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Truly the gods have not from the beginning revealed
all things to mortals, but by long seeking, mortals make
progress in discovery.

—Xenophanes of Colophon (c. 500 B.c.)
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I canna change the laws of physics, Captain!

—*“Scotty” Montgomery Scott to Captain Kirk, in “The
Naked Time,” Star Trek TV series

It is indeed a surprising and fortunate fact that nature
can be expressed by relatively low-order mathematical
functions.—Rudolf Carnap, classroom lecture
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Perhaps an angel of the Lord surveyed an endless sea
of chaos, then troubled it gently with his finger. In this
tiny and temporary swirl of equations, our cosmos took
shape.—Martin Gardner, Order and Surprise

The great equations of modern physics are a permanent

part of scientific knowledge, which may outlast even the

beautiful cathedrals of earlier ages.

—Steven Weinberg, in Graham Farmelo’s It Must Be
Beautiful
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ence, Richard Feynman’s The Character of Physical Law, and John Casti’s
Paradigms Lost.

The frontispiece illustration (accompanied by Xenophanes’ quotation)
and illustration at the end of this book are from Gerogius Agricola’s De
re metallica, originally published in 1556. De re metallica was the first
book on mining and metallurgy to be based on field research and careful
observations. The book is available today from Dover Publications. The
astronomer with compass on the initial quotation page is by Albrecht
Diirer, from the title page of Messahalah, De scientia motus orbis (1504).

A NOTE ON TERMINOLOGY AND SYMBOLS

At the end of each entry in this book, under “Further Reading,” I list
references that are targeted to specific laws. While many entries mention
primary sources, I have often explicitly listed excellent secondary refer-
ences that most readers can obtain more easily than older primary sources.
Readers interested in pursuing any subject can use the references as a
useful starting point.

The text within gray boxes denotes historical events that occurred when
a law was discovered. The large symbols used when introducing a law
(atom, flask, telescope, and ©t symbols) denote the subject areas of physics,
chemistry, astronomy, and mathematics, respectively.

Mathematical variables or constants that assume values are italicized.
Subscripts for variables that do not assume values are typeset in a nonitalic
font. For example, the T in Ty is italicized because it assumes a value for
temperature; however, the subscript L is not italicized because it stands for
the word “low.”

The scientific literature appears to be divided when referring to Ein-
stein’s theory as either the “General Theory of Relativity” or the “Theory
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of General Relativity.” Similarly, I found many instances of the “Spe-
cial Theory of Relativity” and the “Theory of Special Relativity.” I have
decided to use the phrases “General Theory of Relativity” and “Special
Theory of Relativity,” which Einstein used to title the main sections of his
book Relativity: The Special and General Theory, first published in 1916.

In 1676, Isaac Newton explained his accomplishments
through a simple metaphor. “If I have seen farther it is by
standing on the shoulders of giants,” he wrote. The image
wasn’t original to him, but in using it Newton reinforced
a way of thinking about scientific progress that remains
popular: We learn about the world through the vision of
a few colossal figures.

—Peter Dizikes, “Twilight of the Idols,” New York Times
Book Review, November 5, 2006
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INTRODUCTION AND BACKDROP

Isaac Newton was born into a world of darkness, obscu-
rity, and magic...veered at least once to the brink of
madness...and yet discovered more of the essential core
of human knowledge than anyone before or after. He was
chief architect of the modern world.... He made knowl-
edge a thing of substance: quantitative and exact. He
established principles, and they are called his laws.

—James Gleick, Isaac Newton

At every major step, physics has required, and frequently
stimulated, the introduction of new mathematical tools
and concepts. Our present understanding of the laws of
physics, with their extreme precision and universality, is
only possible in mathematical terms.

—Sir Michael Atiyah, “Pulling the Strings,” Nature

THE LAWS OF NATURE

It is now generally accepted that the universe evolves
according to well-defined laws. The laws may have been
ordained by God, but it seems that He does not intervene
in the universe to break the laws.

—Stephen Hawking, Black Holes and Baby Universes

Albert Einstein once remarked that “the most incomprehensible thing
about the world is that it is comprehensible.” Indeed, we appear to live in
a cosmos that can be described or approximated by compact mathematical
expressions and physical laws.

In this book, I discuss landmark laws of nature that were discov-
ered over several centuries and whose ramifications have profoundly
altered our everyday lives and understanding of the universe. These
laws provide elegant ways for characterizing natural phenomena under
a variety of circumstances. For example, as you’ll learn in greater detail,
Bernoulli’s Law of Hydrodynamics, v?/2 + gz + pl/p = C, has numer-
ous applications in the fields of aerodynamics, where it is considered
when studying flows over airplane wings, propeller blades, and ship rud-
ders. Fick’s Second Law of Diffusion, (dc/dt), = D(3c*/dx?),, can be
used to explain insect communication through pheromones, the migra-
tion of ancient humans, or diffusion in soils contaminated with petroleum
hydrocarbons. Forensic police sometimes use Newton’s Law of Cooling,



T(t) = Tony + [T(0) — Teny]e™*, to determine the time of death of corpses
discovered in seedy motel rooms.

The laws enable humanity to create and destroy—and sometimes they
change the very way we look at reality itself. In the 1940s, Graham’s
Law R|/R, = (Mz/Ml)]/2 helped scientists make the atomic bomb that
was dropped on Japan. The various laws dealing with electromagnetism
enabled technologists to unite the world through both wired and wireless
communications. For many scientists today, the Heisenberg Uncertainty
Principle, AxAp > 1/2, means that the physical universe literally does not
exist in a deterministic form but is rather a collection of probabilities. All of
these relatively simple expressions impress us with their brevity and utility.

I'side with Martin Gardner and others who seem to suggest that nature
is usually describable by simple formulas and laws—not because we have
invented mathematics and laws, but because nature has some hidden math-
ematical aspect. For example, Gardner writes in his classic 1950 essay
“Order and Surprise”:

If the cosmos were suddenly frozen, and all movement ceased, a
survey of its structure would not reveal a random distribution of
parts. Simple geometrical patterns, for example, would be found in
profusion—from the spirals of galaxies to the hexagonal shapes of
snow crystals. Set the clockwork going, and its parts move rhythmi-
cally to laws that often can be expressed by equations of surprising
simplicity. And there is no logical or a priori reason why these things
should be so.

Here Gardner suggests that simple mathematics governs nature from
molecular to galactic scales. Isaac Newton likened our quest to discover
the fundamental laws of science to a child looking for a pretty pebble on
an infinite beach. Albert Einstein felt he was like a child entering an infinite
library with books in foreign languages. The child cannot understand most
of the books but senses or suspects a mysterious order to the arrangement
of books.

Similarly, theoretical physicist Paul Steinhardt writes in John
Brockman’s What We Believe but Cannot Prove:

Recent observations and experiments suggest that our universe is
simple. The distribution of matter and energy is remarkably uni-
form. The hierarchy of complex structures, ranging from galaxy
clusters to subnuclear particles, can be described in terms of a few
dozen elementary constituents and less than a handful of forces, all
related by simple symmetries. A simple universe demands a simple
explanation.

| ARCHIMEDES TO HAWKING



Centuries ago, most of the lawgivers saw God’s hand in nature’s laws.
For example, British scientist Sir Isaac Newton (1642-1727) and many of
his contemporaries believed that the laws of the universe were established
by the will of God, who acted in a logical manner. In the preface to the
second edition of Newton’s Principia (1713), English mathematician Roger
Cotes wrote:

Without all doubt, this world, so diversified with that variety of
forms and motions we find in it, could arise from nothing but the
perfectly free will of God directing and presiding over all.

From this fountain...the laws of Nature have flowed, in which
there appear many traces indeed of the most wise contrivance, but
not the least shadow of necessity. These, therefore, we must not seek
from uncertain conjectures, but learn them from observations and
experiments.

George Stokes (1819-1903), famous for Stokes’s Law of Viscosity,
wrote in his book Natural Theology:

Admit the existence of God, of a personal God, and the possibility
of miracles follows at once. If the laws of nature are carried out in
accordance with His will, He who willed them may will their suspen-
sion. And if any difficulty should be felt as to their suspension, we
are not even obliged to suppose that they have been suspended.

Because the laws of nature provide a framework in which to explore
the nature of reality, and because laws allow scientists to make predictions
about the universe, the discoveries of the laws are among humanity’s great-
est noetic, or intellectual, achievements. In order to formulate the laws
of nature, scientists usually needed to perform significant observations,
invent creative experimental designs, or show vast insight—and for these
reasons, the lawgivers in this book were often among the most capable
scientists in their fields.

At first glance, this book may seem like a long catalogue of isolated
laws with little connection between them. But as you read, I think you’ll
begin to see many linkages. Obviously, the final goal of scientists and math-
ematicians is not simply the accumulation of facts and lists of formulas;
rather, they seek to understand the patterns, organizing principles, and
relationships between these facts to form laws.

For this book, I selected a number of scientific laws from a larger
possible set, with an eye toward those laws that strongly influenced
the world. Candidates for this collection usually satisfy the following
criteria:

INTRODUCTION AND BACKDROP | 3
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¢ They are laws, rules, and principles that have broad explanatory
power to account for facts, observations, or phenomena—and they
are widely accepted in a particular discipline.

e The laws, rules, and principles are named after a person, which
usually means that a particular scientist was instrumental either in
the discovery of that law or in bringing the law to wide scientific
attention.

Just imagine the amazing adventures these passionate people had as they
sought, discovered, and tested elegant formulations of phenomena at the
heart of reality. In the end, these lawgivers changed the way we imagine
and categorize our universe.

THE LAWGIVERS

The scientist’s religious feeling takes the form of a rap-
turous amazement at the harmony of natural law, which
reveals an intelligence of such superiority that, compared
with it, all the systematic thinking and acting of human
beings is an utterly insignificant reflection. This feeling is
the guiding principle of his life and work. ... It is beyond
question closely akin to that which has possessed the
religious geniuses of all ages.

—Albert Einstein, Mein Weltbild, 1934

According to the American sociologist Robert K. Merton (1910-2003), the
practice of eponymy—the naming of laws, theories, and discoveries after
their discoverers—dates back to the time of Galileo. Science often places
a premium on rewarding those scientists who are first to make a discovery,
propose a natural law, or just happen to be at the right place at the right
time with respect to an experimental finding.

Because this book focuses on eponymous laws, be sure to use the index
when hunting for a favorite law or equation, which may be discussed in
entries for laws that you might not have expected. I have not confined
myself to laws that have affected the present status of science—influence
on past generations is taken into account, as well. In the interest of space,
some of the most famous “equations” of science—which are usually not
referred to as “laws” for historical or other reasons—may be found in the
“Final Comments” section at the end of this book.

I remind the reader that my focus on eponymous laws is not meant to
suggest that eponymous laws cover all the important findings in physics—
surely many of the laws and principles discovered in modern times,
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although named in a more general descriptive fashion, are of paramount
importance for understanding the nature of the universe. In fact, the rela-
tive paucity of eponymous laws after 1900 is discussed further in the “Final
Comments” section, where I give examples of powerful physics concepts
that do not have main entries in this book. Nevertheless, I hope that my
focus on eponymy will help introduce the general reader to a bit of the
history behind important laws and the colorful characters who took part in
their discovery over the course of several centuries.

The scientists who gave their names to these laws in this book are a
fascinating, diverse, and sometimes eccentric group of people. Many were
extremely versatile polymaths—human dynamos with a seemingly infinite
supply of curiosity and energy and who worked in many different areas
in science. For example, French physicist Jean-Baptiste Biot (1774-1862)
made advances in applied mathematics, astronomy, elasticity, electricity,
magnetism, optics, and mineralogy. Not only is a law of magnetic force
named after him, but so is the shiny mineral biotite. His partner Félix
Savart (1791-1841) embarked on a medical career, but during those times
when business was slow, he conducted experiments on the violin and
devoted himself to the study of the acoustics of air, bird songs, and vibrat-
ing solids.

Many individuals had nonconventional educations. For example, the
Swiss-German physicist Johann Lambert (1728-1777) made discoveries
concerning the mathematical constant © and on the laws of light reflection
and absorption, yet he was almost entirely self-taught. The German physi-
cist Georg Ohm (1787-1854) was able to fulfill his intellectual potential
mostly from his private and personal studies, reading the texts of the lead-
ing French mathematicians. The British physicist Michael Faraday (1791-
1867) had almost no formal education. He later wrote, “My education
was of the most ordinary description, consisting of little more than the
rudiments of reading, writing, and arithmetic at a common day school.” At
the age of thirteen, when he could barely read or write, he quit school to
find a job. French physicist Pierre Curie (1859-1906) considered himself to
have a feeble mind and never went to elementary school. He later shared
the Nobel Prize with his wife, Marie.

Despite varied educational backgrounds, many lawgivers displayed
their unusual talents from an early age. The German mathematician and
physicist Carl Friedrich Gauss (1777-1855), for example, was a childhood
prodigy and learned to calculate before he could talk. At age three, he
corrected his father’s wage calculations when they had errors. By age
10t4, French chemist Aléxis Petit (1791-1820) had already completed the
entrance requirements of the Ecole Polytechnique in Paris. Petit had sur-
passed the entrance exam scores of all other candidates at the time. The
Irish mathematician Sir William Rowan Hamilton (1805-1865), mentioned
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in the “Great Contenders” section at the end of this book, spoke Hebrew
by age 7, and by 13 he had mastered many classical and modern European
languages such as Farsi, Arabic, Hindustani, Sanskrit, and Malay. French
physicist André-Marie Ampere (1775-1836) was reported to have worked
out long arithmetical sums by means of pebbles and biscuit crumbs before
he was familiar with numbers and their names.

When describing the lives of these creative individuals, I did not
attempt to provide a comprehensive biography, due to space limitations.
In many cases, I mention curious aspects of their lives that may also give
readers a better feel for the times in which these scientists lived. For exam-
ple, I describe the incident in which German astronomer Johannes Kepler
(1571-1630) had to defend his mother from accusations of witchcraft. I dis-
cuss how German mathematical physicist Rudolf Clausius (1822-1888) was
wounded while leading a student ambulance core in the Franco-Prussian
War, which, along with his wife’s death during childbirth, hampered his
scientific progress in the later years of his career.

In fact, a significant number of the lawgivers in this book had wives who
died much earlier then they did. For example, the French chemist Alexis
Petit’s wife became ill six months after he married her and died shortly
thereafter in 1817, and he died before he was thirty years old. Gauss,
Ampere, and French physicist Pierre Weiss (1865-1940) all had wives
who died young. Kepler’s wife Barbara died from typhus in 1611. British
physicist James Joule’s (1818-1889) wife, Alice, died in 1854, leaving him
with two children to raise. In 1869, German physicist Gustav Kirchhoff’s
(1824-1887) wife Clara died, leaving Kirchhoff to raise his four children
alone. The German physicist Max Planck’s (1858-1947) wife Marie died in
1909, leaving him with four children.

As already mentioned, religion also played a role in many of the
lawgivers’ lives. The Irish natural philosopher and chemist Robert Boyle
(1626-1691) was quite devout and loved the Bible. His constant desire to
understand God drove his interest in discovering laws of nature. Boyle
specified that, after his death, his money should be used to found the Boyle
lectures that were intended to refute atheism and religions that competed
with Christianity. Ampere believed that he had proven the existence of the
soul and of God. When Gauss proved a theorem, he sometimes said that
the insight did not come from “painful effort but, so to speak, by the grace
of God.”

Not all lawgivers were traditionally religious. For example, British
physicist William Henry Bragg (1862-1942) said that the Bible brought
him years of misery and fear. He wrote, “From religion comes a man’s
purpose; from science his power to achieve it.”

Men like Faraday, William Thomson (Lord Kelvin), James Clerk
Maxwell, and Joule were particularly religious and motivated by their
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Christian faith. For them, God was glorified whenever humans discovered
scientific laws that God had established. Joule wrote in 1873, in notes for a
lecture he never gave due to poor health:

After the knowledge of, and obedience to, the will of God, the next
aim must be to know something of His attributes of wisdom, power,
and goodness as evidenced by His handiwork. ... It is evident that an
acquaintance with natural laws means no less than an acquaintance
with the mind of God therein expressed.

Kepler was also motivated by his faith in God. He, too, sought to dis-
cover God’s plan for the universe and to read the mind of God. For Kepler,
mathematics was the language of God. Because humans were made in
the image of God, humans were capable of understanding the universe
that God had created. In Conversation with Galileo’s Sidereal Messenger,
Kepler wrote, “Geometry is unique and eternal, and it shines in the mind of
God. The share of it which has been granted to man is one of the reasons
why he is the image of God.” He also explained, “I had the intention of
becoming a theologian ... but now I see how God is, by my endeavors, also
glorified in astronomy, for ‘the heavens declare the glory of God.””

Even modern-day physicists muse about the possible role of a god in
establishing the laws of the universe. According to British astrophysicist
Stephen Hawking (b. 1942), all the laws of physics would hold even at
the precise instant the universe formed. If God exists, Hawking suggests,
He may not have had the freedom to choose the initial conditions for the
universe. However, God would “still have had the freedom to choose the
laws that the universe obeyed.” Hawking writes in Black Holes and Baby
Universes:

However, this may not have been much of a choice. There may only
be a small number of laws, which are self-consistent and which lead
to complicated beings like ourselves.... And even if there is only
one unique set of possible laws, it is only a set of equations. What
is it that breathes fire into the equations and makes a universe for
them to govern? Is the ultimate unified theory so compelling that it
brings about its own existence?

In 1623, Italian physicist Galileo Galilei (1564-1642) echoed a belief
of many in this book that the universe could be understood using mathe-
matics, writing, “Nature’s great book is written in mathematical symbols.”
Newton supposed that the planets were originally thrown into orbit by
God, but even after God decreed the Law of Gravitation, the planets
required continual adjustments to their orbits. According to New York
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Times columnist Edward Rothstein, “The conviction that there is an order
to things, that the mind can comprehend that order and that this order
is not infinitely malleable, those scientific beliefs may include elements of
faith.”

Many of the laws in this book that excite me the most deal with elec-
trical discoveries of highly religious people. Today, we often hear our age
referred to as the “information age” as a result of the rising importance
of computers and the Internet. But underlying the information age is
our use of electricity. Many scientists have contributed to our knowledge
of electricity, including Ampere, Charles Augustine de Coulomb, Count
Alessandro Volta, Hans Christian @rsted, Faraday, and Maxwell. Many of
these “electric thinkers” of the eighteenth and nineteenth centuries were
religious Christians whose discoveries led to the building of the first electric
dynamos and eventually to modern electric generators that power our
cities. Michael Guillen writes in Five Equations That Changed the World.:

Long before Christians had come to believe in the Father, Son,
and Holy Ghost, natural philosophers had stumbled on their own
trinity: electricity, magnetism and gravitational force. These three
forces alone had governed the universe, they believed. ... Given the
forces’ disparate behaviors, it was no wonder that philosophers very
early on were left scratching their heads: Were these three forces
completely different? Or were they, like the Christian Trinity, three
aspects of a single phenomena?

In the area of electricity and magnetism, I discuss Frenchman Charles-
Augustin de Coulomb (1736-1806), who hung bar magnets from strings
and who discovered that the force between them diminished as the square
of their separation. He also found that electrically charged objects sus-
pended on strings followed the “inverse square law”—similar to the
law Newton discovered for gravity. I also discuss Faraday’s discovery
that moving magnets actually produce electricity. Inspired by the elec-
trical experiments of Italian experimentalist Luigi Galvani (1737-1798),
Faraday, a Christian theologian, declared “electricity is the soul of the
universe.”

Some of the scientists in this book experienced resistance to their
ideas, causing significant personal anguish. For example, Ohm’s Law was
so poorly received and his emotions scraped so raw that he resigned his
post at Jesuit’s College of Cologne, where he was professor of mathemat-
ics. His work was ignored, and he lived in poverty for much of his life.
One critic said of Ohm’s physics book that its “sole effort is to detract
from the dignity of nature.” The German minister of education said that
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Ohm was “a professor who preached such heresies was unworthy to teach
science.”

Newton was so distressed by criticism from his colleague British physi-
cist Robert Hooke (1635-1703) that Newton decided to withhold publica-
tion of one of his greatest works, Opticks, until after Hooke died. Newton
also went nearly mad in another argument about his theory of colors
with several English Jesuits who had criticized Newton’s experiments. The
correspondence between Newton and these critics lasted until Newton
finally had a nervous breakdown. Faraday’s scientific fame spread to such
an extent that his previous mentor, Humphry Davy, began to despise him
and campaigned that Faraday not be elected to the Royal Society. Like
Newton, Faraday also suffered a nervous breakdown.

Austrian physicist Ludwig Boltzmann (1844-1906) is best remembered
for his work in thermodynamics, heat, and disorder. He used the concept
of the atom to explain how heat was a statistical property of the motions
of many atoms. However, several of his contemporaries, such as Ernst
Mach and Wilhelm Ostwald, argued so forcefully against Boltzmann’s
position that Boltzmann’s depression worsened, and he killed himself in
1906. Boltzmann appeared to have bipolar disorder, and his low emo-
tional periods were only exacerbated by his failing eyesight and argu-
ments with colleagues. All we know for certain about his suicide is
that he hanged himself while on a holiday with his wife and daugh-
ter. Other depressed lawgivers include Petit, Newton, and hypochondriac
Gauss.

Many cutting-edge scientific geniuses in addition to those discussed in
this book had to persevere despite resistance. For example, the revolu-
tionary discoveries concerning antibiotics by Scottish biologist Alexander
Fleming (1881-1995) were met with apathy from his colleagues. Many
surgeons initially resisted English surgeon Joseph Lister’s (1827-1912)
advocacy of antisepsis. American inventor Chester Carlson (1906-1968),
inventor of the Xerox® machine, was rejected by more than twenty compa-
nies before he finally sold the concept. German scientist Alfred Wegner’s
(1880-1930) theory of continental drift was ridiculed by the geologists of
his time.

A number of scientific lawgivers included in this book had to overcome
the strong resistance of their own parents. For example, Coulomb’s mother
wanted him to be a medical doctor, but her son insisted on studying
a more quantitative subject like engineering or mathematics. The dis-
agreements became heated, and his mother virtually disowned him. Sim-
ilarly, physicist and mathematician Daniel Bernoulli (1700-1782) and the
polymath Biot both rebelled against their fathers, who insisted that their
sons pursue careers in business. The father of Scottish chemist Thomas
Graham (1805-1869) had always wanted Graham to become a minister
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in the Church of Scotland and opposed Graham’s growing interest in
chemistry. Luckily for Graham, his mother and sister were supportive
of his interest in science, which helped Graham achieve his scientific
dreams.

The lawgivers in this book often had afflictions of one form or another.
British chemist, physicist, and meteorologist John Dalton (1766-1844) was
color blind. Kirchhoff needed crutches to walk. French mathematician
Joseph Fourier (1768-1830) had an ailment that made him perpetually
cold—he rarely went outside without an overcoat and a servant bearing
another in reserve, even in the middle of summer. Hooke was a sickly child
with constant headaches, and he was not expected to reach adulthood.
Kepler was bow-legged, often afflicted with large boils, and suffered from
poor vision. British chemist William Henry’s (1775-1836) childhood injury
caused him incredible pain throughout his life, and he eventually killed
himself. A number of the lawgivers suffered as a result of their research.
For example, French chemist Pierre Dulong (1785-1838) blew off his fin-
gers and lost an eye during a chemistry experiment.

Chronic physical ailments may have given some individuals the desire
to compensate for their shortcomings, or to leave a mark on the world
and achieve immortality through creative excellence. Perhaps the pecu-
liarities, or even physical defects exhibited by some geniuses, have caused
these individuals to overcompensate through constant creative activity.
For example, when conducting research for my book Strange Brains and
Genius, I found that many creative geniuses have had a sense of physical
vulnerability because they felt that at any moment they could be sick and
without a means of income. Perhaps this unease keeps some individuals on
edge and serves as a source of creative tension.

A surprisingly large number of the scientists included in this book
thought deeply about the existence of extraterrestrial life, and their reli-
giosity convinced them that the universe literally teemed with life. As one
example of the pervasiveness of this thinking, physicist Johann Lambert
believed that all planets, comets, and moons were likely to contain life.
In his Cosmologische Briefe, Lambert asserted, “The Creator is much too
efficient not to imprint life, forces and activity on each speck of dust. ... All
possible varieties which are permitted by general laws ought to be real-
ized....” Similarly, astronomer Johann Bode (1747-1826) believed that all
significant objects in space—the Sun, stars, planets, moons, and comets—
were inhabited by intelligent beings. Bode remarked that habitability was
“the most important goal of creation” and that alien life forms throughout
the universe “are ready to recognize the author of their existence and to
praise his goodness.”

Physicist David Brewster (1781-1868), in his book More Worlds Than
One, gave Biblical reasons as to why every star has a planetary system
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similar to ours, and believed that every planet, sun, and moon was inhab-
ited by life forms. The astronomer Kepler even wrote a science-fiction tale,
Somnium, in which the inhabitants of the Moon resembled large serpents
with a spongy, porous skin.

A number of the “lawgivers of reality” in this book grew up in fam-
ilies that almost seemed to have physics in their genes! For example,
father and son Braggs—William Henry Bragg (1862-1942) and William
Lawrence Bragg (1890-1971)—were awarded the Nobel Prize in physics
in 1915 for their pioneering studies in determining crystal structures.
German physicist Friedrich Wilhelm Kohlrausch (1840-1910) collaborated
with his brother, physicist Wilhelm Friedrich Kohlrausch, in the field of
electrochemistry, and their father, Rudolph Kohlrausch, was also a famous
physicist working in related areas of science. The Bernoullis, an extraor-
dinary Swiss family, contained eight outstanding mathematicians within
three generations, and in the seventeenth and eighteenth centuries they
made great contributions to hydrodynamics, differential calculus, prob-
ability theory, geometry, mechanics, ballistics, thermodynamics, optics,
magnetism, elasticity, and astronomy.

As another example of familial brilliance, the genius sons of German
physicist Gustav Wiedemann (1826-1899) had an extremely intellectual
and distinguished pedigree. Their father was famous for the Wiedemann-
Franz Law and was professor of physical chemistry at Leipzig. Their mater-
nal grandfather was Eilhard Mitscherlich (1794-1863), famous for his work
on chemical isomorphism and similarity of crystal structures. Their mother,
Clara, helped translate into German the Irish natural philosopher John
Tyndall’s (1820-1893) Heat as a Mode of Motion. The elder of Gustav’s
sons, Eilhard, became a physicist and historian of science and was the
first individual to use the term “luminescence.” The younger son, Alfred,
became a famous egyptologist.

For two final examples of smart families, consider Adolf Fick (1829—
1901), the German physiologist famous for his laws of diffusion. Fick had
a brother who became a professor of anatomy and another who became a
professor of law. Also consider the physicists Pierre and Marie Curie, who
received the Nobel Prize for Physics in 1903 for their research involving
radiation. Marie received another Nobel Prize in Chemistry in 1911 for,
among other things, discovery of the elements radium and polonium. She
was the first person to win or share two Nobel Prizes. Their elder daughter,
Irene (1897-1956), married French physicist Jean Frédéric Joliot (1900-
1958), and the husband and wife team received the Nobel Prize for Chem-
istry in 1935.

Chance sometimes affected the lawgivers’ lives in important ways. For
example, in 1812, the English chemist Humphry Davy (1778-1829) was
temporarily blinded by a chemical explosion, and as a result, Faraday
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became Davy’s assistant, which became an important stepping stone in
Faraday’s career. In fact, Faraday’s interest in electricity was kindled
earlier by his serendipitous encounter with the 127-page entry “Electricity”
in the Encyclopaedia Britannica, which he happened to be rebinding for a
client.

Author Sherwin B. Nuland suggests that the quirks and personalities of
scientists are valid and important areas of study when trying to understand
the evolution of scientific ideas. In his essay “The Man or the Moment?”
Nuland suggests that historians of science should not write only about the
effect of prevailing social forces on scientific discoveries “because part of
the process is the distinctive personality of the discoverer.” To understand
scientific progress, I believe that we should examine the lives of the people
who made the discoveries, at least to understand more about the kinds of
scientists who may readily incubate the ideas, attitudes, and talents that
foster the discovery of nature’s laws.

IS IT FAIR TO NAME A LAW
AFTER A PERSON?

Good theories [don’t necessarily] convey ultimate truth,
or [imply] that there “really are” little hard particles rat-
tling around against each other inside the atom. Such
truth as there is in any of this work lies in the mathe-
matics; the particle concept is simply a crutch ordinary
mortals can use to help them towards an understanding
of the mathematical laws.

—John Gribbin, The Search of Superstrings, Symmetry,
and the Theory of Everything

In hindsight, we can usually see that if one scientist did not discover a
particular law, some other person would have done so within a few months
or years of the discovery. Most scientists, as Newton said, stood on the
shoulders of giants to see the world just a bit farther along the horizon.
In fact, I give a few examples in this book in which more than one indi-
vidual discovered a law within a few years of one another, but for various
reasons, including sheer luck, history sometimes remembers only the more
famous discoverer. Readers may enjoy noting the frequency with which
this happens in the history of science.

From a more general perspective, it is fascinating the degree to
which simultaneous discoveries appear in great works of science and
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mathematics. As just one example, French chemist and physicist Joseph
Louis Gay-Lussac’s (1778-1850) first publication of his gas law was notable
not only because of its scientific value but also because almost identical
research was carried out simultaneously and independently by Dalton. In
their near-simultaneous publication in 1802 of research on the thermal
expansion of gases, Dalton and Gay-Lussac both concluded that all gases
expand by the same proportion for a particular temperature rise at con-
stant pressure.

As I mention in my book The Mobius Strip, in 1858 the German
mathematician August Mobius (1790-1868) simultaneously and indepen-
dently discovered the Mbius strip along with a contemporary scholar, the
German mathematician Johann Benedict Listing (1808-1882). This simul-
taneous discovery of the Mobius band by Mobius and Listing, just like
that of calculus by Newton and German mathematician Gottfried Wilhelm
Leibniz (1646-1716), may make us wonder why so many discoveries in
science were made at the same time by people working independently.
For another example, British naturalists Charles Darwin (1809-1882)
and Alfred Wallace (1823-1913) both developed the theory of evo-
lution independently and simultaneously. Similarly, Hungarian mathe-
matician Janos Bolyai (1802-1860) and Russian mathematician Nikolai
Lobachevsky (1793-1856) seemed to have developed hyperbolic geometry
independently and at the same time. (Some legends suggest that both
mathematicians may have learned about this geometry indirectly from
Gauss, who worked in this area.)

The history of materials science is replete with simultaneous discover-
ies. For example, in 1886, the electrolytic process for refining aluminum,
using the mineral cryolite, was discovered simultaneously and indepen-
dently by American Charles Martin Hall (1863-1914) and Frenchman
Paul Héroult (1863-1914). Their inexpensive method for isolating pure
aluminum from compounds had an enormous effect on industry.

Most likely, such simultaneous discoveries have occurred because the
time was “ripe” for such discoveries, given humanity’s accumulated knowl-
edge at the time the discoveries were made. Sometimes, two scientists
are stimulated by reading the same preliminary research of one of their
contemporaries. On the other hand, mystics have suggested that a deeper
meaning exists to such coincidences. Austrian biologist Paul Kammerer
(1880-1926) wrote, “We thus arrive at the image of a world-mosaic or
cosmic kaleidoscope, which, in spite of constant shufflings and rearrange-
ments, also takes care of bringing like and like together.” He compared
events in our world to the tops of ocean waves that seem isolated and
unrelated. According to his controversial theory, we notice the tops of the
waves, but beneath the surface there may be some kind of synchronistic
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mechanism that mysteriously connects events in our world and causes
them to cluster.

Despite simultaneity in science and the quirks of naming laws, the laws
in this book were actually formulated or promoted by the lawgivers for
whom they were named, and we should give them substantial credit for
their work. Thus, every lawgiver in this volume, in my opinion, is a truly
remarkable figure in the history of science—even if a particular scientist
built on ideas of others and even if the discovery was, in some sense, the
result of group intelligence.

Some innovative scientists, such as Einstein and Newton, did not
always discover their laws and theories through their own experiments
and observations, but rather they pondered the implications of other scien-
tists’ observations. When discussing technological inventions, Leslie Berlin
writes in her book The Man Behind the Microchip, “If nearly any inven-
tion is examined closely enough, it almost immediately becomes apparent
that the innovation was not the product of a single mind, even if it is
attributed to one. Invention is best understood as a team effort.” Although
Berlin’s idea may have validity for most inventions, this group effort is
perhaps less pronounced for the discovery of laws, even when scientists
start by studying the work of others. In fact, many /aws of science and
mathematics, expressed as a single equation, do derive largely from the
work of a single individual working long hours in relative isolation or who
has a “eureka” moment. Unlike the invention of increasingly complicated
devices such as computers and cars, in the past the “production” of laws
has usually not required the same kind of collaborative team effort in
which several contributors, working in a lab, supply subsets of a tech-
nology invention. While basic science today is often performed in large
teams, the expression of a natural law in terms of a simple formula may
still continue to be the work of specialized individuals with a spark of
insight.

If we move our attention from laws to other kinds of scientific discover-
ies, some historians of science may hesitate about naming such discoveries
after people, and some writers have gone as far as to suggest that scientists
always pick the wrong scientists after whom to name a discovery. Jim
Holt writes in “Mistaken Identity Theory: Why Scientists Always Pick the
Wrong Man”:

Stigler’s Law of Eponymy, which in its simplest form states that
“no scientific discovery is named after its original discoverer,” was
so dubbed by Stephen Stigler in his recent book Statistics on the
Table (Harvard)....If Stigler’s law is true, its very name implies
that Stigler himself did not discover it. By explaining that the credit
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belongs instead to the great sociologist of science Robert K. Merton,
Stigler not only wins marks for humility; he makes the law to which
he has lent his name self-confirming.

Robert Merton suggested that “all scientific discoveries are in principle
‘multiples.”” In other words, when a scientific discovery is made, it is made
by more than one person, but for some reason, the discovery is named
after the “wrong” one of its multiple discoverers. For example, some-
times a discovery is named after the person who develops the discovery
rather than the original discoverer. Stigler has suggested that eponyms are
inaccurately assigned because “eponyms are only awarded after long time
lags or at great distances” by scientists who are not trained in history and
who are more interested in “recognizing general merit than an isolated
achievement.”

Whether or not Stigler’s Law is valid, his law tends to focus on other
kinds of observations and discoveries, and not on scientific laws. For exam-
ple, Halley’s Comet, named after English astronomer Edmond Halley
(1656-1742), was not first discovered by Halley because it had been actu-
ally seen by countless observers even before the time of Jesus. (But let’s
not downgrade Halley, whose calculations enabled earlier references to
the comet’s appearance to be found in the historical record!)

As I have already suggested, when it comes to natural laws, I have
found that lawgivers for whom the laws are named did discover the law
or contribute to the refinement and promotion of the law’s application for
practical scientific purposes. However, some fascinating instances exist of
several people discovering the same law in different forms through the
centuries. As one example, consider Snell’s Law that in 1621 accurately
described the refraction (bending) of light through glass. The law is named
after Dutch mathematician Willebrord van Roijen Snell (1580-1626).
However, perhaps the first person to understand the basic relationship
expressed by Snell’s Law was the Arabian mathematician Ibn Sahl in the
year 984. In 1602, English astronomer and mathematician Thomas Harriot
also discovered the law, but he did not publish his work. Though a quirk of
fate, we call it Snell’s Law today because, in 1662, Dutch scholar and manu-
script collector Isaac Vossius discovered Snell’s writings, and Dutch physi-
cist Christian Huygens referred to the writings in his Dioptrica published
in 1703. Note, however, that the French refer to Snell’s Law as Descartes’s
Law, because René Descartes was the first person to publish the law in
terms of sine functions in his 1637 Discourse on Method, but without
experimental verification. Huygens and others actually accused Descartes
of plagiarism, given that Descartes was in Leiden during and after Snell’s
work, but little evidence exists to support the plagiarism assertion.
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THEORIES AND LAWS

A correct theory is one that can presumably be verified
by experiment. And yet, in some cases, scientific intuition
can be so accurate that a theory is convincing even before
the relevant experiments are performed. Einstein—and
many other physicists as well—remained convinced of
the truth of special relativity even when...experiments
seemed to contradict it.

—Richard Morris, Dismantling the Universe

All of the main entries in this book focus on scientific laws and principles.
On the other hand, “theories” are usually only discussed within the main
entries. However, I admit that the line between a scientific theory and a
law is sometimes thin. To my mind, a scientific law exhibits a significant
degree of universality and invariability, and can usually be summarized
by a simple formula. A law is a relatively secure, high-level, and succinct
formulation. But what exactly is a theory? I could have a theory about why
snails in a Mozambique rain forest went through a population surge as a
result of local conditions at the time. This theory might be elevated to the
status of a law if I claimed that those conditions would always produce a
doubling per month for a wide class of animals under given conditions and
if I could provide evidence for this doubling that a majority of scientists
came to accept.

Theories are often used to describe why certain laws work. On the
other hand, a law often shows that the universe works in a certain way, but
does not explain the “why”—and the laws usually do not even explain the
“how.” Knowledge moves in an ever-expanding, upward-pointing funnel.
From the rim, we look down and see previous knowledge from a new
perspective as new theories are formed to explain the universe in which
we live.

Famous scientific theories usually explain facts or behaviors that have
been shown to be true in many independent experiments. However, some-
times a theory exists before it is tested or confirmed. Thus, today many
physicists use the phrase “string theory” when referring to the fundamental
composition of subatomic particles and not the “law of strings.” A law
requires substantial confirmation; that is, we usually do not call a math-
ematical formulation a scientific law until it has been tested many times
and has not been falsified. Nevertheless, even the great scientific laws are
not immutable, and laws may have to be revised centuries later in the light
of new information.

Science progresses mainly because both existing theories and laws
are never quite complete. For example, Newton’s Law of Universal
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Gravitation describes the attraction between two bodies as a force that
depends on the mass of the bodies and the distances between them. This
law predicts with remarkable accuracy the motion of the Moon around
Earth. It allows us to predict the trajectories of bullets and cannon balls.
The law describes gravity in terms of a few variables, but it does not
illuminate what gravity is or the precise mechanism of its action. It also
does not accurately predict the bending of light rays that pass Earth, which
requires us to invoke Einstein’s General Theory of Relativity. Einstein’s
formulation generalizes Newton law and treats gravity as a manifestation
of curved space and time. Today, General Relativity itself is often regarded
as limited and not useful for subatomic distances. Thus, scientific laws
generally account for everything that humans know about a phenom-
enon at a point in time. Philosopher Karl Popper in his Conjectures and
Refutations suggested that all scientific models and laws are only tenta-
tive, and philosopher David Hume in An Enquiry Concerning Human
Understanding asserted that no amount of testing and observations can
absolutely prove a model correct.

I usually think of these evolving laws as incomplete rather than wrong,
because I put great weight on the law’s utility in helping humanity make
predictions at a particular stage of human knowledge. In fact, most of
these old laws, like Newton’s laws, continue to be crucial and help us
predict the functioning of the universe. The newer laws that “replace”
the older laws generally have more predictive power while retaining the
successes of the previous laws and also addressing new experimental obser-
vations. Many laws remind me of oil paintings in which the crucial visual
themes are elucidated early in humanity’s quest for understanding, but
the tiny brush strokes are still to be added in light of new knowledge.
If there were no more brush strokes to come, science would be dead.
Perhaps a better analogy likens the sharpening of laws to the calcula-
tion of the square root of 2. A simple approximation is 1.4. A better
approximation is 1.4142135623. Neither is absolutely correct, but the ear-
lier historical approximation of 1.4 is obviously less refined than the later
value.

Given this brief background, can we articulate the precise relationship
between a law and theory? One way in which the Shorter Oxford English
Dictionary defines a theory is “a scheme or system of ideas or statements
held as an explanation or account of a group of facts or phenomena.”
As just discussed, theories are scientifically backed explanations, includ-
ing overarching conceptual schemes such as Einstein’s General Theory
of Relativity or Darwin’s Theory of Natural Selection. Laws concerned
with optical lenses, for example, which allow technologists to build optical
instruments, can be derived from theories about how light propagates.
Arnold Arons in Development of Concepts of Physics writes:
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There is a kind of symbiotic relationship here between law and
theory. A theory becomes more and more respected and powerful
the more phenomena can be derived from it, and the law describing
these phenomena becomes more meaningful and useful if it can be
made part of a theory. Thus, Newton’s theory of universal gravita-
tion gained greatly in stature because it enabled one to derive the
laws governing the motion of the moon, which had been known by
empirical rules since the days of Babylonian observers.

A majority of scientists consider the major scientific theories and laws
to be true, and scientists use both to make predictions. On the other hand,
a theory is usually more complicated and dynamic than a law. A law may
apply to a single broad observation, whereas a theory explains a set of
related phenomena and can have various subcomponents.

Consider, for example, a rock and a catapult. Both can be used as
weapons. The action of the rock is straightforward and can be expressed
succinctly. The rock is like a law. On the other hand, a medieval catapult
often had numerous plates, cross pieces, cords, wheels, spindle heads,
arms, rollers, supports, and a cup to hold a massive stone. The catapult is
like a theory. Through time, improvements are made to the components.
New kinds of pieces are invented to replace less effective ones. Despite
these enhancements, the catapult’s function remains the same and is use-
ful through time. Few scientists doubt the overall “truth” of the famous
scientific theories, such as the theory of evolution or quantum theory,
although scientists certainly clamor to refine and better understand the
various components.

According to John Casti in Paradigms Lost, the logical structure of
science can be represented by the following sequence:

Observations/Facts

!
Hypothesis

!

Experiment

!

Laws

+
Theory

Our observations give rise to hypotheses that are studied with experiments.
Hypotheses that are supported by experiments may become empirical
relationships, or laws. Laws may become part of an encompassing theory
with wide explanatory power.
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As an example, consider the observations of French physicist Jacques
Charles (1746-1823), who in 1787 investigated the relationship between
the volume of a gas and how it changes with temperature. After many
careful experiments, he observed precisely how temperature affects the
volume of a gas. Charles’s Law states that the volume of a given amount
of an ideal gas is directly proportional to the temperature, provided the
amount of gas and the pressure remain fixed. This behavior was further
quantified and published in 1808 by Gay-Lussac and can be represented by
the succinct formula V = kT, where V is the volume of gas, k is a constant,
and T is the temperature. This law enabled scientists around the world to
summarize the results of many experiments in a statement that could be
expressed in a formula less than an inch in length. Note that Charles’s Law
does not tell us why the volume and temperature are directly related. We
need the Kinetic Theory of Gases to explain that the behavior results from
molecules in random motion. The moving particles constantly collide with
each other and with the walls of the container. Increasing the temperature
of the gas increases the kinetic energy of the gas particles and thus the
pressure on the walls of the container.

Laws that simply summarize some observed regularity might be called
empirical laws. Examples include Gay-Lussac’s Law of Combining Vol-
umes, Bode’s Law of Planetary Distances from the Sun, Kepler’s Laws of
Planetary Motion, Hooke’s Law of Elasticity, Snell’s Law of Refraction,
Boyle’s Law of Gases, and Ohm’s Law of Electricity—all discussed in this
book.

The laws that impress me the most are those that suggest a more gen-
eral principle that represents the behavior of very different phenomena.
These laws often require us to define fundamentally important or new
concepts. As one example, consider Newton’s Second Law of Motion:
When a net force acts upon an object, the rate at which the momentum
changes is proportional to the force applied. Today, we would express this
as F = dp/dr, where the boldface letters indicate vector quantities that have
both a magnitude and direction. Here, p is the momentum, which is equal
to the mass times the velocity of the object. F is the applied force, and dp/d¢
is the rate of change of momentum. Both mass and force are important
concepts that needed either defining or further elucidation before the law
could make sense.

Other related laws represent a general conclusion derived from some
theory. For example, Newton’s Law of Universal Gravitational Attraction,
expressed as F = (Gmyn)/r?,is a generalization that is in some sense built
upon Kepler’s laws, Newton’s Laws of Motion, and the hypothesis of mass
attraction between bodies, such as the Moon and Earth, with masses my
and my,. This kind of law can be particularly interesting because it is, in part,
derived from some underlying theory. Often, scientists try to turn empirical
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laws into derived laws over the span of many decades. With empirical laws,
we have less of a sense of what fields they apply to, because we often do
not have an underlying reasoning for them.

DO WE DISCOVER OR INVENT LAWS?

Heisenberg once made the following remark to Einstein:
“If nature leads us to mathematical forms of great sim-
plicity and beauty ...that no one has previously encoun-
tered, we cannot help thinking that they are ‘true,” that
they reveal a genuine feature of nature.”

—Paul Davies, Superforce

In my mind, we do not invent laws in mathematics and science, but
rather we discover them. They have an existence independent from us.
My viewpoint is not without controversy, and certainly other points of
view exist. For example, I believe that mathematical laws transcend us
and our physical reality. The statement “3 + 1 = 8 is false. Was the
statement false before the discovery of integers? I believe it was. Numbers
and mathematics exist whether humans know about them or not. Martin
Gardner once stated this idea as: “If two dinosaurs met two other dinosaurs
in a clearing, there would be four of them even though the animals would
be too stupid to know that.” In other words, four dinosaurs are now in the
clearing, whether or not humans are around to appreciate this fact.

G. H. Hardy in his famous A Mathematician’s Apology wrote, “I
believe that mathematical reality lies outside us, that our function is to
discover and observe it, and that the theorems which we prove, and which
we describe grandiloquently as our ‘creations,” are simply our notes of
our observations.” I think that when we write down laws of nature, we
are taking notes on our discoveries. Law creators are like archeologists,
uncovering treasures as they mine the cosmos for truths.

As discussed above, many scientists feel that “simplicity” is a require-
ment for all “laws.” For example, authors David Halliday and Robert
Resnick suggest in Physics:

One criterion for declaring the program of mechanics to be success-
ful would be the discovery that simple laws do indeed exist. This
turns out to be the case, and this fact constitutes the essential reason
that we “believe” the laws of classical mechanics. If the force laws
had turned out to be very complicated, we would not be left with the
feeling that we had gained much insight into the workings of nature.
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This enduring interest in simplicity is further discussed in the following
section.

SIMPLE MATHEMATICS AND REALITY

The mathematical take-over of physics has its dangers, as
it could tempt us into realms of thought which embody
mathematical perfection but might be far removed, or
even alien to, physical reality. Even at these dizzying
heights we must ponder the same deep questions that
troubled both Plato and Immanuel Kant. What is real-
ity? Does it lie in our mind, expressed by mathematical
formulae, or is it “out there”?

—Sir Michael Atiyah, “Pulling the Strings,” Nature

Our mathematical models of physical reality are far
from complete, but they provide us with schemes that
model reality with great precision—a precision enor-
mously exceeding that of any description that is free of
mathematics.

—Roger Penrose, “What Is Reality?” New Scientist

Marilyn vos Savant has been listed in the Guinness Book of World
Records as having the highest IQ in the world—an awe-inspiring 228.
She is author of several delightful books and wife of Robert Jarvik,
M.D., inventor of the Jarvik 7 artificial heart. One of her readers once
asked her, “Why does matter behave in a way that is describable by
mathematics?” She replied, “The classical Greeks were convinced that
nature is mathematically designed, but judging from the burgeoning of
mathematical applications, I'm beginning to think simply that mathemat-
ics can be invented to describe anything, and matter is no exception.”
Marilyn vos Savant’s response is certainly one with which many peo-
ple would agree. However, as mentioned throughout this Introduction,
the fact that reality can be described or approximated by simple math-
ematical expressions suggests to me that nature has mathematics at its
core.

The laws in this book impress us because of their compactness and
predictive power. I am not suggesting that a/l phenomena, including sub-
atomic phenomena, are described by simple-looking formulas; however,
as scientists gain a more fundamental understanding, they hope to simplify
many of the more unwieldy formulas. James Trefil in The Nature of Science
writes of this simplicity:
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The laws of nature are the skeleton of the universe. They support
it, give it shape, tie it together. ... They tell us that the universe is
a place we can know, understand, and approach with the power of
human reason. In an age that seems to be losing confidence in its
ability to manage things, [the laws of nature] remind us that even
the most complex systems around us operate according to simple
laws, laws easily accessible to the average person.

To best understand some of the laws, consider the first great question of
physics: “How do things move?” Imagine a universe called Madness in
which Kepler looks up into the heavens and finds that most planetary
orbits can never be approximated by ellipses but rather by bizarre geo-
metrical shapes that defy his mathematical description. Imagine Newton
dropping an apple whose path requires a 200-term equation to describe.
Luckily for us, we do not live in Madness. Newton’s apple is a symbol of
both nature and simple arithmetic from which reality may naturally evolve.

American theoretical physicist Richard Feynman (1918-1988) in The
Character of Physical Law also suggests that laws should be simple, and he
uses Newton’s Law of Universal Gravitation as an example that has all the
essential ingredients of a natural law:

First, it is mathematical in its expression. ... Second, it is not exact;
Einstein had to modify it....There is always an edge of mystery,
always a place where we have some fiddling around to do yet. ... But
the most impressive fact is that gravity is simple. ... It is simple, and
therefore it is beautiful....Finally, comes the universality of the
gravitational law and that fact that it extends over such enormous
distances. ...

Theoretical physicist Michio Kaku, in “Parallel Universes, the Matrix,
and Superintelligence,” echoes the belief that scientific laws or formulas
that underlie the basic principles of the universe should be succinct: “Pro-
fessionally, I work on something called Superstring theory, or now called
M-theory, and the goal is to find an equation, perhaps no more than one
inch long, which will allow us to “read the mind of God,” as Einstein
used to say.” To Kaku, brevity is key when describing reality, and he
believes that brevity is possible. Einstein went a step further and thought
that we should be able to simply state all physical theories, irrespective
of the math involved. In fact, he once wrote, “All physical theories, their
mathematical expressions notwithstanding, ought to lend themselves to so
simple a description that even a child could understand them.” Similarly,
American physicist Leon Lederman once said, “If the basic idea is too
complicated to fit on a T-shirt, it’s probably wrong.” His ambition was to

| ARCHIMEDES TO HAWKING



“live to see all of physics reduced to a formula so elegant and simple that
it will fit easily on the front of a T-shirt.”

Max Tegmark, professor of physics at the Massachusetts Institute of
Technology, wrote, “In 2056, I think you’ll be able to buy a T-shirt on
which are printed equations describing the unified physical laws of our
universe. All the laws we have discovered so far will be derivable from
these equations.” New Zealand born nuclear physicist Ernest Rutherford
(1871-1937) echoed many of these beliefs when he said, “If a piece of
physics cannot be explained to a barmaid, then it is not a good piece of
physics.”

WHAT IS REALITY REALLY?

They came again, so many of them but this time I only
smiled and I didn’t open my eyes. You can come, you
aren’t going to make me jump and wake up. No, you
can come, even if there are so many of you there are no
numbers for you. You come from the place where there
are no numbers.

—Anne Rice, Christ the Lord

We often say that scientific laws describe reality, but what is reality really?
Various schools of thought exist among scientists—such as realism, instru-
mentalism, and relativism—that look at reality from varying perspectives.
Realists believe that reality exists independent of us, and it can be discov-
ered and understood using the tools of science. We describe this reality
with our equations. On the other hand, according to John Casti, the instru-
mentalists “cling to the belief that theories are neither true nor false, but
have the status only of instruments or calculating devices for predicting
the results of measurements.” For relativists, truth is “not a relationship
between a theory and an independent reality” but changes according to
individual perspectives and thus changes from time to time. American
historian of science Thomas Kuhn (1922-1996) suggested in his 1962 book
The Structure of Scientific Revolutions that scientists are not really getting
any closer to a “scientific truth” as they study nature and discover scientific
laws. This means that we cannot even measure scientific progress by the
degree with which it appears to get closer to describing reality. Kuhn says
that as scientists study the universe, they are learning about a “different
universe” each time that their methodology and observations advance.

Hawking holds views that are close to those of the instrumentalists. In
his books Black Holes and Baby Universes and The Nature of Space and
Time, coauthored with Roger Penrose, he writes,
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I don’t demand that a theory correspond to reality because I don’t
know what [reality] is. ... I take the positivist viewpoint that a physi-
cal theory is just a mathematical model and that it is meaningless
to ask whether it corresponds to reality. All that one can ask is
that its predictions should be in agreement with observations. ... All
I’'m concerned with is that the theory should predict the results of
measurements. ...

The physicist Victor J. Stenger expresses similar views in his paper “A
Scenario for a Natural Origin of Our Universe”:

What is it that science does when it “explains” some phenomenon?
At least in the case of the physical sciences, it builds a mathematical
model to describe the empirical data associated with the phenom-
enon. When that model works well in fitting the data, has passed
a number risky tests that might have falsified it, and is at least not
inconsistent with other established knowledge, then it can be said to
successfully explain the phenomenon.

Stenger continues by musing on the relationships of mathematical models
to reality:

Further discussion on what the model implies about “truth” or
“ultimate reality” falls into the area of metaphysics rather than
physics, since there is nothing further the scientist can say based on
the data. What is more, nothing further is needed for any practical
applications. For example, not knowing whether or not electromag-
netic fields are real does not prevent us from utilizing the theory of
electromagnetic fields.

BOOK ORGANIZATION AND PURPOSE

I tell them that if they will occupy themselves with the
study of mathematics they will find in it the best remedy
against the lusts of the flesh.

—Thomas Mann, The Magic Mountain

The main entries for the laws in this book are divided into two sec-
tions. The first section provides a brief introduction to the law and the
equation used to represent the law. The second section provides bio-
graphical information for the lawgiver. Also included is a brief “curiosity
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file” that contains fascinating, lesser-known tidbits relating to the law or
lawgiver.

Historical events that occurred at the time when a law was discovered
are highlighted. Additionally, a short “Cross Reference” section indicates
connections to other key laws, equations, or people. Each entry concludes
with an section entitled Interlude: Conversation Starters, which contains
thought-provoking quotations that are related to scientific laws and the
mathematics of reality. For several entries, I have included simple numer-
ical examples and solved problems so that readers may have a more direct
understanding of the application of a law.

My goal in writing Archimedes to Hawking: Laws of Science and the
Great Minds Behind Them is to provide a wide audience with a brief
guide to important scientific ideas and thinkers, with entries short enough
to digest in a few minutes. Most laws are accompanied by an equation.
Readers need not dwell on these formulas to understand the gist of an
idea. Sometimes, simply seeing how the laws are expressed in a mathe-
matical notation gives readers an indication of the compactness of a law.
While a Ph.D. may be required to master some of these laws, only a few
pages are needed to state their essence. Because we are aware of just a
few fundamental laws that appear to rule the cosmos or shape modern
science, this book need not stretch over many volumes in order to give an
overview.

The equation-based entries were chosen in consultation with scientific
colleagues. Not all eponymous laws of science are included in this book,
but I believe that I have included a majority of those with historical sig-
nificance and that have had the greatest influence on science and human
thought. Only “laws of nature,” based on observations of the physical
universe, are discussed in this book. Thus, in the interest of brevity, laws
of economics, psychology, biology, geology, or pure mathematics are not
included as main entries. Similarly, important computing technology laws,
such as Moore’s Law, Amdahl’s Law, or Gustafson’s Law, are not dis-
cussed.

Most laws of nature in this book come from the field of physics.
Lawrence Krauss in Fear of Physics reiterates some of the ideas discussed
above under “Simple Mathematics and Reality,” namely, that physicists
are often able to follow the amazing complexity and depth of modern
physics because the concepts are largely based on the same “handful” of
fundamental ideas and laws. He writes, “Any phenomenon described by
one physicist is generally accessible to any other through the use of perhaps
a dozen basic concepts. No other realm of human knowledge is either so
extensive or so simply framed.”

Several excellent books have catalogued guiding principles of science—
including Trefil’s The Nature of Science, Jennifer Bothamley’s Dictionary
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of Theories, and Robert Krebs’s Scientific Laws, Principles and Theories.
Because these books do not focus exclusively on eponymous scientific laws,
they must be extremely brief in their coverage due to space limitations. For
example, Bothamley’s interesting book usually describes each principle in
two or three sentences. Although I promised to be brief in this volume, I
attempt to delve into more detail than past compendiums when discussing
both the laws and the lives of the lawgivers.

Archimedes to Hawking reflects my own intellectual shortcomings, and
while I try to study as many areas of science as I can, it is difficult to become
fluent in all aspects. Thus I am sure that this book reflects my own personal
interests, strengths, and weaknesses. I am responsible for the choice of laws
included in this book and, of course, for any errors and infelicities. This is
not a comprehensive or scholarly dissertation, but rather is intended as
recreational reading for students of science and interested lay people. The
entries have different lengths, in part because limited biographical material
is available for some of the lawgivers. I welcome feedback and suggestions
for improvement from readers, as I consider this an ongoing project and a
labor of love.

This book is organized chronologically, according to the year that a law
was discovered. In some cases, the literature may report slightly different
dates for the discovery of a law because some sources give the publication
date as the discovery date of a law, while other sources give the actual
date that a law was discovered, regardless of the fact that the publication
date is sometimes a year or more later. In many cases, if I am uncertain
of a precise earlier date of discovery, I have used the publication date for
alaw.

In the case of lawgivers such as Newton, a number of years may inter-
vene between the discovery date and the publication date. For example,
Newton claimed that in 1666, while his university was closed due to the
plague and he was isolated at home, he discovered the chromatic compo-
sition of light and discovered the inverse-square principle of the Law of
Universal Gravitation. However, upon critical analysis, the discovery date
that he gave may be a little early because it was in his self-interest to place
his discoveries as early as possible. Some of his ideas on mechanics may not
have fully gelled until around 1685-1687, when he was actually composing
his great book, the Philosophiae Naturalis Principia Mathematica (now
usually referred to as the Principia). Thus, I have listed the date for some
of his laws as 1687, the year the Principia was published. In any case,
despite a very few discrepancies in the dates of laws in the literature, the
reader should get a general sense of the progression of discoveries from
the ordering of laws in this book, even if the precise date may subject to
discussion.
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Some readers may wonder why no eponymous laws for women are
listed in this book. Several reasons for this absence exist. Until the twen-
tieth century, very few women received much education, and the path to
more advanced studies was usually blocked. Many women mathematicians
had to go against the wishes of their families if they wanted to learn. Some
were even forced to assume false identities, study in terrible conditions,
and work in intellectual isolation. Consequently, very few women con-
tributed to mathematics and the scientific laws featured in this book.

In the “Final Comments” and “Great Contenders” sections at the
end of this book, I catalogue a number of additional eponymous laws or
equations. These two final sections are meant to prompt questions from
readers. In particular, have any deserving laws been left out of the main
section? Should, for example, Schrodinger’s and Maxwell’s equations or
E = mc? be considered “laws” and highlighted in the main section of the
book rather than relegated to the final sections? I welcome comments from
readers for a follow-up book that will focus on great equations of science.

DISTRIBUTION OF LAW DISCOVERIES
THROUGH TIME

Einstein’s fundamental insights of space/matter relations
came out of philosophical musings about the nature of
the universe, not from rational analysis of observational
data—the logical analysis, prediction, and testing coming
only after the formation of the creative hypotheses.

—R. H. Davis, Skeptical Inquirer

In conclusion, I must admit a personal reason for my interest in physical
laws, and I think my reason resonates with a wide audience. Laws give
us a feeling of triumph, understanding, and even being in control of our
destinies. Most of our daily lives are fraught with challenges that have no
clear solutions. Some of our problems have no resolutions at all. We go
through life doing the best we can. However, when discovering laws, the
human race can have a feeling of purpose and pride. With each scientific
law that we uncover and express mathematically, we have a sense that we
have encapsulated the cosmos in neat little packages and wrapped them
with sparkling bows. Will each century bring us new laws?

Table 1 indicates the historical distribution of the laws in the main sec-
tion of this book. Notice that a significant number of the laws were discov-
ered in the nineteenth century. Very few physical principles after 1900 are
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TABLE I Time Distribution of Main-Entry Laws

Time Period Number of Laws
250 B.c.—1700 A.D. 10 (20%)
1700-1800 6 (12%)
1800-1900 30 (60%)
1900-2000 4 (8%)

See the “Great Contenders” section at the end of
this book for a similar breakdown of a large number
of additional scientific laws.

commonly called laws. Scientists demand that fundamental physical princi-
ples be defined in terms of experiments, but this demand became a growing
challenge as scientists treaded in the realms of quantum mechanics, parti-
cle theory, and relativity. Of course, with advancing technology, scientists
can and do perform many experiments, but today the experiments are
often more difficult and expensive to perform than those conducted in pre-
vious centuries. (Some degree of subjectivity was involved when creating
Table 1, and sometimes I counted several laws as one when they were
closely related. For example, both of Kirchhoff’s electrical circuit laws
counted toward one law, and I counted only Planck’s Law of Radiation
when considering all the various closely related blackbody radiation laws
in Planck’s time.)

The “Final Comments” section of this book presents additional mus-
ings as to why eponymous laws fade away after 1900. Perhaps this diminu-
tion is caused by the fact that modern science has become increasingly
organized around large, collaborative research projects. Peter Dizikes
writes in “Twilight of the Idols” that “today’s insights are not so much
perceived from the shoulders of giants as glimpsed from a mountain of
jointly authored papers announcing results from large labs, and rapidly
circulated through journals, conferences and the Internet.” James Gleick
writes in his biography of Richard Feynman, “The world has grown too
vast and multifarious for the towering genius of the old kind.”

To place the dates in Table 1 in perspective, consider the scientific
revolution that occurred roughly during the period between 1543 and 1687.
In 1543, Copernicus published his heliocentric theory of planetary motion.
In 1609 and 1618, Kepler established his three laws that described the
paths of the planets about the Sun, and in 1687, Newton published his
fundamental laws of motion and gravity.
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A second scientific revolution occurred between 1850 and 1865, when
scientists introduced and refined various concepts concerning energy and
entropy. Fields of study—such as thermodynamics, statistical mechanics,
and the kinetic theory of gases—began to blossom. In the twentieth cen-
tury, Quantum Theory and Special and General Relativity were among the
most important insights in science to change our views of reality.

The ideas of quantum mechanics flourished after 1925. According to
Paul Quincey, a physicist at the United Kingdom’s National Physical Lab-
oratory, quantum mechanics was not only useful for accounting for the
properties of atoms, but the ideas

were absolutely central to explaining why atoms did not collapse,
how solids can be rigid, and how different atoms combine together
in what we call chemistry and biology....But this triumph of
quantum mechanics came with an unexpected problem—when you
stepped outside of the mathematics and tried to explain what was
going on, it didn’t seem to make any sense.

Physics had finally entered the age of the nonintuitive science, or as Feyn-
man said, “I think I can safely say that nobody understands quantum
mechanics.” Danish physicist Niels Bohr (1885-1962) wrote, “There is no
quantum world. There is only an abstract physical description. It is wrong
to think that the task of physics is to find out how nature is. Physics
concerns what we can say about nature.” Theoretical physicist Jim Al-
Khalili writes in Quantum: A Guide for the Perplexed:

When it comes to the world of the quantum, we really are crossing
into a quite extraordinary domain...where it seems we are free to
choose any one of a number of explanations for what is observed,
each of which is in its way so astonishingly strange that it even makes
tales of alien abduction sound perfectly reasonable.

Nonetheless, the mathematical framework of quantum mechanics is pre-
cise, and it accurately predicts the behavior of particles at the atomic and
subatomic levels.

WHERE THE LAWGIVERS LIVED

During the Renaissance. .. the interaction among differ-
ent European cultures stimulated creativity through new
ways of thinking and new paradigms for the observa-
tion of nature. ... The foundation of scientific academies,
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notably the Accademia dei Lincei, the Royal Society and
the Académie des Sciences, and the establishment of
universities throughout Western Europe, contributed to
scientific progress. ...

—Maurizio Iaccarino, “Science and Culture”

We may also catalogue the laws in this book by the lawgiver’s countries
of birth, or primary country affiliation (Table 2). Germany, France, and
Great Britain are clearly the most significant contributors.

Historians of science acknowledge that Europe was special for many
reasons when it comes to the discoveries of scientific laws. Richard Koch
and Chris Smith, authors of “The Fall of Reason,” note that

[sJome time between the 13th and 15th centuries, Europe pulled
well ahead of the rest of the world in science and technology, a
lead consolidated in the following 200 years. Then in 1687, Isaac

TABLE 2 Country Distribution of Main-Entry Laws

Country Number of Laws
Germany 14
France 12
Britain 10
Ireland 2
Netherlands 2
Italy 1
Switzerland 1
United States 1
Hungary 1
Greece 1

See the “Great Contenders” section at the end of this
book for a similar breakdown of additional eponymous
scientific laws.
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Newton—foreshadowed by Copernicus, Kepler, and others—had
his glorious insight that the universe is governed by a few physi-
cal, mechanical, and mathematical laws. This instilled tremendous
confidence that everything made sense, everything fitted together,
and everything could be improved by science.

According to Koch and Smith, many scholars who lived in medieval and
early modern Europe began to feel that the mysteries of the universe
could be solved because God had provided laws of nature that were log-
ical and that made sense. Koch and Smith write, “The full emergence of
science required belief in one all-powerful God, whose perfect creation”
could be understood by rational thought. They go further to suggest the
controversial idea that this condition was special to Christianity of the
time, especially compared with other religions that had a less consistently
rational creator and for religions in which “the universe is inexplica-
ble, unpredictable.” Catholic philosopher Thomas Aquinas (1225-1274)
thought so much about the laws of the universe that he finally decided
to make various categories of laws—such as eternal, natural, human, and
divine laws.

According to Jan Wojcik, author of Robert Boyle and the Limits of Rea-
son, many influential scientist Christians of the seventeenth and eighteenth
centuries believed that reason could be used to address theological ques-
tions. Although reason alone could not be used to discover the mysteries
of Christianity, “reason was considered competent to aid the believer in
understanding the content of what has been revealed.” Wojcik writes:

After the Christian had come to believe that something was true
simply because God had revealed it, the believer could analyze
that truth philosophically in an attempt to determine how it could
be true. Further, reason was seen as playing an important role in
convincing atheists of the truth of Christianity by showing that the
mysteries of Christianity are rationally possible.

Of course, the Christian religion in Europe was not the only motivator
for many of the scientific lawgivers. Newton, for example, was thoroughly
immersed in alchemical and magical thinking, which also contributed to
his interest in the laws of nature. Additionally, starting around 750 A.D.,
science and mathematics flourished under the Abbasid caliphs of Bagh-
dad, and the knowledge learned under Arab-Islamic patronage spread
throughout Europe and central Asia. Going further back in time, pagan
Greek culture produced thinkers ranging from Aristotle and Pythagoras
to Archimedes.
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Maurizio Iaccarino, a scientist at the International Institute of Genetics
and Biophysics of the National Research Council in Naples, Italy, writes in
EMBO Reports:

The Muslims were the leading scholars between the seventh and
fifteenth centuries, and were the heirs of the scientific traditions
of Greece, India and Persia. ... Participants were Arabs, Persians,
Central Asians, Christians and Jews, and later included Indians
and Turks. The transfer of the knowledge of Islamic science to the
West...paved the way for the Renaissance, and for the scientific
revolution in Europe.

Additionally, while Christianity could be conducive to science and serve
as a motivator for many of the lawgivers in this book, the Church could
also have supreme failings in this regard. Sam Harris writes with passion in
“The Language of Ignorance”:

Lest we forget: Galileo, the greatest scientist of his time, was forced
to his knees under threat of torture and death, obliged to recant his
understanding of the Earth’s motion, and placed under house arrest
for the rest of his life by steely-eyed religious maniacs. He worked
at a time when every European intellectual lived in the grip of a
Church that thought nothing of burning scholars alive for merely
speculating about the nature of the stars. ... This is the same Church
that did not absolve Galileo of heresy for 350 years (in 1992).

Nevertheless, Europe’s economic expansion after 1000 A.p., which resulted
from a growing number of interacting and free cities, led to the develop-
ment of simple industries and their related sciences.

WHEN WILL THE LAST LAW
BE DISCOVERED?

Eternity is a child playing checkers.
—Heraclitus (535-475 B.c.)

Western “faith” in the rationality and logic of the universe faded slightly in
the twentieth century, with the gradual demise of the Newtonian universe,
leading the way to new physical theories that suggested an inscrutable
and uncertain universe. Perhaps the rise of quantum theory is one reason
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among many that fewer eponymous laws are found in the twentieth cen-
tury than in the nineteenth century. As I have already mentioned, exper-
iments that could lend support to new laws are becoming very difficult to
perform. At a Royal Society meeting, Nobel laureate Stephen Weinberg
focused on this challenge, saying, “Quantum gravitation seems inaccessible
to any experiment we can devise. In fact, physics in general is moving into
an era where the fundamental questions can no longer be illuminated by
conceivable experiments. It’s a very disquieting position to be in.”

I conclude this introduction by asking readers, Do you feel that we will
have all the laws of nature in our hands in the next fifty years? Personally,
I think that there will always be more laws for us to uncover. Isaac Asimov
had the right idea about the future of knowledge: “I believe that scientific
knowledge has fractal properties; that no matter how much we learn,
whatever is left, however small it may seem, is just as infinitely complex
as the whole was to start with. That, I think, is the secret of the Universe.”
Hawking has said that he believes that the search for the ultimate laws will
soon come to an end. He notes in his books A Brief History of Time and
Black Holes and Baby Universes that in the early 1900s, many scientists
thought that the universe and its laws could be explained in terms of “the
properties of continuous matter, such as elasticity and heat conduction.”
However, the discovery of subatomic structure and Heisenberg’s Uncer-
tainty Principle led humanity to the next level of understanding. In 1928,
physicist and Nobel Prize winner Max Born (1882-1970) told a group of
visitors to Gottingen University, “Physics, as we know it, will be over in six
months.” Born’s proclamation took place immediately after British theo-
retical physicist Paul Dirac (1902-1984) formulated the Dirac Equation,
which characterizes the behavior of an electron. Hawking explains both
Born’s confidence and folly in Black Holes and Baby Universes:

It was expected that a similar equation [to Dirac’s] would govern
the proton, the only other supposedly elementary particle at that
time. However, the discovery of the neutron and of nuclear forces
disappointed those hopes....Nevertheless, we have made a lot of
progress in recent years, and . .. there are some grounds for cautious
optimism that we may see a complete theory within the lifetime of
some of those reading these pages.
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INTERLUDE: CONVERSATION STARTERS

As measured by the millions of those who speak it
fluently..., mathematics is arguably the most success-
ful global language ever spoken....Equations are like
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poetry: They speak truths with a unique precision, con-
vey volumes of information in rather brief terms. ... And
just as conventional poetry helps us to see deep within
ourselves, mathematical poetry helps us to see far beyond
ourselves.

—Michael Guillen, Five Equations That Changed the
World

There is no reason why the most fundamental aspects of
the laws of nature should be within the grasp of human
minds...or why those laws should have testable conse-
quences at the moderate energies and temperatures [of
life-bearing planets].... As we probe deeper into...the
nature of reality, we can expect to find more deep results
which limit what can be known. Ultimately, we may even
find that their totality characterizes the universe more
precisely than the catalogue of those things that we can
know.

—John Barrow, Boundaries and Barriers: On the Limits
of Scientific Knowledge

It is the most persistent and greatest adventure in human
history, this search to understand the universe, how it
works and where it came from. It is difficult to imagine
that a handful of residents of a small planet circling an
insignificant star in a small galaxy have as their aim a com-
plete understanding of the entire universe, a small speck
of creation truly believing it is capable of comprehending
the whole.

—Murray Gell-Mann, in John Boslough’s Stephen Hawk-
ing’s Universe

Scientists are remarkably sloppy about their use of the
word “law.” It would be nice, for example, if something
that had been verified a thousand times was called an
“effect,” something verified a million times a “principle,”
and something verified 10 million times a “law” ... but the
use of these terms is based entirely on historical prece-
dent and has nothing to do with the confidence scientists
place in a particular finding.

—James Trefil, The Nature of Science

The chessboard is the world, the pieces are the phenom-
ena of the universe, the rules of the game are what we call
the laws of Nature.

—Thomas Huxley, “A Liberal Education” in Autobiog-
raphy and Selected Essays
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Time was when all scientists were outsiders. Self-funded
or backed by a rich benefactor, they pursued their often
wild ideas in home-built labs with no one to answer to
but themselves. From Nicolaus Copernicus to Charles
Darwin, they were so successful that it’s hard to imag-
ine what modern science would be like without them.
Their isolated, largely unaccountable ways now seem the
antithesis of modern science, with consensus and peer
review at its very heart.

—Editors of New Scientist, “It Pays to Keep a Little
Craziness,” New Scientist, December 9, 2006

Explaining the simultaneity of invention by different peo-
ple in different places at the same time, Mark Twain said,
“When it’s steamboat time, you steam.”

—Automobile Magazine, September, 2006

The contributions of Muslim scientists typically occurred
in spite of Islam rather than because of it. Orthodox
Islamic scholars absolutely rejected any conception of the
universe that involved consistent physical laws, because
the absolute autonomy of Allah could not be restricted
by natural laws. ... Catholicism admits the possibility of
miracles and acknowledges the role of the supernatural,
but the very idea of a miracle suggests that the event in
question is unusual, and of course it is only against the
backdrop of an orderly natural world that a miracle can
be recognized in the first place.

—Thomas E. Woods, Jr., How the Catholic Church Built
Western Civilization

Galileo had championed a view of the universe, Coper-
nicus’s [Sun-centered universe], that seemed not only
new but shocking. Many churchmen who had never even
heard of Copernicus now learned that he had fathered
these disturbing ideas. An Italian bishop wanted Coper-
nicus throw in jail and was surprised to learn that he had
been dead for seventy years.

—James C. Davis, The Human Story
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Our experience hitherto justifies us in believing that
nature is the realization of the simplest conceivable math-
ematical ideas. I am convinced that we can discover by
purely mathematical constructions the concepts and the
laws connecting [mathematics and physical reality] with
each other, which furnish the key to the understanding
of natural phenomena....In a certain sense, therefore,
I hold it true that pure thought can grasp reality, as the
ancients dreamed.

—Albert FEinstein, “On the Methods of Theoretical
Physics,” 1933

Even stranger things have happened; and perhaps the
strangest of all is the marvel that mathematics should be
possible to a race akin to the apes.

—Eric T. Bell, The Development of Mathematics

As far as the laws of mathematics refer to reality, they
are not certain, and as far as they are certain, they do not
refer to reality.

—Albert Einstein, “Geometry and Experience,” Address
to the Prussian Academy of Sciences, 1921

The essential fact is simply that all the pictures which
science now draws of nature...are mathematical pic-
tures....It can hardly be disputed that nature and our
conscious mathematical minds work according to the
same laws.

—Sir James Jeans, The Mysterious Universe

The most important fundamental laws and facts of physi-
cal science have all been discovered, and these are now
so firmly established that the possibility of their ever
being supplemented in consequence of new discoveries
is exceedingly remote.

—Albert Michelson, 1894 dedication address, Ryerson
Physical Laboratory, University of Chicago
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ARCHIMEDES’ PRINCIPLE OF BUOYANCY

% The Greek city-state of Syracuse, Sicily, c. 250 B.c. The vertical
force of buoyancy on a submerged object is equal to the weight
of fluid the object displaces.

Cross REFERENCE: JOHANNES KEPLER AND GALILEO GALILEL

Close to the time when Archimedes discovered his Principle
of Buoyancy, the Septuagint Greek version of the Old Testa-
ment was being written, the La Tene Iron Age people invaded
Britain, the first Roman prison Tullianum was erected, and the
Carthaginian general Hannibal was born.

Imagine that you are weighing an object, like a carrot, that is submerged
in a kitchen sink. If you weigh the carrot by hanging it from a scale,
the carrot would weigh less while in the water then when the carrot is
lifted out of the sink and weighed. The water exerts an upward force that
partially supports the weight of the carrot. This force is more obvious if
we perform the same experiment with an object of lower density, such as a
cube made out of cork, which floats while being partially submerged in the
water.

The force exerted by the water on the cork is called a buoyant force,
and for the cork, the upward force is greater than its weight. This buoyant
force depends on the density of the liquid and the volume of the object,
but not on the shape of the object or the material with which the object
is composed. Thus, in our experiment, it does not matter if the carrot is
shaped like a sphere or a cube. One cubic centimeter of carrot or wood
would experience the same buoyant force in water.

According to Archimedes’ principle, a body wholly or partially sub-
merged in liquid is buoyed up by a force equal to the weight of displaced
liquid. Physicists write this with the compact expression

B:Wf,

where Bis the buoyant force and wy is the weight of the fluid that the object
displaces.

As another example, consider a small pellet of lead placed in a bathtub.
The pellet weighs more than the tiny weight of water wy it displaces, and
the pellet sinks. A wooden rowboat is buoyed up by the large weight of
water that it displaces, and hence the rowboat floats. Archimedes’ princi-
ple helps us understand how flotation works and is one of the founding
principles of hydrostatics.
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Another form of Archimedes’ Principle of Buoyancy can be stated as

B = Diiquid G Vsolid

where piiquig is the density of the liquid, G is the constant of gravitational
acceleration, and Vg is the volume of the solid. (The volume of the
displaced fluid is equal to the volume of an object either fully submerged
or to that fraction of the volume below the surface for an object that is
partially beneath the water.)

The buoyant force occurs because the pressure of the liquid at the
bottom of the object is greater than that at the top. If the density of the
object—for instance, the carrot in our example—is greater than that of
the liquid, the object’s weight will be greater than the buoyant force, and
the object will sink if not supported. If the density of a submerged object
is less than the density of the fluid, the object will accelerate upward to
the liquid’s surface. Part of the object will usually rise above the sur-
face so that the weight of the displaced liquid equals the weight of the
object.

A submarine floating in the sea displaces a volume of water that has
a weight that is precisely equal to the submarine’s weight. In other words,
the average weight of the submarine—which includes the people, the metal
hull, and the enclosed air—equals the weight of displaced seawater. When
plesiosaurs (extinct reptiles) floated in the middle of the sea, their average
weights also equaled the weights of the water they displaced. Gastroliths
(stomach stones) have been discovered in the stomach region of skeletons
of plesiosaurs, and these stones may have helped maintain useful buoyancy
for the creatures.

A rowboat lowered into a pond sinks into the pond until the weight of
the water it displaces is equal to its own weight. The buoyant force may
be thought of as acting through the centroid, or center of gravity, of the
displaced fluid volume. The stability of a floating body, like the rowboat,
depends on this location and its relationship to the center of gravity of the
body.

Perhaps it is not intuitive that objects with equal volumes experience
equal buoyant forces when held beneath the water. Imagine that we have
equal-sized cubes of cork, aluminum, and lead that we hold beneath the
water. The buoyant force would be the same on each object because of
the equal amounts of water they displace; however, the behavior of the
three cubes would certainly be different when we release them. The cork
cube would rush upward, the aluminum would sink, and the lead would
sink more rapidly. The various behaviors arise from the different ratios of
buoyant force to object weights.
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Archimedes’ principle has various applications; for example, the prin-
ciple can be used to determine the pressure of a liquid as a function of
depth.

Archimedes of Syracuse (287-212 B.C.), Greek mathematician and inven-
tor famous for his geometric and hydrostatic studies, as well as the
Archimedean screw, still used today to move water.

Archimedes will be remembered when Aeschylus is for-
gotten, because languages die and mathematical ideas do
not. “Immortality” may be a silly word, but probably a
mathematician has the best chance of whatever it may
mean.

—G. H. Hardy, A Mathematician’s Apology, 1941

Give me a place to stand on, and I will move the earth.

—Archimedes, upon discovering the principles of lever-
age (as told by Pappus of Alexandria)

Eureka! Eureka!

—Archimedes, when he realized how to determine if
King Hieron’s wreath was made of pure gold

CURIOSITY FILE: Archimedes was an inspiration to Sophie Germain (1776-
1831), one of the greatest female mathematicians who ever lived. At the
age of thirteen, Sophie read an account of Archimedes' murder while he
was solving mathematical problems, and she was so moved by this story
that she decided to become a mathematician. Sadly, her parents forbade
her to study mathematics; thus, she had to hide beneath blankets to secretly
study the works of Isaac Newton and mathematician Leonhard Euler.
® Archimedes sometimes sent his colleagues false theorems in order to
trap them when they stole his ideas.

Archimedes, the ancient Greek geometer, is often regarded as the greatest
mathematician and scientist of antiquity and one of the four greatest math-
ematicians to have walked Earth—together with Isaac Newton, Leonhard
Euler, and Carl Friedrich Gauss. Archimedes was the son of an astronomer
named Phidias and spent most of his life in the Greek city-state of Syra-
cuse, where he worked on numerous inventions, including weapons used
against the Romans, Archimedean screws for conveying water upward,
and model planetariums.
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At some point during his life, Archimedes traveled to Egypt and stud-
ied at Alexandria, one of the intellectual centers of Greek scholarship
during his time. Today, he is famous for his inventions, for his geomet-
rical works that included formulas for the volume and surface area of a
sphere, and for mathematical procedures that bordered on more modern
methodologies that involve logarithms and calculus.

The famous legend of Archimedes’ death describes his encounter with
a Roman soldier around 212 B.c., during the capture of Syracuse in the
Second Punic War. The soldier had come upon Archimedes, who was
studying a mathematical diagram drawn in the sand. Archimedes was
annoyed by the soldier’s interruption and allegedly uttered his famous
last words before being killed by the soldier: “Mn pov Tove KOKAOLG
tapotte” (“Don’t disturb my circles”). According to the Greek writer
Plutarch, Archimedes had asked his friends to engrave a cylinder circum-
scribing a sphere on his grave, along with “the ratio by which the including
solid exceeds the included.”

A lunar crater with a diameter of 82 kilometers was named after
Archimedes in 1935 by the International Astronomical Union General
Assembly. The International Astronomical Union (IAU) is in charge of
reviewing and approving names for most solar system objects, as well as
their surface features. The IAU’s General Assembly formally adopts the
names that scientists and laypersons have submitted.

Although a genius mathematician, Archimedes is perhaps more famous
for his mechanical inventions, including:

® The water snail or Archimedean screw to raise water to help irrigate
crops (mentioned by Greek historian Diodorus Siculus)

¢ A long screw used to launch a ship (mentioned by Greek writer
Athenaeus)

¢ The compound pulley used to help move heavy ships with minimal
effort (mentioned by Greek writer Plutarch)

¢ Globelike planetariums (mentioned by Roman orator Cicero)

e Ballistic defensive devices used to repel the Romans (mentioned by
Greek historian Polybius, Roman historian Livy, and Plutarch)

e Burning mirrors used to repel the Romans (some scholars are
skeptical of the legend of this device)

Regarding Archimedes’ burning mirrors, in 313 B.c. Archimedes was
said to have made a “death ray” consisting of a set of mirrors that focused
sunlight on Roman ships, setting the ships afire. Various individuals have
tried to test the practical use of such mirrors and declared their use to
have been unlikely. However, mechanical engineer David Wallace of MIT
encouraged his students in 2005 to build an oak replica of a Roman warship
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and focus sunlight on it, using 127 mirrored tiles. Each mirror was about
12 square meters in area, and the ship was about 30 meters away. After ten
minutes of exposure to the focused light, the warship burst into flames!

In 1973, a Greek engineer employed seventy flat mirrors (each about
five feet by three feet in length) in order to focus sunlight onto a rowboat.
In this experiment, the rowboat also quickly burst into flames. However,
while it is possible to set a ship afire with mirrors, this task probably would
have been very difficult for Archimedes if ships were moving.

As an interesting aside, Arthur C. Clark’s short story “A Slight Case
of Sunstroke” describes the fate of a disliked soccer referee. When the
referee makes an unpopular decision, the spectators focus sunlight onto
the referee using their shiny souvenir programs that they hold in their
hands. The shiny surfaces act like Archimedes’ mirror, and the poor man
is burned to ashes.

According to Plutarch, Archimedes’ ballistic weaponry was used effec-
tively against the Romans in the siege of 212 B.c. For example, Plutarch
wrote,

When Archimedes began to ply his engines, he at once shot all sorts
of missile weapons against the land forces, and immense masses of
stone came down with incredible noise and violence, against which
no man could stand for they knocked down those upon whom they
fell in heaps.

Plutarch also writes that Archimedes was so obsessed with mathematics
that his servants had to force him to take baths, and while they scrubbed
him, he would continue to draw geometrical figures. “And while the ser-
vants were anointing of him with oils,” Plutarch writes, “with his fingers
he drew lines upon his naked body, so far was he taken from himself,
and brought into ecstasy or trance, with the delight he had in the study
of geometry.”

Perhaps the most famous legend of Archimedes involves King Hieron,
who needed to check the authenticity of a wreath-shaped crown allegedly
made of pure gold, but which Hieron suspected had silver impurities.
Archimedes used the displacement of water in a bathtub to uncover the
scam, demonstrating that the wreath actually consisted of a mixture of sil-
ver and gold rather than pure gold. Roman architect and engineer Marcus
Vitruvius writes of this incident in De Architectura:

While Archimedes was turning the problem over, he chanced to
come to the place of bathing, and there, as he was sitting down in
the tub, he noticed that the amount of water which flowed over the
tub was equal to the amount by which his body was immersed. This
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showed him a means of solving the problem....In his joy, he leapt
out of the tub and, rushing naked towards his home, he cried out
with a loud voice that he had found what he sought.

In principle, Archimedes could have performed his volume experiment
using a bucket filled to the brim and then measured the volume of water
that overflowed. He is said to have conducted an experiment with equal
weights of gold and silver. Because gold has a greater density than silver,
a gold cube would be smaller than the silver cube of equal weight, causing
less water to spill out of the bucket. Once Archimedes was able to measure
the volumes of water that represented the volumes of the gold, silver, and
the crown, he could determine their relative densities and determine that
the crown was not of pure gold.

The legend of Hieron and Archimedes concludes with the density of the
crown measured to be between 10.5 and 19.3 grams per cubic centimeter,
which are the densities of silver and gold, respectively. This meant that
the wreath was not made out of pure gold, and the royal goldsmith was
executed.

However, today, scholars suggest that this story of the gold and sil-
ver may have been embellished through time because it is unlikely that
Archimedes had measuring equipment of sufficient accuracy to detect the
rather small difference in displacement between a wreath made of pure
gold and one fashioned from gold mixed with other metals.

As for Archimedes’ invention of the Archimedean screw, his creation
of the screw seems plausible, and Vitruvius gives a detailed description of
its operation for lifting water, which required intertwined helical blades.
For example, the bottom end of the screw is immersed in a pond. The
act of rotating the screw raises water from the pond to a higher ele-
vation. Archimedes may also have designed a related helical pump, a
corkscrew-like device used to remove water from the bottom of a large
ship. The Archimedean screw is still used today in societies without access
to advanced technology. It works well even if the water is filled with debris.
The Archimedean screw also tends to minimize damage to aquatic life.
Modern Archimedean screwlike devices are used to pump sewage in water
treatment plants.

As discussed above, Archimedes contributed to mathematics by prov-
ing theorems that concerned areas and volumes, determining the formulas
for the volume and surface area of a sphere (he showed that the surface
area of a sphere is four times the area of a circle that passes through the
sphere’s center), determining an approximation for the value of m, and
discussing the physics of floating bodies. His scientific work on flotation
is the first known work in the field of hydrostatics, the field of physics that
deals with fluids at rest and under pressure.
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Archimedean screw, from Chambers’s Encyclopedia (Philadelphia: J. B.
Lippincott Company, 1875).

Archimedes’ research on the value of © involved inscribing polygons
on the inside and outside of a circle. The greater the number of sides
of the polygon, the more closely they approached the actual edge of the
circle. By calculating the areas of the internal and surrounding polygon, he
determined a value for 7 that was between 3.140845 and 3.142857 (today,
we know the correct value is 3.14159...). Beginning with a hexagon, he
worked all the way up to a polygon with ninety-six sides!

Archimedes proved various theorems relating to levers and fulcrums.
He also explained why it is easier to move an object up a long, slop-
ing ramp than to move the same object along a shorter but steeper
ramp to the same height. He discovered that the volume of a sphere
is exactly two-thirds the volume of a cylinder that tightly encloses it.
As I have mentioned, despite the fact that he lived more than eighteen
centuries before Newton, Archimedes came close to formulating inte-
gral calculus but lacked a satisfactory system of mathematical notation
to aid his thinking. In Archimedes’ The Sandreckoner, he proposed a
number system in which humans could express numbers up to 8 x 10
in modern notation. According to Archimedes, this number is sufficiently
large to count the number of grains of sand needed to fill the entire
universe.

Two favorite puzzles from Archimedes concern geometry and num-
bers, and I discuss these in my book A Passion for Mathematics. The
first of these puzzles is called the Stomachion of Archimedes. In 2003,
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math historians discovered long lost information on the object in an
ancient parchment called the Archimedes Palimpsest, overwritten by
monks nearly a thousand years ago. The puzzle involved combinatorics,
a field of math dealing with the number of ways that a given problem can
be solved. The goal of the Stomachion (pronounced sto-MOCK-yon) was
to determine in how many ways fourteen flat puzzle pieces can be put
together to make a square. In 2003, researchers determined that 17,152
ways exist to solve the puzzle.

In the thirteenth century, Christian monks had ripped apart
Archimedes’ original manuscript, washed it, and covered it with religious
text. Today, we cannot see the Stomachion with the naked eye, and
ultraviolet light and computer imaging techniques are needed to reveal
the hidden mathematical gem. Scholars are uncertain if Archimedes ever
correctly solved the problem. In 2006, experts focused a powerful X-ray
beam from the Stanford Linear Accelerator Center on portions of the
manuscript to cause the iron in the underlying ink to fluoresce and to help
reveal more of Archimedes’ hidden words. In addition to the Stomachion,
the ancient palimpsest contains seven of Archimedes’ treatises, includ-
ing Method of Mechanical Theorems (which is known only through the
Palimpsest document) and the only surviving copy of On Floating Bodies
in the original Greek.

A second puzzle, called Archimedes’ Cattle Problem, can be stated as
follows:

Oh stranger, compute the number of cattle of the Sun, who once
upon a time grazed on the fields of the Thrinacian Isle of Sicily,
divided into four herds of different colors—one milk white, another
glossy black, the third yellow, and the fourth dappled. The number
of white bulls was equal to (1/2 + 1/3) the number of black bulls
plus the total number of yellow bulls. The number of black bulls
was (1/4 + 1/5) the number of dappled bulls plus the total number
of yellow bulls. The number of spotted bulls was (1/6 + 1/7) the
number of white bulls, plus the total number of yellow bulls. The
number of white cows was (1/3 4 1/4) the total number of the black
herd. The number of black cows was (1/4 + 1/5) the total number of
the dappled herd. The number of dappled cows was (1/5 + 1/6) the
total number of the yellow herd. The number of yellow cows was
(1/6 + 1/7) the total number of the white herd.

If you can accurately tell, Oh stranger, the total number of cattle
of the Sun, including the number of cows and bulls in each color,
you would not be called unskilled or ignorant of numbers, but not
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yet shalt thou be numbered among the wise. But understand also
these conditions: [The white bulls could graze together with the
black bulls in rows, such that the number of cattle in each row
was equal and that number was equal to the total number of rows,
thus forming a perfect square. And the yellow bulls could graze
together with the dappled bulls, with a single bull in the first row,
two in the second row, and continuing steadily to complete a perfect
triangle.] If you are able, oh stranger, to find out all these things
and gather them together in your mind, giving all the relations, you
shall depart crowned with glory and knowing that you have been
adjudged perfect in this species of wisdom.

The solution to the full problem is about 7.76 x 10?°05% cattle. Not until
1880 did mathematicians find an approximate answer. The more precise
value for the total number of cattle was first calculated in 1965 by Hugh
C. Williams, R. A. German, and C. Robert Zarnke using an IBM 7040
computer. I am not aware of any other numerical problems that required
twenty-two centuries to solve. Note that the Cattle Problem has at least
two versions attributed to Archimedes, and the one just described is a
more complex version. Archimedes obviously never solved this particular
version of the problem. Author Heinrich Dorrie cites four scholars who
suggest that that this version may not actually be due to Archimedes,
but he also cites four authors who believe that the problem skhould be
attributed to Archimedes.

Unlike the works of the Greek geometer Euclid, Archimedes’ mathe-
matical discoveries did not have a great influence on humanity until the
Arabs rediscovered and revived them in the eighth century. In the 1500s,
his works began to circulate widely and affected the work of Kepler and
Galileo, the latter of whom used Archimedes’ name numerous times in
his writings. Kepler’s method of finding areas was similar to that used by
Archimedes to find the area of a circle or the value of &.

Mathematics has surely come a long way since the time of Archimedes,
and I wonder how much mathematics humanity can ever know. The body
of mathematics has generally increased from ancient times, although this
has not always been true. Most mathematicians in Europe during the 1500s
knew less than Greek mathematicians at the time of Archimedes. How-
ever, since the 1500s, humans have made tremendous journeys along the
vast landscape of mathematics. Today, several hundred thousand mathe-
matical theorems are proved each year.

In the early 1900s, a great mathematician was expected to know nearly
all of the known mathematics. Mathematics was akin to a shallow pool that
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could be inspected by a single individual. Today the mathematical waters
have grown so deep that a great mathematician can be intimate with only a
small percentage of the entire ocean. What will the future of mathematics
be like as specialized mathematicians know more and more about less and
less until they know everything about nothing?
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INTERLUDE: CONVERSATION STARTERS

It is these connections that form the fabric of physics. It is
the joy of the theoretical physicists to discover them, and
of the experimentalist to test their strength. ... In the end,
what science does is change the way we think about the
world and our place within it.... There is a universal joy
in making new connections.

—Lawrence Krauss, Fear of Physics

Archimedes’ principle can be understood in terms of
kinetic theory. ... When the fluid is displaced by the solid
object, the molecules in the fluid will collide with the
body, exerting the same pressure as they did before the
object was placed there. For a completely submerged
object...the molecules of the fluid will be hitting the
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bottom of the object with a greater force than those hit-
ting the top. This is the molecular origin of the upward
buoyant force.

—James S. Trefil, The Nature of Science: An A-Z Guide
to the Laws and Principles Governing Our Universe

Most of the papers which are submitted to the Physical
Review are rejected, not because it is impossible to under-
stand them, but because it is possible. Those which are
impossible to understand are usually published.

—Freeman Dyson, Innovation in Physics

Isaac Newton discovered laws of motion that apply
equally to a planet moving through space and to an
apple falling earthward, revealing that the physics of the
heavens and the earth are one. Two hundred years later,
Michael Faraday and James Clerk Maxwell showed that
electric currents produce magnetic fields, and moving
magnets can produce electric currents, establishing that
these two forces are as united as Midas’ touch and gold.

—Brian Greene, “The Universe on a String,” The New
York Times, October 20, 2006
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9.%\

KEPLER’S LAWS OF PLANETARY MOTION

Germany, 1609, 1618. Three laws that describe the motions of
planets about the Sun.

Cross REFERENCE: Isaac NEWTON’s LAWS, EINSTEIN’S GENERAL THEORY
OF RELATIVITY, AND THE WORKS OF EucLID, GALILEO GALILEI, AND TYCHO
BRAHE.

The same year that Kepler discovered his Law of Orbits, Henry
Hudson discovered the Hudson Bay. For the first time, the Dutch
East India Company shipped tea from China to Europe. Also
in 1609, Galileo demonstrated his first telescope to Venetian
lawmakers.

German astronomer Johannes Kepler, working with data collected by the
Danish astronomer Tycho Brahe (1546-1601), discovered three laws that
described the elliptical motion of the planets in space. Brahe had made all
his measurements by eye, because the telescope had not yet been invented
when he had studied the sky.

In order for Kepler to formulate his laws, he had to first abandon the
prevailing notion that circles were the “perfect” curves for describing the
cosmos and its planetary orbits. When Kepler first expressed his laws, he
had no theoretical justification for them. They simply provided an elegant
means by which to describe orbital paths obtained from experimental data.
Roughly fifty years later, Newton showed that Kepler’s laws are a direct
consequence of motion under the influence of gravity.

KEPLER’S FIRST LAW
(LAW OF ORBITS, 1609)

All of the planets in our Solar System move in elliptical orbits, with the
Sun at one focus. Written mathematically, we may express this as

Raphelion =a(l+e), Rperihelion =a(l—-e)

where Riphetion 18 the distance between the Sun and the most distant point
of the elliptical orbit of the planet (the “aphelion”); Rycrihetion is the dis-
tance between the Sun and the closest point of the elliptical orbit (the
“perihelion”); a is the length of the ellipse’s semimajor axis, and e is the
eccentricity of the ellipse. Eccentricity is a measure of the elongation of
the ellipse and has a value of zero for a circle. Pluto, which was designated



a “dwarf planet” in 2006, has an orbit with e = 0.25. The orbit of Venus, on
the other hand, is very close to circular with e = 0.0068. The orbit of Earth
has an eccentricity of e = 0.017. Today, we understand that the elliptical
shape of the orbit arises from the inverse-square principle of Newton’s
Law of Universal Gravitation. Note that the Sun is at one focus of the
ellipse, but no object resides at the other focus of the elliptical orbit.

We may also express the law in terms of the gravitational constant G
(G = 6.67 x 10711 N-m?/kg?) and the mass of the Sun M:

__ _r/Gm
" 1+4ecosO

As in the previous formulation, e is the eccentricity of the ellipse. [ is
the satellite’s specific angular momentum, that is, the relative angular
momentum per unit mass. (Angular momentum increases with the angular
velocity of rotating body.) The variable r is equal to the distance between
the planet and the focus that is located near the center of the Sun. The
angle 6 sweeps from 0 to 360 degrees.

In 1610, only a year after Kepler published his First Law, Galileo
discovered several satellites of Jupiter. These bodies also follow Kepler’s
First Law. In 1687, Newton showed that any satellite that orbits another
body must move along a path described by a conic section (e.g., ellipse,
parabola, or hyperbola), if one body, such as the Sun, attracts the satellite
with a force that varies inversely as the square of the distance between
the bodies. A comet with sufficiently high energy may have a parabolic or
hyperbolic orbit and leave the solar system forever after it has entered. If
the speed of Earth were suddenly increased by approximately a factor of
1.4, the orbital shape would change into a parabola, and Earth would leave
the Solar System.

KEPLER’S SECOND LAW
(LAW OF EQUAL AREAS, 1618)

Kepler observed that when a planet is far from the Sun, the planet moves
more slowly than when it is close to the Sun. Thus, when far from the Sun,
the planet travels a shorter path along the orbit in a given time than it does
when close to the Sun. As the planet travels toward the Sun, it accelerates
due to the gravity of the Sun. An imaginary line that connects a planet to
the Sun sweeps out equal areas in equal intervals of time.

In order to visualize these equal areas, imagine that Earth takes one
day to travel from points A to B on an ellipse. If we draw a line from A to
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the Sun and from B to the Sun, we create a sector of an ellipse (like cutting
a wedge from an apple pie). The area of these sectors will be the same each
day, regardless of where the planet is in its orbit. Of course, in order for the
area being swept to remain constant, for a given interval of time, a planet
must change its speed. (Imagine cars whizzing around a racetrack with the
driver always going faster near one end of the track than the other.)

As was the case with Kepler’s First Law, Newton understood the under-
pinnings of this Second Law and realized that the law is a consequence of
the conservation of angular momentum.

Given Kepler’s first two laws, he no longer needed more complicated
shapes in order to explain orbital paths, such as the “epicycloids” that prior
astronomers had used. Planetary orbits and positions could now be easily
calculated and with an accuracy that matched observations.

KEPLER’S THIRD LAW
(LAW OF PERIODS, 1618)

For any planet, the square of the period of its revolution about the Sun
is proportional to the cube of the semimajor axis of its elliptical orbit.
This law is sometimes known as the Harmonic Law. Today, given our
knowledge of Newton’s Law of Universal Gravitation, Kepler’s Third Law
is sometimes expressed as:

2 _ 4n? ] 3
T _[G(M—Hn) “

where T is the period of the orbiting body (the time required to complete
one orbit), a is the length of semimajor axis of the orbit, G is the gravita-
tional constant, M is the mass of the Sun, and m is the mass of a planet. For
the example of our Solar System, m1 is so much smaller than M that it can
be removed from this expression for many practical calculations. Thus, the
quantity in brackets may be considered a constant for our Sun, such that
T?/a® has essentially the same value for all the planets of the Solar System,
namely, 3.00 x 107", When Kepler formulated his laws, the masses of the
relevant objects were not in the equations.

In high-level terms, Kepler found that the square of the planet’s “year”
is a multiple of the cube of the planet’s distance from the Sun. Thus,
planets far from the Sun have very long years. For example, Pluto, the
dwarf planet, has a year of 90,410 days, but Mercury, which is close to the
Sun, has a year that is 88 days long. For both of these measurements, the
“days” refer to the durations of Earth days.
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KEPLER’S LAWS (GENERAL)

Kepler’s laws were initially derived for planetary orbits around the Sun,
but they have more general applications and later helped Newton for-
mulate the Laws of Motion and Universal Gravitation, which depended
strongly on Kepler’s work. The laws also apply to artificial satellites, such
as those launched by NASA. In the cases of modern satellites, Earth
replaces the Sun as the main body around which the satellite orbits. Of
course, if a satellite is orbiting too closely to our atmosphere, it will even-
tually heat up and be destroyed as its kinetic energy is converted to heat.

None of the three laws precisely describes the motions of orbiting
planets and moons because the laws neglect any other gravitational inter-
actions that may exist, such as the forces of attraction among planets. For
example, when the Moon orbits Earth, it is affected by the gravitation of
both Earth and the Sun. In the case of planetary orbits, because the Sun
is so much more massive than the planets, the gravitational interactions
between planets are very small and can be neglected for most purposes.
However, when studying other systems, such as orbits that involve double
stars (binary stars), masses of both stars must be considered.

Additionally, as I discuss in the entry on Newton’s laws, we know
that a planet does not orbit around a stationary Sun as Kepler believed.
Instead, both the planet and the Sun orbit around the common center of
mass located between the planet and the Sun, and sometimes this requires
scientists to modify Kepler’s Third Law to make it more accurate.

Kepler’s Laws are among the earliest scientific laws to be established by
humans, and his statements of the laws provided a stimulus to subsequent
scientists who attempted to express the behavior of reality in terms of
simple formulas. Although the laws are slightly modified by Einstein’s
General Theory of Relativity, Kepler’s laws, along with Newton’s Law
of Universal Gravitation, provide the underpinning to practical celestial
mechanics. Kepler believed that simple rules could be used to describe
the motions of planets, and with his three simple laws, he summarized
thousands of years of planetary observations.

Johannes Kepler (1571-1630), German astronomer and theologian-
cosmologist, famous for his laws that describe the elliptical orbits of Earth
and other planets around the Sun.

CURIOSITY FILE: Kepler never numbered his three laws. ® He was fas-
cinated by astrology and suggested that the sudden appearance in 1604
of a star, which we now call a “nova,” was God's way to encourage the
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conversion of Native Americans to Christianity. He urged all sinners to
repent. ® By postulating the ray theory of light and showing how images
are formed on the retina, Kepler is considered by some to be the founder of
modern optics. Kepler was also first to explain why both eyes were required
for depth perception. ® Kepler wrote a story called “The Dream,"” which is
one of the oldest examples of a “modern” science-fiction story.

I wanted to become a theologian. For a long time I was
restless. Now, however, behold how through my effort,
God is being celebrated in astronomy.

—Johannes Kepler, 1595 letter to German astronomer
and mathematician Michael Maestlin

Although Kepler is remembered today chiefly for his
three laws of planetary motion, these were but three
elements in his much broader search for cosmic har-
monies. ... He left [astronomy] with a unified and physi-
cally motivated heliocentric system nearly 100 times more
accurate.

—Owen Gingerich, “Kepler,” in Dictionary of Scientific

Biography

It should no longer seem strange that man, the ape of
his Creator, has finally discovered how to sing polyphoni-
cally, an art unknown to the ancients. With this symphony
of voices, man can play through the eternity of time in less
than an hour and can taste in small measure the delight of
God the Supreme Artist by calling forth that very sweet
pleasure of the music that imitates God.

—Johannes Kepler, Harmonice mundi (Harmony of the
World), 1619

Johannes Kepler was born in Weil der Stadt, a town now part of Germany.
Max Caspar, author of Kepler, provides a vivid glimpse of the appearance
of the city during Kepler’s life: “The little streets, the spacious market
place surrounded by high gabled houses, the towers and gates of the city
wall...[are all situated] in a rolling landscape on the edge of the Black For-
est, surrounded by gardens and meadows, fields and woods....” Kepler’s
staunch adherence to Lutheranism, and refusal to convert to Catholicism,
forced him to relocate many times during his life, sometimes sacrificing his
career and safety.

From what Kepler wrote, we know that his mother and father were
poor parents. He described his father Heinrich as “criminally inclined.”
When Kepler was three years old, Heinrich became a mercenary, and in
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1588, Heinrich abandoned young Kepler forever. Kepler called his mother
Katharina “bad-tempered,” but later in his life he came to her aid when
she was about to be tortured: Katharina was tried for witchcraft in 1617,
and the adult Kepler spent months helping to prepare a legal defense,
which was eventually successful. During the ordeal, Katharina’s ruthless
questioners showed her torture devices in an attempt to make her confess
that she was a witch. James A. Connor, author of Kepler’s Witch, describes
Kepler’s state of mind during this difficult time:

The executioner showed Katharina Kepler the instruments of tor-
ture, the pricking needles, the rack, the branding irons. Her son
Johannes Kepler was nearby, fuming, praying for it to be over.
He was forty-nine and, with Galileo Galilei, one of the greatest
astronomers of the age—the emperor’s mathematician, the genius
who had calculated the true orbits of the planets and revealed the
laws of optics to the world. ... He never gave up trying [to stop the
interrogation], and in that he was a good deal like his mother.

Katharina was finally freed in 1621, partly because of her steadfast refusal
to confess under threat of torture.

As a child, Kepler was frequently bullied, and he believed himself to be
ugly. Most if not all of his brothers and sisters suffered from severe mental
and physical handicaps. Kepler himself was bow-legged, often afflicted
with large boils, and suffered from poor vision.

Kepler studied astronomy at the University of Tiibingen, where he was
virtually a “straight A” student. In 1591, he received his master’s degree,
and his plan was to study theology and become a clergyman. However,
the local authorities in Graz, Austria, were able to coax Kepler to teach
mathematics at a Lutheran high school, and he soon moved to Austria,
where he taught mathematics and the works of Virgil. While in Graz, he
spent some of his time making futuristic predictions that included topics
ranging from the local weather to politics. His predictions often turned
out to be correct, which elevated his status in the eyes of the towns-
people.

Although Kepler appeared to be quite interested in astrology, he also
could be skeptical, having written in De fundamentis astrologiae certioribus
(1601), “If astrologers sometimes do tell the truth, it ought to be attributed
to luck.” In 1610, he seemed to both praise and condemn astrology in Ter-
tius interveniens: “No one should consider unbelievable that here should
come out of astrological foolishness and godlessness also cleverness and
holiness...out of evil-smelling dung, a golden corn scraped for by an
industrious hen.”
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Throughout his life, he attributed his scientific ideas and motivation to
his quest for understanding the mind of God. For example, in his work
Mysterium cosmographicum (The Sacred Mystery of the Cosmos, 1596),
he wrote, “I believe that Divine Providence intervened so that by chance
I found what I could never obtain by my own efforts. I believe this all the
more because I have constantly prayed to God that I might succeed.”

Kepler’s initial vision of the universe rested upon his studies of symmet-
rical, three-dimensional objects known as Platonic solids. Centuries before
Kepler, the Greek mathematician Euclid (325-265 B.c.) showed that only
five such solids exist with identical faces: the cube, dodecahedron, icosahe-
dron, octahedron, and tetrahedron. Although Kepler’s theory in the 1500s
seems strange to us today, he attempted to show that the distances from the
planets to the Sun could be found by studying spheres inside these regular
polyhedra, which he drew nested in one another like layers of an onion. For
example, the small orbit of Mercury is represented by the innermost sphere
in his models. The other planets known at his time were Venus, Earth,
Mars, Jupiter, and Saturn. Here is how Kepler explained his Platonic-solid
model of the Solar System in Mysterium cosmographicum:

We must first eliminate the irregular solids, because we are only con-
cerned with orderly creation. There remain six bodies, the sphere
and the five regular polyhedra. To the sphere corresponds the
heaven. On the other hand, the dynamic world is represented by
the flat-faces solids. Of these there are five: when viewed as bound-
aries, however, these five determine six distinct things: hence the six
planets that revolve about the sun. This is also the reason why there
are but six planets. ...

I have further shown that the regular solids fall into two groups:
three in one, and two in the other. To the larger group belongs,
first of all, the Cube, then the Pyramid, and finally the Dodeca-
hedron. To the second group belongs, first, the Octahedron, and
second, the Icosahedron. That is why the most important portion of
the universe, the Earth—where God’s image is reflected in man—
separates the two groups. For, as I have proved next, the solids
of the first group must lie beyond the Earth’s orbit, and those of
the second group within....Thus, I was led to assign the Cube to
Saturn, the Tetrahedron to Jupiter, the Dodecahedron to Mars, the
Icosahedron to Venus, and the Octahedron to Mercury. ...

To explain his theory, Kepler published a diagram showing spheres within
smaller and smaller Platonic solids. An outer sphere surrounds a cube.
Inside the cube is a sphere, followed by a tetrahedron, followed by another
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Johannes Kepler’s Platonic solid model of the solar system, published in Mys-
terium cosmographicum (1596).

sphere, followed by a dodecahedron, followed by a sphere, an icosa-
hedron, sphere, and finally a small inner octahedron. A planet may be
imagined as being embedded in each sphere that defines an orbit of a
planet.

As an example, the regular dodecahedron is situated between Mars
and Earth, the regular icosahedron between Earth and Venus, and the
regular octahedron between Venus and Mercury. For Kepler, the spheres
explained the spacing of the planets. With a few subtle compromises,
Kepler’s scheme worked fairly well as a rough approximation to what was
known about planetary orbits at the time.

Kepler supplemented this initial work with formulas that expressed
relationships between planetary periods and their distances from the Sun.
He understood that planets more distant from the Sun had longer periods
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TABLE 3 Platonic Solids

Platonic Solid F Shape of Faces NF V E Dual
Tetrahedron 4 Equilateral triangle 3 4 6 Tetrahedron
Cube 6 Square 3 8 12 Octahedron
Octahedron 8 Equilateral triangle 4 6 12 Cube

Dodecahedron 12 Regular Pentagon 3 20 30 Icosahedron

Icosahedron 20 Equilateral triangle 5 12 30 Dodecahedron

Abbreviations: F, number of faces; NF, number of faces at each vertex; V,
number of vertices; E, number of edges.

than those closer to the sun, which he felt was due to the diminution of the
Sun’s “driving force.” Owen Gingerich writes in the Dictionary of Scientific
Biography,

Although the principal idea of the Mysterium cosmographicum
was erroneous, Kepler established himself as the first...scientist to
demand physical explanations for celestial phenomena. Seldom in
history has so wrong a book been so seminal in directing the future
course of science.

For those readers interested in the precise properties of Platonic solids,
table 3 lists the name of each Platonic solid, the number of faces (F), face
shape, the number of faces at each vertex (NF), number of vertices (V),
number of edges (E), and the “dual,” that is, the Platonic solid that can be
inscribed within the outer solid by connecting the midpoints of the faces.

The Platonic solids were described by Plato in his Timaeus, circa
350 B.c. Pythagoras of Samos (582-507 B.c.), the famous Greek mathe-
matician and mystic, who lived in the time of Buddha and Confucius, was
aware of three of the five regular polyhedra (the cube, tetrahedron, and
dodecahedron). The shapes of some of the Platonic solids have been dis-
covered carved into ancient stones in Scotland and dated to approximately
2000 B.c.

In Mysterium cosmographicum, Kepler resurrected the ancient Greek
idea that the heavens were ruled by simple, geometrical laws. In 1597,
Kepler sent Mysterium cosmographicum to Galileo, but Galileo replied
that he read only the Preface. He also sent a copy to Tycho Brahe, who
said that Kepler’s notion of nesting polyhedrons was clever speculation.

60 | ARCHIMEDES TO HAWKING



Let’s return to a discussion of Kepler’s personal life. In 1596, he mar-
ried Barbara Miiller, twice widowed before they had met. Gingerich says:

The initial happiness of the marriage gradually dissolved as he real-
ized that his wife understood nothing of his work—*"“fat, confused,
and simple-minded” was Kepler’s later description of her. The early
death of his first two children grieved him deeply.

In 1600, Kepler started to work for Brahe as part of the research staff in
Brahe’s castle observatory near Prague. Here, Kepler studied the orbit of
Mars. When Brahe died in 1601, Kepler was appointed to Brahe’s position
of imperial mathematician. Kepler continued to wonder how the Sun could
exert an influence on the planets, and he came to think of the Sun as
somehow producing a magnetic “emanation” that drove the planets in
their orbits. For Kepler, the universe was like a clockwork in which all
of the motions arose from a magnetic force, “just as in a clock, all motions
arise from a very simple weight.” Over the next few years, Kepler arrived
at his famous three laws of planetary motion, never understanding the
nature of gravity that Newton would further elucidate years later.

In 1605, Kepler published an article on a new star (a nova) that
appeared in the sky. In his 1606 book De stella nova, he speculated on
the astrological significance of the star, which he believed had appeared
in order to (1) convert the Indians of America, (2) herald the return of
Jesus, or (3) mark the downfall of Islam. In 1609, he published Astronomia
nova, in which he described his theories on planetary orbits, which are now
called Kepler’s first two laws of planetary motion.

In 1611, his wife Barbara Miiller died from typhus, and two years
later, Kepler married the 24-year-old Susanna Reuttinger. Being a famous
astronomer must have been quite an allure for women in Kepler’s time.
Gingerich writes of Kepler’s letter to a nobleman:

Kepler details his slate of eleven candidates for marriage and
explains how God had led him back to [woman] number five,
who had evidently been considered beneath him by his family and
friends. The marriage was successful, far happier than the first; but
of their seven children, five died in infancy or childhood.

In his five-part book Harmonice mundi (1618), Kepler established his
grand cosmic vision that involved music (e.g., musical harmonies and
intervals), geometry (e.g., polygons and polyhedrons), astronomy (e.g.,
Kepler’s Third Law), and astrology (e.g., the position of planets had the
power to influence the soul). In Harmonice mundi, he likened the ocean
tides to the breathing of a gigantic organism. So excited was Kepler by his
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book that he said in Harmonice mundi, “1 yield freely to the sacred frenzy.”
He wrote that the book was “to be read now or by posterity, it matters not.
It can wait a century for a reader, as God himself has waited six thousand
years for a witness.”

In 1627, he published Tabulae rudolphinae, which contained tables
of astronomical data that were used by astronomers for more than a
hundred years. The book also included Brahe’s catalogue of hundreds of
star positions.

Kepler’s science-fiction work was Somnium, which described a fantasy
journey of a young Icelander named Duracotus to the Moon. Kepler had
actually written the piece in 1609 and sent copies of the manuscript to
colleagues. Because the book contained conversations with a demon, the
witch-hunters made this known at his mother’s witchcraft trial. In 1634,
four years after Kepler’s death, his son Ludwig Kepler finally published
Somnium.

In Somnium, the seventeenth-century astronauts are made more com-
fortable during the process of liftoff from Earth by being put to sleep
with opiates. Their limbs are arranged so as to minimize physical stress of
acceleration. The inhabitants of the moon resemble large serpents with a
spongy, porous skin. Somnium does not contain mathematics, but Kepler
provided many notes that contained astronomical calculations to accom-
pany the fiction.

Kepler died in Regensburg in 1630. His grave was destroyed two years
later because of the Thirty Years War. Today, nothing remains of the
tomb, but scientists have honored him by naming a lunar crater after him.
The crater has a diameter of 31 kilometers, and its name was approved
in 1935 by the International Astronomical Union General Assembly. A
crater on Mars has also been named after Kepler.

Today we remember Kepler not only for his Three Laws of Plane-
tary Motion but also for a number of famous equations. For example,
Kepler’s Orbital Equation can be expressed as M = E — e x sin E, where
e is the eccentricity of an elliptical planetary orbit, M the mean angular
motion about the sun (sometimes called the “mean anomaly”), and F is
the auxiliary angle (sometimes called the “eccentric anomaly”). Kepler’s
equation gives the relation between the polar coordinates of a planet
and the time elapsed from a given initial point. Kepler’s Log Equation,
related to logarithms that are used today, can be expressed in modern
notation as

. X \7r
logKepler(x) = nll)nolo 2" |:1 — (E)Z ] . 105

In Matter in Motion, Ernest Abers and Charles F. Kennel suggest that
Kepler could not have achieved his scientific accomplishments without
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reliance on experimental data obtained by others; nevertheless, Kepler’s
laws had a profound effect on science and reinforced the growing belief
that mathematics could be used to explain a vast yet orderly universe:

One man had the imagination and extraordinary patience to extract
from Tycho Brahe’s mountain of observations a truly simple picture
of the planets’ motions....Kepler worked with whatever portions
of Brahe’s data he could cajole out of the Imperial Mathemati-
cian....Kepler would have remained merely an eccentric genius
had his flights of speculative fancy not been confronted by Tycho’s
hard facts. From their brief and tempestuous encounter came a new
cosmic order.
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INTERLUDE: CONVERSATION STARTERS

The Christians know that the mathematical principles,
according to which the corporeal world was to be created,
are coeternal with God. Geometry has supplied God with
the models for the creation of the world. Within the
image of God it has passed into man, and was certainly
not received within through the eyes.

—Johannes Kepler, Harmonice mundi (Harmony of the
World), 1619

The search [for physical laws and particles may] be over
for now, placed on hold for the next civilization with the
temerity to believe that people, pawns in the ultimate
chess game, are smart enough to figure out the rules.

—George Johnson, “Why Is Fundamental Physics So
Messy?” WIRED magazine, February, 2007
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Galileo loved a fight, and he took to calling his opponents
“mental pygmies” and “hardly deserving to be called
human beings.” Two professors at his university hadn’t
even deigned to peer through his telescope. When one
of them died a little later, Galileo wrote that he “did not
choose to see my celestial trifles while he was on earth;
perhaps he would do so now that he has gone to heaven.”

—James C. Davis, The Human Story

Galileo refused to give Kepler one of his telescopes,
although he gave them to many political heads of the
world. ... Galileo wrote his discoveries to Kepler only in
anagrams, so that Kepler could not understand them,
but Galileo later could prove that these were his dis-
coveries. After this, Galileo broke off all further contact
with Kepler. He totally ignored Kepler’s famous book
Astronomia Nova with the vital proposal of elliptical
orbits. ...

—Thomas Schirrmacher, “The Galileo Affair: History or
Heroic Hagiography?” Technical Journal, April, 2000

The system which Galileo advocated was the ortho-
dox Copernican system ... nearly a century before Kepler
threw out the epicycles....Incapable of acknowledg-
ing that any of his contemporaries had a share in the
progress of astronomy, Galileo blindly and indeed sui-
cidally ignored Kepler’s work to the end, persisting in
the futile attempt to bludgeon the world into accepting
a Ferris wheel with forty-eight epicycles as “rigorously
demonstrated” physical reality.

—Arthur Koestler, The Sleepwalkers: A History of Man’s
Changing Vision of the Universe
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SNELL’S LAW OF REFRACTION

&P Netherlands, 1621. The angle of refraction of light that travels
between two media depends on the refractive indices of the media
and is described quantitatively by Snell’s Law.

CRross REFERENCE: JOHANNES KEPLER AND MAXWELL’S EQUATIONS.

During the year that Snell discovered his law, the English
attempted to colonize Nova Scotia and Newfoundland, and pota-
toes were planted for the first time in Germany. The Mayflower
sailed from Plymouth colony in North America on a return trip
to England.

Light traveling through air bends, or refracts, when it passes into another
material such as glass. When waves such as light waves are refracted,
they experience a change in the direction of propagation due to a change
in their velocities. Refraction typically occurs when a ray of light passes
from one medium to another, and every known material slows light
relative to its speed in a vacuum. In particular, the refraction of light
occurs at the boundary between the media (e.g., between air and water),
at which point the phase velocity of the wave changes, and the light
changes direction of travel. Additionally, the wavelength of light changes
at the interface between media, but the frequency of the light remains
constant.

To understand the concept of phase velocity, imagine a sinusoidal wave
made of a piece of wood and sliding to the right. The phase velocity is
simply the ordinary speed with which the wooden wave is moving. Now
imagine a wave in a pond, in which a leaf on the surface is oscillating
vertically as the wave passes. In this case, the wave pattern moves to the
right with phase velocity v,,, just as with the wooden wave, but the leaf may
have no lateral motion at all.

I like to demonstrate refraction to young people by placing my finger
into my aquarium filled with large fish. Because air has a refractive index
of 1.0003, and water has a refractive index of 1.33, when my guests look
at my straight finger that is partially submerged in the water, the finger
appears to bend abruptly at the surface of the water. Before the fish bite
my finger, I explain to my guests that this apparent bending is due to the
bending of light rays as they move from the water to the air. I then scribble
Snell’s Law on a napkin,

ny sin(0;) = n, sin(6,),
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and explain how the law is used to calculate the degree to which light is
refracted when traveling from air to water. (You can demonstrate this
more safely with a pencil in a glass of water.) Here, n; and n;, are the
refractive indices of media 1 and 2. The angle between the incident light
and a line perpendicular to the interface is called the angle of incidence,
6;. The light ray continues from medium 1 into medium 2 and leaves
the boundary between the media with an angle 6, to a line that is per-
pendicular to the boundary. This second angle is known as the angle of
refraction.

Recall that refraction refers to the bending of a wave when it enters a
medium where its speed changes. When light passes from a “fast medium”
to a “slow medium,” refraction bends the light ray toward the normal (the
imaginary perpendicular line) to the boundary between the two media.
The amount of bending depends on n; and n; and is described quantita-
tively by Snell’s Law.

The refractive index n of water, glass, air, or any material is the factor
by which the phase velocity of electromagnetic radiation is slowed in that
material, relative to its velocity in a vacuum. n depends on the wavelength
of radiation under study. Some example values for n at a wavelength of
589.3 nm are vacuum, 1; air, 1.00029; liquid water, 1.333; glass, 1.5-1.9; and
diamond, 2.419.

The law of reflection, which in simplified form states that the angle of
reflection of a light ray from a surface is equal to the angle of incidence, and
the law of refraction can be derived from James Clerk Maxwell’s equations
of electricity and magnetism and generally hold for a wide region of the
electromagnetic spectrum. The laws can also be derived from simpler
theories of light, such as those discussed by the Dutch physicist Christiaan
Huygens (1629-1695) in 1678. Huygens used geometrical constructions to
indicate where a given wavefront will be at any time.

Refraction has numerous applications today. For example, a convex
lens makes use of refraction to cause parallel light rays to converge.
Without the refraction of light by the lenses in our eyes, we could not
see properly, and no traditional lenses for cameras would exist. Seismic
waves—for example, the waves of energy caused by the sudden breaking
of subterranean rock—change speed within Earth and are bent when they
encounter interfaces between materials in accordance with Snell’s Law.
Geologists can investigate the layers within Earth by studying the behavior
of refracted and reflected waves.

When a beam of light is transmitted from a material with high index of
refraction to one of low index, the beam can, under some conditions, be
totally reflected. This optical phenomenon is usually called total internal
reflection, and it occurs when light is refracted at a medium boundary to
such an extent that it is reflected back. Such would be the case in certain
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kinds of optical tubes in which the light enters at one end remains trapped
inside until it emerges from the other end.

You can use Snell’s Law to understand and calculate the condition
necessary for total internal reflection. First, set the refracted angle 6, to
90°, and then calculate the incident angle. Because we cannot refract the
light by more than 90°, under this condition, all of the light will reflect
for angles of incidence greater than the angle that gives refraction at
90°.

The properties of a cut diamond provide an additional example of total
internal reflection. Beams of light are reflected within a properly shaped
diamond crystal so that the diamond sparkles and often emits light in the
direction of the observer’s eye. In other words, the cut of the diamond
makes use of total internal reflections so that a large portion of the rays
entering the diamond will internally reflect within the diamond until they
leave at specific upper faces in order to give diamond its bright sparkle. A
light ray will often undergo total internal reflection several times before
finally refracting out of the diamond.

Total internal reflections makes it possible to confine light so that it
travels along a fiber made of the appropriate material, and thus the fiber
can pipe light around corners. For example, an optical fiber may resemble
a glass “hair” that is so thin that once light enters one end, it can never
strike the inside walls at less than the critical angle that causes total internal
reflection. The light undergoes total internal reflection each time it strikes
the surface of the fiber and finally exits at the end of the fiber. Fiber optic
cables are used to transmit telephone and computer signals and have many
advantages over traditional electrical wires. For example, the optical fibers
can carry more information in a smaller cable faster than wires can, and
the fibers are not sensitive to stray electromagnetic fields in the vicinity
of the fibers. Optical fibers have facilitated an explosion in worldwide
communications during the last twenty years and enabled the proliferating
use of the Internet.

Fiber optics has also been used in medicine as a way to allow physicians
to look inside the body with minimal invasion. Some endoscopes have
made use of two fiber optic lines. An “image fiber” is surrounded by
“light fibers” that carry light down to the end to illuminate the tissue of
interest. In other words, two separate fiber bundles exist in certain flexible
endoscopes, one for viewing and one for light transmission.

Total internal reflection also plays a role in mirages, such as those
that may appear above asphalt or deserts on a hot day. In particular, an
observer can sometimes see inverted images of the landscape and nearby
trees as if they were reflected in a pool of water. Air close to the ground
is hotter than the air farther away and has a lower refractive index than
the lower temperature air. Light traveling downward from any point on
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an object may be refracted away from the normal, and as it passes near
the ground it is totally reflected at a layer of lower refractive index. The
refracted light enters the observer’s eye and can give the appearance of an
image that is below the surface of the ground.

Until the year 2001, all known materials had a positive index of refrac-
tion. However, in 2001, scientists from the University of California at San
Diego described an unusual composite material that had a negative index,
essentially reversing Snell’s Law. This odd material is a mix of fiberglass,
copper rings, and wires that is capable of focusing light in novel ways. Early
tests revealed, for example, that microwaves emerged from the material in
the exact opposite direction from that predicted by Snell’s Law. Physicists
Sheldon Schultz, David R. Smith, and Richard A. Shelby hypothesize that
the new material is more than a physical curiosity because it may one
day lead to the development of novel antennas and other electromagnetic
devices. In theory, a sheet of negative-index material could act as a super-
lens to create images of exceptional detail.

Although most early experiments with these kinds of exotic mate-
rials were performed with microwaves, in 2007 a team led by Henri
Lezec of the California Institute of Technology in Pasadena achieved
negative refraction for visible light. In order to create an object that
acted as if it were made of negatively refracting material, Lezec’s team
built a prism of layered metals perforated by a maze of nanoscale
channels.

This was the first time that physicists had devised a way to make visible
light travel in a direction opposite from the way it traditionally bends when
passing from one material to another. Some physicists suggest that the
phenomenon may someday lead to optical microscopes for imaging objects
as small as molecules and for creating cloaking devices that render objects
invisible.

In 2005, Akhlesh Lakhtakia of Pennsylvania State University and Tom
Mackay of the University of Edinburgh determined that negative refrac-
tion around a rotating black hole can change the apparent location of stars
as viewed from Earth—at least in theory. In other words, a traditional
material like glass or water is not required to cause refraction; for example,
the space around such a black hole can have refractive properties and can
have a negative index of refraction that causes light to refract in a direction
opposite from traditional materials.

In 2007, researchers created a “superblack” surface that was virtu-
ally free of reflections. Ordinarily, light reflects from a surface when it
strikes the boundary between two materials that have different refrac-
tive indices. The greater the difference between the refractive indices
of two materials, the more light is reflected. To prevent such reflec-
tions in their exotic material, a research team at Rensselaer Polytechnic
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Institute in Troy, New York, created a multilayer surface composed of
nanoscale filaments. The topmost surface layer had a refractive index of
1.05, which is close to air’s index of 1.0. The researchers’ especially low-
reflection coating works for wavelengths between near ultraviolet and near
infrared.

Willebrord Snell, also known as Snellius, Snell, Snel van Royen, or
Willebrord van Snel van Royen (1580-1626), Dutch astronomer and
mathematician famous for his Law of Refraction.

CURIOSITY FILE: Snell's biggest contribution to science, Snell's Law of
Refraction, was not published until almost seventy years after he died.
® Sophisticated fishermen use the term “Snell's Window" when referring
to angles above a lake that are within a fish's vision. Fishermen avoid being
seen by fish by staying outside this window, the dimensions of which are
controlled by Snell's Law. e Raindrops create rainbows via refraction.
Because various colors of light have different wavelengths, the colors refract
differently when they pass through the water. A rainbow is actually a circle
centered on a point directly opposite the sun from the observer; however,
the observer does not see the full circle because the landscape gets in
the way.

Snell’s law may be derived from Fermat’s principle, which
states that the light travels the path which takes the least
time....In a classic analogy by Feynman, the area of
lower refractive index is replaced by a beach, the area of
higher refractive index by the sea, and the fastest way for
a rescuer on the beach to get to a drowning person in the
sea is to run along a path that follows Snell’s law.

—“Snell’s Law,” Wikipedia

In 1621, a really smart guy with a really funny name
(Willebrord Snell) figured out, through careful experi-
mentation, that the angles between the surface normal
and the original and bent light are related mathemati-
cally.

—Mason McCuskey, Special Effects Game Programming
with DirectX

Willebrord Snell was born in Leiden in the Netherlands. His father was a
mathematics professor. Although Snell studied law, he was fascinated by

mathematics and in 1600 began teaching mathematics at the University of
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Leiden. Shortly thereafter, he met such famous contemporaries as Tycho
Brahe and Johannes Kepler.

In 1602, he studied law in Paris, and a few years later he produced his
first major work related to science—a Latin translation of Simon Stevin’s
(1548-1620) Wisconstighe Ghedachtenissen (Mathematical Memoirs,
1605-1608). Stevin was a Flemish mathematician and engineer whose
memoirs contained his treatises on mathematics, mechanics, the theory
of music, bookkeeping, optics, astronomy, and geography. In 1608,
Snell’s translation was titled Hypomnemata mathematica (Mathematical
Memoranda).

In 1608, Snell married, and over the course of his life had eighteen
children, only three of whom survived to adulthood. In 1613, Snell suc-
ceeded his father as professor of mathematics at the University of Leiden.
In 1615, he investigated a new method of finding the radius of Earth,
which involved a triangulation method. His work Eratosthenes Batavus
(The Dutch Eratosthenes), published in 1617, describes his triangulation
approach that made use of his own house and two local towns, and the
distances between them, to aid in his computations. The value he obtained
for Earth’s circumference was 38,500 kilometers, which is relatively close
to the actual figure of 40,000 kilometers. He continued to improve upon
his calculations with the help of his students, but his early death in 1626
meant that his additional calculations were never formally published.

In 1619, he published papers on comets. Two years later, in Cyclo-
metricus, Snell reported his discovery of a new method for calculating
n by using polygons. In particular, he calculated © to thirty-four deci-
mal places by imagining a polygon with 1,073,741,824 sides, a method
that had been previously used by German mathematician Ludolph Van
Ceulen (1540-1610) but that had never been published. Snell improved
upon the traditional methods of calculating approximations of © by using
polygons, so that, for example, he could use 96-sided polygons to give
the digits of & correct to seven places while the classical method yielded
7 only to two places. [For the mathematically inclined reader, Snell used
T ~ (2/3)nsin(n/n) + (1/3)ntan(w/n) to estimate m, where # is the number
of sides of a polygon that circumscribes a circle.]

In 1624, Snell became an expert on navigation. He investigated a math-
ematical curve called the loxodrome, a path on the sphere that makes a
constant angle with the meridians. (A meridian corresponds to a great
circle on the surface of Earth that passes through the north and south
geographic poles.) His work on loxodromes and navigation is published
in Tiphys batavus. The loxodrome has the shape of a spherical spiral and
is a path taken while traveling when a magnetic compass needle is kept
pointing in a constant direction.
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Today, Snell is most famous for his research on the refraction of
light. Interest in refraction started centuries earlier. For example, Ptolemy
(85-165 A.p.), the most influential of Greek astronomers and geographers
of his time, constructed tables of angle of refraction and the correspond-
ing angle of incidence for various media. He estimated that the ratio of
the two angles was a constant for the two media forming an interface,
or, in other words, 01/6, = k. Johannes Kepler also made numerous
measurements of angles of incidence and corresponding angles of refrac-
tion for various media interfaces, but he was unable to find the precise
relationship between the angles he measured. In 1621, Snell, who was
then a professor of mathematics at Leiden, found that Ptolemy’s simple
equation was inaccurate, and he soon discovered the correct law through
his experiments. Unlike Ptolemy’s formulation, Snell’s Law employs
the ratio of the sines of the angles instead of the angles themselves.
Snell’s work was circulated privately in manuscript form and was not
published.

According to popular physics text books, such as Arnold Aron’s Devel-
opment of Concepts of Physics, the law apparently came to the attention
of both René Descartes and Huygens, and Descartes published the rela-
tion in modern form in 1637. Many believe that Descartes independently
derived the law, and in France, Snell’s Law is referred to as Descartes’s
Law.

As mentioned in the Introduction of this book, Snell’s Law was discov-
ered by various investigators over the centuries. Perhaps the first person to
understand the basic relationship expressed by Snell’s Law was the Ara-
bian mathematician Ibn Sahl in the year 984. In 1602, English astronomer
and mathematician Thomas Harriot also discovered the law, but he did
not publish his work. In 1621, Snell discovered the law; his unpublished
notes on the subject were discovered by the Dutch scholar and manuscript
collector Isaac Vossius around 1662, and Huygens discussed the law in his
Dioptrica, published in 1703.

Snell, never having formally published his work on the law, died just
a few years after the discovery. Descartes was actually the first person to
publish the law explicitly in terms of sine functions in his 1637 Discourse
on Method (which was originally published in Leiden in French together
with his work Dioptrique). Descartes did not experimentally verify the law.
Huygens and others actually accused Descartes of plagiarism, given that
Descartes visited Leiden during and after Snell’s work, but no evidence
exists to support this assertion.

A lunar crater named Snellius with a diameter of 82 kilometers was
named after Snell and approved in 1935 by the International Astronomical
Union General Assembly.
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INTERLUDE: CONVERSATION STARTERS

It seemed that Earth was being taken and remade, not by
ETs from another arm of the Milky Way ... but by beings
from another universe where all the laws of nature were
radically different from those in this one. Humanity’s
reality, which operated on Einstein’s laws, and the utterly
different reality of humanity’s dispossessors had collided,
meshed at this Einstein intersection. All things seemed
possible now in this worst of all possible new worlds.

—Dean Koontz, The Taking

The notion of causation does not enter the equation of
Snell’s law. There is no conditional dependence, no tem-
poral asymmetry between cause and effect expressed in
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this law. The incoming beam does not cause the refrac-
tion. It can be asked: “What causes the planets to perform
Keplerian elliptical orbits”? “What causes light beams to
follow Snell’s Law”?...In Kepler’s Laws and Snell’s Law
we find examples of deterministic relation, in classical
physics, without any causal component.

—Friedel Weinert, The Scientist As Philosopher: Philo-
sophical Consequences of Great Scientific Discoveries

Physicists had to invent words and phrases for concepts
far removed from everyday experience. It was their fash-
ion to avoid pure neologisms and instead to evoke, even
if feebly, some analogous commonplace. The alternative
was to name discoveries and equations after one another.
This they did also. But if you didn’t know it was physics
they were talking, you might very well worry about them.

—Carl Sagan, Contact

We may in fact regard geometry as the most ancient

branch of physics. Without it I would have been unable

to formulate the theory of relativity.

—Albert Einstein, in his address “Geometry and Experi-
ence” to the Prussian Academy of Sciences, 1921
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HOOKE’S LAW OF ELASTICITY

England, 1660. The size of a material deformation is directly pro-
portional to the deforming force.

Cross REFERENCE: NEWTON’S LAwW OF UNIVERSAL GRAVITATION AND
BoYLE’s Gas Law.

During the year that Hooke discovered his law, Dutch peas-
ants (Boers) settled in South Africa, and water closets arrived
in England from France. The Irish natural philosopher Robert
Boyle described his research showing that the removal of air
from a chamber extinguishes a flame and Kkills small animals,
which suggested that combustion and respiration may be related
processes.

Hooke’s Law of Elasticity states that if an object, such as a metal rod or
spring, is elongated by some distance, x, the restoring force F exerted by
the object is proportional to x:

F = —kx

Here, k is a constant of proportionality that is often referred to as the
spring constant when Hooke’s Law is applied to springs. Hooke’s Law is
an approximation that applies for certain materials, such as steel, which
are called Hookean materials because they obey Hooke’s Law under a
significant range of conditions. For other materials, such as aluminum,
Hooke’s Law has a more restricted use that applies only to a portion of the
elastic range of the material. Rubber objects are non-Hookean because of
their very complex responses to applied forces. For example, the stiffness
of rubber is very sensitive to temperature and the rate at which a force is
applied.

Students most often encounter Hooke’s Law in their study of springs
where the law relates the force F, exerted by the spring, to the distance x
that the spring is stretched. The spring constant k is measured in force per
length. The negative sign in F = —kx indicates that the force exerted by
the spring opposes the direction of displacement. For example, if we were
to pull the end of a spring to the right, the spring exerts a “restoring” force
to the left. The displacement of the spring refers to its displacement from
equilibrium position at x = 0.

The spring constant provides an indication of the stiffness of the spring.
A large value for k indicates that the spring is stiff, whereas a low value
for k means that the spring is loose. As another example, consider a mass
hanging from a spring. The initial position of the end of the spring is



located at, for example, 0.300 meters. When a 0.200 kilogram mass is added
to the end of the spring, the spring is stretched to a new location at 0.330
meters. Therefore, the displacement is 0.030 meters. The restorative force
of the spring must balance the weight of the added mass. For this example,
the weight is m x g = 1.96 N, where N stands for newtons. We can then
determine an approximate value for the spring constant k, given that the
spring required 1.96 N to move it a distance of 0.030 meters. Thus, k =
1.96/0.030 = 65.33 N/m.

Hooke’s Law is most accurate for small deformations of an object. The
law is sometimes expressed in terms of stress (the force within a material
that develops as a result of the externally applied force) and strain (the
deformation produced by the stress). Stress is proportional to strain for
small values of stress. Note also that the value of k depends on the material
that composes the object and usually on the dimensions and shape of the
object. When considered in terms of stress and strain, Hooke’s Law is
often formulated as stress/strain = E, where E is the modulus of elasticity,
also known as Young’s modulus, which, for example, may be measured in
pounds per square inch.

We have been discussing movements and forces in one direction.
French mathematician Augustin Louis Cauchy (1789-1857) generalized
Hooke’s Law to three-dimensional forces and elastic bodies, and this more
complicated formulation relies on six components of stress and six compo-
nents of strain. The stress-strain relationship forms a 36-component stress—
strain tensor when written in matrix form.

If a metal is lightly stressed, a temporary deformation may be achieved
by an elastic displacement of the atoms in the three-dimensional lattice.
Removal of the stress results in a return of the metal to its original shape
and dimensions.

Robert Hooke (1635-1702), English physicist and polymath famous for
Hooke’s Law of Elasticity and a variety of experimental and theoretical
work.

CurliOSITY FiLE: Hooke was one of the first proponents of biological
evolution during a time when many learned people relied on the book
of Genesis and were confused by the existence of fossils. ® Many of
Hooke's inventions have been lost, partly due to Isaac Newton's dislike
for the man. In fact, Newton had Hooke's portrait removed from the
Royal Society and attempted to have Hooke's Royal Society papers burned.
® Hooke's design for a marine chronometer was rediscovered in 1950
at the Library of Trinity College, Cambridge. ® Hooke's remains were
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exhumed in the eighteenth century, and their present location is shrouded in
mystery. ® Hooke invented an early form of hearing aid called the oto-
cousticon. e In 2006, the Royal Society purchased a seventeenth-century
manuscript by Hooke for $1.75 million. The manuscript was filled with 500
pages of notes recorded during Royal Society meetings. In the notes, Hooke
castigates his rivals Newton and Robert Boyle, whom he claims stole his
ideas. Hooke also wrote that Dutch microscopicst Anton van Leeuwenhoek
found “a vast number of small animals in his Excrements which were most
abounding when he was troubled with a Looseness and very few or none
when he was well."

Robert Hooke is one of the most neglected natural
philosophers of all time. The inventor of...the iris
diaphragm in cameras, the universal joint used in motor
vehicles, the balance wheel in a watch, the originator
of the word “cell” in biology, he was...architect, exper-
imenter, [and astronomer]—yet is known mostly for
Hooke’s Law. He was Europe’s last Renaissance man,
and England’s Leonardo.

—Robert Hooke Science Centre, www.roberthooke.
org.uk

Hooke was an unattractive man, disfigured [by smallpox],
orphaned at 13 years of age [by a suicidal father], robbed
of credit for his greatest inspirations and ideas, with many
of his creations almost certainly willfully destroyed or lost
after his death in 1703.

—Maurice Smith, “Robert Hooke: The Inspirational
Father of Modern Science in England”

The tendency to flit from idea to insight without pause
was Hooke’s innate characteristic. ... He pours out a con-
tinuous stream of brilliant ideas.

—Richard Westfall, “Robert Hooke,” in Dictionary of
Scientific Biography

Instruments enlarge the senses and make them more pre-
cise and reliable; Hooke speaks of “supplying of their
infirmities with instruments, and . . . the adding of artificial
organs to the natural.” He included here not only the
obvious examples like microscopes and telescopes, but
also instruments related. .. to magnetism...to investigate
a phenomenon not directly sensible at all.

—J. A. Bennett, “Robert Hooke as Mechanic and Nat-
ural Philosopher”
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Robert Hooke was born on the Isle of Wight, a British island close to
the southern coast of England. His father was religious and expected his
son to enter the ministry. However, because Hooke was a sickly child,
with constant headaches, he was not expected to reach adulthood, and
his parents decided not to bother educating him. Left to pursue his own
interests, Hooke fell in love with mechanical contraptions such as toys and
clocks. When he was young, he created a wooden clock and an intricate
model of a fully rigged ship with working guns.

In 1648, Hooke’s father, who was afflicted with jaundice, decided that
he did not wish to suffer any longer, and he hanged himself. Given that
Hooke was an excellent drawer, the rest of his family decided that he
should move to London to become an apprentice to a portrait painter.

Hooke eventually lost interest in art because he wanted a more compre-
hensive education. He enrolled in Westminster School, where he devoured
the contents of the six books of Euclid’s Elements during the first week of
school. He learned Latin, Greek, and some Hebrew and was an excep-
tional organist.

In 1653, he entered Christ College, Oxford, where he studied astron-
omy and mechanics. During his life, Hooke’s interests ranged far and wide,
covering such topics as physics, astronomy, chemistry, biology, geology,
architecture, and even naval technology. He often had so many ideas in
his head that he simultaneously worked on numerous projects in different
fields.

In 1655, Hooke was employed by Robert Boyle to help construct an air
pump that Boyle used to conduct the experiments necessary to formulate
Boyle’s Gas Law. Some historians of science suggest that it is possible that
it was Hooke who formally stated Boyle’s Law, but Hooke’s precise role
in the experiments is unclear.

At the same time that he was working with Boyle on gases, Hooke also
worked on clocks, particularly those that could keep fairly accurate time
while at sea. Realizing that the pendulum clock could hardly be used on a
rocking ship, he suggested that “springs instead of gravity” be used to drive
the clock mechanism. Beginning his experiments around 1658, Hooke
constructed a clock with a spiral spring and an improved escapement, that
is, the mechanical device that regulates movement.

In 1660, at the same time he worked on clocks, Hooke discovered
what we now call Hooke’s Law of Elasticity, which, among other things,
describes the variation of tension with extension in an elastic clock spring.
However, he made his law public only in 1678. Although Hooke’s Law
may not appear to be a profound discovery, it seems that no one before
him stated the law explicitly.

Hooke, along with Italian astronomer Giovanni Domenico Cassini
(1625-1712) and Dutch mathematical physicist Christiaan Huygens
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Flea, from Robert Hooke’s Micrographia, published in 1665.

(1629-1695), was among the first astronomers to carefully observe the
surface of Jupiter. In 1664, Hooke reported a small spot on the biggest
Jovian belt, which he believed to be a permanent feature of Jupiter and
not simply the shadow of a moon.

In 1665, Hooke became professor of geometry at Gresham College,
London. The position gave him living space at the college and required
him to give lectures in both English and Latin. He was required to be
unmarried during his stay at the college.

In 1665 he published Micrographia, a book that featured breathtaking
microscopic observations and biological speculation on specimens that
ranged from plants to fleas. Hooke was the first to coin the word “cell”
to describe the basic units of all living things. His choice was motivated
by his observations of plant cells that reminded him of “cellula,” which
were quarters in which monks lived. When describing his microscopic
observation of thin slices of cork, he wrote in Micrographia:

I could exceedingly plainly perceive it to be all perforated and
porous, much like a Honey-comb, but that the pores of it were not
regular. .. .these pores, or cells, ... were indeed the first microscopi-
cal pores I ever saw, and perhaps, that were ever seen, for I had not
met with any Writer or Person, that had made any mention of them
before this. ...
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About this magnificent work, Robert Westfall writes in the Dictionary
of Scientific Biography:

Robert Hooke’s Micrographia remains one of the masterpieces of
seventeenth century science, [presenting] a bouquet of observations
with courses from the mineral, animal and vegetable kingdoms.
Above all, the book suggested what the microscope could do for
biological science.

Robert Hooke was also a Surveyor to the City of London and helped
to rebuild London after the Great Fire in 1666. He was a famous architect
and designed many buildings such as the Bethlem Royal Hospital and the
Royal College of Physicians. The dome in St. Paul’s Cathedral in London
used Hooke’s method of construction.

Hooke was also fascinated by fossils and geology. His fellow scientists
had proposed a number of theories to explain the origin of fossils. One
strange but commonly held theory suggested that fossils grew within Earth,
somewhat like the incubation of an embryo in the womb. A mysterious
“shaping force” could create the images of living creatures within stones.
Hooke was the first person to use a microscope to study fossils, and he
observed that the structures of petrified wood and fossil seashells bore a
striking similarity to actual wood and shells. In Micrographia, he compared
petrified wood to rotten wood and concluded that wood could be turned
to stone by a gradual process:

This petrify’d Wood having lain in some place where it was well
soak’d with petrifying water (that is, such water as is well impreg-
nated with stony and earthy particles) did by degrees separate abun-
dance of stony particles from the permeating water, which stony
particles, being by means of the fluid vehicle convey’d, not only into
the Microscopical pores. .. but also into the pores or Interstitia. .. of
that part of the Wood, which through the Microscope, appears most
solid....

He also believed that many fossils represented extinct creatures:
“There have been many other Species of Creatures in former Ages, of
which we can find none at present; and that ’tis not unlikely also but
that there may be divers new kinds now, which have not been from the
beginning.”

The public was fascinated by Micrographia, because it provided a new
look at familiar objects such as a fine needle point that looked like a
rough carrot under the microscope. The observations of molds and insects
(including a flea, louse, a bee stinger, and an eye of a fly) provided some
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of the most spectacular images and stimulated the imagination of both
scientists and lay people.

Hooke’s contributions to the field of geology are extolled in Ellen
Drake’s Restless Genius: Robert Hooke and His Earthly Thoughts:

The few geologists who have read Robert Hooke’s Discourse of
Earthquakes have been astonished by his almost clairvoyant pos-
tulations concerning the formation of geomorphological features,
the origin and usefulness of fossils, biological evolution, and all the
dynamic changes that constantly take place on this planet.... Hooke
was therefore important in the history of Earth science, as he was in
the development of many other fields of scientific and technological
endeavor.

Hooke was intrigued by the science of respiration and the workings
of the lungs. In one experiment, he was placed in a sealed vessel, from
which the air was gradually pumped! I have not been able to ascertain
the precise purpose of this experiment, but he damaged his ears and expe-
rienced deafness in the process. Most likely, Hooke’s aim was to study,
in a general fashion, the effect of low atmospheric pressure on a human
being.

He also opened the chest of a dog, destroyed the motion of its lungs,
and then used a bellows to provide a stream of air that passed through the
lungs in order to better understand the function of the lungs in the process
of respiration.

As discussed above, Hooke was an extremely prolific inventor in the
area of clocks and probably invented the balance spring that coils and
uncoils with a natural periodicity. He investigated the colors of mem-
branes and of thin plates of mica. He invented or improved meteorological
instruments such as the barometer (for measuring atmospheric pressure),
anemometer (for measuring wind velocity), and hygrometer (for measur-
ing humidity). His invention of the hygrometer stemmed from his obser-
vations of goat beard hairs that would bend when dry and straighten when
wet. Despite his facility with invention, Hooke was sometimes unhappy
with the credit he received. For example, Jim Bennett writes in “Robert
Hooke as Mechanic and Natural Philosopher” that “Hooke’s later lectures
are punctuated by bitter outbursts on the fate of inventors—reviled and
ridiculed, plagued by difficulties and conservatism, denied any benefit
from their work, in the end only to see their inventions carried off by
others.”

We can discuss additional examples of Hooke’s innovations. For exam-
ple, he suggested that scientists use thermometers that assigned 0 degrees
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to the freezing temperature of water. He invented the air pump in a form
that lasted for many years. He constructed the most powerful microscope
at the time, which achieved a 30-fold magnification, as well as the first
practical universal joint and the first Gregorian reflecting telescope (a tele-
scope with a parabolic primary mirror). He was the first person in history
to discover a binary star, that is, two stars orbiting about a common center
of mass. Hooke also postulated the inverse-square principle of gravity but
lacked the mathematical know-how to prove it. Although Hooke did not
discover the Law of Universal Gravitation, he did appear to contribute to
Newton’s thinking on the subject.

Hooke and Newton disliked each other for many years. For example,
Newton was furious when, in 1672, Hooke criticized Newton’s demon-
stration of the use of prisms to split white light into its various colored
components. In 1679, as mentioned above, Hooke mused to Newton about
a possible inverse-square principle of gravitation, but when Newton pub-
lished his Principia mathematica in 1687, he did not credit Hooke. Regard-
ing the inverse-square principle, Newton told Hooke, “Merely because one
says something might be so, it does not follow that it has been proved that
itis.”

In addition to this snub by Newton, 1687 was a particularly sad and
frustrating year for Hooke. Hooke’s niece, with whom he had a romantic
relationship, died this year, and Hooke’s health quickly declined.

Biographer Richard Westfall writes in the Dictionary of Scientific
Biography,

His frame was badly twisted. Add to his wretched appearance,
wretched health. He was a dedicated hypochondriac who never
permitted himself the luxury of feeling well for the length of a full
day. Hooke’s spiny character was nicely proportioned to the daily
torment of his existence.

Today, some physicians have speculated that Hooke was inflicted with
scoliosis, a crippling degenerative disease that causes an unnatural cur-
vature of the spine. Hooke finally died on March 3, 1703, having been
blind from diabetes and bedridden the last year of his life. He left behind
his huge library of more than 3,000 books in Latin, French, and Italian.
Although he was financially well off from the work he performed as
a surveyor, he had never married. Today, the location of his grave is
unknown. A lunar crater with a diameter of 36 kilometers was named
after Hooke and approved in 1935 by the International Astronomical
Union General Assembly. A crater on Mars has also been named after
Hooke.
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Stephen Inwood, author of The Forgotten Genius: The Biography of
Robert Hooke 1635-1703, describes the final scene of Hooke’s death:

Dr. Robert Hooke, Gresham Professor of Geometry and Curator of
Experiments for the Royal Society, lay dead on his bed. In death, as
in life, he was not an attractive sight. His ragged clothes were twisted
about his emaciated body like a winding sheet, and the lice were so
thick on his corpse that “there was no coming near him.” Hooke’s
property passed to his next of kin (probably his cousin), Elizabeth
Stephens, an illiterate woman whose signature was a pirate’s
hook.

Despite all of Hooke’s achievements, Lisa Jardine writes in The Curi-
ous Life of Robert Hooke that he is not remembered for much today:

He is most likely to be remembered, though, as a boastful,
cantankerous, physically misshapen know-all, who was somehow
involved with the early Royal Society and was Sir Isaac New-
ton’s sworn enemy....Although his name crops up regularly in
English seventeenth-century histories of ideas, from anatomical
dissection to cartography, and from architecture to scientific
instrument-making, no single major discovery or monument (apart
from the law of elasticity) is any longer securely attributed to him.
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INTERLUDE: CONVERSATION STARTERS

A flock of sheep consisted of several individual sheep and
was a flock only by convention—the quality of flockness
was put on it by humans—it existed only in some human’s
mind as a perception. Yet Hooke had found that the
human body was made up of cells—therefore, just as
much an aggregate as a flock of sheep. Did this mean that
the body, too, was just a figment of perception?

—Neal Stephenson, Quicksilver

The universe we inhabit, and its operational principles,
exist independently of our observation or understanding;
mathematical models of the universe...are descriptive
tools that exist only in our minds. Mathematics is at root a
formal description of orderliness, and since the universe
is orderly (at least on scales of space-time...which [we
can] observe), it should come as no surprise that the real
world is well modeled mathematically.

—Keith Backman, “The Danger of Mathematical Mod-
els,” Science, October 20, 2006

In the beginning, God said the four-dimensional diver-
gence of an antisymmetric, second rank tensor equals
zero, and there was Light, and it was good.

—Message on a Berkeley University T-shirt, as told by
Michio Kaku, “Parallel Universes, the Matrix, and
Superintelligence,” Kurzweil Al.net

The core of science is not a mathematical model; it is
intellectual honesty.

—Sam Harris, La Jolla meeting, “Beyond Belief 2006:
Science, Religion, Reason, and Survival,” November
2006

I don’t believe there are any fundamental laws or any
final theory. I think the only laws we’ll ever find are the
ones we impose on nature by the way we look at it.

—David Ambrose, Superstition

If we live in a simulated reality, we should expect occa-
sional sudden glitches, small drifts in the supposed con-
stants and laws of Nature over time, and a dawning real-
ization that the flaws of Nature are as important as the
laws of Nature for our understanding of true reality.

—John Barrow, “Living in a Simulated Universe”
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As a Jew, I have no problem whatsoever believing in
intelligent design. ... I chose to believe that evolution was
packaged with the original matter that resulted in the big
bang. The “designer” can no longer intervene because he
is held by the laws of the universe he willed.

—Marysia Meylan, New York Times
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BOYLE’S GAS LAW

& % Ireland, 1662. The pressure of a gas varies inversely as its volume
at constant temperature.

Cross REFERENCE: ROBERT HOOKE, CHARLES’S GAS LAW, AVOGADRO’S GAS
Law, DALTON’S LAW OF PARTIAL PRESSURES, GRAHAM’S LAW OF EFFUSION,
AND THE IDEAL GAs Law.

In 1662, Charles II sold the harbor city of Dunkirk to France
for £400,000, and the last silver pennies were minted in London.
The British merchant John Graunt published the first book on
statistics. The book contained the London Life Table, the first
table showing the ages at which people are likely to die in a
city. Graunt’s work was a starting point for both statistics and
demography.

In 1662, Robert Boyle—Irish chemist, physicist, and inventor—studied
the relationship between the pressure P and the volume V of a gas in a
container held at a constant temperature. Boyle observed that the product
of the pressure and volume are nearly constant:

PxV=C

This relationship between pressure and volume is called Boyle’s Law in his
honor. For an example application, suppose we have a gas confined in a jar
with a piston at the top. The initial state of the gas has a volume of 5.0 cubic
meters, and the pressure is 1.0 kilopascal. While holding the temperature
and amount of gas (number of moles) constant, we add weights to the
top of the piston to increase the pressure. (The concept of mole is more
fully explained in the entry on Avogadro’s Gas Law.) When the pressure
reaches 4.0 kilopascals, we find that the volume has decreased to 1.25 cubic
meters. The product of pressure and volume remains a constant: 5 m?> x
1 kPa =125 m’x 4 kPa.

Note that Boyle’s Law is sometimes called the Boyle-Mariotte Law,
because French physicist Edme Mariotte (1620-1684) discovered the same
law independently of Boyle but did not publish it until 1676. Here are
Boyle’s exact words on his own experiments with air that led to Boyle’s
Law, from the second edition of New Experiments Physico-Mechanicall,
Touching The Spring of the Air, and Its Effects:

The pressures and expansions [are] in reciprocal propor-
tion....Common air, when reduced to half its wonted extent,
obtained near about twice as forcible a spring as it had before, so
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this thus compressed air being further thrust into half this narrow
room, obtained thereby a spring about as strong again as that it last
had, and consequently four times as strong as that of the common
air.

An ordinary syringe provides another example of a practical applica-
tion of Boyle’s Law. When a physician pushes the plunger on a syringe,
he decreases the volume inside the syringe, increasing the pressure and
causing the medicine to be injected. A balloon inflated at sea level will
expand as it rises in the atmosphere and encounters decreased pressure.
Similarly, when we inhale, our diaphragms move downward, increasing the
lung volume and reducing the pressure so that air flows into the lungs. In a
sense, Boyle’s Law keeps us alive with each breath we take.

Boyle’s Law is most accurate for an ideal gas, which consists of identical
particles of negligible volume, with no intermolecular forces, and with
atoms or molecules that collide elastically with the walls of the container.
Real gases obey Boyle’s Law at sufficiently low pressures, and the approxi-
mation is often sufficiently accurate for practical purposes when describing
real gases.

Scuba divers learn about Boyle’s Law because it helps to explain what
happens during ascent and descent with respect to the lungs, mask, and
buoyancy control device (BCD). For example, as a person descends, pres-
sure increases, causing any air volume to decrease. Divers notice that
their BCDs appear to deflate, and the pressure in the airspace behind the
ears changes. To equalize the ear space, air must flow through the diver’s
Eustachian tubes to compensate for the reduction in air volume.

Other gas laws in this book describe the relationship between temper-
ature, pressure, and volume of gases. If we consider Avogadro’s Law, we
can derive the Ideal Gas Law, PV = nRT, from these other gas laws. Here,
P is the pressure, V is the volume, # is the number of moles of gas, Ris the
ideal gas constant (usually in units of L-atm/mol-K or Pa-m?®/mol-K), and
T is the temperature in degrees kelvin.

Other important gas laws discussed in this book include Charles’s Gas
Law, Dalton’s Law of Partial Pressures, and Graham’s Law of Effusion.
No real gas obeys these gas laws exactly, because, for example, these laws
assume that gas particles are much smaller than the distance between
particles, and therefore the volume of a gas is assumed to be mostly empty
space and the volume of the gas molecules themselves to be negligible.
These laws also assume that there is no force of attraction between gas
molecules or between the molecules and the walls of the container. To
account for some of the complexities of actual gases, the formula PV =
nRT can be rewritten as a more realistic Van der Waals Equation:
(P +an?/V*)(V — nb) = nRT, where a is a constant used to correct for
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intermolecular attractive forces that may exist, and b is a constant to
correct for volume of individual gas molecules. For example, for helium,
a = 0.034 L?-atm/mol? and b = 0.024 L/mol. For ammonia (NH3), a = 4.17
L2-atm/mol? and b = 0.037 L/mol. Deviations from ideal gases are greatest
when the intermolecular attractive forces of gas molecules are greatest
and/or when the mass (and subsequently volume) of gas molecules is large.

Robert Boyle (1626-1691), Irish natural philosopher, famous for his
work on the properties of gases and for his support of the “corpuscular”
view of matter that was a precursor to the modern theory of chemical
elements.

CURIOSITY FILE: Boyle conducted research in alchemy—his goal was not
only to transmute base metals into gold but also to attract angels. For Boyle,
alchemy was both pure science and a defense against growing numbers
of atheists. ® Boyle proved that sound transmission was impossible in a
vacuum.

Boyle is charitable to ingenious men that are in want, and
foreign chemists have had large proof of his bounty, for
he will not spare for cost to get any rare secret. At his
own cost and charges he got translated and printed the
New Testament in Arabic, to send into the Mahometan
countries.

—John Aubrey, Brief Lives

Boyle’s interest seems to have been fueled more by his
constant desire to acquire knowledge of God.

—J. J. Maclntosh, “Robert Boyle,” Stanford Encyclope-
dia of Philosophy

Robert Boyle was born at Lismore Castle in Munster, Ireland—the four-
teenth child of the wealthy Richard Boyle, First Earl of Cork. Boyle wrote
of his father, who was probably the richest man in Great Britain, “He, by
God’s blessing on his prosperous industry, from very inconsiderable begin-
nings, built so plentiful and so eminent a fortune, that his prosperity has
found many admirers, but few parallels.” Boyle’s father had constructed
mills, founded towns, and establishing ironworks and other industries.

As a child, Boyle learned to speak Latin and French, and at age 8 he was
sent to Eton College. After spending a few years at the college, he traveled
abroad with a French tutor. In Italy, Boyle had the honor of meeting the
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aging astronomer Galileo. Boyle cherished this meeting, and it provided
an impetus for Boyle to discover more about workings of the world.

Boyle was tutored privately in practical mathematics and other areas of
a liberal education. He also became interested in medicine and chemistry.

In 1654, Boyle joined a small group of eminent English scientists, math-
ematicians, and philosophers who had been meeting weekly in London
and in Oxford since 1645. In 1662, the group became the Royal Society,
which exists today as the oldest continuous scientific society in the world.
The Society’s motto, Nullius in Verba, means “Nothing in Words,” which
suggests that science must be experimentally based.

Boyle had many interests. As just one example, in 1654, he displayed
his fascination with the organ systems of fish when he wrote to a friend:

I am exercising myself in making anatomical dissections of living
animals: wherein I have satisfied myself of the circulation of the
blood...and have seen (especially in the dissections of fishes) more
of the variety and contrivances of nature, and the majesty and wis-
dom of her author, than all the books I ever read in my life could
give me convincing notions of.

However, he was a little squeamish about dissections, and his physiological
studies were hampered by the “tenderness of his nature,” which kept
him from doing many anatomical dissections, especially of living animals,
though he knew this kind of work would be “most instructing.”

Boyle wrote on many subjects, including theology, hydrostatics, philos-
ophy, and other areas of science. Although his first love was chemistry,
his first published scientific book, New Experiments Physico-Mechanicall,
Touching the Spring of the Air and Its Effects (1660), was on pneumatics
(the use of pressurized gases to do work). The text of New Experiments
was the result of three years of experimenting using an air pump with the
assistance of Robert Hooke, the English experimental philosopher. Hooke
designed the apparatus, and Boyle used it to make several discoveries—
for example, that a flame required air and that sound did not travel in
a vacuum. In particular, he showed that the sound of a watch in a bell
jar grew fainter as the air was pumped out. The second edition of New
Experiments, published in 1662, contained the pressure—volume inverse
relationship which today we call Boyle’s Law.

He also performed various other experiments:

® He proved that many fruits and vegetables contain air and carbon
dioxide.

¢ He discovered new chemical reactions and substances. For example,
he produced hydrogen from steel filings and a strong mineral acid.
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® He found that certain plant extracts can be used to distinguish acids
from bases. For example, he observed that all acids turned the blue
syrup of violets red, and that all alkalies turned syrup of violets
green.

® He studied the force that freezing water can produce as it expands.

Boyle emphasized the application of mathematics to the study of chem-
istry, a field that he believed exhibited complexity merely as a result of
simple mathematical laws applied to fundamental particles. Today, Boyle
is most famous for his law that states that if the volume of a gas is
decreased, the pressure increases proportionally. Realizing that his results
could be explained if all gases were made of tiny particles, Boyle tried
to construct a universal corpuscular theory of chemistry. In his 1661 The
Sceptical Chymist, Boyle denounced the Aristotelian theory of the four
elements (earth, air, fire, and water) and developed the concept of primary
particles that came together to produce corpuscles.

Although Boyle believed that the universe could be understood using
mechanical principles, he also believed that this mechanical model was
not counter to a belief in God or that it somehow downgraded God to a
mere mechanic. According to Boyle, a God who could create a mechanical
universe that obeyed laws was to be revered more than a God who created
a universe without scientific laws. Boyle had also come to believe that
angels were created “before the visible World ... was half completed,” but,
in contrast, God created new human souls daily and worked a “physical
miracle” to attach them to their respective bodies.

Boyle never married, and from the age of 41 lived in his sister
Katherine’s house, where he frequently had visitors. Before he died, he
specified that his money should be used to found the Boyle lectures
that were intended to refute atheism and religions that competed with
Christianity.

Firm in his belief in Christianity, Boyle wanted the words of the Bible to
spread throughout the world; thus, he ensured that the Bible was translated
into a variety of languages, such as Turkish and various Native American
languages. He wrote, “To convert Infidels to the Christian Religion is a
work of great Charity and kindness to men.”

Boyle believed that angels existed, that they were generally smarter
than humans, and that it was possible that God’s primary goal in making
the universe was to provide a universe for the angels. This angel-centric
creation suggested that it was possible that the universe might be forever
too complex for humans to understand. He wrote in 1680, “We presume
too much of our own abilities, if we imagine that the omniscient God can
have no other Ends in the framing & managing of Things Corporeal, than
such as we Men can discover.”
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During the course of his life, he continually sought to improve the well-
being of humanity. For example, he invented ways to improve agriculture
and medicine and was interested in the possibilities of producing fresh
water from salt water and preserving food by vacuum packing.

The following is a sampling of some of his works. I selected titles from
a long list in order to give a sampling of the diversity of his interests:

® 1660, New Experiments Physico-Mechanicall: Touching the Spring
of the Air and Its Effects

® 1661, The Sceptical Chymist

e 1663, Experiments and Considerations upon Colours, with
Observations on a Diamond That Shines in the Dark

® 1666, Hydrostatical Paradoxes

® 1670, Cosmical Qualities of Things

® 1664, Excellence of Theology Compared with Natural Philosophy

® 1675, Some Considerations about the Reconcileableness of Reason
and Religion, with a Discourse about the Possibility of the
Resurrection

A lunar crater with a diameter of 57 kilometers was named after Boyle
and approved in 1970 by the International Astronomical Union Gen-
eral Assembly. Gilbert Burnet, Bishop of Salisbury, gave a sermon at
Boyle’s funeral that emphasized Boyle’s love for both religion and science.
According to Burnet, Boyle, like several other scientists of his era,

directed all their enquiries into Nature to the Honour of its great
Maker: And have joined two things, that how much soever they
may seem related, yet have been found so seldom together, that
the World has been tempted to think them inconsistent; A constant
looking into Nature, and yet more constant study of Religion, and a
Directing and improving of the one by the other.

Michael Hunter in Robert Boyle Reconsidered sums up Boyle’s life:

By any standards, Robert Boyle is one of the commanding figures of
seventeenth-century thought. His writings are remarkable for their
range, their significance, and their sheer quantity: during his life he
published over forty books....In his blending of a commitment to
scientific work with deep piety, Boyle presented almost an ideal type
of “the Christian virtuoso,”...a great intellectual innovator who
was at the same time a paragon of godliness and probity.
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INTERLUDE: CONVERSATION STARTERS

It would be entirely wrong to suggest that science is some-
thing that knows everything already. Science proceeds by
having hunches, by making guesses, by having hypothe-
ses, sometimes inspired by poetic thoughts, by aesthetic
thoughts even, and then science goes about trying to
demonstrate it experimentally or observationally. And
that’s the beauty of science, that it has this imaginative
stage but then it goes on to the proving stage, the demon-
strating stage.

—Richard Dawkins, in John Brockman’s What We
Believe but Cannot Prove

If we go back to our checker game, the fundamental laws
are rules by which the checkers move. Mathematics may
be applied in the complex situation to figure out what in
given circumstances is a good move to make. But very
little mathematics is needed for the simple fundamental
character of the basic laws. They can be simply stated in
English for checkers.

—Richard Feynman, The Character of Physical Law

Biology occupies a position among the sciences at once
marginal and central. Marginal because—the living world
constituting but a tiny and very “special” part of the
universe—it does not seem likely that the study of living
beings will ever uncover general laws applicable outside
the biosphere. But if the ultimate aim of the whole of
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science is indeed, as I believe, to clarify man’s relation-
ship to the universe, then biology must be accorded a
central position. ...

—Jacques Monod, Chance and Necessity

God, we are told, is not a puppet-master in regard either
to human actions or to the processes of the world. If we
are to exist in an environment where we can live lives
of productive work and consistent understanding...the
world has to have a regular order and pattern of its own.
Effects follow causes in a way that we can chart, and
so can make some attempt at coping with. So there is
something odd about expecting that God will constantly
step in if things are getting dangerous.

—Rowan Williams, “Of Course This Makes Us Doubt
God’s Existence,” Sunday Telegraph, January 2, 2005

ARCHIMEDES TO HAWKING
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NEWTON’S LAWS OF MOTION,
GRAVITATION, AND COOLING

England, 1687 (a publication date for the laws of motion and grav-
itation), 1701 (for the law of cooling). Newton’s Laws of Motion
concern relations between forces acting on objects and the motion
of these objects. His Law of Universal Gravitation states that
objects attract one another with a force that varies as the product
of the masses of the objects and inversely as the square of the
distance between the objects. His Law of Cooling states that the
rate of heat loss of a body is proportional to the difference in
temperatures between the body and its surroundings.

Cross REFERENCE: ROBERT HOOKE, JOHANN BERNOULLI, KEPLER’S LAwS
OF PLANETARY MoTION, NEWTON’S LAw OF VIscosiTy, AND EINSTEIN’S
GENERAL AND SPECIAL THEORIES OF RELATIVITY.

In 1687, the men who were led by French explorer Robert Cave-
lier de La Salle murdered La Salle while they were desperately
searching for the mouth of the Mississippi River. Five years ear-
lier, La Salle had claimed the entire Mississippi basin for France.
According to the Catholic Encyclopedia, “La Salle’s schemes of
empire and of trade were far too vast for his own generation to
accomplish.”

NEWTON’S LAWS OF MOTION, 1687

Newton’s Laws of Motion revolutionized our basic concepts of physics and
how objects move in the universe. Dudley Williams and John Spangler
write in Physics for Science and Engineering:

These principles form the basis not only of classical dynamics but
of classical physics in general. Although they involve certain defini-
tions and can in a sense be regarded as axioms, Newton asserted that
they are based on quantitative observation and experiment; cer-
tainly, they cannot be derived from other more basic relationships.
The test of their validity involves predictions. ... The validity of such
predictions was verified in every case for more than two centuries.

Aristotle’s view that a body could be kept in motion only by apply-
ing a force was accepted for more than a thousand years, until Newton
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demolished this thinking with his First Law of Motion. Interestingly, Aris-
totle’s ideas did provide a reasonable explanation for his qualitative obser-
vations, but Galileo understood that rigorous measurements of positions
as a function of time required a better theory and a more accurate way
of looking at the world. Of Newton’s Laws of Motion, Ernest Abers and
Charles F. Kennel write in Matter in Motion:

It is a mark of Newton’s genius that of all the possible statements
about motion, he recognized that three and only three completely
define a logically consistent framework within which all problems
of motion can be analyzed quantitatively. These are Newton’s three
laws.

Newton’s First Law of Motion
(Law of Inertia)

The First Law states that bodies do not alter their motions unless forces
are applied to them. A body at rest stays at rest. A moving body continues
to travel with the same speed and direction unless acted upon by a net
force. In other words, an object such as a bowling ball traveling in uniform
motion (i.e., traveling in a straight line at a constant speed) will remain
traveling in uniform motion unless acted upon by a net force.

The term “net force” is important because an object is often acted upon
by numerous forces, but it will remain at a constant velocity whenever the
forces are balanced. For example, a coffee cup sitting on a table has con-
stant zero velocity because the downward force caused by the cup’s weight
is exactly counterbalanced by the upward force that the table applies to
the cup. The net force is zero. However, the cup will obviously move if 1
suddenly unbalance the forces acting on it by giving it a push. Consider a
ball that is subject to a constant force of gravity. If I give the ball an initial
push on an infinitely long frictionless road, the ball will never stop rolling.
Of course, in reality, friction always exists between the ball, the surface of
the road, and the air molecules in the path of the ball.

According to the First Law, if an object has constant velocity, we
conclude there is no net external force. A state of rest is a special case
of constant velocity motion where the speed is 0. If a body’s velocity is
changing, we conclude that a net force is acting on the body.

Conceptually, the First Law of Motion would have been considered
quite novel before Newton’s era. As mentioned above, before the time
of Galileo, researchers believed that bodies, such as balls, would move
only as long as a force was applied to the body, and the body would stop
moving when the force was removed. (Of course, this made perfect sense
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to them, given that if one stops pushing a ball, it does indeed stop moving.
The ancients did not think of friction as a force.) A body was considered
in its “natural state” when not moving. Similarly, it was believed that
the application of a continual force was required in order to keep the
planets from coming to rest. However, if we view gravity as acting via a
gravitational force, this force only serves to change the direction of motion
of a planet or motion, but it is not required to keep a planet traveling at
a constant speed—assuming no frictional effects are caused by particles in
interplanetary space.

This law of motion should probably not be attributed solely to Newton,
even though it is commonly referred to as Newton’s First Law. Arnold
Arons notes in Development of Concepts of Physics:

In Newton’s day...[some erroneous ideas concerning] the physics
of motion continued to be taught from scholastic textbooks;
pedantry is slow to change in any era. But by the latter part of
the seventeenth century, Galileo’s conception of inertia, refined
and corrected, was accepted and taken for granted by most active,
productive physical scientists. ... [However,] Newton set the law of
inertia at the head of the laws of motion and gave it the tone of a
proclamation of emancipation from scholastic theory.

In common usage, inertia usually refers to an object’s amount of resis-
tance to change in velocity. If it is not apparent to you that a moving
object does not “naturally” stop moving without an applied force, you
can imagine an experiment in which the face of a penny is sliding along a
smooth horizontal table. Obviously, the penny eventually slows down and
stops. Next, we add a thin film of oil to the surface, and the penny decreases
its speed at a slower rate and travels farther. If we use an even better lubri-
cant, the penny travels farther still. We can extrapolate this experiment
to a point in which all friction is gone in order to realize that the penny
would continue sliding along such an imaginary surface forever. In fact, an
external force would be needed to change the velocity of the sliding penny,
but no more force is needed for it to continue with constant velocity.

Newton’s Second Law of Motion

According to Newton’s Second Law of Motion, when a net force acts upon
an object, the rate at which the momentum changes is proportional to the
force applied. Today, we express this as

F = dp/dt,
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where p is the momentum, which is equal to the mass times the velocity of
the object; F is the applied force, and dp/dt is the rate of change in momen-
tum. (Bold letters indicate vector quantities that have both a magnitude
and direction.) Thus, force is simply defined in terms of momentum. Two
forces are equal if they cause the same rate of change in the momentum of