atoms and molecules are so small, the magnitude of Avo-
gadro’s number is difficult to visualize. If an alien were to descend from
the sky to deposit an Avogadro’s number of unpopped popcorn kernels
on the surface of the United States, the surface would be covered with the
kernels to a depth of more than nine miles.

To give you another feel for the significance of this number, recall that
an Avogadro’s number of carbon atoms would exist in a 12-gram sample
of carbon, which is about the mass of two American quarters. Another
interesting bit of trivia—if you placed 24 numbered balls, numbered 1
through 24, into a hat and drew them out randomly one at a time, the
probability of drawing them out in numerical order is about 1 chance in
Avogadro’s number—a very slim chance indeed!

Although Avogadro proposed his now-famous law in 1811 while a
professor of physics at the University of Turin, it was not readily used until
about 1858, when Italian chemist Stanislao Cannizzaro (1826–1910) pro-
vided additional chemical explanations to support the law. In particular,
Cannizzaro showed that molecular weights of gases could be determined
by weighing 22.4 liters of each gas, and he presented a coherent system of
atomic weights based on Avogadro’s hypothesis.

When Avogadro published his work on gases, only hydrogen, oxygen,
nitrogen, and chlorine were known to be gaseous under the tempera-
tures and pressures that were readily available in the laboratory. There-
fore, scientists had a very limited set of materials with which to test this
law.

Amedeo Avogadro (1776–1856), Italian physicist and chemist famous for
his studies on gases.

CURIOSITY FILE: The Avogadro family chapel and grave in Quarengra, Italy,
were spared damage by a large flood in November 1969. Today, you can
visit his grave. • An Avogadro’s number of soda cans would cover the
entire surface of Earth to a depth of 200 miles. • Today, “Avogadro’s
Number” is the name of a popular restaurant with live musical entertain-
ment, located in Fort Collins, Colorado. • “Avogadro’s Number” is also the
name of a folk-rock band based in the Susquehanna Valley of Pennsylvania.
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The hypothesis we have just proposed is based on that
simplicity of relation between the volumes of gases on
combination, which would appear to be otherwise inex-
plicable.
—Amedeo Avogadro, “Essay on a Manner of Determin-

ing the Relative Masses of the Elementary Molecules
of Bodies, and the Proportions in Which They Enter
into These Compounds,” 1811

Amedeo Avogadro was born in Turin, Italy. His father was a famous
lawyer who became senator of Piedmont, Italy, and who encouraged his
son to study law. In 1769, Avogadro obtained his doctorate in ecclesiastical
law and began his practice. As time permitted, he also privately studied
physics and mathematics. In 1809, he became a professor of natural philos-
ophy at the College of Vercelli, and in 1820 he was appointed “first chair”
of mathematical physics at the University of Turin.

Little is known of his personal life except that he married and had sev-
eral children. According to Mario Morselli, author of Amedeo Avogadro, a
Scientific Biography, “As is often the case with men of his disposition, Avo-
gadro found more satisfaction and enjoyment in the serene atmosphere
of his family—they had seven children—than in the pursuit of social and
professional success.” He enjoyed reciting poetry in several languages and
oversaw a family newspaper that reported on the events in his family’s
lives.

Through much of his life, Avogadro was a modest man, which may have
contributed to some of his obscurity outside of Italy. Most of his early work
was done in isolation. He first published on the topic of electricity and
charged plates before he studied the physical properties of gases.

Avogadro’s Law has far-reaching implications. For example, we can
infer directly from the law that the relative weights of the molecules of any
two gases are the same as the ratios of the densities of these gases at the
same temperature and pressure. He also correctly postulated the existence
of diatomic gases whose molecules were composed of two atoms, such as
N2, O2, and H2 (written in today’s notations).

In 1811, he stated the correct formulas for carbon dioxide, sulfur diox-
ide, and hydrogen sulfide, and a decade later he gave the correct ratios of
atoms in organic compounds such as turpentine and ether. He also gave
correct molecular weights for numerous elements, such as mercury, iron,
silver, lead, copper, and calcium. Later, he correctly theorized that the
average distance between the molecules of all gases is the same under the
same conditions.

Aaron Ihde reiterates and summarizes the key aspects of Avogadro’s
Law in The Development of Modern Chemistry:
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Avogadro’s paper of 1811, based upon Gay-Lussac’s Law and
Dalton’s atomic theory . . . started with the assumption that equal
volumes of all gases contained equal numbers of molecules under
similar conditions. . . . He supposed the existence of molecules of
elemental gases which contained more than a single atom. . . . He
saw how the theory of combining volumes should be applied in
determining [chemical] formulas. . . . Despite the soundness of Avo-
gadro’s reasoning, his hypothesis was generally rejected or ignored.

English chemist John Dalton (1766–1844) never appreciated Avogadro’s
work, partly because Dalton did not accept Gay-Lussac’s Law of Combin-
ing Gas Volumes. Ihde suggests that Avogadro’s work was ignored by the
scientific community because the concepts were too new, noting that many
chemists of the time even rejected Dalton’s concept of atoms.

Other scientists who worked around the time of Avogadro considered
similar laws but either soon rejected them or did not apply the principles
to the whole field of chemistry. Avogadro’s Law was important because
by comparing the masses of equal volumes of different gases under the
same conditions, the ratios of weights of the gas molecules could be mea-
sured, and this was the basis for the first correct measurements of atomic
weights.

Today, scholars debate why many years passed before Avogadro’s
formulation of his law was recognized. Some historians suggest that the
hot spots of European science tended to be in France, England, and Ger-
many. Thus, Avogadro’s sequestration in Turin, coupled with his modesty,
tended to isolate him from the mainstream science of his day. Also, Avo-
gadro did not really support his law with a comprehensive set of exper-
imental results. Finally, his idea of diatomic gases was considered to be
heresy by those who believed that two atoms of the same element would
have similar charges and repel each other.

When Avogadro died in 1856, the editors of the scientific journal
Nuovo Cimento wrote a short obituary in which they remarked on
his “retiring disposition” and the “simplicity” of his life. According to
Morselli, the obituary noted that Avogadro’s

studies on atomic volumes and their relationship with the chemical
affinities and the electrochemical series, and the electrochemical
researches conducted with Michelotti on the chemical theory of
the voltaic pile would be remembered. However, no mention at all
appeared [in the obituary] on this occasion of the 1811 gas general-
ization, whose full significance would remain unrecognized in Italy,
as well as in the rest of the scientific world, until the late 1860s.
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The mausoleum of the Avogadro family, marked with the family coat of
arms, still stands in Quaregna, Italy. Amedeo Avogadro, his wife Felicita,
and their children are buried there. A lunar crater with a diameter of
139 kilometers was named after Avogadro and approved in 1970 by the
International Astronomical Union General Assembly.
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INTERLUDE: CONVERSATION STARTERS

It has sometimes been suggested that the laws of nature
are not real—that they are entirely inventions of the
human mind, attempting to make sense of the universe.
This is very strongly argued against by the spectacu-
lar efficacy of science: a) its power to solve otherwise
intractable problems, and make accurate predictions, and
b) by the fact that newly-discovered laws have typically
suggested the existence of previously unknown or undis-
covered phenomena, which have then been confirmed to
exist.
—“Physical Law,” Wikipedia

A rock pile ceases to be a rock pile the moment a single
man contemplates it, bearing within him the image of a
cathedral.
—Antoine de Saint-Exupery, Flight to Arras

[Some claim that] we do not understand why the uni-
verse has rules; therefore, God must have done it. . . . This
ignores the possibility that the universe has to have rules,
or could not exist. Or the fact that, had it no rules, we
would not be able to exist.
—Ben Hoskin, “God of the Gaps,” Letter to New Scien-

tist, March 24, 2007

The case of Loschmidt’s [actual calculation of
Avogadro’s number] is a prime example of the zeroth
theorem, which states that a discovery, rule or insight
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named after an individual often does not originate with
that person. Others include the Dirac delta function, a
mathematical trick used by engineer Oliver Heaviside
30 years before the English physicist Paul Dirac . . . and
Olbers’ paradox, that the night sky is dark even though
the endless succession of stars in an infinite universe
should fill the entire sky. German astronomer Heinrich
Olbers discussed it in 1823, but it was well known to
Johannes Kepler more than 200 years before.
— “Zeroth Theorem,” New Scientist (unsigned article)
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BREWSTER’S LAW OF LIGHT
POLARIZATION

Scotland, 1815. The amount of the polarization of light reflected
from a transparent surface is a maximum when the reflected ray is
at right angles to the refracted ray.

Cross Reference: Snell’s Law and William Lawrence Bragg.

In 1815, the first commercial cheese factory was founded in
Switzerland. Napoleon abdicated and Louis XVIII returned to
Paris. Brazil declared itself a kingdom “equal” to Portugal.

A light wave consists of an electric field and a magnetic field that oscillate
perpendicular to each other and to the direction of travel. Usually, the
electric vector of light vibrates in all directions. However, it is possible
to restrict the vibrations of the electric field by plane-polarizing the light
beam. For example, one may pass the light through oriented dichroic crys-
tals in a plastic film so that the electric field in one direction is almost com-
pletely absorbed, while a large fraction of the electric field in a direction
perpendicular to the absorbed component is transmitted. (More generally,
“dichroic” often refers to a material in which light in different polarization
states experiences a varying absorption as it travels through the material.)

Another approach for obtaining plane-polarized light is via the reflec-
tion of light from a surface between two media such as air and glass. The
component of the electric field parallel to the surface is most strongly
reflected. At one particular angle of incidence on the surface, called the
Brewster angle, the reflected beam consists entirely of light whose electric
vector is parallel to the surface—and the reflected and refracted beams are
at right angles. The Brewster angle can be found by

θB = arctan
(

n2

n1

)
,

where n1 and n2 are the refractive indices of the two media. This equation
is one way to express Brewster’s Law. (See “Snell’s Law of Refraction” in
part I for an explanation of refraction, which is exemplified by the bending
of light when it passes from one material into another.)

For the example of shining light from air onto glass, n2 is approximately
equal to 1.5 for glass, and n1 is approximately equal to 1 for air. We find
that Brewster’s angle for visible light is approximately 56◦ to the normal
of the glass surface, where the term “normal” refers to an imaginary line
perpendicular to the surface. Because the refractive index for a given



medium depends on the wavelength of light, Brewster’s angle also varies
with wavelength. This also means that a beam of white light does not have
a unique polarizing angle—hence one reason that 56◦ is mentioned as a
mere approximation.

Because the incident beam is often traveling through air in many
practical experiments, n1 can be set to 1, and the equation simplifies to
tan θB = n2. For another typical problem, we may solve for the Brewster
angle for a beam of light traveling in air when it is reflected by a pool of
water with a refractive index of 1.33. Using Brewster’s Law, we find tan θB

= 1.33, and thus the polarizing angle is 53.1◦.
One simplified but useful model of light, which allows us to visualize

the notion of polarization, involves our thinking of each photon as having
electric and magnetic field components that oscillate perpendicularly to
each other, and both directions are mutually perpendicular to the direction
of travel. However, individual photons can be rotated by varying amounts,
about the direction of motion, relative to other individual photons. Given
this model, unpolarized light is a disorderly jumble of photons with a vari-
ety of orientations. Polarized light may arise when this jumble encounters
a polarizing filter that only allows photons with particular orientations to
pass.

Note that light is electromagnetic radiation for which the amplitude
is perceived as brightness and frequency (or wavelength) is perceived
as color. The phenomenon of polarization (or angle of vibration) is not
usually perceptible to humans or is only very weakly perceptible. However,
all light that reflects from a flat surface is usually at least partially polarized.
To test this, you can use a polarizing filter (e.g., Polaroid sunglasses) and
hold the filter at 90◦ to the reflection, and the reflected light will be reduced
or eliminated. In fact, polarization is commonly achieved today using a
sheet of commercial material called Polaroid, invented by Edwin H. Land
in 1938. During the manufacturing process, the sheet is stretched in one
direction so that long-chain hydrocarbon molecules in the sheet become
aligned in one direction. These chains conduct at optical frequencies when
the sheet is treated with iodine. If light is incident with its electric field
vector E parallel to the chains, electric currents are set up along the chains,
and the light energy is absorbed. If the electric field E is perpendicular to
the chains, the light is transmitted.

Polarization by light scattering in our atmosphere sometimes produces
a glare in the skies. Photographers can reduce this partial polarization
using special materials so that the glare does not produce an image of a
washed-out sky.

Many animals, such as pigeons and bees, are quite capable of perceiving
the polarization of light, which they can use for navigation because the
linear polarization of sunlight is perpendicular to the direction of the sun.
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In 2000, several researchers at the 3M Film/Light Management Tech-
nology Center in St. Paul, Minnesota, constructed complex materials
from multilayer mirrors that they say “generalizes” Brewster’s Law and
increases the reflectivity of a mirror in interesting ways as the incidence
angle of light is increased. Researchers suggest that these materials may
have applications that range from brighter computer screens to cosmetics
to decorative packaging. Details of the work can be obtained from Michael
Weber and colleague’s “Giant Birefringent Optics in Multilayer Polymer
Mirrors,” which is listed under Further Reading at the end of this entry.

David Brewster (1781–1868), Scottish physicist and science writer
famous for his experimental work in optics and polarized light and for his
invention of the kaleidoscope.

CURIOSITY FILE: Brewster named his kaleidoscope invention using the
Greek words kalos (beautiful), eidos (form), and scopos (watcher). • Brew-
ster was a famous debunker of fraudulent psychics. • In 1826, British scien-
tist Charles Wheatstone (1802–1875) invented the kaleidophone, naming it
in honor of Brewster’s device. The kaleidophone involved either a vibrating
piano string wrapped in silver wire or a vibrating metal rod that produced
beautiful patterns when placed near a light source.

The power of a theory . . . to explain and predict facts is by
no means a test of its truth. . . .
—David Brewster, “Observations on the Absorption of

Specific Rays, in Reference to the Undulatory Theory
of Light”

As a devout evangelical Presbyterian who believed in the
unity of truth, he felt that such unbridled speculation in
physics had profoundly serious implications for religion.
To Brewster, “Speculation engenders doubt, and doubt is
frequently the parent either of apathy or impiety.”
—Edgar W. Morse, “David Brewster,” in Dictionary of

Scientific Biography

Brewster’s Angle is useful in all kinds of practical appli-
cations, from adjusting radio signals to building micro-
scopes capable of examining objects on a molecular scale.
It is central to the development of fiber optics, lasers, and
to the study of meteorology [and] cosmology.
—Cozy Baker, Kaleidoscopes: Wonders of Wonder
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David Brewster was born in Jedburgh, Scotland, and educated for the
ministry at the University of Edinburgh. He was awarded an honorary
M.A. in 1800, and in 1804 he was licensed to preach in the Church of
Scotland. Of Brewster’s brief time at the pulpit, James Hogg, a colleague,
wrote in a letter to publisher James Fraser:

He was licensed, but the first day he mounted the pulpit was the
last, for he had then, if he has not still, a nervous something about
him that made him swither when he heard his own voice and saw a
congregation eyeing him; so he stacked his discourse, and vowed
never to try that job again. It was a pity for Kirk, [the National
Church of Scotland] . . . but it was a good day for Science . . . for if
the doctor had gotten a manse [cleric’s house], he might most likely
have taken to his toddy [drink] like other folk.

Brewster’s fascination with science grew in parallel with his religious inter-
ests. In 1799, he began his investigations into the polarization, reflection,
and absorption of light. Brewster enjoyed making devices of various kinds,
including sundials, microscopes, and telescopes. His income depended
mostly on his skillful editorial abilities, and he edited the Edinburgh
Magazine (1802–1806), Scots Magazine (1802–1806), and the Edinburgh
Encyclopedia (1807–1830). Throughout his life, he authored many popular
books and articles. Like British physicist William Lawrence Bragg (1890–
1971; see “Bragg’s Law of Crystal Diffraction” in part IV), Brewster enthu-
siastically promoted scientific education for the general public.

In 1810, Brewster married Juliet McPherson. Their marriage, which
produced five children, was happy and lasted forty years until Juliet’s
death. When he was 74, Brewster married his second wife, Jane Purnell,
with whom he had a daughter.

In 1815, Brewster found that for any dielectric reflector (an electri-
cal insulator substance such as glass in which an electric field may be
maintained with near-zero power dissipation), a simple relationship exists
between the polarization angle for the reflected light of a particular wave-
length and the refractive index of the substance for the same wavelength.
The law may be used to determine the refractive index of a solid, even if
we only have a very small sample of the substance, because only a small
reflecting surface is needed. The “Brewster angle,” or polarizing angle,
of the dielectric substance may be thought of as the angle of incidence
for which a wave polarized parallel to the plane of incidence is entirely
transmitted (no reflection). This means that an unpolarized wave that is
incident with this angle is resolved into a transmitted, partly polarized
component and a reflected, perpendicularly polarized component.
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Brewster’s first major publication appeared in A Treatise on New Philo-
sophical Instruments (1813), in which he describes his work on the optical
properties of hundreds of substances that he made during his attempts to
improve telescopes.

He was elected fellow of the Royal Society in 1815 and invented the
kaleidoscope in 1816. Cozy Baker, founder of the Brewster Kaleidoscope
Society and author of Kaleidoscopes: Wonders of Wonder, writes of the
kaleidoscope fad that occurred after news of Brewster’s invention spread:

His kaleidoscope created unprecedented clamor. A universal mania
for the instrument seized all classes, from the lowest to the highest,
from the most ignorant to the most learned, and every person not
only felt, but expressed the feeling that a new pleasure had been
added to their existence.

American inventor Edwin Land (1909–1991) wrote in the Journal of the
Optical Society of America, “The kaleidoscope was the television of the
1850s, and no respectable home would be without a kaleidoscope in the
middle of the library.” In 1818, Dr. Peter M. Roget (1779–1869, famous
for Roget’s Thesaurus) wrote of Brewster’s kaleidoscope, “In the memory
of man, no invention, and no work, whether addressed to the imagination
or to the understanding, ever produced such an effect.” Brewster produced
his initial design using a tube in which he placed pairs of mirrors at one end,
and pairs of translucent disks at the other end. Between the two ends, he
placed beads.

Brewster was granted a patent for his kaleidoscope, but due to a flaw
in the patent registration process, he did not realize any remuneration for
his invention. When the person he employed to manufacture the devices
showed them to London opticians so that he could take orders from them,
the basic idea was no longer a secret, and a frenzy of interest ensued.
Before Brewster could derive financial rewards, kaleidoscopes were sud-
denly manufactured by zealous entrepreneurs who made large sums of
money by selling hundreds of the devices. Within three months, more than
200,000 kaleidoscopes were sold in England and France.

In 1818, Brewster wrote to his wife:

You can form no conception of the effect which the instrument
excited London. . . . No book and no instrument in the memory of
man ever produced such a singular effect. . . . Thousands of poor
people make their bread by making and selling them. . . . It will
create, in a single hour, what a thousand artists could not invent
in the course of a year.
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Brewster described his invention and the principles behind it in The
Kaleidoscope, published in 1819. Marjorie Senechal writes in “Reflections
of Kaleidoscope”:

It was the first book on the mathematics of symmetry for a general
readership. . . . No one (until M. C. Escher over a century later) has
done more to popularize the science of symmetry. . . . Brewster’s
little book is almost as interesting as the kaleidoscope itself.

The lenticular stereoscope was another of Brewster’s inventions that
quickly became a very popular toy. This device was used to produce the
illusion of a three-dimensional object, and it resulted from his interest in
early photography. This lenticular stereoscope was a closed box, which
could be opened on the sides to admit light, and it had two adjustable
lenses. When examples were sent to the Great Exhibition at Crystal Palace
in 1851, Queen Victoria was apparently fascinated by it, triggering another
fad.

Brewster’s optical research led to advances in the British lighthouse
system. Although Augustin Fresnel (1788–1827) had also worked on spe-
cial dioptric lenses, Brewster described the apparatus in 1812, and he
pressed for its adoption in British lighthouses. These kinds of lenses
could be large and lightweight and produce a beam of light that could be
seen over much longer distances than could be produced by traditional
lenses.

In the 1820s, Brewster became fascinated by the ongoing debate over
the number of colors in the spectrum. Isaac Newton, for example, has
suggested that seven colors existed. Other researchers felt that there were
fewer colors because yellow was simply a combination of red and green.
Using various color-absorbing glasses, Brewster established the separate
existence of yellow.

Brewster was knighted in 1831. In the 1830s, he began to write biogra-
phies, including those for Newton, Galileo, Tycho Brahe, and Johannes
Kepler—as well as numerous entries for the Encyclopaedia Britannica. In
1859, he was elected principal of the University of Edinburgh.

Brewster’s 1854 book, More Worlds Than One: The Creed of the
Philosopher and the Hope of the Christian, suggested that every star has
a planetary system similar to ours and that every planet, sun, and moon
were inhabited by life forms. In this book, Brewster writes:

Neither in the Old nor in the New Testament is there a sin-
gle expression incompatible with the great truth, that there are
other worlds than our own which are the seats of life and intel-
ligence. Many passages, on the contrary, are favorable to the
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doctrine. . . . The beautiful text, for example, in which the Psalmist
expresses his surprise that the Being who fashioned the heavens
and ordained the moon and the stars, should be mindful of so
insignificant a being as man, is, we think, a positive argument for
the plurality of worlds.

In 1855, Brewster was asked to study the Scottish psychic medium Daniel
Dunglas Home (1833–1886), who was alleged to have been able to exhibit
all kinds of odd phenomena and sounds during a séance. Brewster exposed
the scam by publishing a letter in the Morning Advertiser, in which he
denounced spiritualism and added, “I saw enough to satisfy myself that
[the séance effects] could all be produced by human hands and feet.”

A heated newspaper controversy over the séance ensued. In response
to an irate newspaper letter that contradicted Brewster, he replied that he
had not been allowed to look under the table and that “rather than believe
that spirits made the noise, I will conjecture that the raps were produced
by Mr. Home’s toes, and rather than believe that spirits raised the table, I
will conjecture that it was done by the agency of Mr. Home’s feet, which
were always below it.”

At age 87, David Brewster contracted pneumonia. He knew he was
dying when he said, “I shall see Jesus and that will be grand. I shall see
Him who made the worlds.” Shortly after Brewster’s death, his daughter,
Mrs. Margaret M. Gordon, published a biography titled The Home Life of
Sir David Brewster—a large book in which she mentions his publication
of more than 2,000 scientific papers. A lunar crater with a diameter of
10 kilometers was named after Brewster and approved in 1976 by the
International Astronomical Union General Assembly.

During his life, Brewster’s mind had ranged far—from such topics as
the laws of polarization and the effects of heat and pressure on polariza-
tion, to the discovery of crystals with two axes of double refraction and the
laws of metallic reflection.
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INTERLUDE: CONVERSATION STARTERS

Selection [of universes] arises because only firm laws can
yield constant, benign conditions to form new life. Once
life-forms realize this, they could intentionally make
more smart universes with the right fixed laws to produce
ever grander structures.
—Gregory Benford, in John Brockman’s What We

Believe but Cannot Prove

The mathematics involved in string theory . . . in sub-
tlety and sophistication . . . vastly exceeds previous uses
of mathematics in physical theories. . . . String theory has
led to a whole host of amazing results in mathematics in
areas that seem far removed from physics. To many this
indicates that string theory must be on the right track. . . .
—Michael Atiyah, “Pulling the Strings,” Nature

Superstring theory has been absorbed into membrane
theory, or M-theory, as they call it. There is not a scin-
tilla of empirical evidence to support it. Although I have
only a partial understanding of M-theory, it strikes me as
comparable to Ptolemy’s epicycles. It’s getting more and
more baroque.
—Martin Gardner in “Interview with Martin Gardner,”

Notices of the American Mathematical Society, 2005

When we look back at the scientific revolution from
our vantage point of three centuries and attempt to
understand the momentous transformation of Western
thought by isolating its central characteristic, the ever
greater role of mathematics and of quantitative modes
of thought insistently catches our eye—what Alexandre
Koyré dubbed the geometrization of nature. Initiated in
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the sixteenth and seventeenth centuries, the geometriza-
tion of nature has proceeded with gathering momentum
ever since. To be a scientist today is to understand and
to do mathematics; such is perhaps our most distinctive
legacy from the scientific revolution.
—Richard S. Westfall, “Newton’s Scientific Personality,”

Journal of the History of Ideas

We’ve managed to push the program of understanding
the universe to small scales and large scales, by pursuing
this approach of looking for simplicity. Particularly when
we look at the cosmos; now we can see out to the farthest
observable edges of the cosmos, we can see that the laws
of physics are the same, and that the physical conditions
are also remarkably similar throughout observable uni-
verse.
—Paul Steinhardt, “Einstein: An Edge Symposium”
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THE DULONG-PETIT LAW OF
SPECIFIC HEATS

France, 1819. The specific heats of elements are in inverse propor-
tion to their atomic weights.

Cross Reference: Humphry Davy, André-Marie Ampère, Jöns
Berzelius, Louis-Jacques Thénard, François Arago, Albert Einstein,
Debye’s T3 Law, and Dulong-Petit’s Five-Fourths Power Law.

In 1819, the United States purchased Florida from Spain for
$5 million. (To be more precise, Spain ceded East Florida to
the United States and renounced all claims to West Florida.
In return, the United States assumed $5 million of liability for
damages done by American citizens who rebelled against Spain.)
The SS Savannah became the first steamship to cross the Atlantic
Ocean.

According to the Dulong-Petit Law, proposed in 1819 by French chemists
Pierre Louis Dulong and Alexis Thérèse Petit, the specific heat capacity C
of a crystal is

C = 3
R
M

.

C is often measured in joules per kelvin per kilogram. R is the gas constant
(8.314472 joules per kelvin per mole), and M is the molar mass (measured
in kilograms per mole). This law is fairly accurate at high temperatures
for solids with relatively simple crystal structures. At low temperatures,
the law fails because quantum mechanical effects become more important.
The law also assumes that the materials under observation do not melt,
boil, or change their crystal structure in the temperature range being
studied.

Diamond has a special place in the history of modern physics because
it exhibits the largest departure from the Dulong-Petit Law, even at room
temperatures, and this observation stimulated Einstein to consider the
possible quantum effects of materials on specific heats. These effects are
quite strong in diamond due to its particular tetrahedral-lattice atomic
structure. Note that one reason diamond is so hard is that the chemical
bonds between its carbon atoms are extremely strong. Another is that
the atoms form a rigid structure—each atom is connected to four others,
forming a regular network.



To best understand specific heat, consider that materials with low spe-
cific heats, such as metals, require less input of energy to increase their
temperature than those with high specific heats such as water. In some
sense, specific heat measures how well a substance holds its temperature,
or how well it “stores” heat, which is one reason we often use the phrase
“heat capacity.”

More precisely, materials differ from one another in the quantity of
heat needed to produce a given rise of temperature in a given mass. The
ratio of the heat supplied to a body to its corresponding temperature rise is
the heat capacity, or specific heat, of the body. This value is a characteristic
of the material under study.

Note that the gram-atomic capacity, which is the specific heat multiplied
by the atomic weight, is approximately a constant for solid elements. This
implies that if we can measure the specific heat of an element, we can
derive its atomic weight using this law.

Some authors write the Dulong-Petit Law in the following manner,
which emphasizes the fact that the specific heat at constant volume is the
rate of change with temperature (i.e., the temperature derivative) of that
energy:

C = ∂

∂T
(3kTNA) = 3kNA/mole = 24.94 J/mole

Here, k is Boltzmann’s constant, T is the temperature in degrees kelvin, NA

is Avogadro’s number, and the quantity 3kTNA is the energy per mole. As
an example, we can observe that the specific heats of copper and lead turn
out to be quite similar when expressed in units of J/mole ◦C:

Copper 0.386 J/g ◦C × 63.6 g/mole = 24.6 J/mole ◦C
Lead 0.128 J/g ◦C × 207 g/mole = 26.5 J/mole ◦C

In 1819, Dulong and Petit used different units, and they showed that
molar heat capacities of almost all substances have values close to 6 calo-
ries/mole ◦K. (Note that the scientific literature requires us to become
accustomed to different units for heat capacities; however, the results are
all compatible.) Molar heat capacities for various metals at room temper-
ature are as follows:

Aluminum 5.82 calories/mole ◦K
Copper 5.85 calories/mole ◦K
Gold 6.11 calories/mole ◦K
Lead 6.32 calories/mole ◦K

At higher temperatures, the heat capacity becomes very close to 6 calories/
mole ◦K.
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A related famous law of Dulong and Petit, known as the Five-Fourths
Power Law, states that when a body is cooling in still air, the loss of heat is
proportional to (T – Ts)

5/4, where T is the temperature of the body and Ts

is the temperature of the surroundings.

Pierre Louis Dulong (1785–1838) and Aléxis Thérèse Petit (1791–1820),
French chemists and physicists who discovered that the specific heat mul-
tiplied by the atomic weight of an element is a constant.

CURIOSITY FILE: Dulong and Petit both had their lives marred by tragedy.
Dulong was an orphan who later blew off his fingers and lost an eye during
a chemistry experiment. Petit’s wife died shortly after he married her, and
he died before age 30.

Six months after their marriage, Petit’s wife became ill
and died. . . . This was too much for him. He suffered phys-
ical and mental lassitude and exhibited the symptoms of
premature senescence. When Petit was no longer able to
speak in public, Dulong and Arago took over his lectures
so that he might continue to draw a salary.
—Jaime Wisniak, “Alexis-Thérèse Petit,” Educacion

Quimica

The heat capacities of all solids turn out to depend on the
temperature at which they are measured. If Dulong and
Petit had lived in a very much colder world, they might
never have discovered their law.
—Alan Holden, The Nature of Solids

Pierre Louis Dulong was born in Rouen in northwestern France—the
same town in which the English burned Joan of Arc in 1431. Both of his
parents died before he was 5 years old, and an aunt took care of him.
He entered the École Polytechnique in Paris in 1801 at the minimum
admittance age of 16; however, excessive study demands appeared to have
taken a toll on his health, and he left the Polytechnique in his second
year.

Years later, he studied medicine and treated the poor and indigent,
even if they could not pay for his services. He left medicine when it was
clear that he could not make a good living in this area, given his predilec-
tion for offering free treatments and paying for his patients’ prescriptions.

Dulong married in 1803 and, over the course of his life, had four
children, one of whom died in infancy. Dulong’s next and most successful
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career was in chemistry, although this career brought him much hardship.
For example, in order to continue his studies in chemistry, he spent nearly
all of his money on equipment. Moreover, during his studies of highly
explosive nitrogen trichloride, which he discovered in 1811, he lost an eye
and nearly lost a hand.

The explosion had occurred when Dulong was handling containers
of chlorine gas and a solution of ammonium chloride. The oil nitrogen
trichloride (NCl3) formed and violently exploded. In addition to his eye,
the explosion cost Dulong between one and three fingers, a quantity that
varies according to different biographers. However, even after this horren-
dous accident, Dulong continued working with NCl3. He found that this
dangerous yellow oil boiled at 71◦C, and the foul-smelling vapor irritated
the eyes and mucous membranes. Today, we know that the oil explodes on
contact with many substances or even when exposed to bright light.

British chemist and physicist Humphry Davy (1778–1829) heard about
Dulong’s work and repeated the experiment so that he, too, could under-
stand the power of nitrogen trichloride. He prepared a sample “scarcely
as large as a grain of mustard seed,” and it exploded, causing glass shards
to enter his cornea. Later, Davy wrote of the incident to French physicist
André-Marie Ampère (1775–1836), “The fulminating oil which you men-
tioned roused my curiosity and nearly deprived me of an eye. After some
months of confinement I am again well.”

One would think that the next experiments would be performed
so carefully that no additional mayhem would ensue. However, British
chemist and physicist Michael Faraday (1791–1867), who was Davy’s assis-
tant at the time, collaborated with Davy to produce several more detona-
tions until, he writes in an 1813 letter:

The experiment was repeated again with a larger portion of the
substance. It stood for a moment or two and then exploded with
a fearful noise; both Sir H. and I had masks on, but I escaped this
time the best. Sir H. had his face cut in two places about the chin,
and a violent blow on the forehead struck through a considerable
thickness of silk and leather; and with this experiment he has for the
present concluded.

After receiving additional injuries, Dulong himself abandoned this partic-
ular line of research.

Dulong was a professor of physics in Paris from 1820 to 1830, and then
director of studies at the École Polytechnique. He collaborated with the
French chemist Alexis Thérèse Petit from 1815 to 1820, and upon Petit’s
death continued his research alone on specific heat capacities, publishing
his findings in 1829.
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In 1819 he and Petit discovered the chemistry law that now bears their
names. Their law states that, for many elements that are solid at room
temperature, the specific heats of the elements are in inverse proportion to
their atomic weights—and the law was also useful in determining atomic
weights. In their 1819 paper, Recherches sur quelques points importants de
la Théorie de la Chaleur, they write:

The simple inspection of these [specific heat and relative atomic
weight] numbers exhibits an approximation too remarkable by its
simplicity not to immediately recognize in it the existence of a phys-
ical law capable of being generalized and extended to all elemen-
tary substances. These products, which express the capacities of the
different atoms, approach so near equality . . . we are authorized to
deduce from them the following law: The atoms of all simple bodies
have exactly the same capacity for heat.

When Dulong was appointed professor of physics at the École Poly-
technique in 1820, he wrote of his dear colleague Petit who had just died:
“Through a weakness of character for which I reproach myself incessantly,
I have consented to accept the professorship of physics at the École
Polytechnique, which the death of my unfortunate friend [Petit] has left
vacant.”

In 1823, Dulong was elected to the physics section of the Académie
des Sciences. In 1829, Dulong determined that equal volumes of all gases
evolve or absorb the same quantity of heat when they are suddenly
expanded or compressed to the same fraction of their original volumes.
This relationship assumes that the experiment is performed under the
same conditions of gas temperature and pressure. He also discovered that
the accompanying temperature changes are inversely proportional to the
specific heat capacities of the gases at constant volume.

Some related highlights of Dulong’s interests and publications:

� 1811, published a paper on the reversibility of chemical reactions
� 1815, investigated the properties of mercury thermometers as well

as the laws of cooling in a vacuum
� 1816, investigated color changes of dinitrogen tetroxide, which is a

colorless solid at –20◦C and a red gas when heated
� 1820, published a paper with Swedish chemist Jöns Berzelius

(1779–1848) on fluid densities and investigated with French chemist
Louis-Jacques Thénard (1777–1857) the use of metals to facilitate
combinations of gases

� 1826, investigated the refracting power of gases
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� 1829, investigated the specific heat of gases by measuring the effect
of temperature changes on the tones produced when gases were
passed through a flute

� 1830, published paper with French physicist François Arago
(1786–1853) on the elasticity of steam at high temperatures

� 1838, published a paper on heat produced in chemical reactions

Although Dulong had personally experienced the devastating effects
of dangerous chemical experiments when he lost his eye in an explosion,
this did not seem to deter him when he worked with Arago on a long
and risky study of the pressure of steam at high temperatures. The French
government was worried about the safety of boilers and asked for Dulong’s
help in understanding boilers under high pressure. Dulong decided to help
the government and performed many experiments on pressures as great as
27 atmospheres.

His name is one of 72 names of prominent French scientists whom
Gustave Eiffel placed on the Eiffel Tower (see “Coulomb’s Law of
Electrostatics” in part II).

Aléxis Petit was a child prodigy who was born in Vesoul, France. He
completed the entrance requirements of the École Polytechnique in Paris
before he was 11 years of age, and surpassed the entrance exam scores
of all other candidates at the time. Although his life was tragically short,
he made strides in many scientific fields. He is best remembered for
his collaborations with Dulong regarding the law that states that atoms
of simple materials have the same capacity for heat, but he also made
important contributions to the determination of heat capacities and to our
understanding of the refractive power of materials and the conversion of
kinetic energy to mechanical power.

Little is known about the young life of Petit. He obtained his doctorate
in 1811 for his thesis “Mathematical Theory of Capillary Action.” His
objective was to determine the laws that describe the movement of liquids
in capillary spaces, for example, the laws that describe the ability of a
narrow glass tube to draw a liquid upward. Capillarity happens to be one
of the reasons why water flows upward in plants.

Capillary action refers to the interaction between a liquid and the solid
it touches. In the process, the surface of the liquid becomes elevated or
depressed at the point where it contacts the solid. For example, if you were
to carefully observe the surface of water in a drinking glass, you would find
that the surface is slightly higher at the edges, where the water touches
the glass, than in the middle. Capillarity is the result of competing forces:
adhesion (the force between the molecules of a liquid and those of the
container) and cohesion (the force between the molecules of the liquid).
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More specifically, Petit found that the force H, which the capillary wall
exerts on the liquid, and the force H′, which the liquid exerts on itself,
is described by H = H′ cos2(ω̄/2), where ω̄ represents the angle between
the capillary wall and the surface of the liquid at the point that the liquid
touches the wall. (The angle opens downward into the liquid.)

In 1814, Petit married; unfortunately, six months later his wife became
sick, and she died in 1817. Petit had become a full professor of physics
at the Polytechnique in 1815. For much of his early research, he collabo-
rated with his brother-in-law, the French physicist François Arago (1786–
1853). Together, they examined the effect of temperature on the refractive
indices of gases. Their results led Petit to become an early supporter of the
wave theory of light. Petit’s first major paper was published jointly with
Arago in 1816, which investigated the variation of the refractive power of
a substance in different states of aggregation.

In 1818, Petit won the Paris Academy Prize for work on the law of
cooling, and in the same year, he published a paper on the general prin-
ciples of machine theory and another paper on the theory of heat. Petit
collaborated with Dulong on several research papers related to the theory
of heat. They also studied the laws that govern the cooling of materials
in a vacuum, in air, and in other gases. His first joint paper with Dulong
involved laws that described the expansions of solids and liquids. The
1818 annual French prize in physics went to both Dulong and Petit, and
it consisted of a gold medal valued at 3,000 francs. Also working with
Dulong, in 1819 he formulated the famous empirical law concerning the
specific heat of elements.

Petit also investigated water wheel and cannon efficiency. His cannon
equations allowed him to calculate the amount of charge powder need to
produce the maximum effect for a given bullet and recoil velocity.

Possibly due to the death of his wife, Petit himself began to suffer
from periods of extreme fatigue and depression. He no longer spoke in
public. Petit’s life and scientific contributions were cut short when he died
of tuberculosis at age 29. The law of constant molar heat capacities was his
most famous work.

Petit was buried in the Cimetiere de l’Est, where Dulong would also
be buried years later. A lunar crater with a diameter of 5 kilometers was
named after Petit and approved in 1976 by the International Astronomical
Union General Assembly.

As I noted above, the Dulong-Petit Law for specific heat C is not accurate
at low temperatures, when quantum effects must be considered. According
to Donald W. Rogers, author of Einstein’s “Other” Theory: The Planck-
Bose-Einstein Theory of Heat Capacity, this inaccuracy attracted the atten-
tion of Albert Einstein (1879–1955):
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Einstein noticed that the law of Dulong and Petit fails badly for
diamond. Later low-temperature studies showed that it always fails,
provided the temperature is low enough . . . and later cryoscopic
studies showed that the Dulong and Petit constant . . . approaches
zero near 0◦K. . . . Einstein set out only to remedy problems in pre-
dicting the heat capacity of diamond, but in so doing he developed
a general theory of the variation of Cv with T for all solids at all
temperatures, even down to 0◦K.

In order to create a more useful formulation of the law, Einstein visual-
ized matter as a collection of harmonic oscillators that moved in three
dimensions while connected to regularly spaced lattice points in a crys-
tal. Using this quantized approach, both Einstein and Dutch-American
physicist Peter Debye (1884–1966) determined more accurate expressions
that worked at high and low temperatures, one version of which can be
expressed as

C = π2 NAk2

2EF
T + 12π4 NAk

5T3
D

T3,

where k is Boltzmann’s constant, T is the temperature in degrees kelvin,
NA is Avogadro’s number, and EF is the Fermi energy. TD is called the
Debye temperature and is equal to hνD/k, where νD is the maximum
allowed phonon frequency (now called the Debye frequency), and h is
Planck’s constant. Phonons refer to vibrations that propagate through a
material at the speed of sound and affect the specific heat. Debye showed
that there is a certain characteristic temperature for each crystalline solid
at which its atomic heat should equal 5.67 calories per degree. Einstein’s
theory expressed this temperature as hνD/k, and νD can be thought of as a
frequency that is characteristic of the atom vibrating in the crystal lattice.

A shorter version of this expression is sometimes called Debye’s T3

Law because specific heat varies as T3. This formulation was given by
Debye in 1912:

C = 12π4 NAk

5T3
D

T3
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INTERLUDE: CONVERSATION STARTERS

Science does have some metaphysical assumptions, not
the least of which is that the universe follows laws. But
science leaves open the question of whether those laws
were designed. That is a metaphysical question. Believing
the universe or some part of it was designed or not does
not help understand how it works.
—Robert Todd Carroll, “Intelligent Design,” The Skep-

tic’s Dictionary

The universe seems to operate by several sets of rules
that act in layers, independently of each other. The most
apparent of these basic rules of nature, gravity, controls
the biggest objects in the universe: the stars, the planets,
you and me. The other three that scientists have uncov-
ered operate at the subatomic level.
—John Boslough, Stephen Hawking’s Universe

Imagination is more important than knowledge. For
while knowledge defines all we currently know and
understand, imagination points to all we might yet dis-
cover and create.
—Albert Einstein, “On Science”

Every theoretical physicist who is any good knows six or
seven different theoretical representations for exactly the
same physics. He knows that they are all equivalent, and
that nobody is ever going to be able to decide which one
is right at that level, but he keeps them in his head, hoping
that they will give him different ideas for guessing.
—Richard Feynman, The Character of Physical Law
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It’s become hackneyed, but if a theory is so simple that its
deep equation can be put across a T-shirt in 20-point type,
then we generally view that as fairly simple. Certainly
that is the case of both general relativity and quantum
mechanics.
—Brian Greene, “Einstein: An Edge Symposium,”

edge.org

The essence of the scientific method is rationality and
logic: we suppose that things are the way they are for a
reason. Yet when it comes to the laws of physics them-
selves, well, we are asked to accept that they exist “rea-
sonlessly.” If that were correct, then the entire edifice of
science would ultimately be founded on absurdity.
—Paul Davies, “Laying Down the Laws,” New Scientist
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THE BIOT-SAVART LAW OF
MAGNETIC FORCE

France, 1820. Current through a wire causes magnetic field linesπ
to form concentric circles around the wire. The magnitude of
the field is inversely proportional to the square of the distance
from the wire. Many other aspects of the law become clear in the
detailed description.

Cross Reference: Ampère’s Circuital Law of Electromagnetism,
Biot’s Absorption Law, Biot’s Law of Rotary Dispersion, Hans
Ørsted, Daniel Bernoulli, and Joseph Gay-Lussac.

The Missouri Compromise, which regulated the practice of slav-
ery in the western territories of the United States, became law.
Joseph Smith, Jr., founder of the Latter Day Saint movement
that gives rise to Mormonism, claimed to be visited in a vision by
God and Jesus. Maine is admitted as the twenty-third U.S. state.

The Biot-Savart Law states that the magnetic flux density (or magnetic
induction) near a long, straight conductor is directly proportional to the
current in the conductor and inversely proportional to the square of the
distance from the conductor. We often see the Biot-Savart Law expressed
as

dB = µ0 I
4π

ds × r̂
r2

,

where the boldface letters are vectors. (A vector is a quantity specified by
a magnitude and a direction.) The formula shows that the magnetic field
B produced by a short segment of wire ds is directly related to the steady
current I. In more technical terms, ds may be considered the differential
length vector of the current element. The direction of ds is the same as
the direction of the current. The unit vector r̂ points from the current
element of a wire to a field point somewhere in the space around the wire.
In experimental terms, r̂ points from a short segment of current to a probe
point where we desire to compute the magnetic field.

The r in the denominator is the distance from the current element to
the field point. This means that the value of the magnetic field depends on
the location of a particular point with respect to the segment of wire, and
in particular, the magnetic field is inversely proportional to the square of
the distance from the current element that produces it. When the current is



measured in amps, distance in meters, and magnetic field in units of teslas,
the value of µ0 is 4π × 10−7 T · m/A. µ0 is known as the permeability of
free space.

The value of B at some point in space around the wire may be thought
of as the sum of all the contributions for each small segment of the wire.
To compute the numerator in Biot-Savart’s formula, the vector (cross)
product ds × r̂ means we calculate the product of the magnitudes of vectors
ds and r̂ and multiply by sin θ, where θ is the angle between the two
vectors.

The Biot-Savart Law can be derived from Ampère’s Circuital Law of
Electromagnetism (see entry below), so in some sense it is not truly a sepa-
rate principle. However, although Ampère’s Law is a general statement of
the behavior of steady currents, its application can have some practical
disadvantages. In order to use Ampère’s Law effectively, the magnetic
field must be sufficiently simple so that B can be removed from within the
integral sign in Ampère’s Law.

For certain particular configurations of wires, we may use simplifica-
tions of the Biot-Savart formula in order to determine an approximation
for B. For example, we can often use the simplified formula for the mag-
netic field around an infinitely long wire whenever we want to estimate
the field near a segment of wire. Similarly, we may use the formula for
the magnetic field at the center of a circular loop of wire whenever we
want to estimate the magnetic field near the center of any wire loop. The
magnitude of the magnetic field at a point that is a distance r from an
infinitely long wire carrying current I is

B = µ0 I
2πr

.

The magnetic flux density B near the straight wire is at every point perpen-
dicular to the plane determined by the point and the line of the conductor.
This means that the lines of inductions are circles, with their centers on
the wire. The direction of the magnetic field is given by the right-hand
rule, which you may recall from introductory physics classes: Lift your right
hand. Point the thumb of your right hand in the direction of the current.
Your fingers curl around the wire and indicate the direction of the circular
magnetic field lines around the wire.

The Biot-Savart formulation is useful for studying other configurations.
Consider current flowing through a circular loop of wire of radius R. A
simple formula also exists for the magnitude of the magnetic field at the
center of such a loop:

B = µ0 I
2R
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Again, the direction of the magnetic field is given by the right-hand rule. If
you curl the fingers of your right hand in the direction of the current flow,
your thumb points in the direction of the magnetic field inside the loop.
Other simple formulas exist for the magnetic field within a long, thick wire
and for the magnetic field inside a long solenoid made with N turns of
wires. (A solenoid is a current-carrying coil of wire.)

Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841), French
physicists famous for their Biot-Savart Law concerning magnetic fields
near conductors.

CURIOSITY FILE: The idea that meteorites fell from the sky was considered
to be a superstition until Jean-Baptiste Biot convinced the French that the
rocks had an extraterrestrial origin. • The green mineral biotite, named
after Biot, occurs in the lava of Mount Vesuvius. • The Biot-Savart law
has additional applications in the field of fluid dynamics, particularly in
aerodynamics. • Savart conducted pioneering studies of the turbulent
sounds in blood vessels.

One of the most important acoustical physicists of the
first half of the nineteenth century, Félix Savart, offered a
singular explanation of the voice. . . . Savart compared the
larynx to a hunter’s birdcall—a short cylinder, each end
of which was covered by a thick plate with a small hole in
the center. . . . To support his suggestions, Savart referred
to a plaster cast of the inside of a cadaver’s throat.
—Thomas Hankins and Robert Silverman, Instruments

and the Imagination

Isaac Newton’s conceptions seem to have surpassed the
limits of thought of mortal man. . . . Words fail to con-
vey the profound impression of astonishment and respect
which one experiences in studying the work of this
admirable observer of nature.
—Jean-Baptiste Biot, Journal de Physique

Jean-Baptiste Biot (1774–1862), a steady contributor to
many fields, reverted to his childhood faith after an audi-
ence with the Pope.
—Dan Graves, Scientists of Faith: Forty-Eight Biogra-

phies of Historic Scientists and Their Christian Faith
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Shortly after Danish physicist and chemist Hans Christian Ørsted’s (1777–
1851) discovery in 1819 that a compass needle moves when placed near
a current-carrying wire, French scientists Jean-Baptiste Biot and Félix
Savart reported that a conductor carrying a steady current exerts a force
on a magnet. From their experimental results, Biot and Savart derived a
formula for the magnetic field at a point in space in terms of the current
that produces the field. They found that the intensity of the magnetic field
produced by a current flowing through a wire varies inversely with the
distance from the wire.

Jean-Baptiste Biot was born in Paris, France. His father had always
planned for his son to enter the world of commerce, and Biot was provided
with a private math tutor in his youth. Just as in the life of physicist and
mathematician Daniel Bernoulli (1700–1782; see “Bernoulli’s Law of Fluid
Dynamics” in part II), young Biot rebelled against his father’s desire for
him to go into business.

After his education at the college of Louis-le-Grand, in 1793 Biot
joined the French army. After serving briefly in the artillery, he attended
the École Polytechnique in Paris. He then spent a brief time in jail for
his part in an antigovernment insurrection. After his release, he became
professor of mathematics at the École Centrale at Beauvais in 1797—
the same year that he married the 16-year-old Antoine Brisson, whom he
taught science and mathematics. Three years later, he became professor of
mathematical physics at the Collège de France.

Biot is famous for insisting upon the reality of meteorites. His 1803
report on the fall of a meteorite convinced scientists that rocks fall from
the sky and have an extraterrestrial origin. Prior to Biot’s paper, this idea
was dismissed as mere superstition. After Biot assured scientists that these
objects did come from the sky, U.S. President Thomas Jefferson wrote to
the American naturalist Andrew Elliot:

The exuberant imagination of a Frenchman . . . runs away with his
judgment. It even creates facts for him which never happened, and
he tells them with good faith. . . . The evidence of nature, derived
from experience, must be put into one scale, and in the other the
testimony of man, his ignorance, the deception of his senses, his
lying disposition.

In 1804, Biot sailed with French chemist Joseph Gay-Lussac (1778–1850)
on the first balloon flight. The balloon was loaded with scientific equip-
ment to assist them in their studies. The two men ascended to a height
of approximately 13,000 feet, and the research performed in the balloon
demonstrated that Earth’s magnetic field does not vary appreciably with
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altitudes accessible to balloons. They also studied the chemical composi-
tion of the atmosphere at various elevations.

In 1835, Biot showed that sugar solutions rotate the plane of polarized
light and that the angle of rotation can be used to measure the concentra-
tion of the sugar solution. He also showed that polarized light that passed
through an organic substance can be rotated clockwise or counterclockwise
depending on the optical axis of the substance.

Over the course of his life, Biot made advances in a range of sub-
ject areas, including applied mathematics, astronomy, elasticity, electricity,
magnetism, optics, and mineralogy. In 1847, he discovered unique optical
properties of mica—and in honor of his research, the dark green, mica-
based mineral biotite [K2(Mg,Fe,Al)6(Si,Al)8O20(OH)4] is named after
him.

Biot was a prolific author, having written more than 250 works on a
variety of subjects before he died at the age of 88. His most famous work
was his Elementary Treatise on Physical Astronomy (1805).

Biot’s research covered many areas of science, but we can get a flavor
of the diversity of topics from the following brief highlights: Biot

� wrote a biography of Isaac Newton
� studied refraction as well as polarization of light and sound
� studied mirages
� performed a comparative study of rhombic aragonite and hexagonal

calcite
� determined the meridian of Paris
� studied the composition of air contained in swim bladders of fish

that lived on the shores of Ibiza and the Formentera islands
� studied heat flow in bars and the expansion of liquids
� derived a relationship in 1818, sometimes referred to as Biot’s

Absorption Law, that showed how the intensity of sunlight
depended on the thickness of the atmosphere; the law can be
expressed as I ′ = Ie−kt , where I is the intensity of incident radiation,
I ′ is the intensity of radiation transmitted through thickness t , e is
Euler’s number, and k is the absorption coefficient

� gave us Biot’s Law of Rotary Dispersion, α = k/λ2, in which α refers
to the rotation of polarized light, and λ is the wavelength; for
example, the rotation angle of polarized light produced by a quartz
plate decreases with change of color from violet to red

Before he died, English mathematician and proto-computer scientist
Charles Babbage (1791–1871) paid Biot a visit. Babbage wrote in Passages
from the Life of a Philosopher,
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The last time during M. Biot’s life that I visited Paris, I went, as
usual, to the Collège de France. I inquired of the servant who
opened the door after the state of M. Biot’s health, which was
admitted to be feeble. I then asked whether he was well enough
to see an old friend. Biot himself had heard the latter part of this
conversation. Coming into the passage, he seized my hand and said:
“My dear friend, I would see you even if I were dying.”

A lunar crater with a diameter of 12 kilometers was named after Biot
and approved in 1935 by the International Astronomical Union General
Assembly.

Félix Savart was born in Mézières, France, and as an adult embarked on
a medical career. However, during those times when he had few patients,
he conducted experiments on the violin and began to devote himself to
the study of the acoustics of air, bird songs, and vibrating solids. One of
his goals was to enhance the tone of violins and also to produce louder
instruments that could be heard in the larger orchestras and concert halls.

He began teaching at the Collège de France in 1828. Aside from his
work with Biot on magnetic fields, he is well known today for his acoustical
experiments, his explanations of the working of violins, the creation of a
trapezoid-shaped fiddle, and the “Savart disk,” which is a serrated rotating
wheel that produces a sound wave of known frequency. The Savart cup
or bell is a related device that is set into oscillation with a violin bow to
produce a sound of definite pitch.

The savart is a unit, named in his honor, used in music to describe
the frequency ratio between notes. For example, there are approximately
301 savarts in an octave. If one note is only 1 savart higher than another
note, the higher note has a frequency equal to 21/301 = 1.002305 times the
frequency of the lower note.
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INTERLUDE: CONVERSATION STARTERS

This solution to the problem of induction involves accept-
ing the existence of laws of nature, and it involves recog-
nizing these laws not just as regularities in the behavior of
things (consistencies in how the world works in different
places and times), but as forms of natural necessity—
as laws whose obtaining ensures that things behave and
interact in certain regular ways.
—John Foster, The Divine Lawmaker: Lectures on Induc-

tion, Laws of Nature, and the Existence of God

Much of the history of science, like the history of religion,
is a history of struggles driven by power and money. And
yet, this is not the whole story. Genuine saints occasion-
ally play an important role, both in religion and science.
For many scientists, the reward for being a scientist is not
the power and the money but the chance of catching a
glimpse of the transcendent beauty of nature.
—Freeman Dyson, introduction to John Cornwell’s

Nature’s Imagination: The Frontiers of Scientific Vision

We have an unfortunate tendency to oversimplify inven-
tion to lists of names, dates, and other statistics. Look
more closely and you’ll find a rich and fascinating ecosys-
tem. It’s not just the idea that counts—the way it is imple-
mented and the context are equally important.
—Jeff Hecht, “More Than the Sum of Their Parts,” New

Scientist, August 12, 2006

It is the quest of this special classic beauty, the sense of
harmony of the cosmos, which makes us choose the facts
most fitting to contribute to this harmony. It is not the
facts but the relation of things that results in the universal
harmony that is the sole objective reality.
—Robert M. Pirsig, Zen and the Art of Motorcycle Main-

tenance
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FOURIER’S LAW OF HEAT CONDUCTION

France, 1822. The rate of heat flow between two points in a mate-π
rial is proportional to the difference in the temperatures of the
points and inversely proportional to the distance between the two
points.

Cross Reference: René Descartes, Lord Kelvin, Nicolas de Caritat
Condorcet, Antoine Lavoisier, and Oliver Heaviside.

In 1822, Jean-François Champollion revealed his first successful
attempts at deciphering Egyptian hieroglyphs through the use of
the Rosetta Stone. English mathematician and mechanical engi-
neer Charles Babbage proposed the construction of a Difference
Engine—a special-purpose mechanical digital calculator. Alas,
this first model would have required nearly 25,000 parts, and he
did not complete the construction.

If we place one end of a metal spoon into a hot cup of tea, the temperature
at the end of the handle of the spoon begins to rise. This heat transfer is
caused by molecules at the hot end exchanging their kinetic and vibrational
energies with adjacent regions of the spoon through random motions. The
energy is always transported from the tea to the spoon tip, that is, from
high to low temperature, through a process known as conduction.

Fourier’s Law of Heat Conduction is concerned with the transmission
of heat in materials. The law states that the heat flux, Q, which is the flow
of heat per unit area and per unit time, is proportional to the gradient of
temperature difference:

Q = −KA
�T
�x

The law is often applied to objects such as a slab of material, a body of
water, or insulated wires. Here, A is the surface area for heat transfer;
�x is the thickness of the matter through which the heat is passing; K
is a conductivity constant, which is dependent on the nature of the mate-
rial and its temperature; and �T is the temperature difference through
which the heat is being transferred. The minus sign is placed before the
conductivity constant to indicate that heat flows in the direction of decreas-
ing temperature. Note that although the heat conduction equation refers
to one-dimensional conduction, the formula can be generalized to three
dimensions by observing that heat flow may be a vector quantity with x, y,
and z components.



A concrete example may help us to visualize the operation of Fourier’s
Law. Consider an insulated metal rod with ends A and B. The rate of flow
of energy, which might be thought of as a “heat current,” is proportional
to the difference in temperatures at A and B and inversely proportional to
the distance between A and B. This means that the heat current is doubled
if the temperature difference is doubled or length of the rod is halved.

If we let U be the conductance of the material, that is, the measure of
the ability of a material to conduct heat, we may write

U = K
�x

and rewrite Fourier’s law as

Q = −UA�T.

A material with a high value for thermal conductivity often also has
a high value for electrical conductivity, and metals are good conductors
of heat. One exception to this rule is diamond, which has a very high
thermal conductivity but low electrical conductivity. Among the best ther-
mal conductors, in order of thermal conductivity values, are diamond, car-
bon nanotubes, silver, copper, and gold. Examples of thermal conductors
that are much weaker conductors than these materials are glass, water,
and air.

By using simple instruments, the high thermal conductivity of diamonds
is sometimes used to help experts distinguish real diamonds from fakes.
An informal, but less reliable, test of diamond authenticity is known as
the “breath test.” Because diamond has the highest thermal conductivity
of any known material and is cool to the touch, moisture from a person’s
breath evaporates from a diamond more rapidly than from a fake—due to
the high rate of heat transfer from the diamond to the water vapor.

Note that the high thermal conductivity of diamond could make it an
ideal substrate for electronic chips, because the conductivity would distrib-
ute and help dissipate the heat of a chip very effectively. As computer chips
become physically smaller, heat dissipation problems become more and
more important. Of course, diamond is not used as a substrate for chips
for reasons of cost, but if diamonds were cheap, it is possible to imagine
technology in which chips were made of diamond in order to dissipate
heat.

Some technologists suggest that if certain materials challenges can
be overcome, diamond could make an excellent semiconducting material
itself, because it will operate at an extremely high temperature, operate
at higher microprocessor frequencies, and will allow the chip to cool
faster than chips that use conventional materials. In fact, experimental
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diamond transistors have been run at 81 gigahertz, compared to a typical
personal computer processor speed of around 2 to 3 gigahertz, in 2008.
Silicon exhibits significant thermal stress around 100◦C, but diamond can
withstand several times this temperature without problems. When a small
amount of boron is added to diamond, it becomes a semiconductor.

Today, Fourier’s Law is used in many diverse areas of science. As just
one example, the law is used in the study of “soil heat flux,” which is a
crucial research area for scientists interested in understanding the energy
balance for the surface of Earth.

In 1872, Irish-Scottish physicist William Thomson (1824–1907), better
known as Lord Kelvin, used Fourier’s Law of Heat Conduction in order
to date the age of Earth. However, due to several incorrect assumptions,
he calculated that between 20 and 400 million years would be required
for Earth to cool to its present temperature—and thus he suggested that
Earth was 20 to 400 million years old. Today, we know that Earth is much
older, and Kelvin’s young Earth would not have allowed sufficient time for
evolution to occur. Kelvin’s computation was inaccurate partly because he
did not realize that the radioactive elements in Earth serve as an internal
heating mechanism that opposes and slows down the cooling.

On April 28, 1862, Lord Kelvin presented his “On the Secular Cooling
of the Earth,” which in 1864 was printed in the Transactions of the Royal
Society of Edinburgh:

Fourier’s mathematical theory of the conduction of heat is a beauti-
ful working out of a particular case belonging to the general doctrine
of the “Dissipation of Energy.” A characteristic of the practical
solutions it presents is, that in each case a distribution of temper-
ature, becoming gradually equalised through an unlimited future, is
expressed as a function of the time, which is infinitely divergent for
all times longer past than a definite determinable epoch. . . .

[In the past] I suggested, as an application of these principles,
that a perfectly complete geothermic survey would give us data
for determining an initial epoch in the problem of terrestrial con-
duction. The chief object of the present communication is to esti-
mate from the known general increase of temperature in the Earth
downwards, the date of the first establishment of that consistentior
status, which, according to Leibnitz’s theory, is the initial date of all
geological history. . . .

Jean Baptiste Joseph Fourier (1768–1830), French mathematician and
Egyptologist, famous for his influence in many areas of mathematical
physics and for his formulas on the conduction of heat in solid materials.
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CURIOSITY FILE: Diamonds of any size are cool to the touch because of
their high thermal conductivity, perhaps contributing to the common use
of the word “ice” when referring to diamonds. • Even though Fourier
became an expert on heat transfer, he was never good at regulating his
own heat. He was always so cold, even in the summer, that he wore several
large overcoats. • A seemingly inordinate number of busts and statues of
Fourier have been destroyed. For example, one bust by French artist Pierre-
Alphonse Fesard was shattered in World War II. Similarly, a bronze statue
of Fourier, erected in his hometown of Auxerre, was melted by the Nazis in
order to build armaments. • During his last months, Fourier often spent
his time in a box to support his weak body. • Fourier invented the notation∫ b

a for the integral from a to b.

Profound study of nature is the most fertile source of
mathematical discoveries.
—Joseph Fourier, The Analytic Theory of Heat

Where it is a duty to worship the sun, it is pretty sure to
be a crime to examine the laws of heat.
—John Morley, “Voltaire,” in Critical Miscellanies, 1872

The great shock caused by his trigonometric expansions
was due to his demonstration of a paradoxical property of
equality over a finite interval between algebraic expres-
sions of totally different form. . . . So powerful was his
approach that a full century passed before nonlinear dif-
ferential equations regained prominence in mathematical
physics.
—Jerome Ravetz and I. Grattan-Guiness, “Fourier,” in

Dictionary of Scientific Biography

Fourier was born in Auxerre, France, a cathedral town that overlooked
the river Yonne. He was the ninth of twelve children of his father’s second
marriage. His father was a master tailor named Joseph, who had fifteen
children distributed between his two marriages. At age 9, Fourier’s father
and mother died. The town’s archbishop placed him in military school run
by Benedictine monks. Here, he developed his love for mathematics. At
night, he would often spend hours solving equations by candlelight, after
everyone else was asleep.

By the age of 14, Fourier had completed a study of the six volumes
of mathematician Charles Bézout’s (1730–1814) Cours de mathématiques.
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When he was only 16, Fourier discovered a new proof of Descartes’s rule
of signs, which states that the number of positive real roots of a polynomial
is bounded by the number of changes of sign in its coefficients. (E.g.,
given a polynomial such as x4 + 9x3 – 4x2 – x – 5, Descartes, in 1637,
would have said that there is at most one positive real root.) Fourier’s
teenage achievement quickly became the standard proof. He also gener-
alized Descartes’s rule that is used to estimate the number of real roots
within a given interval.

In his late teens, Fourier considered training for the priesthood, but
instead mathematics became his main love. However, he wondered if
he could make a significant contribution to mathematics and wrote to a
professor, “Yesterday was my 21st birthday, at that age Newton and Pascal
had already acquired many claims to immortality.” In 1787, he arrived at
the Benedictine abbey of St. Benoit-sur-Loire to prepare for his vows while
at the same time teaching mathematics to other novices. However, Fourier
never did take his vows and in 1789 left the abbey. His mind had always
been on mathematics.

During the French Revolution, Fourier was arrested and imprisoned
after he attempted to defend many of the victims of the Reign of Terror,
in which thousands were guillotined after accusations of counterrevolu-
tionary activities. One of Fourier’s heroes, the mathematician Nicolas de
Caritat Condorcet (1743–1794), defied the radical Jacobins and died in
prison. Another hero, Antoine Lavoisier (1743–1794), the founder of mod-
ern chemistry, was guillotined. Fourier himself feared the he would go to
the guillotine, but political changes eventually enabled Fourier to be freed.

In 1795, he joined the faculty of the École Polytechnique. In 1797,
he succeeded French-Italian mathematician Joseph-Louis Lagrange as the
chair of analysis and mechanics. Fourier was renowned as an outstanding
lecturer.

Fourier accompanied Napoleon on his 1789 expedition of Egypt. Dur-
ing the next few years, Fourier spent much of his time studying Egyptian
artifacts, participated in diplomatic undertakings, and oversaw the mas-
sive Description de l’Egypte (Description of Egypt), which discussed the
Egyptian materials found during his expedition and gave an account of the
history of ancient Egypt.

After his return to France in 1801, Napoleon sent Fourier to Grenoble,
where Fourier held a government position overseeing the drainage of
swamps and the construction of roads. At this time, he continued some
of his mathematical work.

His research on the mathematical theory of heat began around 1804,
and in 1807 he had completed his important memoir On the Propaga-
tion of Heat in Solid Bodies. One of his interests was heat diffusion in
various different shapes such as rectangles, rings, spheres, cylinders, and
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prisms. His work enabled him to mathematically express the conduction
of heat in thin sheets of material, which may be thought of as being two-
dimensional objects. His formulation, in terms of a differential equation,
may be expressed as

∂u
∂t

= k
(

∂2u
∂x2

+ ∂2u
∂y2

)
,

where u is the temperature at time t at a point (x, y) of the plane, and
k is a constant called the diffusivity of the material. For these problems,
researchers and mathematicians are usually given the temperatures at
points on the surface as well as at its edges at time t = 0. Fourier introduced
a series with sine and cosine terms in order to find solutions to these
kinds of problems. In fact, Fourier’s theorem helps researchers today to
analyze a wide range of function in terms of sines and cosines. These so-
called “Fourier series” play an important role in many branches of modern
mathematics and physics.

Jerome Ravetz and I. Grattan-Guiness note in the Dictionary of
Scientific Biography,

Fourier’s achievement can be understood by [considering] the pow-
erful mathematical tools he invented for the solutions of the equa-
tions, which yielded a long series of descendents and raised prob-
lems in mathematical analysis that motivated much of the leading
work in that field for the rest of the century and beyond.

Any differentiable function can be represented to arbitrary accuracy by
a sum of sine and cosine functions, no matter how bizarre the function
may look when graphed. Consider the application of Fourier series in
acoustics in which some periodic function y(t) represents the displacement
of air particles near a clarinet or drum. Fourier’s theorem tells us that this
function can be written as

y(t) =
∑

n

An sin ωnt + Bn cos ωnt.

The lowest angular frequency ω1 corresponds to the actual period of the
waveform y(t). In other words, ω1 = 2π/T, where T is the period. The
relative values of A and B depend on the waveform shape. As another
example, a saw-tooth waveform, which looks like the edge of some ser-
rated handsaws, can be thought of as the sum of an infinite number of
sinusoidal waves as follows:

y = 2y0

[
sin

(
2πt
T

)
− 1

2
sin

(
2 · 2πt

T

)
+ 1

3
sin

(
3 · 2πt

T

)
− · · ·

]
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Here, y0 is the amplitude of the wave, and T is the period. British physicist
Sir James Jeans (1877–1946) wrote in Science and Music,

Fourier’s theorem tells us that every curve, no matter what its nature
may be, or in what way it was originally obtained, can be exactly
reproduced by superposing a sufficient number of simple harmonic
curves—in brief, every curve can be built up by piling up waves.

Some of Fourier’s other research activities included investigations of
thermometers, heating in houses, estimating the age of Earth, various
approaches to distinguishing between real and imaginary roots of equa-
tions, and estimating the errors of measurements.

In 1808, Napoleon conferred a barony on him, and later Napoleon
made him a count. In 1817, Fourier was elected to the Académie des
Sciences. Later he was also elected a foreign member of the Royal Society.

In 1822, Fourier published his mathematical theory of heat conduction
in solids based on a differential equation that indicates that the rate of
flow of heat through a unit area perpendicular to an x-axis is proportional
to the temperature gradient (rate of change of temperature, dT/dx) in the
x-direction. It is interesting that Fourier wrote and developed his theory
in terms of “caloric theory,” an incorrect theory that held that changes
in temperature are due to the transfer of an invisible and weightless fluid
called caloric. Nevertheless, Fourier’s Law of Heat Conduction is correct
and in agreement with experiments, even if Fourier’s idea of the nature
of heat was not. As discussed in the introduction of this book, a law can
explain how the universe works, even if the researcher who discovered the
law is not quite sure why it works.

In the early 1820s, Fourier wondered how Earth stays sufficiently warm
to support life. For example, some researchers felt that heat generated by
the rays of the Sun should reflect off the land and oceans and be lost in
outer space. Fourier proposed that although some heat does escape, the
atmosphere acts as a translucent dome, like a glass lid of a pot, that absorbs
some of the heat of the Sun and reradiates it downward to Earth. Thus,
Fourier’s ideas were forerunners of today’s proposed mechanism of global
warming.

Ever since his return from the heat of Egypt, Fourier’s bodily ther-
mostat had never seemed to readjust itself, because he was always cold.
Some have suggested that he was a victim of myxedema (caused by
decreased thyroid activity), which lowers the body’s metabolic rate. What-
ever Fourier’s affliction, he rarely went outside without an overcoat and a
servant bearing another in reserve, even in the middle of summer. Eventu-
ally, he confined himself to his own heated quarters until his death by heart
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attack in 1830. A little before he died, he wrote a friend of having already
seen “the other bank where one is healed of life.”

During his last years, Fourier often lived in a box to support his aging
body. According to Gale E. Christianson, author of Greenhouse: The 200-
Year Story of Global Warming:

[Fourier], who had originated the idea of global warming, found
himself back inside a wooden box, a device he used because he was
so weakened by chronic rheumatism that to bend over was to risk a
fatal attack of breathlessness. . . . It kept his body upright by allowing
only his head and arms to protrude, thus enabling him to work on
his scientific papers to the last, even as he doggedly engaged in the
voluminous correspondence required of the permanent secretary of
the Académie des Sciences.

Fourier’s thermophilia is reminiscent of the heat-loving characteristics
of other great mathematical physicists such as English electrical engi-
neer, mathematician, and physicist Oliver Heaviside (1850–1924). A final
contender for the 1912 Nobel Prize, Heaviside established mathematical
foundations for modern electric-circuit design and vector analysis for elec-
tromagnetics. His electrical theories allow us today to enjoy long-distance
telephony. Heaviside loved working in swelteringly hot rooms by the light
of smoky oil lamps. His friends called his private work area “hotter than
hell.” Heaviside’s thermophilia reached new highs as he required ever
increasing quantities of gas to run both his lights and fires. So strong
were Heaviside’s cravings for heat that he constantly fought with the local
gas company about not paying his gas bills. In fact, he used gas at the
prodigious rate of 800,000 cubic feet per year.

Many of Fourier’s groundbreaking mathematical theories were not
accepted by his colleagues, partly because he did not provide rigorous
proofs for his ideas. S. F. Sun writes in Physical Chemistry of Macromole-
cules:

Fourier must have died a sad man, having never earned distinc-
tion in his lifetime among his peers in mathematics. However,
Fourier’s position in the history of mathematics was gradually
recognized. . . . Today, the Fourier series is developed in modern
analysis alongside the rapid growth of automatic computing. The
Fourier integral and Fourier transform, which are derived directly
form the Fourier series, are involved in all technical fields, such as
engineering, physics, chemistry, biology, and medicine.
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Ioan James aptly sums up Fourier’s accomplishments in Remarkable
Physicists:

Throughout his career, Fourier won the loyalty of younger friends
by his unselfish support. . . . His scientific achievements lie mainly in
the study of the diffusion of heat and in the mathematical techniques
he introduced to further that study. . . . He had a superb mastery of
analytical technique, and this power, guided by physical intuition,
brought him [lasting] success.

A lunar crater with a diameter of 51 kilometers was named after Fourier
and approved in 1935 by the International Astronomical Union General
Assembly. His name is one of 72 names of prominent French scientists
whom Gustave Eiffel placed on the Eiffel Tower (see “Coulomb’s Law of
Electrostatics” in part II).
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INTERLUDE: CONVERSATION STARTERS

What makes the planets go around the sun? At the time
of Kepler, some people answered this problem by saying
that there were angels behind them beating their wings
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and pushing the planets around an orbit. As you will
see, the answer is not very far from the truth. The only
difference is that the angels sit in a different direction and
their wings push inwards.
—Richard Feynman, The Character of Physical Law

The laws of the universe are cunningly contrived to coax
life into being. . . . If life follows from [primordial] soup
with causal dependability, the laws of nature encode a
hidden subtext . . . which tells them: Make life! . . . It means
the laws of the universe have engineered their own com-
prehension.
—Paul Davies, The Fifth Miracle

Somewhere in that great ocean of truth, the answers
to questions about life in the universe are hid-
den. . . . Beyond these questions are others that we cannot
even ask, questions about the universe as it may be per-
ceived in the future by minds whose thoughts and feelings
are as inaccessible to us as our thoughts and feelings are
to earthworms.
—Freeman Dyson, “Science & Religion: No Ends in

Sight,” New York Review of Books

238 | a r c h i m e d e s t o h a w k i n g



AMPÈRE’S CIRCUITAL LAW OF
ELECTROMAGNETISM

France, 1825. The magnetic circulation in free space is propor-π
tional to the total current through the surface bounding the path
over which the circulation is computed. This circulation along
concentric paths around a straight wire carrying a current is pro-
portional to the current.

Cross Reference: Biot-Savart Law, Maxwell’s Equations, Hans
Ørsted, Joseph Henry, Michael Faraday, Jean-Baptiste Biot, and
Félix Savart.

In 1825, Bolivia gained independence from Peru. The Erie Canal
provided a passage from Albany, New York, to Lake Erie. Thus,
the canal connected the Great Lakes with the Atlantic Ocean.
French law made sacrilege a capital offense.

The connection between electricity and magnetism was largely unknown
until 1819, when Danish physicist Hans Christian Ørsted (1777–1851) dis-
covered that a compass needle moves when an electric current is switched
on or off in a nearby wire. Although not fully understood at the time,
this simple demonstration suggested that electricity and magnetism were
related phenomena, a finding that led to various applications of electro-
magnetism and eventually culminated in telegraphs, radios, televisions,
and computers. In 1820, Ørsted published a pamphlet on his findings, and
his observations caused a sensation, particularly in France, where there
was great interest in electric and magnetic phenomena.

Subsequent experiments during a period from 1820 to 1825 by French
physicist André-Marie Ampère (1775–1836) and others showed that any
conductor that carries an electric current I produces a magnetic field
around it. This basic finding, and its various consequences for conducting
wires, is sometimes referred to as Ampère’s Law of Electromagnetism. For
example, a current-carrying wire produces a magnetic field B that circles
the wire. (The use of bold signifies a vector quantity.) The magnitude of B
has a constant value, which is proportional to I, along an imaginary circle
of radius r centered on the axis of the wire. Ampère and others showed
that electric currents attract small bits of iron, and Ampère proposed a
theory that electric currents are the source of magnetism.

Readers who have experimented with electromagnets, which can be
created by wrapping an insulated wire around a nail and connecting the
ends of the wire to a battery, have experienced Ampère’s Law firsthand. In



short, Ampère’s Law expresses the relationship between the magnetic field
and the electric current that produces it. This law, like most laws described
in this book, has practical applications and is useful in the building and
understanding of electromagnets, motors, generators, and transformers.

Ampère’s Law is expressed in many forms, perhaps most famously with
the integral calculus equation:

∮
s

B · ds = µ0 Ienc,

where B is the magnetic field. The integral is along the closed loop s. µ0

is a magnetic constant known as the permeability of free space and equals
1.2566 × 10−6 Wb · A−1 · m−1. (Wb is an abbreviation for webers, a unit
of magnetic flux, and A for amps.) Ienc is the current enclosed by the
curve s. The formulation indicates that the line integral of the magnetic
field around an arbitrarily chosen path is proportional to the net electric
current enclosed by the path. Ampère’s Law may be used to determine
the magnetic field both inside and outside a long straight wire.

Notice that in Ampère’s Law (also called Ampère’s Circuital Law), the
quantity

∮
sB · ds is independent of the radius of the closed path around

the wire and is constant for the path s as long as the current is constant.
Scottish physicist James Clerk Maxwell (1831–1879) refined the law to

better describe the relationship between magnetic fields and current in
charging capacitors, an expression that is part of a set of equations known
as Maxwell’s Equations:∮

s
B · ds = µ0 Ienc + d�e

dt
,

where �e is the flux of the electric field through the surface. This Ampère-
Maxwell Law can also be expressed in differential calculus form:

∇ × �B = µ0 �J + µ0ε0
∂ �E
∂t

�J is referred to as the current density. Maxwell also showed that a changing
electric field is accompanied by a changing magnetic field, even in empty
space.

Additional connections between magnetism and electricity were
demonstrated by the experiments of American scientist Joseph Henry
(1797–1878), British scientist Michael Faraday (1791–1867), and Maxwell.
About a month after Ørsted described his findings on the effect of electric
current on compass needles, French physicists Jean-Baptiste Biot (1774–
1862) and Félix Savart (1791–1841) also studied the relationship between
electrical current in wires and magnetism. The Biot-Savart Law, described
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in its own entry in this book, was also deduced by Ampère. Although
Ampère’s Law is completely general for steady currents and can be eas-
ily applied for simple current paths, such as for the field at the center
of a single circular wire path, Ampère’s Law is sometimes difficult to
apply in practical computations for more complicated examples, such as
those involving coils of wire. The Biot-Savart Law is related to Ampère’s
Circuital Law and can be used in situations in which alternative methods
are desired for computing the magnetic field B that results from a current.

One week after Ampère became aware of Ørsted’s discovery, he
showed that two parallel currents attract each other if the currents are
in the same direction and repel each other if the currents are in opposite
directions.

André-Marie Ampère (1775–1836), French physicist who by 1825 had
established the foundation of electromagnetic theory.

CURIOSITY FILE: Ampère believed that he had proven the existence of the
soul and of God. • Ampère’s father was executed by guillotine.

[My father] never required me to study anything, but he
knew how to inspire in me a desire to know.
—André-Marie Ampère, quoted in James R. Hofmann’s

André-Marie Ampère

I am going to take up mathematics again. I have some
troubles at first, but when I have overcome the initial
repugnance, I no longer want to leave the calculations. I
still experience a great charm there when I can eliminate
every other thought and occupy myself with it alone,
absolutely alone.
—André-Marie Ampère, quoted in James R. Hofmann’s

André-Marie Ampère

Ampère was born in Poleymieux-au-Mont-d’Or, near Lyon, France. Many
scientific lawmakers in this book showed signs of genius at an early age,
Ampère among them. According to the 1911 edition of the Encyclopaedia
Britannica, “he took a passionate delight in the pursuit of knowledge from
his very infancy, and is reported to have worked out long arithmetical sums
by means of pebbles and biscuit crumbs before he knew the figures.”

Michael O’Reilly and James Walsh write of Ampère’s childhood in
their 1909 book Makers of Electricity:
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The first marvelous faculty that began to develop in him was an
uncontrollable tendency to arithmetical expression. Before he knew
how to make figures, he had invented for himself a method of doing
even rather complicated problems in arithmetic by the aid of a
number of pebbles or peas. During an illness that overtook him as a
child, his mother, anxious because of the possible evil effects upon
his health of mental work, took his pebbles away from him.

Ampère is also said to have mastered most of all known mathematics by
the time he was 12 years old. This may be an exaggeration, but he did
start writing geometry treatises at this age, and he eventually became a
professor of physics and chemistry at Bourg École Centrale at age 26, and
a professor of mathematics at the École Polytechnique in Paris eight years
later. His interests had always been varied, and when he was about 15 years
old, he discovered a 20-volume French encyclopedia, which he read from
start to finish.

Ampère was not a careful experimenter but had flashes of insight and
was quick to understand the implications of observations made by others.
Only a week after physicist Hans Christian Ørsted discovered that an elec-
tric current passing through a wire affects the motion of a nearby compass
needle, Ampère wrote the first of many papers that gave a rather complete
theory of these observations. In 1826, Ampère published Memoir on the
Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced
from Experience, his most famous paper on electricity and magnetism.
The memoir described experiments as well as his mathematical derivations
of the electrodynamic force law. The speed with which Ampère laid the
foundation of electromagnetism led Maxwell to write in A Treatise on
Electricity and Magnetism:

We can scarcely believe that Ampère really discovered the law of
action by means of the experiments which he describes. . . . He tells
us himself that he discovered the law by some process which he has
not shown us, and that when he had afterwards built up a perfect
demonstration, he removed all traces of the scaffolding by which he
had raised it.

Ampère’s Law goes beyond the circuital formulation emphasized in the
first part of this book entry, and Ampère also mathematically described the
magnetic force between two electric currents. For example, he established
that two electric currents attract one another when they move parallel to
one another in the same direction, and they repel each other when they
move in opposite directions. As early as 1820, he formulated a law of force
between two current elements and gave a formula that related this force
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to the value of the currents and the relative orientations of the current-
carrying wires. In particular, the force of the electric current between
two wires will exhibit the inverse square law, which states that the force
decreases with the square of the distance between two conductors. The
force is proportional to the product of the two currents. These attractions
and repulsions are different in nature from the attractions and repulsions
of static electricity.

Ampère owes some of his early success to his father, a wealthy mer-
chant who exposed young Ampère to a large library and encouraged his
son to learn whatever he wished. Ampère promptly memorized entire
encyclopedia articles, taught himself number theory, and worked through
the early books of Euclid with no teacher. He learned Latin just so he
could read the mathematical works of Leonhard Euler (1707–1783), whose
papers were often in Latin.

James Hofmann writes in André-Marie Ampère: Enlightenment and
Electrodynamics:

With no formal education, Ampère’s protective family circle
encouraged him to adopt both the optimistic scientific outlook of
the Enlightenment and a devotion to the Catholic faith. This com-
bination of intellectual expectation and emotional spirituality pro-
duced a tension that became his most definitive characteristic.

When Ampère was in his late teens, his father was executed by guil-
lotine during the French Revolution, which caused Ampère to withdraw
from the world. For a year, he had little contact with friends. He later
recalled that two factors helped lift him from his depression: a renewed
interest in botany and Corpus poetarum latinorum, a book containing the
works of Roman poets.

During this low point of his life, he also met Catherine-Antoinette
Carron, who became his wife in 1799. The next four years were the happi-
est in his life. Sadly, Catherine-Antoinette died suddenly in 1803, a short
time after the birth of their son Jean-Jacques, who eventually became a
famous historian and philologist (historical linguist). His daughter, who
was born later during Ampère’s second marriage that ended in divorce,
married one of Napoleon’s lieutenants in 1827. Her husband’s alcoholism,
violence, and gambling led to police intervention and was a source of stress
for Ampère.

After his great theories in the 1820s, unifying the fields of electricity
and magnetism, his interest in creative science diminished. He spent the
remainder of his life focusing on philosophy and how best to classify
science and human knowledge. Through his life, Ampère was a religious
man and believed that he had proven the existence of the soul and of God.
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In his old age, financial problems became a major concern for Ampère. His
sister incurred large debts in her attempts to maintain his household.

Ampère’s health declined quickly in 1829, and he had been afflicted
with severe bouts of bronchitis through much of the 1820s. Physicians
treated him by applying leeches to his body. He finally died in Marseille,
France, in 1836. In 1883, William Thomson (Lord Kelvin) honored him by
proposing that the unit for current be called “amperes.” Ampère’s name
is one of 72 names of prominent French scientists whom Gustave Eiffel
placed on the Eiffel Tower (see “Coulomb’s Law of Electrostatics” in
part II).

O’Reilly and Walsh write of the importance of Ampère’s genius:

Few men of the nineteenth century are so interesting as André-
Marie Ampère, who is . . . deservedly spoken of as the founder
of the science of electrodynamics. Extremely precocious as a
boy . . . he grew up to be a young man of the widest possible inter-
ests. . . . [Dominique] Arago has said of Ampère’s discovery identify-
ing magnetism and electricity that “the vast field of physical science
perhaps never presented so brilliant a discovery, conceived, verified,
and complete with such rapidity.”

O’Reilly and Walsh also note that during the terrible period of the French
Revolution, Ampère had some doubts with respect to religious truth, but
later he became “one of the most faithful practical Catholics of his genera-
tion.” Ampère seldom passed a day “without finding his way into a church,
and his favorite form of prayer was the rosary.”
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INTERLUDE: CONVERSATION STARTERS

A law is not a cause; yet it is more than merely a descrip-
tion. It is true because it is beautiful and simple; yet it
is never quite true at all. “That is the same with all of
our laws—they are not exact. There is always an edge
of mystery, always a place where we have some fiddling
around to do yet.”
—James Gleick, Genius: Life & Science of Richard

Feynman, quoting Richard Feynman’s The Character
of Physical Law

Science must be testable in principle, but that is not nec-
essarily the same thing as testable in practice, given cur-
rent technological limitations. . . . It is not uncommon for
decades to go by before theories in physics are confirmed.
In some cases, such as the atomic theory, it has taken
centuries.
—Tom Siegfried, “A Great Unraveling,” New York

Times Book Review, September 17, 2006

There are many people . . . who would be perfectly able to
argue the value of having read Shakespeare but would
see no usefulness at all in being aware of chemical
laws. . . . While it’s true that such laws might not make it
possible to increase your IRA earnings, they . . . describe
the universe we live in and reveal the mysteries still con-
tained in it. . . . If you are familiar with both the First and
Second Law of Thermodynamics, you will be much less
likely to waste money investing in a perpetual motion
machine.
—Jay Ingram, The Barmaid’s Brain and Other Strange

Tales from Science

We have no reason to suppose any physical law can be
more accurate than 1 part in 10120. Beyond that we can
expect the law to break down and become fuzzy.
—Paul Davies, “Laying Down the Laws,” New Scientist
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OHM’S LAW OF ELECTRICITY

Germany, 1827. The current flow through a conductor is propor-
tional to the voltage and inversely proportional to the resistance.

Cross Reference: Rowland’s Law, Poiseuille’s Law of Fluid Flow,
Fourier’s Law of Heat Conduction, James Clerk Maxwell, Humphry
Davy, Isaac Newton, Joseph Henry, and the Bernoulli family.

In 1827, German composer Ludwig van Beethoven and English
poet William Blake died. The Baltimore & Ohio (B&O) Rail-
road was incorporated and become the first railroad in America
to offer commercial transportation of both freight and people.

Ohm’s Law may be represented in various forms. One familiar expression
of the law states that the steady electric current I in a circuit is proportional
to the constant voltage V (or total electromotive force) across a resistance
and inversely proportional to the value R of the resistance:

I = V
R

Ohm’s experimental discovery of the law in 1827 suggested that the law
held for a number of different materials. As made obvious from the equa-
tion, if the potential difference V (in units of volts) between the two ends
of a wire is doubled, then the current I in amperes also doubles. For a
given voltage, if the resistance doubles, the current is decreased by a factor
of 2. Resistance is given in units of ohms. The resistance of the material
is usually constant over large ranges of voltage and current at a fixed
temperature.

The equation variables may be modified so that it can also apply to
alternating-current (AC) circuits. For example, Ohm’s Law for an AC
circuit that consists of an alternating voltage source and a resistor may also
be expressed as I = V/R, where V and I are now the root mean square
(rms), or effective, values of voltage and current. The potential difference
across the resistor varies sinusoidally and is in phase with the current. In
other words, the current and voltage reach a maximum and minimum value
at the same time.

Also with additional modifications, Ohm’s Law may be reformulated
for application to magnetomotive forces, which involve phenomena that
give rise to magnetic fields. More particularly, the law can be modified
so that it applies to the constant ratio of the magnetomotive force (mmf)
to magnetic flux in magnetic circuits. For example, we can express the
magnetomotive version of Ohm’s Law as mmf = �Я, where mmf is the



magnetomotive field force, � is the field flux, and Я is the reluctance.
Magnetic reluctance may be thought of as the resistance of a material to a
magnetic field. However, unlike the case for Ohm’s Law applied to elec-
trical circuits, the reluctance of a material to a magnetic flux changes with
the concentration of flux going through it, which makes mmf = �Я nonlin-
ear. (An analogous situation would be one in which an electrical resistor
changed resistance as the current through it varied.) The equation mmf =
�Я is sometimes referred to as Rowland’s Law after Henry Augustus
Rowland (1848–1901), the first physics professor at Johns Hopkins Uni-
versity and a brilliant experimentalist who conducted important work on
electricity and magnetism.

An “Ohm’s Law” for acoustics exists that involves sound pressure,
acoustic impedance of air, particle velocity, and sound intensity. When
applied to a sound wave traveling through air, particle velocity refers to
the speed of an air molecule as it moves back and forth in the direction
that the sound wave is traveling as the wave passes.

When the term “conductor” is used in discussions of Ohm’s Law, it
often refers to the circuit element across which a voltage is to be mea-
sured. Resistors are conductors that limit the passage of electricity by
some amount. For example, a resistor with a high value of resistance,
such as a resistance above 20 megaohms, is a poor conductor. In modern
times, resistors are often manufactured from nonmetals that obey Ohm’s
Law. Both metallic and nonmetallic resistors are sometimes called ohmic
devices, because they obey Ohm’s Law within a range of voltage, currents,
and temperatures. Scottish physicist James Clerk Maxwell (1831–1879)
and Scottish mathematician George Chrystal (1851–1911) later showed
that Ohm’s Law is valid even when the currents are so powerful as to
almost fuse a conducting wire.

An ohmic material is generally defined as a material for which the
resistance in the expression I = V/R is independent of I and V. In other
words, a conductor obeys Ohm’s Law only if a plot of V versus I is
linear. Thus, the relationship R = V/I by itself is not a statement of Ohm’s
Law and is generally true as a definition of the resistance in a conductor
whether or not the conductor obeys Ohm’s Law. A lightbulb filament is
generally considered to be non-ohmic because the V versus I plot is not
linear.

Although not part of Ohm’s initial law, we may state the temperature
dependence of resistance that scientists often find in conductors. As back-
ground, when the temperature of a conductor increases, the collisions of
atoms increase. According to the classical model of electric conduction,
resistivity is inversely proportional to the mean free path of the electrons
traveling in the conductor between collisions with atoms. As temperature
increases, the atoms vibrate more, and the mean free path decreases,
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thus increasing resistivity. This means that the electrons have a decreased
ability to flow without meeting any interference as a result of various colli-
sional processes within the wire as temperature increases. Today, we know
that although the classical theory of conduction is successful for predicting
Ohm’s Law, the theory is usually replaced by more modern theories of
conduction based on quantum mechanics, which more accurately explain
the temperature dependence of resistivity.

The resistance of an ohmic substance depends on temperature in the
following way:

R = (L/A) × ρ = (L/A) × ρ0[α(T − T0) + 1],

where L is the constant length of the conductor, A is the cross-sectional
area of the conductor, T is its temperature, T0 is a reference temperature,
ρ is the resistivity, and ρ0 and α are constants that are characteristic of the
material. Table 7 gives some sample values for resistivity ρ and tempera-
ture coefficient α.

Many metals exist for which the resistivity is zero below a critical tem-
perature Tc. This phenomenon, called superconductivity, was discovered
in 1911 by Dutch physicist and Nobel laureate Heike Kamerlingh Onnes
(1853–1926). For example, Tc = 1.2◦K for aluminum. The phenomenon of
superconductivity can be understood with the aid of quantum mechanics.
Modern research with more practical, higher temperature superconduc-
tors has led Antony Anderson in New Scientist to humorously predict
the demise of the ohm in the future when superconductivity may be
commonplace:

Soon we will banish resistance from our machines, every electrical
contact will be perfect, and the standard ohm will lose pride of
place beside the standard volt and ampere. . . . Superconductivity
may usher in a wattless wonderland, but I do hope that we leave
room for resistance here and there. The occasional ohm might
come in useful during cold weather, especially if wrapped up in an
[electric] blanket!

Ohm’s Law has relevance in determining the dangers of electrical shocks
on the human body. Generally, the higher the current flow, the more dan-
gerous the shock is. The amount of current is equal to the voltage applied
between two points on the body, divided by the electrical resistance of the
body. Precisely how much voltage a person can experience and survive
depends on the total resistance of the body, which varies from person
to person and may depend on such parameters as body fat, fluid intake,
skin sweatiness, and how and where contact is made with the skin. Death
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table 7 Resistivity and Temperature

Material Resistivity ρ
at 20◦C (�·m)

Temperature Coefficient
α at 20◦C (per ◦C)

Silver 1.6 × 10−8 3.8 × 10−3

Copper 1.7 × 10−8 3.9 × 10−3

Aluminum 2.8 × 10−8 3.9 × 10−3

Tungsten 5.5 × 10−8 4.5 × 10−3

Iron 10 × 10−8 5.0 × 10−3

Lead 22 × 10−8 4.3 × 10−3

Mercury 96 × 10−8 0.9 × 10−3

Carbon 3,500 × 10−8 −0.5 × 10−3

Germanium 0.45 −48 × 10−3

Silicon 640 −75 × 10−3

Wood 108 to 1014

Glass 1010 to 1014

Hard rubber 1013 to 1016

can result from heat failure or asphyxia, which is caused by the electrical
effect on either the muscles of the chest or the respiratory center in the
brain.

Because wet skin can have a thousand-ohm resistance or even lower,
being wet increases the chance of electrocution. For comparison, dry skin
has an electrical resistance of about 500,000 ohms. This kind of information
is of interest to executioners, as indicated in Michael S. Morse’s paper
titled, “Report on Findings and Recommendations, Prepared Following
visit to Florida State Penitentiary at Starke, FL”:

Mr. Wiechert and I conducted several tests on the electrocution
equipment. Initially, tests were run to measure voltage and current
produced by the system. A bucket filled with water into which
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electrodes were placed was used to provide an appropriate resistive
load. . . . The resistive load was calculated to be between 200 and 250
ohms which is in the range of typical values for a human as observed
during an execution.

Electrical resistance is used today to monitor corrosion and material loss
in pipelines. For example, net change in the resistance in a metal wall
may be attributable to metal loss. A corrosion-detection device may be
permanently installed to provide continuous information, or the device
may be portable to gather information as needed.

See “Poiseuille’s Law of Fluid Flow” below for a description of a law
similar to Ohm’s Law but with application to the flow of liquids through a
cylindrical tube of constant cross section. With Poiseuille’s Law, a pres-
sure drop corresponds to voltage, and liquid flow rate corresponds to
current.

Georg Ohm (1787–1854), German physicist famous for his work on volt-
age and resistance in circuits.

CURIOSITY FILE: Although Georg Ohm discovered one of the most funda-
mental laws in the field of electricity, his work was ignored by his colleagues,
and he lived in poverty for much of his life. • His harsh critics called his
work a “web of naked fancies.”

I feel clearly that only that which is simple can be great.
—Georg Ohm, quoted in Kenneth Caneva’s “Georg

Ohm”

Ohm’s work stands alone, and, reading it at the present
time, one is filled with wonder at his prescience, respect
for his patience and prophetic soul, and admiration at
the immensity and variety of ground covered by his little
book, which is indeed his best monument.
—Thomas Lockwood, 1891 preface to Ohm’s “The

Galvanic Circuit Investigated Mathematically”

Georg Ohm was born in Erlangen, Bavaria, which is now part of Germany.
He was the son of Johann Ohm, a locksmith by trade, but also highly
intellectual and self-educated in various scientific fields. Of Ohm’s seven
siblings, only two survived—brother Martin, who eventually became a
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famous mathematician, and his sister Elizabeth. Johann taught his two
sons mathematics, science, and philosophy. Because Johann was such a
good educator in mathematics, various professors compared the Ohms to
the Bernoulli family, an extraordinary Swiss family that contained eight
outstanding mathematicians within three generations.

In 1805, Georg Ohm enrolled in the University of Erlangen, where he
focused more on having a good time with friends than on serious study.
Johann was so angry at his son that he forced Ohm to leave the university,
where he was wasting his time, and sent him to Switzerland, where the
young Ohm became a mathematics teacher in a school in Gottstadt bei
Nydau. Ohm continued private studies of mathematics, which allowed him
to receive a doctorate from Erlangen in 1811, where he also began to teach
mathematics. However, the teaching position paid so poorly that Ohm was
in poverty. In 1813, he took a post at a lower quality but higher paying
school in Bamberg. He worked unhappily at this school until it closed in
1816.

In 1817, Ohm started to teach mathematics and physics at Jesuit
Gymnasium of Cologne. The Gymnasium was a relatively good school
at which to teach, but its quality gradually deteriorated during Ohm’s
period of employment. Ohm would eventually reach his scientific pinnacle
mostly as result of his private studies, reading the texts of the leading
French mathematicians and physicists, and experiments he conducted in
isolation to satisfy his curiosity. As Kenneth Caneva says in the Dictionary
of Scientific Biography,

Overburdened with students, finding little appreciation for his con-
scientious efforts, and realizing that he would never marry, he
turned to science both to prove himself to the world and to have
something solid on which to base his petition for a position in a more
stimulating environment.

In 1825, Ohm published his first paper describing his experiments that
showed how the electromagnetic force produced by a wire decreases as
the length of the wire increases. Around this time, he also came to believe
that the current through a conductor is proportional to the potential differ-
ence applied across the material. In 1826, Ohm published two papers that
provided a mathematical description of conduction in circuits modeled on
Fourier’s Law of Heat Conduction (see entry above).

In 1827, Ohm’s famous law appeared in his book Die galvanische Kette,
mathematisch bearbeitet (The Galvanic Circuit Investigated Mathemati-
cally). Here, he discussed his theory of electricity and provided a math-
ematical introduction to the entire field. As described above, the equation
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I = V/R is known today as Ohm’s Law, and it states that the amount
of steady current I through a material is proportional to the voltage V
across the material divided by the electrical resistance R of the material.
(Humphry Davy had also investigated the “conducting” powers of wires
for various wire lengths, but it was Ohm who clarified the relationship with
a mathematical statement.)

Ohm had believed that his publications would entice a prestigious
university to offer him a position, but no offers were made. In fact, many
of Germany’s physicists did not appreciate his work, which appeared to
them to represent an overly mathematical approach to physics and to the
expression of the laws of nature.

Ohm’s Law was so poorly received and Ohm’s emotions scraped so
raw by the scientific community’s general lack of enthusiasm that in 1828
he resigned his post at Jesuit’s College of Cologne, where he was still
professor of mathematics. One critic reviewed Ohm’s book, saying that
its “sole effort is to detract from the dignity of nature.” The German
Minister of Education said that Ohm was “a professor who preached such
heresies was unworthy to teach science.” This is reminiscent of the time
Isaac Newton went nearly mad in an exchange on his theory of colors
with several English Jesuits who had criticized Newton’s experiments. The
correspondence between Newton and his critics lasted for quite some time
until Newton had a nervous breakdown.

In 1833, Ohm accepted a professorship position at the Polytechnic
School of Nüremberg. His research started to gain broad acceptance
outside of Germany, and American physicist Joseph Henry (1797–1878)
suggested that Ohm had added great clarity and insight with respect to
electrical circuits. Ohm’s work was finally recognized by the Royal Society
with its award of the Copley Medal in 1841.

In 1843, Ohm asserted his fundamental principle of physiological
acoustics, which focused on the way in which the human ear perceives
combinations of tones. However, Ohm had made certain mathematical
assumptions that were not justified, which triggered an angry dispute with
the physicist August Seebeck (1805–1849).

In 1852, two years before his death, Ohm finally achieved his lifelong
goal of being appointed to the chair of physics at the University of Munich.
Caneva sums up Ohm’s life:

The resulting inwardness of Ohm’s character and the highly intel-
lectualized nature of his ideals of personal worth were an essential
aspect of the man who would bring the abstractness of mathe-
matics into the hitherto physical and chemical domain of galvanic
electricity.
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Today, Ohm is honored by the ohm, a unit of electrical resistance.
The ohm corresponds to a conductor in which a current of 1 ampere is
produced by a potential of 1 volt across its terminals. The symbol for
the ohm is the Greek letter omega, written as �. Units of ohms, kilohms
(103 �), and megaohms (106 �) are all commonly used by electrical engi-
neers. As an additional honor, a lunar crater with a diameter of 64 kilo-
meters was named after Ohm and approved in 1970 by the International
Astronomical Union General Assembly.

In 1930, biographer Rollo Appleyard gave a fitting eulogy for Ohm in
Pioneers of Electrical Communication:

A century ago, the science and practice of electrical measure-
ment . . . hardly existed. With a few exceptions, ill-defined expres-
sions relating to quantity and intensity, combined with immature
ideas of conductivity and derived circuits, retarded the progress of
quantitative electrical investigations. Yet, amidst this confusion, a
discovery had been made that was destined to convert order out
of chaos, to convert electrical measurement into the most precise
of all physical operations, and to aid almost every other branch
of quantitative research. This discovery resulted from the arduous
labours of Georg Simon Ohm.

Anderson leaves us with an upbeat tribute to resistance and Dr. Ohm:

Electrical resistance in cables and conductors can lead to burnt
varnish, smoke, sudden short circuits and melted metal; but with-
out the benefit of the damping provided by resistance, without
even the vestige of Joule heating . . . our machines might be super-
efficient, but they would be afflicted with the mechanical equivalent
of Parkinson’s disease. . . . Without resistance, our electric blankets,
kettles, and incandescent lamp bulbs would be useless.
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INTERLUDE: CONVERSATION STARTERS

Ohm never described his experimental results in the com-
pact and simple form i ∝ V, or V = iR. This was not done
until 1849, when Gustav Kirchhoff (1824–1887) “saw
through” the experimental complications and understood
the macroscopic phenomenon of electric conduction in
essentially modern terms. Nevertheless, any equation
which relates current to voltage in linear fashion is called
Ohm’s law.
—Robert M. Eisberg and Lawrence S. Lerner, Physics

Consider Andrei Linde’s suggestion that, rather than
there being only one universally valid set of physical laws,
there are many different universes, each with its own laws
of nature, each randomly different from the other. . . . Is
the assumption that there is any unique universal phys-
ical law another childish dream from which we must
awaken? . . . If random, they cannot be God’s thoughts,
because they are not the product of any thought, much
less that of God.
—Peter Pesic, “Bell & the Buzzer: On the Meaning of

Science,” Daedalus, Fall 2003

A “law of nature” is one of the concepts that slips
through your fingers the more you try to grasp it. The
most that can be said about a physical law is that it is
a hypothesis that has been confirmed by experiment so
many times that it becomes universally accepted. There
is nothing natural about it, however: it is a wholly human
construct.
—New Scientist, “Editorial: Breaking the Laws.”April 29,

2006 (unsigned)
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Science, [Freeman] Dyson says, is an inherently sub-
versive act. Whether overturning a longstanding idea
(Heisenberg upending causality with quantum mechan-
ics, Gödel smashing the pure platonic notion of mathe-
matical decidability) or marshaling the same disdain for
received political wisdom (Galileo, Andrei Sakharov),
the scientific ethic—stubbornly following your nose
where it leads you—is a threat to establishments of all
kinds.
—George Johnson, “Dancing with the Stars,” New York

Times Book Review

He studied scientific truths, then became upset even more
by the apparent cause of their temporal condition. . . . The
time spans of scientific truths are an inverse function of
the intensity of scientific effort. Thus the scientific truths
of the twentieth century seem to have a much shorter
life-span than those of the last century because scientific
activity is now much greater. . . . What shortens the life-
span of the existing truth is the volume of hypotheses
offered to replace it. . . . And what seems to be causing the
number of hypotheses to grow in recent decades seems to
be nothing other than scientific method itself.
—Robert Pirsig, Zen and the Art of Motorcycle

Maintenance
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GRAHAM’S LAW OF EFFUSION

Scotland, 1829. The rates of effusion of two gases are inversely
proportional to the square roots of the gases’ densities. At equal
pressure and temperature, less massive gases will effuse more
rapidly than more massive gases.

Cross Reference: John Dalton, Michael Faraday, Johann Döbere-
iner, and Avogadro’s Gas Law.

In 1829, slavery was abolished in Mexico, and the first U.S. patent
on a typewriter was granted to William Burt of Detroit. The
device was called a “typographer.” Greece received its autonomy
from the Ottoman Empire.

Graham’s Law of Effusion states that the rate of effusion of a gas is
inversely proportional to the square root of the mass of its particles. (The
term “effusion” is defined shortly.) This formula can be written as

R1

R2
=

√
M2

M1
,

where R1 is the rate of effusion of one gas, R2 is the rate of effusion
for a second gas, M1 is the molar mass of the first gas, and M2 is the
molar mass of the second gas. Graham’s Law applies for both effusion
and diffusion. Note that because equal volumes of different gases contain
the same number of particles (see “Avogadro’s Gas Law,” above), the
number of moles per liter at a given temperature and pressure is constant.
Therefore, the density of a gas is directly proportional to its molar mass.
(The term “mole” is also defined in “Avogadro’s Gas Law.”)

Effusion is a process in which individual particles flow through a hole
so small that the particles go through one at a time. The rate of effusion
depends on the molecular weight of the gas. For example, gases like
hydrogen with a low molecular weight effuse more quickly than do heavier
particles because the low-weight particles are generally moving at higher
speeds. We can understand this phenomenon by imagining two different
gas particles with the same kinetic energy, E = 1/2mv2. If two gases having
the same energy, the light particle is moving faster. For this reason, a
balloon filled with oxygen will deflate more slowly than one filled with
hydrogen.

Diffusion is a term usually used to describe the spread of one substance
through a second substance, such as perfume molecules diffusing through



the atmosphere. As is the case for effusion, diffusion is faster for lighter
molecules than for heavier ones.

Thomas Graham’s first major paper in 1829 was actually concerned
with the diffusion of gases, and he reported that the relative rates of effu-
sions of gases are comparable to the relative rates of diffusion. Although
his 1829 paper “A Short Account of Experimental Researches on the Dif-
fusion of Gases Through Each Other, and Their Separation by Mechanical
Means” contained the essentials of Graham’s Law, a subsequent paper,
“On the Law of Diffusion of Gases,” published in 1833 established the
principle with greater clarity. Graham wrote in the 1833 paper:

The diffusion or spontaneous intermixture of two gases in contact
is effected by an interchange in position of indefinitely minute vol-
umes of gases, which volumes are not necessarily of equal magni-
tude, being, in the case of each gas, inversely proportional to the
square root of the density of that gas; [that is] diffusion takes place
between the ultimate particles of gases, and not between sensible
masses.

Graham suggested that his law could be used to more accurately deter-
mine the specific gravity of gases than by other available means. When
Graham measured the effusion of gases through a tiny hole in a metal
plate, he found that the velocities of flow were inversely proportional to
the square roots of the densities.

As an example, let us determine the relative rates of effusion of the
gases hydrogen (H2, molecular weight 2) and nitrogen (N2, molecular
weight 28):

RH2

RN2

=
√

28
2

= 3.74

This means that hydrogen gas diffuses or effuses about 3.74 times faster
than nitrogen molecules. By observing the methodology in this example,
you can see that we can also use Graham’s Law to determine an approx-
imate value for the molecular weight of an unknown gas if we know the
relative rates of effusion and the molecular weight of one of the gases.

Thomas Graham (1805–1869), Scottish chemist famous for his gas law
and his work in colloid chemistry.

CURIOSITY FILE: Graham invented the term “colloid” and created a means
of dialysis to separate colloids from crystalloids. • In one of his lesser known
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papers, Graham describes his work for assessing the purity of commercially
available coffee. • For many years, the German Colloid Society offered the
Thomas Graham prize for exceptional achievement in colloid science. The
prize included a memorial coin. • Graham’s Law helped the United States
make the atomic bomb that was dropped on Japan.

In nature, there are no abrupt transitions, and the distinc-
tions of class are never absolute.
—Thomas Graham, describing crystalloid and colloid

states of materials, in “Liquid Diffusion Applied to
Analysis”

Thomas Graham spent his life in reading the book of
Nature, and giving to mankind knowledge of the truths
which he found there. His greatness is to be measured not
merely by the amount and importance of the knowledge
which he thus gave, but even more by the singleness and
strength of purpose with which he devoted his whole life
to labors of experimental philosophy.
—A. W. Williamson, “The Late Professor Graham,”

Nature, November 4, 1869

Thomas Graham was a shy, retiring man, most of whose
life was spent in his laboratory. . . . When he came into the
lecture theatre [in Glasgow], to deliver his first [chem-
istry] lecture to a large audience, he looked around in
dismay and fled.
—“The Victorian Age, Part Two,” in Cambridge History

of English and American Literature (1907–1921)

Thomas Graham was born in Glasgow, Scotland. His father, a textile
manufacturer, had always wanted Graham to become a minister in the
Church of Scotland and opposed Graham’s growing interest in chemistry.
Luckily for Graham, his mother and sister were supportive of his interest
in science, which helped Graham achieve his scientific dreams.

In 1814, he went to the high school at Glasgow, and for the next five
years he was never absent from school. Graham entered the University
of Glasgow in 1819 at the age of 14 and received an M.A. degree in 1826
before continuing his studies for two years at Edinburgh. According to his
obituary in Nature:

Young Graham’s mother seems to have been his guardian angel,
sympathizing with his hopes and his sorrows; and certainly his
feelings towards her would have been very inadequately described
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by that frigid word [respect]. While studying at Edinburgh he
earned, for the first time in his life, some money by literary work,
and the whole sum was expended in presents to his mother and
sisters.

In 1830, he was appointed professor of chemistry at the Andersonian
University, Glasgow. His mother, who was on her deathbed, lived to hear
the good news of his professorship.

In 1834, Graham was elected a fellow of the Royal Society, and a
few years later he became professor of chemistry at the University Col-
lege, London. George Kaufman writes in the Dictionary of Scientific
Biography:

His time was then fully occupied in teaching, writing, advising on
chemical manufactures, and investigating fiscal and other questions
for the government. . . . With the death of John Dalton in 1844,
Graham was left as the acknowledged dean of English chemists,
the successor of Joseph Black, Joseph Priestly, Henry Cavendish,
William Wollaston, Humphry Davy, and John Dalton. . . . As a lec-
turer, Graham was somewhat nervous and hesitant.

Graham received the Royal Medal of the Royal Society in 1837 and in
1853, and the Copley Medal of the Royal Society in 1862. In 1837, he was
also appointed professor of chemistry at the London University. He stayed
at this university until 1855, at which point he succeeded Sir John Herschel
as Master of the Royal Mint.

Diffusion was the area of research on which Graham focused, and his
measurements of the relative velocities of particles in gases or liquids are
considered to be his most important work. Graham’s interest in gas diffu-
sion was stimulated by the work of German chemist Johann Döbereiner
(1780–1849), who observed that hydrogen gas diffused out of a thin crack
in a glass bottle faster than the surrounding air diffused in to replace it.
Graham measured the rate of diffusion of gases through plaster plugs,
through very fine tubes, and through small holes. In his most famous
experiment, Graham allowed hydrogen to escape through a very small hole
in a plate of platinum. He performed the same experiment with oxygen
and determined that each hydrogen particle escaped through the plate four
times as fast as each oxygen particle.

In 1829, Graham submerged a glass cylinder, with an open top and
bottom, in a glass of water in order to study the diffusion of gases and,
in particular, the rate at which two gases mix. One of the cylinders was first
plugged with plaster that had holes sufficiently large to allow gas flow in
and out of the cylinder. Next, he filled the cylinder with hydrogen (H2) gas,
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and he found that the water level in the cylinder rose slowly because the
H2 molecules inside the cylinder diffused through the porous plaster more
rapidly than the outside air molecules entered the cylinder. By studying the
rate at which the water level in this cylinder changed, Graham discovered
the rate at which different gases mixed with air. In particular, Graham
found that the rates at which gases diffuse is inversely proportional to
the square root of their densities. As mentioned above, Graham obtained
similar results when he studied gas effusion rates, by using a plate with a
pinhole and measuring the rate at which the gas escaped into a vacuum.
Here, too, he found that the rate of gas effusion was inversely propor-
tional to the square root of either the density or the molecular weight of
the gas.

In the 1850s, Graham studied methods for identifying inappropriate
substances that sellers might be mixing with coffee in order to cheat con-
sumers. In 1857, he published “Report on the Mode of Detecting Veg-
etable Substances Mixed with Coffee for the Purpose of Adulteration”
in the Journal of the Chemical Society of London. Today, techniques
such as infrared spectroscopy and coffee “fingerprints” have been used
as tools for classification, authentication, and quality assessment for cof-
fee. For example, several bad coffee mills have been closed for annu-
ally using 20,000 kilograms (20 metric tons) of peat for adulteration of
coffee.

Graham also studied diffusion of substances in solution and discovered
that some apparent solutions were actually suspensions of particles that
were too large to pass through a parchment filter. In 1861, he coined the
word colloid for gluelike materials that diffuse very slowly through porous
membrane, and today Graham is considered the father of colloid chem-
istry. During his research, he divided particles into two classes: crystalloids
such as salt, which diffuse quickly, and substances such as starch, gum, and
gelatin that diffuse slowly and do not form crystals. Graham wrote in an
1861 Philosophical Transactions of the Royal Society:

As gelatine appears to be its type, it is proposed to designate
substances of the class as colloids (from Greek κóλλα, meaning
glue), and to speak of their peculiar form of aggregation as the
colloidal condition of matter. Opposed to the colloidal is the crys-
talline condition. Substance affecting the latter form will be classed
as crystalloids. . . . Fluid colloids appear to have always a pectous
[curdled] modification; and they often pass under the slightest influ-
ences from the first into the second condition. . . . The colloidal is, in
fact, a dynamical state of matter; the crystalloid being the statical
condition.
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Today, we generally consider colloids as solutions in which the dis-
persed particles are between 10−7 and 10−4 centimeters in diameter, and
these particles cannot generally be separated by filtration or gravity alone.
Graham used the term “dialyzer” for the mechanism that he developed to
separate colloids (which dialyzed slowly) from crystalloids (which dialyzed
rapidly). Through dialysis, Graham employed various membranes for sep-
arating colloids from water and from substances readily dissolved in water,
including salts and sugars.

Colloids were an active area of interest even before Graham coined
the word. For example, in 1856, British physicist and chemist Michael
Faraday (1791–1867) made the first systematic study of colloidal gold and
suggested various factors responsible for the stability of these dispersions.
Faraday’s colloidal gold, which he called activated gold, was a suspension
of submicrometer-sized particles in water. The liquid became a gorgeous
red color if it contained particles smaller than 100 nm in diameter.

Colloidal gold had been known since ancient times, when it was used
to stain glass; however, Faraday was one of the first to conduct serious
research into the nature of the colloid. He was also the first to determine
that the brilliant color resulted from the minute size of the gold particles
in the colloid.

Returning to Graham, he explained the differences between three
phosphoric acids and established the concept of polybasic compounds. For
example, he elucidated the difference between phosphoric acid (modern
notation: 3H2O·PO5), pyrophosphoric acid (2H2O·P2O5), and metaphos-
phoric acid (H2O·P2O5). Graham also determined that several phosphate
salts of sodium exist, including Na3PO4, Na2HPO4, and NaH2PO4.

Graham’s Law of Effusion allows scientists to make many practical
discoveries. For example, as alluded to above, it is possible to determine
the molecular mass of an unknown gas in the following manner. Imagine
a device with two chambers. A mystery gas is inserted on one side of the
chamber and is allowed to flow through the orifice to a vacuum chamber,
via the process of effusion, until the pressure on the two sides is the same,
as determined by pressure gauges in each chamber. The time required for
the pressure equilibrium to occur is recorded for the mystery gas. The next
step is to perform the same experiment for a known gas, such as nitrogen.
Given the molecular mass of nitrogen, its rate of effusion, and the rate of
effusion of the mystery gas, we may use Graham’s Law to determine the
molecular mass of the mystery gas.

Graham’s Law had particularly practical applications in the 1940s,
when it was used in nuclear reactor technology to separate radioactive
gases that had different diffusion rates due to the molecular weights of the
gases. In particular, a diffusion chamber, which was several hundred yards
in length, was used to separate two isotopes of uranium, U-235 and U-238.
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These were chemically reacted with fluorine to produce the gas uranium
hexafluoride. The less massive uranium hexafluoride molecules containing
fissionable U-235 would travel down the chamber slightly faster than the
more massive molecules containing the U-238.

During World War II, this separation process was important because
the United States sought to develop an atomic bomb, which required the
isolation of U-235 for the nuclear fission chain reaction. To separate U-235
and U-238, the government built a gaseous diffusion plant in Clinton,
Tennessee, at the cost of $100 million. (This was an especially huge cost
in 1940s dollars!) The plant used diffusion through porous barriers and
processed the uranium for the Manhattan Project, which allowed the
United States to produce the uranium used in the atomic bomb dropped
on Japan in 1945.

In order to perform the isotope separation, the gaseous diffusion plant
required 4,000 stages in a space that was one-half mile long and six stories
high. The porosity of the various barriers had to be high in order to sustain
high flow rates and sufficiently durable so as to not be dissolved by the
highly corrosive hexafluoride. I wonder what Graham would have thought
if he could have known that roughly seventy-five years after his death, his
simple law directly contributed to the demise of more than 100,000 people
through the use of just two bombs.

At 9 o’clock in the evening of Thursday, September 16, 1869, Graham’s
spirit effused into the afterlife. He died at his house, No. 4 Gordon Square,
in the London Borough of Camden. Today, Graham is honored by a
bronze statue unveiled in Glasgow in 1872. The statue sits in George
Square, Glasgow, and its arm rests on a book, the cover of which shows
experimental equipment. The statue was paid for by wealthy industrial
James Young, who had been a student of Graham’s.

For those readers who wish to study photos and learn more about
Graham’s statue, see Ray McKenzie’s Public Sculpture of Glasgow. For
those who want additional background that justifies Graham’s title as the
“father of dialysis,” see the readable introduction in Garabed Eknoyan
and colleagues’ History of Nephrology 2.

As for other applications of Graham’s Law, James Trefil in The Nature
of Science notes that

A rather surprising application of Graham’s law is to the construc-
tion of spacecraft on which humans will be spending long periods
of time. . . . Given enough time, air will leak through the materials of
which the spacecraft’s hull is made, just as it leaks out of a birthday
balloon. . . . [This will be solved] by providing a means of generating
gases on board to replace those lost to the vacuum of space.
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INTERLUDE: CONVERSATION STARTERS

From the intrinsic evidence of his creation, the Great
Architect of the Universe now begins to appear as a pure
mathematician.
—James Hopwood Jeans, The Mysterious Universe, 1930

Physics makes progress because experiment constantly
causes new disagreements to break out between laws
and facts, and because physicists constantly touch up and
modify laws in order that they may more faithfully repre-
sent the facts.
—Pierre Duhem, The Aim and Structure of Physical

Theory, 1962

Modern science is a newcomer, barely four hundred
years old. Though indebted in deep ways to Plato, Aris-
totle, and Greek natural philosophy, the pioneers of
the “new philosophy” called for a decisive break with
ancient authority. In 1536, Pierre de La Ramee defended
the provocative thesis that “everything Aristotle said is
wrong.”
—Peter Pesic, “Bell and the Buzzer: On the Meaning of

Science,” Daedalus, Fall, 2003

Some of the scientists most closely involved, and some of
the most observant philosophers of science, have taken
the view that the laws of nature were: invented by man
(Einstein, Bohr, Popper); not invented by man (Planck);
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expressions of a real underlying order in the world
(Einstein); working models justified only by their utility
(von Neumann, Feynman); . . . steps on the road toward
complete understanding (Feynman, Deutsch); steps on a
road that has no end (Born, Popper, Kuhn). . . .
—Michael Frayn, The Human Touch

Scientists use theory in one way, the public another—and
opponents of evolution have expertly exploited this dis-
connect. . . . For truly solid-gold, well-established science,
let’s stop using the word theory entirely. Instead, let’s
revive much more venerable language and refer to such
knowledge as “law.”
—Clive Thompson, “A War of Words,” WIRED
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FARADAY’S LAWS OF INDUCTION
AND ELECTROLYSIS

England, 1831 and 1833. Induction Law: A changing magneticπ
field produces an electric field. Electrolysis Law: During electrol-
ysis, the amount of chemical change that a current produces is
proportional to the amount of electricity used, and the amounts
of chemical change produced by the same quantity of electricity
in different substances is proportional to their equivalent weights.

Cross Reference: Joseph Henry, James Clerk Maxwell, Humphry
Davy, Heinrich Hertz, Guglielmo Marconi, Hans Ørsted, André-
Marie Ampère, François Arago, Charles-Augustin Coulomb, Otto von
Guericke, Hermann von Helmholtz, Lenz’s Law, Avogadro’s number,
and Maxwell’s Equations.

In 1831, Charles Darwin sailed on his famous journey around the
world on the H.M.S. Beagle. The Scottish mathematical physicist
James Clerk Maxwell was born. He would later become famous
for developing a set of equations expressing the basic laws of
electricity and magnetism. London Bridge was opened. The first
horse-drawn buses were used in New York City. Samuel Francis
Smith wrote the words to “My Country, ’Tis of Thee.”

FARADAY’S LAW OF INDUCTION (1831)

English scientist Michael Faraday’s greatest discovery was that of electro-
magnetic induction. In 1831, he noticed that when he moved a magnet
through a stationary coil of wire, he always produced an electric current in
the wire. American scientist Joseph Henry (1797–1878) carried out similar
experiments at about the same time. Today, this induction phenomenon
plays a crucial role in electric power plants.

Faraday also found that if he moved a wire near a stationary permanent
magnet, a current flowed in the wire whenever it moved. When Faraday
experimented with an electromagnet and caused the magnetic field sur-
rounding the electromagnet to change, he then detected electric current
flow in a nearby but separate wire.

Scottish physicist James Clerk Maxwell (1831–1879) later suggested
that changing the magnetic flux produced an electric field that not only
caused electrons to flow in a nearby wire but also existed in space, even
in the absence of electric charges. In other words, according to Maxwell, a



conducting loop served only as an instrument to reveal the presence of an
electrical field that was always induced around a changing magnetic field,
even if a conducting loop was not present. Maxwell expressed the change
in magnetic flux and its relation to the induced electromotive force (ε or
emf) in what we call Faraday’s Law of Induction:

ε = −dφm

dt

Here, φm is flux of the magnetic field through a circuit. As a rough example
of flux in our daily lives, one can imagine that flux is the amount of
water that flows through a cross section of a hose each second. For our
electromagnetic example, Faraday imagined a magnetic field as composed
of many lines of induction, along which a small magnetic compass would
point. The collection of the lines that intersect a given area indicates the
magnetic flux.

According to the induction equation, if the magnetic field is changed
in any way, a corresponding emf ε will exist in the nearby electrical circuit
that is usually detected by observing a current in the circuit. The emf in a
circuit may be thought of as the work done per unit charge by the electric
field as the charge moves around the complete circuit.

Let’s take a closer look at the induction equation. First, we see that
the magnitude of the emf induced in a circuit is proportional to the rate of
change of the magnetic flux impinging on the circuit. The induced emf is in
units of volts if the rate of change of magnetic flux is expressed in webers
per second.

The direction of the emf (as indicated by the negative sign in the
formula) is described by Lenz’s Law, which states that the emf and induced
current are in such a direction as to tend to oppose the change that pro-
duced them. The Russian-German physicist Heinrich Lenz (1804–1865)
stated his law in 1833. For example, if we attempt to increase the flux
through a circuit, a current will be induced that tends to decrease the flux.
If the reverse of Lenz’s Law were true, the flux would increase the current,
which would in turn increase the flux, and this would increase the power
in the circuit without limit. Infinite power is not produced because an
induced electric current flows in a direction such that the current opposes
the change that induced it.

Note that if we have a coil with N turns, an emf appears in every turn,
and these emfs are additive. In tightly wound coils, the induced emf ε can
be approximated by

ε = −N
dφm

dt
.
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In 1941, Donald Kerst at the University of Illinois employed Faraday’s
Law in an interesting way when Kerst invented the betatron. This device
accelerates electrons to high energies by moving them in a circular orbit
within an evacuated doughnut-shaped tube. The electrons are acceler-
ated by an electric field that is produced by a magnetic flux. This flux is
generated by an electromagnet. Each time an electron circulates around
the loop, it falls through a potential difference equal to the induced emf,
namely, ε = dφm/dt . The highly energetic electrons produced by the beta-
tron can be used for basic physics research or to produce penetrating X-
rays useful for cancer therapy. A 100 mega-electron volt (MeV) betatron
can produce an electron that travels at 0.999986 times the speed of light.

Let’s solve a practical problem involving a betatron through which an
electron completes 2 × 105 trips around the loop of the device before it
is ejected against a metal plate to produce X-rays. If, during this time,
we find dφm/dt is 400 volts, what is the energy and speed of the ejected
electron? To solve this problem, note that each time around the doughnut,
the electron falls through a potential difference of ε = 400 volts. After the
electron has made 2 × 105 trips, we may think of the electron as having
“fallen” through (2 × 105) × 400 = 8 × 107 volts. The energy is therefore
80 MeV. Using formulas for the kinetic energy of this high-speed electron
moving at relativistic speeds, we can find that it is moving at a velocity
equal to 0.99998 times the speed of light.

FARADAY’S LAW OF ELECTROLYSIS (1833)

Before discussing Faraday’s Law of Electrolysis, let us review some funda-
mental chemistry. Electrolysis is the passage of an electric current through
a conducting solution, or a molten salt, that is decomposed in the process.
When a direct electric current is passed through an electrolyte—such as
the molten salt or an aqueous solution of a salt—chemical reactions take
place at the contacts between the electric circuit and the solution. Usually,
electrodes are immersed in the electrolyte. The electrode that is attached
to the negative pole of the battery, which supplies electrons to the elec-
trolyte, is called the cathode. The electrode that is attached to the positive
pole of the battery, which accepts electrons from the electrolyte, is called
the anode.

You may recall the electrolysis of water performed in your high school
chemistry class. An electrical current is applied between a pair of metal
electrodes, which are immersed in the liquid, and hydrogen and oxygen
gas is produced:

2H2O(liquid) → 2H2(gas) + O2(gas)
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(In practice, pure water is a poor conductor of electricity, and one may
add dilute sulfuric acid in order to establish a significant current flow.)
The energy required to separate the ions is provided by an electrical
power supply. The electrolysis of water suggests why the process is called
electrolysis—the suffix “lysis” comes from the Greek, meaning to split.
Some scientists suggest that this kind of chemical reaction could be impor-
tant in making hydrogen, an energy source for powering future motors and
engines. Nuclear submarines can remain submerged for extremely long
times because they can generate oxygen for breathing using electrolysis
of the water around them.

For the case of molten sodium chloride, an electric current is used to
split a compound of NaCl into its elements by the following electrolysis
reaction:

2NaCl(liquid) → 2Na(liquid) + Cl2(gas)

Faraday’s Law of Electrolysis has two parts. First, the amount of chem-
ical change produced by current during electrolysis is proportional to the
quantity of electricity used. In other words, the quantity of elements sepa-
rated by passing an electrical current through a molten or dissolved salt is
proportional to the amount of electric charge passed through the circuit.

Second, the amounts of chemical changes produced by the same
quantity of electricity in different substances are proportional to their
equivalent weights. Similarly, the mass of the resulting separated elements
is proportional to the atomic masses of the elements. This observation
provided evidence that atoms contained discrete particles of electricity.

Today, chemists often write Faraday’s Law of Electrolysis as

m = Q
qn

· M
NA

= 1
96,485 C

· QM
n

,

where m is the mass of the substance produced at the electrolysis elec-
trode, in units of grams; Q is the total electric charge that passed through
a conducting solution or molten salt, in coulombs; and q is the charge
of an electron (1.602 × 10−19 coulombs per electron). The variable n is
the valence number of the substance when present as an ion in solution.
Valence numbers range in value from −4 to +7 and describe the combining
behavior of the atoms in chemical reactions. For example, iron can have a
valence of +2 or +3. Hydrogen always has valence of +1. M is the molar
mass of the substance, in grams per mole, and NA is Avogadro’s number
(6.022 ×1023 ions per mole).

Note that the value 96,485.3383, usually expressed in units of coulombs
per mole, is known as the Faraday constant (F) and may be thought of

268 | a r c h i m e d e s t o h a w k i n g



as the amount of electric charge in 1 mole of electrons. In other words,
F = NA · q. The symbol C denotes coulombs.

We can use Faraday’s Law of Electrolysis in a practical problem to
determine the amount of a substance consumed or produced at an elec-
trolysis electrode, given that this amount should be directly proportional to
the amount of electricity that passes through the electrolytic cell. Imagine
a circuit in which 1 amp of current flows for 1 second. By definition, this
corresponds to 1 coulomb of charge being transferred. Our challenge is to
predict the number of grams of sodium metal that forms at the cathode
in an electrolysis experiment when a 20-amp current is passed through
molten sodium chloride for a period of 8 hours. First, let’s calculate the
amount of electric charge that flows through the cell:

20 amperes × 8 hours × 60 min
1 hour

× 60 sec
1 min

× 1 C
1 ampere sec

= 576,000 C

Again, the symbol C denotes coulombs.
We now use Faraday’s constant to determine the number of moles

of electrons (e−) that are transferred when 576,000 coulombs of electric
charge flow through the cell:

576,000 C × 1 mol e−

96,485 C
= 5.97 mol e−

According to the electrolysis equation (Na+ + e− → Na), for the reaction
that occurs at the cathode of this cell, we produce 1 mole of sodium for
every mole of electrons. Thus, we produce 5.97 moles, or 137.25 grams, of
sodium in 8 hours:

5.97 mol Na × 22.99 g Na
1 mol Na

= 137.25 g Na

This means that we would have to run this electrolysis experiment for more
than a day to prepare a pound of sodium.

Michael Faraday (1791–1867), British physicist and chemist famous for
his law that expresses the relationship between a changing magnetic field
and an electric field, as well as for his experiments in electrolysis.

CURIOSITY FILE: The Biblical Book of Job was the Bible story of most interest
to Faraday—and the section most thoroughly annotated in his own hand.
Faraday believed himself to be an instrument to reveal the truth of God’s
creation. • In the early 1840s, Faraday suffered a nervous breakdown
and also became an Elder of the Sandemanian Church. The confluence
of these events led to a decrease in the quantity of Faraday’s scientific
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work. • Faraday’s handsome face was printed on Great Britain’s 20-
pound note (1991–1993). • The farad (F) is a unit of electric capacitance.
The faraday (Fd) is a unit of electric charge. • Faraday took lessons in
drama and elocution to reduce his cockney accent. • Humphry Davy, for
whom Faraday worked, often experimented with gases by inhaling them—
a practice that was nearly fatal but led to the discovery of nitrous oxide,
which came to be known as laughing gas.

His own relation to [nature] produced in Faraday a kind
of spiritual exaltation. His religious feeling and his [sci-
ence] could not be kept apart; there was a habitual over-
flow of the one into the other.
—John Tyndall, Faraday as a Discoverer

Michael Faraday was born in the year that Mozart
died. . . . Faraday’s achievement is a lot less accessible
than Mozart’s [but] . . . Faraday’s contributions to mod-
ern life and culture are just as great. . . . His discoveries
of electromagnetic rotation and magnetic induction laid
the foundations for modern electrical technology . . . and
made a framework for unified field theories of electricity,
magnetism, and light. . . . Faraday argued that the familiar
properties of bodies reside not in mater but in forces
filling all space.
—David Gooding, “New Light on an Electric Hero,”

Times Higher Education Supplement

Our physicists led lives in social worlds that covered
the full middle-class range, from lower to upper, but
rarely found themselves above or below these stations.
By far the most prominent exception . . . is Michael Fara-
day, born in a London slum.
—William H. Cropper, Great Physicists

Michael Faraday was born in Newington Butts in South London, England.
His father, a blacksmith, made so little money that young Faraday was
sometimes given a single loaf of bread that was expected to feed him for a
week. Faraday and his family were Sandemanians, a Christian sect founded
in Scotland in 1730. The sect emphasized love and community spirit, and
they also believed in the literal truth of the Bible.

According to L. Pearce Williams, writing in the Dictionary of Scientific
Biography,
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Sandemanism gave him both a sense of the necessary unity of
the universe derived from the unity and benevolence of its Cre-
ator and a profound sense of the fallibility of man. . . . The spec-
ulations . . . which led him to the [electricity] experiments and the
courage which permitted him to publish physical heresies owe some-
thing to his unquestioning belief in the unity and interconnections
of all phenomena.

Faraday believed that God sustained the universe and that Faraday was
doing God’s will to reveal truth through careful experiments and through
his colleagues, who tested and built upon his results. He accepted every
word of the Bible as literal truth, but meticulous experiments were essen-
tial in this world before any other kind of assertion could be accepted. “In
my early life,” he wrote, as quoted in Bence Jones’s The Life and Letters
of Faraday, “I was a very imaginative person, who could believe in the
Arabian Nights as easily as in the Encyclopedia, but facts were important
to me, and saved me. I could trust a fact, and always cross-examined an
assertion.” Throughout much of his life, he reperformed other scientists’
experiments that were described in the literature, before he would accept
their assertions and conclusions.

Many of the first Sandemanians were individuals who left the Presby-
terian Church of Scotland and the Church of England. Most Sandemanian
churches of Faraday’s time were led by elders, pastors, or bishops, who
were chosen without regard to formal education or occupation and who
were treated equally while in their positions. Sandemanians never ate
strangled animals or blood. Their faith also told them they should not
acquire wealth.

The Sandemanian sect gradually faded from the world scene after
Faraday’s death, and the last of the Sandemanian churches in America
disappeared in 1890. Faraday described the Sandemanians as “a very small
and despised sect of Christians.” Robert Sandeman, church founder, pro-
claimed, “That God exists is evident from the intricate contrivances of
Nature. Let him who doubts cast up his eyes at the heavens and all doubt
must vanish.”

Faraday had almost no formal education. He later wrote, “My educa-
tion was of the most ordinary description, consisting of little more than the
rudiments of reading, writing, and arithmetic at a common day school.” At
the age of 13, when he could barely read or write, he quit school to find a
job.

Thomas West, author of In the Mind’s Eye, suggests that Faraday prob-
ably had dyslexia or some related learning disability. For example, Faraday
did have poor memory, great difficulty with spelling and punctuation,
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and a relative inability to do mathematics. But he did have a powerful
visual sense. Maxwell once said that Faraday was able to construct mental
pictures of lines of force in order to visualize how they might fill space and
shape themselves into meaningful patterns.

Faraday delivered newspapers and sold and bound books in order to
supplement his family’s income. Literacy was on the rise in Europe, partly
due to improved printing presses. As a result, books were being sold in
record numbers. Faraday enjoyed the books he encountered at his job
and gradually improved his reading skills. He carried Dr. Isaac Watt’s The
Improvement of the Mind in his pocket as a means to better himself and
improve the way he interacted with others. According to the book, three
ways existed to become smarter: attend lectures, take careful notes, and
interact with people of like interests.

Faraday’s love of science was kindled by his serendipitous encounter
with the 127-page entry “Electricity” in the Encyclopaedia Britannica,
which he happened to be rebinding for a client. He immediately studied
some of the simpler observations in the encyclopedia by doing experiments
with old bottles and discarded lumber. He also built a hand-cranked device
that produces electrical sparks. Faraday learned that although scientists
had been aware of electricity for centuries, they still had little understand-
ing of it.

A second chance encounter also changed his life forever. In 1812,
the great English chemist Humphry Davy (1778–1829) was temporarily
blinded by a chemical explosion, and as a result, Faraday became Davy’s
assistant. [For more on this explosion and how it relates to the work of
French Chemist Pierre Dulong (1785–1838), see “The Dulong-Petit Law
of Specific Heats.”] Faraday himself experienced several explosions, the
most terrible of which occurred when he held a tube of nitrogen trichloride
between his thumb and finger. When the chemical exploded, it nearly blew
his hand off.

Faraday published his first scientific paper, “Analysis of Caustic Lime
of Tuscany,” in 1816. In the 1820s, he investigated various oils used for
heating and lighting. In 1825, Faraday isolated the chemical compound
that we now call benzene. After several experiments, he discovered that
the new compound had equal numbers of carbons and hydrogens; thus,
he named it “carbureted hydrogen.” In 1820, he produced the first known
compounds of chlorine and carbon, C2Cl6 and C2Cl4.

In 1821, Faraday married Sarah Barnard and was happy with his mar-
riage throughout his life, noting that even though Sarah was not an intellec-
tual like he was, her emotional support was all that he needed. Sarah never
studied chemistry because, as she said (quoted in L. Pearce Williams’s
“Michael Faraday”), “Already chemistry is so absorbing, and exciting to
him that it often deprives him of his sleep, and I am quite content to
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be the pillow of his mind.” Faraday nearly missed the opportunity of
marrying this 23-year-old daughter of a Sandemanian elder in his church
because he had initially hurt her feelings by writing a poem that suggested
love distracted men from their important work. Luckily for Faraday, he
realized his potential loss and then applied his same passion for science to
persistence in winning back her heart.

Faraday’s discovery of the properties of electromagnetism and his
related physics work are described above. His pioneering work on the
conversion of electrical to mechanical energy was published as “On Some
New Electro-Magnetical Motions, and on the Theory of Magnetism” in the
October 1821 issue of the Quarterly Journal of Science. For this research,
Faraday placed a vertical wire in the center of a pool of mercury and sent
an electric current flowing through it, from bottom to top. He then placed
a bar magnet in the pool and tethered it to the container bottom so that it
stood upright and was loose at the upper end. When the current was on,
the magnet began to revolve, as if it were being propelled by an invisible
current. In a sense, Faraday had just demonstrated the world’s first electric
motor!

As Faraday’s scientific fame spread, Humphry Davy began to despise
him. Davy’s jealousy ran wild, and he accused Faraday of stealing ideas
from other colleagues. Davy campaigned to prevent Faraday from being
elected to the Royal Society. Despite Davy’s attempts, Faraday was made
a member of the Royal Society in 1824.

In 1831, Faraday used a galvanometer (electric current detector) and
an iron ring to show that an electrical current could be induced by another
current. In particular, Faraday wrapped a wire around one segment of an
iron “doughnut” and wrapped another wire around another segment of the
doughnut. His plan was to send a current through the first wire wrapping
to produce a kind of swirling magnetic “tornado” that would propagate
through the doughnut and induce a current in the second wrapping. What
he found was that the moment he turned on the current, electricity was
induced for just a moment in the second wrapping. He waited, and nothing
more happened, until he shut off the current in the first wrapping and then
found a momentary current in the second. What he had discovered was
that the electric current in the first wire wrapping produced a magnetic
swirl that in turn caused a second electric current to flow in the other
wrapping whenever the magnetic swirl either increased or decreased. In
1831, he presented his law, which in simple English can be stated as
follows:

1. Whenever a magnetic force changes, it produces electricity.
2. The faster the magnetic force changes, the more electricity it

produces.
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A few weeks later, Faraday showed that a permanent magnet could
be used to generate electrical current and that a magnetic force could be
converted to an electrical force. His demonstration made use of a copper
disk that produced an electrical current in a circuit when that disk was
rotated between poles of a magnet. In the 1860s and 1870s, Maxwell built
upon Faraday’s foundations to formulate an electromagnetic field theory.
In fact, Faraday’s descriptive theory of lines of force moving between
bodies with electrical and magnetic properties enabled Maxwell to derive
the mathematical theory of the propagation of electromagnetic waves. In
1865, Maxwell used a mathematical approach to demonstrate that electro-
magnetic phenomena propagate at the velocity of light as waves through
space. This insight provided the foundation of radio communication, con-
firmed experimentally in 1888 by the German physicist Heinrich Hertz
(1857–1894), with practical applications later demonstrated by Italian-Irish
inventor Guglielmo Marconi (1874–1937).

Faraday’s accomplishments were not simply theoretical curiosities. His
laws led to electric dynamos that created a constantly changing magnetic
force by spinning a magnet. The motion of the magnet is powered by falling
water, steam, or by various fuels. Once the magnet is rotating, it can be
used to produce a steady output of electricity. The faster the magnets spin,
the larger the electric output.

Let’s review some of Faraday’s additional experiments. Similar to the
experiment in which he used coils around an iron doughnut, in a related
experiment he placed a stationary coil A very close to a stationary coil
B. Coil A has a galvanometer placed in series. Coil B had a switch,
and a battery to pump electrons through the coil when the switch was
closed. Faraday turned the circuit on and noticed that the galvanometer
deflected momentarily. When the switch was opened, the galvanome-
ter again deflected momentarily in the opposite direction. Experiments
showed that an induced emf in coil A occurred whenever the current in
coil B was changing.

In Faraday’s own words from his “On the Induction of Electric Cur-
rents” published in 1832:

Two hundred and three feet of copper wire in one length were
passed round a large block of wood; other two hundred and three
feet of similar wire were interposed as a spiral between the turns of
the first, and metallic contact everywhere prevented by twine. One
of these helices was connected with a galvanometer and the other
with a battery of a hundred pairs of plates four inches square, with
double coppers and well charged. When the contact was made, there
was a sudden and very slight effect at the galvanometer, and there
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was also a similar slight effect when the contact with the battery
was broken. But whilst the voltaic current was continuing to pass
through the one helix, no galvanometrical appearances of any effect
like induction upon the other helix could be perceived, although the
active power of the battery was proved to be great. . . .

Before Faraday performed his electromagnetic experiments, the indi-
vidual who was perhaps closest to clearly elucidating the relationship
between electricity and magnetism was Danish physicist Hans Ørsted
(1777–1851). In 1820, Ørsted discovered that an electric current caused the
needle of a magnetic compass to move, as if the electricity were somehow
behaving like a magnet.

Around the same time, French physicists André-Marie Ampère (1775–
1836) and François Arago (1786–1853) created an electromagnet when
they discovered that an electric current in the shape of corkscrew also
behaved like a magnet and attracted iron. French physicist Charles-
Augustin Coulomb (1736–1806) had found that magnetism and electric-
ity had similar characteristics, namely, that their forces decreased as
the square of the distance. German scientist Otto von Guericke (1602–
1686) had showed that both electrical and magnetic phenomena exhib-
ited polarity and could both repel and attract. With the ideas of these
great physicists swimming in his head, Faraday thought that electric-
ity and magnetism were essentially interchangeable. If electricity could
behave like a magnet—that is, produce a magnetic field as Ampère had
shown—Faraday had wondered if magnetism could be used to produce
electricity.

Faraday was also interested in electrolysis, the means for producing
chemical changes through reactions at electrodes. Using galvanometers
and electrolysis equipment, he showed that chemical action is exactly pro-
portional to the quantity of electricity that passes through the solution and
that the amounts of substances deposited or dissolved by the same quantity
of electricity are proportional to their chemical equivalent weights. After
Faraday’s death, German physicist Hermann von Helmholtz (1821–1894)
used Faraday’s papers on electrochemistry to promote theories that elec-
tricity must be composed of individual particles.

In 1839, Faraday suffered a nervous breakdown, which some biog-
raphers consider to be the result of nearly a decade of constant effort
to understand the nature of electricity and magnetism. His productive
research days were fewer but certainly not completely over.

In 1844, Faraday was suspended as an elder of the Sandemanian church
for missing a single Sunday service—the only time he missed a service in
his entire life! When he explained that he had been dining with Queen
Victoria, the church elders cared little for his flimsy excuse.
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In 1845, Faraday discovered that the plane of polarization of light
could be rotated when the light passed through glass in the presence of a
magnetic field. Today, we call this phenomenon the “Faraday effect.” This
discovery has important implications because it was one of the first demon-
strations of relationship between light and magnetism. In November of
1845, Faraday wrote to Swiss professor Christian Friedrich Schoenbein
(1799–1868):

At present I have scarcely a moment to spare for any thing but work.
I happen to have discovered a direct relation between magnetism &
light also electricity & light—and the field it opens is so large &
I think rich that I naturally wish to look at it first. I actually have
no time to tell you what the thing is—for I now see no one & do
no thing but just work. My head became giddy & I have therefore
come to this place (Brighton) but still I bring my work with me.

Also in 1845, Faraday discovered the magnetic phenomenon that he
named diamagnetism, a form of magnetism that manifests only when
materials are placed in an externally applied magnetic field. Although all
matter exhibits diamagnetism, only those substances, like gold, in which
diamagnetism is particularly strong are referred to as diamagnetic. For
more information on diamagnetism, see “Curie’s Magnetism Law and the
Curie-Weiss Law,” below.

Faraday’s mind deteriorated after about 1855. Around this time he
retreated from all social activities, but he still taught chemistry and physics.
His 1860 and 1861 Christmas lectures on physics and chemistry for chil-
dren were eventually edited and used by other teachers. The Royal Insti-
tution Christmas lectures for children, begun by Faraday, continue to
this day.

According to one story of Faraday’s final hours, when he knew that he
was dying, someone asked him, “Mr. Faraday, what are your presumptions,
your hypotheses now?” He replied, “I do not entrust my head to presump-
tions at this moment, but to certainties.” And then Faraday quoted from 2
Timothy 1:12, “For I know whom I have believed, and am persuaded that
he is able to keep that which I committed unto him against that day.” He
died sitting up in his favorite chair and, at his prior request, had a small
funeral attended only by his relatives.

One of the most personal biographies of Faraday was written in 1872
by John Hall Gladstone, a colleague of Faraday’s at the Royal Institution.
Gladstone wrote about Faraday’s last days:

When his faculties were fading fast, he would sit long at the western
window, watching the glories of the sunset; and one day, when his
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wife drew his attention to a beautiful rainbow that spanned the
sky, he looked beyond the falling shower and the many-colored
arch, and observed, “He hath set his testimony in the heavens.” On
August 25, 1867, quietly, almost imperceptively, came the release.
There was a philosopher less on Earth, and a saint more in heaven.

A lunar crater with a diameter of 69 kilometers was named after
Faraday and approved in 1935 by the International Astronomical Union
General Assembly.

During the course of his life in science, Faraday had kept a diary
that grew to seven volumes. Starting in 1832, Faraday numbered every
paragraph in the diary, ending with number 16,041 at the end of his career.
Today, the seven volumes are still a useful resource as an example of one
man’s creative thinking in science. Faraday had been particularly adept at
questioning standard scientific wisdom and suspending judgment until he
could study the subject further—he was unusually receptive to new ideas.

Michael Guillen writes about Faraday’s contribution to our under-
standing of the world in Five Equations That Changed the World:

Together with Ørsted, Faraday had shown that electricity could
beget magnetism, and magnetism could beget electricity, a genetic
relationship so incestuous and circular there was none other like it in
Nature. . . . The son of a common laborer had discerned and written
down a great secret of the natural world, one that would spell the
end of the Industrial Revolution and the beginning of the Electrical
Age.

Finally, the Dover editors of the introduction to Faraday’s The Chemi-
cal History of a Candle honor Faraday with a fitting and lasting tribute:

Faraday was the greatest physicist of the nineteenth century and
the greatest of all experimental investigators of physical nature.
He is a member of the small class of supreme scientists, which
includes Archimedes, Galileo, Newton, Lavoisier and Darwin.
Einstein has said that the history of physical science contains two
couples of equal magnitude: Galileo and Newton and Faraday and
Maxwell. . . . Faraday must be accounted a greater scientist than
Galileo.

We should reemphasize that Faraday presented his ideas in sim-
ple English—he was not a great mathematician. In fact, he had always
said he liked to couch laws in ways that ordinary people could under-
stand. Maxwell relied heavily on Faraday’s work. About three decades
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after Faraday made his discoveries, Maxwell published his magnificent
A Dynamical Theory of the Electromagnetic Field, in which he recast
Faraday’s simple English describing electromagnetic laws into modern
mathematics that looked like

∇ × E = −∂B
∂t

.

This formula essentially says that the amount of electricity produced
(∇× E) is equal to the rate of change in magnetic field (−∂ B/∂t). If there
is no change in the magnetic field, then no electricity is produced. Maxwell
would write similar kinds of equations for Gauss’s Laws of Electricity and
Magnetism and Ampère’s Circuital Law of Electromagnetism. In general,
Maxwell’s Equations are the set of four famous formulas that describe the
behavior of the electric and magnetic fields. In particular, they express how
electric charges produce electric fields and the fact that magnetic charges
cannot exist. They also show how currents produce magnetic fields and
how changing magnetic fields produce electric fields. Today, one of several
ways of writing Maxwell’s Equations is as follows:

∇ · D = ρ/ε0 Gauss’s Law of Electricity
∇ · B = 0 Gauss’s Law of Magnetism (no magnetic

monopoles exist)

∇ × E = −∂B
∂t

Faraday’s Law of Induction

∇ × H = J + ∂D
∂t

Ampère’s Law with Maxwell’s extension

Bold letters stand for vectors. E is the electric field (volts/meter), H
is the magnetic field (amperes/meter), D is the electric flux density
(coulomb/meter2), B is the magnetic flux density (tesla or weber/meter2), ρ
is the free electric charge density (coulomb/meter3), ε0 is the permittivity of
free space, J is the free current density (amperes/meter2), “∇·” is the diver-
gence operator (per meter), and “∇×” is the curl operator (per meter).
The divergence operator measures a vector field’s tendency to originate
from or converge upon a given point. The curl operator measures a vector
field’s rotation.

Robert P. Crease writes of the beauty and importance of Maxwell’s
Equations in “The Greatest Equations Ever”:

Although Maxwell’s equations are relatively simple, they daringly
reorganize our perception of nature, unifying electricity and mag-
netism and linking geometry, topology and physics. They are essen-
tial to understanding the surrounding world. And as the first field
equations, they not only showed scientists a new way of approaching
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physics but also took them on the first step towards a unification of
the fundamental forces of nature.

In 2004, Crease had conducted a survey in which he asked physicists for
their candidates for the greatest equations of all time. The greatest set
of physics equations, determined by the most votes, was Maxwell’s Equa-
tions. Tony Watkins, one of the respondents in the Crease survey, wrote:

I still vividly remember the day I was introduced to Maxwell’s equa-
tions in vector notation. That these four equations should describe
so much was extraordinary. . . . For the first time I understood what
people meant when they talked about elegance and beauty in math-
ematics or physics. It was spine-tingling and a turning point in my
undergraduate career. . . . My passion was reignited by four lines of
symbols.

Richard Feynman writes on Maxwell’s Equations in his Feynman Lectures
on Physics:

From a long view of the history of mankind—seen from, say, ten
thousand years from now—there can be no doubt that the most
significant event of the 19th century will be judged as Maxwell’s dis-
covery of the laws of electrodynamics. The American Civil War will
pale into provincial insignificance in comparison with this important
scientific event of the same decade.
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INTERLUDE: CONVERSATION STARTERS

The more we learn of science, the more we see that its
wonderful mysteries are all explained by a few simple
laws so connected together and so dependent upon each
other, that we see the same mind animating them all.
—Olympia Brown (1835–1900), U.S. minister (first

woman ordained in U.S.), Sermon, c. January 13, 1895,
Mukwonago, Wisconsin.
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In science we aim for a picture of nature as it really is,
unencumbered by any philosophical or theological preju-
dice. Some see the search for scientific truth as a search
for an unchanging reality behind the ever-changing spec-
tacle we observe with our senses. The ultimate prize in
that search would be to grasp a law of nature—a part of
a transcendent reality that governs all change, but itself
never changes.
—Lee Smolin, “Never Say Always,” New Scientist,

September 23, 2006

As a conservative, I do not agree that a division of physics
into separate theories for large and small is unacceptable.
I am happy with the situation in which we have lived for
the last 80 years, with separate theories for the classical
world of stars and planets and the quantum world of
atoms and electrons.
—Freeman Dyson, “The World on a String,” New York

Review of Books, May 13, 2004

Physics isn’t Christian, though it was invented by Chris-
tians. Algebra isn’t Muslim, even though it was invented
by Muslims. Whenever we get at the truth, we transcend
culture, we transcend our upbringing. The discourse of
science is a good example of where we should hold out
hope for transcending our tribalism.
—Sam Harris, “The God Debate,” Newsweek, April 9,

2007
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GAUSS’S LAWS OF ELECTRICITY
AND MAGNETISM

Germany, 1835. The electric flux across any closed surface is pro-π
portional to the net electric charge enclosed by the surface. The
magnetic flux across any closed surface is zero.

Cross Reference: Faraday’s Law of Induction and Electrolysis,
Bode’s Law of Planetary Distances, and Kirchhoff’s Electrical Cir-
cuit and Thermal Radiation Laws.

In 1835, Texas declared its right to secede from Mexico. The first
assassination attempt against a U.S. President was made. (The
attempt against President Andrew Jackson’s life, while he was
in the U.S. capitol, was unsuccessful.) American author Mark
Twain was born. Copernicus’s book on the motion of Earth,
De revolutionibus orbium coelestium, was removed from the
Catholic Church’s catalog of prohibited books, the Index Libro-
rum Prohibitorum. This index provided a list of publications that
the Catholic Church believed were a danger to Catholics.

GAUSS’S LAW OF ELECTRICITY

Before discussing the formula for Gauss’s Law of Electricity, it is useful to
review some of the law’s key variables. For an electric field, flux, which is
usually denoted by the symbol �, is measured by the number of lines of
force that cut through a hypothetical surface in the field. The surface may
be open, or it may be a closed surface such as a spherical surface. For closed
surfaces, the flux is considered positive if the lines of force point outward
everywhere and negative if they point inward. The concept of flux is also
discussed in “Faraday’s Laws of Induction and Electrolysis,” above.

If this discussion of flux seems rather theoretical, we can discuss an
example that gives another sense of the meaning of flux. At home, I have
a large tropical fish tank. To better understand the concept of flux in
electromagnetism, imagine a fish net. I immerse the net inside the water of
my tank, which has all kinds of interesting flows due to several circulating
pumps. As a crude analogy, the amount of water moving through the net
at any given instant in time is related to flux. As I move the net close to
the pump outlet, the water speed is high, and the flux through the net is
large. If the net is twice as large, then the flux would also be larger even



if the water speed is held constant, because more water would be flowing
through it.

Imagine a closed surface surrounding a positive charge. For visualiza-
tion purposes, imagine a beautiful pink balloon, enclosing the charge that
floats in its interior. The flux is positive for such a surface because the
lines of force point outward from the positive charge. Similarly, the flux
is negative for a surface enclosing a negative charge, because the lines of
force all point inward for such a surface.

Gauss’s Law of Electricity provides the relationship between the elec-
tric flux �, flowing out of a closed surface, and the electric charge enclosed
by the surface:

� =
∮
S

E · dA = 1
ε0

∫
V

ρ · dV = qA

εo
,

where E is the electric field. Each dA is a differential area associated with
a particular part of the surface. (You can visualize the normal vectors
of the dAs as a collection of outward-pointing vectors, like quills on an
excited porcupine.) qA is the charge enclosed by the surface, ρ is the charge
density at a point in a volume V, and ε0 is the permittivity of free space
and equals 8.8541878176 × 10−12 farads/meter.

∮
S is the integral over the

surface S enclosing volume V. The circle on the integral sign indicates that
the surface of integration is a closed surface. Other than this surface aspect,
this integral is no different than other integrals used by physicists.

If this set of equations seems to be confusing, we can note a few
important aspects of the behavior of flux, using simple English. First, the
total of the electric flux out of a closed surface is equal to the net charge
enclosed by the surface divided by the permittivity. Second, if a surface
does not enclose a charge (i.e., a situation in which q = 0), then we would
predict that the electric flux � is 0. Third, the q in the equation refers to the
net charge, so, for example, if the surface encloses a positive and negative
charge of the same magnitude, the flux is 0. Charge outside the surface
makes no contribution to the value of q, and the precise locations of the
enclosed charges do not affect the flux value. Gauss’s Law of Electricity
can be a useful tool for the calculation of electric fields when they originate
from a symmetrical charge distribution.

Many physicists have marveled at Gauss’s Law of Electricity because its
simplicity dictates that no matter how distorted the electric field lines are
or how oddly shaped the surface, the flux integral through the closed sur-
face is simply proportional to the net enclosed charge. Gauss formulated
his famous law in 1835, but it was not published for another 32 years.
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GAUSS’S LAW OF MAGNETISM

Gauss’s Law of Magnetism is one of the fundamental equations of electro-
magnetism and is a formal way of stating the conclusion that no isolated
magnetic poles exist. The law may be represented in equation form as

�B =
∮
S

B · dA = 0

The law indicates that the net magnetic flux �B across any closed
surface is zero. For a magnetic dipole, the magnetic flux directed inward
toward the south pole will equal the flux outward from the north pole. The
net flux will always be zero for dipole sources.

If there were a magnetic monopole source, this would give a nonzero
area integral. Thus, this law states that there are no magnetic monopoles. A
similar finding does not hold for charges in electrostatics because isolated
charges may exist, and this lack of symmetry between electric and magnetic
fields is a puzzle of sorts. Scientists in the 1900s often wondered precisely
why it is possible to isolate positive and negative electric charges but not
north and south magnetic poles.

In 1931, British theoretical physicist Paul Dirac (1902–1984) was one
of the first scientists to theorize about the possible existence of a magnetic
monopole, and a number of efforts through the years have been made to
detect magnetic monopoles. However, so far, physicists have never discov-
ered an isolated magnetic pole. Note that if you were to cut a traditional
magnet (with a north and south pole) in half, the resulting pieces are two
magnets each with its own north pole and south pole. In other words,
cutting a magnet does not produce a north-only and south-only piece.

Some theories that seek to unify the electroweak and strong inter-
actions in particle physics predict the existence of magnetic monopoles.
However, these hypothetical monopoles would be very difficult to produce
using particle accelerators because the monopole would have a huge mass
and energy (about 1016 giga-electron volts).

Carl Friedrich Gauss (1777–1855), German mathematician and scientist
often regarded as one of the greatest mathematicians to have ever lived,
famous for his contributions to many areas of mathematics, astronomy,
and electromagnetism.

CURIOSITY FILE: The gauss is a unit of magnetic induction (flux density)
equal to one maxwell per square centimeter, named in Gauss’s honor.
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• Gauss was extremely secretive about his work. According to mathemat-
ical historian Eric Temple Bell, had Gauss published or revealed all of his
discoveries when he made them, mathematics would have been advanced
by fifty years. As a result, Bell suggests, the mathematics of today would
contain wonders that we can barely imagine. • In the 1990s, the German
ten-mark banknote featured Gauss’s portrait and a normal distribution
curve, also called a Gaussian distribution. • Gauss prohibited his students
from taking notes as he lectured so they could pay closer attention to
his words. His most famous student was mathematician George Riemann
(1826–1866). • Gauss was a man of details, even concerning family
matters. For example, he kept a notebook in which he recorded the dates
when his children cut their teeth.

Almost everything, which the mathematics of our century
has brought forth in the way of original scientific ideas,
attaches to the name of Gauss.
—L. Kronecker, Zahlentheorie

It is hard to appreciate fully the isolation to which Gauss
was condemned in childhood by thoughts that he could
share with no other. . . . Ideas came so quickly to him
that each one inhibited the development of the proceed-
ing. . . . He published only about half his recorded ideas
and in a style so austere that his readers were few.
—Kenneth O. May, “Carl Gauss,” in Dictionary of Scien-

tific Biography

The enchanting charms of this sublime science reveal
only to those who have the courage to go deeply
into it. But when a woman, who because of her sex
and our prejudices encounters infinitely more obstacles
than men . . . succeeds nevertheless in surmounting these
obstacles and penetrating the most obscure parts of them,
without a doubt she must have the noblest courage, quite
extraordinary talents, and superior genius.
—Carl Gauss, 1807 letter to Sophie Germain

I am convinced more and more that the necessary truth of
our geometry cannot be demonstrated, at least not by the
human intellect to the human understanding. Perhaps in
another world, we may gain other insights into the nature
of space which at present are unattainable to us. Until
then we must consider geometry as of equal rank not with
arithmetic, which is purely a priori, but with mechanics.
—Carl Gauss, 1817 letter to Heinrich Olbers
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Carl Friedrich Gauss was a German mathematician, astronomer, and
scientist who made significant contributions to many fields, including
optics, number theory, analysis, astronomy, differential geometry,
geodesy, the theory of errors, and electromagnetism. Like other religious
mathematicians, after Gauss proved a theorem, he sometimes said that
the insight did not come from “painful effort but, so to speak, by the grace
of God.” He also once wrote, as quoted in James R. Newman’s The World
of Mathematics:

There are problems to whose solution I would attach an infinitely
greater importance than to those of mathematics, for example
touching ethics, or our relation to God, or concerning our destiny
and our future; but their solution lies wholly beyond us and com-
pletely outside the province of science.

Among the most brilliant mathematicians of all of recorded history,
Gauss had a strong influence on many fields of mathematics and science
and is ranked beside Euler, Newton, and Archimedes in terms of sheer
genius, breadth, and innovation. Yet despite this genius, his life was often
unhappy—he usually worked in isolation, and his first wife died early. His
second wife was always sick, and his emotional relationship with his sons
was poor. According to his sons, Gauss discouraged them from pursing
scientific careers because he did not want any second-rate work to be
associated with his name.

Carl Gauss was born in Brunswick, now part of Lower Saxony in
Germany. Gauss’s father held many jobs during his life, including work as
a gardener and treasurer of a small insurance fund. Gauss called his father
uncouth and domineering. His devoted mother died at age 97 after living
with Gauss for 22 years.

Gauss, like other lawgivers in this book, was a childhood prodigy
and learned to calculate before he could talk. At age 3, he corrected
his father’s wage calculations when they had errors. At age 8, accord-
ing to legend, he shocked his schoolteacher by instantly being able
to solve her assignment to find the sum of the first 100 integers. [In
order to find the answer 5,050 so quickly, it’s possible that Gauss
used 1 + 2 + . . . + n = n(n + 1)/2; however, some scholars today sug-
gest that the entire schoolteacher story is apocryphal.] A different ver-
sion of the summation legend is presented in Eric Temple Bell’s 1937
book Men of Mathematics in which the problem Gauss solved was a
bit more difficult, which makes Gauss seem even more amazing. Bell
writes:
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As it was the beginning class, none of the boys had ever heard of
an arithmetical progression. It was easy then for [the teacher] to
give out a long problem in addition whose answer he could find by
a formula in a few seconds. The problem was of the following sort,
81297 + 81495 + 81693 + . . . + 100899, where the step from one
number of the next is the same all along (here 198), and a given
number of terms (here 100) are to be added.

Jeremy Gray, in his introduction to G. Waldo Dunnington’s Carl Fred-
erich Gauss: Titan of Science, warns readers that they should be skeptical
of at least some of these childhood stories regarding Gauss:

It has become inevitable that we doubt the anecdotes about the
young Gauss. They were written down only late in life, they derive
from fond but perhaps inaccurate memories of Gauss and his
mother. They exaggerate, but such were Gauss’s prodigious abilities
that they came to be believed.

Gauss enrolled in the Brunswick Collegium Carolinum in 1792, a
new science-oriented academy at the time. While still a teenager, he
frequently made mathematical discoveries and observations and proved
theorems, before finding out that they had been solved or discovered in
the past. For example, he discovered Bode’s Law of Planetary Distances
that predicts the mean distances of planets from the Sun, the binomial
theorem for rational exponents, and the arithmetic-geometric mean. We
can compute the arithmetic-geometric mean of two positive real numbers
x and y by first calculating the traditional mean of x and y, namely,
a1 = (x + y)/2. Next, we calculate the geometric mean of x and y by
g1 = √

xy. Finally, we can iterate the following sequences, which con-
verge to the same number M(x, y), the arithmetic-geometric mean of x
and y:

an+1 = an + gn

2

gn+1 = √
angn

If we determine the arithmetic-geometric mean of 1 and
√

2 and then take
the reciprocal, we have expressed the constant that is now called Gauss’s
constant G in his honor:

1

M(1,
√

2)
= G = 0.83462684167
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The arithmetic-geometric mean is useful in computing the values of com-
plete elliptic integrals and for finding the inverse tangent. Gauss also
related this mean to infinite series expansions.

While at the Collegium, Gauss accurately calculated the square root
of 2 to 50 decimal places: 1.414213562373095048801688724209698078569
67187537694—quite a feat for a teenager of his day. He also developed the
principle of least squares while searching for patterns in the sequence of
prime numbers.

Before he entered the University of Göttingen in 1795, Gauss redis-
covered the law of quadratic reciprocity, conjectured by Swiss mathemati-
cian and physicist Leonhard Euler (1707–1783) and French mathematician
Adrien-Marie Legendre (1752–1833). Gauss was the first to satisfactorily
prove this law. He was so interested in this topic that he went on to provide
more than seven separate proofs over his lifetime. (For the mathematically
inclined reader, the law of quadratic reciprocity concerns the solvability of
two related quadratic equations in modular arithmetic.)

In 1796, when Gauss was also still at teenager, he found a means by
which to construct of a regular 17-gon (i.e., a heptadecagon or seventeen-
sided polygon), using just a ruler and compass. The result was very sig-
nificant because Gauss was the first to perform such a construction even
though attempts had been made since the time of Euclid. For more than
1,000 years, mathematicians had known how to construct, with compass
and straight-edge, regular n-gons in which n was a multiple of 3, 5, and
powers of 2. Gauss was able to add more polygons to this list, namely,
those with a prime number of sides of the form 2(2n) + 1, where n is an
integer. We can make a list of the first few such numbers: F0 = 3, F1 = 5,
F2 = 17, F3 = 257, and F4 = 65,537. (Numbers of this form are also known
as the Fermat numbers, and they are not necessarily prime.) A 257-gon
was constructed in 1832.

When he was older, Gauss still regarded his 17-gon finding as one of his
greatest achievements, and he asked that a regular 17-gon be placed on his
tombstone. According to legend, the stonemason declined, stating that the
difficult construction would essentially make the 17-gon look like a circle.

The year 1796 was an auspicious year for Gauss, when ideas poured
like a fountain from an open water faucet: Aside from solving the hep-
tadecagon construction (March 30), Gauss invented modular arithmetic
and presented his quadratic reciprocity law (April 8) and the prime num-
ber theorem (May 31). He proved that every positive integer is represented
as a sum of at most three triangular numbers (July 10). He also discovered
solutions of polynomials with coefficients in finite fields (October 1).

The prime number theorem states that the number of primes less than
n can be approximated by n/(ln n). This theorem was first conjectured
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by Gauss and finally proved in 1896 by French mathematician Jacques
Hadamard (1865–1963) and Belgian mathematician Charles de la Vallée
Poussin (1866–1962), who worked independently. Their proofs relied on
complex analysis, and at the time, no one thought a more simplified
proof could be constructed. The great mathematical event of 1949 was
an elementary proof of the prime number theorem, given by Norwegian
mathematician Atle Selberg (born 1917) and Hungarian mathematician
Paul Erdös (1913–1996). Incidentally, the theorem can be used to derive a
related theorem: For each number greater than 1, there is always at least
one prime number between it and its double. Also, one can show from the
prime number theorem that the average “gap” between primes less than
n is ln(n). (If you examine the first few primes: 2, 3, 5, 7, 11, and 13, you
will notice that the differences between successive primes vary as: 1, 2, 2,
4, 2 . . . ).

Regarding Gauss’s discovery that every number is expressible as the
sum of at most three triangular numbers, note that Gauss kept a diary for
most of his adult life. In one of his most famous diary entries, dated July 10,
1796, was the single line “EYPHKA! num = � + � + �,” which signifies
his triangular number discovery. (Triangular numbers can be represented
by a growing triangular grid of points. The first few triangular numbers are
1, 3, 6, 10, 15, 21, . . . . )

Gauss always had so many ideas that he seemed not to have the time
to explore them all in great detail. The following lists some highlights of
Gauss’s many investigations throughout his life. For example, Gauss:

� provided four proofs of the fundamental theorem of algebra, which
states that every polynomial equation with complex coefficients has
as many solutions as the highest power of the variable

� completely analyzed cyclotomic equations xn−1 = 0.
� invented the heliotrope, a device that reflects sunlight over long

distances for the purpose of surveying lands
� discovered Kirchhoff’s Electrical Circuit and Thermal Radiation

Laws in 1833 with German physicist Wilhelm Weber (1804–1891),
laws that deal with the conservation of charge and energy in
electrical circuits

� created the world’s first telegraph with Weber
� conducted work in theoretical physics, capillarity, mechanics, optics,

crystallography, and acoustics
� expressed the magnetic potential on any location on the surface of

Earth, using an infinite series of spherical functions
� proved that any system of lenses is equivalent to an appropriately

chosen single lens
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� contributed to our knowledge of electromagnetism, surface
curvatures, the least-squares method, hypergeometric functions, and
differential geometry

� wrote on cartography and the theory of map projections

Gauss also used mathematical methods to precisely predict the location of
the asteroid Ceres. The Italian astronomer Giuseppe Piazzi (1746–1826)
had originally discovered Ceres in 1800, but the asteroid later disappeared
behind the Sun and could not be relocated. Austrian astronomer Franz
Xaver von Zach (1754–1832), as quoted in Curtis Wilson’s “Carl Friedrich
Gauss,” noted that “without the intelligent work and calculations of Doc-
tor Gauss we might not have found Ceres again.” Interestingly, Gauss kept
his methods a secret to maintain an advantage over his contemporaries
and to enhance his reputation. Later in his life, he sometimes published
scientific results as a cipher, so that he could always prove that he had
made various discoveries before others had.

In 1801, Gauss published the first systematic textbook on algebraic
number theory, Disquisitiones arithmeticae. In 1803, he met Johanna
Osthoff, the daughter of a proprietor of a local tannery. Gauss was smitten
from the start and wrote the following heartfelt letter to her on July 12,
1804:

My true friend, receive favorably the fact that I pour out my heart,
in writing, before you, about an important matter. . . . I have a heart
for your silent angelic virtues. . . . You, dear modest soul, are so far
removed from all vanity that you yourself do not realize your own
value; you don’t know how richly and kindly heaven has endowed
you. But my heart knows your worth—O! more than it can bear with
repose. For a long time it has belonged to you. You won’t repel it?
Can you give me yours? . . . Yes, dearest, so warmly do I even love
you, that only possession of you can make me happy, if you are of
the same feeling. Dearest, I have exposed to you the inner part of
my heart: passionately and in suspense am I waiting for your answer.

Gauss and Johanna became engaged on November 22, 1804, and he told
a friend, “Life stands like an everlasting spring with new glittering colors
before me.” In 1805, they married and soon had a son and daughter. Alas,
just a few years later, Johanna, her baby, and Gauss’s father died. The
death of Johanna in particular plunged Gauss into a depression. However,
less than a year later, he married Minna Waldeck, his deceased wife’s best
friend. He had three children with his new wife.

Gauss’s philosophy regarding the pursuit of knowledge is revealed in
his 1808 letter to Hungarian mathematician Farkas Bolyai (1775–1856):
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It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment. When I
have clarified and exhausted a subject, then I turn away from it,
in order to go into darkness again. The never-satisfied man is so
strange; if he has completed a structure, then it is not in order to
dwell in it peacefully, but in order to begin another. I imagine the
world conqueror must feel thus, who, after one kingdom is scarcely
conquered, stretches out his arms for others.

In 1809, he published his second book, Theoria motus corporum
coelestium in sectionibus conicis Solem ambientium (Theory of the Motion
of the Heavenly Bodies Moving about the Sun in Conic Sections). The
book was a treatise on the motion of planets; the first volume discussed
differential equations, and the second volume dealt with methods for esti-
mating the path of the orbit of a planet.

Throughout his life, Gauss did his best to resist chronic hypochon-
dria and depression. In 1834, he wrote to his former student Christian
Gerling that he felt like a stranger in this world. Yet despite his relative
isolation and aloofness, his genius established him as the era’s foremost
mathematician.

Biographer Kenneth O. May writes in the Dictionary of Scientific Biog-
raphy that although Gauss had a million ideas swirling in his brain, he
often did not skillfully explain and promote many of his ideas or cause a
revolution in scientific thinking. As discussed above, Gauss often withheld
publication of his key insights. May writes:

The contrast between knowledge and impact is now understand-
able. Gauss arrived at the two most revolutionary mathematical
ideas of the nineteenth century: non-Euclidean geometry and non-
communative algebra. The first he disliked and suppressed. The
second appears as quaternion calculations in a notebook of about
1819 without having stimulated any further activity.

Marcus du Sautoy in The Music of the Primes also writes about Gauss’s
hesitancy to share some of his ideas:

On the back page of his book of logarithms, Gauss recorded the dis-
covery of his formula for the number of primes up to N in terms of
the logarithm function. Yet despite the importance of the discovery,
Gauss told no one what he had found. The most the world heard of
his revelation were the cryptic words, “You have no idea how much
poetry there is in a table of logarithms.”
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David Samuels in “Knit Theory” explains why Gauss did not publish
his discovery of hyperbolic geometry:

Hyperbolic geometry, conceived by mathematician Carl Gauss in
1816, . . . describes a world that is curving away from itself at every
point, making it the precise opposite of a sphere. . . . Gauss never
published the idea, perhaps because he found it inelegant. In 1825,
the Hungarian mathematician Janos Bolyai and the Russian math-
ematician Nikolai Lobachevsky independently rediscovered hyper-
bolic geometry.

After Gauss died, scientists discovered many novel theories and find-
ings in his private notes that he had failed to disclose during his lifetime.
So many new ideas were uncovered that his influence continued after
his death and for the remainder of the 1800s. Gauss’s mind was like an
explosion in a mathematics factory, and mere mortals were sifting through
the wondrous rubble for decades. He expressed his eternal love for mathe-
matics in a letter to his friend and biographer Sartorius von Waltershausen
(1809–1876), who preserved Gauss’s thoughts in Gauss zum Gedächtniss
(1856):

Mathematics is the queen of sciences and arithmetic the queen of
mathematics. She often condescends to render service to astronomy
and other natural sciences, but in all relations she is entitled to the
first rank.

In the same publication, Gauss is quoted as jokingly saying that some
problems needed to be considered in the afterlife, when he had access to a
new perspective:

According to his frequently expressed view, Gauss considered the
three dimensions of space as specific peculiarities of the human
soul. . . . We could imagine ourselves, he said, as beings which are
conscious of but two dimensions; higher beings might look at us in a
like manner, and continuing jokingly, he said that he had laid aside
certain problems which, when in a higher state of being, he hoped
to investigate geometrically.

Gauss always had a facility with languages. In 1840, he studied San-
skrit for a short time, and when he was 62, he studied Russian, master-
ing it in two years and using it in correspondence. One reason for his
learning Russian was his desire to read Russian mathematician Niko-
lai Lobachevsky’s (1792–1856) work on non-Euclidean geometry in the
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original. He also often read English and toward the end of his life com-
pleted Edward Gibbon’s The History of the Decline and Fall of the Roman
Empire.

Gauss believed in the immortality of the soul and in the afterlife. He
also believed in an omniscient and omnipotent God. Toward the end of
his life, heart failure developed, and he died in Göttingen at age 78 on
February 23, 1855, with friends and relatives by his side. His funeral was
held three days later, with numerous students, friends, and townspeople
in attendance. Von Waltershausen, his close friend, delivered a funeral
sermon.

A lunar crater with a diameter of 177 kilometers was named after Gauss
and approved in 1935 by the International Astronomical Union General
Assembly. Gauss also has an asteroid named after him—1001 Gaussia.

Gaussia is also the name of giant copepods (crustaceans related to
crabs and lobsters) that produce bright bioluminescent displays. To under-
stand why such creatures received Gauss’s name, recall that the famous
German South Polar Expedition in 1901–1903 employed a ship named
Gauss named after Carl Friedrich. The series of reports from the expe-
dition, not published until 1931, revealed many new creatures, such as
the large copepods, several species of which were given the name of the
ship.

Shortly after Gauss’s death, his brain was preserved in alcohol. In
contrast to the average of 1,360 grams for males and 1,230 grams for
females, the weight of Gauss’s brain was 1,492 grams, and it was said to
have had “highly developed convolutions.” However, in a paper published
in the 1999 Proceedings of the Gauss Society, researchers at the Max
Planck Institute for Biophysical Chemistry and the University of Göt-
tingen carefully studied his brain using magnetic resonance tomography
and said they detected nothing grossly unusual about Gauss’s brain. For
example, the sylvian fissure—one of the main clefts dividing the brain
and which was unusual in Einstein’s brain—looked normal in Gauss’s
brain.

In addition to the unit of gauss for magnetic flux density, Gauss is
honored by having the Gauss error function named in his honor. This func-
tion is useful in the fields of probability, statistics, and partial differential
equations, and it may be expressed as

erf(x) = 2√
π

x∫
0

e−t2
dt .

The Gauss hypergeometric function, also named in his honor, is

pFq(α1, . . . αp; b1, . . . , bq; x).
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This can be defined in the form of a hypergeometric series for which the
ratio of successive terms is

ck+1

ck
= P(k)

Q(k)
= (k + α1)(k + α2) . . . (k + αp)

(k + b1)(k + b2) . . . (k + bq)(k + 1)
x.

The function 2 F1(α, b; c; x), corresponding to p = 2 and q = 1, is known as
Gauss’s hypergeometric function and was the first of such functions to be
studied.

Another function named after Gauss, the Gaussian function, is of the
form

f (x) = ae−(x−b)2/c2

for some real constants a > 0, b, and c.
A Gaussian integer is a complex number whose real and imaginary part

are both integers. The prime number elements of Gaussian integers are
known as Gaussian primes.

A Gaussian distribution in a variable x with mean µ and variance σ2 is
expressed as a probability function:

P(x) = 1

σ
√

2π
e−(x−µ)2/(2σ2)

Statisticians and social scientists often refer to this as a “normal distribu-
tion” or “bell curve.”

The Gaussian gravitational constant is k = 0.01720209895(A3/2

S−1/2 D−1), where A is the mean radius of the orbit of Earth around the
Sun, D is the mean rotation period of the Earth around its axis with
respect to the Sun, and S is the mass of the Sun.

Gauss called

� = 9999

“a measurable infinity.” The number has 10369,693,100 digits, a number far
larger than the number of atoms in the visible universe. If typed on paper,
� would require 10369,693,094 miles of paper strip, according to mathemati-
cian and author Joseph Madachy. If the ink used in printing � was a one-
atom thick layer, a million copies of our visible universe would not contain
enough matter to print the number. Shockingly, the last 10 digits of � have
been computed. They are 1,045,865,289.

Before we leave Gauss, I should point out that many famous mathe-
maticians in addition to Gauss—like Srinivasa Ramanujan (1887–1920),
James Hopwood Jeans (1877–1946), Georg Cantor (1845–1918), Blaise
Pascal (1623–1662), and John Littlewood (1885–1977)—believed that
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inspiration had a divine aspect. As mentioned, Gauss said he once proved
a theorem “not by dint of painful effort but so to speak by the grace of
God.”

Felix Klein’s lectures on the development of mathematics from 1914–
1919 include the following tribute to Gauss, as reported in George M.
Rassias’s The Mathematical Heritage of C. F. Gauss:

He had only two peers, Archimedes and Newton, who were
equally gifted. In common with both, Gauss had the unusually
long life span which makes possible a full development of person-
ality. Archimedes personifies the scientific achievements of classi-
cal antiquity, Newton is the initiator of higher mathematics, while
Gauss represents the emergence of a new mathematical era.
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INTERLUDE: CONVERSATION STARTERS

People say to me, “Are you looking for the ultimate laws
of physics?” No, I’m not; I’m just looking to find out more
about the world and if it turns out there is a simple ulti-
mate law which explains everything, so be it; that would
be very nice to discover. If it turns out it’s like an onion
with millions of layers, and we’re just sick and tired of
looking at the layers, then that’s the way it is. . . .
—Richard Feynman, The Pleasure of Finding Things Out:

The Best Short Works of Richard P. Feynman

The idea of eternally true laws of nature is a beautiful
vision, but is it really an escape from philosophy and
theology? For, as philosophers have argued, we can test
the predictions of a law of nature and see if they are
verified or contradicted, but we can never prove a law
must always be true. So if we believe a law of nature is
eternally true, we are believing in something that logic
and evidence cannot establish.
—Lee Smolin, “Never Say Always,” New Scientist,

September 23, 2006

The equations [of physics] are lovely, describing how a
baseball arcs parabolically between Earth and sky or how
an electron jumps around a nucleus or how a magnet
pulls a pin. The ugliness is in the details. Why does the
top quark weigh roughly 40 times as much as the bottom
quark . . . ?
—George Johnson, “Why Is Fundamental Physics So

Messy?” WIRED magazine, February, 2007
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POISEUILLE’S LAW OF FLUID FLOW

France, 1840. Flow rate in a tube is determined by the viscosity
of the fluid, the change in pressure along the tube, and radius of
the tube. In particular, the flow rate is (1) directly proportional to
the pressure difference between the ends of the tube, (2) directly
proportional to the fourth power of its internal radius, and (3)
inversely proportional to its length and to the viscosity of the fluid.

Cross Reference: Gotthilf Hagen, Lionel Wilberforce, and the
Hagen-Poiseuille Law.

In 1840, American explorer Charles Wilkes circumnavigated
Antarctica, claiming what became known as Wilkes Land for the
United States. Wilkes’s journey was the last “all-sail” naval mis-
sion to completely encircle the globe. Russian composer Peter
Tchaikovsky was born. The first railroad dining cars were used
in the United States.

Poiseuille’s Law provides a precise mathematical relationship between the
flow rate of a fluid in a pipe and the pipe width, fluid viscosity, and pressure
change in the pipe. In particular, the law states that

Q = πr4

8µ
�P

L
,

where Q is the fluid flow rate in the pipe, r is the internal radius of the
pipe, �P is the pressure difference between two ends of the pipe, L is the
pipe length, and µ is the viscosity of the fluid. The law, named after French
physiologist Jean Louis Marie Poiseuille (1799–1869), is also sometimes
called the Hagen-Poiseuille Law after the German physicist and engineer
Gotthilf Heinrich Ludwig Hagen (1797–1884) for his similar findings in
1839.

The law assumes that the fluid under study is exhibiting laminar (i.e.
smooth, nonturbulent) flow and is incompressible (i.e., the density of the
fluid remains constant for isothermal pressure changes). The fluid is also
assumed to be in a steady state, which means that the speed at any point
inside of the tube remains the same. Additionally, the pipe or tube is
assumed to have a constant cross-sectional shape. Poiseuille experimen-
tally derived his law in 1838 and published it in 1840.

This law has practical applications in medical fields and, in particular,
in the study of flow in blood vessels. Note that the r4 term ensures that the
radius of a tube plays a major role in determining the flow rate Q of the
liquid. If all other parameters are the same, a doubling of the tube width



leads to a sixteenfold increase in Q. Practically speaking, this means that
we would need sixteen tubes to pass as much water as one tube twice their
diameter. From a medical standpoint, Poiseuille’s Law can be used to show
the dangers of atherosclerosis—if the radius of a coronary artery decreases
twofold, the blood flow through it will decrease 16 times. It also explains
why it is so much easier to sip a drink from a wide straw as compared to a
slightly thinner straw. For the same amount of sipping effort, if you were
to suck on a straw that is twice as wide, you would obtain 16 times as much
liquid per unit time of sucking.

Similarly, Poiseuille’s Law explains how the body can regulate blood
flow. For example, in times of stress or strong demand, our bodies must
sometimes direct more oxygen to one region of the body by reducing
supply to less critical regions. Because blood flow rates depend on an r4

dependence, the processes of vasodilation and vasoconstriction offer effec-
tive flow control mechanisms. We also use the process of vasodilation and
vasoconstriction to regulate core body temperature, despite fluctuations
in the temperature of the environment. On cold days, the nervous system
may constrict blood flow (vasoconstriction) to the arms and legs to reduce
the amount of colder blood returning to the main part of the body, which
could produce a dangerous drop in body temperature. Vasoconstriction is
one mechanism whereby the recreational drug MDMA (ecstasy) can cause
hyperthermia, that is, unusually high body temperature.

As with many laws in this book, Poiseuille’s Law becomes less accurate
when some of the assumptions are violated, for example, in situations
in which the fluid flow is not in a steady state or is not laminar. In the
human body, the flow is not steady state because of the beating of the
heart. Turbulence may be present in the major arteries where the blood
moves rapidly. Similarly, when studying the airways leading to the lungs,
researchers must keep in mind that Poiseuille’s Law was derived using
rigid, smooth, nonbranching tubes. The lung airways do not have these
characteristics. Nevertheless, Poiseuille’s Law is still useful, because it can
give an overall understanding on the kinds of trends that scientists expect
to see in many practical settings, and various correction factors can be
applied for nonideal situations.

Poiseuille’s Law can be used to find the viscosity of a fluid by perform-
ing a Poiseuille flow experiment. By experimentally determining Q (e.g., in
mL/min) for different values of �P (e.g., by imposing different pressures
on the mouth of a capillary tube), scientists can make a plot of �P/Lversus
Q. The slope of the straight line through the data points can then be used
to determine the viscosity µ using Poiseuille’s Law. In 1891, Lionel Robert
Wilberforce (1861–1944) extended Poiseuille’s Law for use in turbulent
fluid flow. Wilberforce taught at the University of Liverpool, where he was
professor of physics.
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Today, Poiseuille’s Law is used in many diverse branches of science. As
just one example, my favorite application of the law is in the study of flows
in pine tree wounds, and in particular, one study titled “Applicability of
Poiseuille’s Law to Exudation of Oleoresin from Wounds on Slash Pine,”
by several researchers working at the Southeastern Forest Experiment
Station in Lake City, Florida. The researchers demonstrated how the
equations for Poiseuille’s Law could be modified and applied to the resin
duct system of twelve slash pines and how the law could be used to select
particular parent trees that would likely produce progeny having a high
capacity for oleoresin production.

Poiseuille’s Law has relevance when planning the placement of irriga-
tion pipes. Long pipes are undesirable in certain circumstances because the
flow rate is inversely proportional to the length of the pipe and thus a large
pump would be required. The law is also useful in planning the number
and sizes of pipes needed to fulfill the water requirements of a large city
that is supplied by pipes coming from a dam.

As a final practical demonstration of Poiseuille’s Law, consider that
when an enlarged prostate constricts the urethra and decreases its radius,
we can blame Poiseuille’s Law for why even a small constriction can have
dramatic effects on flow rate.

Jean Poiseuille (1797–1869), French physician and physiologist famous
for his work with fluid flows.

CURIOSITY FILE: In addition to the aforementioned applications, the 1/r 4

dependence in Poiseuille’s Law helps us understand why a balloon catheter
may be so helpful in angioplasty, a medical procedure used to enlarge a
vessel occluded, for example, by atherosclerosis. A small increase in the
radius of a blood vessel can cause a dramatic improvement in the flow of
blood to a deprived organ such as the heart.

Poiseuille’s name is permanently associated with the
physiology of the circulation of blood through arteries.
—Kurt Pedersen, “Jean Poiseuille,” in Dictionary of Sci-

entific Biography

Jean Poiseuille was born in Paris, France. Various authoritative sources list
his year of birth as either 1797 (e.g., several French sources and the Dictio-
nary of Scientific Biography) or 1799 (e.g., Encyclopaedia Britannica). His
father was a carpenter. In 1815, Poiseuille began his studies at the École
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Polytechnique in Paris. His education focused on physics and mathematics,
and in 1828 he received his doctorate of science.

Poiseuille’s dissertation was titled Recherches sur la force du coeur
aortique (“Research into the Aortic Force of the Heart”), and in this work
he showed that blood pressure rises during expiration of the lungs and
falls on inspiration. Of Poiseuille’s dissertation, Thomas Soderqvist writes
in The Historiography of Contemporary Science and Technology:

Using a specially designed “hemodynamometer,” Poiseuille per-
formed experiments that had, according to a contemporary
reviewer, a “characteristic of precision which commands confidence
in their results even if one is a foreigner to mathematics and can-
not follow the author through his calculations.” Contrary to his
own expectations, Poiseuille found that the average force calculated
from a long series of measurements was the same in arteries at
different distance from the heart.

Poiseuille’s other papers include

� “Research Concerning the Origin of Motion of the Blood in the
Veins” (1832)

� “Research about the Origin of Motion of the Blood in the Capillary
Vessels (1839)

� “Research on the Movement of Liquids in Pipes of Small
Diameters” (1840)

Poiseuille’s most famous work dealt with the flow of blood through
narrow tubes. In 1842, he was elected to the Académie de Médecine in
Paris. He was elected inspector of the primary schools in Paris in 1860.

As discussed above, in 1838, Poiseuille had experimentally derived
what we today call Poiseuille’s Law, and he published his findings in 1840.
The law provides a mathematical relationship between the flow rate Q in
a tube and the fluid viscosity, inner tube width, and pressure change in the
tube. Poiseuille’s Law has a wide variety of applications in hydrology and
medicine.

Poiseuille also improved existing methods for measuring blood pres-
sure by using a mercury manometer. He decreased the rate of troublesome
blood coagulation by placing potassium carbonate into the connection
between the manometer and artery.

Because Poiseuille was so fascinated by the forces that affected the
flow of blood in the smaller blood vessels of the body and because it was
difficult to work with blood because of its tendency to coagulate, most
of his experiments that led to his famous law were performed using thin
glass tubes filled with water. By using compressed air to exert a pressure,
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Poiseuille forced water through the tubes and measured the resulting flows.
By varying the amount of air pressure applied and the radius of the tubes,
Poiseuille discovered that the rate at which fluid passes through the tube
increases proportionately to the pressure applied and also as the fourth
power of the tube radius. However, the law that Poiseuille announced in
1840 did not specify the precise constant of π/(8µ) shown in the formula,
and Poiseuille just considered this quantity to be a constant. Poiseuille also
conducted related experiments and determined a temperature dependence
of Q. Louis A. Bloomfield discusses Poiseuille’s Law in How Things Work:
The Physics of Everyday Life:

It’s hardly surprising that the flow rate depends . . . on the pressure
difference, pipe length, and viscosity; we’ve all observed that low
water pressure or a long hose lengthens the time needed to fill a
bucket with water and that viscous syrup pours slowly from a bottle.
But the dependence of the flow rate on the fourth power of pipe
diameter may come as a surprise.

Bloomfield goes on to explain that the two most common garden hoses
in the United States have diameters of 5/8 inch and 3/4 inch. This seems to
be a very minor difference, but the 3/4-inch diameter hose can carry about
1.24 times as much water (i.e., roughly twice as much water) per unit time
as the 5/8-inch diameter hose.

In 1839, German hydraulics engineer Gotthilf Heinrich Ludwig Hagen
found the same law as Poiseuille, but Hagan’s work was not appreciated at
the time, and Poiseuille had no knowledge of his work.

In 1860, Jacob Hagenbach, professor of mathematics and physics at the
University of Basel, named the law after Poiseuille. Both Hagenbach and
German physicist Franz Neumann (1798–1895) independently determined
the value of π/(8µ) that we use today.

Modern chemists and physicists honor Poiseuille’s work by using the
unit of “poise” as a unit of viscosity (resistance to flow).
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INTERLUDE: CONVERSATION STARTERS

When we look at the glory of stars and galaxies in the sky
and the glory of forests and flowers in the living world
around us, it is evident that God loves diversity. Perhaps
the universe is constructed according to the principle
of maximum diversity, a principle that says the laws of
nature . . . are such as to make the universe as interesting
as possible. As result, life is possible, but not too easy.
Maximum diversity often leads to maximum stress. In the
end we survive, but only by the skin of our teeth.
—Freeman Dyson, “New Mercies: The Price and Promise

of Human Progress,” Science & Spirit July/August,
11(3): 17, 2000

But to believe a law is useful and reliable is not the same
thing as to believe it is eternally true. We could just as
easily believe there is nothing but an infinite succession of
approximate laws. Or that laws are generalizations about
nature that are not unchanging, but change so slowly that
until now we have imagined them as eternal.
—Lee Smolin, “Never Say Always,” New Scientist, Sep-

tember 23, 2006

Superstring theory turns out to be more complex than the
universe it is supposed to simplify. Research suggests that
there may be 10500 universes . . . each ruled by different
laws. The truths that Newton, Einstein, and dozens of
lesser lights have uncovered would be no more funda-
mental than the municipal code of Nairobi. . . . Physicists
would just be geographers of some accidental terrain. . . .
—George Johnson, “Why Is Fundamental Physics So

Messy?” WIRED magazine, February, 2007
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JOULE’S LAW OF ELECTRIC HEATING

England, 1840. The amount of heat produced by a steady electric
current through a conductor is proportional to the resistance of
the conductor, to the square of the current, and to the duration of
the current.

Cross Reference: John Dalton, Clausius’s Law of Thermodynamics,
Faraday’s Laws of Induction and Electrolysis, Fourier’s Law of Heat
Conduction, the Joule-Thomson effect, and the First Law of Thermo-
dynamics.

In 1840, Great Britain issued the world’s first official adhesive
postage stamp. German physicist Friedrich Kohlrausch was born
(see “Kohlrausch’s Laws of Conductivity,” below). Indoor bowl-
ing lanes first opened (in New York). Samuel Morse was granted
a U.S. patent for his telegraph.

Joule’s Law of Electric Heating states that the amount of heat H generated
by a steady electric current flowing in a conductor may be calculated using

H = K · R · I2 · t,

where R is the resistance of the conductor, I is the constant current flowing
through the conductor, and t is the duration of current flow. If the units for
resistance are in ohms, current in amperes, time in seconds, and heat in
calories, the constant K has the value 0.2390 calories/joule. If the heat is
measured in joules, then K is 1.

When electrons travel through a conductor with some resistance R, the
electric potential energy that the electrons lose is transferred to the resistor
as heat. A classical explanation of this heat production involves the lattice
of atoms in a conductor. The collisions of the electrons with the lattice
cause the amplitude of thermal vibration of the lattice to increase, thereby
raising the temperature of the conductor. This process is known as Joule
heating.

Note that the law may often be applied to nonmetallic conductors.
For example, Joule’s Law may be observed in semiconductor materials.
Also note that Joule heating produced by alternating current may be
determined by observing the time average of the parameters in Joule’s
Law.

Joule’s Law and Joule heating play a role in modern electrosurgical
techniques in which the heat at an electrical probe is determined by Joule’s
Law. In such devices, current flows from an “active electrode” through the
biological tissue to a neutral electrode, and the ohmic resistance of the



tissue is determined by the resistance of the area in contact with the active
electrode (e.g., blood, muscle, or fatty tissue) and the resistance in the total
path between the active and neutral electrode. In electrosurgery, the dura-
tion (t in Joule’s Law) is often controlled by a finger switch or foot pedal.
The precise shape of the active electrode can be used to concentrate the
heat so that it can be used for cutting (e.g., with a point-shaped electrode)
or coagulation, which would result from diffuse heat that is produced by
an electrode with a large surface area.

Joule heating is evident in a range of disparate phenomena. For exam-
ple, in the late 1970s, researcher Thibaut Damour of the Observatoire
de Paris published “Black-Hole Eddy Currents,” in which he describes
electromagnetic fields associated with black holes. Damour determined
that a form of Joule heating was associated with the currents under study.

James Joule (1818–1889), British physicist famous for his research on
the conservation of energy and for his law of heat production in electrical
conductors.

CURIOSITY FILE: Joule’s gravestone in Sale, Greater Manchester, is inscribed
with “772.55,” a mechanical equivalent of heat (in units of foot-pounds)
that he determined. • Joule performed electrical tests on a woman servant,
using a powerful battery. As he increased the voltage, she was told to report
her sensations. The experiment continued until she became unconscious.
• German physicist Julius Robert von Mayer (1814–1878) actually dis-
covered Joule’s mechanical equivalent of heat before Joule; however, von
Mayer’s manuscript on the subject was poorly written, confusing, and
initially unnoticed. After Joule had won so much acclaim for work in this
area, von Mayer had a nervous breakdown, attempted suicide, and was
institutionalized.

Joule’s insufficient mathematical education did not allow
him to keep abreast of rapid developments of the new
science of thermodynamics, to the foundation of which he
had made a fundamental contribution. . . . By the middle
of the century, the era of the pioneers was closed, and
the leadership passed to a new generation of physicists
who possessed the solid mathematical training necessary
to bring the new ideas to fruition.
—L. Rosenfeld, “James Joule,” in Dictionary of Scientific

Biography
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Believing that the power to destroy belongs to the Cre-
ator alone, I affirm . . . that any theory which, when carried
out, demands the annihilation of force, is necessarily
erroneous.
—James Joule, “On the Rarefaction and Condensation

of Air,” Philosophical Magazine, 1845

In response to the tide of Darwinism then sweeping the
country . . . 717 scientists [including James Joule] signed
a remarkable manifesto entitled The Declaration of Stu-
dents of the Natural and Physical Sciences, issued in Lon-
don in 1864. This declaration affirmed their confidence
in the scientific integrity of the Holy Scriptures. The list
included 86 Fellows of the Royal Society.
—James G. Crowther, British Scientists of the Nineteenth

Century

The story of Joule’s rapid progress, from dilettante to
a position of eminence in British science, can hardly be
imagined in today’s world of research factories and pro-
longed scientific apprentices. The theme that dominated
Joule’s research . . . was the belief that quantitative equiv-
alences could be found among thermal, chemical, electri-
cal, and mechanical effects.
—William H. Cropper, Great Physicists

James Joule was born in Salford, near Manchester, England. He was the
son of a wealthy brewer and was educated at home with his brother.
From 1834 to 1837, the famous John Dalton (see “Dalton’s Law of Partial
Pressures,” above) educated the two siblings in elementary mathemat-
ics, the scientific method, and chemistry. Joule noted that, “It was from
his instruction that I first formed a desire to increase my knowledge by
original researches.” Joule was fascinated by electricity, and he enjoyed
experimenting by giving electric shocks to his brother and to the family’s
servants.

Joule, like his father, was a religious Christian. He married Alice
Amelia in 1847. According to some authors, during his honeymoon in
the Alps, Joule and a colleague attempted an experiment to measure the
temperature difference between the top and bottom of a large waterfall,
but they may never have accurately performed the experiment for practical
reasons. Armed with a huge thermometer, Joule found that he was unable
to make proper measurements because of the large amounts of spray.

Joule’s idea was that the water near the base of a waterfall should be
about one degree Fahrenheit warmer than the water at the top for every
800 feet of drop. This change of temperature would have been mostly due
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to the kinetic energy that turned to heat as the water crashed at the bottom
of the waterfall.

Joule’s wife, Alice, died in 1854, leaving him with two children to raise.
Shortly after his wife’s death, Joule’s family sold the brewery, and there-
after, Joule led a relatively secluded life, immersed in his experiments.

In a letter to Philosophical Transactions, Joule wrote,

Any of your readers who are so fortunate as to reside amid the
romantic scenery of Wales or Scotland could, I doubt not, confirm
my experiments by trying the temperature of the water at the top
and at the bottom of a cascade. If my views be correct, a fall of 817
feet (249m) will of course generate one degree [Fahrenheit] of heat,
and the temperature of the river Niagara will be raised about one
fifth of a degree by its fall of 160 (48m) feet.

Joule’s prediction was fairly accurate. Today, we know that every 768-foot
(234-meter) length of the waterfall height should generate a heat change
corresponding to 1◦F (0.55◦K).

Joule’s interest in science was motivated to a great degree by his Chris-
tian faith. For example, in 1873 he wrote the following in his notes for an
address to be given at a meeting as President of the British Association for
the Advancement of Science (he did not deliver the address due to poor
health):

After the knowledge of, and obedience to, the will of God, the next
aim must be to know something of His attributes of wisdom, power
and goodness as evidenced by His handiwork. . . . It is evident that an
acquaintance with natural laws means no less than an acquaintance
with the mind of God therein expressed.

Joule had begun his independent research at age 19, and throughout
much of his life, he performed his key experiments at home in laboratories
that he had usually built at his own expense. He is most famous for his
careful measurements and experimental work. However, his relative lack
of mathematical sophistication made it difficult for him to keep up with
new theories in thermodynamics.

Joule was interested in energy, partly because Europe in the 1830s was
in the midst of a technological revolution. Industry depended on steam
engines that usually burned wood or coal in order to convert water into
steam. The high-pressure steam moved the pistons of the engine. As dis-
cussed in “Clausius’s Law of Thermodynamics” (below), scientists at this
time were interested in the flow of energy and the efficiency of engines.
It was also a time when English chemist and physicist Michael Faraday
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(1791–1867) (see Faraday’s Laws of Induction and Electrolysis,” above)
had discovered electromagnetic induction, and many wondered about the
precise connections between work and heat.

Joule devoted himself to conservation laws involving energy and heat
in a series of ambitious experiments. Through his research in the 1840s,
he discovered that approximately 838 foot-pounds of work resulted in the
heating of 1 pound of water through 1 degree Fahrenheit; that is, 1 Btu
was roughly equal to 838 foot-pounds. (The currently accepted value is
778 foot-pounds.) In other words, he found a value for the amount of
work necessary to produce a unit of heat. This was perhaps the first time a
scientist had asserted that a measured quantity of heat was equivalent to a
corresponding amount of mechanical work.

Many years later, the British Association for the Advancement of
Science was concerned with standards of electric resistance and asked
Joule to determine the mechanical equivalent of heat from the thermal
effects of electric currents. This time, Joule’s experiments yielded a value
of 783, and Joule felt that this value was more accurate than his older
value determined by a frictional method. He finally arrived at a value of
772.55 foot-pounds for the amount of work that must be expended at sea
level in order to raise the temperature of 1 pound of water from 60◦F to
61◦F.

In 1840, Joule found that the amount of heat produced by an electri-
cal current is proportional to the square of the current value and with
the resistance of the conductor. For this experiment, he varied current
intensity and resistance in a circuit and measured slight changes in the
temperature of water in which a coiled part of an electric circuit was
dipped. Joule’s success was due in part to his use of remarkably accurate
thermometers.

Joule’s numerous experiments throughout his life convinced him that
all forms of energy were equivalent. In 1843, at age 24, he wrote in “On
the Calorific Effects of Magneto-Electricity, and on the Mechanical Value
of Heat”:

I shall lose no time in repeating and extending these experiments,
being satisfied that the grand agents of nature are, by the Creator’s
fiat, indestructible; and that whenever mechanical force is expended
[work is dissipated], an exact equivalent of heat is always obtained.

Joule’s experiments, together with the work of other scientists of his time,
suggested a general principle of conservation of energy. His work invited
speculation that heat is associated with the motion of particles, but the
development of his conservation principles did not require a clear theory
of the atomic nature of matter.
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Joule worked with his friend the British mathematician and physicist
William Thomson (1824–1907), performing careful experiments on the
behavior of gases in order to determine the extent to which potential
energy might be stored or released during expansion of the gas. In a
popular lecture presented in Manchester in 1847, Joule seemed to abolish
the older caloric theory of matter that incorrectly held that changes in
temperature are due to the transfer of an invisible and weightless fluid
called caloric (see “Fourier’s Law of Heat Conduction,” above). At the
lecture, he said,

The most prevalent opinion until of late, has been that [heat] is
a substance possessing, like all other matter, impenetrability and
extension. We have however shown that heat can be converted
into living force [kinetic energy] and into attraction through space
[potential energy]. It is perfectly clear, therefore, that unless matter
can be converted into attraction through space, which is too absurd
an idea to be entertained for a moment, the hypothesis of heat being
a substance must fall to the ground.

He concludes the same speech on a poetic note in which he muses about
energy, the prophet Ezekiel, and the cosmos:

When we consider our own frames, “fearfully and wonderfully
made,” we observe in the motion of our limbs a continual conver-
sion of heat into living force, which may be either converted back
again into heat or employed in producing an attraction through
space, as when a man ascends a mountain. Indeed the phenomena
of nature, whether mechanical, chemical, or vital, consist almost
entirely in a continual conversion of attraction through space, living
force, and heat into one another. Thus it is that order is maintained
in the universe—nothing is deranged, nothing ever lost, but the
entire machinery, complicated as it is, works smoothly and harmo-
niously. And though, as in the awful vision of Ezekiel, “wheel may
be in middle of wheel,” and every thing may appear complicated
and involved in the apparent confusion and intricacy of an almost
endless variety of causes, effects, conversions, and arrangements,
yet is the most perfect regularity preserved.

Another important principle of Joule’s is that when a gas under high
pressure is passed through a porous plug or small opening, the gas usually
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undergoes a change in temperature according to the Joule-Thomson effect:

(
∂T
∂ P

)
H

= T
(

∂V
∂T

)
P − V

CP

The left side of the equation refers to the change in temperature with
pressure at constant enthalpy (heat content). The enthalpy is constant
because no heat is added to or removed from the system. The expression
(∂V/∂T)P refers to the change of volume with temperature at constant
pressure. CP is the molar specific heat at constant pressure. The quantity
on the left, (∂T/∂ P)H, is also sometimes referred to as the Joule-Thomson
coefficient, which may be either negative, positive, or zero, depending on
the temperature and pressure of the gas.

The Joule-Thomson inversion temperature is the temperature at which
the coefficient is zero, and its value varies with the gas under study. At
temperatures that are above the inversion temperature, gases are warmed
when passed through the small opening. At temperatures below the inver-
sion temperature, gases are cooled. For example, if a tank of carbon
dioxide gas is opened in a laboratory room to the atmosphere, one may
see a spray of fine dry-ice particles cooled to about −78◦C emerging from
the aperture. On the other hand, hydrogen and helium gas warm upon
expansion under the same conditions.

The effect is named after James Joule and William Thomson, who
happened to be another committed Christian. They investigated the effect
in 1852 by following earlier work by Joule that concerned the expansion
of gases. The Joule-Thomson effect has practical application today in
industries in which manufacturers need to liquefy gases.

In 1861, Joule and his children moved to a new house, but his neigh-
bors did not want him to bring his steam engine, which he used for his
experiments. He wrote to Thomson:

As for the olefiant gas experiment, I will try it as soon as I can get rid
of the effect of a most villainous attack on me in the neighborhood
and convince the people that the report that my experiments will
burn up the vegetation is an infamous and malicious falsehood.

In the end, the local authorities prevented Joule from bringing the huge
engine.

In 1870, he was awarded the Copley Medal by the Royal Society of
London. He also acted as president for the British Association for the
Advancement of Science in 1872 and 1887.

Today, Joule is remembered for helping to establish that mechanical,
electrical, and heat energy are all related and can be converted to one
another. Thus, he provided experimental validations for many elements
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of the Law of Conservation of Energy, also known as the First Law of
Thermodynamics.

His interest in heating had involved ingenious experiments with viscous
fluids in cylinders, moving paddle wheels, and microscopes. As one step in
showing the conservation law, he had passed water through a perforated
cylinder and was able to measure the slight viscous heating of the fluid.
Here, he obtained a mechanical equivalent of 770 foot-pounds/Btu. This
value was close to a value he had computed before in his electrical exper-
iments, which suggested to Joule that work and heat can convert to one
another. He also determined the mechanical equivalent of heat by mea-
suring temperature changes produced by the movement of a paddlewheel
submerged in water and turned by a falling mass that was connected to
the paddlewheel. Although Joule was not the first person to establish the
equivalence of heat energy and mechanical energy (sometimes referred
to as “the mechanical equivalent of heat”), his various accurate demon-
strations were influential in establishing such equivalences. His research
revealed his skill in calibrating and reading thermometers, sometimes with
the aid of a microscope, and his initial experience with the use of the
thermometers may have come from exposure to instruments in his father’s
brewery.

Today, Joule is honored by the joule, the unit representing the mechan-
ical equivalent of heat, abbreviated J. The joule is a unit of energy, or work,
with units of kg·m2/s2. A lunar crater with a diameter of 96 kilometers was
named after Joule and approved in 1970 by the International Astronomical
Union General Assembly.

Until the day he died, Joule strongly affirmed his belief in God, the
creator. He wrote, as quoted in James G. Crowther’s British Scientists of
the Nineteenth Century, “After the knowledge of, and obedience to, the
will of God, the next aim must be to know something of His attributes of
wisdom, power and goodness as evidenced by His handiwork.”

In a posthumous tribute to Joule, Thomson said that Joule

had the genius to plan, the courage to undertake, the marvelous
ability to execute and the keen perseverance to carry through to
the end the great series of experimental investigations by which
Joule discovered and proved the conservation of energy in electric,
electromagnetic, and electrochemical actions, and in the friction and
impact of solids, and measured accurately, by means of the friction
of fluids, the mechanical equivalent of heat, cannot be generally
and thoroughly understood at present. Indeed, it is all the scientific
world can do just now in this subject to learn gradually the new
knowledge gained.
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INTERLUDE: CONVERSATION STARTERS

We are in the age of search culture, in which Google and
other search engines are leading us into a future rich with
an abundance of correct answers along with an accom-
panying naive sense of conviction. In the future, we will
be able to answer the questions—but will we be bright
enough to ask them?
—John Brockman, What We Believe but Cannot Prove

God may well have created the universe and the laws of
nature, but nature is still a machine, mechanically chang-
ing and comprehensible as such.
—Robert Todd Carroll, “Intelligent Design,” The

Skeptic’s Dictionary

Our minds arise from the functioning of our physical
brains, and the very precise physical laws that underlie
that functioning are grounded in the mathematics that
requires our brains for its existence.
—Roger Penrose, “What Is Reality?” New Scientist
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Milkmaids have known for a long time that freshly
churned butter is considerably warmer than the cream
from which it is made. (We will soon see the elegant sci-
entific use to which Joule put this observation.) . . . Count
Rumford [Benjamin Thompson] argued, the mechani-
cal work performed by the horses in moving the tool
against the resistance to friction was transformed into
an equivalent amount of random microscopic motion, or
heat. . . . The idea which these observations suggest—that
heat is a form of motion—dates at least as far as classical
Greek times.
—Robert Eisberg and Lawrence Lerner, Physics: Foun-

dations and Applications
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KIRCHHOFF’S ELECTRICAL CIRCUIT AND
THERMAL RADIATION LAWS

Germany, 1845 and 1859. Electrical Circuit Laws: The sum of the
currents into a circuit junction equals the sum of the currents out
of the junction. The sum of the voltage changes around a circuit
loop are zero. Thermal Radiation Law: The ratio of absorptive
and emissive power for a radiating body is a function of wave-
length and temperature.

Cross Reference: Planck’s Law of Radiation, Joseph von Fraunhofer,
Georg Ohm, and Josiah Gibbs.

In 1845, Florida and Texas became U.S. states. Edgar Allan
Poe published “The Raven.” The rubber band was invented and
patented in England. American author Henry David Thoreau
began his experiment in simple living at the beautiful Walden
Pond in Massachusetts. Scientific American began publication.

ELECTRICAL CIRCUIT LAWS (1845)

Kirchhoff’s Electrical Circuit Laws focus on the relationships between
currents at a circuit junction and the voltages around a circuit loop.

Kirchhoff’s Current Law

Kirchhoff’s Current Law is a restatement of the principle of conservation
of electrical charge in a system. In particular, at any point in an electrical
circuit, the sum of currents flowing toward that point is equal to the sum
of currents flowing away from that point. This law is often applied to the
intersection of several wires to form a junction, like an X-shaped junction
or a T-shaped junction, in which current travels toward the junction for
some wires and away in other wires. We can also express this law by stating
it in terms of the sum of the instantaneous currents entering the junction,
or node:

i1
in + i2

in + i3
in + . . . + i1

out + i2
out + i3

out + . . . = 0

Here, iin represents all the currents that flow into a circuit junction, and
iout represents all the currents that flow out of a junction. The superscripts
designate the different wires in a junction.



Kirchhoff’s Voltage Law

Kirchhoff’s Voltage Law is a restatement of the conversation of energy in
a system: The sums of the electrical potential differences around a circuit
must be zero. Imagine we have a circuit with junctions. If we start at any
junction and follow a succession of circuit elements that form a closed path
back to the starting point, the sum of the changes in potential encountered
in the loop is equal to zero. (Elements include conductors, resistors, and
batteries.) We may express this relationship as

v1 + v2 + v3 + v4 + . . . = 0,

where the various values for v are the voltage changes in components along
a closed path in the circuit. As an example, voltage rises may occur when
we follow the circuit across a battery (traversing from the − to + ends of a
typical battery symbol in a circuit drawing). As we continue to trace the
circuit in the same direction away from the battery, voltage drops may
occur, for example, as a result of the presence of resistors in a circuit.
Kirchhoff’s Voltage Law means that at each instant of time, the sum of
any voltage rises is equal to the sum of the voltage drops. The values for
these rises and drops are determined by assessing the circuit elements in
the same direction around the closed loop.

Note that the aforementioned statements of Kirchhoff’s Electrical Circuit
Laws make certain assumptions. For example, for the Current Law, we
assume that the charge density does not change in time as might occur if
there is an accumulation of a net positive or negative charge. If currents
and potentials are changing with time, Kirchhoff’s laws are close approxi-
mations if the capacitance, inductance, and resistance of the wires that con-
nect circuit elements are much smaller than the capacitance, inductance,
and resistance of the circuit elements themselves.

Kirchhoff’s laws may be generalized to alternating currents if we
assume all voltages and currents in a circuit are sinusoids of the same
frequency. In this case, the algebraic sums are replaced by vector sums,
and the Current Law simply states that the vector sum of the cur-
rents at a node at any instant is zero, and the Voltage Law states
that the vector sum of the voltages around a loop at any instant is
zero.

Finally, we have thus far assumed that the battery is simply a provider
of emf (electromotive force). However, in reality, the potential difference
across the battery terminals, called the terminal voltage, is not simply
the emf of the battery. Terminal voltage actually decreases slightly as the
current increases. Thus, a real battery is often represented by a source of
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emf plus an internal resistor. The internal resistance is usually quite small
and may be ignored for many problems.

KIRCHHOFF’S THERMAL RADIATION

LAW (1859)

An object radiates a unique spectrum that depends on the object’s tem-
perature and emissivity, a term that will be defined shortly. This radiation
is called “thermal radiation” because it depends primarily on the temper-
ature of an object.

To understand Kirchhoff’s Thermal Radiation Law, note that physi-
cists consider a “blackbody” to be an object that absorbs all electromag-
netic energy incident upon it and that does not reflect or transmit any
energy. The term was introduced by Kirchhoff, and he noted that such
objects also emit the maximum possible amount of radiant energy at any
given temperature. However, in nature, no real material exists that can
completely absorb all radiation incident on it. All materials in our world
actually reflect part of the incident radiation on them and emit less radiant
energy than a blackbody at the same temperature. Nevertheless, many
materials can approximate the characteristics of a blackbody, thus making
Kirchhoff’s Thermal Radiation Law very useful.

Consider a blackbody in thermal static equilibrium. Kirchhoff’s Ther-
mal Radiation Law states that the ratio of the radiated energy R from an
object to the absorbed energy A is a constant C and dependent upon the
wavelength and the temperature:

R
A

= C

Let’s explore the law further by defining emissivity as the ratio of an
object’s radiant energy to the radiant energy of a blackbody with the same
temperature as the object. A true blackbody would have an emissivity
of 1, while any real object would have an emissivity of less than 1. The
absorptivity of the object is the fraction of incident energy that is absorbed
by the body. One consequence of this law is that good reflectors are poor
emitters. Thus, thermal blankets sometimes have reflective coatings and
only slowly lose heat by radiation.

In his 1859 paper Über den Zusammenhang von Emission und Absorp-
tion von Licht und Wärme (“On the Relation Between Emission and
Absorption of Light and Heat”), Kirchhoff concluded “that for rays of the
same wavelength at the same temperature the ratio of emissive power and
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absorptive power is the same for all bodies.” This is one way to express his
law, but he reformulated the law in the same paper in terms of the ratio
of emissive and absorptive powers, which “is a function of the wavelength
and the temperature.” Modern physicists write this as

e
a

= f (T, λ),

where T is temperature, λ is wavelength, e is emissivity, and a is absorptiv-
ity. The function f describes the unique emission spectrum for all bodies
that are black, that is, that absorb all incident radiation (a = 1).

All matter emits radiant energy as “thermal radiation,” simply because
the matter has a temperature and a constant motion of its atoms or mole-
cules. Additionally, matter partially absorbs, and converts to heat, the
radiant energy emitted by the environment of the object.

Kirchhoff also showed that for any body in thermal equilibrium, the
emitted power equals the absorbed power. This means that the total emis-
sivity equals the total absorptivity, sometimes expressed as e = a. For the
special case of a perfect reflector, a = 0, and thus e = 0, which implies that
a perfect reflector does not radiate.

According to Evitherm, the European “Virtual Institute for Thermal
Metrology,” emissivity is an important concept today in a variety of theo-
retical and practical settings:

At high temperatures or in evacuated environments, thermal radi-
ation is the main mode of heat transfer. Total emissivity governs
the amount of thermal radiation lost or gained by an object and can
therefore either cool or heat it, respectively. The reliable prediction
of energy gains and losses to and from such structures as buildings,
greenhouses, radomes [domes that house radar antennas], space
vehicles, and industrial process plants has become an important part
of energy conservation and control.

The concept and formulas associated with emissivity are useful in the
field of radiation thermometry in order to deduce the temperature of
objects from a measurement of their thermal radiation and the use of
Planck’s Law of Radiation (see part IV).

In the early 1860s, Kirchhoff made three assertions concerning the
characteristics of spectra of objects. (A spectrum shows the variation in
the intensity of an object’s radiation at different wavelengths.) Today,
scientists sometimes refer to these assertions as Kirchhoff’s Laws of
Spectral Formation, and they describe various scenarios and associated
spectra:
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1. A hot opaque body, such as a hot solid or dense gas, produces
a continuous spectrum. A continuous spectrum is one in which
electromagnetic radiation, such as light, is radiated over a contin-
uous range of wavelengths.

2. A hot, transparent (i.e., low-density) gas produces an emis-
sion line (“bright-line”) spectrum. In other words, the gas emits
mostly at specific wavelengths according to the electron configu-
ration of the atoms in the gas.

3. The combination of a cool, transparent (i.e., low-density) gas in
front of a source of continuous emission produces an absorption-
line (“dark-line”) spectrum. In other words, the continuous
spectrum, when passed through a low-density gas, produces a
continuous spectrum with dark gaps at the same wavelengths
as the emission lines described in the second assertion about
spectra.

These kinds of rules are approximations but nevertheless are very useful
in understanding the spectra of stars. Astronomical objects with different
temperatures and compositions emit different spectra, and astronomers
can deduce significant information about such objects by studying their
spectra.

A NOTE ON SPECTRA

Bright lines in atomic spectra occur when electrons jump from higher
energy levels down to lower energy levels. The color of the lines depends
on the energy difference between the energy levels. Dark absorption lines
in spectra can occur when an atom absorbs light and the electron jumps
to a higher energy level. The particular values for the energy levels are
identical for atoms of the same type.

By looking at absorption or emission spectra, we can tell what chemical
elements produced the spectra. In the 1800s, various scientists noticed that
the spectrum of the Sun’s electromagnetic radiation was not a smooth
curve from one color to the next but had numerous dark lines. This sug-
gested that light was being absorbed at certain wavelengths. These dark
lines are called Fraunhofer lines after the Bavarian physicist Joseph von
Fraunhofer (1787–1826), who recorded such lines.

Some readers may find it easy to imagine how the Sun can produce a
radiation spectrum, but not how it can also produce dark lines. How can
the Sun absorb its own light?

You can think of stars as fiery gas balls that contain many different
atoms emitting light at a range of colors. Light from the surface of a star,
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the photosphere, has a continuous spectrum of colors, but as the light trav-
els through the outer atmosphere of a star, some of the colors (i.e., light at
different wavelengths) are absorbed. This absorption is what produces the
dark lines. This phenomenon reminds me a little of turning down the color
intensities on a television so that the picture becomes black and white.
In the case of the Sun, it is as if many different controls are reducing the
intensity of many different narrow ranges of color. On a television of this
sort, you would still see a color picture, but certain shades of color might be
missing. Imagine watching Baywatch if all the red were suddenly absorbed.
The red bathing suits would turn black. In stars, the missing colors, or dark
absorption lines, tell us exactly what chemical elements are in the outer
atmosphere of stars.

Scientists have catalogued numerous missing wavelengths in the spec-
trum of the Sun. By comparing the dark lines with spectral lines produced
by chemical elements on Earth, astronomers have found more than sev-
enty elements in the Sun.

Gustav Kirchhoff (1824–1887), German mathematician famous for his
laws concerning electrical circuits and electromagnetic radiation.

CURIOSITY FILE: Kirchhoff discovered that the velocity of electrical signal
propagation in an uninsulated wire was approximately equal to the velocity
of light in a vacuum. • In 2006, John Mather of NASA’s Goddard Space
Flight Center in Greenbelt, Maryland, received the Nobel Prize in Physics, in
part due to his work that confirmed the fit between the theoretical curve for
blackbody radiation at a temperature of 2.7◦K and the cosmic background
radiation, thus proving that the universe was a near-perfect blackbody at
some point in time after the Big Bang.

Spectrum analysis, which, as we hope we have shown,
offers a wonderfully simple means for discovering the
smallest traces of certain elements in terrestrial sub-
stances, also opens to chemical research a hitherto com-
pletely closed region extending far beyond the limits of
the earth and even of the solar system. Since in this ana-
lytical method it is sufficient to see the glowing gas to be
analyzed, it can easily be applied to the atmosphere of the
sun and the bright stars.
—Gustav Kirchhoff and Robert Bunson, “Chemical

Analysis by Observation of Spectra,” Annalen der
Physik und der Chemie, 1860
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Gustav Kirchhoff was born in Königsberg, Prussia. His father was a lawyer.
Kirchhoff was a talkative child and small for his age. When he was 18,
Kirchhoff attended the Albertus University of Königsberg. While studying
under German physicist Franz Neumann (1798–1895), he conducted his
famous research of the behavior of electrical currents.

Kirchhoff extended the work of German physicist Georg Ohm (1789–
1854) and announced his circuit laws in 1845, which allowed scientists
to better understand and calculate currents, voltages, and resistances in
electrical circuits with various loops. (Note that Kirchhoff was only a
21-year-old student at the time.) These laws, discussed above, concern the
flow of current and the behavior of voltages in circuits with junctions or
nodes.

In 1847, Kirchhoff graduated from Königsberg and married Clara Rich-
elot, who was the daughter of his mathematics professor. They moved to
Berlin in the same year, and he taught at the University of Berlin from
1848 to 1850. In 1850, he was appointed as extraordinary professor at the
University of Breslau. In 1854, he was appointed professor of physics at
the University of Heidelberg, where he collaborated with German chemist
Robert Bunsen (1811–1899).

In 1859, Kirchhoff proposed that each element had a unique and char-
acteristic spectrum, and he asserted his Law of Thermal Radiation, which
suggested, among other things, that for a given atom or molecule, the emis-
sion and absorption frequencies are the same. In other words, a material
capable of emitting a particular spectral line also absorbs strongly at the
same frequency. Kirchhoff and Bunsen examined the spectrum of the Sun
in 1861 and identified chemical elements in the atmosphere of the Sun—
including two new elements, cesium and rubidium, that they discovered
during their investigations. John Emsley explains the discovery of cesium
in Nature’s Building Blocks:

Kirchhoff and Bunsen took about 30,000 liters of mineral water
which they boiled down, and from which they removed the lithium,
sodium, potassium, magnesium, calcium and strontium salts. The
remaining liquor was sprayed into a Bunsen flame and the light
produced was analyzed using a spectroscope, showing two blue lines
very close together. This has never seen before, so Bunsen and
Kirchhoff immediately realized that they had stumbled on a hitherto
unknown element.

Kirchhoff is famous for being the first to explain the dark lines in
the spectrum of the Sun as caused by absorption of light at particular
wavelengths as the light passes through gases in the atmosphere of the
Sun. More generally, Kirchhoff and Bunsen founded the theory of spectral
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analysis in which a researcher could perform chemical analyses merely by
studying the light emitted by heated materials. They also demonstrated
that every element radiates an identifying fingerprint of colored light when
heated. Kirchhoff and Bunsen write in their 1860 paper “Chemical Analy-
sis by Observation of Spectra”:

Spectrum analysis should become important for the discovery of
hitherto unknown elements. If there should be substances that are
so sparingly distributed in nature that our present means of analysis
fail for their recognition and separation, then we might hope to
recognize and to determine many such substances in quantities not
reached by our usual means, by the simple observation of their flame
spectra. We have had occasion already to convince ourselves that
there are such now unknown elements.

Kirchhoff also showed that if an object at a particular temperature is
in “radiative equilibrium,” the ratio of the absorptive and emissive powers
for each wavelength depends only on the wavelength and temperature of
the object. He coined the term “blackbody radiation” in 1862.

In 1869, his wife Clara died, leaving Kirchhoff to raise his four children
alone. This task would have been difficult for any man, but it was made
especially challenging by his disability, which due to an earlier accident,
forced him to spend his life on crutches or in a wheelchair. In 1872, he
married Luise Brömmel, a woman who supervised a local eye clinic.

Perhaps his best-known work is the four-volume Vorlesungen über
mathematische Physik (Lectures on Mathematical Physics, 1876–94). L.
Rosenfeld in the Dictionary of Scientific Biography gives Kirchhoff a fitting
eulogy:

In all his work, Kirchhoff strove for clarity and rigor in the quanti-
tative statement of experience, using a direct and straightforward
approach and simple ideas. His mode of thinking is as conspicu-
ous in his contributions of immediate practical value (the laws of
electrical networks) as in those with wide implications (the method
of spectral analysis). . . . The excellence of Kirchhoff as a teacher
can be inferred from the printed text of his lectures . . . [that] set a
standard for the teaching of classical theoretical physics in German
universities. . . .

After Kirchhoff died, German physicist Max Planck (1858–1947) suc-
ceeded him as the chair of theoretical physics at the famous University of
Berlin. A lunar crater with a diameter of 24 kilometers was named after
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Kirchhoff and approved in 1935 by the International Astronomical Union
General Assembly.
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INTERLUDE: CONVERSATION STARTERS

You find that many laws of nature are themselves con-
nected to others by still deeper laws, that those deeper
laws have even deeper connections, and so on. Eventu-
ally, at the very center of the web, you find a relatively
small number of laws that cement the whole framework
together. . . . These are sometimes referred to as “laws
of nature.” . . . To paraphrase Animal Farm, all laws of
nature are equal, but some laws are more equal than oth-
ers. . . . Of course, there is no universal agreement among
scientists as to what the overarching principles are . . . , but
you would be hard pressed to find a scientist who doesn’t
agree that they exist.
—James S. Trefil, The Nature of Science: An A–Z Guide

to the Laws and Principles Governing Our Universe,
2003

A law of nature is a law and hence a conceptual and
linguistic entity, and a law of nature refers to nature, i.e.
to the real word. At first glance, it is not quite clear how
these two aspects fit together. . . . The world (universe)
is ordered and structured by laws. Popper called this
assumption the “law of lawfulness.”
—Peter Mittelstaedt and Paul A. Weingartner, Laws of

Nature, 2005
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How often might a man, after he had jumbled a set of
letters in a bag, fling them out upon the ground before
they would fall into an exact poem, yea, or so much as
make a good discourse in prose? And may not a little
book be as easily made by chance, as this great volume
of the world? How long might a man be in sprinkling
colours upon a canvas with a careless hand, before they
could happen to make the exact picture of a man? And is
a man easier made by chance than his picture? How long
might twenty thousand blind men, which should be sent
out from the several remote parts of England, wander
up and down before they would all meet upon Salisbury
Plains, and fall into rank and file in the exact order of an
army? And yet this is much more easy to be imagined
than how the innumerable blind pans of matter should
rendezvous themselves into a world.
—John Tillotson, Maxims and Discourses, Moral and

Divine, 1719
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CLAUSIUS’S LAW OF THERMODYNAMICS

Germany, 1850. The entropy change of the universe, for any givenπ
process, must be greater than or equal to zero. Heat flows sponta-
neously from a hotter to a colder object but not vice versa.

Cross Reference: First Law of Thermodynamics, the Second Law of
Thermodynamics, the Third Law of Thermodynamics, Hess’s Law of
Constant Heat Summation, Gibbs free energy, Sadi Carnot, Ludwig
Boltzmann, Walter Nernst, James Joule, and James Clerk Maxwell.

In 1850, California was admitted as the 31st U.S. state. Amer-
ican Express was founded by Henry Wells & William Fargo.
African-American abolitionist Harriet Tubman started to help
slaves escape to the northern free states and Canada using the
Underground Railroad.

Clausius’s Law, which is the Second Law of Thermodynamics in one of
its early formulations, states that the total entropy, or disorder, of an
isolated system tends to increase over time as it approaches a maximum
value. For a closed thermodynamic system, entropy can be thought of
as measure of the amount of thermal energy unavailable to do work. In
1865, German physicist and mathematician Rudolph Clausius (1822–1888)
stated the First and Second Laws of Thermodynamics in the following
form: “Die Energie der Welt ist konstant; die Entropie der Welt strebt einen
Maximum zu.” In other words,

1. The energy of the universe is constant.
2. The entropy of the universe tends to a maximum.

Thermodynamics is the study of heat and, more generally, the study
of transformations of energy in all its forms. The implications of the Sec-
ond Law of Thermodynamics can be stated many ways. For example, the
Second Law implies that all matter and energy in the universe tends to
evolve toward a state of uniformity. We also indirectly invoke the Second
Law when we consider that a house, body, or car—without maintenance—
deteriorates over time. Or, as William Somerset Maugham wrote in Of
Human Bondage, “It’s no use crying over spilt milk, because all of the
forces of the universe were bent on spilling it.” Woody Allen in his 1992
movie Husbands and Wives states the law and the tendency toward disor-
der in a modern way:



It’s the Second Law of Thermodynamics—sooner or later every-
thing turns to shit. That’s my phrasing, not the Encyclopaedia Bri-
tannica’s.

The second law can be described mathematically in several ways. For
its simplest expression, we may write

dS
dt

≥ 0,

where S is the entropy, and the change in entropy with respect to time
(dS/dt) is equal to zero only when entropy is at its maximum equilibrium
value.

When thinking about Clausius’s Law, it is useful to make a distinction
between spontaneous processes (e.g., the cooling of hot water at room
temperature, which occurs without needing to be driven by some external
source) and nonspontaneous processes (which do not happen on their
own). Early in his career, Clausius stated the Second Law as “heat does
not transfer spontaneously from a cool body to a hotter body.” Today,
we say that the entropy of an isolated system generally increases when a
spontaneous change occurs. Although the total amount of energy must be
conserved in any process, the distribution of that energy changes in an irre-
versible manner. Hot objects cool, and cool objects do not spontaneously
become hot.

The Second Law is also sometimes written as

dS = dqreversible

T
,

where dS is the change in entropy of a system, dq is the energy trans-
ferred to the system as heat, T is the temperature in degrees kelvin, and
“reversible” indicates that the heat transfer must be done in a reversible
fashion, that is, without producing entropy other than in the system. When
the temperature is low, a given amount of heat transferred to the system
yields a greater change in entropy than when the temperature is high.
These equations are useful because they are not limited to applications
involving engines and mechanical devices that use heat in their operations
but can also be applied to understand countless natural processes. These
formulations are often referenced in discussions ranging from philosophy
to astronomy.

Austrian physicist Ludwig Boltzmann (1844–1906) expanded upon
these compact definitions for entropy and Clausius’s Law when he inter-
preted entropy as a measure of the disorder of a system due to thermal
motion of molecules of a system. Thus, if the temperature is low, adding
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a quantity of heat to the system may elicit a relatively large additional
disorder in the thermal motion of molecules in the system.

The Second Law of Thermodynamics places constraints upon the direc-
tion of heat transfer as well as the efficiencies that may be achieved by
engines that are powered by heat. The Second Law says that, in a closed
system, we cannot finish any real physical process with as much useful
energy as we had to start with, because some energy is always wasted.
Thus, the Second Law can be used to show the impossibility of most classes
of proposed perpetual motion machines.

From another perspective, the Second Law says that two adjacent
systems in contact with each other tend to equalize their temperatures,
pressures, and densities. For example, when a hot piece of metal is lowered
into a tank of cool water, the metal cools and the water warms until each is
at the same temperature. An isolated system that is finally at equilibrium
can do no useful work without energy applied from outside the system,
which is yet another way to understand how the Second Law prevents us
from building many classes of perpetual motion machines.

Creationists sometimes argue that because the Second Law of Ther-
modynamics drives nature to disorder and chaos, the intricate and ordered
patterns of life could not have arisen spontaneously without an intelligent
designer. But nothing could be further from the truth. For example, we
do not need to invoke an intelligent designer whenever we see an ordered
snowflake crystal. The Second Law of Thermodynamics does not preclude
pockets of order from arising naturally, especially when we consider that
life-giving energy is continually pumped into our world in the form of
sunlight. The Sun drives photosynthesis, which has enabled complex life
to flourish. We should note the Second Law expresses a tendency, which
means that it is highly unlikely that entropy will decrease in a closed system
at a particular instant, but entropy decrease is possible. Additionally, while
it is true that the overall entropy of a complete, or closed, system gener-
ally increases when spontaneous change occurs, in cases of spontaneously
interacting subsystems of a closed system, some may gain entropy, while
other subsystems may lose entropy.

As with other laws in this book, the Second Law of Thermodynamics
was due to more than one person. French physicist Nicolas Léonard Sadi
Carnot (1796–1832) in 1824 realized that the efficiency of converting heat
to mechanical work depended on the difference of temperature between
hot and cold objects. As discussed above, Boltzmann derived the Second
Law of Thermodynamics from probability arguments involving the motion
of particles. Other scientists, such as American mathematician Claude
E. Shannon (1916–2001) and German-American physicist Rolf Landauer
(1927–1999), have shown how the Second Law and the notion of entropy
also apply to communications and information theory.
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Another thought experiment to consider is one in which the air mole-
cules in your living room are very likely to be distributed evenly, because
of the overall result of the random molecular motions. However, an infin-
itesimally small chance exists that the air molecules could travel to one
corner of the room, thus suffocating you. In fact, the so-called Fluctuation
Theorem states that the chances of the Second Law being violated increase
as the system under study gets smaller. While we cannot predict the move-
ment of individual molecules, the tendency toward homogeneity on the
macroscopic scale is predictable. Similarly, sandcastles are very unlikely to
arise spontaneously from the beach—the improbable rarely happens.

An amoeba builds its “improbable structure” from the disordered
materials around it, but it does this at the expense of increasing the entropy
around it. A crystal or a planet forms because it represents a lower poten-
tial energy than alternative configurations and is therefore more probable.
As discussed above, it is only the overall entropy of closed systems that
increases; the entropy of individual components of a closed system may
and often do decrease.

Every day, most of us work toward “counteracting” this entropic
“urge” to turn our bodies to dust and to cause sandcastles to fade. We
burn fuel to create skyscrapers from concrete; we metabolize food to build
proteins from amino acids; and, as physical chemist Peter W. Atkins once
said, “The random fluctuations of electrical currents in neuronal circuits
within the brain can be changed into coherent thoughts and works of art.”
A local region of space can become beautifully structured if is coupled to
nearby pockets of disorder, as when a molecule of ATP “disintegrates” to
ADP within a cell. Of course, for most of these examples, we are fighting
an eventual losing battle, and finally we die, disintegrate, and become at
equilibrium with our environment.

Corey S. Powell likens entropy to the shuffling of a card deck in his
article “Welcome to the Machine”:

Entropy is one of those words that almost everyone has heard and
almost nobody can really explain. . . . [It’s the] amount of disorder
and information in a system. [Consider] a fresh, unshuffled deck of
cards. In that state it has low entropy and contains little information.
Just two pieces of data (the hierarchy of suits and the relative ranks
of the cards) tell you where to find every card in the deck without
looking. [After shuffling,] the deck has a lot of entropy and a lot
of information. If you want to locate a particular card, you have to
hunt through the entire deck. There is only one perfectly ordered
state but about 1068 disordered ones, which is why you will never,
ever accidentally shuffle the deck back into its original order.
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In 2002, chemical physicists in Australia showed that the Second Law
could be temporarily suspended in microscopic systems, and today physi-
cists realize that the Second Law does not apply at atomic scales over
very short times in which situations that “violate” the Second Law become
more likely. The research in 2002 was notable because it showed that the
Second Law can be routinely broken at the micrometer-size scale for up to
2 seconds.

According to Matthew Chalmers’s “Second Law of Thermodynamics
‘Broken’,” this team at the Australian National University in Canberra,
led by Denis Evans, measured changes in the entropy of latex beads, each
a few micrometers across and suspended in water. The researchers found
entropy changes that were negative over time intervals of a few tenths of
a second, which may be thought of as a portion of nature that runs in
reverse. The beads gained energy from the random motion of the water
molecules, which the researchers likened to a “small-scale equivalent of
the cup of tea getting hotter.” However, over time intervals of more than
2 seconds, an overall positive entropy change was measured and normality
was restored. The team’s experiment provided the first evidence that the
Second Law of Thermodynamics can be violated at appreciable time and
length scales. The Australian team is currently reviewing how their results
may affect the field of nanotechnology and our understanding of molecular
interactions inside living creatures. Evans’s work was important because
it experimentally verified results that showed what other scientists would
have expected: that the Second Law doesn’t always apply at small size
scales.

Before proceeding to the biography of Clausius, I should note that a
Third Law of Thermodynamics exists. From a classical physics perspective,
the Third Law states that as a system approaches absolute zero tempera-
ture (0◦K, −273.15◦C, or −459.67◦F), all processes cease and the entropy
of the system approaches a minimum value. The Third Law was developed
by German chemist Walther Nernst (1864–1941) around 1905. The modern
version of the law can be stated as follows: As temperature goes to absolute
0, the entropy S approaches a constant S0. Classically speaking, the entropy
of a pure and perfectly crystalline substance is 0 if the temperature could
actually be reduced to absolute zero.

According to the creative folks at everything2.com, it is amusing to
ponder the classical ramifications of what it means to be at absolute
zero:

Since heat is a measure of average molecular motion, zero thermal
energy means that the average atom does not move at all. Since no
atom can have less than zero motion, the motion of every individual
atom must be zero if the average molecular motion (heat) is zero.

c l a u s i u s ’ s l a w o f t h e r m o d y n a m i c s | 327



Thus, if the entire universe had an average heat of zero, the
universe . . . would be over as far as we’re concerned: no motion, no
reactions, no observers. If the universe becomes an unobservable
motionless system, does it really exist?

As discussed above, using a classical analysis, all motion stops at
absolute zero. However, I should note that the ramifications of absolute
zero are more complicated because quantum mechanical “zero-point
motion” allows systems in their lowest possible energy state (i.e., “ground
state”) to have a finite probability of being found over extended regions
of space. Thus, two atoms bonded together are not separated at some
single distance from each other, but can be thought of as undergoing rapid
vibration with respect to one another, even at absolute zero.

The phrase “zero-point motion” is used by scientists to describe the
fact that atoms in a solid—even a super-cold solid—do not remain at exact
geometric lattice points, but rather, a probability distribution exists for
both their positions and momenta. Scientists have achieved temperatures
of less than a ten-thousandth of a degree centigrade above absolute zero.

It is impossible to cool a body to absolute zero by any finite process.
If scientists could cool objects to absolute zero, all such bodies would still
have a definite energy, called the zero-point energy.

I conclude this section with some quotations relating to the Second
Law. Michio Kaku in Hyperspace reminds us that British scientist and
author C. P. Snow had a useful way of remembering the three laws of
thermodynamics:

1. You cannot win (i.e., you cannot get something for nothing,
because matter and energy are conserved).

2. You cannot break even (you cannot return to the same energy
state, because there is always an increase in disorder; entropy
always increases).

3. You cannot get out of the game (because absolute zero is unattain-
able).

Astrophysicist Sir Arthur Stanley Eddington writes in The Nature of
the Physical World:

The law that entropy increases—the Second Law of
Thermodynamics—holds, I think, the supreme position among the
laws of Nature. If someone points out to you that your pet theory
of the Universe is in disagreement with Maxwell’s equations—then
so much the worse for Maxwell’s equations. If it is found to
be contradicted by observation—well, these experimentalists do
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bungle things sometimes. But if your theory is found to be against
the Second Law of Thermodynamics I can give you no hope; there
is nothing for it but to collapse in deepest humiliation.

Rudolf Clausius (1822–1888), German mathematical physicist who for-
mulated the Second Law of Thermodynamics and who generally advanced
the field of thermodynamics.

CURIOSITY FILE: Clausius’s work was largely theoretical, and he never pub-
lished any experimental research.

The history of thermodynamics is a story of people and
concepts. The cast of characters is large. At least ten
scientists played major roles in creating thermodynam-
ics, and their work spanned more than a century. The
list of concepts, on the other hand, is surprisingly small:
there are just three leading concepts in thermodynamics:
energy, entropy, and absolute temperature.
—William H. Cropper, Great Physicists

No part of science has contributed as much to the liber-
ation of the human spirit as the Second Law of thermo-
dynamics. Yet, at the same time, few other parts of sci-
ence are held to be so recondite. Mention of the Second
Law raises visions of lumbering steam engines, intricate
mathematics, and infinitely incomprehensible entropy.
Not many would pass C. P. Snow’s test of general literacy,
in which not knowing the Second Law is equivalent to not
having read a work of Shakespeare.
—Peter W. Atkins, The Second Law

All flesh shall perish together, and man shall turn again
to dust.
—Job 34:15

Amazingly, this process of generating entropy is univer-
sal. It is what happens when a candle burns, when the
sun shines and when your stomach digests your lunch. In
every instance, there is an inexorable, irreversible trend
toward disorder and an increase in the total amount of
information in the world.
—Corey S. Powell, “Welcome to the Machine,” New

York Times Book Review
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Rudolf Clausius was born in 1822 in Köslin, Prussia—his parent’s four-
teenth child. The year 1822 is important in the history of thermodynamics
because it is the year in which French engineer Sadi Carnot was in the
process of finishing his grand work “Reflections on the Motive Power of
Fire,” which would one day inspire Clausius to investigate the properties
of heat and energy flow as well as their profound implications for machines
and men.

As a boy, Clausius attended a small school that his father had estab-
lished. Clausius was curious about nature and loved to collect seashells.
In 1840, he entered the University of Berlin. Only two years earlier,
steamships first crossed the Atlantic Ocean.

In 1843, his mother died while giving birth to her eighteenth child, and
Clausius began to help raise the younger children.

His paper on the theory of heat, published in 1850, helped him secure a
teaching position at the Royal Artillery and Engineering School in Berlin,
and in 1855 he became professor of mathematical physics at the École
Polytechnicum, a prestigious new university in Zurich. While in Zurich, he
met an attractive young woman, Adelheid Rimpau, and they were wed in
1859. In 1870, he was wounded while leading a student ambulance corps in
the Franco-Prussian War. In 1875, his wife died while giving birth to their
sixth child. Michael Guillen, in Five Equations That Changed the World,
eloquently writes of Clausius feelings at the time:

How ironic, how cruel and painful, was the timeless struggle
between life and death, Clausius lamented bitterly, holding his
wife’s cooling hand. He had devoted his career to the sci-
entific understanding of heat. . . . The universe as a whole was
dying. . . . Indeed, even now at this moment of his most profound
grief, the grim imbalance had been maintained: He had lost a wife
and gained a daughter, but in his heart and mind, Clausius under-
stood how and why the great equation of life had taken more than
it had given.

Clausius’s continued pain from his war injury, coupled to his respon-
sibilities for the sole care of his family, may have hampered his scientific
progress in these later years of his career. Despite these hardships, Clau-
sius was a caring father. His brother Robert wrote in Clausius’s obituary
notice, “He was the best and most affectionate of fathers, fully entering
into the joys of his children. He himself supervised the schoolwork of his
children.”

After his wife’s death, Clausius longed to return to Germany, and
in 1877, he accepted a professorship at the University of Würzburg
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in Germany. In 1879, he received the Copley Medal of the Royal
Society.

Let me briefly review the field of thermodynamics around the time of
Clausius before describing his work in more detail. Much of the initial work
in this area centered on the operation of engines and how fuel, such as
coal, could be efficiently converted to useful work by the engine. Carnot is
probably most often considered the “father” of thermodynamics due to his
1824 work Réflexions sur la puissance motrice du feu (“Reflections on the
Motive Power of Fire”). Sadly, in 1832 Carnot contracted cholera, and by
order of the health office, nearly all his books, papers, and other personal
belongings had to be burned! This made it difficult for Clausius to initially
obtain additional information about Carnot and his ideas.

Carnot worked tirelessly to understand heat flow in machines partly
because he was disturbed that British steam engines seemed to be more
efficient than French engines. During his day, steam engines usually
burned wood or coal in order to convert water into steam. The high-
pressure steam moved the pistons of the engine. When the steam was
released through an exhaust port, the pistons returned to their original
positions. A cool radiator converted the exhaust steam to water, which
could be heated again to steam in order to drive the pistons.

Carnot imagined an ideal engine, which we refer to today as a Carnot
engine, that would theoretically have a work output equal to that of its heat
input and not lose even a small amount of energy during the conversion.
This perfectly efficient energy would not violate the First Law of Ther-
modynamics that states, in essence, that energy is conserved and that the
increase in the internal energy of a system is equal to the amount of energy
added to the system by heating, minus the amount lost in the form of work
done by the system on its surroundings. The First Law of Thermodynamics
is actually an extension of results obtained by English physicist James Joule
(1818–1889).

After various experiments, Carnot came to realize that no device could
perform in this ideal matter—some energy had to be lost to the environ-
ment. Energy in the form of heat could not be converted completely into
mechanical energy. Carnot also wrote in Réflexions sur la puissance motrice
du feu (Reflections on the motive force of heat), “The production of heat is
not sufficient to give birth to the impelling power. It is necessary that there
should be cold; without it, the heat would be useless.”

During the operation of one of Carnot’s heat engines, heat is absorbed
from a reservoir at high temperature, and part of this heat is converted
into useful work. However, much of the heat is expelled into a low-
temperature reservoir and thus “wasted.” In a steam engine, the boiler is
the high-temperature reservoir, and the condenser is the low-temperature
one. The greater the temperature difference between the two reservoirs,
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the greater the fraction of absorbed heat that is converted into useful
work.

Carnot’s formula for the thermodynamic efficiency of a machine pow-
ered by a heat difference can be expressed as e = 1 − TL/TH, where e
is the efficiency of the machine, TL the low operating temperature of
the machine, and TH is the high operating temperature—both in degrees
kelvin. Most engines require fuel to be burned to supply heat at high
temperature to produce an expanding gas. But we must supply heat at
a temperature higher than the surroundings. Or, to put in another way,
TL is the absolute temperature of a reservoir to which a substance (e.g., a
gas) is exhausted, and TH is the temperature of the reservoir that supplies
the gas (the source). For a machine to attain perfect efficiency, TL would
have to be at absolute zero. Notice that if the temperature of the heat
source is the same as the exhaust, the efficiency is zero, and the engine can
do no work. The engine must have the opportunity to expel heat energy
to a lower temperature object. As discussed above, some of the initial
heat supply must always be discarded to the surroundings by the engine
exhaust.

For a steam engine, which cannot easily operate at temperatures much
higher than 100◦C, we would have TH approximately equal to 373◦K.
During the cold portion of the engine cycle, the gas cannot be at a temper-
ature lower than that of the surrounding air, for example, around 300◦K.
Therefore, a good steam engine of Carnot’s time will have an efficiency
of only about e = 1 − 300/373 or 20 percent. Modern power plants for
electricity generation operate at around 1,000◦F (800◦K) with cold sinks at
around 212◦F (373◦K). Theoretically speaking, they can run at a maximum
efficiency of 54%. A car engine has a theoretical maximum of about 56%,
but in practice, car engines are actually designed with other goals in mind,
such as the goal of being lightweight and responsive, and thus only attain
about 25% efficiency.

Although Carnot effectively abolished all hopes that a perpetual
motion machine could be built, he was able to help engine designers
improve their engines so that the engines could work close to their peak
efficiencies.

These foregoing discussions have been concerned with devices that
work as “cyclical devices” in which, at various parts of their cycles, the
device absorbs or rejects heat, and it does work as a result. In summary,
although in modern times we have greatly increased the efficiency of such
cyclical engines that rely on heat differences, it is impossible to make such
an engine that is 100% efficient. This impossibility is yet another way of
stating the Second Law of Thermodynamics.

As an additional review of the Second Law, note that three common
ways exist for stating the Second Law of Thermodynamics:
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1. The Second Law prohibits the complete conversion of heat into
work without loss of energy. (Lord Kelvin)

2. The Second Law prohibits heat flowing spontaneously from a
colder object to a hotter object. (Clausius)

3. Natural processes are accompanied by an increase in the entropy
of the universe. (This entropy principle captures much of what is
said in the Clausius and Kelvin statements.)

The actual word “thermodynamics” was coined in 1849 by British
mathematician and physicist William Thomson (later Lord Kelvin, 1824–
1907) in his paper on the efficiency of steam engines. In 1850, Clausius
went further and originated and defined the term entropy to denote the
heat lost or unavailable for useful work. Entropy comes from the Greek
word entrepein, meaning to turn. Clausius wrote in Über verschiedene für
die Anwendung bequeme Formen der Hauptgleichungen der mechanischen
Wärmetheorie (“On Several Convenient Forms of the Fundamental Equa-
tions of the Mechanical Theory of Heat”), “I have intentionally formed
the word entropy so as to be as similar as possible to the word energy, for
the two magnitudes . . . are so nearly allied in their physical meanings that
a certain similarity in designation appears to be desirable.”

Peter W. Atkins, author of The Second Law, writes about the work of
Clausius and Kelvin:

Clausius’s first contribution cut closer to the bone than had Kelvin’s.
In dealing with the theme inspired by Carnot, carried on by Joule,
and extended by Kelvin—in a monograph that was titled Über
die bewegende Kraft der Wärme when it was published in 1850—
Clausius sharply circumscribed the problems then facing thermody-
namics, and in doing so made them more open to analysis. His was
the focusing mind, the microscope to Kelvin’s cosmic telescope.

As Atkins notes, the most significant research of Clausius’s career on
the mechanical theory of heat was Über die bewegende Kraft der Wärme
(“On the Motive Power of Heat”). According to Yung Sik Kim, author of
“Clausius’s Endeavor to Generalize the Second Law of Thermodynamics,”

Clausius first stated the basic idea of the second law of thermody-
namics [in his 1850 Wärme paper]. He used it in showing that for a
“Carnot cycle,” which transmits heat between two heat reservoirs
at different temperatures and at the same time converts heat into
work, the maximum work obtained from a given amount of heat
depends solely upon the temperatures of the heat reservoirs and
not upon the nature of the working substance.
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The 1850 paper was only the start of Clausius’s involvement in the
study of the Second Law. In the following decade, he published eight more
memoirs in which he tried to place the Second Law into a simpler and
mathematical form.

Clausius’s second most important paper, Über eine veränderte Form des
zweiten Hauptsatzes der mechanischen Wärmetheorie (“About a Modified
Form of the Second Theorem on Mechanical Heat Theory”), contained
his further developments of the concept of entropy. At this point in time,
Clausius did not actually use the term “entropy” and instead referred to
the principle of the equivalence of transformations, which gave rise to his
statement that heat cannot of itself go from a cold body to a hot body. In
1865, he wrote his maxim, Die Entropie der Welt strebt einen Maximum zu
(“The Entropy of the Universe Tends to a Maximum”).

Guillen further discusses Clausius’s formulation that states why every-
thing in the universe ages and eventually dies (�Suniverse ≥ 0). Guillen
likens the universe to a casino, and entropy to money. Engines are like
gamblers in the casino:

Clausius’s Law of Entropy Nonconservation was like saying that
a casino’s positive money changes always exceeded its nega-
tive money changes. In other words, a casino’s winnings always
exceeded it losses; it always made a profit, which was how it stayed
in business. A casino existed at the expense of its players, which
meant it could keep winning only so long as its players could
keep losing. When they had lost everything, when positive money
changes ceased to exist, the casino would shut down forever.

Clausius also was interested in possible models of the molecular
motions in gases, and he demonstrated that rotational motions were
needed to account for the heat present in a gas in addition to translational
motions. He established one of the first significant connections between
thermodynamics and the kinetic theory of gases. After 1875, Clausius
worked on developing various theories of electrodynamics.

In 1871, Clausius worked with Scottish mathematician and physicist
James Clerk Maxwell (1831–1879) in an area that came to be known as
statistical thermodynamics, which focuses on the mathematical properties
of large numbers of particles in a system. In 1875, Austrian physicist
Ludwig Boltzmann (1844–1906) formulated a mathematical relationship
between entropy S and molecular motion. This relationship is expressed
as S = kln W, where W is the number of possible states of the system, and
k is Boltzmann’s constant that gives S in useful units. Interestingly, this
equation for S is engraved on Boltzmann’s tombstone in Vienna! Richard
Feynman helps us understand the Boltzmann model of entropy in “Order
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and Entropy” in his Lectures on Physics. In particular, he explains the
concepts of order and disorder from a mathematical standpoint:

Suppose we divide the space into little volume elements. If we have
black and white molecules, how many ways could we distribute
them among the volume elements so that white is on one side and
black is on the other? On the other hand, how many ways could we
distribute them with no restriction on which goes where? Clearly,
there are many more ways to arrange them in the latter case. We
measure “disorder” by the number of ways that the insides can be
arranged, so that from the outside it looks the same. The logarithm
of that number of ways is the entropy. The number of ways in the
separated case is less, so the entropy is less, or the “disorder” is less.

John Hutchinson, in “Equilibrium and the Second Law of Thermody-
namics,” provides a thought experiment to help us visualize the drive of
a system to disorder. Imagine placing drop of red ink in a glass of water.
At first, the ink is highly concentrated. Therefore, the molecules of the ink
are close together. As we watch, the ink disperses. Scientists have shown
that dispersal can occur without a change in temperature; thus, no energy
enters or is released during the mixing. Even though there is no energetic
advantage for the ink molecules to disperse, they do so spontaneously.

Hutchinson asks us to consider a model for dye molecules placed in
the water. Imagine a row of squares, each one of which represents a
possible location for a molecule, either a water or dye molecule. Here,
we can represent the dye molecules with smiley faces . At the start of the
experiment, we model a “drop” as three consecutive symbols:

It turns out that only eight drop configurations exist in our ten cells,
assuming that the three dye “molecules” are indistinguishable from one
another. In contrast, many more ways exist for the dye molecules to be
arranged so that they do not form a drop, for example,

In fact, 112 different ways exist for arranging the molecules in an unmixed
state, again assuming that dye molecules are indistinguishable from one
another. The total number of nonidentical arrangements of the molecules
is 120. Thus, if we randomly place the three symbols in the array of
10 boxes, the chances are only 8 out of 120 of creating a drop of ink.
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According to kinetic theory, the molecules are in constant random
motion and always rearranging themselves. All possible arrangements are
equally probable. Because most of the arrangements do not correspond to
a drop of ink, this means that most of the time we will not observe a drop.
Mixing occurs spontaneously simply because so many more arrangements
exist that are mixed than that are not. A spontaneous process occurs
because it produces the most probable final state.

Using the terminology of thermodynamics, we can say that 112 ways
W (or microstates) exist to create a particular macrostate, in our case, a
mixed state. Using the formula S(W) = klnW, we can calculate the entropy
and can get a feel for why the more microstates that exist, the greater the
entropy. A macrostate with a high probability (e.g., a mixed state) has a
large value for the entropy, and a spontaneous process produces the final
state of greatest entropy, which is one way of stating the Second Law of
Thermodynamics.

Today, we remember Boltzmann for his work in thermodynamics,
heat, and disorder. As discussed above, he used the concept of the atom
to explain how heat was a statistical property of the motions of many
atoms. However, several of his contemporaries, such as Austrian physicist
Ernst Mach (1838–1916) and German chemist Wilhelm Ostwald (1853–
1932), argued so forcefully against Boltzmann’s position that Boltzmann’s
depression worsened, and he killed himself in 1906. Boltzmann appeared
to have bipolar disorder, and his low emotional periods were only exacer-
bated by his failing eyesight and arguments with colleagues. All we know
for certain is that when he was on holiday with his wife and daughter, he
hanged himself while they were swimming. Although Boltzmann’s idea
of deriving thermodynamics by visualizing gases as made of atoms seems
obvious to us today, many physicists of his time criticized the concept of
atoms.

Leon Cohen in “A History of Noise” fondly recalls Boltzmann:

Boltzmann was a grand man in every way—in size, personality,
appetite, travel, excitement, charm and, of course, accomplish-
ments. Also, he suffered from depression, got mad as hell at times,
attempted suicide, and succeeded. But, basically, he was a nice guy
who felt he was revolutionizing science and did not understand why
some were opposing him so viciously. . . . Years later, Lisa Meitner,
the discoverer of nuclear fission, would remember Boltzmann’s
lectures as “the most beautiful and stimulating that I have ever
heard. . . . He himself was so enthusiastic about everything he taught
us that one left every lecture with the feeling that a completely new
and wonderful world had been revealed.”
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Let me end this section on Clausius’s Law of Thermodynamics with
a puzzle that I enjoy presenting to students. As discussed above, it is
possible, although extremely unlikely, for you to suffocate right now as all
the air molecules in your room suddenly go to one corner—based simply
on random movements of the molecules. To better understand the chance
of this occurring, consider the following smaller problem. How unlikely is
it for just 10 molecules in your room to jump into a corner volume that is
10% the room’s volume?

Here’s a solution: Consider one air molecule in the room. For simplic-
ity, let’s pretend a molecule can jump from its current position to any
position in the room. By chance alone, it has a 10% or 1/10 probability
of being in a predefined corner room volume that is 1/10 the volume of
the room. If you consider two molecules moving in the room, the chance
of both being in the corner is much smaller, only (1/10) × (1/10) or 1%.
Ten molecules have a 1 in 10,000,000,000 chance of being in the corner.
One hundred molecules have a 1 in 1 googol chance of being in the corner,
where a googol is 1 with 100 zeros (10100). We would have to wait roughly
1080 times the age of the universe for all 100 molecules to migrate to the
corner of the room by chance alone. Robert Ehrlich in What If You Could
Unscramble an Egg? notes that there are 1027 air molecules in a typical
room. The probability of all of them going to the corner at one moment
due to random motions is roughly

1

101027 .

This number is so tiny that it is about equal to the odds of the Statue of
Liberty jumping into the air. Of course, these kinds of simple models are
just approximations, because in real gases, molecules diffuse by randomly
walking through space, and future positions depend on current positions.

As one final concept relating to the energy and entropy, note that in
thermodynamics, the Gibbs free energy is defined as the energy portion
of a thermodynamic system available to do work. The definition of Gibbs
free energy G can be derived from Clausius’s Law and is defined as G ≡
U + PV − TS, where U is the internal energy, P is the pressure, V is the
volume, T is the temperature, and S is the entropy. This equation, along
with the identity �G = �H − T�S, where �H is the change of enthalpy
(heat content), is frequently used in physical chemistry when scientists are
interested in determining whether a reaction will occur at some constant
temperature and pressure. Any natural process occurs spontaneously if
and only if the associated change in G for the system is negative (�G < 0).
Gibbs free energy is named after American physicist and chemist Josiah
Willard Gibbs (1839–1903), who is considered to be one of the greatest
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nineteenth-century American scientists. According to J. G. Cowther, writ-
ing in the Encyclopaedia Britannica, Gibbs

remained a bachelor, living in his surviving sister’s household. In his
later years he was a tall, dignified gentleman, . . . approachable and
kind (if unintelligible) to students.

Gibbs was highly esteemed by his friends, but U.S. science was
too preoccupied with practical questions to make much use of his
profound theoretical work during his lifetime. He lived out his quiet
life at Yale, deeply admired by a few able students but making no
immediate impress on U.S. science commensurate with his genius.

Gibbs was quoted in the December 1944 issue of the Scientific Monthly
as saying, “A mathematician may say anything he pleases, but a physicist
must be at least partially sane.”

William H. Cropper writes in Great Physicists:

Thermodynamics had its Newton: Willard Gibbs. Where Clausius
hesitated, Gibbs did not. Gibbs recognized the energy-entropy
partnership, and added to it a concept of great utility in the study
of chemical change, the “chemical potential.” . . . Gibbs treatise
opened theoretical vistas far beyond the theory of heat sought by
Clausius. . . .

A related law, Hess’s Law of Constant Heat Summation, was discov-
ered by Swiss-Russian chemist Germain Henri Hess (1802–1850), and it
states that the amount of heat released or absorbed in a chemical change
depends on the initial and final states, not on the intermediate reactions
involved. This law is discussed in somewhat greater detail in the “Great
Contenders” section at the end of this book.

Clausius died in Bonn in 1888, and Gibbs wrote the obituary that was
published in the Boston-based Proceedings of the American Academy of
Arts and Sciences. The obituary made it clear that the field of thermo-
dynamics had begun in the year 1850 with the publication of Clausius’s
famous first paper on the Second Law. Gibbs also mentioned that a state-
ment of the Second Law by Lord Kelvin in 1851 was based on Clausius’s
1850 work. Debashish Chowdhury and Dietrich Stauffer write in Principles
of Equilibrium Statistical Mechanics:

Clausius’ contribution to thermostatics is comparable to those of
Newton and Maxwell to mechanics and electromagnetism, respec-
tively. In the obituary J. W. Gibbs remarked that Clausius’s first
memoir “marks an epoch in the history of physics. . . . ” Very little is
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known about his personal life. Gibbs remarked that Clausius’s “true
monument lies not in the shelves of libraries, but in the thoughts of
men, and in the history of more than one science.”

Today, we honor Clausius by naming a lunar crater with a diameter
of 24 kilometers after him. The naming was approved in 1935 by the
International Astronomical Union General Assembly. Elizabeth Garber
writes about Clausius’s uniqueness in The Language of Physics:

Clausius’s research was never the familiar nineteenth-century mix
of experiment and mathematics. He was a theoretical physicist and
never published any experimental research although he was always
well aware of it. . . . He was also one of the first German physicists
to be fully competent in contemporary mathematics, and to manip-
ulate it for his own needs.
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INTERLUDE: CONVERSATION STARTERS

Clausius introduced the entropy concept, and supplied
the name, but he was ambivalent about recognizing its
fundamental importance. He showed in a second simple
differential equation how entropy is connected with heat
and temperature, and stated formally the law now known
as the second law of thermodynamics: that in an isolated
system, entropy increases to maximum value. But he hes-
itated to go further.
—William H. Cropper, Great Physicists

You must remember this: Like atoms, heat is so intangi-
ble that it was one of the last concepts in classical physics
to be sorted out. In the process, the science of thermo-
dynamics was created. Pollyannas who believe anything
is possible should be subjected to a course in thermody-
namics.
—Tony Rothman, Instant Physics: From Aristotle to Ein-

stein, and Beyond
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The origin of nature or the laws of nature . . . practically
mean the same thing. For not one man in a thousand
has either time or ability to investigate such a problem
for himself. Therefore, all the other 999 ought to believe
no statement of anyone else about it, since no man can
possibly say that he “knows” anything about the origin
of the laws of nature: the most that the cleverest man
can do is to select the most probable of the only possible
theories.
—Edmund Beckett Grimthorpe, On the Origin of the

Laws of Nature

Science is about figuring out how the world works, and
there are really two kinds of science. One is where you
know the rules but have to figure out how they apply in
specific situations. The other is where you try to figure
out the rules themselves. In this second category there
have been revolutions—such as thermodynamics, quan-
tum mechanics, relativity, the genetic code—that change
the whole game. . . . The great questions lie in figuring out
the rules.
—Steven Koonin, “What Are the Grand Questions in

Science?” in Robert Kuhn’s Closer to Truth
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STOKES’S LAW OF VISCOSITY

Ireland, 1851. The frictional force exerted on a sphere moving in a
fluid is proportional to the fluid viscosity and the radius and speed
of the sphere.

Cross Reference: Stokes-Einstein Relation, Navier-Stokes Equa-
tions, Stokes’s Law of Fluorescence, Claude Navier, Siméon Poisson,
and Adhémar Barré de Saint-Venant.

In 1851, Herman Melville published Moby Dick. The New
York Times and Reuters news service were founded. British
astronomer William Lassell discovered Ariel and Umbriel,
moons of Uranus. The first YMCA opened in the United States.
Rowland Hussey Macy founded Macy’s department store.

Consider a solid sphere of radius r moving with a velocity v through a fluid
of viscosity µ. George Stokes determined that the frictional force F that
resists the motion of the sphere can be stated as

F = 6πrµv.

Note that this drag force F is directly proportional to the sphere radius.
This was not intuitively obvious because some researchers supposed that
the frictional force would be proportional to the cross-section area, which
erroneously suggest an r2 dependence. When dealing with tumbling mole-
cules, the radius r is usually considered to be the Stokes radius, that is,
the radius of a sphere that diffuses at the same rate as the molecule. The
behavior of this imaginary sphere accounts for hydration and shape effects.
Stokes’s Law tends to be most accurate for small, slowly moving particles
in viscous liquids.

Table 8 should be useful in order to get a feel for typical viscosity
values µ that are used in Stokes Law. Note that 1 pascal equals 1 kg/(m·s2),
and the viscosity of water is, conveniently, about 1 mPa·s or 1 g/(m·s).
[In actuality, the viscosity of water depends on temperature. At 293◦K
(20◦C), the viscosity of water is 1.002 cP, where cP stands for centipoise. A
centipoise is 1 millipascal second (mPa·s).]

Stokes’s Law has many practical applications. For example, the law is
considered in industry when studying sedimentation that occurs during the
separation of a suspension of solid particles in a liquid. In these applica-
tions, scientists are often interested in the resistance exerted by the liquid
to the motion of the descending particle.

Consider a scenario in which a particle in a fluid is subject to the forces
of gravity. For example, some older readers may recall the popular Prell



table 8 Viscosities of Common Fluids

Fluid Viscosity µ (Pa·s)

Air (20◦C) 1.8 × 10−5

Water (20◦C) 1.0 × 10−3

Blood (37◦C) 4.0 × 10−3

Canola oil (20◦C) 1.0 × 10−2

Motor oil (20◦C) 1

Corn syrup (20◦C) 8

Molten lava 1,000

shampoo TV commercial that shows a pearl dropping through a container
of the green shampoo. (I believe that this commercial was intended to
demonstrate how thick and luxurious the shampoo was, although I am
not certain that the more viscous the shampoo, the better it is for your
hair!)

The particle (a pearl in this case) starts off with zero speed and then
initially accelerates, but the motion of the particle quickly generates a
frictional resistance counter to the acceleration. Thus, the particle rapidly
reaches a condition of zero acceleration when the force of gravity is bal-
anced by the force of friction. At this point in the sedimentation process,
the particle drifts downward at a constant velocity called the terminal
velocity. In the absence of turbulence, viscous friction is always in the
direction opposite to velocity. Stokes’s Law is most accurate in the ideal
case in which the particle is thought of as smooth, spherical, and unaffected
by the presence of neighboring particles and the walls of the container.

Sedimentation is used in industry to separate particulate material from
fluid streams. For example, a sedimentation process, which can be under-
stood and characterized using Stokes’s Law, is sometimes used in the food
industry for separating dirt and debris from useful materials, separating
crystals from the liquid in which they are suspended, or separating dust
from air streams. Stokes’s Law is used to research and treat urban storm
water in order to remove certain kinds of pollutants from wet weather
runoff. The law is also important in determining the nature of emissions
from volcanic explosions by allowing researchers to study the settling of
dust. Additionally, the law is useful for studying the sedimentation of
small particle pollutants in a river. Medical researchers use it to study
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the aerodynamic properties of aerosol particles in order to optimize drug
delivery to the lungs.

Stokes’s Law also applies to very small raindrops plummeting to Earth
in the absence of wind and turbulence. In both the pearl and the raindrop
example, v is the terminal velocity of the particle. Stokes’s Law would not
be accurate for skydivers jumping from planes because of the turbulence
the skydiver encounters when plummeting to Earth.

Let us try some practical problems relating to Stokes’s Law to get
a better feel for its application. Consider a raindrop of radius 0.2 mm
descending through air that has a viscosity µ of 1.8 × 10−5 N·s/m2. What is
the terminal velocity v of the raindrop?

From Stokes’s Law, we have F = 6πrµv. When the raindrop is traveling
at constant velocity, the force of gravity downward (which equals the
raindrop mass m times the gravitational constant g = 9.8 m/s2) is exactly
balanced by the Stokes’s force upward. Thus, we have mg = 6πrµv.

We can solve for the terminal velocity v, giving us:

v = mg
6πrµ

The mass m of the raindrop may be estimated by assuming that the drop
has a roughly spherical volume (4πr3/3) and a density ρ of 1,000 kg/m3.
Consolidating all of this information, we have

v = (4ρπr3/3)g
6πrµ

= 2ρgr2

9µ

or

v = 2 · (1000 kg/m3)(9.8 m/s2)(0.00002 m)2

9 × 1.8 × 10−5 N·s/m2 = 4.8 m/s.

Notice that in our raindrop problem, the larger the viscosity, the slower the
terminal velocity, and the larger the drop radius, the higher the velocity.

For another practical problem, consider a plastic spherical pearl
descending in a jar of shampoo. The sphere has a density ρp and a radius
r . Its velocity downward is v. The density of the shampoo is ρs. What is
the viscosity of the shampoo? To solve this problem, recall that the forces
of the constant-velocity particle are balanced so that the buoyant force B
and the Stokes force upward balance the weight W that pulls the sphere
downward:

B + 6π rµv − W = 0
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The buoyant force can be computed from B = (4πr3/3)ρpg. Solving for
viscosity, we have

µ = W − B
6πrv

.

Thus, we can now compute the viscosity of the shampoo.
In our analysis of the falling raindrop above, we determined the for-

mula for computing the terminal velocity of the raindrop. This formula
involved the density only of the falling particle of water because the density
of air was so small in comparison. However, in instances in which an
object is falling through a medium of significant density (e.g., shampoo),
the formula for terminal velocity of the falling particle is more generally
written as

v = 2(ρp − ρs)gr2

9µ
.

If we define a Reynolds number to be dvρ/µ, where ρ is the fluid density,
and d is the diameter of the particle, Stokes’s Law is generally accurate for
Reynolds numbers less than about 0.3—in other words, it is most accurate
for very viscous liquids and small particles. In practice, Stokes’s Law is not
very accurate for rain droplets, but it is accurate for the smaller falling
droplets called “cloud droplets,” which typically have diameters of the
order of 0.01–0.02 millimeters. Cloud droplets are spherical particles of
liquid water, formed by condensation of water vapor. Such drops form
a visible cloud. Thus, Stokes’s Law can be applied more accurately to
fog droplets and should be used with caution for applications involving
raindrops of normal size.

In addition to sedimentation problems, Stokes’s Law also has appli-
cation to the study of aerosols, that is, gaseous suspensions of fine solid
or liquid particles. In the late 1990s, Stokes’s Law was used to provide
an accurate and convincing scientific explanation of how micrometer-size,
distributed uranium particles can remain airborne for many hours and
traverse great distances—and thus possibly have contaminated Persian
Gulf War soldiers. Because depleted uranium has a very high density and
hardness and is pyrophoric (spontaneously igniting), U.S. cannon rounds
often contained depleted-uranium penetrators, and this uranium becomes
aerosolized when the rounds impact hard targets such as tanks.

In 1920, Stokes’s Law was refined to account for effects that may be
generated by the container walls that enclose the viscous fluid. These wall,
or edge, effects tend to result in a slower observed velocity because the
medium is not continuous and the liquid is slightly compressed against
the sides of the container as the sphere descends. The refinement of the
law requires researchers to determine the ratio between the particle radius
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and the inner radius of the container if the container is cylindrical. The
smaller the radius of the container, the more important this correction
factor becomes.

The following is one expression of a modified Stokes’s Law, which uses
a corrected value for the viscosity µc that is based on the diameter d of the
falling particle and the internal diameter dc of the cylinder:

µc = µ

[
1 − 2.104

d
dc

+ 2.09
(

d
dc

)3

− 0.95
(

d
dc

)5
]

In 1905, Albert Einstein discussed a relationship he had discovered
between the mobility of particles in a liquid and the diffusion constant D,
Boltzmann’s constant k, and the absolute temperature T. (The mobility is
the ratio of the terminal drift velocity of the particle to an applied force.) In
particular, Einstein was researching Brownian motion of particles, which
refers to the random motion of tiny particles immersed in a fluid. Combin-
ing Einstein’s findings with Stokes’s Law leads to a relationship known as
the Stokes-Einstein relation:

D = kT
6πµr

D, the diffusion constant or coefficient, gives an indication of the amount
of a substance diffusing across a unit area through a unit concentration
gradient in a unit time. Thus, the Stokes-Einstein relation can be used
to estimate the diffusion coefficient of particles under study. We may
think of the Stokes-Einstein formula as a convenient way to express the
relationship of the diffusion coefficient, of a spherical Brownian particle in
a viscous fluid, to the frictional drag force.

George Stokes (1819–1903), Anglo-Irish physicist famous for his law of
friction and for his wide variety of work in chemistry, physics, and mathe-
matics.

CURIOSITY FILE: Stokes wrote very long and formal letters to his fiancé,
expressing his love in mathematical terms, and his unusual approach almost
caused her to reject the idea of marriage. • Palynologists use Stokes’s
Law to differentially sort different kinds of palynomorphs (i.e., spores or
the remains of microscopic creatures). • Stokes coined the word “fluo-
rescence” after the mineral fluorite, which exhibits a colorful fluorescence.
• The Campbell-Stokes recorder, named after Celtic scholar John Francis
Campbell (1822–1885) and George Stokes, records the amount of sunshine
falling on a particular location on Earth. The device, still sometimes used
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today, includes a spherical lens that burns an image of the Sun upon a
specially prepared card. • In 2004, researchers studying the physics of
viscosity at the University of Minnesota filled a swimming pool with a
mucuslike guar gum and found that swimmers swam just as fast in the
gum as they did in water.

A devoutly religious man, Stokes was deeply interested in
the relationship of science to religion. This was especially
true toward the end of his life. . . .
—E. M. Parkinson, “George Stokes,” in Dictionary of

Scientific Biography

The well-known theorem in vector calculus which bears
Stokes’s name is sadly not due to Stokes, but was commu-
nicated to him in a letter by Lord Kelvin. The confusion
appears to have arisen because Stokes set this theorem as
a problem in the Smith’s Prize Examination a few years
later!
—Alastair Wood, “George Gabriel Stokes 1819–1903”

Barring infection, beer clarity is compromised only
by yeast cells and Non-Microbiological Particles
(NMP). . . . All fining agents work by sticking small
particles together to form larger aggregates which settle
faster according to Stokes’s Law. Since the speed of
settlement is proportional to the square of the radius,
a modest increase in particle size can yield a profound
decrease in settlement time.
—Ian L. Ward, “Clear Beer Through Finings Tech-

nology”

We refer to scientific measurements that have been made
of the atmospheric wind-borne transport of uranium
aerosols over distances up to 26 miles (42 km) from
their sources. Stokes’s well-known physical law helps to
explain how airborne transport of depleted uranium par-
ticles can occur over large distances.
—Leonard A. Dietz, “Contamination of Persian Gulf

War Veterans and Others by Depleted Uranium,” July
19, 1996

His work is distinguished by a certain definiteness and
finality, and even of problems, which when he attacked
them were scarcely thought amenable to mathematical
analysis, he has in many cases given solutions which once
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and for all settle the main principles. This result must be
ascribed to his extraordinary combination of mathemati-
cal power with experimental skill. . . .
—1911 Encyclopaedia Britannica

Stokes was born in Skreen, Ireland, and he was surrounded by religion
since birth. His father was the rector of the Skreen parish and taught his
son Latin grammar. His mother was the daughter of a rector. His four
brothers all became important leaders in the Church of Ireland. After
attending school in Dublin, at the age of 16 he went to Bristol College
in Bristol, England. According to theoretical physicist and mathematician
Joseph Larmor’s (1857–1942) Memoir and Scientific Correspondence of the
Late Sir George Gabriel Stokes, Stokes’s mathematics teacher in Bristol
College noted:

His habit . . . of answering with a plain yes or no, when something
more elaborate was expected, is supposed to date from his transfer-
ence from an Irish to an English school, when his brothers chaffed
him and warned him that if he gave long Irish answers he would be
laughed at by his school fellows.

In 1837, Stokes entered Pembroke College, Cambridge. He published
important papers on the motion of incompressible fluids, such as his 1842
paper, “On the Steady Motion of Incompressible Fluids.” Three years
later, he published “On the Theories of the Internal Friction of Fluids in
Motion,” and in 1849, he published “On the Variation of Gravity at the
Surface of the Earth,” in which his research on the motion of pendulums in
fluids provided information on the strength of gravity at different locations
on Earth.

He became Lucasian Professor at Cambridge in 1849. [Note that this
prestigious position was held by Isaac Newton (1642–1727) and is currently
held by astrophysicist and popular author Stephen Hawking (born 1942).]
In 1851, Stokes published his paper describing the velocity of spheres
moving through viscous liquids, which led to the famous Stokes’s Law
discussed above.

In 1857, he married Mary Susanna, the daughter of Thomas Romney
Robinson (1792–1882), a famous Irish astronomer and physicist. During
the process of winning Mary’s heart, Stokes had written numerous letters
to Mary, some as long as 55 pages! In one letter, he told Mary that he wor-
ried that she would not be able to be with a man who sometimes worked on
mathematical problems late into the night. According to Larmor’s memoir
of Stokes, Stokes’s love letters to Marry often mixed mathematics and
romance. For example, Stokes had written:
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I too feel that I have been thinking too much of late, but in a differ-
ent way, my head running on divergent series, the discontinuity of
arbitrary constants. . . . I often thought that you would do me good
by keeping me from being too engrossed by those things.

The oddness of his correspondence initially made her nervous about mar-
rying him, and she told him so. He responded that he was worried that he
“should go to the grave a thinking machine unenlivened and uncheered
and unwarmed by the happiness of domestic affection.”

Eventually, Stokes and Mary put their differences aside, and they mar-
ried. The cottage in which the Stokes lived was in a large garden area,
and he conducted his experiments there “in a narrow passage behind the
pantry, with simple and homely apparatus.” Stokes’s first two daughters
died in infancy. One of his sons died in 1893 of an accidental overdose of
morphine while training to become a medical doctor.

Stokes was president of the Cambridge Philosophical Society from
1859–1861 and president of the Royal Society of London in 1885. The
Royal Society awarded him the Copley Medal in 1893. From 1886 to 1903,
he was president of the Victoria Institute of London, the purpose of which
was to study relationships between science and religion. He was knighted
in 1899. E. M. Parkinson writes of Stokes in the Dictionary of Scientific
Biography:

His . . . investigations covered the entire realm of natural philosophy.
Stokes systematically explored areas of hydrodynamics, the elastic-
ity of solids, and the behavior of waves in elastic solids, including
the diffraction of light, always concentrating on physically impor-
tant problems and making his mathematical analyses subservient
to physical requirements. His few excursions into pure mathemat-
ics were prompted either by a need to develop methods to solve
specific physical problems or by a desire to establish the validity of
mathematics he was already employing.

Like many of the other versatile polymaths in this book, Stokes con-
ducted significant research in a variety of areas, such as those concerning
the nature of light, gravity, chemistry, sound, heat, meteorology, and solar
physics.

In the early 1840s, Stokes became particularly interested in hydrody-
namics and the study of fluid flow. In 1845, he performed various studies
of friction and viscosity in fluids. Interestingly, French scientists Claude
Navier (1785–1836), Siméon Poisson (1781–1840), and Adhémar Barré de
Saint-Venant (1797–1886) had independently derived equations for fluid
flow with friction, but Stokes was not familiar with their work when he
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derived his own equations and obtained results using a different approach
and theoretical justification.

Additionally, Stokes was able to extend his equations and theories in
order to deduce formulas for the motions of elastic solids. In particu-
lar, Stokes developed a series of equations, known today as the Navier-
Stokes Equations, which are fundamental partial differential equations
that describe the flow of incompressible fluids. The equations also relate
pressure and external forces acting on a fluid to the response of the fluid
flow.

Over the years, these equations became useful in designing ships and
to model the weather and the flow of waters in pipes and around airplane
wings. The equations are named after Stokes (who in 1845 published his
derivation of the equations in a manner that is currently well appreciated)
and its other principle developer, Claude Navier (who published his work
in 1822). Stokes reported on his various hydrodynamic theories in 1846 at
a meeting of the British Association for the Advancement of Science.

Some other areas of Stokes’s research include:

� Oscillations of waves in water (1847)
� Frictional effects of air on the behavior of raindrops and the

formation of clouds (1847)
� Periodic series in mathematics and their application to the study of

heat, hydrodynamics, and electricity (1847)
� The relationship between the strength of gravity and the shape of

Earth’s surface (1849)
� A proof that shows why the strength of gravity is less on a continent

than on an island (1849)
� The implementation of a new approach for determining the value of

the following integral, used in optical studies:

∞∫
0

cos
[π

2
(x3 − mx)

]
dx, for large, real values of m (1850)

� Fluid viscosity and its effect on pendulum motion (1850)
� His law that mathematically describes the fall of an object through a

liquid (1851)
� The effect of wind on the intensity of sound (1857)
� The effect of clanging bells, modeled as spheres, on a surrounding

gas (1868)
� Various studies on light, the polarization of light, and diffraction

(1848–1849)
� Measurements of astigmatism in the eye (1849)
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� Solutions to differential equations representing the motions of iron
railroad bridges (1849)

� The design of instruments for analyzing elliptically polarized light
(1851)

� The conduction of heat in crystals (1851)
� Methods for determining the constants for asymptotic solutions of

the Bessel equation

d2 y
dx2

+ 1
x

dy
dx

− n2

x2
y = y for a real constant n (1868)

� An explanation of fluorescence and spectra (1852–1854)

With respect to this last point, fluorescence usually refers to the glow of an
object caused by visible light that is emitted when the object is stimulated
via electromagnetic radiation. In 1852, Stokes observed phenomena that
behave according to Stokes Law of Fluorescence, namely, that the wave-
length of emitted fluorescent light is always greater than the wavelength
of the exciting radiation. Stokes published his finding in his 1852 memoir
“On the Change of Refrangibility of Light.”

Today, we sometimes refer to the process as “Stokes fluorescence”—
the reemission of longer wavelength (lower frequency) photons by a mole-
cule that has absorbed photons of shorter wavelengths (higher frequency).
The precise details of the process depend on the characteristics of a par-
ticular molecule involved in the fluorescence process. Light is generally
absorbed by molecules in about 10−15 seconds, and this absorption causes
electrons to become excited and jump to a higher energy state. The elec-
trons remain in the excited state for about 10−8 seconds, and then the
electron may emit energy as it returns to the ground state. The phrase
“Stokes shift” usually refers to the difference in wavelength or frequency
between absorbed and emitted quanta.

Stokes named “fluorescence” after fluorite, a strongly fluorescent min-
eral. He was the first to adequately explain the phenomenon in which
fluorescence can be induced in some materials through stimulation with
ultraviolet light. Today, we know that these kinds of materials can be
made to fluoresce by stimulation by all kinds of electromagnetic radiation,
such as ultraviolet light, visible light, infrared radiation, X-rays, and radio
waves.

Stokes experimented for most of his life, his interests ranging from
physics to botany. He helped to establish the composition of chlorophyll
in his paper “On the Supposed Identity of Biliverdin with Chlorophyll,
with Remarks on the Constitution of Chlorophyll,” published in the 1864
Proceedings of the Royal Society. Some other key works include Dynamical
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Theory of Diffraction (1849), Light (1884), and Natural Theology (1891).
He did not publish many of his discoveries and only mentioned them
during his lectures.

Throughout his life, Stokes was rather humble and generous in giving
credit to others. If he discovered that some of his work was done by earlier
researchers, he acknowledged the previous work without argument. He
often shared his unpublished ideas with other scientists of his time.

According to Larmor, in the 1850s, a fellow member of the Royal
Society had written,

One of the distinguishing characteristic qualities of Sir George was
the generous way in which he was always ready to lay aside at once,
for the moment, his own scientific work, and give his whole attention
and full sympathy to any point of scientific theory or experiment
about which his correspondent had sought his counsel.

As David Wilson notes in the introduction to The Correspondence
Between Sir George Gabriel Stokes and Sir William Thomson, Baron
Kelvin of Largs:

At the century’s end, grateful British scientists widely recognized
that, unlike Kelvin’s, Stokes’s mind had for decades been exercised
not primarily in his own research programme, but in response to
the research of others. As [chemist] Arthur Smithells wrote, “What
Stokes did for his generation can hardly be estimated.” Kelvin
[agreed] that Stokes “gave generously and freely of his treasures to
all who were fortunate enough to have the opportunity of receiving
from him.”

The famous Stokes Theorem in calculus and geometry was actually first
stated in 1850, without proof, by Lord Kelvin (William Thomson) in his
letter to Stokes. We refer to it today as the Stokes Theorem partly because,
starting in 1854, Stokes assigned the proof of this theorem as part of his
examinations. James Clerk Maxwell presented the name when he began
to refer to it as Stokes Theorem.

In 1891, Stokes wrote in his book Natural Theology:

Admit the existence of God, of a personal God, and the possibility
of miracles follows at once. If the laws of nature are carried out in
accordance with His will, He who willed them may will their suspen-
sion. And if any difficulty should be felt as to their suspension, we
are not even obliged to suppose that they have been suspended.
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One of Stokes’s surviving daughters, along with her husband, lived with
Stokes at his cottage and helped care for him after the death of his wife in
1899. Two days after his death in 1903, the Times wrote in his obituary that

Sir G. Stokes was remarkable . . . for his freedom from all personal
ambitions and petty jealousies. . . . It is sometimes supposed . . . that
minds conversant with the higher mathematics are unfit to deal with
the ordinary affairs of life. Sir George Stokes was a living proof
that if the mathematician is only big enough, his intellect will handle
practical questions so easily and as well as mathematical formulas.

Stokes’s obituary also praised his deep Christian faith and his ability to
pursue both science and religion with equal fervor:

No account of his life would be complete without a reference to its
religious side. To many, he was one of the prominent instances of
the possibility of combining scientific research with the maintenance
of Christian convictions. . . . He was often present at the discussion
of questions in which science and faith might seem to clash, and he
maintained a conservative position to the last.

A lunar crater with a diameter of 51 kilometers was named after Stokes
and approved in 1964 by the International Astronomical Union General
Assembly. The Stokes crater on Mars was also named after him and is
notable for its dark-toned sand dunes.
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INTERLUDE: CONVERSATION STARTERS

Physics tries to discover the pattern of events which con-
trols the phenomena we observe. But we can never know
what this pattern means or how it originates; and even if
some superior intelligence were to tell us, we should find
the explanation unintelligible.
—James Hopwood Jeans, Physics and Philosophy, 1942

The laws of nature are but the transcript of the thoughts
of God, immutable and unchangeable. There is no such
thing as Chance. Chance has no existence under the con-
stant laws of nature or under any laws. What is called
Chance is only the uncalculated result of some known or
unknown law of nature.
—Henry Augustus Mott, The Laws of Nature and Man’s

Power to Make Them Subservient to His Wishes, 1882

Whenever a theory appears to you as the only possible
one, take this as a sign that you have neither understood
the theory nor the problem which it was intended to
solve.
—Karl Popper, Objective Knowledge: An Evolutionary

Approach

The earliest use of the term [law of nature] in Eng-
lish . . . dates only from the seventeen century, when sys-
tematic science began to take off. The first two examples
traced by the Oxford English Dictionary are dated 1665—
one from the Transactions of the Royal Society and one
from Boyle—and they relate to a universe set and main-
tained in motion by the command of God . . . Descartes
presents in the Principia Philosophiae (1644) . . . certain
rules or laws of nature.
—Michael Frayn, The Human Touch
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BEER’S LAW OF ABSORPTION

Germany, 1852. The absorbance of a solution is proportional to
the concentration of dissolved solute.

Cross Reference: Pierre Bouguer, Johann Lambert, the Lambert-
Beer Law, and the Bouguer-Beer Law.

In 1852, Harriet Beecher Stowe published Uncle Tom’s Cabin.
The first edition of Peter Roget’s Thesaurus was also published.
Emma Snodgrass was arrested in Boston for wearing pants. The
judge released her after giving her some “wholesome advice
about her eccentricities.”

Imagine shining a light of a particular wavelength λ and intensity I0

through a cylinder containing a solution. Some of the light will be trans-
mitted through the sample with intensity I, and some of the light will
be absorbed. Beer’s Law states that the amount of light absorbed by a
solution is directly proportional to the concentration of the solute (i.e.,
dissolved substance) and the path length of the light through the solution.
One common way of expressing Beer’s Law is

A= ε × c × l,

where Ais the amount of absorbance, c is the concentration of the solution
(in moles per liter), l is the path length in centimeters, and ε is a constant
of proportionality known as the molar extinction coefficient or molar
absorptivity. If A = 0, then no photons are absorbed. This law is most
accurate when solutions are dilute because interactions between solute
molecules can occur at higher concentrations. For example, Beer’s Law
begins to break down at high concentrations due to electrostatic interac-
tions between molecules in close proximity. The law can also not be relied
upon if the sample fluoresces or phosphoresces.

The absorbance A may also be defined as Aλ = -log10(I/I0), where
I is the intensity of light passing through the liquid. From a practical
standpoint, absorbance can be used to determine the concentration of the
solution and varies with the wavelength of light used in the experiment. In
other words, using Beer’s Law in the field of spectroscopy, if l and ε are
known, then the concentration of a substance in a solution can be deduced
from the amount of light it absorbs. The value of the absorption coeffi-
cient ε also depends on the substance dissolved and on the wavelength of
light.



August Beer (1825–1863), German mathematician, chemist, and physicist
famous for his studies of light absorption in solutions.

CURIOSITY FILE: Beer’s Law is used in countless interesting applications. For
example, many investigators have studied the radiation distribution in plant
canopies (the uppermost layer in a forest, formed by the crowns of the
trees) and used Beer’s Law and modifications of Beer’s Law for determining
light at a particular height in the canopy. The extinction coefficient varies
with the orientation of the leaves.

“The flux of global radiation at the forest floor can be
related to that above the canopy by a form of Beer’s
law.”
—Richard Lee, Forest Microclimatology

August Beer was born in Trier, Germany’s oldest city, which is situated
on the western bank of the Moselle River and near German’s border
with Luxembourg. Beer studied the natural sciences and mathematics. He
worked for several years under the tutelage of German mathematician
physicist Julius Plücker (1801–1868) and received his Ph.D. at age 23. He
discusses Beer’s Law in his book Einleitung in die höhere Optik (Introduc-
tion to Advanced Optics) and eventually became professor of mathematics
at Bonn.

When Beer was in his 30s, he desired to summarize the entire field of
mathematical physics. However, due to his death at age 38, many of his
papers were published posthumously. These papers dealt with elasticity,
magnetism, electrodynamics, and capillarity.

Years before Beer made his discovery of what we now call Beer’s
Law, both scientists and laypeople had noticed that the intensity of light
decreased as it passed through solutions. For example, in 1729, French
mathematician Pierre Bouguer (1698–1758) quantified this by stating an
absorption law: The fraction of light absorbed by a particular material is
directly proportional to the thickness of the material. In Bouguer’s 1729
paper Essai d’optique sur la gradation de la lumière (“Optical Experiment
on the Gradation of Light”), he defined the quantity of light lost by passing
through a given extent of the atmosphere. Some consider Bouguer the true
discoverer of “Beer’s Law.” Alas for poor Bouguer, his discovery never
made him as famous as it did Beer.

Swiss-German mathematician, physicist, and astronomer Johann Hein-
rich Lambert (1728–1777)—discussed in “Lambert’s Law of Emission”
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in part II—was more prominent than Bouguer, and he rediscovered and
published Bouguer’s Law of Absorption. As additional careful experi-
ments were made, scientists noticed that the amount of light absorbed by
solutions depended on factors other than the thickness of the material.

In 1852, Beer announced a more complete law of absorption that is
known variously as Beer’s Law, the Lambert-Beer Law, and the Bouguer-
Beer Law. Beer had observed that, in addition to the effect of the sample
thickness, the amount of radiation absorbed by a solution was proportional
to the concentration of the dissolved substance that is absorbing the radi-
ation. This law established the bedrock on which the field of quantitative
spectroscopy is founded, because it provides a simple means for determin-
ing concentrations of solutions without having to destroy a portion of the
sample.

Today, Beer’s Law has many applications. Consider, for example, the
need to use ultraviolet radiation to kill microorganisms in drinks. UV light
can be used to pasteurize fruit juices, but the antimicrobial effectiveness
depends on the UV absorbance of the juice as understood by Beer’s Law.

Although Beer did not formulate the exponential absorption law

I = I0e−acx,

this relationship has often been called Beer’s Law. I is the intensity of light
passing through a sample of thickness x, c is the concentration of solute,
and a is an absorption coefficient. The first time this formula was referred
to as “Beer’s Law” occurred in an 1889 paper by B. Walter in Annalen der
Physik.

FURTHER READING

Ihde, Aaron John, The Development of Modern Chemistry (New York: Dover,
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Mavi, Harpal S., Agrometeorology (Binghamton, NY.: Haworth Press, 2004);
discusses applications of Beer’s Law to forest canopies.

INTERLUDE: CONVERSATION STARTERS

Every atom, being self-existent, had the power in the
beginning to adopt what laws of motion it pleased; so
they all—by some mysterious universal suffrage, con-
veyed through the infinity of space . . . —mutually agreed
on the law and intensity of gravity and have steadily kept
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to their agreement ever since. If this proposition looks
absurd, atheists can blame no one but themselves, for the
doctrine of inherent forces cannot be translated in plain
English in any other way.
—Henry Augustus Mott, The Laws of Nature and Man’s

Power to Make Them Subservient to His Wishes

How did the universe know, at that moment of beginning,
what laws to follow?
—Lee Smolin, “Never Say Always,” New Scientist, Sep-

tember 23, 2006

You have only to stretch out your hand, close it quickly
and you feel that you have caught mathematical air and
that a few formulae are stuck to your palm. . . . Even the
sun rays must remember, when passing through the win-
dows, the law to which they are subject according to the
will of God, Newton, Einstein, and Heisenberg.
—Leopold Infeld, Quest: An Autobiography

There is no mention of laws in Copernicus, or even in
Galileo, while Kepler makes no use of the term himself
in introducing what are often described as the first truly
scientific laws—his three laws of planetary motion.
—Michael Frayn, The Human Touch
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THE WIEDEMANN-FRANZ LAW OF
CONDUCTIVITY

Germany, 1853. In a metal, the ratio of the thermal conductivity
to the electrical conductivity is proportional to the temperature.

Cross Reference: Wiedemann-Franz-Lorenz Law and Fourier’s Law
of Heat Conduction.

In 1853, William Shanks of England completed his calculation of
the value of π to 607 digits. Twenty years later, he published a
result that extended this precision to 707 decimal places. (Alas,
in 1940s, mathematicians discovered that Shanks had made an
error in the 528th place, which meant that all the successive
digits were incorrect.) Also in 1853, the United States agreed to
pay Mexico $10 million for 29,640 square miles (76,770 square
kilometers) of land that is today located in southern Arizona and
New Mexico. This was known as the “Gadsden Purchase” after
James Gadsden, the U.S. minister to Mexico.

The Wiedemann-Franz Law states that the ratio of the thermal conduc-
tivity K of a metal to its electrical conductivity σ is proportional to the
absolute temperature T:

K
σ

= LT

The proportionality constant L is known as the Lorenz number, after
Danish mathematician and physicist Ludwig Lorenz (1829–1891), who
conducted research in this area. The Lorenz number can be determined
from

L = π2

3

(
k
e

)2

,

which is equal to 2.45 × 10−8 W·�/K2. Here, e is the elementary electronic
charge, and k is the Boltzmann constant.

This empirical law is valid for a limited range of temperatures and is
named after German physicist Gustav Wiedemann and his collaborator
Rudolf Franz, who reported that the quantity K/σ has the same value for
different metals at the same temperature. In 1872, Lorenz discussed in
detail how K/σ changed as function of temperature, and sometimes the
full law is referred to as the Wiedemann-Franz-Lorenz Law.



table 9 Thermal Conductivities

Material Thermal Conductivity
[W/(m·K)]

Silver 406.0

Copper 385.0

Aluminum 205.0

Concrete 0.8

Styrofoam 0.01

We encounter different thermal conductivities in our daily lives. For
example, if a spoon is left in a cup of tea, the spoon handle will become
warm because heat from the tea is conducted along the spoon handle. If
you were to place a stick of wood in the tea, you would not feel the stick
get warm because wood is a much poorer conductor of heat.

If you touch a piece of metal at room temperature, it feels colder than
the piece of wood at room temperature because the metal is better able
to conduct the heat away from your finger. Different metals, such as silver
and aluminum, have different values of thermal conductivity. Some typical
thermal conductivity values are given in table 9.

Both heat and electrical conductivity involve the motion of the free
electrons in metals. As one heats the metal, average particle velocity
increases, which also increases thermal conductivity. On the other hand,
electrical conductivity decreases with an increase in temperature because
the collisions interfere with the electron motion that corresponds to the
transport of charge. At a given temperature, the ratio of the thermal and
electrical conductivities is a constant. Those metals that are the best elec-
trical conductors are also the best thermal conductors. “Fourier’s Law of
Heat Conduction,” above, discusses a general expression for heat transfer
by conduction.

Until 2001, the Wiedemann-Franz Law was universally acknowledged
as applicable to all metals. However, in 2001, University of Toronto
researchers showed that the law does not hold for a new class of cop-
per oxide materials at very low temperatures. Although the law is valid
for common working temperatures, the quest for additional deviations
from the Wiedemann-Franz Law is an ongoing theoretical and experi-
mental effort. Additionally, in the past few years physicists have been
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exploring the limitations of the law with exotic, new kinds of “wires” that
Wiedemann and Franz could have hardly imagined. For example, consider
the following excerpt from the paper “Nonlinear Peltier Effect and Ther-
moconductance in Nanowires,” which discusses quantum nanowires (wires
with cross sections so small that quantum effects have to be taken into
account):

We find that . . . the Wiedemann-Franz (WF) law, relating the ther-
mal and electric conductances, which holds in classical point con-
tacts, is violated in 3D quantum wires due to the strong energy
dependence of the transmission probabilities of the conducting elec-
trons through the wire; in this context we also demonstrate here
restoration of the WF law when the energy level quantization effects
are less effective, that is for short quantum wires where tunneling
contributions to the transmission probabilities become significant,
and/or at sufficiently low temperatures when the Fermi distribution
is sharpened.

Gustav Wiedemann (1826–1899), German physicist famous for his stud-
ies of thermal and electrical conductivity in metals and for his investiga-
tions of electromagnetism.

CURIOSITY FILE: Wiedemann’s two genius sons came from an extremely
intellectual and distinguished pedigree! Their father was famous for the
Wiedemann-Franz Law and was professor of physical chemistry at Leipzig.
Their maternal grandfather was Eilhard Mitscherlich (1794–1863), famous
for his work on chemical isomorphism and similarity of crystal structures.
Their mother Clara helped translate into German the Irish natural philoso-
pher John Tyndall’s (1820–1893) Heat as a Mode of Motion.

His data for the thermal conductivity of various metals
were for long the most trustworthy at the disposal of
physicists, and his determination of the ohm in terms
of the specific resistance of mercury showed remarkable
skill in quantitative research. He carried out a number
of magnetic investigations which resulted in the discov-
ery of many interesting phenomena, some of which have
been rediscovered by others; they related among other
things to the effect of mechanical strain on the magnetic
properties of the magnetic metals, to the relation between
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the chemical composition of compound bodies and their
magnetic properties, and to a curious parallelism between
the laws of torsion and of magnetism.
—1911 Encyclopaedia Britannica

Gustav Wiedemann was born in Berlin. His father was a merchant and
died when Wiedemann was only 2 years old. His mother died when he was
15. According to the Proceedings of the Royal Society of London,

Wiedemann was thus from an early age thrown much upon his
own resources, but the care of a friend secured for him a careful,
classical, and scientific education. His inclination to the special study
of physics, seems to have been largely due to the influences of
[physicist Thomas] Seebeck, who, for several years, was one of his
teachers at the Cologne Gymnasium.

In 1844, Wiedemann began his studies of the natural sciences at the
University of Berlin. In 1847, he received his doctorate for a dissertation
on biuret, a white, crystalline, nitrogenous substance, C2O2N3H5, formed
by heating urea. He lectured at the university on many different topics in
physics and conducted research on the polarization of light.

In 1851, Wiedemann married the daughter of German chemist Eilhard
Mitscherlich. His eldest son, Eilhard, became a physicist and historian of
science and author of the 1880 paper “On a Means to Determine the
Pressure at the Surface of the Sun and Stars, and Some Spectroscopic
Remarks.” According to E. Newton Harvey’s A History of Luminescence,
in 1888 Eilhard was the first individual to use the term “luminescence.”
The younger son, Alfred, became an Egyptologist and author of a popular
book that offered readers an accessible overview of the predominant role
of religion in ancient Egyptian life.

In 1864, Wiedemann was professor of physics at the University of
Basel, and in 1871 he held the first professorship of physical chemistry in
Germany—at the University of Leipzig. In 1877, he became editor of the
prestigious Annalen der Physik und Chemie.

Wiedemann’s primary contributions revolved around his studies of
electrical conductivity in metals, the rotation of the plane of light polar-
ization that is caused by electric currents, and the thermal conductivity
of metals. In 1853, he and his collaborator Rudolph Franz discovered the
law discussed above that states that at a constant temperature, the elec-
trical conductivity of metals is approximately proportional to the thermal
conductivity of the metal. Wiedemann later worked on a variety of subjects
that included:
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� The effect of current intensity on osmotic pressure
� The effect of temperature on the magnetization of steel and iron
� Magnetism in chemical compounds
� Vapor pressures of salts containing water
� The construction of new galvanometers, that is, instruments used to

detect and measure the direction of small electric currents

His greatest work is often cited as Die Lehre vom Galvanismus (1861–
1863), which summarized everything known about galvanism, the study of
direct electrical current and its effects. The full title of the book, Die Lehre
vom Galvanismus und Elektromagnetismus nebst technischen Anwedun-
gen, was changed to Die Lehre von Elektricität in a later updated edition.

Very little appears to be known about Wiedemann’s collaborator
Rudolph Franz. Few encyclopedias provide information, and even his date
of birth is unknown. I welcome information from readers on the elusive
Franz.

Wiedemann’s 1899 obituary, appearing in Physical Review, commented
on his skills as a lecturer:

As a lecturer upon the elements of physics and of chemistry, Wiede-
mann was noted for the clearness and simplicity of his exposition
and for a delightful fluency and ease of diction. He had personal
acquaintanceship with many of the famous experimenters of the first
half of the century, and the inexhaustive fund of anecdotes concern-
ing them and their work was delightful and, historically speaking,
a valuable element of his lectures. He treated physics from the
point of view of the chemist rather than of the mathematician, and
chemistry very largely from the standpoint of experimental physics.
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INTERLUDE: CONVERSATION STARTERS

Our brains have evolved to get us out of the rain, find
where the berries are, and keep us from getting killed.
Our brains did not evolve to help us grasp really large
numbers or to look at things in a hundred thousand
dimensions.
—Ronald Graham, quoted in Paul Hoffman’s “The Man

Who Loves Only Numbers,” Atlantic Monthly, 1987

There may be further laws to discover, to do with the
unification of gravity with quantum theory and with the
other forces of nature. But in a certain sense, we have for
the first time in history a set of laws sufficient to explain
the result of every experiment that has ever been done.
—Lee Smolin, “Never Say Always,” New Scientist, Sep-

tember 23, 2006

The fact that anything at all in the Universe is compre-
hensible means either that we are very intelligent or that
the basics of nature are very simple. Given that we are
some sort of chimpanzee, carrying a mere kilogram of
glop between our ears, I opt for the latter alternative.
—Vincent Icke, The Force of Symmetry

The lesson for the truth of fundamental laws is clear:
fundamental laws do not govern objects in reality; they
govern only objects in models.
—Nancy Cartwright, How the Laws of Physics Lie
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FICK’S LAWS OF DIFFUSION

Germany, 1855. The steeper the concentration gradient, the
greater the net flux of material by diffusion.

Cross Reference: Fick’s Principle in the field of cardiac physiology.

In 1855, French chemist George Audemars obtained the first
patent for production of artificial silk, which he derived from
mulberry bark. The safety match was invented in Sweden.
These matches ignited only when struck on a chemically
impregnated surface. The Panama Railway became the first
railroad to connect the Atlantic Ocean and Pacific Ocean.
German mathematician and physicist Carl Friedrich Gauss
died.

Fick’s laws concern the net transport of material in a liquid through the
process of diffusion. Diffusion refers to the physical process whereby
particles spread spontaneously through a medium, and in particular, it
refers to the movement of particles from higher concentration to lower
concentration. One common example of diffusion is the spreading of a
drop of ink in water. As time progresses, the ink particles spread evenly
throughout the water.

Imagine a 1-square-centimeter area in the y, z-plane viewed on edge
and symbolized by this vertical line, |. This boundary might be thought
of as an invisible partition in a glass of water. On one side of | is a
drop of ink placed into water. We define the flux Jx as the net amount
of substance that diffuses through this unit area per unit time in the x
direction. Common units of flux are mol/(cm2·s). If the ink were evenly
distributed in the glass of water, then no concentration gradient would
exist in the x direction, and Jx = 0. In this situation, we expect equal
numbers of ink particles to cross our boundary | from the left and from the
right.

Next, imagine that there is a concentration gradient of the ink in the
x direction and that more ink exists on the right of | than on the left. If c
is concentration, then dc/dx > 0. Because more particles per unit volume
exist to the right of our boundary than to the left, we expect that more
molecules per unit time will diffuse through | from the right than from the
left. Indeed, a net transport of ink particles will take place in the direction
opposite to the concentration gradient.



FICK’S FIRST LAW OF DIFFUSION

Fick’s First Law of Diffusion states that the steeper the concentration
gradient dc/dx, the larger the net flux Jx :

Jx = −D
dc
dx

Here, D is a proportionality constant called the diffusion coefficient (e.g.,
the diffusion coefficient for myoglobin protein in water at 20◦C is 11.3 ×
10−7 cm2/s). The negative sign indicates that the net transport by diffusion
is in a direction opposite to the concentration gradient. Example units
for D are cm2/s, and for the concentration gradient dc/dx, we have units
of mol/cm4. Note that because a net transport of material, such as ink
particles, exists, dc/dx is itself a function of time. If we let the ink diffuse
in the glass of water for a long time, the system approaches homogeneity,
and dc/dx = 0. Thus, the equation is given in terms of the instantaneous
flux at any time t . Numerous laboratory experiments have been used to
verify Fick’s First Law.

A simple example illustrates Fick’s First Law. Consider a liquid-filled
cylinder with a diameter of 10 centimeters. Assume that a material is
dissolved in the liquid so that its concentration profile decreases linearly
along the axis of the cylinder, and the diffusion coefficient of the material
is 4 × 10−5 cm2/s. The concentration of the material is 1 mol/dm3 at one
end of the cylinder, for example, at location x + 10 centimeters (“dm” is
the unit for decimeter, equal to 10 cm). The concentration of the material
at the other end is 0.5 mol/dm3 (at position x). What is an approximate
value for the flux through the material, assuming that there is no change in
the concentration profile?

The change in concentration is c(x2) − c(x1) = −0.5 mol/dm3 or −500
mol/m3. The change in x is x2 − x1 = 10 cm or 0.1 m. Thus, an approxi-
mate value for dc/dx is −(500 mol/m3)/(0.1 m) = −5, 000 mol/m4. Given
the aforementioned value of D and converting to units of m2/s, we have
Jx = −(4 × 10−9m2/s)(−5 × 10−3 mol/m4) = 2.0 × 10−5 mol/(m2·s).

FICK’S SECOND LAW OF DIFFUSION

Fick’s Second Law of Diffusion describes how the concentration of mate-
rial in a gradient changes with time. For example, in a uniform concentra-
tion gradient of ink particles, where dc/dx is a constant for all values of x,
Fick’s First Law demands that the flux Jx is the same at all locations, and
thus, c will not change with time. One may visualize the flux into every
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volume element from one side is equal to that going out the other side for
a steady-state flow of ink particles by diffusion. However, if the concentra-
tion gradient is not the same everywhere, we have Fick’s Second Law:

(
∂c
∂t

)
x

= D
(

∂2c
∂x2

)
t
,

where (∂c/∂t)x is the change of concentration with time at position
x. For Fick’s Second Law, we assume the diffusion coefficient D is a
constant and independent of concentration. Experimentalists can actually
determine D by using either Fick’s First or Second Law. However, because
measurement of J can be challenging, the Second Law is more often used
to determine the value of D.

Fick’s Laws of Diffusion are so general that they have had wide applica-
tions in many fields. Edward L. Cussler, in his talks titled “Fick’s Second
Law or Diffusion for Dummies,” describes the diversity of applications.
He notes that this law can predict physiological and sensory reactions to
the relative sweetness of syrups and sauces if we assume that sweetness
depends on the transport of sugar in a solution to the surface of the tongue.
As another Cussler example, when a fire ant becomes alarmed, the insect
releases a pheromone to warn other ants of potential danger. Fick’s Second
Law can predict the effect of this pheromone on the other ants, using a very
large value for the diffusion coefficient.

Fick’s Second Law has also been used to predict the spread of muskrats
in Europe following their accidental release in 1905. The law has been used
to model the concentration of smokestack contaminants and to simulate
the displacement of hunter-gatherers by farmers in Neolithic times.

Note that Fick’s laws can apply to solids, gases, and liquids. In a num-
ber of research studies, the law has been useful for the study of photo-
synthesis and the concentration gradient of carbon dioxide inside leaves.
Researchers have also used the laws to study diffusion of radon in the open
air or diffusion in soils contaminated with petroleum hydrocarbons.

Adolf Fick (1829–1901), German physiologist famous for his laws of
diffusion.

CURIOSITY FILE: Fick is credited with the invention of glass contact lenses
in the late 1880s, which he tested first on rabbits and then on him-
self. However, the use of practical and comfortable lenses started in
1948 when California optician Kevin Tuohy invented the soft plastic lens
for contacts. • In 1865, Fick and German chemist Johannes Wislicenus

f i c k ’ s l a w s o f d i f f u s i o n | 367



climbed a mountain in the Swiss Alps in order to study the relationship
between the food they ate and the urine produced. They published their
findings in 1866 in “On the Origin of Muscular Power,” where they con-
cluded that fats and carbohydrates (and not protein) provided the necessary
fuel for their muscles.

It is astonishing that no one has arrived at the following
obvious method by which [the amount of blood ejected
by the ventricle of the heart with each systole] may be
determined directly, at least in animals. One measures
how much oxygen an animal absorbs from the air in a
given time, and how much carbon dioxide it gives off.
During the experiment one obtains a sample of arter-
ial and venous blood; in both the oxygen and carbon
dioxide content are measured. The difference in oxygen
content tells how much oxygen each cubic centimeter of
blood takes up in its passage through the lungs. As one
knows the total quantity of oxygen absorbed in a given
time one can calculate how many cubic centimeters of
blood passed through the lungs in this time. Or if one
divides by the number of heart beats during this time one
can calculate how many cubic centimeters of blood are
ejected with each beat of the heart. The corresponding
calculation with the quantities of carbon dioxide gives a
determination of the same value, which controls the first.
—Adolf Fick, “On the Measurement of the Blood Vol-

ume in the Cardiac Ventricle,” 1870

A model that predicts Fickian diffusion can be con-
structed from assuming a simple random-walk model.
Such a model (also called a drunkard’s walk) assumes
that a single molecule follows a series of steps, each of
which moves in a direction taken at random. Fick’s law
applies equally well to molecular diffusion through a sta-
tic fluid and diffusion across a laminar flow in a channel
or duct. In both cases, the diffusion occurs via the random
paths of individual fluid molecules.
—Gerard V. Middleton and Peter R. Wilcock, Mechanics

in the Earth and Environmental Sciences

Adolf Fick was born in Kassel, Germany, the ninth child of Friedrich
Fick, a senior municipal architect. As with other lawgivers in this book,
Fick had family members who were destined for intellectual greatness.
One brother, for example, became a professor of anatomy at Marburg
University, and another became a professor of law. Fick attended Marburg
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and was very interested in mathematics and physics but decided that a
career in medicine would most suit him.

Fick was especially interested in the mathematical and physical study
of anatomical forms. His first paper, published in 1849, was a study of
torque exerted by leg muscles. He obtained his doctorate in 1851, with
a thesis on visual problems arising from astigmatism, an eye defect in
which the unequal curvature of one or more refractive surfaces of the eye
prevents light rays from focusing clearly on one point on the retina. His
love of mathematics led him to formulate some of his key thoughts about
diffusion in the mid1850s, when he concluded that “the distribution of a
compound dissolved in a solvent takes place in the same way as warmth
is distributed within a conductive material.” He began to believe that
diffusion could be described using a mathematical basis reminiscent of
Fourier’s Law of Heat Conduction. E. L. Cussler writes in Diffusion: Mass
Transfer in Fluid Systems:

Fick seemed initially nervous about his hypothesis. He buttressed it
with a variety of arguments based on kinetic theory. Although these
arguments are now dated, they show physical insights that would
be exceptional in medicine today. For example, Fick recognized
that diffusion is a dynamic molecular process. He understood the
difference between a true equilibrium and steady state.

In order to test his equations, Fick had to determine a way to create
a steady-state concentration gradient. He finally achieved this by using a
glass cylinder containing crystalline sodium chloride at the bottom and a
large volume of water at the top. By frequently changing the water at the
top, he produced the desired linear gradient.

In additional experiments, Fick also noted that the volume of gas flow
moving across a tissue sheet per unit time is directly proportional to the
area of the sheet and the difference in partial pressures between the two
sides, but inversely proportional to tissue thickness:

Vgas ∝ A· D(P1 − P2)

T
, D ∝ S√

mw

Here Vgas is the volume of gas flow per unit time, A is the area, D is a
diffusion constant, P1 is the pressure on one side of the membrane or
tissue, and P1 the partial pressure on the other side of the membrane of
thickness T. The diffusion constant D is directly proportional to the gas
solubility S but inversely proportional to the square root of its molecular
weight, mw.

Fick married in 1862 and had five children. One son eventually became
an anatomist and another became a jurist. In 1868, Fick became full
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professor of physiology in the faculty of medicine at the University of
Würzburg, from which he did not retire until age 70. He died in 1901 after
suffering from a cerebral hemorrhage.

Fick is perhaps most respected for the sheer diversity of the subjects he
studied, many at the boundaries between physiology and physics. In 1854,
he devoted himself to the study of the saddle joint of the thumb and
the muscles of the eye and how they operated. In 1855, he developed a
differential equation that modeled diffusion. Later, he analyzed the eye’s
blind spot, retina, color vision, and intraocular pressure. He also developed
improved devices for measuring blood pressure and for recording the
movements of the torso caused by breathing. In 1856, when only 26, he
published Medizinische Physik (Medical Physics), in which his fertile mind
discussed topics that ranged from gas diffusion to the dynamics of muscles,
hydrodynamics, the elasticity of blood vessels, the physics of the eye, and
the origin of heat in the body.

In 1870, Fick developed a principle that helped researchers calculate
cardiac output by monitoring oxygen levels of the blood. (Cardiac output
is often measured in terms of the volume of blood that the heart pumps in
a minute.) In particular, Fick showed why the cardiac output can be calcu-
lated from the oxygen consumption of breathing divided by the difference
in oxygen content between the left and right heart chambers; stated more
mathematically, cardiac output (liters/minute) is equal to oxygen consump-
tion (milliliters/minute) divided by the arteriovenous oxygen difference in
mixed blood (milliliters/liter). This equation is known as Fick’s Principle.
Verification of this principle in humans was initially accomplished years
after Fick’s death, in 1930, by researchers who were able to obtain samples
of mixed venous blood by inserting a spinal tap needle just to the right of
the sternum. The needle entered the right ventricular chamber by punc-
turing its wall.

Later studies focused on the speed of blood flow, blood pressure in
capillaries, protein metabolism, heat generation in muscles, and the effect
of nerve stimulation on muscles. According to William Coleman’s Biology
in the Nineteenth Century, in 1874, Fick stated his reductionist credo in
which all life should be viewed in terms of purely mechanical events and
that so-called “vital phenomena” are

caused by the forces inherent in the material bases of the living
organism. Since customarily these forces are divided into chemical
and physical, we may designate this as the “chemicophysical.” In so
far, however, as all forces are in final analysis nothing other than
motive forces determined by the interaction of material atoms, and
in so far as the general science of motion and its causal forces is
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called mechanics, we must designate the direction of physiological
research as truly “mechanical.”

In addition to numerous scientific papers and his aforementioned clas-
sic textbook Medizinische Physik, Fick wrote A Compendium of Physiol-
ogy and Handbook of Anatomy and Physiology of the Sense Organs; and
Circulation of Blood. In 1929, two of his sons founded the Adolf Fick Fund,
which awards a prize every five years for an exceptional contribution to
physiology.

FURTHER READING

Bentley, David J., Jr., “Polymers/Laminations/Adhesives/Coatings/Extrusions,”
Paper, Film & Foil Converter magazine, July 1, 2001; see pffc-online.com/mag/
paper_polymerslaminationsadhesivescoatingsextrusions_3/; includes a description
of Edward L. Cussler’s talk titled “Fick’s Second Law or Diffusion for Dummies.”

Coleman, William, Biology in the Nineteenth Century (New York: Cambridge
University Press, 1978).

Cussler, Edward L., Diffusion: Mass Transfer in Fluid Systems (New York:
Cambridge University Press, 1997).

Middleton, Gerard V., and Peter R. Wilcock, Mechanics in the Earth and
Environmental Sciences (New York: Cambridge University Press, 1994).

Rothschuh, K. E., “Adolf Fick,” in Dictionary of Scientific Biography, Charles
Gillispie, editor-in-chief (New York: Charles Scribner’s Sons, 1970).

Sten-Knudsen, Ove, Biological Membranes (New York: Cambridge University
Press, 2002).

Tinoco, Ignacio, Kenneth Sauer, and James Wang, Physical Chemistry
(Englewood Cliffs, N.J.: Prentice-Hall, 1978).

Vandam, Leroy D., and John Fox, “Adolf Fick (1829–1901), Physiologist: A
Heritage for Anesthesiology and Critical Care Medicine,” Anesthesiology, 88(2):
514–518, February 1998.

INTERLUDE: CONVERSATION STARTERS

Maybe the brilliance of the brilliant can be understood
only by the nearly brilliant.
—Anthony Smith, The Mind

Since Galileo’s time, science has become steadily more
mathematical. . . . It is virtually an article of faith for
most theoreticians . . . that there exists a fundamental
equation to describe the phenomenon they are study-
ing. . . . Yet . . . it may eventually turn out that fundamental
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laws of nature do not need to be stated mathematically
and that they are better expressed in other ways, like the
rules governing the game of chess.
—Graham Farmelo, Foreword to It Must Be Beautiful:

Great Equations of Modern Science

When the scientist attempts to understand a group of
natural phenomena, be begins with the assumption that
these phenomena obey certain laws which, being intelli-
gible to our reason, can be comprehended. This is not, let
us hasten to note, a self-evident postulate which leaves no
room for qualifications. In effect, what it does is to reit-
erate the rationality of the physical world, to recognize
that the structure of the material universe has something
in common with the laws that govern the behavior of the
human mind.
—Arthur March and Ira M. Freeman, The New World of

Physics

Our knowledge of nature . . . is highly compartmentalized.
Why think nature itself is unified?
—Nancy Cartwright, How the Laws of Physics Lie
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BUYS-BALLOT’S WIND AND PRESSURE LAW

Netherlands, 1857. The wind blows at right angles to the atmos-
pheric pressure gradient.

Cross Reference: Rudolf Clausius and the Doppler effect.

In 1857, Elisha Otis’s first safety-equipped passenger elevator
was installed—in New York City. (This elevator with safety
brakes decreased public fears of elevators, which was crucial to
the rise of skyscrapers.) Divorce without parliamentary approval
becomes legal in Britain. Atlantic Monthly magazine was first
published. James Clerk Maxwell mathematically proved that the
rings of Saturn are composed of many small bodies orbiting the
planet.

Buys-Ballot’s Law, named after Christoph Hendrik Diederik Buys Ballot,
asserts that in the Northern Hemisphere, if a person stands with his back
to the wind, the low pressure area will be to his left. This means that
wind travels counterclockwise around low pressure zones in the Northern
Hemisphere. (This direction is reversed in the Southern Hemisphere.) The
law also states that the wind and the pressure gradient are at right angles
if measured sufficiently far above the surface of Earth in order to avoid
frictional effects between the air and surface of Earth.

The weather patterns of Earth are affected by several planetary fea-
tures such as Earth’s roughly spherical shape, rotation, and the Coriolis
effect, which is the tendency for any moving body on or above the surface
of Earth, such as an ocean current, to drift sideways from its course due to
the rotation of Earth.

We can understand the reason for the swirling air patterns around
regions of low pressure by considering air flow into the lowpressure area
from the north and south. Air that is closer to the equator is generally
traveling faster than air farther away because equatorial air is farther from
Earth’s axis of rotation. To help visualize this, consider that air farther
from the axis must travel faster in a day than air at higher latitudes
that is closer to the axis of Earth. Thus, if a low pressure system in the
north exists, it will draw air from the south, and this air can move faster
than the ground below it because the more northerly part of Earth’s
surface has a slower eastward motion than the southerly surface. This
means that the air from the south will move east as a result of its higher
speed.

We can see that the opposite kinds of motion apply for air moving
from north to south into a low-pressure region. The northerly air will



move south and also west. The net effect of air movement from north
and south is a counterclockwise swirl around a low pressure area in the
Northern Hemisphere, and a clockwise swirl in the Southern Hemisphere.
The Coriolis effect is weak near the equatorial regions; thus, the Buys-
Ballot’s Law is not applicable at equatorial latitudes.

Christoph Hendrik Diederik Buys Ballot (1817–1890), Dutch meteorol-
ogist and physical chemist who explained movements of the wind.

CURIOSITY FILE: In order to better understand the behavior of sound, Buys
Ballot conducted experiments involving trumpet players blowing a G note
while on moving trains. • The Dutch named an island after Buys Ballot
while he was still alive.

When you place yourself in the direction of the
wind, . . . you will have at your left the least atmospheric
pressure.
—C. H. D. Buys Ballot, “On the System of Forecasting

the Weather Pursued in Holland,” 1863

Buys Ballot was born in Kloetinge, the Netherlands. The son of a Dutch
reformed minister, Buys Ballot received his doctorate in 1844. He lectured
on mineralogy and geology at the University of Utrecht in 1845. In 1847, he
was appointed professor of mathematics. L. C. Palm and colleagues in The
History of Science in the Netherlands describe his early years as a faculty
member:

Buys Ballot worked on a mathematical theory of matter, in which
atoms attracted each other but the surrounding ether particles
repelled each other. He published his theory in 1849 under the
title “Sketch of a Physiology of the Inorganic Realm of Nature.”
The book was met with little interest. . . . Disappointed, Buys Ballot
abandoned physics and chemistry and concentrated on meteorol-
ogy, which could hardly be called a science at the time.

In 1854, he founded the Royal Netherlands Meteorological Institute.
He married twice and was elected to the Royal Academy of Sciences of
Amsterdam in 1855. He became professor of physics in 1867.

Buys Ballot was quite religious and an active member of the
Walloon church. One of his chief passions was meteorology, and he
continually lobbied for establishing wide networks of meteorological
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observations that could provide simultaneous data through the use of the
telegraph.

In 1845, Buys Ballot had performed one of the first experiments veri-
fying Doppler’s idea for sound, which stated that a change in the observed
frequency of a sound should occur when the source and observer are in
motion relative to each other. The frequency should increase when the
source and observer approach each other and decrease when they move
apart.

To perform his experiment, Buys Ballot employed a train that carried
trumpeters who played a constant note while other musicians listened on
the side of the track! Because no accurate devices existed for the mea-
suring musical pitch of the trumpet note while the trumpets moved, Buys
Ballot had to rely on the human ear. In particular, Buys Ballot enlisted the
help of Utrechters who were known to have a talent for sensitivity to pitch.
Some rode on the train. Others stood along the tracks. One trumpeter
sounded a G note in the moving train. Three trumpeters were used on
the ground as the train passed. The 14 observers, distributed on the train
and ground, were asked to quantify the pitch change of the G note. As a
result of two days of experimentation, conducted at several speeds, Buys
Ballot proved the existence of the Doppler effect, which he then reduced
to a formula.

Although today we know that the Doppler effect applies to light as well
as sound, Buys Ballot remained skeptical about generalizing his findings.
Dev Maulik and Ivica Zalud write in Doppler Ultrasound in Obstetrics and
Gynecology:

Buys Ballot proved not only the existence of the Doppler Effect
in relation to sound transmission but its angle dependency as well.
Incredibly, Buys Ballot still refused to accept the validity of the
theory for the propagation of light, and most of the scientific com-
munity of the nineteenth century did not acknowledge the validity
of Doppler’s theory [when used to explain the behavior of light].

Because of the telegraph, it became possible to establish meteoro-
logical observation stations that could communicate with one another in
order to make better weather predictions. Buys Ballot became a leader
in this field of meteorology, and for several years he published weather
observations that were provided by a large network of observers.

In 1857, he noticed that in the Netherlands, the wind blew at right
angles to the pressure gradient, and he published this observation in
the Comptes Rendus. In 1863, he stated the law again in Transactions,
a journal of the British Association for the Advancement of Science.
Unknown to Buys Ballot, this rule of wind motion was first actually
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deduced by the American meteorologists James Henry Coffin (1806–1873)
and William Ferrel (1817–1891). In fact, Ferrel was also first to realize
that the Buys-Ballot Law results from the deflecting force of Earth’s rota-
tion. Although Ferrel first provided the theory for the law, Buys Ballot
was the first to provide an empirical validation through his extensive
observations. Buys Ballot later acknowledged that Ferrel first discovered
the law.

Today, people sometimes use Buys-Ballot’s Law to locate hurricanes.
For example, if you are in North America, the center and direction of
travel of a hurricane can be estimated by Buys-Ballot’s Law as follows:
Face the wind and extend your right hand out at 90◦ from the direction
you are facing. Your arm is now pointing approximately to the center
of the storm. Periodic determinations like this will indicate the relative
movement of the storm and on which side of the hurricane’s line of motion
you are standing.

In 1857, German physicist Rudolf Clausius (1822–1888) published what
he felt to be the average speed of oxygen, nitrogen, and hydrogen mole-
cules at the temperature of melting ice, namely, 461 m/s, 492 m/s, and 1,844
m/s, respectively. Buys Ballot examined these numbers and understood a
consequence that somehow escaped Clausius and other scientists. If gas
molecules really moved so quickly, why didn’t one instantly smell ammonia
or hydrogen sulfide the moment a vial was opened at the other end of a
room? Buys Ballot thought he had refuted the new molecular theory by
pointing out a startling contradiction between its predictions and the real
world. As a result, Clausius had to make an important modification to his
theory and had to assume that molecules were sufficiently large that they
collided with one another and could not move very far without such colli-
sions. Thus, a molecule must change its direction many times every second,
and may require a long time to escape from a given macroscopic region of
space. In this way, the slowness of ordinary gas diffusion, compared with
molecular speeds, could be explained.

Buys Ballot’s obituary appearing in Symons’s Meteorological Magazine
notes

On Sunday night, February 2nd, from his well-loved home at
Utrecht, passed away the spirit which gave to the world the useful
“Buys-Ballot’s Law,” by which the author will be remembered long
after his many personal friends have themselves been removed.
Dr. Ballot was director, indeed almost creator, of the Royal Meteo-
rological Institute of the Netherlands. In 1883, a new island, discov-
ered by the Dutch Meteorological Expedition, in 70◦ 25′ 28′ N., was
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named after him as Buys-Ballot’s Island. . . . Dr. Ballot’s earliest sci-
entific papers were upon chemistry and physics, but for forty years
nearly all his time and thought has been devoted to meteorology.

A lunar crater with a diameter of 55 kilometers was named after Buys-
Ballot and approved in 1970 by the International Astronomical Union
General Assembly.
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INTERLUDE: CONVERSATION STARTERS

Armies of thinkers have been defeated by the enigma
of why most fundamental laws of nature can be written
down so conveniently as equations. Why is it that so
many laws can be expressed as an absolute imperative,
that two apparently unrelated quantities (the equations
right and left sides) are exactly equal? Nor is it clear why
fundamental laws exist at all.
—Graham Farmelo, It Must Be Beautiful: Great Equa-

tions of Modern Science

We are in the habit of talking as if [the laws of Nature]
caused events to happen; but they have never caused
any event at all. The laws of motion do not set billiard
balls moving; they analyze the motions after something
else . . . has provided it. They produce no events: they state
the pattern to which every event . . . must conform. . . . It is
therefore inaccurate to define a miracle as something that
breaks the laws of Nature. . . . If I knock out my pipe, I
alter the position of a great many atoms, in the long run,
and to an infinitesimal degree, of all the atoms there are.
It is one more bit of raw material for the laws to apply
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to. . . . If God creates a miraculous spermatozoon in the
body of a virgin, it does not proceed to break any laws.
Nature is ready. Pregnancy follows according to all the
normal laws.
—C. S. Lewis, “Miracles,” in The Complete C.S. Lewis

Signature Classics, 2002

Models in the mathematical, physical and mechanical sci-
ences are of the greatest importance. Long ago philoso-
phy perceived the essence of our process of thought to
lie in the fact that we attach to the various real objects
around us particular physical attributes—our concepts—
and by means of these try to represent the objects to our
minds. . . . On this view our thoughts stand to things in the
same relation as models to the objects they represent.
—Ludwig Boltzmann, 1902 Encyclopaedia Britannica
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EÖTVÖS’S LAW OF CAPILLARITY

Hungary, 1866. The surface tension of a liquid depends on the
temperature and density of the liquid.

Cross Reference: Charles-Augustin Coulomb, Gustav Kirchhoff,
Newton’s laws, and Einstein’s General Theory of Relativity.

In 1866, Dostoevsky published Crime and Punishment in twelve
monthly installments. Alfred Nobel, creator of the Nobel Prize,
invented dynamite. The Atlantic Cable was successfully com-
pleted, allowing reliable transatlantic telegraph communication
for the first time. (An earlier version failed soon after it was
installed due to deterioration of the insulation, and some mem-
bers of the press were so skeptical that they hinted that the first
line was a mere hoax.) Andrew Rankin patented the urinal. Ten-
nessee became the first Confederate state readmitted to Union.
Manuelito, the last Navaho chief, surrendered at Fort Wingate.
Ernst Haeckel introduced the word “ecology” (spelled Oecologie
in German).

Eötvös’s Law of Capillarity states the relationship between the surface
tension of a liquid and the temperature of a liquid. In particular, we have

γ = k(T0 − T)/ρ3/2,

where the surface tension γ (also called the capillarity constant) of a liquid
is related to its temperature T, the critical temperature of the liquid (T0),
and its density ρ. The constant k is approximately the same for many
common liquids such as water. Note that T0 is the temperature at which
the surface tension disappears or becomes zero.

The term “surface tension” usually refers to a property of liquids that
arises from unbalanced molecular forces at or near the surface of a liquid.
As a result of these forces, the surface tends to contract and exhibits
properties similar to those of a stretched elastic membrane. Eötvös showed
that this surface tension is related to the molecular volume of a fluid, that
is, the volume occupied by one mole of the material that makes up the
liquid. This volume is numerically equal to the molecular weight divided
by the density. Let γ1 and γ2 be the surface tensions at temperatures t1
and t2, and v1 and v2 the corresponding molecular volumes. According to
Eötvös’s Law, we have

(γ1v1 − γ2v2)
2/3/(t1 − t2) = k



Hence, the surface tension, which may be considered as a molecular sur-
face energy, changes in response to temperature in a manner that is inde-
pendent of the nature of the liquid. Eötvös’s Law has been important for
chemists because they could use it to determine the molecular weight of a
material. The molecular volume v and the molecular weight µ are related
by v = µ/ρ, where ρ is the density.

During his experiments, Eötvös had to take special care that the surface
of his fluids had no contamination of any kind, and thus he worked with
glass vessels that had been closed by melting, and he used optical meth-
ods for determining the surface tension. These sensitive methods were
based on optical reflection in order to characterize the local geometry of
the liquid surface. Because the properties of the surface change in time
through heating, he also achieved a higher degree of temperature stability
by enclosing the fluid in a closed glass tube. He showed that the molecular
surface energy of fluids only depends on the temperature.

Surface tension plays a role in numerous aspects of nature. It allows
insects to walk on water. At the surface of the liquid, the molecules are
pulled inward by intermolecular forces. Surface tension is often measured
in newtons per meter (N/m), a unit that is equivalent to joules per square
meter (J/m2). This second set of units reminds us that surface tension may
be considered as surface energy.

Loránd Eötvös (1848–1919), Hungarian physicist famous for his studies
of surface tension as well as the gravitational field of Earth.

CURIOSITY FILE: Did you know that water is sprayed on the spot where
a diver will enter the water because some divers feel that this turbulence
reduces the surface tension of the water, thus resulting in a less painful
impact? • Loránd Eötvös was a famous mountain climber, and a peak
in the Dolomites in northeast Italy is named after him. • The eotvos,
which usually is denoted by the symbol E , is a unit of acceleration divided
by distance. The gravitational gradient of Earth, which may be thought of
as the change in gravitational acceleration from one point on the surface
on Earth to another, is sometimes measured in units of eotvos. Gradient
anomalies in mountainous areas can be as large as 1,000 eotvos.

Poets can penetrate deeper into the realm of secrets than
scientists.
—Loránd Eötvös, quoted in P. Király, “Eötvös and

STEP”
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A scientist can soar high like a poet, but also knows how
high he flies.
—Loránd Eötvös, quoted in P. Király, “Eötvös and STEP

My unknown country spread out far below the frozen
surface of Lake Balaton. I have never seen it and shall
never see it, only my instrument sensed it, still how hard
it was to part with it when the ice started to melt.
—Loránd Eötvös, describing his gravitational measure-

ments performed with the torsion balance on the ice
sheet of Hungary’s Lake Balaton in 1901 and 1903,
quoted in P. Király, “Eötvös and STEP

Vásárosnaményi Báró Eötvös Loránd was born in Budapest, Hungary.
He is also sometimes referred to as Roland, Baron von Eötvös (the
German version of the Hungarian name), Loránd Eötvös, or Roland
Eotvos (Eötvös is pronounced ut’ vush). His father was one of Hungary’s
foremost writers and political philosophers of the 1800s.

Eötvös entered the University of Budapest in 1865 as a law student but
was so fascinated by mathematics and physics that he took private lessons
in these subjects in addition to his law courses. When he finally decided
that his passion was for science, Eötvös left the law school and entered the
University of Heidelberg in 1867, where he obtained his doctorate summa
cum laude in 1870. Some of his early papers dealt with the intensity of
moving light sources, a theoretical body of work that eventually led to the
theory of relativity.

Eötvös returned to Hungary in 1871 and soon became full professor at
the University of Budapest. In 1876 he married, and eventually had two
daughters who became delightful companions for him during his mountain
climbs. Mountain climbing was his favorite hobby, and he became one of
Europe’s most famous climbers.

Eötvös conducted his famous work on determining surface tension
at the University of Königsberg. These investigations were published in
several papers between 1876 and 1886.

After 1886, Eötvös’s research focused on the nature of gravitation. His
paper published in 1890 reported on his work with torsion balances used to
study the forces of attraction between masses. Torsion balances for mea-
suring attraction between two masses existed before Eötvös’s work—in
fact his first devices were similar to those of scientists John Michell (1724–
1793), Henry Cavendish (1731–1810), and Charles-Augustin de Coulomb
(1736–1806)—but Eötvös refined his balance to gain added sensitivity.

The Eötvös balance became one of the best instruments for measuring
gravitational fields at the surface of Earth and for predicting the existence
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of certain structures beneath the surface. In fact, although Eötvös focused
on basic theory and research, his instruments later proved important for
prospecting for oil and natural gas. Andrew L. Simon, author of Made
in Hungary, notes that very soon after Eötvös’s Heidelberg University
studies under such professors as Gustav Kirchhoff (1824–1887), Robert
Bunsen (1811–1899), and Hermann von Helmholtz (1821–1894),

he became the greatest Hungarian scientist of theoretical and exper-
imental physics. . . . The use of the Eötvös Torsion Balance has been
a landmark in geological research and prospecting and was instru-
mental in the discovery of oil fields in Texas, Venezuela, the Zala
oil fields in Hungary, and elsewhere. . . . Since Eötvös’s work, his
countrymen’s studies in gravitation, geomagnetism and seismology
have been notable.

Eötvös’s measurements also showed that gravitational mass (the mass
m in Newton’s Law of Universal Gravitation F = Gm1m2/r2) and inertial
mass (the constant mass m responsible for inertia in Newton’s Second Law,
which we often write as F = ma) were the same—at least to an accuracy of
about five parts in 109. In other words, Eötvös showed that the inertial
mass (the measure of the resistance of an object to acceleration by an
applied force) is the same as gravitational mass (the factor determining
the weight of an object) to within a great deal of accuracy. This information
later proved useful for Einstein when he formulated the General Theory
of Relativity. Einstein cited Eötvös’s work in Einstein’s 1916 paper The
Foundation of the General Theory of Relativity. The General Theory of
Relativity suggests that gravitation is a consequence of curved space. One
idea of General Relativity, called the Equivalence Principle, is that gravity
pulling in one direction is equivalent to acceleration in the opposite direc-
tion. Many of the predictions of general relativity, such as the bending of
starlight by gravity and the small shift in the orbit of the planet Mercury,
have been confirmed by experiments.

Returning our attention to Eötvös’s sensitive balance, I should note
that this device was essentially the first instrument useful for gravitational
gradiometry, that is, for the measurement of very local gravitational prop-
erties. For example, Eötvös’s early measurements involved his mapping
the second derivatives of the gravitational potential at different locations
in his office and, shortly after, the entire building. Local masses in the
rooms influence the values he obtained. The Eötvös balance could also
be used to study the gravitational changes due to slow motions of mas-
sive bodies or fluids. According to Péter Király of the KFKI Research
Institute for Particle and Nuclear Physics, “changes in the water level
of the Danube could allegedly be detected from a cellar 100 meters
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away with a centimeter precision, but that measurement was not well
documented.”

Eötvös had many other related interests, including his studies involv-
ing: magnetic anomalies, the shape of Earth, paleomagnetic work on
bricks that were thousands of years old, and variations in gravitational
acceleration caused by the relative motion of an object with respect to
Earth.

Mountaineering and stereoscopic photography were Eötvös’s favorite
hobbies. With his daughters, he made the first ascent of several peaks in
the Dolomite Mountains of the Alps. When he was 68, shortly before his
death, he climbed some of the highest peaks of the Tatra Mountains on the
border of modern-day Poland and Slovakia.

In 1885, Eötvös and colleagues founded the Hungarian Society for
Mathematics. From 1886 until his death, Eötvös taught at the University of
Budapest, which in 1950 was renamed the Eötvös Loránd University in his
honor. Biographer L. Marton writes of Eötvös’s lasting effect on education
in Hungary in the Dictionary of Scientific Biography:

Eötvös’s intensive research efforts did not prevent him from pur-
suing other interests. Shortly after his appointment as professor of
physics, he became aware of the shortcomings of both high school
and university instruction in Hungary, and from then on he devoted
considerable effort to improving both. . . . [These efforts led to] a sur-
prising increase in the number of outstanding Hungarian scientists
during the twentieth century. . . .

A lunar crater with a diameter of 99 kilometers was named after Eötvös
and approved in 1970 by the International Astronomical Union General
Assembly.
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INTERLUDE: CONVERSATION STARTERS

Anyone who cannot cope with mathematics is not fully
human. At best he is a tolerable subhuman who has
learned to wear shoes, bathe, and not make messes in the
house.
—Robert A. Heinlein, Time Enough for Love

The secularization of the concept of nature’s laws pro-
ceeds more slowly in England than on the continent of
Europe. By the end of the eighteenth century, after the
French Revolution, Laplace could boast that he had no
need of the hypothesis of God’s existence, and Kant
had sought to ground the universality and necessity of
Newton’s laws not in God or nature, but in the con-
stitution of human reason. . . . [Nonetheless] whether the
laws of nature might be expressions of divine will was
still much debated in the third quarter of the nineteenth
century in Britain. . . . Not until Darwin’s revolution had
worked its way through British intellectual life did the
laws of nature get effectively separated from God’s will.
—Ronald N. Giere, Science Without Laws

No theory can be objective, actually coinciding with
nature. . . . Each theory is only a mental picture of phe-
nomena, related to them as sign is to designatum. . . . From
this it follows that it cannot be our task to find an
absolutely correct theory but rather a picture that is,
as simple as possible and that represents phenomena as
accurately as possible. One might even conceive of two
quite different theories both equally simple and equally
congruent with phenomena, which therefore in spite of
their difference are equally correct.
—Ludwig Boltzmann, “On the Development of Methods

of Theoretical Physics in Recent Times”
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KOHLRAUSCH’S LAWS OF CONDUCTIVITY

Germany, 1874 and 1875. At low concentrations, the molar
conductivities of strong electrolytes vary as the square root of
electrolyte concentration. The conductivity of an electrolyte in
solution depends upon the sum of the contributions from its indi-
vidual ions.

Cross Reference: Ostwald’s Dilution Law, Arrhenius’s Law of Dis-
sociation, and Ohm’s Law of Electricity.

In 1874, the role of fluorides in preventing dental decay was
discovered. British statesman Winston Churchill and Hungarian-
born magician Harry Houdini were born. The Young Men’s
Hebrew Association in Manhattan was founded, and it still oper-
ates today as the “92nd Street Y.” The first public zoo in the
United States opened, in Philadelphia. German chemist Othmar
Zeidler prepared DDT, but he did not discover its insecticidal
properties. (It was not until 1939 when Swiss entomologist Paul
Mueller discovered its use as an insecticide.)

Friedrich Kohlrausch was interested in understanding how electricity is
conducted in solutions. This kind of study was difficult because direct
current caused ions in the solution to collect near the electrodes and
partially neutralize the electric potential. Additionally, products of decom-
position tended to collect on the electrodes. In order to avoid this problem
and achieve precise results, Kohlrausch decided to use alternating cur-
rent instead of direct current. As a result, he found in the early 1870s
that conductivity of solutions increased with increasing temperature. In
1876, he discovered that ions (charged particles) in dilute solutions did
not interact much with one another, and that the water molecules were
essentially the only particles that impede the flow of ions. He concluded
that “in a dilute solution every electrochemical element has a perfectly
definite resistance pertaining to it, independent of the compound from
which it is electrolyzed.” In a sense, he had found that some of the concepts
relating to Ohm’s Law of Electricity, related to resistors in circuits, could
be used to understand electrical properties of solutions of electrolytes,
which are substances that conduct electricity by facilitating the flow of ions
in solutions.

As background to Kohlrausch’s laws, note that the concept of electrical
resistance may be used to study the motion of ions in solution. Some of the
variables typically under study include the resistance R of a sample, which
increases with its length l and decreases with its cross-sectional area A.



The conductivity κ is the inverse of the resistivity of the sample, or more
precisely, κ = 1/(RA). �m is the molar conductivity, which is defined as
�m = κ/c, where c is the molar concentration of the electrolyte that is
present in the solution.

Kohlrausch’s findings can be stated as two laws: Kohlrausch’s Square
Root Law (1874) and Kohlrausch’s Law on the Independence of Migrating
Ions (1875).

KOHLRAUSCH’S SQUARE ROOT LAW (1874)

The conductivity of a solution depends on the number of ions in the solu-
tion. At low concentrations, the molar conductivities of strong electrolytes
vary as the square root of concentration:

�m = �◦
m − Kc1/2

The constant �◦
m is referred to as the limiting molar conductivity, that is,

the molar conductivity at the limit of zero concentration. At this infinite
dilution, the ions do not interact with one another. K is a constant and
usually depends on the ratio of ions that compose an electrolyte.

An electrolyte is said to be strong if a high proportion of a solute disso-
ciates to form free ions. For example, nitric acid (HNO3) is a strong elec-
trolyte and fully dissociates to ions according to HNO3 → H+1 + NO−1

3 .

KOHLRAUSCH’S LAW ON THE

INDEPENDENCE OF MIGRATING IONS (1875)

Kohlrausch also found that the molar conductivity �m of an electrolyte
is the sum of the contributions from its individual ions, that is, from the
cations or anions of the electrolyte. (A cation is an ion or group of ions
having a positive charge. An anion is a negatively charged ion or group
of ions.) The ions behave independently at dilute concentrations. If we
denote the limiting molar conductivity of the cations as λ+ and that of the
anions as λ−, then we have

�◦
m = ν+λ+ + ν−λ−,
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where ν+ and ν− are the numbers of the cations and anions per formula
unit of electrolyte. For example, ν+ = 1 and ν− = 2 for BaCl2.

Kohlrausch’s laws are perhaps the best known of the various solution
conductivity laws that scientists have discovered. Several slightly less fun-
damental laws exist that concern the conductivity of solutions, for example,
Ostwald’s Dilution Law (1888):

1
�m

= 1
�◦

m
+ �mc

Ka
(
�◦

m

)2 ,

where c is the solute concentration and Ka is the equilibrium constant
for dissociation of the solute. The law was first suggested by the German
chemist Wilhelm Ostwald (1853–1932). Ostwald’s Dilution Law is a rela-
tionship that shows the concentration dependence of the molar conduc-
tivity, and the law is often used for weak electrolytes that are not fully
ionized in solution—for example, weak acids and bases. The conductivity
depends on the number of ions in solution and thus on the degree of
ionization. We may use this equation for determining the limiting molar
conductivity of the solution by plotting 1/�m against c/�m. The intercept
at c = 0 will be 1/�◦

m. An example of a weak electrolyte is acetic acid,
which will not fully dissociate into its component ions when in an aqueous
solution HC2H3O2 ↔ H+1 + C2H3O−1

2 .
Another relationship, sometimes called Arrhenius’s Law of Dissocia-

tion (developed around 1883–1887), states that the degree of electrolyte
dissociation, a, to form ions when the electrolyte is dissolved in water
is given by a = �m/�◦

m, where �m is the molar conductance at some
concentration, and �◦

m is the molar conductance at infinite dilution. This
relationship holds only in situations where the ionic interaction effects are
minimum. If one knows the degree of dissociation, one can easily calculate
the dissociation constant. This law is named after Swedish physical chemist
Svante Arrhenius (1859–1927).

Friedrich Wilhelm Kohlrausch (1840–1910), German physicist famous
for his contributions to our understanding of the electrical conductivity of
solutions.

CURIOSITY FILE: The Kohlrausch physicist-family triumvirate is composed
of the physicist father Rudolph and two physicist sons Friedrich Wilhelm and
Wilhelm Friedrich. Of the three, the son discussed in this entry is the most
eminent, as judged from the amount of space allocated to each in the
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Dictionary of Scientific Biography. • The Kohlrausch relaxation function
in mathematics and physics is named in honor of Friedrich Kohlrausch’s
father, and it takes the form Fs(t) = f exp[−(t/τr)

β], where β is a stretching
parameter, 0< β ≤ 1, and f is a scaling factor. A unique time τr characterizes
the process. This formula, published by Kohlrausch in 1847, is often used
today in the study of lubricants and the dynamics of viscous liquids and
glasses. Friedrich Kohlrausch continued research in this area.

To some it may seem strange that the weaker [more dilute]
the solution, the greater the flow of ions (current), but this
is what Kohlrausch’s law states. His theory is correct only
over a limited range of dilutions because if the dilution
increases to the extent that no ions are available in the
solution, no electric current will be conducted between
the electrodes. In other words, absolutely pure water will
not conduct electricity.
—Robert E. Krebs, “Kohlrausch’s Law,” Scientific Laws,

Principles, and Theories

Friedrich Wilhelm Kohlrausch was born in Rinteln, Germany. His father,
Rudolph Kohlrausch (1809–1858), taught mathematics and physics and
is famous for his work with Wilhelm Weber (1804–1891), the German
physicist who, among other things, devised a logical system of units
for electricity and, with Carl Friedrich Gauss (1777–1855), investi-
gated terrestrial magnetism. In particular, Rudolph is remembered for
his collaborations with Weber that demonstrated important relation-
ships between electrostatic and electromagnetic units and the speed of
light.

Friedrich, the son, received his doctoral degree at University of
Göttingen in 1863, studying under his father’s colleague Weber. Friedrich
was appointed extraordinary professor at the University of Göttingen from
1866 to 1870. In 1866, Friedrich Wilhelm Kohlrausch collaborated with his
brother, physicist Wilhelm Friedrich Kohlrausch, on the electrochemical
properties of silver. (As you might guess, sometimes historians of science
confuse the contributions of the three Kohlrausches!)

While at the University of Göttingen, Kohlrausch published his book
Leitfaden der praktischen Physik (Guidelines to Practical Physics), which
described a variety of experimental and measuring techniques and influ-
enced German students for many years that followed.

In 1870, Kohlrausch became a professor at the Polytechnikum at
Zurich. A year later, he moved to the Darmstadt University of Technology
in Germany. At this time he showed, with his colleague Otto Grotrian,
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that the conductivity of solutions increased with increasing temperature.
While at the Darmstadt University in 1874, he demonstrated that an elec-
trolyte has a constant amount of electrical resistance. He calculated the
transfer velocity of ions by studying the dependence of conductivity upon
dilution.

Kohlrausch recognized that one convenient way to compare the con-
ductance behavior of different electrolytes is to compare the limiting
values of conductivity �m as the concentration approaches zero. As dis-
cussed in Cooper H. Langford’s The Development of Chemical Princi-
ples, for strong electrolytes, this limiting value at zero concentration,
�◦

m, is measured by performing a series of experiments and extrap-
olating experimental data in order to create a graph of �m versus
molar concentration. According to Langford, Kohlrausch was the first
to make a systematic study of strong electrolytes and tabulate values
for �◦

m

Because �◦
m is with respect to an infinite dilution solution, no interionic

interactions would take place at such a dilution. Obviously, direct measure-
ment of �◦

m is impossible, because an infinitely dilute solution will have no
conductivity contribution from the movement of ions. However, the simple
extrapolation of experimental data allows scientists to make useful tables
of values for �◦

m.
In 1875, Kohlrausch worked at the University of Würzburg, and

from 1875 to 1879, he examined numerous salt solutions and acids. This
research led him to state his law of the independent migration of ions,
in which each type of migrating ion has a specific resistance independent
of what its original molecular combination may have been. The electrical
resistance of a solution results only from the migrating ions of a given
substances.

In 1888 Kohlrausch became director of the physical laboratory at
Strasbourg University, and in 1895 he was president of the Physikalisch-
Technische Reichsanstalt (Imperial Physical Technical Institute).

Kohlrausch can be considered the “measurement king,” as a result of
his improvements to a variety of measuring devices, which included the
Kohlrausch bridge (for measuring conductivity), a tangent galvanometer
(for determining the presence, direction, and strength of an electric current
in a conductor), and a reflectivity meter. Kohlrausch was an important
scientist in the history of electrochemistry for his two laws and because his
work influenced so many other researchers. For example, Ostwald made
use of Kohlrausch’s methods and technologies in his own research, and
Ostwald’s Dilution Law is discussed above.

Ostwald himself was a fascinating person, independent of discussions
of Kohlrausch. Ostwald—a viola player, landscape painter, and color
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theorist—is best known for his work on catalysis. During his life, he
published 45 books, more than 500 articles, and thousands of reviews. In
1909, Ostwald won the Nobel Prize for Chemistry. He devoted a great
amount of his time to promoting of world peace; however, his attempts
to promote Ido, an improved version of the universal language Esperanto,
did not achieve lasting results.

Friedrich Wilhelm Kohlrausch died in January of 1910 in Marburg,
Germany. Iwan Rhys Morus eulogizes the life of Kohlrausch in When
Physics Became King:

Looking back over his career in 1900, Kohlrausch opined that
“measuring nature is one of the characteristic activities of our
age.” A colleague . . . remarked that “no other physicist has sur-
passed Kohlrausch in the skill and care with which he used
instruments and methods.” He had [invented] dynamometers, gal-
vanometers, magnetometers, and reflectometers. . . . Working with
Weber, he had devoted almost forty years to working at determin-
ing the values of electrical and magnetic constants and units. . . . He
[steered] the Reichsanstalt [scientific institution] towards help-
ing ensure German domination of the expanding electrical
industries.
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INTERLUDE: CONVERSATION STARTERS

Mathematicians, astronomers, and physicists are often
religious, even mystical; biologists much less often;
economists and psychologists very seldom indeed. It is
as their subject matter comes nearer to man himself that
their antireligious bias hardens.
—C. S. Lewis, “Religion without Dogma?” The Grand

Miracle: And Other Selected Essays on Theology and
Ethics from God in the Dock

What is the status of claims that are typically cited as
“laws of nature”—Newton’s Laws of Motion, the Law
of Universal Gravitation, Snell’s Laws, Ohm’s Law, the
Second Law of Thermodynamics, the Law of Natural
Selection? Close inspection, I think, reveals they are nei-
ther universal nor necessary—they are not even true.
—Ronald N. Giere, Science Without Laws, 1999

Mathematicians define things, otherwise they wouldn’t
have a clue what they are talking about. This is so
because everything in mathematics was invented by peo-
ple. Contrariwise, nothing of the substance of physics was
invented by us: Nature is out yonder and there is not
a shred of evidence that the Universe cares a fig about
humans or other beings. The formulations of physics are
uniquely ours, but those, of course, are mathematics.
That is why, contrary to popular opinion, physicists never
actually define anything physical.
—Vincent Icke, The Force of Symmetry

Science is not a system of certain, or well-established
statements, nor is it a system which steadily advanced
toward a state of finality.
—Karl Popper, The Logic of Scientific Discovery
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CURIE’S MAGNETISM LAW AND THE
CURIE-WEISS LAW

France, 1895, generalized in 1907. The magnetic susceptibility of
paramagnetic materials is inversely proportional to the absolute
temperature. A critical temperature (the Curie temperature)
exists, above which the magnetic properties disappear.

In 1895, the Armenians were massacred in Turkey. H. G. Wells
published The Time Machine. Italian-Irish electrical engineer
Guglielmo Marconi invented “radio telegraphy.” German physi-
cist Wilhelm Röntgen discovered X-rays. American businessman
King Camp Gillette invented a safety razor with a disposable
blade, along with the business model that eventually made him
famous. Baseball superstar Babe Ruth and U.S. boxing cham-
pion Jack Dempsey were born. W. E. B. Du Bois became the first
African American to receive a Ph.D. from Harvard University.
Irish physicist George Fitzgerald suggested that distance con-
tracts in the direction a body is traveling.

CURIE’S MAGNETISM LAW

French physical chemist Pierre Curie discovered the following law by
fitting experimental results to a simple model. In particular, Curie’s Law
illuminates the relationship between the magnetization of certain kinds of
materials and the applied magnetic field and temperature:

M = C · Bext

T

Here, M is the resulting magnetization, and Bext is the magnetic flux density
of the applied (external) field, measured in teslas. T is the absolute tem-
perature measured in degrees kelvin, and C is the Curie point, a constant
that depends on the material. According to Curie’s Law, if one increases
the magnetic field, one tends to increase the magnetization of a material
in that field. As one increases the temperature while holding the magnetic
field constant, the magnetization decreases.

Sometimes, Curie’s Law is written as

χ = C
T

,



where χ = M/Bext is the magnetic susceptibility, that is, the degree of
magnetization of a material in response to a magnetic field.

Curie’s Law is applicable to paramagnetic materials, such as aluminum
and copper, in which atomic magnetic dipoles have a tendency to align
with an external magnetic field. These materials can become very weak
magnets, and their attractive force can be measured by using sensitive
instruments. In particular, when subject to a magnetic field, paramagnetic
materials suddenly attract and repel like standard magnets. When there is
no external magnetic field, the magnetic moments of particles in a para-
magnetic material are randomly oriented, and the paramagnet no longer
behaves as a magnet. (Generally speaking, “magnetic moment” refers to
the magnetic strength and direction, or alignment of the magnetic poles, at
a given time.) When placed in a magnetic field, the moments generally
align parallel to the field, but this alignment may be counteracted by
the tendency for the moments to be randomly oriented due to thermal
motion.

Curie’s Law holds only for a limited range of values of Bext. In
other words, Curie’s Law works only for samples in which a rela-
tively small fraction of the atoms are aligned with the magnetic field.
When the aligned fraction becomes sufficiently large, Curie’s Law no
longer applies, and the magnetization M cannot increase indefinitely
with increasing external magnetic field. Obviously, once the dipoles
are nearly 100% aligned, further increases in the magnetization are
impossible.

Paramagnetic behavior can also be observed in ferromagnetic mate-
rials, such as iron and nickel, that are above their Curie tempera-
tures, Tc. The Curie temperature is a temperature above which the
materials lose their ferromagnetic ability, that is, the ability to pos-
sess a net (spontaneous) magnetization even when no external mag-
netic field is nearby. For iron, the Curie temperature is 1,043◦K (770◦C).
Ferromagnetism is responsible for most of the magnets you encoun-
tered at home, such as permanent magnets that may be sticking to
your refrigerator door, or the horseshoe magnet you played with as a
child.

As discussed above, paramagnetism is a “weaker form” of magnetism.
Paramagnetic materials in magnetic fields act like magnets, but when the
field is removed, thermal motion will quickly disrupt the magnetic align-
ment. For most atoms and ions, the magnetic effects of the electrons cancel
so that a particle is not magnetic and does not exhibit paramagnetism. This
is true for gases like neon and for the Cu+ ions (a copper atom from which
one electron has been removed) that compose ordinary copper. For other
atoms or ions, such as Mn2+, the magnetic effects do not cancel, so such
atoms have magnetic dipoles.
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THE CURIE-WEISS LAW

The Curie-Weiss Law describes the magnetic susceptibility χ, defined
above for Curie’s Law, in the paramagnetic region above the Curie
point:

χ = C
T − Tc

Here, C is a material-specific Curie constant; T is absolute tempera-
ture measured in degrees kelvin, and Tc is the Curie temperature mea-
sured in degrees kelvin. At the temperature T = Tc, a spontaneous mag-
netization exists. Note that this law is an extension of Curie’s Law
and takes into account the Curie temperature, a specific temperature
that changes depending on the nature of a substance and is approx-
imately equal to 0 for paramagnets. Ferromagnetic substances have a
large, positive value for Tc, indicative of their strong interactions. Sub-
stances called antiferromagnetics, such as chromium, have a negative value
for Tc.

In other words, ferromagnetic materials show ferromagnetic behav-
ior only when the temperature is less than Tc. When T > Tc the ferro-
magnetic material has the standard paramagnetic behavior. The Curie-
Weiss Law, which gives the magnetic susceptibility as a function of
temperature, is only valid above the Curie temperature. Below Tc, the
atomic magnetic moments tend to align in a common direction within
the ferromagnetic material. The spontaneous magnetization below the
Curie temperature arises from an internal magnetic field called the Weiss
molecular field, in honor of French physicist Pierre Weiss (1865–1940).
This field is proportional to the magnetization of small domains in the
material.

A relative magnetic susceptibility of a material may be determined by
placing a sample of the material inside a small coil and measuring the
inductance of the coil with and without the sample. If the inductance is
measured as a function of temperature from above to below the Curie
temperature, the Curie-Weiss Law shown in the preceding formula can
be used to determine the Curie temperature.

Let us review before proceeding to discussions of magnetic domains
and the sources of magnetism. This Curie-Weiss Law comes from Weiss’s
theory, proposed for ferromagnetic materials, which incorporates the
interactions between magnetic moments. Tc can be positive, negative, or
zero. When Tc = 0, then the Curie-Weiss Law is the same as the Curie Law.
When Tc is nonzero, then an interaction between neighboring magnetic
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moments exists, and the material is paramagnetic only above a certain
transition temperature. If Tc is positive, then the material is ferromagnetic
below the Curie temperature. The equation is valid only when the material
is in a paramagnetic state.

To help us understand what these laws and terms really mean, it is use-
ful to review the nature of magnetism more generally. Recall that electric
currents generate magnetic fields. If a substance alters a magnetic field,
we can visualize this alteration in terms of currents within the substance.
Many atoms actually act like tiny bar magnets and can be imagined as
containing tiny current loops. Some atoms—such as carbon, copper, and
lead—because of the orientation of their electrons, have no permanent
magnetic moments. Other atoms have permanent magnetic moments and
may exhibit the property of paramagnetism. If we subject these atoms
to a magnetic field, the field tends to align the magnetic moments with
the field, and these atoms actually increase the magnetic field into which
they are placed. As discussed, these paramagnetic effects are tempera-
ture dependent. Paramagnetic effects decrease with increasing tempera-
ture due to more energetic thermal motions that make alignment more
difficult.

Iron, nickel, and cobalt react strongly in a magnetic field and are said
to be ferromagnetic and have high values of χ. These atoms have large
magnetic moments, and atoms in small regions of a substance, called
domains, may align so that their magnetic moments are all in the same
direction. For example, in an unmagnetized bar of iron, these domains
exist, but the alignment direction of the magnetic moment in each domain
may be random with respect to neighbor domains. Domains may be as
large as a fraction of a millimeter in some materials. If an external mag-
netic field is applied to a piece of iron, the domains aligned with the
field direction grow at the expense of unaligned domains. This causes an
augmentation of the applied field. Domains actually grow by the motion of
domain boundaries. At very high applied field, almost all the atoms may
be aligned with the field. However, if the temperature is raised sufficiently
high (beyond the Curie temperature), the atoms will break loose from each
other’s influence, and the alignment is lost. The Curie temperatures for
several ferromagnetic materials are listed in table 10. As mentioned, above
the Curie temperature, these materials behave like other paramagnetic
materials.

All elements can be classified in terms of their magnetic behavior
and fall into one of several categories according to their bulk magnetic
susceptibility (see table 11). Most elements are either diamagnetic or para-
magnetic at room temperature. Ferrimagnetic properties are observed in
compounds. Only the elements iron, cobalt, and nickel are ferromagnetic
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table 10 Curie Temperatures for Several
Ferromagnetic Materials

Material Tc (◦K)

Iron 1,043

Nickel 633

Iron and nickel alloy (50% each) 803

Gadolinium 293

Gadolinium chloride (GdCl3) 2.2

From D. H. Martin’s Magnetism in Solids.

at and above room temperature. At temperatures above Tc, the suscepti-
bility varies according to the Curie-Weiss Law.

Pierre Curie (1859–1906) and Pierre Weiss (1865–1940), French physi-
cists responsible for the Curie-Weiss law showing the dependence of mag-
netic susceptibility on temperature.

CURIOSITY FILE: Pierre Curie considered himself to have a feeble mind and
never went to elementary school. He later shared the Nobel Prize with his
wife, Marie. Marie subsequently received a second Nobel Prize, making her
the first person to win or share two Nobel Prizes. • The Curie’s elder
daughter and her husband also received the Nobel Prize. • The 2006
Nobel Prize awarded to Roger Kornberg for his work on the transcription
of genetic information made him and his father the sixth father–son pair to
win Nobel Prizes since the prizes were first awarded in 1901 and the eighth
set of parent and child laureates.

Every [scientific] discovery, however small, is a perma-
nent gain.
—Pierre Curie’s 1984 letter to Marie, urging her to join

him in “our scientific dream”

We must eat, drink, sleep, be idle, love, touch the sweet-
est things of life and yet not succumb to them. It is
necessary that, in doing all this, the higher thoughts to
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table 11 Materials and Their Magnetic Behaviors

Type Susceptibility χ Magnetic Behavior

Magnetic Moments of Atomsa Magnetic Field Effect

Diamagnetism Small, negative (e.g.,
χ = −2.7 × 10−6 for gold)

Atoms have no magnetic
moment

As the external field increases, the
material’s magnetization decreases

Paramagnetism Small, positive (e.g.,
χ = 21.0 × 10−6 for platinum)

Atoms have randomly oriented
magnetic moments

As the external field increases, the
material’s magnetization increases

Ferromagnetism Large, positive; a function of
applied field; microstructure
dependent (e.g., χ ∼ 100,000
for iron)

Atoms have aligned magnetic
moments, facing one
direction

As the external field increases, the
material’s magnetization increases
but rapidly reaches a plateau value
for magnetization

Antiferromagnetism Small, positive (e.g.,
χ = 3.6 × 10−6 for chromium)

Atoms have aligned magnetic
moments

As the external field increases, the
material’s magnetization increases

Ferrimagnetism Large, positive; a function of
applied field; microstructure
dependent (e.g., χ ∼ 3 for
barium ferrite)

Atoms have aligned magnetic
moments

As the external field increases, the
material’s magnetization increases
but rapidly reaches a plateau value
for magnetization

aCharacteristics in this column refer to the material in the absence of a magnetic field.
Adapted from the University of Birmingham’s Applied Alloy Chemistry Group, “Classification of Magnetic Materials.”
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which one is dedicated remain dominant and continue
their unmoved course in our poor heads. It is necessary to
make a dream of life, and to make of a dream a reality.
—Pierre Curie, quoted in Marie Curie’s Pierre Curie

Radium could become very dangerous in criminal hands,
and here the question can be raised whether mankind
benefits from knowing the secrets of Nature. . . .
—Pierre Curie’s Nobel Prize speech, “Radioactive Sub-

stances, Especially Radium”

The Curie Law and more general Curie-Weiss Law reflect the combined
efforts of Pierre Curie and Pierre Weiss. As discussed above, the transi-
tion from ferromagnetic to paramagnetic properties at the Curie point is
related to a change in the relationship of the magnetic susceptibility to
the temperature. In 1895, Curie asserted that above the Curie point, the
susceptibility varies inversely as the absolute temperature. In 1907, Pierre
Weiss showed this was not generally true, and so he modified Curie’s Law
to account for the susceptibility of paramagnetic substances above the
Curie point—so that the susceptibility varies inversely as the excess of the
temperature about that point. The Curie-Weiss Law does not operate at
or below the Curie point.

Pierre Curie is famous for his research in the fields of radioactivity,
crystallography, magnetism, and piezoelectricity, which is the ability of
certain crystals to generate a voltage when the crystal is mechanically
stressed. He became so devoted to science and scientific research that
he essentially spent most of his life in a laboratory. The line between his
private and scientific life became totally blurred.

Curie was born in Paris, where his father was a physician. His father
provided Curie’s early education at home before Curie entered the Faculty
of Sciences at the Sorbonne. Of Curie’s younger years, his wife, Marie,
would later write in her 1923 biography Pierre Curie:

Pierre passed his childhood entirely within the family circle; he
never went to the elementary school. . . . His earliest instruction
was given him first by his mother and was then continued by
his father and his elder brother. . . . Pierre’s intellectual capacities
were not those which would permit the rapid assimilation of a
prescribed course of studies. His dreamer’s spirit would not sub-
mit itself to the ordering of the intellectual effort imposed by the
school.

He himself believed that he had this slow mind and often said
so. . . . It seems to me, rather, that . . . it was necessary for him to
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concentrate his thought with great intensity upon a certain definite
object, in order to obtain a precise result, and that it was impossible
for him to interrupt or to modify the course of his reflections to suit
exterior circumstances.

As a young teenager, Curie had a love of mathematics, especially
spatial geometry, which would later be of value to him in his work on
crystallography. In 1880, Curie and his brother Jacques demonstrated
that electricity was produced when certain crystals were compressed—a
phenomenon now called “piezoelectricity.” Their demonstrations involved
such crystals as tourmaline, quartz, and topaz. In 1881, the brothers
demonstrated the reverse effect, namely, that electric fields could cause
some crystals to deform. Although this deformation is small, it was later
found to have practical applications in the production and detection of
sound and the focusing of optical assemblies. Piezoelectric applications
have been used in the design of phonograph cartridges, microphones,
and ultrasonic submarine detectors. Today, piezoelectric applications are
encountered commonly in electric cigarette lighters, which use a piezoelec-
tric crystal to produce a voltage in order to ignite the gas from the lighter.
The U.S. military is exploring the possible use of piezoelectric materials in
soldier’s boots for generating power in the battlefield.

In 1884, Curie published a memoir on subjects that included crystal
symmetry. Another article on symmetry and its repetitions appeared in
1885. While working on his exhaustive studies of the groups of symmetry
that might exist in nature, Curie sought wider application of his ideas and
wrote, as quoted in Marie Curie’s Pierre Curie, “I think it is necessary to
introduce into physics the ideas of symmetry familiar to crystallographers.”

In 1895, Curie obtained his Doctor of Science degree and was
appointed professor of physics. His doctoral thesis was on various forms
of magnetism. His early work with his brother Jacques focused on crys-
tallography and piezoelectric effects. Later, he turned his attention to
magnetism, and he built many sophisticated apparatuses, which made use
of balances, electrometers, and piezoelectric crystals.

Curie designed a sensitive torsion balance for measuring various mag-
netic effects, and his equipment proved useful to other researchers. Curie’s
interest in magnetism led him to his discovery of Curie’s Law, discussed
above. The law shows how a paramagnetic material is sensitive to tem-
perature. The material constant in Curie’s Law is known as the Curie
constant. He also discovered the transition temperature (or Curie point),
above which ferromagnetic materials lose their ferromagnetic behavior.

His doctoral thesis work on the magnetic properties of materials at
different temperatures actually started around 1891. His precise words
relating to his objectives are found in his wife’s biography:
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From the point of view of their magnetic properties, bodies may
be divided into two groups: diamagnetic bodies, bodies only feebly
magnetic, and paramagnetic bodies. At first sight the two groups
seem entirely separate. The principal aim of this research has been
to discover if there exist transitions between these two states of
matter, and if it is possible to make a given body pass progressively
through them. To determine this I have examined the properties
of a great number of bodies at temperatures differing as much as
possible, in magnetic fields of varying intensities.

My experiments failed to prove any relation between the prop-
erties of diamagnetic and those of paramagnetic bodies. And the
results support the theories which attribute magnetism and dia-
magnetism to causes of a different nature. On the contrary, the
properties of ferro-magnetic bodies and of bodies feebly magnetic
are intimately united.

Curie’s experimental work presented many challenges, because it
necessitated the measuring of very minute forces within a container sub-
jected to very high temperatures.

In 1894, Curie met his future wife when she was living in Paris and
studying at the Sorbonne. His affection is evident in his love letter to Marie
when she had gone back to her beloved Poland to visit her father:

We have promised each other (is it not true?) to have, the one for
the other, at least a great affection. Provided that you do not change
your mind! For there are no promises which hold; these are things
that do not admit of compulsion.

It would, nevertheless, be a beautiful thing in which I hardly dare
believe, to pass through life together hypnotized in our dreams: your
dream for your country; our dream for humanity; our dream for
science. Of all these dreams, I believe the last, alone, is legitimate.

Marie later noted that Curie was so dedicated to scientific study that he
did not marry until he was 36 because he did not believe that a marriage
could meet his strict requirements. Pierre and Marie married in 1895. Pete
Moore writes of their relationship in E=mc2: The Great Ideas That Shaped
Our World:

Shortly after graduating, Marie married renowned physicist Pierre
Curie. It was a relationship that was initially based on mutual inter-
est in science, but which prospered. Curie wrote once: “I have the
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best husband one could dream of. I could never have imagined
finding one like him. . . . ”

In 1896, French physicist Antoine Henri Becquerel (1852–1908) discov-
ered that a uranium compound, when placed upon a photographic plate
covered with black paper, develops the plate in a manner similar to light.
The Curies grew intrigued, and they collaboratively studied radioactive
substances, making use of poor laboratory equipment while at the same
time attempting to manage a heavy teaching load in order to earn a living.
In fact, they conducted most of their pioneering research in a room that
had previously been used as a small storeroom and machine shop. Later,
they worked in a wooden shed with an unfinished floor and a leaky glass
roof. The room had no hoods to carry away the poisonous gases produced
during their experiments.

In 1898, the Curies announced the discovery of radium and polonium
and later conducted landmark studies into the properties of radioactivity
and radioactive byproducts. (Polonium was named after Poland, Marie’s
birthplace.) Pierre Curie and one of his students observed heat production
from radium particles, which, in effect, was the first discovery of nuclear
energy. He and his colleagues were the first to report on the decay of
radioactive materials that was accompanied by skin burns. By using mag-
netic fields, he discovered that some radioactive particles had no charge
while others were either positively or negatively charged.

During 1899 and 1900, the Curies published a memoir on the discov-
ery of the radioactivity produced by radium—along with accounts on its
luminous, electrical, and chemical properties. The Curies, along with Bec-
querel, were awarded the Nobel Prize for Physics in 1903 “in recognition
of the extraordinary services they have rendered by their joint researches
on the radiation phenomena. . . . ” The Curies were also awarded the Davy
Medal of the Royal Society of London in 1903.

Pierre Curie’s work was published in many journals such as the
Comptes Rendus de l’Académie des Sciences, the Journal de Physique,
and the Annales de Physique et Chimie. In 1905, Curie was elected to the
Academy of Sciences.

In 1906, Pierre Curie was killed in a Paris street, his head crushed under
a carriage wheel during a rainstorm. Had he not died in this manner, he
possibly would have succumbed to the radiation poisoning that later killed
his beloved Marie, who died from leukemia caused by her exposure. In
fact, while working with radium, Curie had voluntarily exposed his arm
to radium for several hours to understand its effects. This exposure had
created a lesion resembling a burn that required several months to heal.

Barbara Goldsmith, author of Obsessive Genius: The Inner World
of Marie Curie, writes of the carelessness with which radioactivity was
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treated, as judged by the standards of today. Here, she describes physicist
Ernest Rutherford’s 1903 visit to the Curies:

After the last toast, the group strolled out into the garden. In the
dark of the night, Pierre reached in his vest pocket and drew forth a
glass tube of radium bromide. Its magnificent luminosity gleamed as
he held it up, illuminating an expression of rapture on Marie’s face.
Rutherford observed that it also illuminated the cracked flesh and
burned skin of Pierre’s irrevocably destroyed fingers.

After Pierre Curie’s death, the Faculty of Sciences of Paris asked Marie
to take her husband’s place in order to assure the continuance of his work.
The French Society of Physics posthumously honored Pierre Curie in 1908
by issuing a complete publication of his works, a single volume of about
600 pages.

Marie received the Nobel Prize in Chemistry in 1911 “in recognition
of her services to the advancement of chemistry by the discovery of the
elements radium and polonium, by the isolation of radium and the study
of the nature and compounds of this remarkable element.” She was the
first person to win or share two Nobel Prizes.

The Curies’ elder daughter, Irène (1897–1956), married French physi-
cist Jean Frédéric Joliot (1900–1958), and the husband and wife team
received the Nobel Prize for Chemistry in 1935. The younger daughter,
Eve, wrote Madame Curie, a famous biography of her mother, published
in 1938. As mentioned above, Marie Curie had earlier written a short
biography of her husband, Pierre, in which she described the struggling
scientist who had earlier been denied financial and other support for his
work.

As a result of working with the uranium-rich ore called pitchblende,
Marie Curie’s lab assistant, Blanche Wittman, suffered from radiation
poisoning. Both of her legs and one arm had to be amputated. She used a
wagon to get around and lived in Marie’s Paris apartment, where she died
in 1913. Per Olov Enquist’s The Book About Blanche and Marie, a “reality-
based” novelization of their relationship, was published in 2006. Luan
Gaines, reviewer for Curled Up with a Good Book, eloquently describes
the plight of Wittman:

Think of Blanche and Marie, heads bent over their shining experi-
ments, the poisonous element that spells the ruin of Blanche’s extra-
ordinary beauty and deforms Curie’s right hand, the two basking
in an island of friendship and mutual admiration while hovering
over luminescent death. Picture Blanche near the end of her days,
ensconced in her wooden box, reduced to a torso with only a right
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arm and hand to pen her thoughts, dissecting the nature of love
and woman, radiation the fusion of all yet the instrument of her
death.

In the mid-1990s, Marie Curie’s publications, diaries, and workbooks
were sent to the Bibliothèque Nationale, a national library in Paris.
Because the papers were still highly radioactive, before they could be
studied they had to be decontaminated through a two-year process.

Pierre Weiss was born in Mulhouse, France, and is famous for his theories
of ferromagnetism that accounted for various observations such as the
sudden disappearance of ferromagnetism above the Curie temperature.
Weiss’s father owned a clothing shop in France. In 1887, Weiss gradu-
ated, first in his class, from the Polytechnikum in Zurich with a degree
in engineering. In 1902, he became a professor at the Polytechnikum,
where he directed the physics laboratory. As discussed above, in 1907
Weiss modified Curie’s Law so that it accounted for the susceptibility
of paramagnetic substances above the Curie point. Also in 1907, Pierre
Weiss postulated the first modern theory of permanent magnets, which
he suggested contained tiny individual magnetic domains. In 1918, Weiss
discovered “magnetocaloric effects” and showed how thermodynamics can
be used to calculate the temperature variation of a magnetic substance
placed in a varying field.

We know little of Weiss’s personal life except for his 1898 marriage
to Jane Rances, whose mother was of English origin. Weiss was tall and
distinguished looking with his large moustache. The Weisses had one
daughter, Nicole, who in 1938 married Henri Cartan (born 1904), a famous
French mathematician who made fundamental advances in the theory of
analytic functions. After Weiss’s wife died in 1919, he waited three years
and then married Marthe Klein, an X-ray technician instructor and a
university-level certified physics teacher. Marthe is perhaps best remem-
bered for a letter she wrote in 1919, which shows the difficulty that women
had in rising through the scientific establishment:

On m’a donné un service où j’ai à enseigner de l’histoire naturelle à
des gamines de 10 à 14 ans! C’est pour prouver que ce que j’ai fait ici
ne devait pas servir à mon enseignement. J’ai même à faire des cours
d’économie domestique!

[They have given me a job in which I am to teach Natural History
to girls between 10 and 14 years old. It’s to prove that what I have
done in here mustn’t be used for my teaching activity. I even have
to take some classes in Home Economics!]

c u r i e ’ s m a g n e t i s m l a w a n d t h e c u r i e - w e i s s l a w | 403



Weiss was influential in his ideas about the small magnetic domains that
exist within magnets. According to Etienne Du Tremolet de Lacheisserie
and colleagues in Magnetism: Fundamentals:

Pierre Weiss assumed that at the macroscopic scale (typically for
sizes larger than one micrometer), a ferromagnetic material is spon-
taneously divided into domains. Each domain has spontaneous mag-
netization, but from domain to domain the resulting magnetiza-
tion does not have the same direction. Thus, at the macroscopic
level, there is no resulting moment. . . . [Today] magnetic domains
are named Weiss domains. They are separated by walls, the Bloch
walls, which consist of a certain number of atomic planes in which
the orientation of magnetic moments more or less progressively
passes from that of one domain to that of one another.

I conclude this entry by returning to the death of Pierre Curie. In his
biography, Marie Curie published extracts from published appreciations of
her husband that she received after his accident. Perhaps the most moving
are the words of French mathematician Henri Poincaré (1854–1912):

On the night preceding his death . . . I sat next to him and he talked
with me of his plans and his ideas. I admired the fecundity and the
depth of his thought, the new aspect which physical phenomena
took on when looked at through that original and lucid mind. I felt
that I better understood the grandeur of human intelligence—and
the following day, in an instant, all was annihilated. A stupid acci-
dent brutally reminded us how little place thought holds in the face
of the thousand blind forces that hurl themselves across the world
without knowing whither they go, crushing all in their passage. . . .

In foreign countries the most illustrious scientists joined in trying
to show the esteem in which they held our compatriot, while in our
own land there was no Frenchman, however ignorant, who did not
feel more or less vaguely what a force his nation and humanity had
lost. . . . True physicists, like Curie, neither look within themselves,
nor on the surface of things, but they know how to look through
things. . . . He never separated the worship of this ideal from what he
rendered to science, and he gave us a shining example of the high
conception of duty that may spring from a simple and pure love of
truth. It matters little in what God he believed; it is not the God, but
faith, that performs miracles.
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A lunar crater with a diameter of 151 kilometers was named after Pierre
Curie and approved in 1970 by the International Astronomical Union
General Assembly.
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INTERLUDE: CONVERSATION STARTERS

If a lunatic scribbles a jumble of mathematical symbols,
it does not follow that the writing means anything merely
because to the inexpert eye it is indistinguishable from
higher mathematics.
—Eric Temple Bell, quoted in J. R. Newman’s The World

of Mathematics

Laws of nature are those fundamental laws of physics
which hold everywhere within the universe. . . . There are
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only a few of them, [e.g.] F(x, t) = m(x)·d2s(x, t)/dt2.
Another kind of law of nature are special force laws,
e.g. the classical laws for gravitational force or electrical
force. . . . Laws of nature are strictly true—but at the cost
of not per se being applicable to real systems, because
they do not specify which forces are active. System laws,
in contrast . . . refer to particular systems of a certain kind
in a certain time interval �t . They contain or rely on a
specification of all the forces. . . . Examples of system laws
in classical physics are Kepler’s laws of elliptic planetary
orbits . . . and the classical wave equations. . . .
—Gerhard Schurz, “Normic Laws, Non-monotonic Rea-

soning, and the Unity of Science”

There are whole walls in libraries covered by countless
shelves which are bending under the books on electron-
ics and quantum electrodynamics. But in none of those
books will you find a proper definition of an electron, for
the very good reason that we haven’t the foggiest idea
what an electron “is.”
—Vincent Icke, The Force of Symmetry

Not only does God play dice with the universe but,
if he did not, the complex universe we see around us
would not exist at all. We owe everything to random-
ness. . . . Quantum events happen randomly, for no reason
at all. . . . The diversity we see around us is created by
quantum theory exploring all possible evolutions forward
in time. . . . ”
—Marcus Chown, “It’s All Down to a Roll of the Dice,”

New Scientist (excerpts of interview with Stephen Hsu
and Nick Evans)
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1900 AND BEYOND
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It seems we all face a fundamental paradox in that it’s
impossible to think about the universe except in terms of
its relation to humans. You can’t make sense of language,
or even scientific laws or mathematics, without the con-
cept of an observer, and yet at the same time we know
perfectly well that humans are a very late addition: the
universe was here long before us and will be here long
after us.
—Michael Frayn, quoted in “All the World’s a Stage,”

New Scientist, September 23, 2006

The universe might actually be able to fine-tune itself. If
you assume the laws of physics do not reside outside the
physical universe, but rather are part of it, they can only
be as precise as can be calculated from the total informa-
tion content of the universe. The universe’s information
content is limited by its size, so just after the big bang,
while the universe was still infinitesimally small, there
may have been wiggle room, or imprecision, in the laws
of nature.
—Patrick Barry, “What’s Done Is Done,” New Scientist,

September 30, 2006

Nature, and Nature’s laws lay hid in night: God said: “Let
Newton be!” and all was light.
—Alexander Pope, “Epitaph Intended for Sir Isaac

Newton”

It did not last: the Devil howling “Ho! Let Einstein be!”
restored the status quo.
—John Collings Squire (1884–1958), British journalist,

“In Continuation of Pope on Newton”
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PLANCK’S LAW OF RADIATION

Germany, 1900. The amount of energy at a particular wavelength
radiated by a blackbody depends on the temperature of the body
and the wavelength. Planck’s formulation is notable because it
incorporates the earliest known practical application of quantum
theory.

Cross Reference: Albert Einstein, Rudolf Clausius, Kirchhoff’s
Law of Thermal Radiation, Wien’s Displacement Law, the Stefan-
Boltzmann Radiation Law, the Rayleigh-Jeans Law, and Wien’s
Radiation Law.

In 1900, Sigmund Freud published The Interpretation of Dreams.
Hawaii officially became a U.S. territory and was granted self-
governance. American inventor Cornelius J. Brosnan filed for
a U.S. patent for a paperclip. He called his invention the
“Konaclip.”

Quantum theory, which suggests that matter and energy have the prop-
erties of both particles and waves, had its origin in pioneering research
concerning hot objects that emit radiation. For example, imagine the coil
on an electric heater that glows brown and then red as it gets hotter.
More particularly, Planck’s Law of Radiation quantifies the amount of
energy emitted (at a particular wavelength) by a particular kind of hot
glowing object called a blackbody. A blackbody, discussed in “Kirchhoff’s
Electrical Circuit and Thermal Radiation Laws” (see part III), is an object
that emits and absorbs the maximum possible amount of radiation at any
given wavelength and at any given temperature. I describe blackbodies
further at the end of this section.

Thermal radiation is radiant energy emitted by an object as a result of
the temperature of the object. The spectrum of the thermal radiation from
a hot body is continuous over a range of wavelengths. Usually, the amount
of radiation at any given frequency is different than at other frequencies.
Many of the objects that we encounter in our daily lives emit a large
portion of their radiation spectrum in the infrared, or far-infrared, portion
of the spectrum, and this radiation is not visible to our eyes. However, as
the temperature of a body increases, the dominant portion of its spectrum
shifts so that we can see a glow from the object.

Even though such thermal radiation spans a range of wavelengths,
scientists are often interested in the radiation emitted per unit wave-
length, called monochromatic radiation, and the amount of such radia-
tion depends on the temperature. For example, the Sun has an effective



surface temperature of about 5,800◦K and emits most of its energy below
a wavelength of 3 micrometers. Earth, which is much cooler, emits most
of its energy at longer wavelengths. In particular, Earth has a surface
temperature of about 290◦K, and it emits virtually all of its radiation at
wavelengths greater than 3 micrometers.

We can use the term Ebλdλ to denote the radiant energy emission
per unit time and per unit area from a blackbody at wavelength λ in
the wavelength range dλ. Ebλ is known as the monochromatic blackbody
emissive power. Planck’s Law, discovered in 1900, shows how this emissive
power is distributed among different wavelengths for a perfect radiator
at temperature T. Thus, an ideal radiator, or blackbody, emits radiation
according to Planck’s Law:

Ebλ = C1

λ5(eC2/λT − 1)
,

where Ebλ is the monochromatic emissive power of a blackbody at absolute
temperature T (units of W/m3), λ is the wavelength (m), T is the absolute
temperature of the body (◦K), C1 is the first radiation constant (3.7415×
10−16 W·m2), and C2 is the second radiation constant 1.4388 × 10−2 (m·K,
where the K indicates degrees kelvin). (Another way of writing this
law, involving Planck’s constant and Boltzmann’s constant, is described
shortly.)

It is instructive for students to draw plots of this function for different
values of wavelength. At temperatures below about 5,800◦K, the emission
of radiation occurs to a great extent between wavelengths of 0.2 and 50
micrometers. The wavelength for which the emissive power is maximum,
Ebλ(λmax, T), decreases with increasing temperatures. In general, only a
small amount of the total emitted radiation is visible to the eye. At about
800◦K, an object glows with a dull red color.

WIEN’S DISPLACEMENT LAW

One of the earliest laws concerning blackbodies is Wien’s Displacement
Law, which was discovered in 1893 by German physicist Wilhelm Wien
(1864–1928). Wien’s Displacement Law can actually be derived from
Planck’s Law by setting the derivative of the formula to 0 in order to reveal
the relationship between the wavelength λmax at which the emissive power
is maximum and the absolute temperature:

λmaxT = 2.898 × 10−3 m · K
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In other words, as the temperature of an object increases, the wavelength
of emitted radiation decreases. The product of the absolute temperature
and the wavelength corresponding to the peak of the emissivity power
curve is a constant. Wien was awarded a Nobel Prize for work relating
to his law.

If we were to use a value of 5,780◦K for the Sun’s surface tempera-
ture, we would calculate a peak emission at 500 nm, according to Wien’s
Displacement Law. Electromagnetic radiation of 500 nm is roughly in the
middle of the visual spectrum. (Yellow light has a wavelength of about
570 nm. Sodium lamps, often used in parking lots, emit a yellow light of
wavelength 589 nm.)

This formula makes clear the origins of a star’s color because the
color relates to different surface temperatures as specified by Wien’s
relationship. Red stars are cool, with a surface temperature of around
3,000◦K, yellow ones are closer to 6,000◦K, and white stars are about
10,000◦K. Blue stars are extremely hot at about 20,000◦K. Wien’s Displace-
ment Law also means that we can simply look at a star and estimate its
temperature.

STEFAN-BOLTZMANN RADIATION LAW

German physicist Gustav Kirchhoff (1824–1887) had realized that the
emission from a blackbody (a concept he created and a word he coined) is a
function of the wavelength and the temperature, but he could not precisely
articulate the function. Kirchhoff had shown that the heat radiation that
occurs from a blackbody at a particular temperature was independent of
the nature of the material, and that it depended only on temperature and
wavelength. In fact, if one considers the entire wavelength spectrum, the
total emission Eb(T) of radiation per unit surface area of a blackbody per
unit time is given by the Stefan-Boltzmann Radiation Law:

Eb(T) = σT4

This expression gives the total radiated power per unit area of the black-
body, summed over all wavelengths. Joseph Stefan (1835–1893)—the
Slovene-Austrian physicist, mathematician, and poet—empirically found
his law in 1879 through experiments, and Ludwig Boltzmann (1844–1906)
derived the law in 1884 from theoretical principles involving thermody-
namics. Here, T is the absolute temperature of the area in degrees kelvin,
and σ is the Stefan-Boltzmann constant [5.67 × 10−8 W/(m2 · K4)]. The
constants C1 and C2 in Planck’s Law are related to the Stefan-Boltzmann
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constant σ as follows:

σ =
(

π
C2

)4 C1

15
= 5.670 × 10−8 W/(m2 · K4)

Interestingly, Stefan was able to determine an approximate temperature of
the Sun’s surface using his law, because he had a reasonable estimate of the
Sun’s energy flux. The value he obtained was 5,700◦K for the temperature
of the Sun—close to the currently accepted value of 5,780◦K.

Note that the Stefan-Boltzmann constant is universal in the sense that
it is independent of the material or temperature of a body. Because actual
hot objects radiate less efficiently than do perfect blackbodies, scientists
sometimes add another quantity ε to the Stefan-Boltzmann Law. ε is the
emissivity and has a value between 0 and 1, where 1 corresponds to a
perfect blackbody and 0 to a perfect reflector.

The precise value usually depends on the material, the surface, and the
temperature. Thus, the Stefan-Boltzmann Law may be recast as follows for
real objects:

Eb(T) = εσT4

Note that although ε is called the emissivity, scientists also use it to describe
the absorption of radiation by a material.

Using the Stefan-Boltzmann Radiation Law, we can predict the total
energy a blackbody emits, which is proportional to the fourth power of
the temperature of the object. A star that is the same size and four
times as hot as our Sun radiates 44 or 256 times more energy than the
Sun. A spherical blackbody (e.g., a star) will produce a luminosity that
depends on the surface area of the star times the fourth power of its
temperature.

HOW TO MAKE A BLACKBODY

In the laboratory, a blackbody can be approximated by a large hollow, rigid
object such as a sphere. Imagine that we use a nail to poke a hole in the
sphere. Any radiation entering the hole bounces around against the inner
sphere walls. With each bounce, a part of the radiation is absorbed by the
sphere. Some of the radiation is reflected, and in the next bounce, addi-
tional radiation is absorbed. By the time the radiation has bounced around
a number of times and exits through the same nail hole, its intensity is so
weak that it is negligible. This means that the nail hole may be considered
a blackbody because nearly all radiation that enters the hole is absorbed

412 | a r c h i m e d e s t o h a w k i n g



by the hollow sphere. (For a creative analogy, imagine a fly that enters
the hole, bangs against the inner walls of the sphere, and finally becomes
so tired that it is too weak to escape.) The radiation emitted by the inner
surface of the sphere depends on the temperature of the inner surface. The
amount of radiation produced in the spherical cavity whose walls are at
temperature T is equal to the emissive body of a blackbody at temperature
T. With idealized blackbodies, the radiation-emitting properties of the
body are independent of the material of the body and vary in a simple
way with temperature.

If we construct cavity radiators (blackbodies) using different metals,
heat each cavity to the same temperature (e.g., 2,000◦K), and observe
the light emitted in a dark room, we would find that the radiance of the
hole in the cavity is the same for different blackbodies, even though the
radiances of the outer surfaces may be different. As suggested above, the
radiancy of hole varies according to Stefan-Boltzmann Law Eb(T) = σT4.
However, the radiancy of the outer surfaces does vary with both material
and temperature.

RAYLEIGH-JEANS LAW

Several related blackbody laws have preceded Planck’s radiation law. In
1900, British physicist Lord Rayleigh (1842–1919) proposed a law based
on a classical physics analysis of standing waves within a three-dimensional
cavity, such as the spherical cavity just discussed. The Rayleigh-Jeans
Law gives the energy density of a blackbody radiation as a function of
wavelength λ and temperature:

f (λ, T) = 8πk
T
λ4

Here, T is the temperature in degrees kelvin, and k = 1.3806505 × 10−23

joules/kelvin is Boltzmann’s constant. Notice that Rayleigh derived a
fourth-power dependence on wavelength, and a more complete deriva-
tion was presented by Rayleigh and British physicist Sir James Hop-
wood Jeans (1877–1946) in 1905. Their law works well and agrees
with experiments performed at long wavelengths, but strongly dis-
agrees with experimental results at short wavelengths. In fact, notice
that as λ approaches zero, the value of the function becomes infinite!
This result was known as the “ultraviolet catastrophe” because the
deviation from experiment occurs in the ultraviolet range and shorter
wavelengths.
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ADDITIONAL RENDITIONS OF THE LAWS

In 1900, Planck announced that he had made a modification to the classical
calculation so that the function f (λ, T) agreed with experimental data at
all wavelengths. Planck’s more accurate radiation formula with its more
complicated dependence on wavelength has been presented above. Here is
another way of writing the previous Planck’s equation, which is frequently
found in textbooks:

f (λ, T) = 8πhcλ−5

ehc/λkT − 1

Planck’s equation approaches zero as λ approaches zero. The constant
h is Planck’s constant and equals 6.6260693 × 10−34 J·s, k is Boltzmann’s
constant, and c is the speed of light. Similarly, we may also write the
Stefan-Boltzmann constant mentioned above in terms of other constants
of nature:

σ = 2π5k4

15c2h3
= 5.670 × 10−8J/(s · m2 · K4)

Planck had initially found the formula for his law empirically as he fit
curves to the data. In some sense, his initial work was inspired guesswork,
and there was no substantial theory behind it. However, he soon found that
he could derive this equation by modifying the calculations of the energy
per wave in the cavities that Rayleigh contemplated. In particular, he mod-
eled the cavity walls as a collection of little electromagnetic oscillators. In
order to arrive at his formula, Planck assumed that the energy of oscillators
is discrete and could assume only certain values of nhf. Here, n is an
integer now called a quantum number, f is the frequency of the oscillator,
and h is Planck’s constant. These oscillators both emit energy into the
cavity and absorb energy from it via discrete jumps or packages called
quanta. [Later research has revealed that the correct formula for the oscil-
lator involves (n + 1/2)hf, but this adjustment makes no change to Planck’s
conclusions.]

At the time, Planck’s model of a discrete system was unconventional,
and Planck did not fully appreciate it for years, writing in Scientific Auto-
biography and Other Papers, “My futile attempts to fit the elementary
quantum of action [i.e., the quantity nh] somehow into the classical the-
ory continued for a number of years, and they cost me a great deal of
effort.” Planck originally believed that the quantization of tiny oscillators
in the cavity walls (now known to be atoms) was simply a mathematical
convenience that yielded accurate predictions of the blackbody spectrum.
Other physicists also considered such quantization too radical and a mere
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mathematical artifice. Although Planck could not articulate the reason
for the quantization, it fit the data so precisely that he came to realize
that it must be valid. Note that the extremely small value of Planck’s
constant h causes the difference between two adjacent values of nhf to be
tiny.

Helge Kragh writes in “Max Planck: The Reluctant Revolutionary”:

If a revolution occurred in physics in December 1900, nobody
seemed to notice it. Planck was no exception, and the importance
ascribed to his work is largely a historical reconstruction. Whereas
Planck’s radiation law was quickly accepted, what we today con-
sider its conceptual novelty—its basis in energy quantization—was
scarcely noticed. Very few physicists expressed any interest in the
justification of Planck’s formula, and during the first few years of
the 20th century no one considered his results to conflict with the
foundations of classical physics.

It was not until Einstein showed, in 1905, that Planck’s quantum could
be applied to different phenomena that physicists realized that the tra-
ditional continuous wave theory of light gave an inadequate picture of
reality. In particular, Einstein proposed a model whereby light was emit-
ted and absorbed in packets or photons; thus, it was Einstein who was
one of the first to recognize the essence and implications of quantum
theory.

Planck’s quantum (discrete oscillator energy) approach to theoretically
derive his radiation law finally led to his 1918 Nobel Prize. In fact, Planck’s
Law actually let him calculate values for both h and k from experimental
data. Today, we set the birth date of quantum physics to December 14,
1900—the day Planck described his theory to the Berlin Physical Society.
His model was just the tip of the iceberg, a hint that a large portion of
physics was still unknown. In many ways, his findings were the birth of
modern physics, which is eloquently described in Henry Hooper and Peter
Gwynne’s Physics and the Physical Perspective:

Starting in the 1890s, a series of astonishing experimental discover-
ies and theoretical concepts started to open up the inside of the atom
to the figurative gaze of wide-eyed physicists. . . . The key advance
of what the late cosmologist George Gamow described as “thirty
years that shook physics” was the development of what we term the
quantum theory of radiation—the idea that electromagnetic energy,
light, and other forms of radiation come in the form of discrete
packets. . . .
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Before closing this section, I should note that another attempt prior to
Planck’s Law was Wien’s Radiation Law (also known as Wien’s Distribu-
tion Law), formulated by Wien in 1896:

Ebλ = C1

λ5(eC2/λT)

However, Wien’s Radiation Law was based solely on his attempts to fit
the data and was not exact. It also failed experimentally at very long wave-
lengths. However, the law was the stimulus for Planck, who discovered his
Law of Radiation in 1900 in an attempt to improve upon and derive Wien’s
Radiation Law.

The essential difference between some of the key radiation laws can
be summarized as follows:

� Planck’s law is accurate at all wavelengths.
� Wien’s Law is a good approximation at short wavelengths.
� The Rayleigh-Jeans Law is a good approximation at large

wavelengths; however, at short wavelengths the radiation value
becomes huge, and we have the ultraviolet catastrophe.

Max Planck (1858–1947), German physicist famous for his foundational
work in quantum theory and for his blackbody radiation law.

CURIOSITY FILE: Planck was the first famous physicist to enthusiastically
support Einstein’s 1905 Special Theory of Relativity. • Planck so detested
Hitler’s policies with respect to race and religion that Planck went directly
to Hitler to voice his concerns. Hitler simply responded with a tirade against
the Jews. Planck’s son was executed by the Nazis in 1945. • Planck and
Einstein often played chamber music together, Planck at the piano and
Einstein playing violin.

Science cannot solve the ultimate mystery of nature. And
that is because, in the last analysis, we ourselves are part
of nature and therefore part of the mystery that we are
trying to solve. We have no right to assume that any
physical laws exist, or if they have existed up until now,
that they will continue to exist in a similar manner in the
future.
—Max Planck, “The Mystery of Our Being”
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In the year 1900, Max Planck solved a problem which had
been vexing physicists for years, and in so doing opened
a Pandora’s Box filled with surprises for mankind.
—Frederick Bueche, Introduction to Physics for Scientists

and Engineers

As a man who has devoted his whole life to the most clear
headed science, to the study of matter, I can tell you as
a result of my research about atoms this much: There is
no matter as such. All matter originates and exists only
by virtue of a force which brings the particle of an atom
to vibration and holds this most minute solar system of
the atom together. We must assume behind this force the
existence of a conscious and intelligent mind. This mind
is the matrix of all matter.
—Max Planck, acceptance speech for 1918 Nobel Prize

for Physics

We can consider the whole universe to be like the interior
of a huge oven; the oven’s temperature is the average
temperature of the universe. [Using Planck’s law of radia-
tion for blackbodies] and knowing the wavelength distri-
bution of the electromagnetic radiation striking us from
outer space, we can determine the [average] temperature
of . . . the universe . . . is close to 3 K.
—Frederick Bueche, Introduction to Physics for Scientists

and Engineers

Reality is . . . just a very specific, narrow slice of that vast
range of what our thoughts try to encompass.
—Max Planck, 1923 lecture on the law of causality and

free will

Planck lived almost ninety years. He witnessed the two
world wars, two Reichs, and the Weimar Republic. He
saw the great German scientific establishment, which he
had helped build, destroyed by Nazi anti-Semitic racial
polices and other insanities. He deplored everything the
Nazis did, but chose to remain in Germany. . . .
—William H. Cropper, Great Physicists

Max Planck was born in Kiel, a city in northern Germany. His father was
professor of constitutional law at the University of Kiel. Planck was his
family’s sixth child. As a youngster, he enjoyed climbing mountains with
his family. He did well at school and excelled in music, but he did not
display any particular genius in mathematics and science at an early age.

p l a n c k ’ s l a w o f r a d i a t i o n | 417



As a teenager, Planck was sufficiently talented in piano playing that he
considered a musical career. He had perfect pitch and especially enjoyed
playing the works of Franz Schubert and Johannes Brahms.

Planck entered the University of Munich in 1874. Here, his interest in
physics steadily grew, despite the fact that one professor told him that the
field of physics was well understood, with little more to discover, and to
expect no significant future developments in the field! Planck explained his
nascent fascination with physics in his Scientific Autobiography and Other
Papers, published in 1949: “The outside world is something independent
from man, something absolute, and the quest for the laws which apply to
this absolute appeared to me as the most sublime scientific pursuit in life.”
He also noted that “the laws of human reasoning coincide with the laws
governing the sequences of impressions we receive from the world about
us; that, therefore, pure reasoning can enable man to gain an insight into
the mechanisms of the [world].”

In 1877, Planck continued his education at the University of Berlin,
where he said that his famous teacher Gustav Kirchhoff was rather bor-
ing as a lecturer. While in Berlin, he studied and was intrigued by the
research papers of Rudolf Clausius (1822–1888), on thermodynamics. In
1879, Planck received his doctorate for his own work on the Second Law of
Thermodynamics. His thesis was titled “On the Second Law of Mechanical
Theory of Heat.” In 1885, he was appointed extraordinary professor of
theoretical physics in Kiel, and in 1887 he married Marie Merck.

In 1888, he was appointed as an extraordinary professor of theoretical
physics at the University of Berlin. He never gave up his love of music and
held concerts in his home, using his customized harmonium, an organlike
keyboard instrument that employs metal reeds that vibrate as a result of
air forced from a bellows.

In 1897, Planck published his Vorlesungen über Thermodynamik, a
popular collection of fundamental papers on thermodynamics. This classic
work of modern physics was to become a standard reference in the field of
thermodynamics for nearly fifty years, and it included his 1879 thesis and
all his important papers until 1896.

He also maintained a continuing interest in philosophy and religion and
suggested that science should have as its goal “the establishment of a single
grand connection among all the forces of nature.” In an 1899 paper pub-
lished in Sitzungsberichte der Preußischen Akademie der Wissenschaften,
he mentioned his quest for “natural” scientific units that are independent
of particular objects so that the units would “retain their meaning for
all times and for all cultures, including extraterrestrial and nonhuman
ones.”

Today, physicists sometimes make use of “Planck units” to honor
Planck’s desire for finding natural units to describe all of nature. Planck
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units are units of measurement for length, mass, time, electric charge,
and absolute temperature, expressed in such a way that five fundamental
physical constants become 1 when expressed in these units. The five fun-
damental constants are the speed of light in a vacuum c; the gravitational
constant G; the reduced Planck’s constant � = h/(2π), where h is Planck’s
constant; the Coulomb force constant 1/(4πε0), where ε0 is the permittivity
in vacuum; and the Boltzmann constant k. Some popular authors refer to
Planck units as God’s units, because they eliminate the more common but
arbitrary human conventions with respect to units. At the time that Planck
envisioned his natural units, he had not yet discovered his blackbody
radiation law in which h made its first appearance.

John D. Barrow and Frank Tipler list various Planck units in The
Anthropic Cosmological Principle and note that the Planck length and time
are both extremely small, many orders of magnitude smaller even than
nuclear sizes and times. On the other hand, the Planck mass is roughly
equal to the mass of a small grain of sand:

lp =
(

G�

c3

)1/2

≈ 10−33cm

tp =
(

G�

c5

)1/2

≈ 5 × 10−44s

mp =
(

c�

G

)1/2

≈ 10−5gm

Henrik Smith in Quantum Mechanics describes how quickly Planck arrived
at his blackbody radiation formula while in Berlin:

One Sunday afternoon on October 7, 1900, the Planck family had
guests for tea. After hearing about these new [radiation] results
[from a guest], Planck attempted later in the day to construct an
empirical formula, which would combine the regions of long and
short wavelengths corresponding respectively to Rayleigh’s and
Wien’s expressions. The result, Planck’s radiation law, was made
public only twelve days later. . . . It contained a new fundamental
constant, which today we call the Planck constant. Two months
later, Planck published a derivation of the radiation law [which]
contained assumptions that were quite foreign to the physics of the
nineteenths century.

Planck’s theoretical explanation of the observed spectra made use of a
theory that involved quanta, or packets, of energy, and he presented his
concepts at a meeting of the Physikalische Gesellschaft in Berlin. As men-
tioned above, this radiation law and explanation eventually led Planck to
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receive the Nobel Prize for Physics in 1918. In his 1920 Nobel Lecture, he
said,

Either the quantum of action was a fictional quantity, then the
whole deduction of the radiation law was essentially an illusion
representing only an empty play on formulas of no significance, or
the derivation of the radiation law was based on a sound physical
conception. In this case the quantum of action must play a funda-
mental role in physics, and here was something completely new,
never heard of before, which seemed to require us to basically revise
all our physical thinking, built as this was, from the time of the
establishment of the infinitesimal calculus by Leibniz and Newton,
on accepting the continuity of all causative connections. Experiment
decided it was the second alternative.

According to Hooper and Gwynne:

In the first several months after his announcement of the quantum
inspiration, Planck plowed a lonely furrow. Scientists always tend
to be somewhat suspicious of new ideas, particularly those without
any obvious fundamental foundation, and many decided to wait for
the other shoe to drop, in the form of a successful application of
Planck’s theory to some other branch of science. Their wait was
short one.

In 1905, just a few years after Planck announced his Law of Radiation,
Albert Einstein used the idea of radiation quantization to explain the
results of another experiment that had confounded physicists for years.
The experiment involved the photoelectric effect, for which Einstein pro-
vided evidence suggesting that light may be thought of as discrete parti-
cles. Later in life, Planck remarked in Scientific Autobiography and Other
Papers:

An important scientific innovation rarely makes its way by gradually
winning over and converting its opponents: it rarely happens that
Saul becomes Paul. What does happen is that its opponents gradu-
ally die out and that the growing generation is familiarized with the
idea from the beginning.

Planck’s wife Marie died in 1909, leaving him with four children. This
was the first of many tragedies for Planck. For example, one of his children,
Karl, died in 1916 in World War I. Both daughters died in childbirth (1917
and 1919).
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In 1911, he married the niece of his first wife. Planck was Secretary of
the Mathematics and Natural Science Section of the Prussian Academy
of Sciences from 1912 until 1943. In 1943, the city of Frankfurt wanted to
honor Planck with the Goethe Award; however, Joseph Goebbels forbade
the award, “because Planck has been repeatedly speaking for the Jew
Albert Einstein.”

Alan A. Grometstein writes in The Roots of Things: Topics in Quantum
Mechanics:

As the Nazi Party rose to power, Planck chose to remain in
Germany rather than escape to freedom as other scientists
had. . . . He despised Hitler, viewing the Third Reich as a cancer
upon the nation to which he continued to give allegiance, but
believed that his presence would act as a moderating and civilizing
influence. Perhaps it did; he is known to have aided and sheltered
vulnerable colleagues.

During World War II, in 1944, Planck’s home in a suburb of Berlin was
demolished by fire after an air raid. Many of his most important scientific
records were destroyed. In 1945, the Gestapo tortured his son Erwin to
death, because he was suspected of being involved in the plot to assassinate
Hitler. Most likely, Erwin simply knew someone involved in a plot to
assassinate Hitler. When Planck was 85, he fled and lived in a farmhouse,
and when the farm had to be evacuated, Planck, age 87, camped with his
wife in a forest.

Through his very long life, Planck received numerous awards in addi-
tion to his Nobel Prize, including election as a Fellow of the Royal Society
in 1926, the Royal Society Copley Medal awarded in 1929, and election
Fellow of the Royal Society of Edinburgh in 1937. In the same year, in
his lecture “Religion and Naturwissenschaft,” Planck said that he believed
that God is omnipresent and that “the holiness of the unintelligible God-
head is conveyed by the holiness of symbols.”

In his later years, Planck, like Einstein, was not convinced that ultimate
reality had a quantum nature at its very core. He believed the world was
not “really” the indeterminate, statistical entity that other scientists such as
German physicists Niels Bohr (1885–1962) and Werner Heisenberg (1901–
1976) believed it to be. Planck thought that reality had an independent
existence, and he never accepted that the observer and observed were so
strongly coupled, as suggested by physicists such as Bohr.

During the war, Americans had taken Planck to Göttingen, when they
learned that his refuge near the Elbe River had been destroyed and that he
was caught between the Allied armies and the retreating German forces.
Planck died in Göttingen at the age of 89.
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Ian Duck and E. C. G. Sudarshan write of Planck’s discoveries in 100
Years of Planck’s Quantum:

When in the year 5000 people look back three thousand years to
our era, we all hope that they will find some epochal events as
myth-making for them as the Trojan War for us. Many events of
such lasting significance are to be found among the achievements
of our twentieth century scientific revolution in physics. The very
first of these revolutionary events . . . is Planck’s invention of the
energy quantum in 1900. . . . Planck opened the door to an utterly
new, totally unanticipated, wonderfully strange and mysterious but
absolutely necessary ultimate reality of the world. . . . We cannot
know where it will lead and we cannot believe it will end.

A lunar crater with a diameter of 314 kilometers was named after Planck
and approved in 1970 by the International Astronomical Union General
Assembly.

In 2003, researchers at Sandia National Laboratories created a material
that exceeded the predicted output of Planck’s blackbody radiation law
for a special material. In particular, they used filaments created from
tungsten lattices that, when heated, emitted much more energy in certain
regions of the near-infrared spectrum than solid tungsten filaments did.
The researchers hope that this lattice material may someday provide a
superior energy source. The radiation of the lattice can pump energy into
wavelengths used by photovoltaic cells that customarily convert light into
electricity.

The latticelike materials, also known as photonic crystals, do not actu-
ally break Planck’s Law, which gives the emission for a solid blackbody
and not a photonic lattice. The researchers note,

A photonic lattice apparently subjects energies passing through its
links and cavities to more complex photon-tungsten interactions
than Planck dreamt of when he derived his system that successfully
predicted the output energies of simple heated solids. And a lat-
tice’s output is larger than a solid’s only in the frequency bands the
lattice’s inner dimensions permit energy to emerge in.

I discussed Planck’s interest in fundamental physical constants.
Although these fundamental constants, such as the speed of light in a
vacuum, are usually assumed to be unvarying, twenty-first century scien-
tists have occasionally claimed to detect subtle changes in their values. For
example, in 2006, a team of physicists and astronomers in the Netherlands,
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Russia, and France suggested that the constant µ that represents the ratio
of the mass of the proton to that of an electron may have decreased slightly
since the birth of the universe. Not without controversy, their evidence
involves comparison of light absorption patterns of distant hydrogen mole-
cules in outer space to molecules in the laboratory. Because looking far
into space is equivalent to looking back in time, scientists may be able
to use such comparisons to search for changes in the constants of nature.
Further evidence would be required for such findings to become generally
accepted by the scientific community.
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INTERLUDE: CONVERSATION STARTERS

God exists since mathematics is consistent, and the devil
exists since we cannot prove the consistency.
—Morris Kline, Mathematical Thought from Ancient to

Modern Times

It doesn’t make much difference whether this determin-
ism is due to an omnipotent God or to the laws of science.
Indeed, one could always say that laws of science are the
expression of the will of God.
—Stephen Hawking, Black Holes and Baby Universes
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The laws of Nature give a fundamental role to certain
entities. We are not really sure what they are, but at the
present level of understanding they seem to be the ele-
mentary quantum fields. They are highly simple because
they are governed by symmetries. These are not objects
with which we are familiar. In fact, our ordinary notions
of space and time, causation, composition, substance and
so on really lose their meaning on that scale. But it is just
at that scale, at the level of the quantum fields, that we
are beginning to find a certain satisfying simplicity.
—Steven Weinberg, “Is Science Simple?” in The Nature

of the Physical Universe

Physics is a mixture of discovery and invention. For
instance, Newton’s laws of motion and of gravitation are
mathematical models of the actual universe and hence
a discovery of sorts, but the equations were Newton’s
invention. The fact that Newton’s laws hold only approx-
imately suggests that they have not “always existed,” but
are instead an imperfect description of the universe. The
universe is as it is; human theories of it are always inven-
tions and are discoveries to the extent that they reflect
reality. Further, I suspect we will only ever have models
of the universe; we will never understand it from the
inside out.
—Nick Hobson, 2006, personal communication with the

author
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BRAGG’S LAW OF CRYSTAL DIFFRACTION

England, 1913. The angles at which radiation produces the most
intense reflections from crystals depends on the spacing of atomic
planes in the crystals and the wavelength of the incident radiation.

In 1913, Mahatma Gandhi, leader of the Indian Passive Resis-
tance Movement, was arrested. French author Albert Camus
was born, as was Richard Nixon, thirty-seventh President of
the United States. The Woolworth Building and Grand Central
Terminal opened in New York. Niels Bohr formulated his theory
of atomic structure. Zippers became popular on clothing. Henry
Ford pioneered assembly-line methods for building cars in a
factory. U.S. company R.J. Reynolds Tobacco introduced Camel
cigarettes.

Discovered by the English physicists Sir W. H. Bragg and his son Sir W. L.
Bragg in 1913, Bragg’s Law explains the results of experiments involving
the diffraction of electromagnetic waves from crystal surfaces. Bragg’s
Law provides a powerful tool for studying crystal structure. For example,
when X-rays are aimed at a crystal surface, they interact with atoms in the
crystal, causing the atoms to reradiate waves that may interfere with one
another. The interference is constructive (reinforcing) for integer values of
n according to Bragg’s Law:

nλ = 2d sin(θ),

where λ is the wavelength of the incident electromagnetic waves (e.g.,
X-rays), d is the spacing between the planes in the atomic lattice of the
crystal, and θ is the angle between the incident ray and the scattering
planes. For example, X-rays travel down through crystal layers, reflect, and
travel back over the same distance before leaving the surface. The distance
traveled depends on the separation of the layers and the angle at which the
X-ray entered the material. For maximum intensity of reflected waves, the
waves must stay in phase to produce the constructive interferences. Two
waves stay in phase, after both are reflected, when n is a whole number.
For example, when n = 1, we have a “first-order” reflection; for n = 2, we
have a “second-order” reflection. If only two rows were involved in the
diffraction, then as the value of θ changes, the transition from constructive
to destructive interference is gradual. However, if interference from many
rows occurs, then the constructive interference peaks become sharp, with
mostly destructive interference occurring between the peaks.



Bragg’s Law can be used for measuring wavelengths and for calculating
the spacing between atomic planes of crystals. The observations of X-
ray wave interference in crystals, commonly known as X-ray diffraction,
provided direct evidence for the periodic atomic structure of crystals that
was postulated for several centuries.

William Henry Bragg (1862–1942) and his son William Lawrence Bragg
(1890–1971), British physicists famous for using X-rays to determine the
structure of minerals.

CURIOSITY FILE: The younger Bragg discovered a new cuttlefish, which was
named Sepia braggi in his honor. He was also the youngest person ever to
receive the Nobel Prize in Physics.

Physicists use the wave theory on Mondays, Wednesdays,
and Fridays, and the particle theory on Tuesdays, Thurs-
days, and Saturdays.
—William Henry Bragg, “Electrons and Ether Waves”

Sadly, the joint work and its recognition created lasting
problems between father and son; both rather reserved
men, they had difficulty in discussing the matter, and the
younger inwardly resented the way in which outsiders
tended to give too much credit to his father.
—Anthony C. T. North, “Light Is a Messenger—Book

Review”

Sir Lawrence Bragg, who died on July 1, 1971, aged 81,
had the unique distinction of having himself created the
science to which he devoted his life’s work, and lived long
enough to experience its revolutionary impact, first on
inorganic chemistry and mineralogy, then on metallurgy,
and finally on organic chemistry and biochemistry.
—Max Perutz, “A Hundred Years and More of

Cambridge Physics: Sir Lawrence Bragg”

Everything that has already happened is particles, every-
thing in the future is waves. The advancing sieve of time
coagulates waves into particles at the moment “now.”
—William Lawrence Bragg, quoted in Ronald Clark’s

Einstein: The Life and Times
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Father and son Braggs were awarded the Nobel Prize in Physics in 1915 for
their pioneering studies in determining crystal structures for substances
including table salt (NaCl), zinc sulfide (ZnS), and diamond. William
Henry Bragg, the father, was born in Westward, Cumberland, a county
in northern England. He came from a family that included farmers and
merchant seamen.

The elder Bragg did well in school, and in 1875 he attended King
William’s College, where he developed a near-phobia for the Bible due to
horrifying stories of eternal punishment in the afterlife that were described
to him along with other scary Bible tales. Later, Bragg wrote in his private
notes, and in spoke in his 1941 lecture at Cambridge titled “Science and
Faith,” “For many years, the Bible was a repelling book, which I shrank
from reading. . . . I am sure that I am not the only one to whom . . . the literal
interpretation of Biblical texts cause years of acute misery and fear.” He
never lost his faith entirely, but refused to take the idea of Hell literally.
Later, he softened his position and came to believe, as expressed in World
of Sound, “From religion comes a man’s purpose; from science his power
to achieve it.”

While at Cambridge, he focused his energy on mathematics to the
near exclusion of other subjects. For three years, he read mathematics
throughout the morning, from about five to seven in the afternoon, and
around an hour every evening. As a result, he did exceptionally well on
a mathematics exam, and he wrote, as quoted in Paul Forman’s “William
Lawrence Bragg,” “I never expected anything so high . . . I was fairly lifted
in a new world. I had new confidence: I was extraordinarily happy.” In
1855, he became a professor of mathematics and physics at the University
of Adelaide in Australia.

For many of his early academic years, Bragg published very little,
preferring to focus on classroom teaching and encouraging young minds.
He was an excellent golfer, and his oldest son William Lawrence caddied
for his father.

Forman comments about Bragg’s “late start” in research science in the
Dictionary of Scientific Biography:

This is not the sort of life that brings election to the Royal Society
of London (1907), the Bakerian lectureship (1915), the Nobel Prize
in physics (1915), the Rumford Medal of the Royal Society (1935–
1940), and membership in numerous foreign academies. . . . The new
life began, at age forty-one, in 1903–1904.

I would be interested in hearing from readers who know of other famous
scientists who seemed to flower so late in their lives. Note that E. M. C.
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Andrade and K. Lonsdale make a similar observation in Bragg’s obituary,
published in 1943:

Bragg had an astonishing career. Up to the age of forty he never
showed any desire to carry out original experiment. He then
straightaway embarks upon a perfectly precise and important piece
of work and within a few years his name is known wherever physics
is seriously studied. . . . He then himself conclusively demonstrates,
by the work with which his name will always be associated, the wave
nature of X-rays. He starts life as an extremely shy and retiring
youth, never, apparently, quite at home in Cambridge, and in his
old age becomes a national figure, at ease in all surroundings, whose
personal appeal is known all over England.

In the spring of 1904, Bragg began experiments on the absorption of
alpha particles (positively charged helium nuclei, He2+). For the next two
years, Bragg continued his investigations, publishing a paper every few
months. By 1912, many scientists believed that X-rays were very short
electromagnetic waves, with wavelengths of the order of a fraction of an
angstrom, that is, about one-thousandth of the wavelength of visible light.
However, the world awaited experimental verification of this hypothesis.

In 1912, William Lawrence, Bragg’s oldest child, finally showed how
recent X-ray observations by German physicist Max von Laue (1879–1960)
and others might be best understood as reflections of electromagnetic radi-
ation from planes in a crystal, and he derived Bragg’s Law, nλ = 2d sin(θ),
as described above. William Lawrence presented his derivation of Bragg’s
Law at a meeting of the Cambridge Philosophical Society on November 11,
1912, and his paper on the subject, titled “The Diffraction of Short Electro-
magnetic Waves by a Crystal,” was published in 1913 in the Proceedings of
the Cambridge Philosophical Society. Of this formula and its implications,
Austrian-British molecular biologist Max Perutz (1914–2002) wrote in his
essay “Sir Lawrence Bragg”:

Why did this twenty-two-year-old student succeed in correctly inter-
preting the diffraction pattern predicted and discovered by an
accomplished theoretician [Max von Laue] eleven years his senior?
Bragg himself modestly attributes it to a “concatenation of fortu-
nate circumstances” but his paper soon convinces you that its suc-
cess owed more to Bragg’s astute powers of penetrating through the
apparent complexities of physical mechanisms to their underlying
simplicity.
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Von Laue did suggest in 1912 that a thin crystalline plate should act
as a three-dimensional diffraction grating so that X-rays passing through a
crystal might produce a diffraction pattern similar to that obtained when
visible light is passed through an optical grating; however, Bragg was the
first to determine the law or formula to describe the precise effect. For his
own work in the field, von Laue received the Nobel Prize in 1914. Not only
did von Laue’s work provide striking evidence that X-rays were indeed
electromagnetic waves with definite wavelengths, but he also provided
support that the geometrical properties of crystals reflect an arrangement
of atoms in a three-dimensional lattice.

William Henry followed his son’s work with excitement, and used an
inverted formula so that given a known wavelength, he could determine
d, the distance between atomic planes. The X-ray spectrometer that he
built helped to determine the atomic positions for a variety of crystals. The
Braggs understood that the X-ray reflection from crystals was not simply
a surface phenomenon and that only a small portion of the energy of an
incident wave front would be reflected from the first layer of atoms. They
reasoned that additional reflections must also come from deeper layers
or atomic planes. Whether these additional reflected waves interfere with
each other and other reflected waves in a constructive or destructive man-
ner depends on the distance between atomic planes and the wavelength of
the waves.

Here are William Lawrence’s own words in his December 1912 paper
in Nature:

The spots in Laue’s crystallographs can be shown to be due to
partial reflection of the incident beam in sites of parallel planes
in the crystal on which the atoms centers may be arranged, the
simplest of which are the actual cleavage planes of the crystal. This is
merely another way of looking at diffraction. . . . Only a few minutes’
exposure to a small X-ray bulb sufficed to show the effect. . . .

During and after World War I, the elder Bragg worked on
antisubmarine devices and the detection and measurement of sound
for locating submarines. He also established a school of crystallographic
research at University College in London. Bragg enjoyed conveying the
wonders of science to a broader public, and his “Christmas Lectures” for
children were very popular.

William Lawrence Bragg, William Henry’s son, was born in Adelaide,
South Australia, and like his father, he particularly excelled in mathe-
matics at school. William Lawrence was a quiet child, preferring solitary
hobbies such as shell collecting. As mentioned above later in life he even
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discovered a new cuttlefish (a squidlike creature), which was named Sepia
braggi in his honor.

At age 5, William Lawrence fell from his tricycle and broke his arm.
His father had read about Roentgen’s recent experiments with X-rays and
used them to examine his son’s arm. This is the first recorded medical use
of X-rays in Australia.

In 1909, the younger Bragg went to England to enter Trinity Col-
lege, Cambridge, where he received a large scholarship in mathematics,
despite taking the exam while in bed with pneumonia. During the sum-
mer vacation of 1912, his father began to discuss the nature of X-ray
diffraction with him, and after several experiments, William Lawrence
published the Bragg equation, which describes the angular behavior of
X-rays striking a crystal. As discussed above, this equation is basic to X-ray
diffraction, which is used to understand crystal structures. His father had
designed the X-ray spectrometer to make exact measurements of X-ray
wavelengths.

Father and son spent vacations together in order to determine the
atomic arrangement of numerous minerals such as diamond. Their col-
laboration led some to believe that William Henry had actually initiated
the research that led to the Bragg equation, which bothered William
Lawrence. However, his delight was evident when he became the youngest
person ever to receive the Nobel Prize in Physics at the age of 25. Many
accounts suggest that the mutual scientific interest William Lawrence and
his father shared was enjoyable for both of them. Over the next two years
they collaborated in their X-ray crystallography research and coauthored
the book X Rays and Crystal Structure, which was published in 1915.

In 1921, William Lawrence Bragg married the daughter of a doctor, and
they eventually had four children. During World War I, Bragg helped the
British army develop methods to determine the distance of enemy artillery
from the sounds of their firing. From 1937 to 1938, Bragg was director of
the British National Physical Laboratory.

After World War I, the close collaboration between William Lawrence
and his father ended. They agreed to focus on different areas of X-ray
crystallography. William Lawrence was to focus on inorganic compounds,
metals, and silicates; William Henry, on organic compounds. After his
father’s death, William Lawrence became fascinated by the challenge
of using X-ray crystallography to determine the structures of biological
macromolecules, and he made contributions to the study of the phase rela-
tionships between the X-ray reflections from hemoglobin crystals. Later,
his group at the Royal Institution of Great Britain, London, played key
roles in determining the structures of myoglobin and hemoglobin, the first
two proteins whose structures were determined by X-ray crystallography.
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William Lawrence played an important role in the 1953 discovery of the
structure of DNA, due to the support he provided to scientists Francis
Crick (1916–2004) and James D. Watson (born 1928) who worked under
his guidance at the Cavendish Laboratory.

William Lawrence felt that science students everywhere should be pro-
vided with sufficient time to have a general education and not be so narrow
in their studies that they could not appreciate a fuller life and outlook.
Thus, in 1954, when he became director of the Royal Institution, following
in his father’s footsteps, he suggested that the institution give back to the
community and hold a series of lectures for schoolchildren. The idea was
a huge success, and thousand of children attended these lectures over the
years.

William Lawrence loved gardening throughout his life. When he had
moved to London, he missed having a garden to such an extent that he
worked as a part-time gardener. His employer did not recognize the fame
of his gardener until a guest at the home expressed shock at seeing him
laboring in the garden!

Perutz wrote of William Lawrence personality:

So often men of genius were hellish to live with, but Bragg’s creativ-
ity was sustained by a happy home life; typically one would find him
tending his garden, with Lady Bragg, children and grandchildren
somewhere in the background, and before getting down to business
he would proudly demonstrate his latest roses. To the present young
generation Bragg was an avuncular figure who showed them that sci-
ence can be fun. . . . Bragg’s superb powers of combining simplicity
with rigor, his enthusiasm, liveliness and charm of manner, and his
beautiful demonstrations all conspired to make him one of the best
lecturers on science that ever lived.

In an obituary for the elder Bragg, Andrade and Lonsdale comment on the
work of both Braggs and its effect on science:

The work of Bragg and his son Lawrence in the two years 1913, 1914
founded a new branch of science of the greatest importance and sig-
nificance, the analysis of crystal structure by means of X-rays. If the
fundamental discovery of the wave aspect of X-rays, as evidenced by
their diffraction in crystals, was due to Laue and his collaborators,
it is equally true that the use of X-rays as an instrument for the
systematic revelation of the way in which crystals are built was
entirely due to the Braggs.
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INTERLUDE: CONVERSATION STARTERS

The mathematical life of a mathematician is short. Work
rarely improves after the age of twenty-five or thirty. If
little has been accomplished by then, little will ever be
accomplished.
—Alfred Adler, “Mathematics and Creativity,” New

Yorker magazine, 1972

Without regularities embodied in the laws of physics, we
would be unable to make sense of physical events; with-
out regularities in the laws of nature, we would be unable
to discover the laws themselves.
—Gerd Baumann, Symmetry Analysis of Differential

Equations with Mathematica, 2000

Could it be that there are no laws of Nature at all?
Perhaps all the order we see is a manifestation of that
peculiar type of total lawlessness and independence that
leads to predictability?
—John D. Barrow, The Universe That Discovered Itself
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Laws of Nature are generalizations of observations. They
are discovered, not invented. The Laws of Nature do not
“run the universe” or tell it how to behave—they describe
its observed behavior. Laws of Nature do not explain,
they describe. Theories explain—for example, the law of
gravity is not a theory of gravity. Theories are “invented,”
not discovered. The fact that the current formulation of a
given law may be only a locally applicable approximation
of a more general (and as yet undiscovered) formulation
doesn’t mean that the current formulation is “wrong.”
3.14 is not an incorrect description of pi; it is merely a
less precise description than, for example, 3.14159.
—Bill Gavin, 2006, personal communication with the

author
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HEISENBERG’S UNCERTAINTY PRINCIPLE

Germany, 1927. The position and the velocity of an object cannot
both be known with high precision, at the same time. Specifically,
the more precise the measurement of position, the more imprecise
the measurement of momentum, and vice versa.

In 1927, American inventor Philo Farnsworth transmitted the
first experimental electronic television pictures. The Academy
of Motion Picture Arts and Sciences was founded. Saudi Arabia
became independent of the United Kingdom. An experiment
confirmed French physicist Louis de Broglie’s hypothesis that
subatomic particles behave like waves.

The Heisenberg Uncertainty Principle states that it is impossible to pre-
cisely measure the values of certain pairs of physical quantities for a single
particle. The most common expression of this principle depicts the rela-
tions between the position x and the momentum p of a particle in space:

�x�p ≥ �

2

Here, �x corresponds to the uncertainty of the position measurement; �p
corresponds to the uncertainty of the momentum measurement, and � is
the reduced Planck’s constant, h/2π. Notice that as �x becomes smaller
(i.e., the more precisely we know the position of the particle), the larger the
uncertainty becomes for the momentum, �p. (Recall that the momentum
of a particle is its velocity times its mass.)

Until this law was discovered, most scientists believed that the precision
of any measurement was limited only by the accuracy of the instruments
being used. Werner Karl Heisenberg showed that even if we could con-
struct an infinitely precise measuring instrument, we still could not accu-
rately determine both the position and momentum of a particle. Because
the formula indicates that the product of the position and momentum
uncertainties is equal to or greater than about 10−35 J·s, the uncertainty
principle becomes significant only at the small size scales of atoms and
subatomic particles.

Some writers have erroneously suggested that the uncertainty principle
concerns itself with the degree to which the measurement of the position
of a particle may disturb the momentum of a particle. However, this is not
a correct interpretation of the principle. Note also that we could measure
a particle’s position x to a high precision, but as a consequence, we could
know little about the momentum.



The uncertainty principle also applies to measurements of energy E
and time t :

�E�t ≥ �

2

In this formulation, �E is the uncertainty of our knowledge of the energy
of a particle, and �t is the time interval during which the particle had the
energy; alternatively, we can think of �t as the uncertainty in the time
interval during which the measurement is made.

Although Heisenberg developed the relationship that involves uncer-
tainties in position and momentum in 1927, the energy–time uncertainty
relationship was not proven until 1945 by Russian scientists Leonid Man-
delshtam (1879–1944) and Igor Tamm (1895–1971).

For those scientists who accept the Copenhagen interpretation of quan-
tum mechanics, the Heisenberg uncertainty principle means that the phys-
ical universe literally does not exist in a deterministic form but is rather
a collection of probabilities. Similarly, the path of an elementary particle
such as a photon cannot be predicted, even in theory, by an infinitely
precise measurement.

Werner Karl Heisenberg (1901–1976), German physicist famous for his
formulations of quantum mechanics and his uncertainty principle.

CURIOSITY FILE: On the TV show Star Trek, the “Heisenberg compensator”
was a device used in the transporter system to compensate for the Heisen-
berg Uncertainty Principle, which allegedly would have otherwise rendered
transporters theoretically impossible. • In computer science, a Heisenbug
is a software error that disappears or alters its behavior when one attempts
to probe or isolate it further. • Consider the most common Heisenberg
joke on the Web: A policeman pulls Heisenberg to the side of the road for
speeding. “Do you know how fast you were going?” the policeman asks.
“No,” replies Heisenberg, “but I know exactly where I am!”

Only those quantities that can be measured have any
real meaning in physics. If we could focus a “super”
microscope on an electron in an atom and see it moving
around in an orbit, we would declare that such orbits
have meaning. However, we shall show that it is funda-
mentally impossible to make such an observation—even
with the most ideal instrument that could conceivably be
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constructed. Therefore, we declare that such orbits have
no physical meaning.
—David Halliday and Robert Resnick, Physics

All of my meager efforts go toward killing off and suit-
ably replacing the concept of the orbital path which one
cannot observe.
—Werner Heisenberg, 1925 letter to Wolfgang Pauli

I learned optimism from Sommerfeld, mathematics at
Göttingen, and physics from Bohr.
—Werner Heisenberg, quoted in Laurie M. Brown,

Abraham Pais, and A. B. Pippard, Twentieth Century
Physics

Even the Uncertainty Principle isn’t “merely” philoso-
phy: it predicts real properties of electrons. Electrons
jump at random from one energy state to another state
which they could never reach except that their energy is
momentarily uncertain. This “tunneling” makes possible
the nuclear reactions that power the sun and many other
processes. Physicists have put some of these processes to
practical use in microelectronics.
—David Cassidy, “Werner Heisenberg and the Uncer-

tainty Principle”

The more I think about the physical portion of
Schrödinger’s theory, the more repulsive I find
it. . . . What Schrödinger writes about the visualizability
of his theory “is probably not quite right”; in other words
it’s crap.
—Werner Heisenberg, 1926 letter to Wolfgang Pauli

One moonlit night we walked all over Hainberg Moun-
tain [near Göttingen], and [Heisenberg] was completely
enthralled by the visions he had, trying to explain his
newest discovery to me. He talked about the miracle of
symmetry as the original archetype of creation, about
harmony, about the beauty of simplicity, and its inner
truth. It was a high point of our lives.
—Elisabeth Heisenberg, Inner Exile

Werner Heisenberg was born in Würzburg, Germany. His father was an
Evangelical Lutheran who taught classical languages and ruled his family
in a stiff, domineering manner. However, in private, Heisenberg’s mother
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and father admitted that they were not religious, did not believe in the
supernatural, and only followed Christian ethics.

As a boy in school, Heisenberg excelled in subjects such as mathemat-
ics, physics, and religion, and his overall scholastic record was generally
excellent. One of his school teachers remarked, “He is more developed
toward the side of rationality than of fantasy and imagination.” He also
enjoyed chess, read many mathematical books, and tried to prove Fermat’s
Last Theorem after studying an advanced book on number theory. He
taught himself calculus when his parents asked him to tutor a college
student for her final exams. His father, after observing young Heisenberg’s
passion for mathematics, became worried that Heisenberg was neglecting
his Latin studies, so the father brought home old math papers and books
written in Latin.

In 1920, together with his fellow student Wolfgang Pauli (1900–1958),
Heisenberg began to study theoretical physics under Arnold Sommerfeld
(1868–1951) at the University of Munich. Of his studies, Heisenberg wrote
in Physics and Beyond: Encounters and Conversations:

My first two years at Munich University were spent in two quite
different worlds: among my friends of the youth movement and in
the abstract realm of theoretical physics. Both worlds were so filled
with intense activity that I was often in a state of great agitation, the
more so as I found it rather difficult to shuttle between the two.

He finished his doctoral dissertation in 1923 in just three years. His thesis
was essentially a 59-page calculation titled “On the Stability and Turbu-
lence of Fluid Flow.” The work focused on the challenges of understanding
the nature of the precise transition of a smoothly flowing fluid (laminar
flow) to a turbulent flow. The problem was so difficult mathematically
that Sommerfeld had written, “I would not have proposed a topic of this
difficulty as a dissertation to any of my other pupils.”

Heisenberg’s passion for theory over experiment nearly ended his sci-
entific career in 1923 when he sought approval of his doctoral thesis from
four key professors. Pete Moore writes in E = mc2: The Great Ideas That
Shaped Our World:

Sommerfeld asked questions about theoretical mathematics, and
these were answered with ease. . . . Wilhelm Wein was more con-
cerned about practical physics and [checked] that Heisenberg
understood the details behind the experimental work. Apparently,
he didn’t. The result was a raging argument between Sommerfeld
and Wein, the one wanting to pass him with flying colors, the other
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wanting to fail him. In the end, a compromise was reached, and
Heisenberg was given a mediocre pass.

Heisenberg followed Pauli to the University of Göttingen, where he stud-
ied under German physicist Max Born (1882–1970). In 1924, he went to
the Institute for Theoretical Physics in Copenhagen to study under Danish
physicist Niels Bohr (1885–1962). While in Copenhagen, Heisenberg met
Albert Einstein for the first time.

In 1925, Heisenberg had one of his greatest breakthrough ideas with
respect to quantum mechanics and atomic theory. David Cassidy of Hof-
stra University, along with the American Institute of Physics, describe
Heisenberg’s findings at a popular Heisenberg tribute Web site:

Since the electron orbits in atoms could not be observed, Heisen-
berg tried to develop a quantum mechanics without them. He
relied instead on what can be observed, namely the light emit-
ted and absorbed by the atoms. By July 1925 Heisenberg had an
answer. . . . Heisenberg handed a paper on the derivation to his men-
tor, Max Born, before leaving on a month-long . . . trip. After puz-
zling over the derivation, Born finally recognized that the unfamiliar
mathematics was related to the mathematics of arrays of numbers
known as “matrices.” Born sent Heisenberg’s paper off for publica-
tion. It was the breakthrough to quantum mechanics.

In 1925, Heisenberg had invented a way to express quantum mechanics
in terms of matrices after considering sets of quantized probability ampli-
tudes. These amplitudes formed a noncommutative algebra, for example,
an algebra in which A× B does not equal B × A. In 1926, Heisenberg
developed the concept of “matrix mechanics” further in a paper coau-
thored with Born and German physicist Pascual Jordan (1902–1980). The
approach was able to account for many of the properties of atomic events.
In matrix mechanics, individual terms of a matrix correspond to probabil-
ities of occurrences of states and to transitions among states. Heisenberg
used the new matrix mechanics to interpret the spectrum of the helium
atom. Thomas Powers, in Heisenberg’s War, writes of Heisenberg’s new
formulations:

The solutions that [Heisenberg’s matrix mechanics] provided came
only with agony and labor and it demanded difficult concessions—
for example, giving up the idea of “orbits” within the atom. This
aroused the wasp in Pauli: The moon, like an electron, occupied a
stationary state, and yet it moved in an orbit. If nature made a place
for orbits among the spheres, why did Heisenberg ban them from
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the atom and insist only on “observables”? “Physics is decidedly
confused at the moment,” Pauli remarked in 1925. “In any event, it
is much too difficult for me, and I wish I . . . had never heard of it.”

In 1926, Heisenberg was appointed Lecturer in Theoretical Physics in
Copenhagen, where he continued to work with Bohr. In 1927, Heisenberg
was appointed to a chair at the University of Leipzig. In 1932, he was
awarded the Nobel Prize in Physics for his matrix description of quantum
mechanics. Professor Henning Pleijel, Chairman of the Nobel Committee
for Physics of the Royal Swedish Academy of Sciences, said that Heisen-
berg had viewed the problem in quantum mechanics

from the very beginning, from so broad an angle that it took care of
systems of electrons, atoms, and molecules. . . . Heisenberg’s quan-
tum mechanics has been applied by himself and others to the study
of the properties of the spectra of atoms and molecules, and has
yielded results which agree with experimental research.

Heisenberg is today perhaps best known for the Uncertainty Principle,
discovered in 1927, which states it is not possible, even in theory, to deter-
mine the precise position and momentum of a particle. (Most physicists
interpret this fact to mean that a particle does not simultaneously have
a precise position and momentum.) These errors are negligible in our
daily lives but become important when studying atomic and subatomic
phenomena.

As discussed above, the uncertainty formulas involve the uncertainties
in the measurements of position and momentum. This “uncertainty” is
sometimes called the “imprecision” of the measurement in other areas
of science and may be thought of as applying to a range of the results of
repeated measurements. For example, suppose you measure the length of
a pea with a ruler. You measure the pea to be 8 millimeters in diameter.
But because your ruler has a limited precision, another measurement
of the pea might yield 8.5 millimeters or 7.5 millimeters. In fact, if you
measure the pea a hundred times, you will get a bell curve of measure-
ments centered on an average value, such as 8 millimeters. The spread
of the bell curve indicates the uncertainty of the measurement. Note
that some physics text books list the uncertainty principle as �x�p ≥ �

instead of �x�p ≥ �/2, simply because their definitions are slightly differ-
ent with respect to what the � refers. For example, in older text books
� may have indicated the full width within which resides 50% of the
probability.

According to some interpretations of the Uncertainty Principle, every
explanation of reality has a meaning only in terms of the experiments that
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can be used to measure an aspect of reality under discussion. If this is true,
as Heisenberg seemed to believe, things that cannot be measured have no
meaning in physics. Heisenberg also believed that we cannot predict the
future based on the past because the future of a single particle cannot be
known, even if we know all the forces acting on the particle. We cannot
know the precise position and momentum of a particle at a given instant.
The best we can do is make statistical predictions.

Later in life, Heisenberg remarked that the time period roughly
between 1927 and 1932 was the “golden age of atomic physics . . . in which
the great obstacles that had occupied all our efforts in the preceding
years had been cleared . . . and fresh fruits seemed ready for the picking”
(quoted in Laurie M. Brown, Abraham Pais, and A. B. Pippard, Twentieth
Century Physics). In 1928, Heisenberg published The Physical Principles of
Quantum Theory, a standard introduction to the underlying mathematical
formalism of quantum mechanics.

In 1935, Heisenberg was a logical choice to replace his former mentor
Sommerfeld at the University of Munich. Alas, the Nazis required that
“German physics” must replace “Jewish physics,” which included quantum
theory and relativity. As a result, Heisenberg’s appointment to Munich
was blocked even though he was not Jewish. One Nazi functionary is
quoted as saying, “The concentration camp is obviously the most suitable
place for Herr Heisenberg!” A 1937 SS newspaper said that “Heisenberg
is only one example of many others. . . . They are all representatives of
Judaism in German spiritual life who must all be eliminated just as the
Jews themselves.” After a frightening investigation, the SS finally cleared
Heisenberg of any accusations.

Heisenberg was a superb pianist, and it was through his passion for
music that he met his other life’s passion, Elisabeth Schumacher. He had
met Elisabeth at a concert in which he was performing. She was 22, and he
was 35. They married three months later in 1937 and eventually had seven
children.

During World War II, Heisenberg led the unsuccessful German nuclear
weapons program. Today, historians of science still debate as to whether
the program failed because of lack of resources, lack of the right scientists
on his team, Heisenberg’s lack of experimental skills, or his lack of a desire
to give such a powerful weapon to the Nazis. Whatever the case, it is
true that Hitler’s military eventually decided to concentrate on rockets
and jet aircraft and give less financial support to the nuclear weapons
effort.

Heisenberg does appear to have been committed to at least some of
Germany’s extreme nationalism, as indicated in this portion of his 1943
letter to Dutch scientist Hendrik Casimir, published in Dan Kurzman’s
Blood and Water:

440 | a r c h i m e d e s t o h a w k i n g



History legitimizes Germany to rule Europe and later the world.
Only a nation that rules ruthlessly can maintain itself. Democracy
cannot develop sufficient energy to rule Europe. There are, there-
fore, only two possibilities: Germany and Russia, and perhaps a
Europe under German leadership is the lesser evil.

Dutch-American physicist Samuel Goudsmit (1902–1978) expressed his
reservations about Heisenberg in his August 27, 1948, letter to Michael
Perrin, an American official who was involved with the detention of Ger-
man scientists who had worked on the Nazi atom bomb project:

Heisenberg doesn’t seem to be willing even now to condemn the
Nazis openly. Instead, he tries to impress upon the world how
excellent the quality of German scientific work was, even under the
Nazis, and how, after all, their intentions were only peaceful. The
only mildly anti-Nazi article I have seen by Heisenberg is a speech
to the students at Göttingen, in which he points out that science
has nothing to do with race or religion. I think his speech would
have been much stronger if he had given examples of the destructive
influence of the Nazi doctrine.

At the end of World War II, the Allies captured Heisenberg and detained
him and several other German scientists for several months at an English
country manor, where their private conversations were secretly recorded.

In 1946, Heisenberg was appointed director of the Max Planck Institute
for Physics and Astrophysics at Göttingen. He continued to hold this post
when the institute moved to Munich, until he resigned in 1970. Heisenberg
died of cancer in Munich in 1976.

Two of his famous books that dealt with the philosophy of physics were
Physics and Philosophy (1962) and Physics and Beyond (1971). David Cas-
sidy writes of Heisenberg’s impact in “Werner Heisenberg: An Overview
of His Life and Work”:

As a physicist, Heisenberg ranks with Niels Bohr, Paul Dirac, and
Richard Feynman in his contributions and impact upon contem-
porary physics. He was a key player in the development of quan-
tum mechanics. . . . He went on to formulate a quantum theory of
ferromagnetism, the neutron-proton model of the nucleus, the S-
matrix theory in particle scatting. . . . During his lifetime, Heisenberg
produced nearly 600 original research papers, philosophical essays,
and explanations for general audiences.
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INTERLUDE: CONVERSATION STARTERS

Philosophers and great religious thinkers of the last cen-
tury saw evidence of God in the symmetries and har-
monies around them—in the beautiful equations of clas-
sical physics that describe such phenomena as electricity
and magnetism. I don’t see the simple patterns underlying
nature’s complexity as evidence of God. I believe that is
God. To behold [mathematical curves], spinning to their
own music, is a wondrous, spiritual event.
—Paul Rapp, “Get Smart: Controlling Chaos,” Omni

If our abstractions of nature are mathematical, in what
sense can we be said to understand the universe? For
example, in what sense does Newton’s Law explain why
things move?
—Lawrence M. Krauss, Fear of Physics

Imagine that the world is something like a great chess
game being played by the gods, and we are observers of
the game. . . . If we watch long enough, we may eventually
catch on to a few of the rules. . . . However, we might not
be able to understand why a particular move is made in
the game, merely because it is too complicated and our
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minds are limited. . . . We must limit ourselves to the more
basic question of the rules of the game. If we know the
rules, we consider that we “understand” the world.
—Richard Feynman, Feynman Lectures on Physics

Every scientific theory has its domain of applicabil-
ity, every theory has realms where their approxima-
tions work, and realms where their approximations break
down. We don’t use Newtonian gravity to build build-
ings on the Earth (unless the building is very tall), we
use Galileo’s model of gravity. We don’t use Einstein’s
theory of gravity for navigating the space shuttle when
Newton’s theory works to the level of precision needed
for the task. The relevant question is “Could we have
learned the greater understanding revealed by Einstein
without the two centuries of observations, analysis, and
experience developed under Newton’s ideas?” I think the
answer is probably “no.”
—William T. Bridgman, “The Cosmos in Your

Pocket: How Cosmological Science Became Earth
Technology. I.”
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HUBBLE’S LAW OF COSMIC EXPANSION

United States, 1929. The greater the distance a galaxy is from an
observer on Earth, the faster it recedes. The distances between
galaxies, or galactic clusters, are continuously increasing and,
therefore, the universe is expanding.

Cross Reference: The Doppler effect, the General Theory of Rela-
tivity, and Buys-Ballot’s Wind and Pressure Law.

In 1929, Ernest Hemingway published A Farewell to Arms. The
U.S. Stock Exchange collapsed. Popular songs included “Singing
in the Rain” and “Tiptoe Through the Tulips.” The comic strip
character Popeye made his debut. Bandleader Guy Lombardo
played “Auld Lang Syne” for the first time. Yasser Arafat, Pales-
tinian leader and recipient of the Nobel Peace Prize, was born.

In 1929, American astronomer Edwin Hubble discovered a linear relation-
ship between recessional velocity and distance of galaxies:

v = H · D

Here, v is the recessional velocity (e.g., the movement of a galaxy away
from an observer on Earth), H is Hubble’s constant, and D is the distance
of a galaxy from an observer or, more precisely, the proper distance that
the light had traveled from the galaxy in the rest frame of the observer,
that is, the reference frame in which the observer is at rest. Today, we now
know that Hubble’s constant can be used to characterize a time scale for
the evolution of the cosmos and probably changes through time. Thus, H
is sometimes written as H0 in formulations of the law, which signifies that
the value is not static.

The Hubble constant is thought to be the same throughout the universe
for a given time. Today, astronomers have determined that H is approx-
imately 71 (km/s) per megaparsec. A megaparsec is about 3 million light
years—and a light year is the distance that light travels in a vacuum in one
year, approximately 9.46 trillion (9.46 × 1012) kilometers or 5.88 trillion
(5.88 × 1012) miles. To get a feeling for the magnitude of a megaparsec,
which is often abbreviated Mpc, consider that the diameter of our Milky
Way galaxy is about 0.02 megaparsecs and the distance from our galaxy to
the Andromeda galaxy is 0.77 megaparsecs.

For many galaxies, the velocity v can be estimated from the redshift of a
galaxy, which is an observed increase in the wavelength of electromagnetic
radiation received by a detector on Earth compared to that emitted by the
source. Such redshifts occur because galaxies are moving away from our



own galaxy at high speeds due to the expansion of space itself. The change
in the wavelength of light that results from the relative motion of the light
source and the receiver is an example of the Doppler effect (see “Buys-
Ballot’s Wind and Pressure Law” in part III for more information on this
effect). Other methods also exist for determining the velocity of faraway
galaxies.

Systems that exert their own nearby gravitational influences, such as
stars within a single galaxy, are not subject to Hubble’s Law. This is why the
stars within our Milky Way are not expanding away from one another in
the same manner in which intergalactic distances are generally increasing.
This recession sometimes applies only to clusters of galaxies rather than
to galaxies themselves, because those galaxies that exist within a group
are bound together by gravity. Our local cluster of galaxies, for exam-
ple, is not expanding, but our cluster is moving farther away from other
clusters.

Although an observer on Earth finds that all distant galactic clusters are
flying away from Earth, our location in space is not special. Observers in
another galaxy would also see the galactic clusters flying away from their
position, because all of space is expanding.

As far back as 1917, before scientists really knew much about galaxies,
researchers noticed that most galaxies had their spectral lines Doppler-
shifted to the red, which, as discussed above, suggested that they were
moving away from us at high speeds. The more distant the galaxy, the
faster it moved. This is one of the main lines of evidence for the Big
Bang that created the universe and the subsequent expansion of space.
However, it is important to remember that the galaxies are not like the
flying debris from a bomb that has just exploded. Space itself is expanding.
The distances between galaxies are increasing in the same way that black
dots painted on the surface of a balloon move away from one another when
the balloon is inflated. It doesn’t matter on which dot you reside in order
to observe this expansion. Looking out from any dot, the other dots appear
to be receding.

The Hubble constant helps scientists gain insight into the universe
because it establishes a time scale for the universe. In particular, it provides
a rough measure for the time since the Big Bang. The age of expansion for
the universe is given by 1/H. For example, if we set H = 71 km/s/Mpc,
the expansion age of the universe is about 13.7 billion years. However,
this assumes that the universe has expanded without any acceleration or
deceleration. If the universe is accelerating, as suggested by many scientists
today, then the universe could be older than that determined by the simple
estimate provided by 1/H.

In 1929, Hubble had found his relationship of the distance of a galaxy
from Earth and the redshift of a galaxy by plotting a straight line, using
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data associated with 46 galaxies. The line yielded a Hubble constant of
500 km/s/Mpc. The value we use today is much lower because various
errors were associated with Hubble’s distance measurements. When Hub-
ble presented his plots of recessional velocity versus distance for his 46
galaxies, although there was a clear linear relationship, the data points
were somewhat scattered partly because all galaxies have some additional
residual motion in addition to the motion resulting from the expansion of
the universe. In 1958, American astronomer Allan Sandage (born 1926)
published a value of H0 = 75 km/s/Mpc.

In the 1990s, the Hubble Space Telescope allowed researchers to per-
form careful studies of Cepheid variables—stars whose distinctive pulsa-
tions give information as to the intrinsic brightness and distance of the
stars. By observing these kinds of stars in 31 galaxies, scientists computed
H0 to a precision of about 10%. Armed with this value for H0 and with
measurements of the cosmic microwave background, the age of the uni-
verse was estimated to be 13.7 billion years. Astronomers have also used
the Hubble Space Telescope, along with other observations, to determine
that a mysterious dark energy seems to compose about three-quarters
of the total energy density of the universe. About five billion years ago,
this dark energy started to cause the rate of expansion of the universe to
accelerate.

Edwin Hubble (1889–1953), U.S. astronomer famous for his theories on
the expansion of the universe.

CURIOSITY FILE: Astronomer Milton Humason (1891–1972) played a major
role in assisting Edwin Hubble when formulating Hubble’s Law by perform-
ing various spectroscopic studies. Humason started out as a janitor at the
Mount Wilson Observatory in 1917! • When Hubble died, his wife did not
have a funeral for him. She never revealed what was done with his body.
• While in England, Hubble ran track and played on one of the first baseball
teams in the British Isles.

Arguably the most important cosmological discovery
ever made is that our Universe is expanding. Its stands,
along with the Copernican Principle—that there is no
preferred place in the Universe, and Olbers’ paradox—
that the sky is dark at night, as one of the cornerstones
of modern cosmology. It forced cosmologists to dynamic
models of the Universe, and also implies the existence
of a timescale or age for the Universe. It was made
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possible . . . primarily by Edwin Hubble’s estimates of dis-
tances to nearby galaxies.
—John P. Huchra, “The Hubble Constant”

Hubble’s astronomical triumphs earned him worldwide
scientific honors and made him the toast of Hollywood
during the 1930s and 1940s—the confidant of Aldous
Huxley and a friend to Charlie Chaplin, Helen Hayes and
William Randolph Hearst.
—Michael D. Lemonick, “The Time 100: Edwin Hubble”

Equipped with his five senses, man explores the universe
around him and calls the adventure Science.
—Edwin Powell Hubble, The Nature of Science, 1954

As he rose through the social and economic strata,
Hubble reinvented himself. . . . There was a discontinuity
between one Hubble, with an ordinary Midwestern back-
ground, and the other, a wealthy Anglophile who mingled
with the Hollywood greats. Along the way, Hubble partly
disowned his family members, not allowing any of them
to meet his wife or her family.
—William H. Cropper, Great Physicists

Hubble was born in Marshfield, Missouri, and attended high school in
Chicago. His father, a religious man, was involved in the insurance busi-
ness. According to legends, at Hubble’s high school graduation ceremony,
the school principal approached him and said, “Edwin Hubble, I have
watched you for four years and I have never seen you study for ten
minutes.” The principal paused, and then said, “Here is a scholarship to
the University of Chicago.”

At age 16, Hubble started the University of Chicago, where he received
a B.S. in mathematics and astronomy—and was also a heavyweight boxer.
A sports promoter desperately wanted to train Hubble to fight the current
heavyweight champion of the world, but Hubble decided that a more
cerebral career behooved him, and he continued his studies at Queen’s
College, Oxford, in 1910, as a Rhodes Scholar. Hubble’s father, who was
strongly against the drinking of alcohol, made Hubble vow that he would
not touch alcohol while in England.

He received a B.A. from Oxford in jurisprudence in 1912. In 1913,
Hubble is alleged to have opened a law office in Kentucky, but conflicting
stories exist with respect to his life. Bill Bryson in A Short History of Nearly
Everything writes:
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For all his gifts, Hubble was an inveterate liar. . . . Though he later
claimed to have passed most of the second decade of the century
practicing law in Kentucky, in fact he worked as a high school
teacher and basketball coach in New Albany, Indiana, before belat-
edly attaining his doctorate.

Rocky Kolb in Blind Watchers of the Sky writes of this matter in more
diplomatic fashion:

After three years at Oxford, Hubble returned to Louisville, Ken-
tucky, where his family had moved while he was in England. But
rather than practice law . . . like most Rhodes scholars trained in
jurisprudence, he decided to do something noble with his life, and
he became a high school teacher.

Having boxed both in the United States and while at Oxford, it was time
to try something new again. In 1914, he went to the Yerkes Observatory of
the University of Chicago, where he was awarded a Ph.D. in astronomy in
1917.

When the United States entered World War I, Hubble enlisted and
eventually rose to the rank of major. He returned to the United States in
1919, when he began work at the Mount Wilson Observatory and stud-
ied nebulae, interstellar dust, and gas that are often visible as luminous
patches. At Mount Wilson, he discovered that some nebulae were outside
our Milky Way galaxy and were actually separate galaxies in their own
right. Michael D. Lemonick writes in Time:

[In the 1920s], most of Hubble’s colleagues believed the Milky Way
galaxy, a swirling collection of stars a few hundred thousand light-
years across, made up the entire cosmos. But peering deep into
space from the chilly summit of Mount Wilson, in Southern Cali-
fornia, Hubble realized that the Milky Way is just one of millions of
galaxies that dot an incomparably larger setting.

In 1925, Hubble classified nebulae and galaxies according to their shapes
and brightness patterns. For example, he determined that most galaxies
had a rotational symmetry and a central core. Spiral galaxies had the
appearance of swirling around a dense core of stars.

During his galactic observations, he determined that these galaxies are
receding from ours, and the more distant galaxies were receding from us
faster than the nearby galaxies. Up to this point in the history of science,
the universe was often considered a rather static object. Hubble estab-
lished that the universe was expanding and that the ratio of the galactic
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speed to their separation distances is a constant. Although his calculation
of the Hubble constant was incorrect and suggested an age for the universe
that was far too young, subsequent astronomers obtained more accurate
data and validated Hubble’s theory.

According to John Huchra in “The Hubble Constant”:

Hubble is generally given credit for the discovery of the expansion,
even though papers by Georges Lemaitre and H. P. Robertson
using Hubble’s data on the velocity-distance relation preceded his
1929 landmark, because it was his systematic program of measuring
galaxy distances and his 1924 discovery of Cepheid variable stars in
M31 [which could be used to compute distances] and his actual plot
of the relation that finally convinced the community at large.

After Einstein learned of Hubble’s discovery, Einstein gave up his work
on the cosmological constant, which he had hypothesized in order to allow
for a static solution to his equations. He later said that his work on the
cosmological constant was one of his “greatest blunders.” Einstein’s Gen-
eral Theory of Relativity had initially suggested the universe was either
expanding or contracting, but because astronomers had told Einstein that
the universe was static, he had added a fudge factor to his equations—a
cosmological constant that acted like an antigravity force to prevent the
universe from contracting. Although Hubble was never confident that the
model of the expanding universe was actually correct, his discovery eventu-
ally resulted in George Gamow (1904–1968) and Fred Hoyle’s (1915–2001)
Big Bang theory.

In 1942, Hubble attempted to enlist in the army, but the U.S. War
Department appointed him to chief of ballistics and director of the Super-
sonic Wind Tunnel Laboratory in Maryland.

Near the end of his life, Hubble suffered from heart problems, and he
died suddenly in 1953 from a cerebral thrombosis (blood clot in a blood
vessel supplying the brain). His wife never revealed what was done with
his body, and I believe that to this day, the location of his remains is still a
mystery.

A lunar crater with a diameter of 80 kilometers was named after
Hubble and approved in 1964 by the International Astronomical Union
General Assembly. Sandage, writing on the centennial of the birth of
Edwin Hubble, notes that Hubble’s name has been attached to numerous
astronomical theories, constants, and devices:

There is Hubble’s zone of avoidance, the Hubble galaxy type, the
Hubble sequence, the Hubble luminosity law for reflection nebulae,
the Hubble luminosity profile for E galaxies, the Hubble constant,
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the Hubble time, the Hubble diagram, the Hubble redshift-distance
relation, the Hubble radius for the Universe, and now the Hubble
Space Telescope. It seems appropriate in this centennial year to
celebrate the memory of a scientist whom some have called the
greatest astronomer (in changing paradigms) since the times of
Galileo, Kepler and Newton.

Alexander S. Sharov and Igor D. Novikov in Edwin Hubble speak in glow-
ing terms of Hubble’s achievements that also stimulated other scientists to
build upon his important observations:

Hubble opened the world of galaxies for science when he proved
that the nebulae outside the Milky Way are gigantic stellar sys-
tems [similar to] the galaxy which includes our Sun and its planets.
However, the most important discovery was that of the red-shift in
spectra of galaxies . . . the Universe was smaller in the past. . . . The
explosive origin of the Universe determined its subsequent evolu-
tion [that] gave rise to the human race. . . . This is why astronomers
rank Edwin Hubble with Copernicus and Galileo Galilei.

John Gribbin, author of The Birth of Time, emphasizes that Hubble was
much more of an observer than a theoretician:

Edwin Hubble never really subscribed to any theory about the
Universe at all, in spite of the association made today between his
name and the theory of the Big Bang. Hubble was an observer,
and he reported the observations he made almost entirely without
any trappings of theoretical interpretation, leaving that for others to
do. . . . Hubble always exaggerated his own social status and achieve-
ments outside astronomy.

Bryson agrees with Gribbin’s assessment:

Hubble was a much better observer than a thinker and didn’t imme-
diately appreciate the full implications of what he had found. . . . At
all events, Hubble failed to make theoretical hay when the chance
was there. Instead, it was left to a Belgian priest-scholar (with a
Ph.D. from MIT) named Georges Lemaître to [formulate] his own
“fireworks theory,” which suggested that the universe began as a
geometrical point . . . which burst into glory and had been moving
apart ever since.

450 | a r c h i m e d e s t o h a w k i n g



Before leaving the entry on Hubble, I should point out that our concept
and view of the universe has changed dramatically over the last four
centuries. Back in the time of Galileo Galilei (1564–1642), many learned
people still believed that Earth was the center of the universe. As this
geocentric theory faded away like a dying flower, new theories evolved
that suggested the Sun was the center of the universe, and when this
theory died, some believed that the Milky Way galaxy was the center of
everything. Today, we realize that our modern telescopes have only begun
to reveal the immense numbers and variety of stars, and we know that
the Sun is just an ordinary star in our galaxy, which contains roughly 200
billion stars. As I discuss in The Stars of Heaven, the galactocentric view
of the universe, which placed our Milky Way at the center of the universe,
turned out to be just another centrism that finally died in the 1920s, when
Hubble proved that the Milky Way was not the only galaxy in the universe.

In our observable universe, we know there is roughly one galaxy for
every star in the Milky Way. This fact certainly would have disturbed
some of the scientists in the last four centuries and destroyed some of
their notions about the heavens. Is it possible that the next four centuries
will bring equally radical changes in our cosmological theories? Each of
our centrisms died hard, and each demise was aided by new tools, new
images, and new maps. One possibility is that our universe is not the only
universe. I believe that new knowledge gleaned in the twenty-first century
about other universes will destroy the centrism that our universe is all that
there is.
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INTERLUDE: CONVERSATION STARTERS

The miracle of appropriateness of the language of math-
ematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve.
We should be grateful for it, and hope that it will remain
valid for future research, and that it will extend, for better
or for worse, to our pleasure even though perhaps also to
our bafflement, to wide branches of learning.
—Eugene Wigner, “The Unreasonable Effectiveness of

Mathematics”

The tooth fairy is real, the laws of physics are real, the
rules of baseball are real, and the rocks in the field are
real. But they are real in different ways. What I mean
when I say the laws of physics are real is that they are
real in pretty much the same sense . . . as the rocks in the
field, and not in the same sense . . . as the rules of baseball.
We did not create the laws of physics or the rocks in the
field. . . . I am making an implicit assumption . . . that our
statements about the laws of physics are in a one-to-one
correspondence with aspects of objective reality. . . . If we
ever discover intelligent creatures on some distant planet
and translate their scientific works, we will find that we
and they have discovered the same laws.
—Steven Weinberg, “Sokal’s Hoax,” The New York

Review of Books, August 8, 1996

We see reality according to our thought. Therefore
thought is constantly participating both in giving shape
and form and figuration to ourselves, and to the whole of
reality. Now, thought doesn’t know this. Thought is think-
ing that it isn’t doing anything. I think this is really where
the difficulty is. We have got to see that thought is part of
this reality and that we are not merely thinking about it,
but we are thinking it. Do you see the difference?
—David Bohm, On Creativity
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Astronomy provides a laboratory for extreme physics, a
window into environments at extremes of distance, tem-
perature and density that often can’t be reproduced in
Earth laboratories, or at least not right away. A surprising
amount of the science we understand today started out
solutions to problems in astronomy. . . . When it comes to
discoveries in fundamental science, few of the discoverers
have any inkling of the eventual consequences of their
discoveries.
—William T. Bridgman, “The Cosmos in Your

Pocket: How Cosmological Science Became Earth
Technology. I.”
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THE GREAT CONTENDERS

At once philosophy and genial fantasy, practical physics
and terrifying weapon, E = mc2 has become metonymic
of technical knowledge writ large. Our ambitions for sci-
ence, our dreams of understanding and our nightmares of
destruction find themselves packed into a few scribbles of
the pen.
—Peter Galison, “The Sextant Equation” in Graham

Farmelo’s It Must Be Beautiful

God [could] vary the laws of Nature, and make worlds of
several sorts in several parts of the universe.
—Isaac Newton, “Questions” from Opticks

This section of the book contains a large panoply of eponymous scientific
laws. Some of these laws are slightly more obscure than the laws in the
main section of the book, and I also include a few favorite biological laws in
this section. Some of the “great contenders,” although quite fundamental,
do not have simple formulas for their expression or are not referred to as
“laws” in many literature references.

As I researched the following laws, I often discovered dozens of inter-
esting books that explained facets of these laws, and I often indicate these
book resources within each short entry. Sometimes, I give definitions of the
laws from several different authors’ perspectives. In the interest of brevity,
the “Great Contenders” section is much less formal and less detailed than
the main entries of this book and thus may serve simply as a launch pad for



table 12 Time Distribution of Great-Contender
Laws

Time Period Number

1600–1700 2 (4.25%)

1700–1800 2 (4.25%)

1800–1900 28 (59.5%)

1900–2000 15 (32%)

further study. Perhaps a future book will permit me to give the following
contenders a fuller treatment.

As with the main entries, most of the following laws fall in the period
between 1800 and 1900, and most are associated with scientists from West-
ern Europe. Table 12 indicates the historical distribution of the laws in
this section. Table 13 catalogues these laws by country of birth, or primary
country affiliation, for the various lawgivers. Sometimes the determination
of country affiliation is a judgment call when a lawgiver is born in one
country but works in another. Thus, table 13 should be used only as a rough
indicator. (If a lawgiver is associated with more than one law, he is counted
only once.)

1600–1700

Mersenne’s Law of Vibration:

Physics, 1626

Marin Mersenne (1588–1648), French mathematician.

For a small-amplitude vibration, the fundamental frequency of vibration
of a uniform string is proportional to the square root of the tension of the
string, the reciprocal of the square root of mass per unit length of the string,
and the reciprocal of the length of the string. Using these relationships,
a piano maker can achieve a range of frequencies. Of course, the piano
maker cannot rely solely on using strings of different length to change fre-
quencies, because the longest piano string would have to be more than 150
times the length of the shortest to achieve the desired sound! Thus, piano
strings also have different weights and tensions as required by Mersenne’s
Law. (See Science and Music by James Jeans.)
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table 13 Country Distribution of Great-Contender
Laws

Country Number

France 15

Britain 12

Germany 10

United States 7

Netherlands 3

Italy 2

Austria 2

Russia 2

Switzerland 1

India 1

Ireland 1

Denmark 1

Mersenne was of many famous mathematicians who were deeply reli-
gious. He was a French theologian, philosopher, number theorist, priest,
and monk. He argued that God’s majesty would not be diminished had
He created just one world instead of many because the one world would
be infinite in every part. Mersenne first publications were theological and
argued against atheism and skepticism.

Torricelli’s Law of Efflux:

Physics, 1643

Evangelista Torricelli (1608–1647), Italian mathematician and physicist
who was also the inventor of the barometer.
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Torricelli’s Law states that the speed of efflux of liquid from a hole is
the same speed that a body would achieve in falling freely from the free
surface of the liquid to the hole. If a hole is at a distance h below the
surface of the liquid, the square of the speed of efflux v from the hole
is v2 = 2gh, where g is the gravitational acceleration constant. The law
assumes that viscous effects can be ignored. The quantity of the efflux,
or discharge, is given by q = av, where a is the cross-sectional area of the
hole.

Note that q = av is sometimes called Leonardo da Vinci’s Law. In
particular, around 1500, da Vinci noticed that water in a river moved faster
where the river narrowed. He also found that the area of a cross section
of a river multiplied by the velocity of the water flowing through that
section is constant at any point in the river, thus conserving the mass of
the fluid. This is sometimes known as the Law of Continuity, expressed
as av = constant. In particular, da Vinci wrote in 1502, “A river in each
part of its length in an equal time gives passage to an equal quantity of
water, whatever the width, the depth, the slope, the roughness, and the
tortuosity (sinuosity)” (quoted in Robert Philip Benedict’s Fundamentals
of Temperature, Pressure, and Flow Measurements). Although he did not
give the actual formula q = av, many have ascribed this equation to da
Vinci. This continuity equation was actually formulated in 1628 by Italian
monk and hydraulics expert Benedetto Castelli (1578–1643). In practice,
the continuity equation allows researchers to follow changes in velocity
and cross-sectional area at different locations along a river. Many sources
suggest that this law was first discovered by Hero of Alexandria (c.10–70),
centuries before da Vinci and Castelli. Hero was a Greek engineer and
geometer in Alexandria in Hellenistic Egypt.

Various authors have considered the effect of the shape of the hole
on the velocity of flow in Torricelli’s Law. Holes that are square or
in which the fluid approaches the hole with a high velocity cannot be
treated by Torricelli’s Law unless corrections are made for these special
conditions (see A History and Philosophy of Fluid Mechanics by G. A.
Tokaty).

Aside from his work in physics, Torricelli is also famous for the dis-
covery of a mathematical object whose surface area is infinite, but whose
volume is finite. This object, also called Torricelli’s trumpet, is a horn-
like object created by revolving f (x) = 1/x for x ∈ of [1, ∞) about the
x-axis. John dePillis in 777 Mathematical Conversation Starters explains
that, mathematically speaking, pouring red paint into Torricelli’s trumpet
could fill the trumpet funnel. In filling the trumpet, you could paint the
entire inside, which is an infinite surface—even though you have a finite
number of paint molecules. This seeming paradox can be partly resolved
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by remembering that Torricelli’s trumpet is actually a mathematical con-
struct, and our finite number of paint molecules that “fills” the horn is an
approximation to the actual finite volume of the horn.

Torricelli was astounded by this object that seemed to be an infinitely
long solid with an infinite-area surface and a finite volume. He thought it
was a paradox and unfortunately did not have the tools of calculus to fully
appreciate and understand the object. Today, Torricelli is remembered for
the telescopic astronomy he did with Galileo.

Readers who become fascinated by Torricelli’s trumpet may enjoy
considering the following problem: For what values of a does f (x) = 1/xa

produce a horn with finite volume and infinite area?

1700–1800

Maupertuis’s Rule of Least Action:

Physics, 1746

Pierre-Louis Moreau de Maupertuis (1698–1759), French mathemati-
cian.

Maupertuis said, “Nature is thrifty in all its actions,” and this rule is
sometimes called the Principle of Least Action. For example, Maupertuis
deduced, from this principle, the laws of reflection and refraction of light
“with the important principle by which nature, when realizing its actions,
always goes along the simplest path.” In 1746, he published his universal
law of motion and equilibrium: “When a change occurs in nature, the
quantity of action necessary for this change is least possible. The quantity
of action is the product of the masses of the bodies by their speeds and by
the distance over which they move.” (See Encyclopaedia of Mathematics,
edited by Michiel Hazewinkel.)

Maupertuis believed his principle applied to the universe when he
wrote (as quoted in Morris Kline’s Mathematics and the Physical World):

The laws of movement and of rest deduced from this principle being
precisely the same as those observed in nature, we can admire the
application of it to all phenomena. The movement of animals, the
vegetative growth of plants . . . are only its consequences; and the
spectacle of the universe becomes so much the grander, so much
more beautiful, the worthier of its Author, when one knows that
a small number of laws, most wisely established, suffice for all
movements.
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Richter’s Law of Chemical Reactions:

Chemistry, 1791

Jeremias Richter (1762–1807), German chemist.

An equivalent weight of an acid will exactly neutralize an equivalent
weight of a base. More generally, Richter discovered that the ratio by
weight of the compounds consumed in a chemical reaction was always
the same. For example, 615 parts by weight of magnesia (MgO) always
neutralize 1,000 parts by weight of sulfuric acid.

Richter published two books that laid the foundations of stoichiometry
(the quantitative relationship between reactants and products in a chem-
ical reaction). He was an engineer in the department of mines in Silesia
who later was appointed chemist to the porcelain works in Berlin. In his
Anfangsgründe der Stöchiometrie, he set forth his belief that all of chem-
istry might be reduced to a mathematical system. (See The Development
of Modern Chemistry by Aaron J. Ihde.)

1800–1900

Malus’s Law of Polarization:

Optics, 1809

Etienne Louis Malus (1775–1812), French physicist.

The intensity of transmitted light I produced when a polarizer is placed
in front of an incident beam of plane-polarized light of intensity I0 is
given by I = I0cos2θ. The experiment is usually conducted using two
polarizers. Unpolarized light is passed through a first polarizer. A sec-
ond polarizer, called the analyzer, is inserted into the light path. Malus’s
Law describes the intensity of light transmitted through the analyzer
when the analyzer is placed at an angle θ with respect to the first
polarizer.

Today, we can only guess at the reasoning that Malus used to formu-
late his law. According to Jed Buchwald’s The Rise of the Wave Theory
of Light: Optical Theory and Experiment in the Early Nineteenth Cen-
tury, Malus did not discover his law through calculations based on par-
ticles and forces. He did not seem to discover it simply by correlating
observations at different refractive indices, nor did he have a way to
measure intensity. Malus died too soon to present the full details of his
theory.
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The Bell-Magendie Law of Nerve

Function: Neurophysiology, 1811

Sir Charles Bell (1774–1842), Scottish anatomist, and François
Magendie (1783–1842), French physiologist.

Ventral roots of the spinal nerves (toward the belly of a creature) serve
a motor function, and the dorsal roots (toward the back) serve a sensory
function. In order to formulate his law, Bell performed experiments on live
animals in which he cut certain nerves and noted their reactions.

Irwin A. Brody and Robert H. Wilkins, in Neurological Classics, state
the law as follows: Sensory nerves enter the spinal cord by the poste-
rior (dorsal) roots, and motor nerves leave it by the anterior (ventral)
roots.

Edward S. Reed, in From Soul to Mind: The Emergence of Psy-
chology, from Erasmus Darwin to William James, suggests that this law
quickly led to the idea that the brain received and interpreted the
spinal input signals and ordered whatever output signals were needed
to return down the spine. Hence, the mind could still be located in the
brain.

The experiments that led to the Bell-Magendie Law also led to the
establishment in 1824 of the first Society for Prevention of Cruelty to
Animals in England.

von Humboldt’s Law of Tree Lines:

Biology, 1817

Alexander von Humboldt (1769–1859), German naturalist and explorer.

The upper tree limit or “tree line” occurs at increasingly lower elevations
as observations are made farther from the Equator. (The tree line, also
called the “timberline,” is the upper “edge” of the topography at which
trees are capable of growing, due mostly to restrictions imposed by cold
temperatures and wind.) The tree line finally reaches sea level above the
Arctic Circle.

Between 1799 and 1804, von Humboldt explored South and Central
America, and was the first naturalist to describe his observations in these
regions from a scientific point of view. Over 21 years, he wrote much
of his description in a huge set of volumes. As a child, he collected and
labeled everything he could find, with an emphasis on shells, plants, and
insects.
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The Fresnel-Arago Laws of Optics:

Optics, 1819

Augustin Fresnel (1788–1827) and Dominique Arago (1786–1853),
French physicists.

This set of laws enumerates the conditions under which two rays of polar-
ized light produce interference fringes. For example, two beams of light
that are plane polarized in perpendicular planes do not produce interfer-
ence fringes. Two beams polarized in the same plane interfere in the same
manner as ordinary light.

Mitscherlich’s Law of Isomorphism:

Chemistry, 1821

Eilhard Mitscherlich (1794–1863), German chemist.

Substances that crystallize in isomorphous (identical) forms have similar
chemical compositions. The law can be used to suggest the likely formulas
of chemical compounds. For example, chromium oxide is isomorphous
with Fe2O3, which suggests correctly that the formula for chromium oxide
is Cr2O3.

Mitscherlich was a Renaissance man and had devoted himself as a
young man to the study of ancient texts and languages, and he became
an expert on the Persian language.

Hamilton’s Principle of Dynamical

Systems: Physics, 1835

Sir William Rowan Hamilton (1805–1865), Irish mathematician.

Jennifer Bothamley, in Dictionary of Theories, states this law as follows:
The evolution of a dynamical system from time t1 to a time t2 is such that
the action S(t1, t2) is a minimum with respect to arbitrary small changes in
the trajectory. Dare A. Wells in Schaum’s Outline of Lagrangian Dynamics
suggests that Hamilton’s principle played an important role in the devel-
opment of quantum mechanics.

Hamilton was a child prodigy. At the age of 7 he spoke Hebrew, and by
13 he had mastered many classical and modern European languages such
as Farsi, Arabic, Hindustani, Sanskrit, and Malay. His oldest son, William
Edwin Hamilton, noted that his father (as quoted in Peter Guthrie Tait’s
Scientific Papers)
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used to carry on long trains of algebraic and arithmetical calcula-
tions in his mind, during which he was unconscious of the earthly
necessity of eating; we used to bring in a “snack” and leave it in his
study, but a brief nod of recognition of the intrusion of the chop or
cutlet was often the only result, and his thoughts went on soaring
upwards.

Babinet’s Principle of Diffraction:

Physics, 1838

Jacques Babinet (1794–1872), French physicist.

According to Jennifer Bothamley’s Dictionary of Theories, this princi-
ple involves the effects of complementary diffracting screens on electro-
magnetic radiation. Consider screens S1 and S2 that are complementary
because S2 is the screen obtained by making the opaque parts of screen S1

transparent and the transparent parts opaque. Complementary diffraction
screens produce identical intensity distributions.

Let me reiterate the meaning of this principle by presenting the
perspective of several authors. According to Samuel Silver’s Microwave
Antenna Theory and Design, the optical Babinet’s Principle states that the
sum of the two complementary fields at any point is equal to the initial
wave amplitude at the point in the absence of any screen.

Dipak K. Basu, in Dictionary of Pure and Applied Physics, writes:

Suppose that we have a plane opaque screen in the x, y-plane; Am

is the area covered by the screen and A0 is the aperture area. The
complementary screen is defined to be that covering the area A0

and having aperture area Am. In both cases, let there be an initial
field ui arising from sources in the negative z-region of space, and let
u1 and u2 be the diffraction field produced in the positive z-region
by the respective screens. The optical Babinet’s principle states that
the sum of the two complementary fields at any point is equal to the
initial wave amplitude at the point in the absence of any screen.

Babinet’s Principle in the context of acoustic or electromagnetic waves
asserts that the problem of diffraction by a plane screen S containing
apertures L is related to a complementary diffraction problem in which L is
a screen with apertures S (see Christopher M. Linton and Phillip McIver’s
Handbook of Mathematical Techniques for Wave/Structure Interactions).

As a final perspective on the law, consider two complementary screens,
A and B. Screen A may just have a hole and screen B a stop the same
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size as the hole. If added together, no light may pass. Babinet’s Principle
tells us that complementary screens generate similar diffraction patterns.
(See Karl Dieter Möller’s Optics: Learning by Computing, with Model
Examples Using MathCad, MATLAB, Mathematica, and Maple.)

Hess’s Law of Constant Heat

Summation: Chemistry, 1840

Chemist Germain Henri Hess (1802–1850), Swiss-born Russian.

Hess’s Law is used to predict the change in heat content, or enthalpy
(�H), in chemical reactions. The overall enthalpy change is the same
whether it takes place in one or several steps. The enthalpy change of the
overall chemical reaction is simply the sum of the enthalpy changes of each
reaction step.

Randall K. Noon, in Engineering Analysis of Fires and Explosions,
writes that the consequences of Hess’s Law are important because they
imply that heat-of-formation equations and heat-of-combustion equations
can be manipulated together algebraically in order to accurately calculate
the heats of formation or combustion of substance whose values have not
been previously determined experimentally.

J. A. McLean and G. Tobin, in Animal and Human Calorimetry, note
that in the field of calorimetry, Hess’s Law states that the heat released by a
chain of reactions is independent of the chemical pathways, and dependent
only on the end products. In effect, this law and the law of conservation of
energy together ensure that the heat evolved in the complex biochemical
pathways that describe food digestion is exactly the same as the heat
produced during measurements when the same food is converted into the
same end products by simple combustion in a lab experiment.

Bergmann’s Rule of Species Size:

Biology, 1847

Christian Bergmann (1814–1865), German biologist.

Within a given species or genus, the average size of an animal tends to
be smaller when the animal lives in warmer regions on Earth, and larger
when in colder regions. Larger bodies have a smaller surface-to-volume
ratio than do smaller bodies, which is useful for keeping an animal warm.
The rule is especially applicable to bird species, but many mammals also
follow this rule.

Jim Zumbo, in Elk Hunting, notes that elk that live in more northerly
latitudes should be bigger in body size because of Bergmann’s Rule.
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Zumbo says that the larger elk size allows less heat loss per square inch
of body surface.

Carrol L. Henderson, in Field Guide to the Wildlife of Costa Rica, notes
that raccoons, cougars, and the white-tailed deer demonstrate Bergman’s
Rule in Costa Rica. Deer near the Equator have a smaller body than do
deer of the same species in colder northern temperate climates.

The Gladstone-Dale Law of

Refraction: Physics/Chemistry, 1858

John Hall Gladstone (1827–1902) and T. P. Dale, English chemists.

For a given temperature, the refractive index n of a gas is related to its
density ρ by (n – 1)/ρ = k, where k is a constant.

Gladstone was very religious but believed that Christianity did not
conflict with science. Referring to the Bible, he wrote in his “Points of
Supposed Collision Between the Scriptures and Natural Science”:

The store houses of natural science have often been ransacked
for weapons against the old book; the defenders of the faith have
sometimes shrieked with alarm, and the assailants have sung their
paean in anticipation of victory. Earthworks which form no part of
the original fortress have been easily carried, but the citadel itself
has remained unshaken and the very vigor of these repeated attacks
has proved how impregnable are its valuable walls.

Kopp’s Law of Heat Capacity:

Chemistry, 1864

Hermann Franz Moritz Kopp (1817–1892), German chemist.

The molar heat capacity of a solid compound is approximately equal to
the sum of the atomic heat capacities of its constituents. Related laws
dealing with heat capacities include the Neumann-Kopp Law (1831) and
Neumann’s Law (1831), named after German chemist Franz Neumann
(1798–1895).

Some have called Kopp the first great historian of chemistry. He pub-
lished a comprehensive History of Chemistry, in four volumes, to which
three supplements were added. He also wrote The Development of Chem-
istry in Recent Times and published a two-volume work titled Alchemy in
Ancient and Modern Times.
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Matthiessen’s Rule of Electrical

Resistivity: Physics, 1864

Augustus Matthiessen (1831–1870), English physicist.

The electrical resistivity of a metal that contains atomic impurities is
almost always greater than that of the pure metal. According to Gerald D.
Mahan’s Many-Particle Physics, in metals, electrical resistivity arises from
both electron scattering by impurities and electron scattering by phonons,
the latter effect becoming large at high temperatures. Matthiessen’s Rule
says that these two contributions to the resistivity are additive; however,
several deviations from the rule are known.

Maxwell’s Law of Gas Viscosity:

Physics, 1866

James Clerk Maxwell (1831–1879), Scottish physicist.

The coefficient of viscosity of a gas is independent of its density and of its
pressure. The law assumes that the experiment is performed at constant
temperature, and it is most accurate at pressures that are not extremely
low or high.

According to Florian Cajori’s A History of Mathematics:

Maxwell predicted that so long as Boyle’s Law is true, the coeffi-
cient of viscosity and the coefficient of thermal conductivity remain
independent of the pressure. His deducing that the coefficient of vis-
cosity should be proportional to the square root of the absolute tem-
perature . . . induced him to alter the very foundation of his kinetic
theory of gases by assuming between the molecules a repelling force
varying inversely as the fifth power of their distances.

The Berthelot-Thomsen Principle of

Chemical Reactions: Chemistry, 1867

Marcellin Pierre Eugene Berthelot (1827–1907), French physical
chemist, and Hans Peter Jurgen Julius Thomsen (1826–1909), Danish
chemist.

Consider all possible chemical reactions that may take place for a given
set of reactants. The reaction that leads to the greatest release of energy
will occur. Carl W. Hall’s Laws and Models describes the law as follows:
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Of the various possible low-temperature nonendothermic reactions that
can proceed without the aid of external energy, the process takes place
accomplished by the greatest evolution of heat.

Hans-Dieter Jakubtke and Hans Jeschkeit suggest in Concise Ency-
clopedia of Chemistry that the affinity of a chemical reaction (i.e., the
tendency of a reaction to occur) is proportional to the heat released by
the reaction.

Mendeleyev’s Periodic Law of

Elements: Chemistry, 1869

Dimitri Mendeleyev (1834–1907), Russian chemist.

The chemical and physical properties of the elements are periodic func-
tions of the atomic weights. Mendeleyev was so confident that his periodic
law was correct that he left empty cells in his periodic table of the elements
for undiscovered elements that he thought should exist in these table
locations. Five years later, gallium was discovered, and its atomic weight
and chemical properties matched Mendeleyev’s predictions almost exactly.
Scientists were not sure as to the precise reasons for the period pattern in
properties of the elements until fifty years after Mendeleyev’s discovery,
when quantum mechanics could be used to explain why elements form
groups with similar properties. (See Paul Fleisher’s Matter and Energy:
Principles of Matter and Thermodynamics.)

The Lorentz-Lorenz Law of Refractive

Indices: Physics, 1870

Hendrik Lorentz (1853–1928), Dutch physicist, and Ludwig Lorenz
(1853–1928), Danish physicist.

At a constant temperature, the refractive index n of all states of a dielectric
is related to the density of the medium ρ as (n2 − 1)/(n2 + 2) = k × ρ,
where k is a constant. (A dielectric material is a substance, such as
glass, that is a poor conductor of electricity but an efficient supporter
of electrostatic fields.) This formula was published by Ludwig Lorenz
in 1869 and by Hendrick Lorentz (who discovered it independently) in
1870.

Lorentz won the Nobel Prize for Physics in 1902 for his theory of elec-
tromagnetic radiation. He also suggested that moving bodies that approach
the velocity of light contract in the direction of motion, which helped give
rise to Albert Einstein’s Special Theory of Relativity.
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Coppet’s Law of Freezing Point

Lowering: Chemistry, 1871

Louis Cas de Coppet (1841–1911), French physicist.

The degree of lowering of the freezing point of a solution is proportional
to the amount of solute dissolved in the solution. The English chemists
Charles Blagden (1748–1820) and Richard Watson (1737–1816) discovered
similar laws. In 1788, Blagden, the secretary of British scientist Henry
Cavendish (1731–1810), had shown that the freezing-point depression was
proportional to the amount of substance (solute) in a given volume of
solvent, and François Marie Rauolt (1830–1901) was made aware of Blag-
den’s Law from an investigation made by Coppet in 1871 in which “atomic
depressions” were calculated. This law helps to explain the use of salt to
melt ice on roads (see William H. Brock’s The Chemical Tree: A History
of Chemistry).

Boltzmann’s Distribution Law:

Physics, 1871

Ludwig Boltzmann (1844–1906), Austrian physicist.

This law describes the statistical distribution of velocities and energies of
gas molecules at thermal equilibrium. (See Jennifer Bothamley’s Dictio-
nary of Theories.) The law states that the natural logarithm of the ratio
of the number of particles in two different energy states is proportional
to the negative of their energy separation. Scottish physicist James Clerk
Maxwell first suggested this distribution in 1859, using probabilistic argu-
ments. Boltzmann generalized Maxwell’s findings in 1871. This distribu-
tion law is sometimes referred to as the Maxwell-Boltzmann Distribution
Law.

Dipak K. Basu’s Dictionary of Material Science and High Energy
Physics describes the Boltzmann Distribution Law as a law of statistical
mechanics that states that the probability of finding a system at tempera-
ture T with an energy E is proportional to e−E/KT , where K is Boltzmann’s
constant.

According to Stephen G. Brush’s Kinetic Theory of Gases: An Anthol-
ogy of Classic Papers with Historical Commentary, Boltzmann complained
that Maxwell’s derivation of the velocity distribution law was difficult to
understand because of its brevity. Thus, Boltzmann devoted the first part
of a 44-page memoir to explaining with concrete examples the steps that
Maxwell had skipped.
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Abney’s Law of Luminosity:

Physics, 1877

Sir William de Wiveleslie Abney (1844–1920), English chemist.

Let me express this law from several authors’ perspectives:

� The luminous power of a source is the sum of the powers of the
components of any spectral decomposition of the light (Richard
A. Matzner’s Dictionary of Geophysics, Astrophysics, and
Astronomy).

� The luminances of differently colored lights add linearly. The
luminosity of a compound stimulus is equal to the sums of the
component luminances (Ian P. Howard and Aan P. Howard’s
Binocular Vision and Stereopsis).

� Light arriving at a surface is the sum of the light arriving from all
sources to which the surface is exposed (Marc Schiler’s Simplified
Design of Building Lighting).

Allen’s Rule of Body Form:

Biology, 1877

Joel Asaph Allen (1838–1921), American zoologist.

According to Robert B. Eckhardt’s Human Paleobiology, this law
expresses a correlation of body form with temperature, stating that in
warm-blooded species, the relative sizes of anatomical parts projecting
from the body (e.g., limbs, tails, and ears) decrease with declining annual
temperatures. This tendency correlates with the need to conserve heat in
cold locations and radiate heat in warm locations.

Roger Lewin’s Human Evolution: An Illustrated Introduction expresses
the law this way: Populations of a geographically widespread species living
in warm regions will have longer extremities (arms and legs) than those
living in cold regions. The rule is reflected by the observation that peo-
ple from tropical areas tend to have longer, thinner limbs, which maxi-
mize heat loss, while people from higher latitudes tend to have shorter
limbs.

According to Paul B. Weisz’s The Contemporary Scene: Readings on
Human Nature, Race, Behavior, Society, and Environment, Allen’s Rule
explains the lean body build of desert folk.
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Nernst’s Law of Electrode Potentials:

Chemistry, 1880

Walther Nernst (1864–1941), German chemist.

According to Jennifer Bothamley’s Dictionary of Theories, this law spec-
ifies the concentration dependence of a reversible equilibrium potential
of a working electrode. In particular, the law states that the zero-current
electrode potential E of a reversible electrode immersed in a solution of
an ion of valence z is given by E = E0 + [RT/zF]·ln a, where E0 is the
standard electrode potential, R is the gas constant, T is the temperature, F
is the Faraday constant, and a is the activity of the ion.

Andrew W. Batchelor, Loh Nee Lam, and Margam Chandrasekaran, in
Materials: Degradation and Its Control by Surface Engineering, succinctly
write that the Nernst Law describes the effect of electrolyte concentrations
and temperature on the electrochemical potential.

For his work in thermochemistry, Nernst received the Nobel Prize
in Chemistry in 1920. In addition to being a theoretician, Nernst was
an inventor. His improved electric light, the Nernst lamp, made use of
a ceramic body. His electrical piano replaced the sounding board with
radio amplifiers. Nernst’s two sons were both killed in the First World
War.

Raoult’s Law of Vapor Pressures:

Chemistry, 1882

François Raoult (1830–1901), French chemist.

The vapor pressure of each component in an ideal solution depends on
the vapor pressure of the individual components and the mole fraction
of each component in the solution. In particular, Pt = P1 X1 + P2 X2 + . . . ,
where Pt is the total vapor pressure of the solution; Pi are the vapor
pressure of the pure components, and Xi are the mole fractions for each
component.

According to Safety and Health in Confined Spaces by Neil McManus,
liquids occurring in mixtures may be completely miscible, partly miscible,
or completely immiscible in each other. In an ideal solution containing
completely miscible liquids, interactions between molecules of solute and
solvent are the same as solute–solute and solvent–solvent interactions.
Raoult’s Law provides a basis for predicting vapor pressures of compo-
nents of ideal solutions in equilibrium states.
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Raoult’s Law is the basis of the techniques of distillation, used to
separate substances with different boiling points or volatilities (see SAT
Subject Tests: Chemistry 2005–2006 by Kaplan, Inc.).

van’t Hoff’s Law of Osmotic Pressure:

Chemistry, 1885

Jacobus van’t Hoff (1852–1911), Dutch chemist.

The osmotic pressure of a solution (explained below) depends on the
concentration of osmotically active particles according to the expression
πV = nRT or π = C × RT, where π is the osmotic pressure, V is the
volume of solution, n is the number of moles of solute in solution, C is
the concentration of solute, R is the gas constant, and T is the absolute
temperature. When the solute concentration increases, the osmotic pres-
sure also increases. In other words, the osmotic pressure of a solution is
directly proportional to the concentration of solute in dilute solution. The
higher the osmotic pressure of a solution, the greater the water flow into
the solution from the surroundings.

Osmotic pressure can be understood by considering two solutions that
are separated by a semipermeable membrane. If the two solutions have
different effective osmotic pressures (e.g., because a solute concentration
is higher in one than the other), water will flow from the solution with
lower osmotic pressure into the solution with the higher osmotic pressure.

Due to osmotic pressure, when a cell is placed in pure water, water
may rush into the cell and cause it to burst. π should not be thought of
as the pressure of the solute but rather the pressure that must be applied
to the solution to keep solvent from flowing in through a semipermeable
membrane. (See BRS Physiology by Linda S. Costanzo.)

The Ramsay-Young Law of Vapor

Pressures: Chemistry, 1885

Sir William Ramsay (1852–1916), Scottish chemist, and Sidney Young
(1857–1937), Ramsay’s assistant at Bristol University in England.

According to a relationship proposed by Ramsay and Young, the ratio of
the absolute boiling points of two substances A and B at various vapor
pressures varies linearly with temperatures. F. C. Kracek expresses this
as follows in his 1930 Journal of Physical Chemistry article “Vapor Pres-
sures of Solutions and the Ramsay-Young Rule”: (TA/TB)p = (TA/TB)p0+
c(T − T0)B, where p corresponds to the vapor pressures.
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Jennifer Bothamley, in Dictionary of Theories, states the law more suc-
cinctly: If two chemically similar compounds have the same vapor pressure
at different absolute temperatures, the ratio of those temperatures is inde-
pendent of this vapor pressure.

Ramsay is famous for his discovery of the noble gases, and he named
the gas “argon” and discovered neon, krypton, and xenon. He received the
Nobel Prize in Chemistry in 1904.

The Cailletet-Mathias Law of Density:

Chemistry, 1886

Louis Cailletet (1832–1933), French physicist, and Emile Mathias
(1861–1942), French chemist.

The mean density of a liquid and its saturated vapor is a linear function of
temperature. Liquid metals are known to deviate from this law at certain
temperatures. Carl W. Hall, in Laws and Models: Science, Engineering,
and Technology, states the law in the following manner. A linear function
exists between the arithmetical average of the densities of a pure unas-
sociated liquid and its saturated vapor and the temperature of the liquid:
(dl + dv)/2 = A+ Bt. Here dl and dv are the densities of liquid and vapor,
respectively. Aand B are constants that depend on the liquid under study,
and the value of B is negative. t is the temperature in ◦C. In 1900, the law
was modified by British chemist Sidney Young (1857–1937). The law is also
referred to as the Cailletet-Mathias Rectilinear Diameter Law.

Dollo’s Law of Evolution:

Biology, 1890

Louis Dollo (1857–1931), French-born Belgian paleontologist.

Evolution is not reversible. In other words, structures and functions that
are lost through time can never be reacquired exactly in the same way. A
tenet of evolutionary theory, Dollo’s Law states that organisms do not re-
evolve along lost pathways but can find alternate routes through a chain
of random mutational events. For example, whales will never again walk
on land with re-evolved pelvic appendages that derive from the current
remnant structures that correspond in us to legs. (See The Long and the
Short of It: More Essays on the Fiction of Gene Wolfe by Robert Borski.)

According to The Blind Watchmaker: Why the Evidence of Evolution
Reveals a Universe Without Design by Richard Dawkins, Dollo’s Law is
just a statement about the statistical improbability of following exactly the
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same evolutionary trajectory twice (or, indeed, any particular trajectory),
in either direction. A single mutational step can easily be reversed, but the
chances of reversal of large numbers of mutational steps are vanishingly
small.

According to Laws and Models: Science, Engineering, and Technol-
ogy by Carl W. Hall, evolution is reversible in that features gained can
be lost, but irreversible in that features lost cannot be regained. Several
researchers have hypothesized that some evolutionary changes may result
from genes being switched off. If these silent genes were switched back on,
lost traits might reappear. Possible evolutionary throwbacks include the
occasional appearance of extra nipples or breasts in humans, as well as the
appearance of web fingers and toes. (See Michael Le Page, “The Ancestor
Within All Creatures,” New Scientist , January 13, 2007.

Sutherland’s Law of Gas Viscosity:

Chemistry/Physics, 1893

William Sutherland (1859–1911), Scottish theoretical physicist.

This law specifies a relationship between the viscosity (ηT) of a gas at
temperature T and the viscosity (η 0) at a reference temperature T0:

ηT

η 0
= T0 + S

T + S

(
T
T0

)3/2

,

where S is the Sutherland constant. The temperature is in degrees Kelvin.
Sutherland was born in Glasgow, Scotland. When he was a young

child, his family immigrated to Australia. Another example of simultane-
ous occurrences in science, Sutherland also derived a relation linking the
diffusion coefficient to the viscosity of a solvent and the diameter of the
diffusing molecule. Soon afterward, in 1905, Einstein published the same
equation in his paper on Brownian motion, having arrived at it by exactly
the same line of reasoning. Sutherland reported his relation in 1904 at
a conference in New Zealand and published it 1905. Today, what might
have been called the “Sutherland-Einstein Diffusion Equation” is usually
referred to simply as the “Einstein Diffusion Equation,” and Sutherland’s
work is not widely recognized.

Lorentz Force Law: Physics, 1895

Hendrik Lorentz (1853–1928), Dutch physicist.

A particle of charge q and velocity v residing in a magnetic field of induc-
tion B and an electric field of strength E experiences a force F given by
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F = q(E + v× B). Here, the × symbol is the cross product. In other words,
when both electric and magnetic fields are present, the total electromag-
netic force on the charge is F. This law has been verified experimentally
numerous times, and it is found to be true even for particles moving at
speeds close to the speed of light. Thus, electric charge is relativistically
invariant, which means that it does not change with velocity. This equation,
along with Maxwell’s Equations, unifies electrodynamics. (See Electrody-
namics of Solids and Microwave Superconductivity by Shu-Ang Zhou.)

1900 AND BEYOND

Grüneisen’s Law of Thermal

Expansion: Physics, 1908

Eduard A. Grüneisen (1877–1949), German physicist.

Jennifer Bothamley in Dictionary of Theories expresses the law as follows:
The ratio of the expansivity of a metal to its specific heat capacity at
constant pressure is a constant over a wide range of temperatures.

According to Polymer Properties at Room and Cryogenic Temperatures
by Gunther Hartwig, Grüneisen’s Law states that the coefficient of thermal
expansion α is proportional to the specific heat c. The Grüneisen relation
is given by α = (1/3)(ρ/K)γc, where ρ is the density, K the bulk modulus,
and γ is the Grüneisen parameter.

Sabine’s Law of Acoustics:

Physics, 1910

Wallace Sabine (1868–1919), British scientist.

The reverberation time of a hall is proportional to the volume of the hall
divided by the total absorption of the hall, where reverberation time is
usually defined as the time required for the sound intensity to fall to 10−6

of its initial value. Another definition of reverberation time is the number
of seconds required for the intensity of the sound to decay by 60 decibels.

The Sabine experiments started in 1885, when Harvard University dis-
covered that its new Fogg Art Museum had severe acoustical problems.
The head of the university asked Sabine, a young physics professor, to
“do something” about the difficulties. Sabine began to experiment with
various local lecture rooms and used seat cushions as his portable means
for experimenting with sound absorption. He used organ pipes to produce
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sounds, a stopwatch to time the reverberation, and his own keen hearing
to make the measurements before he finally arrived at Sabine’s Law. (See
Sound System Engineering by Carolyn Davis and Don Davis.)

Child’s Law of Diode Current:

Physics, 1911

Clement Dexter Child (1868–1933), American physicist.

The space charge-limited current (SCLC) in a diode varies as the three-
halves power of the anode voltage and inversely as the square of the
distance separating the cathode and the anode. (Readers interested in
learning more about such currents may consult Dielectrics in Electric Fields
by Gorur G. Raju.)

The Geiger-Nuttall Rule of Particle

Energy: Physics, 1911

Hans Wilhelm Geiger (1882–1945), German physicist, and John Nuttall
(1890–1958), British physicist.

The energy of alpha particles emitted from different nuclides in a given
radioactive series depends on the half-life of the nuclide according to
ln(λ + c) = ln R, where λ is the decay constant for a nuclide, c is a constant
for a particular radioactive series, and R is the range of the alpha particles
in a medium. (The term “nuclide” usually refers to an atomic nucleus,
which is an agglomeration of protons and neutrons. The various isotopes
of the elements form the set of nuclides.)

According to Holleman-Wiberg’s Inorganic Chemistry edited by Nils
Wiberg, A. F. Holleman, and Egon Wiber, for short-lived elements, the
decay constant (or the half-life) can be calculated by the Geiger-Nuttall
Rule, which they write as ln λ = −37.7 + 53.9 × log R for the uranium
decay series. It follows that the decay constant λ of polonium 214

34Po, for
which R = 6.6 cm, is about 104.

According to the Dictionary of Material Science and High Energy
Physics edited by Dipak K. Basu, the higher the released energy of alpha
decay, the shorter the half-life. Although variations occur, smooth curves
can be drawn for nuclei having the same atomic number Z. The expla-
nation for this rule was an early achievement of quantum mechanics and
nuclear structure.

The Wikipedia online encyclopedia gives this modern formulation for
the law: ln λ = −a1(z/

√
E) + a2, where Z is the atomic number, E is the
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total kinetic energy (of the alpha particle and the daughter nucleus), and
a1 and a2 are constants.

The Einstein-Stark Law of Photon

Absorption: Chemistry, 1912

Albert Einstein (1879–1955), German-born American physicist, and
Johannes Stark (1874–1957), Bavarian-born physicist.

This law of photochemistry states that an atom of a molecule undergoing a
photochemical process absorbs only a single photon (Chemical Oceanog-
raphy by Mary L Sohn). Another statement of the law: The absorption of
one quantum of radiation results in the formation of one photo-excited
state (The Organic Chemistry Problem Solver by James R. Ogden). A
final perspective on the law: The absorption of one photon can cause a
change only in one molecule in a strictly photochemical reaction, but in the
multistage process of photosynthesis, a number of photons (8–20) of light
are needed for each molecule of carbon dioxide reduced (The Silvicultural
Basis for Agroforestry Systems edited by Mark S. Ashton and Florencia
Montagnini).

Interestingly, in 1919, Stark won the Nobel Prize in Physics for his
“discovery of the Doppler effect in canal rays and the splitting of spectral
lines in electric fields,” and he published more than 300 papers during
his life. He despised the “Jewish physics” of Albert Einstein and Werner
Heisenberg. After Heisenberg defended Einstein’s theory of relativity,
Stark angrily wrote in the SS newspaper Das Schwarze Korps that Heisen-
berg was a “White Jew.” Stark attacked theoretical physics as “Jewish” and
wanted to ensure that only non-Jews held scientific positions in Germany.
After World War II, a “denazification” court imprisoned Stark for four
years.

Leavitt’s Luminosity Law:

Astronomy, 1912

Henrietta Leavitt (1868–1921), American astronomer.

A Cepheid variable is a star whose brightness varies in a periodic manner.
Leavitt’s Law states that the periods of Cepheid variable stars (i.e., the
time for one cycle of dimness and brightness) are proportional to the lumi-
nosity of the stars—the greater the brightness, the greater the period. The
luminosity can be used to estimate interstellar and intergalactic distances.

In 1902, Leavitt became a permanent staff member of the Harvard Col-
lege Observatory, where she studied photographic plates of variable stars
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in the Magellanic Clouds. In 1904, using a time-consuming process called
superposition, she discovered hundreds of variable stars in the Magellanic
Clouds. These discoveries led Charles Young of Princeton to write to Har-
vard College Observatory director E. C. Pickering, “What a variable-star
‘fiend’ Miss Leavitt is; one can’t keep up with the roll of the new discover-
ies.” Sadly, she died young of cancer before her work was complete. Had
she lived longer, many speculate that she would have been a strong candi-
date for the Nobel Prize. (See The Stars of Heaven by Clifford Pickover.)

Friedel’s Law of X-ray Reflection:

Physics, 1913

Georges Friedel (1865–1933), French physicist.

The intensities of reflection for X-rays from opposite sides of a crystal
plane are the same. Stated in the language of crystallography, Friedel
observed that the intensity distribution in diffraction patterns is centrosym-
metric such that Ihkl = I−h−k−l .

Moseley’s Law of X-ray Emission:

Physics, 1913

Henry Moseley (1887–1915), English physicist.

This law describes the intensities of regions in X-ray emission spectra
of elements. In particular, the most intense short-wavelength line in the
X-ray spectrum is related to the element’s atomic number Z as

√
f =

k1 · (Z + k2). Here, f is the frequency of the main X-ray emission line,
and k1 and k2 are constants whose values depend on the type of emission
line under study. To arrive at his law, Moseley experimented with various
metals as X-ray targets and measured the wavelengths of the most intense
lines. The lines are useful for confirming the identity of an element and, in
fact, can demonstrate that a substance under study is an element. The lines
also helped scientists place elements in the proper locations in the periodic
table.

Shortly after this famous discovery, Moseley was killed in action in
World War I by a sniper at Gallipoli. Because the law was extremely
useful in the history of chemistry for assigning atomic numbers to newly
discovered elements, many scientists have speculated that Moseley might
have won the Nobel Prize if he had not been killed—the Nobel Prize is
only awarded to the living. (See Undergraduate Instrumental Analysis by
James W. Robinson, Eileen M. Skelly Frame, and George M. Frame II.)
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Steinmetz’s Law of Magnetism:

Physics, 1916

Charles Steinmetz (1865–1923), American electrical engineer.

When an external magnetic field is applied to certain materials (e.g., fer-
romagnets), the material absorbs some of the external field. When the
external field is removed, the magnet will retain some field, as part of a
phenomenon known as hysteresis. According to this law, we can calculate
the work W needed to take a ferromagnetic material around its hysteresis
loop: W = ηB1.68

m , where Bm is the maximum value of the induction in the
cycle, and η is the Steinmetz coefficient that depends on the material under
study.

In order to understand how this law is used practically, James R. Ogden
in Electrical Machines Problem Solver asks students to use Steinmetz’s
Law to determine “the ergs loss per cycle in a core of sheet iron having
a net volume of 40 cubic centimeters in which the maximum flux density
is 8,000 gauss. The value of η for sheet iron is 0.004.” To solve, we use
the Steinmetz Law and find that W is approximately equal to 0.004 ×
(8000)1.6 = 7,028 ergs/cm3 per cycle. The total loss is 7028 × 40 = 281,000
ergs/cycle or 281,000 × 10−7 = 0.0281 joules/cycle.

Steinmetz, the holder of more than 200 patents, was only four feet tall.
Shortly after receiving his Ph.D. in 1888, he was forced to flee Germany
after writing a paper criticizing the German government. As we recounted
in Bob Fenster’s They Did What!?: The Funny, Weird, Wonderful, Out-
rageous, and Stupid Things Famous People Had Done, while working for
General Electric in America, Steinmetz once submitted a bill for $10,000
dollars. When his managers asked him for an itemized invoice, he simply
wrote:

1. Making chalk mark: $1
2. Knowing where to place it: $9,999

The Bose-Einstein Distribution Law:

Physics, 1924

Satyendra Nath Bose (1894–1974), Indian physicist, and Albert Einstein
(1879–1955), German-born American physicist.

The Bose-Einstein Distribution Law gives the average number of identical
bosons in a state of energy E. (A boson is a particle, such as the photon,
pion, or alpha particle, which has zero or integral spin.) An unlimited num-
ber of bosons can be placed in the same state E. According to Elementary
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Modern Physics by Richard T. Weidner and Robert L. Sells, the Bose-
Einstein Distribution Law applies to a system of identical particles that are
indistinguishable, each having integral spin. A physical system illustrating
the Bose-Einstein Distribution Law is that of a blackbody and its radiation.

The Franck-Condon Principle of

Electronic Redistribution: Chemistry

and Physics, 1925

James Franck (1882–1964), German-born American physicist, and
Edward Condon (1902–1974), American theoretical physicist.

In a molecular system, the electronic redistribution from one energy state
to another is sufficiently rapid that the nuclei of atoms involved can be
considered to be stationary during the redistribution. (See Jennifer Both-
amley’s Dictionary of Theories.)

This principle describes the transition between two electronic states of
a molecule, for example, the photodissociation of a molecule in the visible
spectrum. The principle states that the relative positions and momenta
of the atoms are preserved during the electronic distribution. (See Airy
Functions and Applications to Physics by Olivier Vallee and Manuel
Soares).

The principle arises from the fact that movement of nuclei is negligible
during the time taken by an electronic transition. Thus, the time required
for electronic transition is so short that the atoms in a molecule do not have
time to change their positions appreciably. (See Atomic and Molecular
Spectroscopy by M. C. Gupta.)

Pauli’s Exclusion Principle:

Chemistry and Physics, 1925

Wolfgang Pauli (1900–1958), Austrian-born American theoretical
physicist.

No pair of identical particles can simultaneously occupy the same quantum
state. For example, electrons occupying the same atomic orbital must have
opposite spins. This principle plays a fundamental role in quantum theory
and applies to fermions (e.g., electrons, protons, and neutrons) but not to
bosons (e.g., photons). (See Jennifer Bothamley’s Dictionary of Theories.)

According to Pauli’s Exclusion Principle: The Origin and Validation
of a Scientific Principle by Michela Massimi, the Pauli Exclusion Principle
(PEP) is a well-tested and commonly accepted results in physics. “From
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spectroscopy to atomic physics, from quantum field theory to high-energy
physics, there is hardly another scientific principle that has more far-
reaching implications than PEP.” As a result of PEP, one obtains elec-
tronic configurations underlying the classification of chemical elements in
the periodic table as well as atomic spectra.

According to The Quantum Quark by Andrew Watson

Pauli introduced this principle early in 1925, before the advent of
modern quantum theory or the introduction of the idea of electron
spin. His motivation was simple: there had to be something to pre-
vent all the electrons in an atom collapsing down to a single lowest
state. . . . So, Pauli’s exclusion principle keeps electrons—and other
fermions—from invading each other’s space.

PEP is certainly one of the most important principles in physics, as it
explains why material particles exhibit space-occupying behavior. Thus,
PEP might have been placed in the main-entry part of this book. On the
other hand, PEP tends to be different from most of the entries in this book
because Pauli did not develop the mathematics to go with his empirical
principle. Although Pauli formulated his principle to account for certain
experimental results, he did so before the flowering of the modern theory
of quantum mechanics that was stimulated by the work of such physicists
as Werner Heisenberg and Erwin Schrödinger.

The Fermi-Dirac Distribution Law:

Physics, 1926

Enrico Fermi (1901–1954), Italian-born American nuclear physicist, and
Paul Dirac (1902–1984), English mathematical physicist.

This law describes the average number of identical fermions (e.g. elec-
trons) in a state of energy E as a function of the Boltzmann constant, the
temperature, and α, which is a parameter that depends on temperature and
the concentration of fermions.

Fermi in the 1920s was the first to develop a mathematical treatment of
how particles such as electrons interact physically. The topic was inves-
tigated independently by Paul Dirac. Electrons in metals obey Fermi-
Dirac statistics. (See The History of Science and Technology by Bryan
Bunch.)

The Boltzmann distribution law may be used for the study of systems
of interest to chemists at room temperature. In cases where Boltzmann
distribution law fails, the Fermi-Dirac or Bose-Einstein distribution law
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can be applied, depending upon whether the system is composed of bosons
or fermions. (See Statistical Thermodynamics by M. C. Gupta.)

The Moskowitz-Lombardi Rule of

Magnetic Distribution: Physics, 1973

Paul A. Moskowitz (born 1945), American physicist, and Maurice Lom-
bardi (born 1942), French physicist.

As background, a charged atomic nucleus with nonzero spin produces a
magnetic field whose strength may be expressed by the size of its mag-
netic moment µ. The magnetization is distributed over the volume of
the nucleus. The distribution of nuclear magnetization characterizes its
deviation from the distribution that would occur for an ideal point nucleus,
and is expressed by the parameter ε.

Moskowitz and Lombardi observed that for a series of ten mercury
isotopes, a simple relation exists between the magnetic distribution ε and
the magnetic moment µ: ε = α/µ, where α is a constant. The rule has been
applied to isotopes of such elements as mercury, iridium, gold, thallium,
platinum, tungsten, osmium, and barium. This relationship gives nuclear
physicists insight into the complex structure of the atomic nucleus, which
may contain more than 200 protons and neutrons.

Moskowitz, a prolific inventor, has since pursued a career in wire-
less technology at IBM Research. He won more than $50,000 when he
appeared on the popular TV game show Wheel of Fortune.

Hawking’s Black-Hole Laws:

Physics, 1970s

Stephen Hawking (born 1942), British astrophysicist.

Many principles that concern black holes have been attributed to Stephen
Hawking. Hawking is not given a main entry in this book primarily because
his various equations, ideas, and conjectures are often not referred to in an
eponymous fashion (as, e.g., are Ohm’s Law of Electricity and Newton’s
Laws of Motion), and the scientific literature often refers to these as equa-
tions or theorems rather than laws. Nevertheless, sources do occasionally
consider many of the following principles as “Hawking’s Laws.” Consider,
for example, that the rate of evaporation of a Schwarzschild black hole of
mass M can be formulated as dM/dt = −C/M 2, where C is a constant,
and the particles are emitted at time t distributed in a thermal spectrum
with temperature 1/8πM(t). (See Stephen Hawking, “Particle Creation by
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Black Holes,” Communications in Mathematical Physics 43(3): 199–220,
1975.)

An observer outside a black hole would observe the hole to be at a finite
temperature. Expressed in Planck units, another law of Hawking states the
temperature T of a black hole is inversely proportional to its mass: T = k/m.
Lee Smolin writes in Three Roads to Quantum Gravity:

The constant k is very small in normal units. As a result, astro-
physical black holes have temperatures of a very small fraction of a
degree. They are therefore much colder than the 2.7 degree Kelvin
microwave background. But a black hole of much smaller mass
would be correspondingly hotter, even if it were smaller in size. A
black hole the mass of Mount Everest would be no larger than a
single atomic nucleus, but would glow with a temperature greater
than the center of a star.

To understand Hawking’s area “law” that follows, the reader should
understand the concept of event horizon. Just a few weeks after
Albert Einstein published his general relativity theory in 1915, German
astronomer Karl Schwarzschild performed exact calculations of what is
now called the Schwarzschild radius. This radius defines a sphere or event
horizon that surrounds a body of a particular mass. According to classical
black hole theory, within the sphere, gravity is so strong that light, mat-
ter, or any kind of signal cannot escape. In other words, anything that
approaches closer than the Schwarzschild radius will become invisible and
lost forever. For a mass equal to the mass of our Sun, the radius is a few
kilometers in length. For a mass equal to Earth’s, the Schwarzschild radius
defines a region of space the size of a walnut. In other words, a black hole
with an event horizon the size of a walnut would have a mass equal to the
mass of the Earth.

Hawking’s 1971 area theorem, sometimes called his Area Law, states
that the area of a future event horizon of a black hole can never decrease.
For example, Hawking showed that if two black holes unite, the surface
area of the final black hole must exceed the sum of the surface areas of
the initial black holes. For these reasons, the total black hole portion of
the universe is likely to be increasing. Although this law is expected to
break down when quantum effects are taken into account, such as when
hypothetical black hole evaporation is considered, a suitably generalized
form of this law is useful to theoretical astrophysicists who ponder the
behavior of black holes.

Physicists Brandon Carter, Stephen Hawking, and James Bardeen have
formulated several principles of black hole mechanics, such as the area the-
orem just discussed, that have analogues in the laws of thermodynamics.
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The other laws of black hole mechanics concern such concepts as the
“surface gravity” of the event horizon. (See Current Trends in Rela-
tivistic Astrophysics: Theoretical, Numerical, Observational by Leonardo
Fernandez-Jambrina and Luis Gonzalez-Romero. See also J. M. Bardeen,
B. Carter, and S. W. Hawking, “The Four Laws of Black Hole Mechanics,”
Communications in Mathematical Physics, 31: 161–170, 1973.)

We may smile at another Hawking “law” (derived from editorial advice
given during the writing of A Brief History of Time) may be stated as
follows: Because every equation halves potential readership of a book,
equations within a book should be eliminated or strictly rationed. To be
precise, Hawking said in A Brief History of Time, “Someone told me that
each equation I included in the book would halve the sales. In the end,
however, I did put in one equation, Einstein’s E = mc2. I hope this will
not scare off half my potential readers.”

In 1974, Hawking determined that black holes should thermally create
and emit subatomic particles, a process known as Hawking radiation,
and in the same year he was elected as one of the youngest fellows
of the Royal Society. He is currently the Lucasian Professor of Math-
ematics at the University of Cambridge, a post once held by Sir Isaac
Newton.

Hawking is disabled by amyotrophic lateral sclerosis, or ALS (com-
monly known in the United States as Lou Gehrig’s disease) and is now
almost completely paralyzed. He operates a computer system using an
infrared “blink switch” attached to his glasses. Symptoms of his disease
started while he was enrolled at Cambridge, and he received a definitive
diagnosis at age 21, shortly before his first marriage.

Collaborating with English mathematical physicist Sir Roger Penrose
(born 1931), Hawking demonstrated that Einstein’s General Theory of
Relativity implied that space and time would have a beginning in the Big
Bang and an end in black holes. One consequence of such research was
that black holes emit radiation and eventually evaporate and disappear.
Hawking has also conjectured that the universe has no edge or boundary
in imaginary time, which suggests that “the way the universe began was
completely determined by the laws of science.”

Hawking spent considerable time contemplating scientific laws. In his
1993 book Black Holes and Baby Universes, he writes:

There are well-defined laws that govern how the universe and every-
thing in it develops in time. Although we have not yet found the
exact form of all these laws, we already know enough to determine
what happens in all but the most extreme situations. Whether we
will find the remaining laws in the fairly near future is a mater of
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opinion. I’m an optimist: I think there is a fifty-fifty chance that we
will find them in the next twenty years.

Hawking goes on to say that even if we do not discover all the laws, a set of
laws should exist that completely determines the evolution of the universe
from its initial state. “These laws,” he says, “may have been ordained by
God. But it seems that He (or She) does not intervene in the universe to
break laws.”

In his article “The Quantum State of the Universe” published in
Nuclear Physics in 1984, he also writes the following with respect to the
laws of the universe:

Many people would claim that the boundary conditions are not
part of physics but belong to metaphysics or religion. They would
claim that nature had complete freedom to start the universe off
any way it wanted. That may be so, but it could also have made it
evolve in a completely arbitrary and random manner. Yet all the
evidence is that it evolves in a regular way according to certain laws.
It would therefore seem reasonable to suppose that there are also
laws governing the boundary conditions.

In the October 17, 1988, Der Spigel, Hawking writes:

What I have done is to show that it is possible for the way the
universe began to be determined by the laws of science. In that
case, it would not be necessary to appeal to God to decide how the
universe began. This doesn’t prove that there is no God, only that
God is not necessary.

I conclude this last Great Contenders entry with a final quotation from
Hawking’s A Brief History of Time on the topic of scientific theories:

Any physical theory is always provisional, in the sense that it is only
a hypothesis: you can never prove it. No matter how many times
the results of experiments agree with some theory, you can never be
sure that the next time the result will not contradict the theory. On
the other hand, you can disprove a theory by finding even a single
observation that disagrees with the predictions of the theory. As
philosopher of science Karl Popper has emphasized, a good theory
is characterized by the fact that it makes a number of predictions
that could in principle be disproved or falsified by observation.
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FINAL COMMENTS ON THE BEAUTY
OF MATHEMATICS IN SCIENCE

While the equations represent the discernment of eter-
nal and universal truths, however, the manner in which
they are written is strictly, provincially human. That is
what makes them so much like poems, wonderfully artful
attempts to make infinite realties comprehensible to finite
beings.
—Michael Guillen, Five Equations That Changed the

World

Before creation, God did just pure mathematics. Then
He thought it would be a pleasant change to do some
applied.
—John Edensor Littlewood, A Mathematician’s Miscel-

lany, 1953

THE BEAUTY OF MATHEMATICS

The meaning of a great scientific equation usually fur-
nishes us with what is called a law of nature.
—Graham Farmelo, It Must Be Beautiful

The laws in this book are monuments to the progress of humankind, just
as the Apollo spacecrafts were a testament to our quest for the stars, and
the discovery of extrasolar planets was a milestone in our endless hunt
through the heavens. Although these laws may be with us for as long



as humans exist, we will understand and view these laws differently with
the passage of time and the increase in our knowledge. For example, the
discussion of Fourier’s Law of Heat Conduction noted that Fourier wrote
and developed his theory in terms of “caloric theory,” an incorrect notion
that changes in temperature are due to the transfer of an invisible and
weightless fluid called caloric. Nevertheless, Fourier’s Law is correct and
in agreement with experiments, even if Fourier’s idea of the nature of heat
was incorrect.

Similarly, physicists today do not consider Maxwell’s Equations, dis-
cussed under “Faraday’s Laws of Induction and Electrolysis,” as relating
to propagation of waves in ether, an explanation to which Maxwell sub-
scribed. A law can explain how the universe works, even if the researcher
who discovered the law is not quite sure why it works.

Numbers do seem to rule the universe. Numerical patterns describe the
arrangement of florets in a daisy, the reproduction of rabbits, the orbit of
the planets, the harmonies of music, and the relationships among elements
in a periodic table. Mathematical theories and formulas have predicted
phenomena that were confirmed years after the theory was proposed.
For example, Maxwell’s Equations predicted radio waves. Einstein’s Field
Equations suggested that gravity would bend light and that the universe is
expanding. Russian mathematician Nikolai Lobachevsky (1792–1856) said
that “there is no branch of mathematics, however abstract, which may not
someday be applied to the phenomena of the real world” (quoted in John
dePillis’s 777 Mathematical Conversation Starters).

The British physicist Paul Dirac (1902–1984) once noted that the
abstract mathematics we study now gives us a glimpse of physics in the
future. In fact, his equations from 1928 that dealt with electron motion
predicted the existence of antimatter, which was subsequently discovered.
According to the formulas, an electron must have an antiparticle with
the same mass but a positive electrical charge. In 1932, U.S. physicist
Carl Anderson (1905–1991) observed this new particle experimentally,
and it was named the positron. In 1955, the antiproton was produced at
the Berkeley Bevatron. In 1995, physicists created the first anti-hydrogen
atom at the research facility of CERN, the European Organization for
Nuclear Research, which as the largest particle physics laboratory in the
world.

A famous incident involving American physicist Murray Gell-Mann
(born 1929) and colleagues demonstrates the predictive power of math-
ematics and symmetry when considering the existence of a subatomic
particle known as the omega-minus. Gell-Mann had drawn a symmetric,
geometric pattern in which each position in the pattern contained a known
particle except for one empty spot. Gell-Mann put his finger on the spot
and said with almost mystical insight, “There is a particle.” His insight was
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correct, and experimentalists later found an actual particle with attributes
that corresponded to the empty spot in the diagram.

GREAT EQUATIONS OF SCIENCE

The poetry of science is in some sense embodied in its
great equations. . . . These equations can also be peeled.
But their layers represent their attributes and conse-
quences, not their meanings. It is perfectly possible to
imagine a universe in which mathematical equations have
nothing to do with the workings of nature. Yet the mar-
velous thing is that they do.
—Graham Farmelo, It Must Be Beautiful

Although remarkable equations such as Schrödinger’s Wave Equation
and Maxwell’s Equations are mentioned in this book, some readers may
wonder why these formulas are not considered “laws” and mentioned as
main entries in this book. Of course, differentiating between laws and
“mere” equations is partly the result of historical happenstance. Consider
Maxwell’s Equations. Scottish physicist James Clerk Maxwell (1831–1879)
published A Dynamical Theory of the Electromagnetic Field, in which he
recast the simple English of Faraday’s Law into modern mathematics—
as discussed in the Faraday entry. Because Maxwell’s Equations have
precedent in and comprise Coulomb’s Law, Gauss’s Law, Ampere’s Law,
and Faraday’s Law (together with the concept that there are no magnetic
monopoles), most people do not refer to the Maxwell’s Equations as a sep-
arate set of laws. Steven Weinberg comments further on these equations
in “Sokal’s Hoax”:

The equations of electricity and magnetism that are today known
as Maxwell’s equations are not the equations originally written
down by Maxwell; they are equations that physicists settled on
after decades of subsequent work by other physicists, notably the
English scientist Oliver Heaviside. They are understood today to be
an approximation that is valid in a limited context (that of weak,
slowly varying electric and magnetic fields), but in this form and in
this limited context, they have survived for a century and may be
expected to survive indefinitely.

Other important formulations of quantum mechanics, such as de Broglie’s
Wave Equation, Schrödinger’s Wave Equation, Dirac’s Equation, and
the Klein-Gordon Equation are usually not referred to as laws, perhaps
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because some of the deep concepts behind the equations had significant
overlap. Einstein’s famous E = mc2 is usually not called “Einstein’s Law,”
although occasionally it has been called the law of mass-energy conser-
vation. Note that E = mc2 can be derived from Newton’s Second Law,
F = dp/dt . (Of course, the precise formulation of p in special relativity is
different from that of p in classical mechanics.) In 1905, Einstein derived
the mass–energy equivalence from the principles of Special Relativity in a
short article titled “Does the Inertia of a Body Depend Upon Its Energy
Content?”

Professor Clint Sprott of the University of Wisconsin wrote to me about
his feelings regarding E = mc2:

Perhaps E = mc2 is not generally referred to as a law because it is
a fairly direct consequence of a deeper truth (special relativity). On
the other hand, Kepler’s Laws are a consequence of a deeper truth
(Newton’s Laws), although Newton’s Laws came after Kepler’s
Laws. Perhaps E = mc2 is not a law because it is a statement of
equivalence in the sense that gravitational and inertial mass are
equivalent. Note that special and general relativity were slow to
be accepted—and general relativity is still debated—and thus these
formulations were simply called “equations,” and the terminology
stuck. Finally, because Einstein had so many accomplishments, it
would be confusing to talk about “Einstein’s Law.” Perhaps the
lesson to be learned is that if you want something named after you,
be careful not to do anything else important after your first big
success!

Dr. Daniel Platt of the IBM T.J. Watson Research Center wrote to me:

Almost no physical principle after 1900 has been called a law.
Maxwell unified a set of laws (Ampere’s Law, Gauss’s Law, and
so forth), and found that changing electric fields induced magnetic
fields (displacement current) in order to preserve conservation of
charge. A growing problem with redundancy began to emerge, such
as we see with Gauss’s Law versus Coulomb’s Law. The early 1900s
was a time when mathematical positivism was getting a stronger grip
on the scientific community: fundamental physical principles had to
be defined according to fundamental terms definable in relation to
experiments—what might be called operationalism. This changed
the expectation of what “law” meant in the 1900s, and whether it
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was appropriate to call such relationships “laws.” I reiterate that
most “laws” were coined in the 19th century or earlier, with almost
no physical law being coined in the 20th century or later.

Schrödinger’s Wave Equation, discussed shortly, is usually not called
Schrödinger’s Law in part because it is more akin to a “definition” and
does not describe a physical relationship between observable quantities in
a simple or direct manner. Given Schrödinger’s Wave Equation, we can
calculate the wave function of a particle. Schrödinger’s Wave Equation
might be considered to be a description of reality that results from an
underlying principle that particles behave as localized wave functions.

Obviously, not every important scientific law has been presented in
this book, and our knowledge of the universe is continuing to grow at an
astonishing rate. My objective was to make the book concise, to focus on
laws that are named after a particular lawgiver, and to focus on some of the
most influential laws through history, as defined in the introduction. Some
principles and laws, although important, were omitted in the interest of
space and because they are not definable by simple formulas. One example
is Le Châtelier’s Principle (1888), named after French chemist Henry Le
Châtelier (1850–1936), which can be summarized as follows: If a chemical
system at equilibrium experiences a change in concentration, temperature,
or total pressure, the equilibrium shifts in order to minimize that change.
(The principle does suffer from some notable exceptions.) Some important
laws, such as Lenz’s Law (1834), named after German physicist Heinrich
Lenz (1804–1865), do not have separate entries because they are very
closely related, or can be derived from, other laws. In this case, Lenz’s
Law is closely related to Faraday’s Law of Induction and states that any
current created by electromagnetic induction flux is in such a direction as
to oppose the change in magnetic flux responsible for the induction. The
“Great Contenders” section that precedes contains additional interesting
laws of nature.

LISTMANIA AND HUMAN ACHIEVEMENT

Every formula which expresses a law of nature is a hymn
of praise to God.
—Maria Mitchell, inscription on her bust in the Bronx

Hall of Fame. She wrote the words in 1866.

Charles Murray, in his book Human Accomplishment, lists influential
people in many fields of human endeavor, covering the time period from
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800 b.c. to 1950 a.d. Murray ranks each individual according to a score
that is based on the number and nature of written sources in which the
individuals are included. Sources include general science books, biograph-
ical dictionaries, and reference books. Murray also considers how many
pages are devoted to each individual. The following is a list of the top
twenty physicists, ranked in order of eminence. Note how many indi-
viduals in Murray’s book also appear in lawgiver entries in the present
book.

1. Isaac Newton 11. Gustav Kirchhoff
2. Albert Einstein 12. Enrico Fermi
3. Ernest Rutherford 13. Werner Heisenberg
4. Michael Faraday 14. Marie Curie
5. Galileo Galilei 15. Paul Dirac
6. Henry Cavendish 16. James Joule
7. Niels Bohr 17. Christiaan Huygens
8. J. J. Thomson 18. Walter Gilbert
9. James Maxwell 19. Thomas Young

10. Pierre Curie 20. Robert Hooke

(Archimedes appears in Murray’s “mathematicians” list.)
It is interesting to compare Murray’s list of physicists with the end-of-

millennium poll published in 1999 by Physics World magazine. The survey
was conducted among approximately 100 of today’s leading physicists.
Based on the responses received, Physics World determined the following
physicists to have made the most important contributions to the field of
physics.

1. Albert Einstein 6. Galileo Galilei
2. Isaac Newton 7. Richard Feynman
3. James Clerk Maxwell 8. Paul Dirac
4. Niels Bohr 9. Erwin Schrödinger
5. Werner Heisenberg 10. Ernest Rutherford

Physicist Brian Greene from Columbia University, who participated in
the Physics World survey, noted that Einstein displaced Newton from the
top position and said, “Einstein’s special and general theories of relativity
completely overturned previous conceptions of a universal, immutable
space and time, and replaced them with a startling new framework in which
space and time are fluid and malleable.” Peter Rodgers, editor of Physics
World, remarked, “Einstein and Newton were always going to be one and
two but what was surprising about the top 10 was that there were seven out
and out theorists.”
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John Galbraith Simmons, in his book The Scientific 100, gives the fol-
lowing top 20:

1. Isaac Newton 11. Michael Faraday
2. Albert Einstein 12. James Clerk Maxwell
3. Niels Bohr 13. Claude Bernard
4. Charles Darwin 14. Franz Boas Modern
5. Louis Pasteur 15. Werner Heisenberg
6. Sigmund Freud 16. Linus Pauling
7. Galileo Galilei 17. Rudolf Virchow
8. Antoine Lavoisier 18. Erwin Schrödinger
9. Johannes Kepler 19. Ernest Rutherford

10. Nicolaus Copernicus 20. Paul Dirac

Simmons ranks scientists whose “influence in shaping the contemporary
word is pervasive and inescapable.” He writes:

They formulated the laws of motion, discovered how electricity
works, and illuminated the structure of the atom. They broke
down chemicals into elements and found them in the sun. . . . And
apart from a couple of intellectual discoveries which go back to
the Greeks and Babylonians, they accomplished it all in several
hundred years.

Michael Guillen, in Five Equations That Changed the World, lists the
following formulas (in his notation) that he believes led to “the five most
powerful and important scientific achievements in history”:

1. F = G × M × m ÷ d2 (Newton’s Law of Universal Gravitation)
2. P + ρ × 1/2v2 = constant (Bernoulli’s Law of Hydrodynamic

Pressure)
3. ∇ × E = −∂ B/∂T (Faraday’s Law of Induction)
4. E = mc2 (in addition to Albert Einstein’s Special Theory of

Relativity)
5. �Suniverse > 0 (Clausius’s Law of Thermodynamics)

“THE GREATEST EQUATIONS EVER”

Great equations change the way we perceive the world.
They reorchestrate the world—transforming and rein-
tegrating our perception by redefining what belongs
together with what. Light and waves. Energy and mass.
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Probability and position. And they do so in a way that
often seems unexpected and even strange.
—Robert P. Crease, “The Greatest Equations Ever,”

Physics World

In 2004, Robert Crease conducted a survey of Physics World readers who
nominated “The Greatest Equations Ever.” Maxwell’s Equations of Elec-
tromagnetism and Euler’s identity eiπ + 1 = 0 were the top contenders.
Several of Crease’s readers wondered about the difference between for-
mulas, theorems, and equations. For Crease, a formula is something that
obeys the rules of a “syntax.” An equation is a formula that states observed
facts and is thus empirically true. Crease says that the equation that
describes the Balmer Series of lines in the visible spectrum, 1/λ = RH(1/2

2 –
1/n2), is a good example, as are chemical equations that embody observa-
tions about reactions studied in a laboratory. Crease writes:

However, these distinctions are not really so neat. Many classic
physics equations—including E = mc2 and Schrödinger’s equation—
were not conclusions drawn from statements about observations.
Rather, they were conclusions based on reasoning from other equa-
tions and information; they are therefore more like theorems. And
theorems can be equation-like for their strong empirical content and
value.

Crease also notes that a great equation “does more than set out a funda-
mental property of the universe, delivering information like a signpost, but
works hard to wrest something from nature.” Michael Berry from Bristol
University said in the February 1998 issue of Physics World, “Any great
physical theory gives back more than is put into it, in the sense that as well
as solving the problem that inspired its construction, it explains more and
predicts new things.”

The following equations relate to descriptions of the physical world and
are listed by Crease, using his notation, in order of the number of people
who nominated them:

1. Maxwell’s Equations ∇ · D = ρ, ∇ · B = 0, ∇ × E = − ∂B
∂t , ∇ ×

H = J + ∂D
∂t

2. Newton’s Second Law, F = ma
3. Schrödinger’s Wave Equation, H� = E�

4. E = mc2

5. Boltzmann’s Equation, S = klnW
6. Principle of Least Action, δS = 0
7. De Broglie’s Wave Equation, λ = h/mv
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8. Einstein’s Field Equations for General Relativity, Gµv =
8πGTµv

9. Dirac’s Equation, iγ · ∂ψ = mψ
10. Hubble’s Equation, v = H0d
11. Ideal Gas Law: PV = nRT
12. Balmer Series: 1/λ = R(1/n1

2 − 1/n2
2)

13. Planck’s Equation: E = hv

Graham Farmelo’s book It Must Be Beautiful presents equations that
eleven essayists believe to be the most important equations of twentieth-
century science. Six of them are from fundamental physics:

� The Planck-Einstein Equation, E = hf, which connects frequency
with energy

� Einstein’s equation E = mc2

� Einstein’s equation that governs general relativity and gravity,
Rab − 1

2 Rgab = −8πGTab
� The Yang-Mills Equation, which describes fundamental particles

and their interactions: ∂fuv/∂xv + 2ε(bv × fuv) + Jµ = 0
� Schrödinger’s Wave Equation
� Dirac’s Equation

These last two I discuss further below. Farmelo’s book also includes
Drake’s Equation that estimates the number of technological civilizations
in our galaxy (N = R∗ × fp × ne × fl × fi × fc × L), Shannon’s Equations
on information theory [H = −K

∑n
i=1 p(xi ) log p(xi )], and the logistic

mapping that models complicated behavior in the field of chaos theory
[xn+1 = rxn(1 − xn)].

Frank Wilczek, one of Farmelo’s essayists, includes the following quote
by Heinrich Hertz on Maxwell’s equations: “One cannot escape the feeling
that these mathematical formulae have an independent existence and an
intelligence of their own, that they are wiser than we are, wiser even than
their discoverers, that we get more out of them than was originally put into
them.” Steven Weinberg in the book’s afterword concludes:

When an equation is as successful as Dirac’s, it is never simply a
mistake. It may not be valid for the reason supposed by its author,
it may break down in new contexts, and it may not even mean
what its author thought it meant. We must continually be open
to reinterpretations of these equations. But the great equations of
modern physics are a permanent part of scientific knowledge, which
may outlast even the beautiful cathedrals of earlier ages.
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As I discussed above, the equations of physics can sometimes give birth
to ideas or consequences that the equation discoverer did not expect.
The power of these kinds of equations can seem magical, according to
Wilczek in the essay on Dirac’s Equation, which describes the properties
of quantum particles. In 1928, Paul Dirac attempted to find a version of
Schrödinger’s Wave Equation that would be consistent with the principles
of Special Relativity. One way that Dirac’s Equation can be written is

α0mc2 +
3∑

j=1

α j pj c


 ψ(x, t) = i�

∂ψ
∂t

(x, t).

The equation describes electrons and other elementary particles in a way
that is useful in both quantum mechanics and the Special Theory of
Relativity. As I suggested above, the equation predicts the existence of
antiparticles and in some sense “foretold” their experimental discovery.
This made the discovery of the positron, the antiparticle of the electron,
a fine example of the usefulness of mathematics in modern theoretical
physics. In this equation, m is the rest mass of the electron, � is the reduced
Planck’s constant (1.054 × 10−34 J·s), c is the speed of light, p is the
momentum operator, x and t are the space and time coordinates, and
ψ(x, t) is a wave function; α is a linear operator that acts on the wave-
function. Peter Galison writes of Dirac’s personality in “The Suppressed
Drawing”:

For most of the twentieth century Paul Dirac stood as the theo-
rist’s theorist. Though less known to the general public than Albert
Einstein, Niels Bohr, or Werner Heisenberg, for physicists, Dirac
was revered as the “theorist with the purest soul” . . . because of
Dirac’s taciturn and solitary demeanor [and] because he maintained
practically no interests outside physics and never feigned engage-
ment with art, literature, music, or politics. Known for the fun-
damental equation that now bears his name—describing the rela-
tivistic electron—Dirac put quantum mechanics into a clear con-
ceptual structure, explored the possibility of magnetic monopoles,
generalized the mathematical concept of function, launched the
field of quantum electrodynamics, and predicted the existence of
antimatter.

Another profound equation in physics, Schrödinger’s Wave Equation,
describes ultimate reality in terms of wave functions and probabilities:[

− �
2

2m
∇2 + V(r)

]
ψ(r, t) = i�

∂ψ
∂t

(r, t)
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Physicist Freeman Dyson, in his introduction to John Cornwell’s Nature’s
Imagination, lauds this formula that represents a stage in humanity’s grasp
of reality. He writes:

Sometimes the understanding of a whole field of science is suddenly
advanced by the discovery of a single basic equation. Thus it hap-
pened that the Schrödinger equation in 1926 and the Dirac equation
in 1927 brought a miraculous order into the previously mysterious
processes of atomic physics. Bewildering complexities of chemistry
and physics were reduced to two lines of algebraic symbols.

With respect to Einstein’s General Theory of Relativity and his Field
Equations of gravitation, Paul Dirac said that the theory was “probably
the greatest scientific discovery ever made.” Max Born called it “the great-
est feat of human thinking about nature, the most amazing combination
of philosophical penetration, physical intuition, and mathematical skill.”
I briefly discuss the General Theory of Relativity in “Eötvös’s Law of
Capillarity” in part III.

In the early 1970s, Nicaragua issued ten postage stamps bearing Las
10 Formulas Matematicas Que Cambiaron La Faz De La Terra (“The 10
Mathematical Formulas That Changed the Face of the World”). Isn’t it
admirable that a country so respects mathematics that it devotes a postage
stamp series to a set of abstract equations? Have other countries produced
a similar series? In addition to scientific merit, perhaps such practical issues
as space limitations were considered by the Nicaraguan government so as
to avoid long formulas on small stamps.

I conducted my own informal survey as to which formulas should be
considered as “The 10 Mathematical Formulas That Changed the Face
of the World.” The survey was conducted via electronic mail networks,
and most respondents were mathematicians and included professors, other
professionals, and graduate students. What follows is the answer to this
question from approximately fifty interested individuals who gave me their
opinions as to the most important and influential equations. The equations
are ordered from most influential to least influential, based on the number
of different people who listed a formula when they sent their lists to me.
For example, E = mc2 received the most votes.

How many of the following formulas can you identify? If you can iden-
tify more than five, you are probably more mathematically knowledgeable
than 99% of the people on Earth. If you can identify all equations in
the Top 10 and all the equations in the Runners-Up list, you are worthy
of cavorting with the antediluvian gods. I’ll identify these equations in a
following section.
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According to my survey, here are the ten most influential and important
mathematical expressions, listed in order of importance:

1. E = mc2

2. a2 + b2 = c2

3. ε0
∮

E · dA= ∑
q

4. x =
(
−b ± √

b2 − 4ac
)

/(2a)

5. �F = m�a
6. 1 + eiπ = 0
7. c = 2πr, a = πr2

8. F = Gm1m2/r2

9. f (x) = ∑
cneinπx/L

10. eiθ = cos θ + sin θ, tied with an + bn �= cn, n ≥ 2

Other mathematical expressions that did not score high enough to be
included in the Top 10 but that scored favorably were

1. f (x) = f (a) + f ′(a)(x − a) + f ′′(a)(x − a)2/2! . . .

2. s = vt + at2/2
3. V = IR
4. z → z2 + µ
5. e = limn→∞(1 + 1/n)n

6. c2 = a2 + b2 − 2ab cos C
7.

∫
KdA = 2π × x

8. d/dx
∫ x

a f (t)dt = f (x)

9. 1/(2πi)
∮

f (z)/(z − a)dz = f (a)

10. dy/dx = limh→0( f (x + h) − f (x))/h
11. ∂2ψ/∂x2 = −[8π2m/h2(E − V)]ψ

How many do you recognize? I identify a number of these in the next
section.

NICARAGUA POSTAGE STAMP LIST

Here is a list of Nicaragua’s postage stamp equations for Las 10 Formulas
Matematicas Que Cambiaron La Faz De La Terra. Note how many of
these formulas agree with the “Top Ten” list based on my own informal
survey.

1. 1 + 1 = 2
2. F = Gm1m2/r2

3. E = mc2
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4. eInN = N
5. a2 + b2 = c2

6. S = k log W
7. V = Ve ln m0/m1

8. λ = h/mv
9. ∇2 E = (Ku/c2)(∂2 E/∂t2)

10. F1x1 = F2x2

Do you recognize several of these formulas? Study them before reading
further.

Here are the solutions for the Nicaragua stamp list:

1. Basic addition formula.
2. Newton’s Law of Universal Gravitation. If the two masses m1

and m2 are separated by a distance, r , the force exerted by one
mass on the other is F , and G is a constant of nature.

3. Einstein’s formula for the conversion of matter to energy.
4. John Napier’s logarithm formula. This allows one to perform

multiplication and division simply by adding or subtracting the
logarithms of numbers.

5. Pythagorean Theorem relating the lengths of sides of a right
triangle.

6. Bolzmann’s Equation for the behavior of gases.
7. Konstantin Tsiolkovsky’s rocket equation, which gives the

speed of a rocket as it burns the weight of its fuel.
8. de Broglie’s Wave Equation, relating the mass, velocity, and

wavelength of a wave-particle. h is Planck’s constant. Louis de
Broglie (1892–1987) postulated that the electron has wave prop-
erties and that material particles have associated wavelengths.

9. Equation describing electromagnetic radiation, derived from
Maxwell’s Equations, which form the basis for all computations
involving electromagnetic waves, including radio, radar, light,
ultraviolet waves, heat radiation and X-rays.

10. Archimedes’ lever formula.

The following are explanations for some of the formulas in my own
survey: Number 3 is one of Maxwell’s Equations for electromagnetism.
Number 4 is the quadratic formula for solving equations of the form ax2 +
bx + c = 0. Number 5 is Newton’s Second Law, relating force, mass, and
acceleration. Number 7 gives the circumference and area of a circle. Num-
ber 9 represents a Fourier series (complicated wave disturbances may be
represented as the sum of a group of sinusoidal-like waves). In Number 10,
the first formula is Euler’s identity relating exponential and trigonometric
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functions, and the second formula represents Fermat’s Last Theorem. In
the runners-up list, number 7 is the Gauss-Bonnet formula, where x is the
Euler characteristic, and number 9 is Cauchy’s integral formula in complex
analysis. (The Gauss-Bonnet formula occurs in the field of differential
geometry and concerns the curvature of surfaces.)

A few respondents suggested that Fermat’s Last Theorem be included
on the list of the ten influential mathematical expressions because a sig-
nificant amount of research and mathematics have been a direct result
of attempts to prove the theorem. This theorem by Pierre de Fermat
(1601–1665) states that there are no whole numbers a, b, and c such that
an + bn = cn for n > 2. In 1995, English-American mathematician Andrew
Wiles (born 1953) published a famous paper in the Annals of Mathematics
that finally proved Fermat’s Last Theorem. In 1769, Leonard Euler stated
that he thought the related formula a4 + b4 + c4 = d4 had no possible
integral solutions. Two centuries later, Noam Elkies of Harvard University
discovered the first solution a = 2,682,440, b = 15,365,639, c = 18,796,760,
and d = 20,516,673.

PHYSICS AND RELIGION

I’m sorry to say that the subject I most disliked was math-
ematics. I have thought about it. I think the reason was
that mathematics leaves no room for argument. If you
made a mistake, that was all there was to it.
—Malcolm X, Mascot

As highlighted in this book, many important physicists were quite reli-
gious. In some ways, the mathematical quest to understand the universe
parallels mystical attempts to understand God. Both religion and mathe-
matics struggle to express relationships among humans, the universe, and
infinity. Both have arcane symbols and rituals and seemingly impenetrable
language. Both exercise the deep recesses of our minds and stimulate our
imagination. Mathematicians and theoretical physicists, like priests, some-
times seek “ideal,” immutable, nonmaterial truths and then often venture
to apply these truths in the real world. Are mathematics and religion
the most powerful evidence of the inventive genius of the human race?
Edward Rothstein notes in “Reason and Faith, Eternally Bound” that
faith was the inspiration for Newton and Kepler as well as for numerous
scientific and mathematical triumphs. Rothstein writes, “The conviction
that there is an order to things, that the mind can comprehend that order
and that this order is not infinitely malleable, those scientific beliefs may
include elements of faith.”
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Of course, many differences exist between mathematics and religion.
While various religions differ in their beliefs, remarkable agreement usu-
ally exists among mathematicians.
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None of the laws of physics known today (with the
possible exception of the general principles of quantum
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less, many of them have settled down to a final form, valid
in certain known circumstances.
—Steven Weinberg, “Sokal’s Hoax,” The New York
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The operating system . . . governs the flow of information
through a computer just as an eternal law of nature is
thought to guide physics. But . . . there could be other
kinds of architectures and operating systems that them-
selves evolve in time.
—Lee Smolin, “Never Say Always,” New Scientist, Sep-

tember 23, 2006

Describing the physical laws without reference to geom-
etry is similar to describing our thoughts without words.
—Albert Einstein, 1922 Kyoto lecture
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Our world is filled with the statues of great generals,
atop of prancing horses, leading their cheering soldiers
to glorious victory. Here and there, a modest slab of
marble announces that a man of science has found his
final resting place. A thousand years from now we shall
probably do these things differently, and the children of
that happy generation shall know of the splendid courage
and the almost inconceivable devotion to duty of the men
who were the pioneers of that abstract knowledge, which
alone has made our modern world a practical possibility.
—Hendrik Willem van Loon, The Story of Mankind
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