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Preface to the
English Edition

T ales of Physicists and Mathematicians is a translation of a book that
was published in Russia in 2001 and is based on articles that ap-
peared from 1960–1980. The first edition of the book, less than half

the size of the current one, was published in the Soviet Union in 1981 and
in English in 1988. Thus the book has its own history, and I would like to
share some of the circumstances under which it appeared to the western
reader.

This was a time not only of a surprising flourishing of mathematics
in the Soviet Union but also of its surprisingly great prestige in society,
perhaps not seen since the time of Plato’s Academy in Athens. Mathemat-
ics attracted talented youth not only as an area where they could stretch
themselves intellectually but also as one that minimized the influence of
the official Marxist ideology that deeply penetrated into the lives of the
“Soviet people.” The profession of scientist, and in particular of mathe-
matician, carried great authority. Here is an interesting observation in this
regard. Children of the top Communist elite, including some “members of
the Politburo,” sometimes chose mathematics or another science as their
professions, just as future kings often studied with Plato. Mathematics was
lucky: it was never a personal “concern” of Stalin, as were biology, linguis-
tics, and economics, which inevitably led to annihilating, punitive oper-
ations against them. In a fantasy of Solzhenitsyn, Stalin looked through
a high school mathematics text, choosing the next science to be the sub-
ject of his concern. It is hard to imagine what would happen next. The
opinion “upstairs” that a high level in the exact sciences was important for
the military industry no doubt helped. Gradually, it became the fashion
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to have mathematicians in any serious organization. Often they enjoyed
some freedom, but this is reminiscent of the freedom of the court jester.
The comparative idyll between mathematicians and those in power ended
in the late 1960s when many mathematicians signed a letter to the govern-
ment defending their colleague Alexander Esenin-Volpin, who had been
sent to a mental hospital for political reasons.

Mathematical life itself was not without clouds. The most violent anti-
Semitism was supported not only by bureaucrats who carried out ideolog-
ical surveillance and did not take part in real scientific work themselves,
but also by some leading mathematicians. A distorted system of entrance
exams closed off the way to mathematics for many talented people.

In the 1930s, the work of attracting young people to mathematics be-
gan to flourish. Mathematics is the unique area of science where children
can begin serious work and obtain outstanding results very early. I recall
A. N. Kolmogorov’s story of how he became interested in mathematics.
He said that one should not seriously study mathematics “too early,” “not
before the age of 12”: at an earlier age there are many competing things
to do that are less intellectual. Mathematics competitions (olympiads) and
clubs (circles) were organized and many interesting books were written.
This mainly took place around the universities in Moscow and Leningrad,
and both well-known mathematicians and brilliant young university stu-
dents played the leading role. Some real changes took place in the 1960s.
Olympiads began to be held for students from the whole country and math-
ematics circles were replaced by mathematics high schools, bringing to-
gether many children devoted to mathematics who could be taught with
an intensiveness and with results not previously seen. In Moscow and
Leningrad, boarding schools opened where children from far away could
be taught. A. N. Kolmogorov, I. M. Gel’fand, E. B. Dynkin, and other lead-
ing mathematicians gave regular lessons in such classes. Not infrequently,
students obtained their first serious results before they finished high school.

The physics-mathematics journal Kvant (Quantum) began to come out
and most of the activities described here were concentrated around it. The
articles I wrote that make up this book appeared in Kvant. I began with the
story of the first two discoveries of the 19-year old Gauss, with complete
proofs. It seemed to me that this possibility of following the first steps of
a genius was invaluable for young people who were starting along their
paths in science. Gradually, I told not only more about mathematics but
also about the people who created it. I thought that it was always important
to understand the people of science better, but this was especially urgent
given the conditions in which we lived.

It was rather unusual for a professional mathematician to write about
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its history. There were some highly qualified historians of mathematics in
the country, but mathematicians were basically suspicious about historical
studies, seeing in them a direction in which the official ideology could
influence mathematics. There was no shortage of examples of this. The
influential “Communist commissar” at Moscow University was an expert
on the mathematical writings of Karl Marx.

I wanted to show the great mathematicians as living human beings.
Maybe it sounds strange today that this was in contradiction with the offi-
cial tradition. It would not be a gross exaggeration to say that a black-and-
white picture of the world was created in which scientists were divided
into progressive materialists (with no shortcomings) and reactionaries and
idealists (with no merit), and whether you belonged to one category or the
other was decided at a very high level. Pasternak wrote,1

Komu byt’ zhivym i hvalimym, Who is to be honoured and living
Kto dolzhen byt’ mërtv i hulim, And who without honour and dead
Izvestno u nas podhalimam Nobody knows in our country
Vliyatel’nym tol’ko odnim. Till Establishment yes-men have said.

Such a world without shades of gray probably made it easier for those at
the top to keep an eye on everyone. Russian scientists had a special advan-
tage. Their primacy (real or imagined) was carefully cultivated (disrespect
to them could easily be interpreted as slander), and western scientists were
rarely “fully” progressive. Today it would be funny to see biographical
movies of those years. I remember Euler in a film about Lomonosov,2

reading with great surprise and delight Lomonosov’s text on the conserva-
tion of energy and verifying the law by shoving one chair towards another,
which began to move on impact. In view of Euler’s foreign origins the
level of his progressivity was not clear, not withstanding his long work in
Russia.

It seemed to me that information about the fact that mathematicians
like Euler or Gauss were basically ordinary people who spent a lot of en-
ergy solving ordinary problems of life in no way disparaged them. I saw
no reason to cover up the history of how the aging great Euler wanted
to become a (civil) general on returning to Russia from Prussia but that
Catherine the Great explained (through an intermediary!) that he could be
given a rank no higher than colonel. A comparison with influential So-
viet mathematicians who dreamed of becoming Heroes of Socialist Labor

�——————�
1From “The Wind (Four Fragments about Blok)” in Boris Pasternak, Selected Poems, trans-

lated by Jon Stallworthy and Peter France, W. W. Norton, New York, 1983, p. 147.
2Mikhail Lomonosov (1711–1765) is traditionally thought of as the first Russian scien-

tist and was influential in founding the university that carries his name today, Lomonosov
Moscow University.—Transl.
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(and twice was better!) lay on the surface. “Double heroes” were eligible
to have monuments erected to them during their lives (while Euler did
not achieve this honor even after his death; see the story on p. 212). At
times I succeeded in some counterestablishment action. The story about
Chernyshevsky writing complete nonsense about Lobachevsky and his ge-
ometry was against the rules, since Chernyshevsky was officially classified
as a “revolutionary democrat,” which was only one step below a “Marx-
ist revolutionary.” More often, I was put in my place: a large part of the
article on Pascal, devoted to his Pensées, was deleted. A progressive sci-
entist could not be a religious writer (so they bashfully tried to overlook
Gogol’s religious searching during the last years of his life). An article on
von Neumann was rejected, since I refused to say that he was a “servant of
American militarism.” The last trick for getting the book published was to
switch “mathematicians” and “physicists” in the title and declare it to be a
book about physics: there was no chance of getting it past the publishing
committee on mathematics. Life taught us to fight for survival.

It is always instructive to compare similar events separated in time.
Mandel’shtam wrote,3

Vsë bylo vstar’, Everything’s been told before,
vsë povtoritsya snova, everything will happen again,
I sladok nam lish’ uznavan’ya mig. and all that’s sweet is the instant

of recognition.

But in that life such comparisons could be risky. It was hard not to com-
pare the story of the Göttingen professors’ letter to the king about violating
the constitution (which interrupted the collaboration of Gauss and Weber)
with the letter that mentioned Esenin-Volpin. The limits within which Car-
dinal Bellarmino proposed to place Galileo turned out to be fantastically
gentle compared to what the Soviet ideological machine required of scien-
tists. Pascal’s tragic thoughts about the sinfulness of science acquired new
nuances in the 20th century. The fate of the French scientists who were
happy to have a chance to participate in governing France at the time of
the Revolution had direct associations with Soviet reality.

While recently rereading what I wrote in preparing this edition, I felt
that after such a long time it seems to be the writing of another person. I
think that it would have been wrong to change anything. Of course texts
exist independently of the context in which they were written, but all the
same I decided to use the occasion to recall in this very important stage of
my life when this book was written.

�——————�
3From Tristia in Osip Mandelstam, Complete Poetry of Osip Emilevich Mandelstam, translated

by Burton Raffel and Alla Burago, State University of New York Press, Albany, NY, 1973, p. 103.
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I want to thank Alan Shuchat for his enormous selfless work in trans-
lating both editions of this book. I am also grateful to my son Daniel, who
read the translation and made several suggestions. Ann Kostant’s support
was very important for the publication of the translation.



Preface to the
Third Russian Edition

The first edition of this book appeared in 1981 in the Kvant (Quantum)

collection. It was reprinted several times in large print runs until
1985, more than half a million copies were sold, and it was trans-

lated into English, French, and Japanese. The book was based on articles
that were published earlier in Kvant magazine. In this edition, some mate-
rial is added that existed in 1981 but was not included then because of strict
limitations on size. Some additional chapters were written later. More than
twenty years have passed since a significant part of this book was written
and today I would have written much of it differently, but I preferred to
limit myself only to correcting errors that have been pointed out and to
inaccuracies.

Among the additional subjects we note the history of the cycloid, a
curve of unusual destiny, which seemed to 17th century mathematicians
to be a curve of paramount importance and figured in the research of the
strongest mathematicians but turned out in the end to be a curiosity in the
history of mathematics. The story of the 17th century, the heroic century of
mathematical analysis, is completed by the chapter on Leibniz, one of the
most surprising figures in the history of science.

The 18th century that followed is represented by a trio of the most im-
portant mathematicians of the century: Euler, Lagrange, and Laplace (the
last two worked into the 19th century). By the usual logic of the history of
science, this should have been a relatively quiet century of putting in order
the unpolished facts accumulated during the preceding revolutionary cen-
tury of differential and integral calculus. However the great genius Euler,
who felt confined by the mathematics of his day, broke all the rules and
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made surprising discoveries that were extraordinarily ahead of their time.
At the end of the century, scientists turned out to be the objects of a critical
historical experiment: the French Revolution tempted some of them with
the possibility of taking a direct role in government, and this temptation
cost many of them their lives. The fates of Laplace and Lagrange are two
examples of the behavior of scientists under these conditions.

The 19th and 20th centuries are represented, apart from Gauss, by sto-
ries about Klein, Poincaré, and Ramanujan. Of course, this choice is ran-
dom enough but their histories are instructive from our view. Finally, we
brought to completion two articles about the history of projective geometry
and its connections with one of the most modern theories of mathematical
physics—Penrose’s twistor theory. The mathematical part of this dramatic
history assumes a greater degree of preparation than the rest of the book.

I want to remind the reader again that this is not a systematically written
book but a collection of articles that were first of all intended for students in-
terested in mathematics, and so wherever possible I tried to include detailed
mathematical fragments in the historical tales. Since then, it has turned
out that the circle of readers of this book was significantly wider. I discov-
ered, not without surprise, that even some professional mathematicians
and physicists found something in it for themselves. On the other hand,
there were readers who skipped all the mathematics and found something
instructive in the remainder. I would also like to warn against treating this
book as a serious work on the history of mathematics: I did not work with
original sources, did not thoroughly verify details, and did not furnish the
text with citations and references. I only wanted to share with the reader
who, like myself, loves mathematics and physics a picture that appeared
to me after I became familiar with considerable historico-scientific material
in connection with my professional mathematical studies. It would have
been ideal for me to present this history not in serious history books (which
are doubtless important) but rather in the novels of Dumas.

Although this book does not give a systematic picture of the devel-
opment of mathematics, it contains significant material for reflecting on
some astonishing paths in this development. I have already pointed out
certain recurring subjects in the preface to the first edition. The additional
chapters touch on some new and important examples (we recall the apoc-
alyptic ideas of Leibniz and Lagrange on the coming end of mathematics).
Unknowable laws govern mathematical fashion! How can we understand
why Fermat, well-respected by his contemporaries, could not interest any
serious 17th century mathematician in his work in arithmetic? Only as the
result of a fortunate coincidence was his work continued in the next century
by Euler, who passed the baton to Lagrange and Gauss, thus guaranteeing
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the continued development of number theory. By contrast, projective ge-
ometry, one of the greatest achievements of human thought and discovered
in the same 17th century by Desargues and Pascal, was quickly forgotten
and rediscovered only in the 19th century.

I do not try to explain in this book the laws of the development of
mathematics: I do not know them. I only observe this process with inter-
est, trying to draw the reader into searching for the logic hidden within it.
Does there exist a natural time for the creation of a mathematical theory?
One can bring many arguments in favor of this proposition. The construc-
tion of differential and integral calculus was begun by several 17th century
mathematicians at once and in the end was completed independently by
Newton and Leibniz; analytic geometry was independently constructed by
Descartes and Fermat. Some problems that remained unsolved for many
years were suddenly solved in a short interval of time by several mathe-
maticians at once (strangely, often by three). Non-Euclidean geometry was
discovered independently by Gauss, Lobachevsky, and Bolyai; the theory
of elliptic functions was constructed independently by Gauss, Abel, and
Jacobi. On the other hand, there have been great scholars who were very
much ahead of their time and made discoveries that did not lead naturally
to advancing science. Sometimes these discoveries were welcomed by their
contemporaries (in the case of Archimedes or Euler) and sometimes they
were forgotten (as in the case of Nicole Oresme in the 14th century, who
used coordinates and considered uniformly accelerated motion 250 years
before Galileo; see also the above examples about arithmetic and projective
geometry). We find the richest information about the laws of mathematical
creativity in the history of Ramanujan’s surprising life.

What role do personalities play in the history of mathematics? For
example, how decisive for the fate of mathematics was Plato’s uncompro-
mising position on the question of the subject of mathematics, given his
unlimited influence on the science of his day? Was the development of
geometry as an axiomatic science predetermined, or under different cir-
cumstances could it have evolved as more of an experimental science? Did
Plato’s almost extreme requirement of using only a straightedge and com-
pass in geometric constructions help or hurt? Without it, what would have
been discovered about unsolvable geometric problems, algebraic equations
not solvable in radicals, and transcendental numbers?

I belong to the generation of Russian mathematicians who sometimes
experience an ambivalent nostalgia for the time when mathematics flour-
ished against the background of all the horrors of Soviet reality (the word
“despite” would have been out of place in this context). Mathematics was
a prestigious profession that attracted many talented young people who
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aspired to an intellectual activity that was relatively free from the influ-
ence of the prevailing Marxist ideology. This phenomenon has been talked
about a lot during the last ten years, and we will not try to continue this
important discussion here.

Today the position of mathematics has changed in an important way.
I am able to observe a significant decrease in the standing of mathemat-
ics and of science in general in American life. I do not see it as a tragedy
that most talented youngsters prefer professions with incomparably better
prospects for financial success than a scientific career, but I am frightened
by the needlessly utilitarian view of the role of mathematics in education,
a view that absolutely misunderstands the unique place of mathematics
in the general intellectual development of the individual. Recall that in
the past all future rulers, rather than future scholars, studied geometry in
Plato’s Academy (the Spartans did not share this piety towards mathemat-
ics and the Romans did not include it among the values they inherited from
Greek civilization). Graduates of mathematics schools in the former Soviet
Union were successful far beyond mathematics. Today, many young pro-
fessional mathematicians have decided to leave mathematics for careers
in business. They are often successful, thanks not to some particular bit
of mathematical knowledge but rather to the intellectual training they re-
ceived while preparing for the mathematics profession.

In today’s Russia the conditions of life have changed, and mathemat-
ics is going through difficult times. Mathematicians run into everyday
problems that are unknown to their western colleagues. Glancing at some
Russian newspapers one day, I thought that perhaps it was in vain that
in the 18th century mathematicians had happily eliminated constructing
horoscopes from their professional obligations; today it might have turned
out to be a useful occupational addition.

It will soon be 50 years that I have been engaged in mathematics, and
I never cease to be enraptured by this amazing science. I am used to ex-
pecting that many other people, including the young, share my love for it.
This book is above all addressed to them.

I warmly thank the editor of this book, S. M. L’vovskiy, for his invaluable
help in preparing this edition.

February 11, 2001
Princeton, NJ



Preface to the
First Russian Edition

This book is based on articles published in Kvant (Quantum) over
the course of several years. This explains a certain element of ran-
domness in the choice of the people and events to which the stories

collected in the book are devoted. However, it seems to us that the book
discusses the principal events in the history of science that deserve the
attention of devotees of mathematics and physics.

We cover a time span of four centuries, beginning with the sixteenth.
The 16th century was a very important one for European mathematics,
when its rebirth began a thousand years after the decline of ancient math-
ematics. Our story begins at the very moment when, after a 300-year-long
apprenticeship, European mathematicians were able to obtain results un-
known to the mathematicians of either ancient Greece or the East: they
found a formula for the solution of the third-order polynomial equation.
The events of the next series of tales begin at the dawn of the 17th cen-
tury when Galileo, investigating free fall, laid the foundation for the de-
velopment of both the new mechanics and the analysis of infinitely small
quantities. The parallel formulation of these two theories was one of the
most notable scientific events of the 17th century (from Galileo to Newton
and Leibniz). We also tell of Galileo’s remarkable astronomical discoveries,
which interrupted his study of mechanics, and of his dramatic struggle on
behalf of the claims of Copernicus. Our next hero, Huygens, was Galileo’s
immediate scientific successor. The subject we take is his work over the
course of forty years to create and perfect the pendulum clock. A signifi-
cant part of Huygens’ achievements in both physics and mathematics was
directly stimulated by this activity. The 17th century is also represented
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here by Pascal, one of the most surprising personalities in human history.
Pascal began as a geometer, and his youthful work signified that European
mathematics was already capable of competing with the great Greek math-
ematicians in their own territory—geometry. A hundred years had passed
since the first successes of European mathematics in algebra.

Towards the end of the 18th century, mathematics unexpectedly found
itself with no fundamental problems on which the leading scholars would
otherwise have concentrated their efforts. Some approximation of mathe-
matical analysis had been constructed; neither algebra nor geometry had
brought forth suitable problems up to that time. Celestial mechanics “saved
the day.” The greatest efforts of the best mathematicians, beginning with
Newton, were needed to construct the theory of motion of heavenly bodies,
based on the law of universal gravitation. For a long time, almost all good
mathematicians had considered it a matter of honor to demonstrate their
prowess on some problem of celestial mechanics. Even Gauss, to whom
the last part of this book is devoted, was no exception. But Gauss came
to these problems as a mature scholar, and instead made his debut in an
unprecedented way. He solved a problem that had been outstanding for
2000 years: He proved it was possible to construct a regular 17-gon with
a straightedge and compass. The ancient Greeks had known how to con-
struct regular n-gons for n = 2k, 3 · 2k, 5 · 2k, and 15 · 2k, and had spent
much energy on unsuccessful attempts to devise a construction for other
values of n. From a technical point of view, Gauss’ discovery was based
on arithmetical considerations. His work summed up a century and a half
of converting arithmetic from a collection of surprising facts about specific
numbers, accumulated from the deep past, into a science. This process
began with the work of Fermat and was continued by Euler, Lagrange,
and Legendre. It was startling that the young Gauss, with no access to the
mathematical literature, independently reproduced most of the results of
his great predecessors.

Observing the history of science from points chosen more or less at
random turns out to be instructive in many ways. For example, numerous
connections revealing the unity of science in space and time come into view.
Connections of a different kind are revealed in the material considered in
this book: the immediate succession from Galileo to Huygens, Tartaglia’s
ideas on the trajectory of a projectile carried by Galileo to a precise result,
Galileo’s profiting from Cardano’s proposal for using the human pulse to
measure time, Pascal’s problems on cycloids being opportune for Huy-
gens’ work on the isochronous pendulum, the theory of motion of Jupiter’s
moons, which were discovered by Galileo, to which scholars of several
generations tried to make some small contribution, and so on.
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One can note many situations in the history of science that repeat, often
with small variations (in the words of the French historian de Tocqueville,
“history is an art gallery with few originals and many copies”). Consider,
for example, how the evaluation of a scientist changes over the centuries.
Cardano had no doubt that his primary merit lay in medicine and not in
mathematics. Similarly, Kepler considered his main achievement to be the
“discovery” of a mythical connection between the planetary orbits and the
regular polyhedra. Galileo valued none of his discoveries more than the
erroneous assertion that the tides prove the true motion of the earth (to a
significant extent, he sacrificed his material well-being for the sake of its
publication). Huygens considered his most important result to be the appli-
cation of the cycloid pendulum to clocks, which turned out to be completely
useless in practice, and Huygens could have considered himself generally
unsuccessful since he could not solve his greatest problem—to construct a
naval chronometer (much of what is considered today to be his fundamen-
tal contribution was only a means for constructing naval chronometers).

The greatest people are defenseless against errors of prognosis. In fact,
a scientist sometimes makes the critical decision to interrupt one line of
research in favor of another. Thus, Galileo refused to carry through to pub-
lication the results of his twenty-year-long work in mechanics, first being
diverted for a year to make astronomical observations and then essentially
ceasing scientific research, in the true sense of the word, for twenty years
in order to popularize the heliocentric system. A century and a half later,
Gauss’ work on elliptic functions remained unpublished, again for the sake
of astronomy. Probably neither foresaw how long the interruption would
be, and neither saw around him anyone who could have threatened his
priority. Galileo succeeded in publishing his work in mechanics after 30
years(!), when the verdict of the Inquisition closed off for him the possibility
of other endeavors. Only a communication by Cavalieri about the trajec-
tory of a projectile being parabolic forced Galileo to worry a bit, although
it did not encroach on his priority. Gauss did not find time to complete
his results, also for thirty years, and they were rediscovered by Abel and
Jacobi.

The selection of material and the nature of its presentation were dic-
tated by the fact that the book and the articles on which it is based are
addressed to lovers of mathematics and physics and, most of all, to stu-
dents. We have always given priority to a precise account of specific scien-
tific achievements (Galileo’s work in mechanics, Huygens’ mathematical
and mechanical research in connection with pendulum clocks, and Gauss’
first two mathematical works). Unfortunately, this is not always possible,
even with ancient works. There is no greater satisfaction than following
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the flight of fancy of a genius, no matter how long ago he lived. It is not
only a matter of this being beyond the reach of the amateur in the case of
contemporary works. To be able to feel the revolutionary character of an
achievement of the past is an important part of culture.

We wish to stress that the tales collected in this book do not have the
nature of texts in the history of science. This is revealed in the extensive
adaptation of the historical realities. We freely modernize the reasoning
of our scientists: we use algebraic symbols in Cardano’s proofs, we intro-
duce free-fall acceleration in Galileo’s and Huygens’ calculations (in order
not to bother the reader with endless ratios), we work with natural log-
arithms instead of Naperian ones in the story of Napier’s discovery, and
we use Galileo’s latest statements in order to reconstruct the logic of his
early studies in mechanics. Throughout, we consciously disregard details
that are appropriate for a work in the history of science in order to present
vividly a small number of fundamental ideas.

Translator’s Note

Wherever possible, citations have been made to English versions of the
works discussed in the book. In addition, since many of the quotations that
appear were taken from various European languages (including English),
I have tried to use existing translations or work directly from the original.
It has been difficult to locate the sources of some quotations and these
have thus been translated twice, first into Russian and then into English,
and inaccuracies may have crept in. There is an apocryphal story about a
computer that translated “the spirit is willing but the flesh is weak” into
Russian and back again, ending up with “the wine is strong but the meat
is rancid.” I trust these results are more palatable! A. S.



Ars Magna
(The Great Art)

In 1545 a book by Gerolamo Cardano appeared whose title began with
the Latin words Ars Magna. It was essentially devoted to solving third-
and fourth-order equations, but its value for the history of mathemat-
ics far surpassed the limits of this specific problem. Even in the 20th

century, Felix Klein, evaluating this book, wrote, “This most valuable work
contains the germ of modern algebra, surpassing the bounds of ancient
mathematics.”

The 16th century was the century in which European mathematics was
reborn after the hibernation of the Middle Ages. For a thousand years the
work of the great Greek geometers was forgotten, and in part irrevocably
lost. From Arab texts, the Europeans learned not only about the mathe-
matics of the East but also about the ancient mathematics of the West. It is
characteristic that in the spread of mathematics across Europe a major role
was played by traders, for whom journeys were a means of both obtaining
information and spreading it. The figure of Leonardo of Pisa (1180–1240),
better known as Fibonacci (son of Bonacci), especially stands out. His name
is immortalized by a remarkable numerical sequence (the Fibonacci num-
bers). Science can lose its royal status very quickly and centuries may be
needed to reestablish it. For three centuries European mathematicians re-
mained as apprentices, although Fibonacci undoubtedly did some interest-
ing work. Only in 16th century Europe did significant mathematical results
appear that neither the ancient nor the Eastern mathematicians knew. We
are talking about the solution of third- and fourth-degree equations.

Typically, the achievements of the new European mathematics were in
algebra, a new field of mathematics that arose in the East and was essen-
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tially taking only its first steps. For at least a hundred years, it would be be-
yond the power of the European mathematicians not only to achieve some-
thing in geometry comparable to the great geometers Euclid, Archimedes,
and Apollonius, but even to master their results fully.

Legend ascribes to Pythagoras the phrase “all is number.” But after
Pythagoras, geometry gradually came to dominate all of Greek mathemat-
ics. Euclid even put the elements of algebra into geometric form. For ex-
ample, a square was divided, by lines parallel to its sides, into two smaller
squares and two equal rectangles. The formula (a+ b)2 = a2 + b2 +2ab was
obtained by comparing areas. But to be sure, there was no algebraic nota-
tion at the time, and expressing the result in terms of areas was definitive.
Mathematical statements were very awkward. In essence, construction
problems with straightedge and compass led to solving quadratic equa-
tions and to considering expressions that contained square roots (quadratic
irrationals). For example, Euclid considered expressions of the form

√
(a + √

b)

in detail (in different language). To a certain extent, the Greek geometers
understood the link between the classical unsolved construction problems
(duplicating a cube and trisecting an angle) and cubic equations.

With the Arab mathematicians, algebra gradually became distinct from
geometry. However, as we will see below, the solution of the cubic equa-
tion was obtained by geometric means (the debut of algebraic formulas
for solving even the quadratic equation came only with Bombelli in 1572).
The algebraic assertions of the Arab mathematicians are stated as recipes
for the solution of one-of-a-kind arithmetic problems, usually of an “ev-
eryday” sort (for example, dividing an inheritance). Rules are formulated
for specific examples but so that similar problems can be solved. Until
recently rules for solving arithmetic problems (the rule of three,1 and so
on) were sometimes stated this way. Stating rules in general form almost
inevitably requires a developed symbolism, which was still far off. The
Arab mathematicians did not go further than solving quadratic equations
and some specially chosen cubics.

The problem of solving cubic equations bothered both the Arab math-
ematicians and their European apprentices. A surprising result in this
direction belongs to Leonardo of Pisa. He showed that the roots of the
equation x3 + 2x2 + 10x = 20 cannot be expressed in terms of Euclidean
irrationals of the form

�——————�
1A mechanical way of solving proportion problems.—Transl.
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√
(a + √

b).

This statement is startling for the beginning of the 13th century and fore-
shadows the problem of solving equations in radicals, which was thought
of significantly later. Mathematicians did not see the path that led to solv-
ing the general cubic equation.

The state of mathematics at the turn of the 16th century was summed up
by Fra Luca Pacioli (1445–1514) in his book, Summa de Arithmetica (1494),
one of the first printed mathematics books and written in Italian rather
than Latin.2 At the end of the book he states that “the means [for solving
cubic equations] by the art of algebra are not yet given, just as the means for
squaring the circle are not given.” The comparison sounds impressive, and
Pacioli’s authority was so great that most mathematicians (even including
our heroes at first, as we shall see) believed that the cubic equation could
not be solved in general.

Scipione dal Ferro

There was a man who was not deterred by Pacioli’s opinion. He was a
professor of mathematics in Bologna named Scipione dal Ferro (1465–1526),
who found a way to solve the equation

x3 + ax = b. (1)

Negative numbers were not yet in use and, for example,

x3 = ax + b (2)

was thought of as a completely different equation! We have only indirect
information about this solution. Dal Ferro told it to his son-in-law and
successor on the faculty, Annibale della Nave, and to his student Antonio
Maria Fior. The latter decided, after his teacher’s death, to use the secret
confided to him to become invincible in the problem-solving “duels” that
were then quite widespread. On February 12, 1535, Niccolò Tartaglia, one
of the major heroes of our story, nearly became his victim.

Niccolò Tartaglia

Tartaglia was born around 1500 in Brescia into the family of a poor mounted
postman named Fontana. During his childhood, when his native city was
captured by the French, he was wounded in the larynx and thereafter spoke
with difficulty. Because of this he was given the nickname “Tartaglia”

�——————�
2Despite its title.—Transl.
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The only known portrait of Niccolò Tartaglia.

(stutterer). Early on he came under the influence of his mother, who tried to
enroll him in school. But the money ran out when the class reached the letter
“k,” and Tartaglia left school without having learned to write his name. He
continued to study on his own and became an “abacus master” (something
like an arithmetic teacher) in a private school for commerce. He traveled
a lot throughout Italy until landing in Venice in 1534. Here his scientific
studies were stimulated by contact with engineers and artillerymen of the
famed Venetian arsenal. They asked Tartaglia, for example, at what angle
to aim a gun so that it shoots the farthest. His answer, a 45◦ angle, surprised
his questioners. They did not believe that they had to raise the barrel so
high, but “several private experiments” proved he was right. Although
Tartaglia said he had “mathematical reasons” for this assertion, it was more
of an empirical observation (Galileo gave the first proof).

Tartaglia published two books, one a sequel of the other: La Nuova
Scientia (The New Science [of Artillery], 1537) and Quesiti et Inventioni Di-
verse (Problems and Various Inventions, 1546), where the reader is promised
“. . .new inventions, not stolen from Plato, from Plotinus, or from any other
Greek or Roman, but obtained only by art, measurement, and reasoning.”
The books were written in Italian in the form of a dialogue, which was later
adopted by Galileo. In several respects, Tartaglia was Galileo’s predeces-
sor. Although in the first of these books he followed Aristotle in saying
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that a projectile launched at an angle first flies along an inclined straight
line, then along a circular arc, and finally falls vertically, in the second book
he wrote that the trajectory “does not have a single part that is perfectly
straight.” Tartaglia was interested in the equilibrium of bodies on an in-
clined plane and in free fall (his student Giovanni Benedetti (1530–1590)
convincingly showed that the behavior of a falling body does not depend
on its weight). Tartaglia’s translations of Archimedes’ and Euclid’s work
into Italian and his detailed commentaries played an important role (he
called Italian the “national” language, as opposed to Latin). In his per-
sonal qualities Tartaglia was far from irreproachable and was very difficult
with interpersonal relations. Bombelli (who was admittedly not impartial;
more on him later) wrote that “this man was by nature so inclined to speak
badly, that he took any sort of abuse as a compliment.” According to other
information (Pedro Nuñes) “he was at times so excited that he seemed
mad.”

Let us return to the duel before us. Tartaglia was an experienced com-
batant and hoped to win an easy victory over Fior. He was not frightened
even when he discovered that all thirty of Fior’s problems contained equa-
tion (1), for various values of a and b. Tartaglia thought that Fior himself
could not solve these problems, and hoped to unmask him: “I thought
that not a single one could be solved, because Fra Luca [Pacioli] assures
us of their difficulty that such an equation cannot be solved by a general
formula.” After fifty days, Tartaglia was supposed to submit the solution
to a notary. When the time limit had almost elapsed, he heard a rumor
that Fior had a secret method for solving equation (1). He was not pleased
by the prospect of hosting a victory meal for Fior’s friends, one friend for
each problem the victor solved (those were the rules!). Tartaglia put forth
a titanic effort, and fortune smiled on him eight days before the deadline
of February 12, 1535: He found the method he had hoped for! He solved
all the problems in two hours. His opponent did not solve a single one of
the problems Tartaglia had given him. Strangely enough, Fior could not
handle one problem that could be solved by dal Ferro’s formula (Tartaglia
had posed it with a certain trick in mind for solving it), but we will see that
the formula is not easy to use. Within a day Tartaglia found a method for
solving equation (2).

Many people knew about the Tartaglia–Fior duel. In this situation a se-
cret weapon could not help but could rather hurt Tartaglia in further duels.
Who would agree to compete with him if the outcome were predetermined?
All the same, Tartaglia turned down several requests to reveal his method
for solving cubic equations. But one who made the request achieved his
goal. This was Gerolamo Cardano, the second hero of our tale.
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Gerolamo Cardano

He was born in Pavia on September 24, 1501. His father, Fazio Cardano,
an educated lawyer with broad interests, was mentioned by Leonardo da
Vinci. Fazio was his son’s first teacher. After graduating from the Univer-
sity of Padua, Gerolamo decided to devote himself to medicine. But he was
an illegitimate child and so was denied admission to the College of Physi-
cians in Milan. Cardano practiced in the provinces for a long time until
August, 1539 when the college admitted him anyway, specially changing
the rules to do so. Cardano was one of the most famous doctors of his time,
probably only second to his friend, Andreas Vesalius. In his declining years,
Cardano wrote his autobiography, De Vita Propria Liber (The Book of My Life).
It contains recollections of his mathematical work, as well as detailed de-
scriptions of his medical research. He claimed that he prescribed cures for
up to 5000 difficult diseases and solved some 40,000 problems and ques-
tions, as well as up to 200,000 smaller ones. Of course these figures should
be taken with a large dose of skepticism, but Cardano was undoubtedly
a famous physician. He described cases from his medical practice where
he focused on curing noted personalities (Archbishop James Hamilton of
Scotland, Cardinal Morone, etc.), claiming that he had only three failures.
In modern terms he was evidently an outstanding diagnostician, but he
did not pay great attention to anatomical information, unlike Leonardo da
Vinci and Vesalius. In his autobiography Cardano places himself alongside
Hippocrates, Galen, and Avicenna (the latter’s ideas were especially close
to his own).

However, medical studies did not fill up Cardano’s time. In his free mo-
ments he studied everything under the sun. For example, he constructed
horoscopes for persons both living and dead (Christ, King Edward VI of
England, Petrarch, Dürer, Vesalius, and Luther). These studies harmed his
reputation among his successors (according to one unkind legend, Cardano
committed suicide in order to confirm his own horoscope). But we must re-
member that at that time astrology was completely respectable (astronomy
was a part of astrology—natural astrology as opposed to the astrology of
predictions). The pope himself utilized the work of Cardano the astrologer.

In his scientific activities Cardano was an encyclopedist, but a lone en-
cyclopedist, which was typical for the time of the Renaissance. Only after
a century and a half did the first academies appear, in which scholars spe-
cialized in more or less narrow fields. Real encyclopedias could only be
created with such collaborative efforts. The lone encyclopedist was in no
position to verify much of the information he was given. In Cardano’s case
a large role was played by the peculiarities of his personality and psycho-
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Gerolamo Cardano.

logical bent. He believed in magic, premonitions, demons, and in his own
supernatural ability. He described in detail the events that convinced him
of this (there was no bleeding in any collision he saw, from neither people
nor animals, not even in hunting; he learned in advance, from signs, about
the events leading up to his son’s death, etc.). Cardano believed he pos-
sessed a gift of vision (he called it a “harpocratic” feeling) that allowed him
to divine both an inflamed organ in an ill patient and the fall of the dice in
a game of chance, and to see the mark of death on an interlocutor’s face.
Dreams, which he remembered in the finest detail and described carefully,
played a great role in his life. Contemporary psychiatrists have used these
descriptions to try to determine his disease. Cardano writes that constantly
recurring dreams, together with the desire to immortalize his name, were
his main reasons for writing books. In his encyclopedias De Subtilitate Re-
rum (On Subtlety) and De Rerum Varietate (On a Variety of Matters), he again
gave a lot of space to descriptions of the author and his father.

But these books also contain many personal observations and carefully
digested communications from others. His readiness to discuss fantastic
theories and his peculiar credulity did not only play a negative role. Thanks
to them, he discussed things that his more careful colleagues decided to
speak of only many years later (see below about complex numbers). It does
not always pay to follow authority. It is not clear how familiar Cardano
was with the works of Leonardo da Vinci (this also applies to other 16th
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century Italian authors; Leonardo became widely known only at the very
end of the 18th century). De Subtilitate Rerum was brought to France and
served as a popular textbook on statics and hydrostatics throughout the
17th century. Galileo employed Cardano’s instructions for using the hu-
man pulse to measure time (in particular, for observing the oscillations of
the cathedral chandelier). Cardano asserted that perpetual motion is im-
possible, some of his remarks can be interpreted as the principle of virtual
displacements (according to Pierre Duhem (1861–1916), the well-known
historian of physics), and he studied the expansion of steam. Cardano ad-
hered to the theory, first conceived of in the 3rd century B.C., that explained
the tides by the motion of the moon and sun. He was the first to clearly
explain the difference between magnetic and electrical attraction (we have
in mind the type of phenomenon observed as early as Thales (c.640–c.546
B.C.), such as the attraction of straw to polished amber).

Cardano was no stranger to experimental research either, or to the con-
struction of practical devices. In his declining years he established experi-
mentally that the ratio of the density of air to water is 1/50. In 1541, when
King Charles V of Spain conquered Milan and entered the city in triumph,
Cardano, as Rector of the College of Physicians, walked alongside him near
the baldachin (canopy). In response to the honor shown to him, he offered
to supply the royal team with a suspension from two shafts, which would
keep the coach horizontal when it rocked (the roads in Charles’ empire
were long and bad). Such a system is now called a Cardan suspension
(Cardan shaft, Cardan joint) and is used in automobiles. The truth requires
us to note that the idea of such a system arose in antiquity and that, at the
very least, there is a drawing of a ship’s compass with a Cardan suspension
in Leonardo da Vinci’s Codice Atlantico. Such compasses became common
during the first half of the 16th century, obviously without Cardano’s in-
fluence.

Cardano wrote a great many books, of which some were published,
some remained as manuscripts, and some were destroyed by him in Rome
in anticipation of arrest. His voluminous book, De Libris Propriis (On My
Own Books), contained only a description of the books he had written. His
books on philosophy and ethics were popular for many years, and On
Consolation was translated into English and influenced Shakespeare. Some
Shakespeare-philes even claim that Hamlet speaks his monologue “To be
or not to be. . .” while holding this book in his hands.

Much can be said about Cardano’s personality. He was passionate,
quick-tempered, and often played games of chance. Cardano gambled at
chess for forty years (“I could never express in a few words how much
damage this caused my home life, without any compensation”) and at dice
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for twenty-five (“but dice harmed me even more than chess”). From time
to time he threw away his studies for gambling, and fell into unpleasant
situations. A collateral product of Cardano’s passion was Liber de Ludo
Aleae (The Book on Games of Chance), written in 1526 but published only in
1663. This book contains the beginnings of probability theory, including
a preliminary statement of the law of large numbers, some combinatoric
questions, and observations on the psychology of gamblers.

Here are a few words about Cardano’s nature. He himself writes, “This
I recognize as unique and outstanding among my faults—the habit, which
I persist in, of preferring to say above all things what I know to be dis-
pleasing to the ears of my hearers. I am aware of this, yet I keep it up
willfully. . . . And I have made many, nay, numberless blunders, wherever
I wished to mingle with my fellows. . . . I blundered, almost unavoidably,
not solely because of lack of deliberations, and an ignorance of. . . manners
and customs, but because I did not duly regard certain of those conventions
which I learned about long afterwards, and with which cultivated men, for
the most part, are acquainted.”3 For friends and students he could be yet
another person. Bombelli wrote that Cardano had “a more godlike than
human appearance.”

Cardano and Tartaglia

Towards 1539, Cardano was completing his first mathematical book, Prac-
tica Arithmeticae Generalis, envisioned to replace Pacioli’s book. Cardano
burned with desire to adorn his book with Tartaglia’s secret. At his request,
the bookseller Zuan Antonio da Bassano met with Tartaglia in Venice on
January 2, 1539. He asked Tartaglia, in the name of “a worthy man, physi-
cian of Milan, named Messer Gerolamo Cardano,” to give him the rule for
solving equation (1), either to publish in the book or under promise to keep
it secret. The response was negative: “Tell his Excellency that he must par-
don me, that when I publish my invention it will be in my own work and
not in that of others. . . . ”4 Tartaglia also refused to communicate the solu-
tions to Fior’s thirty problems and only stated the questions (which could
have been obtained from the notary), and refused to solve seven problems
sent by Cardano. Tartaglia suspected that Cardano was a straw man for
the mathematician Zuanne de Tonini da Coi, who had long been trying

�——————�
3From Jerome Cardan (Gerolamo Cardano), The Book of My Life, translated by Jean Stoner,

E. P. Dutton, New York, 1930. Reprinted with the permission of E. P. Dutton, a division of
NAL Penguin, Inc.

4Øystein Ore, Cardano, the Gambling Scholar, Princeton University Press, Princeton, NJ,
1953 (© renewed 1981). Reprinted with permission.
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unsuccessfully to learn the secret.
On February 12th, Cardano sent Tartaglia comments about his book, La

Nuova Scientia, and repeated his requests. Tartaglia was implacable, agree-
ing to solve only two of Cardano’s problems. On March 13th Cardano in-
vited Tartaglia to visit him, expressed interest in his artillery instruments,
and promised to present him to the Marchese del Vasto, the Spanish gov-
ernor of Lombardy. Evidently, this perspective enticed Tartaglia, since he
accepted the invitation and the critical meeting took place on March 25th
at Cardano’s home.

Here is an excerpt from the notes of this meeting (one must keep in
mind that the record was made by Tartaglia; Ferrari, Cardano’s student,
claimed that it does not completely correspond to the facts):

“Niccolò: I say to you: I refused you not just because of this one chapter
and the discoveries made in it, since this is the key that unlocks the way to
the study of countless other areas. I would have long ago found a general
rule for many other problems, if I had not at present been occupied with
translating Euclid into the national language (I have now brought the trans-
lation up to Book XIII). But when this task, which I have already begun, is
done, I plan to publish the work for practical application together with a
new algebra. . . . If I give it to some theorist (such as your Excellency), then
he could easily find other chapters with the help of this explanation (for it
is easy to apply this explanation to other questions) and publish the fruit of
my discovery under his own name. All my plans would be ruined by this.

Messer Gerolamo: I swear to you by the Sacred Gospel, and on my
faith as a gentleman, not only never to publish your discoveries, if you tell
them to me, but I also promise and pledge my faith as a true Christian to
put them down in cipher so that after my death no one shall be able to
understand them. If I, in your opinion, am trustworthy then do it, and if
not then let us end this conversation.

Niccolò: If I did not believe an oath such as yours then, of course, I
myself would deserve to be considered a nonbeliever.”

Thus, Tartaglia convinced himself. He communicated his solution in
the form of a Latin poem. Is it not true that it is hard to understand from
these notes what induced Tartaglia to change his decision? Was he really
shaken by Cardano’s vow? What happened later is not well understood.
Having revealed his secret, the uneasy Tartaglia left immediately, refusing
to meet the marchese for whom he had undertaken the journey. Could
Cardano have hypnotized him? In all likelihood, Tartaglia’s account is
inaccurate.

Tartaglia was somewhat reassured when on May 12th he received the
Practica Arithmeticae Generalis, freshly printed, without his recipe. In an ac-
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companying letter, Cardano wrote, “I have verified the formula and believe
it has broad significance.”

Cardano received from Tartaglia a ready-to-use method for solving
equation (1), without any hint of proof. He spent a great deal of effort
on carefully verifying and substantiating the rule. From our standpoint it
is not easy to understand the difficulty: Just substitute into the equation
and verify it! But the absence of a well-developed algebraic notation made
what any schoolchild today can do automatically, accessible to only a select
few. Without knowing the original texts from that time we cannot appreci-
ate how much the algebraic apparatus “economizes” thought. The reader
must always keep this in mind, so as not to be deluded by the “triviality”
of the problems over which passions seethed in the 16th century.

Cardano put in years of intense work trying to understand the solution
of cubic equations thoroughly. He obtained a recipe (after all, they did not
know how to write formulas!) for solving equations (1) and (2), as well as

x3 + b = ax (3)

and equations containing x2. He certainly “outstripped” Tartaglia. All this
happened against the background of a consolidation of Cardano’s position:
in 1543 he became professor at Pavia. “My knowledge of astrology,” wrote
Cardano, “led me to the conclusion that I would not live more than forty
years and, in any case, would not reach the age of forty-five. . . . The year
arrived that was supposed to be the last one of my life and that, on the
contrary, turned out to be its beginning—namely, the forty-fourth.”

Luigi Ferrari

For some time Cardano had been assisted in his mathematical work by
Luigi Ferrari (1522–1565). In a list Cardano made of his fourteen students,
Ferrari appears as the second chronologically and one of the three most
outstanding. Cardano, believing in signs, wrote that on November 14,
1536, when the fourteen-year old Luigi and his brother arrived in Bologna,
“a magpie in the courtyard chirred for such an unusually long time that we
all expected someone to arrive.” Ferrari was a man of phenomenal ability.
He had such a stormy temper that even Cardano was sometimes afraid to
speak with him. We know that at seventeen, Ferrari returned from a brawl
without a single finger on his right hand. He was unreservedly devoted to
his teacher and for a long time was his secretary and confidant. Ferrari’s
contribution to Cardano’s mathematical work was quite substantial.

In 1543 Cardano traveled with Ferrari to Bologna, where della Nave
allowed him to examine the papers of the late dal Ferro. They became
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convinced that dal Ferro had known Tartaglia’s rule. It is interesting that
they evidently knew almost nothing about dal Ferro’s formula. Cardano
would hardly have pursued Tartaglia so energetically had he known that
the same information could have been obtained from della Nave (he had
not consulted him before 1543). Almost everyone now agrees that dal
Ferro had the formula, that Fior knew it, and that Tartaglia rediscovered it
knowing that Fior had it. However, not one of the steps in this chain has
been strictly proven! Cardano spoke of it, but Tartaglia wrote at the end of
his life, “. . .I can testify that the theorem described was not proved before
by Euclid or by anyone else but only by one Gerolamo Cardano, to whom
we showed it. . . . In 1534 [elsewhere February 4, 1535–S.G.] in Venice, I
found a general formula for the equation. . . .” It is hard to untangle this
confused story.

Ars Magna

Familiarity with dal Ferro’s papers, strong pressure from Ferrari, or, most
likely, an unwillingness to bury the results of many years’ work led Cardano
to include everything he knew about cubic equations in this book, Artis
Magnae Sive de Regulis Algebraicis (The Great Art, or the Rules of Algebra),
which appeared in 1545. It has come to be called simply Ars Magna (The
Great Art).

At the beginning, Cardano lays out the history of the problem: “. . .In
our own days Scipione del Ferro of Bologna has solved the case of the cube
and first power equal to a constant, a very elegant and admirable accom-
plishment. Since this art surpasses all human subtlety and the perspicuity
of mortal talent and is a truly celestial gift and a very clear test of the capac-
ity of men’s minds, whoever applies himself to it will believe that there is
nothing that he cannot understand. In emulation of him, my friend Niccolò
Tartaglia of Brescia, wanting not to be outdone, solved the same case when
he got into a contest with his [Scipione’s] pupil. Antonio Maria Fior, moved
by my many entreaties, gave it to me. For I had been deceived by the words
of Luca Paccioli, who denied that any general rule could be rediscovered
other than his own. Notwithstanding the many things which I had already
discovered, as is well known, I had despaired and had not attempted to
look any further. Then, however, having received Tartaglia’s solution and
seeking its proof, I came to understand that there were a great many other
things that could also be had. Pursuing this thought and with increased
confidence, I discovered these others, partly by myself and partly through
Lodovico Ferrari, formerly my pupil.”5

�——————�
5Girolamo Cardano, The Great Art or the Rules of Algebra, translated by T. Richard Witmer,
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In modern form, the method by which Cardano solved equation (1) can
be presented in the following way. We will seek a solution to (1) in the form
x = β − α. Then x + α = β and

x3 + 3x2α + 3xα2 + α3 = β3. (4)

Since 3x2α + 3xα2 = 3xα(x + α) = 3xαβ, we can rewrite (4) as

x3 + 3αβx = β3 − α3. (5)

Let us try to choose the pair (α, β) in terms of (a, b) so that (5) coincides
with (1). In order for this to happen, (α, β) must be a solution of the system

3αβ = a, β3 − α3 = b,

or, equivalently,

β3(−α3) = − a3

27
, β3 + (−α3) = b.

By Vieta’s theorem,6 β3 and −α3 will be the roots of the auxiliary quadratic
equation

y2 − by − a3

27
= 0.

Since we are seeking positive roots of (1), β > α. This means that

β3 = b
2

+
√

b2

4
+ a3

27
, −α3 = b

2
−

√
b2

4
+ a3

27
.

Thus,

x = 3

√√√√b
2

+
√

b2

4
+ a3

27
− 3

√√√√−b
2

+
√

b2

4
+ a3

27
.

When a and b are positive, the root x is thus also positive.
The calculation presented here follows only the idea of Cardano’s ar-

gument. He himself argued geometrically: If we divide a cube of side
β = α + x by planes, parallel to its faces, into one cube of side α and one of
side x, then in addition to those two cubes we obtain three rectangular par-
allelepipeds with sides α, α, x and three with sides α, x, x. Their volumes

�——————�
MIT Press, Cambridge, MA, 1968., pp. 8–9. Here and in other places there are slight variations
in names.—Transl.

6François Viète, or Vieta (1540–1604), lived after Cardano but Cardano essentially knew
this result, now known as Vieta’s theorem. It is a special case of a result Vieta later proved.
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are related according to (4), and if we combine the parallelepipeds of dif-
ferent types pairwise, then we obtain (5). “When, moreover, I understood
that the rule of Niccolò Tartaglia handed to me had been discovered by
him through a geometrical demonstration, I thought that this would be the
road to pursue in all cases.”7 Cardano may have known of an analogous
argument for the quadratic equation, due to al-Khowârizmî.8

Equation (2) can be solved using the substitution x = β + α, but it can
happen that the original equation has three real roots, while the auxiliary
quadratic equation has none. This is called the irreducible case, and it gave
Cardano (and probably Tartaglia) much trouble.

Cardano solved equation (3) by an argument that was daring at the time
because it played on the negativity of the root. No one before had used
negative numbers so decisively, and even Cardano himself far from used
them freely. He considered equations (1) and (2) separately!

Cardano also thoroughly investigated the general cubic equation x3 +
ax2 + bx + c = 0, noting that, in contemporary terms, the substitution
x = y − a/3 eliminates the x2 term.

Cardano decided to consider not only negative numbers (he called them
“purely false”) but also complex numbers (these he called “truly sophis-
ticated”). He remarked that if we operate on them according to certain
natural rules, then we can ascribe complex roots to a quadratic equation
having no real roots. Cardano may have arrived at complex numbers in
connection with the irreducible case. (N. Bourbaki, for example, suggests
this). If, in this case, we are “undaunted” in carrying out all the operations
on the complex numbers that arise during the calculation, then at the end
we obtain the correct values of the real roots. But there is no indication
whatever that Cardano considered more than quadratic equations here.
However, the argument presented for the cubic equation soon appeared—
in the hands of Rafael Bombelli (1526–1573), a successor of Cardano, a
hydraulics engineer from Bologna, and the author of the famous Algebra
(1572).

Cardano understood that the cubic equation x3 + ax2 + bx + c = 0 can
have three real roots and that their sum then equals −a. Cardano was
unprecedented in making such general assertions. In algebra, as opposed
to geometry, practically no proofs were given (traces of this remain today in
high school mathematics!). Here is yet another of Cardano’s observations:
If all the terms on the left side of an equation (with positive coefficients) have
greater degree than all the terms on the right side, then there is a unique

�——————�
7Cardano, The Great Art, p. 52.
8Mohammed ibn Musa al-Khowârizmî (c.780–c.850), Persian mathematician and as-

tronomer whose name is preserved in the word “algorithm.”—Transl.
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positive root. A whole series of important algebraic concepts comes from
Ars Magna, e.g., the multiplicity of a root. In general, Cardano’s significance
in the history of mathematics is determined most of all not by specific
achievements (he did not have many) but by the fact that in Ars Magna he
saw the path along which algebra would develop.

Remarks on Cardano’s Formula

Let us analyze the formula as it applies to solving x3 + px + q = 0 over the
real numbers. Unlike Cardano, we can allow ourselves to ignore the signs
of p and q. Thus,

x = 3

√√√√−q
2

+
√

q2

4
+ p3

27
+ 3

√√√√−q
2

−
√

q2

4
+ p3

27
.

In calculating x, we must first find the square roots and then the cube roots.
We obtain real square roots if � = 27q2 + 4p3 > 0. The two square root
terms, differing by a sign, appear in different summands. Real cube roots
are unique, so when � > 0 we obtain a unique real value for x.

By studying its graph, it is not hard to see that the cubic trinomial
x3 + px + q in fact has a unique real root when � > 0. For � < 0 there are
three real roots. For � = 0 we have one double real root and one single
real root, and when p = q = 0 we have the triple real root x = 0.

We continue with the case � > 0 (one real root). It turns out that even
if an equation with integer coefficients has an integer root, then calculating
the root by the formula can lead to intervening irrational numbers. For
example, x3 + 3x − 4 = 0 has the unique real root x = 1. For this unique
real root, Cardano’s formula gives the expression

x = 3
√

2 + √
5 + 3

√
2 − √

5.

This means that
3
√

2 + √
5 + 3

√
2 − √

5 = 1.

But try to prove this directly! Perhaps you will find some trick, but straight-
forward transformations lead to cubic radicals that cannot be removed.

It may be that this explains why Fior could not solve Tartaglia’s cubic
equation. It probably could have been solved by guessing the answer (this
is what Tartaglia had in mind), while dal Ferro’s recipe led to intervening
irrationals.
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The situation is even more confusing in the case of three real roots. This
is called the irreducible case. Here � = 27q2 + 4p3 < 0 and the numbers
under the cube root signs are complex. If we find the complex cube roots,
then after addition the imaginary parts vanish and we obtain real numbers.
But how can we reduce everything to operations on real numbers? For
example, finding the square root

√
a + ib can be reduced to purely real

operations on a and b. If that were the case with 3√a + ib = u + iv, then all
would be in order. But when we express u and v in terms of a and b, we
obtain new cubic equations that again give rise to the irreducible case. We
have a vicious circle! In the end, in the irreducible case we cannot express
the roots in terms of the coefficients without going beyond the real number
system. In this sense the cubic equation with three real roots is unsolvable
in radicals over the reals (as opposed to the quadratic equation). This
situation does not often receive the attention it deserves.

The Fourth-Degree Equation

Ferrari’s personal contribution, the solution of the fourth-degree equation,
was also reflected in Ars Magna.

In modern terms, Ferrari’s method for solving

x4 + ax2 + bx + c = 0 (6)

is as follows (it is easy to reduce the full fourth-degree equation to (6)).
Introducing an auxiliary parameter t, we rewrite (6) in the equiva-

lent form

(
x2 + a

2
+ t

)2 = 2tx2 − bx +
(

t2 + at − c + a2

4

)
. (7)

We now choose a value for t so that the quadratic trinomial (in x) on the right
side of (7) has two equal roots. In order for this to happen, its discriminant
must be zero:

b2 − 4 · 2t

(
t2 + at − c + a2

4

)
= 0.

We have obtained an auxiliary cubic equation in t. Find some root t0 by
Cardano’s formula. We can now rewrite (7):

(
x2 + a

2
+ t0

)2 = 2t0

(
x − b

4t0

)2

. (8)
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Equation (8) can be decomposed into a pair of quadratic equations giving
the four desired roots.

Thus, by Ferrari’s method, the fourth-degree equation reduces to solv-
ing an auxiliary cubic and two quadratic equations.

Ferrari and Tartaglia

After meeting in 1539, Cardano and Tartaglia rarely corresponded. Once a
student told Tartaglia he had heard that Cardano was writing a new book.
Tartaglia immediately wrote Cardano a cautioning letter but received a
calming answer. Another time Cardano wanted a clarification dealing with
the irreducible case, but received nothing substantive in response. It is not
hard to imagine the effect on Tartaglia when Ars Magna appeared in 1545. In
the last part of Quesiti et Inventioni Diverse (1546), Tartaglia published the
correspondence and notes of discussions dealing with his relations with
Cardano, and heaped abuse and rebuke on him. Cardano did not react to
this attack, but on February 10, 1547, Ferrari answered Tartaglia. He took
exception to Tartaglia’s rebukes, pointed out defects in his book, rebuked
him in one place for appropriating someone else’s result, and found a rep-
etition betraying a bad memory (apparently a serious accusation for the
time). Finally, he challenged Tartaglia to a public debate on “Geometry,
Arithmetic and the disciplines which depend on them, such as Astrology,
Music, Cosmography, Perspective, Architecture, and others.”9 Ferrari was
ready to discuss not only what was written in these areas by the Greek,
Latin, and Italian authors but even the works of Tartaglia himself, if the
latter in turn agreed to discuss the works of Ferrari.

By tradition, such a “cartel” (challenge) required “questions” in re-
sponse. They appeared on February 19th. Tartaglia wanted to draw Car-
dano himself into the skirmish: “. . .I have expressed this in such calum-
nious and sharp words to incite his Excellency, and not you, to write me in
his own hand. I have many accounts to settle with him. . . .” The discussion
of the conditions for the duel dragged on. Tartaglia began to understand
that Cardano was remaining on the sidelines. Then he started to empha-
size Ferrari’s lack of independence, calling him Cardano’s “creation” or
“creature,” since Ferrari had called himself that in the first cartel. All ques-
tions were addressed to both: “You, Messer Gerolamo, and you, Messer
Lodovico. . . .” Much of the correspondence is interesting. For example, the
second cartel reproduces a conversation between Cardano and Tartaglia,
supposedly overheard by Ferrari: “What more do you want? ‘I don’t want

�——————�
9Ore, p. 88.
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it divulged,’ you say. And why? ‘So that no one else shall enjoy my inven-
tion.’ . . .Really, since we are born not for ourselves only but for the benefit
of our native land and the whole human race, and when you possess within
yourself something good, why don’t you want to let others share it?”10

The correspondence continued for a year and a half, and suddenly
Tartaglia resolutely agreed to a duel in Milan. Why? At the same time,
in March 1548, he received a flattering invitation to his native Brescia, to
give public lectures (which he had not had occasion to do previously) and
to conduct private lessons “in which only certain doctors and people of def-
inite authority will participate.” Things had not been going well for him,
and there is the opinion that his patrons forced Tartaglia to accept the chal-
lenge in hopes that a victory would strengthen his position. The dispute
took place on August 10, 1548, in Milan in the presence of many well-known
personalities, including the governor of Milan, but in Cardano’s absence.
Only Tartaglia’s brief notes have been preserved, from which it is almost
impossible to recreate the true picture. It seems that Tartaglia sustained a
shattering defeat. But do not be mistaken—the debate had no relation to
the problem over which the argument had arisen, just as debates as well as
physical duels generally have little relation to clarifying the truth. It was
hard for the tongue-tied Tartaglia to stand up in public to the sparkling
young Ferrari.

The Fate of Our Heroes

Tartaglia was not retained in Brescia, and within a year and a half he re-
turned to Venice without having received even an honorarium for his lec-
tures. His defeat in the debate had hurt him very much. At the end of
Tartaglia’s life (he died in 1557), Trattato Generale di Numeri et Misure (A
General Treatise on Number and Measurement) began to appear, and its pub-
lication was completed only after his death. Very little is said about cu-
bic equations, and no trace of a great treatise on the new algebra, which
Tartaglia had spoken about all his life, was discovered in his carefully pre-
served legacy.

By contrast, Ferrari became very famous after the duel. He gave public
lectures in Rome, headed the taxation department in Milan, received an
invitation to serve Cardinal Mantui, and took a hand in bringing up the
emperor’s son. But he left no further trace in science! Ferrari died in 1565
at the age of forty-three; according to legend, he was poisoned by his sister.
Speaking of his death, Cardano recalls the lines of Martial, the Roman

�——————�
10Ibid., p. 94.
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epigrammatist:

For those without measure life is short, rarely do they attain old
age. Whatever you may love or desire, let not your indulgence
go beyond bounds.11

Cardano outlived them both, but the end of his life was not easy. One
of his sons (the doctor Giambattista, on whom Cardano had placed his
greatest hopes) poisoned his wife out of jealousy and was executed in 1560.
Cardano did not recover from this blow for a long time. Another son, Aldo,
became a criminal and robbed his own father. In 1570, Cardano himself was
sentenced to prison and his property was confiscated. The reason for his
arrest is unknown, but the initiative may have come from the Inquisition.
While waiting for arrest, Cardano destroyed 120 of his own books. He
ended his days in Rome, a “private person” (his expression) receiving a
modest pension from the pope. Cardano devoted the last year of his life to
his autobiography, De Vita Propria Liber (The Book of My Life). The last item
it mentions is dated April 28, 1576, and on September 21st Cardano died.

In his autobiography, Cardano mentions Tartaglia four times. In one
place he approvingly cites his thought that “no one knows everything,
and moreover knows nothing that he suspects many people do not know.”
Elsewhere he says that Tartaglia preferred him as “a rival and victor, and
not a friend and a man obliged to do him well.” Still, Tartaglia turns out to
be among Cardano’s critics who “did not go beyond grammar.” Finally, on
the very last pages, we read, “I confess that in mathematics I received a few
suggestions, but ever few, from brother Niccolò.” It seems that Cardano’s
soul was uneasy!

Epilogue

The Cardano–Tartaglia problem lay forgotten for a long time. The for-
mula for solving the cubic equation was associated with Ars Magna and
gradually became known as Cardano’s formula, although at some time dal
Ferro’s name was involved (his authorship was stressed by Cardano him-
self). Such errors in appropriating names are not rare (e.g., recall the axiom
of Archimedes, who did not claim this discovery).

The question of the origin of the formula for the cubic equation arose
again at the beginning of the 19th century. The insulted Tartaglia, who had
been practically forgotten, was rediscovered. The almost forgotten story re-
ceived publicity, and not only professionals but even amateurs were ready

�——————�
11Cardano, My Life, p. 144; Ore, p. 82.
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to fight for Tartaglia’s honor. The detective aspect of history was very
attractive. For how many years should Cardano’s promise have been in
effect? Was six years really long enough? Why did Tartaglia not pub-
lish his formula for ten years? However, as the story spread through the
popular literature it became distorted, and Cardano in time turned into an
adventurer and villain who stole Tartaglia’s discovery and gave it his own
name. As we have seen, the situation was more complicated, and such an
interpretation, at the very least, oversimplifies the picture.

It was not only a matter of wanting to restore the true picture of the
events in a situation where the participants undoubtedly did not tell the
whole truth. For many it was important to establish the degree of Car-
dano’s guilt. This question touches on the perennially topical question
of proprietary rights in scientific discovery. Concerning today’s practice,
what strikes us is the difference between the rights of the scientist and of
the inventor. The scientist cannot control the future use of his published
results but only lay claim to the remembrance of his name. Controlling fu-
ture use is one of the reasons for keeping inventions secret. At the juncture
of the Middle Ages and the Renaissance, mathematical results were kept
secret in order to use them in duels.

Towards the end of the 19th century, part of the discussion began to take
on the character of serious historico-mathematical research. Some original
material was published for the first time (“cartels” and “questions”). Math-
ematicians understood how great a role Cardano’s work had played in 16th
century science. What Leibniz had remarked earlier became clear: “Car-
dano was a great man for all his faults; without them he would have been
perfect.”

Moritz Cantor (1829–1920 not to be confused with Georg Cantor, the
creator of set theory), the greatest historian of mathematics and author of
a multivolume history of mathematics, held Cardano in very great esteem
but not without regret, stating that his human qualities left something to
be desired (“genius but no character”). Cantor proposed, as had Ferrari,
that Tartaglia did not rediscover dal Ferro’s rule but learned it ready-made
and secondhand. He remarked that Tartaglia did not have any significant
mathematical works to his credit and, aside from the rule itself and facts
that could have been borrowed from Ars Magna (which had appeared ear-
lier), his publications and the manuscripts he left contain only elementary
remarks about cubic equations. Of course this is no proof, and moreover
Tartaglia had many virtues beyond mathematics. Cantor was also suspi-
cious of the fact that Tartaglia’s and dal Ferro’s solutions were as similar as
two drops of water. Gustav Eneström (1852–1923) took exception to Cantor
and even conducted some sort of research experiment that showed such
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a coincidence is possible. Ettore Bortolotti (1866–1947) did much to ex-
plain unclear points, and presented arguments that could confirm several
seemingly irresponsible statements by Tartaglia.

For a century and a half, passions have calmed down and then heated
up again. The desire to obtain a single answer to the question has not died
away, but such an answer may simply not exist. As for the formula for the
solution to the cubic equation, the name Cardano’s formula has firmly taken
hold.

Appendix12

Four months before his death Cardano completed his autobiography, which
he had anxiously written during the entire previous year and which was
supposed to sum up his complex life. He felt death approaching. Accord-
ing to some reports, his personal horoscope associated his end with his
seventy-fifth birthday. He died on September 21, 1575,13 a few days before
his birthday. There is a version that he committed suicide in anticipation
of his inevitable death or even to confirm the horoscope. In any case, Car-
dano the astrologist took his horoscope seriously. In his book he described
waiting for death at age forty-four, as his earlier horoscope had foretold.

Cardano worried about whether his life had been successful. On the
one hand, he lived on a meager papal pension in Rome, in enforced exile
from the cities where he had spent the best part of his life, he had recently
been in prison, and he was unhappy with his children. On the other hand,
Cardano was sure of his own significance. He criticized much from his past,
although it is not hard to discover the places where he succeeded in convinc-
ing himself that he was right. Cardano’s leading idea is the predestination
of his life. This is the source of his detailed analysis of the influence of the
stars, his association with a “guardian angel,” the scrupulous account of
signs and omens, and the little events that allowed him to build a logically
constructed picture of life. In a certain sense, Cardano’s aim was, using the
scholar’s and astrologer’s art, to analyze himself in detail as an object of
the action of higher powers. A new style was established in science, where
conclusions are drawn from the facts as they appear. Therefore, Cardano
supplies the reader with detailed information about his physical features,
drinking patterns, habits, etc., in order for the author and reader to have the
same opportunities to draw conclusions. Cardano’s book is a remarkable
literary monument of the 16th century, and allows us to understand much

�——————�
12From De Vita Propria Liber (The Book of My Life).
13Some sources say September 20th, e.g., Ore, p. 23, and Cardano, My Life, p. xiii.—Transl.
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about how one of the wisest men of his time perceived life.
Cardano’s book was translated into Russian in 1938 and published by

the State Literary Publishing House. Let us see how Cardano talks about
himself.14 A few examples have been given in the main part of this chapter.

He begins, “This Book of My Life I am undertaking to write after the
example of Antoninus the Philosopher, acclaimed the wisest and best of
men, knowing well that no accomplishment of mortal man is perfect, much
less safe from calumny; yet aware that none, of all ends which man may
attain, seems more pleasing, none more worthy than recognition of the
truth. No word, I am ready to affirm, has been added to give savor of
vainglory, or for the sake of mere embellishment.” Cardano describes in
detail his native Milan and his ancestors. He says of his birth, “. . .I was. . .
born on the 24th day of September in the year 1500 [this is evidently a slip
of the pen, since Cardano was born in 1501—S.G.], when the first hour
of the night was more than half run, but less than two-thirds. . . . I was
almost dead. My hair was black and curly. I was revived in a bath of
warm wine which might have been fatal to any other child.” He describes
in detail the positions of Mars, Mercury, and the moon, which presaged
that “. . .consequently I ought to have been a monster, and indeed was
so near it that I came forth literally torn from my mother’s womb.” The
“sinister planets” Venus and Mercury foretold that he would be “gifted. . .

with a certain cunning only, and a mind by no means at liberty; my every
judgment is, in truth, either too harsh or too forbidding.”

In another chapter, he describes his parents: “My father went dressed
in a purple cloak, a garment which was unusual in our community; he
was never without a small black skullcap. When he talked he was wont to
stammer. He was a man devoted to various pursuits. His complexion was
ruddy, and he had whitish eyes. . . . From his fifty-fifth year on he lacked
all his teeth.15 He was well acquainted with the works of Euclid; indeed,
his shoulders were rounded from much study.” What surprising details!
“My mother was easily provoked; she was quick of memory and wit, and
a fat, devout little woman.”

Later, Cardano gives a short description of his life, after which it is the
turn of his discoveries. Here are some details: “I am a man of medium
height; my feet are short, wide near the toes, and rather too high at the
heels, so that I can scarcely find well-fitting shoes. . . . My chest is somewhat
narrow and my arms slender. The thickly fashioned right hand. . . . A neck
a little long and inclined to be thin, cleft chin, full pendulous lower lip, and

�——————�
14The following quotations are generally taken from Stoner’s English translation of My Life,

cited earlier.—Transl.
15It says elsewhere that this was after an attempt to poison him.
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eyes that are very small and apparently half-closed; unless I am gazing at
something. . . . My hair and beard were blond. . . . Old age has wrought
changes in this beard of mine, but not much in my hair, . . . ,” etc. Cardano
describes the illnesses he suffered, and says, “Now I have fourteen good
teeth and one which is rather weak; but it will last a long time, I think, for
it still does its share.” He had ten ailments in all; the tenth was insomnia,
which he cured by abstaining from certain kinds of foods.

Cardano tells us that he is timid by nature but gained courage through
physical exercise, that he stays in bed for ten hours but sleeps for eight,
that he prefers fish to meat and counts off twenty-one kinds of fish that he
eats, and that with big fish he eats “the head and belly, but the spine and
tail of small ones.”

“Vowing to perpetuate my name, I made a plan for this purpose. . . in
some hope of the future. I have scorned the present,” we read. Chance, the
intrigues of his opponents, and his own astrological findings that he would
not live past forty-five interfered with Cardano’s aspirations to perpetuate
his name. Everything changed when it turned out that the prediction had
not come true. Cardano decisively changed his way of life. He delivered
lectures early in the morning. “That over, I went walking in the shade
beyond the city walls, and later lunched, and enjoyed some music. In the
afternoon, I went fishing. . . . While there I also studied and wrote, and in
the evening returned home.” Cardano explains why he preferred a career in
medicine to law, as his father had wished: “I deemed medicine a profession
of sincerer character than law, and a pursuit relying rather upon reason and
nature’s everlasting law, than upon the opinion of men.” He talked about
his teaching and debating: “While at the University of Bologna, I usually
lectured extemporaneously. . . . Excellent as I may have appeared in these
respects, I possessed neither grace in my manner of speech nor talent for
making a clever conclusion.”

He characteristically lists his virtues: “Notwithstanding, whatsoever
my good fortune, or however many the happy issues that attended me, I
have never modified my carriage. . . [nor adopted] a more luxurious mode
of dress. . . . To the duties of life I am exceptionally faithful, and particularly
in the writing of my books. . . . I have never broken a friendship; neither, if
the relationship happened to be discontinued, have I divulged the secrets of
my erstwhile friends. . . .” He describes his friends and patrons in detail, but
ostentatiously does not enumerate his enemies and rivals. But they appear
repeatedly on the pages of the book, even as early as the next chapter,
entitled “Calumny, Defamations, and Treachery of My Unjust Accusers.”

Cardano begins with intrigues and experiences some difficulty in choos-
ing examples. He wanted to talk about great and secret intrigues, but in-
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trigues that have already been uncovered cannot be considered secret, and
great intrigues are hard to conceal. Philosophizing, he chooses the case of
obtaining a professorship in Bologna, when it was rumored that he “lec-
tures to the empty benches. . . that he is a man of bad manners, disagreeable
to all, and, in the main, a fool. He is given to disgraceful practices, and he
does not show even tolerable skill in medicine. . . and accordingly has no
practice.” All this would have been believed if the papal legate in Bologna
had not remembered that Cardano had cured his mother. This under-
mined confidence in the remaining information. Nevertheless the intrigues
continued even in Bologna, and Cardano in the end was denied the post,
although he reassured himself: “. . .all this wound up pleasing those who
tried so hard for it, but it is not at all to their benefit.” Concerning “calumny
and lying deformation,” Cardano does not dwell on concrete cases, stating
that his “calumniators [were] tormented by their own guilty conscience. . .
they have left me more time for collecting my literary works. . . they have
provided me with an opportunity to. . . devote myself to the investigation
of many things not fully revealed to man,” and that “I do not hate them.”

His pleasures are briefly listed: pen knives (he spent more than twenty
gold crowns on them), different types of pens (more than two hundred
crowns), precious stones, china, globes of painted glass, rare books, naviga-
tion, fishing, the philosophy of Aristotle and Plotinus, the occult, Petrarch’s
poetry, etc. He preferred solitude to company, not only out of devotion to
science but so as not to lose time. We have already mentioned his partiality
to gambling with chess and dice.

A separate chapter is devoted to clothing. Cardano finds a description
in Horace that resembles him very much. A rather long discussion with
references ends in saying that one must have “four changes of clothes:
one warm, one very warm, one light, and one very light. Thus, one gets
fourteen different combinations. . . .” He describes his gait, stating that the
reason for its unevenness is his constant reflection. He discusses his attitude
towards religion and philosophy, stressing the influence of Plato, Aristotle,
Plotinus, and especially Avicenna. He lists the “general rules” that he
mastered during his life: to thank God and ask Him to help, not to limit
oneself to redeeming a loss but always to obtain something in addition, to
make the most of time, to respect one’s elders, “always to set certainties
before uncertainties,” “never. . . to persist willingly in any course which is
turning out for the worse,” and so on. Cardano lists the houses in which he
lived, and colorfully describes his poverty and losing his inheritance from
his father.

Cardano writes in detail about his wife and children. He writes that
he saw his future wife in a dream before meeting her, and that the dream
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presaged an unhappy marriage. We have already talked about the fate
of his children. He describes his travels, usually in connection with his
medical activities, and explains the value of the trips.

The longest chapter is devoted to perils and accidents. Cardano de-
scribes them in detail, visibly trying to impress the reader to prepare the
way for more profound phenomena: “. . .it is not the significant event which
ought to be wondered at, but rather the frequent recurrence of similar in-
stances.” Three times, he miraculously escaped danger at nearly the same
place: from a tile falling from a wall, from a giant piece of masonry, and
from an overturning carriage. Twice he nearly drowned under very ro-
mantic circumstances. Cardano was subjected to the attack of a rabid dog,
fell into a pit, fell from a carriage onto the road, and was exposed to plague.
These accounts read like detective stories. After this comes a sequence of
terrible intrigues devised by his competitors, the doctors in Pavia: a scan-
dal involving his daughter’s husband, a beam that could have fallen while
he entered the Academy, and a poisoning attempt that was averted by the
boys who tasted his food. However, everything was unexpectedly ended
by the illness or even death of his enemies. In Rome, dangers pursued
Cardano because he did not know the streets and “the behavior here [is]
so uncouth.” But he finally decides that Providence is protecting him, and
he stops fearing danger: “Who does not now perceive that all these things
have been, as it were, precursors to bliss about to be overtaken. . .?”

Cardano includes in his book a study of happiness, with examples from
his life. He lists the honors shown him, mainly flattering invitations. On
the other hand, he recounts unpleasant episodes from his medical practice
and discusses their association with dreams. There is an unexpected dis-
cussion of the Cardano family coat of arms, to which he decided to add a
swallow on the day of his arrest: “I chose the swallow as in harmony. . .

with my own nature: It is harmless to mankind, it does not shun association
with the lowly, and is ever in contact with humankind without becoming
familiar. . . .” A questionable comparison! Cardano also lists his teachers
and students.

Cardano again discussed his characteristics and surprising events in
his life: While a child he had visions of ringlets in the sky, he could not
warm up his legs below the knees, and blood did not flow in his presence
(he even began to intervene purposely in fights and was never injured);
the events leading up to his death of his oldest son; and finally the many
dreams which preceded events that later occurred. The descriptions of his
dreams are very colorful and detailed.

Later, Cardano lists the ten sciences he was acquainted with in his life
and describes forty cases from his medical practice. Then comes a chapter,
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“Concerning Natural Though Rare Circumstances of My Own Life.” Here
is the first of these occurrences: “. . .I was born in this century in which
the whole world became known, whereas the ancients were familiar with
but little more than a third part of it.” Also, his house collapsed but his
bedroom was spared, his bed caught fire twice. He analyzes in detail the
gift of prognostication that constantly appeared in his life, from medicine
to card games.

The concluding part of the book again deals with supernatural events,
discusses scientific achievements, and list his books. Cardano again talks
about himself, about his guardian angel, lists testimonials to himself, dis-
cusses “worldly things,” and devotes several pages to maxims for life.
Here are some examples: “Friends are your support in adversity, flatterers
bring you advice. . . . An illustrious man ought to live under the aegis of a
prince. . . . When you wish to wash yourself first prepare a linen towel for
wiping. . . . Evil is but a lack of good, and good is of itself a virtue which
is within our power to possess, or rather which is indispensable.” After
these sayings comes “A Lament on the Death of My Son.” At the end, we
again hear of Cardano’s inadequacies, of the changes that come with age,
and of the “Quality of Conversation.”



Two Tales of Galileo

I The Discovery of the Laws of Motion

. . .it was Galileo who laid the first foundation of [dynamics]. Before him, only forces
acting on bodies in equilibrium were considered; and although the acceleration of
falling bodies and the curved motion of projectiles could only be attributed to the
constant force of gravity, no one had been able to determine the laws by which these
daily phenomena follow from such a simple cause. Galileo was the first to take this
important step, and in so doing began a new and vast arena for the development
of mechanics. . . today, it is the most significant and secure part of this great man’s
glory. The discoveries of the moons of Jupiter, the phases of Venus, sunspots, etc.,
only required a telescope and perseverance; however, it needed an extraordinary
genius to unravel the natural laws of these phenomena that had always been be-
fore everyone’s eyes but had nonetheless always escaped the philosophers’ reach.
Lagrange1

Prologue

Vincenzio Galilei, a well-known Florentine musician, had reflected for a
long time on what field to choose for his oldest son Galileo. The son was
undoubtedly talented in music, but the father preferred something more
reliable. In 1581, when Galileo turned seventeen, the scales were leaning in
the direction of medicine. Vincenzio understood the expenses of instruc-
tion would be great, but that his son’s future would be assured. The place
of instruction was chosen to be the University of Pisa, perhaps a bit provin-
cial but familiar to Vincenzio. He had lived for a long time in Pisa, and
Galileo was born there.

�——————�
1Joseph-Louis Lagrange, Mécanique Analytique, 5th ed., Vol. 1, Blanchard, Paris, 1965, p. 207.
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Galileo Galilei.

The road to becoming a doctor was not easy. Before beginning to study
medicine, it was necessary to learn—by heart—Aristotelian philosophy. In
Galileo’s opinion, “it seems that there is not a single phenomenon worth
attention that he [Aristotle] would have encountered without consider-
ing.” At the time, Aristotelian philosophy was taught in an appalling way,
namely as a selection of statements considered to be the ultimate truth,
devoid of motivation or proof. One could not even talk about disagreeing
with Aristotle.

What interested Galileo most of all was what Aristotle wrote about the
physics of the world around him, but he did not want to believe every word
of the great philosopher blindly. He mastered it by using logic: “Aristotle
himself taught me to be satisfied in my mind only when the arguments
convinced me, and not just the teacher’s authority.” He also read other
authors, and Archimedes and Euclid were among those who impressed
him the most.

Mysteries of Motion

Of everything that takes place in the world around us, Galileo was most
interested in motion in its various forms. Bit by bit, he gathered everything
the ancients wrote about motion, but regrets, “there is nothing older than
motion in nature, but rather little that is significant has been written about
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it.” Questions came to the inquisitive youth at each step. . . .

“In 1583, at the age of about twenty, Galileo found himself in Pisa,
where, on his father’s advice he applied himself to the study of philosophy
and medicine. And one day, being in the cathedral of that city and curious
and clever as he was, he decided to observe the motion of a [hanging]
chandelier that swerved from the perpendicular—whether the time it took
to swing back and forth along long arcs was the same as along medium
and short arcs. It seemed to him that the time to travel a long arc might be
less because of the greater speed with which, as he saw, the lamp moved
along the higher and more sloped sections. And since the lamp moved
gradually, he had a gross estimate, as he was wont to say, of how it moved
back and forth, using the beating of his own pulse, as well as the tempo
of music he had with great profit practiced. And on the basis of these
calculations he saw that he was not mistaken in believing that the times
were the same. But not satisfied with this, on returning home he thought
of doing the following, in order to make certain.

“He attached two lead balls to strings of exactly the same length so
that they could swing freely. . . , and displacing them from the vertical by
different numbers of degrees, for example, one by 30 and the other by 10,
he released them at the same instant. With the help of a friend he observed
that while one made a certain number of oscillations along long arcs, the
other made exactly the same number along small ones.

“In addition he had two similar pendula, but of rather different lengths.
He observed that while the short one made a certain number of oscillations,
for example, 300 along its longest arcs, in the same time that the long one
always made the same number, say 40, both along its longest arcs and
its shortest ones; repeating this several times. . . , he concluded from this
that the time to go back and forth is the same for the same pendulum, the
longest or the shortest, and that there are almost no notable differences
in this which must be attributed to interference by the air, which resists a
faster moving heavy object more than a slowly moving one.

“He also saw that neither different absolute weights, nor different spe-
cific gravities of the balls made any manifest change in this—all, provided
they hang from strings of equal length from their centers to their points
of suspension, keep much the same time to travel along every arc; as long
as one does not take a very light material, such as cork, whose motion in
air. . . is more easily resisted and which more quickly comes to rest.”

This story is due to Vincenzio Viviani2 (1622–1703), who in 1639, at the
age of seventeen, was at the villa of Arcetri near Florence, where Galileo

�——————�
2Letter to Prince Leopoldo de’ Medici, 1659, in Galileo Galilei, Opere, A. Favaro, ed., Vol. 19,

Barbèra, Florence, 1938, pp. 648–649.
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found himself after the verdict of the Inquisition. For two years, Evangelista
Torricelli (1608–1647) was also there, and the two helped the blind scientist
complete his projects. They obtained a series of results under Galileo’s in-
fluence (famous barometric experiments and research on cycloids). Viviani
was apparently especially close to Galileo, who willingly discussed various
subjects with him, often recalling the distant past. Afterwards, Viviani had
many occasions to retell what he had heard in those days. These tales are
not considered sufficiently reliable, and it is not always clear who was the
source of the inaccuracies—the narrator or the listener. Viviani’s main goal
in life was to immortalize his teacher’s memory.

Let us return to Viviani’s story. He described Galileo’s discovery that a
pendulum is isochronous: For a fixed length, the period of its oscillation
does not depend on its amplitude. It is instructive to see how Galileo
kept time, with music and his pulse (it seems that Cardano was the first
to suggest this method). We in the 20th century, who are accustomed to
wristwatches, should not overlook such difficulties. Rather precise clocks
were constructed immediately afterwards, based on Galileo’s discovery of
the pendulum’s property (we will have a chance to talk about pendulum
clocks later). Incidentally, in laboratory experiments which we will discuss
below, Galileo used slowly dripping streams of water to measure time (a
variation on water clocks).

Galileo discovered a connection between the length of a pendulum and
the frequency of its oscillations: The square of the period is proportional to
the length. Viviani wrote that Galileo obtained this result “guided by ge-
ometry and by his new science of motion,” but no one knows how he could
have reached such a theoretical conclusion. Perhaps Galileo observed this
relationship experimentally. He apparently did not know that the oscilla-
tions of a pendulum are only isochronous for small angles of deflection.
For large angles, the period begins to depend on the angle and for 60◦, for
example, it is noticeably different from the period for small angles. Galileo
could have noticed this in the series of experiments Viviani described. The
error in Galileo’s claim that a mathematical pendulum is isochronous was
discovered by Huygens.

Galileo’s medical studies did not go very well, although he tried to
justify his father’s hopes and expenditures. In 1585, he returned to Florence
without having received a doctor’s diploma. There, he continued to study
mathematics and physics, first in secret from his father and then with his
consent. Galileo was in contact with scientists, including the marchese
Guidobaldo del Monte. Thanks to the latter’s support, in 1589 Ferdinando
de’ Medici, the Grand Duke of Tuscany, appointed Galileo as professor
of mathematics at the University of Pisa. Galileo remained in Pisa until
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moving to Padua in 1592. He considered his eighteen years in Padua the
happiest period of his life. From 1610 until the end of his life, he was
“Philosopher and First Mathematician of his Highness the Grand Duke
of Tuscany.” In both Pisa and Padua, the study of motion was Galileo’s
main work.

Free Fall

Galileo was above all interested in free fall, one of the most common forms
of motion in nature. At the time, one had to begin with what Aristotle said
on the matter. “Bodies having a greater degree of heaviness or lightness
but in all other respects having the same shape, traverse an equal space
more rapidly in the same proportion as the quantities mentioned.” Thus,
according to Aristotle, the velocity of a falling body is proportional to its
weight. A second assertion is that velocity is inversely proportional to
“the density of the medium.” This assertion led to complications, since in
a vacuum, whose “density” is zero, the velocity should have been infinite.
As to this, Aristotle declared that a vacuum cannot exist in nature (“nature
abhors a vacuum”).

Aristotle’s first assertion was sometimes disputed, even during the Mid-
dle Ages. But Giovanni Benedetti’s criticism was especially convincing.
Benedetti was Tartaglia’s student and Galileo’s contemporary, and Galileo
became familiar with his treatise in 1585. The main idea of Benedetti’s
refutation looks like this. Suppose we have two bodies, one heavy and one
light: The heavy one should fall faster. Now combine them. It is natural
to assume that the light body slows down the heavy one, and that the ve-
locity at which the combined body falls should be intermediate between
the individual velocities. But according to Aristotle, the velocity should be
greater than that of each body! Benedetti declared that velocity depends on
specific gravity, and even estimates that for lead it is eleven times greater
than for wood. Even Galileo believed this for a long time.

Galileo began studying free fall in Pisa. Here is what Viviani writes:
“. . .Galileo completely gave himself up to reflection, and to the great embar-
rassment of all philosophers, he was persuaded, by means of experiments,
solid proofs, and arguments, of the falsity of very many of Aristotle’s con-
clusions about motion that up to that time had been considered perfectly
obvious and unquestionable. These include, among others, that two bodies
of the same material but different weight, moving in the same medium, do
not move with speeds proportional to their weights as Aristotle proposed,
but with the same speed. He proved this by repeated experiments from
the top of the Tower of Pisa, in the presence of other lecturers and philoso-
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phers and the entire scholarly fraternity.”3 To this time, Galileo is often
drawn throwing balls from the Tower of Pisa. This legend has acquired
many spicy details (for instance, the bartender who started the rumor that
Professor Galilei would jump from the tower). Note that so far only bodies
of the same substance are being discussed.

Galileo studied Benedetti’s observation that the velocity of free fall in-
creases according to the body’s motion and decided to find a mathemat-
ically precise description of this change. Here we should say that from
the start Galileo saw his problem as how to quantify Aristotle’s physics:
“Philosophy is written in that great book, which ever lies before our eyes
(I mean the universe); but we cannot understand it if we do not first learn
the language and grasp the symbols in which it is written. The book is
written in the mathematical language and the symbols are triangles, cir-
cles, and other geometrical figures. . . .”4 However, it soon became clear
that quantification requires a systematic review of all the facts.

How, then, to find the law by which the velocity of free fall changes?
An experiment was only the beginning of scientific research. Aristotle
and his followers considered experimentation unnecessary and worthless,
for both establishing and verifying the truth. Galileo could have tried to
conduct a series of experiments on bodies in free fall, carry out careful
measurements, and search for a law that would explain them. This is the
way Galileo’s contemporary, Kepler, working with Tycho Brahe’s many
observations, discovered that the planets move along ellipses. But Galileo
chose a different route. He decided to guess the law first from general
considerations, and then to verify it experimentally. No one had done this
before, but gradually this way of doing research has become one of the
leading methods of establishing truth in science.

Now let us see how Galileo tried to guess the law. He decided that
nature “tries to take the simplest and easiest way in all its adaptations,”
which means that the law by which the velocity grows must be “in the
simplest and most universally clear form.” But since the velocity grows
according to the distance traveled, what could be simpler than assuming
it is proportional to the distance: v = cs, where c is a constant. This was
wrong from the start; after all, it would imply that free fall begins with zero
velocity, while the velocity is apparently large from the very beginning. But
here is an argument that convinced him there is no contradiction: “. . .is it
not true that if a block be allowed to fall upon a stake from a height of four
cubits and drives it into the earth, say, four finger-breadths, that coming
from a height of two cubits it will drive the stake a much less distance,

�——————�
3Ibid., letter of 1654, p. 606.
4Galileo, Opere, Vol. 4, p. 171.
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and from the height of one cubit a still less distance; and finally if the
block be lifted only one finger-breadth how much more will it accomplish
than if merely laid on top of the stake without percussion? Certainly very
little. If it be lifted only the thickness of a leaf, the effect will be altogether
imperceptible. And since the effect of the blow depends upon the velocity
of this striking body, can anyone doubt the motion is very slow and the
speed more than small whenever the effect [of the blow] is imperceptible?”5

For a long time, Galileo studied the various consequences of this as-
sumption and unexpectedly discovered that . . .according to such a law motion
cannot take place at all! Let us also try to see why this is so. The proportion-
ality coefficient depends on the choice of the unit of time. For simplicity,
we will assume that c = 1, that distance is measured in meters (m) and
time in seconds (sec). Then at all moments of time, v = s.

Consider a point A one meter from the origin O. Let us estimate at what
time the body reaches this point after it begins to move. At A the velocity
equals 1 meter per second (m/sec). Take the point A1 halfway between O
and A. At each point in the interval A1A the instantaneous velocity will
be less than 1 m/sec, and since this interval has length 1

2 m, more than
1
2 sec is required to traverse it. Now take the point A2 halfway between
O and A1. On A2A1 the instantaneous velocity will be less than 1

2 m/sec
(all its points are less than 1

2 m from O), and since its length is 1
4 m it too

requires more than 1
2 sec. Of course, you have already guessed the rest of

the argument: A3 is the midpoint of OA2, the length of A3A2 is 1
8 m, the

velocity is less than 1
4 m/sec, and again more than 1

2 sec is required, etc.
The division process can be continued endlessly, and we can choose any
number of intervals, each requiring more than 1

2 sec, without reaching O.
This means that a body leaving O cannot arrive at A!

We assumed that A is at a distance of 1 m from O. But it can be shown
analogously that a body leaving O can reach no point whatsoever. This
remarkable argument was the beginning of classical mechanics!

However, Galileo himself published an unconvincing argument. He
tried to reach a contradiction by saying that since velocity is proportional
to distance, all intervals beginning at the origin must be traversed in the
same time, which is impossible. Either Galileo was not yet used to working
with instantaneous velocity, or he originally had some other argument that
he could not reconstruct when he wrote down these results, in his old age,
after a long interruption (we will see why this happened). He left more

�——————�
5Galileo, Discorsi e Dimostrazioni Matematiche, Intorno à Due Nuove Scienze (Dialogues Con-

cerning Two New Sciences), translated by Henry Crew and Alfonso de Salvio, Dover, New York,
1954, pp. 163–164.
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than a few claims that were either unmotivated or supported by doubtful
arguments.

Well, Galileo had every reason to be offended by the perfidy of nature,
which did not choose the simplest path, but he did not lose his belief in
nature’s reasonableness. He considered a no-less-simple assumption, that
the velocity grows proportionally with time: v = at. He called this natu-
rally accelerated motion, but the term “uniformly accelerated motion” has
survived. Galileo considered the graph of the velocity on the time interval
from O to t and remarked that if we take moments of time t1, t2 equidistant
from t

2 , then the velocity at t2 is greater than at
2 by the same amount that

it is less than at
2 at t1. From this he concluded that at the midpoint the

velocity equals at
2 , and the distance traveled equals at

2 t = at2

2 (not too rigor-
ous an argument!). This means that if we consider equally spaced moments of
time t = 1, 2, 3, 4, . . . then the corresponding distances traveled from the origin
will be proportional to the squares t2 = 1, 4, 9, 16, . . . , and the distances traveled
between adjacent times proportional to the odd integers 1, 3, 5, 7, . . . .

Again, let us follow Galileo’s logic. First he separated the questions
“how” and “why.” For Aristotle’s followers, the answer to the first ques-
tion had to be an immediate consequence of the answer to the second. But
Galileo, soberly evaluating his chances, did not investigate the origin of
accelerated free-fall motion in nature, but instead only tried to describe the
law by which it occurs. The main thing was to search for a simple, general
principle from which this law can be deduced. He sought “a completely
unquestioned principle, that can be taken as an axiom.” Galileo’s state-
ments in a letter to Paolo Sarpi6 in the autumn of 1604 can be interpreted to
say that he already knew the law by which the distance traveled changes
during free fall but was dissatisfied because he could not deduce it from an
apparently unquestioned principle: “A body experiencing natural motion
increases its velocity in the same proportion as its distance from the initial
point.”

Here it was important to choose a fundamental independent variable,
relative to which the change of all quantities characterizing motion could
be considered. It is very natural to begin by choosing the distance traveled
as this variable; after all, an observer sees how the velocity grows as the
distance grows. We have already said that the measurement of time did not
yet play a significant role in people’s lives and that precise clocks were not
available. We do not always take into account how gradually the sensation
of constantly passing time took root in human psychology. Galileo showed

�——————�
6(1522–1643), an influential Venetian priest and theologian who was a benefactor of

Galileo.—Transl.
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great flexibility in reorienting himself comparatively quickly from distance
to time. During 1609–1610 he discovered the true principle that free fall is
uniformly accelerated (with respect to time!).

We must not overemphasize the final form of Galileo’s ideas of velocity
and acceleration. The idea of an instantaneous, continuously changing ve-
locity is not easy to sense, and it gained acceptance slowly. It was hard to
convince oneself that rejecting abrupt changes in velocity did not lead to
reasoning about continuous procedures that was overflowing with contra-
dictions. It is difficult for us today to judge Galileo’s courage in working
with a varying velocity so decisively. Such masters of analytical arguments
as Cavalieri, Mersenne, and Descartes did not believe him. Descartes cate-
gorically rejected motion with zero initial velocity, in which a body “passes
through all degrees of slowness.” The process of calculating distances un-
der a varying velocity was even more complicated, and required integra-
tion. Galileo possessed only a form of integration similar to Archimedes’
method or to Cavalieri’s “indivisibles.” In this case he adopted an arti-
fice, passing to the average velocity in a way that was not well grounded
and then using the usual formula for uniform motion. Not only the new
mechanics but also the new mathematical analysis found its origins in the
discovery of the law of free fall. Since Galileo restricted himself to the
case of constant acceleration, the concept of acceleration in general was not
needed. The acceleration of free fall as a universal constant does not appear
in Galileo’s work.

When it comes to the role of force in nonuniform motion, Galileo’s
statements lack complete clarity. He rejected Aristotle’s principle that the
velocity is proportional to the acting force, because when there is no force,
uniform rectilinear motion is maintained. The law of inertia (Newton’s
first law) carries Galileo’s name. Galileo constantly turned to the example
of a projectile that would fly along a line if not for the earth’s attraction.
He wrote that “the degree of velocity displayed by the body inexorably
lies in its own nature, at the same time as the reasons for its acceleration or
deceleration are external. . . horizontal motion is eternal, for if it is uniform
then it does not weaken for any reason, does not slow down, and is not
extinguished.” Galileo, in his Letter to Francesco Ingoli,7 poetically describes
various phenomena on board a ship, moving uniformly in a straight line,
that do not reveal this motion: Drops of water fall exactly into the mouth
of a jar placed below, a stone falls straight down from the mast, steam rises
straight up, butterflies fly with the same speed in all directions, and so
on. We have the sense that Galileo confidently supported the principle

�——————�
7(1578–1649), a priest and professor of civil and canon law who wrote opposing the Coper-

nican system.—Transl.
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of inertia in “terrestrial” mechanics, but not in celestial mechanics (more
about this later).

Newton ascribed to Galileo not only the first law of mechanics, but also
the second, although this was an overstatement: Galileo did not make a
clear connection between force and acceleration (when they are different
from zero). As far as free fall is concerned, Galileo thoroughly answered
“how,” but not “why.”

Motion Along an Inclined Plane

Galileo considered his most fundamental conclusion to be that during con-
secutive equal time intervals, a falling body travels distances that are pro-
portional to consecutive odd numbers. He wanted to verify this, but how?
He could not continue to throw balls from the Tower of Pisa, since he was
already living in Padua. In the laboratory, free fall takes place very quickly.
But Galileo found a clever way out: He replaced free fall with the slower
movement of a body along an inclined plane. He noticed that assuming
free fall is uniformly accelerated implies that the movement of a point mass
along an inclined plane is also uniformly accelerated. This is essentially to-
day’s usual argument of resolving forces, showing that a point mass slides
along an inclined plane with constant acceleration g sin α, where α is the
angle of inclination to the horizontal and g is the acceleration of free fall.
Galileo’s reasoning was more awkward: He did not introduce the acceler-
ation of free fall but instead manipulated a large number of proportions,
as was then common. He drew a whole series of consequences from the
uniform acceleration of a point on an inclined plane that could be verified
conveniently in the laboratory (because when the angle is small, it takes a
long time for the point to slide down the plane). A key assertion is that
if inclined planes have the same height, then the sliding times are related
according to the distances traveled (why?).

Motion along an inclined plane was a question of independent interest
for Galileo, and he made many observations. For example, if points move
along chords AEi and BFj of a circle (see Figure 1), where AB is vertical and
a diameter, then all sliding times equal the time for free fall along AB (prove
it!). A rather complicated argument leads Galileo to the proof that if A, B,
and C are consecutive points along a circle, then a point slides faster along
the polygonal line ABC than along the chord AC. This is associated with a
well-known error of Galileo: He assumed that a point moves most quickly
along a quarter of a circle, but this is true instead for an arc of a cycloid.
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Figure 1.

Projectile Motion

Galileo called the motion of a projectile forced (as opposed to free fall).
Aristotle assumed that a body thrown at an angle to the horizontal first
moves along an inclined line, then along a circular arc, and finally along a
vertical line. Tartaglia may have been the first to claim that the trajectory
of a projectile “does not have a single part that is perfectly straight.”

Galileo constructed a theory of forced motion immediately after his
theory of free fall. His route was the same: The theory, a model of the
phenomenon, preceded experiments. Galileo’s guess was brilliantly sim-
ple: The motion of a projectile launched at an angle to the horizontal is
made up of the uniform rectilinear motion that would occur if it were not
for the force of gravity, together with free fall. In the end, the body moves
along a parabola. Let us note that this argument essentially uses the law
of inertia—Galileo’s law.

In considering complex motion, Galileo had a brilliant predecessor who
served as his model: “I assume nothing except the definition of the motion
I wish to treat and of whose properties I wish to demonstrate, imitating
in this Archimedes in his Spiral Lines, where he, having explained what
he means by motion made in the spiral that is compounded from two
uniform motions, one straight and the other circular, goes on immediately
to demonstrate its properties.”8 This refers to the spiral of Archimedes,
described by a point moving along the radius of a rotating circle (e.g., a fly
walking towards the center of a phonograph record).

�——————�
8From a 1639 letter to Giovanni Battista Baliani, Galileo at Work, translated by Stillman

Drake, University of Chicago Press, Chicago, 1978, pp. 395–396.—Transl.
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Using the properties of a parabola, Galileo constructed a “table for gun-
ners, having important practical significance.” It was not without reason
that Padua belonged to the Venetian republic, and Galileo was in constant
contact with the Venetian arsenal. Many of his claims, reached theoreti-
cally, could be verified experimentally. He proved Tartaglia’s assertion that
a shot travels farthest for a 45◦ angle, and showed that for angles adding
up to 90◦, shots fired with the same velocity travel the same distance.

Galileo and Kepler

Galileo’s discoveries must have startled his contemporaries. The conic sec-
tions—ellipses, parabolas, and hyperbolas, the acme of Greek geometry—
seemed to be the fruit of mathematical fantasy, unrelated to reality. And
here Galileo showed that parabolas inevitably arise in a perfectly “worldly”
situation. (Even in the 19th century, Laplace presented an application of
the conic sections as a most unexpected use of pure mathematics.) It is
remarkable that literally at the same time, conic sections arose in a com-
pletely different problem and in a no less surprising way. In 1604–1605
Johannes Kepler (1571–1630) discovered that Mars moves along an ellipse,
with the sun at one focus (within ten years Kepler extended this to all the
planets). This is an important coincidence and for us the two discoveries
go hand in hand, but it is likely that before Newton no one seriously put
these results together. Moreover, Galileo did not accept Kepler’s law and
did not communicate his own discovery to Kepler, in spite of their regular
correspondence (only published after Kepler’s death).

Galileo and Kepler corresponded for many years. Kepler was one of
the scientists closest in spirit to Galileo. Above all it was essential that
Kepler unreservedly accepted the Copernican system. As early as 1597,
Galileo, in connection with receiving Kepler’s book Mysterium Cosmograph-
icum (Cosmographic Mystery), shared with Kepler his secret desire to publish
his arguments supporting the Copernican system. He wrote: “. . .I do not
publish them, because I am deterred by the fate of our teacher Copernicus,
who, though he had won immortal fame with a few, was ridiculed and con-
demned by countless people (for there are so many fools). I would dare to
publish my speculations if there were more people like you.” In response,
Kepler sent a passionate appeal: “Be of good cheer, Galileo, and come out
publicly.” He proposed joining forces: “If I judge correctly, there are only
a few among the distinguished mathematicians of Europe who would part
company with us. . . .” And a book can also be printed in Germany, not just
in Italy. The problem was seen differently in far off Prague than in Italy,
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where for the sixth year Giordano Bruno9 awaited his fate in prison.
The path Kepler took towards his discovery is very instructive. Kepler

had two faces as a scientist. On the one hand, he was a great visionary,
attempting to understand the greatest mysteries of the universe. He was
certain that the great mystery he discovered was that there are six plan-
ets because there are five regular polyhedra! “I have never succeeded in
finding words to express my delight at this discovery.” Kepler proposed
six spheres alternating with the regular polyhedra, so that for each sphere
we have one inscribed and one circumscribed polyhedron. He placed the
spheres in correspondence with the successive planets. There is a special
scheme hidden in the order of the polyhedra (the cube corresponds to Sat-
urn, the tetrahedron to Jupiter, etc.). Kepler compares the ratios of the
radii of the spheres with the known relative dimensions of the orbits and,
strangely enough, finds only a small discrepancy (except for Mercury).
These arguments, published in Mysterium Cosmographicum, met with favor
from many people and with no objection from Galileo, and Tycho Brahe,
the “king of astronomers,” invited Kepler to collaborate with him.

Another side of Kepler’s scientific life, so different from the other, was
associated with this invitation. He scrupulously worked through Tycho’s
many observations, which were unprecedentedly accurate for observations
made without a telescope (their accuracy is estimated at ± 25′′). He needed
to reexamine the planetary orbits, using Tycho’s data. Tycho (whom Kepler
called the “phoenix of astronomy”) evidently expected a corroboration of
his own compromise theory, in which the sun moves around the earth and
the remaining planets move around the sun. But Kepler carried out his
computations in the Copernican system.

Since Copernicus, like Ptolemy, formed the planetary orbits from cir-
cles, his system retained the use of epicycles. Kepler wanted to simplify
the system (his summary work, appearing in 1618–1621, was called Epitome
Astronomiae Copernicanae (Epitome of the Copernican System)). Surprisingly,
Earth’s orbit differs only slightly from a circle, but the sun is somewhat
off-center. Copernicus knew all this, but Kepler made the size of this dis-
placement precise. He carefully studied the nonuniformity of the earth’s
motion in its orbit and for a long time searched for a law to describe it.
He tried an inverse proportional dependence on the distance from the sun
as well as various other possibilities, but did not yet discover the law of
areas (Kepler’s second law). Then he computed Mars’ orbit and compared
it to different curves. Kepler’s attitude towards observational data was
startlingly sober and confident. Once he rejected a hypothesis because he

�——————�
9(1548–1600), a priest, philosopher and astronomer who dreamt of other worlds and who

was burned at the stake as a heretic.—Transl.



40 � Tales of Mathematicians and Physicists �

discovered a discrepancy of 8′ from Tycho’s data (such a discrepancy is
almost invisible to the naked eye). Einstein said, “he first had to recog-
nize that even the most lucidly logical mathematical theory was of itself no
guarantee of truth, becoming meaningless unless it was checked against
the most exacting observations in natural science.”10 Kepler looked over
different sorts of ovals, finally discovering that an ellipse with the sun at
one focus fit the data. “Groping incessantly everywhere in the surrounding
gloom, I emerged, finally, into the clear light of truth.” Is not Kepler’s way
very different from Galileo’s? To a great extent, Galileo proceeded from
general principles and qualitative results. In his declining years, Galileo
recalled: “I have always esteemed Kepler a free mind (perhaps even too
much) and acute, but my way of philosophizing is utterly different from
his; it may be that writing on the same matters, and strictly as concerns
celestial motions, we have both hit on the same idea, but only in a very few
instances, whereby we assigned of some true effect the same true reason;
but this will be found to be the case in less than one in a hundred of my
thoughts.”11

Galileo believed that uniform circular motion rules the universe. He
believed neither in elliptical orbits nor in the nonuniform motion of the
planets in their orbits, and did not take data from observational and com-
putational astronomy into account.

Kepler was the first to consider the mutual attraction of bodies and
associate it with motion; he even conjectured on how the interaction de-
creases with distance (as 1

r , which is false). He explained the tides by
lunar attraction. All this was totally unacceptable to Galileo, who rejected
forces acting from afar and, in particular, attempted to explain terrestrial
phenomena by the influence of heavenly bodies. This related particularly
to the tides, which Galileo erroneously assumed to be an important proof
of the earth’s motion. Galileo identified such an explanation with astrol-
ogy, in which events in human life are explained by the influence of the
planets. “Among the great people discussing this startling phenomenon
of nature, the one who surprises me most is Kepler, who, possessing a free
and sharp mind and being quite familiar with the motions ascribed to the
Earth, admits a fundamental power of the Moon on water, hidden proper-
ties, and such similar childishness.” Kepler turned out to be right, but the
real arguments appeared later.

�——————�
10Albert Einstein, Out of My Later Years, Philosophical Library, New York, 1950, p. 226.
11From a 1634 letter to Fulgenzio Micanzio. This translation, together with other comments

on Galileo’s relation to Kepler, appears in Giorgio de Santillana’s translation of Dialogo. . .
Sopra i Due Massimi Sistemi del Mondo (Dialogue on the Two Great World Systems), University of
Chicago Press, Chicago, 1953, pp. 349–350.—Transl.
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We must keep in mind that Kepler’s arguments on mutual attraction
are often confused. In one respect, he seriously lagged behind Galileo: He
assumed, following Aristotle, that velocity is proportional to force.

Terrestrial and Celestial Mechanics

Around 1610, Galileo obtained results in mechanics towards which he had
been working for twenty years. He began work on a comprehensive treatise
but unexpected events diverted him from this for more than twenty years!
Galileo built a telescope, and at the beginning of 1610 he discovered the
moons of Jupiter. For that entire year, astronomical discoveries followed
one after the other. Galileo thought he had decisive proof supporting the
Copernican system. He completely devoted the following twenty-three
years of his life to confirming it, until in 1633 the verdict of the Inquisition
interrupted this activity. All those years Galileo thought about mechanics,
since this was required by his work Dialogo. . . Sopra i Due Massimi Sistemi
del Mondo (Dialogue on the Two Great World Systems). At times his new
philosophy even contradicted results about “terrestrial” motion. Thus he
did not find a place in the universe, “where all parts are in the most excellent
order,” for rectilinear motion, which under these conditions seemed to him
“unnecessary and unnatural.” The reason for this was that motion along
a line cannot be periodic and the state of the universe must always be
changing. He left room for rectilinear motion only in unstable situations,
while in nature circular motion must be the rule. Galileo considered the
law of inertia he discovered for “local motion” to be valid only near the
earth.

Galileo also considered the parabolic law of motion for projectiles to
be approximate. He assumed that the trajectory would in fact end at the
center of the earth. Because of this he made strange pronouncements about
the motion of a projectile having to follow a circular arc or spiral, even after
he discovered the trajectory was parabolic. Fermat objected to this, com-
municated through Carcavi (1637). In reply, Galileo called his statement
“poetic fiction” and promised to publish his claim that the trajectory was
parabolic, but wrote in conclusion: “But in the motion I defined it is found
that all the properties that I demonstrate are verified. . . in that when we
make experiments upon the earth and at heights and distances practicable
to us, no sensible difference is discovered, though a sensible, great, and
immense difference would be made by approaching to and closely near-
ing the center.”12 The approximate nature of the parabolic trajectory was

�——————�
12For an English translation of this letter, see Drake, Galileo at Work, pp. 376–381.—Transl.
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clarified by Newton, but Galileo’s expectations were incorrect.13

The main question about motion that interested Galileo all these years
was linked to the standard objection of the opponents of the earth’s motion:
Why don’t objects fly off a moving earth? Galileo had no doubt that the
force of gravity was responsible for this, but how could he give a motivated
explanation? Let a body move on a sphere of radius R with velocity v. This
is how Galileo began his arguments. Let us first fix a starting point. If
it were not for the force of gravity the body would continue in rectilinear
motion, with velocity v along a tangent. To guarantee motion on the sphere
(to hold onto the body), we must add motion in the direction of the center.
Galileo was used to combining motions! What was left to do? Just to
note that (by the Pythagorean theorem) for the second motion the distance
traveled is s(t) =

√
R2 + v2t2 − R, and if the time t is small, then this is

almost the same as s̃(t) = v2t2

2R , since s−s̃
t2 → 0 as t → 0. Now we cannot

fail to recognize Galileo’s formula for distance under uniformly accelerated
motion, with acceleration a = v2

R . So if g > a, then the body will stay on
the surface of the sphere. But Galileo did not carry out the second half of
this reasoning, giving instead a very confused motivating argument. The
formula for centripetal acceleration, along the path Galileo outlined, was
obtained by Huygens in 1659.

Discorsi (Two New Sciences)

Finding himself in exile in Siena in 1633, several weeks after the verdict
of the Inquisition and his renunciation, Galileo thought about the results
he had obtained in mechanics long ago and decided to publish them im-
mediately. He continued work in Arcetri and Florence, without regard to
his enforced isolation, worsening health, and progressing blindness. He
wrote, “Even though I am silent, I do not live my life completely idly.” His
book Discorsi e Dimostrazioni Matematiche, Intorno à Due Nuove Scienze Atte-
nenti alla Mecanica e i Movimenti Locali (Discourses and Mathematical Proofs,
Concerning Two New Sciences Pertaining to Mechanics and Local Motions) was
completed in 1636, was sent across the border with great precautions (it was
not clear how the Inquisition regarded the book), and came out in Holland
in July of 1638. As with his previous book, Massimi Sistemi, which was

�——————�
13Since Galileo delayed publication for a long time, the first mention of the parabolic trajec-

tory appeared in 1632 in Cavalieri’s Lo Specchio Ustorio (The Burning Glass), which very clearly
took from Galileo the idea of adding rectilinear motions and the principle of inertia. Galileo
was offended by the absence of the obligatory references, and spoke of his discovery that the
trajectory is parabolic as the main goal of forty years’ work. Cavalieri’s apologies quickly
satisfied Galileo.



� Two Tales of Galileo � 43

the reason for his persecution, Galileo wrote Discorsi in dialogue form.14

The dialogues take place over the course of six days and involve the same
heroes: Salviati (taking the author’s point of view), Sagredo, and Simplicio
(who is on Aristotle’s side; his name means “simpleton”). On the third
and fourth days they read an academic treatise on motion (by Galileo), De
Motu Locali (On Local Motion), and discuss it in detail. Incidentally, in the
title of the book “mechanics” and “motion” are separate, since at that time
mechanics meant only statics and strength of materials. The form chosen
by Galileo for the discussion allowed many to realize how he approached
his own discoveries.

The aged Galileo strove to realize the ideas he had laid aside for so
long. But much was already beyond his power, and he needed assistants.
He entrusted his son Vincenzio with constructing a clock based on the
discoveries in his youth about the pendulum, but he did not see his ideas
brought to fruition. The Inquisition had limited Galileo’s contacts with the
outside world. After the completion of Discorsi at the villa at Arcetri, which
Galileo called his prison, much-wanted guests began to appear. These were
his old friend and trusted student Benedetto Castelli, and Cavalieri. Also,
Viviani and Torricelli had not abandoned their teacher, but for some time
had been helping him complete his work and continue his research.

Torricelli computed the velocity vector for a projectile launched at an
angle, using the addition rule for velocities, and since the velocity is di-
rected along a tangent he obtained an elegant way to extend the tangent
to a parabola. The era of differential and integral calculus had arrived and
problems about extending tangents to curves came into the foreground
of mathematics. Various methods were worked out to solve them. One
became the kinematic method, in which the curve was represented as the
trajectory of a complex motion and the tangent was found by adding veloc-
ities, as Torricelli first did for parabolas. The French mathematician Gilles
Persone de Roberval (1602–1675) worked miracles with this method. “Me-
chanical” curves, obtained as the trajectories of various motions, firmly
came into use in mathematical analysis. It is worth recalling that Galileo
consciously limited himself to motions that arose in nature: “For anyone
may invent an arbitrary type of motion and discuss its properties; thus,
for instance, some have imagined helices and conchoids as described by
certain motions which are not met with in nature, and have very commend-
ably established the properties which these curves possess. . . but we have
decided to consider the phenomena of bodies . . . such as actually occurs

�——————�
14There is some confusion over the English titles of these books since both have been trans-

lated as Dialogues. . . , as noted in earlier references. To avoid confusion, we will use the
abbreviated Italian titles.—Transl.



44 � Tales of Mathematicians and Physicists �

in nature.”15 The value of a general view of motion was demonstrated by
Newton.

Discorsi determined the development of mechanics for a long time. It
was on the desks of both Huygens and Newton, Galileo’s great successors.
It is difficult to imagine how much the development of mechanics would
have been delayed if these unfortunate events had not occurred and if
Galileo had not written down his great discoveries.

Mathematical Appendix

The history of the discovery of the law of free fall has another side: This
is the history not only of a discovery that was carried through but also
of one that was neglected. Once Galileo understood that motion could
not take place according to v(t) = cs(t), he lost interest in this law. He
was only interested in motions that occur in nature! Soon the Scottish
Lord John Napier (1550–1617) became interested in motion that follows an
analogous law.

Napier considered rectilinear motion taking place according to the law
v(t) = l(t), where v(t) is the instantaneous velocity at time t and l(t) is not
the distance traveled, but rather the distance between the moving point
at time t and a fixed point O on the line. The case Galileo considered
corresponds to the case when the moving point is at O at the initial time
t = 0, i.e., l(0) = 0, l(t) = s(t). For Napier, l(0) > 0, and l(t) = l(0) + s(t).

It turns out that for l(0) > 0, such motion can occur in principle and
possesses remarkable mathematical properties (although it does not “occur
in nature”). Let us examine this. First of all, if the initial distance l(0) is
multiplied by c, then at each moment of time l(t) and v(t) are also multiplied
by c. Strictly speaking, this requires proof! But it is clear that after we
multiply l and v by a constant, the law v(t) = l(t) still holds. Next, we
restrict ourselves to the case l(0) = 1. Then, as we will show,

l(t1 + t2) = l(t1)l(t2).

It is convenient to take t1 as a new time origin. By what we said above,
at the new time t2 (the old t1 + t2) the distance to O should be l(t1) times
greater than at the old t2. But this means that l(t1 + t2) = l(t1)l(t2). This is
how the exponential function first appeared in science.

We have l(t) = et, where e = l(1), i.e., the distance from 0 at t = 1. Using
this and v = l, it is not difficult to show that e > 2 (prove it!). In fact, e =
2.71828 . . . and became known as Napier’s number. By considering motion

�——————�
15Discorsi, p. 160.
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according to the law v(t) = kl(t), we can obtain exponential functions with
other bases.

For any positive number a, we will call the time t for which l(t) =
a the (natural) logarithm of a (denoted by ln a).16 By the above, ln ab =
ln a + ln b. For twenty years Napier composed tables of logarithms, and
in 1614 published Mirifici Logarithmorum Canonis Descriptio (A Description
of the Wonderful Law of Logarithms), whose forward contained an apology
for the inevitable errors and finished with the words, “Nothing is perfect
at first.”

Napier’s discovery is remarkable not only because he constructed log-
arithm tables but also because he showed that new functions can appear
through the study of motion. Beginning with the work of Galileo and
Napier, mechanics became a constant source of new functions and curves
for mathematics.

II The Medicean Stars

In November 1979, the Vatican decided to rehabilitate Galileo, who had
been sentenced by the Inquisition in 1633. Then he had been acknowledged
to be “vehemently suspect of heresy” because “he held and defended as
probable” the opinion that “the Sun is the center of the world and does not
move from east to west, and that the Earth moves and is not the center of
the world.”17 At a session of the Vatican Academy of Sciences in November
1979, devoted to Einstein’s centenary, Pope John Paul II noted that Galileo
“suffered greatly—we cannot conceal this now—from oppression on the
part of the Church,” but qualifying Galileo’s repentance as “divine illu-
mination in the mind of the scientist,” he asserted that Galileo’s tragedy
emphasizes the “harmony of faith and knowledge, religion and science.”
In October 1980, it was announced that the pope had ordered a supple-
mentary investigation into the circumstances of the proceedings against
Galileo. Conversations about Galileo’s acquittal had already taken place
at the second Vatican Council (1962–1965). They had wanted to time his
acquittal to the 400th anniversary, in 1964, of his birth, but evidently did
not succeed, since the question turned out to be not uncontroversial. In-
cidentally, Galileo’s works (together with those of Copernicus and Kepler)
had been taken off the Index Librorum Prohibitorum (Index of Forbidden Books)

�——————�
16Napier’s reasoning was not quite the same as this and Napier’s logarithms are different

from natural logarithms.
17Complete English translations of Galileo’s sentence and renunciation appears in de San-

tillana, The Crime of Galileo, University of Chicago Press, Chicago, 1955, p. 306 ff.—Transl.
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as early as 1835. The judgment against Galileo and his renunciation have
continued to disturb people, often far from science, for three and a half
centuries. The attention given by literature to this question is typical (it
suffices to recall Berthold Brecht’s play Galileo). The problem of Galileo is
alive even today, notwithstanding his recent “rehabilitation.”

At the dawn of the 17th century, the question of a world system was not a
simple one. In the 4th century B.C., Aristotle claimed that the seven visible
heavenly bodies revolve uniformly around the earth, on crystal spheres to
which they are attached, and that the fixed stars occupy an eighth sphere.
Astrologers classified the planets as follows: two luminaries, the moon and
sun; two harmful planets, Mars and Saturn; two favorable ones, Jupiter and
Venus; and one neutral one, Mercury.

Aristotle’s rules, and especially those of his followers, did not explain
any deviations from his scheme, e.g., the surprising “retrograde” motion,
in which a planet appears to reverse direction. Contradictions to precise ob-
servational data gradually accumulated. In the 2nd century A.D., Ptolemy
constructed a system that took observations into account as much as pos-
sible. He assumed that the planets move along auxiliary curves (epicycles)
whose centers (deferents) in turn revolve around the earth. The desire to
account for new data led to an increasingly complicated system. We must
acknowledge the persistence and cleverness by which scientists succeeded
in saving this system.

Nicolaus Copernicus (1473–1543) proposed a completely unexpected
route. His carefully worked-out scheme, consistent with observations, con-
tained all the fundamental aspects of today’s view of the solar system: The
planets, including the earth, revolve around the sun; the earth executes a
daily motion; and the moon revolves around the earth. Such an approach
simplified everything incredibly, although obscure aspects remained as a
result of making the system agree with observational data. In the opin-
ion of Copernicus, the planets move with nearly uniform circular motion
(as for Aristotle) but undoubtedly deviate from it. Epicycles were still re-
quired, but they played a less essential role than for Ptolemy. The epicycles
disappeared only with Kepler, who discovered that the orbits are elliptical.
The Copernican system was not a purely descriptive theory based on qual-
itative phenomena. It contained many computations, e.g., the distance to
the sun, the periods of revolution, etc. Only such a theory could compete
with Ptolemy’s, which completely accounted for the data.

The Pythagoreans had already indicated the possibility of the earth’s
motion. Therefore, the Church called the teaching that the earth moves
Pythagorean. They preferred not to use Copernicus’ name for this teaching,
for the following reason. His book De Revolutionibus Orbium Coelestium



� Two Tales of Galileo � 47

(On the Revolutions of the Heavenly Spheres), which appeared the year he
died, was preceded by a foreword that Copernicus himself may not have
written. The foreword calls his system a convenient mathematical scheme
for astronomical computations and no more, and the motions it considers
are called imaginary. This means that “real” motions are not discussed in
the book. That is not a mathematician’s job! This question must be solved
by philosophers and theologians, in accordance with holy writ. The book
was dedicated to Pope Paul III. The Church had arranged this compromise,
and the book was not declared heretical. Mathematicians were allowed to
use imaginary schemes in their computations. This included even the Jesuit
astronomers, who in particular used Copernicus’ tables for the calculations
that were necessary to reform the calendar.

The assertion that the earth is stationary and the sun moves had to
remain immutable. The Church was not as uncompromising regarding
the remaining planets (they are not mentioned in the Scriptures). Tycho’s
system, in which the sun moves around the earth but the remaining planets
move around the sun, was tolerated. Tycho essentially gave up the crystal
spheres, asserting that comets do not belong to the “world beneath the
moon” but fly in from the outside (Galileo, by the way, took a different
view).

Thus the Copernican system is a convenient mathematical fiction but a
Pythagorean teaching, and is heresy. Here lay the boundary. Galileo was
not ready to agree to this compromise: “Copernicus, in my view, should
not soften, for the motion of the Earth and the immobility of the Sun form
the essence and general foundation of his teaching. Therefore they must
either condemn it completely or else leave it as it is!” Galileo insisted that
the earth’s motion is not imaginary, but real.

Galileo’s path leading to the decisive struggle for a heliocentric world
system was not a simple one. He believed in the Copernican system early
on, but for a long time did not decide to publish his arguments in its sup-
port (his 1597 letter to Kepler tells us this). The 17th century began with
the burning of Giordano Bruno. By 1610, Galileo had approached the peak
of his scientific activity: He completed his twenty-year-long study of nat-
ural motion (free fall and projectile motion) brilliantly. He was beginning
work on his great discoveries, and unexpectedly left them for an indefinite
period. What happened? Events took place in Galileo’s scientific life that
forced this completely practical man to put off publishing the discoveries
to which he had devoted his youth. Galileo decided that he now had de-
cisive arguments to support the Copernican system and that from then on
his life would be wholly given over to propagandizing these ideas. Let us
recall these important arguments.
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New Glasses

In talking about the lives of great scientists, we rarely pay attention to ev-
eryday matters. One of the reasons for Galileo’s move from Pisa to Padua
was to increase his salary. His material situation became more secure. His
initial salary of 180 florins increased, although slowly; he received addi-
tional income from the young aristocrats with whom he worked privately
and who often lived in his home. But paying his sisters’ dowries was
a heavy burden that lay on Galileo’s shoulders, even as his own family
was growing and required greater resources. In 1609 Galileo was anxious
about the drawn-out negotiations over increasing his salary. Some sort
of invention, with an unquestioned practical application, would open the
purse strings of the stingy and practical Venetian signori. Galileo was no
stranger to technical problems. His home had an excellent workshop, he
had recently designed convenient proportional dividers (a “geometric and
military compass”), and had himself seen to their manufacture and distri-
bution. He could have thought of artillery tables, based on the parabolic
trajectory of a projectile in flight. But he unexpectedly discovered a com-
pletely different idea.

In 1608, optical tubes, sometimes called “new glasses,” appeared in
Holland that allowed people to look at distant objects. Leonardo da Vinci
had spoken of glasses through which one could see the moon enlarged, and
Roger Bacon of glasses that made a man as big as a mountain. Eyeglass
makers Hans Lippershey and Zacharias Janssen contended for the honor
of having invented them. Towards the beginning of 1609, such a tube could
be bought in Holland for a few soldi. By midyear, the tubes had appeared in
Paris. Henri IV spoke pessimistically about the innovation, explaining that
at the moment he was more in need of glasses that magnified nearby objects
rather than distant ones. Then some foreigner tried to sell an optical tube
to the Republic of Venice, without going into details about its origins. The
first tubes were very imperfect, and Paolo Sarpi, Galileo’s friend, expressed
a negative opinion about being able to use them “in war, on land, and at
sea.” Galileo heard about the tubes when he was in Venice.

“Upon hearing this news I returned to Padua, where I then resided, and
set myself to thinking about the problem. The first night after my return I
solved it, and on the following day I constructed the instrument and sent
word of this to those same friends at Venice with whom I had discussed
the matter the previous day. Immediately afterwards I applied myself to
the construction of another and better one, which six days later I took
to Venice. . . .”18 Elsewhere he describes the situation more triumphantly:

�——————�
18A translation of Galileo’s accounts of his discovery appears in Stillman Drake, Discoveries
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“. . .sparing neither labor nor expense, I succeeded in constructing for my-
self so excellent an instrument that objects seen by means of it appeared
nearly one thousand times larger and over thirty times closer than when
regarded with our natural vision. It would be superfluous to enumerate
the number and importance of the advantages of such an instrument at sea
as well as on land.”19

In fact, the properties of the tubes were more modest. Galileo’s first
tube magnified objects three times (3×), while the one taken to Venice was
8×. Galileo decided, with his perfected tube, to push his request to the
members of the Signoria (this may have been Sarpi’s idea). On August 21st,
the most respected people in Venice observed the far quarters of the city
from the campanile of St. Mark’s Cathedral, and on August 24th Galileo
triumphantly gave his tube to Leonardo Donato, Doge of Venice. Galileo
did not skimp in publicizing his gift. He said that he extracted his idea
“from the most secret considerations of perspective.”

Many later said that Galileo overestimated his contribution or even ap-
propriated a foreign invention as his own (Brecht’s play talks about this). At
least in his publications, Galileo always acknowledged that he constructed
his tube having heard of the Dutch invention (but without detailed infor-
mation and not having seen “the Flemish glass”). Later he stressed the
originality of his approach: “Indeed, we know that the Fleming who was
first to invent the telescope was a simple maker of ordinary spectacles who,
casually handling lenses of various sorts, happened to look through two
at once, one convex and the other concave, and placed at different dis-
tances from the eye. In this way he observed the resulting effect and thus
discovered the instrument. But I, incited by the news mentioned above,
discovered the same thing by means of reasoning.” The name “telescope”
was proposed by Cesi (see below) in 1611, when Galileo demonstrated
the tube in Rome; earlier Galileo had used the term occhiale.20 One can as-
sume that Galileo demonstrated the superiority of theory over practice: For
many years no one was able to build tubes of comparable power. (Because
of this, in particular, there was no confirmation of Galileo’s astronomical
observations.)

Galileo’s tube fulfilled its purpose: He was given an annual salary for
life of a thousand florins, unheard of for a mathematician. Galileo was
supposed to make twelve tubes for the Signoria, and to give none to any-
one else.

�——————�
and Opinions of Galileo, Doubleday, New York, 1957 (copyright 1957 by Stillman Drake). This
quotation (p. 244) is taken from Il Saggiatore (The Assayer).—Transl.

19Ibid., pp. 21–52 passim; taken from Sidereus Nuncius (The Starry Messenger). Reprinted
with permission.—Transl.

20Spyglass, or eyeglass.—Transl.
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The Starry Messenger

Soon Galileo had a 20× tube and wrote, “forsaking terrestrial observations,
I turned to celestial ones.” At the end of 1609 Galileo looked through
his tube at the moon and discovered “that the surface of the moon is not
smooth, uniform, and precisely spherical as a great number of philosophers
believe it (and the other heavenly bodies) to be, but is uneven, rough, and
full of cavities and prominences, being not unlike the face of the earth. . . .”
Moreover, Galileo turned his attention to the ashen light on the part of
the moon not lit by the sun. He assumed this light to be “the reflection
of the Earth.” It turned out later that at the same time an Englishman,
Thomas Harriot (1560–1621), and his student William Lower (c.1570–1615)
had begun to observe heavenly bodies by telescope (their observations were
unknown to their contemporaries). Lower wrote in a letter to his teacher
that the moon reminded him of a tart with ham that his cook had baked
the previous week. Leonardo da Vinci and Michael Mästlin (1580–1635),
Kepler’s teacher, had already spoken of the moon’s ashen light.

Then, before Galileo’s eyes, the Milky Way broke into separate stars:
“All the disputes which have vexed philosophers through so many ages
have been resolved. . . the galaxy is, in fact, nothing but a congeries of
innumerable stars grouped together in clusters.”

Finally, on January 7, 1610, Galileo turned his telescope towards Jupiter.
Near Jupiter he discovered three stars. He did not doubt that he was seeing
ordinary “fixed” stars, but something greatly attracted his attention. The
following night, “unknowingly led by some sort of fate,” he again looked
at Jupiter. He had no reason to regret it! Again he saw the familiar stars,
but. . . their position with respect to Jupiter had changed: Yesterday they
were found on different sides of Jupiter but today all were on the same
side. He could still assume the stars were fixed and explain the change in
relative location by Jupiter’s motion. On January 9th “the sky was then
covered by clouds everywhere.” On January 10th and 11th he found only
two of the three stars, but on the 13th, to the contrary, a fourth appeared.

Galileo saw a new solution: The stars he was observing moved in re-
lation to Jupiter, they were its satellites—moons—and they disappear be-
cause they are eclipsed by Jupiter. By the end of the month he was sure,
“passing from the sensation of enigma to the feeling of rapture.” He wrote
to Belisario Vinta, the Florentine Secretary of State: “But the greatest miracle
of all is that I discovered four new planets and observed their own distinc-
tive motions, and the differences in their motions relative to one another,
and relative to the motions of the other stars. These new planets move
around another big star in the same way Venus and Mercury and, possibly,
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other known planets move around the Sun.” There is no doubt in what
context Galileo viewed his discovery, but see how careful a formulation he
still used in regard to “other known planets.”

Until March 2nd, Galileo observed Jupiter’s moons, taking advantage of
each cloudless night, and as early as March 12th his famous Sidereus Nuncius
(The Starry Messenger) appeared: “THE STARRY MESSENGER, Revealing
great, unusual, and remarkable spectacles, opening these to the consid-
eration of every man, and especially of philosophers and astronomers:
AS OBSERVED BY GALILEO GALILEI, Gentleman of Florence, Professor
of Mathematics in the University of Padua, WITH THE AID OF A SPY-
GLASS lately invented by him, In the surface of the Moon, in innumerable
Fixed Stars, in Nebulae, and above all in FOUR PLANETS swiftly revolving
about Jupiter at differing distances and periods. . . .”

Everyday matters were superimposed on all this. It turned out that
Galileo’s salary would be increased only after a year and, moreover, his
teaching duties had begun to weigh on him. He began to think about
moving to Florence. The Grand Duke, Ferdinando I de’ Medici had just
died and Cosimo II, Galileo’s former student, had ascended to the throne.
The duke’s patronage could be unmatchable for solving many problems,
especially in the difficult matter of defending the Copernican system. There
was already no doubt that this would be Galileo’s main work. He wrote
in a letter to Vinta, in connection with the possible move: “The works
which I must bring to conclusion are these. Two books on the system and
constitution of the universe—an immense conception full of philosophy,
astronomy, and geometry.”21

Soon Galileo proposed, through Vinta, to name the moons of Jupiter
the Cosimean or the Medicean stars, in honor of Cosimo de’ Medici. The
second form was chosen. The number of moons fortunately coincided with
Cosimo’s having three brothers. Sidereus Nuncius is dedicated to Cosimo
de’ Medici: “And so, most serene Cosimo, having discovered under your
patronage these stars unknown to every astronomer before me, I have with
good right decided to designate them by the august name of your family.
And if I am first to have investigated them, who can justly blame me if I
likewise name them, calling them the Medicean Stars, in the hope that this
name will bring as much honor to them as the names of other heroes have
bestowed on other stars?”22 Later, all four satellites received their own
names (Io, Europa, Ganymede, and Callisto), and in order to distinguish
them from the moons of Jupiter that were discovered later, they were called
Galilean.

�——————�
21For a translation of this letter, see Drake, Discoveries, pp. 60–65.—Transl.
22Ibid., p. 25.
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Galileo set off for Florence for the Easter vacation. He took a tube with
him so that the duke could see “his” stars for himself. Galileo was showered
with respect, a medal with the image of the Medicean stars was to be struck
in his honor, the conditions for his move were roughly set, and only the
title of Galileo’s position remained to be specified. The ruler was pleased
to have his name immortalized in the heavens; no other royal personage
could boast of that. On May 14th, Galileo received a letter from France
dated April 20th, in which he was asked “to discover as soon as possible
some heavenly body to which His Majesty’s name may be fitly attached,”
meaning Henri IV. It was specified that the star was to be called “rather by
the name Henri than Bourbon.” It turned out that the author of the letter
rushed Galileo for nothing: As soon as he sent it, “the sovereign attended by
fortune” was assassinated. Later Galileo wrote to Florence that the House
of Medici was in an exclusive situation: Neither Mars nor Saturn turned
out to have moons (about fifty years later Huygens and Cassini discovered
moons of Saturn, and then moons were also discovered around Mars).

Doubts plagued the Grand Duke. Rumors stubbornly spread that the
stars given him were the fruit of Galileo’s fantasies or the creation of his
tube. Even Christophorus Clavius (1538–1612), the leading mathematician
of the College of Rome, said it. The situation was made more complicated
because no astronomer other than Galileo himself had seen the Medicean
stars. Galileo paid for the fact that no one else had made such perfect tubes.
Such an important discovery had to be verified by the three most famous
astronomers: Kepler, Giovanni Magini (1555–1617), and Clavius. And for
the time being the question of moving to Florence was put aside.

Kepler, Magini, and Clavius

Things were simplest with Magini. On the way from Florence to Padua,
Galileo stopped at Bologna and showed Magini the stars he had discovered.
Magini, equally famous for his computational abilities and his guile, gave
the impression that he could see nothing around Jupiter but had certainly
been forewarned. He did not argue and was prepared to attribute it to his
poor vision, but this could not comfort Galileo.

Kepler responded immediately to the report of the discovery. As early
as April 19th, he wrote an enthusiastic letter to Galileo.23 It turned out that
news about the new planets had already come to Germany in mid-March.

�——————�
23This letter was published as Dissertatio cum Nuncio Sidereo (Conversation with the Starry

Messenger). The following quotations are taken from the English translation by Edward Rosen,
Kepler’s Conversation with Galileo’s Sidereal Messenger, Johnson Reprint Corporation, New York,
1965, pp. 9–39 passim.—Transl.
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Kepler gently scolded Galileo about the lack of an answer to his Astronomia
Nova. . . de Motibus Stellae Martis (A New Astronomy. . . Commentaries on the
Motions of Mars), which contained his first two laws and which he had
recently sent him: “Instead of reading a book by someone else, [my Galileo]
has busied himself with a highly startling revelation. . . of four previously
unknown planets, discovered by the use of the telescope with two lenses.”

The first reports were unclear, Kepler was afraid that Galileo had dis-
covered new (more than six) planets in the solar system. Kepler strongly
held to the opinion that there were exactly six planets, and that the number
six was not accidental but related to the five regular polyhedra. Kepler’s
fantasy led to still another possibility: All the planets similar to the earth
have one moon in common, and this is what Galileo must have discovered.
“The earth, which is one of the planets (according to Copernicus), has its
own moon revolving around it as a special case. In the same way, Galileo
has quite possibly seen four other very tiny moons running in very narrow
orbits around the small bodies of Saturn, Jupiter, Mars, and Venus. But
Mercury, the last of the planets around the sun, is so deeply immersed in
the sun’s rays that Galileo has not yet been able to discern anything similar
there.” Kepler sought numerical laws everywhere! Then he thought about
the fact that one can speak of planets revolving around “fixed stars,” rather
than the sun. He recalled Bruno’s innumerable worlds and even thought
about the possibility “that countless others will be hereafter discovered in
the same region, now that this start has been made.”

At the same time, Emperor Rudolf II received Sidereus Nuncius (Kepler
was the Imperial Astronomer). Kepler unhesitatingly believed Galileo’s
report: “I may perhaps seem rash in accepting your claim so readily with
no support from my own experience. But why should I not believe a most
learned mathematician, whose very style attests the soundness of his judg-
ment? He has no intention of practicing deception in a bid for vulgar
publicity, nor does he pretend to have seen what he has not seen. Because
he loves the truth, he does not hesitate to oppose even the most familiar
opinions. . . .”

It seems that the regularity of the distribution of the number of planetary
moons bothered Kepler: “I should rather wish that I now had a telescope
at hand, with which I might anticipate you in discovering two satellites of
Mars (as the relationship seems to me to require) and six or eight satellites
of Saturn, with one each perhaps for Venus and Mercury.” Kepler did not
know if he had an arithmetic or a geometric progression!

Kepler pointed out some of Galileo’s predecessors to him (Mästlin spoke
of the ashen light of the moon and Giambattista Della Porta (1535–1615)
predicted the possibility of constructing an optical tube). Kepler hoped
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that the sun is brighter than the fixed stars, and wanted to believe in the
uniqueness of our world: “This world of ours does not belong to an un-
differentiated swarm of countless others.” There is no limit to Kepler’s
fantasies: “It is not improbable, I must point out, that there are inhabitants
not only on the moon but on Jupiter too. . . . Given ships or sails adapted
to the breezes of heaven, there will be those who will not shrink from even
that vast expanse.”

Magini tried to draw Kepler to his side. Kepler was implacable: “We
are both Copernicans—each is happy with his own kind.” Critical remarks
from Kepler’s Dissertatio reassured Magini: “Now there remain only these
four new servants of Jupiter to banish and destroy.” Martin Horky, an as-
tronomer in Magini’s circle, initiated a series of pamphlets against Galileo
in May 1610. In Excursion Against the Starry Messenger, he explained the
moons of Jupiter as an optical illusion. Kepler’s relations with Horky were
equivocal. In a letter to Galileo he called the essay cheeky, and said he
was “surprised at the impudence of this youth.” To Horky himself, ex-
pressing surprise at his continuing doubts about “Galileo’s stars,” Kepler
wrote: “. . .not surprised and do not accuse you; the opinions of those who
philosophize must be free.”

The absence of confirmation began to bother Kepler. He himself had no
suitable tube. From Bologna came the university’s conclusion (at Magini’s
instigation) that the stars could not be seen through Galileo’s own tube. In
August, the worried Kepler wrote to Galileo: “I cannot conceal from you
that letters are arriving in Prague from many Italians that these planets
cannot be seen with your optical tube. . . therefore I beg of you, Galileo, to
send some witnesses as soon as possible. . . . The entire proof of the truth
of the observations lies on you alone.” Happily, the emperor, Rudolf II,
known not only for his caprice but also for his love of science, became pas-
sionate about the tubes. Finally, a sufficient well-perfected tube appeared
in Prague, and in September, Kepler saw the moons of Jupiter. The partici-
pants in the observation independently drew the positions of the stars and
the drawings coincided. “Galileo, you have won!” exclaimed Kepler.

In September, Antonio Santini saw Jupiter’s moons from Venice, and
especially joyful news came in December: Clavius had seen the moons.
True, he still was not “sure whether or not they are planets.” In September,
Galileo moved to Florence. He began a correspondence with Clavius (in the
Republic of Venice, it had been forbidden to correspond with Jesuits). “In
truth, you, your Excellency, deserve great praise since you are the first who
has observed them,” Clavius wrote to Galileo. Galileo found the way to
Magini’s heart. He recommended his work on burning lenses to the Grand
Duke and enabled him to obtain the vacated chair at Padua. (Magini had



� Two Tales of Galileo � 55

sought this position before, when Galileo moved to Padua from Pisa.) The
careful Magini gave a positive opinion on Santini’s testimony. One could
not ask for anything more!

A Year of Great Discoveries

The year 1610, beginning with the discovery of the moons of Jupiter, was
an unusually happy one for Galileo as an astronomer: He made almost all
his remarkable astronomical observations in that one year. On July 25th,
he again observed “Jupiter in the morning in the east, together with its
retinue.” After this he discovered “still another most unusual miracle.”
He communicated his discovery to Florence, asking that it be kept secret
until he could publish it: “The planet Saturn is not merely one single star,
but three stars very close together, so much so that they are all but in contact
one with another. They are quite immovable with regard to each other. . .
the middle star of the three is by far greater than the two on either side.”
Galileo sent a phrase to Kepler, encoded in the form of an anagram: “I
have observed the most distant of the planets to have a triple form.” Later,
Galileo wrote: “So you see a guard of satellites has been found for Jupiter,
and for the decrepit little old man [Saturn] two servants to help his steps
and never leave his side.”

Galileo did not reveal his secret for five months. Kepler and Rudolf had
no patience to figure out the clue and made the most improbable conjec-
tures: “As quickly as possible, satisfy our passionate desire to know what
your new discovery consists of. There is no man whom you could fear
as a rival.” Galileo divulged the secret, adding that in the weakest tube
Saturn looked like an olive. This is how Galileo’s discovery first appeared
in print, in the preface to Kepler’s Dioptice (Dioptics),24 with the obligatory
references.

Within two years, Saturn unexpectedly stopped appearing as a triple.
Galileo attributed this to Saturn’s motion around the sun and predicted that
it could soon be seen again in the form of three stars. The prediction came
true, but Galileo did not guess Saturn’s secret. The secret was unveiled in
1655, when Huygens, looking at Saturn through a 92× telescope, discov-
ered that Saturn is surrounded by a ring that at lower magnification appears
as adjacent stars. The ring becomes invisible when the observer happens
to be in its plane, and Galileo was lucky to see this rare phenomenon. The
visual impression of Saturn evolved as telescopes became stronger, from an

�——————�
24The branch of geometrical optics dealing with lenses and images. Kepler’s remarks are

also contained in the translation of Sidereus Nuncius by E. S. Carlos, The Sidereal Messenger of
Galileo Galilei, Rivingtons, London, 1880, pp. 90–91.—Transl.
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olive to a sphere surrounded by a ring. Huygens also discovered Saturn’s
largest moon—Titan.

Soon after Galileo sent Kepler his letter with the anagrammatic clue,
there was news of still other planets. For a long time, Galileo had been
intently observing Venus both as a morning and as an evening star. There
was a great deal of arguing over Venus and Mercury between the adher-
ents of Ptolemy and Copernicus. The former could not agree where their
“spheres” were—within the sun’s “sphere” or outside it. For Copernicus’
adherents it was clear that if these planets are dark bodies then, since they
lie between the sun and the earth, they must at times be seen as partial discs
(like the phases of the moon). This problem does not arise if we assume that
the planets shine by their own light (Kepler’s position, apparently) or that
they are transparent (this possibility was seriously discussed). Perhaps the
telescope could help see what had not been seen with the naked eye.

Castelli recalled this problem in a letter to Galileo on December 5, 1610:
“Since (so I believe) Copernicus’ position is correct that Venus revolves
around the Sun, we clearly had to observe it sometimes with horns and
sometimes not. . . , if, however, the small size of the horns and the emission
of light do not prevent us from observing these differences.” But Galileo
hardly needed to be reminded of this. As early as December 10th, he
sent a coded message to Kepler in Prague, via the Tuscan ambassador
Giuliano de’ Medici, about his discovery of the phases of Venus, together
with an accompanying letter: “I am sending you a coded message about yet
another of my unusual observations, which leads to the solution of the most
important disputes in astronomy and which contains the most important
argument in support of the Pythagorean and Copernican system.” Kepler,
as always, had no patience to figure out the clue: “You will see that you’re
dealing with a German among Germans!”

But the first to whom Galileo revealed his secret was Clavius. Galileo
had just heard from Clavius that the astronomers of the Collegio Romano
had also observed both the moons of Jupiter and the elongated form of Sat-
urn. The support of the Collegio played a special role in Galileo’s plans, and
he hurried to surprise Clavius with his new discovery. Galileo described
his observations of Venus after “its evening appearance,” and talked about
how its circular form unexpectedly became twisted to one side and turned
towards the sun, so that Venus no longer looked like a semicircle but “be-
came noticeably horned.” He predicted the form Venus would take when
it would be seen as a morning star, and concluded, “This is how, my lord, it
is explained how Venus (and undoubtedly Mercury does the same) moves
around the Sun, which without any doubt is the center of the greatest rev-
olutions of all the planets. Moreover, we are sure that these planets by
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themselves are dark and shine only when illuminated by the Sun, which,
as I think, does not travel with the fixed stars according to certain of my
observations. . . .” Clavius could have no doubt about where Galileo was
heading! This brought Galileo’s year of great astronomical discoveries to a
close.

Galileo did not halt his astronomical observations, but they were basi-
cally a continuation of what he saw in 1610. He continued to observe the
sunspots that had appeared in the summer of 1610, and by 1613 had dis-
covered that the sun rotates on its axis; we have already spoken about how
he saw the disappearance of Saturn’s “appendages.” At the end of his life,
before he was finally blind, Galileo was fortunate to discover the appear-
ance of the libration of the moon (as a result of which it became possible to
observe more than half the moon’s surface). But he would never again be
able to devote as much time to perfecting the telescope or to astronomical
observations. And the mysteries of the universe would not again reveal
themselves to him as they had in that great year! Galileo’s achievements
were so great that it would be at least half a century before comparable
discoveries would be made in observational astronomy (by Huygens and
Cassini). Now other problems began to disturb Galileo, and to solve these
problems it was important for him to go to Rome.

Subjugation by Rome

Galileo arrived in Rome on March 29, 1611. He enjoyed the special atten-
tion of the Grand Duke of Tuscany, arriving in the Duke’s sedan-chair and
staying at the Medici palace in Rome. The four astronomers of the Colle-
gio Romano, Clavius, Christoph Grienberger, Odo van Maelcote, and Paolo
Lembo, received him warmly. Galileo discovered that the Jesuit fathers
systematically observed the Medici stars through optical tubes, trying to
determine their periods. On April 21st, one of the leaders of the Holy Of-
fice, Cardinal Roberto Bellarmino, sent them an official query “about the
new celestial observations of a leading mathematician” (his name was not
mentioned) regarding the Milky Way, Saturn, the moon, and the moons
of Jupiter. The answer came on April 24th, essentially confirming the ob-
servations. They noted minor discrepancies in the observations (the stars
forming Saturn did not seem to them to be separate), and substantive ones
in the interpretation of what was seen on the moon (not mountains but
rather that the density of the “lunar body” was not uniform).

On April 14th, Galileo became the fifth member of the Accademia del
Lincei (“lynx-eyed”),25 founded eight years earlier by Federico Cesi, Mar-

�——————�
25Referring to Lynceus the Argonaut, noted for his keen sight.—Transl.
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quis of Montebello. The academy was devoted to the free study of nature,
with no limitations. Cesi later wrote to Galileo, “Those whom we accept
will not be slaves of Aristotle or of any other philosopher, but will be per-
sons of noble and free thought in the study of nature.” His friendship with
Cesi played an important role in Galileo’s later life, and he now put Galileo
Galilei Linceo on his works. A demonstration of Galileo’s surprising tube
took place atop the Janiculum hill (that was then Cesi proposed to call it a
telescope).

Galileo was also honored by the Collegio Romano. Odo van Maelcote
read a report entitled, “The Starry Messenger of the Roman College.” He
called Galileo “the most remarkable and fortunate astronomer currently
alive” and praised his discoveries, but gently said that Galileo’s expla-
nations of the phenomena he discovered are not the only ones possible.
Galileo was given to understand the limits within which he must stay.
This wish was expressed very precisely by Paolo Gualdo: “. . .you should
be satisfied with the glory you have acquired thanks to observations of the
moon, the four planets, and similar things, and not take on the defense of
ideas so contrary to human reason. . . .” Gualdo’s advice also foreshadowed
the path that Galileo would later take: “. . . many things can be uttered by
way of disputation which it is not wise to affirm as truths, in particular, if
against them you have general opinion, absorbed, if one can say, with the
creation of the universe.” Cardinal Bellarmino apparently also indicated to
Galileo, during an audience, the limits of what was permitted. Bellarmino
gave a more definite warning to the Tuscan ambassador Francesco Niccol-
ini: “Galileo should stay within the indicated bounds, or else his works will
be given to the theological experts for consideration,” and the ambassador
was to understand that nothing good could come of that.

The rest of Galileo’s trip was successful. Cardinal Francesco del Monte
wrote to the Grand Duke, “Galileo, during the days he was in Rome, gave
much satisfaction and, I think, obtained much, for he was able to demon-
strate his discoveries so well that all the worthy and leading people of this
city recognized them not only as true and real, but also as staggering. If
we now lived in the ancient Roman republic, I am convinced that they
would erect a statue to him on the Capitoline, in order to pay respect to his
exclusive prowess.”

“Philosopher and First Mathematician to the Grand Duke”

Thus not even a year had passed before Galileo’s surprising astronomical
discoveries obtained recognition. Do no think, however, that the Collegio
Romano stopped the accusations against him. As before, there were peo-
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ple who opposed the existence of new planets. There was still suspicion
of optical tubes. The argument was most absurd (perhaps from today’s
standpoint). For example, Francesco Sizi reasoned this way: An optical
tube is similar to eyeglasses, eyeglasses cannot fit young and old people
equally well, both see the planets through Galileo’s tube at the same time,
and so it is an optical illusion. Also, in Pisa, Giulio Libri simply refused to
look through the tube. “I hope that when he goes to Heaven he will finally
see my moons, which he did not want to see from Earth,” Galileo said after
Libri’s death. Many of Galileo’s opponents understood that claiming his
statements contradicted Scripture were especially effective denunciations
to the Inquisition.

But if this is how things stood with phenomena that could be observed
directly, then what dangers threatened Galileo for his statements support-
ing the Copernican system! In Sidereus Nuncius, Galileo promised to write
Massimi Sistemi, in which “by six proofs and arguments of natural philos-
ophy” he confirms that “the Earth moves and surpasses the Moon in its
light.”26 His reconnaissance in Rome showed clearly that at the present
moment these arguments found no support among “the leading lights.”
Galileo did not abandon his plans, but a long siege had begun. He under-
stood very well that accepting Copernicus was not an internal scientific
question, that he first had to convince the best scientists in the world, and
that this required all his effort and would take him away from his imme-
diate scientific activities. Many scientists doubted the validity of Galileo’s
solution. Einstein’s opinion on this is well known: “As regards Galileo, I
imagine him differently. We should not doubt that he passionately sought
after truth, more than anyone else. But is it hard to believe that a man
of vision sees sense in joining the truth he has found to the ideas of the
superficial masses, confused in their petty interests. Was such a problem
important enough for him to give it the last years of his life. . . . Without
needing to personally, he went to Rome to tilt there at priests and politi-
cians. This picture does not correspond to my image of the aged Galileo’s
internal independence. I cannot imagine that I, for example, would have
undertaken anything like that to defend the theory of relativity. I would
have thought the truth was far stronger than myself, and it would have
seemed to me ridiculously quixotic to defend it by the sword, astride Rosi-
nante. . . .” Galileo held to a different opinion, but he hardly seems a sci-
entific Don Quixote. He did not tilt at “priests and politicians” as much as
draw them to his side with the greatest art.

It is interesting to compare Einstein’s statement with the view of the

�——————�
26In other words, in the amount of sunlight it reflects.—Transl.
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Pythagoreans, who were the first to accept a moving earth and fixed sun:
“Let us only try to know something for ourselves, finding satisfaction just
in this, and forget the desire and hope to rise in the eyes of the crowd or to
strive for the approval of the bookish philosophers.”

First of all, mathematicians traditionally were not supposed to discuss
questions about the creation of the universe. To observe heavenly bod-
ies, construct tables, use tables for horoscopes—these were the limits of a
mathematician’s duties. Galileo had no taste for making horoscopes (unlike
Kepler, for instance) but at times he still had to do it. Thus, in anticipation
of his move to Florence and at the insistence of the Duchess, he had made
a horoscope for Grand Duke Ferdinando I (the father of Cosimo II, the
present Duke), who had fallen ill. The horoscope promised a favorable
turn of events, the Duke was pleased. Galileo’s son-in-law obtained a po-
sition he desired, and within several days the Duke died. . . . You had to be
at least a philosopher in order to discuss the creation of the universe (after
all, even their salaries were noticeably higher than the mathematicians’),
and if it conflicted with Scripture then you certainly had to be a theolo-
gian. Galileo could not become a theologian, but he could try to become a
philosopher.

Galileo went through long negotiations over the title of his future posi-
tion in Florence; he wanted the word “philosopher” in his title, for he had
“studied more years in philosophy than months in pure mathematics.” In
the end, they agreed on the title “Philosopher and First Mathematician to
His Highness the Grand Duke of Tuscany” (first mathematician, but not
first philosopher!).

He began life in Florence in discussions with the conservative philoso-
phers of the University of Pisa, followers of Aristotle, who assumed that the
truth, “speaking in their own words, must be sought not in the universe and
not in nature, but in the comparison of texts.” Galileo was satisfied with
his first successes: “How you, dear Kepler, would have laughed if you had
heard how in Pisa, in the presence of the Grand Duke, the first philosopher
of the local university came out against me, trying by arguments of logic, as
if by bewitched incantations, to tear the new planets down from the heav-
ens and destroy them!” His discussions concerned more than astronomy.
In 1612, Discorso Intorno alle Cose che Stanno in su l’Aqua (Discourse on Bodies
Floating in Water) appeared, devoted to hydrostatics and rather unpleasant
for Aristotle’s adherents. Within a year came Istoria. . . intorno alle Macchie
Solari. . . (Letters on the Solar Spots), with barbs aimed in the same direction:
“This news, I fear, will become the death knell or, rather, the death sen-
tence for pseudo-philosophy. . . . I hope that the hilliness of the moon will
become for the peripatetics a mere trickle compared to the torment of the
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clouds, steam, and abundance of smoke that constantly arise, move about
and disappear on the very face of the sun” (from a letter to Cesi; Aristotle’s
adherents were called peripatetics). Perhaps Galileo celebrated his victory
prematurely. . . .

Galileo was increasingly pulled into discussions with people who were
far removed from actual science. Sometimes doubts plagued him: “With
unspeakable disgust, I have reached this point and, as if I were repenting
for my deeds, understood how fruitlessly I have squandered time and ef-
fort.” The struggle intensified. The Dominican monk Tommaso Caccini,
directing his sermons against Galileo, proposed radical measures: “Math-
ematicians must be banished from all Catholic states!” At the same time,
Galileo decided to discuss theological questions. In 1614, copies were cir-
culated of a letter he wrote to Castelli, in which one can find words such
as: “Hence it appears that physical effects placed before our eyes by sen-
sible experience, or concluded by necessary demonstrations, should not in
any circumstances be called in doubt by passages in Scripture that verbally
have a different semblance, since not everything in Scripture is linked to
such severe obligations as is every physical effect.”27 This very letter prob-
ably served as the means for Father Nicolò Lorini’s denunciation of Galileo
to the Inquisition. It turned out that Galileo was accurate enough. The
ravenous qualificators28 could find only “three evil-sounding places” in
the letter, and two of these were not in the original, which the Inquisition
could not obtain.

In February 1615, a book appeared in Naples by Paolo Foscarini, a mem-
ber of the Carmelite order, giving an account of the Copernican system in
the form of a letter to the order’s general. Bellarmino used the book as a
way to state his relation to the problem, in a letter to Foscarini: “It seems to
me that your Reverence and Signor Galileo act prudently when you con-
tent yourselves with speaking hypothetically and not absolutely, as I have
always understood that Copernicus spoke. To say that on the supposition
of the Earth’s movement and the Sun’s quiescence all the celestial appear-
ances are explained better than by the theory of eccentrics and epicycles
is to speak with excellent good sense and to run no risk whatever. Such a
manner of speaking is enough for a mathematician. But to want to affirm
that the Sun, in very truth, is at the center of the universe and only rotates
on its axis without going from east to west, is a very dangerous attitude
and one calculated not only to arouse all Scholastic philosophers and the-
ologians but also to injure our holy faith by contradicting the Scriptures.”29

�——————�
27For an English translation of this letter, see Drake, Galileo at Work, pp. 224–229.—Transl.
28Who examined cases and prepared them for trial.—Transl.
29English translations, in whole or in part, of Cardinal Bellarmino’s letter and other relevant
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We must give the head of the Inquisition his due—he expressed his opinion
with the utmost clarity.

In December 1615, Galileo was again in Rome. He probably wanted to
influence the path of the investigation forming against him, and had not yet
lost hope of changing the Church’s opinion about the Copernican system.

A “Salutary Edict”

Galileo was in every way a diplomat. He visited Bellarmino, and tried to
bring Cardinal Alessandro Orsini over to his side. In a message to Orsini,
he set forth his most secret argument in support of the earth’s motion—the
tides. He explained them by the mutual action of the daily and orbital mo-
tions of the earth, and saw no competing explanation. Galileo thought up
this explanation in Venice, where he saw how the water in a boat moved
when it sped up and slowed down. “This phenomenon is indisputable,
easy to understand, and can be verified by experiment at any time.” Sim-
pler explanations make the Copernican system very plausible, but a definite
proof of the earth’s motion can only be discovered on the earth itself! The
future showed that Galileo’s trump card was erroneous, but the explanation
came much later. Galileo was at the very center of Roman intrigue: “I find
myself in Rome, where just as the weather constantly changes, instability
always rules in affairs.”

Everything came to an end on February 24th, when a commission of
eleven theologians voted that the claim that the earth moves is “at least er-
roneous in faith.” Galileo was told about this decision by the Commissary-
General of the Inquisition in the presence of Cardinal Bellarmino. On March
5th, the Congregation of the Index “suspected” (but did not ban) Coper-
nicus’ book.30 This act was almost symbolic. They planned to remove
several phrases from the book about how the doctrine being presented did
not contradict Scripture, and to correct those places where Copernicus calls
the earth a heavenly body (the sun and moon were heavenly bodies!). The
Tuscan ambassador, in a letter to home, regretted Galileo’s persistence but
expressed the hope that he would not suffer. Rumors spread that Galileo
would be required to swear an oath of renunciation, and Galileo obtained
reassurance from Bellarmino refuting the rumors: “. . .but that only the
declaration made by the Holy Father and published by the Sacred Congre-
gation of the Index has been notified to him, wherein it is set forth that the
doctrine attributed to Copernicus, that the Earth moves around the Sun

�——————�
documents appear in de Santillana, The Crime of Galileo, p. 99.—Transl.

30This was the “salutary edict” Galileo later referred to in his preface to Massimi Sistemi.—
Transl.
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and that the Sun is stationary in the center of the world, and does not move
from east to west, is contrary to the Holy Scriptures and therefore cannot
be defended or held.”31 This was in May before Galileo left Rome, and still
earlier he had been received by Pope Paul V. What took place was not a
sentence, but a stern warning. A violation of a clearly expressed ban was
surely a crime.

Awaiting a Change

Galileo quit Rome, subject to the “salutary edict.” But his obedience is not
so apparent. Here, for example, is what he wrote while sending Discorso
sopra il Flusso e Reflusso del Mare (Discourse on the Tides) to the Archduke
Leopold of Austria, brother of the Grand Duchess: “Now, knowing as I
do that it behooves us to obey the decisions of the authorities and to be-
lieve them, since they are guided by a higher insight than any to which my
humble mind can of itself attain, I consider this treatise which I send you
to be merely a poetical conceit, or a dream, and desire that your Highness
may take it as such, inasmuch as it is based on the double motion of the
Earth and, indeed, contains one of the arguments which I brought in con-
firmation of it.”32 It is hard to believe that this man will never say the earth
moves. However, in order to return to this theme, Galileo needed not new
arguments but a change in his everyday situation. And he waited for a
change. Pope Paul V died, Giovanni Ciàmpoli, who was kindly inclined
towards Galileo, became the influential secretary to the new Pope Gregory
XV, and in 1621 the terrible Cardinal Bellarmino died. In 1623, Cardinal
Maffeo Barberini, an educated man and patron of the sciences who did not
hide his admiration for Galileo, became Pope Urban VIII.

At this time Galileo’s pace quickened noticeably. In 1623 his book Il Sag-
giatore (The Assayer) appeared, a response to Orazio Grassi, an astronomer
of the Collegio Romano, that was devoted to comets. Here he still did not
speak directly about the earth’s motion. But his following work, Letter to
Ingoli, written in 1624, directly relates to this question. It was a reply to
a 1616 essay by Francesco Ingoli, a highly educated clergyman, directed
against the Copernican system. It is significant that Galileo waited eight
years to respond. There are many brilliant and daring pages in this slim
volume. There is even a poetic description of shipboard experiments that
do not show the ship is moving, a remarkable explanation of the law of
inertia; there are also arguments involving the fixed stars, comparing them

�——————�
31De Santillana, The Crime of Galileo, p. 132.
32Ibid., p. 151.
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to the sun, and even a free discussion of the question of the size of the
universe.

As for the latter, there is not even a hint of a universe bounded by
“eight heavens” of fixed stars. Galileo clearly explains that he sees no
arguments that allow one to choose between the hypotheses of a finite or
infinite universe, but completely admits that only a small part is accessible
to us: “. . .I am not at all sickened by the thought that the world, whose
boundaries are set by our external senses, may turn out to be as small in
relation to the Universe as the world of worms is in relation to our world.”
Galileo very daringly admits the hypothesis that the universe is infinite!
Recall how uncomfortable the great fantasizer Kepler felt in assuming an
infinite number of worlds similar to the solar system in his Dissertatio: “If
you had discovered any planets revolving around one of the fixed stars,
there would now be waiting for me chains and a prison amid Bruno’s
innumerabilities, I should rather say, exile to his infinite space.”33

Letter to Ingoli was written in the autumn of 1624, and in the spring
of 1625 Galileo visited Rome again. It seems that his goal was to make
contact with the new pope, and to judge how favorable the situation had
become. Galileo met with the pope six times, was treated very well by
Barberini’s large family, and established favorable connections with many
cardinals, including the influential German Cardinal Eitel Friedrich von
(Hohen) Zollern. Relations with Galileo personally could not have been
better, but his main hope was not justified: Urban VIII strongly supported
the assertion of the “salutary edict” that the sun moves and the earth is
stationary. Galileo discovered that in discussing this question, he and the
pope had been speaking in different languages. Galileo claimed that the
tides cannot be explained without assuming that the earth moves, but was
told that what is unknown to people may be known to God. It is hard
to argue with such reasoning! Galileo returned, and afterwards the pope
sent a message to Grand Duke Ferdinando II (Cosimo had just died) ex-
pressing satisfaction with the Florentine scientist’s visit and giving the most
laudatory opinion of him.

Massimi Sistemi (World Systems)

Returning from Rome, Galileo finally decided to write a book setting forth
all the arguments supporting the Copernican system. He had dreamt of this
book in 1597 when he wrote to Kepler, had promised it in Sidereus Nuncius,
and had considered it his main goal in moving to Florence. Galileo had

�——————�
33Dissertatio, p. 36.
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turned sixty, and his health left something to be desired. The journey to
Rome had not been a complete success, but there was no point in waiting
for a better time. It would seem that after the “salutary edict” which, as
we have explained, was strongly supported by Rome’s “leading lights,” he
could not think of openly supporting the heliocentric system, but Galileo
was not accustomed to guile.

Even in theological disputes, one of the participants was permitted to
defend a heretical point of view “conditionally,” so as to unmask it more
graphically. The Copernican system was not declared heretical, and even
Bellarmino had allowed it to be spoken of “hypothetically,” as a mathemat-
ical construction. Galileo devised an artifice. Three interlocutors, Salviati,
Sagredo, and Simplicio,34 meet at Sagredo’s palace and “dispassionately”
discuss both world systems over the course of six days. The first two heroes
are named for Galileo’s deceased friends, and the third—an adherent of
Aristotle and Ptolemy—is imaginary.

For more than five years, Galileo anxiously worked on the book; it goes
without saying that he thought of it as the major work of his life. By 1630,
four of the six days were finished: On the first day they discussed the
possibility of the earth moving, on the second day its daily motion, on the
third its yearly motion, and, finally, on the fourth day the tides, Galileo’s
most beloved find. He decided to limit himself to four days, and to call
the book Dialogo del Flusso e Reflusso (Dialogue on the Tides). In the spring of
1630, Galileo sent the manuscript to Rome.

Galileo’s book, in today’s terminology, should really be called popu-
lar science. He consciously addressed it to the public at large, not just to
scientists; he wanted to convince everyone that there were irrefutable ar-
guments in favor of Copernicus. Partly because of this and partly because
of his own scientific tastes, Galileo dealt almost exclusively with quali-
tative phenomena, without linking the system to the numerical data of
astronomical observations. His planets moved uniformly in circles around
the sun, which had no chance of agreeing with the observational data. In
this regard, Galileo was significantly inferior to Kepler and avoided dis-
cussing the problems that bothered Copernicus. Evidently, computational
astronomy was not Galileo’s strength.

Galileo obtained an audience with the pope, and met with the influ-
ential cardinals. Urban VIII was not against a book that would contain
conditional arguments in support of a condemned system, but it could not
create the feeling that the reader had a choice between two systems. The
book must indicate unambiguously the finality of the assertion, sanctified

�——————�
34Who later appeared in Discorsi.—Transl.
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by the Church, that the sun moves and the earth does not. Moreover, the
pope rejected the title Dialogo del Flusso e Reflusso. Galileo promised to sat-
isfy the pope’s wish for a yet-unwritten introduction and conclusion. The
manuscript was given to Niccolò Riccardi, the Master of the Holy Apos-
tolic Palace (the chief licenser), also known as Padre Mostro, for an opinion.
Padre Mostro chose a delaying tactic; unlike Galileo he was in no hurry.

The rest sounds like a detective story, with Galileo and his supporters
acting with wonderful ingenuity so that the book would see the light of
day. Ciàmpoli, the former papal secretary, evidently resorted to fraud just
to obtain preliminary consent, risking his career. The book was supposed
to be printed in Rome. With enormous cunning, with references to Galileo’s
health, plague in Italy, etc., it was printed in Florence.

On February 22, 1632, Grand Duke Ferdinando received a present, the
first copy of the book dedicated to him: “A Dialogue of Galileo Galilei
Linceo, Extraordinary Mathematician of the University of Pisa and Philoso-
pher and Chief Mathematician of His Highness the Grand Duke of Tus-
cany, where in four days of meeting the two Grand Systems of the World of
Ptolemy and Copernicus are discussed, and the philosophical and physical
reasons for one side and the other are indefinitely propounded.” The pref-
ace, addressed to the “discerning reader,” explains the author’s motives in
presenting arguments supporting the Copernican system. He recalls the
“salutary edict which, in order to obviate the dangerous tendencies of our
present age, imposed a seasonable silence upon the Pythagorean opinion
that the earth moves.”35

Galileo’s “zeal could not be contained” by the spreading rumors “that
this decree had its origin not in judicious inquiry, but in passion none
too well informed.” The book must refute these rumors. He wants to
show “foreign nations that as much is understood of this matter in Italy,
and particularly in Rome, as transalpine diligence can ever have imagined.
Collecting all the reflections that properly concern the Copernican system, I
shall make it known that everything was brought before the attention of the
Roman censorship, and that there proceed from this clime not only dogmas
for the welfare of the soul, but ingenious discoveries for the delight of the
mind as well.” Finally, “it is not from failing to take count of what others
have thought that we have yielded to asserting that the earth is motionless,
and holding the contrary to be a mere mathematical caprice, but. . . for
those reasons that are supplied by piety, religion, and knowledge of Divine

�——————�
35The quotations here and below are taken from the Massimi Sistemi section of Galileo

Galilei, Dialogue Concerning the Two Chief World Systems—Ptolemaic and Copernican, translated
by Stillman Drake, 2nd revised ed., University of California Press, Berkeley, 1967, pp. 5–6.—
Transl.
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Omnipotence, and a consciousness of the limitations of the human mind.”
In fact, his goals had to have been seen in Rome as worthy: to cut off talk
about the rashness of the edict and to put the “foreign nations” in their
place. Nevertheless, certain statements seem ambiguous today and may
have also seemed so to some of the “leading lights.” At the least, soon after
copies of Massimi Sistemi appeared in Rome, there was a thunderclap.

Trial and Renunciation

The initiative for pursuing Galileo evidently came from Urban VIII himself.
What angered the pope so and made him unappeasable? Perhaps he found
the praise of the “seasonable salutary edict” insincere? Massimi Sistemi un-
doubtedly appeared at a very difficult time for Urban. The strong Spanish
opposition in Rome was trying to remove the pope, and he could have been
greatly threatened by accusations of supporting a scientist “suspected of
heresy.” It was said that the pope saw himself in the simpleton Simplicio,
who defended the immobility of the earth. Galileo writes in the preface
that this hero, unlike the two others, is not called by his proper name. What
must Urban have thought if he really discovered something he had once
told Galileo in Simplicio’s verbiage?

In August 1632, the Papal Curia forbade the distribution of Massimi Sis-
temi. In September the matter was given to the Inquisition. A protracted
game began. Galileo’s supporters, including the Grand Duke, tried first
to avoid consideration of the issue by the Inquisition, then to move the
inquiry to Florence, and finally to procrastinate as much as possible, refer-
ring to Galileo’s illness. All these attempts led nowhere—Urban VIII was
implacable.

A threat to put Galileo in chains made him leave for Rome in January
1633. He arrived on February 13th, and on April 12th stood before Vin-
cenzo Macolani, the Commissary-General of the Inquisition. An agonizing
inquiry began, pressure was applied, and Galileo was apparently shown
instruments of torture. An exhausting struggle to find a compromise took
place. Three qualificators of the Holy Office concluded that the book at least
violated the ban on holding and spreading condemned doctrines. Galileo
admitted that, against his wishes, he had strengthened the arguments in
favor of the Copernican system. On June 22nd, in the monastery of Santa
Maria sopra Minerva, the kneeling Galileo, who would reach seventy in
half a year, heard the verdict. Because he “believed. . . that an opinion may
be held and defended as probable after it has been declared and defined
to be contrary to the Holy Scripture,”36 Galileo was declared to be “ve-

�——————�
36Complete English translations of Galileo’s sentence and renunciation appear in de Santil-
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hemently suspected of heresy,” and Massimi Sistemi was banned. Galileo
was sentenced to “the formal prison of this Holy Office” (one suspected of
heresy was not burned as a heretic!), and he must “for three years. . . repeat
once a week the seven penitential Psalms.” Then Galileo read out the text
of renunciation: “. . .after it has been notified to me that the said doctrine
was contrary to Holy Scripture—I wrote and printed a book in which I dis-
cuss this new doctrine already condemned and adduce arguments of great
cogency in favor without presenting any solution of these. . . .” He swore
to “fulfill and observe in all their integrity all penances” placed on him.

Perhaps at that moment Galileo regretted that he had abandoned the
Republic of Venice, where he had been beyond the Inquisition’s reach, and
reassessed the Grand Duke’s capabilities. But in Venice there had evidently
been no chance of publishing his major work, which, regardless of the
terrible consequences, he had succeeded in doing in Florence.

The Inquisition’s prison sentence was replaced by exile, at first in the
Medici palace in Rome; in two weeks, they sent him to Siena, to the arch-
bishop Ascanio Piccolomini. In half a year they decided to move him again,
to his villa in Arcetri, near the convent where his daughters were. Galileo
live there for his eight remaining years, except for a short trip to Florence.
Everywhere, he was under the vigilant eye of the Inquisition, which care-
fully controlled his contacts with the outside world. Urban VIII showed
no pity to the disgraced scientist, even on the day of his death. His relative
Cardinal Francesco Barberini wrote to Florence: “. . .it is not good to build
a mausoleum for a corpse who was punished by the tribunal of the Holy
Inquisition and died while under that punishment.” The Grand Duke was
unable to bury Galileo next to Michelangelo (this wish was fulfilled after
many years).

Galileo’s renunciation continues to disturb people even today. Did a
scientist have the right to renounce a theory that he believed to be true
without a doubt and to whose confirmation he had given a significant part
of his life? Various explanations were put forth for Galileo’s decision: The
seventy-year-old ailing scientist’s fear of torture and burning, the feeling
that he had fulfilled his mission and that nothing could any longer inter-
fere with the distribution of his book, and the possibility of preserving what
proved to be his eight remaining years for scientific work (he returned to
the studies he had interrupted for a quarter of a century, thanks to work-
ing out the ideas he now was forced to renounce). Constance Reid’s book,
Hilbert, tells what that great mathematician, with characteristic directness,
said about Galileo: “But he was not an idiot. Only an idiot could believe

�——————�
lana, The Crime of Galileo, p. 306 ff.—Transl.
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that scientific truth needs martyrdom—that may be necessary in religion,
but scientific results prove themselves in time.”37 Keep in mind that Galileo
had also compromised before, and even after 161638 had formally acknowl-
edged the immobility of the earth (and in Massimi Sistemi as well).

Galileo apparently never spoke the legendary phrase, eppur si muove
(“still it moves”),39 but regardless of his unquestionable faith his renunci-
ation could not have been sincere. He must have been happy that Massimi
Sistemi was not completely suppressed and that in 1635 a Latin transla-
tion appeared in Europe. Fulgenzio Micanzio, a Venetian acquaintance,
wrote to him: “A remarkable thing—after your Massimi Sistemi came to
light, people knowledgeable about mathematics immediately went over
to the side of the Copernican system. This is what the bans have led to!”
Galileo answered: “What you have written to me about Massimi Sistemi is
most unpleasant for me, since it can cause great concern among the leading
lights. After all, the permission to read Massimi Sistemi is so limited that
his Holiness keeps it only for himself, so that in the end it may happen that
they will forget about this book completely.”

The disgrace of the trial and verdict was difficult for Galileo, but so
was the ban on continuing his work on the problem of the universe. He
had no doubt that he should refrain from such work, but what was left for
him? He had every reason to regret this period: “Our times are unhappy,
a firm resolve to eradicate every new thought, especially in the sciences, is
now the rule, as if everything possible to know was already known!” He
could comfort himself with the predictions of the like-minded Tommaso
Campanella in his Defense of Galileo, written in a Naples prison in 1616:
“The coming century will judge us, for the present always crucifies its
benefactors, but they later rise on the third day or in the third century.”

Several weeks after the verdict, Galileo remembered the treatise on me-
chanics that had been cut short, and writing this book became his main
endeavor for the coming years, the goal of his life. He recalled his youthful
discovery of the isochronic property of the pendulum and entrusted his
son Vincenzio with making a pendulum clock. Galileo’s blindness was in-
exorable. By the end of his work on the book he had lost his vision in one
eye, but still looked at the sky from time to time through his telescope and
described the libration of the moon, until at the end of 1637 he was totally
blind: “. . .this sky, this world, and this universe, that with my startling
observations and clear proofs I have extended a hundred and a thousand
times compared to how the sages of all past centuries had usually seen it,

�——————�
37Constance Reid, Hilbert, Springer-Verlag, New York, 1970, p. 92.
38The year of the “salutary edict.”—Transl.
39For more on this story, see Drake, Galileo at Work, pp. 356–357.—Transl.
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has now so shrunk and narrowed for me that it has become no larger a space
than is occupied by my own body. Because it has so recently occurred I
still cannot regard this unhappiness with patience and resignation, but the
passage of time should accustom me to it.” Nevertheless, in the last year
he was given, he again looked at the Medicean stars, and his old friends
drew him to the idea that took possession of him in his last days.

The Medicean Stars Revisited

This idea may have occurred to Galileo even earlier, at the end of 1635, when
he gave the French commission created by Cardinal Richelieu an opinion on
the method of Jean-Baptiste Morin (1583–1656) for determining longitude
by observing the moon’s motion. The method turned out to be unsound,
but note how high-ranking a person was interested in it. The point is that
finding the longitude aboard ship was one of the most pressing problems
of the 17th century, the century of seafaring. Today it is hard to believe that
at that time, sailors completed long voyages without any sort of reliable
method for measuring the coordinates of a ship on the open sea. This of
course did not apply to latitude, which, at least by the 16th century could
be reliably measured (for example, by the sun’s height at noon). Scientists
could propose nothing workable for longitude. This problem worried the
maritime powers, especially for economic reasons. The author of a method
for measuring longitude with acceptable accuracy (say to half a degree)
could at various times receive 100,000 écu from Philip II of Spain, or 100,000
livres from Louis XIV, or 20,000 pounds from the English Parliament, or
100,000 florins from the States General of Holland. Less accuracy decreased
the prize proportionally. These numbers quite expressively demonstrate
interest in the problem.

As long ago as the 2nd century B.C., Hipparchus had an idea for mea-
suring longitude: It used the fact that the difference in longitude between
two points on the earth’s surface is proportional to the difference in local
time at these points. Thus at points whose longitudes differ by, say, 15◦,
the difference in local time equals one hour ( 360◦

24 = 15◦). Therefore the
problem can be reduced to measuring local time aboard ship and the cor-
responding time at some fixed point, for example, at the port from which
it sailed. It is practical to measure the local time at the point where the ship
is now, but how can we know the local time at the port? For a long time,
no one even thought of “keeping” it. An excellent example is the story of
the twenty-fours “lost” when Magellan sailed around the globe! And there
were no clocks that could have kept that time, especially with the rocking
motion of the sea.
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Another possibility was to use astronomical phenomena that could be
observed aboard ship and for which the precise time it would be observed
in port was known. But few phenomena were suitable! What could be
used, aside from solar and lunar eclipses, which are very rare? Tables for
the moon’s motion were so imperfect that longitude could not be measured
from daily lunar observations (an example of such attempts was Morin’s
method). Galileo described the situation with a characteristic sense of tri-
umph: “In former times, heaven was generous on that count, but for current
needs it is rather stingy, assisting us only with eclipses of the Moon: and
not because the same heaven does not abound with frequent phenomena
that are visible and more suitable for our needs, but it has been convenient
for the rule of the world to conceal them right up to the present. . . .” The
optimism we feel in these words is connected to the hopes Galileo placed
on the Medicean stars he had discovered. Jupiter’s satellites. Among their
peculiarities, discovered at the time of the first observations in 1610, are
partial eclipses. If the moon’s orbit were not inclined towards the earth’s,
the moon would fall in the cone of the earth’s shadow at each full moon.
Jupiter’s moons fall in the broad cone of its shadow at each revolution,
and they revolve rather quickly (Io completes a full revolution in about
42.5 earth-hours). While observing the eclipses of Jupiter’s moons, Galileo
decided to develop his own method for measuring longitude aboard ship.

Galileo began negotiations, without waiting to work out the method
definitively. First he thought of Spain (it was probably important that this
was a traditional Catholic country) and of meeting the viceroy in Naples,
but gradually switched to Holland, where his idea aroused great interest.
In 1636 secret negotiations with the States General were in full swing, and
in August it was decided to ask Galileo for the necessary materials. Galileo
wrote a triumphant message to the States General, the “tamer and ruler of
the ocean.” The quote given above was taken from this message. Galileo
considered it symbolic that the telescope, which plays a leading role in
his method, was invented in Holland. He did not stint in his description
of the preeminence Holland would obtain through his method: “I could
name a collection of arts, but it suffices to limit myself to seafaring, which
has been brought by your Dutchmen to such startling perfection, and if
the only remaining thing—the determination of longitude in which, as
we see, they have so far been unsuccessful—joins the list of the rest of
their clever operations, thanks to their recent and greatest invention, then
their glory would reach such extremes that no other nation could dream of
surpassing it.”

A competent committee was formed, including Admiral Laurens Reael,
the astronomer and mathematician Martinus Hortensius, and later Con-
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stantijn Huygens, member of the Council of State and father of the great
scientist Christiaan Huygens. It was not easy for the practical Dutch to
believe the proposed method was feasible. “Imagine to how many people
of high position and wealth we were forced to preach a hitherto unknown
truth, that was first taken to be unreasonable,” lamented Huygens. Even
the most supportive members of the committee were not sure that the
project could be realized. In a letter to Galileo, Admiral Reael feared that
his method might prove to be too refined, “for so coarse a people as the
Dutch sailors.” Doubts can be felt even in Huygens’ words: “Our people
will with difficulty consider themselves indebted for a grand gift that is
more beautiful than profitable.” Even Hortensius had difficulty in adapt-
ing to seeing Jupiter’s moons. Good telescopes were not enough. At the
end of 1637 Galileo sent his own telescope, which he could no longer use
because of his blindness. Tables were necessary to observe the moons, and
they were not easy to construct (for a long time not even the periods of
revolution could be determined).

Computational astronomy was never Galileo’s strong suit, and now
blindness robbed him even of the ability to make observations. Galileo
asked the Olivetan monk Vincenzio Renieri, an experienced computational
astronomer, to find the ephemerides of Jupiter’s moons, at least for the
coming year. The calculations were delayed, and Renieri did not succeed
in constructing the tables that were needed.

The States General instructed Hortensius to meet with Galileo, to firm
up some necessary details, and to present him with a gold chain, as a gift.
At that point, the Inquisition interfered with the negotiations. A compli-
cated game began, and as a result Galileo either thought it wise not to meet
Hortensius and accept the gift, or was directly prohibited to do so by the
Inquisition. Discussions began over keeping priority for Italy. Castelli,
who for a long time had not been allowed to see Galileo, even received
permission to meet with his teacher and learn the details of the method.
Hortensius and Reael unexpectedly died; Galileo’s strength deteriorated.
The Florentine inquisitor informed Rome that the scientist, “completely
blind, will lie in his grave before he [again] studies mathematical construc-
tions.” Galileo did not lose hope, but it became clear that he would not live
to see the realization of his idea. In fact, it was probably impossible to carry
out the project. A long time went by before the problem of measuring lon-
gitude at sea was finally solved, but in a completely different way—using
accurate maritime clocks.

One of Galileo’s last statements shows that he never stopped thinking
about the major question of his life, and speaks to his “incorrigibility”:
“And just as I deem inadequate the Copernican observations and con-
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jectures, so I judge equally, and more, fallacious and erroneous those of
Ptolemy, Aristotle, and their followers, when [even] without going beyond
the bounds of human reasoning their inconclusiveness can be very easily
discovered.”40 He was not allowed to argue against there being arguments
inaccessible to man that refute Copernicus, but arguments accessible to man
are enough to refute Ptolemy.

Epilogue

We see much about these events of three and a half centuries ago differently
from Galileo. This involves both the difference between the Ptolemaic and
Copernican systems and the question of the earth’s “true” motion.

It is difficult to construct a consistent system of the universe that does
not at heart rest on celestial mechanics. Paradoxically, Galileo’s theory of
celestial mechanics, as opposed to his “terrestrial” mechanics, was rather
naive and close to Aristotle’s view. First, he assumed that celestial bodies
move because of inertia, rather than because of constantly acting forces.
He had no acceptable notion of forces acting from afar and, for example,
the idea of the solar or lunar attraction of terrestrial objects was considered
an astrological anachronism. Second, according to Galileo, celestial bod-
ies moving by inertia exhibit uniform rotary motion. This is a prima facie
contradiction of the “terrestrial” principle of inertia!

The main question for Galileo was the true (absolute) motion of the
earth, and its experimental proof. Since terrestrial phenomena must be
used for the proof, the terrestrial and celestial principles of inertia inex-
orably collide. With the greatest insight, Galileo refuted Tycho Brahe’s
claim, repeated by Ingoli, that phenomena aboard a moving ship must re-
veal that motion. Galileo’s refutation (essentially the first statement of the
“terrestrial” law of inertia) was mostly based on experiment. Simultane-
ously, he claimed that there are phenomena (the tides) that do reveal the
earth’s motion. How the hypothetical motion of the earth differs from a
ship’s motion, which cannot be discovered internally, is not clarified.

We emphasize that these phenomena were supposed to have been con-
sequences of the earth’s own motion, occurring by inertia without the par-
ticipation of forces acting from afar. Galileo saw no contradiction here.
As we have already noted, Galileo’s “decisive” argument turned out to be
completely wrong.

Galileo’s view of true (absolute) motion was incorrect. The author of
the law of inertia was still far from understanding the relative nature of

�——————�
40Ibid., p. 417.
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motion and the role of a frame of reference. Christiaan Huygens did much
to clarify this aspect of motion. Newton (unlike Huygens) assumed revo-
lution was absolute. The Ptolemaic and Copernican systems use different
frames of reference: The earth is fixed in one, and the sun in the other. The
development of mechanics has shown that an opportunely chosen frame
of reference is needed to reveal the laws of motion. The chief merit of the
Copernican system was that it made the revelation of Kepler’s laws (which,
by the way, Galileo did not accept) possible. In Copernicus’ system, the
most massive body serves as a fixed origin, and as a first approximation in
considering an individual planet we can restrict ourselves to the planet’s
interaction with the sun (its interaction with the other planets is negligible).
This is the two-body problem, and Kepler’s law immediately follow from
Newton’s law of universal gravitation, as Newton showed. In a frame of
reference where the earth is stationary it becomes more complex to describe
motion and, in particular, Kepler’s laws do not hold.

Galileo’s astronomical observations opened a new era in astronomy,
and the moons of Jupiter played a special role. More than half a century
passed before their periods were calculated, which Galileo himself and the
astronomers of the Collegio Romano, who were experienced in computation,
had tried to do. Calculating their distances from Jupiter was even harder,
because of insufficiently developed measurement techniques. But in 1685,
when Newton published On the System of the World, part of his Principia
Mathematica (The Mathematical Principles of Natural Philosophy), he could
already say that Jupiter’s moons obeyed Kepler’s third law T2 ∼ R3, where
T is the period of revolution and R is the distance from Jupiter, although the
data needed to be made more accurate. This was in the section Phaenomena,
listing the experimental facts on which Newton’s “world system” relied.

Constructing a theory of motion for the moons of Jupiter, based on the
law of universal gravitation, tested the ambitions of the founders of celestial
mechanics for a long time. A sufficiently precise theory needed to account
not only for Jupiter’s attraction, but also for the sun’s attraction and for the
mutual attraction of the moons. In 1774 this problem was the theme for a
prize given by the French Académie des Sciences.

Laplace constructed a rather precise theory in 1789. For a long time,
the Medicean stars remained a goal that not one of the great astronomers
could pass up. They presented the scientists with new and ever-surprising
facts. Thus, for example, Laplace established that the time it takes for the
first moon to revolve plus twice the time for the third is three times that
of the second. But undoubtedly the most remarkable page in the study of
Jupiter’s moons is a discovery of Olaf Römer, which we will describe in
detail.
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Appendix: Olaf Römer’s Conjecture

Cassini’s Observations

Gradually, the telescope became a recognized astronomical tool. The power
of telescopes grew: Christiaan Huygens’ telescope gave 92-fold magnifica-
tion, and in 1670 a telescope appeared in Paris that magnified objects 150
times. It is characteristic that this telescope was no longer at the disposal
of a single scientist: It was installed at a new type of scientific institu-
tion, an observatory. The Paris Observatory, under the patronage of Louis
XIV, was directed by Jean-Dominique Cassini (1625–1712), an Italian as-
tronomer. Astronomy owes much to Cassini. He discovered that Saturn
has four moons besides the one (Titan) discovered by Huygens, and the
ring Huygens found around Saturn turned out, under Cassini’s more care-
ful observations, to consist of two rings separated by a gap (which came
to be called Cassini’s division). Cassini proved that Jupiter and Saturn
rotate on their axes. He also did great work in the area of astronomical
computation, measuring the astronomical unit, the distance from the earth
to the sun, with an accuracy unheard of at the time. It is interesting to
compare Cassini’s value of 146 million kilometers with the true value of
149.6 million, and the 8 million that had been previously assumed.

As we have already noted, calculating the periods of revolution of
Jupiter’s moons became one of the central problems of astronomy in the
second half of the 17th century. These values can be obtained by straight-
forward calculations if we know the successive times of their eclipses accu-
rately. Conversely, knowing the periods of the moons, we can predict the
times of their eclipses. In 1672 Cassini very carefully recorded the eclipses
of Io, one of Jupiter’s moons. He was surprised to find that his values for
Io’s period differed from time to time, as if the eclipse were sometimes a
bit late and sometimes a bit early. The greatest difference he obtained was
22 minutes (for a period of 42.5 hours), and could not be explained by the
accuracy of the measurement. Evidently, Cassini was already able to use
Huygens’ pendulum clock, which had begun to be used for astronomical
observations. The observed effect had no reasonable explanation.

In 1672, the year Cassini systematically observed Jupiter’s moons, a
young Danish scientist named Olaf Römer (1644–1710) appeared at the
Paris Observatory. He was intrigued by a striking coincidence (that Cassini
may have also noticed): The greatest delay in Io’s eclipse occurred at those
times when Jupiter was furthest from the earth. It was possible that he
noticed this phenomenon accidentally, but he must have had foresight not
to explain it as an accident! Although at the time of Louis XIV the earth was
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still at the center of the universe in the astronomical atlases, scientists were
not prepared to explain a change in the revolution of Jupiter’s moon by
the earth’s influence! Römer proposed a competing explanation that must
have seemed no less fantastic. He suggested that there is a delay in seeing
Io’s eclipse because its light travels a greater distance when the distance
between the earth and Jupiter is greater. In order to evaluate Römer’s
hypothesis, we must recall what his contemporaries thought about the
speed of light.

Digression on the Speed of Light

The ancient scholars assumed that light travels instantaneously (the only
exception may have been Empedocles). For many centuries, this opin-
ion was reinforced by Aristotle’s authority. In the East, Avicenna and Al-
hazen41 assumed the speed of light is finite but very large. Of the later
European scientists, Galileo was one of the first who was ready to assume
the speed of light is finite. In Discorsi, the interlocutors Sagredo, Simpli-
cio, and Salviati discuss the problem.42 Sagredo raises the question, and
Simplicio assumes the speed of light is infinite since we see the flash of
an artillery shot “without lapse of time.” For Sagredo, the fact that the
sound arrives after a noticeable delay means only that sound travels signif-
icantly more slowly than light. In response, Salviati, representing Galileo’s
interests in this triumvirate, proposes an experiment with two observers
supplied with lanterns, where each one uncovers his lantern when he sees
the other’s light. But this experiment, which the scientists of the Florentine
Accademia in fact tried to carry out, does not have a real chance of convinc-
ingly showing that the speed of light is finite. (Einstein and Infeld remark
that for this they would have had to determine an interval of time on the
order of 1

100,000 of a second.43 Kepler assumed that light travels instanta-
neously; Robert Hooke thought its speed is finite but impossibly large to
measure. Descartes and Fermat assumed it is infinite, which greatly com-
plicated their research in geometric optics. Descartes assumed on the one
hand that light travels instantaneously, but on the other hand decomposed
its “speed” into components. Fermat, in trying to avoid talking about the
speed of light while stating his famous principle of least time, resorted to
every possible subterfuge, talking about “the antipathy of light towards
matter” and introducing a formal coefficient that for all practical purposes

�——————�
41An Egyptian physicist and mathematician, al-Hasan ibn al-Haitham (c.965–1039).—Transl.
42Discorsi, pp. 42–44.
43Albert Einstein and Leopold Infeld, The Evolution of Physics, Simon and Schuster, New

York, 1938, p. 95.
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is a ratio of speeds of light. Thus, most of Römer’s contemporaries were not
prepared to acknowledge the finiteness of the speed of light, let alone make
it responsible for phenomena that were perfectly tangible but occurred on
the astronomical scale. By comparison, we note that the speed of sound
was only recently measured.

Römer’s Calculations

Römer’s calculations were of the utmost simplicity. He began with the fact
that twenty-two minutes, the maximum delay in the onset of Io’s eclipse,
is exactly the time it takes light to travel a distance equal to the difference
between the greatest and least distances between the earth and Jupiter. This
difference is twice the distance between the earth and the sun. Compared
to this, we may neglect the distance from Jupiter to Io.

We see that Römer had still another reason to be grateful to Cassini:
a rather precise value for the distance from the earth to the sun (146 mil-
lion kilometers). According to Römer, light thus requires 1320 seconds (22
minutes) to travel 292 million kilometers, and so he obtained 221,200 kilo-
meters per second for the speed of light. One error lay in his value for the
astronomical unit (the true value is 149.6 million kilometers), but the main
error was a very large mistake in the maximum delay (the true value is 16
minutes and 36 seconds). For the correct values he would have obtained
300,400 kilometers per second for the speed of light, which is very close to
the true value (299,792.5 kilometers per second). It is striking that Römer
succeeded in obtaining a value of the correct order of magnitude.

Römer carried out these calculations in September 1676. To convince
scientists he was correct, he thought of a stunt worthy of the ancient Egyp-
tian priests. He carried out his calculations and predicted that in November,
Io’s eclipse would be ten minutes late. Observations, in which Cassini took
part, proved that Römer had accurately predicted the time to within a sec-
ond. But this agreement did not make too great an impression on those
around him, at least not the Parisian Académie, among whom the Cartesians
(adherents of Descartes) predominated. After all, their teacher had writ-
ten about astronomers that “although their propositions are always wrong
and unreliable, they draw quite correct conclusions, relying on the various
observations they make.” Even Cassini refused to support Römer! This
sort of thing is not at all rare in the history of science. Römer did have his
adherents, including the English astronomer Edmund Halley (1656–1742).

Römer’s theory was finally accepted when, in 1728, James Bradley
(1693–1762) studied a visible annual motion of the stars—aberration. It
had a natural explanation as the result of adding the speed of light leaving
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the stars to the speed of the earth in its orbit. Bradley found that the speed
of light was 10,000 times that of the earth, which agreed well with Römer’s
figure. The fact that two essentially different paths led to the same answer
convinced many people. The first measurement of the speed of light as the
result of a “terrestrial” experiment was made by Armande Fizeau in 1849.

In telling about Galileo’s discoveries today, we should not forget that
the space probes Voyager 1 and Voyager 2 have enabled us to learn about
the surfaces of Jupiter’s Galilean moons. The probe that was launched
in 1989 especially to study Jupiter carried Galileo’s name.44 The science
writer Jonathan Eberhart wrote about what scientists saw in the pictures
that Voyager transmitted to earth: The Galilean satellites are “no mere
collection of rockballs. Callisto, farthest of the four from Jupiter, presented
perhaps the oldest, most heavily crated surface yet studied. Ganymede. . .
a whole gamut of tectonic thrashings, twistings, turnings, and slippings.
Europa amazed onlookers. . . smoother than a billiard ball, yet crisscrossed
with myriad linear features that may be cracks left by global wrenchings but
which somehow survived through the eons in the icy crust. And finally,
stunning Io, bedecked in red and gold, silver, black and white, seething
with sulfurous volcanic activity that is one of the major discoveries in the
history of planetary exploration. A whole, previously unimagined family
of exotic worlds, each radically different not only from its companions, but
also from everything else in the planet-watcher’s experience.”45

�——————�
44See http://www2.jpl.nasa.gov/galileo/ for photos and other information about the

mission.—Transl.
45Science News, Science Service, Inc., April 19, 1980, p. 251. Reprinted with permission.



Christiaan Huygens and
Pendulum Clocks

[The cycloid] pendulum was invented by Christiaan Huygens, the
most ingenious watchmaker of all time. Sommerfeld, Mechanics1

We have told how Galileo laid the foundation for classical me-
chanics almost at the beginning of the 17th century. Christiaan
Huygens (1629–1695) was Galileo’s immediate scientific succes-
sor. In Lagrange’s words, Huygens “was destined to improve

and develop most of Galileo’s important discoveries.”2 There is a story
about how Huygens, at age 17, first came into contact with Galileo’s ideas:
He planned to prove that a projectile moves horizontally along a parabola
after launch, but discovered a proof in Galileo’s book and did not want “to
write the Iliad after Homer.” It is striking how close Huygens and Galileo
were in scientific spirit and interests.

It sometimes seems that a rejuvenated Galileo was again perfecting his
optical tubes and continuing the astronomical observations he had inter-
rupted forty years before. He tried to use the most powerful telescope to
guess the secret of Saturn, which appears as a trio of joined stars, and fi-
nally, looking through a 92× telescope (Galileo’s was 20×), discovered that
the adjacent stars were Saturn’s rings.3 He returned again to the problem
that was of such keen interest in 1610: Do any planets besides the earth
and Jupiter have moons? At that time Galileo wrote the Medicis that no

�——————�
1Arnold Sommerfeld, Lectures on Theoretical Physics, Vol. 1, translated by M. O. Stern,

Academic Press, New York, 1964, p. 94.
2Mécanique Analytique, p. 207—Transl.
3Huygens proposed a solid ring.—Transl.
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Christiaan Huygens.

moons had been discovered around the other planets, and that no royal
house except for the Medicis, in whose honor he had named the moons of
Jupiter, could claim its “own” stars. Huygens discovered Titan, a moon of
Saturn, in 1655. Times must have changed, because Huygens did not offer
the moon he discovered to anyone as a gift.

Huygens turned next to mechanics, where he was concerned with the
same problems as Galileo had been. He developed his principle of iner-
tia, stating that not only is it sometimes impossible to discover motion by
internal means, but that the very assertion that the body moves has no
absolute meaning. Huygens understood every motion as relative, which
was quite unlike Newton’s view. At one point Galileo, reflecting on why
a body stays on the earth’s surface during its rotation, almost obtained the
formula for centripetal acceleration, literally not taking the last step (see
p. 42). Huygens completed Galileo’s argument and obtained one of the
most remarkable formulas in mechanics.

Huygens then turned to studying the isochronous nature of the os-
cillations of a mathematical pendulum. This was probably Galileo’s first
discovery in mechanics, and here too Huygens was able to add to what
Galileo had done: A mathematical pendulum turns out to be isochronous
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(the period of oscillation of a pendulum of fixed length is independent of
the amplitude of its swing) only approximately, for small angles of swing.
Finally, Huygens brought to fruition the idea that occupied Galileo in his
last years: he constructed a pendulum clock.

Christiaan Huygens worked on the problem of creating and perfecting
clocks, especially pendulum clocks, for nearly forty years, from 1656 to
1693. One of Huygens’ fundamental memoirs, containing his results in
mathematics and mechanics, appeared in 1673 under the name Horologium
Oscillatorium (Pendulum Clocks, or Geometric Proofs Relating to the Motion of
Pendula Adapted to Clocks).4 Huygens invented much in trying to solve one
of the most fundamental problems of his life, creating a clock that could
be used as a marine chronometer; he thought through many things from
the standpoint of their application to this problem (the cycloid pendulum,
the theory of developments of curves, centrifugal forces, etc.). We will talk
about Huygens’ research in chronometry, but first of all we will explain
why the problem of making a clock attracted the great scientist.

Clocks are among the most ancient human inventions. At first there
were solar, water, and sand clocks; in the Middle Ages, mechanical clocks
appeared. The measurement of time played different roles in peoples’ lives
in different eras. The German historian Oswald Spengler, noting that me-
chanical clocks were invented at the emergence of the Romanesque style
and of the movement leading to the crusades, writes: “. . .the mechanical
clock, the dread symbol of the flow of time, and the chimes of countless
clock towers that echo day and night over West Europe are perhaps the
most wonderful expression of which a historical world-feeling is capable.
In the timeless countrysides and cities of the Classical world, we find noth-
ing of the sort. . . . In Babylon and Egypt water-clocks and sundials were
discovered in the very early stages, yet in Athens it was left to Plato to
introduce a practically useful form of clepsydra [a variety of water-clock—
S.G.], and this was merely a minor adjunct of everyday utility which could
not have influenced the Classical life-feeling in the smallest degree.”5

It is typical that in the first steps of the new mechanics and mathematical
analysis, time did not immediately take the role of a fundamental variable
quantity in the description of motion (in his search for the law of free fall,
Galileo began with the hypothesis that velocity is proportional to distance,
rather than time).

For a long time, mechanical clocks were inconvenient and imperfect.

�——————�
4This appears, with a French translation, in Huygens’ collected works, Oeuvres Complètes,

Vol. 18, Société Hollandaise des Sciences, ed., Nijhoff, The Hague, 1938.—Transl.
5The Decline of the West, Vol. 1, translated by Charles F. Atkinson, Alfred A. Knopf, New

York, 1926, pp. 14–15.
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Several methods had been invented for transforming the accelerated fall
of a weight into the uniform motion of a pointer, but even Tycho Brahe’s
astronomical clock, known for its accuracy, had to be “adjusted” with a
hammer every day. Not a single mechanical phenomenon was known that
would periodically repeat itself in a relatively small, fixed amount of time.

Pendulum Clocks

Such a phenomenon was discovered at the dawn of Galileo’s creation of
the new mechanics. Namely, Galileo discovered that the oscillations of a
pendulum are isochronous, i.e., the period, in particular, does not change
as the oscillations are damped. We have earlier described Viviani’s story
of Galileo’s discovery.

Galileo proposed to use a pendulum to make a clock. In his letter of
June 5, 1636 to the Dutch admiral Laurens Reael, he wrote of combining a
pendulum with an oscillation counter. However, he began work on making
a clock in 1641, a year before his death, and did not finish. His work was
supposed to have been continued by his son Vincenzio, who was slow in
renewing it and began only in 1649. This was not long before Vincenzio’s
death, so he too did not succeed in making a clock. Various scientists
had already used the isochronous property of the pendulum in laboratory
experiments, but it was not an easy path from there to creating a pendulum
clock.

This was accomplished in 1657 by the twenty-seven-year-old Christi-
aan Huygens, already a well-known scientist because of his discovery of
Saturn’s rings. On January 12, 1657, he wrote: “During these days I have
found a new way of making clocks, with which time can be measured so
precisely that there is no little hope of being able to use it to measure lon-
gitude, even if this is to be done at sea.” The first example of a pendulum
clock was made by the Hague watchmaker Salomon Coster, and on June
16th the States General of Holland issued a patent, strengthening Huygens’
priority. In 1658, he published a description of his invention in Horologium
(The Clock).

Learning of Huygens’ clock, Galileo’s students undertook an energetic
attempt to establish their teacher’s priority. In order to appreciate the sit-
uation, it is important to understand that in the 17th century the problem
of making accurate clocks was associated, first of all, with the possibil-
ity of using them to measure longitude aboard ship. Galileo understood
this, and Huygens put it foremost from the very beginning (as the above
quotation shows).

We have already discussed the problem of measuring longitude. Gali-



� Christiaan Huygens and Pendulum Clocks � 83

leo’s students knew that at the end of his life he had carried out secret
negotiations with the States General, proposing his method for measuring
longitude. The contents of the negotiations, interrupted after the Florentine
Inquisitor’s interference, were not reliably known. One could assume that
they included using pendulum clocks. Recall that the idea for this method
consists of the fact that clocks “remember” the time at the port of departure,
and the difference between this time and local time aboard ship determines
the difference in longitude. It was important that a clock keep time cor-
rectly when being tossed about by the waves. A pendulum’s isochronous
oscillations would have been essential because of both damped oscillations
and rough seas.

Galileo suggested to Holland another way to measure longitude, based
on observations of the eclipses of Jupiter’s moons. Although pendulum
clocks may have been mentioned in the negotiations (the letter to Reael),
undoubtedly no design for clocks or detailed information about them was
given to Holland. When Galileo began working on making a clock (1641),
the negotiations with the States General had practically ceased.

Huygens was not accused of plagiarism, although people may have
been aware that pendulum clocks were being made in Holland, by the son
of an influential member of the Council of State who had been involved
in the negotiations with Galileo. Leopoldo de’ Medici wrote a letter to the
French astronomer Ismael Boulliau (1605–1694), who protected Huygens,
with a commission to make a working mechanism following Galileo’s idea.
Viviani’s story, mentioned earlier, and drawings of Galileo’s clock were
attached to the letter, to be given to Huygens. Huygens, familiarizing
himself with the drawings, said that the basic idea was there but not its
technical realization. In 1673, Huygens wrote: “. . .if they say that [Galileo]
tried to find this machine but without being able to reach his goal, it seems to
me that they diminish his glory more than mine, since in this case I searched
for the same thing as he with more success.”6 Here it is unnecessary to recall
that Galileo worked with clocks when he was blind and more than 50 years
older than Huygens was when he worked on the same problem.

Huygens’ first clocks mostly employed the design of those in use at the
time (he had in mind being able quickly to remake the clocks he already had
into pendulum clocks). From that time on, perfecting clocks became one of
Huygens’ chief concerns. His last work on clocks was published in 1693,
two years before his death. If in his first work Huygens appeared most of
all as an engineer, knowing how to realize the already-known isochronous
property of the pendulum in a clock mechanism, then gradually Huygens

�——————�
6Oeuvres, Vol. 18, p. 90.
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the physicist and mathematician came to the foreground.
Incidentally, his engineering achievements were outstanding in num-

ber. Max von Laue7 highlighted the idea of feedback in Huygens’ clocks:
The initial energy is communicated to the pendulum without altering its pe-
riod of oscillation, “and then the very source of the oscillations determines
the moments of time when additional energy is required.” For Huygens
this role was fulfilled by a simple and clever construction in the form of an
armature with teeth cut slantwise, rhythmically nudging the pendulum.

While still beginning his work, Huygens discovered an inaccuracy in
Galileo’s assertion that the oscillations are isochronous. A pendulum has
this property only for small angles of deviation from the vertical, but not,
say, for an angle of 60◦ (Galileo may have considered this in the experiments
described by Viviani). In 1673 Huygens noted that the ratio of the period for
90◦ to that for small angles is 34

29 . In order to compensate for deviations from
isochronicity, Huygens decided to decrease the length of the pendulum
when the angle was increased. For this purpose, in his first clocks he
employed restrictors in the form of “cheeks” on which he partially wound a
string attached to a weight. Huygens did not establish an empirical method
for choosing the form of the cheeks. In 1658 he removed them completely
from the design, introducing instead restrictions on the amplitude. But
this did not mean he had stopped searching for an isochronous pendulum.
Correcting discs appeared again in the clocks of 1659, but by this time
Huygens was able to determine the form of the cheeks theoretically: it
turned out that they had to take the form of a cycloid, a curve that played a
major role in the development of seventeenth-century mathematics.

The next chapter of our book is wholly devoted to this curve. There,
the reader will be able to learn just how Huygens arrived at his discovery.

Huygens attributed the greatest significance to the invention of the cy-
cloid pendulum: “[To prove this] it was first of all necessary to corroborate
and amplify the doctrine of the great Galileo on falling bodies, a doctrine
whose most desirable fruit and highest peak, as it were, is the property of
the cycloid that we have discovered.”8

Centrifugal Force and a Clock with a Conical Pendulum

The cycloid pendulum was not Huygens’ only invention in the course of
perfecting the clock. Another direction of his work in chronometry is as-
sociated with the theory of centrifugal force. Huygens created this theory

�——————�
7The German physicist Max von Laue (1879–1960) won the Nobel Prize for his 1912 dis-

covery of X-ray crystallography.—Transl.
8Oeuvres, Vol. 18, p. 88.
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and it is significant that he first published it in Horologium Oscillatorium.
In the fifth section of this book, he presents, without proof, theorems on
centrifugal force and describes the design of a clock with a conical pendu-
lum (it is known that Huygens invented such a clock on October 5, 1659).
The proofs of the theorems are contained in Di Vi Centrifuga (On Centrifugal
Force), which was written in 1659 but came to light only eight years after
Huygens’ death. Aristotle had known about centrifugal force, and Ptolemy
assumed that if the earth rotated on its axis then, because of centrifugal
force, objects could not remain on its surface. Kepler and Galileo refuted
this point of view, explaining that in this case weight counterbalances cen-
trifugal force, essentially proposing that centrifugal force decreases with
the distance from the center of rotation. However only Huygens obtained
the remarkable formula for centrifugal force, Fcf = mv2

R , to which Galileo
had come very close. We present Huygens’ original text in an appendix
and the reader can see in what form (perhaps not the most economical
from today’s point of view) Huygens first reported his results.

Regardless of what problem Huygens studied, he always thought about
possible applications of his results to clocks. And here he wanted to use
the conical pendulum. A conical pendulum is a string with a weight that
revolves around an axis through its point of suspension. Let l be the length
of the string, α be the angle between the string and the vertical, and R be the
distance from the weight to the axis. If the pendulum moves in a circle and
the angle α remains constant, then mv2

R = mg tan α. Thus v = √
gR tan α.

For the period, the time for one revolution, we obtain (since T = 2πR
v )

T = 2π

√
R
g

cot α = 2π

√
l cos α

g
= 2π

√
u
g
.

Here u = l cos α is the length of the projection of the string onto the axis of
the pendulum.

Huygens’ text extensively discusses the formula for the period of a con-
ical pendulum. The motion of a conical pendulum is compared to two
motions that had been studied thoroughly by that time: free fall and the
oscillations of a simple (or mathematical) pendulum (Huygens called the
latter lateral oscillations, as opposed to the circular oscillations of a conical
pendulum).

Thus, the period is determined by the projections of the string onto
the axis. The difficulty of making an isochronous conical pendulum lies
in the fact that its angle with the axis gradually decreases and the period
increases. Huygens calculated that for the period to remain constant as the
angle decreases, the length of the string must decrease so that its end lies
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on a paraboloid of revolution.
Indeed, suppose we have a surface of revolution. (Huygens took a

paraboloid, the surface of revolution of the parabola py = x2 around the
y-axis). A point mass revolves stably around a horizontal cross section
(a circle) if the sum of the gravitational and centrifugal forces is directed
along the normal to the surface (perpendicular to the tangent plane), and
thus the formula for a conical pendulum can be applied. In this case, α

is the angle of the normal to the axis, l is the length of the section of the
normal between the axis and the surface, and u is the projection of this
segment onto the axis. The passage here from a conical pendulum to the
revolution of a point mass is somewhat analogous to Galileo’s passing from
a mathematical pendulum to the motion of a point mass along a circular
trough. Here Huygens remarks that for the parabola py = x2 the quantity u
(the projection of the section of the normal onto the axis) is independent of
the location of the point and equals p

2 . From this he draws the conclusion
that the period of revolution of a point mass along any horizontal section
of the paraboloid is the same:

T = 2π

√
p

2g
.

This gives a new way to obtain isochronous oscillations which, in Huy-
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gens’ opinion, was important for making clocks. If we suspend a conical
pendulum so that its end moves along the surface of the paraboloid ob-
tained by revolving the parabola py = x2, independent of the angle of
inclination α of the string to the axis, then the period of revolution will
not depend on α. In other words, we must arrange things so that when
α changes, the length l changes in a way that guarantees that the projec-
tion u onto the axis remains constant. Huygens thought of an extremely
clever method of suspension. He proposed to make a plate in the form of
a semicubical parabola y2 = ax3 + b and to attach one end of the string
at some point of the plate. It then turns out that we can choose a, b, and
the length of the string so that no matter how we stretch the string and
wind part of it onto the plate, its other end will be on the parabola. The
secret of this clever method of suspension relies on the same mathematical
considerations as the method for supporting a cycloid pendulum.

We note that in 1687 these calculations helped Huygens quickly solve
Leibniz’s problem about a curve along which a point mass moves so that
the segments it traverses in equal time intervals have equal projections onto
a vertical line. The semicubical parabola has this property.

The Physical Pendulum

One of Huygens’ major achievements involves the theory of the physical
pendulum, i.e., not the oscillations of a point mass but those of a config-
uration of weights or of a plate. This problem arose in connection with
the idea of having, besides the basic weight at the end of a pendulum, a
moving weight that allowed its period to be regulated. Huygens got this
idea from Simon Douw, a craftsman from the Hague, who took out a patent
in 1658 on his version of the pendulum clock, differing only slightly from
Huygens’. Problems on the oscillations of a physical pendulum had arisen
earlier. For mechanics, it was essential to be able to pass from the motion
of a point mass to that of extended configurations. The first series of such
problems involved the center of gravity, and here important results were
known. But for a long time, no real progress had been made on problems
about the oscillations of a physical pendulum.9

Huygens learned about problems involving the physical pendulum
from Mersenne: “When I was still practically a child [less than seventeen—
S.G.], the very scholarly Mersenne once suggested to me, as to many others,

�——————�
9Recall that the effective length of a physical pendulum is the length of the mathematical

pendulum that oscillates with the same period about a point on the line between the point
of suspension and the center of gravity. The distance from the center of the oscillation to the
suspension point is the effective length.
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the study of the center of oscillation or perturbation. That was then a fa-
mous problem among the geometers of the time, as I conclude from the let-
ters he wrote to me as well as the recently published writings of Descartes,
which contain a response to Mersenne’s letter on this subject. . . . At the
same time he promised me a great and enviable reward for my work if by
chance I managed to satisfy his request. But he did not receive what he
wanted from anyone. As for me, as I found nothing that opened the way
towards this contemplation but was turned away even at the entrance, I
refrained from further study. Those who had hoped to succeed, illustrious
men such as Descartes, Honoré Fabry, and others, did not achieve their
goal at all, except in the easiest cases, or else they gave, in my opinion,
no valid proof. . . . The manner of adjusting the pendulum of our automate
[clock] by applying in addition to the lower weight, a moveable weight as
explained in the description of the clock, gave us an occasion to undertake
this research again. Taking up the question under better conditions and
from the beginning, I finally triumphed over all difficulties and solved not
only Mersenne’s problems, but also more difficult ones; I even found at last
a general method for finding the center [of oscillations] of lines, surfaces,
and solid bodies. From this I had, beyond the pleasure of finding what oth-
ers had so long searched for and of learning the laws and decrees of nature
in these matters, the advantage of knowing henceforth an easy and sure
method for adjusting a clock. A second result which seems to me the most
important is that I can, based on this theory, give a very precise definition
of length, well defined and invariable over the centuries. . . .”10

This last idea of Huygens is that, just as the day is a natural unit for
measuring time, a unit for measuring length should be 1

3 the length of a
pendulum whose period is one second.

Problems on the center of oscillation were beyond the reach of the meth-
ods of mathematical analysis that had been worked out at the time. Huy-
gens noted that a whole series of difficulties could be overcome by begin-
ning with energy considerations: A moving center of gravity cannot be
raised higher than it was at the beginning (otherwise there would be per-
petual motion). This method of proof drew comments from many leading
scientists, and a great deal of effort was spent on it before Jakob Bernoulli
succeeded in establishing analogous results by other means.

Maritime Clocks

The year 1673 was the acme of Huygens’ work on pendulum clocks. Horo-
logium Oscillatorium came out that year, and the Parisian clockmaker Isaac

�——————�
10Oeuvres, Vol. 18, pp. 242–244.
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Thuret made a model of a clock that incorporated every improvement.
Pendulum clocks firmly caught on, but hopes for a maritime pendulum
clock were unwarranted. The first models of such clocks had been made in
1661, and sea trials began in 1663. First, Count Alexander Bruce took a clock
with him on a voyage from Holland to London, but the clock was slow;
Captain Robert Holmes’ experiments in sailing from London to Lisbon were
more successful. In Horologium Oscillatorium, Huygens describes dramatic
events involving clock experiments during the English fleet’s voyage to
Guinea. Experiments with varying success took place until 1687, although
it had become clear that pendulum clocks did not give the hoped-for way to
measure longitude. The demand for a maritime clock gradually subsided,
and in 1679 Huygens himself was inclined to think that a spring clock with
a balance wheel would have to serve as a maritime chronometer. In 1735,
John Harrison succeeded in making such a chronometer, and received a
prize of 20,000 pounds from the English government.

Three hundred years have passed. People have been well served by
pendulum clocks, although they have rarely known the name of the man
who invented them. The dramatic story of Huygens’ work is very in-
structive. In some sense, his chief ambitions were not realized: He never
succeeded in making a maritime chronometer, and the cycloid pendulum,
which Huygens considered to be his principal invention, did not survive in
clocks used on land (amplitude restrictors were quite sufficient). The con-
ical pendulum suffered the same fate. But his mathematical and physical
results that were motivated by problems on perfecting clocks have lasted
to this day in infinitesimal analysis, differential geometry, and mechanics,
and one cannot overestimate their significance.

Appendix

Part Five of Horologium Oscillatorium

Containing Another Construction Based on the Circular Motion of Pendulums,
and Theorems on Centrifugal Force11

. . .At first, I intended to publish a description of these clocks with the theory
of circular motion and centrifugal force—as I wish to call it—a subject on
which I had more say than I had time for at the moment. But so that those
interested in these matters could sooner enjoy this new and in no way
useless theory and so that publication would not be hindered accidentally,

�——————�
11Ibid., pp. 360–367.
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I added this part to the others, against my plans. I briefly describe the
construction of the device and at the same time state the relative theorems
on centrifugal force, saving their proofs for later.

Construction of the Second Clock

I have not deemed it necessary to set out here the disposition of the gears
that form the interior of the clock, since they can easily be arranged to
suit the craftsmen and the disposition can be changed in various ways.
It suffices to explain the part that controls the movement in a well-deter-
mined way.

The following figure represents this part of the clock. We must imag-
ine the axis DH as being vertical and moveable on two poles. A rather
large curved plate is attached to it at A; it is curved along AB, which is
the [semicubical parabola] whose evolution describes a parabola, after a
certain line has been adjoined to it, as we have proved in Proposition VIII
of Part Three. This line is here AE, and the curve EF represents the parabola
described by the evolution of the entire curve BAE. The string applied to
BA and whose end describes the parabola is BCF. The weight attached to
the string is F. But, while the axis DH rotates, the stretched string BCF
makes the ball F move so that it travels in horizontal circles, which are
larger or smaller according to the force placed on DH by the clock gears
acting on the small membrane K. But these circles lie on the surface of a
parabolic conoid, and by this means the revolution times will always be
equal, as will follow by what we say below about this motion.

If we wish the clock to show half-seconds, the latus rectum of the
parabola EF must be 4 1

2 inches of our hour-foot, i.e., half the length of
the pendulum whose simple oscillation take half a second. But the length
of the latus rectum of the [semicubical parabola] AB depends on that of
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the parabola: The former equals 27
16 times the latter. Similarly, the length

of AE is half that of the latus rectum of the parabola. But if we wish each
revolution to last one second, the latera recta and AE must be four times as
large as before. . . .

Theorems on the Centrifugal Force Resulting from Circular Motion12

I. If two identical bodies travel unequal circumferences in equal times, the
centrifugal force corresponding to the larger circumference is to that of the
smaller as the circumferences themselves or their diameters.

II. If two identical bodies move with the same speed around unequal cir-
cumferences, their centrifugal forces will be inversely proportional to the
diameters.

III. If two identical bodies move around equal circumferences with unequal
speeds, each of which is constant, as we assume throughout, then the cen-
trifugal force of the faster one is to that of the slower one as the squares of
the speeds.

IV. If two identical bodies moving around unequal circumferences have
the same centrifugal force, the time for one revolution around the larger
circumference is to that around the smaller as the square roots of the diam-
eters.

V. If a body moves around the circumference of a circle with the speed it
acquires in falling from a height of one-fourth the diameter, it will have a
centrifugal force equal to its weight, i.e., it will pull the string attaching it
to the center with the same force as if it were suspended.

[If the height is H = R
2 , then the final speed for free fall is v = √

2gH =√
Rg and the centrifugal force is F = mv2

R = mRg
R = mg.]

VI. On the concave surface of a parabolic conoid [paraboloid] with vertical
axis, all revolutions of a body moving around horizontal circumferences,
small or large, are accomplished in equal times. Each of these times equals
that of one double oscillation of a pendulum whose length is half the latus
rectum of the generating parabola. . . .

�——————�
12Comments on the text are given in square brackets, using the following notation: m is the

mass of the body, F the centrifugal force, T the period, R the distance from the center, and v
the speed.



Secrets of the Cycloid

The roulette is so common a curve that after the line and circle no other
is so often met; it is described so often before everyone’s eyes that it
is surprising it was not at all considered by the ancients. . . because it
is nothing other than the path made through the air by the nail on a
wheel, rolling as usual, from when the nail begins to leave the ground
until the continuous rolling of the wheel has brought it back to the
ground after a complete revolution. Pascal1

I The Cycloid and the Isochronous Pendulum

The curve “described so often before everyone’s eyes” was first noticed
by Galileo in Italy and Marin Mersenne (1588–1648) in France. It was
called a cycloid in Italy and a roulette in France. The term cycloid means
“coming from a circle” and is due to Galileo. It prevailed, and the term
roulette now denotes a more general kind of curve that we will discuss
later. Seventeenth-century mathematicians, creating general methods of
studying curves, were very interested in new “experimental” curves. The
cycloid occupied a special place among these curves. It turned out to be
one of the first transcendental curves (curves that cannot be derived alge-
braically), for which the problems of constructing tangents and calculating
areas were solved beautifully and explicitly. But what was most striking
was that the cycloid appeared again and again in the solution of very dif-
ferent problems where it was not a part of the original formulation. All
this made the cycloid the most popular curve of the 17th century: the most
powerful scientists in Italy and France (Torricelli, Vincenzo Viviani (1622–

�——————�
1Histoire de la Roulette, in Oeuvres Complètes, Jacques Chevalier, ed., Gallimard, Paris, 1954,

p. 194.
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1703), Pierre de Fermat (1601–1665), René Descartes (1596–1650), Gilles
de Roberval (1602–1675)) solved a variety of problems about the cycloid,
and in 1673 Huygens said that “the cycloid is studied more carefully and
thoroughly than all other curves.”

From a Kinematic Definition to an Analytical One

The kinematic definition of the cycloid is found in the epigraph that begins
this chapter. Let us try to interpret it.

Choose a system of coordinates in the plane so that the line along which
the circle rolls (the direction line) coincides with the x-axis, and let the circle
(called the generating circle) roll in the positive x direction. Suppose that at
time t = 0 the point that we are observing on the boundary of the circle is
at position A0 = (0, 0) (Figure 1).

Figure 1.

If r is the radius of the generating circle, then the center of the circle of
the circle will move along the line y = r. In order to characterize completely
how the circle rolls, it suffices to describe the motion of its center if we just
make the additional assumption that the circle rolls without sliding.2 It will
be convenient to choose the unit for measuring time so that the center of
the circle moves uniformly with speed r. At time t the center of the circle
is then at the point Ct = (tr, r) and the generating circle will be tangent to
the direction line at the point Bt = (tr, 0). Let us first find the position At
of the observed point at time t (by the definition of At this is a point on
the cycloid). In order to do this, we need to give a precise formulation of
the condition that the circle rolls without sliding: it is that the length of
the segment between the points where the generating circle is tangent to
the direction line at times 0 and t (the segment OBt in Figure 1) equals the
length of the arc BtAt “rolled out” by this segment (here the arc can exceed
a complete circle). Therefore, at time t angle BtCtAt equals t radians, since
the length of arc BtAt equals tr. Let Dt denote the projection of At onto the

�——————�
2This is probably what Pascal meant when he wrote that the wheel is “rolling as usual.”
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line passing through the center Ct and parallel to the x-axis, and let Et be the
projection of At on the line through Ct and parallel to the y-axis (Figure 2).

Figure 2.

Taking into account the directions of the axes we obtain

CtDt = −r sin t, CtEt = −r cos t

(check what will happen when t > π
2 , t > π ). Therefore, the coordinates of

At on the cycloid are correspondingly equal to

x = rt − r sin t, y = r − r cos t.

Note that when t = 2π the length of segment OB turns out to be equal to the
circumference of the circle, the observed point again falls on the x-axis, and
the picture begins to repeat itself. So the period of the cycloid equals 2πr.

Thus, we can define the cycloid as the set of points with coordinates
(rt − r sin t, r − r cos t) and agree to forget about the original kinematic
definition. We have found what is called a parametric representation of the
cycloid: the x- and y-coordinates of a point At on the cycloid are functions
of some auxiliary parameter t.

We will call the points of the cycloid that lie on the x-axis its cusps, the
points lying on the line y = 2r its vertices, and the sections of the cycloid
between adjacent cusps its arches. In the coordinate system we have chosen
the cycloid is characterized by the single parameter r (the radius of the
generating circle). All cycloids for which (0, 0) is a cusp can be obtained
from one another by a homothetic transformation. For each point (x, y),
x �= 0, we can choose r uniquely so that this point will lie on the first arch
of the corresponding cycloid starting at (0, 0) (prove this).

Tangents to the Cycloid

We will construct the tangent to the cycloid using a method worked out
by Torricelli and Roberval, based on the addition of velocities. Viviani was
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probably the first to construct the tangent to the cycloid. However, since
the cycloid was defined kinematically, it would have been natural to find
a method for constructing its tangent based on kinematic considerations.
This was indeed done by Roberval and Torricelli.

Consider the motion of a point mass. If the forces acting on it cease
at time t0, then the point will either stop moving or will begin to move
uniformly along the tangent to its trajectory (the velocity of this uniform
motion is called the instantaneous velocity vector of the original motion at
t = t0). This assertion follows from Newton’s laws. But we may, as math-
ematicians often did in the 17th century, take it as the kinematic definition
of the tangent, being convinced that it agrees with the observations of the
simplest motions (and foremost with rotary motion). Taking this point of
view, we can construct tangents to many interesting curves, using only the
most simple facts about velocity.

We will consider only motion in a plane. Fix a point O in the plane, the
origin from which we begin. If a moving point is at position At at time t,
then we let r(t) denote the vector OAt. The motion is completely defined
by the vectors r(t) for all values of t. We denote the instantaneous velocity
vector at time t by ṙ(t). Recall that ṙ(t) is directed along the tangent to the
path of motion. Its length |ṙ(t)| is called the speed. If the motion occurs
along a coordinate line, then the vectors r(t) and ṙ(t) are directed along the
line and we can describe their coordinates by s(t) and ṡ(t).

Example 1. Galileo showed that for the rectilinear motion s(t) = gt2

2 , the
velocity will be ṡ(t) = gt.

Example 2. Let a point revolve uniformly about O at a distance R. Then
the vector ṙ(t) is directed along the tangent to the circle along which the
point moves, and |ṙ(t)| = 2πR

T , where T is the period of revolution (the time
for a full orbit). In particular, when T = 2π , we have |r(t)| = |ṙ(t)| = R.

The Law of Addition of Velocities

Suppose we have two motions r1(t) and r2(t). We call their sum the motion
for which r(t) = r1(t) + r2(t), where the right side is a vector sum. The
law of addition of velocities asserts that the velocity ṙ(t) equals ṙ1(t)+ ṙ2(t),
that is the vector sum of the velocities of the component motions. It is easy
to establish the law of addition of velocities for the sum of motions with
constant velocities. We obtain the general case from this special case by
passing to limits.

Each motion r(t) can be represented as the sum of two rectilinear mo-
tions. For this it suffices to introduce any Cartesian coordinate system
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such that O = (0, 0) and to consider the change over time of the coordi-
nates x(t), y(t) of the vector r(t). Obviously, the original motion r(t) is the
sum of the motions x(t) and y(t) along the coordinate axes. The velocities of
x(t) and y(t) are the components of ṙ(t), by the law of addition of velocities.
In Example 2, if R = 1, T = 2π and the vector r(0) is directed along the
positive x-axis, then r(t) = (cos t, sin t) and ṙ(t) = (− sin t, cos t). Thus if
s(t) = cos t, then ṡ(t) = − sin t, and if s(t) = sin t, then ṡ(t) = cos t. The
reader acquainted with differentiation will note that this gives a very simple
kinematic meaning to the formulas for the derivatives of sin t and cos t.

Kinematic Definition of the Tangent to a Parabola

Galileo (1564–1642) had discovered that if a body is thrown at an angle
to the horizontal, then it flies along a parabola. To prove this fact Galileo
started with the assumption that such a motion is the sum of a uniform
motion due to inertia and the motion of free fall. However Galileo did not
use his calculations when he constructed the tangent to a parabola. That
was done by Torricelli. This result is formulated in Problems 1 and 2 below.

Problem 1. Prove that when a body is thrown horizontally, the tangent to

its trajectory at At = (x(t), y(t)) = (vt, − gt2

2 ) joins At to (0, −y(t)) = (0,
gt2

2 ).

All the calculations are easy to generalize to the case of a body thrown
at an angle to the horizontal with velocity (u, v). In this case the motion
is partitioned into {x1(t) = ut, x2(t) = vt} with constant velocity (u, v) and

free fall motion {x2(t) = 0, y2(t) = − gt2

2 }. Therefore, the resulting motion

can be described as {x(t) = ut, y(t) = vt − gt2

2 } (when we add vectors that
begin at O, we add the coordinates of their endpoints).

Problem 2. Prove that when a body is thrown with velocity (u, v), the
tangent to the parabola along which it flies connects the point of tangency

(x(t), y(t)) to the point (0, −y2(t)) = (0,
gt2

2 ).

Note that the method given by Torricelli for constructing the tangent
to a parabola was known beforehand, but his kinematic interpretation was
undoubtedly instructive.

Let us return to cycloids. The motion of a point describing a cycloid can
be thought of as the sum of a rotation r1(t) around O and a translation r2(t)
along a line l, where these take place in a such a way that the paths traversed
turn out to be the same (s(t)). We can express s(t) in terms of t in different
ways. The nature of the motion will depend on how this is done, but the



98 � Tales of Mathematicians and Physicists �

trajectory (the cycloid) and the tangents that interest us will not change. We
will take the simplest example: s(t) = ct. Then both motions, the rotation
and translation, will be uniform with the same velocity ṙ1(t) = ṙ2(t) = c
(see Example 2).3

Figure 3.

We will find the velocity of the resulting motion. Suppose the point is at
position At at time t (Figure 3). The vector ṙ1(t) is directed along the tangent
to the boundary of the generating circle, the vector ṙ2(t) is horizontal, and
they have the same length. We find the desired velocity ṙ(t), and thus the
tangent to the cycloid, by the parallelogram law (a rhombus in this case).

Problem 3. Prove that the tangent to the cycloid at At joins this point to
the point Ft of the generating circle that is highest when the circle is in this
position.

To solve the problem we only have to prove a simple geometric fact:
the vector ṙ(t) is directed along the line AtFt.

We note that the speed |ṙ(t)|, the magnitude of the velocity, is not con-
stant: it is maximal when the point is at its highest position (then the vectors
ṙ1(t) and ṙ2(t) lie along the same line and have the same direction) and it
is zero when the point falls on the line l (in this case the vectors ṙ1(t) and
ṙ2(t) are opposites of one another). See Figure 4.

It can be shown that the property that the velocity is zero at all moments
of time where the circle and line touch is equivalent to our earlier definition
that the circle rolls without sliding.

Thus, we find that where the cycloid has cusps the velocity of the ob-
served point is zero. It turns out that, in general, regardless of the trajectory

�——————�
3We have c = 2 πR

T , where R is the radius of the generating circle and T is the time for a
complete orbit. In particular, if T = 2π , then c = R.
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Figure 4.

Figure 5.

the velocity is always zero at a cusp. We sometimes say that the trajectory
cannot “break down” with nonzero velocity. We usually say that a curve
has no tangent at a cusp. All this needs to be made more precise, but we
will not do that.

Normals to the Cycloid

Thus, the tangent to the cycloid at At passes through the highest point of
the generating circle, the point F in Figure 5. Let Bt be the lowest point
of the circle and α be the angle between the tangent and the vertical FBt.
Then AtBt is normal to the cycloid, i.e., perpendicular to the tangent (an
inscribed angle subtended by a diameter is always a right angle), and the
y-coordinate of At is y = EtBt = 2r sin2 α. From this we obtain the following
relation:

sin α =
√

y
2r

. (1)

This equation will play an important role in the sequel. One can show
that the cycloid with parameter r is the unique curve passing through (0, 0)

that satisfies equation (1).
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Areas of Curved Figures

Even in ancient Greece it was known how to calculate the areas of certain
curved figures. At first only the quadratures of these figures were of inter-
est, i.e., constructing with straightedge and compass a line segment whose
length was equal to the area of the given figure. As was clarified later, this
can be done for those figures whose areas are calculated using arithmetic
operations and extracting square roots. Gradually, figures whose areas are
calculated using arbitrary algebraic operations (algebraic quadrature) came
to be of interest, and then even figures whose areas involved the number π .
The basic method for computing areas consisted of approximating a given
figure with polygons and passing to the limit. But one had to be very lucky
for these calculations to lead successfully to an explicit answer.

Sometimes the calculation of an area could be simplified by using some
general properties of areas. Here are some such properties:

1. Under a homothety with coefficient k the area of a figure is multiplied
by k2, and under a dilatation with coefficient k relative to some axis
the area is multiplied by k.

2. Equidecomposable figures (i.e., figures that can be cut up into pair-
wise equal parts) have equal areas.

3. If whenever two figures are intersected with a line parallel to a fixed
line we obtain equal line segments, then the figures have equal ar-
eas (this principle was formulated in 1635 by Bonaventura Cavalieri
(1598–1647)).

Imagine that the contour of a figure is a flexible tape, and that the figure
itself is made up of very thin, rigid fibers, parallel to a line l (“indivisible,”
in Cavalieri’s terminology). Consider transformations that preserve these
fibers but displace them relative to one another. All the figures that we
obtain this way will be equivalent, by Cavalieri’s principle.

The properties of area that are listed above require proof (the basic
difficulty in these proofs is to give a strict definition of area), but they are
easy to verify. Now we will discuss how they can be applied elegantly to
compute the area under an arch of the cycloid.

A Companion of the Cycloid, Roberval’s Leaves, and the Area
Under the Cycloid

Since all cycloids are similar, we will restrict ourselves to the case r =
1. Following Roberval, we connect each point At on the cycloid to its
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projection Et on the vertical diameter of the generating circle (see Figure 5).
Then Et has coordinates

x = t, y = 1 − cos t = 1 + sin
(

t + π

2

)
.

In Roberval’s terminology, the “companion of the cycloid” is the curve made
up of the points Et for all possible t. It is easy to see that the “companion”
is a translated sine curve (shifted one unit up and π

2 to the right).
An historical curiosity is associated with this. Since time immemorial,

mathematicians have studied trigonometric functions but sinusoids first
appeared only in the 17th century, and not as the graph of the sine func-
tion but as the “companion of the cycloid” (this can be partially explained
by the fact that for a long time functions of nonalgebraic origin were not
considered).

(a) (b)

Figure 6.

The “companion of the cycloid” divides it into three parts (see Fig-
ure 6(a)): the figure under the sinusoid and two symmetric figures which
we call “leaves of Roberval.” By property 2, the area under the sinusoid
equals 2π . This figure and the rectangle in Figure 6(b) with the same
area are homogeneous. Consider one “leaf.” The horizontal line at height
y = 1 − cos t intersects it in the interval AtEt with length | sin t| (Figure 2).
Moving these horizontal segments horizontally (for all possible t) so that
their left endpoints fall on the same vertical line, we obtain a semicircle
of the unit circle (Figure 7). By Cavalieri’s principle, the area of the “leaf”
equals the area of the semicircle, i.e., π

2 . This means that the area under an
arch of a cycloid with r = 1 equals 2π + 2(π

2 ) = 3π (and thus 3πr2 when
r �= 1).

The question of calculating the areas of segments of a cycloid is less
elementary. Huygens wrote, not without pride, “I first measured the area
of the part of the cycloid that is obtained by counting off 1

4 of the axis from
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Figure 7.

the vertex and drawing a parallel to the base. This part constitutes half the
area of the regular hexagon inscribed in the generating circle.”

The Tautochrone

Galileo asserted that the period of oscillations of a mathematical pendulum
is determined only by its length l and does not depend on the angle ϕ of its
maximal amplitude. Huygens, explaining that this is valid only for small
angles ϕ, decided to construct a pendulum whose period in fact did not
depend on ϕ. Such a pendulum is called a tautochrone or isochrone.

Huygens divided the construction of an isochronous pendulum into
two steps:

1. finding a curve along which the end of the pendulum (tautochrone)
must move;

2. finding a way to suspend the pendulum that guarantees its end will
move along the tautochrone.

We will begin with the search for a tautochrone, whose existence is not
obvious in advance.

The end of a mathematical pendulum moves along a circular arc just
like a point mass, along a trough whose contour coincides with the circle.
If we disregard the forces of friction and air resistance, then a point mass
starting with no initial velocity from height H along a circular trough will
pass through its lowest point and rise again to height H. It will then oscillate
periodically, climbing to height H first in one direction and then in the other.
Galileo’s incorrect claim was that the period T(H) of oscillation does not
depend on H. Our problem is to determine the form that the trough must
have in order for Galileo’s claim to be true.

Thanks to a happy coincidence (these are not the last word in the his-
tory of science) Huygens studied the cycloid (in connection with Pascal’s
contest in 1658) at the same time that he was searching for an isochronous
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pendulum. And the cycloid turned out to be a tautochrone! It is likely that
Huygens himself did not anticipate this. We can understand his words
in this way when he wrote, “I discovered its (the cycloid’s) suitability for
measuring time, investigating it according to strict scientific principles and
without suspecting its applicability.”

Consider a trough in the form of an inverted cycloid made by a point
mass (see Figure 8, where r is the radius of the generating circle). Let the
point mass be at height H at the start (at the point C0 in the sketch). We
will try to find the time τ when it is at the lowest point B (the vertex of the
cycloid). Then at 2τ it will be at the point C2τ symmetric to C0 with respect
to the vertical axis, and at time T = 4τ (a complete period) it will return to
C0. We are interested in how τ depends on H.

Figure 8.

At time t, let the point mass be at height h = h(t) and position Ct. The
velocity vector ṙ(t) at time t is directed along the tangent to the cycloid at
Ct. Its length |ṙ(t)| (the magnitude of the velocity) is determined from the
principle of conservation of energy:

m|ṙ(t)|2
2

= mg(H − h(t)),

i.e.,

|ṙ(t)| =
√

2g(H − h(t)).

We will look at how the projection of our point onto the vertical line
C0B′ moves. At time t this projection is at position C′

t and at time τ it is at B′
(see Figure 8), traversing the segment C0B′ of length H. The velocity w(t) of
this rectilinear motion at time t (at position C′

t in Figure 8) is the projection
of the velocity vector ṙ(t) onto the vertical: w(t) = |ṙ(t)| cos α, where α is
the angle between the tangent to the cycloid and the vertical. Since (see (1))

cos α =
√

2r−y
2r and y = 2r − h(t), we have cos α =

√
h(t)
2r , which means

w(t) =
√

g
r

�
√

h(t)(H − h(t)).
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Thus, the law by which the velocity of our rectilinear motion changes is
rather complex. But Huygens noticed (a decisive guess!) that for uniform
rotary motion around a circle of diameter H the vertical component of the
velocity has the same form as w(t). Indeed, consider the segment C0B′ to
be the diameter of a semicircle and let C′′

t be the point on the semicircle at
height h(t). The length of C′

tC
′′
t equals

√
h(t)(H − h(t)).

The shaded right triangles in Figure 8 are similar, since their sides are
pairwise perpendicular (OC′′

t is a radius of the semicircle and at C′′
t we draw

the tangent to the semicircle and a vertical line). It follows from this that

the vector of length (H
2 )

√
g
r that is tangent to the circle at C′′

t has a vertical
projection of length w(t). This means that as our point C moves along the
cycloid the corresponding point C′′ revolves uniformly with angular veloc-

ity
√

g
r radians per second (independent of H!). C′′ traverses the semicircle

C0B′ in time τ = π
√

r
g , the same time in which C′ traverses the line segment

C0B′, and C traverses the cycloid arc C0B. Thus, we have not only proved
that the cycloid is a tautochrone (i.e., that τ does not depend on H), but we
have also found the period of the oscillations:

T = 4τ = 4π

√
r
g
. (2)

We have actually shown that the motion of a point mass in a cycloidal
trough can be represented as the sum of a uniform rotary motion with
angular velocity independent of the initial height H of the point, together
with some (in general, nonuniform) translation motion. For H = 2r it is easy
to deduce this from the kinematic definition of the cycloid and relation (1)
on p. 99.

Equation (10) is reminiscent of Galileo’s conjecture for the period of a

mathematical pendulum of length l (T = 2π
√

l
g ), so it was natural to try to

use (10) to establish the latter. And indeed, Huygens used (10) to obtain the
first rigorous proof of Galileo’s formula for small swing angles ϕ. He noted
that for small angles, a circular trough is almost the same as a cycloid, and
it remained only to find the relation between the length l of a mathematical
pendulum and the parameter r of a cycloid that minimizes this difference.
This turned out to be l = 4r (this is not obvious, and we will return to it
later). Substituting r = l

4 into (10), we obtain the famous formula for the

period of a mathematical pendulum: T = 2π
√

l
g (for small ϕ).
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The Cycloid Pendulum

In creating his first clock models, Huygens hoped to compensate for the
deviation of a simple (mathematical) pendulum from isochronicity by de-
creasing its length as it swings. The length of a pendulum can be regulated
by using “cheeks” (Figure 9(a)) on which the weight’s string would be
wound as it swings. Experiments to determine the needed dependence of
the length of the pendulum on the angle of deflection were not success-
ful, and in his next clock constructions Huygens used limitations on the
amplitude instead of cheeks. When it became clear that the cycloid was a
tautochrone, it was understood that the form of the cheeks should be such
that the end of the pendulum moves along a cycloid.

(a) (b)

Figure 9.

Huygens searched for the form of the cheeks, reasoning roughly as
follows, in a rather free retelling. Suppose we have an obstacle bounded
by a curve L, and attach a stretched string of length l at some point O of L
(Figure 9(b)). We wind the string around the obstacle, keeping it stretched,
and observe the curve M described by its free end. Huygens called the
curve M the development4 of L; now M is called the involute or evolvent of
L and L is called the evolute of M (with one evolute we associate many
involutes, corresponding to different lengths l). We must find the evolute
of the cycloid.

The curve M consists of those points B for which the sum of the lengths
of the tangent BA to L at A and of the arc AO of L equals l (see Figure 9(b)).
This corresponds precisely to stretching the string that is partially wound
on L. Huygens first conjectured that the tangent to M at B is perpendicular
to AB, i.e., that AB, the tangent to L at A, is simultaneously normal to M
at B. The simplest way to explain this is from the kinematic definition of
M. Recall that the velocity vector is tangent to the trajectory of motion and
that as the action of the force changes, the velocity vector cannot change

�——————�
4Pascal, Oeuvres Complètes, p. 188.
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instantaneously (see below for the details). We “chop off” the obstacle at
A, but continue the motion of the stretched string (Figure 10); then the end
of the string begins to move along a circle with center A. Its velocity vector
at B does not change, so at B the curve M and the circle with center A will
have the same tangent, perpendicular to the radius BA.

Figure 10.

When you read the section in this chapter about the roulette, you will
notice that if we consider a string of any length, then the motion described
for the end of the string extends to a motion of the entire plane as a rigid
plate, where the points of the curve L are instantaneous centers of rotation
and the different involutes are trajectories of the points of the plane. It fol-
lows immediately from this remark that AB is perpendicular to the tangent
to M at B.

Huygens’ next conjecture was that in a “good” situation the evolute
of a curve can be reconstructed uniquely (recall that one curve has many
involutes). The normals to M at various points are tangent to its evolute L.
A “good” curve can be reconstructed from its tangents: taking many tan-
gents, we construct the polygonal line they describe. Taking more tangents
gives better approximations to the curve (we say the curve is the envelope
of the set of its tangents).

We have to find a curve whose tangents are normal to the given cycloid.
Huygens conjectured that this curve will be the same cycloid, but shifted
up by 2r and translated by half a period. Its vertices will coincide with the
cusps of the original cycloid as shown in Figure 11.

Indeed, let r = 1, let l, l′ be the directrices of the lower and upper
cycloids, respectively, and let O, O′ be their points of origin (l′ is two units
above l and O′ is π units to the right of O). We take a point C on l and
consider the generating circles of the two cycloids when they are tangent
to l at C. Let C′, C′′ be the points diametrically opposed to C on the upper
and lower circles, respectively, and let A, A′ be the corresponding points
on the cycloids. The arc CC′′A is equal in length to the segment OC, so
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Figure 11.

it is π units longer than the arc C′A′, which has the same length as the
segment O′C′. Thus ∠C′CA′ = ∠C′′CA and the points A′, C, A are colinear.
It remains to note that CA′ is tangent to the upper cycloid and CA is normal
to the lower one (AC′′ is its tangent).

Now we know that the cheeks of a tautochronous pendulum must be
cycloidal, and that the length l of the string must equal 4r (it is precisely for
this value of l that we will obtain the lower cycloid as the involute). For
small amplitude angles ϕ the regulating cheeks will barely affect the length
of the pendulum, and the cycloid will be nearly an arc of a circle of radius
4r (see the end of the preceding subsection).

Christopher Wren’s Theorem, Evolutes, and Arc Length

Huygens did not stop after solving the problem of the cycloid pendulum,
understanding that he had created a remarkable mathematical theory. He
wrote, “. . .in order to apply this property [that the cycloid is a tautochrone]
to pendulums, we have had to establish a new theory of curves, namely the
theory of curves that are generated from others by evolution. This leads to
comparing the lengths of curves and straight lines, which I pursued beyond
what my subject required: I did it because of the beauty and apparent
novelty of this theory.”5

Huygens first noted that when the string is completely wound on a
cheek, its end is at a vertex of the cycloid. This means that the length of the
string (4r) coincides with the length of half an arch of the cycloid, so that
one arch of the cycloid has length 8r. This theorem was stated and proved
in 1658 by Christopher Wren (1632–1723). Huygens, as we will see, found
a very natural proof of the theorem.

�——————�
5Huygens, Oeuvres Complètes, Vol. 18, p. 88.
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Christopher Wren’s theorem made a great impression on his contem-
poraries. Calculating the lengths of curves was of no less interest to math-
ematicians than calculating areas. At first, by analogy with quadrature
(see p. 100 above), they were interested in “rectification,” i.e., constructing
an interval of corresponding length with straightedge and compass. Later
they became interested in algebraic rectification, i.e., expressing the length
in terms of any algebraic operations. We have said that the quadratures of
certain figures had already been found by mathematicians in ancient times.
But up to the second half of the 17th century, mathematicians had searched
unsuccessfully for a curve for which even an algebraic rectification was
possible. They had begun to think that there was no such curve (Descartes’
words that “we, human beings, cannot find the relation between lines and
curves” are sometimes interpreted in this way). Wren’s rectification of the
cycloid refuted this point of view. Then Fermat obtained rectifications of
several other curves. However, all these examples involved nonalgebraic
curves, and the skeptics “refined” the hypothesis, proposing that algebraic
rectifications of algebraic curves are impossible (they correctly said that it
was of course possible to construct a rectifiable curve synthetically). How-
ever, even in this form the hypothesis turned out to be false. The first
counterexample to this hypothesis was constructed as early as 1657 but
was not widely known. William Neile (1637–1670), Hendrick van Heuraet
(1634–c.1660), and Fermat independently presented the same example of an
algebraic curve admitting an algebraic rectification: the semicubical parabola
y2 = ax3. This coincidence seemed mysterious until Huygens revealed the
reason why this little-known curve has this remarkable property: it is the
evolute of a parabola. More precisely, the evolute of the parabola y = x2 is
the curve

y = 1
2

+ 3
(x

4

)2/3
.

Huygens’ theory completely clarified the question of rectification. The
results on the cycloid pendulum and related questions composed the great-
er part of his book Pendulum Clocks, which appeared in 1673.

In conclusion we present the reader with several venerable problems.

Two Problems of Galileo

1. Prove that, under the force of gravity, a mass point travels along all
chords of a circle that terminate at its lowest point in the same length
of time (analogously for all chords originating at the uppermost point
of the circle).
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2. Let L be a (sufficiently “good”) curve and let A be a point not on L.
Find the point B on L for which a mass point travels along the segment
AB, under the force of gravity, in minimal time.

Problems of Newton

Consider a central force field in which the force is proportional to the dis-
tance r from the center: F(r) = kr, k > 0.

Newton noted that in such a field hypocycloids (see about them later
in this chapter) play the same role as cycloids do in a gravitational field.
Hypocycloids are tautochronous in this field (Newton called them iso-
chrones), and evolutes of hypocycloids are similar hypocycloids. This is a
purely geometrical fact, not related to mechanics, but it allows one to con-
struct a hypocycloidal pendulum and at the same time compute the length
of a hypocycloid.

Try to prove these assertions.

II Roulettes and Their Tangents

Certain things first became clear to me by a mechanical method, al-
though they had to be demonstrated by geometry afterwards because
their investigation by the said method did not furnish an actual demon-
stration. But it is of course easier, when we have previously acquired
by the method, some knowledge of the questions, to supply the proof
than it is to find it without any previous knowledge. Archimedes6

Shortened Cycloids

So far, we have only followed a single, fixed, point on the boundary of the
generating circle. It is clear that other points on the boundary will move
along the same cycloid but will be shifted along the curve. Now we will
follow the trajectories of points interior to the circle. The curves that arise
are called shortened cycloids (Figure 12). They are characterized by the
relation k = ρ

r , where R is the radius of the generating circle and ρ is the
distance from the center of the circle to the point being observed. For k = 0
we obtain the line along which the center of the circle moves, and for k = 1
we obtain the cycloid.

�——————�
6The Method, in The Works of Archimedes, translated by T. L. Heath, Cambridge University

Press, Cambridge, UK, 1912.
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Figure 12.

Problem 4. Prove that the normal to a shortened cycloid passes through
the lowest point of the generating circle.

Note that a point moving along a shortened cycloid never has zero
velocity. At the lowest point the velocity vector is horizontal and its mag-
nitude is R −ρ. This means that to the rolling motion of the circle of radius
ρ we add a sliding motion with velocity R − ρ (a translation).

Extended Cycloids

We now consider points that are exterior to the circle as it rolls (imagine
that we attach a rim to a wheel moving on a rail). These points move
along curves that are called extended cycloids (Figure 13). The arguments
given earlier for shortened cycloids carry over verbatim to the extended
case. Here, though, k = ρ

r > 1. We only note that at a lowest point of an
extended cycloid the velocity is directed opposite to the motion of the circle
(|ṙ1| = ρ, ṙ2 = r, ρ > R).

Figure 13.

Did you ever notice that the lowest points on the rim of a train wheel
move backwards?

Instantaneous Center of Rotation

We have now incorporated all points in the plane as the circle rolls along
the line. Each point moves along its own trajectory, but all the trajectories
are coordinated since the moving points constitute a solid body. From the
point of view of kinematics, the characteristic property of a solid body in
motion is that the distances between its points remain the same. Here we
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will limit ourselves to considering motions of solid plates that can be carried
out without taking the plate out of the plane (for example, it is forbidden
to turn the plate over). We will be interested in how the plate being solid
leads to restrictions on the velocity of a point on the plate. Note that the
motion of three-dimensional solid bodies is much more complicated than
the planar problem that we consider.

Here are some of the laws governing the motions of solid plates.

Principle of Incorporation. The motion of a solid plate is uniquely determined
by the motion of any two of its points. A motion of two distinct points that preserves
the distance between them can be uniquely extended to a motion of the entire plane
as a solid plate.

This assertion has a purely geometric character. We will not present its
proof but will limit ourselves to visual explanations. First, the motion of a
linear rod is completely characterized by the motion of two of its points, and
second, if a triangle consists of rigid rods then the motion of one of them
uniquely leads to the motion of the entire triangle. So from the motion
of two points A, B we can incorporate the line AB and then any point C
outside AB.

Principle of Inertia. If no external forces act on a solid plate and any internal
forces ensure solidity, then its motion is uniformly linear or rotational.

In order to consider arbitrary motions of a plate we need one more
fundamental principle of mechanics: velocity cannot change instantaneously
(a change in velocity requires nonzero time). In particular, if the forces
acting on a moving point change at time t0, then the velocity ṙ(t0) does not
change, and so if ṙ(t0) �= 0, then the tangent to the trajectory at t0 does
not change (although the trajectory itself can change starting from that
moment).

Suppose that at time t0, external forces cease to act on a moving plate.
Then, on the one hand, the velocities of points at t0 remain as before and,
on the other hand, the motion should obey the above principle of inertia.
Therefore, at each moment t of time, only one of two possibilities can hold
for the motion of a plate:

(a) The velocities of all points are equal (as vectors).

(b) There is a unique point Ot at which the velocity is zero; at any point
A of the plate the velocity is perpendicular to the vector OtA and its
magnitude is proportional to the distance from A to Ot. The propor-
tionality coefficient depends only on t.
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From the fact that the velocity cannot change instantaneously, it is not
hard to deduce that we can pass from case (a) to case (b) and vice versa only
at those times when the plate is at rest (the velocities of all points are zero).
Therefore, in the intervals between rest times either (a) holds throughout
or (b) holds throughout. In case (a), starting with the trajectory of a point
B we can obtain the trajectory of any point A through a parallel translation
by the vector BA. Now we will consider case (b), i.e., we assume that at
each moment of time there is a unique point Ot with zero velocity. We will
call Ot the instantaneous center of rotation at time t. In the example of a circle
rolling along a line the instantaneous center of rotation is the point where
the circle is in contact with the line.

If the instantaneous center of rotation Ot is known, the normals to the
trajectory at time t (the lines OtAt) and thus also the tangents, are automat-
ically known. Conversely, if the velocity vectors of two points of the plate
are known at t then by taking the point of intersection of the normals to
these vectors we obtain the instantaneous center of rotation Ot.

Figure 14.

Now let a solid plate move in a stationary plane. We will consider the
curve L in this plane of instantaneous centers of rotation at all moments of
time. L is called a fixed centroid, and we will call it a “rail.” On the other
hand, we will consider the curve C on the plate consisting of all points that
are instantaneous centers of rotation at some moment of time. C is called a
movable centroid, and we will call it a “wheel.” These “nonserious” names
suggest that we can obtain the original motion if we consider our “wheel”
curve as rolling along the “rail” curve without sliding, and incorporate the
remaining points in this rolling (Figure 14). From this we can deduce that
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the arc length of the “wheel” equals the length of the corresponding arc of
the “rail” guide along which the “wheel” rolls. Here we permit the “wheel”
to intersect the “rail” as it rolls.

We often understand “roulette” to mean the trajectory described by the
points in the plane as it moves like a solid plate satisfying condition (b)
at all moments of time i.e., as it rolls. We have learned to take normals
and tangents to all roulettes. Here it turns out that we do not even need
to know how to take the tangent to a “wheel” and “rail” (it would have
been necessary if we had used a composition of velocities). In our me-
chanical considerations we have left the 17th century behind; remarkably,
however, the method of taking normals to a general roulette was discov-
ered by Descartes, who defined them using oscillations (without knowing
how general are the motions generated by oscillations).

Epicycloids

We now consider roulettes obtained when one circle rolls along another.
Let a circle of radius r roll along the outside of a circle of radius R. The
trajectories of the boundary points of the rolling circle (the “wheel”) are
called epicycloids. Their form depends on k = R

r (see Figure 15). If k is
an integer, then as the moving circle rolls once around the boundary of the
fixed circle it makes k revolutions and the epicycloid will have k cusps and k
arches. An epicycloid with k = 1 is called a cardioid, since it is reminiscent
of a stylized heart. If k = p

q is a fraction in lowest terms, then as the
moving circle makes q revolutions it rolls p times around the fixed circle.
If k is irrational, then there is no periodicity and the observed point never
returns to its original position. One can prove that the infinite trajectory
we obtain in this case forms a ring R ≤ OA ≤ R + 2r, approaching each of
its points as closely as we wish but never falling on it.

It is easy to construct the tangents to these epicycloids using instanta-
neous centers of rotation, the points where the circles touch. Prove that
the tangent to an epicycloid at a point passes through a point of the corre-
sponding moving circle that is diametrically opposite the point of contact
with the fixed circle.

Remark. In constructing epicycloids and solving these problems we must
remember the following. If A is the initial position of the point being
observed (Figure 17) and at some moment of time the moving circle rolls
on the fixed one at point B, then the epicycloid contains a point C on the
boundary for which the arc lengths BA and BC are equal. Taking into
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(a) k = 3 (b) k = 6

(c) k = 1
2 (d) k = 5

2

(e) k = 2
3

Figure 15.
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Figure 16.

Figure 17.

account the difference in the radii, we obtain

∪BC
∪BA

= R
r

= k.

The trajectories of the interior (respectively, exterior) points of the moving
circle as it rolls in this way are called shortened (respectively, extended)
epicycloids. See Figure 16; we will limit ourselves to integer values of k.

Problem 5. Let A revolve uniformly around point O1, which in turns re-
volves uniformly around point O. Let OO1 = r2, O1A = r1. Let both
revolve clockwise and let v1, v2 be the magnitudes of their linear veloci-
ties. Show that A will move along some epicycloid (perhaps shortened or
extended). What relations determine the nature of the curve?

Hypocycloids

Roulettes obtained as a circle of radius r rolls along the inside of a circle of
radius R > r are called hypocycloids. (Similarly, these may be shortened or
extended.)
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Analogously, we could also consider a hoop of radius R the inside of
whose boundary rolls along a fixed circle of radius r < R. The correspond-
ing roulettes are called pericycloids. But it turns out that they coincide with
epicycloids (see the supplement at the end of this chapter).

Problem 6. Suppose the rotations described in Problem 5 take place in two
opposing directions, one clockwise and the other counterclockwise. What
will be the trajectory of the point A?

We have not had the goal of giving rigorous proofs of all the results
we have obtained from kinematic considerations. In some cases this can
be done easily: mechanical arguments are replaced by mathematical ones
almost automatically (it is enough to replace velocities by derivatives). In
other cases it is more complicated to find such “replacements” (for example,
where we consider the motion of a plate or where forces are varying).
However, purely mathematical approaches cannot replace a mechanical
interpretation completely, which in many cases makes it possible to see a
simple and beautiful answer.

III The Brachistochrone, or Yet Another Secret of
the Cycloid

Galileo’s Error

At the very beginning of the 17th century the young Galileo tried to verify
experimentally his conjecture that the velocity of free fall is constant. When
he brought his observations from the Tower of Pisa to his laboratory, he
was very disturbed by the fact that the body fell “too quickly.” In order
to slow down this motion, Galileo decided to replace free fall by motion
along an inclined plane, assuming that that would have constant velocity.
Continuing these experiments, Galileo turned his attention to the fact that
when a body slides down an inclined plane its speed at the end does not
depend on the plane’s angle of inclination but only on its height H, and is
the same as the final speed of a body falling freely from that height (as you
well know, in both cases |v̄| = 2gh). From inclined planes, Galileo went
on to considering a mass point moving under the force of gravity along
a polygonal line. Comparing times for different polygonal lines that join
two fixed points A and B, Galileo remarked that if we join A, B by a quarter
of a circle (this can always be done—how?) and inscribe two polygonal
lines M and L in it so that L is “inscribed” in M (see Figure 18), then a
mass point falling from A to B falls faster along M than along L (try to
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prove this). Increasing the number of line segments and passing to the
limit, Galileo obtained that a mass point falls faster along the quarter circle
than along any polygonal line inscribed in it. From this Galileo reached the
inescapable conclusion that a quarter circle joining a pair of given points
A, B (not lying on the same vertical line) is the path of fastest descent for
a mass point moving under the force of gravity (later, the path of fastest
descent would be called a brachistochrone). Later it would be clear that
Galileo’s assertion was not only unjustified but was, in fact, wrong.

Figure 18.

Switzerland. The End of the 17th Century.

“Johann and Jacob Bernoulli, on the occasion of a conversation on mathe-
matical topics during a walk in Basel, lighted on the question of what form
a chain would take that was freely suspended and fastened at both ends.
They soon and easily agreed in the view that the chain would assume that
form of equilibrium at which its center of gravity lay in the lowest possible
position. . . . The physical part of the problem is disposed of by this consider-
ation. The determination of the curve that has the lowest center of gravity
for a given length between the two points A, B, is simply a mathematical
problem.”7

Investigating the chain curve (the shape taken by a flexible, heavy, non-
stretchable string suspended between two points), the Bernoulli brothers
were interested in other problems where curves are sought that minimize
some quantity or other. In 1696 Johann Bernoulli published a note entitled
A New Problem That Mathematicians Are Invited to Solve. Incidentally, this
“new” problem had already been studied by Galileo. This was the problem

�——————�
7Ernst Mach, The Science of Mechanics, translated by Thomas J. McCormack, 6th ed., Open

Court, La Salle, 1974, p. 85. This translation uses the English forms John and James Bernoulli.
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of finding a brachistochrone, a curve joining a fixed pair of points along
which a point mass descends most rapidly under the force of gravity. The
brachistochrone problem, which was beyond even the great Galileo at the
beginning of the century, turned out to be very timely at the end of the cen-
tury. It was quickly solved by Johann Bernoulli himself and by his brother
Jacob, by their teacher Leibniz, and even by Newton and L’Hôpital. We
will discuss Johann Bernoulli’s solution: it uses concepts from geometrical
optics in a completely unexpected way.

“This solution of Johann Bernoulli’s, achieved entirely without a method,
the outcome of pure geometrical fancy and a skillful use of such knowl-
edge as happened to be at his command, is one of the most remarkable and
beautiful performances in the history of physical science. Johann Bernoulli
was an aesthetic genius in this field. His brother Jacob’s character was en-
tirely different. Jacob was the superior of Johann in critical power, but in
originality and imagination was surpassed by the latter. Jacob Bernoulli
likewise solved this problem, though in less felicitous form. But, on the
other hand, he did not fail to develop, with great thoroughness, a gen-
eral method applicable to such problems. Thus, in these two brothers we
find the two fundamental traits of high scientific talent separated from one
another—traits, which in the very greatest natural inquirers, in Newton,
for example, are combined.”8

Fermat’s Principle

As early as 140A.D., Claudius Ptolemy created a detailed table showing
how the angle of refraction of a light ray passing from air to water depends
on the angle of incidence, but it was only in 1621 that Willebrord Snell
(1580–1626) conjectured the analytic relation connecting these angles:

sin αincidence

sin αrefraction
= k,

where k is the coefficient of refraction, a constant for each given pair of media.
In 1650 Fermat gave a remarkable interpretation of this law. It began

with the fact, already known to Heron of Alexandria, that the equality of
the angles of incidence and reflection can be derived from the assumption
that reflected light takes the shortest path (Figure 19).

Fermat assumed that the path along which light propagates between any
two points is the path requiring the least time compared to all other paths between
these points. This assertion is now called “Fermat’s principle.” In particular,

�——————�
8Ibid., pp. 522–523.
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arfl ainc

Figure 19.

from Fermat’s principle it follows that if the speed of light in a homogeneous
medium is constant, then the least time is achieved along a path of shortest
length. This implies that the path of light in a homogeneous medium
with no barrier is rectilinear, and also implies the law of reflection. If the
density in the medium is variable, and the speed of light is different in
different regions, then the path along which light propagates in shortest
time cannot be rectilinear. We will consider what happens in the case of
refraction. (Everything we discuss below is related to the planar case.)

Let the line l separate two media (in the plane), with the speed of light
equal to c1 in one and c2 in the other; Let A1, A2 be points lying on different
sides of l. We find a point B on l such that sin α1

sin α2
= c1

c2
, where α1 is the angle

of incidence and α2 is the angle of refraction (Figure 20). The existence and
uniqueness of B are easy to prove. Let C be any other point of l. Drop
perpendiculars CE, CF onto A1B, A2B, respectively.

Figure 20.

Then ∠ECB = α1, ∠FCB = α2, and it takes as long to travel along BE
with speed c1 as to travel along BF with speed c2. This means that it takes
light as long to travel along the path A1BA2 as it does to travel along A1E
with speed c1 and FA2 with speed c2. Since the segments A1C and A2C are
longer than A1E and FA2, respectively, it takes light longer to travel along
A1CA2 than along A1BA2. Thus the point C does not give the least time.
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Thus, Fermat’s principle implies Snell’s law of refraction, and the coef-
ficient of refraction of a light ray from one medium to another equals the
ratio of the speeds of light in the two media.9

Fermat’s principle also implies that in a complex layered optical medium
consisting of horizontal “strips” in each of which the speed of light is con-
stant, c1, c2, . . . (see Figure 21), light will propagate along a polygonal line
in the plane, with vertices on the lines that divide the strips. Moreover, if
αi is the angle made with a vertical line by the segment in the region with
speed of light ci, then sin αj

cj
is constant over the entire polygonal line. In-

deed, if sin αj
cj

�= sin αj+1
cj+1

for some j, then according to Fermat’s principle light
cannot propagate along such a polygonal line: we could move a vertex
on the boundary shared by the corresponding strips without changing the
others, so that in general, the time spent by the light would decrease.

Figure 21.

Suppose the speed of light changes continuously in some inhomoge-
neous optical medium but is the same at all points on the horizontals, i.e.,
it has the same value c(y) at all points with the same y-coordinate. Here
y = 0 corresponds to the initial position of the point, i.e., the position from
which the light ray emanates. Then in the limit we find that the path light
takes between two points in this medium is a curve L for which

sin α(y)

y
= const, (3)

where α(y) denotes the angle that the tangent to L at a point with ordinate
y makes with a vertical line.

In order to get to the brachistochrone problem, note that we obtained
relation (3) from Fermat’s principle, using only the fact that at a fixed point

�——————�
9Fermat’s principle was based on the wave theory of light constructed by Huygens in

1672–1673.
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of our inhomogeneous medium the magnitude of the speed of light is fixed
and does not depend on the direction in which light is being propagated
(in our examples it was constant on the horizontals). But as we remarked
above, for a body moving only under the force of gravity we have |v̄| =
2gh, where y moves vertically, “losing” altitude, and we obtain that in this
problem also the speed of light at each fixed point of the plane is constant
and does not depend on which path is taken. Therefore, all consequences
of Fermat’s principle can be carried over to this case. Thus in order to fall
from one given point to another in the least possible time, a point mass must
move along a path L that joins these points (we assume that the points do
not lie on the same vertical line) and for which

sin α(y)√
y

= const, (4)

where α(y) is the angle that the tangent to L at a point with ordinate y makes
with a vertical line.

It remains only to search for a curve satisfying condition (4).

A Cycloid Again!

Seventeenth-century mathematicians were accustomed to the fact that the
cycloid is the “magic wand” for answering many questions. And here
it again decisively reaffirmed its “reputation”—the brachistochrone also
turned out to be a cycloid!

Figure 22.

Indeed, if α(y) denotes the angle made with the vertical by the tangent

to a cycloid with parameter r at point with ordinate y, then sin α(y) =
√

y
2r

(see formula (1) on p. 99). Here the cycloid is obtained from a circle of
radius r that rolls without sliding along the line y = 0. Moreover, as we
have already noted, the cycloid is the unique curve satisfying this relation.
Thus, the brachistochrone joining two given points A and B (not lying on
the same vertical line) is part or all of an arch of an inverted cycloid (see
Figure 22), where the “upper” point A is at a cusp of the cycloid. Since we
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are only considering one (the first) arch of the cycloid, its parameter r is
uniquely determined by B.

A brachistochrone can also be longer than half of a cycloidal arch. In
this case, a mass point moving under gravity along a brachistochrone first
moves downwards, reaches a vertex of an inverted cycloid, and then begins
to move upwards. Nonetheless, such a motion turns out to take less time
than if the point mass went from A to B along a straight line!

For comparison, note that although an inverted cycloid is both a tau-
tochrone and a brachistochrone, in the first case we have to take an arch
that ends at a vertex of a cycloid and in the second case one that begins at
a cusp.

Some Problems

Let us return to optics. Now we know that if the speed of light in a planar
inhomogeneous medium changes according to the law c(x, y) = k

√
H − y

(i.e., analogous to how the speed of a point mass changes as it moves under
the force of gravity), then in such a medium light traveling between two
points will propagate along an arc of an inverted cycloid with cusps along
the line y = H.

Now try to solve some problems about the path light takes between two
points in an optically inhomogeneous medium, given the law by which the
speed of light changes in this medium.

Problem 7. The speed of light changes according to c(x, y) = k(y−a). Prove
that light will propagate between two points along arcs of semicircles with
diameters on the line y = a containing the initial point.

Problem 8. The speed of light changes according to

c(x, y) = k√
a − y

.

Prove that in this case light will propagate between two points along
parabolic arcs.

If in Problems 7 and 8 we interpret c(x, y) as the speed of some me-
chanical motion, then the trajectories for the propagation of light that we
obtained in solving these problems will be brachistochrones for the corre-
sponding mechanical systems.

The fundamental problem of mechanics consists of determining the
position of a moving body at any moment of time.

From a physics textbook
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The Analogy Between Mechanics and Optics

Thus, in mechanics we are usually looking for the trajectory of a point mass
when the forces acting on the point and the initial position and velocity
vector (the initial conditions) are given. However, we can be interested not
only in individual trajectories but in describing the entire set of trajectories
when the forces change according to some given law. (An additional task
of the initial conditions will then be to single out a specific trajectory from
this set.) Then Galileo’s classical result on the motion of a body that is
thrown (horizontally or at some angle to the horizontal) states that in the
case of the force of gravity the set of trajectories consists of parabolic arcs.

The use of optics in purely mechanical problems gave rise to the idea
of trying to isolate the set of possible trajectories for a specific mechani-
cal system using some sort of minimality condition analogous to Fermat’s
principle. Leibniz thought about such a condition, but its first formulation
belongs to Pierre de Maupertuis (1698–1759). However, his construction
was far too general and did not contain precise assertions. The first pre-
cise formulation belongs to Leonhard Euler, who had studied mathematics
with Johann Bernoulli. It is related to the following special situation.

Let a point mass move in the plane under the action of some force such
that its potential energy depends only on its position: U = U(x, y). By the
law of conservation of energy, the speed |v̄| of the point also depends only
on (x, y):

|v̄| =
√

2
m

(E − U(x, y)).

We consider a planar inhomogeneous optical medium in which the speed
of light changes according to the law c(x, y) = k

v̄(x,y)
. Euler’s principle states

that the trajectories of light propagating in such a medium will coincide with the
possible trajectories of the original mechanical system (a point of mass m with
potential energy U(x, y)). It is clear that Euler’s principle can be formulated
without mentioning the propagation of light.

In particular, Problem 8 and Euler’s principle imply Galileo’s assertion,
stated above, about the trajectory of a mass point moving under the force
of gravity.

Now let us clarify Euler’s principle. For simplicity, we will limit our-
selves to the case when U(x, y) and thus also |v̄| depends only on y. Since
the potential energy is constant on horizontal lines, the force will be di-
rected vertically, the horizontal component of the acceleration will be zero,
and the horizontal component of the velocity vector will be constant, i.e.,

|v̄(y)| sin α(y) = const, (5)
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where α(y) is the angle between the velocity vector and the vertical when
the ordinate on the trajectory is y. Equations (5) and (3) give us Euler’s
principle for this special case. In the general case we must take into account
that the direction in which the force acts is perpendicular to the curves of
constant potential energy and that, consequently, the components of the
velocity vector that are tangent to these curves do not change.

In modern mechanics, principles that generalize Euler’s principle (e.g.,
Hamilton’s principle) play an exceptionally important role.

Epilogue

The heroic story of the cycloid was completed at the end of the 17th cen-
tury. It arose so mysteriously in the solution of the most varied problems
that no one doubted it played a quite exceptional role. The cycloid was
revered for many years, but time passed and it became clear that it was not
connected to the fundamental laws of nature in the same way as, say, conic
sections. Problems reducing to the cycloid played a tremendous role in
the establishment of mechanics and mathematical analysis, but when the
greatest edifices of these fields were constructed it turned out that these
problems were particular ones, far from the most important. An instruc-
tive historical illusion had taken place. However, being familiar with the
instructive history of the cycloid, we can see many fundamental facts of
the history of science.

Supplement

In this supplement we will explain, as promised, why the pericycloids (see
p. 116) coincide with the epicycloids. Recall just what we have to prove.

Claim. Let a hoop of radius R, hanging on a fixed circle of radius r < R, begin to
roll without slipping along this circle. Then a point of the hoop describes the same
trajectory as a point of a wheel of radius R − r, rolling outside the same circle of
radius r (see Figure 23).

Denote the wheel radius R − r by ρ. Recall that curves described by
points on the boundary of a wheel that is rolling as we have described
are called epicycloids, and curves described by points of the hoop are per-
icycloids. We will prove that under the given relation among the radii,
R = r + ρ, the pericycloids coincide with the epicycloids.

Let us focus on one point that is on the wheel and the hoop. Suppose
that at the start, the points we observe on the wheel and hoop are at the
same point A on the boundary of the fixed circle (Figure 24).
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Figure 23.

Figure 24.

For specificity, suppose the wheel and hoop roll around the circle coun-
terclockwise. If at some moment the wheel is tangent to the fixed circle
at a point B, then the point we are observing on its boundary (a point on
a epicycloid) is at a point C for which the arcs AB and BC have the same
length (the arc BC must take into account the direction in which the wheel
rolls). See Figure 25(a).

Analogously, the position of the point C′ that we observe on the hoop
(a point on a pericycloid) at the moment when the hoop is tangent to the
fixed circle at B′ is found by setting the lengths of the arcs AB′ and B′C′
equal, taking the direction of rolling into account. See Figure 25(b).

We will prove that for any point B on the boundary of the fixed cir-
cle we can select a point B′ (also on the boundary of the fixed circle) so
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(a) (b)

Figure 25.

that the corresponding points C (epicycloid) and C′ (pericycloid) coincide
(Figure 26(a)). From our proof it will also be clear how to choose B′ from B.

(a) (b)

Figure 26.

We take B′ so that the ratio of the lengths of the arcs AB and BB′ will equal
ρ
r . Then the radian measure of the arc BC will equal the radian measure of
the arc BB′, say ϕ radians. We have

length(AB) = length(BC) = ρϕ, length(BB′) = rϕ.

Therefore, length(B′C′) = length(AB′) = rϕ + ρϕ, and the radian measure
of arc B′C′ also equals ϕ. Let O be the center of the fixed circle, O1 be the
position of the center of the wheel at the moment when it is tangent to the
fixed circle at B, and O2 be the position of the center of the hoop when
it is tangent to the fixed circle at B′. The points O, B, O1 are colinear, as
are O2, O, B′.

Suppose 0 < ϕ < π . We have (Figure 26(b)) OB = OB′ = r, O2B′ = R,
OO2 = R − r = ρ, OB = O1C = ρ, O1O = r + ρ = R, ∠BOB′ = ∠OO1C =
ϕ. This means that the quadrilateral OO1CO2 is a parallelogram, and so
O2C = R, ∠CO2B′ = ϕ. Thus, the point C lies on the circle of radius R
with center at O2, and the radian measure of arc B′C equals ϕ. This in turn
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implies that C coincides with C′. Thus we have proved that, if arcs of a
wheel and hoop with the same radian measure ϕ < π roll around a fixed
circle, then the resulting points on the epicycloid and pericycloid coincide.

It remains to be convinced that this assertion is also valid when ϕ ≥ π .
Let us see how Figure 26(a) changes when ϕ = π and when π < ϕ < 2π .
The difference in the circumferences of the hoop and wheel equals 2πr, the
circumference of the fixed circle. So at the moment when the wheel and
hoop make complete revolutions, the points we are observing again fall
on the boundary of the fixed circle at the same position, say, A1. The case
2π < ϕ < 4π reduces to the case ϕ < 2π if we take A1 as the initial point
instead of A. If we take A1 as the initial point and also reverse the direction
of rolling, then the case π ≤ ϕ ≤ 2π reduces to the case ϕ ≤ π .



Blaise Pascal

Pascal had his abyss, it followed him. Baudelaire, The Abyss1

B laise Pascal was inherently multifaceted, a characteristic of the Re-
naissance that had almost become passé in the 17th century. The
natural sciences (say, physics and mathematics) had not yet com-

pletely separated from the humanities, but studies in the humanities and
the natural sciences were already no longer commonly combined.

Pascal entered the history of the natural sciences as a great physicist and
mathematician, one of the creators of mathematical analysis, projective
geometry, probability theory, computational methods, and hydrostatics.
France counts him as one of its more remarkable writers: “Narrow minds
are surprised by Pascal as the most perfect writer in the greatest century
of the French language. . . . Each line coming out of his pen is revered as a
precious stone” (Joseph Bertrand). Far from everyone agreed with Pascal’s
thoughts about man, his place in the universe, and the meaning of life but
no one was indifferent to the lines for which the author paid with his life
and which have surprisingly not aged. In 1805, Stendahl wrote, “When I
read Pascal, it seems to me that I am reading myself.” And 100 years later
in 1910, Leo Tolstoy read “the wondrous Pascal,” “a man of great mind
and great heart,” and “I could not but be moved to tears, reading him and
being conscious of my complete unity with this man who died hundreds
of years ago.” It is instructive to compare how ideas in the natural sciences
and the humanities have aged.

Let us recall one side of Pascal’s legacy—his practical achievements.
Some achieved the highest level of distinction, but today few know their

�——————�
1Charles Baudelaire, Les Fleurs du Mal (The Flowers of Evil), translated by Richard Howard,

David R. Godine, Boston. Translation copyright 1983 by Richard Howard. Reprinted with
permission from the publisher.
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Pascal in his youth.

creator’s name. For the writer Turgenev, the standards for convenience and
simplicity were “Columbus’ egg”2 and “Pascal’s wheelbarrow.” Learn-
ing that the great scientist had invented a most ordinary wheelbarrow, he
wrote to the poet Nekrasov: “Incidentally, in one place I speak of Pascal’s
wheelbarrow—you know that Pascal invented this so obviously simple
machine.” And Pascal also originated the idea of the omnibus, a coach
available to everyone (“for 5 sous”), with a fixed route, that was the first
form of regular urban transport.

Pascal was one of the most notable people in the history of humanity;
an immense literature is devoted to him. What aspects of his life and legacy
have not been touched by “Pascalology”? There is peculiar testimony to
his special popularity in France: Pascal’s portrait has been reproduced on
French currency (other French writers who have achieved this honor at
various times include Corneille, Racine, Molière, Montesquieu, Voltaire,
Hugo, and Saint-Exupéry).

Sticks and Coins

When we learn to draw graphs, in the kaleidoscope of anonymous curves
we sometimes find ones that are named after people: the spiral of Archi-

�——————�
2This refers to a 16th century anecdote about Columbus balancing an egg on its narrow

end.—Transl.
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medes, Newton’s trident, the conchoid of Nicomedes, the witch of Maria
Agnesi, the folium of Descartes, Pascal’s limaçon, and so on. Rarely does
anyone doubt that this is the Pascal of “Pascal’s law.”3 But this remarkable
fourth-degree curve immortalizes the name of Etienne Pascal (1588–1651),
Blaise Pascal’s father. Etienne Pascal, as was the custom in the Pascal fam-
ily, served in the Parlement (law court) of the town of Clermont. It was rare
to combine legal work with scientific work far from law. At about the same
time, a councilor at the Parlement of Toulouse, Pierre Fermat (1601–1665),
was devoting his leisure time to mathematics. Although Etienne’s own
achievements were meager, his basic knowledge allowed him to maintain
professional contacts with most French mathematicians. He exchanged
difficult problems on the construction of triangles with the great Fermat,
and took Fermat’s side in a dispute over maximum and minimum problems
with René Descartes (1596–1650). Blaise inherited his father’s good rela-
tions with many mathematicians, but he also inherited strained relations
with Descartes.

Etienne Pascal, an early widower, mostly devoted himself to raising
his children (he had two daughters, Gilberte and Jacqueline, besides his
son). The young Blaise was soon found to be startlingly gifted but, as often
happens, this came along with bad health. (Strange things happened to
him all his life; as a young child he almost died from an unknown disease,
accompanied by fits that family legend attributed to a witch who had given
the child the evil eye.)

Etienne Pascal carefully thought out a system for raising his children.
At first he intentionally excluded mathematics from the subjects he taught
Blaise: He was afraid that an early enthusiasm for mathematics would in-
terfere with a harmonious development, and that the unavoidable strain
of thinking would harm his son’s poor health. However, the twelve-year-
old boy, learning of the existence of a mysterious geometry that his father
had studied, convinced him to talk about the forbidden science. The infor-
mation he received turned out to be enough to begin a fascinating “game
with geometry” and to prove theorem after theorem. In this game there
were “coins” (circles), “three-cornered hats” (triangles), “tables” (rectan-
gles), and “sticks” (lines). The son was surprised by his father just as
he discovered that the angles of a three-cornered hat total the same as
two angles of a table. Etienne easily recognized the famous thirty-second
proposition of Euclid’s first book, the theorem on the sum of the angles of
a triangle. The results were tears in the father’s eyes and admission to the
cabinet that held his mathematics books.

�——————�
3Of fluid pressure.—Transl.
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How Pascal constructed Euclidean geometry by himself is known from
his sister Gilberte’s rhapsodic story. This story created widespread con-
fusion over the notion that since Pascal had discovered the thirty-second
proposition of Euclid’s Elements, he had first discovered all the preceding
theorems and axioms. This was not infrequently taken as an argument for
Euclid’s axioms being the only ones possible. In fact, Pascal’s geometry
was probably at a “pre-Euclidean” level, where assertions that were not
intuitively obvious were proved by reference to obvious ones, and what
was obvious was not at all fixed or restricted. It is only at the next, sub-
stantially higher level that the great discovery is made that we can restrict
the obvious assertions to a finite, comparatively small set of axioms which
are assumed true, and prove the remaining assertions in geometry from
them. Along with proving what is not obvious (e.g., theorems on notewor-
thy points in triangles), one must also prove the “obvious” theorems that
are easy to verify (e.g., the simplest conditions for congruent triangles).

Properly speaking, the thirty-second proposition is the first one in Ele-
ments that is not obvious in this sense. Without a doubt, the young Pascal
had no time to do the enormous job of choosing axioms, let alone any need
to do so.

It is interesting to compare this to Einstein’s testimony that at the age
of twelve he understood geometry, to a significant extent by himself (in
particular, he proved the Pythagorean theorem after hearing about it from
his uncle): “It was generally enough for me to base my proofs on those
statements whose validity seemed to me indisputable.”

At about the age of ten, Pascal did his first work in physics. Interested
in the reason for the sound made by a china plate, he carried out a strik-
ingly well organized series of experiments using improvised materials, and
explained how the air vibrates.

Hexagramme Mystique, or Pascal’s Great Theorem

At thirteen, Blaise Pascal already had access to Mersenne’s mathematical
circle, which included most of the mathematicians in Paris, among them
his father Etienne (the Pascals had lived in Paris since 1631).

In the history of science, the Franciscan monk Marin Mersenne (1588–
1648) played the great and original role of scientist-administrator.4 His
main service lay in carrying on an extensive correspondence with most
of the world’s great scientists (he had several hundred correspondents).
Mersenne was able to gather information and communicate it to interested

�——————�
4In evaluating Mersenne’s work, we should keep in mind that the first scientific journal,

Journal des Savants, was founded in 1665.
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scientists. This work required a peculiar gift: the ability to understand new
things quickly and to pose questions well. Having great moral character,
Mersenne enjoyed the confidence of his correspondents. Sometimes, he
wrote to very young scientists. Thus, in 1646 he began to correspond with
the seventeen-year-old Huygens, helping him take his first scientific steps
and heralding that he would become “the Apollonius and Archimedes. . .
of the coming age.”

Together with his “collective” of remote correspondents, there was also
a local circle,“Mersenne’s Thursdays,” into which Blaise Pascal fell. Here
he found himself a suitable teacher, Gerard Desargues (1593–1662), an en-
gineer, architect, and creator of an original theory of perspective. His mag-
nus opus of 1639, entitled Brouillon Project d’une Atteinte aux Événemens des
Rencontres du Cône avec un Plan (A Proposed Draft of an Attempt to Treat the
Results of a Cone Intersecting a Plane), found few readers. Pascal, who was
able to make considerable advances in this area, occupied a special place
among them.

Although at the time Descartes and Fermat were breaking a completely
new trail by creating analytic geometry, in essence, geometry had barely
reached the level where it had been in ancient Greece. Much of the legacy
of the Greek geometers remained unclear, and this was true most of all for
the conic sections. The eight books of Apollonius’ Konika (Conic Sections),
the most outstanding work on this theme, were only partially known. At-
tempts were made to give a modern presentation of the theory, most notably
by Claude Mydorge (1585–1647), a member of Mersenne’s circle, but his
paper contained no new ideas. Desargues noticed that a systematic appli-
cation of the method of perspective allowed the construction of a theory of
conic sections from a completely new standpoint.

Consider the central projection from a point O of a figure in a plane α

onto a plane β (see Figure 1). It is very natural to apply such a transforma-
tion to the theory of conic sections, since their very definition, as sections of
a right circular cone, can be rephrased as follows: All the conic sections can
be obtained from any one of them (e.g., from a circle) by a central projection
from the vertex of a cone onto various planes. Furthermore, noting that
under a central projection intersecting lines can become either intersecting
or parallel, we can combine these last two properties into one and assume
that all parallel lines meet at one “point at infinity.” Different sets of par-
allel lines give different points at infinity, and the points at infinity of a
plane form the “line at infinity.” With this understanding, any two distinct
lines (including parallel lines) will meet at a unique point. The claim that
through any point A not on a line m there is a unique line parallel to m can be
reformulated as follows: There is a unique line through an ordinary point
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Figure 1.

A and the point at infinity corresponding to the family of lines parallel to
m. As a result, under these new hypotheses the following is valid, without
any restrictions: there is a unique line through any two distinct points (the
line is infinite if both points are infinite). We will see that a very elegant
theory results, but it is important for us that under a central projection, a
point of intersection of lines (in the generalized sense) is mapped into a
point of intersection.

It is important to think about the role played in this assertion by the
introduction of infinite elements (under what hypotheses a point of in-
tersection becomes a point at infinity, and when a line becomes a line at
infinity). Without dwelling on the use of this simple idea of Desargues, we
will discuss how Pascal applied it so remarkably.

In 1640, Pascal published his Essai pour les Coniques (Essay on Conics).
Here are some facts about this edition that are not without interest: 50
copies were printed and 53 lines of text were printed on posters to be pasted
on buildings (it is not known for certain about Pascal, but Desargues was
notorious for advertising his results this way). The following theorem,
now known as Pascal’s theorem, was stated without proof on the poster
and signed with the author’s initials. Number six arbitrary points on a conic
section L (in Figure 2, L is a parabola). Let P, Q, R denote the points of intersection
of the three pairs of lines (1, 2) and (4, 5), (2, 3) and (5, 6), and (3, 4) and (6, 1).
(In the simplest numbering, “in order,” these points are the intersections
of opposite sides of a hexagon. Then P, Q, R are collinear.5

At first, Pascal stated the theorem for a circle and restricted himself to the
�——————�

5The corollary obtained when some of these points are infinite is left as an exercise for the
reader.
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Figure 2.

simplest numbering of the points. In this case, the problem is elementary
but not overly simple. The transition from the circle to an arbitrary conic
section is very simple. We must transform such a section to a circle by
a central projection, and use the fact that lines are mapped to lines and
intersection points (in the generalized sense) are mapped to intersection
points. Then, as was already shown, the images of P, Q, and R under a
projection will be collinear, and this implies that P, Q, and R themselves
are collinear.

This theorem, which Pascal called the theorem on the hexagramme mys-
tique (mystic hexagram), was not an end in itself. He considered it the key
to constructing a general theory of conic sections, encompassing Apollo-
nius’ theory. Generalizations of important theorems of Apollonius, which
Desargues did not succeed in obtaining, are mentioned in the poster. De-
sargues thought a great deal of the result, calling it la Pascale. He claimed
that it contained the first four books of Apollonius.

Pascal began work on Traité des Coniques (Treatise on Conics), which
he mentioned as being completed in his address Celeberrimae Matheseos
Academiae Parisiensi (To the Illustrious Parisian Academy of Science), in 1654.
We know from Mersenne that Pascal obtained about 400 corollaries from
this theorem. Gottfried Wilhelm Leibniz (1646–1716) was the last person
to see the treatise, after Pascal’s death, in 1675–1676. Not heeding Leibniz’s
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advice, Pascal’s relatives did not publish the manuscript, and in time it
was lost.

As an example, we present one of the simplest but most important
corollaries of Pascal’s theorem: A conic section is uniquely determined by any
five of its points. Indeed, let {1, 2, 3, 4, 5} be points of a conic section (see
Figure 3), and let m be an arbitrary line passing through (5). Then either
m contains a unique point (6) of the conic section different from (5), or it
contains no such points at all. In the latter case m is tangent to the curve.
Suppose m does not contain points (1), (2), (3), (4). In the notation of
Pascal’s theorem, P is the intersection of the lines (1, 2) and (4, 5), Q of
(2, 3) and m, and R of (3, 4) and PQ. Lines (1, R) and m cannot coincide. If
their intersection is different from (5) then it will be the point (6).

Figure 3.

In the penultimate chapter of this book (see p. 357), we will return to
Pascal’s theorem and give two proofs, including one related to projective
geometry.

Pascal’s Wheel

On January 2, 1640, Pascal’s family moved to Rouen, where Etienne Pascal
had obtained a position as intendant of the province, and was effectively in
charge of all businesses under the governor.

This appointment heralded fortuitous events. Etienne had taken an
active part in the actions of the Parisian investors, for which he was threat-
ened with imprisonment in the Bastille. He had to go into hiding, but
at the time Jacqueline came down with smallpox and her father, ignoring
the terrible threat to himself, visited her. Jacqueline recovered and even
took part in a play attended by Cardinal Richelieu. Thanks to the young
actress’ appeal, the cardinal pardoned her father but also gave him a job.
The former troublemaker had to implement the cardinal’s policies. (This
craftiness will probably not surprise readers of The Three Musketeers.)
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Now Etienne Pascal had much accounting work to do, in which his
son regularly helped him. At the end of 1640 Blaise Pascal had the idea
of constructing a machine to free his mind of calculations “by counter or
pen.” The basic idea came quickly and remained unchanged during the
course of the work: “. . .each wheel or pivot of some category, completing
a motion of ten numbers, makes the next one move by only one number.”
However, this was only the first step of a brilliant idea. An incomparably
greater effort was required to carry it out. In his avis,6 Pascal briefly writes
to those who “will have the curiosity to see the arithmetical machine and
to make use of it”: “I have spared neither time nor trouble nor expense to
bring it to a state where it will be useful to you.” Before these words came
five years of anxious work leading to the creation of the machine (“Pascal’s
wheel,” as his contemporaries called it), which reliably but rather slowly
carried out four operations on five-digit numbers. Pascal manufactured
about fifty copies of the machine, and here is a list of the only materials
he tried: wood, ivory, ebony, brass, and copper. He spent much effort
searching for the best artisans, masters of “the lathe, saw, and hammer,”
and it often seemed to him that they were unable to achieve the necessary
precision. He carefully thought out a system of tests, including a journey
of 250 leagues. Pascal did not forget about advertising, either: He enlisted
the support of Chancellor Séguier, secured a “royal privilege” (something
like a patent), demonstrated his machine often in the salons, and even sent
a copy to the Swedish Queen Christina. Finally, he went into production;
the exact number of machines produced is unknown, but eight copies still
survive.

It is striking how brilliantly Pascal was able to do the most varied things.
It became known comparatively recently that in 1623 Wilhelm Schickard
(1592–1635), a friend of Kepler, built an arithmetical machine, but Pascal’s
machine was perfected to a much greater extent.

“Abhorring a Vacuum” and “The Great Experiment on the
Equilibrium of Fluids”

At the end of 1646, rumors reached Rouen of surprising “Italian exper-
iments with a vacuum.” The question of whether a vacuum can exist in
nature had even concerned the ancient Greeks. Their opinions on this ques-
tion revealed the characteristically diverse points of view in ancient Greek
philosophy: Epicurus assumed that a vacuum can and does exist; Heron,

�——————�
6Accompanying the dedication of the machine. This appears in Pascal’s Oeuvres Complètes,

pp. 353 ff.—Transl.
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that it can be obtained artificially; Empedocles, that there is none and that
none can be obtained; and finally, Aristotle stated that “nature abhors a
vacuum.” In the Middle Ages the situation was simpler, since the truth of
Aristotle’s teaching was practically legislated (even in seventeenth-century
France, one could be sentenced to hard labor for opposing Aristotle).

The recollection of “abhorring a vacuum” remained for a long time, as
the following passage from an unfinished work of Dostoyevsky, Krokodil
(The Crocodile), shows: “How is one, in constructing the crocodile, to secure
that he should swallow people? The answer is clearer still: construct him
hollow. It was settled by physics long ago that Nature abhors a vacuum.
Here the inside of the crocodile must be hollow so that it may abhor the
vacuum, and consequently swallow and so fill itself with anything it can
come across.”7

Water gives the classical example of “abhorring a vacuum,” when it
rises to follow a piston and does not allow an empty space to form. But
suddenly an incident arose over this example. In building the fountains of
Florence, it was discovered that water “does not want” to rise more than
34 feet (10.3 meters). The puzzled builders turned for help to the aged
Galileo, who joked that nature probably no longer abhors a vacuum above
34 feet, but proposed anyway that his students Torricelli and Viviani study
the strange phenomenon. It was probably Torricelli (and possibly Galileo
himself) who thought that the height to which a pump can raise a liquid
is inversely proportional to the specific gravity of the liquid. In particular,
we should be able to lift mercury 13.3 times less high than water, i.e., to 76
centimeters. This experiment was on a scale more suitable to laboratory
conditions, and was conducted by Viviani at Torricelli’s initiative. The
experiment is well known, but let us recall anyway that a graduated glass
tube, sealed at one end, is filled with mercury and the open end closed off
with a finger. The tube is inverted and lowered into a cup of mercury. If the
finger is removed, the level of mercury in the tube falls to 76 centimeters.
Torricelli made two assertions: First, the space above the mercury in the
tube is empty (it was later called a “Torricelli vacuum”), and second, the
mercury does not completely run out of the tube because it is stopped by
the column of air pressing down on the surface of the mercury in the cup.
We can explain everything by accepting these hypotheses, but we can also
obtain an explanation by introducing special, rather complicated forces
that stop a vacuum from forming. It was not a simple matter to adopt
Torricelli’s hypotheses. Only a few of his contemporaries accepted the idea
that air has weight. Some who did believed that a vacuum was possible,

�——————�
7This English translation appears in An Honest Thief and Other Stories, translated by Con-

stance Garnett, MacMillan, New York, 1923, p. 277.
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but it was almost impossible to believe that air, which is so light, could
support the heavy mercury in the tube. Recall that Galileo tried to explain
this effect by the properties of the liquid itself, and that Descartes claimed
that an apparent vacuum is always filled with “the most fine matter.”

Pascal enthusiastically repeated the Italian experiments, thinking of
many clever improvements. He described eight such experiments in a
treatise published in 1647. He did not limit himself to mercury, but also
experimented with water, oil, and red wine, for which he required barrels,
instead of cups, and tubes about 15 meters long. Spectacular experiments
were carried out in the streets of Rouen, to the delight of its inhabitants.
(To this day, they like to reproduce engravings with wine barometers in
physics textbooks.)

At first, Pascal was most interested in proving that the space above the
mercury is empty. It was widely thought an apparent vacuum is filled with
matter “that had no properties.” This recalls Poruchik (Lieutenant) Kije,
a character in a Tinyanov story who did not exist and therefore “had no
figure.”8 It was simply impossible to prove the absence of such matter.
Pascal’s clear statements are very important in formulating the broader
question of the nature of proof in physics. He writes: “Having proved that
none of the matter that comes before our senses and of which we know
fills this apparently empty space, my feeling will be, until someone has
shown me the existence of some matter which fills it, that it is truly empty
and devoid of all matter.”9 Less academic statements are contained in a
letter to the Jesuit scholar Etienne Noël: “But we have more grounds to
deny its existence [“the most fine matter”—S.G.] because we cannot prove
it, than to believe in it for the sole reason that we cannot prove it does not
exist.”10 Thus, it is necessary to prove the existence of an object and one
can never require a proof of its absence (this is like the legal principle that
a court must prove guilt and has no right to require the accused to prove
his innocence).

At the time, Pascal’s older sister Gilberte lived in the family’s home
city of Clermont. Her husband, Florin Périer, a court councilor, devoted
his free time to science. On November 15, 1647, Pascal sent Périer a letter
asking him to compare the levels of mercury in a Torricelli tube at the base
and summit of Le Puy de Dôme [a local mountain—Transl.]: “If it happens
that the height of the quicksilver is less at the top than at the base of the
mountain (as I have many reasons to believe it is, although all who have

�——————�
8Yuri Tinyanov (1894–1943), a famous Russian author, wrote Podporuchik Kizhe, in which

the title and the name of the main character are based on a play on words.
9From Expériences Nouvelles Touchant le Vide, in Oeuvres, p. 369.

10Oeuvres, pp. 370 ff.
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studied the matter are of the opposite opinion), it follows of necessity that
the weight and pressure of the air is the sole cause of this suspension of
the quicksilver, and not the abhorrence of a vacuum: for it is quite certain
that there is much more air that presses on the foot of the mountain than
there is on its summit, and one cannot say that nature abhors a vacuum
more at the foot of the mountain than at its summit.”11 The experiment
was postponed for various reasons and only took place on September 19,
1648, in the presence of five “people of standing in this town of Clermont.”
At the end of the year, a brochure appeared containing Pascal’s letter and
Périer’s report, with a very scrupulous description of the experiment. The
mountain was about 1.5 kilometers high and the difference in the mercury
level was 82.5 millimeters. This difference, which Pascal probably did not
expect, caused the participants to be “so carried away with wonder and
delight.” To make such an estimate beforehand was impossible, since the
illusion of the lightness of air was very great. The result was so apprecia-
ble that one of the participants, Father De le Mare, had the idea that an
experiment on a smaller scale could give similar results. And indeed, the
difference in mercury level at the base and at the top of the cathedral of
Notre Dame de Clermont, which is 39 meters high, was 4.5 millimeters. If
Pascal had admitted this possibility, he would not have waited ten months.
Receiving the news from Périer, he repeated the experiments at the tallest
buildings in Paris, obtaining the same results. Pascal called this experi-
ment “the great experiment on the equilibrium of fluids” (this name may
cause surprise, since it speaks of the equilibrium of air and mercury, and
calls air a fluid). There is one point of confusion in this story: Descartes
claimed that he had prompted the idea of the experiment. There was prob-
ably some misunderstanding here, since it is difficult to assume that Pascal
consciously denied credit to Descartes.

Pascal continued to experiment, using large siphons along with baro-
metric tubes (choosing a short tube so that the siphon did not work). He
described the difference in experimental results for various places in France
(Paris, Auvergne, and Dieppe). Pascal knew that a barometer could be used
as an altimeter, but also understood that the dependence between the level
of mercury and the altitude of the location was not simple and had not yet
been found. He remarked that the barometric readings at a given place
depend on the weather; today the barometer is mostly used for weather
forecasting (Torricelli wanted to construct a device for measuring “changes
in the air”). Once Pascal decided to compute the total weight of the atmo-
sphere. (“For the pleasure of it, I myself made the computation. . . .”) He

�——————�
11An English translation of this letter appears in The Physical Treatises of Pascal, translated

by I. H. B. and A. G. H. Spiers, Columbia University Press, New York, 1937, p. 101.
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obtained a figure of 8.3 × 1018 French pounds.12

We cannot linger over Pascal’s other experiments on the equilibrium of
liquids and gases that place him, together with Galileo and Simon Stevin
(1548–1620), among the founders of classical hydrostatics. These include
Pascal’s celebrated law, the concept of the hydraulic press, and the sub-
stantial development of the principle of virtual displacements. At the same
time, he was thinking about, for example, spectacular experiments illus-
trating Stevin’s paradoxical discovery that the pressure of a fluid on the
bottom of a vessel depends not on the form of the vessel but only on the
level of the fluid. In one experiment, it is obvious at a glance that a 100-
pound weight is needed to equalize the pressure on the bottom of one ounce
of water. During the course of the experiment the water freezes, and then
a one-ounce weight is enough. Pascal showed a distinctive pedagogical
talent. It would be good if students today were surprised by these facts,
which astounded Pascal and his contemporaries.

In 1653, Pascal’s physics experiments were interrupted by tragic events
that we will discuss below.

“The Geometry of Chance”

In January 1646, Etienne Pascal slipped on the ice and dislocated his hip,
almost costing him his life. The reality of losing his father made a terrible
impression on Blaise, manifested above all in his health: His headaches
became unbearable, he could only move about on crutches, and was only
able to swallow a few drops of warm liquid. From the orthopedists who
treated his father, Pascal learned of the teachings of Cornelius Jansenius
(1585–1638), which were becoming known in France at the time, opposing
the Jesuit movement (which had then been in existence for about a hun-
dred years). One incidental aspect of Jansen’s teaching made the greatest
impression on Pascal: whether the unchecked development of science is
permissible, the striving to learn everything, to unravel everything, that is
associated most of all with the boundless curiosity of the human mind, or
as Jansen wrote, with the “mind’s lust.” Pascal took his scientific work to
be sinful, and his misfortune to be a punishment for that sin. Pascal himself
called this event his “first conversion.” He resolved to avoid acts that were
“sinful and against God.” But he did not succeed: We have already gone
ahead and we know that he soon devoted every moment that his illness
allowed to physics.

�——————�
12Ibid., pp. 65–66. Based on Pascal’s description of the value of the French pound (livre) at

the time, this equals 3.3 × 1018 kg. Current estimates are on the order of 5 × 1018 kg.—Transl.
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His health improved somewhat, and things happened to Pascal that
those close to him did not understand well. He courageously bore his fa-
ther’s death in 1651, and his rationalizing, outwardly cold discussion of
his father’s role in his life sharply contrasted with his reaction five years
earlier (he wrote that now his father’s presence was not “absolutely neces-
sary,” and that he would have only needed it for ten more years, although
it would have been helpful all his life).

Then Pascal made some acquaintances that were quite unsuitable for a
Jansenist. He traveled in the retinue of the duke of Roannez and met the
Chevalier de Méré, a highly educated and intelligent man, but somewhat
superficial and self-assured. De Méré’s name has come down in history
only because his great contemporaries readily associated with him. He
contrived to write Pascal letters with lessons on various subjects, not ex-
cluding even mathematics. Today all this seems naive and, in the words
of Sainte-Beuve, “such a letter is quite enough to ruin a man, its author,
in the opinion of posterity.” Nevertheless, after a rather protracted time
Pascal willingly became friends with de Méré, and he turned out to be the
chevalier’s capable student in the realm of worldly life.

We now come to the story of how a “problem, posed by a worldly man to
a severe Jansenist, became the origin of probability theory” (Poisson). Prop-
erly speaking, there were two problems, and as historians of mathematics
have explained, both were known long before de Méré. The first question
is: How many times should two dice be thrown so that the probability that
double six occurs at least once is greater than the probability that it does
not occur at all? De Méré solved the problem himself, but unfortunately. . .

by two methods that gave different answers, 24 and 25 throws. Believing
the two methods were equally valid, de Méré attacked the “inconstancy”
of mathematics. Pascal, believing the correct answer was 25, did not even
work out the solution. His major efforts were directed towards solving the
second problem, about “the proper division of stakes.” We have a game
in which all the players (there may be more than two) put their stakes into
a “pot.” The game is divided into several rounds, and to win the pot a
player must win a certain fixed number of rounds. The question is: How
should the pot be divided between the players according to the number
of rounds they have won, if the game is not played out to the end (no one
wins enough rounds to take the whole pot)? In Pascal’s words, “de Méré. . .
could not even approach this problem. . . .”

No one in Pascal’s circle could understand the solution he proposed,
but a suitable interlocutor was found anyway. Between July 29 and Oc-
tober 27, 1654 Pascal exchanged letters with Fermat via Pierre de Carcavi
(1600–1684), who continued Mersenne’s work. It is often thought that this
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correspondence gave birth to the theory of probability. Fermat solved the
stakes problem differently from Pascal, and at first a disagreement arose.
But in his last letter, Pascal states: “Our common understanding is com-
pletely established,” and “As I see, the truth is the same in both Toulouse
and Paris.” He was happy to find a great like-minded person: “From now
on, I want to share my thoughts with you as much as possible.”

In that same year of 1654, Pascal published one of his most popular
works, Traité du Triangle Arithmetique (Treatise on the Arithmetical Triangle).
This is now called Pascal’s triangle, but it turns out that it was known in
ancient India and was rediscovered by Michael Stifel (1487–1567) in the
16th century. It rests on a simple method for calculating the number of
combinations of n objects taken k at a time, C(n, k), by induction on n:
C(n, k) = C(n − 1, k) + C(n − 1, k − 1). In this treatise, the principle of
mathematical induction was stated for the first time in the form we are
accustomed to seeing, although it had in essence been applied earlier.

In 1654, Pascal, in his Celeberrimae address to the Parisian Academy,
listed the works he was preparing for publication, including a treatise
which “may. . . claim for itself the privilege of having the amazing title
of The Geometry of Chance.”

Louis de Montalte

Soon after her father’s death Jacqueline Pascal entered a convent, and Blaise
Pascal missed having someone very close to him. For a time he was at-
tracted by the possibility of living as most people do: He thought about
buying a position at court and marrying. But this was not fated to be. In
mid-November of 1654, while Pascal was crossing a bridge, the lead pair of
horses broke loose and the coach miraculously stopped at the edge of the
abyss. From that time, in Lamettrie’s words, “in company or at the table,
Pascal always needed to be fenced in on his left by chairs or by people, so
that he would not see the terrible abyss into which he was afraid of falling,
although he knew the price of such an illusion.” On November 23rd, he
had an unusual attack of nerves. Finding himself in a state of ecstasy, Pas-
cal wrote down on a scrap of paper the thoughts rushing through his head:
“God of Abraham, God of Isaac, God of Jacob, but not the god of philoso-
phers and savants. . . .” Later, he transferred the note onto parchment, and
after his death both papers were discovered sewn into his doublet. This
event is called Pascal’s “second conversion.”

From that day on, according to Jacqueline, Pascal felt a “tremendous
disdain for light and an almost insurmountable aversion to everything
that belonged to him.” He broke off his work and at the beginning of
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1655 moved into the monastery of the Port-Royal (a Jansenist stronghold),
voluntarily leading a monastic life.

At this time, Pascal wrote Les Provinciales13 (The Provincial Letters), one
of the greatest works of French literature. Les Provinciales, a criticism of
the Jesuits, consisted of “letters” published separately from January 23,
1656, to March 23, 1657, eighteen letters in all. The author, a “friend of the
provincial,” was Louis de Montalte. The word “mountain” (la montagne)
in this pseudonym probably recalls the experiments on Le Puy de Dôme.
The letters were read throughout France and the Jesuits were enraged,
but they could not reply appropriately (the king’s confessor, Père Annat,
proposed fifteen times, according to letters he wrote at the time, to declare
Montalte a heretic). The author, who turned out to be a daring and talented
conspirator, was pursued by the judicial investigator, directed by the same
Chancellor Séguier who had once supported the creator of the arithmetical
machine (according to a contemporary, after just two letters, they had to
“bleed the chancellor seven times”), and finally in 1660 the Council of
State decided to burn the book of the “imaginary Montalte.” But this was
essentially a symbolic measure, and Pascal’s tactic had striking results.
Voltaire wrote about Provinciales, “Attempts had been made by the most
varied means to show that the Jesuits were abominable; Pascal did more:
he showed they were ridiculous.” Balzac called them a “chef-d’oeuvre
of witty logic,” and Racine said they were “buried treasure for comedy.”
Pascal’s works foreshadowed the appearance of Molière’s Tartuffe.

Working on Provinciales, Pascal clearly understood that not only math-
ematicians need to master logic. Many at the Port-Royal reflected on the
educational system, and there were even Jansenist “little schools.” Pascal
took an active part, for example, making interesting comments about the
first steps towards reading and writing (he believed one should not begin by
studying the alphabet). In 1667 two fragments of his work were published
posthumously, De l’Esprit Geométrique et de l’Art de Persuader (Geometrical
Reasoning and the Art of Persuasion). These essays do not constitute scien-
tific work; their purpose was more modest, to serve as an introduction to a
geometry textbook for the Jansenist schools. Many of Pascal’s statements
make a very strong impression, and it is hard to believe that such a clear
statement was possible in the mid-seventeenth century. Here is one: “Prove
each proposition that is a bit obscure, and in the proof use only axioms that
are quite obvious, or propositions that have been agreed on or proven. Al-
ways mentally replace terms that have been defined by their definitions,
so as not to be led astray by the ambiguity of the terms that the definitions

�——————�
13Also known as Lettres Provinciales.—Transl.
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have restricted.”14 Elsewhere, Pascal remarks that there must be unde-
fined concepts. From this, Jacques Hadamard (1865–1963) assumed that
Pascal was only a small step away from carrying out a “deep revolution in
all of logic—a revolution that Pascal could have brought about three cen-
turies before it actually occurred.” Here he probably had in mind the view
of axiomatic theory that took shape after the discovery of non-Euclidean
geometry.

Surprising events continued to occur in Pascal’s life. In that terrible year
of 1654, his beloved niece Marguerite developed an abscess in the corner
of her eye. The doctors were unable to help the girl, and her condition
steadily worsened. In March 1657, a “holy thorn,” by legend taken from
Christ’s crown of thorns and kept at the Port-Royal, was put into her eye
and the abscess subsided. “The miracle of the holy thorn,” in the words of
Gilberte Périer (Marguerite’s mother), “was attested to by several surgeons
and physicians, and authorized by the solemn judgment of the Church.”
Rumors about the event made such a strong impression on the church that
the Jansenist monastery in turn escaped being closed. As for Pascal, she
said “his joy was so great that it filled him completely; and as nothing
ever occupied his spirit without much reflection, several very important
pensées [thoughts] about miracles in general came to him on the occasion
of this particular miracle. . . .15 The great scientist believed in miracles! He
wrote:16 “It is not possible to have a reasonable belief against miracles.”
Later, he even tried to define a miracle: “Miracle.—It is an effect, which ex-
ceeds the natural power of the means which are employed for it. . . .” Many
attempts were later made to explain the event rationally (one explanation
was that a metallic speck was the cause of the abscess, and that the thorn
had magnetic properties). From that time on, Pascal’s seal contained the
image of an eye surrounded by a crown of thorns.

Amos Dettonville

“I spent a long time in the study of the abstract sciences, and was disheart-
ened by the small number of fellow-students in them. When I commenced
the study of man, I saw that these abstract sciences are not suited to man,
and that I was wandering farther from my own state in examining them,

�——————�
14Oeuvres, p. 597.
15From Gilberte Périer’s La Vie de Monsieur Pascal (The Life of Mr. Pascal), in Pascal’s Oeuvres,

p. 15.
16These quotations are taken from Pascal’s last work, Pensées (Thoughts), which appears

in English translation by W. F. Trotter, Everyman’s Library and J. M. Dent and Sons, Ltd.,
London.
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than others in not knowing them.”17 These words of Pascal characterize
his mood during the last years of his life. Still, he spent a year and a half
of these last years on mathematics.

It began one night during the spring of 1658 when, while suffering from
a terrible toothache, Pascal remembered an unsolved problem of Mersenne
on the cycloid. He noticed that his intense thinking diverted him from his
pain. By morning he had already proven a whole series of results on the
cycloid, and. . . had recovered from his toothache. At first, Pascal felt he
had committed a sin and did not intend to write down the results he had
obtained. Later, under the influence of the duke of Roannez, he changed his
mind; during the course of eight days, according to Gilberte Périer, “as soon
as he did something he wrote it down, while his hand could still write.”
Then in June, 1658 Pascal organized a contest, as was often done at the time,
in which he posed six problems on cycloids to the best mathematicians. The
most successful were Christiaan Huygens (1629–1695), who solved four
problems, and John Wallis (1616–1703), who solved all of them, although
with some gaps. But the work that was acknowledged as best belonged
to the unknown Amos Dettonville. Huygens later said that “this work
was so astutely done that there was nothing to add.” Note that “Amos
Dettonville” consists of the same letters as “Louis de Montalte” (if you
verify this, keep in mind that in the 17th century the letters u and v were
not distinguished from one another). This was Pascal’s new pseudonym.18

Dettonville’s work won the prize of 60 pistoles.
Now a few words about this work. We have already talked about the

cycloid. This curve is described by a point on a circle that rolls along a
line without slipping. Initial interest in the cycloid was stimulated by the
fact that many interesting problems about it could be solved by elementary
means. For example, by Torricelli’s theorem, in order to construct the tan-
gent to a cycloid at a point A, we must place the generating (rolling) circle
in the position corresponding to A and join the highest point B on the circle
to A. Another theorem, that Torricelli and Viviani ascribe to Galileo, states:
the area of the curvilinear figure bounded by an arch of a cycloid is three
times the area of the generating circle.

The problems considered by Pascal no longer had elementary solutions
(the area and center of gravity of an arbitrary segment of the cycloid, the
volumes of the corresponding solids of revolution, etc.). In these problems,
Pascal essentially worked out everything that was needed to construct dif-

�——————�
17Ibid., p. 55.
18Another anagram of this name, Salomon de Tultie, appeared in Pensées, among the names

of the authors whom he followed (together with Epictetus and Montaigne). Pascalians worked
quite a bit to find this mysterious philosopher, until they guessed what was going on.
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ferential and integral calculus in general form. Leibniz, who shares with
Newton the glory of creating this theory, wrote that when, on Huygens’
advice, he familiarized himself with Pascal’s works, he “was illuminated
by a new light.” He was surprised to find how close Pascal had been to
constructing the general theory and how he unexpectedly stopped short,
as if “there were scales before his eyes.”

It was characteristic of the works anticipating the appearance of dif-
ferential and integral calculus that their authors’ intuition kept them from
being able to produce strict proofs; the language of mathematics was in-
sufficiently developed to put this way of thinking down on paper. A way
out was later found, by introducing new ideas and special notation. Pascal
did not resort to symbols, but he was such a virtuoso of language that at
times it seems that he simply did not need any. Here is what N. Bourbaki
says: “Wallis in 1655 and Pascal in 1658 forge, each for his own use, lan-
guages of algebraic character, in which, without writing any formula, they
draw up statements that can immediately be transcribed into formulae of
the integral calculus as soon as their mechanism has been understood. The
language of Pascal is particularly clear and precise; and, if it cannot be un-
derstood why he refused to allow himself the use of the algebraic notations,
not only of Descartes, but even of Viète, one can only admire the tour de
force that he accomplished, and which his mastery of language was the
only means of his being capable of doing.”19 We would like to say that
here Pascal the writer aided Pascal the mathematician.

Pensées

After mid-1659, Pascal returned to neither physics nor mathematics. At
the end of May 1660, he traveled to his native Clermont for the last time;
Fermat invited him to come to Toulouse. It is bitter to read Pascal’s answer
of August 10th. Here are some extracts:20 “I would also tell you that,
although in all Europe you are the one I consider the greatest geometer, it
would not be that quality which would draw me; but I imagine such spirit
and honesty in your conversation, that it is for that that I would seek you
out. . . . I consider [geometry] the highest exercise of the spirit; but at the
same time I know it to be so useless that I find little difference between a
man who is only a geometer and a skilled artisan. Thus I call it the most
beautiful profession in the world; but in the end it is only a profession; and
I have often said that it is good for testing our strength but not for using

�——————�
19Taken from Elements of the History of Mathematics, the English translation by John Meldrum

of Éléments d’Histoire des Mathématiques, Springer-Verlag, New York, 1991, p. 190.
20Oeuvres, pp. 522–523.
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it. . . . But now in addition my studies are so far from this spirit that I can
hardly remember what [geometry] is.” And, finally, here are some lines
referring to Pascal’s physical condition: “I am so weak that I cannot walk
without a stick, nor stay on a horse. I can only go three or four leagues at
the most in a carriage. . . .” In December 1660, Huygens twice visited Pascal
and found him deeply aged (Pascal was only thirty-seven) and unable to
carry on a conversation.

Pascal resolved to look into the most hidden secrets of human existence,
into the meaning of life. He was perplexed:21 “I know not who put me into
the world, nor what the world is, nor what I myself am. I am in terrible
ignorance of everything. . . As I know not whence I come, so I know not
whither I go. . . . Such is my state, full of weakness and uncertainty.” His
studies of the natural sciences cannot help him answer the questions that
arise: “Physical science will not console me for the ignorance of moral-
ity in the time of affliction.” He once wrote, “There are no real proofs
anywhere, except in geometry and where it is imitated.” But this time ge-
ometry could not serve as a model (although not a few people have tried
to construct a mathematical theory of morals!). Pushkin wrote, not with-
out irony: “‘Everything that surpasses geometry surpasses us,’ said Pascal.
And in consequence of this he wrote his philosophical pensées!” But Pascal
saw no contradiction here. He searched for the truth elsewhere: “I only
approve of those who search with pain in their hearts.” He writes: “All
our dignity consists, then, in thought. By it we must elevate ourselves,
and not by space and time which we cannot fill. Let us endeavour, then,
to think well; this is the principle of morality.” He returns to this question
repeatedly: “Man is obviously made to think. It is his whole dignity and
his whole merit; and his whole duty is to think as he ought. . . . Now, of
what does the world think. . . of dancing, playing the lute, singing, making
verses, running at the ring, etc., fighting, making oneself king. . . ?” “All
the dignity of man consists in thought. . . . But what is this thought? How
foolish it is!” But to reflect well is not without danger: “Excess, like defect
of intellect, is accused of madness. Nothing is good but mediocrity.” Pascal
pondered much about the role of religion in human life. There is almost no
question that he passes over. He reflects on human history, emphasizing
the role of chance (“Cleopatra’s nose: had it been shorter, the whole aspect
of the world would have been altered”), and spoke of the terrible side of
human life (“Can anything be more ridiculous than that a man should have
the right to kill me because he lives on the other side of the water, and be-
cause his ruler has a quarrel with mine, though I have none with him?”).

�——————�
21The following quotations are taken from Pensées, pp. 21–123, passim.—Transl.
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Pascal’s statements on the most diverse questions are extraordinarily as-
tute. His thoughts on government were valued by Napoleon, who while
imprisoned on the island of St. Helena said that he “would have made
Pascal a senator.”

Pascal did not complete the major book of his life. The material he
left behind was published posthumously in different versions and under
different titles. It is most often called Pensées (Thoughts).

The book was extraordinarily popular, but here we will just stress its in-
fluence on the leading figures in Russian culture. Not everyone accepted it.
Turgenev called Pensées “the most awful, most unbearable book ever pub-
lished,” but wrote that “. . .never has anyone yet emphasized what Pascal
emphasizes: his melancholy, his imprecations are awful. Compared to him
Byron is pink lemonade. But what depth, what clarity, what greatness! . . .
Such free, strong, impudent, and mighty language! . . .” Chernyshevsky
wrote about Pascal: “. . .to perish from an excess of intellectual power—
what a glorious death. . . .” Dostoyevsky argued with Pascal all his life.
For Tolstoy, Pascal was one of the most revered thinkers. Pascal’s name
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constantly occurs in the Cycle of Readings he compiled,22 about 200 times.
For Tolstoy, Pascal is a writer who “writes with his heart’s blood.”

Blaise Pascal died on August 19, 1662. On August 21st, a burial cer-
tificate (acte d’inhumation) was drawn up in the church of Saint-Etienne-
du-Mont: “On Monday, August 21, 1662, the late Blaise Pascal was buried
in this church, in his lifetime Esquire and son of the later Messire Etienne
Pascal, councilor of State and president of the Cour des Aides of Clermont-
Ferrand. Fifty priests. Received: 20 francs.”

�——————�
22Daily readings on truth, life, and behavior, taken from various writers.—Transl.



The Beginnings of
Higher Geometry

But this is only the beginning of a certain much higher Geometry,
which extends to the most difficult and beautiful problems of ap-
plied Mathematics, and one can hardly be successful in studying such
things with ease without using our differential calculus or something
similar. Leibniz

In 1684, a seven-page article by Gottfried Wilhelm Leibniz (1646–1716)
was published in the journal Acta Eruditorum (roughly meaning Schol-
arly Writings), which had first appeared in 1682 in Leipzig. The article
was entitled, Nova methodus pro maximis et minimis. . ., or A New Method

for Maxima and Minima as Well as Tangents, Which Is Impeded by Neither Frac-
tional nor Irrational Quantities, and a Remarkable Type of Calculus for This.
This was the first publication on differential calculus, although calculus
had arisen some twenty years earlier and the first steps were fifty years
older and belong to the start of the 17th century.

The Golden Age of Analysis

The analysis of infinitesimals. . . . How are the landmarks of the heroic
century in which it was created seen today? At the very beginning of the
17th century, Galileo (1564–1642) studied uniformly accelerated motion in
connection with free fall. How are we to study nonuniform motion when
all our intuition is about uniform motion? We can assume that during
small intervals of time the motion only slightly differs from uniformity.
But it is more convenient to assume that on “infinitesimal” intervals it is
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Gottfried Wilhelm Leibniz.

simply uniform. A very vague formulation appears of nonuniform motion
that is scattered over an infinite set of infinitesimal (zero length) intervals
of uniform motion. It took two hundred years for this formulation to be
transformed successfully into a logically perfect concept, but during this
whole time mathematicians worked with it decisively and successfully.
Then they moved from rectilinear to curvilinear motion: the motion of
bodies thrown at an angle to the horizontal. The idea arose of considering
curves as trajectories of motion. Thus Galileo studied the parabola.

However, Galileo had a great predecessor in this: Archimedes defined
his spiral kinematically. Generally speaking, the century of analysis looked
back towards Archimedes for a long time. In the 16th century, scholars still
persisted in studying his works on calculating areas and volumes of curvi-
linear figures and bodies. In ancient Greece an irreproachable method
for proving formulas for curvilinear areas and volumes was developed
logically—the method of exhaustion. A formula was proved by contra-
diction using approximations of a curved body by stepped bodies from
two directions, with arbitrary precision. Archimedes used this method
brilliantly, but before him Eudoxus proved formulas for the volumes of
pyramids and cones this way. Now we know (this was not known in the
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17th century) that when Archimedes sought formulas (and had not proved
them), he cut a body into infinitesimal layers (indivisibles) and then used
mechanical arguments. We know from Galileo’s notes that he thought a lot
about the method of “indivisibles” but did not write the book he planned.

Soon after mathematicians of the 17th century started to work on the
problem of measuring curvilinear areas and volumes, they were confined
by the method of exhaustion. The first who chose to proceed along the
slippery path of infinitesimals was Johannes Kepler (1571–1630). His New
Stereometry of Wine Barrels appeared in 1616, where he studied a practi-
cal rule for measuring the volume of a barrel using a ruler inserted into
the bung-hole. He did not carry out a proof the way Archimedes did,
but worked boldly with infinitesimals and expressed his confidence that
it was possible to construct a strict proof. Kepler wrote that he set forth
Archimedes’ principle “only so far as it is sufficient to satisfy a mind that
loves geometry, and for strict proofs that are complete in all their parts one
needs to look in Archimedes’ own books, if one does not fear the thorny
path of reading them.” This position (we can carry out strict proofs but
will not do that) became a long-standing and convenient defense against
the need for strict proofs. Here are some examples. Fermat: “It would
have been easy to give a proof in the spirit of Archimedes. . . . It suffices
to give notice this time and for always, in order to avoid constant repe-
tition.” Pascal: “One of the methods differs from the other only in the
way it is expressed.” Barrow: “This proof could have been made longer
by apagogic arguments (reasoning by contradiction—S.G.), but to what
end?” But there were critics who tried to stop those who turned wildly to
infinitesimals, invoking the name of Archimedes. An essay by Alexander
Anderson (c.1582–1620), a student of Vieta, was directed at Kepler; it was
called A Vindication of Archimedes (1616). A hundred years later Michel
Rolle (1652–1719) stated that “precision no longer ruled in geometry since
the time the new system of infinitesimals became involved in it.”

Already in the statement of his second law, Kepler considered the area
swept out by the line segment joining the Sun and a planet as the “sum” of
these segments. Every mathematician who followed tried to devise a safer
procedure for working with infinitesimals. Cavalieri (c.1598–1647) was
close to Galileo and was honored by Galileo with the highest praise—he
was called “Archimedes’ rival.” Cavalieri devoted two books to the method
of indivisibles (1635, 1647). He started with the idea that the area of a figure
is determined by the lengths of the segments in which the figure intersects
a family of parallel lines (similarly for volume). Cavalieri was sure that his
procedure had an advantage over Kepler’s method: “Everyone who sees
Kepler’s tract on the motion of Mars can easily convince himself on the basis
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of our studies how easy it was for him to fall into error. . . starting from the
proposition that the area of an ellipse is equivalent to the set of all distances
of the planet, rotating along an elliptical curve, from the Sun.” Cavalieri
thought that it was necessary to work carefully with nonparallel segments,
but Kepler was not wrong! Only intuition can protect mathematicians from
mistakes in working with infinitesimals.

Cavalieri applied his methods to calculating the area of the curvilin-
ear trapezoid under y = xn (in contemporary terms,

∫ b
a xndx). With great

difficulty he gradually increased n, getting up to n = 9 between 1635 and
1647. But by this time Fermat (1601–1655) already knew how to calculate
the area for all rational numbers n �= −1 (he communicated this to Cav-
alieri in 1644, but his first results date to 1629). Mathematicians began to
feel superior to the ancients. In 1644, Torricelli wrote, “Without a doubt,
Cavalieri’s geometry is surprising in its economy of means for discovering
theorems. . . . This is really the royal road through the thicket of thorns. . . I
feel sorry for ancient geometry, that it either did not know or did not want
to acknowledge the study of indivisibles.”

What is the situation in the case n = −1, which was omitted in Fermat’s
considerations? Here a surprising property turns out to hold: in finding
the quadrature of a hyperbola, logarithms appear (

∫ x
1 dy/y = ln x). This

remarkable fact crystallized gradually, beginning with the work of Grego-
rius Saint-Vincent (1584–1667) in about 1647. Logarithms appeared with
John Napier (1550–1617) at the very end of the 16th century because of
kinematic considerations, which very much recalls Galileo’s first mechan-
ical constructions. However, for a long time they were treated as a purely
computational method (tables!) and did not enter into theoretical research.
As Torricelli wrote, Napier “only followed arithmetic practice.” Roughly
speaking, there was still no logarithmic or exponential function and these
functions began to appear only after the middle of the 17th century, to a
significant degree in connection with quadratures. In essence, the quadra-
ture of a simple algebraic function turned out to be transcendental. The
question of the quadrature of a circle and its parts was studied in detail, and
here it turned out that the quadrature of an algebraic function (

√
1 − x2) led

to a trigonometric (circular) function. Incidentally, a sinusoid also came up
in calculating the area under a cycloid (see the “companion of the cycloid,”
p. 100).

Gradually, problems about tangents to curves began to occur more of-
ten in the range of interests that mathematicians had. The ancients had
only known how to take tangents to conic sections, and Archimedes also
knew how to construct the tangent to his spiral. Insofar as this problem
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is concerned, from the very start the seventeenth-century mathematicians
were one up on the supporters of the ancients. Beginning in 1629 Descartes
(1596–1650) and Fermat, competing with each other, worked out the gen-
eral principles of constructing tangents, and Fermat connected them to
maximum and minimum problems. In parallel, Torricelli and Roberval
(1602–1675) proposed a synthetic method of constructing tangents, inter-
preting them as the directions of the velocity while moving along a curve,
and cleverly representing motion along a curve as the composite of sim-
pler motions. In the 1650s and 1660s, starting with the results of Descartes
and Fermat, François Walther de Sluze (1622–1685), Johann Hudde (1633–
1704), and Huygens found completely automatic rules for constructing the
tangents to broad classes of algebraic curves. Characteristically, none of
these authors hurried to publish his rule. In 1659, Hudde wrote to Frans
van Schooten (1615–1660), “I ask you to keep secret everything that I write
to you, and not to speak of it to anyone, or anything of the kind. It is nec-
essary that my best discoveries either be known only to my most intimate
friends, or that they become known to everyone.” This is a characteristic
illustration of the times. Information was basically spread through letters,
books were rarely published, and the first journal (Journal des Savants in
Paris) began to appear in 1665. Rapid publication was not yet understood
as a natural means of preserving priority. It was considered completely
acceptable to “hold back” a method in order to extract the maximum use
of it oneself.

In 1668 Niklaus Kauffman (1620–1689), better known as Mercator, pub-
lished a remarkable method for calculating logarithms in his book Loga-
rithmotechnia:∫ x

0

dx
1 + x

= ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · ,

where any precision is guaranteed by taking a sufficient number of terms
(the series for ln 2 was obtained earlier by William Brouncker (c.1620–
1684)). It later turned out that this series had been known by Hudde (1656)
and Newton (1665), but they had not hurried to publish it. Gradually, series
became the most important method for calculations and also for theoretical
studies. For example, James Gregory (1638–1675) had a very interesting
plan for applying series to prove that π is transcendental and to prove that
certain problems (calculating the arc lengths of an ellipse or hyperbola) do
not lead to elementary functions.

We have given a very cursory description of the status of infinitesi-
mal quantities in the first half of the century, and have not only omitted
many famous pages in their history (results of Pascal and Fermat) and
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many worthy names (Wallis, Fabri), but also blurred the picture by not dis-
cussing the many stages that led to establishing results. The authorship of
these stages is very tentative and has often been incorrectly assigned to one
mathematician or another: “the discovery came about as a result of almost
imperceptible advances, and an argument about priority would be like the
violin and trombone arguing for a month about the precise moment when
a certain melody appears in a symphony” (Bourbaki).

By the beginning of the 1660s mathematicians had accumulated quite
a number of facts. A group of problems was outlined that could be solved
using infinitesimals. Two basic directions crystallized: calculating quadra-
tures and constructing tangents. The situation with these problems was es-
sentially different. At that time sufficiently general methods had appeared
for the tangent problem, which was newer, but for the quadrature problem
everything remained at the level of separate problems and synthetic meth-
ods. For example, Descartes was certain that general methods did not exist
for these problems. Still, a remarkable connection between these problems
was known. They turned out to be inverses of one another, and this was
most naturally seen with the help of kinematic considerations: finding the
(instantaneous) velocity along a path leads to constructing a tangent, and
the path is found from the velocity by using a quadrature. This connection,
which Galileo had already outlined, appeared in rather complete form in
Isaac Barrow’s (1630–1677) lectures given in 1669–1670, although it was still
barely being exploited.

Activity in the theory of infinitesimals fell off noticeably at the end of
the 1660s. Fermat and Descartes were no longer alive and Huygens had
already done his major work. The remaining problems yielded to synthetic
methods with difficulty, and there was no constellation of mathematicians
of the first magnitude in the mathematical heavens, as there had been
twenty years earlier. A sharp break was needed, which required a very
talented person who would for a time dare to turn from moving ahead but
would rethink everything from the very beginning, rid the theory of syn-
thetic methods, and only go forward after simplifying and systematizing
the methods for solving well-known problems. It was necessary to turn
the theory of infinitesimals into the calculus—a collection of sufficiently
simple, formal, but broadly acting recipes. One had to change the theory
from an art into a craft. In this form it would not only go beyond the narrow
circle of initiates, but it would also allow the strongest mathematicians to
travel along part of the road without wasting energy and to concentrate
their efforts on deeper questions. Characteristically, the giants who were
already at work, above all Huygens, did not feel the need for this: they did
their work the old way. This task had to be taken on by a mathematician
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of the next generation.
“And God said: let there be Newton! And there was light,” said Alexan-

der Pope in a popular quatrain. Isaac Newton (1642–1727) conceived of
the calculus during a two-year stay in Woolsthorpe where, after gradu-
ating from the University of Cambridge, he returned to his farm during
1665–1667 because of the plague and was cut off from the outside world.
In those two years he obtained his most remarkable results in mechanics
and mathematics. Before that he had attended Barrow’s lectures and pos-
sibly learned from him the idea of systematically considering curves as
functions of time: “possibly Doctor Barrow’s lectures could have led me to
consider forming figures using motion, although now I do not remember
it.” This is a very instructive statement! Newton constructed the calculus
of fluxions. His independent variable was always time, and fluxions were
velocities, derivatives with respect to time. He worked out detailed rules
for calculating fluxions (our differentiation rules). He also studied the in-
verse problem—finding the fluent. This is the operation of integration, and
Newton systematically explained which rules he could obtain by exploit-
ing the fact that it is the inverse of differentiation (finding the fluxion, in
Newton’s terminology).

This gives many convenient methods, since everything looks simple
when it involves fluxions (derivatives). This scheme—differentiation pre-
cedes integration—is how analysis is usually constructed even today. But
Newton’s main hobby was series. He thought highly of his formula for the
binomial (1+x)k for any k (not necessarily a natural number). He perceived
series as a universal method for solving problems in analysis and saw no
limitations to this method.

In October, 1666, Newton put together a rough draft of his theory and in
the summer of 1669 he sent a summary of his results to Barrow, and through
him to John Collins (1625–1683) in London. In 1670–1671 Newton prepared
a detailed essay on the method of fluxions but did not find a publisher, and
his essays on analysis only began to appear in print after 1704. Some word
of his work had spread among mathematicians, and some could acquaint
themselves with the manuscript that Collins possessed. Newton did not
hurry to publish but watched quietly as some of his results were rediscov-
ered and published by others (e.g., his results on series were published by
Mercator). Hardly anyone in his circle could appreciate the importance of
the calculus, and sooner paid attention to concrete results. Newton himself
thought highly of concrete results and promoted his series method rather
than the calculus. Thus, in the 1670s “only Newton in Cambridge and
J. Gregory, alone in Aberdeen, remained active, but they were soon joined
by Leibniz with all the passion of a neophyte” (Bourbaki).
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Leibniz and his Mathematical Journey

Throughout his life, Leibniz aimed at global problems and universal theo-
ries. His journey in mathematics was not a standard one, and it was partly
because of this that he had a preference for method in a century when most
valued concrete results. Leibniz had many plans during his life, some strik-
ingly grandiose. New ideas supplant old ones, not infrequently carrying
away an author lacking in realism. He barely finished writing any of the
books he planned, and most were abandoned at the start (he finished the
better part of only a few books on philosophy). But how hard it is to stay
realistic when your ideas are far ahead of your century!

Already when he was 13 or 14, Leibniz dreamt of reconstructing logic,
of creating an alphabet of human thought in which one could record all
thought processes. The main idea of his life gradually ripened: the cre-
ation of “a universal characteristic,” “a universal language,” “Universal
mathematics is, so to say, the logic of imagination;” it should be concerned
with everything “that in the realm of imagination lends itself to precise def-
inition.” Language must be defended from recording incorrect thoughts:
“chimerae, which are not understood even by the one who creates them,
cannot be recorded by their signs.” He dreamt of a machine that would
prove theorems and wanted to turn thought into calculation, arithmetiz-
ing it so that it would be possible to replace discussion by computation
and settle arguments with mathematical calculations. Three times Leibniz
started to realize his ideas, which were grandiose and far ahead of his time,
but each time he stopped after taking only the first steps. Only in the 20th
century, when much of what Leibniz conceived turned out to be reality in
the area of mathematical logic, did it become clear that his ideas were not
so much Utopian as they were perspicacious.

Leibniz was interested in a variety of applications of mathematics, and
he believed its possibilities were endless. He prepared to become a lawyer
and at age 18 tried to construct jurisprudence as a mathematical theory with
axioms and theorems. He thought of applying probabilistic ideas to legal
procedures. At age 20 he refused a chair at the University of Nuremberg;
he was not drawn to a peaceful academic career. Leibniz’s plans were more
ambitious: “In my soul I have long cherished something else” and “I do
not consider it suitable for a young person to sit, pinned to his chair; my
spirit burned with the desire to achieve greater scientific fame and to see the
light.” He received an invitation from the duke Johann Philip and moved
to Mainz. Leibniz wanted to exploit his situation and, within the scope of
a rather modest state, to create a perfect legal code. His plans gradually
became more broad and at the same time less realistic. He thought of
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reorganizing all of juridical knowledge, and began with three grandiose
monographs. It is likely that when Bernard Fontenelle, the permanent
secretary of the French Academy of Sciences, called him a great lawyer in
his Eulogy of Leibniz, he had grounds to do so.

Leibniz had more than a few interesting ideas, but soon he had a series
of completely different ones. The famous diplomat Johann Christian von
Boineburg, living in Mainz, captivated Leibniz with grandiose plans to
change the politics of Europe. Provincial Mainz was too small for their
ideas. They undertook a proposal of the Elector (Kurfürst) of Brandenburg
to find a justification for electing the German prince to the Polish throne.
Leibniz composed a memorandum which was brilliant but did not keep
him from losing in this matter; correct, practical diplomacy turned out
to be more effective than a political pamphlet. The next project involved
organizing a union of German states against France. It contained a number
of sharp-witted steps but was not successful. Finally, the third grandiose
project was to draw France into a war with Turkey in order to weaken
its influence in Europe. To realize this project Leibniz went to Paris. The
natural result was that Leibniz lost the support of the Elector, who was
not very interested in an advisor who was trying to reconstruct European
politics by going over his head.

It is possible that these circumstances, in which Leibniz found himself
without something to do, switched this ebullient nature over to mathemat-
ics. In Leibniz’s original plans, mathematics had played an auxiliary role.
In 1666 he published A Dissertation on the Combinatorial Art in Leipzig, in
which he said that he was not interested in discovering new arithmetical
truths; mathematics had to help him work out a “logic of discovery.” And
in Mainz he found time for “mathematical leisure.” In 1676 he worked
on building an arithmetic machine and was interested in Pascal’s machine.
Leibniz sent several mathematical results to Paris. In the autumn of 1672
these were the subject of discussions with Huygens, who was working
in Paris at the time. The issue was the summation of a numerical series
a1 + a2 + · · · + an + · · · by choosing a sequence b1, b2, b3, . . . for which
an = bn − bn+1. Then a1 + a2 + · · · + an = b1 − bn+1. Leibniz considered
a number of examples where this rule worked and fortunately it fit an
example proposed by Huygens:

1
1 · 2

+ 1
2 · 3

+ · · · + 1
n(n + 1)

+ · · ·

(here bn = 1
n ). Neither one knew that this method was not new and that

this was a very special case. Nevertheless, Leibniz had a very high opinion
of his accomplishments. Later he evaluated the situation sensibly: “When
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I came to Paris in 1672, I was a self-taught mathematician but I had little
experience, and I had no patience to go through a long chain of proofs. . .
I wanted to swim by myself without a teacher. . . . In this great mathema-
tical ignorance I paid attention only to history and law, and saw studying
them as my goal. However, mathematics was for me a pleasant diversion.”

In 1673, Leibniz visited London as part of a diplomatic mission from
Mainz. Contacts with English mathematicians were sobering for him. He
recognized that his basic results were not new, and that modern mathemat-
ics was far ahead of him. Leibniz had just one way to catch up to modern
mathematics—to start from the beginning. Twenty-seven is not the most
appropriate age for starting a young person’s science, but this did not put
Leibniz off. He had all the grounds for later calling himself the “most stu-
dious of mortals” (letter to Jacob Bernoulli, 1703). In the autumn of 1673
Leibniz began years of study in mathematics skillfully guided by Huygens,
who divined that this self-confident “overage child” had an authentic gift.
“. . .Huygens, who, I suppose, considered me to be more capable than I
really was, gave me a copy of his just published Pendulum. For me this
was the beginning or the occasion for deeper mathematical work.” Thus,
everything began with the great book Pendulum Clocks. Then followed
Saint-Vincent, Descartes, Sluze, John Wallis (1616–1703), and most of all
Pascal. Leibniz saw that Pascal essentially applied a very general method
to a particular problem and, surprised that “Pascal’s eyes were closed,”
tried to articulate this method and apply it to other problems. Thus his
so-called method of the “characteristic triangle” appeared in which an in-
finitesimal triangle is replaced by a finite one, which was real progress
compared to the method of indivisibles. It would not have been bad for
Leibniz to read the more classic texts, but he was in a hurry. Indeed, he
could have made his way “to geometry really by the back door.” Results
appeared that astonished Huygens, for example, the series

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · .

Later it turned out that Gregory had known this result. Huygens expected
that one could use this series to obtain the quadrature of the circle (Gregory,
by contrast, expected it was a way to prove that π is transcendental).

Leibniz did not just occupy himself with analysis. He tried to find a
formula for the solution of a general algebraic equation (really general—
particular problems were of little interest to him), analyzing Cardano’s
formula in the complex domain (Huygens was surprised by the relation√

1 + √−3 +
√

1 − √−3 = √
6), and worked on compasses for finding the

roots of any equation (similar to using ordinary compasses to find square
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roots).
All the same, the major results involved infinitesimals. Leibniz wrote

that already in 1673 he had “completed some one hundred pages” but still
“did not consider this work ready for publication. But I am bored working
on trivialities when an Ocean has opened up before me.”

He had obtained many theorems during the first year of his “apprentice-
ship,” but most of them could be found in the work of Gregory or Barrow.
However, general methods allowed him to obtain everything more simply
and uniformly. Leibniz’s path had been chosen: he was developing the
calculus of infinitesimals.

The nature of his talent and his previous scientific experience were
the best preparation for achieving this goal. He thought in a clear way
about the class of functions that should be considered in analysis (the very
word “function” was first used by Leibniz in 1673). He decisively rejected
the idea of limiting this to algebraic functions (the geometric curves of
Descartes) and thought it was necessary also to consider transcendental
functions (this is Leibniz’s term; Descartes spoke of mechanical curves in
these cases). From the start, as he developed the calculus he worked out its
notation, which in the end took the form that has come down to our times.

Leibniz, as no one before him, understood the importance of scientific
notation, and not only in mathematics. The calculus of infinitesimals gave
him an excellent way to realize this idea. Good notation not only simplifies
the use of the calculus but is essential for mastering it. In 1678 Leibniz wrote
to Ehrenfried von Tschirnhaus (1651–1708), “One must be concerned that
the symbols are opportune for discoveries. This is achieved in the great-
est measure when the symbols briefly express and somehow represent the
deepest nature of the thing, and then the work of thinking is surprisingly
shortened.” Throughout, Leibniz looked for the chance to introduce con-
venient notation. It is worth recalling that the method of solving a system
of linear equations using determinants goes back to him, and in connection
with this he wrote to L’Hôpital (1693), “Part of the secret of analysis con-
sists of the art of employing well the symbols that are used, and as a small
example you see, sir, that Vieta and Descartes still have not learned all its
secrets.” We should stress that the notation in Newton’s calculus was not
well developed. He himself wrote that he “doth not place his Method in
Forms of Symbols, nor confine himself to any particular Sort of Symbols
for Fluents and Fluxions.”1 Significantly, Huygens did not appreciate the
usefulness of analytic notation. With his gifts he was in a position not to

�——————�
1“An account of a book entitled Commercium epistolicum Collinii et aliorum, de analysi

promota,” Philos. Trans. Roy. Soc. London, 342 (1714–1715), pp. 173–224. This was published
by the Royal Society and is believed to have been written by Newton himself.—Transl.
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need it. Leibniz tried to explain its advantage: “I completely imagine that
you have available a method equivalent to mine for the calculus of differ-
ences. What I call dx or dy you may denote by other letters. However, this
is roughly the same as if you had always wanted to substitute letters in
place of roots or powers. . . . Judge for yourself how difficult that would
have been. . . .” What Huygens was able to manage without was absolutely
necessary for converting analysis into an everyday practical method. It is
likely that notation was the decisive reason why we use Leibniz’s variant
of analysis today.

As early as 1674, Leibniz was sure that “all learning about sums and
quadratures can be reduced to analysis, something which no one hoped for
up to now.” By the end of 1675 Leibniz had developed his first approxima-
tion to the calculus, and he had reason to be convinced of its effectiveness.
An important moment was his solution of a problem of Florimonde de
Beaune (1601–1652), on which Descartes had worked but could not com-
plete: “Already last year I had posed a question to myself which can be
taken to be among the most difficult in all of geometry, since the meth-
ods that have been disseminated so far yield almost nothing here. Today I
found its solution and am carrying out its analysis” (November 11, 1675).
He was speaking about finding a curve with constant subtangent (the in-
terval between the projection of a point A on the x-axis and the intersection
of the tangent to A with the x-axis). The difficulty is that the solution
is related to the logarithmic function. By the middle of 1676, differential
and integral calculus had been joined once and for all. He was amazed
that “thanks to this calculus everything appears before the eyes and in the
mind in exquisite compactness and clarity.”

Leibniz, as well as Newton, tried to create a powerful method without
worrying at that stage about a sufficiently rigorous basis for the calculus.
“Newton and Leibniz, turning their backs on the past, decided temporarily
to search for the justification of the new methods not in strict proofs but
in the abundance of results and in their mutual agreement” (Bourbaki).
While still in the learning stage it seemed to Leibniz that Gregory was too
keen on “proofs in the old manner.” Leibniz regarded concrete results
above all as a possible illustration of his method. This may tell us that he
never could do computations easily and always envied calculators “of iron
or copper.” Later (in a 1696 letter to L’Hôpital) he connected this to the
fact that he was busy with many different things at the time: “My mind,
occupied with many subjects, is not able to concentrate to the necessary
extent and because of this I stumble every minute, and when I exert my
attention I have the unpleasant sensation of some sort of heat.” In 1699,
“calculations become more pleasant when I divide them up with someone
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and I am not occupying myself with calculations for a long time, if no one
is helping me.”

In 1675 in Paris, Leibniz had a suitable partner in his countryman
Tschirnhaus. Their abilities were often complementary, and this made
their collaboration especially fruitful. Tschirnhaus mostly studied alge-
braic equations but was also interested in quadratures. Leibniz was hurt
that his friend could not appreciate the usefulness of the calculus: “. . .some
quadratures that you obtained are verbose but elegant and are beautiful in
their own right, and I consider them only as consequences of the general
calculus. I write this, my friend, since I see with regret that you often waste
much time only because you do not want to pay enough attention to some
of my observations” (1678).

It seems that Leibniz had heard that Newton possessed some sort of
powerful techniques and decided to discuss his new method with him.
Through the intervention of Henry Oldenburg, the secretary of the Royal
Society, there was an exchange of letters in 1676. Leibniz wrote about the
problems that he knew how to solve, asked to find out about Newton’s
methods, and promised to tell about his own method. Leibniz had writ-
ten earlier to Oldenburg that creating the method was the only thing to
which he attached significance. Newton was not surprised by Leibniz’s
results. He immediately noted that De Beaune’s problem was reduced to
the quadrature of a hyperbola (by logarithms), and regarding the series for
π , he remarked that it had taken 1000 years to compute the first 20 dig-
its. Newton spoke very sparingly of the method. It is only clear that the
center of gravity in his opinion lay in power series. Newton claimed that
he could solve any differential equation using them. The main part of the
information was enciphered in two anagrams in which the first letters of
the words were written in a code (5accdae10effh. . .) whose meaning New-
ton revealed much later. This was an ancient method of claiming priority.
Perhaps the focus on power series kept Leibniz from realizing that Newton
had the calculus.

Leibniz did not agree that series solved all the problems. “We still do
not, as far as I know, have available a general inverse method for tangents.”
He saw a different picture. It was necessary to reduce the solution of dif-
ferential equations to known quadratures. It was important to examine
whether the elementary functions and the quadratures of the hyperbola
and circle (logarithmic and trigonometric functions) were enough. Gre-
gory used impressive arguments to show that these quadratures were not
enough to calculate the arc length of an ellipse or hyperbola. Then one had
to “establish some other higher fundamental figures” (elsewhere, “higher
transcendences in geometry”) which would be sufficient to solve differen-
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tial equations. Newton was also not caught unaware by this statement: he
wrote that for any α and β the integral

∫
xα(1 + x)βdx reduces to known

quadratures. The correspondence was broken off at Newton’s initiative
and in 1677 Oldenburg, through whom it had been conducted, died.

Mathematics and the “Conquest of the Minds” of Sovereigns

Leibniz’s life changed decisively. Only rough drafts and sketches of arti-
cles remained from his Paris period. He perceived a plan for preparing a
comprehensive book, The Mathematics of the Infinite, but changes in his life
diverted him from mathematics.

We do not know if Leibniz’s political ambitions bubbled up again, or
if he did not find it possible to devote himself to a life of science (perhaps
his Protestantism interfered with obtaining a position at the Academy of
Sciences in Paris). One way or the other, starting in late 1676 he was in the
service of the duke Johann Friedrich in Hannover. He went to Hannover
by a circuitous route: he visited London, where he was seen with many
mathematicians but did not meet with Newton, and he met with Spinoza
in Holland.

Thus Leibniz was only able to obtain a position with a second-rate
ruler, and at first he was only the duke’s librarian. It was not the most
enviable position for a 30-year old scholar-politician who had not given up
his ambitious plans. But Leibniz was full of enthusiasm and dreamt about
creating the best library in the world, and was not restrained by the fact that
its size realistically did not give him the means to do that. He was permitted
to practice law but preferred not to be a full-time lawyer, for which he had
no taste, as opposed to working on global legal problems. Leibniz was
allowed to take part in diplomatic activities in a very limited way. He was
entrusted with preparing a text promoting the right of the duke to take part
in peace negotiations between France and Germany. Johann Friedrich was
a Catholic monarch in a Protestant state, and Leibniz wanted to use this
situation to realize his hidden aim of uniting the Catholic and Protestant
religions.

In 1678 a new duke, Ernst August, was on the throne, and things be-
gan to get worse. But Leibniz was full of projects across an unusually
large spectrum: improving a furnace, producing nails and hammers, im-
proving carriage wheels, fishing rods, and ships’ paddle wheels, foundries,
fire fighting, reorganizing the archives, composing The Legal Code of Ernst
August, and so on. Almost none of the projects found support. The most
far-fetched was a plan for improving water engines in the mines in the Harz
Mountains. This project was interrupted in 1685, since it was thought to be
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hopeless. In each project Leibniz was clever and resourceful but he often
lacked realism. Success came when reasoned thought was combined with
talented practicality. That is how it was with the steam engine: “. . .Leibniz,
scattering brilliant ideas around him, as always, without worrying about
whether the discovery of these ideas would be attributed to him or to
someone else. As we now know from the correspondence of Denis Papin
(1647–c.1712), published by Gerland, Leibniz gave him the basic idea: to
use a cylinder and piston” (Friedrich Engels). As a curiosity, we recall
that Leibniz proposed to the priest Francesco Grimaldi, who was going
to China, that he acquaint the enlightened emperor with the binary num-
ber system and use it to convert him to Christianity by proving the unity
of God.

For a long time, a constant struggle for influence in the court kept Leib-
niz from mathematics. His return was stimulated by two circumstances.
Since 1682, the journal Acta Eruditorum had begun to appear in Leipzig with
Leibniz’s support, and he proposed to publish his results there. In 1683–
1684, the journal published Tschirnhaus’s articles on quadratures, in which
Leibniz discovered the results of his recent discussions with the author and
without the required references. Once Leibniz had unsuccessfully tried to
convince Tschirnhaus of the effectiveness of the calculus, and now the lat-
ter had himself published results in that direction. It is very likely that
Tschirnhaus did not remember that the source of his statements was Leib-
niz. It happens that misunderstood ideas can hide deeply within oneself,
and then after some time arise as if they were one’s own.

In May of 1684, Leibniz published an article sharply criticizing Tschirn-
haus (without claims of priority and without giving his full surname) and
in October his famous article appeared, which we spoke about at the be-
ginning. In seven pages he formulated the basic rules of differential calcu-
lus, discussed the connection with maximum and minimum problems and
points of inflection, and gave some examples (a proof of the law of refrac-
tion and De Beaune’s problem). He gave an optimistic assessment: “That
which a person versed in this calculus can obtain directly in three lines,
other most learned men were obliged to seek by following complicated
roundabout ways.” At this time Leibniz was not really engaged in anal-
ysis. He only published some of his mathematical “inventory.” Leibniz
published a few additional articles. Among them was an 1686 article “on
the deeply hidden geometry and analysis of indivisibles and infinities.” It
contained the first appearance in print of the integral, which was still called
the sum but was denoted by

∫
. The term “integral” was introduced by Jo-

hann Bernoulli. The article clearly stated the inverse relationship of the
operations of differentiation and integration, and underscored the need to
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consider transcendental functions in analysis. It included short historical
notes. Newton was called a “most deeply talented geometer” and noted
that the publication of his methods promoted “a scientific advancement
of no small importance.” This marked the close of the second period in
Leibniz’s mathematical life.

Matters at the court took a turn for the worse. In 1685 the Harz project
finally failed. The duke aimed at becoming the ninth Elector (a prince who
took part in electing the emperor). Leibniz was assigned a clearly limited
but valuable role. He was supposed to research the history of the house
of Welf, to which the duke belonged. This was needed to strengthen the
duke’s claims. The inquisitive Leibniz became completely engaged in this
modest work of historiography. In particular, it gave him the opportunity
to get away from Hannover. In 1687 he went on a three-year trip to work
in the archives of Germany and Italy. He had not left Hannover for ten
years, and his contacts with scholars were extremely limited. He had tried
to replace travel with an active correspondence. While still in Mainz he had
about 50 correspondents, this grew to 70 in Hannover, and to 200 by the start
of the new century. But all these letters could not replace personal contacts.
Summing up his journey, Leibniz wrote, “The trip has in part served to free
me from my usual duties and to heal my spirit, and I obtained satisfaction
from conversations which I was in the habit of having with many erudite
people who were skilled in the sciences.” Moreover, it was confining for
Leibniz to be in the service of the Hannoverian duke. For his plans it was
important to “conquer the mind of the great sovereign.” He obtained an
audience with Emperor Leopold in Vienna (“ I survived the day that I had
been wishing for for twenty years.”). Among the proposals that were met
with favor was a project to organize an Academy of Sciences in Vienna.
But soon the emperor, busy with the war with France, stopped short of
establishing the Academy.

After 1690 Leibniz was in Hannover again. He thought it would take
two or three years to complete A History of the Welfs. But this estimate, as
always, was too optimistic. His conception was too substantial and grew
along with the work. Leibniz was unable to limit the task and the book
hung over him like a heavy weight to the end of his days.

In Hannover, a letter was awaiting Leibniz that had been sent to him
in 1687 by Jacob Bernoulli (1654–1705). Bernoulli had read Leibniz’s ar-
ticles and his spirit was imbued with the new calculus. While he waited
for Leibniz’s reply he began to work actively in analysis, also involving
his younger brother Johann (1667–1748). Leibniz found the understanding
for which he had waited many years. He had not even dreamt of better
disciples. Leibniz had gotten his scientific school (which Newton lacked).
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In contacts with the Bernoulli brothers, Leibniz began to develop analysis
systematically. They published articles in Acta Eruditorum, exchanged let-
ters, and discussed problems. Later the Marquis de L’Hôpital (1661–1704),
a student of Johann, joined the triumvirate. In 1692 Johann Bernoulli pre-
pared lectures on differential calculus but did not publish them, and in
1696 L’Hôpital published the first course on differential calculus, L’Analyse
des Infiniment Petits pour l’Intelligence des Lignes Courbes, or The Analysis of
Infinitely Small Quantities for the Study of Curves. We will not dwell on the
results that Leibniz and his colleagues obtained during these years, but will
discuss how his view of analysis changed as a consequence of them.

At the end of the century, it seemed to Leibniz that everything had been
accomplished in mathematics: “From now on I consider pure mathematics
only as an exercise for developing thinking skills. For practical purposes,
almost everything in it has been discovered with the help of the new meth-
ods.” In September, 1692 he communicated his plans to Huygens: “I want
us to bring the analysis of numbers and curves to completion during this
century, at least in the main, in order to deliver the human race from this
trouble so that henceforth all the acumen of human reason will be turned
toward physics.” But later, as we see from a letter to L’Hôpital, he was
no longer so optimistic: “One should not be surprised that the analysis of
infinitely small quantities is taking only its first steps and that we cannot
manage the situation even with quadratures, and with the inverse prob-
lem of tangents, and even in the least measure with solving differential
equations. . . .” He clearly saw that natural problems did not reduce to
known quadratures and he did not see a way to systematize “higher tran-
scendences.” This was a problem for the next two centuries.

Leibniz’s scientific authority grew. One mark of this was his election to
the French Academy of Sciences in 1699, as soon as they were permitted
to elect non-Catholics. But it became even harder for him to combine his
service with science. He broke out of the limitations of Hannover. In the
1690s he was also in the service of two German monarchs. In 1700–1711 he
added service to the Elector of Brandenburg, Friedrich III, who became the
king of Prussia. Here, Leibniz’s project was to organize a scientific society,
but intrigues forced him to abandon Berlin before its opening ceremonies.
The idea of organizing an imperial academy in Vienna was renewed and
this was strongly promised in 1713, but then Charles VI decided to give
up this very expensive plaything. The geography of Leibniz’s interests
widened: “I do not belong to those who are nourished by passion for their
homeland or in some other country, my thoughts are aimed at the good
of the whole human race; for I consider the heavens as my native land
and all good-thinking people as my fellow citizens.” Leibniz wrote this to
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the Russian Tsar Peter I in January, 1712. They had become acquainted in
1711 at the wedding of the Tsarevich Aleksei and had met several times
afterward.

Peter took Leibniz into service as a confidential legal advisor to help
with regulating Russian legislation. They discussed the question of orga-
nizing an academy in St. Petersburg. The range of questions discussed with
the Tsar was immense: finding a route from the polar seas to the Pacific
Ocean, Christian missions to China, uniting Orthodoxy with Catholicism
and Protestantism (convoking an ecumenical council), and creating a broad
anti-French coalition. It seems that they found a common language. This
activity of Leibniz’s did not find favor with the Hannoverian duke. Al-
though he was made a confidential advisor, Leibniz did not get his wish to
“rise” to the rank of vice-chancellor. The new duke (since 1698) Georg Lud-
wig insistently expressed his wish finally to see the “invisible book,” the
long-awaited History of the Welfs. He essentially removed Leibniz from all
activities and tried to restrict his external contacts. This firmly strengthened
Leibniz’s reputation as a “monarch hunter,” about which Arnold Eckhard,
who helped him in his historical research, said unkindly during Leibniz’s
final illness, “If a ruler or a dozen nobles promise him a salary, then he will
be able to get up.” And the gravely ill scholar tried with his last strength
to complete the unfinished History.

There was no question of systematic scientific investigations. In 1695
he wrote, “There are no words to describe how unfocused I am. I search for
old things in the archives and plan unpublished manuscripts, with the help
of which I hope to shed light on the history of the Braunschweig house. I
receive and send more than a few letters. I have so much that is new in
mathematics, so many thoughts in philosophy, so many other new things
to say in literature that I cannot let die, that I often do not know what to
do first, and I feel how right Ovid was when he cried, ‘Plenty has made
me poor’. . . . It is already more than twenty years since the French and
English saw my calculating machine. . . . Now with the help of workers I
have gathered together the machine is ready, allowing multiplication of up
to 12 digits. . . . But first of all I wanted to finish my Dynamics in which, I
claim, I have finally found the true laws of material nature. . . . My friends,
who know about the higher geometry I have constructed, insist on pub-
lishing my Science of the Infinite, containing the basis of my new analysis.
To this I have to add the new The Nature of Position on which I am working,
and more significantly more general things about the art of discovery. But
all these works, excluding the historical ones, are done under cover. Af-
ter all, you know that at the courts they seek and expect something very
different! Therefore, from time to time I have to investigate questions of in-
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ternational law and the law of imperial princes, especially of my master. . . .
Meanwhile I often have to discuss religious disagreements. . . . And all the
same I try to put in order my reflections on law.” In 1697: “. . .If you weigh
all that, . . . then wish me to have assistants, young people or friends, astute
and diligent, who would want to support me. For I can give a great deal,
but I cannot complete everything that I see, and I would willingly com-
municate it to others if it would bring them fame, if only it would serve
some common cause, the good of mankind, and the very glory of God.”
In a letter to Johann Bernoulli from 1697: “daily reflections on themes not
only in mathematics but also physics, and the deepest philosophy, history,
and law, reflections which I record in the briefest way so that I do not lose
them. . . . Add to this my ideas on constructing natural law. . . ; but first of
all I am busy with a new analysis for reasoning of a higher sort. . . . I leave
it to you to decide whether I have enough time for fundamental studies in
geometry.”

He often thought about mathematics while in his carriage (we know
that is where he thought of the rule for differentiating an integral with
respect to a parameter, in 1697). His ideas were overflowing; he expanded
his thinking to include the creation of a “geometry of position.” “I have
not yet decided to publish my projects on the nature of position for if I do
not make them convincing, giving some essential examples, then it will be
thought of as a fantasy. Nevertheless, I foresee that the work cannot fail”
(letter to L’Hôpital, 1694). It seems that nothing was published and Euler
later tried to unravel the great idea. When differential geometry and then
topology were created in the 19th century, it was thought that this was the
realization of Leibniz’s project.

The last years of Leibniz’s life were darkened by a controversy with
Newton over priority. The argument gradually grew into an accusation of
plagiarism against Leibniz. It was implied that Leibniz may have become
acquainted with Newton’s manuscripts in London, but today the indepen-
dence of Leibniz’s discovery has been established. There was no sufficiently
detailed text in London, during his first visit Leibniz was not prepared to
grasp Newton’s theory, and there was no one who understood the calculus
well enough to communicate it to Leibniz. By his second visit to London,
Leibniz already possessed his own calculus. At first the controversy went
on without the participation of Newton and Leibniz. It is surprising that
Newton, who always stayed away from such arguments and cared little
about preserving his priority, energetically joined the dispute this time. It
is likely that Leibniz hurt him very much by not once acknowledging him
as the creator of a new calculus (his publications had appeared by then).
A real persecution was organized against Leibniz in England. A special
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commission was constituted and a collection of materials was prepared. In
1714 Leibniz tried to write his own “History and Origin of the Differential
Calculus,” but he could not withstand the pressure in England.

Things became still more complicated in 1714 when the duke became
King George I of England. Leibniz counted on going to London and be-
coming the royal historiographer, but in an insulting way he was even kept
from traveling to the coronation (he was made to complete the “History”).
He had played his role and the fact was that the king did not want to have
in his entourage someone who had plunged into opposing Newton, who
was celebrated throughout England. Leibniz died in 1716. He was buried
modestly under a tombstone with the short inscription “The Remains of
Leibniz.”

Leibniz once wrote to Peter I, “Although I must often work in politi-
cal and legal fields, and noble princes sometimes use my counsel in these
matters, all the same I preferred science and the arts since they constantly
promote the glory of God and the welfare of all mankind. . . science and
crafts are the real treasure of mankind, for through them art overcomes
nature and civilized peoples are distinguished from barbarians. There-
fore, I have loved science since my youth, have studied it and had the
happiness. . . of making varied and very important discoveries that have
been praised in print by impartial and famous people. I did not just find a
powerful monarch who was rather interested in it.”

Evidently, over the years Leibniz’s priorities shifted: for a long time he
had given preference to politics over science, but life cruelly taught him
how thankless the position of a scientist at court is.



Leonhard Euler

Thus, Euler ceased to calculate and to live. Condorcet

In early 1783, Princess Ekaterina Romanovna Dashkova was named
director of the Petersburg Academy of Sciences. Twenty years ear-
lier she had been the closest associate of Catherine II (“Catherine the
Great”) when the latter ascended to the Russian throne. Known for

her ingenuity, the princess had thought of the perfect way to convince the
academicians of her devotion to science. She persuaded the elderly Eu-
ler, who for a long time had not been on good terms with the academic
establishment and had not attended Academy conferences, to accompany
her on her first visit there. The blind Euler appeared with his son and
grandson. Dashkova later recalled, “I said to them that I asked Euler to
take me to the session since, regardless of my own ignorance, I consider
that by such a ceremonial act I was testifying to my respect for science and
enlightenment.”

Several months later the proceedings of the Academy recorded, “At the
conference session of 11 September 1783 Academician N. I. Fuss assumed
the duties of the Secretary,1 who was absent because of the passing of his
famous father Mr. Leonhard Euler, who died of an apoplectic stroke on 7
September at 11 o’clock in the evening, at the age of 76 years 5 months and
3 days, completing his long and brilliant journey and making his immortal
name known throughout Europe.” The first sign of this unfortunate event
appeared at the beginning of September in the form of mild dizziness, when
Euler calculated the speed at which a balloon rises. On the day he died he
discussed the results of computing the orbit of Uranus, which had recently
been discovered by William Herschel, with the astronomer Andrei Leksel.2

�——————�
1Johann-Albrecht, Euler’s eldest son.
2Also known as Anders Lexell.—Transl.
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Leonhard Euler.

Euler’s exceptional personality and his unprecedented role in the his-
tory of the Academy led to the search for an out-of-the-ordinary way
to honor his memory. On October 23rd, Academician Nicolaus (Nikolai
Ivanovich) Fuss, Euler’s student and the husband of his granddaughter, de-
livered his eulogy. The academicians decided to commission, at their own
expense, a bust of the “immortal Euler, deserving of admiration equally for
his genius and for his merits,” and their “illustrious leader” (Dashkova)
“added to this a magnificent column which will serve as the base for this
bust.” They discussed in great detail the publication of the deceased’s
works, including the quality of the printing paper. At first the bust was
placed in the library, and later it was located opposite the president’s chair
in the hall where the Academy met. A picture remained in the library, enti-
tled Silhouettes of the Group of Academicians of the Mathematics Class, Installing
the Bust of the Late L. Euler.

Word of the honors paid to the scholar spread far beyond the bound-
aries of Russia. The Marquis de Condorcet,3 Permanent Secretary of the

�——————�
3In less than 10 years he would take part in the French Revolution and his name would

be crossed off the rolls of the Petersburg Academy for “reprehensible behavior. . . against a
sovereign.”
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French Academy of Sciences, said in his eulogy, “Thus a people, which at
the beginning of this century we took for barbarians, gives an example to
civilized Europe—how to honor great persons for their lives and how to
honor them in death. And other nations should blush that they could not
anticipate Russia or even imitate it, and not only in this matter.” Although
from far-off Paris the situation in Petersburg seemed happier than it really
was, the attitude towards science during the 60 years of existence of the
Petersburg Academy was unrecognizable.

The Academy’s First Years

As early as the last years of the 17th century, Peter I (“Peter the Great”)
had thought about organizing an Academy in Russia. Beginning in 1711,
he discussed his plans with Leibniz three times and even took him into
the Russian service. Leibniz, a great fantasizer who dreamt of spreading
academies throughout the world, responded enthusiastically to Peter’s idea
when he met the sovereign for the first time. Leibniz did not think that the
absence of science in Russia was an obstacle to the creation of an Academy
and even found some advantages in this. However, few in Russia shared
this optimism. V. N. Tatishchev, one of Peter’s most educated associates,
told him that “. . .there is no one to teach, for without lower schools an
academy will be a great expense and be useless.” Peter replied, “I can reap
great stacks, but there are no mills.” Therefore he decided to build a “water
mill” first, although “there is no water nearby and there is water rather far
away,” not in the hopes of “making a canal” but in the hopes that the mill
“will force my successors to bring the water.” There were many problems
along the way but in 1724 the Senate decided to create an Academy of
Sciences. At the time the word “science” did not even exist in Russian and
the Academy was called the “Academie des Sciences.”4

Peter died in 1725 and so did not see the opening of the Academy. It
fell to his successors “to take part in building the mill.” His wife, who
succeeded him as Catherine I, carried out her husband’s plan (not without
some hesitation), although she did not share his interest in science. As one
contemporary wrote, “the scientists’ eulogies were not understood by Her
Majesty.” The fate of the Academy always hung by a thread. It was seen as a
German phenomenon and so the Russian party, and in particular Alexander
Menshikov, was inclined against it. The public did not understand the
function of the Academy well and the academicians showed how strong

�——————�
4Its Latin name was “Academia Scientiarum Imperialis Petropolitanae.”—Transl.
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they were. The Petersburg diary, published in The Saint Petersburg Gazette,
kept a record of the public lectures given by academicians on the occasion
of the coronation of Peter II (1727), when the academicians Joseph Nicolas
Delisle and Daniel Bernoulli discussed the revolution of the earth around
the sun, the academician Gotlib Baier delivered a “funeral ode in Latin
verses,” and “at the same time fountains running with white and red wine
were turned on for the people who were strolling all night in the Tsaritsa’s
meadow.”

The academicians tried to mend their relations with the Russian public
and opened the doors of the Academy to visitors twice a week. Some-
times one could see something surprising there. On February 24, 1729
“Professor Leutman managed to change a picture of the state coat of arms
(using a prism) into a portrait of the reigning emperor.” Some academi-
cians established themselves by successfully organizing “amusing fires”
and illuminations, composing celebratory odes, and casting horoscopes.
More lofty matters were not highly valued, except perhaps for making
maps recommended by some navigators. The by-laws of 1747 asserted, “It
can only be to the benefit and glory of the state for there to be such persons
who know about the course of heavenly bodies, time, navigation, and the
geography of the whole world and of their state.” Peter II died in 1730.
His successor Anna Ioannovna visited the Academy only once, and the
Academy disappeared from the Petersburg diary for a long time.

The academicians had been assembled into a “scientific society” un-
der Peter I. It gradually became clear that a first-class group could not
be brought together: eminent scholars thought of a voyage to Russia as
questionable and even risky. Leibniz was no longer alive, and his closest
colleague Christian Wolff declined to accept the post of president. The first
president was Laurentius Blumentrost, a court physician. Instead of invit-
ing eminent scholars, they tried to invite their children in the hopes that
scientific ability was inherited and that a famous name would adorn the
rolls of the Academy. Thus an invitation to the famous Johann Bernoulli
(1667–1748) was addressed to his son. In an extended correspondence it
was not clear for a long time whether the invitation was for the oldest son
Nicolaus (1695–1726) or for the middle son Daniel (1700–1782). In the end,
both went: Nicolaus, a former law professor in Rome, became professor of
mathematics with a salary of 1000 rubles per year and Daniel became pro-
fessor of physiology at 800 rubles. Their father’s parting words were, “. . .it
is better to withstand a severe climate in a land of ice where the muse is
present than to die of hunger in a land with a moderate climate that detests
and offends the muse.” Could he have known then what would happen
in a year and what his oldest son would become!
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Euler in Petersburg

In 1726 the Bernoulli brothers were enviously seen off by Leonhard Euler,
their father’s student: “I had an indescribable wish to go with them. . . . But
that could not come true so soon, and meanwhile the young Bernoullis who
had been invited vigorously promised that while they were in Petersburg
they would plead for a suitable position for me.”

Leonhard Euler was born on April 15, 17075 in Basel, Switzerland. His
father, Paul Euler, was a village pastor. In his youth he successfully studied
mathematics under Jacob Bernoulli (1654–1705), Johann’s older brother. He
received his first lessons from his father and took his later classes at the
gymnasium in Basel while simultaneously attending mathematics lectures
at the university, where Johann Bernoulli taught. Euler was soon studying
primary sources independently, and on Saturdays Johann Bernoulli met
with the talented student to discuss points that were not clear. Leonhard
was friendly with his sons, especially with Daniel.

In 1723 Leonhard received the degree of Master of Arts, and at his ex-
amination gave a speech in Latin comparing the philosophies of Descartes
and Newton. Paul Euler thought his son should follow him in his career,
and Leonhard obediently studied theology. Both father and son under-
stood that a career in science had no prospects. Even though science was
not especially prestigious (at the time the Swiss were fond of saying, “let
the Germans study it, the Swiss have more important work to do”), there
were more candidates for professorial positions than there were vacancies.

In 1727, Euler tried to get a position as physics professor at Basel but
was doomed in advance to failure. At the same time he successfully took
part in a competition at the French Academy of Sciences on the best way
to position the masts on a ship. It is noteworthy that “in mountainous
Switzerland, which Euler had so far never left, he of course had never had
the chance to see a ship except in pictures. . .” (Aleksei Krylov).6 This was
Euler’s first but not last contact with naval science.

Daniel Bernoulli kept the promise he made when leaving for Petersburg.
Even before Euler tried for the position in Basel he knew he could get a
position in Petersburg as an adjunct in physiology at a salary of 200 rubles.
Bernoulli rushed him, recommending that he come “this winter.” It did
not bother Euler that he would have to work in medicine. In those days
medicine was not considered to be so remote from mathematics. We do
not have to go far for examples: his teacher Johann Bernoulli alternated

�——————�
5April 4th on the Julian calendar that was still in use in Russia.—Transl.
6Aleksei Krylov (1863–1945) was a leading Russian scientist who applied mathematics and

mechanics to problems of shipbuilding and was a member of the Academy of Sciences.
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between mathematics and practical medicine (and teaching Greek). Euler
began studying anatomy and physiology, and later surprised those around
him with his medical knowledge. He could not leave as quickly as Bernoulli
wanted, but in the spring of 1727 Euler received “a draft in the amount of
130 rubles for passage” and left for Russia. He arrived in Petersburg on the
day Catherine I died.

As did Daniel Bernoulli, within the realm of physiology Euler preferred
to study hydrodynamic problems of blood circulation. To a significant ex-
tent these problems stimulated the creation of the field of hydrodynamics.
In his first years in Petersburg, Euler hardly thought that his life would be so
firmly connected to the Academy. The very existence of the Academy then
seemed extremely problematical. Fuss later wrote, “Euler was the pride
and glory of our Academy over a span of fifty years. Before his eyes it be-
gan its existence, died several times, and was resurrected.” Euler felt very
uncomfortable when the Academy’s downfall seemed to him to be a reality.
At one of the most difficult moments a mass exodus of academicians from
Russia began after Peter II’s death in 1730, and a desperate Euler discussed
entering the naval service. But this was not needed. On the contrary, a
vacancy opened up that allowed Euler to assume the position of professor
(academician) with a chair in physics, although at the comparatively low
salary of 400 rubles. Within two years Daniel Bernoulli abandoned Russia
and Euler took his chair in mathematics, although his salary of 600 rubles
was only half of what Bernoulli had received for the same position.

After this, Euler became an outstanding figure at the Academy. Most of
the academicians were not too zealous about their responsibilities, which
were not clearly defined. Euler did not neglect his duties in any way: he
constantly gave reports at academic conferences, sometimes over two or
three sessions in a row, gave public lectures, wrote a textbook on arith-
metic for the Academy’s gymnasium and wrote popular science articles
for the Notices of the Saint Petersburg Gazette, was on commissions to study
pumps for fighting fires, weights, a “sawing machine,” and magnets, and
took various examinations. Euler went into many technical projects in de-
tail. Jumping ahead, we can recall his work on hydraulic turbines and his
findings about projects for bridges across the river Neva, among them a
single-arch wooden bridge by the inventor Ivan Kulibin, who worked in
the mechanical workshop at the Academy.7 Euler was always interested
in Kulibin. There remains one moment in their relationship that is unclear.
For 40 years Kulibin studied perpetual motion (a “self-propelled machine”)
and claimed that Euler did not rule out the possibility of creating such a

�——————�
7Kulibin (1735–1818) had no education but suggested many innovations, some of which

were realized.
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machine (“. . .perhaps in his time some lucky person will make such a ma-
chine and reveal it”). On the other hand, there is opposing evidence. We
have to say that the Petersburg academicians were constantly considering
projects on perpetual motion. But recall that in 1775 the Academy in Paris
refused to consider such projects.

Beginning in 1733, Euler took part in “examining” maps and carto-
graphic activities gradually became one of his main academic duties. The
question arose of making a general map of Russia based on existing provin-
cial maps, and Euler proposed his project saying, “I am certain that through
my work and that of Professor Geinzius8 Russian geography will be brought
to a much better state than geography in the German lands.” Sharp differ-
ences with Academician Delisle led Euler in 1740 to decide to curtail his
cartography work. His health probably also played a role in this decision.
On August 21st he wrote to Academician Goldbach, “Geography is killing
me. You know that I paid for it with an eye and I now find myself in similar
danger. When they sent me part of a map to look at this morning, I im-
mediately felt a new attack since this work, which always requires looking
over a large expanse all at once, tires my vision much more than simple
reading or writing.” Euler lost his right eye in 1735, when he completed a
government assignment in three days for which the academicians needed
several months. It is not completely clear whether this assignment in-
volved cartography (we can understand Euler in this way) or astronomical
calculations (as Condorcet wrote).

In 1740 there was another case where Euler avoided an assignment
that was given to him (no other examples are known): he redirected con-
structing a horoscope for “Ivan Tsarevich,” the soon-to-be emperor Ioann
Antonovich, to the court astronomer. Incidentally, Pushkin told a different
version of this story: “When Ioann Antonovich was born, Empress Anna
Ioannovna sent Euler an order to construct a horoscope for the newborn.
Euler at first refused, but was compelled to obey. He made a horoscope
together with another academician. They constructed it according to the
rules of astrology, as conscientious Germans, but did not believe it. The
conclusion they reached frightened the two mathematicians, and they sent
the empress another horoscope that predicted every happiness for the new-
born. But Euler kept the first one and when Ioann Antonovich’s unhappy
fate came about he sent it to Count K. G. Razumovsky.”

One should be constantly amazed that these many obligations still left
Euler time for his main work, the study of mathematics. In these very
years he took shape as a great scientist. Critically reexamining the work

�——————�
8The astronomer Gotfrid Geinzius (1709–1769).—Transl.
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of Leibniz and Newton in mathematical analysis and that of Fermat in
number theory, he found his own path in science. Almost all his books
and articles were published later, but the most important part of Euler’s
scientific destiny was decided in his first ten years in Petersburg. Only his
fantastic capacity for work and astonishing purposefulness allowed Euler
to combine the unobtrusive world of mathematical studies with day-to-day
academic worries. He later wrote that a young scientist’s specialty must
“be his main subject and he [should] not. . . be distracted from it by any
other work.” According to Euler, that was possible for him in Petersburg:
“For such a desirous situation that made his name well known Doctor
Gmelin9 is not the only one who is obliged to everyone, but also I myself
and all others who had the pleasure of spending some time at the Russian
Imperial Academy. We should recognize how obliged we are for the fa-
vorable circumstances in which we have just found ourselves. Concerning
me personally, if this excellent situation had been absent I would have had
to study mainly other sciences, from which according to all signs I only
would have become dull. His Royal Majesty10 recently asked me where I
learned what I know. I answered truthfully that I owe all to my stay at the
Petersburg Academy of Sciences.”

In 1733, Euler married Katharina Gsell, the daughter of a Swiss aca-
demic painter who had been brought from Holland by Peter I. Of their 13
children, three sons and two daughters survived. For the pious son of a
village pastor, his family was a fortress in which he could protect himself
from the stormy tempers of the northern capital. A measured family life
and small pleasures were necessary for Euler to work peacefully. No scien-
tific work could make him neglect his family duties. For example, he was
never indifferent to financial problems. He is quoted as saying, “Where
they pay more, that is where I must go.”

The year 1740 was probably the most difficult year in Euler’s life. On
the one hand, all the signs were positive: his academic salary reached its
maximum, 1200 rubles (as much as Daniel Bernoulli had received). He un-
derstood a lot about Russian society and particularly about the subtleties of
academic relationships. Field Marshal Burkhard Christoph von Münnich
(Minikh) rendered him “the honor of his particular favor.” Unlike most of
the academicians, Euler was even on good terms with Johann Schumacher,
the all-powerful head of the Academy. The most important thing for Eu-
ler was to be able to work quietly, and throughout his life he generally
avoided conflict. Recall his good relations over many years with Johann
Bernoulli, who constantly argued not only with other scholars but also with

�——————�
9Johann Gmelin, a naturalist who arrived at the Academy a year after Euler.—Transl.

10Friedrich II (“Frederick the Great”).
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his brother Jacob and son Daniel.
On the other hand, the great scholar, nearing only the end of his thirty-

third year, had managed to undermine his health through constant over-
work. In 1740 he fell into a deep depression, which was connected not
only to his health but also to constant strain because of the instability of
political life in Russia. Euler’s endurance had been enough to survive the
Biron decade11 but the new regency that was in place after the death of
Anna Ioannovna frightened him. He recalled that “something dangerous
was expected” and “after the death of the worthy Empress Anna and the
regency that followed, things began to go bad.” At that time the possibility
arose of going to Friedrich II in Berlin, and Euler submitted a request to
leave: “. . .I find it necessary, for the sake of my weak health and for other
circumstances, to seek a more pleasant climate and to accept the summons
made to me by his Prussian Royal Highness. Because of this I ask the Im-
perial Academy of Sciences to grant me the favor of releasing me and to
supply me and my household with the necessary passport for travel. . . .”
He promised to maintain contact with the Academy and “as my health
improves, to return to Russia from the German lands.” Meanwhile, Euler
wrote to Prussia that he had “firmly decided to live under the glorious
rule” of Friedrich. On May 29, 1741 Euler was released from service, and
later his request was met “to be made an honorary member of the Academy
with a pension set at two hundred rubles a year.” It was customary to con-
vert departing academicians into honorary members with a commitment
to render assistance to the Academy. From Euler they received a promise
“through the usual correspondence and other mathematical pieces to serve
more than when he was in active academic service.”

In the Service of a “Royal Philosopher”

Thus, Euler came to Berlin. Friedrich II was not in the city. War had
distracted him from his patronage of the sciences: in his own words, he
was always at war with the “three whores,” Maria-Theresa, Elizabeth, and
the Marquise de Pompadour. Year after year, the opening of the Berlin
Academy of Sciences was postponed (it opened in 1744). Meanwhile, the
king sent his new geometer an affectionate letter from his camp at Reichen-
bach. He was attentive to Euler and invited him to a court ball. According
to Condorcet, the Queen Mother was surprised by the scholar’s terse an-
swers to her questions: “But why do you wish not to speak with me at all?”
The reply followed: “Madam, forgive me but I am unaccustomed to it. I

�——————�
11Ernst Biron was Anna Ioannovna’s favorite and a powerful figure at the Russian court.—

Transl.
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came from a country where he who speaks is hung.” Euler was gradually
drawn into the life of Berlin. His assignment here was no less than in Pe-
tersburg. He recommended books on ballistics to the king and published
three volumes on this theme himself. He investigated correcting the level
of the canal between the Havel and Oder rivers, studied the condition of
the saltworks at Schönebeck, took part in organizing state lotteries and a
reform of widows’ insurance, and gave his opinion on a range of projects.
They quickly understood that he could do a diverse range of things and
refused him nothing. After organizing the Berlin Academy in 1744, Euler
became the director of its Mathematics section.

But relations with the king took a form that was not the best. It is
indicative that Euler’s salary was half that of Pierre de Maupertuis (1698–
1759), the President of the Academy. Euler rarely received praise from the
monarch. Here is one of the few examples. Euler worked a lot on concrete
problems in optics and in 1759 he made eyeglasses for Friedrich that were
just right for him. Here is how the king complimented him: “. . .I cannot
but praise your efforts to extract utility for people from the scientific studies
that occupy your time. My work does not allow me to devote the required
attention to your work at this time, but I will do it at the first opportunity.”
Euler tried to interest the king in differential equations, but without success.
In 1747 Euler “inopportunely” published a tract against free-thinking, and
his position was out of fashion at the Prussian court. At that moment the
scientist felt uncomfortable: “I remark that the propensity for fiction begins
here to prevail over mathematics, so that I fear that my person will soon be
superfluous here.” Euler thought about going to London.

In Berlin it was thought that scholarly duties included serving as dec-
oration for the reception rooms, to make discussions more pleasant. The
French scholars Maupertuis and the Marquis d’Argens (1704–1771) knew
how to do this brilliantly, and Euler did not. D’Argens wrote to Friedrich
about one of his colleagues: “The difference between his discussion style
and Euler’s manner is like the difference between Horace’s essays and the
works of the most learned and most pedantic Wolf.” In 1746 Friedrich’s
brother August-Wilhelm met Euler and he gave the king his impressions:
“. . .M. Maupertuis introduced me to the mathematician Euler. I found that
in him the truth that all things are imperfect is confirmed. Thanks to dili-
gence he has developed in himself logical thinking and acquired a name
for it, but his appearance and his clumsy way of expressing himself ob-
scure all his excellent qualities and interfere with gaining satisfaction from
them.” Friedrich answered, “Dearest brother! I had already thought that
a conversation with M. Euler would not give you particular satisfaction.
His epigrams consist of calculating new curves, some sort of conic sections,
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or astronomical measurements. Among the scholars there are strong cal-
culators, commentators, translators, and compilers who are useful in the
Republic of Science but do not shine elsewhere. They are used like Doric
columns in architecture. They belong to the lower story to support the
whole building and the Corinthian columns are their decoration.” What
eloquent testimony to the views of an enlightened monarch about science
and scientists!

Euler divided his time between science and home, but he did not be-
long to the category of scientists who are uninterested in external events
and who avoid contact with people. His scientific knowledge was ency-
clopedic. He knew a lot about botany, chemistry, anatomy, and medicine,
knew ancient and Eastern languages well, and spoke Russian. After his
death it was recalled that he knew well “the best writers of the ancient
world,” “ancient mathematical literature,” and “the history of all ages and
peoples.” Fuss wrote in his memoirs that Euler knew the Anaeid by heart
and remembered which verses were first and last on each page of his copy.
It is possible that this is not what was appreciated by the Prussian court,
and also posthumous evaluations are always kind.

For some time Euler had become the butt of jokes made up by the king:
“A certain geometer, who had lost an eye from his calculations, thought of
composing a minuet using a plus b. If it had been performed for Apollo,
the geometer would have risked being skinned like Marsyas.” This may
contain an allusion to a tract Euler wrote on the mathematical theory of
music. The king found out that Euler did not stop his calculations while at
the theater and the scholar became the hero of a new epigram. Incidentally,
Euler did not appreciate theater but greatly enjoyed puppet shows.

Euler, who was solidly winning a reputation as one of the strongest and
perhaps the strongest mathematician in Europe, was doomed to remain a
second-rate person in Friedrich’s circle. He once substituted as president
of the Academy and after Maupertuis left he thought about taking that
position. But the king intended the presidency for Jean Le Rond d’Alembert
(1717–1783), a remarkable mathematician who was ten years younger than
Euler. D’Alembert declined it, but this did not decide the question in favor
of Euler. The “French peril” was one of the reasons for Euler’s thinking
about leaving Berlin.

At the same time in Russia, the situation of the Academy changed for
the better with the coronation of Elizabeth. After a long absence from the
Petersburg diary, this notice appeared in 1742: “The calm of the capital
was varied by a few shows by the scholars meeting at the Academy of
Sciences. Beginning on February 17 in Library Hall, twice a week from 10
to 12 o’clock, lectures in physics by Georg Kraft were open to the public,
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and the number attending these discussions, which are coming into fash-
ion, was significant. Classes in drawing from nature are also open there.”
The 18-year old Kirill Razumovsky, brother of the empress’s favorite, was
named President of the Academy. Before this the future president traveled
to various university cities for two years and acquired diplomas. Euler’s
contacts with the Academy had not been interrupted. None of the hon-
orary academicians took his duties so conscientiously. During his 25 years
in Berlin Euler published 109 articles in the publications of the Petersburg
Academy, and published 127 in Berlin during the same time. He performed
various services for the Russian Academy: he was concerned with stocking
the library, choosing themes for competitions for academic prizes, seek-
ing candidates for vacancies in academic positions, and acquiring “magic
lanterns” and fireworks for festivals at court (this was one of the most im-
portant jobs of the Academy). The intensity of Euler’s correspondence with
the Russian academicians is striking, especially with Schumacher, who ran
the Academy.

At the start of the 1750s Euler established a pension in his house for his
students. He combined working with them with teaching his eldest son
Johann-Albrecht, and besides the income from the students was not unim-
portant for the tight family budget. Some of the first to come were students
of the Academy’s university, Semyon Kotel’nikov and Stepan Rumovsky,
who were future academicians (a third student, Safronov, was sent home
within a year because “he was so drunk that he could hardly be kept on”).
Euler was constantly concerned about financial problems. He tried to have
his family want for nothing. In 1753 he acquired an estate in Charlottenburg
with a beautiful house, a garden, a large amount of arable land, 6 horses,
and 10 cows. His father died in Switzerland and his mother came to live
with her son. Euler went to meet her in Frankfurt-am-Main. His biogra-
phers have always wondered why he did not use this natural opportunity
to visit his native Basel. Were the reasons sentimental or financial?

The Seven Years’ War12 made life more difficult. The currency was
worth half of what it had been but salaries did not increase. The advanc-
ing Russian army destroyed the Charlottenburg estate. But Field Marshal
Pyotr Saltykov, recognizing the owner’s name, ordered immediate com-
pensation for the damage. Later, Elizabeth herself added the enormous
sum of 4000 rubles. These details testify to the special nature of Euler’s
relationship with Russia. He tried to maintain contact with Russia even
during the war years. These were not only scientific contacts. For instance,
in 1762 he requested that 3 centners of “Russian butter,” a centner of “good

�——————�
12In which Prussia and Russia were on different sides.—Transl.
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white honey,” “several poods of Vologda candles,” etc., be sent to him via
Stettin.13

After the end of the war in 1763, Euler thought more decisively about
returning to Russia. As early as 1746 and 1750 he had received invitations
through Razumovsky, but politely put off the decision for an indeterminate
length of time. Euler hardly went anywhere in 1763 and d’Alembert took
upon himself the unexpected role of intermediary in negotiations with the
king. He was evidently able to convince both parties, because in August
he wrote to Euler: “Finally, I am happy that I have held onto a person such
as yourself for the king and the Academy.” Within a week, he wrote in
another letter: “I have completely persuaded His Majesty that in you the
Academy will bear an irretrievable loss which will inflict a blow on the the
king’s reputation. I daresay that before my departure I will be entrusted
with bringing your interests to his attention.” Euler was not allowed to
leave, but within two years a scandal broke out. Euler provoked the king’s
anger by interceding for the Academy treasurer during an inspection.

Negotiations over his departure were begun again with new zeal and
Catherine II, who had succeeded to the Russian throne, very much wanted
to obtain Euler for St. Petersburg. Euler communicated his conditions: a
salary of 3000 rubles (the same as the president, while salaries for aca-
demicians did not usually exceed 1200 rubles), an academic position in
physics for his son Johann-Albrecht, suitable positions for his other sons
(an artilleryman and a doctor), an apartment where he would be free from
quartering soldiers, and, finally, establishing for himself the position of
vice-president with the corresponding rank. Euler was not able to become
president of the Berlin Academy and wanted at least in part to realize his
ambitious plans in Petersburg (he did not lay claim to the presidency, be-
lieving that in Russia this had to be held by a nobleman). The academician
Goldbach, Euler’s friend (more about him below), worked in the Ministry
of Foreign Affairs with the high rank of Privy Councilor (the civilian equiv-
alent of a general). Apparently Euler wanted to become a general in his
declining years. On January 6, 1766 Catherine wrote to the Chancellor,
Count Mikhail Vorontsov: “M. Euler’s letter to you gave me great satisfac-
tion because I recognized in it his desire once again to enter my service. Of
course, I find the desired title of Vice-President of the Academy of Sciences
completely merited, but this will require taking certain measures. First
of all I will establish the title. I say will establish, since it has not existed
up to now. As things are currently there is no money for a salary of 3000
rubles, but for a man with such qualities as M. Euler I will supplement his

�——————�
131 centner ≈ 100 kg and 1 pood ≈ 16.4 kg.—Transl.
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academic salary from state funds so that together they will make up the
required 3000 rubles. He will have a state apartment without the slight-
est shadow of a soldier. Although there is no free chair in physics at the
Academy with a salary of 1000 rubles for his eldest son I will endow it, and
I will also authorize a free practice for the second (the physician) and will
give [him] a position, if he will desire to enter service. The third son (the
artilleryman) will be accommodated without any difficulty. . . . I am sure
that my Academy will be restored from the ashes by such an important
acquisition, and I congratulate myself in advance that a great man has re-
turned to Russia.” Recognizing Euler’s desire to take part in rebuilding the
Academy, the empress promised “to make no changes in the Academy be-
fore his arrival, to the end of better discussing improvements with him. . . .”
With great diplomatic mastery, they refused Euler the rank: he could only
have the rank of Collegiate Councilor, the civilian equivalent of a colonel,
which was unworthy of the great scholar: “I would have given him the
rank when he wanted it if there had not been the risk that this rank would
compare him with a number of persons who do not stand up to M. Euler. In
view of his fame, a rank that would render him the respect he is due would
be better.” Euler probably understood quickly that the generous empress
knew how to explain clearly the limits of what was permitted, agreed to
all the conditions, and resolved “to finish my days in the service of this
incomparable sovereign.”

It turned out that Friedrich was not inclined to part with his geometer.
In particular, he used the possibility that he would keep the scientist’s son
in the army. All the same, Euler obtained permission to leave. Later, the
king used Euler as a target for his wit for the last time: “Herr Euler, who
madly loves the Great and Little Bears, went north so as better to observe
them. The boat, weighted down with his XX and his KK, was shipwrecked.
All was lost, which is a pity because because there was enough there to fill
six volumes of articles dotted with numbers from beginning to end. In
all probability, Europe is missing the pleasant amusement it would have
had in reading them” (from a letter to d’Alembert). Soon Friedrich consoled
himself by obtaining the young Joseph-Louis Lagrange (1736–1813) in place
of Euler, instructively justifying the expediency of his move to Berlin: “The
greatest geometer in Europe must live near its greatest king.”

In Russia Again

Euler arrived in Petersburg on July 17, 1766. He had been away for exactly
25 years and was nearing 60. From the start Euler took seriously Catherine’s
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proposal to participate in reorganizing the Academy. He brought a detailed
design with him and did not lean towards autonomy for the Academy but
rather towards binding the activities of the Academy tightly to those of
government institutions. But it gradually became clear that the empress
was not inclined to trust Euler with the leadership of the Academy. Euler
learned once more the lesson that enlightened monarchs want their schol-
ars to know their place. As the most senior academician, the dean, he had
no small influence on academic life, but no one remembered the promised
position of vice-president. And as the head of the Academy Catherine in-
stalled (following Elizabeth’s tradition) the younger brother of her favorite,
Count Vladimir Orlov. But a small discrepancy arose: Razumovsky still
occupied the presidency, and as commander of the Ismailov regiment he
had supported Catherine during a revolt. He could not be insulted, so they
established the post of Director of the Academy for Orlov. The new direc-
tor did not relate badly to Euler: he worried about his health and obtained
medicine for him but could play tricks on the old man, pretending to be
a poor Swiss supplicant “to check [Euler’s] vision.” There was a conflict
not long before Orlov’s departure in 1774, after which Euler stopped com-
ing to meetings at the Academy. However he continued to be interested
in its activities and the academicians frequently held sessions in Euler’s
apartment.

Euler brought a stack of manuscripts with him to St. Petersburg which
he had not been able to publish in Berlin, since publishing had almost
ceased during the war. But he brought even more ideas in his head that
were almost ripe but were still unrealized. And life told Euler that he
should hurry. Soon after his arrival he lost vision in his second eye but did
not stop working and dictated his essays to his son, who had not the slight-
est idea about mathematics. The imperial oculist Baron Michael de Wenzel
removed a cataract from one eye but predicted that overwork would in-
evitably lead to a return of Euler’s blindness. That soon happened, but
Euler preferred losing his vision to passivity. He tried to direct the work of
others, such as his son and Academicians Kraft, Fuss, and Lexell, but most
of all he dictated what he knew and wanted to impart to others. During half
a decade he dictated more than 400 articles and 10 large books. Deafness
became added to blindness. His wife died in 1766 and Euler married her
sister (that was the simplest way to maintain order at home). His house
and a large part of his property caught fire but nothing could make Euler
interrupt his work. During the summer of 1777 Johann Bernoulli III (1747–
1807), Daniel’s nephew, visited Euler. Here are Johann’s impressions: “His
health was rather good, for which he was obliged to follow a measured
and correct way of life. As for his vision, which is for the most part lost and
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was at one time completely gone, he now uses it better than many imagine!
Although he cannot recognize anyone’s face, read black on white, or write
with a pen on paper, he writes his mathematical calculations very clearly
and orderly with chalk on a black table and at the usual size. Then they
are written down in a large book by one or another of his assistants, Fuss
or Golovin14 (more often by the former). And articles are prepared from
these materials under his direction. Thus in the period of five years during
which M. Fuss lived in Euler’s house, 120 or 130 articles were brought to
completion.”

Euler maintained his ability to work until his final days. His second
Petersburg period lasted 17 years. In 1783 the son of the village pastor
finished his days as the greatest mathematician in Europe. Euler was buried
in the Smolensk cemetery. The inscription on his monument reads: “Here
rests the mortal remains of the wise, just, illustrious Leonhard Euler.” After
50 years it was discovered that the monument had disappeared and it was
found only by chance, during the burial of his daughter-in-law, where
“the stone had sunk little by little into the earth from its own weight and
because of the powdery turf.” They felt uncomfortable at the Academy and
resolved to establish a new monument “worthy of the famous geometer.”
Later Euler’s remains were reinterred in the necropolis of the Alexander
Nevsky Monastery, where his monument can be seen today.

A Great Legacy

Euler’s scientific legacy is astounding in its completely unprecedented vol-
ume. During his life, 530 books and articles saw the light of day. In his
last years his academic output did not resemble the scientific productivity
of a blind scholar, and he jokingly promised Count Orlov that his works
would fill the Academy’s Commentaries for 20 years after his death. This
estimate turned out to be “optimistic”: it took the Academy 47 years to
publish Euler’s works. The number of items reached 771, but Gustav En-
eström’s bibliography, composed in 1910, contained 886 titles broken down
by these rubrics: philosophy, mathematics, mechanics, astronomy, physics,
geography, and agriculture. Since 1910, the Swiss Society of Naturalists has
been publishing a collection of Euler’s writings, widely distributed inter-
nationally through subscription. It had been estimated that Euler’s Opera
Omnia would occupy 75 large volumes. So far 76 have been published, 30
of them in mathematics, and the project is nearly complete. His scientific

�——————�
14Mikhail Golovin.



� Leonhard Euler � 187

correspondence was expected to fill 8 additional volumes, and this work
is ongoing.

This scale reflects not only the amazing speed at which Euler worked
but also his habit of systematically writing scientific texts, including ones
that were prepared relatively hastily. The great range of topics reflects not
only the breadth of his interests and his ability to go quickly to the far
corners of science, but also the many academic obligations he had in Pe-
tersburg as well as Berlin. Some publications are like brief remarks. Euler
easily entered into scientific contacts, gave advice on various questions,
and willingly thought about random isolated problems sent to him by his
correspondents. It might look as if he spread himself too thin and was
omnivorous, but that would only be at first glance. Random questions
and problems served as fertile soil for well-planned thought. Euler could
pause in his thinking at opportune times if he saw no realistic possibility
of moving ahead. He could organize things so that the many daily af-
fairs of life did not seriously divert him from the fundamental direction of
his work.

How paradoxical it is to say, without much exaggeration, that Euler
worked almost exclusively on mathematics all his life. In other areas of
science (e.g., mechanics or astronomy) his success was mostly related to
applying mathematical methods. His philosophical stance throughout his
whole life was that discoveries in the natural sciences should be obtained
via a theoretical (to a significant extent mathematical) treatment of a few
general, unquestioned principles. In his Swiss dissertation, the nineteen-
year old Euler wrote: “I did not think it necessary to confirm this new
theory by experiment because it was completely derived from the most
reliable and irrefutable principles of mechanics and thus there simply can
be no doubt as to whether it works in practice.” Euler even tried to derive
Newton’s laws from more general principles, and in celestial mechanics he
tried not to obtain empirical formulas from observational data but rather to
derive them directly from the law of universal gravitation. He always tried
to go from theory to application. Although Euler was, in fact, involved with
experiments all his life, this was not his major direction. Sergei Vavilov15

wrote, “. . .Euler’s genius was in essence mathematical. . . he did not have a
good feeling for experiments (although he did do experiments). . . .” Else-
where he wrote, “Euler’s mathematical genius did not have the physical
intuition of Newton and Huygens that allowed them to guess the solution
without a precise mathematical statement of the problem or methods for
solving it.”

�——————�
15(1891–1951), a Russian physicist who was president of the Academy of Sciences.
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Arithmetic

Turning to Euler’s mathematical legacy, it is natural for us to begin with his
arithmetical works. Euler’s first publications are from 1732, his fifth year in
St. Petersburg. Euler had two great predecessors in arithmetic, Diophan-
tus and Fermat. If we bypass the prehistory associated with the name of
Diophantus (3rd century), then Pierre Fermat (1601–1655) was the first to
discover that arithmetic contains not only surprising facts about specific
numbers but also general assertions—theorems. Fermat left the statements
of many such theorems in the margins of Diophantus’s Arithmetica (oppor-
tunely published in 1621) and in letters and notes. Fermat was one of the
best mathematicians of his time, was at the very center of the heroic epic of
the creation of analysis and analytic geometry, and corresponded with the
leading mathematicians. Significantly, he was unable to generate serious
interest in arithmetic problems among any of his most earnest correspon-
dents. He found interested collaborators only among mathematicians of
lesser calibre such as Frenicle de Bessy (1605–1675). For reasons that are
hard to unravel, some scientific theories fascinate everyone (e.g., analysis
in the 17th century) while others are worked on by individual scientists
who try in vain to attract their colleagues’ attention. Think of projective
geometry, which was created by Girard Desargues (1591–1661) and Blaise
Pascal (1623–1662) (who were far from unknown), and which was forgotten
for a century and a half and rediscovered by Gaspard Monge (1746–1818)
and his students. In the 1670s Fermat’s notes were partially collected and
published, but it is hard to imagine the fate of Fermat’s arithmetic if it had
not been for Euler.

In 1849, Pafnuty Lvovich Chebyshev (1821–1879) wrote: “All the re-
search making up the general theory of numbers begins with Euler. In this
research Fermat preceded Euler. . . . But the research of this geometer had
no direct influence on the development of the science: his propositions re-
mained without proof and without application. In this situation Fermat’s
discoveries served only as a challenge to geometers to investigate the the-
ory of numbers. But despite the general interest of this research, no one
accepted the challenge until Euler. And this is understandable: this work
did not require new applications of methods that were already known or
new advancements with methods that had been used before. It required
the creation of new methods, the discovery of new starting points, in a
word the foundation of a new science. This was done by Euler.”

Soon after Euler arrived in St. Petersburg in 1727 he evidently heard
about Fermat’s work from Christian Goldbach (1690–1764), and he main-
tained his interest in number theory all his life. Euler’s prominent col-
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leagues had something to do with this interest, at least unknowingly. Daniel
Bernoulli (1700–1782), who himself did not mind studying arithmetic prob-
lems, wrote in 1778 to Euler’s student Fuss about his teacher’s arithmetic
works: “. . .do you not find that the prime numbers are given, if you will,
too much honor, so that so much energy is wasted on them, and does this
refined taste of our century not repel you?” Euler discussed arithmetic
problems first of all with Goldbach, a very original mathematician who
still was not among Euler’s strongest contemporaries such as Jean Le Rond
d’Alembert (1717–1783) or Alexis Clairaut (1713–1765).

The situation changed only towards the end of Euler’s life, when thanks
to his work attitudes towards number theory began to change and he was
able to discuss these problems with Lagrange in the letters of 1772–1773.

As early as 1729, Euler learned from Goldbach about Fermat’s claim
that the numbers Fn = 22n + 1 are prime for all n. In 1732 he discovered
that this was false, and in particular that F5 is divisible by 641. Euler’s ob-
servation was not the result of sorting through all the possibilities: finding
the divisors of F5 directly was unrealistic even for such a computational
virtuoso as Euler. He discovered first that the divisors of Fn have the very
special form k · 2n+2 + 1 if they exist, and then it was not hard to find that
641 = 5 · 27 + 1. It is surprising that Euler’s first run at proving Fermat’s
confident assertions led him to the only erroneous one. Happily, this did
not shake his belief and interest in Fermat’s arithmetic.

A second class of prime numbers in Euler’s field of vision were the
Mersenne primes Mp = 2p − 1, where p is prime. The divisors of Mp
must simultaneously have the forms 2pk − 1 and 8l ± 1. Using this, Eu-
ler proved that M31 = 2,147,483,647 is prime. Since that time new Fer-
mat primes (primes of the form Fn) have not been found, but the world
record for Mersenne primes has steadily increased. The record in 1983 was
p = 86,243 and today computers find Mersenne primes with unbelievably
many digits.16

Regarding Mersenne primes, Euler filled a gap that had been left open
since Euclid. Euclid knew that if Mp is prime, then Mp(Mp+1)

2 is a perfect
number, i.e., a number that is the sum of its proper divisors. Euler proved
that every even perfect number has this form (it is still unknown if there
exist odd perfect numbers). Euler was interested in whether there exist
polynomials P(n) that take prime values for all natural numbers n. He
answered this negatively but noted that the values of the polynomial 41 −
n + n2 are prime for all n ≤ 40.

�——————�
16In December 2005 it was found that 230,402,457 − 1, which has 9,152,052 digits, is prime.

This is the 43rd Mersenne prime that has been found. More details are at http://www.
mersenne.org/prime.htm.—Transl.
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Euler supplied a proof of “Fermat’s Little Theorem,” which states that
ap−1 − 1 is divisible by p, where p is prime and a is an integer not divisible
by p. Not stopping there, he found and proved its generalization to non-
prime divisors: if a and m are relatively prime, then aϕ(m) − 1 is divisible
by m. Here ϕ(m), called the Euler phi function, is the number of natural
numbers relatively prime to m and less than it. When p is prime we have
ϕ(p) = p − 1. In discovering that this function, which is defined on the nat-
ural numbers, has remarkable properties he opened an important chapter
in number theory, namely, the theory of arithmetic functions. Euler pro-
ceeded very logically. He noticed that for certain values of a the number
ak −1 is divisible by p for k < p−1 and for others it is not. In the latter situ-
ation a is called a primitive root modulo p. An experiment convinced Euler
that primitive roots exist for all primes p, but he was unable to prove this.
Later on, Legendre and Gauss found proofs. Euler knew how to prove dif-
ficult theorems but he knew his capabilities and appreciated them soberly.
He never concentrated his thinking on one difficult problem for years but
instead advanced along a broad front against the secrets of mathematics.

Another assertion that was stated by Fermat without proof attracted
Euler’s attention. This concerned expressing squares n2 in the form kp − 1,
where p is prime. For p = 3 such squares do not exist (why?) and for p = 5
we have 22 = 5 − 1. Fermat claimed that for each prime p of the form 4l + 1
there exists a square of the form kp−1 and for p = 4l−1 such squares do not
exist. In 1747, after several unsuccessful attempts, Euler proved Fermat’s
claim and then continued in a natural direction: for which p can kp + 2 be
a square and, more broadly, for which p can kp + a be a square, where a is
a fixed number? For a = 2 the conjecture is that squares of such form exist
for p = 8l ± 1 and not otherwise. The general conjecture is that squares of
the form kp + a, where p is prime, exist (we say that a is a quadratic residue
modulo p) or do not exist (a is a quadratic nonresidue) simultaneously for all
prime p in the arithmetic progression b+4ak, k = 1, 2, 3, . . . . This statement
was later called the “law of quadratic reciprocity.” Euler could prove it only
for a = 3, apart from a = −1. Lagrange and Legendre later considered
different values of a until the 19-year old Gauss found a complete proof of
Euler’s conjecture (this is presented in the chapter on Gauss).

The next circle of questions inherited from Fermat was the solution of
equations in integers. Fermat’s most famous claim, “Fermat’s Last Theo-
rem,” is that the equation xn + yn = zn has no solution in positive integers
for natural numbers n > 2 (for n = 2 such solutions exist and are called
Pythagorean triples). In 1738 Euler found a proof of Fermat’s Last Theorem
for n = 3, 4 but he gave up trying to prove it for larger values of n, despite
Fermat’s unmotivated statement that there exists a proof for arbitrary n.
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Fermat’s Last Theorem was proved by Andrew Wiles in 1995.
Once Fermat proposed to Frenicle and Pierre Brulart de Saint-Martin to

construct a right triangle with integer sides for which the sum of the legs
and the hypotenuse are both squares, i.e., to solve this system of equations
in integers: x+y = u2, x2 +y2 = v4. Fermat suspected that he had posed an
“impossible” problem. Euler studied the system, which is remarkable in
that its smallest solution consists of the 13-digit numbers 1,061,652,293,520
and 4,565,486,027,761.

Euler considered the equation x2 −Dy2 = 1, D �= a2, which he called the
Pell17 equation. He discovered a connection between its smallest solution
and the expansion of

√
D as an infinite continued fraction. Many examples

convinced Euler that he had found a periodic continued fraction, but a
proof of this was found only later by Lagrange.

Fermat claimed that every prime of the form 4k + 1 can be written as
the sum of two squares, and that this can be done in only one way (it is
easy to show that primes of the form 4k + 3 are not sums of squares). Euler
established that the converse is true: if a representation of a number N as
the sum of squares exists and is unique, then N is a prime number. He
showed that this property can sometimes be used to prove that a number
N is prime. For example, 1,000,009 is a composite number since in addition
to its representation as 10002 + 32 it can be written as 2352 + 9722. Further-
more, Euler showed that the forms x2 +2y2 and x2 +3y2 have an analogous
property. Primes of the form 8m + 1, 8m + 3 can be written uniquely in the
form x2 + 2y2, and numbers having more than one representation of this
form are composite. Analogously, only prime numbers admit a representa-
tion as x2+3y2 and these have the form 6m+1. After this Euler moved on to
the general problem: is it true that N admits a unique representation of the
form x2 +Dy2, where D is fixed, if and only if N is prime? This claim turned
out to be true for all D ≤ 10 but for D = 11 there is a composite number
with a unique representation. The situation intrigued Euler. He called a
number D convenient if only prime numbers can be written as x2+Dy2. Eu-
ler obtained a criterion for verifying that numbers are convenient, and out
of curiosity wrote down convenient numbers one after the other: after 10
comes 12, 13, 15, 16, 18, 21, 22, 24, . . . . The convenient numbers gradually
become rarer. There are 62 in the first thousand numbers but Euler per-
sisted in continuing his calculations, probably hoping to notice some kind
of pattern. He discovered only three more convenient numbers, namely,
1320, 1365, 1848, although without losing patience he checked all numbers
up to 10,000 and then some. Euler had grounds for hypothesizing that the

�——————�
17Named for John Pell (1611–1685).—Transl.
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set of all convenient numbers is limited to the 65 that he had found. Gauss
carried out Euler’s study in a more reasonable way but did not find any
new convenient numbers. It has now been proved that the set of conve-
nient numbers is finite, but it is unknown whether there are any beyond
1848. This work is very characteristic of Euler’s creative method, perform-
ing huge computational experiments to verify a conjecture and with the
aim of seeing new patterns. Among the great mathematicians perhaps
only Gauss completely mastered this inductive method.

With this we complete our survey of that part of Euler’s work in arith-
metic where he followed Fermat. He included Fermat’s claims in a picture
of the multiplicative theory of numbers, i.e., concepts related to divisibility,
that was well thought out, and he correctly foresaw practically all of its ba-
sic theorems and problems. The proofs of some of the key assertions were
left for Euler’s successors. We can see the features of Euler’s scientific style
in some examples. Before him lay several excellent problems on which one
could have concentrated for years if not for a lifetime, but no specific prob-
lem took priority with Euler over recreating the whole picture, over the
irrepressible desire to move forward. He constantly returned to unsolved
problems and knew how to ration the time he devoted to one problem or
another. The difficulty of the problems that arose and the awareness that
he needed to give up on obtaining a strict proof led Euler to formulate a
method for establishing mathematical truths apart from proofs. An exper-
iment was first and foremost not only for thinking through a problem or
conjecture. A thorough numerical experiment on a large scale was, in Eu-
ler’s internal value system, sometimes equivalent to establishing the truth.
He spoke of “discovered but not proven truths” and tried to have this kind
of argument accepted in mathematics. Obtaining a strict proof remained
an important goal for Euler, but at some stage he would knowingly stop
searching for one and instead turn to careful heuristic considerations.

Analytic Number Theory

Number theory is obliged to Euler for an idea that soon changed its face
completely, namely the application of mathematical analysis to arithmetic.
It was hard to imagine this possibility. At first it surprised Euler himself:
“Although we are considering here the nature of integers, to which the
Infinitesimal Calculus does not seem applicable, nevertheless I came to my
conclusion with the help of differentiation and other devices.”

For different values of s, Euler considered the sum of the infinite series

ζ(s) = 1 + 1
2s + 1

3s + · · · + 1
ns + · · · . (1)
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This was later called the Riemann zeta function and plays an exceptional
role in arithmetic. Using an argument that was not rigorous, Euler proved
that this infinite sum coincides with an infinite product based on prime
numbers,

ζ(s) =
(

1 − 1
2s

)−1 (
1 − 1

3s

)−1 (
1 − 1

5s

)−1

· · ·
(

1 − 1
ps

)−1

· · · . (2)

His reasoning went as follows: for s > 0 the factor (1−p−s)−1 can be thought
of as the sum of the infinite geometric progression 1+p−s+p−2s+p−3s+· · · .

Multiplying these infinite sums together for all prime p and considering
only the products of terms that equal 1 for all but a finite number of p, we
arrive at the infinite sum (1). We must add a lot here to make this argument
rigorous, beginning with the idea of the sum of an infinite number of terms
and the product of an infinite number of factors. Euler did not include this.
He felt that these considerations led to an exceptionally serious arithmetic
result, but he himself could only produce a new proof of the theorem that
the set of primes is infinite, a result that goes back as far as Euclid. Jacob
Bernoulli knew that the sum of the n terms 1+ 1

2 + 1
3 +· · ·+ 1

n goes to infinity
as n → ∞, i.e., that ζ(s) goes to infinity as s → 1, which cannot be obtained
from the product (2) if the number of different p is finite. You can say that the
mountain gave birth to a mouse, but Euler’s intuition did not mislead him.
This became clear when Dirichlet proved that the number of primes in an
arithmetic progression whose first term and difference are relatively prime
is infinite, a generalization of Euclid’s theorem, starting with Euler’s proof
described above (Euclid’s proof does not extend to arithmetic progressions
beyond 1, 2, 3, . . . ).

Euler opened the door to yet another mystery in the world of prime
numbers. His analytical intuition, which was far ahead of his technical
capability, suggested that when x is large

∑
p<x

1
p is close to ln

∑
n<x

1
n ,

which is the first step in finding the distribution of the primes within the
natural numbers. Euler felt that the function ζ(s) can be extended even
to those values of s for which it cannot be defined as the sum of a series.
Moreover, he noted a connection between the values of ζ at the points s
and 1−s that would later be stated by Riemann in the form of a remarkable
functional equation. Euler studied the values of ζ(s) at the integers. We
will describe below how he figured out the case where the argument is
even and how he expected to apply the symmetry between s and 1 − s to
study ζ at the odd points. But he failed, understanding that at the negative
even points the continuation of ζ equals zero. We note that only recently a
little has been learned about the arithmetic nature of the values of the zeta
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function at the odd points: in 1979 it was proved18 that ζ(3) is irrational
and in the summer of 2000 it was announced19 that the set of values of the
zeta function at the odd integers contains an infinite number of distinct
irrationals.

Series and Infinite Products

Infinite sums and infinite products were Euler’s beloved objects in analy-
sis. Newton frequently used infinite sums (series) and particularly power
series a0 + a1x + · · · + anxn + · · · , for example, in studying the binomial
(1 + x)α for noninteger α. Without really stressing this, Newton had in
mind series for which the sums of n successive terms converge, as with
decreasing geometric progressions. Although Euler well understood that
a series might not be summable, he dared to work with series without
worrying about convergence: he multiplied and divided series formally,
differentiated them term-by-term, etc. This foreshadowed modern work in
algebra with formal series. Not limiting himself to formal operations, Euler
wanted to assign numerical values to divergent series. More than once his
successors condemned him for what were, in fact, dubious claims such as
1 − 3 + 5 − 7 + · · · = 0 and · · · + 1

n3 + 1
n2 + 1

n + 1 + n + n2 + n3 + · · · = 0.
On the other hand, Euler took the partial sums of the harmonic series
1+ 1

2 + 1
3 +· · ·+ 1

n and noted that if we subtract ln n, then the difference will
approach the constant 0.577216 …, which is now called Euler’s constant.
This is an important example of how the nature of divergence arose. Euler
felt that divergent series were unavoidable in mathematics, and although
he did not have the necessary apparatus his astounding intuition protected
him against drawing erroneous conclusions from nonrigorous reasoning.
At the same time his imitators, who did not have such powerful defenses,
committed more than a few mistakes and absurdities.

Euler looked at infinite series as polynomials of infinite degree and
by analogy formulated rules for expanding them into infinite products of
linear factors. If the sum of a series 1 + a1x + a2x2 + · · · equals zero at
the points α1, α2, . . . , αn, . . . , then it coincides with the infinite product
(1 − x

α1
) · · · (1 − x

αn
) · · · . Euler gave no basis for this claim and did not state

it rigorously but went straight to examples. He started with the infinite
series

sin x = x − x3

3! + x5

5! − x7

7! + · · · = x

(
1 − x2

3! + x4

5! − x6

7! + · · ·
)

.

�——————�
18By Roger Apéry.—Transl.
19By Tanguy Rivoal.—Transl.
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Its sum is zero for α±k = ±πk, which leads to

1 − x2

3! + x4

5! − x6

7! + · · · =
(

1 − x2

π2

) (
1 − x2

4π2

) (
1 − x2

9π2

)
· · · .

By formally multiplying out the expressions in brackets, collecting the co-
efficients of x2, and comparing the result with the coefficient in the series
on the left, we obtain

1 + 1
4

+ 1
9

+ · · · + 1
n2 + · · · = π2

6
.

This is the value of the zeta function at s = 2. Jacob Bernoulli had already
investigated this series but could not find its sum. Euler had considered it
for a long time. First he found its sum to seven decimal places, 1.6449340,
and later calculated it to eight more places. While understanding that
his computations were, strictly speaking, invalid Euler first of all found
π2

6 to seven places and compared it to the answer he knew. The results
agreed! This happened in 1735. Comparing coefficients for more terms in
the series and product, Euler easily found that ζ(4) = π4

90 and ζ(6) = π6

945 .
He understood that ζ(2n) = cnπ2n and was interested in the nature of the
coefficients c2n. Euler obtained recurrent relations that were enough to
compute them but he was not satisfied with that.

At almost the same, Euler was concerned with another numerical se-
quence that arose in a completely different problem. He wanted to apply
integrals to estimate the sum of a large number of terms S(n) = f(1) +
f(2) + · · · + f(n). He obtained the following formula, now known as the
Euler–Maclaurin formula:

S(n) =
∫ n

0
f(x)dx + f(n)

2
+ f′(n)

12
− f′′′(n)

720
+ f(5)(n)

30240
+ · · · ,

and so on for successive derivatives. These were mysterious coefficients
that Euler knew how to compute but for which he did not know a simple
pattern. How surprised he was when he discovered that the coefficients

were equal to (−1)n−1cn
22n−1 . Nature only bestows such surprising coincidences

on the greatest mathematicians! After all, there is no direct connection
between these problems. But then Euler recalled a remarkable numerical
sequence Bn that Jacob Bernoulli found in computing the sums of the kth
powers of the first n natural numbers. The numbers Bn are now called the

Bernoulli numbers, and it turned out that Bn = (−1)n−1(2n!)cn
22n−1 . Moreover, in

the expansion of z
ez−1 in powers of z, Bn

n! equals the coefficient of zn. The
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Bernoulli numbers were known before Euler, but he was the first to see that
they can arise in a hidden way in the most different problems.

Euler constantly worried that his calculation of ζ(2n) was unfounded.
He thought of another argument that strengthened the conclusions he drew
from his numerical experiments. Among the examples he considered was
one based on the expansion of 1−sin x in a series and in an infinite product.
He arrived at the relation π

4 = 1− 1
3 + 1

5 − 1
7 +· · · , which Leibniz had already

derived rigorously directly from the geometric definition of π . Euler placed
a very high value on the fact that these results agreed with each other:
“This is a great confirmation for our method, which some might see as
insufficiently reliable. Therefore we should not at all doubt the other results
to which the same method leads.” Euler insisted that unproven claims
should be trusted seriously if they passed experimental trials and were
confirmed indirectly. He thought that in the state of affairs that was then
current, mathematics would lose a lot by holding narrowly to the Euclidean
rules for establishing truth. By the way, he did not stop searching for a
rigorous foundation and within 10 years found an essentially simpler basis
for the expansion of sin x (based on the connection between trigonometric
and exponential functions in the complex domain).

Euler continued to work with infinite products. He calculated the series
corresponding to the infinite product s(x) = (1 − x)(1 − x2)(1 − x3) · · · and
noted that many powers are missing from it:

s(x) = 1 − x − x2 + x5 + x7 − x12 − x15 + x22 + x26 − x35 − x46 + · · · .

The signs of the nonzero terms change every other term. For Euler, it
was easy to unravel the pattern for the sequence of exponents of nonzero
terms. He considered the sequence of differences 1, 3, 2, 5, 3, 7, 4, . . . and
divided it into the sequence of natural numbers and the sequence of odd
integers. He then obtained this representation for the original sequence of
exponents: in the kth pair of exponents the powers are m = 1

2 (3k2 ± k), and
the sign of xm is (−1)k. However, Euler did not succeed in proving that the
infinite product and series are equal, even in a formal way: “I searched in
vain for a strict proof of the equality between this series and the infinite
product (1 − x)(1 − x2)(1 − x3) · · · , and I proposed this question to several
of my friends whose abilities in this regard I know and all agreed with
me that this transformation of a product into a series is valid, but no one
could unearth any sort of key to the proof. Thus this known but unproved
truth. . . .” Incidentally, the numbers of the form 3k2−k

2 were known by the
Greek mathematicians, at least by Nichomachus in the first century. These
are the so-called pentagonal numbers.
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Euler arrived at the problem we are discussing by starting with another
one. Let am(bm) be the number of representations of a natural number m as
the sum of an even (odd) number of different terms. By analyzing how the
term xm arises in multiplying by (1 − x), (1 − x2), . . . , it is not hard to see
that the coefficient of xm is precisely equal to am − bm. This means that the
claim Euler was trying to prove is equivalent to saying that am = bm for all
m other than 3k2±k

2 and that for these numbers |am − bm| = 1 (we can even
specify the sign). It was this claim that interested Euler, and considering
infinite products and series was only a means of proving it.

Euler associated yet another remarkable arithmetic statement with the
series s(x). This was a claim about σ(n), the sum of the divisors of n.
Working with s′(x)

x , Euler obtained

σ(n) = σ(n − 1) + σ(n − 2) − σ(n − 5) − σ(n − 7) + · · · .

Euler called this “an extraordinary law of numbers in relation to the sum
of their divisors.” Seeing no way to prove it directly, he verified the law
for n ≤ 20 and then for n = 101 (a prime number) and n = 301, and
wrote: “These examples that I have just developed will no doubt remove
any scruple which one could still have about the truth of my formula. But
one could be all the more surprised by this nice property, not seeing any
connection between the composition of my formula and the nature of the
divisors, the sum of which the proposition centers upon.”20

Additive Number Theory

Problems about the number of representations of a natural number as a
sum of terms of some nature (as Euler said, problems about “partitions
of numbers”) were at the center of his attention for a long time. His first
push in this direction may have come from problems contained in a letter
of Phillipe Naudé (1684–1745), whose name is unknown today.21 Euler
applied the machinery of infinite products to these problems. Here are
some examples. Euler claimed that

(1 + x)(1 + x2)(1 + x3) · · · = 1
(1 − x)(1 − x3)(1 − x5) · · · .

The argument consists of the fact that if we multiply the left-hand side
sequentially by (1 − x), (1 − x3), (1 − x5), . . . , then all nonzero degrees will

�——————�
20Taken from the English translation by Todd Doucet of paper E175 in the Euler archive at

http://math.dartmouth.edu/∼euler.
21It is notable that Euler started not only with great sources, as in the case of Fermat, but

sometimes with completely random problems.
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gradually vanish and this implies the identity (this argument can be made
rigorous by using the theory of limits). After removing the parentheses on
the left we obtain the series 1 + a1x + a2x2 + · · · , where ak is the number
of representations of k as a sum of distinct natural numbers. The right-
hand side can be written as follows, using the sum of an infinite geometric
progression:

(1 + x + x2 + x3 + · · · )(1 + x3 + x6 + x9 + · · · )(1 + x5 + x10 + · · · ) · · · ,

and equals 1 + b1x + b2x2 + · · · , where bk is the number of representations
of k as the sum of odd terms, some of which can be the same (why?).
Euler concluded that the numbers of representations coincide, i.e., that
ak = bk. Try to prove it directly and you will see that it is not obvious how
to approach this problem.

The following argument starts with the identity

(1 + x)(1 + x2)(1 + x4)(1 + x8) · · · = 1 + x + x2 + x3 + · · · .

In order to convince yourself that this is plausible, you can multiply both
sides by (1−x) and observe how the nonzero powers of x successively drop
out on both sides. It follows immediately that each nonnegative integer can
be represented in one and only one way as the sum of different powers of
2 (the numbers of such representations are the coefficients in the power
series obtained after transforming the product on the left).

Euler’s method was later called the method of generating functions. A
function a(n) of a natural number n is placed in correspondence with a
function that is the sum of an infinite series, A(x) = a(0) + a(1)x + a(2)x2 +
· · · . Euler’s idea, confirmed by many examples, was that the arithmetic
properties of the sequence a(n) appear distinctively in the properties of
the function A(x). Characteristically, a purely arithmetical proof of Euler’s
results on partitions that were proved by him analytically was found only
in the second half of the 19th century. Euler’s method was later used to
prove a series of remarkable results. For example, Carl Jacobi (1804–1851)
not only reproved Lagrange’s theorem on representing a natural number as
the sum of four squares but also found the number of such representations.

The problems about partitions differed from the arithmetic of Diophan-
tus and Fermat not only in their methods but also in their statements. They
initiated the additive theory of numbers (as opposed to the multiplicative
theory). Goldbach’s famous problems, which were posed in a letter to Eu-
ler, belong to additive number theory. Among them is the widely known
conjecture that every odd (even) number can be represented as the sum of
three (two) primes. For sufficiently large odd numbers this was proved
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in 1937 by Ivan Vinogradov (1891–1983). Euler, faithful to his principles,
studied these problems thoroughly. He verified the conjecture that each
odd number n is the sum of a prime and two times a square for n < 2500;
to this day, it has not been proved. He stated several new conjectures. For
example, Euler’s conjecture that every prime of the form 8k+3 is the sum of
two times a prime of the form 4l + 1 and an odd square remains unproved.
We recall still another of Euler’s arithmetic conjectures whose origin is dif-
ficult to reconstruct, namely that 3

√
2 is transcendental. A generalization

of this claim constituted one of Hilbert’s problems22 and was solved in
1934 by Aleksandr Gelfond (1906–1968). This is yet one more example of
astonishing foresight!

Analysis

We have already spoken of Euler’s work in analysis in connection with
series and infinite products. Differential and integral calculus were cre-
ated during the 17th century, in their final form, in the works of Newton
and Leibniz. Euler was the “scientific grandson” of Leibniz, via Johann
Bernoulli. By the end of the 17th century, the question had arisen of cre-
ating a handbook for infinitesimal calculus. This goal was pursued in
Analyse des infiniment petits pour l’intelligence des lignes courbes (Analysis of
the Infinitely Small for Understanding Curved Lines), published in 1696 by
the Marquis de L’Hôpital, a student of Johann Bernoulli. In his thinking
through of analysis, Euler devoted a considerable part of his life to cre-
ating a complete sequence of books on the subject. In 1748 Introductio in
analysin infinitorum (Introduction to Infinitesimal Analysis) appeared in two
volumes. The second volume is about analytic geometry. The first volume
is a remarkable textbook that students can read with interest even today
and contains all of “ordinary” analysis that, in Euler’s opinion, needs to
precede infinitesimal analysis. There is much elementary material here and
many elementary problems. Here is one: “After the Flood the human race
propagated itself starting from six people. Suppose that after 200 years the
number of people had grown to 1,000,000. It is required to find by what
portion the number of people had to increase each year.” But there is also a
detailed study of elementary functions, including their expansion in series
and continuation into the complex domain. Here also are the calculation
of ζ(2n) and the theory of partitions of the natural numbers. Differential
Calculus appeared in 1755, three volumes of Integral Calculus came out in
1768–1770, and an additional volume was published after Euler’s death.

�——————�
22In a famous speech in 1900, David Hilbert (1862–1943) posed 23 problems for the coming

century.—Transl.
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We are able to talk only a little about Euler’s results in analysis. Above
all he made a principal contribution to the evolution of the concept of func-
tion. At that time mathematicians clearly understood that functions were
the fundamental objects of analysis and knew a large number of concrete
functions, but they were only approaching an understanding of the general
concept. From the point of view of a mathematician working on applica-
tions, a function was always given by some analytic expression. On the
other hand, in constructing differential and integral calculus it was often
inconvenient to work with explicit expressions. Here a geometric view
of functions is more effective. Euler, whose field of vision included both
applications and the general theory, developed the two viewpoints of func-
tions in parallel. He was the first who dared to identify general functions
with arbitrary (continuous) curves having unique points of intersection
with vertical lines. As Riemann wrote, “Euler was the first to introduce
these (arbitrary—S.G.) functions into Analysis and, relying on a geometric
view, applied infinitesimal calculus to them.”

Euler did not only develop analysis for arbitrary functions, but he also
pointed out a real situation where arbitrary functions arise in applications.
In 1748, investigating a formula for how the form of an oscillating string
changes with time, Euler emphasized that at the initial moment of time the
form of the string can be arbitrary. At the same time d’Alembert, who had
found this formula a year earlier, was having a lot of trouble over the belief
that initial form had to be given by an analytic expression (in particular,
he came to the conclusion that the problem of the oscillations of a string
bent along a parabolic arc was insoluble). In 1761 Lagrange underlined
his debt to Euler in using general functions: “. . .they are necessary for a
large number of important questions in dynamics and hydrodynamics. . . .
M. Euler was, I maintain, the first who introduced this new type of function
into analysis in his solution of the problem on vibrating strings. . . .” Since
Euler’s time, the terminology has changed in an essential way: his gen-
eral (“discontinuous” or “mechanical”) functions are continuous from our
viewpoint, and after Lagrange functions that are continuous in his sense
came to be called analytic. Euler was certain that general functions do not
admit an analytic representation. He firmly opposed Daniel Bernoulli, who
thought (in connection with the string problem) that general functions are
superpositions of harmonics. After 70 years Joseph Fourier (1768–1830)
confirmed that Bernoulli was correct if infinite superpositions are consid-
ered, i.e., Fourier series.

As remarkable as Euler’s results were in the area of formulating the
general concept of function, they do not compare in any way to his colossal
work in selecting and studying special classes of “good” functions that are
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needed for applications. In studying special functions he definitely went
beyond the bounds of elementary functions. We have already discussed the
zeta function, introduced as early as 1730. Continuing the work of Wallis,
Euler sought a function 
(x) that takes the values n! at the integer points
and then a function B(x, y) that equals (n+m)!

n!m! (the number of combinations)
at the integers. This is how the famous Euler integrals (the gamma and
beta functions) came about.

Eighteenth-century mathematicians knew that the elementary func-
tions were not sufficient and recalled Leibniz’s dream of investigating the
higher transcendental functions, but a sober evaluation showed that there
were no standard ways to study this problem. Various examples of func-
tions had been given by different mathematicians, but we now see clearly
that this was a problem for the 19th century. At the same time we also
see that Euler, following some mysterious instinct, guessed all the special
functions that are the subject of higher analysis, almost without exception.
We have mentioned the Euler integrals and the zeta function. To these we
can add the Bessel functions, some form of the theta functions, and Gauss’
hypergeometric function (which received this name much later!), for which
various values of the parameters give most of the special functions arising
in mathematical physics. Finally, Euler took the most important steps in
the theory of elliptic integrals, including an addition theorem. Legendre,
Gauss, Abel, and Jacobi started off from these results. We have become
accustomed to the the idea that if a new natural class of functions appears,
then we need to look for it in Euler’s work. In recent years, the dilogarithm
Li2(z) = ∑∞

n=1
zn

n2 has mysteriously appeared in the most diverse problems
in number theory, algebra, topology, and geometry. It turns out that Euler
knew about the remarkable properties of this function, and about addition
theorems in particular.

The most important technical method that Euler did not yet know was
the continuation of special functions into the complex domain. But he had
already taken the first steps in the construction of complex analysis. He
had considered the Cauchy–Riemann equations, as did d’Alembert (true, in
connection with problems in hydromechanics), which give analytic func-
tions of a complex variable. He made use of complex substitutions in
computing real integrals and in the last years of his life computed real
integrals using integrals of complex functions, coming close to Cauchy’s
theory of contour integration in the complex plane. Euler understood the
inevitability of the “complex” world.

Euler’s most notable result in complex analysis was his discovery of
the connection between exponential and trigonometric functions in the
complex domain, which cannot be seen if we stay within the limits of the
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real numbers. Lagrange called Euler’s formula eix = cos x + i sin x “one
of the most beautiful discoveries in analysis made in this century.” Even
today, the formula makes a strong impression. It can be obtained naturally
through series or functional equations, and one rarely recalls how it ap-
peared in the mathematics of the 18th century. Surprisingly, the logic of its
discovery was straightforward enough. At the beginning of the century Jo-
hann Bernoulli, Euler’s teacher, while studying the problem of integrating
rational functions, turned his attention to the relation 1

1+x2 = 1
2i (

1
x−i − 1

x+i ).
If we integrate this formally, then we obtain an arctangent on the left and
a logarithm on the right, but of an imaginary argument. After some easy
transformations we obtain the formula

x = 1
2i

ln
1 − i tan x
1 + i tan x

, (3)

which is trivially equivalent to Euler’s formula. Although Johann Bernoulli
did not actually write down (3), he tried unsuccessfully to make sense out of
this calculation with imaginary quantities. It was against this background
that the famous discussion arose in 1712–1713 between Bernoulli and his
teacher Leibniz on logarithms of negative numbers (what is ln(−1)?), and
in 1714 “Euler’s formula” was briefly mentioned without the necessary
substantiation by Roger Cotes (1682–1716), an associate of Newton who
died young. Euler, being well informed about his teacher’s problems and
proceeding from computations, derived (3) in 1728. In 1739 he developed
the theory of logarithms in the complex domain, so that all the formulas
became correct and all the contradictions disappeared (ln(−1) = (2k+1)π i,
where k is any integer).

One cannot separate the search for special functions from the delin-
eation of important classes of differential equations. No one had doubted
that it was impossible to integrate an arbitrary differential equation explic-
itly. Euler actively participated in delineating those equations that arise
in physics. He considered a series of equations in connection with prob-
lems in hydromechanics, the oscillation of strings and membranes, and the
propagation of sound: here are Laplace’s equation, some forms of the wave
equation, and so on. An analytical view of physics was characteristic of
Euler. He sought to reduce physics problems to the solution of one dif-
ferential equation or another. In mechanics, he was the first to move from
Newton’s geometric language to the language of analysis.

In reviewing Euler’s activities in analysis, we stress that he put aside
his preference for analytic methods for solving both general mathemat-
ics problems and applied ones. But analysis was never Euler’s only goal.
Recall that he, as opposed to d’Alembert, persistently sought a purely al-
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gebraic proof of the fundamental theorem of algebra (the existence of a
complex root for every algebraic equation). He did not succeed in finding
an algebraic proof and Georg Frobenius (1849–1917) noted with regret that
Euler’s remarkable algebraic work did not yield what it should have, and
much of it was later incorrectly attributed to Gauss.

Geometry

Euler’s studies in geometry have a more fragmented character. The second
volume of Introduction to Analysis is the first textbook of analytic geometry.
A lot of analytic geometry comes from Euler. He was the first to consider
affine transformations (he introduced that terminology) and to study the
group of rotations, and he connected the results he found with the motion
of a rigid body. Euler thought about being able to apply analysis to geom-
etry and made the first steps in differential geometry. As one of these he
considered geometric problems related to cartography, beginning with the
question of in what sense a planar representation on a map is similar to the
corresponding picture on a sphere (the Earth’s surface). The connection he
discovered with complex numbers was unexpected by many.

Even in elementary geometry, Euler discovered facts that no one had
noticed earlier. For example, the orthocenter of a triangle (the intersection
of the altitudes), the center of the circumscribing circle, and the center of
gravity lie on one line, called the Euler line. It seems that the theorem that
the three altitudes meet at one point, omitted by Euclid, was not stated
clearly by anyone before Euler.

Euler’s theorem on polyhedra is probably the best known of his geo-
metric assertions: V + F = E + 2, where V is the number of vertices, F is
the number of faces, and E is the number of edges. It is interesting that
Euler found this relation through examples but could not at first prove it
in general, verifying the theorem instead for any pyramid or prism, for
certain composite polyhedra, and for regular polyhedra. Euler trusted in
mathematical experiments in geometry as well: “Thus, since the truth of
this claim has been verified in all these cases there is no doubt at all that
it holds for all bodies, so that this proposition is sufficiently established as
valid.” Only later did he find a general proof.

Euler did not call on his colleagues to compete in solving problems
as Fermat had done, but instead readily exchanged solved and unsolved
problems with them. This applies to his results on the traditional themes
of mathematics competitions such as magic squares, amicable numbers,
etc. Up to the present, popular books have preserved some simply stated
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problems that Euler thought of or that he was the first to solve. One is the
problem of the Knight’s Tour on a chessboard, where no square can be vis-
ited twice. Another well-known problem is to prove that it is impossible to
make the rounds of the seven bridges of Königsberg without going on the
same bridge twice. It is clear from the example of this problem that Euler
was intrigued by problems that can be solved in a nonstandard way, since
this nonstandard way can have far-reaching consequences. In March 1736,
Euler wrote to “Sir, the glorious and distinguished Marinoni”23: “A prob-
lem was posed to me about an island in the city of Königsberg, surrounded
by a river spanned by seven bridges, and I was asked whether someone
could traverse the separate bridges in a connected walk in such a way that
each bridge is crossed only once. I was informed that hitherto no one had
demonstrated the possibility of doing this, or shown that it is impossible.
This question is so banal, but seemed to me worthy of attention in that
geometry, nor algebra, nor even the art of counting was sufficient to solve
it. In view of this, it occurred to me to wonder whether it belonged to the
geometry of position (geometriam Situs), which Leibniz had once so much
longed for.”

Leibniz had, in fact, left several enigmatic remarks about a mysterious
geometry, “which reveals position to us as algebra does quantities” (letter
to Huygens, 1679). Euler tried unsuccessfully to clarify the details of this
“geometry of position.” He worked out a method for solving this problem
that is essentially the beginning of topology. He felt that the problem was
only the the echo of much deeper problems: “If we could give other, more
serious problems here this method could be more useful and it could not
be ignored.” Within a month, in a letter to Ehler24 in Danzig, he discussed
a generalization of the bridges problem and said, “Thus you see, most
noble Sir, how this type of solution bears little relationship to mathematics,
and I do not understand why you expect a mathematician to produce it,
rather than anyone else, for the solution is based on reason alone, and
its discovery does not depend on any mathematical principle. Because of
this, I do not know why even questions which bear so little relationship to
mathematics are solved more quickly by mathematicians than by others.
In the meantime, most noble Sir, you have assigned this question to the
geometry of position, but I am ignorant as to what this new discipline
involves, and as to which types of problem Leibniz and Wolff expected to

�——————�
23This letter was written to Giovanni Marinoni (1676–1755), an Italian mathematician and

astronomer in Vienna. The English translation of this excerpt is taken from Brian Hopkins
and Robin Wilson, “The truth about Königsberg,” College Math. J., 35 (2004), pp. 198–207.

24Carl Leonhard Gottlieb Ehler, the mayor of Danzig. The translation of this excerpt is also
taken from Hopkins and Wilson.
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see expressed in this way.” Thus Euler, following Leibniz, saw ahead to a
new area of geometry, the geometry of shapes and without measurement,
whose lines would become clearer in a century and a half.

Mechanics
The field of mechanics was within Euler’s field of vision from the start. As
early as 1736 he published Mechanica sive motus scientia analytice exposita
(Mechanics, or the Science of Motion Presented Analytically). This was his first
book and it appeared when he was 29. Euler carefully studied Newton’s
Principia, in which mechanics was presented in geometric language. He
discovered that from the viewpoint of applications to concrete problems
it was more effective to change to analytical language, using coordinates.
In the end, a problem in mechanics is transformed into the purely mathe-
matical problem of solving differential equations. Lagrange continued this
direction in mechanics and said in the preface to his Méchanique Analytique,
“There are no figures in this work, only algebraic operations.” Euler clearly
was aware that reducing a mechanics problem to a mathematics problem
does not solve it: “. . .Although the principles of mechanics on which all
laws of motion are based are evidently sufficiently well known and suffi-
ciently applicable to general phenomena to use them to place changes in
motion under analytical formulas, very often analysis is not sufficient to
solve the equations. . . . We really do not see that the principles of mechan-
ics lead us everyday to differential equations whose solutions can be found
only when analysis is developed to a point that is still very far away.”

Newton’s mechanics did not go beyond the limits of the motion of point
masses and then Descartes considered the motion of planar plates, but only
Euler studied the detailed motion of a solid body of finite size. He did this
in a book that saw the light 29 years after the appearance of his Mechanics.

Newton’s mechanics begins with his three laws as axioms. Euler thought
in essence that they needed more motivation and that they should follow
from some sort of more primary laws of the universe. An attempt in this
direction was a dubious endeavor in 1736. Aleksei Krylov (1863–1945)
wrote that Euler only “diluted” Newton’s laws and found the roots of Eu-
ler’s desire in his religious practice. When Euler was in Berlin, a new way
to work out a more natural basis for mechanics unexpectedly opened up
to him. In 1744, Maupertuis proposed that all the laws of motion and
equilibrium in nature could be derived from the fact that all motion takes
place so that some quantity or action takes a minimum value. Mauper-
tuis started with optics (Fermat’s principle) and moved to mechanics but
then interpreted his law as broadly as possible and, confusingly, gave his
law of least action a theological meaning by claiming that least action is a
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consequence of the “wisest use of the power of the Creator.” Maupertuis
did not go further into simple applications of mechanics but was inclined
towards global problems, which soon involved him in a hot argument that
cost him dearly. D’Alembert wrote, “This argument about action, if we are
permitted to say, somewhat resembles certain religious arguments in the
bitterness in which it is conducted and in the number of people who take
part without understanding anything about it.”

Euler was on Maupertuis’ side from the very beginning. The theological
interpretation was not foreign to him: “Indeed, since the edifice of the en-
tire world is perfect and is erected by a wise Creator, nothing happens in the
world in which the idea of some maximum or minimum does not appear.”
But first of all Euler sought a precise statement of the principle that would
allow him to change the laws of mechanics. He found such a formulation
in the case of central forces but did not give a proof. As Maupertuis him-
self wrote about Euler, “This great geometer not only established a more
fundamental principle than I did but his gaze, more enveloping and more
penetrating than mine, led him to the discovery of consequences that I did
not draw out.”

Maupertuis’ assertions were so general that in the discussions (more
precisely, the quarrels) people took part who were distant from physics,
among them Voltaire, who had old accounts to settle with Maupertuis and
who burst forth in the pamphlet Diatribe du Docteur Akakia et du natif de
Saint-Malo (The Diatribe of Doctor Akakia and the Native of Saint-Malo). In
the end, Maupertuis’ spirit collapsed and Euler, his ardent defender, also
caught it from Voltaire. He can be recognized in the scientist who tries
to gain glory for himself among the European mathematicians by “what
happens on the page of a maximum calculation.” Voltaire is talking about
a scholar who computes for no less than 60 pages instead of thinking and
taking no more than 10 lines, who computes for three days and three nights
without spending a quarter of an hour thinking about the right way. This
is how Voltaire interpreted the brilliant calculator.

Euler was not infrequently reproached and here they reproached him
for overrating Maupertuis’ mistaken pronouncements, almost ostentatiously
stressing the second-rate nature of his work. They even hinted that the
practical Euler had tried to play up to Maupertuis, the all-powerful (before
these debates) president of the Berlin Academy of Sciences. But it is thought
that this feeling about Maupertuis’ work was integral to Euler: he could
appreciate pioneering work and understood how to imagine the ideas it
contained even in incomplete form. Maupertuis expressed something that
Euler could naturally have said. Euler consistently sought a more reliable
basis for mechanics than Newton’s laws, to which he was not ready to give
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primacy. But he was not destined to guess that the necessary principle
could be gotten from his beloved calculus of variations.

Astronomy
Euler’s activities in astronomy were a continuation of his work in me-
chanics. His field of interest was celestial mechanics. He was able to
realize his astounding computational abilities here. As the French as-
tronomer Dominique Arago (1786–1853) wrote, Euler “calculates the way
man breathes.” Euler was one of the first to whom calculations were acces-
sible that went beyond observational results. The old celestial mechanics
only extrapolated from observations, while the new started off from the
law of universal gravitation. The first steps in this direction were taken by
Newton himself, who gave a theoretical definition of the acceleration of the
moon’s motion and explained various anomalies (called “inequalities”) in
this motion. As always, Euler clearly understood the essential problems
of celestial mechanics. First of all it was necessary to try to explain the in-
equalities in the motions of the large planets Jupiter and Saturn on the basis
of their mutual attraction, superimposed on the attraction of the sun. Euler
made substantial progress towards the goal towards which he was aiming,
namely to explain the so-called “great inequalities” that appeared in the
systematic acceleration of Jupiter and deceleration of Saturn. However
Euler was unable to reach this result by calculations that agreed well with
observations, although he was on the right track. (Laplace later succeeded
in doing this.)

The theory of the moon’s motion was at the center of Euler’s attention.
The most burning issue was the problem of explaining the periodic mo-
tion of the orbit’s perigee, with a period of 9 years. A calculation of the
perturbation persistently gave a period of 18 years, until Alexis Clairaut
(1713–1765) showed in 1749 that computing the perturbation terms of the
next order gave the correct period. Euler recognized that Clairaut, con-
centrating his energies on solving this problem, had surpassed him: “. . .in
this question M. Clairaut has, if you will, no stronger opponent than I, . . .
although I was in fact M. Clairaut’s predecessor in this question I did not
have enough patience to undertake such extensive calculations.” Although
Euler’s theory did not succeed as much as Clairaut’s did, its consequences
were exceptionally important. On the basis of this theory, Tobias Mayer
(1723–1762) constructed tables of the moon’s motion with a level of accu-
racy not seen before. These tables made it possible to measure longitude on
board a ship and this method was competitive with the method of using the
chronometer that had been invented by John Harrison in 1735. Recogniz-
ing Mayer’s merit in solving this long-standing practical problem (see the
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chapter on Huygens), the British Parliament posthumously awarded him
a prize of 3000 pounds in 1765. At the same time Euler was awarded 300
pounds “for theorems with which the recently deceased Professor Mayer
of Göttingen constructed his Lunar Tables, allowing for the achievement
of great progress in the matter of finding longitude at sea.”

Euler worked a lot on calculating the elliptical (unperturbed) orbits of
comets. In particular, he worked on Anders Lexell’s (1740–1784) famous
comet of 1769, which came unusually close to the Earth (on May 10, 1983
the comet came about as close to the Earth for the first time in 200 years).

Although Euler did not succeed in constructing a theory of motion of
the planets starting only from Newton’s laws and completely agreeing with
experiments, he believed in the immutability of the law of universal gravi-
tation. Sometime after his unsuccessful attempt to explain the inequalities
in the motion of the moon, Euler, like his contemporaries, thought about
“refining” Newton’s law. However, further development of the theory of
lunar motion showed, in Euler’s words, that “the closer it agrees with New-
ton’s law the better it represents the observed phenomena.” Euler did not
doubt that it was also valid for all of celestial mechanics. Euler’s position
towards solving the three-body problem is instructive: “I should first of all
note that we would have gained nothing by using some convenient work
on integrating these equations. On the one hand, I strongly doubt that at
some time a method was found for this; on the other hand, even if one had
been lucky enough to derive their integrals, then these integrals would
have been quite complex and would have been almost no help for use
in astronomy. Towards this end they could just as well as been replaced
by successive approximations. But if we are talking about approximate
expressions, then it would be so easy to obtain them immediately from
differential equations.”

“Letters to a Princess”
The interrelation between great scientists and monarchs is an interesting
subject in the history of science. We have already had a chance to talk
about it. It is not only that contacts with the world of power were needed
to guarantee the existence of scientists and their work. They frequently
entertained the hope that their knowledge would help educate the perfect
monarch (recall Leibniz and the Elector of Hannover, the future king of
England, and Descartes and Queen Christina of Sweden). Euler hardly
had such plans for the princess of Anhalt–Dessau, the eldest daughter of
the Margrave of Brandenburg–Schwerin, the niece of Friedrich II. It was
probably pleasant for Euler to work with the inquisitive and bright princess,
all the more so because her relationship with the scientist was different from
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that of most of the king’s relatives. The princess gradually had less time
for studying and Euler decided to complete the gaps in his lessons with
letters: “The hope of having the honour to communicate, in person, to
your Highness, my lessons in Geometry, becoming more and more distant,
which is a very sensible mortification to me, I feel myself impelled to supply
personal instruction by writing, as far as the nature of the subjects will
permit.”25 The possibility of systematically laying out his global view of
the universe, life, and religion fascinated Euler. Little by little the letters
to the princess were oriented towards eventual publication. The three
volumes of Letters to a German Princess appeared in 1768–1774.

The letters are encyclopedic and create the impression that Euler was
trying tell about everything that he was able to think through. We can
get an idea of the range of questions discussed by listing how the first
volume began: the idea of attraction, the speed of sound and music, light,
vision, and the structure of the eye, the law of universal gravitation, the
ebb and flow of the tides at sea, Wolff’s monadology, “on the relation of
the soul to the body,” “on natural phenomena,” “on the state of the soul
after death,” “on idealists, egoists, and materialists,” “on the perfection of
language,” “on syllogism,” “on morals and physical suffering,” “on the
destination of man,” “the conversion of sinners,” “on the wonders of the
human voice,” etc.

Most scientists are not accustomed to philosophical writings, although
many have remarked on the value of popular presentations of scientific
knowledge. Condorcet kindly wrote, “. . .this work presents something
rather valuable in the clarity with which the chief and most important
things in the fields of astronomy, optics, and the theory of sound are set
forth. As for Euler’s thoughts regarding philosophy, they are more witty
than deep.” Euler made use of the pages of Letters in his struggle against
free-thinking in science, against materialism. He ridiculed “the narrow
chemists, anatomists, physicists who leave everything to their experiments.
No matter how much is said to them about the properties and essence of
the soul, they agree only with what strikes their external senses.” All
this, together with Euler’s musings on religion, provoked harsh responses
from Lagrange and d’Alembert. On December 2, 1768 Lagrange wrote to
d’Alembert, “. . .there is one essay that he should not have published for
the sake of his honor: this is Letters to a German Princess.” And on July 15,
1769 he wrote that Letters may have amused d’Alembert in its campaign
against free-thinkers. In reply d’Alembert compared Letters to Newton’s
commentaries on the Apocalypse and wrote, “Our friend is a great analyst

�——————�
25From the English translation by David Brewster, Letters of Euler on Different Subjects in

Natural Philosophy Addressed to a German Princess, 3rd ed., W. and C. Tait, Edinburgh, 1823.



210 � Tales of Mathematicians and Physicists �

but a rather poor philosopher.” In a letter of August 7th he wrote, “You
had every reason to say that his honor is dear and that he should not
have printed this work. It is simply unlikely that such a great genius as
he is in geometry and analysis could in metaphysics be lower than the
youngest schoolboy so as to say something so trivial and absurd, and this
is indeed a suitable opportunity to exclaim: the gods do not give everyone
the same gifts.”

But the public loved Letters! The fact that there were four editions in
Russian just in the 18th century testifies to this (the original was published
in French). This contrasts with how slowly Euler’s scientific works sold (in
a letter to Miller, the conference-secretary of the Academy in Berlin, Euler
wrote that of the 500 copies of Differential Calculus only 100 had been sold
and that only 12 subscribers had been found, with difficulty, for Theory
of Motion of a Rigid Body). And in our time, Vladimir Vernadsky26 wrote
of Letters to a Princess, “stopping in delight before the breadth and the
considered blending into a whole that bubbles up from this product of his
leisure time, no less characteristic of the 18th century as any creation of the
art or music of that time.”

The art of popularization that appears in the best pages of Letters to a
Princess was one of the most outstanding manifestations of Euler’s peda-
gogical mastery. Another was how well thought out the ideas he intro-
duced were and how modern his notation was (the notation for trigono-
metric functions came from Euler, he was the first to consider their values
outside the interval [0, 2π ], etc.). He devoted a lot of energy to educating
his students, who always lived in his home. His writings were oriented not
only towards communicating his results but towards demonstrating his art:
“He preferred to teach his students to the small satisfaction he would have
gotten by amazing them. He thought he would not have done enough for
science if he had not added to the discoveries by which he had enriched sci-
ence by candidly putting forth the ideas that led him to these discoveries”
(Condorcet). This is the source of his readiness to publish unproven results
together with the motivation for their being plausible and even with im-
precise but instructive calculations. Here is how he answered a critic who
discovered gaps in his work on the refraction of light (dioptrics): “You are
mistaken, my dear sir, if you think this work is therefore useless. On the
contrary, it is very valuable because it contains computations that are in-
dependent of the object itself and of its course and contains an application,
and these can serve as a model; in short, these are calculations of a new
kind, and that is rather not useless.”

�——————�
26(1863–1945), a member of the Academy of Sciences who worked in geochemistry and the

philosophy of science.
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Concluding Remarks

We have not been able to touch on many of the directions in Euler’s ac-
tivities: optics, cartography, ballistics, the theory of ships, etc. We want to
stress again that in Euler’s rich legacy mathematics occupies a special place,
and in his mathematical works he was first of all an analyst. The great
mathematicians of the 19th century learned from Euler’s works. “Read
Euler—he is the teacher of us all,” wrote Laplace. In Gauss’ words, “the
study of Euler’s works remains the best school in various fields of mathe-
matics, and nothing else can substitute for it.” No one has ever seriously
called into question Euler’s reputation as a great mathematician. However
in later assessments it was said that Euler did not carry through many diffi-
cult problems to their definitive solutions. If we do not judge his activities
as a whole but only by the major results that he completed, then he must
yield his place to other great scholars. Although he did much in celestial
mechanics, he did not leave behind results similar to Clairaut’s explanation
of the rapid motion of the perigee of the lunar orbit or his calculation of
the perturbed orbit of Halley’s comet and the prediction of its next return.
In arithmetic, Legendre and Gauss found difficult proofs of the existence
of primitive roots and the law of quadratic reciprocity, which were stated
by Euler.

In 1842, Jacobi noted an important aspect of Euler’s mathematical legacy
in a letter to Pavel Nikolaevich Fuss27 (1797–1855): “Recently, I thoroughly

�——————�
27Also known as Paul Heinrich Fuss, Euler’s great grandson, the son of Nicolaus, and

permanent secretary of the Russian Academy of Sciences.—Transl.
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studied Euler’s integral calculus once more and was again surprised at how
fresh this seventy-year old book remains while it is completely impossible
to read d’Alembert’s book, which was written at the same time. It seems
to me that the reason lies in its examples, because these examples have
not only the auxiliary value of illustrations but they constitute the whole
content of the general propositions.” Euler was persistently compared to
d’Alembert throughout his life and Jacobi continued this after his death.
In May, 1841 he wrote to Fuss: “It is surprising that now it is impossible to
read even a line left by d’Alembert while at the same time one still reads
Euler’s best works with delight, and they died in one and the same year. It
seems that d’Alembert exhausted his elegance on belles-lettres.” Jacobi’s and
Friedrich II’s tastes did not agree, but Jacobi was definitely wrong about
d’Alembert.

Euler was appreciated most of all by those who studied his works and
did not judge his legacy by the peaks, by those who studied with him and
made use of his prophetic ideas.

In conclusion, we present a curiosity which, by the way, is more char-
acteristic of the peculiarities of academic “democracy” in Russia than of
Euler’s merit. In the last year of the 19th century the Petersburg aca-
demicians were thinking ahead about celebrating the forthcoming 200th
anniversary of the birth of the great scientist, to occur in 1907. At a gen-
eral session on February 6, 1899 the Academy discussed a proposal by
the Physical and Mathematical Sciences Section to erect a monument to
Euler in St. Petersburg funded by international subscriptions. A mathe-
matician, Academician Nikolai Sonin (1849–1915) came out decisively in
opposition to the proposal. He said that Euler’s works had aged, that he
had been greatly surpassed by Lagrange and Gauss, that “the traces of Eu-
ler’s work had practically been covered up.” In general, monuments were
to be erected for great scholars and Euler was perhaps outstanding, so that
his bust, which had been placed in the conference hall shortly after his
death, was quite sufficient for him. Also, he did not understand why the
monument needed to be placed in Petersburg and not in Basel, where Euler
was born, or in Berlin, where he worked almost as long as in Petersburg.
The question was put to a vote. The vote was a tie which meant, according
to the regulations of the Academy, that a monument to Euler was rejected.
Democracy won!

Today there is the Euler International Mathematical Institute in St. Pe-
tersburg, but there is still no monument.



Joseph Louis Lagrange

. . .my pursuits are reduced to doing geometry peacefully and quietly.
And because I am not hurried and I work more for my pleasure than
for work, I do as the grandees who build something: I do, I undo, and
I redo several times until I am reasonably happy with my work, which
nevertheless comes very rarely. Lagrange1

A Letter from Turin

In August 1755 the great Euler (1707–1783) received a letter from Turin,
from the 19 year-old Lagrange who had written to him before. Euler no
doubt had already formed the opinion that his correspondent was a tal-
ented and mature mathematician despite his youth. But all the same, the
contents of the letter astonished the scientist.

Since the end of the 17th century mathematicians had increasingly
turned their attention to problems that we now call variational but were
then usually called isoperimetric. It all began with a problem posed by Jo-
hann Bernoulli (1664–1748) on the brachistochrone, the curve of most rapid
descent between two points. By the way, problems about curves having
one maximum-minimum property or another had arisen earlier: a circle
is the curve of given length that encloses the greatest area (this is called
the isoperimetric property and gives its name to this class of problems), a
straight line is the shortest distance between two points, etc. The number
of such problems grew and mathematicians solved them with satisfaction,
matching their “secret key” to each problem.

�——————�
1From a letter of Lagrange to d’Alembert, January 1, 1781; in Oeuvres de Lagrange, Vol. 13,

J.-A. Serret and G. Darboux, eds., Paris, Gauthier-Villars, 1867–1892, p. 360.
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Joseph Louis Lagrange.

However the fashion at the time when differential and integral calcu-
lus were blossoming required a search for a general method that would
develop a calculus for the solution of isoperimetric problems. The remark-
able mathematicians who studied these problems sensed their common
features intuitively. Jacob Bernoulli (1654–1705) did a lot in this area. All
the same, the picture remained rather mixed and there was much to work
out in constructing a general method.

Euler was exactly 19 years old when his teacher Johann Bernoulli gave
him the problem of a brachistochrone in a resistant medium. Then he
added the problem of the shortest (“geodesic”) curve on a surface. Varia-
tional problems were always in Euler’s field of vision, and by 1732 he had
crystallized a general method for solving them. It took another 12 years to
perfect the method, and in 1744 his summary memoir appeared on the so-
lution of “isoperimetric problems in the broadest sense.” The method was
illustrated by the solution of more than 60 of the most diverse problems.

Today we understand clearly the difficulty in solving variational prob-
lems: in some sense they were ahead of their time for 18th century analysis.
At that time analysts primarily studied functions of one variable, and to a
lesser extent functions of several variables. However, the curves that figure
into variational problems are not characterized by a finite set of parame-
ters. To all intents and purposes these problems deal with functions of an
infinite number of variables, and this was the patrimony of 20th century
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analysis (functional analysis).
Euler’s principal observation was that curves that are solutions to iso-

perimetric problems are solutions to certain differential equations. In draw-
ing conclusions about these equations Euler in fact saw the basic issue. He
moved very carefully in order to stay within the bounds of ordinary anal-
ysis: he replaced curves by polygonal lines (after all, they depend on a
finite number of parameters that characterize the vertices) and watched
how the quantities in the problem changed when only one vertex changed.
The desired differential equation is obtained but the path to it is rather
thorny. Jean-Baptiste-Joseph Delambre (1749–1822) (do not confuse him
with d’Alembert!), Lagrange’s true friend and biographer, wrote that this
method “does not have the simplicity that is desired in a question of pure
analysis.”

These words probably reflect Lagrange’s opinion. With the decisiveness
of youth he dared to pursue to its completion a scheme that he worked out
for functions, where he considered the dominant linear part df of the incre-
ment of a function f(x) corresponding to an increment dx of the argument
x, and looked for some x for which df(x) = 0. He considered functions of
curves, i.e., functionals (of a special form) I(l), not being afraid that this is in
fact a function of an infinite number of variables. For a fixed curve l he con-
sidered an arbitrarily small “perturbation” δl, defined the dominant part
of the corresponding increment of the functional, δI, and for determining
the curves for which δI = 0 obtained a differential equation that Euler had
reached in a roundabout way and that is now called the Euler–Lagrange
equation. We note that Lagrange providently introduced the new notation
δ, which is similar to but different from the notation for the differential d.
This new notation was introduced successfully and greatly helped advance
the work.

A little information was enough for Euler to appreciate the advantage of
Lagrange’s improvements. A lively correspondence started, and the high
evaluation of Lagrange’s work by the great scientist inspired the beginning
mathematician. The letters discussed increasingly complex formulations
of problems: after all, the power of the new method should be demon-
strated by the solutions of new problems that were inaccessible by the old
techniques. One of Lagrange’s letters generated Euler’s own interest in
extremal problems. As early as 1756 he submitted two reports to the Berlin
Academy related to Lagrange’s method. In the same year Lagrange was
elected as a foreign member of the academy at Euler’s instigation, a rare
honor for a young scholar who had still not published his work (at the time
less meaning was attached to this election than would be today).

Euler did not rush to publish his new results, letting his young colleague
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take his time to prepare his work for publication. He explained his position
in a letter on October 10, 1759: “Your analytical solution of the isoperimetric
problem contains, as far as I see, everything one could want in this area
and I am extremely happy that this theory, which after my first attempts
I was hardly alone in studying, has been brought by you to the height
of perfection. The importance of the question motivated me to the point
where with the help of your illumination I deduced the analytic solution
myself. However, I decided to conceal this until you publish your results,
since in no way do I want to take away from you any of the glory that you
deserve.” What a remarkable example of scientific ethics!

Euler’s letter added to Lagrange’s determination to publish what he had
done, and his memoir Essai d’une nouvelle methode pour determiner les maxima
et les minima des formules integrales indefinies (An Attempt at a New Method of
Determining the Maxima and Minima of Indefinite Integral Formulae) appeared
in 1761–1762, in Volume II of the new journal of the Turin Mathematical
Society, Mélanges de Turin. In 1764 Euler also published his results, prefacing
his work with these words: “Since I worked long and fruitlessly on the
solution to this question, I was surprised to see that this problem is solved in
Mélanges de Turin so easily and happily. This excellent discovery delighted
me all the more since it differs significantly from the methods I gave and it
significantly surpasses them in simplicity.” It is somewhat surprising that
Euler did not mention the earlier correspondence. Euler proposed to call
the new method the “calculus of variations” by analogy with differential
calculus (δI is called a variation).

This was how Lagrange’s scientific debut took place. In one sense it
was unique. There are other examples where great mathematicians ob-
tained their first powerful results at the same age as Lagrange. But this
usually involved solutions to concrete problems. Interest in perfecting a
method such as this comes with the years. We see that already in his first
work Lagrange displayed what would always distinguish him in the future:
clarifying the situation completely, perfecting the method, and searching
for first principles is more valued than solving concrete problems.

Giuseppe Luigi

We have discussed Lagrange’s first great work but it is still worth saying a
few words about the earlier events in his life. Joseph Louis Lagrange was
born on January 25, 1736 in Turin, Italy. At birth he was named Giuseppe
Luigi. His great-grandfather had come from France and entered the service
of the Duke of Savoy, and his grandfather and father continued to serve as
treasurers for factories and construction. When the future mathematician
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was born the family was ruined. He later said, “If I had been rich, I probably
would have not achieved my position in mathematics. And in what other
activity would I have achieved such success?” Incidentally, in the family’s
original plan Joseph Louis was destined for a career as a lawyer, and at the
age of 14 he entered the university in Turin. However he soon transferred
to the Royal Artillery School, in connection with his increasing interest in
mathematics. At 19 he was a professor at this school (even earlier, according
to some information).

His first attempts to discover something new in mathematics led La-
grange to find something that was already known. Contact with the ex-
ceptionally original Italian mathematician Count Giulio Fagnano (1682–
1766) helped the young man understand that a serious study of modern
mathematics must precede any independent work. And we have seen
that Lagrange’s first results were not the fortunate discovery of a young
dilettante but the end results of strenuous work by someone who was be-
coming a professional. The ability to understand thoroughly and critically
and to refine a previous attempt marked Lagrange’s scientific work from
the very start.

A circle of young mathematicians and physicists built up around La-
grange, and this was later transformed into the Turin Academy of Sci-
ences. The journal Miscellanea Philosophico-Mathematica Societatis Privatae
Taurinensis, or Mélanges de Turin for short and in French, appeared begin-
ning in 1759. We have already said that Volume II contained Lagrange’s
memoir on the calculus of variations, while Volume I contained two of his
works, including A Study on the Nature and Propagation of Sound. Some com-
ments here on the problem of the vibrating string will be very instructive.
In 1747–1748 this problem was studied by the three strongest mathemati-
cians of the time, Jean Le Rond d’Alembert (1717–1783), Euler, and Daniel
Bernoulli (1700–1782). There were essential differences in their interpreta-
tions. D’Alembert, who was the first to solve the string equation, thought
that the initial position should be described by a function having a single
analytic expression (it was still not clear what this meant). Euler insisted
that the function could be completely arbitrary (even discontinuous, as we
have said) and this was the first time in analysis that functions in gen-
eral appeared, given by graphs rather than analytic expressions. Finally,
Bernoulli considered harmonic oscillations with different frequencies and
claimed that an arbitrary oscillation could be expanded as an infinite su-
perposition of harmonic oscillations, which neither d’Alembert nor Euler
believed.

Lagrange thought of a clever method that considered a string of con-
stant density to be the limit of weightless strings with a finite number of
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uniformly distributed identical weights. The question of oscillations of
strings with weights was thought to be elementary. In passing to the limit,
Lagrange confirmed Euler’s opinion. Later, repeating this argument in Mé-
canique Analytique (Analytical Mechanics), he recalled, “By this very method
in the first volume of Mélanges de Turin I proved the validity of Euler’s con-
struction, which had not been sufficiently grounded.” Soon Lagrange had
still another chance to convince himself how right Euler was by insisting on
the need to use general (nonanalytic) functions in analysis. In the study of
how air moves in tubes of constant cross-section, curves arise that become
straight lines at some point (Euler called them “mixed” functions). Passing
to the limit in the same way convinced Lagrange that Bernoulli was right.
He was close to a proof that it is possible to expand an arbitrary function
into harmonics (as a Fourier series), but a precise proof needed to wait for
another forty years.

We have already seen how kindly Euler received Lagrange’s first work.
Lagrange’s work on the string also attracted the attention of another of his
great contemporaries, d’Alembert: “Until we meet again, sir, You deserve,
if I am not mistaken, to play a great role in science and I applaud the
start of Your success.” As Delambre said, “among these famous geometers
a twenty-three year-old young man suddenly appeared not only as their
equal but as an arbiter among them, in order to cut short a difficult struggle,
to point out to each where he was right and where he was wrong, to correct
these errors, and to give the true solution, which had not been achieved
although it had been foreseen.” This observation exactly communicates the
style of Lagrange’s article, and the letters to him from Euler and d’Alembert
indeed reflect their readiness to accept Lagrange as an arbiter.

The Foundations of Statics

Lagrange was the soul of the Turin circle. The articles published in Mélanges
de Turin by his friends carry the distinct mark of Lagrange’s strong influ-
ence. This applies especially to an article by François Daviet de Foncenex
(1734–1799) who was, evidently, only an accessory to Lagrange’s systematic
consideration of the foundation of mechanics. Later, his famous Analytical
Mechanics began with the subject of this article and strikingly demonstrates
how thorough Lagrange was as he undertook this work.

This concerns a comparison of the two most important principles of
statics: that of the lever and that of the composition of forces applied to the
same point. At the foundation of the theory of the lever, Archimedes placed
an axiom saying that a lever with equal arms and weights is in equilibrium
and that the load at the fulcrum is doubled in this case. Many authors
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tried to make Archimedes’ argument more precise and to supplement it
but they, in Lagrange’s words, “while impairing simplicity. . . have gained
almost nothing from the point of view of precision.” Lagrange noted that
it is natural to consider the first part of the axiom as being obvious from
symmetry: “we cannot perceive a basis by which one weight outbalances
the other.” However, he did not see any logical basis for the fact that the
loading on the fulcrum must necessarily be equal to the sum of the weights:
“evidently all mechanists considered this assumption as the result of every-
day observation, which teaches us that the weight of a body depends only
on its mass and in no way on its form.” Lagrange proposed to derive the
second half of Archimedes’ axiom from the first. He considered a homo-
geneous triangular plate ABC, where the base AB of the isosceles triangle
is horizontal. The vertices A, B are loaded with equal weights P and the
vertex C with weight 2P. The plate rests on the median line MN parallel to
AB (Figure 1). It will be in equilibrium, which follows from the first part of
Archimedes’ axiom applied to the two levers AC, CB with fulcra M, N. But
then the lever CF with fulcrum E will also be in equilibrium (here F is the
midpoint of AB and E is the intersection of MN and CF). This means that
the loading on F must equal the weight 2P at C (strictly speaking, we are
applying here the converse of the first part of Archimedes’ axiom, which is
easy to deduce), and this is exactly the loading on the fulcrum of the lever
AB. Lagrange correctly noted that considering the equilibrium of a planar
plate with respect to a pivot was a method he got from Huygens.

Figure 1.

Furthermore, Lagrange considered the principle of composition of forces
applied to the same point, which is easily validated using the composition
of motions. The essential difference in these principles is that in one case
the forces are applied to different points and in the other to the same one.
Nevertheless many statements in statics can be derived from either princi-



220 � Tales of Mathematicians and Physicists �

ple. This leads to wanting to refrain from taking the principle of the lever
as an axiom at all, but Lagrange was alert to the fact that all known de-
ductions of Archimedes’ axiom from the law of composition of forces were
rather artificial: “. . .although, strictly speaking, both the principles of the
lever and of the composition of forces always lead to the same results, it is
interesting to note that the simplest case for one of these principles becomes
the most complex for the other.”

Lagrange’s intuition allowed him to discover a delicate point correctly,
although he could not explain it completely. It is connected to the in-
teraction between mechanics and geometry. The point is that the law of
composition of forces applied at the same point does not depend on the
parallel postulate, while in Lobachevsky space the loading on the fulcrum
of a lever is greater than the sum of the weights of the points. In deriving
the second half of Archimedes’ axiom the claim is used that the altitude
of the isosceles triangle in Figure 1 meets the median line at its midpoint,
which rests on the parallel postulate and is not valid in Lobachevsky’s ge-
ometry. Evidently Lagrange did not yet know this, although it is known
that he thought about the problem of the fifth postulate.

The Principle of Least Action

In Volume II of Mélanges de Turin the memoir on the calculus of variation
was followed by Lagrange’s An Application of the Method Proposed in the
Preceding Memoir for Solving Various Problems in Dynamics. Here Lagrange
followed in Euler’s footsteps. In 1744 Pierre de Maupertuis (1698–1759)
had formulated a very general and hazy principle, according to which
everything in nature, including mechanical motions, occurs in such a way
that some quantity—action—achieves its minimum value. For the case of
the motion of a point in a central field, Euler turned this vague statement
into a completely precise one, defining action in this case as the integral
of the velocity along a path,

∫
vds. Lagrange generalized Euler’s principle

to the case of an arbitrary system of related points that interact with one
another in an arbitrary way. Defining action in this generalized situation,
Lagrange used the calculus of variations that he worked out to solve a
diverse range of problems in dynamics, including hydrodynamics. He
had no doubt that using this principle he could construct the whole edifice
of mechanics. In Analytical Mechanics, he wrote, “This is the principle to
which I improperly gave the name of Least Action and which I view not as
a metaphysical principle but as a simple and general result of the laws of
mechanics. In volume two of the Mémoires de Turin, the use which I made
of this principle to solve several difficult problems of dynamics can be
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found. This principle, combined with the one of Forces Vives and further
developed following the rules of the calculus of variations, gives directly
all the necessary equations for the solution of each problem.”2

As Joseph Fourier (1768–1830) wrote, “He reduced all the laws of equi-
librium and motion to a single principle and, what is no less surprising, he
subjected them to a single method of calculation that he himself invented.”

First Work in Astronomy

We have seen that Lagrange’s activities first developed in the areas of those
questions and problems that were traditional for mathematicians in the
18th century, as found in the sphere of interests of his older contemporaries
Euler and d’Alembert. The logic of the time inevitably had to lead to his
needing to try his powers in celestial mechanics. There was no more burn-
ing problem than that of the agreement of observations of the movement
of heavenly bodies with the law of universal gravitation. It was neces-
sary to clarify, on the one hand, whether the undoubted deviations from
Kepler’s laws (then called “inequalities”) were explainable in the context
of this law and, on the other hand, how various additional regularities in
celestial mechanics came about. For example, why do we see only one side
of the moon? The Paris Academy of Sciences took the explanation of this
phenomenon as the theme of its prize competition for 1764.

We must say that themes for academic prizes in Paris were chosen with
the greatest taste, and winning such a prize was very prestigious for a math-
ematician, especially a young one. Lagrange won first prize and gained
an enthusiastic response from d’Alembert: “I read with great satisfaction
the fruit of Your excellent works on librations. They deserve the prize you
were given.”

Really, the laws of the moon’s motion were derived very precisely from
the observations of Giovanni Cassini (1625–1712): the moon’s axis of rota-
tion is fixed relative to the surface, the period of rotation and the period of
revolution around the earth coincide, the axis of rotation is at a constant
angle to the plane of the ecliptic (the earth’s orbit) and, finally, the moon’s
axis of rotation, the ecliptic, and the lunar orbit are located in the same
plane. Lagrange showed that because of this the surface of the moon is not
spherical and the attraction of the earth gradually equalizes the period of
the moon’s own rotation and that of its revolution around the earth. La-
grange came close to explaining Cassini’s last law, which d’Alembert had

�——————�
2This quotation is taken from the English translation of the 1811 edition of Mécanique

Analytique by Auguste Boissonnade and Victor N. Vagliente, Kluwer, Boston, 1997, p. 185.
The principle of Forces Vives is now called the principle of kinetic energy.—Transl.
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earlier failed to do, but made an estimation error. Only in 1780 did he
finally succeed in establishing Cassini’s theory.

The explanation of the inequalities in the motion of Jupiter’s moons was
chosen as the theme by the Paris Academy of Sciences in 1766. The solution
of analogous questions for the moon brought fame in their time to Alexis
Clairaut (1713–1765) and d’Alembert. Additional complications arise with
Jupiter’s moons, in particular because there are several moons and also
because of the nearness of Saturn. Euler was surprised that Lagrange could
handle this problem in the work that won the prize: “The irrational formula
that expresses the distance from Jupiter to Saturn cannot be represented
sufficiently by a convergent series, and this is a fundamental obstacle. I
strongly doubt that it can be overcome. . . . Now it is all the more interesting
for me to know how M. Lagrange overcame these difficulties in his work
that obtained the prize, and since I do not have grounds to doubt the success
of his solution I can flatter myself with the hope that theoretical astronomy
has been brought in our time to the highest degree of perfection.” When
24 years later Pierre-Simon Laplace (1749–1827) returned to the problem of
Jupiter’s moons in order to complete what Lagrange had begun, he spoke
with delight of the results of his predecessor that were obtained with the
help of “sublime analysis.”

Visit to Paris

In 1766 Lagrange turned 30. This was an important dividing line in his life.
Provincial Turin had become confining for Lagrange’s scientific activities.
In his personal life he was unassuming, was noted for his ill health, and
his modesty in relations with people not infrequently took the form of
shyness and even unsociability. But he knew how to appreciate and use his
relationships with colleagues. At the beginning his contacts with friends in
the Turin circle were satisfying to him. He invested much energy and spirit
in the work of the circle but he had long since outgrown these colleagues.
He no longer had regular contacts with Fagnano, who was elderly and died
in 1766. Lagrange carried out an extensive correspondence, but when he
traveled to Paris in 1763 he could see for himself the value of face-to-face
contacts with scientists. He accompanied his friend the Marquis Caraccioli,
who had been named ambassador to London. But Lagrange did not go to
London. As Delambre recalled, “Dangerously falling ill after a meal where
the Abbé Nollet entertained him with dishes prepared in the Italian style,
Lagrange could not travel to London but remained to be treated in Paris,
and hurried to return to Turin when he recovered.”3

�——————�
3Jean-Antoine Nollet was a clergyman and physicist.—Transl.
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In Northern Italy castor oil, well fried in advance, was used to pre-
pare meat. In Nollet’s kitchen, where they decided to prepare the meal “à
l’italienne,” they used castor oil without the required preparation and it
completely displayed its well-known laxative properties. However on the
scientific front the illness bore fruit. Lagrange was able to form relation-
ships with the best French mathematicians, d’Alembert, Clairaut, and the
Marquis de Condorcet (1743–1794), but even among the less well-known
scientists there were some who remained his friends for the rest of his life.
Lagrange often said that these six months in Paris were the happiest time
of his life.

In 1766 Euler moved from Berlin to St. Petersburg, freeing up the posi-
tion of Director of the Physics-Mathematics section in the Berlin Academy
of Sciences. He suggested to Friedrich II that Lagrange be his successor.
D’Alembert, on whose opinion the king relied to the highest degree, ener-
getically supported this candidacy. Lagrange was sent an invitation with
this expressive justification: “the greatest geometer in Europe must live
near its greatest king.” Perhaps Friedrich was right about himself, but
with Euler and d’Alembert alive and working Lagrange was hardly ac-
cepted as the greatest geometer in Europe. The king was probably worried
a bit about his own wounded pride, since he was not able to get d’Alembert
for his own academy and had to part from Euler.

All the same, there is no doubt that at his thirtieth birthday Lagrange
was admitted to the mathematical Mt. Olympus. He had already taken
shape as a mathematician: the foundation of everything he would do had
been laid and the style of his work had become clear, as had his strong and
weak points. Lagrange began his mathematical life as a student of Euler
and d’Alembert in the highest sense of the word. He continued to work
on the problems that they had begun and found new aspects that were un-
known to his teachers. Their enthusiasm was testimony to this. Lagrange
interpreted the creations of his teachers in a distinctive way: he mastered
problems that Euler’s intuitive genius had almost guessed, clarified them
completely, and sharpened the necessary concepts and technical methods,
which was more characteristic of d’Alembert. And in the future, Lagrange’s
strength would not be primarily in the discovery of new paths but rather
in the astonishing ability to deepen, clarify, and supplement the necessary
strokes of the painting which others had tried to paint before him. And no
difficulties on this path were terrifying for Lagrange.

Lagrange in Berlin

The volume of Mélanges de Turin for 1766–1769 still contained work of
Lagrange that had delighted Euler: he completely clarified the nature of the



224 � Tales of Mathematicians and Physicists �

addition formula for elliptic integrals that Euler had once conjectured. And
as had happened before, Euler enthusiastically returned to a subject he had
already left behind. By November, 1766 Lagrange was in Berlin, although
the king of Sardinia4 parted with his scholars reluctantly. This was not the
best time for Lagrange to turn up at the academy. Euler, d’Alembert, and
de Maupertuis were no longer there. But a very original mathematician,
Johann Lambert (1728–1777), was working there. Lambert proved, in par-
ticular, that the number π is irrational. Lagrange and Lambert had much in
common mathematically, as well as personally, and resembled each other.
Their friendship was very important for each of them and lasted ten years
until Lambert died. It was not easy for the reserved Lagrange to adapt to life
at the Prussian court. But he, as opposed to Euler, could do this and avoid
conflict. Lagrange led a measured life: outside obligations, meetings, and
correspondence occupied most of the day but after the obligatory walk,
every evening was devoted to working on science in quiet, behind closed
doors. Lagrange got married and exchanged letters with d’Alembert about
this. D’Alembert wrote, “I know that You have taken a dangerous leap. A
great geometer must first of all calculate his own happiness and that hav-
ing made the calculation you found the solution was marriage.” Lagrange:
“I do not know if I calculated well or poorly, or better—I did not calcu-
late at all, because I would have acted like Leibniz, who could not decide
whether to get married. I recognize that I never had an inclination toward
marriage. . . one of my relatives had to do me a favor; someone had to take
charge of me and my work.” But it turned out that Lagrange soon had
to look after his wife, who was dying of tuberculosis, and he did his duty
without fault.

Analytical Mechanics

Lagrange stayed in Berlin for a little more than twenty years. This was
the time of his maturation, the most productive period in his life. There
are several great scientists who left behind one main book (e.g., Newton’s
Principia, Huygens’ Pendulum Clocks). For Lagrange, Analytical Mechanics
was such a book. It came out in 1788 when Lagrange was already in Paris.
But the book kept to itself the important point that it was created in Berlin
and conceived while the author was still in Turin.

The plan of the book can best be learned from the words of the author:
“There already exist several treatises on mechanics, but the purpose of this
one is entirely new. I propose to condense the theory of this science and the

�——————�
4At the time, Turin was the capital of the Kingdom of Sardinia.—Transl.
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method of solving the related problems to general formulas whose simple
application produces all the necessary equations for the solution of each
problem. I hope that my presentation achieves this purpose and leaves
nothing lacking. In addition, this work will have another use. The vari-
ous principles presently available will be assembled and presented from
a single point of view in order to facilitate the solution of the problems of
mechanics. Moreover, it will also show their interdependence and mutual
dependence and will permit the evaluation of their validity and scope. . . .

No figures will be found in this work. The methods I present require nei-
ther constructions nor geometrical or mechanical arguments, but solely
algebraic operations subject to a regular and uniform procedure.”5

In short, Lagrange intended to show that a purely analytical procedure
was sufficient for solving mechanics problems (in order to emphasize this,
he pointedly did not include pictures), that “uniform” (today we would
say algorithmic) rules could be presented for considering such problems,
and that there are simple general principles on which all of mechanics can
be constructed. How original was this point of view? We can recall that
Euler was the first, in his 1736 Mechanics, to turn away from Newton’s
purely geometric approach and use an analytic method based on changes
in coordinates and on systems of differential equations (Lagrange calls this
book “the first great work in which analysis was applied to the study of
motion”). On the other hand, d’Alembert’s 1743 Dynamics is prefaced by
these words: “In the present essay I set a dual goal for myself: to broaden
the field of mechanics and to make the approach to this science smooth
and even. . . In a word, I tried to broaden the domain of application of the
principles and at the same time to decrease their number.” And Lagrange
valued d’Alembert’s treatise very highly: “. . .in it is presented a direct and
general method, with the help of which we can solve, or in any case express
in the form of equations, all the problems of mechanics that we have only
been able to formulate.”

What was Lagrange was thinking of that was so new? That he in turn
had completed what his predecessors had dreamt of and turned their re-
markable studies into a universal and working apparatus. He evaluated
his own program rather modestly and did not in any way compare him-
self to Newton, “to whose lot fell the joy of explaining the world system.”
Lagrange thoroughly studied and presented this preceding work in his An-
alytical Mechanics. The historical pages are a decoration for his book. By the
way, Lagrange was reproached for the fact that this survey contained def-
initions of basic concepts in mechanics that turned out to be insufficiently

�——————�
5Ibid., p. 7.
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worked through.
Thus, at the beginning of his mechanics Lagrange “collects” what oth-

ers already did. Mechanics is divided into statics and dynamics. We have
already talked about two starting points for statics: the principles of the
lever and of the composition of motions. To this we add the principle of
virtual (possible) velocities (now often called the principle of virtual dis-
placement or virtual work) which goes back to Galileo and was worked
out by Stevin, the Bernoulli brothers, and d’Alembert. The principle is that
in equilibrium the work done by all forces is zero for all infinitesimal dis-
placements that are compatible with the constraints placed on the elements
of a mechanical system. Lagrange “only” wrote down this condition in the
form of an analytic equation and tried to prove not only the ability of this
principle to work, which had already been done by others, but most of all
its universality and its sufficiency as a basis of all statics. “In obtaining this
general formula Lagrange, with a talent that was almost characteristic of
him alone and perhaps up to now had not been excellent, developed from
this formula the general properties of the uniformity of forces and gave the
solution to the foremost problems of statics. . .” (Aleksei Krylov). Another
instructive aspect of the book is its substantiation of the principle using
systems of pulleys.

Moving to dynamics, Lagrange exploited d’Alembert’s idea on the re-
duction of dynamics to statics. It had been worked out in a somewhat
different version in concrete problems by Jakob Hermann (1678–1733) and
Euler. We are talking about the possibility of separating out those forces
that do not produce any motion and are counterbalanced by the reactions
of the constraints (d’Alembert spoke of the motive (force) that is lost to mo-
tion); these forces alone would cause the body to be in equilibrium. Starting
from this, Lagrange obtained a fundamental equation for dynamics from
the fundamental equation for statics. This is the emotional high point of
the book. The goal of the rest was to demonstrate that all of mechanics can
be derived from this fundamental equation (from a single formula!).

Realizing this program begins with deriving all the “starting points”
of mechanics from the fundamental equation: the law of conservation of
energy, the law of motion of the center of gravity, and the area principle.
The culmination of this part is the derivation of the principle of least ac-
tion from the fundamental equation. Lagrange understood that, in turn,
his equation could be derived from the principle of least action and, pos-
sibly, that his earlier plans amounted to constructing analytical mechanics
on the basis of this principle. Today exactly this method of construction
is the most common, while Lagrange preferred to begin with the funda-
mental equation. Perhaps tactical considerations played a role here: his
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contemporaries were still not ready to accept a variational presentation of
mechanics.

Lagrange’s next problem was to learn how to work with the fundamen-
tal equation. The biggest thing was to take into account the constraints
placed on the points of the system. For this reason it is convenient to pass
from the Cartesian coordinates of the points on which the relations have
been placed to some sort of generalized coordinates that can change inde-
pendently. These could be the angle of inclination of a pendulum or the
width and length of a point moving on a sphere. Lagrange showed that
for arbitrary independent coordinates the equation of motion is written in
terms of the kinetic energy T and the potential energy U of the system, and
that it is enough to use their difference L = T − U, the Lagrange function.
These equations are now called the second-order Lagrange equations.

First-order equations correspond to the case where the constraints can-
not be completely solved or where it is undesirable to solve them, i.e., some
equations on the coordinates remain. Lagrange showed how to write the
equation of motion using the equations on the constraints, where in these
equations there are quantities than can be interpreted as reactive forces of
various constraints. This is the first appearance of Lagrange multipliers,
probably Lagrange’s most well-known mathematical legacy (we will have
more to say about them below).

The main part of the book is devoted to realizing the system he worked
out in a series of important concrete situations: small oscillations, the mo-
tion of bodies under the action of mutual attraction (basically, celestial me-
chanics), constrained motion (in particular, pendulums), and the motion
of a rigid body.

Lagrange realistically assessed the possibility of working out his pro-
gram. He had no illusions that reducing mechanics problems to differential
equations means that the problems are solved, since “they (the equations—
S.G.) still have to be integrated, which often exceeds the abilities of the anal-
ysis that we know.” In connection with this he worked out approximation
methods and with great attention related them to special cases where the
integration could be carried out explicitly. (This is very reminiscent of the
point of view of modern mathematical physics.) From this standpoint he,
following Euler, considered the problem of the rotation of a rigid body—of
a “top.”

Lagrange was completely focused on a proof that it was possible to
turn mechanics into a chapter of analysis, to derive all of mechanics from a
simple general principle. The idea of a deductive construction of mechanics
in the form of Euclidean geometry was not new. It was not for nothing that
Newton called his book Principia and his laws axioms. But no one before
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had consistently carried out this program. Such a formal project necessarily
has serious limitations, and seems curious after so much time has passed
and the propositions proved already seem beyond doubt. Indeed, why did
Lagrange completely avoid drawings or always “proceed genealogically”
from the fundamental equation? But that is the logic with which science
develops.

Those who continued his work could appreciate Lagrange better. The
two sides of modern mechanics are associated with the names of Lagrange
and William Rowan Hamilton (1805–1865). Here is what Hamilton wrote:
“. . .Lagrange has perhaps done more than any other analyst, to give extent
and harmony to such deductive researches, by showing that the most varied
consequences respecting the motions of systems of bodies may be derived
from one radical formula; the beauty of the method so suiting the dignity
of the results, as to make of his great work a kind of scientific poem.”6

A remarkable feature of Lagrange’s constructions is that they found
application far from mechanics. The Lagrangean equations appeared in
the theory of electromagnetism. As Henri Poincaré (1854–1912) wrote, “To
demonstrate the possibility of a mechanical explanation of electricity we
need not trouble to find the explanation itself; we need only know the
expression of the two functions T and U, which are the two parts of energy,
and to form with these two functions Lagrange’s equations, and then to
compare these equations with the experimental laws.”7

Lagrange’s work was a model for James Clerk Maxwell (1831–1879) in
his creation of the analytical theory of electricity: “The aim of Lagrange was
to bring dynamics under the power of the calculus. He began by expressing
the elementary dynamical relations in terms of the corresponding relations
of pure algebraical quantities, and from the equations thus obtained he
deduced his final equations by a purely algebraical process. Certain quan-
tities (expressing the reactions between the parts of the system called into
play by its physical connexions) appear in the equations of motion of the
component parts of the system, and Lagrange’s investigation, as seen from
a mathematical point of view, is a method of eliminating these quantities
from the final equations. In following the steps of this elimination the
mind is exercised in calculation, and should therefore be kept free from the
intrusion of dynamical ideas.”8

�——————�
6William R. Hamilton, “On a general method in dynamics,” Philos. Trans. Roy. Soc., Part II,

1834, pp. 247–308.
7Henri Poincaré, Science and Hypothesis, translated by W. J. Greenstreet, Walter Scott Pub-

lishing, London, 1905.
8James C. Maxwell, Treatise on Electricity and Magnetism, Vol. II, 3rd ed., Clarendon Press,

Oxford, 1892, p. 199.
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An especially effective means of extending Lagrange’s ideas beyond
the limits of mechanics was the principle of least action: “All reversible
processes, whether mechanical, electrodynamic, or thermal in nature, are
subject to one and the same principle giving a unique answer to all ques-
tions concerning the course of the process. This law is not the principle
of conservation of energy which, although we apply it to all phenomena
does not define their course uniquely; it is a more general principle, the
principle of least action” (Max Planck (1858–1947)).

Lagrange saw his destiny to be the creation of a universal language
of mechanics. Thanks to this he abstracted as much as possible from the
specifics of the concrete problems that attracted his great predecessors.
Later, Siméon-Denis Poisson (1781–1840) wrote: “It was desirable for ge-
ometers to review the fundamental questions of mechanics from the stand-
point of physics. In order to discover the laws of motion and equilibrium,
they needed to take a purely abstract point of view; and in these abstrac-
tions Lagrange went as far as one could imagine when he replaced physical
constraints between bodies with equations that related the individual co-
ordinates of their points; this was the essence of his analytical mechanics.
But along with this remarkable conception one could now erect physical
mechanics. . . .”

Lagrange left it for succeeding generations to fill up his design with
concrete physical contents. The method he worked out turned out to be
directly applicable to the solution of technical problems, which he also
abstracted completely in creating analytical mechanics. Krylov enumerates
some immediate applications of Lagrangean mechanics: Poncelet’s theory
of mechanisms, engineering calculations in construction (in particular for
large iron bridges needed to develop the railroads), ballistics problems
arising in the shift from smooth-bore to rifled weapons after the Crimean
War, and the theory of gyroscopes. He concludes, “In 1805 at Trafalgar,
Nelson’s ships attacked from the distance of a pistol shot and were boarded.
At Tsushima the firing was at a distance of about 7000 meters and at Jutland
it was at about 14,000 to 18,000 meters.9 Since that time the firing distance
in battle has increased significantly, and at such distances a whole series
of complex gyroscopic instruments are needed to achieve accuracy. The
calculations are all done with the Lagrangean equations.

One can bring an uncountable set of examples from technology and
physics, but this is enough to see the value that Lagrange’s remarkable

�——————�
9Trafalgar was a decisive battle in the Napoleonic Wars; Nelson won the battle for the

British despite being boarded but died in the process. The Battle of Tsushima took place in
1905 during the Russo-Japanese War and the Battle of Jutland in 1916 during World War I.—
Transl.
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essay has had in the general development of science and technology in
all its fields, and how right Lagrange was, without going into detail, to
give his account the most general analytic form; therefore his methods are
uniquely applicable to calculating the motion of heavenly bodies as well
as the rocking of ships in rough seas, ship propeller screws, the flight of
16-inch shells, and the motion of electrons in the atom. From this we can
judge the unusual genius of the creator of these methods—Joseph Louis
Lagrange.” These lines were written in 1936.

Celestial Mechanics

Among the several types of problems in mechanics that Lagrange consid-
ered, celestial mechanics no doubt took first priority. That was the system
of values in 18th century mathematics and not one of the strongest mathe-
maticians could bypass problems on the agreement of the law of universal
gravitation with the results of direct astronomical observations. We have
seen that Lagrange began to study such problems while still in Turin and en-
ergetically continued these studies in Berlin. All the fundamental problems
of celestial mechanics were in Lagrange’s field of vision. He worked out
techniques for calculating the elements of planetary and comet orbits from
three observations. And here is another characteristic detail: his presenta-
tion of the method was not accompanied by a single concrete calculation
of an orbit. Lagrange saw his role only as solving a mathematics problem,
after which the method would pass into the hands of those who would use
it to calculate: “I refrain from [giving] all the details, but I flatter myself
with the hope that not a single smart calculator will be unable to apply the
theory set out in this work to a comet.” This creates the impression that
Lagrange had no appetite for concrete examples. The method, unproven
in practice, had its weak points, despite all its depth. An essential practi-
cal adaptation of the method is associated with the name of Karl Friedrich
Gauss (1777–1855), who was always computing orbits and needed to rush
so that observers could find a lost asteroid or so that his calculations could
be used to observe a comet directly. And the corresponding method, es-
sentially created by Lagrange, bears Gauss’ name.

The basic difficulty was that, as we have explained, a sufficiently pre-
cise description of the motion of heavenly bodies requires that we take into
account the interactions among several bodies: for the motion of the moon
we are in practice talking about its interaction not only with the earth but
also with the sun; for the motion of the large planets Saturn and Jupiter
we must include their mutual attraction. Moreover, comparisons of ob-
servations that began in ancient times revealed a steady deviation from
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Kepler’s laws—“inequalities.” It was necessary to clarify whether in fact
these “inequalities” could be explained within the framework of the law
of universal gravitation by the “interference” of the three bodies. The en-
thusiasm generated by Newton’s Principia lay not only in that he derived
Kepler’s laws from the law of universal gravitation but also in that he suc-
ceeded in explaining certain “inequalities” in the moon’s motion within the
framework of this law. Newton’s baton was picked up by Euler, Clairaut,
and d’Alembert. Explaining the inequalities turned out to be hard work,
and more than once despairing scientists began to doubt the universality
of the law of universal gravitation.

The most natural thing would obviously have been to solve the three-
body problem: describe the motion of three bodies that interact with each
other according to the law of universal gravitation. It soon became clear that
it was impossible to do this, but in 1772 Lagrange cleared up the situation
as much as possible. With great art he showed that the original system
of 18th-order differential equations could be transformed to a sixth-order
system, but the form of this system gave no hope of further success. Then he
delineated the cases where the integration could be carried out: in one case
all three bodies are collinear at the initial moment of time, and in another
they are at the vertices of an equilateral triangle with special relations on
the remaining parameters. Lagrange considered these equations purely out
of curiosity, but the explanation called to mind that each of the asteroids
in the Jupiter group makes a nearly equilateral triangle with Jupiter and
the sun.

The next possibility lay in the fact that in a triangle the bodies are usu-
ally unequal, and it is natural to consider the interaction of two bodies with
a perturbation owing to the third. Lagrange began systematically to work
out the mathematical theory of perturbations, whose basics had already
been set out by his great predecessors. In a perturbation it is natural to
assume that an orbit remains elliptical but that its parameters vary some-
what. Two types of perturbations are singled out, periodic and secular.
Periodic perturbations essentially depend on the position of the body in
its orbit and are compensated for on average in due course. Secular per-
turbations are determined only by the mutual positions of the orbits as a
whole, and can accumulate and lead to an instability in the solar system.
The latter was the reason for the intent interest in secular perturbations.
On the other hand, for the study of perturbations during comparatively
short time intervals, necessary in the case of periodic perturbations, there
was not yet sufficient observational data, and at the time the imprecise ob-
servations of the ancients were used in practice (this was true for the study
of secular perturbations as well). The periods of the perturbations could
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be greatly exceeded by the periods of revolution and long-period pertur-
bations could be seen as secular. The most important problem was to learn
how to distinguish them.

Lagrange, working on the problem of secular perturbations, departed
from his usual habit and was constantly guided by obvious numerical ex-
amples. He worked on these problems in parallel with Laplace (1749–1827),
who was younger but had already proved himself. Their styles of scien-
tific research were extremely different. Laplace’s reference points were
completely specific problems of celestial mechanics, and a method was for
him only the means to achieve concrete goals. He was never interested in
the abstract development of a method outside the requirements of specific
problems. The strong and weak sides of each of these great scientists were
apparent in their work on related problems. Laplace showed that to first or-
der there are no secular perturbations for the major semiaxes of the orbits of
Jupiter and Saturn (candidates for this had been long-period perturbations
with huge period). Laplace was certain that an analogous claim was valid
for all the planets and although this would not prove the stability of the
solar system (perturbations were considered only to the first order), it no
doubt would be serious step in this direction. Laplace unsuccessfully tried
to find a general proof but using his general method Lagrange obtained a
proof “with the stroke of a pen,” as Carl Jacobi (1804–1851) described it.

And here is a contradictory example. Lagrange made a great effort try-
ing to explain the secular velocity of the moon’s mean motion, which was
found in 1693 by Galileo Galilei (1656–1742), the discoverer of a signifi-
cant number of the “inequalities” that were known at the time. Lagrange
tried to use his favorite trick with the imperfect sphericity of the moon and
then with the analogous property of the earth. Trying all the possibilities
that occurred to him, Lagrange arrived at the conclusion that either the
ancient observations contained major flaws or that this effect could not at
all be explained within the scope of the law of universal gravitation. Si-
multaneously he worked out a technique for accounting for higher-order
terms in secular perturbations. He found that in the case of Jupiter and
Saturn these terms are inessential and extrapolated this observation to all
the remaining cases. Laplace, having much greater computational expe-
rience, understood that the situation with satellites could be completely
different because of their faster rotation. He discovered at the start that the
terms found by Lagrange made an essential contribution for the moons of
Jupiter and then, carrying out the same calculations for the moon, obtained
Galileo’s velocity.

The fruitful scientific collaboration of Lagrange and Laplace did not
develop into a quarrel only thanks to Lagrange’s striking tact and restraint.
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Laplace, who was ambitious and easily carried away, often acted insult-
ingly with his unfounded claims and even incorrect behavior. A charac-
teristic episode occurred in 1774 when Laplace became acquainted with
Lagrange’s work on secular perturbations, which had been sent before its
publication to Paris, where Laplace was living. Laplace quickly saw ad-
ditional possibilities and published an article of his own, in advance of
Lagrange’s article. Laplace prefaced his paper with the words, “I could
not have undertaken this work if I had not read M. Lagrange’s excellent
work, which was sent to the Academy and is intended to appear in sub-
sequent volumes.” He added various arguments in favor of his haste and
spoke of his desire to acquaint the public sooner with all the possibili-
ties of Lagrange’s method, but his lack of tact gave rise to doubt. And
Lagrange. . . thanked Laplace for improving his method, since “from this
science one can only win.” In 1779 Lagrange wrote to Laplace, “I consider
that quarrels are completely useless for scientific success and only lead to
losing time and peace. . . .” All his life he strictly followed this rule.

Arithmetic Works

Although mechanics was Lagrange’s main activity during his Berlin pe-
riod, other mathematical questions fell into his field of view, among these
several problems in number theory. He doubtless studied them under Eu-
ler’s influence. Nine small works in all were devoted to number theory.
They have the character of independent studies and are little masterpieces
that do not show the intention of creating a superhighway, which was
characteristic of his work in mechanics. Perhaps these were exercises dur-
ing his leisure time away from his main work. Thus, Lagrange followed
in Euler’s footsteps: he proved that quadratic irrationals, and only these,
can be expanded as periodic continued fractions (a claim that Euler made
without proof), he continued work on the Fermat–Pell equation, he stud-
ied quadratic residues, he made some advances in the proof of the law of
quadratic reciprocity that Euler had stated. His proof of Wilson’s theorem
((p − 1)! + 1 is divisible by p for any prime p) is instructive, being based on
a connection to Fermat’s Little Theorem and essentially using polynomials
over a finite field. Lagrange’s theorem that real numbers can be approxi-
mated by rationals was widely known. His best known result in number
theory is that any natural number can be represented as the sum of no more
than four squares. This claim arose with Fermat and Euler apparently tried
to prove it.
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Algebraic Reflections

Lagrange studied various aspects of problems on algebraic equations and
systems of equations. Some of these problems were inspired by his research
in celestial mechanics. He was interested in the approximate calculation
and the extraction of roots, as well as the elimination of unknowns in sys-
tems of algebraic equations. But one of Lagrange’s works, in the words of
Augustin-Louis Cauchy (1789–1857), signified the beginning of a new era
in algebra.

In 1770–1771 Lagrange published his memoir Reflections on the Alge-
braic Solution of Equations, which he had no doubt conceived while still in
Turin. Strictly speaking, this is an entire book that takes up over 200 pages.
Together with Analytical Mechanics, this is the high point of Lagrange’s cre-
ativity.

The 16th century saw a succession of discoveries of formulas for the
solution of third- and fourth-degree equations, and then for two centuries
there was no success in finding a formula for the fifth-degree equation. A
number of notable problems appeared that diverted mathematicians from
this enigmatic problem and consoled them. However a few worthy math-
ematicians, among them Leibniz (1646–1716) and Euler did not give up
hope. Everyone felt that it would be good instead to skillfully find a for-
mula for every degree, i.e., actually to find a single method that would
be valid for all degrees. Ehrenfried von Tschirnhaus (1651–1708) told his
friend Leibniz that he had thought of a universal substitution to transform
the general nth-degree equation into an equation with two terms, yn+a = 0,
which would therefore would have a solution in radicals! This substitution
gave the well-known formula for n = 3 and was valid for n = 5. Leibniz
had to give his friend some bad news: in order to find the coefficients in
the substitution for n = 5 one had to solve an equation of degree greater
than 5. Then Euler discovered that he could obtain a formula for n = 3 and
n = 4 by making a substitution of the form x = n√A + · · · + n√F, but could
not advance further.

The situation no doubt required deeper reasoning and who but La-
grange could undertake this work. After all, he had already shown himself
to be the unsurpassed master of getting to the deep nature of a problem and
clarifying its general structure, where others saw disparate situations. He
began by studying formulas for n ≤ 4, paying special attention to expres-
sions under the nth root sign. For the quadratic equation x2 +ax+b = 0 this

is � = a2

4 −b, and for the cubic x3 +ax+b = 0 it is �± = − b
2 ±

√
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(here x = 3
√
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�−). The quantities �± are the roots of a quadratic
equation whose coefficients are rational expressions (i.e., use arithmetic
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operations) in the coefficients of the original equation. Lagrange tried to
express �± in terms of the roots x1, x2, x3 and noted that � = x1+x2ε+x3ε

2,
where ε is a root of the equation y3 = 1 other than 1.

Here we have to stop and consider how Lagrange imagined this root.
Today this question would present no difficulty since we have two complex
roots ε± = − 1

2 ±i
√

3
2 , but Lagrange was not able to work with complex roots

(it was learned later how to do the necessary calculation). All the same,
he worked decisively with “imaginary” roots in the firm belief that the
cubic equation always had three roots (counting multiplicities). N. Bour-
baki wrote, “. . .Lagrange, like Euler and all his contemporaries, does not
hesitate to argue formally in a ‘field of roots’ of a polynomial (that is to
say, in his language, to consider ‘imaginary roots’ of this polynomial); the
Mathematics of his time had not supplied any justification for this type
of argument. Also Gauss, deliberately hostile, from its beginnings, to the
frantic formalism of the 18th century, raises himself powerfully, in his dis-
sertation, against this abuse.”10

Thus, the two roots of 1 give �±. In fact we are unable to distinguish
the roots x1, x2, x3 in advance but, as we have numbered them, the function
�(x1, x2, x3) = x1 + x2ε + x3ε

2 can only take the two values �± under any
of the 3! = 6 substitutions. This was Lagrange’s decisive observation! For
the quadratic equation, � = (x1 − x2)

2 and does not in general change
when we rearrange the roots. In the case of a fourth-degree equation the
expressions under the fourth-root sign have the form x1x2 + x3x4, where
xj are the roots, and can take only three distinct values under the 4! = 24
ways of numbering the roots.

Here it is easy to verify that if we have a function that is a rational
expression in the roots of an nth-degree equation and takes only q values
under all possible permutations of the roots, then the function is a root
of an equation of degree q whose coefficients can be expressed rationally
in terms of the coefficients of the original equation. Lagrange called this
observation a “true principle and, so to speak, metaphysical equations of
the third and fourth degrees.” For exactly this reason the solution of a cubic
equation reduces to a quadratic and that of a quartic equation to a cubic.

We have to search for rational functions of the roots that take q < n
values for all possible permutations. But as n grows the rapid growth of
the number of permutations becomes a big problem. First of all we have to
note that the coefficients of the original equation are rational functions of
the roots that do not in general change under rearrangement of the roots
(q = 1), but we have to look for less trivial possibilities. Lagrange calls

�——————�
10Elements of the History of Mathematics, p. 92.
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expressions of the form x1 + x2ε + · · · + xnεn−1 resolvents, where ε �= 1
is a root of unity like those in the formulas for the quadratic and cubic
equations. Their absence for the quartic equation is naturally connected
to the fact that the number 4 is not prime. One could have expected that
the resolvents also had to appear in formulas for the equations of higher
degree, but this is what the calculations show: the function �(x1, . . . , xn)

takes (n−1)! values under all permutations. For n ≤ 3, we have (n−1)! < n.
Thus, � is a root of an equation of degree (n − 1)! with coefficients that can
be expressed rationally in terms of the original ones.

When n is prime we can rewrite this claim: � is a root of an equation of
degree n − 1 whose coefficients are, in turn, roots of an equation of degree
(n−2)! with coefficients that are expressed rationally in terms of the original
ones. In the case n = 5 the coefficients of the fourth-degree equation are
roots of a sixth-degree equation. It becomes clear how the equations of
larger degree arose in the constructions of Tschirnhaus and Etienne Bézout
(1730–1783). Lagrange concluded, “From this it follows that it is highly
doubtful the methods we have considered can give a complete solution to
the equation of the fifth degree.”

Furthermore, it is natural not to restrict ourselves to resolvents and to
explain whether there are not other functions of the roots that take no more
than q values. Because of this Lagrange investigated the group of permu-
tations, essentially laying the foundations for group theory. As soon as the
terminology of groups appeared, a series of Lagrange’s assertions automat-
ically turned into theorems of group theory. Let a function δ(x1, . . . , xn) of
the roots take q values under rearrangement; then there is a subset (sub-
group!) of n!

q permutations that the function δ does not change. From this
it follows, in particular, that q divides n!, and so it is essential to study
subgroups of the group of permutations. If we describe all “largest” sub-
groups of this group, namely subgroups of 5!

q elements, where 1 < q < 5,
then we will describe all functions of the roots that take q < 5 values. Here
Lagrange stopped.

He did not doubt that this is the only way to obtain a formula, but did not
obtain definitive results: “Here, if I am not mistaken, are the true principles
of the solution of equations and the analysis that is most suitable to arrive
at a solution; as we have seen, everything reduces to some calculation
of combinations with whose help the results which we must await are
obtained a priori.”

The group of permutations was studied in detail by Cauchy. Paolo
Ruffini (1765–1822) proved the absence of nontrivial functions of the roots
of the fifth-degree equation that take fewer than five values, being certain
that he had proven the unsolvability of the fifth-degree equation in radicals.
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However it remained to prove that the existence of such functions is indeed
necessary for the existence of the formula we need. A complete unsolv-
ability proof was given by Niels Abel (1802–1829). Before this there was
Gauss’ work on constructing regular polygons with compass and straight-
edge or, equivalently, on expressing the roots of the equation yn − 1 = 0
using square roots. In it, headache-inducing tricks with permutations of
the roots allowed him to solve a two thousand-year-old problem, the con-
struction of the regular 17-gon, that is discussed in the chapter on Gauss.
The problem of the solvability of algebraic equations found its definitive so-
lution in the theory of Évariste Galois (1811–1832). But Lagrange was the
first. . . . Incidentally, the connection between roots and rearrangements
was discovered at approximately the same time by Alexandre-Théophile
Vandermonde (1735–1796). Although he accomplished less, Vandermonde
saw the major point and it is not right that Lagrange has overshadowed
him in the history of mathematics.

Crisis

Mathematics was Lagrange’s only passion, and it was enough to fill his
entire life and to bring him many happy moments. Everything was de-
voted to his scientific work. Delambre tells us of Lagrange’s relation to
music: “I love it because it isolates me; I hear the first three notes, but
at the fourth I discern nothing, I give myself up to my thoughts, noth-
ing interrupts me, and then I solve the most difficult problems.” It was
characteristic of Lagrange that the great goals of knowing the truth and
of world harmony were not bound up with his personal ambitions, with
the desire to compete and outstrip his contemporaries. If he learned that
someone had successfully investigated a problem on which he himself had
been working, he immediately stopped thinking about it with the sincere
feeling of “freedom from obligation.” Thanks to this Lagrange enjoyed
unusual emotional stability, which gave him the strength to overcome the
difficulties of life and not curtail his intense work.

Only one thing could upset Lagrange—losing his orientation, being
unsure that he had chosen the right goals. This feeling started to appear
soon after he moved to Berlin. In 1772 he wrote to d’Alembert, “Does it not
seem to You that higher geometry is rather approaching a decline, and that
only You and Euler maintain it?” This was written by a scholar who was
at the peak of his powers (he was 36 years old), whose Analytical Mechanics
had begun to take shape, and who had just published an memoir on algebra
that would determine the development of algebra for the next 100 years!

This statement deserves some thought. It seems that Lagrange saw
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what he would work on for the coming 10–15 years, but a longer perspec-
tive seemed dubious to him. Possibly the particular style of his work had
begun to tell on him. He had mapped out his basic directions in his youth,
followed them with a share of his well-known conservatism, and not with-
out reason hoped to complete the problems he had posed in the foreseeable
future. A feeling of the end of mathematics probably could not have arisen
with Euler, who throughout his long scientific life actively sought out new
problems and went from one problem to another without being afraid to
leave much unfinished. We should pay attention to the fact that Lagrange
did not put himself in the same rank as Euler and d’Alembert. This was
not the appearance of formal modesty. It was also characteristic that he
envied his contemporaries who could easily find new problems, such as
Gaspard Monge (1746–1818): “This devil Monge is always full of new and
daring ideas” or “This scamp with his theory of the generation of surfaces
is headed for immortality.”

This feeling of the decline of mathematics did not abandon Lagrange.
On September 21, 1781 he again wrote to d’Alembert: “Furthermore, I am
beginning to feel that my inertial force is increasing little by little, and I
cannot say whether I will still be doing Geometry ten years from now. It
also seems to me that the mine is almost too deep already, and that unless
we discover new veins we will have to abandon it sooner or later.

Physics and Chemistry now offer more brilliant riches and are easier
to work; also the century’s taste appears to have completely turned in that
direction, and it is not impossible that the positions of Geometry in the
Academies will one day become the way the chairs of Arabic are now in
the Universities.”11

It is natural to be puzzled by this. In celestial mechanics what was
outlined was coming to an end while in algebra the language was only
being worked out. Rough results were being obtained but the program
was still not sufficiently defined and work had to be redirected. But the
psychological laws of scientific creation are like that: one person cannot
advance infinitely far on a difficult problem. The material has to settle and
needed results such as Gauss’, which confirmed the great effectiveness of
working with permutations of roots. For Abel and Galois both Lagrange’s
and Gauss’ work were key.

In Paris

His premonitions did not deceive Lagrange. In 1787, soon after the death
of Friedrich II, he moved to Paris and essentially stopped his mathemat-

�——————�
11Oeuvres de Lagrange, Vol. 13, p. 368.
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ical activity. Lagrange was 51. In the single year of 1783 both Euler and
d’Alembert had passed away. Lagrange was enthusiastically welcomed
by the French scientists; now he was without a doubt “the leading ge-
ometer in Europe” and only Laplace could seriously compete with him.
The court was not indifferent to Lagrange. He was diverted unusually
easily from geometry towards work in philosophy, chemistry, history, and
medicine. Could Lagrange have hoped to begin a new scientific life? The
Paris scene was one of a range of scientific activities. Scientific circles flour-
ished and contacts between scientists of different specialties were popular.
The chemist Antoine Lavoisier (1743–1794) was particularly active in es-
tablishing such connections. Scientists were actively interested in social
problems and the role of science in the life of the state.

Lagrange did not leave mathematics: his works would still appear, he
would be actively interested in the works of others, he would still talk
about his pedagogical activities and his own textbooks, but the peak of his
scientific activities had already passed. And the time would soon come
when the majority of French scientists (perhaps excluding Laplace) would
interrupt their usual work.

First there was the revolution, in which scientists took a most active
part. They had never before been able to influence the life of the country
directly. They were in the Municipality and the Constituent and Legislative
Assemblies. The astronomer Jean Bailly (1736–1793) became the mayor of
Paris, the mathematician Lazare Carnot (1753–1823) was in charge of the
defense of France (he was called the “organizer of victory”), and Monge
became the Naval Minister. Also, scientific work aimed at solving practical
problems sharply increased.

Lagrange kept to the sidelines of politics. The law of 1793 required
foreigners to leave France, but a special decree of the Committee of Public
Safety made an exception for Lagrange. During the most difficult days he
did not leave France, sharing the fate of his colleagues. Their participation
in political life cost Bailly and Condorcet their lives. Lavoisier was executed
as a “tax farmer.”12 Lagrange watched these happenings intently. Delam-
bre preserved the words Lagrange spoke after Lavoisier was guillotined:
“It took one moment to remove this head and, perhaps one hundred years
will not be enough for a similar one to appear.”

As a scientist, Lagrange conscientiously fulfilled all assignments. A
large number of commissions and offices gradually accumulated in which
it was customary to include scientists. He worked on measuring distance
at sea and estimating the supply of bread and meat in the country in or-

�——————�
12Tax collector.—Transl.
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der to estimate the probability of famine. One of his writings included a
calculation of the explosive power of the powder in a gun barrel (it was
not published during the author’s life—perhaps this was one of the first
classified scientific works).

Scientists were especially included in the work of the Commission of
Measures and Weights. Today it is not easy to make sense of why, in a
time of hunger and devastation and with a constant danger of war, such
enormous attention was paid to reforming the system of measures and
weights. A lack of coordination in the system of measures explained many
difficulties and people spoke with great emotional heat about how im-
perfections in measures were a means for exploiting the populace. An-
other aspect of the issue was the inconvenience of the system of measures,
which was an international problem, and a successfully conceived sys-
tem could have served to increase the prestige of the Revolution in the
international arena. From this point of view it was important to choose
units that were not tied to any national tradition. The bishop of the city
of Autun and future Napoleonic diplomat, Charles Maurice de Talleyrand,
proposed to use an idea that had come from Huygens and to take as the
basis for length a pendulum whose period of oscillation was equal to one
second. But the idea of taking a portion of a meridian as the unit of length
won out.

The work was thought through at the highest level. Lavoisier and Juste
Haüy (1743–1822) measured the weight of water. Geodesic measurements
were begun for which there were no methods, and relations with Spain as
well as the situation in places in France itself interfered with them. But
the revolutionary Convention was impatient to introduce a system of mea-
surements “for all time and all peoples” (the motto later engraved on the
standard meter). Problems of the metric system were adjudicated by the
Convention in 1793 together with the sharpest questions. The Commission
was accused of being slow and some of its members were removed for “in-
sufficient revolutionary virtue and hatred of tyranny.” Such an accusation
could be enough to send one to the guillotine!

Lagrange’s duties on the Commission were not of such a sharp, the-
oretical nature. He studied the choice of a basis for the new system and
proposed taking the prime number 11 as its foundation. He thought it
important that no part of the fundamental unit turn into an independent
unit over time. In the end everything was constructed on the basis of the
decimal system.

The Academy was closed at the time and was reborn as the Institute
of France, and Lagrange stood at the head of the Physics–Mathematics
section.
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Pedagogical Activities

Revolutionary France paid a lot of attention to educational reform during
the stormy and rich changes of 1793–1795. “After bread, education is the
most important need of the people,” said Georges Danton. The education
of the people was thought of no less than supplying the people with bread.
The École Normale (Normal School) was organized for the preparation
of teachers and the École Polytechnique (Polytechnic School) for that of
military engineers. The École Polytechnique was first called the Central
School of Public Works. Never before having taught, Lagrange enthusias-
tically gave lectures in both schools. With his interest in thinking through
the foundations, his lectures were an occasion for rethinking modern math-
ematics, its fundamental ideas, and the connections among different fields.
Two books were born from his lectures, The Theory of Analytic Functions in
1797 and Lectures on the Calculus of Functions in 1801.

A fundamental conception of Lagrange eloquently characterizes the
full title of the first book: “The Theory of Analytic Functions containing
the Principles of differential Calculus, freed from all consideration of the
infinitely small, of vanishing quantities, of limits and fluxions, and reduced
to the algebraic analysis of finite quantities.” The point is that almost two
centuries of mathematics had resolutely used infinitesimals but this con-
cept remained fuzzy and there was no convincing foundation for the rules
for working with them. However there was no doubt that the formalism
that had been worked out allowed one to obtain correct results that had
not been successfully obtained by other means, and to refrain from the
language of infinitesimals (as was initially proposed) was already impossi-
ble. A situation that had gone on for an impermissibly long time remained
confused.

In 1784 the Berlin Academy proposed as the theme for a competition to
construct “a clear and precise theory of what in mathematics is called infi-
nite. It is known that higher geometry constantly deals with the infinitely
large and the infinitely small. However the ancient geometers and even an-
alysts carefully avoided everything that touched the infinite, and the great
contemporary analysts recognize that the expression ‘infinite quantity’ is
contradictory. The Academy therefore wishes to obtain an explanation of
how from a contradictory assumption so many true theorems have been
derived, and that a true, clear—in a word authentic mathematical principle
can be expressed which would replace the infinite, not making too difficult
or long the investigations produced using this means.” The initiator of the
competition was no doubt Lagrange.

His point of view consisted of the fact that the idea of infinitely small is
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in fact contradictory, but the calculus had been constructed so successfully
that the errors that arose compensated for each other and a correct answer
was always obtained. As early as Volume II of Mélanges de Turin, Lagrange
wrote in 1760–1761 that “calculus itself corrects the false assumptions made
in it.” As Felix Klein (1849–1925) wrote, he “repudiated analysis as a general
discipline, understanding it simply as a collection of formal rules related
to particular special functions” and “such self-restriction removed for that
time a whole series of difficulties.” Thus, Lagrange’s point of view was that
in principle one could not make infinitesimal calculus meaningful, that one
needed to look at it formally, convince oneself somehow that the errors in
fact cancel out, and then calmly use it.

We have again run into the readiness of 18th century mathematicians
to deal with purely formal procedures (we already spoke about work with
“imaginary” roots of equations). In the 20th century an analogous point of
view arose in the realm of Hilbert’s program on the foundations of math-
ematics, in which infinities are taken as formal objects and we only need
to convince ourselves that the rules of handling them are not inconsistent
in order to be sure that the statements about finite objects obtained from
them are correct.

Lagrange’s prognosis was not borne out. A meaningful foundation
of analysis on the basis of limits had long been advanced by d’Alembert.
But Lagrange, as is evident from the title of his book, rejected this basis
along with everyone else. His thought process was very interesting. He
remarked that there are no problems in constructing the rules of differentia-
tion of polynomials, and in the same algebraic language one could construct
differential calculus for functions that can be expanded in infinite series.
Lagrange was sure, as were his predecessors, that every function admits
such an expansion (only Cauchy disputed this opinion) Lagrange relied on
his intuition in practical analysis, which suggested that all the functions en-
countered in applications admit a series expansion. Within a century Karl
Weierstrass (1815–1897) would construct the theory of analytic functions of
a complex variable along this path, but as a means of grounding the anal-
ysis of real functions this program turned out to be untenable. Bourbaki
wrote, “The monumental work of Lagrange represents an attempt to base
analysis on one of the most arguable of the Newtonian concepts, that which
confuses the notions of arbitrary functions and that of functions which can
be expanded in a power series, and to draw from that13 (by consideration
of the coefficient of the term of the first order in the series) the notion of dif-
ferentiation. Of course, a mathematician of the quality of Lagrange could

�——————�
13From the series.—S.G.
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not fail to obtain in this case important and useful results, as for example
(and in a way which was in fact independent of the point of departure that
we have just indicated) the general proof of the formula of Taylor with the
expression for the remainder in the form of an integral, and its evaluation
by the theorem of the mean; in any case the work of Lagrange is at the
origin of the method of Weierstrass in the theory of functions of a complex
variable, as well as the modern algebraic theory of formal series. But, from
the point of view of its immediate objective, it represents a retreat rather
than progress.”14

It is indicative that Lagrange never confused the problem of the foun-
dations of analysis with a particular construction of analysis and its appli-
cations. In the preface to the second edition of Analytical Mechanics (1811)
Lagrange wrote, “I have kept the ordinary notation of the differential calcu-
lus because it fits the system of infinitesimals adopted in this treatise. Once
the spirit of this system has been grasped well and the accuracy of its results
established by either geometrical methods or by the analytical method of
derived functions, the infinitesimal calculus can then be applied as a certain
and manageable tool to shorten and simplify the demonstrations.”15

Lagrange’s remarkable method for finding a constrained extremum first
appeared in the pages of The Theory of Analytic Functions. In finding the
largest and smallest values of a function of several variables, say f(x, y), the
problem inevitably arises of finding an extremum under some condition
on the variables, e.g., ϕ(x, y) = 0, where it is not always convenient to pass
to the smallest number of parameters. Finding an extremum of a function
of one variable on an interval reduces to equating the values of the function
at the interior stationary points and at the endpoints. To find an extremum
in a domain D of several variables we must compare the values of f at
the interior stationary points with the values on the boundary, but the
boundary no longer consists of two points and the question arises of the
constrained extremum on the boundary. However this is only one of the
many situations where a constrained extremum arises.

Lagrange noted that the problem cited above reduces to finding those
λ for which the function f + λϕ has stationary points when ϕ = 0. This
gives rise to a system of equations for finding these points. Analogously,
we consider the case of any number of parameters and constraints. “The
method of Lagrange multipliers” grew out of Lagrange’s results on me-
chanical systems with constraints. In applications, Lagrange multipliers
frequently have an interesting interpretation. Today the sphere of applica-
tions of Lagrange’s idea has broadened. In particular, linear programming

�——————�
14Elements of the History of Mathematics, p. 196.
15Analytical Mechanics, p. 8.
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developed from it and in applications to economics problems the Lagrange
multipliers can often be interpreted in the language of prices.

The Last Years

Under the Directory (1795–1799) and Consulate (1799–1804), Lagrange’s
situation was strengthened. During the Empire that followed he became
a count, a senator, and a chevalier of the Order of the Legion of Honor.
Napoleon was not indifferent to mathematics and understood Lagrange’s
true value very well. The Emperor’s daily life left him little time for scien-
tific patronage. He limited himself to dispensing awards with short testi-
monials intended for history. He called Lagrange “the Cheops pyramid of
science.”

Lagrange died on April 10, 1813. Delambre recalled the surprising peace
with which he met his last hour: “I felt that I was dying; my body weakened
little by little, my mental and physical abilities faded imperceptibly; I noted
with pleasure the very gradual decrease in my strength and I arrived at the
end without pain, without regrets, and along a very gentle path. . . . I made
my career; I acquired some fame in Mathematics. I hated no one, I harmed
no one, and I must finish it well. . . .”16

In his stormy century Lagrange was able to lead a measured life. His
contemporaries worked to recall details that they could use to enliven his
biography. They did not tell stories about him as they did for Laplace.
Krylov remarked that the story of the Italian-style meal in Paris told above
was perhaps the only adventure in Lagrange’s life. They recalled that he
was able to improve Lambert’s position in Berlin, that during the terrible
year of 1793 he was not afraid to defend Delambre, who was going to be
fired from the Commission on Measures, that he touchingly looked after
Poisson when the latter was his student at the École Polytechnique, and that
surprisingly he knew how to listen to his interlocutors. And sometimes a
small but significant trait came out: Lagrange’s whole being “was imbued
with quiet irony.”

And unexpectedly precisely this modest man came to be taken as the im-
age of a great scientist and person, and not just by mathematicians. Goethe
wrote: “The mathematician is perfect only in so far as he is a perfect man,
in so far as he senses in himself the beauty of truth; only then will his work
be thorough, transparent, prudent, pure, clear, graceful, indeed elegant.
All this is needed, in order to resemble Lagrange.”17 Elsewhere he wrote

�——————�
16Oeuvres de Lagrange, Vol. 1, p. xliv.
17Thanks to my colleague Jens Kruse for help in locating the original German and rendering

this in English.—Transl.
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about Lagrange, “He was a good man, and on that very account a great
man. For when a good man is gifted with talent, he always works morally
for the salvation of the world—as poet, philosopher, artist, or what not.”18

Today, Euler and Lagrange are considered to be the greatest mathe-
maticians of the 18th century, teacher and student whose gifts strikingly
complemented one another. Euler, striving to see as far ahead as possible,
spoke about things for which there was still no appropriate language and
left a legacy of problems that served as reference points for a long time.
Lagrange, reaching for deep structure in everything and trying to create
a picture with no blank spots, passed along to succeeding generations the
language and methods that would be enough to solve new problems for
many years.

�——————�
18Conversations of Goethe with Johann Peter Eckermann, translated by John Oxenford, Da Capo

Press, New York, 1998, p. 291.



Pierre-Simon Laplace

Chancellor of the imperial Senate, receiving over 100,000 pounds annu-
ally, being no less diligent than a simple academician, Laplace tried to
tie up all the irregularities and perturbations in the motion of the lumi-
naries with the principle of universal gravitation, to extend the method
of mathematical analysis to the phenomena of terrestrial physics, and
to subject the phenomena of public life to his formulas, where the av-
erage person sees a mystery or blind luck. François Arago

On March 5, 1827 at nine o’clock in the morning the Marquis Laplace
died, a peer of France, one of the first chevaliers of the Legion of
Honor and worthy of its highest decoration, the Grand Cross.
“What we know is nothing in comparison with what we do not

know” were his last words. Laplace was called “the French Newton” and
he died exactly one hundred years after Newton, who had been his idol.

Laplace’s eulogies were delivered with some embarrassment. In his
speech Fourier said, “I could also have, perhaps I should have, recalled
the high political positions in which he was invested; but this recounting
would only indirectly relate to the object of this discourse. It is the great
geometer whose memory we celebrate. We have separated the immortal
author of ‘Celestial Mechanics’ from all the accidental facts that involve
neither his glory nor his genius. In effect, Sirs, what does it matter to
posterity, which will have so many other details to forget, to learn or not
learn that Laplace was for some moments a minister of a great state?”1

It was embarrassing to his associates that Laplace was able to remain a
republican and a monarchist, an atheist and a Catholic, and to receive

�——————�
1Joseph Fourier, “Éloge historique de Laplace,” Mémoires de l’Académie des Sciences, Paris,

1831.
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Pierre-Simon Laplace.

honors under the Empire and after the Restoration. Incidentally, the former
Jacobin Fourier also became a baron later on.

Beaumont-Paris, 1749–1789

The future marquis was born on March 23, 1749 into a peasant family in
the little town of Beaumont in Normandy. Later he spoke of his childhood
reluctantly and never saw his parents after he turned 21. Thanks to an
unknown patron he completed his studies at a Benedictine college. At
the age of 17 he was already teaching mathematics at the École Militaire
(Military School).

Laplace began an intensive study of mathematics and mechanics. In
1770, armed with a letter of recommendation to the great d’Alembert, he
set off for Paris. For a long time he was unable to start on the path of the
recommendation until an idea fortunately came into his head—to lay out
his understanding of mechanics in writing. The originality of the young
man’s idea made a strong impression on d’Alembert: “You recommended
yourself to me, and this completely sufficient. My assistance is at Your
service.”

With d’Alembert’s help it was arranged for Laplace to teach at the École
Militaire and later he took the position of examiner at the Royal Artillery
Corps, a position that was freed up after Bézout’s death. In 1784 the young
Napoleon Bonaparte brilliantly passed his examination. Laplace had the
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opportunity to recall this in 1804: “I want to add my own greetings to the
greetings of the people to the Emperor of France, whose career I had the
happy privilege of launching twenty years ago, a career that has brought
such glory to him and such happiness to France.”

In 1772 Laplace was nominated for the Academy of Sciences2 as an
adjunct member (with a lower salary) in geometry3 but he was not elected.
Evidently, one reason for this was that the French scholars did not have a
very favorable opinion about their young colleague. Lagrange took a more
indulgent and optimistic position: “I am somewhat surprised at what You
are writing to me about Laplace: he is boasting about his first successes—a
shortcoming characteristic, in general, of very young people. However as
they know more they usually become less presumptuous” (from a letter to
Condorcet, the Permanent Secretary of the Academy of Sciences). Laplace
was already thinking of moving to Berlin, to Lagrange, but in 1774 he
obtained a position as adjunct member in mechanics.

Almost all of Laplace’s scientific activities were devoted to celestial me-
chanics (see below). But his interests were significantly broader than that.

Thus during 1779–1784 he collaborated with Lavoisier on the most di-
verse questions (defining specific heat, the problem of phlogiston, atmo-
spheric electricity): “I truly do not know how I got involved in working
in physics, and You know, perhaps, that I would have done better by re-
fraining from this; but I could not withstand the persistence of my friend
Lavoisier, who put as much pleasantness and intelligence into this joint
work as I could wish for. Moreover, since he is very rich he begrudged
nothing in order to give the experiments the precision that was needed for
such delicate research.” Laplace also took part in public life: he joined a
committee of the Academy of Sciences that investigated hospitals for the
poor and sanitation in the city slaughterhouses. Laplace’s prestige grew.
In 1784 he became an academician in mechanics.

The path of the Beaumont peasant was not unique. At the end of the
18th century almost half the members of the Academy of Sciences came
from simple family backgrounds. For example, Monge was the son of a
village grinder, Fourier that of a tailor, and Poisson that of a soldier. The

�——————�
2At that time, there were five academies in France. We note among these the Académie

Française founded in 1635 by Cardinal Richelieu for the perfection of the French language
and the composition of a dictionary, and the Académie des Sciences, founded in 1666. The
Académie Française consisted of 40 lifetime members. New members were chosen to re-
place ones who died. The members of the Académie Française were called “immortals.”
The Académie des Sciences might more precisely have been called the Academy of Natural
Sciences.

3In the 17th century, all of mathematics was called geometry. Up to that time, the Mathe-
matics section of the Académie des Sciences was called the Geometry section.
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participation of the upper class in science was usually limited to patronage
and honorary membership in the Academy; d’Alembert regretted, “In our
times so many patrons have been bred that it is impossible to extol and
thank them all as one should.”

In 1788 Laplace married. Within a year a son was born. The measured,
prosperous life was interrupted by the events that decisively changed the
life of the country.

Revolution, Empire, Restoration

A significant portion of the French scientific community was caught up in
the revolutionary events. The astronomer Bailly, Laplace’s friend, was the
first mayor of Paris, Condorcet was a member of the Municipality, and the
outstanding mathematician Monge was Naval Minister. In 1791 a number
of academicians put forth their candidacies for the Legislative Assembly, in-
cluding Condorcet and Lavoisier. In connection with this Jean-Paul Marat
published an impassioned pamphlet called Modern Charlatans. At the same
time it touched Laplace: “Among the best mathematics academicians are
Laplace, Monge, and Cousin;4 a species of automatons, accustomed to fol-
lowing well-known formulas and applying them to the blind, like a mill
horse that is used to making a certain number of circles before stopping.”

Laplace, together with Lagrange, Monge, and Lavoisier, joined the work
of the commission on the metric system, whose goal was to create a single
system of measures. During the Jacobean dictatorship Laplace was re-
moved from the commission because of “insufficient revolutionary virtue
and hatred of tyranny.” In 1799 he returned to the commission and the
standard meter and kilogram were made under his supervision.

In the summer of 1793, following an appeal by the Committee of Public
Safety, a large group of scholars conducted scientific research on the orga-
nization of a defense against an expected attack. Laplace was not among
them. He moved to the quiet town of Melun, where he began work on the
multivolume Celestial Mechanics, the major work of his life.

In 1793 the Convention abolished the existing academies. In 1793–1794
several former academicians met their end at the guillotine. Condorcet
was sentenced to death along with the Girondist deputies. The tax farmer
Lavoisier was also condemned, by the “Law of Suspect.” Bailly, whom
Laplace tried to hide in his home at Melun, died on the scaffold.

Laplace returned to Paris after the Thermidor revolution in the autumn
of 1794. Along with Lagrange and several of the best scientists, he took

�——————�
4Jacques Cousin (1739–1800).
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a position as professor at the École Normale. This new kind of educa-
tional institution had been conceived before the Convention. Enlisting top
scientists in the role of teachers was something new. Later, the École Poly-
technique was created to train engineers at the same high level. Laplace
gave lectures in both schools. He became president of the Commission of
Measures and Weights and worked actively with the Bureau of Longitude,
which was created to oversee astronomical, geodesic, and time measure-
ments.

In 1795 the Directory founded the Institut National des Sciences et Arts,
(later called the Institut de France). The Institute was divided into sections,
the first of which was called the Classe des Sciences Mathématiques et
Physiques.

General Bonaparte supported all sorts of contacts with the Institute and
took an active part in the work of the geometry section. During his Egyptian
campaign he signed his proclamations “Bonaparte, Supreme Commander,
member of the Institute.”

The first two volumes of Celestial Mechanics appeared in 1799 and Laplace,
literally within several days of the revolution of the 18th of Brumaire
(November 12), gave the first volume to Napoleon. In his response the
general said, “With gratitude I accept, citizen, the copy of Your excellent
work that You sent me. The first six months that I can devote to it will go
to reading Your excellent work.”

After the establishment of the Consulate Napoleon decided to give the
position of Minister of Internal Affairs to a scientist. The choice fell on
Laplace, probably in view of his great fame and personal acquaintance
with Napoleon. However Laplace’s work as minister was not so success-
ful. As opposed to his Cabinet colleagues Talleyrand and Joseph Fouché,
Laplace did not know how to find his bearings and understand the Consul’s
thinking as a patron of the sciences. He went after royalism and religion,
not without naivete: “Do not miss an opportunity to prove to your fellow
citizens that superstition will profit from the changes stemming from the
18th of Brumaire no more than royalism will” (from a circular by Minis-
ter Laplace). After a few more months passed, Napoleon’s brother Lucien
replaced Laplace. In his memoirs, written on the island of St. Helena,
Napoleon wrote, “The first-class geometer soon showed himself to be only
a mediocre administrator; his first steps in this area convinced us that we
had made a mistake with him. It is remarkable that not one question from
practical life had arisen in Laplace’s true sphere. He looked for accuracy
and detail everywhere; his ideas were notable for being enigmatic; finally,
he was completely filled with the spirit of the ‘infinitely small’, which he
even carried over to administration.”
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Nevertheless, this change did not cut short the amiable relationship
of Bonaparte and Laplace. On becoming First Consul, Bonaparte named
Laplace as “gardien” of the Senate. Incidentally, this Senate played no
role at all in public life. Laplace became chancellor of the Senate in 1803.
Among the few acts of the Senate was a change in the revolutionary cal-
endar according to a report written by Laplace. The order of the Legion of
Honor was established and Laplace was among its first chevaliers. In 1808
he became a count of the Empire.

At the same time Laplace continued working on Celestial Mechanics.
The third volume appeared in 1802, dedicated to Napoleon, “to the hero
and pacifier of Europe, to whom France owes its prosperity, its greatness,
and the most brilliant epoch of its glory.” In his reply, Napoleon said
“I truly regret that the force of circumstances kept me from the field of
science.” Somewhat later Emperor Napoleon wrote, “It seems to me that
Celestial Mechanics increases the magnificence of our century.” On August
12, 1812, at the Battle of Smolensk,5 Napoleon received The Analytical Theory
of Probability and again regretted, “At another time, having leisure time, I
would have read Your ‘Theory of Probability’ with interest.” And later,
“Spreading and perfecting the mathematical sciences is closely joined to
the welfare of the state.”

Napoleon was actively involved in the affairs of the Institute. In 1801
a mandatory structure was introduced for members of the Institute. The
members lined up after Mass at the Tuileries palace to be presented to the
emperor. At that time they could present him with scientific works and
obtain his “paternal” directions. While he patronized the exact sciences
he mistrusted the humanities. In 1803 Napoleon eliminated the section of
Moral and Political Sciences at the Institute. When he got word that dis-
cussions about politics were taking place in the section of French Language
and Literature (the Second Section), he announced to Ségur,6 “You preside
over the Second Section of the Institute. I order You to tell it that I do not
want them to talk about politics at their sessions. If the section will not
obey, I will break it like a worthless stick.”

Before the fall of Paris in 1814, the Senate took an unexpected action:
at Talleyrand’s initiative, it called for the return of the Bourbon dynasty.
Laplace was one of the first to sign this decision. During the Hundred
Days,7 he did not leave the provinces.

�——————�
5The city in Russia where the Russian and French armies fought a major battle during

Napoleon’s march toward Moscow.
6Count Louis-Philippe Ségur was a French soldier and diplomat under the king who

became a member of Napoleon’s entourage.—Transl.
7With the Bourbon return, Napoleon abdicated and went into exile on the island of Elba.
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Under the Restoration the sections of the Institute were called academies
again. The Academy of Sciences meekly removed the Monge and Carnot
from their ranks for having been disloyal to the monarchy. Laplace was
showered with honors. In the first year of the reign of Louis XVIII he be-
came a marquis and peer of France, and received the Grand Cross of the Le-
gion of Honor. In 1816 he became the president of the Bureau of Longitude
and chairman of the commission for reorganizing the École Polytechnique,
and was elected to the “Academy of Immortals,” a rare distinction for some-
one in the exact sciences. Laplace’s speeches in the Chamber of Peers were
rare, colorless, and uncompromisingly monarchial. When part of the Insti-
tute protested against the introduction of censorship by Charles X, Laplace
dissociated himself from the protest in print. Henri de Saint-Simon was
indignant: “Sirs, who learn disorganized material, infinitely small quan-
tities, algebra, and arithmetic! Who gave you the right to be on the front
lines? . . . You brought from science only one observation, namely, that he
who flatters the world’s greats takes advantage of their goodwill and gen-
erosity.”

Many stories about Laplace’s behavior in the Academy of Sciences have
been preserved. Here are two of them.

François Arago (1786–1853) and Poisson were competing for the same
position in the Academy. Laplace announced that he had to give his prefer-
ence to Poisson, who was older. A sharp exchange of opinions took place:

Lagrange: “But You yourself, Monsieur de Laplace, were elected as a
member of the Academy when you had not yet done anything outstanding
and showed only hope, and all Your great discoveries were made later.”

Laplace: “And I still consider that the title of academician should be
shown to young persons as a future reward, in order to stimulate their
powers.”

Hallé8: “You are like a coachman who attaches a wisp of hay to the end
of a pole on his carriage to entice the horses. This kind of ruse ends in the
horse becoming exhausted and dying.”

Laplace had to concede.
Another time, in 1822, Fourier and Jean-Baptiste Biot (1774–1862) were

running for the position of Permanent Secretary. Laplace took two ballots
instead of one. The person next to him saw that he had written Fourier’s
name on both. Laplace put the ballots into a hat and asked his neighbor to
choose one, tore up the other one, and announced loudly that he did not
know for which candidate he had voted.

�——————�
The Hundred Days was the period between his return to power and his final defeat at
Waterloo.—Transl.

8Jean-Noël Hallé (1754–1822).
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After Lagrange’s death in 1813 Laplace’s influence in the Academy of
Sciences became especially strong. In 1826, a year before Laplace died,
the young Abel appeared in Paris. He wrote, “Thus, Celestial Mechanics is
complete. The author of such a work can look with satisfaction at the path
he took in science.” Elsewhere he wrote, “It is obvious that any theory
of Laplace is much greater than what any mathematician of lesser stature
could create. It seems to me that if you want to achieve anything in math-
ematics you need to study the masters, not the apprentices.”

Celestial Mechanics

The start of Laplace’s scientific activities came at a complex time. The great
era of constructing infinitesimal analysis had ended. There were no prob-
lems on which the best mathematicians were concentrating their powers. It
seemed to many that the days of pure mathematics were numbered. Even
the multifaceted Lagrange, whose algebraic work defined his time, had
stopped doing mathematics at some point. He had written to d’Alembert
in 1772, “Does it not seem to You that higher geometry is rather approach-
ing a decline, and that only You and Euler maintain it?”

Under these conditions the center of interest was located in applied
mathematics, where undisputed priority went to the problem of building
a theory of motion for heavenly bodies based on the law of universal grav-
itation.

Here is the prehistory of this problem. At the beginning of the 17th cen-
tury Kepler, taking the viewpoint of Copernicus and with Tycho Brahe’s
scrupulous observations in mind, formulated three laws that were obeyed
by the motion of the planets around the sun. Newton’s genius of a con-
jecture was that these laws are consequences of a single universal law of
universal gravitation that controls the interaction of heavenly bodies and
the attraction of the earth. Terrestrial and celestial mechanics were united.
Under the law of gravitation one could explain the motion of the moon,
the ebb and flow of the tides, the precession of the equinoxes, and other
effects. But it was not easy for Newton’s theory to gain recognition. Huy-
gens and Leibniz did not believe in it. Johann Bernoulli worked hard to
explain the ellipticity of the orbits without using the law of gravitation. In
France Newton was opposed by Descartes’ followers, who took a contrary
point of view on many issues. For example, in Newton’s considerations it
was important that the earth was flattened at the poles while the measure-
ments of the French geodesists (which turned out to be wrong) showed
that it was stretched out there instead. In 1727 Voltaire joked, “. . .in Paris
they think the earth is stretched at the poles, like an egg, while in London
it is compressed, like a pumpkin.”
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There was one way in which Newton’s opponents had a strong position.
A thorough analysis of observations showed that Kepler’s laws were satis-
fied only approximately, and that small deviations could accumulate over
time and sharply upset the stability of the solar system. Newton did not
see a way to get around these “secular” perturbations: “. . .hardly notice-
able inequalities, which can come from the interaction of the planets and
comets. . . , probably, will increase over a rather long time until that time
when, finally, the system will require the hands of the Creator to bring it
into order.” In reply, Leibniz noted “Newton and his adherents have an
extraordinarily amusing idea of divine creation. From their point of view
God must from time to time wind his world clock. . . . God created such an
imperfect machine that he must at times clean it from dirt and even repair
it, like a watchmaker corrects his work.” The mathematical difficulty was
that in deducing Kepler’s laws from Newton’s law the two-body problem
(sun and planets) must be dealt with. The desire to account for the influ-
ence of still another object lead to the three-body problem, which to this
day has not been solved in the general case.

Euler, Clairaut, and d’Alembert continued Newton’s work. Euler stud-
ied perturbations in the motions of Jupiter and Saturn. All three gave their
own variants of the theory of the moon’s motion. Clairaut deduced equa-
tions for the three-body problem but left it with the words, “Let he who
can, integrate.” The most effective result was Clairaut’s prediction of the
exact time that Halley’s comet would return. It was expected in 1758 but
Clairaut’s calculations showed that because of the influence of Jupiter’s
attraction it would be “held back” more than a year. Euler and Clairaut
constructed a theory of motion for the earth that took the perturbed motion
of the other planets into account.

In the 1770s Lagrange became interested in problems about the anoma-
lies of the solar system. The young Laplace also started to become interested
in them. Euler and d’Alembert sorted out a series of effects associated with
the mutual attraction of Jupiter and Saturn, but one phenomenon remained
unexplained—the so-called “great inequalities,” discovered by Halley in
1676 when comparing modern and ancient observations with those of the
ancients. It seemed that Jupiter was slowly but systematically accelerating,
while Saturn was slowing down.

Laplace, like Euler and Lagrange before him, sought an approximate
solution to the three-body problem, considering an infinite series of per-
turbation terms. To obtain an approximation formula he had to decide
how many terms to take in the series and how large an error was made
by discarding the remaining ones. For simple series students can do such
exercises. But it was not understood how to proceed with the perturbation



256 � Tales of Mathematicians and Physicists �

series. Laplace thought he could succeed by taking the necessary number
of terms and steadily comparing the result obtained with the given observa-
tions: “The extraordinary difficulty of the problems relating to the system
of the world forced geometers to resort to approximations, which can al-
ways save them as long as the discarded terms do not turn out to have much
influence. When the observations indicated such an influence to them they
turned again to their analysis; in checking they always found a reason for
the deviations they noted; they determined their laws and discovered the
inequalities which had not yet been indicated by the observations. Thus
one can say that nature itself assists the analytic perfection of theories based
on the principle of universal gravitation.” In the case of Jupiter and Saturn
the noted anomalies arise from the fact that after every five revolutions
of Jupiter and three revolutions of Saturn the planets occupy almost the
same position and the perturbations build up. All the same, as Laplace’s
calculations showed, the perturbations do not accumulate without bound;
they are not “secular” but rather periodic, with a huge period of 913 years.
Thus, although the compensation takes place utterly slowly, the time comes
when Jupiter begins to slow down and Saturn begins to speed up.

Halley’s conjecture about the “great inequalities” was settled in 1784.
“When I explained these inequalities and determined those that had al-
ready been computed with more attention than had been given up to now,
I was convinced that all observations, ancient and modern, were presented
by my theory in all their accuracy. Before they had seemed unexplain-
able by the law of universal gravitation; now they serve as one of its most
striking confirmations. Such is the fate of this brilliant discovery: every
difficulty that arose here turned into its triumph and this is the truest sign
that it corresponds to the real system of nature.”

Euler, d’Alembert, and Clairaut put a lot of effort into constructing a
theory of motion for the moon that agrees with observations. The main
effect that was necessary to explain is the rapid (41◦ per year) displacement
of elliptical orbits. All three calculated displacements of no more than 20◦.
It was only in 1849 that Clairaut succeeded in making calculations accurate
enough to obtain the needed displacement (there had been serious thought
of putting correction terms into Newton’s law). However still one more
“detail” remained, one that was even noted by Halley in 1693. In analyzing
Ptolemy’s Almagest and medieval data on eclipses, he positively showed
that the moon’s motion was accelerating.

Laplace resolved this in 1787. The cause of the acceleration turned
out to be a long-period oscillation that had been discovered earlier in the
eccentricity of the earth’s orbit; when the eccentricity decreases (the orbit
becomes more like a circle), the mean velocity of the moon increases. This
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was one more perturbation that seemed to be “secular” but turned out to
have a long period!

Laplace did not propose even one conjecture in astronomy. He had the
right to say, “Posterity will probably see with gratitude that the latest ge-
ometers did not leave even one astronomical phenomenon whose laws and
principles were not discovered.” He showed that Saturn’s rings cannot be
solid (Herschel confirmed this by observations during Laplace’s lifetime).
Laplace made the theory of the tides more precise in an essential way, and
showed with the theory of perturbations how lunar observations can be
used to determine the astronomical unit (the distance from the earth to the
sun) and to determine the shape of the earth more accurately.

It stands to reason that Laplace did not bypass problems about the
moons of Jupiter, which had been traditional for all the great astronomers
since Galileo had discovered them. In 1774 this problem was chosen by the
Academy of Sciences as the theme for its prize. In 1789 Laplace constructed
a theory of motion for Jupiter’s moons, taking into account the influence
of the sun and their interaction.

The main problem that occupied Lagrange and Laplace during 1773–
1784 was the problem of the stability of the solar system as a whole. Pertur-
bations for all the planets had been systematically studied, and although
a strict proof of stability had not been obtained there were no arguments
about the agreement of all the anomalies with the theory of gravitation.
Confidence in the theory of perturbations was such that when unexpected
deviations were found in the motion of Uranus, Urbain Leverrier resolved
to explain them by the existence of a new planet.

“Five geometers, Clairaut, Euler, D’Alembert, Lagrange, and Laplace,
shared between them the world of which Newton had disclosed the exis-
tence. They explored it in all directions, penetrated into regions which had
been supposed inaccessible, pointed out there a multitude of phenomena
which observation had not yet detected; finally, and it is this which consti-
tutes their imperishable glory, they reduced under the domain of a single
principle, a single law, everything that was most refined and mysterious
in the celestial movements. Geometry had thus the boldness to dispose of
the future; the evolutions of ages are scrupulously ratifying the decisions
of science.”9

Laplace’s publications are divided into two stages: immediate commu-
nications about the results he obtained in the 1770s and 1780s and their
systematization and amplification in the five volumes of Celestial Mechan-
ics. It was characteristic of Laplace that he forced his way through with

�——————�
9François Arago, Biographies of Distinguished Scientific Men, translated by W. H. Smyth et

al., Longman, Brown, Green, Longmans, and Roberts, London, 1857, p. 201.
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unbelievable strength to the solution of specific problems without being
diverted to the formation and systematization of an apparatus. Lagrange
was the opposite, spending much effort on going from the method to a for-
malism that was suitable for solving a wide range of problems. Therefore
modern texts in theoretical mechanics prominently include the name of
Lagrange, while Laplace’s name can basically be found in historical essays.

“Whether it was a question of the libration of the moon or a problem
in number theory, Lagrange for the most part saw only the mathematical
side of the issue; therefore he gave great significance to elegant formulas
and generalizations of methods. For Laplace, to the contrary, mathematical
analysis was a tool that he adapted to the most varied problems, always
fitting a given special method to the essence of the question. Perhaps
posterity will say that one was a great geometer, while the second was a
great philosopher who tried to apprehend nature, compelling the highest
geometry to serve it” (Poisson).

Relations between Laplace and Lagrange were not simple. Laplace’s
ambition to be the leading mathematician in France continually ran up
against the much greater prestige of Lagrange, who had arrived in Paris in
1788. According to many accounts of their contemporaries, it was painful
for Laplace to hear Lagrange praised. Lagrange’s behavior in the most
difficult situations was irreproachable, while many of Laplace’s acts were
criticized. Maintaining correct relations between Laplace and Lagrange
was to a great degree the result of Lagrange’s patience. Characteristically,
Fourier’s eulogy of Laplace said nothing about his moral qualities; at the
same time it said, not strangely, much about Lagrange’s superlative human
qualities.

A hurried style with no attempt to find the internal workings can de-
ceive even the specialist. As a curiosity we can put forth the opinion of
Poisson, Laplace’s student: “Laplace never saw the truth unless by chance.
It hides from this vain man who says only murky things about it. However
he tries to turn this murkiness into insight, and by his efforts he gives a no-
ble form to a necessary concern, like a man who is afraid to say too much
and to give away a secret that he never had.” There are legends about how
often Laplace said “it is easy to see.” Biot, reading the page proofs of Celes-
tial Mechanics and Nathaniel Bowditch (1773–1838), its English translator,
told of the hours and days they needed to fill the gaps. According to Biot,
Laplace himself often needed to think hard to do this.

The System of the World

While in Melun, Laplace wrote his popular book The System of the World,
which appeared in 1796. In this book, Laplace lays out his hypothesis
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about the origins of the solar system. Laplace, a follower of Newton, “not
contriving a hypothesis,” proposed his considerations “with the care ap-
propriate for everything that does not present the result of observations or
calculations.” Laplace describes the development of the solar system as a
closed process, not requiring the intervention of outside forces.

There is a well-known story about a conversation between Napoleon
and Laplace, who gave him his book:

Napoleon: “Citizen Laplace, Newton talks about God in his book. In
your book, which I have already looked over, I did not find God’s name
even once.”

Laplace: “Citizen First Consul, I did not require this hypothesis.”
Laplace’s words are often taken as a proof of his atheism, although

evidently here we are talking about a concrete situation where Laplace’s
construction did not require external factors either in the hypothesis about
the origin of the solar system or in the question of its stability.

According to Laplace’s hypothesis everything began with a gaseous
cloud revolving around an axis. The cloud, cooling down, first flattened out
along the equatorial plane and then spread out in a ring where the planetary
orbits are now (because of the balancing of centrifugal and gravitational
forces). Various instabilities in the motion of the parts of the ring and
their mutual attraction led to the parts coming together into planets. The
formation of the system of planetary moons took place analogously, where
the example of Saturn shows that sometimes the parts of the ring did not
stick together. The basic points of Laplace’s model are: all the revolutions
take place in the same direction (corresponding to the the direction of the
original revolution of the cloud), the trajectories are nearly circular and
their planes are near to the equatorial plane of the cloud, and the period of
revolution increases with the distance from the center.

The first blows to Laplace’s hypothesis were delivered by Herschel, dur-
ing Laplace’s lifetime: moons were found around Uranus that revolved in
the “reverse” direction and whose orbital planes were almost perpendicu-
lar to the orbital plane of the planet. The number of contradictions began
to grow quickly. Scientists tried to correct the hypothesis in many ways
and to include more complex constructions in it.

Laplace’s hypothesis played an enormous role in the history of cosmol-
ogy. It was the first hypothesis that rested on a great number of specific
facts in mechanics and astronomy (the hypotheses of Georges de Buffon
(1707–1788) and Immanuel Kant that came before did not satisfy these
conditions, although there are many points of contact between Laplace’s
hypothesis and that of Kant, which he did not know about). Even at the
beginning of the 20th century Poincaré wrote about Laplace’s hypothesis
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that “for its age, it is not too wrinkled.”

“Common Sense Reduced to Calculation”

This is how Laplace graphically described probability theory. It was his
second scientific love all through the entire course of his scientific career,
starting with his first works in 1774.

The style of Laplace’s work in this area was different from what was
characteristic of the author of Celestial Mechanics. Here there was no one
big problem and a lot of time was devoted to trying to understand what
had been done earlier, starting with problems about the division of stakes
that were among the sources of probability theory.

At the centre of attention were Jacob Bernoulli’s Law of Large Numbers,
which said that for a large number of trials the frequency of an event ap-
proaches its probability in some sense. Starting off with a result of Abraham
de Moivre (1667–1754), Laplace obtained an estimate of the probability that
the difference between the frequency and probability of an event is large.
This is one of the central theorems of probability theory and is called the
de Moivre–Laplace theorem. Its proof uses the methods of mathematical
analysis, which was a novelty in probability theory.

Laplace appreciated and applied to the sciences the results of the En-
glish minister Thomas Bayes (1702–1761) on estimating the probabilities of
competing hypotheses when the results of checking them are known.

Laplace’s results were summed up in his Analytical Theory of Probabilities,
which came out during his life in three editions, the first in 1812. A lot of
space is devoted to creating the machinery for probability and first of all to
the method of generating functions, which now find applications far from
probability theory. Laplace was responsible for the “classical definition”
of probability, where events are defined as sets of equally likely outcomes:
“The theory of probability consists of reducing all events of the same type to
some number of equally likely cases, that is cases about whose realization
we are equally uninformed, and of defining the number of such cases which
are favorable for the event whose probability we seek.”

Together with a book for “experts” Laplace wrote a book for the general
public. This is his A Philosophical Essay on Probabilities, taken from lectures
given at the École Normale in 1795 and incorporated in the second edition
of Analytical Theory of Probabilities in 1814.

Laplace was one of the first authors who gave examples in a book on
probability theory not only of games of chance but of real statistics. For
example, he presented data showing that the number of letters in France
that were not delivered because of a missing address practically did not
change from year to year.
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Laplace’s point of view was that probabilistic considerations are only
needed where part of the information is unknown: “We ought then to re-
gard the present state of the universe as the effect of its anterior state and
as the cause of the one which is to follow. Given for one instant an intelli-
gence which could comprehend all the forces by which nature is animated
and the respective situation of the beings who compose it—an intelligence
sufficiently vast to submit these data to analysis—it would embrace in the
same formula the movements of the greatest bodies of the universe and
those of the lightest atom; for it, nothing would be uncertain and the fu-
ture, as the past, would be present to its eyes. The human mind offers, in
the perfection which it has been able to give to astronomy, a feeble idea
of this intelligence.”10 The hypothetical case discussed in this quotation is
now called Laplace’s demon.

Laplace’s thinking about probability theory was to a significant extent
stimulated by his work in astronomy and cosmogony. But he was also
concerned about the role of chance in public life. Most often his statements
about this contained no concrete calculations. Here is an example: “Let
us not offer in the least a useless and often dangerous resistance to the
inevitable effects of the progress of knowledge; but let us change only with
an extreme circumspection our institutions and the usages to which we
have already so long conformed. We should know well by the experience
of the past the difficulties which they present; but we are ignorant of the
extent of the evils which their change can produce. In this ignorance the
theory of probability directs us to avoid all change; especially is it necessary
to avoid the sudden changes which in the moral world as well as in the
physical world never operate without a great loss of vital force.”11

There was one question whose formalization Laplace expected—the ap-
plication of probability theory to legal procedures. It grew out of the view-
point that a legal decision whose correctness is absolutely beyond doubt
is impossible, and that one should only care that the probability that the
decision is correct be as large as possible. This goes back to Condorcet and
is closely tied to practical legal questions during the Revolution. Laplace’s
position was more careful, and all the same he thought that one needed to
calculate the probability “that the decision of a tribunal which can condemn
only by a given majority will be just, that is to say, conform to the true solu-
tion of the question proposed. . .”12 and since “the majority of our opinions
being founded on the probability of proofs it is indeed important to submit

�——————�
10Pierre-Simon Laplace, A Philosophical Essay on Probabilities, translated by Frederick Wilson

Truscott and Frederick Lincoln Emory, Wiley, New York, 1902, p. 4.
11Ibid., p. 108.
12Ibid., p. 135.
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it to calculus.”13 It was proposed to include the political sympathies of
the judges, the intricacies of the cases, the intellectual characteristics of the
judges, etc. Life showed the errors and social dangers of such calculations.

In 1899, at the time of Alfred Dreyfus’ retrial in a military court, “proofs”
of his guilt were presented that were based on the probabilistic calculations
of a certain Bertillon.14 Henri Poincaré reached this conclusion about their
reliability: “. . .Even if these computations were accurate, in any case the
conclusions would not be valid because the application of probabilistic cal-
culations to the moral sciences are a scandal for mathematics, since Laplace
and Condorcet, who knew how to compute, arrived at results lacking in
common sense!”

During the 1930s in the Soviet Union, the prosecutors of the Vyshinsky15

school also talked about the probabilities of crimes, but it seems that they
did not get into calculating probabilities.

We have been able to touch on only the most important directions in
Laplace’s scientific work. Much remains that is outside the limits of our
story: his work on capillary action, sound and light, the mathematical
results leading to what are now called “Laplace transforms” and “Laplace’s
equation,” etc.

Scholars have recently come to appreciate Laplace’s foresight once again.
In The System of the World, there is a proof that “the gravitational attraction
of a heavenly body can be so great that no light can come from it.” This
would happen if the body had the density of the earth but diameter equal
to 250 times the diameter of the sun. In other words, the first cosmic ve-
locity16 in the gravitational field of this body would exceed the speed of
light. Thus Laplace was the first to pay attention to the possible existence
of black holes.

To a great extent, Laplace’s life reflects the complexity of the times in
which he lived. However, throughout his life he carried a belief in science
and did not interrupt his work under any circumstances. It is difficult to
overestimate Laplace’s role in the history of science.

“. . .Laplace was born to make everything deeper, to cross all bound-
aries, in order to to solve what seemed unsolvable. He completed the
science of the heavens, if that science can be completed” (Fourier).

�——————�
13Ibid., p. 109. Here “probability of proofs” means the probability that the testimony of

witnesses is correct.—Transl.
14The Dreyfus affair was a famous anti-Semitic scandal in French society of the 1890s.

Alphonse Bertillon was a police official and anthropologist who analyzed a handwriting
sample in the case.—Transl.

15Andrei Vyshinsky was the chief prosecutor in the Stalin show trials and later became the
Soviet Union’s Foreign Minister and Ambassador to the United Nations.—Transl.

16The velocity required to orbit the body.—Transl.



Prince of Mathematicians

Nihil actum reputans si quid superesset agendum. (Judging that nothing
was done if something was left undone.) Gauss1

In 1854, the health of Privy Councillor Gauss, as his colleagues at the
University of Göttingen called him, worsened decisively. There was
no question of continuing the daily walks from the observatory to
the literary museum, a habit of over twenty years. They managed

to convince the professor, who was nearing eighty, to go to the doctor!
He improved during the summer and even attended the opening of the
Hannover–Göttingen railway. In January 1855, Gauss agreed to pose for a
medallion by the artist Heinrich Hesemann. After the scientist’s death in
February 1855, a medal was prepared from the medallion, by order of the
Hannover court. Beneath a bas-relief of Gauss, these words were written:
Mathematicorum princeps (Prince of Mathematicians). The story of every
real prince should begin with his childhood, embroidered with legends.
Gauss is no exception.

I Gauss’ Debut

“The obstinacy with which Gauss followed a path once chosen, the youthful
impetuosity with which he regularly and recklessly took the steepest way
towards his goal—these hard tests strengthened his powers and made him
capable of striding recklessly over all obstacles, even when they had already
been removed by earlier investigations. And to this praise of independent
activity I would like to add another: the praise of youth. What I want to

�——————�
1As translated in Felix Klein, Development of Mathematics in the 19th Century, translated by

Michael Ackerman, Math Sci Press, Brookline, MA, 1979, p. 8.—Transl.
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The Young Gauss (1803).

say perhaps means only that the laws which underlie the development of
mathematical genius are the same as those for any other creative gift: in
the early years, when a person has just reached full physical growth, great
revelations may hurry in upon him; it is then that he creates what he has
to bring into the world as his own new value, even though his ability to
express them may not yet be equal to his abundant flow of ideas” (Felix
Klein).2

Braunschweig, 1777–1795

Gauss did not inherit his title, although his father Gebhard Dietrich was no
stranger to mathematics. A jack-of-all-trades, primarily a fountain builder
but also a gardener like his father before him, Gebhard Dietrich was known
for his talent as an accountant. Merchants made use of his services dur-
ing fairs in Braunschweig and even Leipzig, and he was also regularly
employed by the largest burial fund in Braunschweig (a position he be-
queathed to his son by his late wife, Johann Georg, a retired soldier).

�——————�
2Ibid., pp. 31–32.
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Carl Friedrich was born on April 30, 1777, in house number 1550 on the
Wendengraben canal in Braunschweig. According to his biographers, he
inherited good health from his father’s side and a brilliant mind from his
mother’s. He was closest to his uncle Johann Friederich Benze, a skillful
weaver in whom, in his nephew’s words, “an innate genius perished.”
Gauss said of himself that he “could count before he spoke.” The earliest
mathematical legend about him claims that at the age of three he followed
his father’s calculations with a bricklayer, unexpectedly corrected him, and
turned out to be right.

At seven, Carl Friedrich entered the Catharineum school. Since they
only learned to count in the third grade, little Gauss did not attract any
special attention for the first two years. Students usually entered the third
grade at age ten and studied there until confirmation at fifteen. The teacher,
whose name was J. G. Büttner, had to work simultaneously with children of
different ages and with different preparation. Thus he usually gave some
of his students long computations to do so that he could talk to the others.
Once a group of students, including Gauss, was asked to sum the integers
from 1 to 100. (Different sources name different numbers.) As soon as
they were done, the students were to put their slates on the teacher’s table,
and the order of the slates counted towards their grades. The ten-year-old
Gauss put down his slate when Büttner had hardly finished dictating the
problem. To everyone’s surprise, his answer was even correct. The secret
was simple: While the problem was being dictated, Gauss rediscovered the
formula for the sum of an arithmetic progression! The child-genius’ fame
spread throughout little Braunschweig.

In the school where Gauss studied, the teacher’s assistant, whose chief
duty was to cut quills for the pupils’ pens, was a man named Martin Bar-
tels. Bartels was interested in mathematics and owned a few mathematics
books. He and Gauss began to study together; they learned about Newton’s
binomial formula, infinite series, etc.

What a small world it turned out to be! After sometime, Bartels received
a chair in pure mathematics at the University of Kazan, and was the teacher
of Nikolai Lobachevsky (1792–1856).

In 1788, Gauss entered the gymnasium. Mathematics was not stud-
ied there, but rather classical languages were. Gauss happily studied lan-
guages and was so successful that he did not even know what he wanted
to become—a mathematician or a philologist.

Word of Gauss reached the court, and in 1791, he was presented to
Carl Wilhelm Ferdinand, the duke of Braunschweig. The boy lived at
court and amused the courtiers with his feats of calculation. Thanks to the
duke’s patronage, Gauss was admitted to the University of Göttingen in
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October 1795. At first he attended lectures on philology and almost none
on mathematics. But he continued to study mathematics anyway.

Here is a comment by Felix Klein, the noted mathematician who stud-
ied Gauss’ scientific work at length: “A natural interest, I might even say a
certain childlike curiosity, first led the boy to mathematical questions, in-
dependently of any outside influence. Indeed, it was simply the art of cal-
culating with numbers that first attracted him. He calculated continually,
with overpowering industry and untiring perseverance. By this incessant
exercise in manipulating numbers (for example, calculating decimals to an
unbelievable number of places) he acquired not only the astounding virtu-
osity in computational technique that marked him throughout his life, but
also an immense memory stock of definite numerical values, and thereby
an appreciation and overview of the realm of numbers such as probably
no one, before or after him, has possessed. Aside from arithmetic he was
occupied with numerical operations on infinite series. From his activity
with numbers, and thus in an inductive, ‘experimental’ way, he arrived
quite early at a knowledge of their general relations and laws. . . . It was
not so rare in the eighteenth century—for example, with Euler—but stands
in sharp contrast to the normal practice of today’s mathematicians. . . . All
these early intellectual games, devised solely for his own pleasure, were
first steps towards a great goal that became conscious only later. It is part
of the anticipatory wisdom of genius to place the pick-axe precisely on the
rock vein where the gold mine lies concealed, and to do this even in the half-
playful first testings of its powers, unconscious of its deeper meaning. We
now come to the year 1795, of which we have more detailed evidence. . . .

Then, still before his Göttingen period, a passionate interest in the integers
seized him, even more tenaciously than before, as is vividly evidenced by
the preface to the Disquisitiones Arithmeticae. Unacquainted with the litera-
ture, he had to create everything for himself. Here again it was the untiring
calculator who blazed the way into the unknown. Gauss set out huge ta-
bles: of prime numbers, of quadratic residues and nonresidues, and of the
fractions 1

p for p = 1 to 1000 with their decimal expansions carried out to a
complete period, and therefore sometimes to several hundred places! With
this last table Gauss tried to determine the dependence of the period on the
denominator p. What researcher of today would be likely to enter upon this
strange path in search of a new theorem? But for Gauss it was precisely this
path, followed with such unheard of energy—he himself maintained that
he differed from other men only in his diligence—that led to his goal. . . . In
the autumn of 1795 he moved to Göttingen, where he must have devoured
the works of Euler and Lagrange, presented to him for the first time.”3

�——————�
3Ibid., pp. 29–30.
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A Discovery after Two Thousand Years

On June 1, 1796, the following notice appeared in the newspaper Jenenser
Intelligenzblatt: “Every beginner in geometry knows that it is possible to
construct different regular polygons [with compass and straightedge], for
example triangles, pentagons, 15-gons, and those regular polygons that
result from doubling the number of sides of these figures. One had already
come this far in Euclid’s time, and it seems that since then one has generally
believed that the field for elementary geometry ended at that point, and in
any case I do not know of any successful attempt to extend the boundaries
beyond that line.

Therefore it seems to me that this discovery possesses special interest,
that besides these regular polygons, a number of others are geometrically con-
structible, for example the 17-gon.”4

Beneath the notice was the signature, C. F. Gauss, Braunschweig, Mathe-
matics Student at Göttingen.

This is the first communication of a discovery by Gauss. Before dis-
cussing it in detail, let us refresh our memories about what “every beginner
in geometry knows.”

Constructions with Straightedge and Compass

Suppose we are given an interval of length 1. Using a straightedge and
compass, we can construct new intervals whose lengths are obtained from
those we already have by addition, subtraction, multiplication, division,
and extracting square roots.

By successively carrying out these operations, we can construct, using straight-
edge and compass, any interval whose length can be expressed in terms of 1 by a fi-
nite number of these operations. We call these numbers quadratic irrationals. One
can prove that these are the only intervals that can be constructed with straightedge
and compass.

It is easy to see that the problem of constructing a regular n-gon is
equivalent to the problem of dividing a circle of radius 1 into n equal parts.
The chords of the arcs into which we divide the circle are the sides of a
regular n-gon, and their lengths are all equal to 2 sin(π

n ). Thus for each
n for which sin(π

n ) is a quadratic irrational, we can construct a regular n-gon
with straightedge and compass. This condition is satisfied, for example, by n =
3, 4, 5, 6, and 10. This is well known for n = 3, 4, and 6.

�——————�
4This appears in English in Tord Hall, Carl Friedrich Gauss, translated by Albert Froderberg,

M.I.T. Press, Cambridge, MA, 1970, p. 24.—Transl.
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We will show that sin( π
10 ) is a quadratic irrational. Consider an isosceles

triangle ABC whose vertex angle B equals π
5 = 36◦ and whose base AB has

length 1. Let AD bisect angle A. Then x = AC = AD = BD = 2 sin( π
10 ).

We have
BD
DC

= AB
AC

; x
1 − x

= 1
x
, x =

√
5 − 1
2

.

This is a quadratic irrational number, so we can construct the sides of a
regular 10-gon.

Furthermore, if we can divide a circle into p1p2 equal parts then we can of
course divide it into p1 equal parts. (In particular, we can construct a regular
pentagon.) The converse is in general not true, but we note two special
cases when it does hold:

(1) If we can divide a circle into p equal parts, then we can divide it into 2kp
equal parts, for any k. This is true because we can bisect any angle with
straightedge and compass.

(2) If we can divide a circle into p1 equal parts and into p2 equal parts,
and p1 and p2 are relatively prime (e.g., if p1 and p2 are distinct primes),
then we can divide the circle into p1p2 equal parts. This follows from the
fact that the greatest common divisor of the angles 2π

p1
and 2π

p2
is 2π

p1p2
, and

the greatest common divisor of two commensurable angles can be found by
straightedge and compass. In particular, 2π

15 = 1
2 ( 2π

3 − 2π
5 ), which implies

the possibility of constructing a regular 15-gon.

A Few Words about Complex Numbers

We need to know just a bit about complex numbers, namely, their basic
operations and geometric interpretation. Recall that a complex number
z = a + ib corresponds to a point with coordinates (a, b) and to the vector
from the origin (0, 0) to this point. The length of the vector, r =

√
a2 + b2

is called the modulus of the given number z, and is denoted by |z|. We can
write z in trigonometric form: z = a + ib = r(cos ϕ + i sin ϕ). The angle ϕ is
called the argument of z.

Addition of complex numbers corresponds to vector addition. In mul-
tiplying two complex numbers, we multiply their moduli and add their
arguments. This implies that the equation zn = 1 has exactly n roots,
which are usually denoted by

εk = cos
2πk

n
+ i sin

2πk
n

, k = 0, 1, . . . , n − 1. (1)

As vectors, the εk end at the vertices of a regular n-gon. If we prove that
the εk are quadratic irrationals (i.e., that their real and imaginary parts a
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and b are quadratic irrationals), then this will prove that the regular n-gon
can be constructed with straightedge and compass.

Regular -Gons and Roots of Unity

We rewrite zn = 1 as

zn − 1 = (z − 1)(zn−1 + zn−2 + · · · + z + 1) = 0.

We obtain two equations, z = 1 and

zn−1 + zn−2 + · · · + z + 1 = 0. (2)

The roots of equation (2) are the numbers εk, for 1 ≤ k ≤ n − 1, and we will
work with this equation below.

For n = 3 we obtain the equation z2 + z + 1 = 0, with roots

ε1 = −1
2

+ i

√
3

2
, ε2 = −1

2
− i

√
3

2
.

For n = 5 the situation is more complicated, since we have the fourth-
degree equation

z4 + z3 + z2 + z + 1 = 0, (3)

with four roots ε1, ε2, ε3, and ε4. Although we have Ferrari’s formula
for solving the general fourth-degree equation, it is impossible to use in
practice. In our case there is a special form of equation (3) that is useful. In
order to solve (3), we first divide by z2, obtaining

z2 + 1
z2 + z + 1

z
+ 1 = 0,
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or (
z + 1

z

)2

+
(

z + 1
z

)
− 1 = 0.

We make the substitution w = z + 1
z :

w2 + w − 1 = 0, (4)

with roots

w1,2 = −1 ± √
5

2
.

We can also find εk from the equations

z + 1
z

= w1, z + 1
z

= w2, (5)

but this is unnecessary. To find them it is enough to know that twice the
real part of ε1 equals

2 cos
(

2π

5

)
= ε1 + ε4 = ε1 + 1

ε1
= w1 = −1 + √

5
2

.

Since w1 is a quadratic irrational, so are ε1 and ε4. The argument for ε2 and
ε3 is similar.

Thus, for n = 5 the solution to our problem can be reduced to the
successive solution of two quadratic equations: first solve (4), whose roots
are the sums ε1 + ε4 and ε2 + ε3 of the symmetric roots of (3), and then find
these roots of (3) from (5).

This is the very method Gauss used to construct the regular 17-gon, sin-
gling out groups of roots whose sums are found successively from quadratic
equations. But how can we look for these “good” groups? Gauss found a
surprising way to answer this question.

Constructing the Regular 17-Gon

“And on March 30, 1796 he underwent his conversion on the road to
Damascus. . . . For a long time Gauss had been busy with grouping the
roots of unity xn = 1 on the basis of his theory of ‘primitive roots.’ Then
suddenly one morning, still in bed, he saw clearly that the construction
of the 17-gon follows from his theory. As already mentioned, this discov-
ery marked a turning point in Gauss’ life. He decided to devote himself
entirely to mathematics, not philology” (Felix Klein).5

�——————�
5Development, p. 30.
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Let us go into a bit more detail about the path that Gauss took. One of
the young Gauss’ mathematical games was to divide 1 by various primes p
and write down the successive decimal digits, impatiently waiting for them
to begin to repeat. Sometimes he had a long wait. For p = 97 the repetition
began with the 97th digit, and for p = 337 with the 337th. Gauss was not
confused by long lines of computations, but rather entered the mysterious
world of numbers with their help. He was not too lazy to consider all
p < 1000 (see the earlier quote from Klein).

It is known that Gauss did not immediately try to prove the periodicity
of these fractions in general (p �= 2, 5), but the proof probably gave him
no difficulty. Indeed, it is enough just to note that we must keep track of
the remainder rather than the quotient. The digits of the quotient begin
to repeat when at the preceding step the remainder equals 1 (why?). This
means that we must find some k such that 10k − 1 is divisible by p. Since
there are only a finite number of possible remainders (they lie between 1
and p − 1), for some k1 > k2 the numbers 10k1 and 10k2 leave the same
remainder after dividing by p. But then 10k1−k2 − 1 is divisible by p (why?).

It is a little harder to show that we can always take p − 1 as k, i.e., that
10p−1 − 1 is always divisible by p when p �= 2, 5. This is a special case of
the result known as Fermat’s Little Theorem. When Fermat (1601–1655)
discovered it, he wrote that he “was illuminated by a clear light.” Now
the young Gauss had rediscovered it. He would always value this result
highly: “This theorem is worthy of attention both because of its elegance
and its great usefulness.”6

Gauss was interested in the smallest value of k for which 10k − 1 is
divisible by p. Such a value of k always divides p − 1, and sometimes it
equals p − 1, e.g., for p = 7, 17, 19, 23, 29, 97, and 337. It remains unknown
whether the number of such primes p is finite or infinite.

Gauss replaced 10 by any number a for which p does not divide a, and
asked when ak − 1 is not divisible by p for k < p − 1. In this case we
say a is a primitive root mod p. This is equivalent to saying that all the
nonzero remainders 1, 2, . . . , p − 1 occur when we divide 1, a, a2, . . . , ap−2

by p (why?).
Gauss did not know at the time that Euler (1707–1783) had been inter-

ested in primitive roots. Euler conjectured (but could not prove) that each
prime number has at least one primitive root. Legendre (1752–1833) gave the
first proof of Euler’s conjecture, and Gauss gave a very elegant proof. But
this was later, and for the time being Gauss worked with concrete exam-
ples. He knew, for instance, that a = 3 is a primitive root mod p = 17. In

�——————�
6Disquisitiones Arithmeticae, translated by Arthur A. Clarke, Yale University Press, New

Haven, CT, 1966, p. 32.



272 � Tales of Mathematicians and Physicists �

the first row of the table below we show the values of k, and below them the
remainders of 3k after dividing by 17. Note that the second row contains
all the remainders from 1 to 16, which implies that 3 is primitive mod 17.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

These calculations lay at the heart of grouping the roots of

z16 + z15 + z14 + · · · + z + 1 = 0 (6)

in order to reduce its solution to a chain of quadratic equations. Gauss’
idea was that another way to number the roots was needed. We will give
a root εk the number l and denote it by ε[l] if 3l divided by 17 leaves the
remainder k. We can use the table to go from one numbering to the other,
finding k in the second row and the corresponding l above it in the first,
but it is more convenient to use Figure 1, where the old numbers appear
outside the circle and the new ones inside. This is the numbering Gauss
used to divide the roots of equation (6) into groups and reduce its solution
to a chain of quadratic equations.

Figure 1.

At the first stage, let σ2,0 and σ2,1 be the sums of the roots ε[l] for even
and odd l, respectively. Each is the sum of the eight roots for which dividing
l by 2 leaves the remainder 0 and 1, respectively. These sums turn out to
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be the roots of a quadratic equation with integer coefficients. Next, let σ4,0,
σ4,1, σ4,2, and σ4,3 be the sums of the four roots ε[l] for which dividing l by
4 leaves the remainder 0, 1, 2, and 3, respectively. We will show that these
quantities are the roots of quadratic equations whose coefficients can be
expressed arithmetically in terms of σ2,0 and σ2,1. Finally, form the sums
σ8,i of the two roots ε[l] for which dividing l by 8 leaves the remainder i.
We write quadratic equations for them whose coefficients are expressed
in a simple way in terms of the σ4,j. We have σ8,0 = 2 cos( 2π

17 ), and the
quadratic irrationality of σ8,0 will imply that it is possible to construct the
regular 17-gon with straightedge and compass. It is instructive to write
down the decomposition of the roots in the old numbering. You should
agree that it is impossible to guess the decomposition in this form! We will
now carry out the scheme we have just described.

Detailed Calculations

We will now prove that the seventeenth-order roots of unity are quadratic
irrationals. Note that εkεl = εk+l (if k + l ≥ 17, then replace k + l by its
remainder after division by 17) and εk = (ε1)

k. We first remark that

ε1 + ε2 + · · · + ε16 = ε[0] + ε[1] + · · · + ε[15] = −1.

(For example, consider this as the sum of a geometric progression.)
Let σm,r denote the sum of ε[k] for those k leaving remainder r after

division by m. We obtain

σ2,0 = ε[0] + ε[2] + ε[4] + · · · + ε[14],
σ2,1 = ε[1] + ε[3] + ε[5] + · · · + ε[15].

Clearly,
σ2,0 + σ2,1 = ε[0] + ε[1] + · · · + ε[15] = −1.

One can show that7

σ2,0 · σ2,1 = 4(ε[0] + ε[1] + · · · + ε[15]) = −4.

Now, by Vieta’s theorem, we can construct a quadratic equation with roots
σ2,0 and σ2,1:

x2 + x − 4 = 0, x1,2 = −1 ± √
17

2
.

�——————�
7We can see this by carrying out the multiplication directly, using εkεl = εk+l and Figure 1.

However, below we will learn a method for avoiding these tedious calculations.
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In order to distinguish σ2,0 from σ2,1, we again use Figure 1. In each sum,
the roots appear together with their conjugates. It is clear that σ2,0 > σ2,1,
since σ2,0 is twice the sum of the real parts of ε1, ε2, ε4, and ε8, while for
σ2,1 we repeat this with ε3, ε5, ε6, and ε7. Thus

σ2,0 =
√

17 − 1
2

, σ2,1 = −√
17 − 1
2

.

Consider the roots taken four at a time:

σ4,0 = ε[0] + ε[4] + ε[8] + ε[12],
σ4,1 = ε[1] + ε[5] + ε[9] + ε[13],
σ4,2 = ε[2] + ε[6] + ε[10] + ε[14],
σ4,3 = ε[3] + ε[7] + ε[11] + ε[15].

We have σ4,0 + σ4,2 = σ2,0 and σ4,1 + σ4,3 = σ2,1. One can also show that
σ4,0 · σ4,2 = σ2,0 + σ2,1 = −1, which means that σ4,0 and σ4,2 are roots of
x2 − σ2,0x − 1 = 0. Solving this equation and noting that σ4,0 > σ4,2 (see
Figure 1 again), after some simple transformations we obtain

σ4,0 = 1
4

(√
17 − 1 +

√
34 − 2

√
17

)
,

σ4,2 = 1
4

(√
17 − 1 −

√
34 − 2

√
17

)
.

Analogously,

σ4,1 = 1
4

(
−√

17 − 1 +
√

34 + 2
√

17
)

,

σ4,3 = 1
4

(
−√

17 − 1 −
√

34 + 2
√

17
)

.

We now go to the next step. Set

σ8,0 = ε[0] + ε[8] = ε1 + ε16,

σ8,4 = ε[4] + ε[12] = ε4 + ε13.

We could have considered the six other expressions of this kind but we do
not need to, since it suffices to prove that σ8,0 = 2 cos( 2π

17 ) is a quadratic
irrational, thus permitting the construction of the regular 17-gon. We have
σ8,0 + σ8,4 = σ4,0 and σ8,0 · σ8,4 = σ4,1. Figure 1 shows that σ8,0 > σ8,4, so
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σ8,0 is the largest root of x2 − σ4,0x + σ4,1 = 0, i.e.,

σ8,0 = 2 cos
(

2π

17

)
= 1

2

(
σ4,0 +

√
σ 2

4,0 − 4σ4,1

)

= 1
8

(√
17 − 1 +

√
34 − 2

√
17

)

+ 1
4

√
17 + 3

√
17 −

√
170 + 38

√
17.

We have somewhat transformed the expression we obtained directly for√
σ 2

4,0 − 4σ4,1, but we will not tire the reader by reproducing these simple
calculations.

Using the formula this gives for cos( 2π
17 ), we can complete the con-

struction of the regular 17-gon by using elementary rules for constructing
expressions that are quadratic irrationals. This is a rather awkward proce-
dure, and these days rather compact construction methods are known. We
will present one in an appendix, without proof. In one respect the formula
for cos( 2π

17 ) leaves no doubt, but it would have been impossible to arrive
at it within the confines of the traditional geometric ideas of Euclid’s time.
Gauss’ solution belonged to a different era in mathematics. Note that the
most interesting claim is the possibility, in principle, of constructing the reg-
ular 17-gon; the procedure itself is not important. To prove the construction
is possible it is enough to see that at each step we have quadratic equations
whose coefficients are quadratic irrationals, without writing down explicit
expressions for them (this becomes particularly important when the num-
ber of sides is larger).

In the solution we have described for equation (6), we have left com-
pletely unexplained why the numbering ε[l] for partitioning the roots turned
out to be successful. How could we have guessed it would be the basis for
the solution? We will now essentially repeat the solution, exposing the key
idea—symmetry in the set of roots.

Symmetry in the Set of Roots of Equation (6)

First of all, the problem of the roots of unity is closely connected to the
arithmetic of remainders after division by n (arithmetic modulo n). Indeed,
if εn = 1, then εk is also an nth root of unity and its value depends only on
the remainder left after dividing k by n. Set ε = ε1 (see formula (1)); then
εk = εk, so εk · εl = εk+l, where the sum is taken modulo n (the remainder
after dividing by n). In particular, εk · εn−k = ε0 = 1.
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Problem 1. If p is prime and δ is any complex pth root of unity, then the
powers δk, k = 0, 1, . . . , p − 1, contain all the pth roots of unity.

Remark. We must prove here that for each m with 0 < m < p, all the
numbers 0, 1, . . . , p−1 are contained among the remainders after dividing
km by p, for k = 0, 1, . . . , p − 1.

We denote exponentiation to the kth power by Tk : Tkεl = (εl)
k = εlk.

Problem 2. Prove that if n = p is prime, then each transformation Tk,
k = 1, 2, . . . , p − 1, is a one-to-one transformation of the set of roots onto
itself, i.e., the set {Tkε0, Tkε1, . . . , Tkεp−1} coincides with the set of roots {ε0,
ε1, . . . , εp−1}.

Problem 1 shows that for each l with 1 ≤ l ≤ p−1, {T0εl, T1εl, . . . , Tp−1εl}
is the set of all roots. Problems 1 and 2 imply the following conclusion:
construct a table whose entry in the kth row and lth column is Tkεl, for 1 ≤ k, l ≤
p − 1. Then each row and each column contain all the roots ε1, ε2, . . . , εp−1 in
some order, without repetition. Note that Tp−1εl = ε−l = (εl)

−1. Those who
know the definition of a group may verify that the transformations Tk form
a group with respect to the multiplication Tk · Tl = Tkl.

Now consider the case p = 17. We call a set M of roots invariant with
respect to Tk if Tkεl ∈ M for each εl ∈ M. The only set that is invariant with
respect to all the Tk is the set {ε1, . . . , ε16} of all the roots.

The underlying conjecture is that a group of roots is “better” when more
transformations leave it invariant.

We introduce another numbering T[l] for Tk, as we did for εk : T[l] = Tk
when k = 3l. In the new notation,

T[k]ε[l] = ε[k+l],
T[m](T[k]ε[l]) = T[m+k]ε[l],

where the sum in brackets is taken modulo 16. The reader will of course
discover an analogy with logarithms, which is not surprising since ε[l] = ε3l .

Problem 3. Prove that if some set of roots is invariant with respect to some
T[k], where k is odd, then this set is invariant with respect to all T[m], i.e., if
it is nonempty then it is the set of all roots.

Remark. It suffices to show that if k is odd, then there is some m such that
16 divides km with remainder 1.

On the other hand, there are two groups of roots that are invariant with
respect to T[k] for all even k: the roots ε[l] for even l and for odd l. We denote
their sums by σ2,0 and σ2,1.
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Clearly, σ2,0 +σ2,1 = −1. Consider σ2,0 ·σ2,1. This is the sum of pairwise
products ε[k] ·ε[l], where k is even and l is odd, each equal to some root ε[m]—
64 terms in all. We will show that each root ε[0], ε[1], . . . , ε[15] occurs among
them exactly four times and that as a result, σ2,0 ·σ2,1 = −4. We will use the
fact that T[k] preserves each group of roots when k is even and transforms
one into the other when k is odd. Each term of σ2,0 · σ2,1 can be uniquely
represented in the form ε[m]ε[m+r], where 0 ≤ m ≤ 15 and r = 1, 3, 5, 7
(proof!). Group together terms with the same value of r. We obtain a sum
of the form

ε[0]ε[r] + ε[1]ε[r+1] + · · · + ε[15]ε[r+15]
= T[0](ε[0]ε[r]) + T[1](ε[0]ε[r]) + · · · + T[15](ε[0]ε[r])
= T[0]ε[r] + T[1]ε[r] + · · · + T[15]ε[r]
= ε[0] + ε[1] + · · · + ε[15] = −1.

We have used the fact that

T[m]ε[k] · T[m]ε[l] = T[m](ε[k]ε[l]),

and the properties of T[m] we have already mentioned.
The values of σ2,0 and σ2,1 were found above.
We now go to the next step. We want to introduce new, smaller, groups

of roots that are invariant with respect to some T[k]. By analogy with Prob-
lem 3, one can show that k must be divisible by 4. Therefore there are four
groups of roots, invariant with respect to all T[4l] and smaller than the ones
already considered. Let the sums of the roots in these groups be σ4,0, σ4,1,
σ4,2, σ4,3. We have already noted that σ4,0+σ4,2 = σ2,0 and σ4,1+σ4,3 = σ2,1.

We will calculate the product σ4,0 · σ4,2, which is the sum of sixteen
terms of the form ε[4k]ε[4l+2]. Each term can be written uniquely in the
form ε[2m] · ε[2m+2r], where r = 1, 3 and m = 0, 1, 2, 3, 4, 5, 6, 7. We group
together terms with the same r and note that ε[0]ε[2] = ε1ε9 = ε10 = ε[3] and
ε[0]ε[6] = ε1ε15 = ε16 = ε[8]. For r = 1, we obtain the sum

T[0]ε[3] + T[2]ε[3] + · · · + T[14]ε[3] = σ2,1.

For r = 3 we have the sum
∑

k T[2k]ε[8] = σ2,0, i.e., σ4,0 · σ4,2 = σ2,0 + σ2,1 =
−1. By solving the quadratic equations, we found σ4,0 and σ4,2.

In the last step we consider groups of roots invariant with respect to
T[8]; there are eight. In particular, σ8,0 + σ8,4 = σ4,0. We will compute
σ8,0 · σ8,4. Taking into account ε[0] · ε[4] = ε1ε13 = ε14 = ε[9], we obtain
σ8,0 · σ8,4 = T[0]ε[9] + T[4]ε[9] + T[8]ε[9] + T[12]ε[9] = σ4,1. This allowed us to
find σ8,0 = 2 cos( 2π

17 ) and thus to complete the solution.
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We have seen that Gauss’ argument is completely based on transfor-
mations that rearrange the roots. Lagrange (1736–1813) was the first to
consider the role of such transformations in questions about the solvabil-
ity of equations. Gauss was probably not familiar with Lagrange’s work
at the time. Later, Évariste Galois (1811–1832) placed the study of these
transformations at the foundation of the remarkable theory that now bears
his name. Essentially, Gauss constructed Galois theory full-blown for the
equation of the division of the circle.

Possible Generalizations and Fermat Primes

If we do not try to obtain an explicit expression for the roots but only try to
prove they are quadratic irrationals, then we can almost entirely omit the
calculations and consider only the idea of invariance. Namely, σ2,0 · σ2,1 is
the sum of certain roots ε[l], and since this sum is transformed into itself
by the action of each transformation T[k], all the roots it contains occur the
same number of times. Thus σ2,0 · σ2,1 is an integer. Analogously, σ4,0 · σ4,2
does not change under all transformations of the form T[2k] and is thus a
combination of the σ2,j. Also, σ8,0 · σ8,4 is preserved by all T[4k] and is thus
a combination of the σ4,j.

This abbreviated argument allows us to specify those primes p to which
we can generalize Gauss’ proof to show that the pth roots of unity are
quadratic irrationals. An analysis shows that we have only used the fact
that p − 1 = 2k (at each step the groups were divided in half) and the
numbering of the roots, which relied on 3 being a primitive root of the prime
17. We could have used any primitive root for the numbering. As we have
already noted, every prime p has at least one primitive root. Incidentally,
one can show that 3 is primitive for all p of the form 2k + 1 (prove it!). We
also remark that if p = 2k +1 is prime, then k = 2r. Thus, we have proved it is
possible to construct a regular p-gon with straightedge and compass for all primes
p of the form p = 2(2r) + 1.

Primes of this form have their own history, and are called Fermat primes.
Fermat proposed that all such numbers are prime. Indeed, for r = 0 we
obtain 3, for r = 1 we have 5, and for r = 2 we get 17. For r = 3 we obtain
257 and r = 4 yields 65,537, both of which are prime. For r = 5 we obtain
4,294,967,297. Fermat found no prime divisors of this number, but Euler
explained that Fermat had “overlooked” the divisor 641. We now know
that the Fermat numbers are composite for r = 6, 7, 8, 9, 11, 12, 15, 18, 23,

36, 38, 73 (for example, 5 · 275 + 1 is a prime divisor of r = 73). It has been
conjectured that there are only a finite number of Fermat primes.

As for regular n-gons with composite n, properties (1) and (2) on p. 268
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immediately imply that the desired construction is possible for all n > 2 of
the form n = 2kp1p2 . . . pl, where p1, p2, . . . , pl are distinct Fermat primes.
Remarkably, there are no other values of n for which the construction is
possible. Gauss did not publish a proof of this claim: “The limits of the
present work exclude this demonstration here, but we issue this warning
lest anyone attempt to achieve geometric constructions [i.e., with straight-
edge and compass] for sections other than the ones suggested by our theory
(e.g., sections into 7, 11, 13, 19, etc., parts) and so spend his time uselessly.”8

Gauss’ result implies the possibility, in principle, of constructing a regular
p-gon for p = 257 and 65,537 but calculating the roots, let alone describing
the construction explicitly, requires a colossal but completely mechanical
effort. It is remarkable that people were found who wanted to carry this
out not only for p = 257 (Friedrich Richelot (1808–1875) did it in an 80-page
paper, and there is reason to believe that Gauss himself also did) but also
for p = 65, 537 (the solution obtained by Johann Hermes (1846–1912) is in
Göttingen, in a trunk of considerable proportions). The English mathemati-
cian John Littlewood (1885–1977) once joked about this: “A too-persistent
research student drove his supervisor to say, ‘Go away and work out the
construction for a regular polygon of 65,537 [= 216 + 1] sides.’ The student
returned twenty years later with a construction (deposited in the Archives
of Göttingen).”9

Concluding Remarks

We have already noted that March 30, 1796, the day Gauss found the con-
struction of the regular 17-gon, decided his destiny. Felix Klein writes, “On
this date begins the diary. . . . We see the proud series of great discoveries in
arithmetic, algebra and analysis parade before us. . . . Among these traces
of the burgeoning of a mighty genius one finds, touchingly, little minia-
tures of school exercises, which even a Gauss was not spared. Here we
find a record of conscientious exercises in differentiation; and just before
a section on the division of the lemniscate, there are totally banal integral
substitutions, such as every student must practice.”10

Gauss’ work has long stood as an unattainable model of mathematical
discovery. One of the founders of non-Euclidean geometry, Bolyai János11

(1802–1860), called it “the most brilliant discovery of our time and even
of all time.” But it was difficult to comprehend! Thanks to letters written

�——————�
8Disquisitiones, p. 459.
9A Mathematician’s Miscellany, Methuen and Company, London, 1953, p. 42.

10Development, p. 30.
11Also known as Johann Bolyai.—Transl.
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to his homeland by the great Norwegian mathematician Niels Abel (1802–
1829), who proved that the general fifth-degree equation is not solvable
in radicals, we know the difficult path he followed in studying Gauss’
theory. In 1825, Abel wrote from Germany: “Even if Gauss is the greatest
genius, he evidently did not try to have everything understood all at once.”
He decided not to meet with Gauss, but later wrote from France: “I finally
succeeded in lifting the veil of mystery that has so far surrounded the theory
of the division of the circle created by Gauss.” Gauss’ work inspired Abel
to construct a theory in which “there are so many remarkable theorems
that it is simply unbelievable.” He then planned to go to Germany, to “take
Gauss by storm.” Gauss also undoubtedly influenced Galois.

All his life, Gauss retained a touching love for his first discovery: “It is
said that Archimedes willed that a monument be placed over his grave in
the form of a sphere and cylinder, in memory of his having found that the
ratio of the volumes of a cylinder and a sphere inscribed in it is 3:2. Like
Archimedes, Gauss expressed the wish that the 17-gon be immortalized
in a monument on his grave. This shows what significance Gauss himself
placed on his discovery. This picture is not on Gauss’ tombstone, but a
monument erected to Gauss in Braunschweig stands on a seventeen-sided
pedestal, although this is hardly noticeable to the observer” (Heinrich We-
ber (1795–1878)).

Addendum

Here is an extract from Coxeter’s Introduction to Geometry12 containing
a recipe by Herbert Richmond (1863–1948) for constructing the regular
17-gon:

Join P0 to J, one quarter of the way from O to B. On the diameter through
P0 take E, F, so that ∠OJE is one quarter of OJP0 and ∠FJE is 45◦. Let the

�——————�
12H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1969, p. 27. Reprinted with

permission.
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circle with diameter FP0 cut OB in K, and let the circle with center E and
radius EK cut OP0 in N3 (between O and P0) and N5. Draw perpendiculars
to OP0 at these two points, to cut the original circle in P3 and P5. Then
the arc P3P5 (and likewise P1P3) is 2

17 of the circumference. (The proof
involves repeated application of the principle that the roots of the equation
x2 + 2x cot 2C − 1 = 0 are tan C and − cot C.)

II The Golden Theorem

. . .I chanced on an extraordinary arithmetic truth. . . since I considered
it so beautiful in itself and since I suspected its connection with even
more profound results, I concentrated on it all my efforts in order
to understand the principles on which it depended and to obtain a
rigorous proof. When I succeeded in this I was so attracted by these
questions that I could not let them be. Gauss13

Gauss’ diary, the chronicle of his remarkable discoveries, begins on
March 30, 1796, the day he constructed the regular 17-gon. The next entry
appears on April 8th, and talks of the proof of what he called the theorema
aureum (golden theorem). Fermat, Euler, and Lagrange had proved special
cases of this assertion. Euler stated the general conjecture, and Legendre
gave an incomplete proof. On April 8th, Gauss found a complete proof
of Euler’s conjecture. Incidentally, Gauss did not yet know of the work of
his great predecessors. He had traveled the difficult road to the theorema
aureum independently!

It all began with schoolchild-like observations. Sometimes, looking at
a very large integer, we can immediately say that its square root is not an
integer. For example, we can use the fact that squares of integers cannot end
in 2, 3, 7, or 8. Sometimes we can use the fact that the square of an integer
is either divisible by 3 or has remainder 1, but never 2. Both properties
are of the same type, since the last digit is the remainder after division by
10. Gauss was interested in the general problem: what are the possible
remainders when we divide a square by a prime? We will now consider
this question.

Quadratic Residues

We will assume below that p is a prime number not equal to 2. When we
divide an integer by p, we may have a “deficit” or a “surplus,” i.e., we can

�——————�
13Disquisitiones Arithmeticae, p. xviii.
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consider either positive or negative remainders. We will agree to choose
the remainder that is smallest in absolute value.

It is not hard to prove that if p is odd, then every integer n can be written
uniquely as

n = pq + r, |r| ≤ p − 1
2

, (7)

where q and r are integers.
We will call r the remainder after dividing n by p, or the residue of n

modulo p, denoted as14

n ≡ r (mod p).

Let us write the residues for the first few primes p > 2 in Table 1.

Table 1. Residues (remainders) mod p.

p k = p−1
2 r

3 1 −1 0 1
5 2 −2 −1 0 1 2
7 3 −3 −2 −1 0 1 2 3
11 5 −5 −4 −3 −2 −1 0 1 2 3 4 5
13 6 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
17 8 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

We are interested in the possible residues (remainders) of squares of
integers. We will call these quadratic residues, and the others quadratic
nonresidues.

The numbers n2 and r2, where r is the remainder of n modulo p, have
the same remainder after division by p. Therefore, if we want to find
quadratic residues, it suffices to square only residues, i.e., integers r with
|r| ≤ k = 1

2 (p − 1). It is enough to consider r ≥ 0.
We will carry out the calculations for the primes in Table 1 and construct

a new table (Table 2) in which the boldface numbers are the quadratic
residues.

Let us try to find some patterns and see how general they are. First, in
each row there are exactly k + 1 boldface numbers. We will show that this holds
for all primes p > 2. It follows from what we said earlier that each odd
p (nonprime as well) has at most k + 1 quadratic residues. We can show

�——————�
14What we are calling the residue (remainder) is usually called the smallest absolute residue

(remainder). We have shortened its name since we will not be dealing with other residues.
The notation n ≡ r (mod p) is also used in a more general situation: it means that p divides
n − r.
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Table 2. Quadratic residues and nonresidues mod p

p k = p−1
2 r

3 1 −1 0 1
5 2 −2 −1 0 1 2
7 3 −3 −2 −1 0 1 2 3
11 5 −5 −4 −3 −2 −1 0 1 2 3 4 5
13 6 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
17 8 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

there are exactly k + 1 if we see that the numbers r2, for 0 ≤ r ≤ k, have
distinct remainders after division by p. If r1 > r2 and r2

1, r2
2 have the same

remainder, then p divides r2
1 − r2

2. Since p is prime, it divides either r1 + r2
or r1 − r2, which is impossible since 0 < r1 ± r2 < 2k < p. This is the first
time we have used the fact that p is prime (show our claim is not true for
composite numbers).

Fermat’s Theorem and Euler’s Criterion

Furthermore, 0 and 1 are clearly boldface in each row. No pattern is imme-
diately visible for the boldface numbers in the other columns. Begin with
a = −1. It is boldface for p = 5, 13, 17, . . . , but not for p = 3, 7, 11, . . . .

You may have noticed that the primes in the first group have remainder 1
after division by 4, while those in the second have −1 (for primes p �= 2, no
other remainders are possible). Thus we can propose that −1 is a quadratic
residue for primes of the form p = 4l + 1 and a quadratic nonresidue for
p = 4l − 1. This pattern was first noted by Fermat, but he left no proof.
Try to prove it yourself! You will see that the main difficulty lies in finding
how to use the assumption that p is prime. It is not at all clear how to do
this, and without this assumption the claim becomes false.

After several unsuccessful attempts, the first proof was found by Euler
in 1747. In 1755 he found a different, quite elegant proof, using Fermat’s
Little Theorem: If p is prime, then for each integer a, 0 < |a| < p,

ap−1 ≡ 1 (mod p). (8)

Proof. For p = 2 the assertion is obvious, and so we may assume p is
odd. Consider the p numbers 0, ±a, ±2a, ±3a, . . . , ±ka, where k = 1

2 (p−1).
These have distinct remainders after division by p, since otherwise p divides
r1a − r2a for some r1 > r2, |r1| ≤ k, |r2| ≤ k. But p divides neither a nor
r1 − r2, since 0 < r1 − r2 < p. Multiply these numbers together, except for 0,
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to get (−1)k(k!)2ap−1. Since all nonzero residues are among the remainders
of these factors, and by the rule for the remainder of a product, we find that
the product has the same residue as (−1)k(k!)2, i.e., p divides (k!)2(ap−1 −1).
Since p does not divide k! (0 < k < p), it divides ap−1 − 1, which completes
the proof.

Corollary (Euler’s criterion for quadratic residues). A residue b �= 0 is
quadratic if and only if

bk ≡ 1 (mod p), k = p − 1
2

. (9)

Proof. It is easy to establish that condition (9) is necessary. By (8), if a2 ≡ b
(mod p), 0 < a < p, then a2k = ap−1 and bk must each have residue equal to
1. It is more complicated to prove sufficiency, and we will deduce it from
the following lemma.

Lemma 1. Let P(x) be a polynomial of degree l and let p be prime. If there are
more than l distinct residues r modulo p for which

P(r) ≡ 0 (mod p), (10)

then (10) holds for all residues.

Proof. We proceed by induction on l. For l = 0 the assertion is obvious.
Suppose it is true for all polynomials of degree at most l−1. Let r0, r1, . . . , rl,
0 ≤ rj < p, satisfy P(r) ≡ 0 (mod p). We represent P(x) in the form
P(x) = (x − r0)Q(x) + P(r0), where Q(x) is a polynomial of degree l − 1 and
p divides P(r0). Then p divides (rj − r0)Q(rj) for 1 ≤ j ≤ l. Since p cannot
divide rj − r0 it must divide Q(rj), and so by the induction assumption p
divides Q(r) for all r. Thus, p divides P(r) for all r.

We will apply the lemma to P(x) = xk −1. Then the k nonzero quadratic
residues satisfy (10). But there is a residue (r = 0) not satisfying (10), so
by the lemma no quadratic nonresidue can satisfy (10), and thus (9) is also
sufficient.

Remark. If b is a quadratic nonresidue, then b(p−1)/2 ≡ −1 (mod p). Indeed,
if b(p−1)/2 ≡ r (mod p), then r2 ≡ 1 (mod p), so r = −1. (Only the residues
r ≡ 1 (mod p) and r ≡ −1 (mod p) satisfy the congruence r2 ≡ 1 (mod p).)

Euler’s criterion allows us to determine instantly the primes p for which
the residue −1 is quadratic. Substituting b = −1 into (9), we obtain that (9)
holds when p = 4l + 1 (k is even) but not when p = 4l − 1 (k is odd). The
conjecture we stated above is now a theorem.
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Problem 4. Prove that if p �= 2 is a prime divisor of n2 + 1, then p = 4l + 1.

Thus we have proved that −1 is a quadratic residue for p = 4l + 1 and
a quadratic nonresidue for p = 4l − 1.

Let us consider several aspects of this proof. The assertion consists of
two parts: a negative assertion for p = 4l−1 and a positive one for p = 4l+1.
For the former, it is natural to try to find some property that quadratic
residues satisfy but −1 does not, which is what Euler did. The property
we found turned out to be characteristic, i.e., we proved the latter at the
same time. If you try to prove this independently, you would probably
try to construct a specific number n2 whose remainder after division by
p = 4l + 1 is −1. Euler’s proof is not efficient in the sense that it does not
explicitly construct n in terms of p, but only confirms its existence. In other
words, it guarantees that if we go through the numbers 1, 2, . . . , 2l, divide
their squares by p and take the remainders, then sooner or later we will
get −1. The question remains whether there is a more specific construction
of n and p that does not use this exhaustive procedure. In 1773, Lagrange
(1736–1813) gave a positive answer, using the following theorem.

Wilson’s Theorem.15 If p = 2k + 1 is prime, then

(−1)k(k!)2 ≡ −1 (mod p). (11)

We use Lemma 1 to prove this theorem. Let P(x) be the product (x2 −
1)(x2 − 4) · · · (x2 − k2) and Q(x) = x2k − 1. Then R(x) = P(x) − Q(x) is
a polynomial of degree at most 2k − 1, which is divisible by p for x =
±1, ±2, . . . , ±k (since this is true for P and Q). By the lemma, R(x) ≡ 0
(mod p) for all x. The only really new fact is that R(0) ≡ 0 (mod p). Since
R(0) = (−1)k(k!)2 + 1, we obtain (11).

Lagrange’s Corollary. For p = 4l + 1, [(2l)!]2 ≡ −1 (mod p).

Problem 5. Prove that if (11) is true, then p is prime.

This problem gives us an excuse to note that in Lagrange’s construction,
it is essential that p be prime.

Having explained when a = −1 is a quadratic residue, Euler, using
an enormous amount of data, tried to find analogous conditions for other
values of a. He noticed that for a = 2 everything depends on the remainder
after dividing p by 8. In fact, 2 turns out to be a quadratic residue for primes
p = 8l±1 and a nonresidue for p = 8l±3. (The remainder after dividing an
odd prime by 8 can only be ±1 or ±3.) Moreover, 3 is a quadratic residue

�——————�
15John Wilson (1741–1793) was a lawyer who studied mathematics at Cambridge.
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for p = 12l±1 and a quadratic nonresidue for p = 12l±5. Euler conjectured
that in general, everything is determined by the remainder after dividing
p by 4a.

Euler’s Conjecture.16 Let 0 < r < 4a. Either a is a quadratic residue for all
primes in the arithmetic progression 4aq + r, q = 0, 1, 2, . . . , or it is a quadratic
residue for none.

Clearly, if 4a and r have a common divisor s > 1, then there will be no
primes in this progression. If they are relatively prime, then, by a theorem
of Lejeune Dirichlet (1805–1859), the progression contains infinitely many
primes. (This generalizes the theorem that there are infinitely many primes
in the sequence of all natural numbers.)

Let us return to Euler’s conjecture. It turned out that his criterion, which
served us well for a = −1, spurns us even for a = 2. Euler was unable to
work through this case. Apart from a = −1, he was only able to prove his
conjecture for a = 3. Lagrange, whom we have already mentioned, later
proved it for a = 2, 5, 7. In 1785 Legendre proposed a general proof, but it
contained gaps in essential places.

Gauss’ proof. Gauss, like his predecessors, first treated the case a = −1
and then, already guessing the general result, examined case after case and
advanced further than the others: He considered a = ±2, ±3, ±5, and
±7. The general case (Euler’s conjecture) did not yield to the first attack:
“This theorem bothered me for a whole year and did not yield to the most
strenuous efforts.” Note that this was where Gauss “caught up to” the
mathematics of his time: The efforts of the best mathematicians, who were
trying to prove Euler’s conjecture, were fruitless.

Finally, on April 8, 1796, he found a general proof, which Leopold Kro-
necker (1823–1891) quite aptly called “a test of the power of Gauss’ genius.”
The proof was by double induction on a and p. Gauss had to conceive eight
essentially different arguments for eight different cases! He must have
been not only astonishingly inventive but also surprisingly courageous to
continue on this path. Gauss later found six other proofs of the theorema
aureum (about fifty are now known). As often happens, once the theorem
was proved many simpler proofs were found. We will present here a proof
that differs only a little from Gauss’ third proof. At its heart lies a key
lemma, proved by Gauss no earlier than 1808.

Lemma 2. Let p = 2k + 1 be prime, a be an integer, 0 < |a| ≤ 2k, r1, r2, . . . , rk
be the residues of a, 2a, . . . , ka, and ν be the number of negative residues among

�——————�
16This is what Gauss called theorema aureum.
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them. Then
ak ≡ (−1)ν (mod p). (12)

Applying Euler’s criterion, we obtain the following corollary.

Gauss’ Criterion for Quadratic Residues. A residue is quadratic if and only
if ν is even, where ν is the number in Lemma 2.

Proof of Lemma 2. Note that the absolute values of the residues r1, r2, . . . , rk
are all distinct. This follows from the fact that p does not divide the sum
or difference of any two of them: ri ± rj = (i ± j)a, i �= j, |i ± j| < p,
|a| < p. Thus, the moduli |r1|, . . . , |rk| are the numbers 1, . . . , k in some
order. So a · 2a . . . · ka = akk! has the same remainder after division by p as
r1 . . . rk = (−1)νk!. Since the prime p does not divide k!, we obtain (12).

Proof of Euler’s Conjecture. We note that the fact that p is prime is no
longer used in the argument, but it was used in full measure in Gauss’
lemma. If a > 0, we mark off the points mp

2 on a number line, while if a < 0
we mark off −mp

2 , where m = 0, 1, 2, . . . , |a| (Figure 2(a)–(b). They divide
the line into intervals, which we number according to their left endpoints.
Now we mark the points a, 2a, . . . , ka with crosses. Since a is an integer
not divisible by p, the crosses cannot fall at the points we marked but fall
within the intervals (

|a|p
2 > |a|k). It is easy to see that the number ν in the

lemma is the number of crosses in the odd-numbered intervals (prove it!).

(a)

(b)

Figure 2. (a) p = 11 (k = 5), a = 7, ν = 3. (b) p = 7 (k = 3), a = −5, ν = 2.

We now apply a similarity transformation with coefficient 1
a to our pic-

ture (Figure 2 becomes Fig 3). The points mp
2 are mapped to points that

divide [0,
p
2 ] into |a| equal parts, and the crosses are mapped to the integers

1, 2, . . . , k.
The numbering of the intervals will now depend on the sign of a. They

are numbered according to their left endpoints for a > 0, and according
to their right endpoints for a < 0; ν is the number of integers in the odd-
numbered intervals. If we increase p by 4al, then we add exactly 2l integers
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(a)

(b)

Figure 3.

to each interval. This follows because translating an interval by an inte-
ger does not change the number of integers it contains, and every interval
(closed or not) of integer length n with noninteger endpoints contains ex-
actly n integers (prove it!). This, in passing from p to p + 4al the value of ν

changes by an even number, and (−1)ν does not change. This means that
(−1)ν is the same for all p in the arithmetic progression p = 4aq + r, which
proves Euler’s conjecture.

At the same time, this gives a method for deciding if a is a quadratic
residue for p. Divide p by 4a and let r by the remainder (positive for conve-
nience). Divide (0, r

2 ) into |a| parts, numbered according to their left (right)
endpoints if a is positive (negative). Count the number ν of integers in
the odd-numbered intervals. Then a is a quadratic residue if and only if ν

is even.
We will carry out the calculations for a = 2 to confirm Euler’s observa-

tion on p. 286, that everything depends on the remainder after dividing p
by 8. Let a = 2; then it suffices to consider r = 1, 3, 5, 7, since in all other
cases the arithmetic progression will contain no primes. As Figure 4 shows,
2 is a quadratic residue for p = 8q + 1 and p = 8q + 7, i.e., for p = 8q ± 1.

Figure 4. r = 1, a = 2, ν = 0; r = 3, a = 3, ν = 1; r = 5, a = 2, ν = 1; r = 7,

a = 2, ν = 2.
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Exercise. Show that −2 is a quadratic residue for p = 8q+1 and p = 8q+3.

We treat a = ±3 analogously. This table shows the values of ν:

r = 1 r = 3 r = 5 r = 7
a = 3 0 1 1 2
a = −3 0 1 2 3

Thus, 3 is a quadratic residue for p = 12l ± 1 and a nonresidue for
p = 12l ± 5, and −3 is a quadratic residue for p = 12l + 1 and p = 12l − 5.

For a = 2, 3 you have of course noted yet another pattern: Primes
whose remainders after dividing by 4a have the same absolute value are
either both quadratic residues or both quadratic nonresidues. Euler did
not fail to notice this, and he stated his conjecture in a stronger form than
we have.

Supplement to Euler’s Conjecture. Let p and q be primes with p + q = 4a.
Then a is a quadratic residue either for both p and q or for neither.

Proof. We carry out the construction in the proof of Euler’s conjecture for
the intervals (0,

p
2 ) and (0,

q
2 ), with a = p+q

4 . For convenience we arrange
the intervals so that they are directed oppositely from 0, i.e., we reverse
(0,

q
2 ), as in Figure 5. Let ν(p) and ν(q) be the number of integers in the

respective odd-numbered intervals. It suffices to prove that ν(p) + ν(q) is
even. Let νj(p) and νj(q) be the number of integers in the respective jth
intervals. It is easy to see that νj(p) + νj(q) = 2 for j > 0, which will imply
the result we need.

Figure 5. p = 11, q = 5, a = p+q
4 , ν(p) = 2, ν(q) = 2.

Indeed, there are 2j integer points in the interval between the jth left and
right points (j > 0) since, as we have already noted, there are 2j integers in
any interval of length 2j with noninteger endpoints.



290 � Tales of Mathematicians and Physicists �

The Law of Quadratic Reciprocity

In 1798, Legendre17 pointed out a very convenient statement equivalent to
Euler’s conjecture, the law of quadratic reciprocity. We introduce the follow-
ing notation, known as the Legendre symbol:

(
a
p

)
=

{
+1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue.

By Euler’s criterion and the remark following it (p. 284),(
a
p

)
≡ a(p−1)/2 (mod p). (13)

This immediately implies the multiplicative property of the Legendre sym-
bol: (

ab
p

)
=

(
a
p

) (
b
p

)
. (14)

We also note that the definition of the Legendre symbol may be extended
to all a not divisible by p so that (13) and (14) continue to hold, by setting(

a + p
p

)
=

(
a
p

)
. (15)

We can now state the law of quadratic reciprocity.

The Law of Quadratic Reciprocity. If p and q are odd primes, then(
p
q

) (
q
p

)
= (−1)

p−1
2 · q−1

2 . (16)

In other words, (
p
q ) and (

q
p ) have opposite signs if p = 4l + 3 and q = 4m + 3 and

coincide otherwise.

This is called a “reciprocity” law because it establishes a reciprocity
between p as a quadratic residue modulo q and q as a quadratic residue
modulo p.

Proof. In all cases, either p − q = 4a or p + q = 4a.

�——————�
17Euler was apparently the first to conjecture the law of quadratic reciprocity, but both his

and Legendre’s proofs were incomplete. Gauss was the first to supply a correct proof. See
Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press,
New York, 1972, pp. 611–612, 814–815.—Transl.
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Case 1. Suppose p − q = 4a, i.e., p and q have the same remainder after
dividing by 4. Then (

p
q ) = (

q+4a
q ) = ( 4a

q ) = ( a
q ), by (15), (14), and the fact

that ( 4
q ) = 1 for all q. Moreover, ( q

p ) = (
p−4a

p ) = (−4a
p ) = (−1

p )( a
p ). By Euler’s

conjecture, which we have already proved, ( a
p ) = ( a

q ), i.e., (
p
q ) = (

q
p ) when

(−1
p ) = 1 and (

p
q ) = −(

q
p ) when (−1

p ) = −1. It remains to recall that (−1
p ) = 1

for p = 4l + 1 and (−1
p ) = −1 for p = 4l + 3.

Case 2. Suppose p + q = 4a, i.e., p and q have different remainders after
dividing by 4. We have (

p
q ) = (

4a−q
q ) = ( a

q ). Analogously, ( q
p ) = ( a

p ). By the

supplement to Euler’s conjecture, ( a
p ) = ( a

q ), i.e., (
p
q ) = (

q
p ).

The proof is complete.

It is not hard to see that these arguments can be reversed to deduce
Euler’s conjecture and its supplement from the quadratic reciprocity law
(do it!). Also, formulas (14)–(16) give us a way to compute (

p
q ) that is

substantially simpler than the combinatorial method described above. We
illustrate it by an example:

(
59

269

)
=

(
269
59

)
=

(
59 · 4 + 33

59

)
=

(
3
59

)
·
(

11
59

)
= −1,

since ( 3
59 ) = −( 59

3 ) = −( 2
3 ) = 1 while ( 11

59 ) = −( 59
11 ) = −( 4

11 ) = −1. It is
easy to show that the computation of the Legendre symbol can always be
reduced to the case where p or q equals 2.

Exercise. Compute ( 37
557 ) and ( 43

991 ).

In conclusion, we note that the problem of quadratic residues served as
the starting point for a great and fruitful mathematical endeavor. Gauss’
many attempts to obtain new proofs of the law of quadratic reciprocity were
not motivated primarily by a desire to simplify its proof. The thought never
left him that he had not really uncovered the deep patterns that gave rise to
the law. These patterns were fully revealed only later, as part of the theory
of algebraic numbers. Gauss spent a great deal of effort on generalizing the
quadratic law to the cubic and biquadratic cases and obtained remarkable
results. This research has continued, and the study of various reciprocity
laws remains one of the central problems of number theory to this day.
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III Royal Days

We have described in detail Gauss’ first two great discoveries, made in
Göttingen during a ten-day period, a month before he turned nineteen.
The second belongs entirely to arithmetic (number theory), while the first
essentially depended on arithmetical considerations. Number theory was
Gauss’ first love.

The Favorite Science of the Greatest Mathematicians

This was one of the many names Gauss gave to arithmetic, i.e., number
theory. At the time, arithmetic had already turned from a collection of
isolated observations and assertions into a science.

Later, Gauss would write: “The really profound discoveries are due to
more recent authors like those men of immortal glory P. De Fermat, L. Euler,
L. Lagrange, A. M. Legendre (and a few others). They opened the door to
what is penetrable in this divine science and enriched it with enormous
wealth.”18

One of the most surprising sides of the “Gauss phenomenon” is that in
his earliest work he only rarely relied on the achievements of his prede-
cessors, but instead quickly rediscovered what had been done in number
theory during a century and a half of work by the best mathematicians.

Gauss used his stay in Göttingen to study the classic works, rethink
them, and compare them with what he had himself discovered. In his view,
the results of this activity should be summed up in a comprehensive work.
Gauss set out to write such a book after returning to Braunschweig in 1798,
after completing his university studies. It was to include his own results,
which had remained unpublished if we do not count the newspaper notice,
which incidentally promised: “This discovery is really only a corollary of
a theory with greater content, which is not complete yet, but which will be
published as soon as it is complete.”19 It took four years of strenuous work
to realize this immense plan.

In 1801, Gauss’ famous Disquisitiones Arithmeticae (Investigations of Arith-
metic) appeared. This huge book (over 500 pages in large format) contains
his fundamental results: the law of quadratic reciprocity, the problem of
dividing a circle, and the question of representing integers in the form
am2 + bmn + cn2 (in particular, as a sum of squares). The book was pub-
lished with the support of the duke and was dedicated to him. As pub-
lished, it consisted of seven parts. There was not enough money for an

�——————�
18Disquisitiones Arithmeticae, p. xviii.
19Hall, Gauss, p. 24.
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eighth, which was to be devoted to a generalization of the reciprocity law
to powers greater than two, and in particular to the law of biquadratic
reciprocity. Gauss did not find a complete proof of the latter until October
23, 1813, when he noted in his journal that this coincided with the birth of
his son.

Klein wrote, “In the Disquisitiones Arithmeticae Gauss created modern
number theory in its true sense and fixed its whole subsequent develop-
ment. Our amazement at this achievement increases when we consider
that Gauss created this whole world of thought purely out of himself and
by himself, without any outside stimulus.”20

Apart from Disquisitiones Arithmeticae, Gauss essentially discontinued
his work in number theory. He only thought through and completed what
he had conceived in those years. For example, he thought of six more
proofs of the quadratic reciprocity law. Disquisitiones was far ahead of its
time. Gauss had no serious mathematical contact while writing it, and for
a long time after the book appeared it was not intelligible to any of the
German mathematicians. It was not brought to France, where he could
have counted on the interest of Lagrange, Legendre, etc. The bookseller
who was supposed to distribute it there went bankrupt, and a great many
copies disappeared. As a result, Gauss’ students later had to copy out parts
of the book by hand. The situation in Germany began to change only in
the 1840s, when Dirichlet studied Disquisitiones in depth and lectured on
it. The book came to Kazan, to Bartels and his students, in 1807.

Disquisitiones turned out to have an enormous influence on the develop-
ment of number theory and algebra. Starting from Gauss’ work on dividing
the circle, Galois successfully analyzed the solvability of equations in radi-
cals. Reciprocity laws occupy a central position in algebraic number theory
to this day.

The Helmstadt Dissertation

In Braunschweig, Gauss did not have the books he needed for his work on
Disquisitiones. Thus he often went to neighboring Helmstadt, where there
was a good library. Here in 1798, Gauss prepared a dissertation devoted to
a proof of the Fundamental Theorem of Algebra, the assertion that every
polynomial with complex (and, in particular, real) coefficients has a com-
plex root. If we want to remain within the domain of real numbers, then
the fundamental theorem takes the form: every polynomial with real coeffi-
cients can be decomposed into the product of first- and second-degree polynomials.

�——————�
20Development, p. 24.
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Gauss critically reviewed all previous attempts at a proof and pursued an
idea of D’Alembert with great care. Gauss’ proof was not flawless, since a
rigorous theory of continuity was still lacking. He later thought of three
more proofs, the last one in 1848.

The Lemniscate and the Arithmetic–Geometric Mean

We will discuss one more direction in Gauss’ work that he began in his youth.
In 1791, when Gauss was fourteen years old, he played the following

game. He took two numbers a0, b0 and constructed their arithmetic mean
a1 = a0+b0

2 and geometric mean b1 = √
a0b0. Then he calculated the means

of a1 and b1, i.e., a2 = a1+b1
2 and b2 = √

a1b1, etc. Gauss computed both
sequences to a large number of decimal places. Very soon he could no
longer distinguish an from bn—all the digits he calculated were the same. In
other words, both sequences quickly approached the same limit M(a0, b0),
called the arithmetic–geometric mean.

In those years, Gauss tinkered a lot with a curve known as a lemniscate
(or Bernoulli’s lemniscate), the set of points for which the product of the
distances from each of two fixed points O1, O2 (the foci) is constant and
equals (

O1O2
2 )2. Gauss began a systematic study of the lemniscate in 1797.

For a long time he tried to find its length, before guessing that it equals
2π

M(
√

2,2)
O1O2. We do not know how Gauss arrived at this, but we do know

that it was on May 30, 1799, and that, not having a proof at first, he com-
puted both quantities to eleven places (!). Gauss thought of a function for
the lemniscate, analogous to the trigonometric functions for the circle. For
example, for the lemniscate with foci

√
2 units apart, the lemniscate sine

sl t is just the length of the chord corresponding to an arc of length t. Gauss
spent the last years of the eighteenth century on constructing a theory of
lemniscate functions. He obtained addition and multiplication theorems,
analogous to theorems for the trigonometric functions.
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From lemniscate functions, Gauss turned to their generalization—elliptic
functions. He understood that this was “a completely new domain of anal-
ysis.” After 1800, he could no longer give elliptic functions the time needed
to bring the theory to a state that was satisfactorily complete and rigorous.
From the very beginning he avoided regular publication, hoping to publish
everything at once, as he had done with his work in number theory. But
other matters never left him the necessary time.

In 1808, he wrote to his friend and student Heinrich Schumacher (1780–
1850): “We now understand the circular and logarithmic functions as well
as one times one, but the magnificent golden spring, guarding the secret
of the higher functions, is still almost terra incognita. I worked very much
on this before, and in time will present my own great work on it, which I
alluded to in my Disquisitiones Arithmeticae. Come and be amazed at the
extraordinary richness of the new and most interesting truths and relation-
ships possessed by these functions.”

Gauss believed that he did not have to hurry to publish his results. It
went on like this for thirty years, and then in 1827 two young mathemati-
cians, Abel and Carl Jacobi (1804–1851), published much of what he had
obtained.

“Jacobi’s results represent a part of my own great work, which I intended
to publish at some time. It will be an exhaustive work on this subject, if
only heaven will be pleased to prolong my life and give me strength and
peace of mind” (from a letter to Schumacher).

“Mr. Abel anticipated many of my ideas and made my problem easier
by about a third, setting forth results with great rigor and elegance. Abel
followed the same path that I did in 1798, so there is nothing improbable in
the fact that we obtained so similar results. To my surprise, this resemblance
even extends to form, and here and there to notation, therefore many of his
formulas seem copied from mine. But so that no one should misunderstand
me, I must add that I do not recall a single instance when I talked about this
research with any outsider” (from a letter to Wilhelm Bessel (1784–1846)).

Finally, in a letter to August Crelle (1780–1855): “Since Abel has demon-
strated such insight and such elegance in the problems in his account, I
feel that I may completely refrain from publishing the results I obtained”
(May 1828).

We should note that Gauss’ remark in Disquisitiones that the theory of
dividing a circle could be extended to the lemniscate turned out to have a
great influence on Abel.

With the beginning of the new century, Gauss’ scientific interests shifted
away from pure mathematics. He returned to it periodically and each time
obtained new results worthy of his genius. In 1812, he published a work on
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the hypergeometric function. (This function depends on three parameters,
and by giving them specific values we can obtain most of the functions
occurring in mathematical physics.) Gauss’ contribution to the geometric
interpretation of complex numbers is widely known. We will discuss his
work in geometry below. But mathematics would no longer be the main
work of his life. A characteristic external sign is that in 1801 he stopped
making regular entries in his journal, although there are notes until 1814.
We rarely realize how short Gauss’ “mathematical century” was—less than
ten years—and a great part of this time was devoted to work that was
unknown to his contemporaries (elliptic functions).

Asteriods

We will now talk about Gauss’ new inclinations. Many biographers have
argued about the reasons why Gauss began to study astronomy. We must
first keep in mind that, beginning with Kepler, Galileo, and Newton, as-
tronomy was the most striking area in which to apply mathematics. This
tradition was continued in the work of Euler, D’Alembert, Clairaut, La-
grange, and Laplace. In predicting and explaining celestial phenomena,
mathematicians felt as if they were admitted to the mysteries of the uni-
verse. Gauss, with his early interest in concrete calculations, could of course
not help but test his powers in this traditional arena.

There were also prosaic reasons. Gauss earned a meager living as a
privat-dozent in Braunschweig, receiving 6 thalers a month. A pension of
400 thalers from his patron duke did not improve his situation enough to
support a family, and he was contemplating marriage. It was not simple
to obtain a chair in mathematics somewhere, and Gauss was not very at-
tracted to teaching. The broadening net of observatories made a career as
an astronomer more accessible.

Gauss had begun to be interested in astronomy while in Göttingen.
He carried out some observations in Braunschweig, and used part of his
pension from the duke to buy a sextant. He searched for a worthy com-
putational problem, solving minor ones in the meantime. For example, he
published a simple method for computing the dates of Easter and other
cyclical holidays, in place of the extremely confusing techniques that had
been used earlier. The idea for a real problem arose in 1801, under the
following circumstances.

On January 1, 1801, the astronomer Giuseppe Piazzi (1746–1826), who
was creating a star catalog, discovered an unknown star of the eighth
magnitude. He observed it for forty days and then asked the leading as-
tronomers to continue the observations. For various reasons, his request
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was not met. In June the information reached Franz Zach (1754–1832), who
published the only journal in astronomy at the time. Zach conjectured that
this was a “long supposed, now probably discovered, new major planet
of our solar system between Mars and Jupiter.” Zach’s conjecture seemed
plausible, and an urgent search for the “missing” planet was required. But
this demanded the calculation of its trajectory. Determining an elliptical
trajectory from the 9◦ arc that Piazzi had found was beyond the limits of
the computational ability of the astronomers. In September 1801, Gauss
dropped everything else and undertook to compute the orbit. In Novem-
ber the calculations were complete. They were published in the December
issue of Zach’s journal, and on New Year’s Eve, exactly a year after Piazzi’s
sighting, the famous German astronomer Heinrich Olbers (1758–1840), us-
ing the trajectory calculated by Gauss, found the asteroid now known as
Ceres. It was a genuine sensation!

On March 25, 1802, Olbers discovered another asteroid, Pallas. Gauss
quickly computed its orbit, showing that it lay between Mars and Jupiter.
The astronomers unhesitatingly accepted the validity of Gauss’ computa-
tional methods.

Recognition came to Gauss, including election as a corresponding mem-
ber of the St. Petersburg Academy of Sciences. He was soon invited to take
the position of director of the observatory there. Gauss wrote that it was
flattering to be invited to the city where Euler had worked, and that he
was seriously considering the move. In his letters, Gauss wrote that the
weather was often bad in St. Petersburg, so that he would not be too busy
with observation and would have time for study. The thousand rubles he
would receive were worth more than the 400 thalers he now had, but it was
more expensive to live there.

At the same time, Olbers began efforts to keep Gauss for Germany. In
1802 he proposed that the curators of the University of Göttingen offer
Gauss the position of director of the newly organized observatory there.
Olbers wrote that Gauss “has a positive aversion to a chair in mathematics.”
It was agreed on, but Gauss did not move until the end of 1807. During
that time he married (“life seems to me springlike, always with bright
new colors.”) In 1806 the duke, to whom Gauss evidently felt a sincere
attachment, died from a wound. Now there was nothing to keep him in
Braunschweig.

Gauss’ life in Göttingen did not proceed sweetly. In 1809, his wife
died after giving birth to a son, and then the child died, too. In addition,
Napoleon placed a heavy tax on Göttingen, and Gauss himself had to pay
the unbearable amount of 2000 francs. Olbers tried to pay the money for
him, and so did Laplace, who was right in Paris. Both times Gauss proudly
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refused. Another benefactor was found, this time anonymous, and there
was no one to whom Gauss could return the money. It was learned much
later that this was the Elector of Mainz, a friend of Goethe. “Death is
dearer to me than such a life,” wrote Gauss, between notes on the theory
of elliptic functions. Those around him did not appreciate his work and
considered him an eccentric at the least. Olbers calmed Gauss, saying he
should not count on people’s understanding: “You must take pity on them
and serve them.”

The year 1809 also saw the appearance of the famous Theoria Motus
Corporum Coelestium (Theory of Motion of the Heavenly Bodies, Moving About
the Sun in Conic Sections),21 which Gauss had completed in 1807. The delay
occurred partly from the publisher’s fear that there would be no demand
for the book in German, and for patriotic reasons Gauss refused to publish
it in French. They compromised by publishing it in Latin. This was Gauss’
only book on astronomy, although he also published a few articles.

Gauss set out his methods for computing orbits. To persuade the reader
of the power of his technique, he repeated the calculation of the orbit of the
comet in 1769, which Euler had found at the time after three days of inten-
sive computation (losing sight of it afterwards, according to some sources).
Gauss required one hour. The book contained the method of least squares,
which remains to this day one of the most widely used methods for work-
ing with observational data. Gauss indicated that he had known of this
method since 1794, and had used it systematically since 1802. (Legendre
had published the method of least squares two years before the appearance
of Gauss’ Theoria Motus.)

Gauss received many honors in 1810: a prize from the Academy of
Sciences of Paris and the Gold Medal of the Royal Society of London, as
well as election to several academies.

In 1804, the Paris Academy had chosen the theory of perturbations
of Pallas as the theme for its grand prize (a gold medal weighing 1 kilo-
gram). The deadline was twice extended (to 1816) in the hope that Gauss
would submit an entry. Gauss was assisted in his calculations by his stu-
dent Friedrich Nicolai (1793–1846), (“a young man, tireless in carrying out
calculations”), but they were still not carried through to the end. Gauss
stopped working on them, falling into a deep depression.

Gauss continued his regular astronomical activities almost up to his
death. The famous comet of 1812 (which “presaged” the fire of Mos-
cow!) was observed everywhere, thanks to his calculations. On August
28, 1851, he observed a solar eclipse. He had many astronomy students

�——————�
21There is an 1857 English translation of this book by Charles Henry Davis (reprinted by

Dover, New York, 1963).—Transl.
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(Schumacher, Gerling, Nicolai, Struve). The excellent German geometers
Möbius and Staudt studied not geometry but astronomy with him. He con-
ducted an active correspondence with many astronomers, regularly read
articles and books on astronomy, and published reviews. We also learn
much about his mathematical activities from his letters to astronomers.
How different the image of Gauss the astronomer is from the inaccessible
recluse that he seems to mathematicians!

Geodesy

By 1820, the center of Gauss’ practical interests had shifted to geodesy. As
early as the beginning of the century, he had tried to use measurements
of a meridian arc, made by French geodesists to establish a standard of
length (the meter), to find the true amount of the earth’s flattening.22 But
the arc turned out to be too small. Gauss dreamt of measuring a sufficiently
large arc, but was only able to begin in 1820. Although the measurements
stretched out over two decades, Gauss could not fully realize his idea. His
research on the treatment of results of measurements, carried out in connec-
tion with geodesy, were of great importance (his fundamental publications
on the method of least squares belong to this time), as well as various geo-
metric results related to the need for making measurements on the surface
of an ellipsoid.

In the 1820s the question arose of Gauss moving to Berlin, where he
would become the head of an institute. The most promising young math-
ematicians were to be invited there, above all Jacobi and Abel. The ne-
gotiations were drawn out over four years. The disagreement was over
whether Gauss would deliver lectures and how much he would be paid—
1200 or 2000 thalers a year. The negotiations were unsuccessful, but not
completely: In Göttingen, Gauss was paid the salary he wanted in Berlin.

The Inner Geometry of a Surface

We are obliged to geodesy for the fact that, for a comparatively short time,
mathematics became one of Gauss’ main activities again. In 1816 he thought
of generalizing the basic problem of cartography, mapping one surface onto
another “so that the image is similar to the original in the smallest parts.”
Gauss advised Schumacher to select this problem for the Copenhagen Sci-
entific Society prize competition, which was declared in 1822. In the same

�——————�
22In other words, the extent to which its shape is not spherical.—Transl.
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year Gauss submitted his memoir, in which he introduced parameters23 al-
lowing a complete solution of the problem, special cases of which had been
studied by Euler and Lagrange (mapping a sphere or surface of revolution
onto a plane). Gauss described the conclusions of his theory in detail for
many concrete cases, some of which arise in geodesy problems.

In 1828, Gauss’ fundamental geometry memoir, Disquisitiones Generales
circa Superficies Curvas (General Investigations of Curved Surfaces), appeared.24

It is devoted to the inner geometry of a surface, i.e., to what is associated
with the very structure of the surface and not to its position in space.

Figuratively speaking, the inner geometry of a surface is what we can
learn about its geometry “without leaving it.” On the surface we can mea-
sure length, by stretching a string so that it lies completely on the surface.
The resulting curve is called a geodesic (analogous to a line on a plane).
We can measure angles between geodesics and study geodesic triangles
and polygons. If we deform the surface (thinking of it as an unstretch-
able and untearable film), then distances between points will be preserved,
geodesics will remain geodesics, etc.

It turns out that, “without leaving the surface,” we can tell whether or
not it is curved. A deformation can never turn a “really” curved surface into
a plane. Gauss proposed a numerical measure for the degree of curvature
of a surface.

Consider a neighborhood of area ε near a point A of a surface. At each
point of this neighborhood we take a normal (a vector perpendicular to
the surface) of length one. All normals of a plane will be parallel, but for
a curved surface they will diverge. We displace the normals so that their
origins are at a single point. Then their endpoints form some figure on the
unit sphere. Let ϕ(ε) be the area of this figure. Then k(A) = limε→0

ϕ(ε)
ε

measures the curvature of the surface at A. It turns out that k(A) is the same
for all deformations. In order for a piece of the surface to turn into a plane,
k(A) must be zero at all points A of the piece. This measure of curvature is
related to the sum of the angles of a geodesic triangle.

Gauss was interested in surfaces of constant curvature. A sphere is
a surface of constant positive curvature (at each of its points k(A) = 1

R ,
where R is the radius). In his notes, Gauss mentions a surface of revolution
with constant negative curvature. Later this was called a pseudosphere,
and Eugenio Beltrami (1835–1900) discovered that its inner geometry is a
hyperbolic non-Euclidean geometry.

�——————�
23Curvilinear coordinates.—Transl.
24There is an English translation by Adam Hiltebeitel and James Morehead, Raven Press,

Hewlett, NY, 1966.—Transl.



� Prince of Mathematicians � 301

Non-Euclidean Geometry

According to some information, Gauss had been interested in the parallel
postulate as early as 1792, while in Braunschweig. In Göttingen he often
discussed this problem with Bolyai Farkas,25 a Hungarian student. We
know from a 1799 letter to Bolyai how clearly Gauss understood that there
are many assertions which, if we accept them, allow us to prove the fifth
postulate. “I have certainly achieved results which most people would look
upon as proof. . . .” And, “. . .the way in which I have proceeded does not
lead to the desired goal but instead to doubting the validity of geometry.” It
is only one step from here to understanding the possibility of non-Euclidean
geometry, but that step still had not been taken. This sentence is often
erroneously taken as evidence that Gauss had arrived at non-Euclidean
geometry as early as 1799.

Gauss’ words that he was not able to devote enough time to this prob-
lem deserve notice. It is typical that there is no mention in his journal of
the problem of parallel lines. It was evidently never at the center of Gauss’
attention. In 1804, he rejected Bolyai’s attempts to prove the parallel pos-
tulate. His letter ends, “However I still hope that at some time, and before
my end, these submerged rocks will allow us to pass over them.” These
words seem to indicate a hope that a proof would be found.

Here is more testimony: “In the theory of parallel lines we are now
no further than Euclid was. This is the partie honteuse [shameful part] of
mathematics, which sooner or later must get a very different form” (1813).
“We have not advanced beyond the place where Euclid was 2000 years ago”
(1816). But in that very year of 1816 he speaks of “the gap which cannot be
filled,” and in 1817 we read in a letter to Olbers: “I am coming more and
more to the conviction that the necessity of our geometry cannot be proved,
at least not by human intelligence and not for human intelligence. Perhaps
we shall arrive in another existence at other insights into the essence of
space, which are not unattainable for us. Until then one would have to rank
geometry not with arithmetic, which stands a priori, but approximately
with mechanics.”26

At about the same time, Ferdinand Schweikart (1780–1859), a jurist from
Königsberg, arrived at the notion that the fifth postulate was impossible to
prove. He proposed that an “astral geometry,” in which the parallel pos-
tulate does not hold, exists alongside Euclidean geometry. Gauss’ student
Christian Gerling (1788–1864), who was working in Königsberg, wrote to

�——————�
25Sometimes known as Wolfgang Bolyai.—Transl.
26This translation is taken from G. Waldo Dunnington, Carl Friedrich Gauss: Titan of Science,

Exposition Press, New York, 1955, p. 180.
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his teacher about Schweikart’s idea and attached a note from him. In reply,
Gauss wrote: “Almost everything is copied from my soul.” Schweikart’s
activities were continued by his nephew Franz Taurinus (1794–1874), with
whom Gauss exchanged some letters beginning in 1824.

In his letters Gauss stressed that his statements were of an especially
partial nature and must in no case be made public. He did not believe
these ideas could be grasped, and feared the interest of hordes of dilet-
tantes. Gauss had spent more than a few difficult years and greatly valued
the opportunity to work quietly. He warned Gerling, who had planned
only to mention that the parallel postulate could turn out to be false, “but
the wasps, whose nest you stir up, will fly around your head.” He grad-
ually reached a decision to write down his results but not publish them:
“Probably, I will not be able to work out my space research on this question
soon enough so that they can be published. Perhaps it will not happen
during my lifetime, since I fear the Boeotians27 cries if I were to express my
opinion fully” (from an 1829 letter to Bessel). In May of 1831, Gauss began
to make systematic notes: “It has now been several weeks since I began
to set out in writing several results of my own thinking on this subject,
in part already forty years old but that I never wrote down, as a result of
which I had to begin the whole work over again three or four times in my
head. I did not want, however, for this to buried along with me” (letter to
Schumacher).

But in 1832 he received from Bolyai Farkas a short essay by his son
János, Appendix Scientiam Spatii Absolute (The Science of Absolute Space) (so
called because it was published as an appendix to a large book written by
the father). “My son values your opinion more than the opinion of all Eu-
rope.” The content of the book startled Gauss: a complete and systematic
construction of non-Euclidean geometry. These were not the fragmentary
remarks and conjectures of Schweikart–Taurinus. Gauss himself had in-
tended to produce such an account in the near future. He wrote Gerling:
“I found all my own ideas and results, developed with great elegance, al-
though because of the conciseness of the account, in a form that is accessible
with difficulty to someone to whom this area is foreign. . . . I believe that
this young geometer Bolyai is a genius of the first order.” And to the father,
he wrote “. . .all of the paper’s contents, and the way your son has attacked
the matter, coincide almost completely with my own reflections which I
partly carried out thirty to thirty-five years ago. In fact I am extremely
surprised by it. My intention was to leave my own work, of which at the
present time only a small part is written down, unpublished during all of

�——————�
27According to legend, the inhabitants of Boeotia were famous in ancient Greek for their

stupidity.
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my lifetime. . . . On the other hand, I had intended to write it all down little
by little, so that it at least would not disappear with me. I am thus quite
surprised that I can spare myself these efforts, and it makes me very happy
that it is the son of one of my old friends who has come ahead of me in such
a remarkable manner.”28 Bolyai János received no public appreciation or
support from Gauss whatsoever. Gauss evidently interrupted his system-
atic notes on non-Euclidean geometry at that time, although sporadic notes
from the 1840 remain.

In 1841 Gauss became acquainted with the German edition of Loba-
chevsky’s works (Lobachevsky’s first publications date from 1829). True
to form, Gauss was interested in the author’s other publications, but com-
mented about him only in letters to his close correspondents. Incidentally,
on Gauss’ proposal, Lobachevsky was elected in 1842 as a corresponding
member of the Göttingen Royal Society, “as one of the most excellent math-
ematicians of the Russian people.” Gauss personally notified Lobachevsky
of his election. However, non-Euclidean geometry was not mentioned ei-
ther in Gauss’ presentation or in the diploma given Lobachevsky.

We know of Gauss’ work on non-Euclidean geometry only from the
posthumous publication of his archives. Gauss thus guaranteed that he
could work quietly by refusing to publicize his great discovery, resulting
in arguments that continue to this day about the appropriateness of his
position.

We should note that Gauss was interested in more than the purely logical
question of the provability of the parallel postulate. He was interested in
the place of geometry in the natural sciences and the truth of the geometry
of our physical world (see his above statement of 1817). He discussed
the possibility of an astronomical verification, speaking with interest of
Lobachevsky’s ideas in this regard. In his work on geodesy, Gauss even
measured the sum of the angles of the triangle formed by the German
mountains of Hohenhagen, Brocken, and Inselsberg. It differed from 2π

by no more than 0.2◦.

Electrodynamics and Terrestrial Magnetism

By the end of the 1820s Gauss, now on the far side of fifty, began to look
for areas of science that were new for him. This is seen in two publications
of 1829 and 1830. The former set out his thoughts on general principles
of mechanics (his “Principle of Least Constraint”), while the latter was
devoted to the study of capillary phenomena. Gauss decided to study

�——————�
28This translation is taken from Hall, Gauss, p. 114.
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physics, but had not yet defined his specific interests. In 1831 he tried to
study crystallography. This was a very difficult year in his life: His second
wife died, and he began to suffer from terrible insomnia. In the same
year, the twenty-seven-year-old physicist Wilhelm Weber (1804–1891) was
invited to Göttingen, at Gauss’ initiative. Gauss had met him in 1828, at the
home of Alexander von Humboldt’s (1769–1859). His reserve had become
legendary, but all the same he found a scientific partner in Weber as he had
never had before.

“The inner difference between the two men was also expressed quite
clearly in their outer appearance. Gauss had a powerful, stocky physique, a
true Lower Saxon, laconic and not easily accessible. This was in strong con-
trast to the small, delicate, agile Weber, whose friendly, loquacious nature
betrayed at once the true Saxon, though he was actually born in Wittenberg,
in the land of the “double Saxons” [Doppelsachsen]. In the Gauss–Weber
Monument in Göttingen this contrast has been minimized for artistic rea-
sons, and even their ages appear closer than they were” (Klein).29

Gauss’ and Weber’s interests lay in the area of electrodynamics and ter-
restrial magnetism. Their work had not only theoretical but also practical
results. In 1833 they invented an electromagnetic telegraph (this event is
recorded on their common memorial). The first telegraph connected the
observatory and the physics institute but, for financial reasons, its creators
did not succeed in developing it further.

In the course of his research, Gauss arrived at the conclusion that an
absolute system of physical units was needed for work in magnetism. He
began with a number of independent quantities and expressed the remain-
ing quantities in terms of them.

The study of terrestrial magnetism relied both on observations at the
magnetic observatory at Göttingen, and on materials that had been col-
lected in various countries by the “Society for the Observation of Terrestrial
Magnetism,” created by Humboldt after his return from South America.
At the same time, Gauss created one of the most important chapters in
mathematical physics—potential theory.

Gauss’ and Weber’s joint work was interrupted in 1843, when Weber and
six other professors were expelled from Göttingen after signing a letter to
the king that cited breaches in the recent constitution (Gauss had not signed
it). Weber returned to Göttingen only in 1849, when Gauss was already 72
years old.

We conclude our story of Gauss with Klein’s words: “To me Gauss is
like the highest peak amidst our Bavarian mountains as it appears to a

�——————�
29Development, pp. 17–18.
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Carl Friedrich Gauss.

spectator from the north. From the east the gradually ascending foothills
culminate in the one gigantic colossus, which falls away steeply into the
lowlands of a new formation, into which its spurs project for many miles
and in which the water that streams from it begets new life.”30

Appendix: Construction Problems Leading
to Cubic Equations

In Disquisitiones Arithmeticae, Gauss states without proof that it is impossi-
ble to construct, with straightedge and compass, regular n-gons for primes
n that are not Fermat primes, and in particular, a regular 7-gon. This nega-
tive result must have surprised his contemporaries no less than the possibil-
ity of constructing a regular 17-gon. After all, n = 7 is the first value of n for
which no construction was found, despite many attempts. The Greek ge-
ometers undoubtedly suspected there was something troublesome about
this problem and it was not without cause, let us say, that Archimedes
proposed a method for constructing a regular 7-gon using conic sections.
However, the question of proving that the construction was impossible
evidently did not even arise.

One must say that proofs of negative assertions have always played a

�——————�
30Development, p. 57.
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fundamental role in the history of mathematics. An impossibility proof
requires that every conceivable method of solution, construction, or proof
somehow be considered, while it suffices to give just one specific method
for a positive solution.

Impossibility proofs in mathematics had a famous beginning, when the
Pythagoreans (sixth century B.C.), in trying to reduce all of mathematics
to integers, buried this idea with their own hands: It turned out that there
exists no fraction whose square equals 2. Another way to say this is that
the diagonal and sides of a square are incommensurable. Thus integers
and their ratios are insufficient to describe a very simple situation. This
discovery surprised the greatest thinkers of ancient Greece. Legend states
that the gods punished the Pythagorean who revealed this fact (he died
in a shipwreck). Plato (429–348B.C.) tells how the existence of irrational
quantities astonished him. Plato once ran into a “practical” problem that
caused him to rethink the possibilities of geometry.

“In his work entitled Platonicus, Eratosthenes relates that, when God
announced to the Delians through an oracle that, in order to be liberated
from the pest, they would have to make an altar, twice as great as the
existing one, the architects were much embarrassed in trying to find out
how a solid could be made twice as great as another one. They went to
consult Plato, who told them that the god had not given the oracle because
he needed a doubled altar, but that it had been declared to censure the
Greeks for their indifference to mathematics and their lack of respect for
geometry” (Theon of Smyrna).31 Do not say that Plato did not make use of
the right moment to propagandize for science! According to Eutocius, an
analogous problem (doubling the volume of Glaucus’ tombstone) figured
in one version of the legend of Minos.

We are talking about finding the sides of a cube with twice the volume
of a given cube, i.e., of constructing the roots of the equation x3 = 2. Plato
sent the Delians to Eudoxus and Helicon. Menaechmus, Archytas, and
Eudoxus proposed various solutions, but none found a construction with
straightedge and compass. Eratosthenes, who built a mechanical device
for solving the problem, later called his predecessors’ solutions too compli-
cated in a poem carved on a marble slab in Ptolemy’s temple in Alexandria:
“Do not thou seek to do the difficult business of Archytas’ cylinders, or to
cut the cone in the triads of Menaechmus, or to compass such a curved
form of lines as is described by the god-fearing Eudoxus.”32 Menaechmus
noted that the problem is equivalent to finding two mean proportionals,

�——————�
31As translated in Bartel L. van der Waerden, Science Awakening I, translated by Arnold

Dresden, Oxford University Press, New York, p. 161.
32Ibid.
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i.e., for given a and b find x and y that satisfy a : x = x : y = y : b. The
latter problem was solved using conic sections. We know nothing about
Eudoxus’ “curved lines.” As far as a mechanical solution is concerned, Er-
atosthenes was not the first. According to Plutarch, “Plato himself censured
those in the circles of Eudoxus, Archytas, and Menaechmus, who wanted
to reduce the duplication of the cube to mechanical constructions, because
in this way they undertook to produce two mean proportionals by a non-
theoretical method; for in this manner the good in geometry is destroyed
and brought to nought, because geometry reverts to observation instead
of raising itself above this and adhering to the eternal, immaterial images,
in which the immanent God is the eternal God.”33 Incidentally, Eutocius
ascribes to Plato himself (evidently erroneously) a mechanical solution to
the Delian problem, using a carpenter’s square with grooves and adjustable
rulers. Plato, with his aversion to “material things, which require extended
operations with unworthy handicrafts” (Plutarch),34 is often contrasted to
Archimedes (287–212B.C.), who was glorified for his many inventions and
in particular for the machines used in the defense of Syracuse. The same
Plutarch also claimed that Archimedes only yielded to the persuasion of
King Hiero” to direct his art somewhat away from the abstract. . . [and to
occupy] himself in some tangible manner with the demands of reality,”
although he believed that the practical was “lowbrow and ignoble, and he
only gave his effort to matters which, in their beauty and their excellence,
remain entirely outside the realm of necessity.”35

Along with the Delian problem, Greek geometry left several other prob-
lems for which a construction with straightedge and compass was not
found: trisecting an angle (dividing it into three equal parts), squaring
the circle, and constructing a regular n-gon, in particular a 7-gon and a 9-
gon. The Greeks, and even more so the Arab mathematicians, were aware
of the connection between these problems and cubic equations.

The problem of the regular 7-gon reduces to the equation z6 + z5 + z4 +
z3 + z2 + z + 1 = 0 (see equation (2), p. 269), or(

z3 + 1
z3

)
+

(
z2 + 1

z2

)
+

(
z + 1

z

)
+ 1 = 0.

Passing to the variable x = z + 1
z , we obtain the equation

x3 + x2 − 2x − 1 = 0.

�——————�
33Ibid., p. 163.
34Ibid.
35Ibid., p. 209.
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We will show that the roots of the equations for doubling the cube
and for the 7-gon cannot be quadratic irrationals, which will imply the
impossibility of constructing them with straightedge and compass. We
will prove a result that applies to a rather general situation.

Theorem. If a cubic equation a3x3 +a2x2 +a1x+a0 = 0 with integer coefficients
has a quadratic irrational root, then it also has a rational root.

Proof. Let x1 be a quadratic irrational root. Then x1 can be obtained from
the integers by arithmetic operations and extracting square roots; let us
analyze this construction. We first take the square roots of certain rational
numbers,

√
A1,

√
A2, . . . ,

√
Aa, and then the square roots of certain num-

bers obtained by arithmetic operations from the rationals and the
√

Ai, say√
B1,

√
B2, . . . ,

√
Bb, etc. At each step, we take roots of numbers that are

expressed arithmetically in terms of all those obtained previously. We thus
obtain “stages” of quadratic irrationals. Let

√
N be one of the numbers

obtained at the last step before forming x1. We fix our attention on how√
N enters into x1. It turns out that we may assume that x1 has the form

α + β
√

N, where α, β are quadratic irrationals into which
√

N does not en-
ter. It suffices to note that arithmetic operations on expressions of the form
α + β

√
N lead to the same type of expression. This is obvious for addition

and subtraction and can be directly verified for multiplication. For division
we must eliminate

√
N from the denominator:

α + β
√

N

γ + δ
√

N
= (α + β

√
N)(γ − δ

√
N)

γ 2 − δ2N
.

If we now substitute x1 = α + β
√

N into the equation and carry out the
operations, we obtain a relation of the form P+Q

√
N = 0, where P and Q are

polynomials in α, β, ai. If Q �= 0, then
√

N = − P
Q , and by substituting this

into the expression for x1 we can represent x1 without
√

N. If Q = 0, then it
can be verified that x2 = α−β

√
N is also a root, and since − a2

a3
= x1 +x2 +x3

is the sum of the roots (Vieta’s theorem), we obtain x3 = −a2
a3

− 2α. Thus
we again have a root that is a quadratic irrational, expressible in terms of√

Ai,
√

Bj, . . . , as is x1, but without
√

N. Continuing this process further, we
eliminate all radicals in the expression for a root of the equation by stages,
beginning with the last stage. After this we obtain a rational root, and the
proof is complete.

It now remains to verify that the equations we are interested in have
no rational roots. Suppose an equation has leading coefficients a3 = 1.
Then each rational root is an integer. It suffices to substitute x = p

q (p, q
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relatively prime) into the equation, multiply both sides by q3, and see that
p3 and thus p are divisible by q, i.e., q = 1. Furthermore, if α is a root, then
x3 +a2x2 +a1x+a0 = (x−a)(x2 +mx+n), where a2 = −α+m, a1 = −αm+n,
a0 = −αn, i.e., m = a2 +α, n = a1 + a2α +α2. This means that if ai and α are
integers, then m and n are integers and α must divide a0. So with a3 = 1,
the search for rational roots of the equation reduces to sorting out a finite
number of possibilities, the divisors of the constant term. It is now easy to
verify that the equations we are considering have no integer roots, so they
have no roots that are quadratic irrationals.



Felix Klein

Felix Klein’s fame is based on work that he carried out over a period
of one decade. Klein stopped working actively in mathematics at the
age of 33, but to the end of his days he remained at the center of life

in scientific organizations and devoted himself completely to pedagogical
and literary activities.

A Knight’s Spurs

Felix Klein was born in 1849 in Düsseldorf. He completed gymnasium
there and in 1865 entered the University of Bonn. By the following year
Professor Julius Plücker (1801–1868) had enlisted the 17-year-old student as
an assistant in physics. Plücker had started his scientific work as a geome-
ter, but had gradually switched over to experimental physics. However,
in the last years of his life, after a twenty-year hiatus, Plücker returned to
geometry. “This change played a decisive role in my own development,”
wrote Klein. The posthumous publication of Plücker’s last memoir was
prepared by Klein. Perhaps this was the reason why his 1868 dissertation
in which Klein said he “earned his knight’s spurs” and his first publication
in 1869 were in geometry.

Lacking a teacher, Klein became a “knight-errant.” He visited the fun-
damental centers of mathematics in Germany (Göttingen, Berlin) and es-
tablished personal contacts with Alfred Clebsch (1833–1872), Weber, and
Weierstrass. They paid attention to him immediately, which raised the
hopes of the young scientist who wanted to and was able to learn. No less
important were Klein’s contacts with his contemporaries. Klein’s friend-
ship with the great Norwegian Sophus Lie (1842–1899) was especially for-
tunate. They had met in Berlin in 1870. Lie was seven years older than
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Felix Klein.

Klein, but in 1870 had taken only his first steps in geometry. Soon Klein
and Lie went to Paris. There they became acquainted with the methods
of the French geometers, who were able to obtain important geometrical
results with surprising ease, “out of thin air” (Lie). Especially significant
for the future scientific fates of Klein and Lie were meetings with Camille
Jordan (1838–1922). In 1870 Jordan had just come out with a extensive work
on the theory of finite groups, drawing broad attention to the work of Galois
(1811–1832). Perhaps Klein’s first work, which was devoted to a geometric
study of the so-called Kummer surfaces,1 served as a “ticket of admission”
to Jordan, who had earlier undertaken an algebraic study of these surfaces.

Klein left France because of the Franco-Prussian war. At the start of the
war Klein came down with typhus and when he recovered he settled in
Göttingen. A time of great achievement was beginning for Klein. Bourbaki
wrote that Klein concluded a “golden century” of geometry. But before
we talk about the brilliant conclusion of this century, we will recall its
beginning.

�——————�
1Eduard Kummer (1810–1893).
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A “Golden Century” of Geometry

As early as the 17th century Desargues (1593–1662) and Pascal (1623–1662)
used central projections to obtain remarkable geometric results, which were
almost forgotten within a century and a half. Later, Gaspard Monge (1746–
1818) gave new attention to the great possibilities of the projection method.
He discussed this in his course on descriptive geometry, which he gave at
the École Polytechnique. Bourbaki counts the “golden century” of geome-
try as starting with Monge’s Descriptive Geometry (1795).

Among Monge’s students was Jean-Victor Poncelet (1788–1867). Klein
wrote, “It was a new kind of geometrical intuition, ‘projective thinking,’
that enabled him to surpass his predecessors.”2 Poncelet created projective
geometry over the course of two years that he spent as a captive in Saratov,
Russia, after the Franco-Russian War of 1812. He discussed his results with
his fellow captives, who had also heard Monge at the École Polytechnique.
These results were published in 1822 in his Treatise on the Projective Properties
of Figures.

As did his predecessors, Poncelet augmented each line by a point at
infinity, assuming that all parallel lines have a common point at infinity
where they “intersect.” All the points at infinity form the line at infinity. On
the augmented plane parallelism becomes a special case of intersection and
requires no special consideration (for example, the statement that through a
point not on a line there is a unique line parallel to the given one becomes the
statement that through two distinct points, one of which is ordinary and the
other is at infinity, there is a unique line). Under a central projection a finite
point can have no image (“goes to infinity”), but on the plane augmented
by the points at infinity this map is one-to-one.

A central projection transforms one plane into another; by applying
several projections in succession we can return to the original plane, ob-
taining a transformation of this plane. Displacements, homotheties, and
dilatations belong to these transformations, which came to be called pro-
jective transformations. Projective transformations are one-to-one (on the
augmented plane) and take lines to lines (it was later clarified that every
transformation with these properties is projective). Projective transforma-
tions that map the line at infinity into itself are called affine; affine trans-
formations are one-to-one on the usual plane. Poncelet studied geometric
objects that are preserved under projective transformations. It turns out
that under a projective transformation a conic section maps to a conic sec-
tion (but, for example, a hyperbola can map to a parabola and every conic

�——————�
2Felix Klein, Development of Mathematics in the 19th Century, translated by M. Ackerman,

Math Sci Press, Brookline, MA, 1979, p. 73.
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section can be mapped to a circle with a projective transformation). The
following observation turned out to be especially fruitful. Let A, B, C, D
be collinear points and {A, B, C, D} = AC·BD

AD·BC be the cross-ratio, or anhar-
monic ratio, of the four points. Suppose some projective transformation
transforms the points A, B, C, D into the points A′, B′, C′, D′ (they will nec-
essarily be collinear). Then {A, B, C, D} = {A′, B′, C′, D′}, that is under a
projective transformation the cross-ratio of the four points is preserved. If
one of the points, D, for example, is a point at infinity then {A, B, C, D} is
equal to AC

BC and we find that ratios of lengths of collinear segments are
preserved by affine transformations. (Why is this true?)

Furthermore, Poncelet tried to eliminate exceptional cases of reciprocal
arrangements of conic sections. Why, for example, can two ellipses intersect
at four points but a pair of circles in no more than two? This question has
a surprising answer. Aside from pairs of real points of intersection, circles
have a universal pair of common points (that are the same for all circles in
the plane!), unseen because they are. . . imaginary and points at infinity at
the same time. These points are called cyclic.

Now a few words about four German mathematicians: Ferdinand
Möbius (1790–1868), Jakob Steiner (1796–1863), Christian von Staudt
(1798–1867), and Plücker, who was introduced above. A bitter struggle
is associated with their names, between the analytic and synthetic direc-
tions in geometry.

Here the words “analysis” and “synthesis” are used in a nonstandard
sense: analytic geometry uses the method of coordinates, which makes it
possible to apply algebra and analysis to geometry; synthetic geometry
operates with direct spatial constructions.

The most bitter relationship was a duel between the analyst Plücker
and the synthesist Steiner. Möbius (analyst) and von Staudt (synthesist)
stayed on the sidelines. Klein was drawn very easily into the battle on
the side of the analysts but was able to stay out of the skirmish, perhaps
by following the rule of his acquaintance, the physiologist Carl Ludwig
(1816–1895): “one goes about 600 kilometers from home and looks at the
situation from there.”3

The analyst’s work required above all perfecting the method of coor-
dinates. For the synthesist it was important to give a coordinate-free def-
inition of the objects of projective geometry, e.g., of second-order curves.
Steiner, a very colorful figure in the history of mathematics, did this. A
Swiss peasant who walked behind a plough until he was 19, Steiner began
to study mathematics at a mature age. He was decisively opposed to using

�——————�
3Klein, Development of Mathematics in the 19th Century, p. 105.
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imaginary numbers in geometry, calling them “ghosts” or “in shadow-
land.” Von Staudt showed that one can associate purely real constructions
equivalent to the imaginary objects that arise in projective geometry. A sec-
ond important achievement of von Staudt is that he was able to determine
the cross-ratio of four points directly, without using distances (which are
not preserved under projective transformations).

Finally, here is one more name, that of the English mathematician Arthur
Cayley (1821–1895), who studied mathematicians for a long time without
interrupting his legal practice. We will mention just one work of Cayley, his
famous A Sixth Memoir upon Quantics (1859). Cayley noticed that Euclidean
displacements and homotheties (conformal transforms) are distinguished
from all projective transformations by the fact that they preserve cyclic
points. As a result, using cyclic points all objects of Euclidean geometry
(distances, angles, etc.) can be determined through projective concepts
(ones that are preserved under projective transformations). Cayley called
projective geometry descriptive and Euclidean geometry metric, and wrote,
“Metric geometry is, thus, a part of descriptive geometry and descrip-
tive geometry is all of geometry.” We have to keep in mind that earlier
things seemed to be exactly the opposite, namely that projective geometry
was a comparatively meager part of Euclidean geometry. Cayley further
remarked that, starting from projective geometry one can introduce dis-
tances that are different from Euclidean ones (Cayley metrics or mensura-
tion): each such distance in the plane is associated with some second-order
curve (real or imaginary), where the distance does not change under any
projective transformation that preserves the curve.

The Cayley–Klein Model

In 1869 Klein became acquainted with Cayley’s theory and at the end of
that year rather superficially with hyperbolic geometry. At the same time
he had the idea that one of Cayley’s metrics leads to hyperbolic geometry.
This was a conjecture with barely any reasoning behind it. Cayley’s theory
and hyperbolic geometry are radically different externally (Cayley’s calcu-
lations with the cross-ratio versus Lobachevsky’s axiomatic presentation),
and Cayley’s geometry was not yet developed enough to verify the axioms
of hyperbolic geometry. In February, 1870, Klein reported on Cayley’s the-
ory in Weierstrass’ seminar and decided to put forward his hypothesis. In
this seminar it was unusual to discuss “fantasy” projects: they explained
to the “presumptuous” young man that “these are two systems that are
very far apart.” Klein was so ill-prepared to defend his hypothesis that he
“allowed them to change my mind.” Later he complained that Weierstrass
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“did not have the inclination to recognize from a distance the outline of
yet unscaled heights.” But Klein did not stop believing in his hypothesis.
In the summer of 1871, with the help of his friend Otto Stolz (1842–1905),
he studied non-Euclidean geometry quite thoroughly and was convinced
that his conjecture was true. Even though he possessed a proof, it was not
easy for Klein to convince those around him that it was true. The most
annoying thing for Klein was probably that up to the end of his life Cay-
ley remained among those who did not agree with him. Klein wrote, “An
aging spirit is not in a position to draw conclusions from the positions he
himself created.”

Here are a few words about the Cayley–Klein model itself. The “points”
in this model are the points interior to a circle (the circle can be replaced by a
domain that is bounded by any second-order curve), and the “lines” are the
chords of this circle (without endpoints). The points of intersection of the
“lines” are defined in a natural way; it is clear that through a “point” not on
a “line” an infinite number of “lines” pass that do not intersect the original
“line,” which contradicts the parallel postulate of Euclidean geometry. We
still have to convince ourselves that all the remaining Euclidean axioms are
satisfied for the model: this will mean that the Klein model is a model of
hyperbolic geometry. It is comparatively simple to verify the axioms about
the relative positions of points and lines. But when it comes to verifying the
axiom of congruence then first of all we have to agree when to consider two
segments as being equal; we cannot inherit the corresponding ideas from
Euclidean geometry. Cayley, following Klein, sets the length of a segment
AB equal to | ln{A, B, α, β}|, where α and β are the points of intersection of
the “line” AB with the boundary of the circle being considered (this is called
the absolute circle). Projective transformations that preserve the absolute
circle preserve the “distance” defined in this way, i.e., are displacements in
the Cayley–Klein model of hyperbolic geometry.

As early as 1868, the Italian mathematician Eugenio Beltrami (1835–
1900) saw another way to establish hyperbolic geometry. He discovered a
surface, the pseudosphere, where the shortest lines (geodesics) act like the
lines in hyperbolic geometry. Then Beltrami transformed the pseudosphere
into a circle in a certain way and obtained the same formulas that Klein later
did in his theory.

Klein studied other non-Euclidean geometries to which the Cayley met-
rics led, discovering in particular a model for Riemannian geometry (where
the sum of the angles of a triangle is greater than π , while in hyperbolic
geometry it is always less than π ).

Let us now discuss what the Cayley–Klein model gives for hyperbolic
geometry. First of all it differs from the axiomatic method of presentation
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in that it is more visual, Klein prefaced his publication (1871) by saying
that his goal was “to give a more visual presentation of the mathemati-
cal results of the work that relate to the theory of parallel lines, and to
make them clearly understandable” (Beltrami stated his goal in roughly
the same way). However, the construction of the model solved much more
than just the problem of method. The Cayley–Klein model is now consid-
ered above all as a way to prove the consistency of hyperbolic geometry. In
the Cayley–Klein model the objects of hyperbolic geometry are expressed
in the language of Euclidean geometry, so that after translation into this
language the theorems of hyperbolic geometry become theorems of Eu-
clidean geometry and thus hyperbolic geometry is consistent if Euclidean
geometry is consistent.

Klein saw the basic meaning of the model he constructed differently.
He considered projective geometry as being of paramount importance,
having Euclidean and hyperbolic geometry as independent parts on a par
with one another. This underscores the independence of the model of hy-
perbolic geometry from Euclidean geometry, for which in turn what was
important was the possibility of constructing projective geometry without
using Euclidean geometry.4 Exactly this caused Cayley to suspect a vicious
circle. Klein wrote, “In place of the idea of constructing models of the non-
Euclidean geometries within the usual metric geometry we have put the
task of providing a foundation free of all metric concepts for a superordi-
nate geometry that will comprehend all the familiar geometries in a lucid
system.”5

The Erlanger Program

For centuries the word “geometry” was only used in the singular. But
then came Lobachevsky’s hyperbolic geometry and Riemannian geometry,
and mathematicians finally understood that there exist many different ge-
ometries. The natural question arose: What is such a geometry? In 1872
Klein expressed his point of view in lectures that he gave in connection
with assuming the position of professor at the University of Erlangen, in
Germany. This is how the “Erlanger program,” Klein’s most well-known
written work, came about. It contains essentially no new results but fo-
cuses on searching for a principle to allow the systematization of the very
amorphous subject that geometry had become at the time.

According to Klein, the fundamental attribute of every geometry is some
collection G of one-to-one transformations of a set M. There should be enough

�——————�
4According to von Staudt (see p. 315).
5Klein, Development of Mathematics in the 19th Century, p. 139.
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transformations so that each point of M can be mapped to another by some
other transformation in G (in this case we say that G acts transitively on M).
Such a viewpoint was evoked, of course, by projective geometry, in which,
from the very beginning, certain transformations (the central projections)
were primary, just as in the traditional presentation of Euclidean geometry
other objects were primary: lines, intervals, various figures, etc.

Next, the collection of transformations G must be a group. This means
that any two transformations in G applied successively can be replaced
by a single transformation that is also in G. Moreover, together with each
transformation g ∈ G there is an element of G that is inverse to it, denoted
by g−1 (if g maps x to y, then g−1 maps y to x). For example, the motions
of a plane or the projective transformations of the projective plane form
a group.

Thus, some geometry is associated with each group G of transformations.
Of what does such a geometry consist? Above all, of finding invariants of the
group G, properties that are preserved under the action of the transforma-
tions in G (more precisely, if some object of our geometry has an invariant
property, then no matter what transformation in G we apply to it we obtain
an object that also has this property). For the group of displacements of
Euclidean geometry all known geometrical properties are invariants, since
we do not distinguish the positions of figures in the plane. However, in a
traditional geometry course there are nontrivial statements about invari-
ants of transformations that are not displacements. Homotheties preserve
the equality of angles, the property that a curve is a circle, ratios of lengths
of intervals, and ratios of areas. Given a supply of invariance properties we
can construct new ones. For homotheties, the properties that a line bisects
an angle and that a curve is a semicircle are invariant. For axis dilatations,
the property that a curve is a circle will not be invariant but the property
that a curve is an ellipse (also a hyperbola or parabola) will be invariant.
Ratios of lengths of intervals that lie on the same line (but not on different
ones) are preserved, as are ratios of areas. It follows that the properties
that a point divides an interval in a given ratio and that a line is the median
of a triangle are invariant. One can show that every affine transformation
can be represented as a composition of displacements and axis dilatations,
and therefore all the above properties are invariant under affine transfor-
mations (an example of a projective invariant, the cross-ratio, was given on
p. 314).

The introduction of invariants was only the outer layer of geometry. Its
fundamental content consisted of theorems on the relations between invariance
properties. (These relations are called syzygies.) For example, the theorem
that the medians of a triangle meet at a single point that divides them in
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the ratio 1:2 is based on affine invariants: to be a point of intersection of
lines, to divide the line segments in a given ratio, and to be the median of
a triangle. Precisely because of this, if it is valid for one triangle, then it is
valid for its image under an affine transformation and therefore it suffices
to verify it for one triangle, e.g., an equilateral triangle. (We can transform
any triangle to any other using affine transformations.) The dependence
between homothetic invariants appears in theorems on the intersection of
bisectors and altitudes.

In 1837 Michel Chasles (1793–1880) turned his attention to using ge-
ometric transformations to obtain new theorems: “Now anyone is in a
position to take any well-known truth and apply various general princi-
ples of transformations to it; thus he obtains other truths. . . . Genius is
no longer needed to play one’s part in constructing the majestic temple of
science.” However, if we understand Chasles’ recipe literally—to take any
theorem and apply an arbitrary transformation to it—then we obtain a true
assertion but one that is stated so clumsily that it has little chance of being
in the “temple of science.” Think, for example, of what the theorem on
the intersection of bisectors would become if we applied an axis dilatation.
How can we explain what line will be the result of transforming a bisector?
Klein explained that, on the contrary, it was important to understand which
transformations do not change an assertion, to select a transformation that
simplifies the picture as much as possible, and to prove the assertion in the
simpler form. Here is a traditional example. Any triangle can be trans-
formed into an equilateral one by an affine transformation, and since the
theorem on the intersection of the medians deals with a relation between
affine invariants it suffices to verify this theorem for equilateral triangles,
which in turn is very simple to do.

These considerations allow us to make Chasles’ recipe more precise.
Imagine some relation between affine invariants in an equilateral triangle
of unit area. For example, let λ be the area of the hexagon formed by the
“tridians,” the lines joining the vertices of a triangle with the points that
trisect the opposite sides. Then in any triangle the ratio of the area of the
hexagon formed by the tridians to the area of the entire triangle equals λ.
Now you can easily think of other theorems of this kind.

One of the most important moments in Klein’s reasoning is the expla-
nation of the interrelation between the geometries associated with groups
G1 and G2 when G1 ⊂ G2. (We say that G1 is a subgroup of G2.) The larger
group G2 has fewer invariants than G1, and all theorems about G2 are also
valid for the geometry associated with the smaller group G1.

Therefore, in each specific geometry it is important to find those state-
ments that remain valid for geometries with larger transformation groups.
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Sometimes the possibility of “carrying over” statements to a geometry with
a larger transformation group becomes clear only after reformulating the
statements.

In the language of the Erlanger program, Cayley’s ideology consists of
saying that one can move in the reverse direction by considering a group
of transformations that preserve some fixed object. Here we can often
construct invariants of a subgroup using invariants of the group (distances
in Euclidean and non-Euclidean geometry using the cross-ratio).

It is usually simpler to describe invariants for a larger group and the
relations among them. In particular, the problem of finding invariants for
the projective group can be completely solved algebraically.

The “Erlanger program” brought the “golden century” of classical ge-
ometry to a close. The number of new geometries increased and geomet-
rical language gradually penetrated into a significant part of mathemat-
ics. “Classical geometry outgrew itself and changed from a living, self-
sufficient science into a universal language of modern mathematics with a
significant amount of flexibility and convenience” (Bourbaki).

An External Student in Riemann’s School

After the “Erlanger program,” Klein turned to the theory of algebraic func-
tions, an area in which Gauss, Legendre, Abel, Jacobi, Weierstrass, and
Riemann had worked. The ideas of Bernhard Riemann (1826–1866), whom
Klein did not know personally, turned out to be the closest to his own. In
Klein’s words, he was an “external student in Riemann’s school, . . . and, as
we know, if external students take on some task then they work especially
zealously because only a deep interest motivates them.” Klein wrote later
that he saw his problem in a combination of Riemann and Galois—that
is, in bringing group theory into the geometric theory of functions of a
complex variable. In Klein’s own opinion, this was the main area of his
scientific work.

Unfortunately, we cannot talk much about this aspect of Klein’s work
because it would require special knowledge of the reader that goes beyond
the usual curriculum. But all the same, we will recall one event.

Klein studied the so-called uniformization problem. He considered some
important special cases and hoped with time to solve the general problem.
But in 1881 Klein discovered a series of articles by a French mathematician
who was unknown to him, Henri Poincaré (1854–1912), who had essen-
tially solved the uniformization problem.6 Klein took this dramatic event

�——————�
6The general uniformization problem was one of the problems in Hilbert’s 1900 list and
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appropriately. He began a correspondence with Poincaré, and they ex-
changed 26 letters. Klein, who was already a well-known mathematician
but was only 5 years older than Poincaré, took on the role of a very tactful
teacher. He acquainted Poincaré with Riemann’s theory, which Poincaré
did not know but mastered instantaneously. Klein decided to compete
with Poincaré by improving his proof of the basic result and noting its
generalization. This story ended sadly for Klein: “The price that I had to
pay for my work was in any case very great, since my health turned out to
be completely shattered. . . . The situation improved somewhat only in the
autumn of 1884, but I was never able to attain my previous level of creative
activity. . . . My own creative work in the area of theoretical mathematics
ended in 1882.”

The Last Forty Years

After 1886, Klein worked in Göttingen. Thanks to Klein this city turned
into the real capital of mathematics. At his initiative talented young math-
ematicians were invited to Göttingen, Hilbert among them. Klein never
stopped being interested in new ideas. His lecture courses, which were in
part written up and published, were devoted to the most varied fields of
mathematics, mechanics, and physics. Klein’s work in and public activities
organizations was multifaceted. For 50 years he directed the publication
of one of the key mathematics journals, Mathematische Annalen. His Lec-
tures on the Development of Mathematics in the Nineteenth Century, delivered
during 1914–1919 and published posthumously (he died in 1925) by his
students Richard Courant (1888–1972) and Otto Neugebauer (1899–1990),
were particularly graceful. Here is an extract from the preface: “These lec-
tures are the ripe fruit of a rich life, lived at the center of scientific events,
an expression of penetrating wisdom and deep historical understanding,
of great humanitarian culture and of a masterful gift of exposition.”

Klein spent a significant part of his time and energy on the problem
of teaching mathematics in the schools and on preparing teachers, which
probably no mathematician of his stature had done before. “There is hardly
a subject,” wrote Klein, “where such routine in education is the rule as in
mathematics education. A course in elementary mathematics takes the
form of defining a framework and precisely measuring its limits once and
for all. From time to time in some way or other a few problems are replaced
by others, some paragraphs are removed and others are introduced; but
essentially this is almost not reflected at all in the material of school math-
ematics. New algebra textbooks carry the imprint of Euler’s algebra, as

�——————�
was completely solved in 1907, independently by Poincaré and Paul Koebe (1882–1945).
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new geometry texts carry that of Legendre. One might think that mathe-
matics is a dead science, that nothing changes in it, and that there are no
new ideas in this field of knowledge, at least none that could be adopted
by nonspecialists or be the subject of general education.”

In teaching, Klein strove to take into account the state of modern science
and the connections between mathematics and physics. He recommended
using transformations in geometry systematically and rejected the tradi-
tional division of school mathematics into subjects. The school curriculum
should be imbued with the concept of function, and ways of teaching pupils
“functional thinking” should be thought through carefully. The presenta-
tion of geometry, in Klein’s opinion, should not begin axiomatically, and
the axiomatic method should make its appearance only when pupils are
prepared to understand it.

With the greatest tact Klein maintained contact with those who studied
school mathematics, staying clearly within the bounds of his competence
and never entering into questions that required the direct experience of
working in schools. Klein gave lectures for teachers, which were published
in part. The most well known is his Elementary Mathematics from an Advanced
Standpoint. This is not a lecture on mathematical methods and is not a
comprehensive course of school mathematics. In the preface to this book
Klein writes, “I prefer to close with the wish that the present lithographed
volume may prove useful by inducing many of the teachers of our higher
schools to renewed use of independent thought in determining the best
way of presenting the material of instruction. This book is designed solely
as such a mental spur, not as a detailed handbook. The preparation of
the latter I leave to those actively engaged in the schools. It is an error to
assume, as some appear to have done, that my activity has ever had any
other purpose.”7

�——————�
7Felix Klein, Elementary Mathematics from an Advanced Standpoint: Arithmetics, Algebra, Anal-

ysis, translated by E. R. Hedrick and C. A. Noble, MacMillan, New York, 1932, p. IV.



The Magic World of
Henri Poincaré

I described a imaginary world whose inhabitants inevitably had to
come to create the geometry of Lobachevsky. H. Poincaré

When the history of hyperbolic geometry is discussed today, one
can get the impression that had the creators of non-Euclidean
geometry proved its consistency that would have been favor-

ably received. But it was not the lack of proof that disturbed the critics
above all. People were used to having geometry deal with our real space
and having this space described by Euclidean geometry. It was character-
istic that Gauss distinguished geometry from the other branches of math-
ematics, considering it similar to mechanics in experimental science. But
here Gauss, as well as Lobachevsky and Bolyai, understood that first of
all, logical, orderly geometric constructions that have no physical reality
are possible—“imaginary” geometries—and second, that it is not so un-
questionable that on an astronomical scale Euclidean geometry governs
our world. However, what was understood by only a few mathematicians
was absolutely inaccessible to nonprofessionals. They measured the claims
of hyperbolic geometry with the Euclidean ruler of their own geometric
intuition—and came up with an inexhaustible source for their wit. Nikolai
Chernyshevsky wrote to his sons from exile that the entire city of Kazan
was laughing at Lobachevsky: “What is the ‘curvature of a ray’ or ‘curved
space’? What is geometry without the axiom of parallel lines?” He com-
pared this to “squaring a boot” and “extracting the roots of a boot-top,” and
said that it was as ridiculous as “writing Russian without verbs.” The same
thing happened to the poet Afanasy Fet (“Whispers, timid respiration, trills
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of nightingale”), at whom they also “laughed until their sides hurt.”1

A new stage in the development of non-Euclidean geometry began
when its first models appeared. Now we accept these models as a means of
proving that hyperbolic geometry is consistent, but they were remarkable
not only for that. Even at a friendly glance hyperbolic geometry seemed
much too refined, not connected to the rest of mathematics, but the Cayley–
Klein model showed that it arose naturally along the road to projective ge-
ometry, which was very popular at the time. On the other hand, considering
models whose basic ideas are constructed from the objects of the Euclidean
geometry to which we are accustomed made it possible to replace a formal
axiomatic presentation of non-Euclidean geometry with something more
visual.

Henri Poincaré constructed another model when studying purely ana-
lytic questions in the theory of functions of a complex variable. He unex-
pectedly discovered that the transformations he found could be interpreted
as displacements in the hyperbolic plane. This discovery made such a strong
impression on him that many years later he recalled how it came into his
head, “without any, it seemed, previous thoughts,” when he was stepping
onto a bus during a trip to Coutance. Within ten years Poincaré had made
a remarkable addition to his model by giving it a “physical” basis. This
chapter is devoted to discussing Poincaré’s model.

A Detour into Physics

Our geometric representations have physical premises. For example, we
take light rays to be lines. A ray of light that comes to us continues to
appear straight even if it is refracted along the way (for example, in going
from air to water). In order to clear up this illusion we have to conduct an
experiment or examine where it comes from.

Suppose we have an optically heterogeneous medium in the upper half-
plane (y > 0), in which the speed of light changes according to the law
c(x, y) = y (independent of the direction of the light). It follows from
Fermat’s principle that the path along which light propagates between two
points is the path along which it requires the least time to travel. In our
medium (where c(x, y) = y) light will propagate along the curves L (see

�——————�
1This incident is described by Vladimir Nabokov in his novel The Gift. Chernyshevsky

was a 19th century socialist reformer and radical journalist who was exiled to Siberia.
Lobachevsky’s professorial position was at the University of Kazan, where he was Rector.
Fet wrote a poem without verbs that Chernyshevsky quoted here.—Transl.
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Figure 1.

Figure 1) for which
sin α(y)

y
= k, (1)

where α(y) is the angle that the tangent to L at the point with ordinate y
makes with the vertical and k is a number that is fixed for all points of L.
It is clear that all circles centered on the x-axis (i.e., that meet this axis in
a right angle) satisfy equation (1); for each such circle k = 1

r , where r is
the radius. For k = 0 we obtain vertical lines. One can show that there
are no other curves that satisfy (1) and this has a physical explanation (for
example, light propagates from a given point in a given direction along a
unique path).

Circles orthogonal to the x-axis and vertical lines (more correctly, their
intersections with the upper half-plane) will play a major role in our story.

“Poincaria” and Its Geometry

Poincaré’s world, which we call Poincaria in his honor, is the upper half-
plane {(x, y), y > 0} without its boundary {y = 0} (this is important!).2 The
Poincarians who inhabit Poincaria take as their “lines” the upper semicircles
centered on the x-axis (without endpoints!) and vertical rays (see Figure 2).
We will call these lines P-lines. P-lines appear to the Poincarians as infinite
(light propagates along them infinitely long) and their endpoints are invis-
ible, as is the entire x-axis. Thus the Poincarians think that their Poincaria
is unbounded in all directions. We will call the invisible points of a P-line
its points at infinity; for a ray we will take one of its points at infinity as
∞. A P-line is uniquely determined by its pair of points at infinity (why?).

�——————�
2We could have considered a “three-dimensional” world but it is easier draw pictures in

the plane and because of this we will work with objects there.
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Figure 2.

Thus we will denote a P-line by L(α, β), where α, β are real numbers that
are the coordinates of its points at infinity on the x-axis (one may be ∞).

Let us try along with the Poincarians to construct the geometry of their
space. Just as for us in the Euclidean space where we live, some statements
(axioms) seem obvious to the Poincarians and they take them without proof
and derive more complicated assertions (theorems) from them. To us, look-
ing at Poincaria from the outside, all these statements appear differently
than they do to the Poincarians (for example, P-lines for us are semicircles
or rays), and so we will “translate” the Poincarians’ statements into our
own “prosaic” Euclidean language and prove them ourselves.

For example, the Poincarians know that through two distinct points
there is a P-line that is in fact unique. For us this means that through two
distinct points in the upper half-plane there is a unique semicircle that is
orthogonal to the x-axis or there is a vertical ray (prove it!); see Figure 2. We
note that the physical explanation of this statement, that light propagates
between two points along a unique path, is the same for Poincarians as for
us (in geometry this explanation does not constitute a proof). It is not hard
to see that all the axioms of Euclidean geometry that deal with the relative
positions of points and lines and the order of points along a line are valid in
Poincaria. (In order to get used to Poincaria examine the P-line segments
and P-half-planes into which a P-line divides it. For a bounded P-line,
the P-segments that connect points in one P-half-plane do not intersect the
P-line and those that join points in different P-half-planes do intersect it.
Draw P-triangles and P-polygons, and think about P-convex sets if you
know about “ordinary” ones. Figure 3 will help.)

The difference between the geometry of Poincaria and Euclidean ge-
ometry becomes apparent when we consider the relative positions of two
P-lines. We already know that two distinct P-lines can intersect in no more
than one point. If they do not intersect at all, then they have a common
(invisible!) point at infinity or they do not even have common points on
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Figure 3.

Figure 4.

the invisible boundary. In the first case we will say the P-lines are parallel
and the second case that they are superparallel. If we have a P-line L(α, β),
then through a point outside it there can pass only two P-lines parallel to
L(α, β) (corresponding to the points at infinity α and β, respectively; see
Figure 4) and an uncountable set of superparallel P-lines that lie between
the parallel ones. Thus the parallel axiom is not valid in Poincaria. (This
does not surprise us, the observers, since the Poincarians do not know that
their “lines” are not “real”!) This allows us to hope that the geometry of
Poincaria will turn out to be hyperbolic.

The main thing we need to do now is to define distance and displacement
in Poincaria.

Distance and Displacement

From the point of view of optics the most natural quantity to take as the
distance between two points A and B in Poincaria is the time it takes for
light to travel from A to B: then P-lines will be the shortest lines between
two points that lie on them. It follows from physical considerations that



328 � Tales of Mathematicians and Physicists �

the distance ρ(A, B) defined this way has the usual properties of Euclidean
distance:

1. ρ(A, B) = ρ(B, A).

2. If A, B, C lie on the same P-line and B ∈ [AC], then ρ(A, B)+ρ(B, C) =
ρ(A, C) (light propagates from A to C along the P-line and passes
through B).

3. For any points A, B, C, we have ρ(A, B) + ρ(B, C) ≥ ρ(A, C), the
triangle inequality, and equality holds only when B ∈ [AC]. (If this
inequality were not valid, then light would need less time to travel
along the polygonal P-line ABC than along the P-line AC, which can-
not be since AC is the quickest path.)

For Poincarians the distance ρ we have introduced is primary (note that
relative to this distance light propagates with unit speed), and there is no
reason for them to express ρ in any other way; for us it is natural to express
ρ in terms of our Euclidean distance. This is not simple; we must deal with
nonuniform movement of light, and to compute the time that light takes
we must calculate integrals. Therefore, we will only give the final answer:

ρ(A, B) = ln
r′ + r
r′ − r

, (2)

where r is the Euclidean distance between the points A and B and r′ is the
Euclidean distance between A and the point B′ symmetric to B about the x-
axis. The logarithm is taken to base e (for any other base we obtain ρ up to a
constant multiplier). The Euclidean distance is notable for being preserved
by many transformations of the plane, and such transformations are called
displacements. Let us see what a displacement looks like in Poincaria, i.e., a
P-displacement, which is a transformation that preserves ρ and therefore
maps P-lines to P-lines.

We begin with transformations that do not leave any point in place.
First of all, there are the usual parallel translations along the x axis, Ta(x, y) =
(x + a, y). Parallel translations preserve the Euclidean distance, preserve
the speed of light c(x, y) = y and thus also the time taken by light on the
path between two points A and B, and finally they map P-lines to P-lines.
On the other hand, homotheties Fb(x, y) = (bx, by), b > 0, which change the
Euclidean distance and therefore the magnitude of the speed of light c(x, y)

proportionately, do not change the time spent by light, i.e., the P-distance
ρ(A, B). Thus what seems to us to be a homothety (centered on the x-axis)
appears to Poincarians as a displacement. Using the P-displacements we
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have indicated we can map any point to any point. For example, the point
(x0, y0) maps to (0, 1) under the P-displacement (

x−x0
y0

,
y
y0

). Relative to the
P-displacements we have introduced, which we will call P-translations, P-
lines fall into two classes: we can map semicircles into one another and,
separately, we can map rays into one another (why?).

Let us now explain how we can use P-translations and the properties of
the P-distance ρ to find a simple derivation of equation (2), which expresses
ρ in terms of Euclidean distance, in the special case where both points A
and B are on the y-axis: A = (0, y1), B = (0, y2). We set ρ(A, B) = ϕ(y1, y2)

and find the form of the function ϕ. Since ρ is preserved by Euclidean
homotheties with center O,

ϕ(by1, by2) = ϕ(y1, y2). (3)

Moreover, if C = (0, y3) is a third point on the y-axis, then by what we
said above,

ϕ(y1, y2) + ϕ(y2, y3) = ϕ(y1, y3). (4)

Let ψ(z) = ϕ(z, 1). By (3),

ϕ(y1, y2) = ψ

(
y1

y2

)
= ψ(z1),

ϕ(y2, y3) = ψ

(
y2

y3

)
= ψ(z2),

ϕ(y1, y3) = ψ

(
y1

y3

)
= ψ(z3).

Taking (4) and the last three equations into account, we obtain

ψ(z1 · z2) = ψ(z1) + ψ(z2),

from which, assuming that ψ is a sufficiently “good” function with positive
values, we obtain that ψ(z) = k · ln |z|, where k is a constant factor that can
be calculated directly.

The P-displacements we have found are not enough: we have no trans-
formations with which we can map P-lines of one kind (semicircles) into
P-lines of the other kind (rays). For this we add P-symmetries with respect
to P-lines. For rays this is the usual axial symmetry and for semicircles it
is an inversion. (For example, the P-symmetry with respect to the P-line
L(−1, 1) is the inversion with respect to the circle of radius 1 centered at
O = (0, 0); it maps a point A other than the center O to the point A′ lying
on the ray OA for which |OA| · |OA′| = 1.) We know that under an in-
version circles and lines map to circles and lines, and that the magnitudes
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Figure 5.

of angles are preserved. In the language of Poincaria this means that, for
example, under a P-symmetry with respect to the P-line L(−1, 1) the P-line
L(α, β) maps to the P-line L( 1

α
, 1

β
). In particular, the P-lines L(α, 0), which

are semicircles for α �= ∞, map to the P-lines L( 1
α
, ∞), which are rays. Thus

P-symmetries map Poincaria to itself and P-lines map to P-lines. It is ver-
ified separately (we will omit the verification) that P-symmetries do not
change the P-distance ρ. Incidentally, in Poincaria every transformation
that maps P-lines to P-lines preserves ρ (here there are no homotheties).
This is the most importance difference between hyperbolic and Euclidean
geometry.

The P-displacements that we can obtain by combining P-symmetries
with P-translations are enough to map any P-line into any P-line; moreover,
any given point of the first P-line can be combined with any given point of
the second, and any P-ray with another P-ray (prove it!). This means that
using P-displacements we can combine any P-segments of equal P-length,
and we find that such segments are P-congruent. One can show that all
P-displacements reduce to the ones we have described.

Under P-displacements an angle maps to an angle that is equal to it in
the Euclidean sense (since this is so for parallel shifts, homotheties, axial
symmetries, and inversions). Therefore, the concept of equality of angles in
Poincaria does not differ from the Euclidean concept. Taking this situation
into account the Poincarians prove, just as we do, the validity of these two
tests, that triangles are congruent: using two sides and the angle between
them and using a side and the two angles adjacent to it. The proof of a third
test, using three sides, is more complicated: after all, our proof of this uses
the fact that circles intersect in no more than two points. Fortunately, it
turns out that P-circles are the same as Euclidean ones (that lie completely
in the upper half-plane), but their P-centers do not coincide with the usual
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Figure 6.

ones (this is not so simple), and therefore as far as the third test goes ev-
erything is fine in Poincaria. However, in Poincaria there is still another
test for congruent triangles: triangles with pairwise equal angles are congruent!
(Translate this statement into the language of Euclidean geometry and try
to prove it.) This means that the area of a triangle in Poincaria (as well as
the triangle itself) is determined by the magnitudes of its angles α, β, and
γ . In hyperbolic geometry the sum of the angles of a triangle is less than
π . The quantity π − (α + β + γ ) is called the defect of the triangle. We can
note that the defect of a triangle behaves the same way as the area. More
precisely, if a given triangle is cut by a line through its vertex, then its area
will be equal to the sum of the areas of the triangles we obtain. The same is
true for the defect of every triangle; it equals the sum of the defects of the
triangles that are formed this way (see Figure 6). We can conclude from
this that the area of a triangle in hyperbolic geometry is proportional to the
defect π − (α + β + γ ).

Some Problems

1. (a) Convince yourself that all P-lines orthogonal to a fixed P-line
are superparallel (see Figure 7).

(b) Show that every pair of superparallels has a unique P-perpen-
dicular in common (see Figure 8(a)–(b)).

2. Verify that the P-bisectors of a P-triangle intersect at a single point,
namely the center of the inscribed P-circle. Think about what you
can say about the circumscribed circle—does it always exist? (See
Figure 9. In this figure, the P-triangles AiBCi are isosceles, with axis of
symmetry L(0, ∞), i = 1, 2, 3. The perpendiculars to the P-midpoints
of the sides of the triangles are shown in the figure.)



332 � Tales of Mathematicians and Physicists �

Figure 7.

(a)

(b)

Figure 8.

Figure 9.

3. Persuade yourself that the altitudes of an obtuse (but not acute) P-
triangle can be superparallel (Figure 10). What can you say about the
medians?

4. Show that in an isosceles P-triangle the base angles are equal and the
bisector of the vertex angle is the median and altitude. Prove a fourth
test for P-congruence for this case.
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Figure 10.

Figure 11.

5. Let L(α, β), L(α, β1), L(α, β2) be three parallel P-lines (see Figure 11).
Prove there exists a P-displacement that maps L(α, β) to itself and
L(α, β1) to L(α, β2).

From this it follows that in hyperbolic geometry we cannot define the
distance between parallels.

6. If a P-line L1 intersects a P-line L0 or is superparallel to it, then it
projects onto L0 in the form of a finite P-interval. If L1 is parallel to
L0, then the projection is a P-ray.

7. Let L0 be a P-line perpendicular to L1 and let A be a point of L0 at
a distance x from L1 (see Figure 12). Pass a P-line Mx through A,
parallel to L1, and let ϕ(x) denote the magnitude of the angle formed
by Mx with L0. Find ϕ(x) and show that ϕ(x) → π

2 as x → 0 and
ϕ(x) → 0 as x → ∞.

The function ϕ(x) is called the Lobachevsky function. It relates magni-
tudes of angles to lengths, and since there is an absolute unit of measure-
ment for angles (the full angle of 2π) there is one in hyperbolic geometry
for lengths. (It carries over from angles using the function ϕ.) In Euclidean
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Figure 12.

geometry ϕ(x) ≡ π
2 , and thus there is no analogous absolute unit of mea-

surement for length.

Rigid Bodies in Poincaria

So far we have been guided only by optical premises in our geometric con-
siderations. Here we must stress that Poincaré’s geometry is non-Euclidean
not because the Poincarians have different optics laws than we do: we con-
struct (model) Poincaria in our own world and the laws of physics do not
change! The optical illusions of the Poincarians are explained by the optical
inhomogeneity of their world.

Although the most striking realization of a straight line is no doubt a
light ray, we still cannot measure length using the time it takes for light
to propagate—for this we have no ruler. It is probably worth giving the
Poincarians a ruler. Of course, the Poincarians make a ruler from a “P-line”
but if they take this ruler from one place to another, it will no longer look
“straight.” From the viewpoint of a Poincarian a rigid body can change its
shape when it moves. How should a Poincarian react to this? It is clear
that we must link the concept of a rigid body to the geometry of Poincaria,
or else the Poincarians will have to believe in the existence of supernatural
forces. Henri Poincaré thought of a clever way out of this seemingly hope-
less situation: he used the phenomenon that bodies expand with heat. Suppose
all bodies in Poincaria have the same coefficient of thermal expansion and
zero thermal conductivity, and that the measurements of bodies are propor-
tional to the absolute temperature T. We note that under these conditions
Poincarians cannot measure temperature with an ordinary thermometer,
since such a measurement presupposes comparing the expansion of bod-
ies with different coefficients of expansion. A rigid body is characterized
by the fact that when it moves in a medium of constant temperature, the
distance r(A, B) (Euclidean) between any two of its points A and B is pre-
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served. But if a body is displaced from a domain with temperature T1
to a domain with temperature T2, then the distance between the points
is multiplied by T2/T1 (in other words, the ratio r(A, B)/T remains valid).
And what will happen if the body suddenly finds itself in a domain with
different temperatures?

What quantity will be preserved under these conditions? Suppose, for
example, that a sufficiently large rigid body is displaced in a medium where
on one side of some line m the temperature is T1 and on the other side it
is T2. Let A and B be two points of the body where the temperatures are
T1 and T2, respectively. We take a polygonal line with endpoints at A and
B and a vertex C on the line m. Let |AC| = r1, |CB| = r2 and consider
the quantity r1

T1
+ r2

T2
. It turns out that for motion in a medium with these

temperatures the minimum value of r1
T1

+ r2
T2

is preserved, taken over all
polygonal lines with vertices on m and with endpoints at the two given
points A and B. Furthermore, we can repeat exactly the same argument in
applying Fermat’s principle, for example, to deduce Snell’s law of refraction
and obtain that the smallest value we are seeking will correspond to the
polygonal line for which sin α1

T1
= sin α2

T2
, where αi is the angle between the

corresponding section of the polygonal line and the normal to the line m.
Now suppose that at a point (x, y) in Poincaria an absolute temperature

of T(x, y) = y is constantly maintained. Because of the temperature regime
chosen, when rigid bodies (in our sense) move, the P-distance rather than
the Euclidean distance will be preserved, and from the point of view of a
Poincarian (they do not sense temperature differences) the size of a body
moving in such a medium will be preserved, i.e., it is P-rigid. It remains
only to check that all objects have small heat capacity and are displaced
slowly enough to be in thermal equilibrium, and that temperature changes
are not noticeable to a Poincarian. In the end the Poincarians not only do
not see the boundary of their world but they can never reach it; as they
approach the boundary the temperature approaches absolute zero, and
therefore the size of every object also approaches zero without changing
the proportions between objects. Henri Poincaré tried to eliminate any
chance that the Poincarians would know that their non-Euclidean world
was completely constructed within our Euclidean one. But did he foresee
everything?



The Enigma of Ramanujan

Ramanujan used to say that the goddess of Namakkal inspired
him with the formulae in dreams. It is a remarkable fact that fre-
quently, on rising from bed, he would note down results and rapidly
verify them, though he was not always able to supply a rigorous
proof. P. V. Seshu Ayar and R. Ramachandra Rao1

A Letter to Cambridge

At the very beginning of 1913, Professor Godfrey H. Hardy of Cambridge
University received a letter from far-away Madras, in India. At the age of
36, Hardy (1877–1947) was already one of the leading specialists in analy-
sis and number theory and had written a series of excellent mathematical
works. The sender of the letter, Srinivasa Ramanujan, worked as a clerk
in the accounts section of the Madras Port Trust at the paltry salary of 20
pounds a year. He wrote about himself that he had no university education
and had studied mathematics on his own after finishing school, not accord-
ing to the accepted system but “striking out a new path for myself.”2 The
mathematical content of the letter looked awkward enough—the author
could certainly be taken to be a self-confident amateur.

On its own such a letter could not have made a big impression on
Hardy. But the letter included some formulas that the author proposed
to publish, if they were interesting, something he himself could not do
because of his poverty. A look at the formulas made Hardy sit up and

�——————�
1Ayar and Rao, “Srinivasa Ramanujan (1887–1920),” from Collected Papers of Srinivasa Ra-

manujan, Cambridge University Press, Cambridge, UK, 1927.
2Hardy includes Ramanujan’s letter in his obituary, “Srinivasa Ramanujan (1887–1920),”

Proc. London Math. Soc. (2), 19 (1921), pp. xl–lviii.—Transl.



338 � Tales of Mathematicians and Physicists �

Insert 1. An example of an infinite sum that Ramanujan computed.

1 − 5
(

1
2

)3

+ 9
(

1 · 3
2 · 4

)3

− 13
(

1 · 3 · 5
2 · 4 · 6

)3

+ · · · = 2
π

.

This is a surprising formula and was one of those Ramanujan attached to
his first letter to Hardy. For a long time Hardy could not understand how
the sum of the alternating series a0 + a1 + a2 + · · · with the general term

an = (−1)n(4n + 1)

(
1 · 3 · 5 · · · · · (2n − 1)

2 · 4 · 6 · · · · · 2n

)3

suddenly turns out to equal 2
π

. The reader can use a calculator to see that
the formula is valid as an approximation, but the proof that it is exactly
true is not elementary.

take notice: he understood that this was something out of the ordinary. He
answered Ramanujan with interest and an intense correspondence sprang
up between them. Gradually Hardy collected about 120 diverse formulas.

Ramanujan’s formulas basically involved relations between infinite rad-
icals (Insert 2), infinite series, products, and continued fractions (Inserts 1, 3,
and 4), and identities for integrals. Above all it was clear that they went
far beyond the limits of elementary mathematics. Also, they raised a series
of questions. Were they known? If so, did the author of the letter obtain
them on his own; if not, were they true? Hardy soon understood that the
situation was paradoxical. He, who was without a doubt the leading spe-
cialist in modern analysis, was dealing with a gold-mine of formulas he
did not know!

The formulas with infinite series greatly impressed Hardy (see Insert 1).
After studying them, he concluded: “. . .Ramanujan must possess much
more general theorems and was keeping a great deal up his sleeve.”3

The relations with infinite continued fractions especially surprised Hardy
(one of the later relations of this kind is shown in Insert 3): “. . .[these rela-
tions] defeated me completely; I had never seen anything in the least like
them before. A single look at them is enough to show that they could only
be written down by a mathematician of the highest class.”4

�——————�
3G. H. Hardy, The Indian Mathematician Ramanujan, in Ramanujan: 12 Lectures on Subjects

Suggested by His Life and Work, Cambridge University Press, Cambridge, UK, 1940, p. 9.
4Ibid.
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Insert 2. Infinitely repeating radicals.√
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = 3.

Ramanujan obtained this beautiful formula while he was still of school age,
in the following way: he wrote down a sequence of obvious equations,

n(n+2) = n
√

1 + (n + 1)(n + 3) = n
√

1 + (n + 1)
√

1 + (n + 2)(n + 4) = · · ·,
and set n = 1. Ramanujan was not interested in the legality of passing to
the limit. Operating the same way, the reader can try to derive the similar
formula √

6 + 2

√
7 + 3

√
8 + 4

√
9 + · · · = 4.

Insert 3. A numerical identity with an infinite sum and a continued fraction.

1 + 1
1 · 3

+ 1
1 · 3 · 5

+ 1
1 · 3 · 5 · 7

+ 1
1 · 3 · 5 · 7 · 9

+ · · ·

+ 1

1 + 1
1+ 2

1+ 3
1+ 4

1+···

=
√

πe
2

.

This is perhaps Ramanujan’s most beautiful formula, a true product of the
mathematical art. It unexpectedly relates an infinite series and an infinite
continued fraction. It is surprising that neither the series nor the continued
fraction is expressed in terms of the constants π and e, but their sum turns

out to equal
√

πe
2 in some incomprehensible way!

The Wonder from Kumbakonam

How was this mathematician formed, who so surprised Hardy? Srinivasa
Ramanujan Iyengar was born on December 22, 1887 in southern India, in
the village of Erode. His childhood was mostly spent in the small town of
Kumbakonam, 260 kilometers from Madras, where his father worked as
an accountant in a small textile shop. Ramanujan belonged to the Brah-
min caste, but it had been a long time since his family had been wealthy.
His parents, especially his mother, were deeply religious. Ramanujan was
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Insert 4. The Rogers–Ramanujan identity.

1 + x
1 − x

+ x4

(1 − x)(1 − x2)
+ x9

(1 − x)(1 − x2)(1 − x3)
+ · · ·

= 1
(1 − x)(1 − x6)(1 − x11) · · · · · (1 − x4)(1 − x9)(1 − x14) · · · .

Ramanujan found this identity in 1911 but was not able to prove it. Hardy
could not prove it either. In 1917, while looking at the journal literature
(which he rarely did), Ramanujan came across an 1894 article by the English
mathematician Leonard Rogers (1862–1933) that had remained unnoticed
and in which this formula was proved. Moreover, it turned out that this
identity was closely related to the number p(n) of partitions of an integer
n into summands (see Insert 5). And it had recently appeared in research
in statistical physics.

Insert 5. The Hardy–Ramanujan theorem.

This theorem gives an estimate of the number p(n) of partitions of a natural
number n into integer summands. For example, p(5) = 7, since 5 = 4+1 =
3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1. The
approximation is

p(n) ≈ Ane
π

√
2
3

(
n− 1

24

)
,

where An = 1
2π

√
2

(
π√

6(n− 1
24 )

− 1
2(n− 1

24 )3/2

)
is a function of n. The most mys-

terious part of the formula for p(n) is the small “correction,” − 1
24 , that

Ramanujan thought of. No one, not Hardy and not even Ramanujan him-
self, could explain where it came from. Was this another intervention of the
goddess Namakkal? Whether by that way or another, exactly this mysteri-
ous correction guaranteed that the estimate was accurate. However, Hardy
and Ramanujan did not limit themselves to an approximation formula and
later obtained a precise equation for p(n). For example, for n = 200 the above
formula gives the very good approximation p(200) ≈ 3, 972, 998, 993, 185
while the exact value is p(200) = 3,972,999,029,388, a relative error of
9.1 × 10−9.

raised in the traditions of his caste. His childhood, spent in a town where
every stone was associated with the ancient religion, surrounded by people
who always felt that they belonged to the highest caste, played a large role
in his formative years.
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At the age of 5, Ramanujan went to school, and he finished primary
school when he was 10. He started to show outstanding talent and received
a stipend that guaranteed him a high school education at half the cost. At
age 14, a student from Madras gave him a two-volume text on trigonometry
by Sidney Loney (1860–1939). Ramanujan quickly learned trigonometry
and the student was able to use his help in solving problems. The first
stories and legends about Ramanujan belong to this period in his life. It is
said that he himself discovered “Euler’s formula on the sine and cosine”
and was very upset to find it in the second volume of Loney’s book.

The “young Brahmin” believed that, as in the other sciences, one had
to search for the “higher truth” inherent in mathematics and to ask one’s
teachers. But his elders made unconvincing references to the Pythagorean
theorem and to calculations with percents.

“A Synopsis of Elementary Results in Pure
and Applied Mathematics”

This two-volume text by the English mathematician George Carr (1837–?),
written in 1880–1886, fell into Ramanujan’s hands in 1903 when he was 16.
This book played an enormous role in Ramanujan’s development. It con-
tained a collection of 6165 theorems and formulas, almost without proofs
and with minimal explanations. The book was mainly devoted to algebra,
trigonometry, analysis, and analytic geometry.

Carr’s book motivated the boy to derive the formulas on his own. This
is attested to by those who knew Ramanujan in those years. The scope
of his main interests gradually changed: magic squares, then quadrature
of the circle (he found π with enough precision to calculate the length of
the equator with an error of no more than 1–2 meters, according to legend.
This was the start of a genuine mathematical life!

Carr’s book turned out to be rather successful in shaping Ramanujan’s
mathematical world. But his orientation towards this book had other con-
sequences. Since the book contained no proofs and at most hints of the
arguments, Ramanujan formed a distinctive method of establishing math-
ematical truths. And he lacked appropriate guidance in India for carrying
out strict proofs.

“His ideas of what constituted a mathematical proof were of the most
shadowy description. All his results, new or old, right or wrong, had been
arrived at by a process of mingled argument, intuition and induction. . . .”5

Ramanujan’s mathematical destiny was really completely determined

�——————�
5Hardy, “Srinivasa Ramanujan (1887–1920),” p. xxx.
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during these years—he never changed the direction of his scientific research
or his method of thinking. Here we can express regret that Ramanujan’s
formative years were spent under difficult conditions. Normally he would
doubtless have become a mathematician with the best professional prepa-
ration, but can we be certain that he would have been so unique? Would
Ramanujan have seen so much if he had been taught from childhood how
to act in mathematics and brought his results to publication with strict
proofs? Would he have built his mathematical world on the basis of all of
human achievement and not on a comparatively small number of facts?

From Numbers to Formulas

In the development of Ramanujan’s mathematical world, it was important
to combine an initial stock of mathematical facts (basically drawn from
Carr’s book) with his huge stock of observations about specific numbers.
He had collected such facts since childhood. His school friends recalled
that Ramanujan knew an enormous number of terms in the decimal ex-
pansions of e, π , and other numbers. He possessed an amazing ability
to notice arithmetical patterns and patiently examined a huge amount of
numerical material—an art in which Euler and Gauss were virtuosi but
that had significantly declined by the 20th century. He discovered a lot in
the numerical “stockroom” by chance. Hardy later recalled how he visited
Ramanujan in the hospital and said that he had taken a taxi with the “dull”
number 1729. Ramanujan became excited and exclaimed, “No, it is a very
interesting number; it is the smallest number expressible as a sum of two
cubes in two different ways.”6 (1729 = 13 + 123 = 93 + 103. In Hardy’s
book on Ramanujan’s work he says neatly that “every positive integer was
one of Ramanujan’s personal friends.”7

Ramanujan quickly filled out the stock of facts drawn from Carr. In so
doing he rediscovered results of Euler, Gauss, and Jacobi with surprising
speed. This is how the young Gauss in Braunschweig, with no access to the
literature, reconstructed in short order what it took his great predecessors
decades to do. One can only be surprised that reconstructing mathematics
can take place so quickly.

Ramanujan’s collecting observations about specific numbers gradually
took second place to the world of formulas. Formulas for him were not
helpful methods for proofs or calculations but were a goal in themselves.

�——————�
6Hardy, “Srinivasa Ramanujan (1887–1920),” p. xxxv.
7This also appears in the obituary just cited. Hardy attributes the comment to John H.

Littlewood (1885–1977).—Transl.
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He infinitely appreciated the internal beauty of formulas. His formulas can
be thought of as beautiful paintings.

Choosing a Profession

In 1904 Ramanujan entered the University of Madras and had his first suc-
cess not only in mathematics but also in the English language. However, he
began to focus completely on mathematics and this told on him right away.
He did not even complete the first course, wandered through another, made
an attempt to return to the university, and finally ended as an external stu-
dent in 1907 but failed the examination. In 1909 he married; his wife was
nine years old. She lived until 1994, touchingly preserving the memory of
her great husband. Ramanujan had to think about making a living, but he
could not find suitable work. In 1910 he showed his mathematical results to
Ramaswari Aiyar, the founder of the Indian Mathematical Society, and then
to Seshu Ayar, a teacher at the college in Kumbakonam, and Ramachandra
Rao, a prominent bureaucrat who was educated in mathematics and later
became Ramanujan’s biographer.

Rao helped Ramanujan from his own funds and then arranged for him
to become a clerk in the postal service. In 1911 a note about Ramanujan’s
results by Seshu Ayar appeared in print, and later his own article was pub-
lished. Influential English officials began to play a role in Ramanujan’s
destiny. Starting May 1, 1913, he was guaranteed a special stipend of 75 ru-
pees (5 pounds) a month for two years. This was enough for a modest
life, and Ramanujan left his career as a clerk. He became a “professional
mathematician.”

Thus Ramanujan found definite recognition among those around him,
but not understanding. Recall that he wrote to Hardy at the beginning
of 1913. What did he expect from Hardy? To find, finally, someone who
was able to understand and appreciate his results, to help and direct his
future research? His reasons were probably more prosaic: he did not need
glory and recognition from the outside world, but rather a guarantee that
he would be able to exist.

We have to say that Ramanujan chose his addressee exceptionally suc-
cessfully for his scientific plan. It would have been hard to find another
mathematician in the world who could have oriented himself towards Ra-
manujan’s results so quickly and effectively. Hardy understood very soon
that what was required of him was not an evaluation of the results of an
obscure amateur or junior colleague, but the saving of an enormous talent.
At the same time, the thought did not escape him that Ramanujan was
telling him only a little of what he knew, that he possessed very general re-
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sults and was showing him only particular illustrations. But the important
thing was that he could not reconstruct Ramanujan’s method and he was
eager to learn the path that his surprising correspondent had taken. Un-
expectedly Ramanujan steadfastly refused to describe his method. From a
letter of February 27, 1913: “. . .you ask me to communicate the methods of
proof. . . . What I tell you is this. Verify the results I give and if I agree with
your results, got by treading the groove in which the present day mathe-
maticians move, you should at least grant me that there may be some truth
in my fundamental basis.”8

Hardy suspected that Ramanujan was afraid that his methods could
be appropriated by others and tried to allay his apprehensions, but on
April 17 received the answer: “. . .I am a little pained to see what you have
written. . . . I am not in the least apprehensive of my method being utilized
by others. On the contrary my method has been in my possession for the
last eight years and I have not found anyone to appreciate the method. As
I wrote in my last letter I have found a sympathetic friend in you and I am
willing to place unreservedly in your hands what little I have. It was on
account of the novelty of the method I have used that I am a little diffident
even now to communicate my own way of arriving at the expressions I
have already given. . . .”9

For Hardy there was no doubt: Ramanujan needed to be in contact with
real mathematicians. This could not be guaranteed in India and he had to
move to England right away. Negotiations for a stipend in Cambridge
were successful. However he had to convince Ramanujan himself, whose
current situation was completely settled, that the trip was necessary. Also
his mother, whose consent was required for her son, was categorically
opposed. Friends tried to mobilize public opinion and the Cambridge
mathematician Eric H. Neville (1889–1961) who had visited Madras in early
1914, was actively involved. He turned to the rector of the university for
support, but was unsuccessful.

What the scientist could not manage was easily done by the goddess
Namakkal (according to legend, Ramanujan learned new formulas from
her lips in his dreams). His mother saw her son in a dream, sitting in a
large hall in the company of Europeans, and the goddess commanded her
not to oppose the trip. On March 17, 1914, Ramanujan left for England. He
would receive 250 pounds sterling a year for two years. Of this his mother
would receive 50 pounds. Soon after he arrived the stipend was increased
to 60 pounds.

�——————�
8Hardy, “Srinivasa Ramanujan (1887–1920),” p. xxvii.
9Hardy, “Srinivasa Ramanujan (1887–1920),” pp. xxix–xxx.
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In Cambridge

Ramanujan was 27 years old. He had spent his best years doing mathe-
matics in India, without contact with serious scientists and without access
to the mathematical literature. In various countries and at various times a
person feels complete at various ages. In India at the turn of the 20th cen-
tury, with a very low life expectancy, 27 was the age of a mature individual.
Ramanujan’s widow recalled that he liked to compose horoscopes, and that
his own horoscope predicted his death before reaching the age of 35.

Hardy was faced with a very crucial decision: should he interrupt Ra-
manujan’s research so that he could master modern mathematics? Hardy’s
choice was, evidently, the only one possible: not to change the style and
direction of Ramanujan’s research but to adjust it from the standpoint of
modern mathematics as far as possible, trying to explain new things and
turning his attention to the appropriate literature. Hardy wrote, “His mind
had hardened to some extent, and he never became at all an ‘orthodox’
mathematician, but he could still learn to do new things, and do them
extremely well. It was impossible to teach him systematically, but he grad-
ually absorbed new points of view. In particular he learnt what was meant
by proof, and his later papers, while in some ways as odd and individual as
ever, read like the works of a well-informed mathematician. His methods
and his weapons, however, remained essentially the same.”10

Ramanujan worked very intensely and productively. He and Hardy had
many interests in common. His fantastic intuition, combined with Hardy’s
refined technique, bore remarkable fruit. Recognition came to Ramanujan:
in 1918 he became a professor at Cambridge University and was elected
to the Royal Society (the British equivalent of the Academy of Sciences).
Never before had an Indian achieved such honors.

Life was not simple for Ramanujan. He strictly followed all his reli-
gious restrictions, as he had promised his parents. In particular, he was
a vegetarian and had to cook for himself. He refused to break the rules,
even when he fell seriously ill in 1917. His irregular diet probably has-
tened his illness. (Ramanujan himself thought this, as his widow recalled.)
Ramanujan spent his remaining two years in England going to hospitals
and sanatoria, and was forced to reduce the intensity of his mathematical
research.

It was not easy for Ramanujan to enter into life in Cambridge, which
was full of conventions and traditions that were alien to him. His natural
politeness and inclination not to be a source of discomfort for those around
him, characteristic of Indian culture, helped him adapt to university life at

�——————�
10Hardy, The Indian Mathematician Ramanujan, p. 10.
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least outwardly.
Hardy did a lot for Ramanujan: he followed his research, tried to fill

the gaps in his education, and was concerned about his position in society
and in life. Up to the last moment Ramanujan was filled with touching
gratitude and love for him.

Return and Death

Ill, Ramanujan began to think of returning home. It was only at the be-
ginning of 1919 that his health improved enough for him to take the long
trip by sea. A position had been prepared for him at the University of
Madras—his fame had reached India. Ramanujan wrote a grateful letter
to the rector, apologizing for the fact that recently his illness had not given
him the opportunity to work intensively enough. But he could not even
start work at the university. Only a little time was left for him to live in
his country (and to live at all). After three months in Madras, Ramanujan
moved to Kumbakonam. In January, 1920 he sent his last letter to Hardy,
telling of his work on a new class of theta functions. Neither the doctor
nor his relatives could convince the ill and dying scientist to interrupt his
work. Ramanujan died on April 26, 1920. He was not yet 33.

Remembrance

The news of Ramanujan’s death shocked his friends in India and England.
They felt obliged to understand the astounding phenomenon that he had
been. Hardy wrote, “It is possible that the great days of formulae are
finished, and that Ramanujan ought to have been born 100 years ago; but
he was by far the greatest formalist of his time.”11

Friends and colleagues tried to evaluate Ramanujan’s place in modern
mathematics. They had no doubt of his amazing abilities and the fantastic
beauty of his formulas, but agreed that the very subjects that Ramanujan
persisted in choosing did not allow him to take his rightful place in the
history of mathematics.

More than three-quarters of a century has passed, and today we see dis-
tinctly what Hardy and his contemporaries could not foresee. Ramanujan’s
genius turned out to be in harmony not only with the past but also with
future mathematics. Ramanujan’s arithmetic formulas not infrequently
turned out to be the keys to new steps in algebraic number theory, and
one can only be amazed at how he could have seen them without knowing

�——————�
11Hardy, The Indian Mathematician Ramanujan, p. 14.
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what was needed to see anything at all. Also, there is renewed interest
in concrete, explicit formulas both within mathematics and in the area of
its applications. Modern mathematical and theoretical physics sometimes
turn to rather abstract areas of mathematics and very refined and explicit
formulas play an important role. Here are two recent examples associated
with Ramanujan.

Rodney J. Baxter, who became famous for constructing exactly solved
models of statistical mechanics, unexpectedly discovered that the Rogers–
Ramanujan identity (Insert 4 on p. 340) constantly came up in the “hard
hexagon” model.

Nobel laureate Steven Weinberg recently recalled that in the early 1970s
when he was studying string theory, which is very popular now, he ran into
the problem of estimating the partition function p(n) for large n. It turned
out that Hardy and Ramanujan had obtained the needed formulas in 1918
(Insert 5 on p. 340).

The beauty of Ramanujan’s formulas gave him the ability to come to
life again under the most unusual circumstances.



On the Advantages of
Coordinates and the Art of

Chaining Hyperboloids

In this way we have briefly and clearly set out everything that the
ancients left unexplained about planar and solid loci. Pierre Fermat

I maintain that now I have omitted nothing from the basics that are
needed to understand curves. René Descartes

The pioneering ideas of the great mathematicians underwent many
changes before ending up in the pages of textbooks. In their re-
fined form it is easier to master them and the areas in which they

can be applied are clearer, but something that is hard to perceive has been
lost. Perhaps this is the logic of their discovery, a feeling for the material,
and simply an excitement in face of the possibilities that are opening up.
How different is the enthusiasm of the creators of analytic geometry from
the feeling of the student who studies it today! We will recall here only a
few episodes from the history of the creation of analytic geometry without
trying to recreate this history completely, and we will finish the story with
an étude in the style of 19th century analytic projective geometry, but with
more up-to-date material. It is very tempting to try to argue the way they
could a hundred years ago! Namely, we will prove the theorem of five hy-
perboloids in five-dimensional space. Two two-dimensional hyperboloids
of one sheet are said to be chained if they have a common generator that is
the line of intersection of the three-dimensional planes they generate. Cor-
respondingly the minimal dimension in which chained hyperboloids exist
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is equal to 5. Several hyperboloids are called chained if they are pairwise
chained and if the generators of the chainings for each pair belong to the
same family. If the generators chaining different pairs of hyperboloids are
distinct, then the chaining is called nondegenerate.

Theorem. If there is a nondegenerate chaining of four two-dimensional hyper-
boloids of one sheet in five-dimensional space, then every fifth hyperboloid that is
chained to three of them is chained to the fourth.

An important component of a mathematician’s professionalism is the
ability to evaluate the difficulty of a problem a priori. In some sense, math-
ematicians believe that there is a law of conservation of “nontriviality,”
and so they have a bias against easily-solved problems that the experts
say are difficult. One of the manifestations of this tradition is the belief
that amateurs are unable to solve long-standing problems. The history of
mathematics shows that, although there are counterexamples to this, on
average this rule is satisfied, at least during periods of time comparable
to a human lifespan. Those cases where the the difficulty of problems has
been sharply overestimated correspond to revolutionary changes in math-
ematics. When these changes “mature” over a noticeable period of time (as
with algebraic notation or infinitesimal calculus) we are able to get used to
them. Another situation arises when some new possibility is unexpectedly
discovered that leads to a decided reappraisal of the value of a problem.
Not infrequently, we even see a desire to declare the new methods ille-
gal. A striking illustration is Paul Gordan’s (1837–1912) reaction to David
Hilbert’s (1862–1943) solution his problem on the finiteness of the number
of invariants: “This is theology, not mathematics.” Instead of constructing
invariants directly, which was then the usual way to proceed and which
resulted in separate and difficult cases, Hilbert proved their existence for
the general case in one stroke.

However, it is probable that no revolution in mathematics has taken
place so sharply as the penetration of analytic methods into geometry. Ideas
about the difficulty of geometric problems collapsed and the role of geo-
metric intuition—the pride of mathematicians—was devalued. What had
taken refined argument was now obtained through standard calculations.
Along with this came a conservative trend that fought for the genuine ge-
ometry that was being replaced by boring algebra. For comparison we
note that the creation of analytical mechanics was much more painless,
when Euler and Lagrange, rejecting Newton’s geometric methods, turned
mechanics into an area of mathematical analysis using the method of coor-
dinates. The situation in geometry recalls somewhat the transition to ma-
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chine production, when the art of the craftsman was lost to the monotonous
assembly line of automatic work. Today we see clearly that the analytical
methods did not destroy geometric intuition but, to the contrary, allow us
to “save” it for comparatively simple situations and create intuition at a
much higher level. However, we cannot deny that much of what was done
in synthetic geometry (i.e., in traditional geometry without using coordi-
nates) has been lost and there is no turning back.

Thus in the 1630s the two leading mathematicians of the time, Fermat
and Descartes, discovered that coordinates could be used to make an equa-
tion in two unknowns correspond to a curve in the plane. This was an
unexpected change in view, in particular because it was thought that since
an equation with two unknowns has an infinite number of solutions there
is no sense considering it (this is sometimes said in schools even now).
Thanks to the geometric approach, this infinite set unexpectedly is granted
the right of citizenship. No less fruitful was the inverse possibility of mak-
ing curves correspond to their equations. This is where analytic geometry
began.

A decisive discovery was that straight lines correspond to first-degree
equations in the plane and conic sections to second-degree equations. So
the two most basic objects of Greek geometry turned out to be the simplest
ones from the analytic point of view. Geometers of the time dreamt of mas-
tering and surpassing Apollonius’ theory of conic sections. Fermat and
Descartes were convinced that most of the statements would be surpris-
ingly simple to prove in analytic language. Descartes succeeded in solving
analytically several inaccessible problems of the Greeks on the locus of
points. As statements made as epigraphs show, the creators of analytic ge-
ometry saw no limits to what they could do (they called the line and circle
the planar loci of the Greeks, and the conic sections the solid loci). Even
though a lot was not cleared up (they did not consider negative coordi-
nates, there is no clear-cut theorem on expressing a second-order equation
in canonical form, etc.), all the grounds for optimism were there.

Above all, new horizons opened up to geometry that would completely
change its structure. There was no doubt that the next chapter to be created
in geometry would be the theory of third-order curves. Descartes had
considered some curves in this class, but it was natural to try to construct a
general theory as detailed as for second-order curves. First it was necessary
to classify such curves. This problem turned out not to be simple, and
Newton solved it in the 1660s. (His manuscript was published much later,
in 1704.) The solution speaks eloquently to the complexity of this problem:
there are 72 different forms of third-degree curves. Nevertheless, the forms
of these curves can be made visible since all these forms are divided into
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four types:

xy2 + cy = P(x), xy = P(x), y2 = P(x), y = P(x),

where P is a third-degree polynomial in x.
The question of what the classification signifies automatically arises.

For a curve given by an equation in some coordinate system, we seek a
coordinate system in which its equation looks especially simple. We can
often fix such a system almost uniquely, and then it is natural to think of
the corresponding equation as canonical. More generally, properties of
the equation that do not depend on the coordinate system—invariants—
comprise the geometry of the curve. We see that the definition of the subject
in geometry began to appear very early in analytical language. In synthetic
language, instead of changing coordinate systems, the figures themselves
are transformed and, as became clear only at the end of the 19th century (in
Klein’s Erlagen program), one studies their properties that do not change
under transformation. Thus, different areas of analytic geometry corre-
spond to different classes of coordinate systems, and in synthetic geometry
to transformation groups.

Newton, studying the third-degree curve, explained many general
things that were necessary for separating out the geometric component
from the algebraic facts about the equations.

1. First of all it was necessary to specify the geometric meaning of
the original analytic characteristic of the curve—its order (the degree of its
given equation). Newton remarked that the order coincides with the largest
number of points at which a straight line can intersect the curve. (In the
case of a curve of order n, an nth-degree equation in one variable defines
these points.) Here there are difficulties handling imaginary intersection
points, for which there are still no methods.

2. We recall the most important generalization of this statement: if
curves of orders k and l intersect in more than kl points, then they have
an infinite number of intersection points. In other words, in the latter
case they have a common component (an algebraic curve may fall into
several components, e.g., the curve Q1Q2 = 0 decomposes into Q1 = 0 and
Q2 = 0). If in this case one curve is irreducible in a natural way (does not fall
into components), then it is completely contained in another. Maclaurin,
Newton’s younger contemporary, stated this theorem and Bezout proved
it almost a hundred years later. The theorem bears Bezout’s name today.
A more precise statement includes complex intersections and intersections
at infinity.

3. Newton had many opportunities to satisfy himself that the method of
coordinates was an effective one. He showed this while extending various
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facts about conic sections to algebraic curves of higher order. Here, for
example, is what happens with the theory of diameters. Recall that if we
take chords of a conic section, say an ellipse, that are parallel to some
direction, then their midpoints lie on a straight line, called a diameter. If
we take a set of parallel lines and each line intersects a curve of order n in n
points x1, x2, . . . , xn, then we consider their centers of gravity x1+x2+···+xn

n .
Note that the centers of gravity do not depend on the choice of coordinates
for the line. Following Newton, we will not discuss the case of imaginary
intersection points. Newton’s theorem states that all the centers of gravity
lie along one line.

Indeed, we choose a coordinate system so that the parallel lines are
given by equations y = const. Let F(x, y) = 0 be the equation of a curve in
this system,

F(x, y) = axn + bxn−1y + cxn−1 + · · · .

Then the points of intersection x1, x2, . . . , xn are the roots of F(x, y) = 0
with respect to x for fixed y. By Vieta’s theorem, x1+x2+···+xn

n = − by+c
an , i.e.,

all the centers of gravity lie on the line anx+by+ c = 0, Newton’s diameter.
4. Almost simultaneously with the creation of analytic geometry, De-

sargues and later Pascal set out the foundations of projective geometry.
The original observation was that applying a central projection makes it
possible to simplify geometric considerations (e.g., each conic section can
be obtained from every other one by a projection). This gives rise to a
method that competes with analytic geometry for simplifying and extend-
ing Apollonius’ theory. Pascal prepared a comprehensive treatise which
was lost, and works on projective geometry were forgotten about for a
hundred years. Newton probably did not know about them. However, it
did not escape him that using a projection (considering the “shadow of an
illuminated point”) greatly simplifies the theory of not only conic sections
but of general algebraic curves. Newton’s most important observation was
that the order of a curve is preserved under projection. Applying this idea,
he established that by using a projection any third-order curve can be re-
duced to a curve of the form y2 = P(x), where P is a cubic polynomial.
Clairaut later proved this result.

5. The geometry of third-order curves is essentially richer than the
geometry of second-order curves. First of all, some special points ap-
pear: double points (points of self-intersection, such as (0, 0) for the curve
y2 = x2(x + 1)) and cusps (such as (0, 0) for y2 = x3). Furthermore, in the
general case a tangent has a double point of intersection at the point of
contact (the corresponding polynomial of one variable has a double root),
but there can be a triple intersection point (for equations of higher degree
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there can be even greater multiplicities). Triple intersections are called
points of inflection ((0, 0) for y = x3). Third-degree curves can have up to
three inflection points (the points (0, 0), (1, 0), (2, 0) of y3 = x(x−1)(x−2)).
Maclaurin noted that in this case all these points must lie on the same
line (y = 0 in the example). In the 18th century algebraic curves, above
all third- and fourth-degree curves, were at the center of mathematicians’
attention. These questions were put forth in the first analytic geometry
texts. However, much remained unexplained. It became clear that to con-
struct a harmonious theory it was necessary to add points at infinity as well
as imaginary points, since algebraic equations of higher degree had to be
solved all the time (as early as 1717, James Stirling (1692–1770) referred to
a curve with a double imaginary point at infinity).

We can take these two situations into account within the realm of com-
plex projective geometry, which was first introduced by Poncelet. His first
surprising observation was that all circles intersect in two imaginary points
at infinity. These points, called cyclic points, govern the entire conformal
geometry of the plane. Another great discovery of Poncelet (shared with
Joseph Gergonne (1771–1859)) was the principle of duality, by which every
statement in plane geometry has a dual statement with lines replaced by
points and vice versa. In connection with this it is natural to associate with
a curve not only the set of its points but also the set of its tangents. This
leads to an invariant that is dual to the order, called the class p. This is
the largest number of tangents passing through a point. For a nonsingular
third-degree curve, p = 6. The general formula for a nonsingular curve
has the form

p = n(n − 1). (1)

It is surprising that Poncelet’s remarkable discovery, the most famous
creation of a new kind of geometric intuition, was made using synthetic
language, since projective geometry had not yet been successfully com-
bined with analytic geometry. Coordinates that would have served for all
points of the projective plane, including points at infinity, had not yet been
conceived.

Such coordinates appeared during the years 1827–1828 in the work of
August Möbius (1790–1868) and Plücker. Plücker’s construction of ho-
mogeneous coordinates was especially simple and convenient. It placed
a point of the projective plane in correspondence with a triple of num-
bers x = (x0, x1, x2) �= (0, 0, 0) up to a constant multiplier: (x0, x1, x2) =
(λx0, λx1, λx2). Each line in the projective plane P

2 is given by an equa-
tion (ξ, x) := ξ0x0 + ξ1x1 + ξ2x2 = 0, where ξ �= (0, 0, 0). Also, ξ and λξ

correspond to the same line. Therefore, the lines in P
2 naturally form an-

other projective plane P
2
ξ with homogeneous coordinates ξ . The points of
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P
2 = P

2
x correspond to the lines in P

2
ξ . In the end the principle of dual-

ity, which is completely nontrivial in synthetic language, becomes almost
obvious in analytic language.

A general projective transformation of coordinates has the form x̄ =∑
ajixi, where det(aji) �= 0. They are characterized by being one-to-one on

P
2 and taking lines to lines.

In order to fix an affine structure on P
2 we need to specify that some

line, for example (but not necessarily) x0 = 0, is a line at infinity. Away
from x0 = 0 we can always choose coordinates of the form (1, x̄1, x̄2). Then
x̄1 = x1

x0
, x̄2 = x2

x0
will be the corresponding Cartesian coordinates. When

taking the analytic approach from the very beginning, we do not single out
a line at infinity.

Starting off from Plücker’s interpretation of duality, it is natural to con-
sider, along with a curve 
 = 
x on P

2
x, the dual curve 
ξ on the dual

plane P
2
ξ . The tangents to 
x correspond to the points of 
ξ . The class

of 
x coincides with the order of 
ξ . Plücker resolved a conjecture that
Poncelet could not unravel (Poncelet’s paradox). The question was that,
as it is easy to see, equation (1) is not dual to itself. Plücker discovered
that this equation is only valid for curves without singularities. For ex-
ample, if 
 is a nonsingular third-degree curve, then its dual curve must
have singularities. Plücker found a formula for the class of curves with
singularities:

p = n(n − 1) − 2d − 3r, (2)

where d is the number of double points and r is the number of cusps. This
equation is self-dual. Note that the double points of the dual curve 
ξ (let
there be δ such points) correspond to the double tangents to the original
curve, i.e., to the lines that are tangent at two points of 
. The cusps of 
ξ

correspond to the tangents at the inflection points of 
 (let there be ρ such
points). Then n = p(p−1)−2δ −3ρ. At the same time we obtain a formula
for the number of inflection points,

δ = 3n(n − 2) − 6d − 8r. (3)

In the case where there are no singularities, it is not hard to obtain this
formula directly, by writing down the condition that a point is an inflection
point in the form of a system of algebraic equations and then applying
Bezout’s theorem. In particular, if 
 is a nonsingular third-order curve,
then p = 6; it has no double tangents and has nine inflection points, some
of which can turn out to be complex.

Strictly speaking, equation (2) is valid if the singularities of the curve are
no more complicated than the simplest self-intersections and cusps, and (3)
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is valid if all inflection points are the simplest (the multiplicity of tangency
equals three) and no line can be tangent to the curve at more than two
points. The complete statements of these results are more cumbersome.

Plücker thought deeply about the question of complex singular points
of real curves. Properly speaking, the formulas we have presented are valid
for complex singularities and inflection points. The question of which of
these points can be real is rather nontrivial. It is not at all necessary that all
the inflection points counted by (3) be real. For example, among the nine
points of inflection of a third-order curve without singularities no more
than three can be real. Plücker wrote, “A new flight of spatial intuition is
needed in order to include what is imaginary and will remain imaginary
in all cases.”

One of the most remarkable periods in the history of analytic geometry
is associated with Plücker. His student Klein wrote, “Plücker’s goal in
geometry and his achievement are a new construction of analytic geometry.
He followed a method that arose out of the tradition of Monge: completely
joining together the construction with an analytic formula. . . . In Plücker’s
geometry a simple combination of formulas is translated into the language
of geometric correspondences and, conversely, the latter are sent to analytic
operations. Calculations are omitted by Plücker when possible, but in
return the acuteness of internal perception and geometric interpretation
that analytic equations have is developed and broadly applied to the point
of virtuosity.”

Plücker turned out to be the object of an attack by Steiner, a famous
geometer but an aggressive opponent of analytical methods in geometry,
i.e., using equations and working with imaginary objects. Steiner’s attack
was so energetic that Plücker interrupted his research in geometry for 20
years and returned to it only a short time before he died.

We will give a few examples of Plücker’s geometrical constructions.
However, first we recall that an nth-degree equation in two variables has
(n+3)n

2 + 1 coefficients, which are determined up to a constant multiplier
(this is not hard to prove by induction). Therefore, a curve of order n is
determined by giving (n+3)n

2 points (we then get the necessary number of
linear equations to determine the coefficients in the equation). In particular,
to determine a line we must specify two points, for a conic section we need
five, and for a third-order curve we require nine. However, these points
must be in general position, and as n grows this condition becomes more
delicate. We note that by Bezout’s theorem two curves of order n usually
intersect in n2 points. But when n > 3 we have n2 >

n(n+3)
2 , and through

these n2 points pass two (in fact an infinite number of) curves of order n.
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This situation, called Cramer’s paradox after Gabriel Cramer (1704–1752),
greatly disturbed geometers from Maclaurin to Euler, and probably only
Plücker finally understood it.

We will look at how Plücker proved Pascal’s Theorem. Recall that six
points A1, A2, . . . , A6 on a conic section Q = 0 are consecutively connected
by a polygonal line called Pascal’s hexagon (this polygonal line can have
self-intersections). Let pi be the side AiAi+1 and Li = 0 be the equation
of the line passing through pi. Let B1, B2, B3 be the points of intersection
of the opposing sides (p1, p4), (p2, p5), (p3, p6), respectively. We claim that
B1, B2, B3 lie on one line. Pascal reduced the general case to the case of a
circle, but even for a circle the proof is not so simple.

Here is how Plücker reasoned. He passed third-order curves through
the nine points {Ai, Bj}. There is a single curve that passes through nine
points in general position, but these points are not in general position (see
above about Cramer’s paradox). All curves in the set

L1L3L5 + µL2L4L6 = 0, (4)

which depends on an arbitrary parameter µ, will pass through {Ai, Bj}.
Note each Ai, Bj is annihilated by a factor in each of the two terms. Let C
be any point of Q = 0 other than Aj. We choose µ so that the coordinates of
C satisfy (4). We fixed a third-order curve but when intersecting it with a
second-order curve Q = 0 there can either be 2×3 = 6 or an infinite number
points of intersection. Since we have at least the seven intersection points
A1, . . . , A6, C the number of intersections is infinite, and since Q = 0 is
irreducible it must be completely contained in (4), i.e., the left-hand side of
(4) must be divisible by Q. After dividing by Q we find a linear expression
M, and the points B1, B2, B3 must lie on the line M = 0 since they cannot lie
on the conic section Q = 0 (otherwise Q = 0 would have to intersect one
of the lines Lj = 0 in three points).

This method, which uses sets of curves and the choice of a suitable curve
from the set, which by Bezout’s theorem should decompose (into a conic
section and a line in the example), is quite characteristic of Plücker. The
undetermined multiplier µ is always present in his arguments and is often
called “Plücker’s µ.”

Remark. We will mention another analytic proof of Pascal’s Theorem that
is built on a completely different idea and clarifies the exceptional role of
this theorem in projective geometry. We give the proof for the case of a
circle and a hexagon with parallel sides (the general case reduces to this
special one).

We define the addition of points on a circle corresponding to adding



358 � Tales of Mathematicians and Physicists �

their arc-coordinates modulo 2π . It is possible to realize this addition geo-
metrically. We fix a point O which will play the role of zero. If a, b are two
points on the circle, then the line passing through O parallel to the chord
ab intersects the circle exactly in the point a + b (why?). Since this addi-
tion corresponds to arithmetic addition of the coordinates modulo 2π , it
is commutative and associative. Commutativity is clear geometrically, but
what does associativity mean geometrically? Let us consider a hexagon
A1A2 · · · A6 inscribed in a circle with A3A4 parallel to A1A6 and A4A5 par-
allel to A1A2. Then Pascal’s theorem asserts that A2A3 and A5A6 are also
parallel.

Let us take A1 as the zero point and denote A3 by x, A4 by y, and A5 by
z. From the assumptions of parallelism it follows that A6 corresponds to
x + y and A2 to y + z. Hence (x + y)+ z (respectively, x + (y + z)) will be the
intersection point of the line through A1 parallel to A5A6 (respectively, to
A2A3). Because of associativity, (x + y) + z = x + (y + z), these must be the
same line. So A2A3 and A5A6 are parallel and Pascal’s theorem is proven.

This proof is connected with Hilbert’s fundamental idea that numbers
can be defined intrinsically in projective geometry. Desargues’ theorem is
responsible for commutativity and Pascal’s theorem is responsible for as-
sociativity. The proof is also connected with the arithmetic of cubic curves.

Plücker again raised the question of reducing the equation of a curve to
a canonical form, with the aim of having it look simpler and of having its
algebraic structure directly reflect some geometric properties of the curve.
For example, Plücker showed that the equation of a third-degree curve can
always be written in the form

L1L2L3 − M3 = 0, (5)

where {Lj, M} are linear forms of the coordinates. To prove this represen-
tation is possible, we count the number of independent parameters in (5).
There are three coefficients in a linear form and 12 in the four forms {Lj, M},
but (5) is preserved if we multiply L1, L2, L3 by α1, α2, α3 and M by 3

√
α1α2α3.

Therefore, there are 12−3 = 9 independent parameters, and since a general
third-degree equation, as we saw, contains nine independent parameters
(one less than the number of coefficients), Plücker concluded that a general
equation can always be transformed into (5). To this argument we must
also add some points to make it a rigorous proof. This was probably one
of the first examples where counting the number of parameters was used
as a heuristic method and also as a method of proof.

What sort of geometry lies behind (5)? Let Aj be the intersection of
the lines Lj = 0 and M = 0. These points lie on the curve (5) and Aj is a
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triple point of intersection of the curve and the line Lj = 0. This means
that A1, A2, A3 are inflection points and the lines Lj = 0 are tangent at these
points. Moreover, M = 0 is the line containing the three inflection points
A1, A2, A3. Such lines are called inflection lines. If we consider complex
inflection points, then, as we have noted, a nonsingular curve has nine such
points. It turns out that a (complex) line through any two inflection points
must contain a third. There are twelve inflection lines. This configuration
of nine points and twelve inflection lines is very interesting and is the object
of special study in projective geometry.

Plücker also proposed a special structure for the fourth-degree equation

L1L2L3L4 − �2 = 0, (6)

where {Li} are linear forms and � is a quadratic polynomial. Recall that
there are 14 independent parameters in the general fourth-degree equa-
tion. There are six coefficients in a quadratic polynomial so in (6) there are
3 ·4+6 = 18 coefficients. Here we can multiply {Li} by numbers {αi} and si-
multaneously multiply � by 4

√
α1α2α3α4. Then the number of independent

parameters equals 18 − 4 = 14. Plücker concluded that the representation
(6) is a general one.

Furthermore, the intersection points of each line Li = 0 with the conic
section � = 0 are double intersection points with the curve given by (6).
Thus, each line Li = 0 has two points of tangency with the curve (instead
of the four intersection points for general lines). Such tangents are called
bitangents. So four bitangents are involved in (6) and eight of their points
of tangency lie on the same conic section. There is a curiosity associated
with this discovery of Plücker. It is not hard to count that a fourth-order
curve has 28 bitangents (including complex ones). Plücker erroneously
proposed that the points of tangency of any four of them lie on a conic sec-
tion. In fact each pair of bitangents is contained in only five foursomes with
this property. Plücker’s error was discovered by none other than Steiner.
Algebraic curves actually arose in synthetic geometry, and the example we
have presented shows that the representatives of this school had enough
geometric intuition to compete on a par with those of the analytic school.
The ostentatious refusal to use analytic methods only gradually revealed
the weak position of Steiner’s school.

According to Plücker, the points of three-dimensional projective space
P

3 are given by 4-tuples of homogeneous coordinates x = (x0, x1, x2, x3) �=
(0, 0, 0, 0), x ∼ λx, λ �= 0. The planes in P

3 comprise the dual projective
space P

3
ξ , and ξ ∈ P

3 corresponds to the plane 〈ξ, x〉 = 0. At the same time
the manifold of lines G in P

3 is a completely new geometric object. Its study
was one of Plücker’s main achievements. Lines in P

3 are given by four
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parameters, e.g., we can fix two different planes and then almost all lines
are given by points of intersection with these planes. Thus the manifold
G is four-dimensional. It is natural to introduce coordinates (Stiefel1) that
can be taken as a generalization of homogeneous coordinates. Take the
line through a pair of its distinct points x, y. Put x, y into a matrix X =
(

x
y ) with two rows and four columns. The line consists of points of the

form z = λ1x + λ2y, λ = (λ1, λ2) �= (0, 0), i.e., λ contains homogeneous
coordinates for the line. The matrix X is determined by the line up to left
multiplication by a nondegenerate 2 × 2 matrix: X → gX (corresponding
to passing to another pair of points on the line). Let X = (X1, X2), where
X1, X2 are 2×2 matrices. Then if det X1 �= 0, the coordinates can be chosen
so that X1 = E is the identity matrix (take points x with x0 = 1, x1 = 0
and y with y0 = 1, y1 = 0). There is an affine coordinate chart on G
with coordinates X2 = (uij) and whose closure coincides with G. These
coordinates exist for almost all points of G. Plücker passed from the matrix
X to its minors. These are the famous Plücker coordinates, which are very
convenient for constructing the geometry of lines. We will consider two
problems associated with the geometry of lines.

1. We represent the space P
3 as the union of pairwise disjoint lines. Note

that if we fix an affine structure for P
3, then lines that intersect projectively

either go to intersecting lines or to parallel lines (that intersect “at infinity”).
At the same time skew lines in affine space correspond to disjoint lines.
Therefore, in affine language we speak of representing space in the form of
a union of pairwise skew lines.

We indicate a specific partition, namely, we consider lines that join x
and σ(x) = (−x1, x0, −x3, x2), i.e., X = (

x
σ(x) ). We only have to verify that

σ(x) �= λx and that if y is a point on such a line, then σ(y) will also lie on
that line. This follows from the relation σ(λ0(x)+λ1σ(x)) = −λ1x+λ0σ(x),
which can be verified directly. The property we have indicated means that
lines either do not intersect or coincide. In G there is a two-dimensional
submanifold of lines.

2. We study surfaces in P
3 with two families of generating lines. It

is taught in analytic geometry that among the second-order surfaces in R
3

there are two types that have this property: hyperboloids of one sheet (their
equations reduce to the form x2 + y2 − z2 = 1) and hyperbolic paraboloids
(their canonical equation is z = x2 −y2). We will show that even in the class
of all surfaces (not just second-order) there are no other surfaces with this
property. It is clear that there is a large number of surfaces with one system
of generators (the developable surfaces), however, the condition that there

�——————�
1Eduard Stiefel (1909–1978).
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exist two systems is very restrictive and leaves only the hyperboloids of
one sheet and the hyperbolic paraboloids. Note that in projective space
hyperboloids of one sheet and hyperbolic paraboloids are (projectively)
equivalent: in suitable homogeneous coordinates their equation has the
form x2

0 + x2
1 − x2

2 − x2
3 = 0. Thus, from the projective point of view we can

speak only about hyperboloids of one sheet.
Let us make our terminology more precise. We will say that there are

two families of generating lines on a surface S if through each point there
are at least two different lines that completely lie on S. Such a surface S
is called irreducible if there is no smaller surface S0 ⊂ S with two families
of generating lines. We want to avoid a discussion of analytic subtleties
relating to a precise definition of the notion of a surface, and so we will
only appeal to intuitive ideas about surfaces. This part of our discussion
will not be rigorous, but those who have mastered the corresponding tech-
niques will easily see how to make our arguments rigorous, say, for analytic
surfaces.

Theorem. Every nonplanar irreducible (analytic) surface in P
3 with two families

of generating lines is a hyperboloid of one sheet.

Proof.
1. If the given surface has a flat part, then it coincides with a plane.

Roughly speaking, a generator passing through a point of a flat part gen-
erates a plane.

2. Fix a generator l on the surface. Then all generators intersecting l
generate the surface. It is obvious that the points of their union depend
on two parameters and we have agreed not to make this more precise
analytically.

3. If there are two nonintersecting generators l1, l2, then the generators
intersecting both l1, l2 also generate the surface.

In fact, since the generators intersecting l1 generate the surface, through
each point of l2 there is a generator intersecting l1. The union of these
generators must also coincide with the surface.

4. Analogously, the union of the generators that intersect any number
of given pairwise disjoint generators coincides with the surface.

5. Given a pair of intersecting generators l1, l2, almost all generators in-
tersecting one of them do not intersect the other. Indeed, let m be a segment
on l2. Through each point of m there must pass a generator different from
l2. If all of them intersect l1, then they generate a part of a plane passing
through l1, l2.

Thus, there is an infinite set of pairwise disjoint generators on the sur-
face. It is enough for us that there are three such generators.



362 � Tales of Mathematicians and Physicists �

6. We will show that the given surface is uniquely determined by three
of its pairwise disjoint generators. It coincides with the union of all lines
in P

3 that intersect all three fixed lines.

Using Plücker’s favorite method of counting the number of parameters,
we can see that this assertion is plausible. The set of all lines depends on
four parameters. The intersection with each line gives one condition on
the parameters (in other words, through each point in space there is a two-
parameter family so through each point of a line there is a three-parameter
family of lines). Requiring an intersection with three lines we impose three
conditions, so there remains a one-parameter family of lines that generates
the surface.

For correctness we should convince ourselves that these conditions are
independent. Therefore, we will choose our lines more effectively. Let
l1, l2, l3 be pairwise disjoint lines. We will find the lines that intersect all of
them. Let A ∈ l1; then A /∈ l2. Pass a plane through A and l2. This plane
intersects l3 in some point B. In the projective space P

3 a line that does not
lie in a plane intersects it, and the line l3 cannot lie in the plane since l2 and
l3 do not intersect. The line AB will be the unique line intersecting all three
lines l1, l2, l3 and passing through A. Thus, the set of lines intersecting three
pairwise disjoint lines can be parameterized by the points of intersection
with one of them.

7. We will prove that the union of these lines is a hyperboloid of one
sheet. We will carry out the proof analytically. At the same time we prove
that a hyperboloid of one sheet, in fact a unique one, passes through three
pairwise disjoint lines in P

3.

Let l1, l2, l3 be three pairwise disjoint lines in P
3. We will consider the

lines as intersections of planes, i.e., as systems of two linear equations
〈ξ, y〉 = 0 and 〈η, y〉 = 0. Choose homogeneous coordinates so that l1 is
given by the system y0 = 0, y1 = 0 and l2 by y2 = 0, y3 = 0. This can
be done because the lines do not intersect (and the left-hand sides of the
equations can be taken as coordinates). Then let l3 be given by the system

{
ξ0y0 + ξ1y1 + ξ2y2 + ξ3y3 = 0,

η0y0 + η1y1 + η2y2 + η3y3 = 0.

The vectors (ξ0, ξ1), (η0, η1) cannot both be zero, since then ł2 and ł3 would
coincide. Moreover, these vectors cannot be proportional and, in particular,
neither one can be zero. Indeed, if (η0, η1) = (λξ0, λξ1), then the point
(−ξ1, ξ0, 0, 0) will be common to ł2 and ł3. We can similarly show that
(ξ2, ξ2) and (η3, η3) cannot be proportional. Therefore, we can make the
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following change of coordinates:

x0 = ξ0y0 + ξ1y1, x1 = η0y0 + η1y1,

x2 = ξ2y2 + ξ3y3, x3 = η2y2 + η3y3.

By what we said above about the proportionality of the vectors, such a
substitution is admissible. In these coordinates l1 is given by the equations
x0 = x1 = 0, l2 by x2 = x3 = 0, and l3 by x0 + x2 = x1 + x3 = 0. However,
all these lines lie on a hyperboloid of one sheet,

x0x3 − x1x2 = 0. (7)

The lines we are considering belong to a one-parameter family of gen-
erators

λ0x0 + λ1x1 = 0,

λ0x2 + λ1x3 = 0, (λ0, λ1) �= (0, 0).
(8)

A second family of generators consists of the lines

µ0x0 + µ1x2 = 0,

µ0x1 + µ1x3 = 0, (µ0, µ1) �= (0, 0).
(9)

Recall that the generators in any one family are pairwise disjoint and that
any generators in different families intersect, so that generators of each
family pass through each point.

In each family the lines are parameterized by the points of the projective
line P

1
λ, P

1
µ, where λ, µ are corresponding homogeneous coordinates. Two

curves on the manifold G of lines are associated with each hyperboloid.
The curves, which are in 1–1 correspondence with the projective line, are
called rational (admit a rational parameterization). Rational curves are
not only lines in projective space but are second-order curves. Thus, with
each hyperboloid of one sheet in P

3 we associate two distinguished rational
curves on G. In the spirit of Plücker’s geometric approach the same geo-
metric objects appear either in the form of hyperboloids of one sheet in the
point geometry of P

3 or in the form of the simplest rational curves on the
manifold G of lines. (The class of these curves can be described directly.)

In passing to affine language we can encounter two possibilities: either
no generator lies in a plane at infinity and then we obtain a hyperboloid of
one sheet in the affine sense, or such a generator exists and then we obtain
a hyperbolic paraboloid. In the latter case a pair of intersecting generators
(one from each family) lies in a plane at infinity. This is connected to the
fact that in any plane passing through one generator there is a second
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generator that intersects the first. This can be rephrased as follows: given
three pairwise disjoint lines in three-dimensional affine space R

3, if there
is no plane parallel to all three lines, then we can draw a hyperboloid of
one sheet through them, and if there is such a plane, then we can draw a
hyperbolic paraboloid. A line at infinity of this plane belongs to a second
family of generators. In other words, for each family of generators of a
hyperbolic paraboloid there is a plane to which they are all parallel.

The statement we have proved about hyperboloids of one sheet can be
interpreted as a statement about the “rigidity” of surfaces formed by two
families of linear generators. Such a construction cannot “budge” if three
lines of one family are fixed. This situation is used in real constructions
using linear rods in the shape of a hyperboloid, e.g., in the famous Shukhov
radio tower in Moscow.

We now move to the final section devoted to chaining hyperboloids.
The main objects of classical projective geometry are various kinds of con-
figurations of points, lines, and planes. Included in these are cases where
some geometric relations (e.g., three lines pass through one point, three
points lie on one line, six points lie on one conic section, etc.) lead to oth-
ers: the configurations of Desargues, Pascal, etc. The result we have given
allows us to study configurations in multidimensional projective space,
including two-dimensional hyperboloids of one sheet. Since we will only
consider two-dimensional hyperboloids (i.e., hyperboloids in P

3), we will
often omit “two-dimensional” below.

We will give the points of n-dimensional projective space P
n homo-

geneous coordinates (x0, x1, . . . , xn). Fix a geometric relation for lines in
P

n. Through any two disjoint lines in P
n we can pass a unique three-

dimensional plane. For three pairwise disjoint lines there is a geometric
relation: “lie in one three-dimensional plane.” For four pairwise disjoint
lines lying in one three-dimensional plane there is the relation that they
“belong to one (two-dimensional) hyperboloid of one sheet.” By contrast,
three pairwise disjoint lines lying in one three-dimensional plane always
generate a hyperboloid of one sheet.

As we said at the start, two two-dimensional hyperboloids of one sheet
in P

n are called chained if they have a common generator that is the line of
intersection of the three-dimensional planes they generate. Correspond-
ingly the minimal dimension in which chained hyperboloids exist is equal
to 5. Several two-dimensional hyperboloids of one sheet in P

n are called
chained if they are pairwise chained and the lines for each pairwise chain-
ing belong to a single family of generators, which we call a distinguished
family. A chaining is called nondegenerate if each of these lines belongs to
only two of the hyperboloids.
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Suppose we have four nondegenerate chained two-dimensional hyper-
boloids of one sheet in five-dimensional projective space P

5. Giving such
a foursome is equivalent to giving four three-dimensional planes in P

5 in
general position. Let us figure out what this means. Recall that, as a rule,
k-dimensional and l-dimensional planes in P

n intersect in a (k + l − n)-
dimensional plane (and in a higher-dimensional plane in the degenerate
case). Then two three-dimensional planes in P

5 usually intersect in a line
(3+3−5 = 1) and three planes generally do not intersect (1+3 < 5). Thus,
three three-dimensional planes in P

5 in general position have no points in
common. Consequently, any two of these planes intersect in a line (if two
were to meet in a two-dimensional plane, then their intersection with a
third plane would be a point: 2 + 3 − 5 = 0).

Correspondingly, four planes are in general position if any three of
them have no points in common and thus any two meet in a line. Then in
each such three-dimensional plane there is a threesome of lines in which
it intersects the other planes. These lines are pairwise disjoint, and we can
draw a (two-dimensional) hyperboloid of one sheet through them. This
leads to four nondegenerately chained hyperboloids. On the other hand,
if we have four nondegenerately chained hyperboloids, then the three-
dimensional planes they generate will obviously be in general position.
We can now make a fundamental statement which is somewhat stronger
than the theorem on five hyperboloids that we stated at the beginning of
this chapter.

Theorem. Suppose we are given four nondegenerately chained two-dimensional
hyperboloids of one sheet in five-dimensional projective space P

5. Then every
three-dimensional plane intersecting two of them in generators of the distinguished
families also intersects the two remaining hyperboloids in generators of the distin-
guished families. The four lines where the plane intersects the hyperboloids lie on
a single hyperboloid of one sheet.

Corollary (on five hyperboloids). Given four nondegenerately chained two-
dimensional hyperboloids of one sheet in P

5, every hyperboloid chained with three
of them is chained with the fourth.

The corollary holds because the plane for the fifth hyperboloid satisfies
the hypotheses of the theorem. The statement of the theorem is stronger
than that of the corollary. We can arbitrarily choose one generator from
the distinguished families for two hyperboloids. They will not intersect,
and a unique three-dimensional plane passes through them. This plane
intersects the planes for the two other hyperboloids in lines. We claim that
these lines lie on the hyperboloids. This is a very strong assertion, since
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on a three-dimensional plane there is a four-parameter family of lines and
we claim that the line of intersection falls in a one-parameter subfamily
of generators of the hyperboloid. We add to this that the four lines of
intersection lie on a single hyperboloid.

We have a two-parameter family of planes that satisfy the hypotheses of
the theorem: they can be given, arbitrarily choosing one generator from the
distinguished families, on two hyperboloids. One hyperboloid arises from
each plane and the hyperboloids (a two-parameter family) are pairwise
chained by the theorem.

We turn to the proof of the theorem. We will proceed analytically, anal-
ogous to the proof of the preceding theorem.

We are given a three-dimensional plane in P
5 as the intersection of hy-

perplanes, i.e., as a system of two linear equations 〈ξ, y〉 = 〈η, y〉 = 0
in homogeneous coordinates. Suppose we have four three-dimensional
planes l1, l2, l3, l4, where no three have any points in common. We choose
homogeneous coordinates so that l1 is given by the system y0 = y1 = 0,
l2 by y2 = y3 = 0, and l3 by y4 = y5 = 0. This can be done since l1, l2, l3
have no points in common and so the left-hand sides of the equations that
determine these planes are independent (the homogeneous equations have
only the trivial solution). Let l4 be given in this coordinate system by the
equations

5∑
i=0

ξiyi = 0,

5∑
i=0

ηiyi = 0.

The vectors (ξ0, ξ1), (η0, η1) cannot be zero simultaneously, since this would
mean that the planes l2, l3, l4 have the line y2 = y3 = y4 = y5 = 0 in
common, and so l2, l3 would intersect. We will show that they cannot be
proportional either and, in particular, that neither one can be zero. Sup-
pose (η0, η1) = (cξ0, cξ1). Then the point (−ξ1, ξ0, 0, 0, 0, 0) would belong
to the three planes l2, l3, l4, and we assumed they had no points in com-
mon. We can show analogously that the pairs of vectors (ξ2, ξ3), (η2, η3) and
(ξ4, ξ5), (η4, η5) are not proportional. As a result we can make the change
of coordinates

x0 = ξ0y0 + ξ1y1, x1 = η0y0 + η1y1, x2 = ξ2y2 + ξ3y3,

x3 = η2y2 + η3y3, x4 = ξ4y4 + ξ5y5, x5 = η4y4 + η5y5.

In these coordinates the planes l1, l2, l3, l4 are given by the corresponding
system of equations

x0 = x1 = 0, x2 = x3 = 0, x4 = x5 = 0,

x0 + x2 + x4 = x1 + x3 + x5 = 0.
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All four of these planes are contained in the family of three-dimensional
planes

λ0x0 + λ1x2 + λ2x4 = 0, λ0x1 + λ1x3 + λ2x5 = 0. (10)

Let �λ denote the plane given by (10). It is natural to consider the parame-
ters as homogeneous coordinates on the two-dimensional projective plane
P

2. Here (λ0, λ1, λ2) �= (0, 0, 0) and λ, cλ give the same plane. The planes
l1, l2, l3, l4 correspond to the parameters (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1).

We now consider the pairwise intersections �λ ∩�µ, λ �= cµ. This is the
line in P

5 whose points satisfy the four equations comprising the union of
(10) for λ and µ. It is obvious that �λ ∩ �µ depends only on the line {λ, µ}
in the parametric plane P

2 joining the points λ and µ. Therefore, if we fix
λ, the lines �λ ∩ �µ in P

2 correspond to the lines that pass through λ. It is
natural to introduce the structure of a projective line on the set of lines in the
projective plane P

2 that pass through a fixed point. We consider the lines
�λ ∩ �µ for fixed λ more concretely. For specificity, let λ0 �= 0 (there is no
loss of generality because we can replace λ0 by any λj). As homogeneous
coordinates on �λ we take (x2, x3, x4, x5). In these coordinates the lines
�λ ∩ �µ are given by the system

x̄0x2 + x̄1x4 = 0, x̄0x3 + x̄1x5 = 0,

x̄0 = µ0λ1 − λ0µ1, x̄2 = µ0λ2 − λ0µ2.
(11)

If λ, µ are not proportional, then x̄ = (x̄0, x̄1) �= (0, 0). Thus, �λ ∩ �µ

depends only on the line {λ, µ}. From (11) it is clear that the lines �λ ∩ �µ

are, for fixed λ, a family of generators for some hyperboloid Hλ of one
sheet in the three-dimensional plane �λ. Thus, we have obtained a family
of chained hyperboloids Hλ that depend on two parameters λ ∈ P

2. This
chaining is nondegenerate since all hyperboloids Hν , where ν belongs to
the line {λ, µ}, pass through the generator �λ ∩ �µ.

It remains to prove that every three-dimensional plane intersecting two
different hyperboloids Hλ, Hµ in generators from the distinguished families
is one of the planes in the set �λ. Each plane in the set intersects each
hyperboloid Hλ in a generator from the distinguished family, including
the original foursome. Now let a three-dimensional plane be generated by
different lines �λ ∩�λ′ and �µ ∩�µ′ , and let ν be a point on the parametric
plane P

2 that is the intersection of the lines {λ, λ′}, {µ, µ′} (they cannot
coincide). Then �ν contains �λ ∩ �λ′ and �µ ∩ �µ′ , and thus coincides
with the plane under consideration. (We have essentially proved that a
certain system of linear equations in ν has a solution, which we could have
done directly.) Thus, the proof of the theorem on chaining hyperboloids is
complete.



The Complex World of
Roger Penrose

We cannot think of anything so strange and unlikely that was not
already said by some philosopher. René Descartes

At the International Mathematical Congress in Helsinki in the sum-
mer of 1978, Roger Penrose1 (1931–) gave a plenary address en-
titled, “The Complex Geometry of the Real World.” Penrose’s

fundamental idea was that it is natural to interpret the points of the four-
dimensional space-time of Minkowski or Euclid (in Euclidean field theory)
as complex lines in a three-dimensional complex space. This idea was de-
veloped by Penrose over the years into his “twistor program.” (He called
the points of the auxiliary three-dimensional complex space twistors.) Not
long before the congress, the first results appeared that could not be consid-
ered purely interpretive (instanton solutions of the Yang–Mills equations
and complex self-dual solutions of the Einstein equations).

Penrose’s approach was in essence not new: a complex realization of
Minkowski space was contained in Élie Cartan’s (1869–1951) theory of ho-
mogeneous manifolds. However, the significance lies not in the geometric
observation itself but rather in the idea of making it a systematic source
of analytical constructions, namely integral representations for the solu-
tions of certain important linear and nonlinear equations of mathematical
physics. By a happy coincidence, at just this time in mathematics (algebraic
geometry and the theory of functions of several complex variables) some
quite nonelementary mathematical machinery appeared that was needed

�——————�
1The translation of this chapter includes material from an English version that appeared

in The Mathematical Intelligencer, 5 (1983), pp. 27–35.—Transl.
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to realize this plan (bundles on projective spaces, Cauchy–Riemann coho-
mology, etc.).

Returning to Penrose’s geometric idea, we should probably not be sur-
prised at how complex objects appear in the study of a purely real object
such as space-time. It would not have seemed surprising to geometers in
the second half of the 19th century. Penrose’s construction is connected to
mathematical ideas that are a little more than a hundred years old and that
in recent decades have undeservedly been forgotten, perhaps because they
are so concrete. We are talking about the idea of Julius Plücker (1801–1868)
of considering the space whose elements (points!) are lines in ordinary
three-dimensional space. Plücker developed this idea over the course of
many years and it appears in final form in his memoir A New Geometry of
Space Based on Considering a Line as a Space Element, published posthumously
in 1868–1869 and edited by Felix Klein and Alfred Clebsch. The dimension
of the space of lines is four and it is probably the first four-dimensional
space that appeared in science. Strangely enough, at a time when four
dimensions appeared in relativity theory and when there was general en-
thusiasm for four-dimensional structures, nobody compared Minkowski’s
four dimensions with Plücker’s, which had appeared 50 years earlier. In
a sense this is just what Penrose did 50 years later. We will try to trace a
possible path from Plücker to Hermann Minkowski (1864–1909), but for
this we must recall still earlier events.

“The Golden Age of Geometry”

This is how Bourbaki described the 19th century, the century of the growth
of projective geometry with its fantastic flight of geometric intuition and
powerful analytical methods. The leading role of projective geometry in
19th century geometry is indisputable. It is characteristic that for many
mathematicians the acceptance of non-Euclidian geometry was connected
to its realization as part of projective geometry (the Klein interpretation).
But projective geometry (also called the “new geometry”) began much ear-
lier. Gerard Desargues (1593–1662), an architect from Lyon, published a
book in 1639 entitled The First Draft of an Attempt to Understand What Becomes
of the Meeting of a Cone with a Plane. Desargues was developing the theory of
perspective and studied a central projection of one plane onto another. He
noted that the first plane had points that are not mapped anywhere and the
other plane had points that were not in the image. He decided to improve
the matter by introducing ideal points at infinity. In modern form, his
idea was that all parallel lines “intersect” at one common “infinite” point,
and all infinite points of a plane constitute an infinite line, which must be
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added to the plane. On the extended (projective) plane all statements about
parallelism turn into a special case of the usual statements about intersec-
tions of lines with no restrictions added (any two distinct lines intersect
in a unique point, perhaps at infinity). The ideas of projective geometry
were digested with great difficulty, and Desargues could not put them in
a form that was easy to understand. Among the members of the Marin
Mersenne’s (1588–1648) group, an embryo of the Academy of Sciences of
Paris, he had found only one disciple. It was the 16-year-old Blaise Pascal
(1623–1662), who had proved a famous theorem on a hexagon inscribed
in a conic section. The methods of projective geometry enabled Pascal to
reduce the general case to that of a circle, since by definition any conic sec-
tion is obtained from a circle by a central projection. Desargues and Pascal
planned to use projective geometry to shed light on Apollonius’s theory
of conic sections, the apex of Greek geometry. European mathematicians,
already unquestionable masters of algebra and analysis, had been trying
for a long time to do battle with the great Greeks on their own territory,
geometry. Desargues and Pascal were successful, but nobody could un-
derstand Desargues’ work and Pascal never finished his comprehensive
treatise on projective geometry, leaving to his heirs only a small placard
with his hexagon theorem. Their work was forgotten for 200 years and
when it was remembered, thanks to Michel Chasles (1793–1880), most of
their results were rediscovered.

A new life for projective geometry began with the works of Gaspard
Monge (1746–1818) and his pupils, among them Jean-Victor Poncelet (1788–
1867). As Felix Klein (1849–1925) said, a new type of geometric thinking
appears in the works of Poncelet, “projective thinking.” While he was in
captivity in Saratov, Russia after Napoleon’s campaign of 1812, Poncelet
fell into turbulent geometric fantasies and shared his discoveries with for-
mer fellow students of Monge at the École Polytechnique. He collected his
results in his Treatise on the Projective Properties of Figures, which was only
published 10 years later. He never returned to the systematic study of ge-
ometry: government and military service, teaching, studies of fortification
and of theory of mechanisms (the “Poncelet water wheel”) diverted him.
At the end of his life he returned to geometry but mostly regretted that he
had not been able to give regular attention to mathematics, that others had
not explored projective geometry as he thought they should have, and that
Chasles had inopportunely remembered Desargues (i.e., that projective ge-
ometry did not originate with Poncelet).

Poncelet began with the observation that just as on a projective plane
there are no exceptions to how lines are mutually related, likewise there
must be no exceptions for second-order curves. But why, then, did ellipses
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usually intersect in four points while their special case, circles, always in-
tersect in only two? Poncelet found the answer: all circles pass through two
fixed points, called cyclic points. However, we do not notice these points
since they are both infinite and imaginary. This is how complex numbers
first appeared in real geometry (mathematicians had only just begun to get
used to them in algebra). Cyclic points became one of the main objects of
geometry. With their help one could explain all real metric relationships in
the plane.

Another astounding discovery of Poncelet is the duality principle, a new
method for obtaining geometric assertions for which he shares the honors
with Joseph Gergonne (1771–1859). Roughly speaking, it states that in a
theorem on the mutual position of points and lines on a projective plane
the words “line” and “point” may be interchanged and, after any neces-
sary editing so that the text makes sense (replacing “intersect” by “pass
through,” etc.), we obtain a new theorem. For example, “two distinct lines
intersect” turns into “a unique line passes through two distinct points.”

From that time on, projectivity became the reigning method in geom-
etry. However, for a long time projective ideas were considered to be a
black box-like device for proving Euclid’s theorems. Infinite elements were
looked on as ideal, alien elements that simplified considerations (similar
to the way complex numbers were first viewed). The consistent projec-
tive approach, however, required one to consider both finite and infinite
points on an equal footing and, for example, the behavior of curves at infin-
ity (e.g., asymptotes) deserved no special interest. The minds of geometers
were occupied for a long time with discussions about the ideas of projective
geometry. These discussions are especially noteworthy when we turn to
German geometry of the mid-19th century, i.e., the time of such remarkable
geometers as Ferdinand Möbius (1790–1868), Julius Plücker, Jakob Steiner
(1796–1863), and Christian von Staudt (1798–1867). Their activities were
carried out against the background of a bitter struggle between the “an-
alytics” and “synthetics,” although nowadays their differences might be
no more cause for argument than those of Jonathan Swift’s characters, who
discussed which end of the egg it is better to begin eating. Analytics mainly
used the coordinate representation of geometric figures, as it allowed them
to apply the methods of algebra and analysis. Synthetics believed that
these methods deprived geometry of its genuine spirit, of true geometric
intuition.

The most active synthetic was Steiner, the son of a peasant, who walked
behind a plough until he was 19 years old when he became the pupil and
colleague of the famous Swiss teacher Johann Pestalozzi (1746–1827), and
only turned to mathematics when he was older. Steiner had wonderful
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geometric intuition and the flights of his spatial imagination were impos-
sible to depict even with pictures. He refrained from using them at his
lectures, which were held in darkened classrooms to help the students to
concentrate. Steiner remonstrated emphatically against complex numbers,
those “ghosts” and “shadow-land in geometry” which the analytics used
so much. Klein believed that perhaps it was Steiner’s intolerance that made
Plücker, a typical analytic, cut short his studies of geometry and resume
them only after Steiner’s death.

Projective Coordinates

Above all, the analytics raised the problem of introducing coordinates on
a projective plane so as to include both finite and infinite points. The
crucial construction here (homogeneous coordinates) is due to Plücker. He
proposed to characterize the points of a projective plane not by two but
by three numbers (x0, x1, x2) �= (0, 0, 0), but he assumed that 3-tuples that
differ by a common multiplier, (x0, x1, x2) and (λx0, λx1, λx2), correspond to
the same point of the plane. Then we may assume, for example, that points
with x0 �= 0 are “finite,” and we may always take these points with x0 = 1,
i.e., (1, X1, X2), where X1 = x1

x0
, X2 = x2

x0
are inhomogeneous (Cartesian)

coordinates. Points with x0 = 0 constitute a line at infinity. However,
this line may be fixed arbitrarily. Projective transformations of the plane,
which transform lines into lines, correspond to linear transformations of
homogeneous coordinates. Lines on the projective plane are defined by
equations of the form ξ0x0+ξ1x1+ξ2x2 = 0, where (ξ1, ξ1, ξ2) �= (0, 0, 0) and
is defined up to a scalar multiplier. This led Plücker to consider (ξ1, ξ1, ξ2) as
homogeneous coordinates of lines, and then we obtain that lines constitute
another (dual) copy of the projective plane. This interpretation makes the
Poncelet-Gergonne duality principle completely transparent.

By using homogeneous coordinates it is easy to understand Poncelet’s
theorem on intersecting circles, which requires a high level of geometric
intuition in its synthetic form. In inhomogeneous coordinates equations
of circles have the form X2

1 + X2
2 + aX1 + bX2 + c = 0, or in homogeneous

coordinates,
x2

1 + x2
2 + ax1x0 + bx2x0 + cx2

0 = 0.

It is clear that all these curves contain the pairs of points (0, 1, i), (0, 1, −i),
i.e., these points are in fact infinite and imaginary ({x0 = 0} is the line at
infinity).

In three-dimensional projective space, points are characterized by four
numbers (x0, x1, x2, x3) �= (0, 0, 0, 0), defined up to proportionality. We
may assume that {x0 = 0} is a plane at infinity. Planes are defined by
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equations x0ξ0 +· · ·+x3ξ3 = 0, i.e., there is a duality between the projective
space of points and the projective space of planes.

The Manifold of Lines (Plücker Coordinates)

The next natural question that excited Plücker’s curiosity concerned con-
structing the collection of lines in the projective space P

3. It turned out
that unlike the case of planes (and of lines on the plane) we arrive at a
completely new geometric formation. The set of lines in P

3 depends on
four parameters. In Cartesian coordinates X1, X2, X3 almost all lines may
be written as X1 = α1X3 + β1, X2 = α2X3 + β2. This parameterization does
not include lines that are parallel to the plane X1OX2, and there are still
lines at infinity.

Plücker proposed introducing coordinates on the whole collection of
lines. He reasoned as follows. A line is defined by a distinct pair of
points, i.e., in homogeneous coordinates in P

3 by x = (x0, x1, x2, x3), x̃ =
(x̃0, x̃1, x̃2, x̃3), where x and x̃ are not proportional. This pair of points, how-
ever, may be chosen in many ways. To get rid of this arbitrariness we have
to consider expressions

pij = xix̃j − xjx̃i (1)

that no longer depend on the choice of points (up to proportionality).
Here we have pii = 0, pij = −pji. We will call the set of six numbers
p01, p02, p03, p12, p13, p23 the Plücker coordinates of the line. Since the points
were given in homogeneous coordinates, the sets {pij} and {λpij} correspond
to the same line. If all the pij vanish, then x and x̃ are proportional, which
we have excluded. As a result, it is natural to consider sets of six nonzero
numbers {pij} up to proportionality as giving the homogeneous coordinates
of a point in the five-dimensional projective space P

5.
Thus, the set of lines turns out to be naturally embedded in P

5. Since it
depends on four parameters, the numbers pij must satisfy one more relation.
Indeed, one can verify that this identity is always satisfied:

p01p23 − p02p13 + p03p12 = 0. (2)

It is also not difficult to see that there are no other relations, namely, for any
nonempty set of numbers {pij} satisfying (2) we can find x, x̃ satisfying (1).

From the geometrical point of view (2) defines a second-order surface
in P

5. If we pass to coordinates

p01 = u0 − u3, p23 = u0 + u3, p02 = u4 − u1,

p13 = u4 + u1, p03 = u2 − u5, p12 = u2 + u5,
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then equation (2) takes the form

u2
0 + u2

1 + u2
2 − u2

3 − u2
4 − u2

5 = 0. (3)

Thus, the set of lines in three-dimensional projective space P
3 is embedded

as the second-order (“quadric”) surface (2) or (3) in five-dimensional projec-
tive space P

5. This discovery of Plücker played a main role in the molding
of contemporary mathematical ideas, establishing an isomorphism of two
completely different geometric structures: a manifold of lines in P

3 and
a quadric surface in P

5. After this the best geometers, Sophus Lie (1842–
1899), Felix Klein, and Élie Cartan lovingly collected similar isomorphisms.
But later on interests shifted toward taking a general view of manifolds,
working only with coordinates regardless of the geometrical nature of the
points.

In the first place, Plücker’s successors were interested in the following
question. Suppose we consider a quadric in P

5 not with three + signs and
three − signs as in (3), which we call signature (3.3), but with signature (4.2)

or (5.1). Do these quadrics admit a similar geometric interpretation? Lie
discovered that one can just as naturally introduce homogeneous coordi-
nates in the set of spheres in three-dimensional space and obtain a quadric
with signature (4.2) in P

5 (Lie sphere geometry). Klein introduced rather
delicate “hexaspherical” coordinates in four-dimensional space, and points
with these coordinates made up a quadric of signature (5.1) in P

5.
We will also be interested in this problem, but we will consider another

way to solve it. Passing to complex space erases the difference between
quadrics of different signatures, since multiplication by i enables us to
change to coordinates where the equation takes the form z2

0 + · · · + z2
5 = 0

(all real quadrics are real forms of a single complex one). If we wish to pass
from one real form to another the usual logic of projective geometry makes
us “complexify” the problem and move into complex space.

The Complex Picture

Let CP
3 be complex projective space, with complex homogeneous coordi-

nates z = (z0, z1, z2, z3). The complex line that joins z, z̃ consists of points of
the form λz+µz̃. In the set of complex lines we introduce complex Plücker
coordinates pij satisfying (2), which reduces to (3) with uj complex.

Let us consider real subsurfaces of the complex quadric Q ⊂ CP
5 de-

fined by (3). If we assume all uj are real, then we obtain the case considered
above. However, we can assume that u0, u1, u2, u5 are real and u3 = iv3,
u4 = iv4 are purely imaginary, or that only u3 = iv3 is purely imaginary
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and the other coordinates are real. Then we obtain real subsurfaces (u and
v are real!),

u2
0 + u2

1 + u2
2 + v2

3 + v2
4 − u2

5 = 0, (S)

u2
0 + u2

1 + u2
2 + v2

3 − u2
4 − u2

5 = 0. (H)

These are a sphere and a hyperboloid of one sheet in homogeneous coordi-
nates, respectively. Since these real surfaces lie on the complex quadric Q
and complex lines correspond to the points of Q, it is natural to try to clarify
which complex lines correspond to points of the surfaces (S) and (H).

Interpreting Real quadrics in the Language of Complex Lines
(the Case of a Sphere)

In case (S) we have

p01 = u0 − iv3, p23 = u0 + iv3, p02 = iv4 − u1,

p13 = iv4 + u1, p03 = u2 − u5, p12 = u2 + u5.

Thus, the Plücker coordinates corresponding to the points of (S) satisfy the
conditions

p23 = p̄01, p13 = −p̄02, Im p03 = Im p12 = 0. (4)

These conditions completely characterize the points of (S). Then if the
line with these Plücker coordinates passes through z = (z0, z1, z2, z3), we
may assume that the other point is z̃ = (−z̄3, z̄2, −z̄1, z̄0). Thus the complex
lines in CP

3 passing through (z0, z1, z2, z3)and (−z̄3, z̄2, −z̄1, z̄0) correspond
to the points of the real quadric (S).

What is remarkable about these lines? Through each point z ∈ CP
3 there

passes a unique line of this kind. As a result, the whole space CP
3 is the

union of nonintersecting lines. This partition (fibration) plays an important
role in mathematics and appeared not very long ago independently of
Plücker’s considerations. If we intersect this fibration of CP

3 with the
real projective space P

3, we will obtain a fibration of P
3 into lines that join

(x0, x1, x2, x3) and (−x3, x2, −x1, x0). In simple terms we obtain a partition
of the usual three-dimensional space into pairwise skew lines. (This is the
way the problem was stated in the 1979 Moscow Mathematical Olympiad.)
The realization of (S) as a fibration of CP

3 is the first of the fundamental
constructions of twistor theory.
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Realizing a Hyperboloid as a Family of Lines

In case (H) we have

p23 = p̄01, Im p13 = Im p02 = Im p03 = Im p12 = 0. (5)

First, suppose for simplicity that p03 �= 0. Because the coordinates are
homogeneous we may also assume p03 = 1 and choose points on the cor-
responding line with coordinates z0 = z̃3 = 1, z3 = z̃0 = 0. Then they are
uniquely defined. From (5) it follows that z = (1, a, c, 0), z̃ = (0, c, b, 1),
where a, b are real. What is remarkable about the lines that join such pairs
of points? It is straightforward to check that all points on these lines (i.e.,
points of the form w = λz + µz̃ with λ, µ complex) must satisfy

Im(w1w̄0 + w2w̄3) = 0. (6)

If we remove the restriction p03 �= 0, we find that there are no other lines
all of whose points satisfy (6). Therefore, condition (6) defines a surface
N of real dimension five in CP

5 such that all complex lines in N are lines
whose Plücker coordinates satisfy (5), hence they are lines that correspond
to points of the real surface (H). Note that the surface N completely con-
tains the real projective space P

3 and that, generally speaking, a family
of complex lines depending on four real parameters fills out a domain in
CP

3, which follows from considering dimensions. Therefore, we expect N
to have some important properties. Indeed N is the unique surface, up to
projective transformations, on which a four-parameter family of complex
lines can fit. This result has a real analogue. There are plenty of ruled
surfaces in three-dimensional space that contain a one-parameter family of
lines, but only the hyperboloid of one sheet contains two different families
(among all nonflat surfaces the hyperbolic paraboloid X3 = X2

1 − X2
2 also

has this property, but from the projective point of view it is equivalent to a
hyperboloid of one sheet).

Let us sum up. We started from the quadric of real lines in P
3 and then

passed to the quadric of complex lines in CP
3. Among the real second-order

surfaces that lie on this complex surface there are the surface of real lines
and two other types of surfaces: some surfaces correspond to fibrations of
CP

3 into complex lines, while others correspond to five-dimensional real
surfaces in CP

3 containing a family of complex lines that depend on four
real parameters. This example distinctly shows a phenomenon through
which the 19th century geometers “suffered.” First, real objects often admit
a complex interpretation. Second, when we complexify a real problem and
then, conversely, see which real problems lead to the same complex ones,
we often obtain new meaningful geometrical problems.
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A Metric on the Manifold of Lines

Plücker and his successors were also concerned with the geometry of the
manifold of lines Q ⊂ CP

5. They studied how to express various geometric
facts about the initial projective space CP

3 in terms of Q. To points in CP
3

there correspond two-dimensional surfaces of lines in Q that pass through
these points; to planes in CP

3 there correspond two-dimensional surfaces
of lines lying in these planes (two families of flat generators of the quadric
Q). The reverse direction was also fruitful, considering families of lines
in CP

3 whose Plücker coordinates satisfy one relation (complexes) or two
(congruences). Here is an example of such a fact.

Lines in three-dimensional space sometimes intersect. How do we ex-
press that fact in Plücker coordinates? It turns out that if {pij} and {p′

ij} are
Plücker coordinates of two lines, then the lines intersect if and only if

p01p′
23 − p02p′

13 + p03p′
12 + p23p′

01 − p13p′
+02 + p12p′

03 = 0. (7)

We will deduce (7) under the simplifying assumption (which was already
made) that p03 �= 0, p′

03 �= 0. Then p03 = 1, p′
03 = 1 and the lines join

(1, α1, α2, 0), (0, β1, β2, 1) and (1, α′
1, α

′
2, 0), (0, β ′

1, β
′
2, 1), respectively (actu-

ally we have passed from homogeneous to inhomogeneous coordinates).
In this case the points of the line p are given by the equations

z1 = α1z0 + β1z3, z2 = α2z0 + β2z3,

and those of p′ analogously by

z1 = α′
1z0 + β ′

1z3, z2 = α′
2z0 + β ′

2z3.

The lines intersect if there is a common solution (z0, z1, z2, z3) to this system
of four equations, or to the system of two equations in two unknowns (z0, z3):{

z0(α1 − α′
1) + z3(α2 − α′

2) = 0,

z0(β1 − β ′
1) + z3(β2 − β ′

2) = 0.
(8)

Thus, lines intersect if and only if this expression vanishes:

ρ(α, β, α′, β ′) = (α1 − α′
1)(β2 − β ′

2) − (α2 − α′
2)(β1 − β ′

1). (9)

A modern mathematician would call expression (9) a “distance.” True, (9)
may vanish when p �= p′ and is in general a complex number. But this was
not taboo even for geometers in the 19th century. Klein recalls how they
liked to use lines along which the distance was zero (isotropic lines). Lie
called these lines “crazy” and used to say that French geometers knew how
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to use them to obtain proofs “out of thin air.” We too will call the quantity
ρ the distance between the lines p = (α, β) and p′ = (α′, β ′).

Thus, the distance ρ vanishes if and only if the lines intersect. This
condition defines the distance almost uniquely. More exactly, the distance
is defined up to a conformal change (homothety). This means that angles
and ratios of distances in a neighborhood of any fixed point are uniquely
defined up to values which are small compared to the distance to this point.

To each point p ∈ Q we assign the set of points Vp ⊂ Q that are at zero
distance from p, i.e., ρ(p, p′) = 0 and the lines p, p′ intersect. The set Vp is
called an isotropy cone and coincides with the intersection of the quadric
Q with the tangent plane to Q at the point p.

Distances on (S) and (H)

Let us follow the trail of the distance ρ on the surface (S). We again restrict
ourselves to points where p03 �= 1. Then condition (4) implies that β1 = ᾱ2,
β2 = −α1, and we can take only the pair of complex numbers (α1α2) as
coordinates on (S). Thus

ρ(S)(α; α′) = |α1 − α′
1|2 + |α2 − α′

2|2. (10)

This distance is missing all the shortcomings of a general ρ: It is nonneg-
ative and vanishes only when α = α′. This agrees with the fact that lines
corresponding to points of (S) do not intersect. We have obtained the usual
Euclidian distance on the four-dimensional real sphere in five-dimensional
Euclidian space.

Now let us restrict ρ to the hyperboloid (H) and again take points with
p03 = 1. Let M ⊂ (H) be the set of such points on (H). Then by (5), α1, β2 are
real and β1 = ᾱ2. Make the substitution α1 = t−x1, β2 = t+x1, β1 = x2+ix3,
where all (t, x) are real. As a result expression (9) takes the form:

ρ(H)(t, x; t′, x′) = (t − t′)2 − (x1 − x′
1)

2 − (x2 − x′
2)

2 − (x3 − x′
3)

2. (11)

This is exactly the Minkowski metric. (It is real but not positive definite.)
If we take p ∈ M and intersect the cone Vp with the surface M, we obtain
the light cone with vertex p. Thus, the distance on the quadric Q that arises
naturally from the geometry of lines induces the Euclidean distance on the
sphere (S) and the Minkowski distance on the hyperboloid (H).

The points of M ⊂ (H) correspond to the lines on the surface N that do
not intersect the line z0 = z3 = 0. The manifold (H) plays an important role
in physical theories, being a conformal extension of the Minkowski space
M. It is obtained from M by adding a light cone at “infinity” (similar to how



380 � Tales of Mathematicians and Physicists �

Euclidean space may be extended by adding a point at infinity rather than
the whole plane at infinity as for a projective extension). Let us consider
projective transformations of CP

3 that preserve N. They transform lines on
N into lines on N and intersecting lines into intersecting lines. By the same
token, transformations are induced on (H) that map light cones Vp to each
other. This is how we obtain all conformal transformations of Minkowski
space (shifts, homotheties, inversions), with respect to which (massless)
physical theories are often invariant. To obtain the group of proper motions
(the Poincaré group) we must restrict ourselves to transformations that
also preserve the line z0 = z3 = 0. Therefore, the geometry of Minkowski
space arises completely within the realm of Plücker’s geometry of the space
of lines.

Is there a natural way to go backwards? When studying Minkowski
space, how do we find the auxiliary three-dimensional space (the space
of Penrose twistors) whose lines correspond to the points of Minkowski
space? We can do this using the light cones Vp. Recall that lines intersecting
the line p correspond to points of Vp. All lines corresponding to points on
the same generator of Vp (to the light line) intersect p in the same point.
Therefore, there is a correspondence between points of N and light lines,
so that N may be considered as the set of light lines on (H). In the complex
picture, points of CP

3 are identified with complex “light” lines on Q (with
half the two-dimensional generators of Vp).

A Remark on Analytical Applications

The geometric picture we have presented is no doubt instructive. But as
we have already noted, it is only a means for new analytical constructions
within the Penrose theory. Sad to say, we can only touch on this super-
ficially. Penrose’s idea is that to analytic objects on the four-dimensional
manifold M (on (S) in the Euclidean theory) there must correspond some
equivalent objects on N or CP

3. The latter must be simpler than their coun-
terparts on M and (S) and a significant portion of the equations of math-
ematical physics on M and (S) are just corollaries of the fact that objects,
initially defined on a three-dimensional manifold, are somehow translated
onto a four-dimensional manifold. We must note that many differential
equations arise as relations when we pass (by means of an integral trans-
form) to manifolds of higher dimension. This is an important and as yet
inadequately studied source for obtaining and solving equations. In the
simplest example, due to Fritz John (1910–1994), we integrate a function
along lines in three-dimensional (real) space and obtain solutions of a (ul-
trahyperbolic) second-order differential equation in the four-dimensional
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space of lines. Penrose and his followers encountered similar effects in the
more complicated complex situation. Therefore, they had to deal not with
functions but with a much more complicated object, namely, cohomology.
It turned out that in passing from M and (S) to CP

3 they actually obtained
simpler and more classical equations, a variant of the Cauchy–Riemann
equations in the theory of analytic functions. This approach embraces not
only linear equations of mathematical physics (Dirac–Weyl, Maxwell, the
linearized Einstein equation) but also some nonlinear ones (Yang–Mills).

Self-Dual Metrics

In concluding, we will dwell further on one direction of Penrose’s work.
So far we have dealt with flat Minkowski space-time. In the general theory
of relativity we are interested in distortions of four-dimensional manifolds
that must satisfy strong nonlinear restrictions (e.g., Einstein’s vacuum equa-
tion). Constructing solutions to Einstein’s equation is a difficult problem.
Penrose, starting from the realization of Minkowski space as a family of
lines in CP

3, looked for manifolds that would satisfy Einstein’s equation
as families of lines on some three-dimensional manifolds. A metric here
would have to be obtained from the condition on intersecting curves (the
distance between intersecting curves is zero). From the start he limited
himself to the complex case. There are additional reasons for this in the
nonflat case, namely that on the manifold of curves we do not have the
nonflat Einstein metric with signature (3.1), like the Minkowski metric,
but rather the Riemann metric (4.0).

Passing to the complex case significantly simplifies the situation and
makes it more geometric. A number of invariants of the components of
the curvature of the manifold that are introduced analytically in the real
case acquire a clear geometric meaning in the complex case (Ricci and
Weyl tensors). Penrose showed that a certain class of complex solutions
of Einstein’s equation (self-dual) are obtained if we perturb the complex
structure in a particular way in a neighborhood of some line in CP

3 and
consider a certain family of curves that are “close to” lines. Unfortunately,
there is an aspect of this approach that is especially ineffective for finding
the family of curves. However, in certain cases the calculations can lead to
a specific expression for the metric.

Some other geometric ideas appeared later for constructing specific so-
lutions to nonlinear equations, including the Einstein equation, using the
language of twistors. One such idea consists of the fact that in an eight-
parameter family of second-order curves in CP

3 there are four-parameter
subfamilies on which the intersection conditions induce the Einstein met-
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ric. In this way we obtain certain well-known solutions and many new
ones as well. This idea is completely in line with Plücker’s ideology: The
intersection condition for lines gives a flat metric, and by using conics we
construct nonflat metrics.

The ideas of the twistor program have undergone considerable devel-
opment in recent years, although perhaps the initial hopes for the role
of twistors in theoretical physics have turned out to be overly optimistic.
Within mathematics twistors have found notable application to multidi-
mensional complex analysis, but most of all to geometry and topology,
where they led to a revolution in the theory of four-dimensional mani-
folds.
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