

Software Project
Management

FOR

DUMmIES
‰

by Teresa Luckey, PMP, MBA, and
Joseph Phillips, PMP

01_749346 ffirs.qxp 8/30/06 10:15 PM Page i

File Attachment
C1.jpg

01_749346 ffirs.qxp 8/30/06 10:15 PM Page i

Software Project
Management

FOR

DUMmIES
‰

by Teresa Luckey, PMP, MBA, and
Joseph Phillips, PMP

01_749346 ffirs.qxp 8/30/06 10:15 PM Page i

Software Project Management For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005935165

ISBN-13: 978-0-471-74934-9

ISBN-10: 0-471-74934-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RZ/QZ/QW/IN

01_749346 ffirs.qxp 8/30/06 10:15 PM Page ii

www.wiley.com

About the Authors
Teresa Luckey was born in Indianapolis, Indiana, the eighth of twelve children.
She earned the degree of Bachelor of Science from the University of Southern
Indiana, with a major in Education. She earned her teaching endorsements in
Computer Education and Mathematics from the University of Indianapolis
and thoroughly enjoyed teaching (and learning from) junior high students for
several years. After deciding to expand her horizons beyond the teaching
profession, she pursued her interests in information systems and project
management while working at hospitals in Indianapolis, and then moved on
to a consulting firm, where she now works as a manager implementing health-
care systems. Teresa earned her Master of Business Administration degree
from Indiana Wesleyan University, where she served as co-class president
with her husband, David. She is just shy of completing her Master of Science in
New Media at Indiana University School of Informatics. One of these days —
soon — she hopes to finish that degree so that she can maintain her reputation
as a life-long learner.

Teresa earned her Project Management Professional Certification through the
Project Management Institute in 2001 and continues to maintain her certifica-
tion. She enjoys contributing to the field of project management, particularly
with regard to healthcare software.

Teresa takes pleasure in spending time with her family — especially her
husband David and their children, Amanda, Sara, and Adam. Being a firm
believer in the axiom that there’s more to life than work, Teresa and her
family are passionate about traveling and exploring all types of music.

01_749346 ffirs.qxp 8/30/06 10:15 PM Page iii

Joseph Phillips, PMP, Project+, is the Director of Education for Project
Seminars. He has managed and consulted on projects for various industries,
including technical, pharmaceutical, manufacturing, and architectural, among
others.

Phillips has served as a project management consultant for organizations cre-
ating project offices, maturity models, and best-practice standardization.

As a leader in adult education, Phillips has taught organizations how to
successfully implement project management methodologies, information
technology project management, risk management, and other courses.
Phillips has taught courses at Columbia College, University of Chicago,
Indiana University, and others. He is a Certified Technical Trainer and has
taught over 10,000 professionals. Phillips has contributed as an author or
editor to more than 30 books on technology, careers, and project management.

Phillips is a member of the Project Management Institute and is active in
local project management chapters. He has spoken on project management,
project management certifications, and project methodologies at numerous
trade shows, PMI chapter meetings, and employee conferences. When not
writing, teaching, or consulting, Phillips can be found behind a camera or
on the working end of a fly rod. You can contact Phillips through www.
projectseminars.com.

01_749346 ffirs.qxp 8/30/06 10:15 PM Page iv

Dedication
I dedicate this effort to David, Amanda, Sara, and Adam Luckey.

Authors’ Acknowledgments
Teresa Luckey: Thanks to Kevin Kirschner, Editorial Manager, for his confi-
dence in me and for providing me with this opportunity. I appreciate Katie
Feltman, Acquisitions Editor, for her diligence in bringing this book to fruition
and for her patience in gracefully answering all of my questions. Nicole Haims,
Project Editor, provided a great deal of guidance and support to me and I am
grateful to her for her efforts. Ed Kirschner, thanks for your ideas and input,
and most of all thank you to David, Amanda, Sara, and Adam Luckey for your
unrelenting support throughout this and all endeavors.

Joe Phillips: Books, like projects, are never done alone.

Thank you to Teresa Luckey for her hard work and incredible input on
this project. A humongous thank you to Katie Feltman and all the folks at
For Dummies for their patience and persistence. I would also like to thank the
hundreds of folks who have attended my PMP Boot Camps. Your questions,
conversations, and recommendations have helped me write a better book.

Finally, thank you to Elizabeth Lee, Rick Gordon, Scot Conrad, Phil Stuck, and
my son, Kyle.

Both authors would like to recognize and thank Cynthia Snyder and Karen
Scott for being conscientious and thorough while reviewing this book.

01_749346 ffirs.qxp 8/30/06 10:15 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Nicole Haims

Acquisitions Editor: Katie Feltman

Technical Editors: Cynthia Snyder and
Karen Scott

Editorial Manager: Jodi Jensen

Media Development Manager:
Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Jennifer Theriot

Layout and Graphics: Claudia Bell, Carl Byers,
Lauren Goddard, Lynsey Osborn,
Heather Ryan, Julie Trippetti

Proofreaders: David Faust, Jessica Kramer,
Techbooks

Indexer: Techbooks

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_749346 ffirs.qxp 8/30/06 10:15 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Starting Your Software Project7
Chapter 1: Examining the Big Picture of Project Management.....................................9
Chapter 2: Initiating a Software Project...25
Chapter 3: Creating the Software Scope..55

Part II: Planning Your Software Project........................77
Chapter 4: Planning for Communications ...79
Chapter 5: Planning for Software Project Risks..107
Chapter 6: Planning for Software Quality ..131
Chapter 7: Building the Project Team..147
Chapter 8: Creating Project Time Estimates ...165
Chapter 9: Building Your Project Budget ..191

Part III: Executing Your Software Project Plan209
Chapter 10: Working the Project Plan..211
Chapter 11: Working with Project People..229
Chapter 12: Procuring Goods and Services ..245

Part IV: Controlling Your Software Project263
Chapter 13: Managing Changes to the Software Project ...265
Chapter 14: Using Earned Value Management in Software Projects281
Chapter 15: Tracking Project Performance...295

Part V: Closing Your Software Project.........................313
Chapter 16: Finalizing the Project Management Processes315
Chapter 17: Documenting Your Software Project...333

Part VI: The Part of Tens ...347
Chapter 18: Ten Ways to Make Your Software Project Crash and Burn349
Chapter 19: Ten Ways to Make Any Software Project Better359

Appendix: Formal Project Management
Training and Certification ...369

Index ...375

02_749346 ftoc.qxp 8/30/06 10:22 PM Page vii

02_749346 ftoc.qxp 8/30/06 10:22 PM Page viii

Table of Contents
Introduction..1

About This Book...1
Who Should Read This Book?...2
How This Book Is Organized...3

Part I: Starting Your Software Project ..3
Part II: Planning Your Software Project..3
Part III: Executing Your Software Project Plan....................................4
Part IV: Controlling Your Software Project..4
Part V: Closing Your Software Project..4
Part VI: The Part of Tens ...5
Appendix ...5

Icons Used in This Book..5
Where to Go from Here..6

Part I: Starting Your Software Project7

Chapter 1: Examining the Big Picture of Project Management 9
Defining Software Projects ..10
Defining Software Project Management ..10
Comparing Projects and Operations ...12
Examining Project Constraints ...13
Understanding Universal Constraints (Time, Cost, and Scope)13

Managing time constraints..15
Managing cost constraints ..16
Managing the scope ...16

Controlling Scope Creep..17
Making Sense of Project Success (Or Failure) ..18
Starting and Finishing Software Projects ..19
Understanding What Makes Software

Project Management So Special..20
Breaking Moore’s Law..21
Dealing with Moore ..21
Dealing with the first-time, first-use penalty.....................................23

Chapter 2: Initiating a Software Project .25
Identifying the Project Purpose..25

Talking to the stakeholders...26
Reaching project consensus ...30

02_749346 ftoc.qxp 8/30/06 10:22 PM Page ix

Dealing with Politics ..31
Moving from Here to There...32

Initiating the project ..34
Planning the project...36
Examining project planning approaches...37
Executing the project...38
Controlling the project ..38
Closing the project ...38

Living with Stakeholders...39
Loving your project team ..39
Loving your project sponsor ..40
Balancing stakeholder expectations..40

Completing a Project Feasibility Study ...42
What feasibility studies do (and don’t do)43
Finding a feasibility consultant...43

Understanding How Executives Select Projects...44
Using the benefit comparison selection model45
Using a scoring model ...46
Facing a murder board...46
Finding a project’s ROI...46

Writing the Product Description ..49
Making Your Project Wish List ...51

Finding the ideal tools ...51
Building a dream team...52
Finding a preferred vendor ...53

Recognizing Doomed Projects..54

Chapter 3: Creating the Software Scope .55
Understanding Product Scope and Project Scope.....................................56

Completing stakeholder analysis ...56
Interviewing stakeholders now to avoid surprises later.................57

Managing Stakeholder Objectives..58
Knowing the sources of common conflicts.......................................58
Resolving common conflicts...60

Building the Software Scope ...61
Dealing with regulations and options ..62
Dealing with project constraints ..64
Getting to the signature...66

Creating the Project Scope ...67
Knowing what the project scope statement must include68
What a project scope doesn’t include ...70

Creating a Work Breakdown Structure ..70
Creating your very own WBS ..71
Making updates to the WBS ..73
Using a code of accounts...73

Software Project Management For Dummies x

02_749346 ftoc.qxp 8/30/06 10:22 PM Page x

Part II: Planning Your Software Project77

Chapter 4: Planning for Communications .79
The Importance of Communicating Effectively..80

Ensuring accurate communication ..80
How not to communicate ..82

Care and Feeding of Nerds ..83
Avoiding Communication Breakdowns ...85

Facing the risks of communication meltdowns................................85
Managing communications across the enterprise87

Calculating the Communication Channels..88
Building an Effective Communication Management Plan91

Knowing the six things every communication plan needs91
The communication responsibility matrix: Determining

who communicates to whom ..93
Setting up ten-minute meetings..94

Defining Who Needs What Information...96
What executives want to hear ..96
What functional managers need to hear ...97
What your project team needs to hear..98
What you need to hear ..99

Defining When Communication Is Needed ...100
Creating a communication schedule ...100
Hosting team and stakeholder meetings...102

Defining Communication Modalities ...104
Modalities for formal communication ...104
Modalities for informal communication..105
Automating communications..105

Chapter 5: Planning for Software Project Risks 107
Identifying Pure and Business Risks..108

Dealing with pure risks in software projects109
Assessing business risks ...109
Accepting everyday technology risks

with your software project ..110
Determining Stakeholder Risk Tolerance..111
Mitigating Risks Early On ..112
Managing Risks in Your Organization..113

Identifying risks ..113
Ranking risks...114

Relying on Quantitative Analysis ...116
Creating a Contingency Reserve ..117
Using Software Models for Risk Management ..118

Using the waterfall model..119
Using the spiral model...121

xiTable of Contents

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xi

Using the V model ..123
Using the scrum development model..124

Preparing a Risk Response Plan...126
Avoiding risks ...127
Transferring risks ...128
Mitigating risks ...128
Accepting the risks...129

Examining Risk Responses and Impacts ...129
Handling the ripple effect of risk response.....................................130
Getting to say, “I told you so!” ..130

Chapter 6: Planning for Software Quality .131
Defining Quality..131

Referring to the product scope ..132
Referring to the project scope..133
Avoiding gold-plated software ..134
Examining quality versus grade ...135

Working with a Quality Policy ..136
Working ISO programs ...137
Getting a Total Quality Management workout................................137
Slipping into the sixth sigma...140
Using homegrown, in-house quality solutions142

Balancing Time, Cost, and Quality...142
Examining optimal quality ..143
Considering quality when making changes144

Chapter 7: Building the Project Team .147
Determining Your Project Needs..148

Revisiting the work breakdown structure.......................................148
Creating a roles and responsibilities matrix148

Finding the Talent ..152
Asking the Right Questions (In the Right Way) ..152

Asking questions that facilitate resource management153
Asking questions that facilitate leadership potential....................154
Finding a star ..155
Working with organizational structures ..155

Determining Who Is Really in Charge ..156
Functioning in a functional organization...157
Mixing it up in a matrix..158
Prospering in the projectized structure ..159
Cooling in a composite structure ...161

Hosting Your First Project Team Meeting ...161
Working with Organizational Policies..162

Chapter 8: Creating Project Time Estimates .165
Organizing Information Before You Build a Timeline166
Understanding the Importance of a Project Network Diagram..............166

Software Project Management For Dummies xii

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xii

Preparing to Create Your PND ..168
Determining What May Happen — and When168
Factoring in external dependencies...170
Putting together all the pieces..170
Relying on network templates ..171
Identifying subnets and fragnets ..172

Using Historical Information to Complete
Inexact Activity Time Estimates ...172

Identifying Activity Duration Influencers..173
Documenting project assumptions ..173
Documenting project constraints ..173
Considering the project risks..174
Considering resource requirements and capabilities....................175
Anticipating the first-time, first-use penalty176

Making the Project Duration Estimate ..176
Creating a rough order of magnitude estimate...............................177
Creating an analogous estimate ...177
Creating a parametric estimate ..178

Estimating Do’s and Don’ts ...178
Using PERT for the Most Accurate Estimates ..179
Knowing What to Say if the Boss Wants an Estimate Now180
Understanding the Way PND Paths Interact...181

Calculating the critical path..181
Calculating float..182
Applying float to the project...184

Creating the Project Schedule ..185
Working with the project calendar...185
Working with a resource calendar..186
Using resource-leveling heuristics ...187
Crashing and fast tracking your project..188

Chapter 9: Building Your Project Budget .191
Creating Cost Estimates ..191

Using the right resources (and using them wisely)192
Creating a rough estimate ...193
Creating a budget estimate ...194
Creating a definitive estimate ...194

Creating an Accurate Estimate ...195
Considering Project Profitability..197
Planning for Contingencies ...198
Controlling Project Costs ..199

Understanding accounting blue dollars ..199
Understanding work-for-hire accounting ..199
Following simple strategies to manage project expenses.............200

Having More Project than Cash..202
Completing root cause analysis ...203
Reducing the project scope ..205
Begging for cash ...206

xiiiTable of Contents

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xiii

Recognizing Budgetary Problems Before You
Get to the Root Cause Analysis Stage ..207

Dealing with a Budget Problem that Your Bosses
Know about (But Haven’t Addressed) ...208

Part III: Executing Your Software Project Plan.............209

Chapter 10: Working the Project Plan .211
Authorizing the Project Work ...211

Creating a work authorization system...212
Using a project management information system212

Ensuring Quality in Execution ..213
Understanding the Interoperability

of the Quality Management Plan ..216
Following Quality Assurance ..217
Following the Quality Policy...218
Managing Software Project Risks ...219

Gathering the ingredients for a solid risk management plan220
Examining typical risks..221
Getting a plan together ..221
Gathering information to identify real risks222

Monitoring and Controlling Risks ..224
Managing Secondary and Residual Risks..225
Documenting Risk Management Effectiveness...226

Chapter 11: Working with Project People .229
Examining the Phases of Team Development...229

Understanding the life cycle of a typical project team..................230
Making a team out of a group of people ..232
Training the project team..232

Doing Some Fun Team-Building Exercises ..233
Managing Project Conflicts ...234

Dealing with stakeholders...235
Dealing with project team members..236
Documenting project conflicts and resolutions237

Using Your Super Magic Project Manager Powers...................................238
Forcing a decision ..238
Relying on expert power ...239
Using coercive power ..240
Rewarding the project team..242

You and Your Positional Power ..243

Chapter 12: Procuring Goods and Services .245
Finding a Vendor ..246

Using RFIs to solicit vendors ..247
Hosting a bidders’ conference..248

Software Project Management For Dummies xiv

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xiv

A day in the life of a bidders’ conference..248
Setting up criteria for RFPs ...249

Selecting the Vendor..250
Considering market conditions ..250
Using a screening system ..251
Using the help of others ..251
Implementing a weighting system..252

Negotiating for the Best Solution ...253
Starting with price..253
Considering time, cost, and quality issues254

Administering Contracts ...255
Selecting the contract type ...256
Writing the terms and conditions ..256
Creating the statement of work ..258
Solving problems and compromising ..259

Closing the Vendor Contract ..260
Auditing the goods and services..261
Signing off for the procured goods and services261

Part IV: Controlling Your Software Project...................263

Chapter 13: Managing Changes to the Software Project265
Introducing the Controlling Process Group..266
Controlling the Project Scope...266

Examining the project scope ..267
Creating and following a change control system269
Determining the value of the proposed change271
Correcting mistakes ...271

Controlling Project Costs ..272
Managing project cost variances ...273
Estimating the cost of change...274
Forecasting variance..274

Controlling the Project Schedule ...275
Managing project time variances ...275
Estimating impact of change on the project schedule277
Forecasting schedule variances ...278

Chapter 14: Using Earned Value Management
in Software Projects .281

Defining Earned Value Management ..281
Understanding what earned value is (and isn’t)282
Discovering the other pieces of the EV formula282
Determining a project’s worth..283

Discovering the Earned Value Management Formulas............................284

xvTable of Contents

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xv

Playing with Values ..286
Calculating your PV..286
Calculating earned value ...287
Calculating your AC ...287
Creating a new EAC ..288
Determining the estimate to complete the project........................289
Uh-oh! What’s your variance? ...289
Finding your cost and schedule performance indexes292

Chapter 15: Tracking Project Performance .295
Planning Project Metrics ...296

Establishing project goals ...296
Planning for project metrics ...297
Determining realistic project milestones ..298

Implementing a Tracking Plan ..298
Using project baselines..299
Stressing accuracy in reporting..300
Using a Project Management Information System302

Tracking Project Performance..302
Using earned value management ...303
Creating Pareto charts...303
Creating control charts..306

Communicating Project Performance ...308
Relying on the communication management plan.........................308
Automating project communications ..309
Hosting status meetings ..310
Sharing good and bad news ..311

Part V: Closing Your Software Project313

Chapter 16: Finalizing the Project Management Processes 315
Closing the Software Project...315

Completing quality control ...317
Completing scope verification..318

Closing Out Vendor Contracts..319
Auditing vendors’ work and deliverables320
Paying the bills ...322

Completing the Project (Or at Least
Transferring It to Someone Else)..322

Celebrating! ...324
Releasing project team members from the project team..............325

Case Study: Completing a Project Post Mortem328

Software Project Management For Dummies xvi

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xvi

Chapter 17: Documenting Your Software Project 333
Using Teamwork When Writing Documentation334
Completing the Lessons Learned Documentation...................................335

Getting your historical information together
at the beginning of a project ...336

Creating a lessons learned spreadsheet
at the beginning of the project..336

Organizing Your Lessons Learned Document ..338
Organizing the summary of your document...................................338
Organizing the meat of the document ...339
Organizing your references, contributors, and resources339
Documenting the project’s successes ...340
Documenting the project’s failures ..340
Documenting the better approach...341
Offering advice for future project managers...................................341

Creating the User Manual and Help System ...342
Using the project scope as a reference..343
Establishing operational transfer...343
Avoiding helpless help systems ...346

Part VI: The Part of Tens..347

Chapter 18: Ten Ways to Make Your
Software Project Crash and Burn .349

Failing to Plan ...349
Ignoring Risk Management..350
Letting Your Ego Lead the Project ...351
Letting Your Iron Triangle Melt ..352
Hiding from the Project Team...353
Hovering over the Project Team ..353
Creating Unrealistic Schedules...354
Consistently Being Inconsistent...355
Doing Nothing...356
Being a Wimp ..357

Chapter 19: Ten Ways to Make Any Software Project Better 359
Asking the Right Questions...359
Being a Good Communicator..360
Showing Your Leadership Skills ...361
Creating the Right Project Plan ..361
Finding the Correct Sponsor...362

xviiTable of Contents

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xvii

Recognizing Failure Before It Arrives ..363
Planning, Planning, and a Little More Planning..364
Documenting Your Project Even if You Don’t Want To............................365
Hosting a Successful Project Meeting..365
Establishing Project Rules Before the Project Begins367
Communicating Good and Bad News ..367

Appendix: Formal Project Management
Training and Certification ..369

Getting Up Close and Personal with
the Project Management Institute ...369

Finding Out Whether the Project Management
Professional Certification Is for You ..370

Understanding what a PMP certification says to others...............371
Understanding what the PMP certification gets you371
Getting started..372

What Is the CAPM Certification? ..373
Deciding between the PMP and the CAPM ...374

Index..375

Software Project Management For Dummies xviii

02_749346 ftoc.qxp 8/30/06 10:22 PM Page xviii

Introduction

Welcome to Software Project Management For Dummies; we hope you
enjoy the ride as we take you through scenic highways dotted with

the hues and shades of software project management concepts, project team
development, and various descriptions of fascinating new terminology.

We’re two experienced software project managers, and we wrote this book
because we want you to benefit from the lessons we’ve learned through years
of experience. You don’t have to suffer to be a success. You just have to
follow our example.

About This Book
The purpose of this book is to assist you in understanding and using software
project management concepts. We want to pique your curiosity about some
of the project management topics and processes and provide you with some
tips on communicating project information to team members, executives,
clients, and other important stakeholders. With the help of this book, you can
develop high-performing project teams who complete projects on time and
under budget. Not only that, with the help of Software Project Management For
Dummies, we hope that you’ll cultivate high-performing teams who respect
your authority and believe in your abilities, even though you sometimes
make them work overtime.

This book isn’t intended to be a complete reference for discovering every-
thing there is to know about software project management. It’s also not
intended to be your sole source of information if you’re preparing for your
PMP certification (for that you might want to check out PMP Certification For
Dummies by Peter Nathan Gerald Everett Jones and published by our friends
at Wiley).

We’re ambitious, but not unrealistic, and we know that project management
of any type is a little bit of an art and involves a lot of practice. There is so
much more to know that this book would have ended up being as big as, well,
as big as something that’s really big. It’s not that we necessarily excluded
anything from this book, but we touched on some topics at a high level for

03_749346 intro.qxp 8/30/06 10:16 PM Page 1

the sake of practicality. We discuss quality management for example, but vol-
umes upon volumes have been written on just that one topic, so we couldn’t
give you every bit of information — just the information you need to get the
job done and get on to the next task.

To find out more about software project management and project manage-
ment in general, or to study for your PMP certification, you may want to check
out Software Project Management Kit For Dummies by Greg Mandanis and Allen
Wyatt. We also personally reread many times PMP: Project Management
Professional Study Guide, 3rd Edition, by Kim Heldman (Wiley). Although
Heldman’s book is written in a different format and follows a different flow
than the PMP bible, Guide to the Product Management Body of Knowledge
(PMI), it contains the same information and it’s a good companion to the
Guide to the PMBOK.

Who Should Read This Book?
So you’ve just picked up this treasure in the bookstore and you’re looking it
over trying to decide whether it’s the book for you. Well, this book is defi-
nitely for you if you are

� An experienced software project manager who is interested in improving
your skills and finding out a little bit more from other experienced soft-
ware project managers’ perspectives.

� An experienced general project manager who is moving into software
project management (or maybe you’ve been thrust into software project
management without a lot of time to prepare).

� Just starting to get to know the discipline of project management and
deciding whether you should move in the direction of software project
management.

� An ambitious project team member who has become an ad-hoc project
manager because your boss isn’t showing enough leadership.

� Not involved in a project management career at all, but contemplating
software project management as an alternative.

So, whether or not you are currently a project manager or software project
manager, actively working on a project team, or completely in the dark about
this mysterious field, this book has something for you. If you’re experienced,
you’re bound to discover a new method for handling a situation, and if you’re
deciding whether or not to delve into the field of software project manage-
ment, this book may help you make that significant decision.

2 Software Project Management For Dummies

03_749346 intro.qxp 8/30/06 10:16 PM Page 2

How This Book Is Organized
This book contains six major parts. Each part contains several chapters. Look
at the Table of Contents and decide which areas are of most interest to you. Or
skim through the index for a keyword or term that you want information about.

This book was written in a format that coincides with the natural progression
of a software project, from planning stages until the very end. However, it’s
not absolutely imperative that you read all of the chapters in order. Feel free
to skip to and fro. All projects move at their own pace and have their own
unique challenges, so some chapters might have more relevant information
for you right now than others. We do think you should start at Chapter 1
before you move forward, and if you never deal with creating software pro-
ject budgets, you can safely skip Chapter 9. If you’re not working with ven-
dors or contracts, you could also safely skip Chapter 12. Some project
managers on smaller projects might not have to worry about earned value
management, so skip Chapter 14 with a clear conscience if you don’t need to
know about this topic.

Part I: Starting Your Software Project
Part I introduces you to those elements of software project management that
are the foundation upon which you construct the remaining phases of your
software project. All the other chapters in the book are based on the con-
cepts contained within Part I.

Part II: Planning Your Software Project
Part II introduces you to the basic concepts and essential elements of creat-
ing your software project plans. You discover how to

� Document your scope statement

� Comprehend the importance of project communication

� Develop a risk management plan and understand why that’s so crucial to
your project’s success

� Create a quality management plan

� Recruit the appropriate members for your software project team

� Generate top-notch schedules and budgets

3Introduction

03_749346 intro.qxp 8/30/06 10:16 PM Page 3

Part III: Executing Your
Software Project Plan
Part III introduces you to your next steps after planning your software project.
You can create the most fantastic software project plan your stakeholders
have ever set eyes on, but if you don’t know how to execute the project plan,
what’s the point? That would be like going bear hunting with a BB gun.

Amaze your friends and flabbergast your competition by discovering how to

� Work the software project plan you’ve created

� Ensure that your software project plan contains all of the required
quality aspects to make it a huge success

� Understand different personality types on your team and develop a
high-performance project team

� Get a feel for some of the different types of contracts

Part IV: Controlling Your Software Project
Part IV introduces you to the concept of putting controls on your software
project after it gets started. You can figure out how to develop change control
processes and you can discover the importance of following these processes
the easy way (discovering this on your own, the hard way, can be pretty
brutal, believe us).

After reading Part IV, you’ll understand how to be proactive in determining
whether your project is under or over budget, ahead of or behind schedule,
and whether the project scope is creeping up on you. You can also be aware
of how to track and communicate your project performance.

Part V: Closing Your Software Project
Part V introduces you to the steps that you must complete in order to bring
your project to a successful closing. You’ll find out about all the fun things
you get to do at the end of your project such as

� Helping your project team members with their next steps

� Taking care of vendors and contracts

4 Software Project Management For Dummies

03_749346 intro.qxp 8/30/06 10:16 PM Page 4

� Documenting your lessons learned (which of course you started docu-
menting at the start of your project planning)

� Completing audits and quality control

� Celebrating your successes

Part VI: The Part of Tens
In this part, you get some important tips on what to do, and what not to do, if
you want to make your software project a huge success. You get pointers on
project team leadership and communicating the good — and not so good —
news that routinely comes up when you’re managing a big project. Find out
once and for all how to run flawless and effective meetings so that everyone
remains focused and productive.

Appendix
Read the appendix to find out more about resources offered by the Project
Management Institute. You can also find out about the coveted Project
Management Professional Certification exam.

No matter what area of project management you enter, you should become
thoroughly familiar with the Project Management Institute. It’s an enormously
helpful resource.

Icons Used in This Book
In this book, we use a few graphical icons to help point out especially vital
information. Don’t skip these icons — they offer shortcuts to software project
management success.

This icon provides you with some tricks of the trade, enabling you to benefit
from our experiences and mistakes. No need to thank us.

Take special notice of items marked with this icon. You may need this infor-
mation later.

5Introduction

03_749346 intro.qxp 8/30/06 10:16 PM Page 5

Duck! If you don’t heed the information highlighted by the Warning icon, your
software project may be in jeopardy.

We use this icon to point out real-life examples, scenarios that we’ve encoun-
tered, or hypothetical situations to which you can apply the tools and tech-
niques we’re describing.

This icon informs you that we’re providing you with some technical informa-
tion that may not be especially important to you. You can skip this informa-
tion if you would rather not let your inner geek roam free.

Where to Go from Here
Take a gander at the Table of Contents to decide where you want to begin
your software project management extravaganza. Then you may want to
begin with Chapter 1 for an introduction to project management, or you may
prefer to dive right into the deep end and read about procuring goods and
services. It’s all good. As you read through the material, if you have any ques-
tions or comments, please feel free to e-mail TMLuckey@yahoo.com.

Good reading and good luck. We hope you enjoy the exhilarating world of
software project management as much as we do.

6 Software Project Management For Dummies

03_749346 intro.qxp 8/30/06 10:16 PM Page 6

Part I
Starting Your

Software Project

04_749346 pt01.qxp 8/30/06 10:16 PM Page 7

In this part . . .

Part I provides an overview of software project man-
agement and introduces you to some of the jargon

used in this field. Don’t miss these chapters — they form
the foundation for all remaining chapters in the book.

04_749346 pt01.qxp 8/30/06 10:16 PM Page 8

Chapter 1

Examining the Big Picture
of Project Management

In This Chapter
� Defining what a software project is

� Examining project management attributes

� Starting and finishing a software project

� Dealing with software project nuances

� Leading and managing project teams

Here’s a tough decision for you: Manage a project to create a new piece
of software that can make or break your entire organization, or jump

from an airplane with a parachute that may — or may not — function. For
some project managers the decision is the same either way.

But not for you. At least you’re on the right track to capture, improve, and
successfully lead your projects to completion.

The adrenaline rush in skydiving (and in project management) may not be at
the same level, but the butterflies in your stomach definitely are. There’s
really one secret to skydiving and it’s the same secret to successful project
management. (No, it’s not “don’t do it.”) The key to successful software pro-
ject management and skydiving is preparation.

Many projects fail at the beginning rather than the end. After you do the prep
work, you must execute your plan, take control of your project, and ultimately
bring it to its natural (and successful) conclusion.

05_749346 ch01.qxp 8/30/06 10:18 PM Page 9

Defining Software Projects
Software project management is a type of project management that focuses
specifically on creating or updating software. Just as there are billions of ice
cream flavors, there are billions of types of software. Project managers, effec-
tive ones, can lick them both.

A project, technically, is a temporary endeavor to create a unique product or
service. For some people, everything is a project; for others, projects are spe-
cial, lofty activities that occur infrequently. A project is a unique entity. In
other words, the creation of a new application is unique, whereas the mainte-
nance and day-to-day support of an existing application is not so unique.
Projects can have many attributes:

� They change or improve environments in organizations.

� They get things done.

� They are unique from other work.

� They have a defined start and end date.

� They require resources and time.

� They solve problems.

� They seize opportunities.

� They are sometimes challenging.

Defining Software Project Management
For some people, project management is just a stack of work doled out to a
group of people by a goober called the project manager. For other folks, pro-
ject management is a foggy, scary science directed by a different goober with
a slide ruler. And for others still, a project manager is a goober that touts for-
mulas, certifications, and facts without ever really getting things done.

But in effective project management there ain’t no room for goobers. Effective
project management centers on the serious business of getting work done on
time and within budget while meeting customer expectations. Effective pro-
ject management is about accomplishment, leadership, and owning the pro-
ject scope. It’s an incredible feeling to sign off on the project and know that
you and your project team contributed to the project’s success.

Management is concerned with one thing: results.

10 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:18 PM Page 10

Project management involves coordinating people, vendors, and resources.
Project management requires excellent communication skills, a strong will to
protect the project scope, and leadership skills to enforce quality throughout
the project work.

According to the Project Management Institute (www.pmi.org), the defining
resource on all things related to project management, project management is
centered on nine knowledge areas. Events in each knowledge area affect what
happens in the other eight knowledge areas. Table 1-1 gives you the lowdown.

Table 1-1 The Nine Project Management Knowledge Areas
Knowledge Area What It Does

Project Scope Management Controlling the planning, execution, and
content of the project is essential. You
need to pay special attention to both
project and product scope so that the
software you end up with is what you
intended to make in the first place.

Project Time Management Managing everything that affects the
project’s schedule is crucial. Who
wants tax software that comes out on
April 16?

Project Cost Management Projects cost money, and this knowl-
edge area centers on cost estimating,
budgeting, and control.

Project Quality Management No project is a good project if the deliv-
erable stinks. Quality doesn’t happen by
accident, so this knowledge area works
to ensure that the product you are pro-
ducing is a quality product that meets
customer expectations.

Project Human Resources Management The members of the project team must
get their work done. Hiring or assigning
people who are competent and manag-
ing them well are at the center of this
knowledge area.

Project Communications Management Project managers spend 90 percent of
their time communicating. Communica-
tions management focuses on who
needs what information — and when.

(continued)

11Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:18 PM Page 11

Table 1-1 (continued)
Knowledge Area What It Does

Project Risk Management This knowledge area is about avoiding
doom. The focus is on how to anticipate
risks, handle them when they arise, and
take advantage of the opportunities that
can help a project.

Project Procurement Management Sometimes during the course of your
software project, you may be required
to work with vendors to purchase
goods and/or services. You may even
be the vendor that someone else is
contracting for their project. This
knowledge area is concerned with the
processes to create vendor contracts
and to purchase goods and services.

Project Integration Management What happens in one knowledge area
affects attributes of the other knowl-
edge areas. The ninth knowledge area
is fan-freakin-tastic because its pur-
pose is to ensure the coordination of all
the other knowledge areas.

Comparing Projects and Operations
There is a distinct difference between projects and operations. Operations are
the day-to-day activities that your organization does. For example, a car man-
ufacturer makes cars. An airline flies people from one city to another. A help
desk supports technical solutions. Within each of these companies reside
various departments working on projects that enable operations to function.
A project at an automobile manufacturer might be to design a new sports car.
The car manufacturer’s operations involve manufacturing that design again
and again.

Software creation is special. Imagine you have customers around the world
who want you to create a piece of software that helps them keep track of
sports statistics. This is your new business — you create sports stat software
and you’re a gazillionaire.

Each flavor of the software you create could be a separate project; your com-
pany has software for baseball stats, football stats, soccer stats, field hockey
stats, and everyone’s favorite sport, water polo stats. Each project has its

12 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:18 PM Page 12

own requirements, its own purpose, its own budget, and its own project man-
ager and project team. Each project has its own resources, schedule, bud-
gets, and goals.

Your day-to-day support of the software, the sales of the software, the credit
card purchases, and the delivery of millions in cash to your bank account are
all part of operations.

Some companies have changed their approach to business by treating all of
their operations as projects. This microscale of their enterprise, where every
activity is part of a project and all projects contribute to the betterment of
the organization, is called management by projects.

Examining Project Constraints
A constraint is anything that restricts the project manager’s options.
Constraints are requirements, confines, or, if you’re a glass-is-half-empty
kind of person, prison walls. Constraints can include

� Resource constraints such as a team member being assigned to too
many concurrent projects

� Tight deadlines

� Budgetary limitations

� Government regulations

� Limitations of software

� Scope limitation, such as being required to use a particular existing
interface

� Hardware requirements

� Anything else that restricts your options

Understanding Universal Constraints
(Time, Cost, and Scope)

The three universal project constraints you will always face are

� Time: Time constraints may range from a reasonable schedule to an
impossibly short timeframe that can’t budge because the product
simply must be on shelves by September 15 (never mind that September
15 was last week).

13Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:19 PM Page 13

� Cost: Cost constraints are the usual budgetary restrictions that you
expect. (“Here’s a nickel. Make it happen.”)

� Scope: Sometimes scope is a no-brainer (you’re working on the 700th
rev of Acme Wizware to fix a bug). On the other hand, scope can be a bit
trickier if you’re dealing with an executive who isn’t sure what he wants.

We guarantee that executives will always know when a product is needed
and how much money you can have to get it done. If there’s a single area
that the big-wigs won’t have nailed down, it’s scope.

These three constraints make up what we affectionately refer to as the some-
what inflexible-sounding nickname the Iron Triangle of project management.
Check out Figure 1-1. Each side of the Iron Triangle represents one of the
triple constraints. For a project to be successful, each side must remain in
balance with the other two. You will read more about project constraints in
Chapter 3.

In order to achieve quality in the project deliverable, and in the management
of the project, the Iron Triangle must remain balanced.

For example, say your boss decides to add more stuff to the project scope
(now instead of simply fixing a mathematical bug in your Wizware accounting
software, you have to create a whole new feature in the software that edits
photos and home movies). Even though your boss has changed the scope,
you have to deliver more stuff within the same amount of time and with the
same amount of cash, as Figure 1-2 depicts. You’ll need more time, more
money, or both for the triangle to remain equilateral.

Quality

Scope

CostTi
m

eFigure 1-1:
The Iron
Triangle

describes
constraints

that all
projects

must face.

14 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 14

Managing time constraints
Time constraints are simply deadlines. You have a project to create a new
piece of software within six months. Or there’s an opportunity in the market-
place for a new application, but the window of opportunity is small, so you
have no time to waste. Time can also be calculated as labor: Working or bill-
able hours, processor speed, database consistency, and even network
latency issues can be used to estimate time constraints.

Original Iron Triangle

Iron Triangle when
Scope Changes

Scope

CostTi
m

e
Figure 1-2:

Increases to
the project

scope
enlarge
the Iron

Triangle.

15Chapter 1: Examining the Big Picture of Project Management

Introducing the law of diminishing returns
Time is time. Don’t be fooled into thinking you
can buy more time — no one can. You can buy
more labor if you think it will help your team do
more work faster, but that’s not the same thing
as adding time to a project. The law of dimin-
ishing returns dictates that adding labor doesn’t
exponentially increase productivity; in fact, at
some point productivity can even go backwards
(is that antiductivity?). When that happens,
you’ve hit a plateau, and then everyone is sad
because you just can’t do more with the labor
you have.

For a real-life example of the law of diminishing
returns, consider that you may have two hard-
working, experienced programmers working on

a section of code. In your quest to finish the pro-
ject on time, you add one more programmer to
the mix. Now the programmers may be com-
pleting the code more quickly, and you’re so
excited that you decide to add six more pro-
grammers so that you can finish even sooner.
You soon realize that although adding one pro-
grammer increased your productivity, adding six
more only created chaos, with programmers
stepping on each other’s toes, inadvertently
neutralizing each other’s code, and creating a
contentious environment. You reached the point
of diminishing returns when you added six
programmers.

05_749346 ch01.qxp 8/30/06 10:19 PM Page 15

Time constraints require more than just hitting a target deadline. Unavailable
resources (your ace programmer is on vacation), skewed milestone targets
within the project, conflicting versioning deadlines, and so on, all present
constraints on the project’s timeline. A time constraint is any factor or issue
that changes or impacts the original timeframe of the project. (No time
machines allowed in project management, sorry.)

Managing cost constraints
Cost constraints are easy to identify because they deal with cash money.
Well, it’s not always cash, but you get the idea; the miniscule funds in your
project budget to complete the project work create a unique constraint. Your
costs include computers and languages to code in, labor, and anything else
you need to buy in order to get the job done.

For some folks the funds are blue dollars, departmental dollars that shift from
one department to another based on the project costs. For other people the
budget is a very real number in dollars and cents: Customers hire you to
complete work for them; then they give you a satchel full of cash.

Projects almost always cost somebody something. Be sure to factor in hidden
costs for labor, resources, computers, pizza, celebrations, training, bribes,
and more. Just kidding about the bribes part. As far as you know.

Managing the scope
The third part of the Iron Triangle is the scope. There are two scopes within
project management:

� Product scope: The product scope describes, lists, and categorizes all
the features and components of the finished deliverable. This is what
the customers see in their minds’ eye.

� Project scope: This is where you focus. The project scope is all the
required work, and only the required work, to create the project deliver-
able. The project scope focuses on work, activities, and progress to
achieve the product scope. The project scope must be protected from
unapproved changes because it dictates what the project team will do
and what the end result of the project will be.

The product scope and the project scope are in love. The product scope
kisses details in the project scope and the project scope returns the favor. It’s
romantic. Each scope depends on the other, and what happens in either
scope affects the other. If there is disharmony between these two scopes,
trouble is brewing.

16 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 16

Controlling Scope Creep
Changes to the project scope can affect cost and time constraints, melting
your Iron Triangle. The Iron Triangle is a key tool in project management and
is ideal for negotiations with stakeholders. For example, if your stakeholder
insists on adding software functionality to your project scope, you can use
the Iron Triangle as a tool to explain that when you increase one side of the
triangle (the scope side) the triangle is no longer in balance. To change the
scope, you must change the cost or the schedule (or both) to keep the trian-
gle balanced. The Iron Triangle is also a terrific tool to use in discussions
with the project team, and to keep your own duties as project manager in
alignment (see “Understanding Universal Constraints (Time, Cost, and
Scope),” earlier in this chapter).

Unplanned changes to the project scope, sometimes called scope creep, are
the little extras that expand the scope without reflecting the changes in the
cost and time baselines. You’ll notice from the graphic that with scope creep,
the lines of the Iron Triangle are no longer even. See Figure 1-3.

17Chapter 1: Examining the Big Picture of Project Management

Delivering what’s promised
(and only what’s promised)

In the Iron Triangle the project manager’s con-
cern is on the project scope — the project work.
The project manager must direct the project
team to do the required work, nothing more or
less, to deliver exactly what the product scope
calls for.

Nothing more? Shouldn’t the project manager
and the project team always deliver more than
what was promised? No, no, no! This may shock
you, but the job of the project manager and the
project team is to deliver exactly what you and
the customer have agreed to create.

Let me write that again so you don’t think it’s a
typo: The project manager should deliver exactly
what the customer expects.

You and the project stakeholders should define
everything the project should deliver as soon as
possible. When value-added changes are made
after the project scope has been created, the
analysis of these changes takes time and
money and may impact the schedule.

We’re not saying the project manager should
hold back good designs, ideas, and incredible
features that the customer may want and can
use. We’re saying that neither the project man-
ager, nor any stakeholder, can arbitrarily add
features to the software because doing so
would be to change the project scope.

05_749346 ch01.qxp 8/30/06 10:19 PM Page 17

The reason scope creep is so poisonous is because it can happen so easily,
and so innocently. And yet, it can be so deadly. When the scope goes off track,
time and funds are stolen from the original baselines. It’s not as if extra money
and time are magically added to the project to handle all the little extras.
Balancing the three sides of the triangle ensures a high-quality final product.

Changes to the project scope should be controlled and managed through a
change control system, which you can find out more about in Chapter 13. In
essence, a change control system accommodates a process for documenting
requested changes and requires obtaining appropriate approval for all
requested project changes. The key is to avoid changes that are not directly
approved or requested by the customer.

Making Sense of Project
Success (Or Failure)

Most projects start with an optimistic attitude about creating a deliverable,
keeping the customer happy, and making this the best software project ever.
And then things (bad things) happen. The good projects end on time and as
planned. Ah, paradise. We’d wager that these projects have three things in
common:

� A leader who knows what he or she is doing

� A tight change control system (see Chapter 13)

� Team members who understand what the project is supposed to deliver
and can therefore get results

Quality Scope
creep

Scope
creep

Scope

CostTi
m

e

Figure 1-3:
Scope

creep is
project

poison that
changes the
alignment of

the Iron
Triangle.

18 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 18

Commonly, projects limp to the finish line, late, overbudget, and after crush-
ing the morale of everyone involved. Done, but maybe not done well. These
projects typically have three attributes:

� Poor requirements from the project customers

� Poor communications through the project manager

� Poor morale from the project team

The saddest of projects are the ones that never make it to the finish. This
bunch misses deadlines, blows budgets, or experiences a radical change of
scope so often that no one (not even the PM) knows exactly what the project
should be creating anymore. Failed projects usually have some, if not all, of
these attributes:

� No clear vision of what the project priorities are

� Lack of leadership from the project manager and/or sponsor

� A timid project manager

� Lack of autonomy for the project manager

� New resumes being typed in unison

Starting and Finishing Software Projects
All projects, from your software creations to building the bridge over the
River Kwai, pass through five process groups as defined by the Project
Management Institute. A process group is a mini life cycle that moves the pro-
ject one step closer to completion. Process groups are cycles because the
processes don’t just happen once; they are repeated throughout the project
as many times as needed.

Figure 1-4 demonstrates a sequence for process groups; the processes flow
organically, in the order that best suits the needs of the project. Although we
hope you don’t have to keep repeating some of these stages, if your project
isn’t going according to plan you will have to do just that.

All projects, software and otherwise, go through these project management
processes. Each of these project management processes has its nuances. We
describe them in more detail in Chapter 2.

19Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:19 PM Page 19

� Initiating: That’s really where you are now. The project is in the process
of getting selected, sponsored, funded, and launched.

� Planning: As you can see in Figure 1-4, planning is an iterative
process. Planning basically determines how the project work will
get accomplished.

� Executing: After you get a plan, your project team does the work.

� Controlling: Your project team does the work, but you control them.

� Closing: Ah, paradise. After the project work has been completed, you
tie up loose ends and close out the software project.

Understanding What Makes Software
Project Management So Special

There’s nothing special about software project management that changes the
Iron Triangle or the five process groups. What is special about project man-
agement, however, is the nature of the work.

Just as the particulars of designing a new warehouse, building a house, or
creating a prototype for a remote controlled airplane are unique, so is the
creation of software:

� Software development is weird and requires a specialized skill set to do
it well.

� Software creation is tough.

� Software development can be boring, routine, and mind numbing.

� Software creation can create challenges within the development of the
code.

Initiating Processes Planning Processes

Controlling Processes

Closing Processes

Executing Processes

Figure 1-4:
All projects

follow
repeating

sequences
called

process
groups.

20 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 20

Breaking Moore’s Law
A long time ago, in 1965, Gordon Moore wrote a scientific paper called
“Cramming More Components onto Integrated Circuits.” The synopsis of his
paper is that the number of transistors per integrated circuit could double
every two years. The press loved it. The theory became known as Moore’s
Law. And he’s been pretty accurate on his prediction.

The importance of Moore’s Law in software project management is that more
transistors per circuit mean faster processors. Faster processors mean more
elaborate software. More elaborate software means we need faster proces-
sors. And on and on the cycle goes.

Because information technology (IT) drives many businesses today, there is
a direct connection between the speed of technology and an organization’s
bottom line. Between the two is the software the organization relies on.
Consequently, businesses demand software that’s reliable, secure, and scal-
able. Your organization’s profitability, stability, and ability to attract new cus-
tomers rely on you and your project team.

Although businesses rely on technology to remain competitive, many soft-
ware project managers miss this key point: It’s not about the technology.
Software project management is about the business. It’s about helping your
company, your colleagues, and even the stockholders of your organization to
be successful.

If you’re an IT guru you may easily fall in love with the bits and bytes of day-
to-day software development. However, if you’re a project manager, you
cannot. Your focus should be on one thing: getting the project done — on
time and on budget.

Dealing with Moore
As your project moves towards completion, chances are there will be
leapfrogs in the technology you’re dealing with. There’ll be new versions of
operating systems, service packs to address problems in versions of software
your software relies on, and more. Part of software project management is to
have a plan to address these potential changes. Every (yes, every) software
project manager should have an allotment of time added to the project
schedule specifically for planning and responding to Moore’s Law. You’re
saying, “My customers and management won’t give me more time just for
planning and responding. My customers and management barely give me

21Chapter 1: Examining the Big Picture of Project Management

05_749346 ch01.qxp 8/30/06 10:19 PM Page 21

enough time to complete my project if everything goes perfectly.” Notice that
we said you “should” have more time. That doesn’t mean you will. After all,
time is money.

So what do you do? By relying on historical information, you can help your
project adjust to Moore’s Law. If you have documented instances of past pro-
jects that failed because of a lack of time to respond to changing technology,
use it. If you have records of your past projects, you can show how the pro-
ject would have, or at least could have, been more successful with this allot-
ment of time.

This is a good time to remind you to save your project documentation so that
you and other software project managers can use it for the same purpose in
the future. Check out Part V of this book for more on documentation.

Documented instances are your best argument. We’re not saying it’s a slam-
dunk, but we’d wager dollars to donuts you’ll at least have a meaningful con-
versation about the extra time allotment for planning. Ask your customer or
management to try it one time and see what happens. And then document,
document, document to prove your point.

If you don’t have these project records, well, there’s good news and bad
news. The bad news is that it’s hard to argue for additional time for planning
without proof of why the time will be needed. The good news is that you can
start now. Without the additional time allowed for your project, here’s what
we recommend:

� Do a thorough risk assessment. Document how the risks due to changes
in technology could contribute to failure.

� Document lost time. Document any lost time tied to technical changes
(research, team training, subject matter experts, and so on).

� Document lessons learned. Begin your lessons learned documentation,
a document that highlights all the lessons learned, with attention to
technology changes, at the start of the project, and as your software
project progresses, complete your lessons learned documentation.

� Communicate proactively. Communicate to your stakeholders when
changes to technology enter and influence your project.

As a technology professional, it’s your job to have your finger on the
pulse of change in your industry. You don’t want to be blindsided by
some major technological event, and you never want to withhold infor-
mation to your stakeholders that could affect the longevity of a software
product. The most important thing you can do is balance cost effective-
ness and profitability.

22 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 22

Dealing with the first-time,
first-use penalty
One of the most common questions when it comes to software project man-
agement is, “How can we tell how much this’ll cost or how long this’ll take if
it’s never been done before?”

This is the first-time, first-use penalty. The penalty is that you just don’t know.
It may cost thousands, even millions, if the technology has never, ever been
done before. And time? Well, that’s even more difficult to grasp.

You’ve experienced this. The first time your project team develops code in a
new language, productivity slides. The first time an end user loads and uses
your application, there’s a learning curve.

23Chapter 1: Examining the Big Picture of Project Management

Leading versus managing
When you think of leadership you probably think
of positive attributes; a leader is honest, inspir-
ing, and motivating. All true. And when you think
of a manager you probably have thoughts
like work-centric, accountability, and results-
oriented. Also true.

A project manager has to be both a leader and
a manager. A leader aligns, motivates, and
directs people towards accomplishments. A
leader is interested in what others want and
what others need. A leader can empathize,
inspire, and help others reach their goals. A
leader cares.

A manager is concerned about one thing:
results. A manager needs the team members to
deliver on their promises. A manager needs to
see progress and accomplishment. A manager
may care about the project team, but not as
much as he cares about the project team’s abil-
ity to get the work done.

A truly effective project manager, regardless of
the situation, organizational structure, or tech-
nology the project focuses on, must be a leader
and a manager. You have to be both.

Take note. If you’ve got any skills at all and
you’re just starting out in this business, you are
probably either a good manager or a good
leader, but not yet both. You’ll soon find out
which category you fall into. Remember, not
everyone has to like you, but everyone has to
respect you. If team members refer to you as
Mussolini when they’re standing around the
water cooler, you’re probably overdoing the
management part of your job. If they call you “all
talk and no action,” you may need to beef up
those management skills and lay off the motiva-
tional seminars. As you evolve as a PM, you’ll
find the right balance between these two
extremes.

05_749346 ch01.qxp 8/30/06 10:19 PM Page 23

The first time you stretch your teams, you face challenges with deadlines,
cost, and even attitude. Productivity slides, but eventually productivity
should curve beyond current levels to a new plateau. At least that’s the
theory. Actual mileage may vary.

Chances are your team has worked with the programming language before.
Chances are you’ve done a similar project before. Chances are you have a gut
feeling for the time, cost, and feasibility of the project. Chances are, based on
your experience, you have some idea of how the project is going to go.

Of course, out here in the real world, you can’t go on hunches. Even though
it’s not feasible to expect these things, your customers, your boss, and your
stakeholders want just the facts, only the most definite answers, and the
most exact time and cost figures possible.

This is where an acceptable range of variances must be introduced. A range of
variance is a cushion based on your estimates. No, we’re not talking about
bloating your estimates, but establishing a level of confidence in the esti-
mates you give. A range of variance is the +/– percentage, time, or cost you
append to your estimates. See Figure 1-5.

Acceptable Low Range

Actual Costs

Acceptable High Range

Co
st

s

115,000

100,000

95,000

0

Estimated baseline

BaselineBaseline

Figure 1-5:
The ideal
baseline,

the
accepted

range of
variance,

and the
actual

results for a
typical

software
project can
vary wildly.

24 Part I: Starting Your Software Project

05_749346 ch01.qxp 8/30/06 10:19 PM Page 24

Chapter 2

Initiating a Software Project
In This Chapter
� Determining what the project’s purpose is

� Handling the various organizational entities

� Studying the project’s feasibility

� Determining which plan works best

� Recognizing problems in your software project

Projects, big and small, have to be initiated. All initiation really means is
that everyone acknowledges that the project has a purpose (and that

everyone agrees on what that purpose is): to solve a problem, to grasp an
opportunity, or to meet demand for a new piece of software.

Software projects, all software projects, have one thing in common: They
attempt to provide something for someone else, whether it’s the organization
or the customer. The goal, from a project manager’s perspective, is to solve
the problem to satisfy the demand.

Identifying the Project Purpose
Before you, the project manager, or your organization can go about the busi-
ness of satisfying the demand you’re fulfilling with your software product,
you must take care of a few formalities. Yes, formalities. In some organiza-
tions, perhaps yours, the only formality of initiating a project is a shopping
list of demands thrown onto your desk.

You have our sympathy.

06_749346 ch02.qxp 9/5/06 5:44 PM Page 25

Successful projects, and, by default, successful project managers, have to
start by ironing out a few details. Make sure these questions are asked and
successfully answered:

� Why is the project being initiated? You first have to know the project
purpose.

� Does everyone agree on this purpose and goals? There must be con-
sensus on what the project will create. There must be consensus on the
goals of the project. If not, you can count on trouble before the project is
complete.

The project purpose is just a fancy way of understanding the background of
why the project is being initiated. If you don’t have enough background infor-
mation, you won’t be able to ask the right questions to create a solution that
solves the problem, grabs the opportunity, or improves the organization.

Your fundamental purpose, at this point in the project life cycle, is to under-
stand why the project is being initiated. But another crucial element to suc-
cessful project management is to be in tune with the structure of your
organization.

Talking to the stakeholders
When a project is being initiated, you want to capture as much information as
possible about the project goals. Without a clear picture of what the project
is to capture, it’s going to be challenging to plan and prepare for your soft-
ware project.

Stakeholders, from your customers to senior management, will have different
concepts about what signifies that a project is complete. You need to know
what their expectations are so you can reach the project completion with few
surprises (or headaches). Here are five questions every project manager
should ask stakeholders:

� What are the factors for completion? You should ask this key question
far in advance of starting the project work. As a project manager you
need to know what the project will accomplish and be able to plan how
to get there. If the qualifications for completion are unknown or fuzzy at
best, you’re not ready to get to work. Starting a project without knowing
what the end result should be is like building a house without blueprints.

� What is the goal of this project? Knowing the project’s goal helps you
and the team plan. For some projects the goal will be to win new cus-
tomers, or to make internal processes more efficient, or to solve a prob-
lem. Other projects may be financially based. For example, the goal may
be to create this essential transition to VoIP without spending more than
$235,000.

26 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 26

� What are the areas of the organization that this project will affect?
The answer to this question tells you who you need to communicate
with. It also brings to attention that there may be stakeholders who
aren’t attending meetings and should be. Although it’s easy to identify
the end-users of your software, there may be “hidden stakeholders” to
consider: accounting, security personnel, government agencies, a train-
ing team, and so on.

� What is the project priority? Chances are good you’ll be managing more
than one project at a time, and there are equal chances that your project
team members will be on multiple projects as well. When you consider
these odds it’s best to know your priorities so you know where to spend
your energy. Consider your software conformance to the Sarbanes-Oxley
Act versus a feature to search a database through a Web browser. Both
may be important, but you’ll need to determine which takes priority.
Refer to Sarbanes-Oxley For Dummies, by Jill Gilbert Welytok (Wiley), for
information on this important act.

� What is the accepted range of variance? The range of variance is the
+/– value associated with the budget and the schedule. For example, a
project may have a budget of $450,000, +45,000 to –$25,000. This means
the project could actually cost as much as $495,000 or as little as
$425,000. You can actually apply the same methods to the project sched-
ule. This nugget of info can help you plan and react to problems within
the project — and you know there’ll be problems.

Check out Figure 2-1. This fancy-schmancy triangle is a model of how most
organizations operate. Each level of your organization has different needs,
different concerns, and different goals for your project. You need to address
each level of your organization to get the project moving to completion.

Functional
Management

Operations

Executive Vision

Tactics

Day-to-Day

Figure 2-1:
Organiza-
tions are

comprised
of

executives,
functional
manage-

ment, and
operations.

27Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 27

Discussing high-level stuff with the executives
At the top of the pyramid live all of the executives with their elegant high
heels, expensive suits, diamond earrings, cufflinks, fancy ties, and caviar din-
ners. Executives are responsible for setting the vision and direction of their
organization. This small group of people (or sometimes even a single person)
has a vision for the organization and is interested in taking herself and her
employees there. Usually.

The executives want to know why any project is occurring because they want
to confirm that the project aligns with their vision. If your project doesn’t
align with the company’s vision, kill it before someone else does.

Questions you need to ask executives, assuming you’ll be interacting with
this crowd:

� What are the factors for project success?

� What’s your vision for the project result?

� What’s more important, time or budget?

� What risks do you anticipate for this project’s success?

Sometimes you experience a disconnect between a project’s stated purpose
and its actual purpose. The more detailed information you get from the exec-
utives the more likely you are to identify this disconnect early and straighten
it out.

Playing nice with functional management
In the middle of the pyramid are all the folks who comprise functional man-
agement. You may know this layer as middle management. Their purpose is
to carry out the vision of the executives. It’s at this level of the organization
that tactics, strategy, and delivery of purpose to the employees take place.

The functional managers must support the vision the executives have in the
decisions they make. At this layer of the model, the functional managers need
to understand the what of project management. The what centers on what
the project will accomplish. What areas of the organization will the project
affect? What will the project schedule be? What will the project cost?

Questions you’ll need to ask functional managers:

� What are the factors for project success?

� Are there scheduling issues that will affect the project’s end date?

� What resources are available for the software creation?

� What departments and customers will need to interact?

28 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 28

� How will the project team be assembled?

� Do you have a preset budget in mind for the project?

� What risks do you see for this project?

You may notice that some of these questions are the same questions you ask
executives and operations (see the previous and following sections). That’s
right. You may ask the same question to all three groups and get three differ-
ent answers. As the project manager, your job is to iron out these differences
to make sure that everyone’s happy (actually, you need to make the execu-
tives happy — operations is almost never happy).

Having a chat with operations
Down deep in the pyramid you’ll find operations. These are the people that
do the work. They answer the question, “How is this going to get done?” The
people in operations focus on the day-to-day activities of getting things done.

When it comes to project management, these employees are concerned with
the activities that support the layers of the triangle above them.

Questions you’ll need to ask folks in operations:

� What are the factors for project success?

� How will the software be used?

� What other software projects are you working on now?

� What immediate risks do you see in the project?

� Who has the experience to get this done?

� Do we need training to create this software?

� What areas of the project are you dreading?

Each layer, from the bottom to the top, must support the layer above it. If a
project is initiated that doesn’t support the layer above, you can bet the pro-
ject will be a failure — if it ever even gets momentum. And we hope you’re
not on that project (the guy next to you, okay, but not you).

The project manager spans all three layers in the organization, but spends
the bulk of his or her time managing and leading the people working on the
project. The project manager is there to supervise, lead, and manage the pro-
ject to completion. As the project manager, your presence may meander
through all three layers in the organization. However, more likely than not,
you spend more of your time in one of the layers than the others. Which one
depends on your company’s specific organizational structure.

29Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 29

Reaching project consensus
Sometimes project initiating meetings are opportunities for stakeholders to
shoehorn their own pet agendas, wish lists, and one-upmanship into your
project. The trouble, besides being a real pain, is that it’s tough to discern
what’s central to your project objectives and what’s bunk. And then, depend-
ing on your power and role in the project, what you can do about any of it.

Understanding the project purpose during initiation is essential to guiding
project consensus. Determining all the bits that go into the project scope
comes later in the project. Right now, during the initiation processes, your
goal is to get the majority of the stakeholders on the same page. To reach
project consensus, your goal is to find common ground, and then to address
ancillary requests that don’t infringe, change, or drive out the original project
purpose.

There are several approaches to accomplishing this goal:

� Conduct interviews: This is fundamental business. You and the key
stakeholders must meet several times before the project work begins so
that you can discuss the project goals and determine whether both par-
ties are in agreement to the project deliverables.

� Do root cause analysis: We know this sounds like a procedure a dentist
does just before saying, “Well, I’ve got some bad news,” but root cause
analysis is actually pretty cool. If your project is to create software that
solves the problem of multiple databases and recursion issues, a root
cause analysis can help you design a solution by examining potential
causes to specific problems.

One example of a tool to aid you in determining root cause analysis is
the Ishikawa diagram, also referred to as a cause and effect diagram or a
fishbone diagram (because it looks like a fish bone). The first person to
document using this tool was Kaoru Ishikawa, in the 1960s. Figure 2-2
illustrates an Ishikawa diagram. The effect (or problem) is the recursion
issue. The causes are the network speed, the multiple databases, poor
coding, and so on. The goal is to use the diagram to find the causes that
contribute to the effect. When the stakeholders are in agreement, you can
move forward to planning how to solve the problems.

� Do business analysis: Some organizations use a business analyst to
serve as the liaison between the project manager and the key stakehold-
ers. A business analyst can lighten the burden of the project manager by
gathering and prioritizing the project needs for the project manager and
the key stakeholders.

� Walk a mile in the stakeholders’ shoes: Sometimes the easiest approach
to reaching consensus is to experience the pain the project customer is
experiencing. If the stakeholders need an application to take orders via

30 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 30

the Web, experience how they take orders now. If the stakeholders hate
their current toolbars, macros, or forms, monkey around with the current
software interface. If you can see things from their perspective, it’ll help
you solve the problems faster.

Early in the project, the customer should direct what the deliverables should
be. How to get there isn’t an issue — yet.

The goal, what should be everyone’s goal, is to determine what’s key for the
project’s success. Which means you and the folks around the table need to
get back to the central theme of initiating the project: Why is the project
being considered?

Dealing with Politics
Imagine an environment where everyone works together to make the organi-
zation better. Greed, ambition, and self-serving opportunists screw that up
for most entities. Politics, also know as political capital, can wreck a project’s
objectives. The sacrifice of incredible features in the software to advance self-
serving interests is a shame.

Often, depending on who’s making political demands, you can’t do much but
ride the wave and hope for the best. Other times, when you’ve got some
leverage based on cost, time, or feasibility issues, you can create solid risk
assessment of the tradeoffs and present a valid argument.

Another approach is to prioritize a project’s feasibility based on all of the
objectives presented. Find or create the central goal of the project’s deliver-
ables. Get everyone to agree first on the primary goals of the project’s deliv-
erables and then treat every other requirement as ancillary.

User access

Softw
are

Poor code

La
tency

User access

Middleware

User access

Hardware

Database
 desig

n

Causes Recursion
issues Problem

Figure 2-2:
Ishikawa
diagrams

can
facilitate

root cause
analysis in

software
projects.

31Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 31

If you can treat any additional deliverables as items that either support or
hinder the project goal, politics become more clear and easier to ward off.

As you know, every organization is different, but there are some rules that
can help you keep the focus on the project and away from politics and per-
sonalities. Follow these do’s and don’ts:

� Don’t feed the fire. When stakeholders try to get you on their side of an
issue by complaining, gossiping, or moaning about a problem, a project
solution, or another team member, don’t agree or contribute.

� If you can’t say something nice, don’t say anything at all. Don’t say
anything negative about a stakeholder that you wouldn’t say in his or
her presence. Do share constructive criticism openly, and certainly do
share compliments and kudos loudly and proudly.

� Do stand up. When you know you’re right, don’t succumb to what you
know is wrong. Tact, honesty, and logic can go a long way here, but don’t
roll over just because someone higher in the organization has a differing
opinion. It’s okay to disagree, but only stand up when you know you
have the ammo to back up your position. Also be sure to stand up and
admit when you’re wrong. This goes a long way to increasing your credi-
bility and integrity.

� Do protect your reputation. When you get down to it, your reputation is
important. You have to deliver on your promises, keep out of the gossip,
treat everyone fairly, and focus on project deliverables. In other words,
have integrity.

� Don’t micromanage. As a software project manager, chances are you’ve
come up through the ranks. You’ve worked with different software lan-
guages, developed countless applications, and can out-code your pro-
ject team members. But not anymore. Your job is to lead, manage, and
provide guidance. You have to let your project team do the work.

� Do play fair. Some team members, stakeholders, and customers will
drive you nuts, but you must treat everyone the same when it comes to
discipline, time off, and kudos. If you’re fair to your stakeholders they’ll
respect you — and respect is what you need the most to abstain from
office politics.

Moving from Here to There
We like to think of projects in two states (no, not the states of confusion and
disappointment). The states that all project stakeholders should envision is
the current state and the desired future state. Figure 2-3 shows the processes
that all software projects move through. We introduce these processes in
Chapter 1. Now, we dive right in and give you some of the exciting details of
the process groups.

32 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 32

The current state is easy to see: the problems, the opportunity the project
will achieve, the reasons why the project should happen, and so on.

The future state is tougher to see. You are asking your stakeholders to see
the invisible. You’ll help them see this vision through questions, interviews,
and experiences on past projects. You’ll help them begin to create a vision of
that desired future state. The tough part, at least for now, is getting everyone
else to share your vision of the future state as well. Communication and clar-
ity is paramount.

Sometimes you aren’t the one with vision, but your customer is, or your pro-
ject team members are, or the person experiencing the problem is, or your
vendor is. Before you can be an effective project manager, you must first real-
ize the current state and then create or inherit the vision for the desired
future state.

And then you can work on getting there by moving your project through the
five process groups touched on in Chapter 1.

Current
State

Future
State

Initiating Planning

Closing

Controlling Executing

Figure 2-3:
All projects

are about
changing

some state
through a
series of

processes.

33Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 33

Initiating the project
The first process group is initiation. When a project is initiated, it is being
considered; it hasn’t been officially launched. Projects get initiated to fulfill
many different needs, some of which we’re sure you’ve experienced, and
most of which can be addressed with software:

� A problem needs to be solved.

� An opportunity needs to be captured.

� A profit needs to be made.

� An existing environment needs to be improved.

� A process needs to be speeded up and/or made more efficient.

At the initiation stage, the PM must make an effort to understand the reasons
the project is necessary. Empathizing with the project customer (the person
paying for the project) and the key stakeholders now can help you stay on
track later. Knowing why the project is being created will help you ask the
right questions to help the customer get to the desired solution.

After you identify the need that the software project is engineered to answer,
you need to deal with some mechanics of project management:

� Conducting a feasibility study: In formal project management a feasibility
study examines the high-level goals of the project, the needed resources,
and any other factors that could influence the project’s success. The point
of a feasibility study is to determine whether this project can feasibly
accomplish the time, cost, and scope objectives.

Sometimes the project isn’t feasible and the idea is tanked, outsourced,
sent back to the drawing board, or even broken down into multiple
projects.

� Determining the project deliverable: If the project is deemed feasible,
then a product description is created. The product description is an early
rendition of the product scope. The product scope for most software
projects consists of the design documents that detail the end result of
the software project.

In some instances, the product scope is very detailed — down to the
color scheme, button fonts, and graphics. In other instances, the cus-
tomer leaves the details to the project team, choosing instead to focus
the product description on detailing the ideal functions of the software.

� Creating the project charter: A project charter is written by the person
who has the authority within an organization to authorize the project to
move forward. This individual has the positional power to authorize
resources and funds.

34 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 34

The project charter may be written by the project manager, but is signed by
someone with more power in the organization than you. This person typically
becomes the project sponsor.

Technically, the charter should be signed by a person whose role in the orga-
nization is higher than all managers that may have employees on your pro-
ject team. Imagine the trouble if Bob signs a charter authorizing you to use
Susan’s resources on your project team, even though Bob has no real author-
ity over Susan.

After the charter is signed by your project sponsor, all key stakeholders need
a copy of the charter. Some organizations use a boilerplate charter that is
sent via e-mail, while other organizations have a formal, paper-based charter
that is delivered in hard copy. Either way, all key stakeholders should receive
the charter so they’re aware of the official project launch, your authority as
the project manager, and who’s the sponsor of the project.

35Chapter 2: Initiating a Software Project

Getting up close and personal
with the product description

The product description is the first version of
the product scope document. The best way to
save aspirin is to make this document as
detailed and exact as possible. You may be
scratching your head and wondering, “Doesn’t
making it exact take time and restrict the pro-
ject team’s creativity?”

The answer, dear PM, is yes, and yes.

The product description should be as exact as
possible, especially in software project man-
agement, because this document is like a road
map that ensures that the project manager and
the customer are both heading in the right
direction toward the same destination. Before
the project moves too far along, you need to
capture as much of the following information as
possible:

� The purpose of the project

� The business needs to be targeted and met

� The functionality of the software

� A description of what the project will deliver
to the customer

� An understanding of the desired future
state (what the organization will be like
once the deliverable is in production)

Although ideally you have all this information
before the project is officially launched, you
probably won’t. Some of this business will get
taken care of once the project team is assem-
bled and you’re officially planning the project
work. But as a rule, the earlier you know these
details the better off the project will be.

06_749346 ch02.qxp 9/5/06 5:44 PM Page 35

A project charter accomplishes the following:

� It identifies the project manager in writing.

� It identifies the project sponsor in writing.

� It authorizes the project manager to spend organizational resources on
the project.

� It describes the product. That’s right; the description you worked so
hard to create goes in the project charter.

� It specifically identifies the business need that the project was under-
taken to address. If you have a business case, you can pull information
from there.

A charter can’t solve all your power struggles, negotiations, and other
miseries — it’s not a panacea. But a charter does, more than anything else,
authorize the project.

Contracts, purchase orders, statements of work, and even work orders can
be considered charters of sorts. See Chapter 12 for more information about
contracts, vendors, and procurement.

Planning the project
The second process group, the planning process, determines how the project
will move forward after the project feasibility, description, and charter are
complete. The planning process group gets the project rolling in a big way.

36 Part I: Starting Your Software Project

Setting up a spreadsheet of
mistakes and successes

During the planning phase of your project,
create a spreadsheet of mistakes and suc-
cesses so that you can add information to it on
an ongoing basis. The information you include
in the spreadsheet can easily be translated later
into a lessons learned document. After you
create the template for the spreadsheet and
share it with your team, be sure to make docu-
menting lessons learned a regular agenda item
for your team meetings. Always ask the ques-
tion, “What did we learn from this?” Members

of your team will likely take ownership of this
lessons learned documentation process when
they see the cumulative results of their contri-
butions. When you close out the project, putting
that lessons learned document together will be
relatively easy, and you’ll be sure never to forget
important lessons, such as the print testing
fiasco (we won’t ask) or the great system the
team came up with for streamlining the inter-
face (congratulations). Chapter 17 has a sample
spreadsheet template you can use.

06_749346 ch02.qxp 9/5/06 5:44 PM Page 36

Planning isn’t a one-time deal. Planning is an iterative (or repeated) process
that happens as many times as it must throughout the project life cycle. You
instinctively plan and restructure your plan all the time, stepping back, exam-
ining the problem, and then creating and refining the solution.

The point of planning in software project management is to communicate
exactly what you’ll be doing in the project. It’s a guide for all future project
decisions. Enjoy.

You may think we’re putting the cart before the horse, but trust us when
we tell you that you should also be gathering information for your lessons
learned documentation (we introduce lessons learned documentation in
“Closing the project,” later in this chapter, and we discuss it throughout the
book; we talk about lessons learned in detail in Chapter 17). The most impor-
tant thing to know is that you should always be thinking proactively about
providing historical information for future project managers. No project goes
perfectly; because software projects can be large in scope and scale, what-
ever information you can provide to help others in similar situations, as well
as to aid you in your development as a software project manager, will be
immeasurably beneficial. And it’s such good karma.

Examining project planning approaches
You can plan in lots of ways. You and your team can sketch out a plan on the
back of a napkin to create a formal detailed approach to delivery. Or you can
follow one of these formal project management planning methodologies:

� Rolling wave planning: Waves crest before they fall. The concept of the
rolling wave approach is to crest with planning and then go do the work.
You have several successions of planning and executing your plan. This
is a fine approach in a software project.

� Scrum: You may have heard of the software project management
approach of scrum, named after the rugby term for getting a ball into
play. Scrum calls for quick, daily meetings with members of the project
team. The focus of these meetings is simple. You identify what each
team member has done so far, what team members will be doing today,
and what issues need to be solved in the next week or so.

� Extreme programming: This software creation approach calls for rounds
of planning, testing, team involvement, and execution. Communication
and teamwork are paramount in this approach, which puts a primary
focus on customer satisfaction. If you’re interested in learning more
details about extreme programming, you may want to read eXtreme
Programming in Action: Practical Experiences from Real World Projects, by
Martin Lippert, Stephen Roock, and Henning Wolf (Wiley).

37Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 37

Executing the project
Execution, the third process group, is all about getting things done. You
authorize the project work to begin and your project team goes about the
business of designing, building, and testing the project’s creation. This is the
meat of the project — doing the work.

In this process group, you’re also tackling some other key activities:

� Beginning your procurement activities, if needed

� Working with your organization’s quality assurance programs

� Communicating project information to appropriate stakeholders

� Managing project risk assessments

� Developing the project team

� Managing conflicts among the team and among stakeholders

Controlling the project
The executing process group’s twin process is controlling, which is the fourth
process group. Controlling is all about ensuring the project is done according
to plan. You control stuff — quality, scope, budgets, the schedule, risks —
and you get to monitor performance. It’s fun, fun, fun. Don’t forget to docu-
ment all these changes in performance so that you can write up a thorough
lessons learned document later.

The reason we relate controlling and executing is that they (more than all the
other process groups) depend on each other. As your project team executes
the project plan, you control the work by ensuring the quality is present as
planned. You ensure that the costs are kept in check, and that the schedule is
consistent, as planned. And if there’s trouble afoot, you go back to the plan-
ning process group.

Closing the project
At some point, the project, like a bad date, has to come to its merciful end.
(“See ya! Bye.”) The fifth process group, closing, for good project managers,
involves lots of activities, including the following:

� Tying up loose financial ends: Doing your final math to see where the
project stands financially, verifying the procurement documents, verify-
ing the deliverables, and so on.

38 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 38

� Unveiling the product to the customer for final acceptance: When the
customer is happy, he or she signs off on the project.

� Finalizing the project documentation: Final reports on the project team,
including time spent on the project, final costs, and so on, need to be
completed, as well as the lessons learned documentation. Finally, you
can archive the project records, and if you’ve been working on gathering
historical documentation all along, this part should go surprisingly
smoothly (see Chapters 16 and 17).

� Moving on: And then the project manager and the project team go on to
other projects. Well, not yet. Don’t forget to celebrate with your project
team for a job well done!

Living with Stakeholders
If the project is a success, it’s because of everyone’s great effort; if the project
fails, then it’s your fault, and your fault alone. That’s just the way project man-
agement goes. It’s not always fun, not always rewarding, and it’s never easy.

A project stakeholder is anyone who has a vested interest in the outcome of
your project. Everyone involved in the project, from the creators to its even-
tual users and even your organization’s customers, is a stakeholder. Some of
these stakeholders are more crucial than others, and you’re generally only
concerned with key stakeholders. Key stakeholders are the stakeholders who
have an immediate influence over your project success:

� The project manager (that’s you)

� The project sponsor

� The project team

� Functional managers

� Subject matter experts (SMEs) who help you make decisions

� Anyone who can directly influence decisions about the project

� Customers who pay for the project expenses

� End users

Loving your project team
Your project team is the collection of people you rely on to complete the pro-
ject work. They have the biggest influence on your project success, so you
don’t want to tick them off. There must be a level of respect between the
project manager and the project team.

39Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 39

Most often project team members are professionals just like you. They are
usually interested in completing their assignments, doing a good job, and
meeting goals so that they can go home. There should not be, unless you like
trouble, an us-against-them relationship between the project team and the
project manager.

Loving your project sponsor
The project sponsor is an individual high enough in the organization to have
power over the functional managers you’ll deal with on your project. In other
words, you don’t want Bob the VP to be the project sponsor if you’ll be using
resources from Susan the VP’s department. Susan will, no doubt, question why
she has to answer to someone at her same level in the organizational chart.

Avoid playing dirty politics, such as pretending to agree with stakeholders
just because they are in a powerful position. In such situations, politics may
impede progress. On the other hand, when done correctly and ethically, poli-
tics may also facilitate progress. Building positive, supportive working rela-
tionships with your stakeholders is an example of a positive aspect of politics.

The point of the project sponsor is to grant you the authority to act on his or
her behalf to make sure the project gets the care and feeding it needs. This
person assigns to you a level of autonomy to get the project done. If there are
problems between you and the functional managers, the project team, or
even stakeholders, the project sponsor should come to your defense. Really!

Balancing stakeholder expectations
One of the trickiest parts of the project manager’s job is balancing stake-
holder expectations. You’ve experienced this. Everyone wants something.
Bob, the sales manager, demands connectivity to a database that lets his
sales people search first by last activity of the customer.

Janice, the manager of Manufacturing, also deals with customers and wants
the database to first search by the size of the order against the amount of
materials she has on hand.

Or Fred wants caller ID to look up the customer first.

Or Sally Ann wants to filter out customers that aren’t in her region.

Or Pi wants every sales lead sent to his inbox.

And on, and on, and on.

40 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 40

The bottom line is that you can take in all the input in the world, but you may
not be able to build super software that will meet every user’s most minute
need. Nor should you. Software that purports to do everything often does
everything poorly. Think of all the different wonky Web browsers that have
toolbars, search engines, e-mail support, chat, and more. They brag about
being feature rich, but we know they are lousy. At some point, the project
team can become counterproductive because too many customizations spoil
the broth. (More stuff means more tech support, and more documentation.)

You and all the stakeholders must be in agreement about the purpose of the
project and then work backwards to their wish lists from there.

The goal of negotiation in project management is not to get the best deal for a
particular party. The goal is to find the best solution for the project.

Through rounds of give and take, compromise, and negotiations, you must
reach a consensus with the stakeholders on why the project is going to occur
and what the project will accomplish. Then you have to tell people (diplomat-
ically, of course) that they’re going to have to live with their disappointment
if they don’t get everything they want.

Early in the project life you want the stakeholders to define, own, and control
the product scope. Check out Figure 2-4. Stakeholders have the highest level
of influence on your project early in the project. The product scope describes
all of the attributes and features of the software you and your project team
will be delivering. After the product scope has been created, however, there
must be an agreed aversion to change. After the stakeholders agree on the
product scope, the project manager owns the scope and controls any
changes that are made to the scope. In other words, stakeholders can’t go
changing horses midstream.

Time

Project Manager
and team

Stakeholders

Pr
oj

ec
t I

nf
lu

en
ce

Figure 2-4:
Stakeholder

influence
wanes as

the project
moves
toward

completion.

41Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 41

Completing a Project Feasibility Study
Not all projects are feasible. News flash. But what if you know a project is not
feasible before the project work begins? It’d make a huge difference to have
this knowledge early on, right?

A project feasibility study (often just called a feasibility study) determines
whether a project is feasible with the constraints tied to the project. For
example, you might ask, “Can you create the desired software in four months,
with two developers, and a proposed budget of $58,000?”

A feasibility study looks at constraints, including the exact details of the
product scope, and allows you to explore each of the issues and make a judg-
ment. At the very least, a feasibility study enables you to present the facts to
managers so that they can determine what’s feasible.

42 Part I: Starting Your Software Project

Handling questions about cost
Most business entities typically have one cen-
tral question: How much will this cost? The trou-
ble is that when you’re still at the initiation stage
of a project, and you don’t have a real grasp on
the project expectations for delivery, giving an
accurate estimate is tough at best (and impos-
sible most of the time).

For-profit companies also want to factor in the
return on investment (ROI) for the project.
Again, because you’re initiating the project, not
launching it, you may be at a loss for an answer.

Situations will vary from organization to organi-
zation, but for the most part, your project is still
being considered, not launched. The reality,
however, is that what you say now will become
the gospel. There’s a big chance the project will
launch based on early calculations for cost,
ROI, and likelihood of completion.

When you have a general sense of the scope of
the project, you can do some initial research to
see what similar endeavors have cost other
companies or even your own company. This
research will at least (you hope) get you into the
right ball park. But be sure to season everything
you say with, “This is an estimate.” Your esti-
mate should include a range of variance, a time
period the estimate is valid, and any assump-
tions that you’ve based your cost figure on.

What the project can deliver may vary based on
the amount of cash, the amount of available
time, and the return on investment. And this is
why, sometimes, you may find yourself answer-
ing executives’ questions with one simple ques-
tion of your own: “How much can the company
afford to invest?”

06_749346 ch02.qxp 9/5/06 5:44 PM Page 42

What feasibility studies do (and don’t do)
You don’t always have to do a feasibility study. You may not have the time or
resources. However, feasibility studies can answer questions, discover sce-
narios, and unearth possibilities long before the project work begins.

Some reasons to consider conducting a feasibility study are that these studies

� Can save time and money. Some project managers consider the time
and initial capital invested in a feasibility study a waste. They are wrong.
When you consider the amount of time and money needed to take a pro-
ject from concept to completion, and the high likelihood of project fail-
ure, spending the time and money at the front end can protect larger
amounts of time and capital in the long run. Feasibility studies just make
good financial sense.

� Can give you and the stakeholders an opportunity to do a risk assess-
ment. Sure, you’ll assess risks in more detail when you’re planning the
project, but an initial risk assessment at this stage can help the organiza-
tion determine whether a marginal project should move forward.

A feasibility study does not

� Serve as a research paper. It’s a factual exploration of the project’s like-
lihood for success.

� Cheerlead the project manager’s point of view. For that matter, it’s neu-
tral all the way around and shouldn’t promote anyone’s point of view.

� Present alternate ideas. Your focus is on the merits and pitfalls of the
project as it’s been articulated at this point. You shouldn’t be tweaking
the ideas.

� Campaign for additional time or funds. When the project is chartered
and you and the project team move into planning, you can determine
time and cost estimates in detail. And if management won’t budge on the
budget or schedule? You must consider the lack of time and money a
risk and document the problem in a risk statement.

� Offer advice on the project’s initiation. A feasibility study just presents
the facts; it doesn’t make a recommendation for the project to be
launched or squelched.

Finding a feasibility consultant
So how do you go about creating a feasibility study? It’s possible that you or
one of your project team members can complete the study, but typically not.
It is preferred that the study be accomplished by a business consultant or
other subject matter expert (SME).

43Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 43

You and the project team may not be as objective as a consultant, so bringing
in an outsider is often very useful. A feasibility study completed by a consul-
tant ensures objectivity, exposes harsh realizations of the project’s risks, pro-
vides an accurate estimate of the likelihood of success or failure, and even
provides the motivation and validation your project team needs to complete
the work.

You can find an SME to help with your project feasibility study using any of
countless methods, but we prefer using personal referrals from colleagues.
You can also find SMEs through user group meetings, trade associations, IT
integrators, and, of course, the Web. Regardless of your approach to finding
an SME, a good consultant will have the following characteristics:

� Experience: The consultant should be experienced, not just with creat-
ing studies for other organizations, but with the technology you’re con-
sidering for your project.

� Effective communication: Someone who is able and willing to listen to
your project team, stakeholders, management, and you, the project man-
ager, is more likely to be listened to when the time comes to deliver the
results of the study.

� Willingness to participate: A consultant who participates in interviews,
meetings, and analysis of the problems or opportunities of the project is
always better than one who keeps a distance. Your SME needs to be
involved in order to understand the proposed project.

� Willingness to adhere to a contractual agreement and timeline: In
order to complete the project on schedule and within a given budget,
you need to consider these factors even at this early stage.

� Ability to provide useful information on an ongoing basis: The SME
must continue to provide useful, accurate, information as the study
progresses. (There’s nothing worse than paying for a feasibility study
that’s fluff.)

Understanding How Executives
Select Projects

Most companies, at least the ones we work with, have a limited amount of
capital to invest in new projects. This means, of course, that not all proposed
projects get launched. Some projects (no surprise) have a higher priority
than others. For example, projects that are tied to government regulations
have a funny way of earning a higher priority than other projects.

44 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 44

Projects may get selected in one of two ways:

� Constrained optimization: This is a complex approach that considers
multiple variables, factors, and likelihood of project success. Selection
committees use dynamic algorithms and linear and nonlinear program-
ming to choose their projects. Doesn’t that sound like fun?

� Benefit comparison methods: Most organizations use this approach.
Benefit comparison methods use accessible formulas, comparison
models, and systems to choose which projects should be launched and
which should not. Because these are the most common, we focus on
giving you details on several models.

Say you have a proposed project that’s dear to you. You, the project manager,
really want your company’s project selection committee to choose your pro-
ject, and you need some ammo as to why your project should be launched.
Well, friend, it’d behoove you to know which approach your management
team uses to select a project and then present the team with the facts to help
your project get launched.

By the way, if you’re wondering when, in the initiation process, all of this pro-
ject selection stuff happens, well, that depends. Each organization has its
own internal procedures. A bank, for example, may choose projects immedi-
ately after it conducts a feasibility study to determine whether the project
can truly be profitable. On the other hand, an IT integrator may elect to
select a project right after a rough order of magnitude estimate, but before
the feasibility study. There’s no hard-and-fast rule as to when it takes place,
but project selection always takes place through one of the approaches in the
following sections.

Using the benefit comparison
selection model
The most common approach to selecting projects is the benefit comparison
selection model. This basically means you use a predefined approach to
selecting projects and choose the project, or projects, that have the best
attributes. So, if you propose a project with lots of benefits, but your archri-
val, Paully, proposes a project that also boasts lots of benefits, management
examines which project, yours or Paully’s, has the most to offer. Managers
compare projects and choose the best one for your organization.

45Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 45

Using a scoring model
A scoring model establishes a foundation of desired attributes such as prof-
itability, cost, timeline, return on investment (see the section, “Finding a pro-
ject’s ROI”), required staffing, and so on. Each attribute is assigned a value. As
each proposed project is reviewed, the attributes of the project are assigned
scores. The projects with the highest scores are chosen for launch. In Table 2-1,
each project (in the first column) is scored based on its attractiveness in vari-
ous areas. Then the final scores are tallied (in the last column).

Table 2-1 Sample Scoring Model
Project Experience Schedule Cost Portfolio Final

Score

Project ABC 10 5 3 8 26

Code and Code Project 4 9 4 6 23

Web App Project 7 2 9 7 25

Patch and Fix Project 7 6 5 2 20

Facing a murder board
Yep, murder boards are as much fun as the name implies. A murder board is
a committee of people (well, they claim to be people) who play the devil’s
advocate against the project. Their job is to ask all sorts of questions to look
for the project’s weaknesses. This method of assessing a project attempts to
get a feel for the likelihood of the project’s success. In the process, it defi-
nitely weeds out project managers who kind of know what’s going on and
favors project managers who can think under pressure.

Before facing one of these committees, be sure to prepare by coming up with
a list of questions you think will be asked. Then prepare and practice your
answer to each proposed question.

Finding a project’s ROI
Every organization, for-profit or otherwise, should be concerned with the
return on investment (ROI) of a project. In particular, project managers, and
sometimes project selection committees, are concerned with how valuable the
project will be in dollars and cents (and sometimes that’s dollars and sense).

46 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 46

The ROI concept is straightforward. If you invest $100,000 in a project, a good
ROI is one that earns substantially more than $100,000. A project with a great
ROI is Microsoft’s investment to explore operating system technology.

Finding the present value
It’s math time! The present value is a formula that determines how much a
future amount of dollars is worth today. Imagine a project manager that
boasts his project deliverables will be worth $275,000 in five years. But
what’s $275,000 today?

Here’s what the formula looks like:

Future Value ÷ (1+I)n

I is the interest rate and n is the number of time periods for the project. If
the project manager promises $275,000 in five years and our interest rate is
6 percent, the formula would be $275,000 ÷ (1.06)5. That’d be roughly
$205,000 in today’s dollars (see Figure 2-5).

So what? If the project costs more than $205,000, it’d be better to leave the
cash in the bank where it can earn 6 percent interest instead.

Present Value= $205,000

Present Value=
Future Value

(1+I)n

Present Value=
$275,000

(1+.06)5

Figure 2-5:
The present

value of a
future

amount of
money can
be quickly

calculated.

47Chapter 2: Initiating a Software Project

Relying on benefit-cost ratios
Sometimes you hear the phrase benefit-cost
ratio bandied about. There’s nothing too fancy
about a benefit-cost ratio; it’s simply a ratio that
compares the number of benefits the project
will create with the costs the project will incur.

For example, a project that has a benefit-cost
ratio (BCR) of 4:1 is attractive, while a project
with a BCR of 1:3 isn’t looking too keen. Guess
which one should be selected.

06_749346 ch02.qxp 9/5/06 5:44 PM Page 47

Finding the future value
If you can calculate the present value of a future amount of cash you can do
the inverse. Future value allows us to take a present value and see what it will
be worth in the future. The formula is

PV x (1+I)n

where I is the interest rate and n is the number of time periods.

So imagine Jane’s software promises to be worth $500,000 in five years, but
she’ll need $275,000 to make it happen. So you want to know whether the
$275,000 investment for Jane’s project is worth it. If the compounded interest
rate is 6 percent, the formula to use is $275,000 x (1+.06)5.

This works out to approximately $368,012, which means that if Jane’s project
can really deliver what it promises it would be a better investment — by a
few thousand bucks — than leaving the money in the bank at a 6 percent
interest rate (see Figure 2-6).

Finding the net present value
Software projects can be delivered in stages, or versions. Each release of the
software has some value, some functionality, and some contribution to the
organization. In these instances it gets trickier to find the present value for
the whole project because there are planned multiple releases of the soft-
ware. And with each release, we assume, there’s some financial benefit to the
organization as well as some costs incurred.

As a rule, a net present value (NPV) greater than 1 promises at least a dollar
profit. If the net present value is a negative number, well, it isn’t good.

The NPV finds the present value for each time period over the planned
release of the software to determine the true total value of the deliverable’s
worth. Here’s how it works:

Future Value = $368,012

Future Value = (Present Value) (1+I)n

Future Value = ($275,000) (1+.06)5

Figure 2-6:
The future
value of a

present
amount of

money can
be found
through

some math
magic.

48 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 48

1. Complete the present value for each release of the software.

2. Find the sum of each release’s present value.

3. Subtract the organization’s original investment from the sum of pre-
sent value.

This value is your mystical NPV. The bigger the number, the more poten-
tial the project has. If you end up with a negative number, your project
won’t be profitable.

Table 2-2 shows you what this might look like for a project that will be
released over three years with predicted future values for each year.

Table 2-2 Finding the Net Present Value
Year Future Value Present Value

1 $35,000 $33,019

2 $48,000 $42,720

3 $81,000 $68,009

Sum PV: $143,748

Investment $97,000

NPV (Sum of PV – Investment) $46,748

We know what you’re thinking: What does this mean for me when you’ve got
a score of projects, frustrations, and stakeholders pestering you for changes,
updates, and new deliverables every day?

The NPV is a decision tool not only to help managers and customers select
projects, but also to determine which projects get cut first. Doesn’t that
sound nice? The point (the honest, real-world truth) is that these formulas
can help you predict which projects should demand the bulk of your time,
resources, and accountability.

Writing the Product Description
One of the key activities for the project manager, the key project stakehold-
ers, the customers, and in some instances, the project team is writing the
product description. You have to write the product description during the
initiation stage because it officially captures what the project will create.

49Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 49

Verbally everyone can agree on what the project will create, but to have it on
paper makes it official.

The product description captures the essence of what the project will create.
It describes the deliverables, the function of the deliverables, and how the
product will affect the organization.

The product description is also known as the product scope. Figure 2-7 cap-
tures the satellite view of the project. In this figure, the project purpose feeds
into the product scope. The project plan and execution support the product
scope and create the project deliverable. During project closure, you and the
key stakeholders must walk through the project deliverables to ensure that
what you promised in the product scope is what you and the project team
have delivered.

Every product scope should include the following:

� Overall function of the software

� Features of the software the project will create or revise

� Purpose of the project work (whether it’s to solve a specific problem,
seize a particular opportunity, or what have you)

� Any optional or desired components that may be incorporated into the
product based on the project manager’s discretion

� Metrics for product acceptance (speed, reliability, and consistency, for
example)

If you’re working with a vendor, then the product scope is also a meaningful
way to document your expectations for the vendor. Sure, all of this informa-
tion will also go into the final contract between you and the vendor, but the
product scope is a pre-project execution document that helps you get on the
same page with the vendor.

Project
Purpose

Product
Scope

Plan and
Executive

Deliverable

Figure 2-7:
The

process-to-
project

completion
must

support the
original
project

purpose.

50 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 50

If you’re shopping for a vendor, rather than working with a preferred provider,
your product description may be included in the Statement of Work (SOW).
The SOW ensures that you and the potential vendors are all in agreement as to
what the contract and project will create. You can find out more about vendors
and procurement in Chapter 12.

Making Your Project Wish List
When a project is about to begin and you know that you’re going to be the
one in charge of it, you should start to work immediately on a mental check-
list. We like to begin by running through what we’re going to need, who we
want on the project, and what resources we want to gather to hedge our bets
and make the project a success.

In the confines of project management education you’re not supposed to do
that. You’re supposed to follow some processes, some rules, and some guide-
lines that the organization, the mechanics of formal project management, and
polite people call for.

Finding the ideal tools
Tools are the things you need to get the project work done. They can include
anything from hardware (two monitors, faster processors) to the language
you’ll be using to develop the software. Technically, you shouldn’t be jump-
ing the gun by creating your dream list of the hardware and software you
might need to complete the project, but, depending on your experience, orga-
nizational conditions, and the nature of the work you do, your instincts may
already be telling you what general direction the project is moving.

If you’re brand new to software project management, just tuck these things
into the back of your mind and come back to them later. If you’ve got a bit
more experience, check this list to see whether you’ve considered everything:

� Development language: You need to know which code will deliver the
product the fastest, and which code will deliver the best product for the
customer. Unfortunately, you may find that the fastest software develop-
ment environment isn’t the best quality environment. If you see an
opportunity to train your team in a new language and create a better
product for the customer, your decision may be easy. But if time is an
issue (and when isn’t it?), and time is money (as they say), allotting time
for training and on-the-job education may not be practical.

51Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 51

� Hardware: Hardware is so freakin’ cheap nowadays that we don’t think
you should worry too much about this tool. If your team says it needs a
faster machine and can prove it, don’t scrimp. We know one developer
who boosted his productivity immensely simply because he added a
second monitor to a PC. When it comes to hardware we’re not stingy,
and we don’t think you should be.

� Training: In ideal circumstances, your team already knows how to
accomplish their tasks. At the very least, they have some experience
working in a particular development environment. Well, the world’s not
always ideal. If some or all members of the project team don’t know how
to do the work, train them or send them to training. This is part of team
development, the cost of quality, and it has huge effects on team morale.
We know some project managers who say, “But if I train my team, I might
lose them.” Our answer? But if you don’t train your team you will keep
them. Which is worse? Training and maybe losing your talented employ-
ees, or keeping employees who can’t do the work? Just think of training
as an investment.

� Other resources: Typically, when people think of resources they think of
people, but resources are also things. And the things you want on your
wish list are items that keep your developers happy. Let’s face it:
Developers are unique people. If they’re happy, they’ll deliver. So the
resources you want here can range from sodas and pizzas to reference
books and Internet subscriptions to relevant IT Web sites.

Building a dream team
In some organizations, the project manager works with the same team over
and over. In other companies, the project manager gets to cherry-pick the
talent to be on the project team. Still others get their project team based on
who’s available for the project.

Our dream team is based on a combination of people skills and technical
competence. Although we like to be around happy, friendly people, we can
accept grumps who can deliver what they promise any day. On the other
hand, you may have the most skilled programmer or developer on your team,
but he can’t seem to hold a conversation so that anyone can understand him.
Both skills are important. Your team members need to have technical exper-
tise, but they also need to know how to play well in the sandbox with others.
If you have the control over who works on your team, you need to figure out
the most productive team makeup.

Most often, you’ll find that your teams are a blend of assigned team mem-
bers, some resource selection, and some contractors that fill in the gaps.

However your team is created, every team goes through four phases of
development:

52 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 52

� Forming: In this stage, folks all come together, shake hands, and play
nice. It’s your job as the project manager to make certain everyone com-
municates with one another, feels comfortable, and recognizes who’s in
charge (you, of course) and what each person’s roles are.

� Storming: In this stage, attitudes, personalities, and alliances begin to
form. This process can be heated or passive (you can hope for a quiet
storm), but you’re guaranteed to see someone (besides you) take charge
on the project team. Usually this works out based on the experience or
passion of the leader of the team. Sometimes though, you may have to
influence the process to make your life easier — and the project deliver-
ables better.

� Norming: After roles have been clearly identified, politics have been
accepted or bucked, and things have calmed, you can focus on how to
get the work done. This is a natural process and there’s not much the
project manager can really do to force the team to move into norming,
or normalizing. You can threaten and coerce the team to complete the
work, but if storms are still brewing, the norming process won’t take
hold and you won’t have calm and cohesive teamwork in the project.

If you seem to be stuck in the storming phase, be patient. Still waiting?
You may have to evaluate whether some people will ever play nicely
with each other, and how big a problem that’s really going to be in the
long run.

� Performing. Ah, paradise. Now the project team has settled and is
focused on getting the work done. The project manager works to ensure
work is done according to plan and tries not to get in the way of progress.

To find out more about team building and resolving team conflicts, take
a look at Managing For Dummies, 2nd Edition, by Bob Nelson, Peter
Economy, and Ken Blanchard (Wiley).

Finding a preferred vendor
Most projects require you to buy stuff or contract developers, programmers,
or other experts. Every organization has its own policies and approaches to
procurement, and the project manager must follow the correct procedures.
There’s no monkeying around here. Rules are rules, especially when it comes
to finding and selecting a vendor. You don’t want to be a part of indiscretions,
conflicts of interest, or even an appearance of a lack of scruples.

But this doesn’t mean you don’t want some influence on which vendor you’re
relying on. After you know what the rules are for the vendors to bid on the
project work, you need to be assertive about finding the most suitable
vendor to complete project work.

53Chapter 2: Initiating a Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 53

Project managers have long been in the position to influence decisions for per-
sonal gain. It’s best to err on the side of caution and avoid any appearance of
discrepancies. In other words, don’t hire your buddy, your brother, or your girl-
friend just because you have a relationship with that person. Create a logical
approach to vendor selection, document it, and then stick to it. No one can
accuse you of taking kickbacks, bribes, or playing favorites with this approach.

Ideally, you should use vendors who are talented, experienced, and have a
decent price. The lowest bidder isn’t always the best bidder.

After the charter is signed by your project sponsor, all key stakeholders need
a copy of the charter. Some organizations use a boilerplate charter that is
sent via e-mail, while other organizations have a formal, paper-based charter
that is delivered in hard copy. Either way, all key stakeholders should receive
the charter so they’re aware of the official project launch, your authority as
the project manager, and who’s the sponsor of the project.

Recognizing Doomed Projects
Charters authorize the project based on the person that signs the charter. If
you don’t have a charter, you may not have a project. If you have a charter,
but it’s not signed, or worse, it’s signed by someone with little to no author-
ity, you’re doomed.

It is essential to have a charter signed by the right person. The person that
signs the charter must have, well, enough clout to squelch any problems or
challenges against the project’s success.

The most common problem when it comes to charters is the utilization of
resources. Say your boss, John Hancock, signs the charter to complete a new
piece of software. You’re the project manager and you need Tony, a lead
salesperson, to contribute to the project. Sharon is Tony’s boss and she says,
“No freaking way. Tony is busy getting sales.”

You whip out your charter to show that your boss signed off on the work and
you need Tony. Now here’s the trouble: Your boss and Sharon are at the same
level in the organizational flowchart. Your boss, swell guy that he is, has no
power over Sharon.

If you don’t want your project to fail (and, really, who wants their project to
fail?), find the right sponsor. Without the right sponsor your charter might
as well be signed by your mailman. Charters are great. Charters with power
are best.

54 Part I: Starting Your Software Project

06_749346 ch02.qxp 9/5/06 5:44 PM Page 54

Chapter 3

Creating the Software Scope
In This Chapter
� Analyzing stakeholder needs

� Creating the software scope

� Managing software requirements

� Dealing with project constraints

� Creating the work breakdown structure

You wouldn’t build a house without a blueprint. You wouldn’t start cook-
ing dinner without some idea of what the meal was actually going to

include. You wouldn’t head out for vacation without an idea of how to get to
your destination. So you wouldn’t start creating a new piece of software with-
out knowing what the software will actually do.

Out here in the real world, where we hang out, stakeholders present project
managers with software wish lists, Picasso-like dreams, and impossible antici-
pations. They expect the project manager and the project team to create a
stellar deliverable. You can’t create a stellar software product unless you
know what it is supposed to do. You must work with the stakeholders to
create the product scope.

This chapter shows you how to identify the key elements of the product so
that you can determine the best path to successfully completing the project.
We also show you how to work with your project team and your stakeholders
to gather requirements and how to understand and manage potential conflicts.

Understanding Product Scope
and Project Scope

Before you can really get started on a project, you need to know the end prod-
uct’s essential ingredients — as well as its limitations. The product scope is the
summation of the attributes and features that will comprise the product you’re

07_749346 ch03.qxp 8/31/06 12:08 AM Page 55

creating for your customer. When the stakeholders are in agreement on the
product scope, then you can focus on creating the software project scope.

The difference between the two is that the product scope describes the
end result of the project — the things the customer sees. The project scope
describes the work that must be completed in order to complete the project —
the things the project manager focuses on. As shown in Figure 3-1, the product
scope and the project scope support one another.

The best way to determine the product scope is to analyze the concrete (and
sometimes hidden) needs and expectations of the stakeholders. The follow-
ing sections help you in this process.

Completing stakeholder analysis
Stakeholder analysis is the process of determining who your stakeholders are
and what their interests and concerns for their project are. As the project
manager, you inherit their vision of the software solution.

A stakeholder, technically, is anyone who has a vested interest in your project’s
success. Obviously, you and the project team are stakeholders. Your project
sponsor is also a stakeholder. But the big stakeholders, the ones who influence
your project decisions, are the folks paying for the project work. These stake-
holders are sometimes called customers, clients, or project champions.

In a large organization, you may not immediately know who all of the stake-
holders are. The software you create for the sales department, for example,
may have ripples into manufacturing, marketing, training, and even distribu-
tion. As the project manager, you have to look not only at the immediate and
obvious stakeholders, but ask questions and examine the effects of your pro-
ject in entities within your organization.

Product Scope

Project Scope

Figure 3-1:
The product

scope and
the project

scope
support one

another.

56 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 56

Interviewing stakeholders now
to avoid surprises later
One of your most important responsibilities is to interview your stakehold-
ers. This is a vital step because it ensures that you, the hub of the project, are
in tune with what the project stakeholders really want.

Ninety percent of project management is knowing how to communicate. Set
expectations for communications early on in the project management life
cycle by asking your stakeholders lots of questions. You need to help them
communicate to you as much as you must communicate with them. We dis-
cuss communications in more depth in Chapter 4.

When gathering stakeholder requirements and other information, be sure you
have considered all stakeholders, not just those that are the most visible. As
you communicate with your project team and other stakeholders, be sure to
ask whether other stakeholders should be considered. You can check with
your organization’s marketing or communications department (if you have
one) for help reaching out to hidden stakeholders.

Stakeholder analysis isn’t just examining who the stakeholders are — but
also their demands and wishes for the project deliverables. You’ve got to ask
lots of questions, for example:

� Can you describe the conditions this deliverable will operate in?

� What’s the opportunity this project will grasp?

� What’s the main problem this software will solve?

� How do you see the deliverable solving your problem?

� What other software will this deliverable interact with?

� What are the primary and secondary features of the software?

� How will this software make the end-users’ jobs better or easier?

� Are there other stakeholders that we should consider?

� How do you see this deliverable benefiting your customer?

Your questions should be open ended but focused. Make sure that the
stakeholder has an opportunity to talk in his or her own words about
the expectations and goals of the software, but lead the discussion so
that the answers you receive are specific enough to help you plan the
project effectively.

57Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 57

One of the most effective ways of completing stakeholder analysis is to put
yourself in the stakeholders’ shoes. Over the course of the project, you’ll
work side-by-side with the stakeholders to experience how they currently
perform their job functions. You’ll work with them through the tasks they do
now and observe their use of the software later.

Managing Stakeholder Objectives
Don’t expect stakeholders to play nicely with each other. Like all people,
stakeholders have individual personalities, and competing stakeholder objec-
tives can haunt a project through its duration. Some examples of competing
stakeholder objectives include conflicting demands between two or more
managers, or time and cost responsibilities within the organization.

Sometimes, stakeholders don’t know exactly what they want and they’re
counting on you to show them. Proceed with caution. When you’re working
with these wishy-washy folks, they’ll expect you and your project team to
create software that they can try and then modify. And then the process starts
over: Your project team creates a masterpiece, they try it out, and then your
team modifies it. And again, and again. It’s frustrating to you, the project team,
and even the stakeholder. And it’s a big, freaking waste of time and money.

Stress to the stakeholder that you both must have a clear vision of what the
project will create. Without a real grasp on the deliverables, writing an effective
project scope — let alone creating an effective application — is impossible.

The following sections help you manage stakeholder expectations so that the
project stays on track.

Knowing the sources of common conflicts
You are a software project manager. Chances are you’ve come up through the
ranks as an IT professional, business analyst, or junior engineer. In your posi-
tion you’ve got some power, but you don’t want to jeopardize your political
capital, anger the wrong people, or make waves when you don’t have to. That
said, sometimes you’ll have to resolve conflicts to move a project toward
completion. The goal of conflict resolution is to resolve the problem, move
the project along, and not make enemies.

But regardless of the patience and leadership you demonstrate, some folks
won’t be happy with your decisions, or the project objectives. Some people
will blame you because their requests for the software features can’t be
added to the project. You can bet on it.

58 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 58

Conflicts (surprise, surprise) come in all flavors. But you may be surprised to
discover which conflicts are the most common. My pals over at the Project
Management Institute (PMI) rank the following conflicts in order of frequency.
Sure, sure, they may be different where you are, but there’s no need to bicker:

� Schedules: Think of all the different projects, responsibilities, and
demands that carve out chunks of your day. Now think of the other
people your software project involves and how their schedule is affected
by your project. No wonder scheduling mayhem is at the top of the list.
Egads! For information about creating effective schedules, see Chapter 8.

� Priorities: What’s important to Jane isn’t always important to Bob.
Stakeholders will have pet features, ideas, and components they’ll want
your project team to build into the software. Some of these components,
such as which database technology to use (SQL or Oracle), are mutually
exclusive — you can’t have it both ways. Because everyone won’t get
the component he or she wants, you should prepare for unhappiness.

� Resources: As a software project manager, you know your project team
and the abilities of all its individuals. If demands spread your project
team too thin they’ll never get their work done and their morale will
plummet, which puts the crunch on your project’s success. Resources,
especially good developers, are in high demand.

� Technical beliefs: If you’ve ever hung around software programmers for
more than, oh, say ten minutes, then you know these IT folks can disagree
over eight ways to accomplish the same task. Technical beliefs can be a
real stumbling block for project team members with diverse backgrounds.

� Policies and procedures: Don’t you just hate it when your organization’s
rules, procedures, and policies get in the way of progress? If you yield to
temptation and cut corners, you’ll pay the price later. If you try to argue
your way through the red tape and procedures, you may make enemies,
anger management, and waste time. Policies and procedures, both good
and bad, exist for some reason — even if no one can explain what that
reason is.

� Costs: When it comes to software project management, costs are usually
tied to a timeframe for research and development, simulations, rework-
ing kinks, learning, and productive coding. Stakeholders don’t always
see the value of any dollars committed to time that isn’t directly attrib-
uted to creating productive code. Time is money, and software develop-
ment takes time. Chapter 9 covers project costs and budgets in a lot
more detail.

� Personalities: Some project managers find it hard to believe that person-
ality is the least common source of problems on projects, but according
to the PMI, it’s true. Most people can work together toward a common
goal — the successful completion of the project. Personality conflicts,
as a rule, only become a problem when they prevent the project from
moving forward. In other words, annoying people may give you a few
headaches, but they don’t usually prevent the job from getting done.

59Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 59

As a project manager, your focus is on one thing: getting the project success-
fully completed. Conflicts and arguments are sometimes necessary because
they help the stakeholders define vague priorities and resolve differences
about what’s truly best for the project. Much of the time, however, arguments
are over power trips, politics, and technical preferences. You don’t have time
for petty arguments when it comes to software project management, so you’ll
have to be decisive and swift when it comes to making decisions.

Resolving common conflicts
The preceding section, “Knowing the sources of common conflicts,” identi-
fied several conflicts you’re likely to come up against in a typical software
project. This section examines how to deal with them.

To help you resolve conflicts, you’ve got five approaches you and other
stakeholders ought to use:

� Problem solving: Utilizing problem-solving strategies is the pinnacle of
conflict resolution. This approach requires both parties to work together
for the good of the project. Both parties want the solution that works
best for the project. Using problem-solving techniques means removing
ego and politics from the scenario to create a win-win solution.

� Forcing: You’ve seen this approach to conflict resolution before. Forcing
means the person with the power makes a decision and there is no fur-
ther discussion. And you know that just because someone has power
doesn’t mean that this person always makes the best decision for the
project. That’s why forcing usually results in a win-lose solution.

� Compromising: This sounds nice, but really it’s not. True compromising
means that both parties in the disagreement have to give up something
they want. Both parties get part of what they want, but neither gets
everything. Compromising is different than problem solving because it’s
more confrontational, whereas problem solving has a spirit of coopera-
tion for the best solution. Compromising is considered a lose-lose sce-
nario because no one wins 100 percent.

� Smoothing: This solution allows the project manager or other people in
power to downplay the differences between the stakeholders and mini-
mize the problem. The project manager smoothes the conflict without
offering a solution. This is a lose-lose scenario because neither side wins.
On the other hand, the project manager (or other stakeholder) could
smooth the conflict while offering a solution, making it a win-win situation
(which is what you should strive for). For example, if one group of stake-
holders insists on software functionality that will support a particular
naming convention, whereas another stakeholder would prefer a different

60 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 60

naming convention, you could smooth the situation by allowing both
stakeholders to air their arguments. You may all discover that the differ-
ences have more to do with politics and personalities than with a real
preference for naming conventions. Giving people the opportunity to talk
things through enables stakeholders to minimize problems on their own.

Trial and error is the best approach to finding the right conflict resolu-
tion technique for each situation. No one method will work 100 percent
of the time with 100 percent of your stakeholders on 100 percent of your
projects. Arm yourself with as much knowledge about conflict resolution
as possible, and then let experience help you figure out which methods
you’re most comfortable with in each situation.

� Withdrawal: Ever been in a disagreement where the other person talked
the issue to death? What’d you do? I bet you threw your arms in the air
and surrendered just to get moving. That’s a withdrawal — where one
side of the argument takes him- or herself out of the discussion. This is
considered a yield-lose scenario because one side of the argument yields
to the other without anyone really considering what the best solution
for the project may be.

Building the Software Scope
When you and the stakeholders have a clear vision of where the project’s
going, you need a clearly defined set of requirements. Early on in the project,
you and the key stakeholders define what must be in the project and what
would be nice to have in software.

While ideally everything the project will create is defined at the beginning of
the project, chances are you, the project team, and the project customer will
have inspirations for other deliverables that can be folded into the software
as the project moves along. Changes to the software scope can be dangerous
because they can eat into time and the budget. But they also can bring other
risks to the project, such as

� Creating conflicts among various stakeholders, especially when one
group feels that the suggested changes benefit other stakeholders more
than themselves.

� Negatively affecting the quality of the project, especially when bells and
whistles are added without adding sufficient time for system testing.

� Affecting other areas of the project such as interfaces to other systems,
especially when you change code for one system but don’t allow enough
time for testing or changing other interfaced systems after the change.

61Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 61

Document scope changes and allot time to research their true impact; be
sure you’re examining their impact on the project, as well as on other pro-
jects; sometimes the code you change for one project can affect other sys-
tems as well.

Requirements are the things your software must create in order for the cus-
tomer to accept the project deliverable. Creating good, clear requirements
isn’t easy. It takes time, patience, and input from your project team, the pro-
ject customers, and other stakeholders, such as the project sponsor, the
quality assurance folks . . . and don’t forget the application testers.

Dealing with regulations and options
The software project scope is created based on the product scope. But not
everything is really a requirement. Some facets of your software may be
optional. It’s a great idea to identify, or at least prioritize, the things your pro-
ject will create. Getting everything straight enables you and the project team
to evaluate the core functions of the application versus the optional features.

You know that stakeholders usually don’t get everything they want when it
comes to creating an application. Time, costs, ability, and even priority of the
deliverable may affect what actually ends up in the finished project. But
there’s another concern that influences your project deliverables: regula-
tions, standards, and organizational influence. The following sections look at
each of these factors.

62 Part I: Starting Your Software Project

Managing an enthusiasm deficit
You will find an interesting balance between
stakeholders who want to tell the project man-
ager everything they think and other stakehold-
ers who are too busy, too bored, or too afraid to
get involved in this crucial step of your project.

But everyone must get involved. You and your
project team can create what these stakehold-
ers want — but only if you truly know what they

are expecting as a result of your efforts. Your
key stakeholders, you, and your project team
must work together to capture all of the require-
ments of the project deliverable. Have meetings
in which everyone is required to contribute, give
stakeholders questionnaires, and do your best
to inspire everyone to have a hand in the devel-
opment of the project’s scope.

07_749346 ch03.qxp 8/31/06 12:08 AM Page 62

Adhering to regulations
A rule that has a punishment attached to it — like jail, fines, or both — is typ-
ically a regulation. Regulations are not optional. You must obey them.

Chances are your software project has to deal with regulations. Consider the
following:

� Sarbanes-Oxley Compliance (SOX). If your organization, or the organiza-
tion for which you’re building the software, is a publicly held company,
then you have to comply with the Sarbanes-Oxley Act of 2002. You can
find out more about how this act may affect your business by reading
Sarbanes-Oxley For Dummies by Jill Gilbert Welytok (Wiley).

� The Health Insurance Portability and Accountability Act of 1996
(HIPPA). HIPPA primarily affects health care and insurance organiza-
tions, so if you’re doing business with these industries you’ll have to
complete research, audits, and provide proof of compliance.

� Occupational Safety and Health Administration (OSHA). OSHA requires
all companies to provide protection for the safety and health of workers.
Your software may have OSHA concerns depending on its usage in the
organization.

� Industry-specific regulations. Consider pharmaceutical companies to
construction industries and everything between. Every industry has
specific laws and regulations that affect what an organization must do.
As a software project manager, you must know and incorporate the
requirements that affect your software into your project plan.

The difference between a standard and a regulation is significant. A stan-
dard is a particular set of guidelines to which you agree to adhere. For
example, a naming convention, the method for documenting program-
ming comments, and file formats are examples of standards. A regula-
tion, on the other hand, is a requirement imposed by a government
body. For example, you must adhere to the regulations listed in the pre-
vious bullet points or face consequences. Not even the meanest boss
will throw you in jail if you name program files wrong.

Choosing options
At the beginning of a project, stakeholders may believe that nothing is
optional. They’ll want every feature, every button, and every concept they’ve
dreamed up. Then you and your experts must discuss the feasibility of their
wishes, the cost of the plans, and offer a realistic timetable to deliver every-
thing stakeholders want. At that point, light bulbs will go off and the stake-
holders will quickly discover what’s optional and what’s not.

63Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 63

Here’s why prioritizing needs and wants is important:

� Money. Software design takes time and time costs money. If the project
team can evaluate and focus on the core deliverables, you can alleviate
budget concerns, either early in the project, or later, when (and I mean
when, not if) financial woes sneak into the project.

� Time. If you’re crunched for time, picking which components can be
shoved to the side first and which components must be created if you’ve
prioritized is much easier when you know in advanced what’s desirable
and what’s absolutely essential.

� Stakeholder buy-in. Stakeholders know that you know which features
you should focus on first, and which components are optional based on
the project’s health. They’ll stand behind a slimmer, more efficient prod-
uct that’s done on time, especially when the alternative is a bulky, slow
product that is not ready on time.

� Project manager’s sanity. If you know what the customer expects, lead-
ing your team to meet that expectation is (relatively speaking) a no-
brainer. You can always add some cool options and features that your
team can quickly work into the deliverable without raising any alarms,
keeping your customer happy.

Leading, creating focus, and making decisions based on assigned priori-
ties is much easier than tacking on new components and removing them
willy-nilly.

� Negotiations. This reason for prioritizing is just a little sneaky. If you
know there are elements the customer would like in your deliverable,
but they aren’t defined as requirements, you have bargaining chips. You
can use these extras to “win” your project the time, funds, or political
capital your project may need for additional changes, budget crunches,
or even resources assigned to the project team.

Dealing with project constraints
A constraint is anything that restricts a project manager’s options. I’m sure
you’ve encountered project constraints before. In software project manage-
ment, you deal with lots of constraints:

� Schedule. You and the project team must create the software deliverable
by such-and-such date — or else. Schedule constraints can also be
crunched by the availability of project resources, vendors’ ability to
deliver, and even access to testing facilities, server rooms, and networks.

� Budget. Of course, you’ve got a budget, but is it enough? In software
project management, the bulk of your budget is tied to labor. The longer
your programmers take to create accurate code, the more expensive

64 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 64

your project deliverable becomes. You must also consider the cost of
software, hardware, user acceptance testing, and other expenses.

� Resources. You probably have your favorite programmers that you’d like
to work with on every project because they’re just so gosh-darn good.
But they can’t do everything, they’re in high-demand, and chances are,
because of their skill sets, they’ll cost your project more. And even if you
don’t play favorites, which I bet you do, you may still face resource chal-
lenges. Most IT organizations don’t dedicate their programmers to just
one project at a time — so which project has priority for the resources
you need? You’ll have to bargain, beg, and plead (sometimes) to get the
resources you need and want.

� Technology. When it comes to software project management, you have
to deal with surprises, like programming in COBOL, Visual Basic,
CodeWarrior, and more. And sometimes the technology you have to
interface with is so old you’ll be consulting with Moses just to be back-
ward compatible. All programmers must know backward compatibility
requirements. This can be a huge constraint.

� Competence. No one likes to admit to not knowing something —
especially programmers. But if your project team doesn’t know how to
program, solve problems, interface with databases, stop leaks, repair
loose code, and perform other day-to-day programming activities, you’re
in big trouble. You need to have an approach to skill assessment. You
need to create an environment where programmers are encouraged to
ask for help when they need it. It’s better to train, offer materials, or hire
experts to help the project than to let your team wallow in denial and
churn out worthless code.

� Management. Ah, here’s every project manager’s favorite scapegoat.
Have you ever said

• We don’t have enough time!

• We don’t have enough cash!

• We don’t have enough programmers!

• Management is setting unrealistic expectations!

As project management consultants, when we witness these rants we
have to determine who’s really to blame. Usually the project managers
are correct. Usually. But sometimes the project managers are so out of
tune of the project management processes that they don’t know how to
plan or attack the project objectives. Other times, management has no
concept of what software project management is. They have no concept
of what it takes to develop a piece of software and the challenges therein.
Management may throw a schedule and budget together and dump them
on the project manager’s desk. In these instances the project manager
must communicate the problem. If the project manager does nothing

65Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 65

other than rant in private, things won’t change and the project will likely
fail. The key here is to document the problem as a risk, share the risk
assessment with management, and then document the results. If you’re
faced with unrealistic expectations from management, your job is not to
fail and then tell the managers, “I told you so.” (That will not earn you a
promotion, I promise!) It’s to say, “Here’s a problem: unrealistic expecta-
tions. How will we fix it?”

Getting to the signature
After rounds of discussions with your project team, the project customer, and
other stakeholders, you and the main stakeholder need a requirements docu-
ment that identifies everything the project promises to create. You and the
customer should sign off on this document so that everyone involved agrees
that the project manager and the customer agree on their roles and expecta-
tions for the project deliverable.

In your organization, the person who signs off on the requirements document
may vary. For some folks it’s always the project sponsor, in other organiza-
tions it’s the project customer or champion. As a rule, the person who signs
off on the project acceptance and closure (discussed in Chapter 16) at the
end of the project should also sign off on the project requirements. You need
the same party at the start of the project as you do at the end.

Your requirements document may be an in-depth product description, state-
ment of work, contract, or a formal documentation of all of the features and
components your project is responsible for creating.

Out in the real world, your product scope may also serve as your require-
ments document with simple modifications. This document sets expectations
and is the groundwork for creating the formal project scope.

Having a signed requirements document on hand accomplishes several things:

� Identifies what you and your project team will create for the stakeholders

� Identifies that the stakeholders are in agreement as to what the project
requirements are for your project

� Identifies that you understand the software functionality the stakeholders
are expecting as a result of your work

� Allows you and the stakeholders to fully share in the project buy-in by
agreeing to the things your project will create

� Acts as a checklist to ensure that you meet all the requirements

� Serves as future historical information for other project managers in
your organization

66 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 66

Creating the Project Scope
The project scope defines the products and services the project will create. It
doesn’t include the cost of the project, the schedule of the project, or even
the resources the project requires. The project scope defines what will and
will not be included in the project.

When your project team is assembled, you can go about creating the project
scope. And it’s fun, fun, fun.

Not really.

So where does the project scope come from? Glad you asked. The project
scope is based on the requirements document you and the stakeholders have
signed off on. The project scope stems from the requirements that the pro-
ject must create. Figure 3-2 shows the evolution of the project scope — and
beyond.

Imagine your company needs you to create a piece of software that can inter-
face with your IP telephones. The software must

� Pull the caller ID from the inbound call

� Query a database to see whether the caller is a current customer

� Load the customer’s account onto the representative’s screen

� Record the time the representative took to answer the customer call

� Record the length of the conversation between the representative and
the customer

� Automatically save the caller info to the database when the call is
completed

Project Charter

Product Scope WBS

Requirements
Documents

Project Scope Project
Activities

Project
Deliverables

Scope Verification

Regulations and
Standards

Stakeholder Needs
Assessment

Figure 3-2:
The project

scope is
central to

project
completion.

67Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 67

These six items are all deliverables defined in the project scope. Notice that
there’s no mention of which coding language the software must be developed
in. There’s no mention of which technology the database must reside on.
There’s no mention of network latency, brand name IP phones, or other tech-
nical jargon. And there’s no mention of money or time.

You shouldn’t define every single detail of the project scope before the work
gets done; that’s the job of a work breakdown structure (WBS) (described in
detail later in this chapter). What’s necessary is to capture what the project
will deliver.

The project scope, for most projects, won’t be created in one sitting — or
even one day. This is all part of planning, of determining what’s needed and
how much and how long it’ll take to get there. There’s a see-saw effect to
building and agreeing on the project scope.

All successful projects have one thing in common: The project manager and
stakeholders reach an agreement on the project scope. If you, the project team,
and the project stakeholders, cannot come to an agreement on the project
scope, your project is doomed. Think back, way back, to some of the projects
you’ve worked on that failed. (If you don’t have any failed projects, ask that
weird guy down the hall.) Was the project badgered by inadequate require-
ments, change requests, and dissatisfied, fickle, stakeholders? Stakeholders
that don’t know what they want are fuses for project time bombs.

Knowing what the project scope
statement must include
There are certain items that absolutely must be included in the project scope
statement, which is a narrative document detailing the project scope (work
to be completed) and the following information regarding your project:

� Deliverables. The project scope defines what the project will create for
the project customer. Think of nouns: things in the software package, the
screen interface, the software compatibility, and so on.

� Assumptions. Every project scope must list the assumptions that went
into its creation. For example, you assume that the software can be
developed in C++. Or you assume that you’ll have access to test the soft-
ware on the network. Assumptions need to be listed now so that you can
test your assumptions as the project moves forward.

� Exclusions. These are things that won’t be included in the project
scope. For example, your project will create the software for the cus-
tomer, but your project will not actually deploy the software to the
10,000 users on the company network.

68 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 68

� Functions. Your project scope must define what the software will do.
Think verbs. In your scope you should document the functionality of the
software.

� Technical structure. Your project scope must illustrate the flow of data,
the subsystems the software may interact with, and the dependencies
of the software (such as Internet, network, .asp, and operating system).
With complex projects it may be necessary to illustrate the subsystems,
as shown in Figure 3-3.

LAN Users

Servers
Security &

Middleware

Data

Remote Users

Figure 3-3:
Visualizing

the
subsystems

affected
can help

stake-
holders

develop the
project
scope.

69Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 69

� Influences. Most software projects affect lines of business that may
have a domino effect on other lines of business. Document the potential
for any disruptions your project may cause. Consider:

• Business processes

• Organizational geographical sites

• Departments affected

• Access to data

• Changes to other applications

• Support of the new software

• Changes to or deletions of existing technology

• Dual support of technologies (if phasing one technology out)

� Other projects. Your project may be dependent on other projects to be
successful. For example, your project team may be creating the Web
interface for a sales catalog, but you can’t move forward with your pro-
ject until the database project is complete. The inverse is true, as well;
you may be creating a new piece of software, but the company’s Human
Resources department can’t develop its user training materials for your
software until it has something to work with.

What a project scope doesn’t include
While the project scope details what the project will do, it must also implicitly
define what’s not included. By definition, if something’s not included in the
list, it’s not in scope. Of course, if something’s not listed in the project scope
and later it’s determined that it should have been, that’s a separate issue that
must be addressed, particularly because anything that’s added to the scope of
a project that’s already underway will affect the schedule and budget.

You may have heard other project managers, team members, or stakeholders
say, “That’s not in scope.” What they’re saying, really, is that whatever some
chucklehead is trying to add to the project doesn’t qualify. There must be a
consensus among the project stakeholders as to what’s in scope and what’s
out of scope.

Creating a Work Breakdown Structure
A work breakdown structure (WBS) is a visual representation of everything the
project will create. Typically, a WBS includes things (deliverables, compo-
nents, and so on), not activities. However, there’s no hard-and-fast rule on

70 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 70

exempting activities from your WBS. I prefer to keep work out of the WBS and
focus on the things the work will create. Although we do allow some actions
to sneak in, such as testing, ordering, and compiling, most of our WBSs are
comprised of deliverables.

And I know you want to know why. Your WBS is also your scope baseline.
As your project moves towards completion, you can compare what you’ve
promised in the WBS against the things that your project has created. The
WBS is a direct input to scope verification, which is a fancy way of saying
customer acceptance.

The traditional WBS is a flowchart of objects. Another style of WBS looks more
like a shopping list. While we like the traditional flowchart representation of a
WBS, we’re open to whichever approach works best for each project.

If you’re wondering whether you have to create a WBS, well, you do. The WBS
is crucial to successful projects. You’ll need the WBS to do any of the follow-
ing, and you’ll want to do all of the following:

� Cost estimating. The WBS allows you to create accurate cost estimates
to create the thing the project requires.

� Cost budgeting. The WBS allows you to track actual costs against the
estimates for the things your project will create.

� Resource planning. The WBS components require people and things to
create. By creating the WBS, you can accurately capture everything
you’ll need to complete the project.

� Risk management planning. Planning for risks when you can’t see what
you’re creating can be tough. The WBS illustrates the things you’ll create
and then you’ll have a clearer picture of where risks may be hiding.

� Activity definition. The end result of the WBS is to create an activity
list. The activity list, or activity definition, lists all of the actions your
project team will need to do to build the stuff in the WBS.

Creating your very own WBS
To create the WBS, you, your project team, and (in some instances) your key
stakeholders convene to decompose the scope statement. The WBS decom-
position is not a solo activity.

Decomposition isn’t about rotting. It merely refers to breaking down some-
thing complicated into its composite parts.

71Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 71

Before you get to work on your WBS, you should know about the 8/80 Rule.
This is a general guideline that breaks down items into work packages. A
work package is a unit of time allotted to a task or deliverable. The 8/80 Rule
says that a work package should equate to no more than 80 hours of work
and not less than 8 hours of work to create the deliverable. In other words,
you don’t want the WBS to be full of tiny, incremental chores and tasks (that’s
called micromanagement, which is unrealistic and kills productivity); nor do
you want the work packages to be so huge that there’s lots left up to the
imagination (that’s called being vague, which leads to programmers working
on their blogs when they should be on the job).

The 8/80 Rule is really a heuristic — a broad rule. You don’t have to live and
die by the rule. There’ll be some deliverables you want to reflect, like licensing
agreements, that won’t actually take 8 hours of work to create. It’s perfectly
fine to have exceptions to the 8/80 Rule if it helps you complete your project.

Here’s what you have to do to get your WBS together:

1. Break down the scope into major buckets of things the project will
create.

Some project managers like to envision the phases of the project to
serve as main components. I prefer to think in broad categories of deliv-
erables. Take whichever approach works best for you and your project
team. For example, you might decompose a project scope into

• Project management deliverables

• Database deliverables

• Server deliverables

• End-user deliverables

• Education and documentation deliverables

2. Decompose these deliverables again into smaller units or work
packages.

If you’ve decomposed deliverables down and the smallest item you have
still equates to 400 hours of labor, break down the WBS some more.

72 Part I: Starting Your Software Project

Using templates to create effective WBS
Don’t reinvent the wheel. If you’ve managed
similar projects in the past and you can rely on
an existing WBS, go get it. In fact, we’ve cre-
ated WBS templates for redundant projects.
Templates save time and ensure that all of the
deliverables are identified. A WBS template, like

any other template you might use, can be mod-
ified for project specifics. Using WBS templates
also ensures consistency among your projects.
Sometimes you might see a WBS template iden-
tified as a WBT; don’t sweat it.

07_749346 ch03.qxp 8/31/06 12:08 AM Page 72

Making updates to the WBS
The WBS creation is part of planning, so you have plenty of opportunities
to revisit the WBS for updates and refinements. In fact, sometimes change
requests will trickle (or flood) in. You should revisit the WBS to reflect the
approved changes to the project. The danger of not consistently updating the
WBS to reflect changes will be evident when the final deliverable doesn’t
match what the WBS has promised. Not modifying the WBS when you ought
to can cause several problems.

The WBS is your scope baseline, so any changes to the scope must be docu-
mented here. Otherwise, the following bad things could happen:

� Time and cost baselines may be skewed because they don’t match
what’s in the WBS.

� Your customer may be confused as to why the WBS doesn’t match the
deliverable you’ve provided.

� Project team members may be out of synch about what they’re sup-
posed to be creating and what the WBS calls for.

� If someone in management reviews the WBS and the project deliverables
don’t match up, you have to have that conversation. Nobody wants to
have that conversation. Especially you.

� Future projects based on your current project will have faulty information.

When you’re starting out building the WBS, use low-tech strategies to plot
out how everything is going to work. Some yellow sticky notes and a blank
wall can really do wonders to help you break down major deliverables into
smaller components and activities (see the case study at the end of this
chapter for more information). Don’t rely on your project management infor-
mation system (PMIS) to help create the WBS — do it by hand and then enter
it into your PMIS. It’ll be smarter, more concise, and easier for the whole pro-
ject team to visualize.

Using a code of accounts
Want to get really organized? We thought so. A WBS can use a code of
accounts to number and identify each element. A code of accounts is really
simple to create.

You first identify a project number for your software project; let’s just say,
in this example, you’re creating a piece of software to organize and access
millions of corporate product photos. Your project is assigned the name
PhotoBug 675. In your WBS, you abbreviate it to PB675. Each major compo-
nent at the second level of the WBS also begins with PB675, but you append
each stage or category of work with .1, .2, .3, and so on.

73Chapter 3: Creating the Software Scope

07_749346 ch03.qxp 8/31/06 12:08 AM Page 73

So, for example, say you’re starting with the database component of the soft-
ware (makes sense; good choice). This item is called PB675.1 in the WBS.
Your SQL Server 1 and SQL Server 2, at the next level of deliverables, are
identified as PB675.1.1 and PB675.1.2, respectively.

This code of accounts allows you to tie time and cost estimates to each deliv-
erable, and provides clear communications when stakeholders ask questions
about project deliverables. You can link the code of accounts back to your
organization’s profit and loss statements.

Finally, you can dump all the elements of the WBS into a WBS Dictionary,
which you also create. The WBS Dictionary defines the code of accounts, the
time and cost estimates, the characteristics of the deliverables, risk assess-
ment, and other attributes. It’s a crib sheet for anyone who needs an at-a-
glance look at the WBS.

74 Part I: Starting Your Software Project

Case study: Building a WBS
Happy Yarns is a manufacturer of yarn, ribbons,
and other materials. Its project manager, Sarah
Montgomery, managed a software project to
create a Web-based application that enables
customers to place and track orders. This case
study follows Sarah through the process of cre-
ating the WBS for her project.

You can assume that Sarah already has the
inputs to the WBS, such as the project scope
statement and scope management plan (to
ensure she and her team understand the pro-
ject deliverables); organizational assets such as
policies, procedures, guidelines, and historical
data from other projects; and approved change
requests (to ensure that she and her team
understand any previously approved changes
to the project scope).

The first step Sarah took was to convene a WBS
meeting with her project team. Her project team
consisted of individuals from sales, marketing,
IT, and manufacturing.

Sarah explained to her team that the purpose of
the meeting was to create an initial work break-
down structure to represent all of the deliver-
ables the project scope promised. Her goal in

the meeting was to determine the major cate-
gories of deliverables within the project.

Her team determined this project had six major
categories of deliverables:

� Web deliverables

� Database deliverables

� E-commerce deliverables

� Marketing deliverables

� Manufacturing deliverables

� Project management deliverables

These six categories captured all of the things
that Sarah and her project team would create.
Notice that one of the categories included is
project management deliverables; this is impor-
tant because it required Sarah to create docu-
ments, estimates, and communications to
inform future project managers and enable
them to do their work better. The project man-
agement deliverables were intended as future
historical information.

When creating her WBS, Sarah wanted to use
a numbering system called the Code of

07_749346 ch03.qxp 8/31/06 12:08 AM Page 74

75Chapter 3: Creating the Software Scope

Accounts to identify each element within the
WBS. Sarah dubbed her project WEBSALES 101
and created a numbering system that followed
the schema of W101.

Sarah had Brian Walker, a project team
member, plot out six sticky notes across the
wall. Each note reflected one of the major deliv-
erables with the numbering schema. Next
Sarah and her team began to decompose the
major deliverables into smaller components. As
the team formed consensus on each deliver-
able, Brian arranged another sticky note under
the appropriate category. Here’s what their
WBS components looked like at this point:

W101.1: Web deliverables
W101.1.1: User interface
W101.1.2: Online product
catalog
W101.1.3: Java programs
W101.1.4: Web menus
W101.1.5: Forms

W101.2: Database deliverables
W101.2.1: SQL Servers
W101.2.2: Product
databases
W101.2.3: Manufacturing
databases
W101.2.4: Security
measures

W101.3: E-commerce
deliverables
W101.3.1: Shopping carts
W101.3.2: Merchant
accounts
W101.3.3: Security
measures

W101.4: Marketing
deliverables
W101.4.1: Verbiage for Web
content

W101.4.2: Photos and
graphics for online
catalog
W101.4.3: Promotion
schedule

W101.5: Manufacturing
deliverables
W101.5.1: Schedule of
material creation
W101.5.2: Historical
information of past
production output
W101.5.3: Profit margin
for materials

W101.6: Project management
deliverables
W101.6.1: Project
management plans
W101.6.2: Project
calendars
W101.6.3: Contracts
W101.6.4: Lessons learned
documentation

With the WBS beginning to take form, Sarah
and the team decomposed the deliverables
again. Sarah’s project team followed the 8/80
Rule: The smallest item in the WBS should
equate to no less than 8 hours of labor and no
more than 80 hours of labor to create. Through
rounds of decomposition, the project team was
able to create a robust WBS that depicted all of
the project deliverables.

After the WBS was created with the project
team, Sarah moved the WBS from sticky notes
into her project management information
system (PMIS). Sarah continued the develop-
ment of the WBS to include a WBS Dictionary
so she and the project team could reference
details on each of the project deliverables and
time and cost estimates.

07_749346 ch03.qxp 8/31/06 12:08 AM Page 75

76 Part I: Starting Your Software Project

07_749346 ch03.qxp 8/31/06 12:08 AM Page 76

Part II
Planning Your

Software Project

08_749346 pt02.qxp 8/30/06 10:18 PM Page 77

In this part . . .

Part II presents the core of software project manage-
ment. You discover how to recruit key team members,

who will form a hard-working, synergetic team, and how to
create essential plans for communication management, risk
management, and quality assurance. In this part, you get
special tips that enable you to keep your project on sched-
ule, and keep that budget from becoming a bloated mess.

08_749346 pt02.qxp 8/30/06 10:18 PM Page 78

Chapter 4

Planning for Communications
In This Chapter
� Understanding the demand of communications

� Building an effective communication management plan

� Determining which stakeholders need communication

� Defining the communications modality

According to the kind-hearted folks at the Project Management Institute,
project managers spend 90 percent of their time communicating. That

hardly leaves time for coffee breaks.

But if you think about it, isn’t that what you’re doing as a project manager?
No, not taking coffee breaks all day, but communicating. You constantly take
calls from stakeholders, visit your project team members, participate in pro-
ject status meetings, zip off e-mails, and more. We imagine even your coveted
coffee breaks actually center on communications.

Communication, both verbal and nonverbal, drives what project managers
do. In fact, effective communication drives just about every aspect of a pro-
ject manager’s activities. Likewise, ineffective communication can have disas-
trous effects. Ever have a misunderstanding about the requirements of a
project? Ever show up for a meeting and be the only one there because you
misunderstood the start time? Ever create an in-depth proposal when the
stakeholder actually just wanted a short memo about whether the software
could do a specific action? Poor communication costs time and money and
causes headaches.

Communication skills aren’t easy to cultivate. If they were, everyone would
communicate brilliantly and we’d live in a world free of misunderstandings.
However, there are specific strategies that you can employ if communication
isn’t your forte.

09_749346 ch04.qxp 8/31/06 12:08 AM Page 79

80 Part II: Planning Your Software Project

The Importance of Communicating
Effectively

Effective communication occurs when a clear transfer of knowledge exists
between you and at least one other person. You have an idea and the other
person, through your conversation, gets what you’re after. You get an e-mail
and you understand what the stakeholder wants. You facilitate a project
meeting and your project team follows your agenda, the information is pre-
sented, and everyone is in synch on what to do next.

Clear and accurate communication within your project team is vital to a pro-
ject’s success. Why? Software project management is labor intensive. Even
though the project team is doing the actual coding, development, testing, and
compiling of the software, as the project manager you’re the one ensuring
that the work is done according to the project scope and within budget, while
also meeting project deadlines.

In software project management you must be able to communicate with the
project team about many important things, including

� Changes in the technology

� Nuances of the software being created

� Demands being made by the customer

You and the project team must have a clear understanding about what the
project is creating, the demands of the project stakeholders, and your expec-
tations about the project deliverables. If a communication breakdown occurs,
it’ll compound issues, and no one, especially you, will be happy.

Ensuring accurate communication
Everyone, from members of the project team to project stakeholders, must
communicate openly and accurately. Unless you facilitate each conversation
with a mission to understand exactly what the person speaking is trying to
convey, you’re facing a potential communication meltdown. So how do you
ensure accurate communication? Here are some tips:

� Document your conversations in e-mails, memos, or meeting minutes.
If you put the conversation points in writing, the party with whom
you’re communicating has an opportunity to clarify various points if
there are any misunderstandings.

� Sign where the line is dotted. Signing where the line is dotted means
that you and the other party have a deal. Throughout your project you’ll
be faced with demands for the project customers, key stakeholders, and

09_749346 ch04.qxp 8/31/06 12:08 AM Page 80

even your project sponsor. When you and the other party reach an
agreement on any issue, you should document the issue, document the
resolution, and then make sure that both parties sign off on the docu-
ment. Here are some typical things you and the project sponsor or pro-
ject customer both need to sign:

• Scope statement: This document defines all the parameters of the
project work — and only the project work — needed to satisfy the
stakeholders’ objectives.

• Scope changes: Any changes to the scope that are approved or
declined should be signed by you and the requesting party. We talk
more about incorporating changes into the project in Chapter 13.

• Budget: You and the project sponsor both need to sign off on the
budget for the project. Signing off acknowledges the budget and
any range of variances that may be permitted. We talk about creat-
ing and managing a project budget in Chapter 9.

• Schedule: The project schedule must be signed by the project man-
ager and the project sponsor. Agreement on the schedule is essen-
tial for acknowledging the project resources, identifying when the
resources will be needed, and showing when the project work will
be completed. You can find out all about scheduling in Chapter 8.

� Document scope, time, or cost compromises. As your project progresses,
you’ll have issues, delays, problems with vendors, problems with your
project team, and more excitement. For each of these issues, you’re
likely to arrive at some compromise to find a solution. Document these
solutions so you don’t face repercussions downstream in the project.

� Take minutes. No one, at least no one we’ve met, likes to take minutes at
meetings. But we’ve met plenty of project managers who wish they had
taken better notes. Minutes document the business of the meeting,

• Making people accountable for what they promise.

• Prompting team members to follow through. If the participants
know that their words and promises are being documented, they’re
more likely to follow through.

• Making it easier to recall what was discussed in meetings weeks,
months, or even years later.

Hate taking minutes as much as we do? Here’s a solution: Delegate this
task. Better yet, rotate the task among the team. By forcing others to
take minutes, you not only save yourself from the task, but you also
build team ownership.

� Set an agenda. You should create an agenda before every meeting that
you’re facilitating. An agenda sets the direction of the meeting and pre-
vents other nonrelevant issues from creeping into the discussion. An
agenda also helps you and the project team prepare for the meeting by
bringing the appropriate files, status reports, and other pertinent infor-
mation. Agendas are a must.

81Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 81

How not to communicate
You can do more damage by communicating ineffectively than by not commu-
nicating at all. If a project team member misunderstands your solution to a
problem on the project, he or she may go happily off to work on a task that you
had no intention of completing at this point in the project — or even at all.

The key to successful communication is to be clear. Face-to-face communica-
tion gives you a distinct advantage over e-mails and phone calls: nonverbal
communications. That’s right. Sometimes what you don’t say is important
too. Phone calls and e-mails can save tons of time when it comes to project
management, but they also have their drawbacks.

I’m sure you’ve heard of people making a little wise crack in an e-mail mes-
sage only to have the joke taken seriously. Or the folks that fade in and out of
phone conversations (putting you on hold while they perform other tasks)
that promise to deliver such-and-such but they miss out on what it is they’re
supposed to be delivering.

And then there’s grammar. You don’t have to be John Steinbeck to be a good
project manager, but you should know that errors in your writing can amplify
problems beyond your imagination. Consider the following e-mail that a pro-
ject manager sent to his project team member:

Linda,

I need a project team member who knows what Java is all about. You are
smart, talented, on time, and savvy. Team members who are not like you
admit to knowing nothing about Java. Our project is horrible when you’re
away. This project is going great.

Best,

Your favorite Project Manager

Linda sounds pretty good, eh? But what if the project manager’s writing was
so awful that he actually meant to tell Linda this instead:

Linda,

I need a project team member who knows what Java is. All about you are
smart, talented, on time, and savvy team members who are not like you.
Admit to knowing nothing about Java! Our project is horrible. When
you’re away, this project is going great.

Best,

Your favorite Project Manager

82 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 82

Uh, Linda doesn’t seem quite as great now, does she? But imagine Linda’s
response when she reads the first e-mail versus the second. While we admit
that this is an exaggerated example, you can’t deny that poor communication
includes poor writing.

Here’s what you can do:

� Take time to proofread and edit your e-mails before sending them out to
the world.

� If you’re not much of a writer, try to keep your missives short and simple.

� Only send e-mail when you absolutely have to or if no other form of
communication will work.

� Never put into an e-mail what you wouldn’t say to someone’s face. Per-
formance evaluations — even compliments — should always be commu-
nicated verbally.

If you’re interested in more information about face-to-face communica-
tion, especially when discussing bad news, check out Chapter 15.

Care and Feeding of Nerds
We have a theory when it comes to programmers: They’re not nerds, so don’t
treat them that way. Programmers are a different breed, but they’re not the
stereotypical mutant pocket protector geeks that project managers may imag-
ine them to be. Here’s what you need to realize when it comes to programmers:

� They are smart people. They take the vision of what the software
should be and then string lines of code together to achieve that vision.
Don’t treat them as imbeciles, and they’ll reciprocate.

� They are creative. If you’ve ever peeked over the shoulder of a program-
mer to see what he or she was doing, you probably saw lines of text that
didn’t make much sense. (You probably also drove the programmer nuts
by shoulder surfing.) Programmers take nothing and make something —
that’s creativity. Respect what they do and they’ll do the same for you.

� They can understand intangible things. It’s software. You can’t touch,
smell, taste, or feel it. Software is, after all, a tool for talking to a computer
to get the computer to do what you want it to do. Programmers under-
stand this concept and they may assume that you do, too. Understand
that they think logically and use deductive reasoning to get to a solution,
even though they understand concepts you can’t conceive.

� They often communicate in absolutes. Programmers, at least the ones
we’ve worked with, look at issues as easy-to-solve bugs or impossible-to-
beat eight-headed monsters. Programmers have a tendency to go to a

83Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 83

solution immediately or not at all. They may need your careful, humble
guidance to get to a solution.

� They are proud of their work. If you’ve ever been critical of a program-
mer’s work, you may have noticed his or her immediate defense of the
work, an explanation of why you’re wrong, or even teary eyes. No joke.
Programmers, skilled or not, are proud of their creations, and some con-
sider every line of code a work of genius. First, be certain that you and
the programmers are clear on the objectives of the project work.
Second, use kid gloves if you have to constructively criticize their work.

� They’re often in demand. It’s a good feeling to have lots of folks wanting
your attention, your time, even your employment. But this is a danger-
ous spot for a software project manager to be in. Usually, you want to
keep your project team members from bailing in the middle of a project.
Stress to the programmers how much you need them, and how you’re
proud of the progress they’re making. But don’t go overboard — you
won’t come across as genuine.

84 Part II: Planning Your Software Project

Taking charge with programmers
If you want to communicate with a programmer,
you have to take charge. Programmers are a
tricky bunch sometimes. But you, not the pro-
grammer, are in charge of the project. Although
the programmer is in charge of a large portion
of the project work, you’re the one responsible
if the project fails.

You must establish dominance without being
too aggressive. Establish five things through
your early communications:

� Leadership: Leadership is focused on moti-
vating, aligning objectives, and moving your
project team to a destination. Assume that
you’re leading the project and that your pro-
ject team will follow.

� Management: Management is focused
on getting results. As a project manager,
your core focus is on getting the project
successfully completed. Management of a
group of programmers means you must see
results.

� Discipline: When your programmers aren’t
getting their work done as promised, don’t
hesitate to discipline according to your
human resources guidelines.

Be careful about making snap judgments,
thought. First, find out why they aren’t com-
pleting the work. Were your instructions
unclear? Was there a miscommunication
on your end? The problem could be yours
and not the programmers’.

� Organization: Your ability to communi-
cate, lead, manage, and discipline your
project team centers on your organizational
skills. Be organized and your project team
will respect you for having everything on
the ball.

� Balance: In all your decisions you must be
fair. Your team of programmers will respect
you even more if you show balance and
fairness in all of your work assignments and
disciplinary actions. Don’t play favorites.

09_749346 ch04.qxp 8/31/06 12:08 AM Page 84

Avoiding Communication Breakdowns
Larger projects require more detail than smaller projects. Larger projects, of
course, have more stakeholders because of the size and scope of the project.

We know, we know. That’s like saying it’ll take a long time to swim to Hawaii.
The point we’re making is that the larger the project, the larger the opportu-
nity for failure. The larger the project, the more demands you have on your
time for planning, controlling, and ensuring that the project is executed as
planned. And the larger the project, the tougher it is to communicate effec-
tively, and the more critical it is to communicate effectively.

We know because we’ve been there. One of the largest projects Joe ever
managed was the development of an e-mail interface for nearly 40,000 users
worldwide. The project involved directors twice Joe’s age and income, pro-
grammers from around the world, and stakeholders that Joe had never met
face to face. In addition to the development, testing, and rollout of the new
application, Joe had to coordinate all the training materials, training classes,
dual support, and interoperability of two systems over six months. Joe also
had to handle all the logistics of testing, versioning, and making hot fixes. It
was the most fun Joe ever had on a project — really! Communication was a
crucial element that held everything together, and so was a good attitude.
But he also discovered that he would have done a few things differently, espe-
cially in the area of communication.

Facing the risks of communication
meltdowns
The risk of a communication breakdown is that problems that could have
been easily solved haunt your project. Here are some risks of miscommunica-
tion, in order of severity, along with possible solutions:

� Problem: Wasted time. You kill hours every day answering the same
question over and over and over. It’ll drive you mad. At least, it drives us
crazy, and because we’re writing the book, we’ve listed it here at the top
of the list.

Solution: Take the time to communicate your plans with the stakehold-
ers and then make those plans available through a Web site. You can
save so much time if you use the technological tools available to you. We
recommend creating an FAQ (frequently asked questions) for your project
and posting it on a project Web site. Include the Web address of the FAQ
as part of every e-mail you send. When folks ask the same old question,

85Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 85

answer the e-mail by directing them to the FAQ for a whole list of project
questions and answers. Add new questions and answers to the FAQ as
they arise.

� Problem: Wasted money. Of course when you waste time you’re going
to be wasting dollars, but this fact also translates to your programmers.
Software creation is time intensive; if the programmers on the project
team are creating the wrong stuff based on miscommunications, you’re
not going to be happy. You might as well throw money in the gutter —
it’s essentially what you do when programmers waste time on useless
code and have to start over.

Solution: Require the programmers to e-mail you weekly status reports
that include “accomplishments for the week.” Hold regularly scheduled
team meetings with a standing agenda item of progress and issues.

Over time, lost time and money have a negative impact on programmers’
morale, confidence in you as a project manager, and desire for accuracy.
When people race to meet deadlines, they make mistakes.

� Problem: Frustration. Communication breakdowns, whether they’re
your fault or not, frustrate you, your project team, stakeholders, and the
end users. When these people get frustrated, they’re going to vent,
steam, and grumble about the project. This, of course, leads to more
complaints, gripes, and general unrest.

Solution: You can never completely stamp out frustration, but you can
manage it. Be proactive by being aware of morale problems and frustra-
tions before they get out of hand. Never assume that people will just get
over whatever issue they may have. If you see a problem, address it
immediately so that mole hills don’t become mountains.

� Problem: Lack of confidence. When a stakeholder sees that you’ve
directed your team to do something that’s not included in the project,
or you’ve directed the team to leave something out of the software that
should be included, the stakeholder won’t be pleased. But, perhaps
more importantly, he or she will begin to wonder whether you’re capa-
ble of completing the project according to specs. Clients wonder whether
you’ve made this mistake because you can’t stand up and tell team
members what they’re doing wrong or whether you’re afraid of hard
work. Maybe they wonder whether a miscommunication is the source.
We don’t know all the things they worry about, but we do know this —
they always wonder what other mistakes are lurking in the software.

� Solution: Demonstrate your leadership skills by taking accountability for
your miscommunication. Swiftly step in to perform damage control and
rectify the situation. The specific steps you take will depend on the
severity of the problem.

86 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 86

Managing communications
across the enterprise
In the massive project we discuss in “Avoiding Communication Breakdowns,”
the communication between key stakeholders was planned in depth for
months. Where the project broke down was when the project team began to
roll out the software to pilot groups around the world. The end users of the
software had gotten swept into an undercurrent of rumors and speculation.

The failure in communication was that, as the project manager, Joe had
neglected to consider the impact of the software on the end users. Everyday
users knew the change was coming, but they didn’t understand what the
change meant for them. As a result, they gossiped, spread rumors, and were
generally filled with anxiety. Additionally, the sheer size of the project left Joe
with a daily flood of e-mail and voicemail that slowed progress. Joe had never
planned how he was going to squelch the cultural achievability issues of the
software among members of the organization.

Communication can break down anywhere in the process and with any seg-
ment of people involved in the project. Never underestimate the importance
of communication, even with those people you don’t have direct contact
with. Ensure that you have strong communication throughout the project to
all the stakeholders that are affected.

Here’s what you can do to avoid the problems we’ve dealt with:

� Educate end users about the changing software and take steps to ensure
that they understand what’s coming to them. End users always need to
know how the software is going to change their day-to-day job functions.

Sure, your project team may do a fantastic job creating, distributing, and
training the organization on your software creation, but you have to get
buy-in if you want to avoid headaches.

� Maintain proper communication levels. In a large project you can easily
fall victim to a common phenomenon of focusing all your attention on the
key stakeholders. But you must take extra measure to communicate to all
of the appropriate stakeholders as the project moves towards completion.
Figure 4-1 shows the typical curve of communication in an average project.

The traditional curve represents all the communication that happens at
the beginning of the project: the project charter, the kickoff meeting, the
scope management plan, and the stakeholder analysis. And then you
and the team disappear to plan, control, and execute. And what hap-
pens? The focus is on doing the work and not communications — until
the project nears completion as represented at the end of the curve. Oh,
the end is near, so excitement (or panic) drives the communication.

87Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 87

The ideal communication curve is depicted in Figure 4-2. Communication
is high at the beginning of the project, dips slightly as the project team
does the work, peaks at evenly timed increments for status reports, and
then begins to increase as the project nears completion. Of course, this
pattern looks logical on paper, but without a dedicated effort, it’s diffi-
cult to implement out there in the real world.

Calculating the Communication Channels
You can get a precise (and often scary) picture of the communication difficul-
ties you face by applying a simple equation to your next software project.
This equation gives you the number of communication channels for your
project. The equation is

N(N-1) ÷ 2

Pr
oj

ec
t C

om
m

un
ic

at
io

n

Project Timeline

Communication increases at project status meetings and milestones

Project launch: High level of communication

Project completion: Communication increases

Communication dips while work is being executed

Figure 4-2:
Communi-

cations
should

reflect the
project

progression.

Pr
oj

ec
t C

om
m

un
ic

at
io

n

Project Timeline

Project launch: High level of communication

Project completion: Communication increases

Project execution: Communication dips

Figure 4-1:
Communi-

cations
typically dip

during the
project

execution
processes.

88 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 88

with N representing the number of stakeholders working on the project. It
represents a vast network of communications that can quickly sprout up
between stakeholders, even working on a relatively small project. It’s huge.

You might wonder why you’re supposed to divide by two. Good question. We
wish we could give you an answer, but no one’s ever told us. This is a generally
accepted calculation to determine the number of communication channels.

Pretend that you’re the project manager of a new Web design project. Your
project team is hired to create a Web site for another company to help the
company sell more of its specialty product: camera filters. Here are the major
things that the client would like the Web site to do:

� Present a professional image of the organization

� Enable photographers to search for filters for their cameras

� Enable customers to place and pay for orders

� Enable customers to upload digital images and to test the effects of the
various filters your client sells

� Enable photographers to create a free photo album displaying their work

� Offer a database of sample photographs for customers to search and
explore based on different conditions such as lighting, subject, and
camera type

� Provide an ongoing series of articles about photography, which users
can search by topic

� Keep a database of users for repeat business

This is a big software project. Your internal project team includes eight pro-
grammers and three Oracle database administrators. Your client brings in
several outside stakeholders that you have to work with. Here’s a quick list of
the key stakeholders involved in the project:

� Nancy Martin, VP of Sales.

� Mika Walton, VP of Operations.

� Jerry Dehority, Director of Order Fulfillment.

� Ken Bell, Director of Sales.

� Joan Bell, Director of Manufacturing.

� Eight people from Creativity Plus — an advertising agency that will pro-
vide the design for the front end of the Web site.

� Four freelance photographers who will provide sample photos for Web
design purposes.

89Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 89

� 24 freelance photography writers (each contracted to write five initial
articles on different photography topics).

� 120 test users from around the world who will test the Web site and your
software at staged releases over the next six months. You only have to
communicate with these folks through surveys and follow-up communi-
cations based on their testing.

Guess how many stakeholders are in this project. Okay, don’t guess; you have,
including you, your boss, the project sponsor, and the 11 programmers and
database administrators on your team, 174 stakeholders. You’ll have lots of
communication with 54 of those 174 stakeholders because you won’t be com-
municating directly to the 120 test users (174 – 120 = 54 stakeholders).
Using the formula to determine the number of communication channels, you
end up with

N(N-1) ÷ 2

54(54-1) ÷ 2

54 (53) ÷ 2 = 1,431 communication channels

This project will take lots of coordination among all these stakeholders.

Now for something scary: There are 1,431 communication channels in this
project. That’s right, 1,431 opportunities for miscommunication, lack of com-
munication, and general breakdown because of poor communication. Figure
4-3 shows the magic formula used to determine how many communication
channels a project has.

This formula shows N as the number of key stakeholders. In this case, N = 54.
At any given time, each and every member of this group can chat with 53
other people involved in the project, get off track on the project, submit
change requests, gossip, put words in your mouth, and all the other nasty
things that happen when a project manager doesn’t plan appropriately for
communication.

N(N)-1

2
N = number of stakeholders

54(54)-1

2
52 stakeholders

2,862

2
= 1,4311,431 communication channels

Figure 4-3:
Use this

formula to
calculate
the com-

munication
channels.

90 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 90

Large projects mean more demands on your time for communication. If you
ignore your responsibility to communicate, others will do it for you. And
most likely, it won’t be the kind of communication you call productive.
Because you’re the one developing the communication management plans for
your software project, you need to outline the specific plans for stakeholders
to communicate.

If you fail to communicate, someone else will do it for you. Honest.

Building an Effective Communication
Management Plan

In order to communicate effectively you have to plan. Every organization that
wants to take project management seriously should create a communication
management plan. This plan documents all of the communication demands
within the project. Sure, the bulk of this plan may consist of boilerplate infor-
mation, but it should define the specifics of each project and the communica-
tion expectations of the key stakeholders.

If you don’t have a communication management plan, you’re setting yourself
and the project up for failure. The key to communication is to communicate
effectively, so you need to create a plan that defines how and when communi-
cation should occur. We’ve consulted with some organizations and seen man-
agers initially roll their eyes at the concept of using a communication plan.
And then, after their projects continue to nose dive, we’ve seen the change in
their attitudes. Inevitably, someone says, “A-ha! We need a communication
management plan.” We’re not saying that this plan is the silver bullet for pro-
ject success, but it’s better than a kick in the knee.

Knowing the six things every
communication plan needs
If you want to take the concept of the communication management plan and run
with it, which we urge you to do, it can be an overwhelming task — especially
if you’ve never created one before. Don’t worry; the communication manage-
ment plan can evolve just as your project management approach evolves. For
starters, you want to create a plan that accomplishes some basic goals for
effective communication.

91Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 91

Here are six demands that your communication management plan makes:

� Communication explanation: The communication documents are
reports, e-mails, or scheduled meetings that you need. They may not be
documents only, however; communication at meetings (such as status
meetings) counts, too.

� Purpose: For each communication document you list in your plan, you
need a brief explanation of the document’s or meeting’s purpose. You want
to answer why the communication is needed and under what conditions.

� Frequency: By writing down the expectations, you ensure that all stake-
holders understand how often communication is needed.

Defining when milestones are due is essential to the process because
you can measure the accuracy of the cost and time baselines to date,
and the overall project status.

� You may also want to set up conditional reporting to establish that when
specified conditions are met, individuals should report accordingly. Some
examples of conditional reporting include cost and schedule variance
reports, team member performance reports, risk activities, and change
requests.

� Modality: The modality is the format for the communication pieces.
Some stakeholders may expect a paper status report, while other infor-
mation, such as schedule updates, may be preferred via e-mail. There’s
no right or wrong way to present information, but the preferences and
reasons for the modality have to be documented in your plan.

For example, you may request that your project team members com-
plete a weekly status report of their assignments in a Microsoft Word
form and e-mail it to you. But (and here’s the rub), at each project status
meeting the team members should bring the Word document in hard
copy so they can use it to verbally review their progress. To save your
sanity, you have each team member submit status reports prior to the
meeting so you have all the reports at the status meeting. And it’s all
documented in your plan. Ingenious!

� Duration: Not all stakeholders need project information throughout the
entire project — you don’t want to bog people down with information
that’s not relevant to them. The duration defines how long, and when,
the stakeholders will need to participate in project communications. For
example, a contracted network engineer may be involved in your project
for three months at the end of the project. This engineer doesn’t need or
want tons of information before his or her involvement begins.

� Responsibility: One common misunderstanding is that the project man-
ager is responsible for every piece of communication. That’s just not
true. The project manager is responsible to ensure that communication
takes place, but you can’t be responsible for the actual communicating.

92 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 92

For example, if you contract a network engineer, chances are good that
that person needs to communicate with your senior programmers.
Those people need to communicate with one another — not to you.
Sure, sure, you’ll introduce them and facilitate the initial meeting, but it’s
their responsibility to communicate to each other. This portion of the
project plan helps define that responsibility.

A good plan also establishes the escalation of authority. When issues can’t
get resolved by the project team, even with your intervention, everyone
should know who is next in line to tackle the issue. By establishing this
methodology up front, you ensure that everyone knows who to talk to next
without circumventing anyone’s authority.

You also need to set up some directions for updating the plan. No plan is per-
fect, so you must build in an opportunity to fine-tune the communication
management plan as the project progresses or as the organization matures in
its project model.

The communication responsibility matrix:
Determining who communicates to whom
Establishing responsibility in communication is crucial. Of course, it sounds
great on paper, but everyone knows how difficult this aspect of group dynam-
ics can be. How do you know who needs to communicate to whom? How can
you possibly know that Jan, the Java guru, needs to speak with Nat the
Network Engineer? You ask.

Creating a communication management plan is not a solo activity. You cannot —
must not — plan this part alone. Your project team is involved in the process.
In Chapter 3 we talk about creating the WBS, or work breakdown structure.
When you create the WBS, you have an ideal opportunity to also document
which stakeholders need to talk to whom.

You do this by creating a communication responsibility matrix. This is just a
fancy table with all the stakeholders and a marker to represent if they need to
talk with one another. This matrix can then help you follow through on what
information needs to be communicated and by whom in your communication
management plan.

The first step in creating a communication responsibility matrix is to list all
of the stakeholders in a table. Whenever two stakeholders need to communi-
cate with each other, simply mark the intersection of the two stakeholders
with an X in the table. Table 4-1 shows you a sample.

93Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 93

Table 4-1 Sample Communication Responsibility Matrix
Stakeholders Java Network Contractor C# Chaz PM Gayle

Jan Ned Chuck

Java Jan X X X X

Network Ned X X X

Contractor Chuck X X

C# Chaz X X X

PM Gayle X X X X

Setting up ten-minute meetings
Because software projects are labor intensive, it’s not to anyone’s advantage
to talk issues to death. Still, there must be a steady stream of communication
between you and the project team. Without an open and trusting channel of
communication, you and your project team may develop an us-against-them
relationship. Make yourself available and encourage your project team to
come to you with problems or issues that they can’t solve on their own.

If you want to be successful in software project management, and we know
you do, then you must create a plan on how you will communicate on a regu-
lar basis with your project team.

One approach that works well in software project management is the daily
task meeting. The agenda of this meeting is simple and requires participants
to answer just three questions:

� What did you get done yesterday?

� What must you get done today?

� What issues or problems are preventing the project from moving forward?

Ideally, this meeting lasts only 10 to 15 minutes, happens every morning, and
involves only the project team. There’s no real need for other stakeholders to
be in this initial get-up-and-go meeting. The point is to communicate with one
another what’s been done and what’s remaining to do in small increments. It
also gives you an opportunity to learn of any issues or red flags.

94 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 94

95Chapter 4: Planning for Communications

Fascinating facts about communication
Whenever people communicate, whether in
speech or in writing, the flow of communication
follows a model:

1. The sender sends the message.

2. The encoder encodes the message, either
with spoken and nonverbal cues or in a
written form.

The medium (telephone, e-mail, at the head
of the conference table) is the means of
transport.

3. The decoder decodes the message back
into useable format, either by reading your
e-mail or interpreting your verbal and non-
verbal cues.

At the end of this process, the receiver
receives the message.

If, at any point, a breakdown in communication
occurs, the receiver won’t get the message that
was actually sent. Perfecting communication is
a lifelong practice, and we’re not just talking
about writing skills and grammar.

When you were a kid, did your mom ever tell
you that it’s not what you say, but how you say
it, that matters? She was right, you know.
Paralinguistics is the study of the pitch and tone
of voice — all the features besides the words —
that affect the message’s effectiveness. For
example, if you say something that’s meant to be
encouraging but your tone of voice is staccato,
you may not have the same impact that you
would if your tone was even and low.

Another idea that your mom may have pointed
out to you is body language. Your posture, facial
expression, eye contact, and hand gestures
reveal what you’re thinking when you’re speak-
ing or when you’re listening to someone else’s
message. In fact, 55 percent of all communica-
tion is nonverbal, which, if you think about it,
makes sense. You don’t speak all the time in a

conversation. You nod your head yes or no,
smile, frown, cross your arms, and use expres-
sions and gestures to drive your point home —
or to tell the person speaking how you really feel
about what they’re conveying. In a sense, what
you don’t say (but what you reveal with your
body language) is just as meaningful as what
you say and how you say it.

Nonverbal communication is so important, but
you often lose out on opportunities to practice
effective listening and visual cues when you
communicate by phone, instant messaging, text-
ing (text messaging), or e-mail. You can’t see the
other person to determine if they understand
your message during the conversation. Any
conversation that is not face to face suffers
from a lack of nonverbal information.

When you speak up during a conversation and
ask questions, you’re being an active listener.
It’s important for you and your project team
to be active listeners — otherwise you may
make assumptions. Making a bad assumption
because of miscommunication is bad, bad news.

As a speaker, you have to ask for feedback,
especially if people aren’t actively asking for
clarification. Asking for feedback encourages
active listening because it requires your audi-
ence to confirm that your message has been
received and understood. To be effective, you
should do more than just ask, “Okay, anyone
have a question?” You need to ask the partici-
pants specific questions about what you’ve just
told them so that you can confirm that they
understand your message. For example, you
might ask, “Susan, how will you interface the
Oracle server with the existing AS/400 servers?”

This specific question makes Susan think about
what you’ve been discussing and it confirms
that she’s with you on the conversation. If she’s
not, your question will give her the opportunity
to clarify the problem.

09_749346 ch04.qxp 8/31/06 12:08 AM Page 95

Defining Who Needs What Information
Every organization is broken down into three distinct layers, as Figure 4-4
demonstrates. Each layer has its own project objectives with various commu-
nication needs:

� Executive: Executives set the vision for the organization.

� Functional management: Managers determine the functions, tactics,
and strategies for the entities within the organization.

� Operations: The workers perform activities to support the endeavors of
the organization, satisfying the tactics set up by functional management,
and supporting the vision of the organization, set up by the executives.

As a project manager, you have to communicate with each layer of an organi-
zation, as well as with individuals and groups outside of the organization.
As a software project manager, you have to translate technical info from the
operational level so that managers and executives can track the project’s
progress. At every level of this pyramid, the terminology you use must be
clear and relevant.

What executives want to hear
Two attributes affect your interaction with executives: the size of the company
and the scope of the project. In a smaller organization you may communicate
daily with the executives. Heck, you may even be an executive in the company.

Functional
Management

Operations

Executive Vision

Tactics

Day-to-Day

• Steering Committee Meetings
• Project Presentations
• Project Summary Reports

• Project Status Meetings
• Informal Meetings
• Written Status Reports
• Issues Database
• E-mail Updates
• Newsletters

• Project Status Meetings
• Written Status Reports
• E-mail Updates
• Newsletters

Figure 4-4:
Each layer

of an
organization
has its own

interests
and pur-

pose. Each
layer must

support
the layer
above it.

96 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 96

In a larger company, you probably won’t rub shoulders often with the presi-
dent or CEO very often. Your interactions may be limited to an occasional
briefing; the CEO may attend a kickoff meeting. If the project is large enough,
you may do periodic status reports for executives.

Large projects in larger companies have a direct impact on a company’s oper-
ating expenses, cash flow, and predicted profitability, so the success of a pro-
ject may be closer to a CEO’s heart than you imagine.

Here are some general guidelines for talking with executives:

� Keep it simple and quick. Executives want to hear what’s happening
with a project, but they don’t want all the details, and they don’t want to
spend a lot of time. Don’t belabor anything; say what you need to say
and move on. These are busy people and they want summations. If they
want or need more detail they’ll let you know.

� Follow your plan. Your communication to executives may also be con-
trolled by the flow of communications as described in your communica-
tion management plan. It may not be your place at all to discuss the
project with the executives unless they ask you for information directly.
Always follow the flow of communication just as you’d expect your pro-
ject team to do.

� Be direct. When you speak with executives about your project, you want
to be, as with everyone you communicate with, direct. If the project’s
going great, tell ’em. If the project is bleeding cash, let ’em know. Don’t
sugarcoat anything. Chances are executives will have heard bad news
already from the functional layer of the company.

� Set up project summary reports as needed. Your communication man-
agement plan should define what types of reports executives receive, if
any. Some organizations require project managers to complete project
summary reports or dashboards, one-page snapshots of a project’s
health. These reports summarize

• A project’s scope

• The impact of the project

• The cost variance of the project

• The schedule variance of the project

• Milestones achieved and pending

What functional managers need to hear
In the middle of the organizational pyramid you find functional management.
Functional management, also known as good ol’ middle management, focuses
on directing operations. This layer of your company contains the managers,

97Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 97

vice presidents, and directors that schedule, manage people, and make deci-
sions that affect a project manager’s sanity.

Basically, managers want to know how your project affects them. Managers
often have their employees on your project team. They want to know

� When you’ll need their resources to work on your project

� How their resources will contribute to your project

� How their employees are performing on the project

� Whether your project is performing to expectations

You may often complete projects for functional management. In these
instances, managers are stakeholders and want to focus on project perfor-
mance. Your communication in these instances centers on

� Overall project performance

� Milestone reporting

� Cost variances

� Schedule variances

� Scope verification

Depending on their role in your project, their power over you in the organiza-
tion, and whether they have team members participating in your project,
individual managers affect how and what you communicate with them.

The overall theme for communicating with functional managers is perfor-
mance. Focus on communicating the performance of the project (if you’re
completing the project for them), or the performance of the project team if
their employees are working on your project.

What your project team needs to hear
Your software project team is comprised of programmers, of course.
Programmers need to hear the information that relates to them. They don’t
need fancy statistics and reports that you’ll give to management and executives.
They need relevant, applicable communication to help them do their job better.

Here’s what programmers must hear from you:

� What activities are pending: You need to let them know what work is
pending and where the project should be at this point in time.

� What activities are lagging: You must address issues with your project
team when they are late. We all get behind from time to time, and without

98 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 98

someone (namely you) urging programmers back to duty, activities will
continue to slide, and your project won’t be completed on time.

� What risks are looming: You need to track risks that are in play or pend-
ing in the project and keep the project team informed. Risks are any
events or conditions that can threaten a project’s ability to succeed.
Chapter 5 covers risks in detail.

� What issues are being resolved: Throughout your project, issues may
pop up to wreak havoc. Some issues include the quality of the project
work and complaints from customers. You must address these problems
by communicating them to the people who have the power to fix them.
You can’t hide under your desk and hope that the problems will just go
away. They won’t. Besides, under you desk isn’t really that comfy.

� Recognition: When your project team members are doing a good job,
give them kudos. Sometimes it’s appropriate to mention a job well done
to a team member in private, but usually public recognition of a signifi-
cant accomplishment is the best action.

What you need to hear
Every project is different — especially when it comes to developing software,
but there are some common themes you need to hear from your stakehold-
ers. Here’s the stuff you need to hear:

� Progress: Your staff needs to trust you enough to report honest assess-
ments on their work so you can get a heartbeat on the project progress.
You’ll be able to inspect the progress of the project and get an actual
assessment of progress, but you simply won’t have time to double-check
your project team’s progress every day.

� Issues: Your project team sees the issues and problems in the project
work before you do. You must establish confidence in the project team
to report these issues so that you can document them, help them
address the problems, and keep the project moving forward.

� Risks: Risk identification is an iterative process. Your project team is
closest to the work, so your programmers will identify risks that affect
the project before you.

Some project team members may feel as if they’re letting you down if
they tell you about pending or new risks they’ve identified. Encourage
them to share discovered risks so you and the team can deal with them.

� Change orders: Instruct your team and the stakeholders on the proper
method to ask for changes to the project scope. Your project team
should not be doing changes on the fly, and all change requests should
flow through you so can determine their validity and then catalog your

99Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 99

decisions. Read Chapter 13 for more detailed information on change
management.

� Encouragement and recognition: You need some encouragement. Your
stakeholders, project team, and project sponsor, may not realize this. It’s
hard to ask for encouragement and recognition, but you can ask stake-
holders whether they’re satisfied with the project. If they say yes, thank
them and count that as your encouragement.

Defining When Communication
Is Needed

Perhaps the most effective communication in a project is ad-hoc communica-
tion. You know, when Bob the Oracle expert pops into your office to ask a
quick question. Or your project sponsor catches you in the elevator and asks
for a quick rap on how the project’s going. Or your project team is situated
close together so they can solve problems and discuss project issues.

But not all communications can happen unannounced. There must be an ele-
ment of planning, as defined in the communication management plan.

Creating a communication schedule
Although communicating through ad-hoc meetings is important, scheduling
time to communicate is just as crucial. A communication schedule defines
when you, your project team, project sponsor, and key stakeholders will need
to communicate with each other.

The first thing you’ll want to schedule is how often you and the project team
meet. If you choose to go with the daily morning meeting to discuss project
status and the day’s work, then you’ll want to schedule this on your calendar
for the duration of the project. If you’re more apt to meet weekly, go ahead
and make a weekly appointment for the status meeting. The point we want
you to get is that if you don’t schedule your status meetings well in advance,
other activities, meetings, and events will crowd your calendar, and your
meetings will slip.

Your organization may also require you to complete weekly or monthly status
reports to track the project progress. Go ahead and schedule this business as
well. You know you won’t forget to complete your obligations by keeping tabs
on when the information is needed.

100 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 100

You will also want to schedule a few other odds and ends in your calendar:

� Team member performance reviews: On a short-term project, you may
save the reviews for the project closeout only. On a project with a longer
duration, schedule performance reviews throughout the project. Set up
quarterly reviews or do one every six months. Be sure to follow your
organization’s HR policies as they may specify how often a performance
review is to occur. If the project team recognizes that you’ll be reviewing
their work, and knows when the review is slated to take place, as well as
who will receive a copy of the review, you will see a more concentrated
effort to do work correctly the first time.

� Milestone reports: Software builds, testing, or other achievements
within the project should be tied to a communication activity so that
pending milestones are on your radar and you can communicate these
achievements to management.

� Meetings: Because so much of project management centers on commu-
nication, you must schedule lots of meetings:

• Planning sessions: This includes work breakdown schedule (WBS)
creation, scope change assessments, quality assurance meetings,
work reviews, risk management meetings, vendor management
meetings, and any meetings about issues that affect the project
outcome, particularly such issues that require more planning to
find the best answer.

• Risk management meetings: Risk identification is an iterative
process. You and the project team must revisit risk management as
the project is in motion, not just pre-project execution.

• Procurement management meetings: You need to choose vendors,
which means that you need to work with your project team, experts,
and even other vendors, to determine the statement of work (SOW).
After you solicit vendors you also need to host a bidders’ confer-
ence so that bidders come together to meet you and ask questions
about the SOW. We discuss procurement in Chapter 12.

� Cash flow forecasting. Many organizations require the project manager
to complete cash flow forecasting reports. This report informs manage-
ment and the finance department when you expect to spend money for
your project. If your project is large and you expect to receive incoming
cash flow while the project is still active, you should report this informa-
tion, as well. For example, a project to create software to track baseball
stats may be available in both English and Spanish. The English portion
may be completed in June and sales may be coming in. But because the
Spanish version won’t be unveiled until December, the project has
incoming and outgoing cash flow. Excellent! See Chapter 9 for more infor-
mation on creating your project budget.

101Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 101

Hosting team and stakeholder meetings
All meetings have one thing in common: Someone needs to communicate
information to at least one other person. Before you schedule a meeting as a
facilitator or as a participant, determine the meeting’s purpose and then pre-
pare accordingly. We assume that you’re the facilitator for your meetings,
which is usually the case for project managers.

Here’s the first rule of a successful meeting: Set an agenda. All participants in
the scheduled meeting should receive a meeting agenda before the meeting
begins. Ideally, the agenda is distributed via e-mail with enough time to
enable meeting participants to add items to the agenda.

Meeting agendas should include the following:

� Purpose of the meeting

� Scheduled start and finish time, as well as the location of the meeting

� Participants of the meeting

� Items to be discussed in the meeting

� Review of action items

A meeting agenda helps you and the participants avoid WOT, or Waste of
Time meetings. Avoid the temptation to allow others to meander in their con-
versation or war stories. You create an agenda to save time and accomplish
communications in the meeting. If people get off track, tell them you will put
that topic on the parking lot, a list of items to be addressed later but that are
parked for now.

Hosting a team meeting
Even though you will meet with your team a bunch, we still recommend cre-
ating an agenda for every meeting with your project team. This lets everyone
prepare for the meeting’s purpose, streamlines the conversation, and creates
an expectation between you and the team members that they should not just
attend the meeting but actively participate by being prepared to provide
meaningful updates.

If you’re meeting with your team daily or weekly and the topic is just project
status, create a template that you could disperse each week, or just write the
topic headings on a whiteboard and save a tree. This agenda acknowledges the
daily meetings and introduces the primary topics for your weekly meetings.

You may be wondering about special meetings with your project team. Good.
Special meetings between you and the project team are necessary and so is
the agenda to go with them. You won’t waste time if you create an agenda
for these meetings as well. Always create an agenda for each meeting and
your time will be used more efficiently.

102 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 102

Hosting a key stakeholder meeting
You’ll meet with your key stakeholders (sponsors or customers) often. This
is nothing to worry about — other than the fact that key stakeholders control
how your project moves forward, usually pay for the software creation, and
can bug the heck out of you. Talk about a love-hate relationship.

When you meet with key stakeholders, you must maintain a professional
image. You want the stakeholders to have confidence in your ability as pro-
ject manager, right? Well if they don’t have confidence in your ability to orga-
nize and facilitate a project meeting, their confidence in your ability as a
project manager will slip.

Just as with your project team, you’ll need to create an agenda for your stake-
holder meetings. Stakeholder meetings usually come in one of five of the fol-
lowing flavors:

� Stakeholder analysis meetings. In this type of meeting, you need to
figure out what the goal of the project is, get to the root of a problem,
and so on.

� Scope management meetings. Scope management meetings start from
the beginning of the project, and enable the key stakeholders to sign off
on your requirements or to add things to the project scope statement
before the project execution begins. Scope management also enables
you to prevent scope creep, or unnecessary changes. Stakeholders may
see a first build and want to tweak it, or they may want to add a button
here or there. In worst-case scenarios, they may get a groovy idea for
something to add on to the project after it’s in full swing. Scope manage-
ment meetings help you determine whether a proposed change is worth
pursuing despite the extra effort, schedule changes, and cost increases.
A formal change management process is presented in Chapter 13. You’re
likely to link it with a scope management meeting.

� Training sessions. If you create a swell piece of software, but no one
understands how to use it, frustration begins. Training is an essential
part of software development. It’s your responsibility to communicate
with the training manager to make sure that there is an effective
training plan.

� Status reporting. Your stakeholders want to know about the overall
health of the project, what issues have arisen, whether certain risks
have come to fruition, and so on. Don’t avoid telling your stakeholders
bad news — just be prepared to present the bad news with a proposed
solution.

� Scope verification meetings. After the project has completed some
work, typically at the end of a phase or milestone, you should present
the work to the stakeholders for approval. You also verify the scope at
the end of the project.

103Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 103

Defining Communication Modalities
Modality is just a fancy way of clarifying the form communication takes. Some
communication should be paper-based, while other communication should
be electronic. On other occasions, a formal, face-to-face presentation is the
necessary modality.

You really need to determine and document in your communication manage-
ment plan the modality of the communication before the project execution
begins. By documenting the modality, you’ve set the expectations for what
type of communication is needed, when it’s needed, and in what format. No
assumptions are made between you and the stakeholders as to what informa-
tion is being exchanged and how it’ll be received.

Sometimes you have to wear suits and sometimes you get to wear jeans. The
occasion dictates what you should wear just as the occasion in your project
communication dictates whether the communication should be formal or
informal. As a rule, you always present your communications professionally
and clearly — regardless of the formal and informal boundaries.

Modalities for formal communication
If you’re communicating to stakeholders in a formal setting, here are the
types of communication modes you should employ:

� Presentations: Throughout your software project management career
you’ll likely have to get up in front of your stakeholders and present the
project plan, the status of the project, or serious issues that creep into
the project. Sometimes a PowerPoint presentation can help you to make
your point, and at other times PowerPoint can be a distraction. The
secret to a good presentation is to be prepared, speak with authority,
and put your audience at ease.

� Reports: We once heard a project manager say, “If it’s in writing, then it’s
formal communication.” We agree with the statement, for the most part.
Your reports, from status to quality control, are formal. Take time to ensure
the accuracy of the data you present, not to mention your grammar.

� Conference/phone calls: Some of your stakeholders and team members
may be dispersed all over the world, so the most efficient way to com-
municate with them is via conference calls. When you communicate
using the telephone, remember that others cannot see your facial
expressions to help determine your emotions. Keep the communication
clear and thorough so as to not leave a lot of room for interpretation.

� E-mail: E-mail can be a form of formal communication in some environ-
ments. In software project management you’re dealing primarily with

104 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 104

folks that are IT-savvy and will rely heavily on e-mail. If you’re presenting
formal communications through e-mail, write it just as you’d put it in a
letter. Leave out the emoticons, jokes, and asides. And then save your
e-mail, attachments, and any responses.

Modalities for informal communication
If you’re communicating to stakeholders in an informal setting, here are the
types of communication modes you should employ:

� E-mail. Yep. E-mail can be either formal or informal, depending on the
context. You have quick questions for project team members so you zip
off an e-mail and they reply. Done. No need for fancy reports, faxes, or
detailed discussions. It’s always a good idea to keep all project commu-
nications, though, even if it’s just a quick e-mail.

� Ad-hoc meetings. Quick hallway meetings, stop-and-chats, quick phone
calls, and lunch discussions can be some of the most effective communi-
cations you have. The trouble with these meetings is that they can pop
up unexpectedly and suck your time away. The other problem with ad-
hoc meetings is that the folks you’re communicating with may not follow
through with the promises made during the discussion. Take care to
document the discussion and then follow up with everyone involved if
promises were made during ad-hoc meetings.

� Instant messaging and text messaging: If you have a dispersed team,
this mode of communication can be especially useful. It’s quick and effi-
cient to communicate through IM or by sending text messages. The only
thing you have to be concerned with is the many time zones your stake-
holders may reside in. You may not want to text message someone when
it’s the middle of the night in his or her time zone. Some popular instant
messaging programs include AIM (AOL Instant Messenger), Yahoo!
Messenger, and Windows Messenger.

� Coffee talk. Sometimes you need to get your team together for some
camaraderie. It doesn’t have to be over coffee, of course, but coffee and
donuts, pizza, whatever, can help ease the tension of a software project,
let the team vent a little about the project if they want, or just let every-
one know how much you appreciate their hard work. This is about moti-
vation and team development.

Automating communications
So much of project management is redundant work. Your project team fills
out a form and e-mails it to you. You review the form and plug results into
your project management information system (PMIS). From there, you may
need to generate more reports, more e-mails, and more communication. And

105Chapter 4: Planning for Communications

09_749346 ch04.qxp 8/31/06 12:08 AM Page 105

don’t forget all the repetition from stakeholders: questions on the project
status, budget, schedule, change requests, and more.

All of this monotonous, repetitive communication is needed and you’re typi-
cally at the hub of the communication. Good news! Several programs are
available that can help you and your project team automate the communica-
tion of the project:

� Microsoft’s Project Server (visit www.office.microsoft.com and
click the Project hyperlink) is a server-based system that ties into
Microsoft Project, Microsoft Internet Information Server, Microsoft
Exchange, and SQL Server, allowing add-on components from third-party
vendors. This tool is certainly at the top of the heap; it enables you to
publish Web forms that your project team members, key stakeholders,
and even vendors can use to report progress, issues, change requests,
and just about anything else project related. This information can then
be piped into your SQL database to generate reports, statistics, and
automate communications by publishing and allowing querying of data
to a secured Web site.

� Pacific Edge (www.pacificedge.com) and Primavera (www.
primavera.com) offer many similar features as the ubiquitous
Project Server.

The goal of any PMIS is to help project managers do their job better, not
replace the project manager.

106 Part II: Planning Your Software Project

09_749346 ch04.qxp 8/31/06 12:08 AM Page 106

Chapter 5

Planning for Software
Project Risks

In This Chapter
� Identifying project risks

� Several software risks to avoid

� Completing qualitative and quantitative analyses

� Choosing a software development model

� Preparing the risk response plan

Risk is an uncertain event that could have a positive or negative out-
come. Risk is everywhere: whether you’re driving, sky diving, crossing

the street, trading stocks, or swimming with sharks. When you do something
risky, you must calculate whether the potential reward is worth the potential
risk. Some things are easy — the reward of driving from Point A to Point B is
usually considered worth the risk of a traffic accident. For every risk there is
some reward. If you’re lucky, the reward works in your favor, like buying low
and selling high in the stock market. The risk is that you buy a stock and it
tanks — you took a risk and you lost your investment.

One of the toughest jobs for any project manager is managing project risks. In
addition to risks that affect your ability to complete your assignments, pro-
ject risks include the following:

� Inadequate time for completing the project

� Inadequate budget for completing the project

� Unrealistic scope expectations

� A project team that needs additional time to ramp up development
language

� Stakeholders that do not or cannot provide clear project requirements

In software project management, the risks are rampant: time, cost, scope, qual-
ity, project team, and so on. We examine each of these risks, and more, in this

10_749346 ch05.qxp 8/31/06 12:01 AM Page 107

chapter. The goal of risk management is to identify, quantify, plan for, and then
react to the risk potential to keep the risks from affecting the project’s success.

Identifying Pure and Business Risks
When most people think of risks, they have an immediate negative connota-
tion about risk. The risk, however, isn’t what makes folks frown; it’s the
impact of the risk. Risk itself is not really a bad thing.

Taking risks can even have a positive impact. Consider a risk that you may get
a discount from a vendor because of past orders. Or consider the risk that a
change request from the customer allows your project six more weeks of
development time. Or consider the risk of a new technology superseding your
existing development processes. Positive risks are called risk opportunities.

You can’t possibly consider every single risk in a project. All projects deal with
risks that are usually so far off the risk radar that they aren’t even a concern:

� The company might go out of business

� An asteroid could crash into the office building

� Big Foot could appear and take all the back-up tapes

� The senior developer might move to Hawaii

See? These risks are unusual, highly improbable, and are way, way, out there
in left field. But all of these are risks — you just have to accept them. As a
project manager, you must consider the risk result, and you also have to cate-
gorize risks. In life and project management there are two types of risks to be
concerned with:

� Pure risks: These risks have no upside, only a downside. Pure risks
include things like loss of life or limb, fire, flood, and other bad stuff that
nobody likes.

� Business risks: These risks are the calculated risks you are concerned
with in project management. A perfect example of a business risk is using
a worker with less experience in order to save money on the project’s
budget. The risk is that the worker will screw up and your project will be
doomed. The reward is that the worker will cost less than the more expe-
rienced worker and save the project some cash. An additional reward is
that by challenging this employee you will encourage his or her growth
and buy in on the project. This worker is more likely to be of greater
value to you in future projects.

108 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 108

Dealing with pure risks
in software projects
All right, we admit that you won’t have too many pure risks in software pro-
jects. Although some programmers might whine that they’re typing their fin-
gers off, aside of the danger of carpal tunnel syndrome, there’s really not any
risk of loss of life or limb.

Some MBA types may argue that you still have pure risks in software projects
because folks could steal software, steal hardware, or get electrocuted when
they spill their coffee on their PC. Sure. And we may win the lottery if we ever
play. For the most part, however, you won’t have to worry too much about
pure risks — unless you’re just the worrying type.

Just because you likely won’t have pure risks in your software project doesn’t
mean you shouldn’t look for pure risks. When you conduct a risk assessment,
you should consider the project deliverable. For example, will your software
be used in environments where life and limb depend on your software?
Consider health care, fire and police stations, and even manufacturing.

Assessing business risks
Business risks are a big concern for any project manager with an eye towards
reality. Business risks are the more common risks you encounter in your pro-
ject management activities:

� Employees quit

� Mistakes are made in the requirements gathering process

� The software is full of bugs, errors, and failures

� The scope of the project grows, but the budget (or the timeline) doesn’t

� The expectations of the project time, cost, and scope are not realistic to
begin with

� The project is larger than the capacity of the project team

� The project manager, sponsor, or other stakeholders are not as knowl-
edgeable as you would hope

These are all real-life risks that you have to deal with — or they’ll deal with
you. Just because you choose to ignore a risk doesn’t mean it’ll go away.

109Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 109

Contrary to what your mom said, ignoring pests doesn’t mean that they’ll all
go away. This plan just doesn’t work in project management.

Business risks, however, also have some upsides. Sometimes it’s worthwhile
to accept a risk to save time, reduce costs, or to make people nervous. (Just
kidding on the nervous thing; you want to instill confidence in your stake-
holders.) A good example of a risk that you may deem acceptable is to move
forward with a software implementation even though the application doesn’t
have a key feature that stakeholders want. You may decide to move forward
with the implementation in order to save some project time. The risk is that
the stakeholders won’t get everything they want exactly when they want it,
but the reward, assuming the feature will be available in the next upgrade, is
that your project just saved some time in the schedule.

Business risks are not bad; it’s their impact that has the potential to hurt you
or the project.

Accepting everyday technology risks
with your software project
Every software project has risks. Don’t think so? Look in the mirror — you’re
a risk to your software project. Your leadership, ability to communicate, abil-
ity to get your project team to perform, and more could fill a bucket of risks
that’s just waiting to spill all over your project. But we know you won’t let
that happen, right?

The real risks we’re talking about are built into the nature of the work: tech-
nology. Technology changes extremely fast and with that fast change there’s
opportunity for risk to creep in. Consider these risks in every software project:

� Speed of technology surpasses demand for your creation.

� Delays in your schedule shorten the window for the demand of your
software.

� Your programmers’ ability to learn new programming languages and
adapt to new development environments may threaten the project
schedule.

� Your stakeholders may have a tough time explaining what they want the
project deliverable to be.

� Because programmers are in demand, a programmer could leave your
project team, putting your project at risk from loss of talent, time

110 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 110

away from progress, and time devoted to getting a new developer up
to speed.

� If your project has never been attempted before, you risk suffering from
the first-time, first-use penalty. This penalty basically means that
because it’s never been done before there is a higher risk of facing prob-
lems you couldn’t possibly anticipate.

Determining Stakeholder Risk Tolerance
A person’s willingness to accept risks is called his or her utility function. You
don’t need to know the details, but the idea of utility function is tied to invest-
ment theory. Would you rather invest your hard-earned millions into an initial
public offering that is just as likely to earn you billions as it is to lose all of
your cash? Or would you prefer to stick with an old, faithful stock that might
earn just 6 percent a year?

Your willingness to invest in a riskier venture, and the amount you’re com-
fortable investing, describe your utility function. The same theory applies to
your stakeholders. You, your project team, and the key stakeholders will be
happy to accept some risks and will refuse to accept others.

Generally, stakeholders of smaller, lower-priority projects are more willing to
accept risks than those involved in high-profile projects. Consider a project
in your organization to replace all of the monitors throughout the company.
Although the project may be deemed important, it’s not likely to affect the
success of the day-to-day operations of your organization, so it’s not a huge
risk on productivity within the organization.

Figure 5-1 shows an S-curve. As you can see, the higher the project priority is
the lower the utility function is. In other words, the higher the project prior-
ity, the more likely you are to reduce risks. The amount of acceptable risks
will diminish.

Now consider a software project that will create a program to track the work-
flow from sales, to order fulfillment, to accounting, to billing, and to customer
follow-up. This project has a higher impact, if it fails, than a simple project to
swap monitors.

It’s obvious which project your organization would be more risk adverse
towards: the software implementation.

111Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 111

Mitigating Risks Early On
Here’s a rule for you to remember for the rest of your life — well, for the rest
of your life as a project manager: Projects are more likely to fail at the begin-
ning and more likely to succeed at the end. In other words, when a project is
first starting out, it faces lots of unknowns that can affect its ability to even
get moving. Although a project is more likely to fail at the beginning, the fact
that you haven’t invested as much in the project at the beginning means that
the impact of the failure isn’t as great as it would be if you’d spent months
working on the project before it died its untimely death. Although your pro-
ject is less likely to fail at the end, the fact that you have already invested so
much time and money in the project means that the impact of the failure can
be significant. Figure 5-2 shows that as the project moves closer to the end of
development, it’s more likely to succeed.

This rule underscores why software projects (and, really, all projects) usually
fail at the beginning, not the end. A failure to capture requirements, develop
concepts, and plan, plan, plan are a poor foundation for project success. The
project manager with a poor foundation that is hoping for a successful pro-
ject is kidding himself. Good luck is always for the ill-prepared.

Severity of Impact to Project Success

Po
ss

ib
ili

ty
 o

f O
cc

ur
re

nc
e

Low Severity of Impact

Low Possibility of Occurrence

High Severity of Impact

Low Possibility of Occurrence

High Severity of Impact

High Possibility of Occurrence

Low Severity of Impact

High Possibility of Occurrence

Organization’s
Risk Tolerance

Figure 5-1:
Project
priority

determines
a stake-
holder’s

utility
function.

112 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 112

Managing Risks in Your Organization
Every organization has its own approach to risk management. Even yours.
We can hear some of you now, “But we don’t have an approach. We just do
whatever.”

Groovy. That’s your approach. Not a really good one, but it is an approach. A
no-approach risk management strategy leads to project failures, frustration,
surprises, and “I-told-you-so’s” throughout the project. Not to mention all the
extra cash and time the risks eat up.

Tighter organizations (which, coincidentally, usually aren’t tottering on the
edge of bankruptcy) have a step-by-step strategy to handling risks. These
organizations have procedures, templates, and processes to identify, capture,
and asses the risks that threaten the project’s success.

Identifying risks
Regardless of your company’s official risk management strategy, you can rely
on qualitative risk analysis to get things moving. Qualitative analysis is the
process of creating a risk ranking based on all the identified risks within the
project.

The best way to conduct qualitative risk analysis is for you to invite the pro-
ject team and all the other key stakeholders to get together for a risk identifi-
cation party. Alright, it’s hardly a party, but it needs to be done on every
project.

Project timeline

Project baselineLi
kl

ih
oo

d
of

 s
uc

ce
ss

Figure 5-2:
Projects are

more likely
to fail at the

beginning
than at the

end.

113Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 113

The method you use to gather information and identify risks is not as impor-
tant as the fact that you are obtaining as much information as possible. For
these risk identification exercises, put the emphasis on quantity. More is
better. If a risk is not identified, it is accepted by default.

Brainstorming
During the first stage of risk identification, you should brainstorm. The cru-
cial element of a brainstorm is spontaneity. Anything goes; no risk is too far
out there. Include any conceivable risk that could threaten the project’s suc-
cess: server crashes, software failures, lost backup, weather, travel delays,
meteorites, and so on. Ideally, your brainstorming session should be done in
a big meeting with all the key stakeholders present. Trying to handle such an
assessment via e-mail can really be a pain. Besides, the synergy of one identi-
fied risk can spur another team member to think of another risk. The qualita-
tive risk party is a blast, especially if you have a whiteboard and lots of
colorful dry erase markers.

Following the Delphi method
Another method of identifying project risks is to use the Delphi method. This
allows stakeholders to anonymously offer their input into identifying risks.
They can send their suggestions via e-mail to one person who will then con-
solidate the information into one document — without naming the source of
the information.

Ranking risks
After you and the key stakeholders identify all the risks you can think of, you
need to rank them. We suggest ranking project risks by using a risk impact
matrix. You can use two different approaches to risk ranking:

� Ordinal: This assessment simply ranks risks as high, medium, or low.

Most folks use ordinal for the first round of risk analysis.

� Cardinal: When you use this ranking system, you assign scores with
hard numbers, like .67 or .99.

With each risk, you and your project team, and sometimes the key stakehold-
ers, need to follow these steps:

1. Evaluate the probability of the risk actually happening and assign that
risk a score.

2. Score the impact of each risk.

3. Multiply the probability and the impact to get a risk score.

Table 5-1 gives you a quick example of a risk rating matrix. In this example,
we used an ordinal scoring method because it’s a bit more tangible.

114 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 114

115Chapter 5: Planning for Software Project Risks

Eight risks every software project has
Every project has risks, but software projects
are special. You face several risks in every soft-
ware project endeavor you manage. Here are
the biggies:

� Time. You need to be realistic about time
estimates. Making an overly eager time
estimate is a risk that could haunt you
throughout the project. As the project team
struggles to meet the deadlines, quality
could suffer, which means work may need
to be redone and more delays. We discuss
time management in Chapter 8.

� Costs. In software development your largest
expense is usually tied to the developers’
time. If the time estimates are invalid, so
then will be the cost estimates. As costs
begin to pile up, stakeholders, primarily
management, begin to lose faith in you,
putting pressure on you to push the project
team harder to complete the project. The
result can be more errors, lost time, and lost
dollars. We discuss cost management in
Chapter 9.

� Scope. Scope is the agreed body of work
that the project will capture. Scope creep,
often also called mission creep, is project
poison. When stakeholders begin to sneak
in little change requests that circumvent
the identified change request system, both
time and cost are affected. Scope changes
can also stem from the project team not
having a clear understanding of what’s con-
sidered in scope and what’s out of scope.
As a rule, you should decline any changes
to scope unless they are absolutely neces-
sary. Changes to scope must be reflected in
the time and cost estimates. We discuss
scope changes in Chapter 13.

� Feasibility. Some projects are unrealistic.
Expectations for the project scope, sched-
ule, and budget may be completely flawed.
It’s the project manager’s job to identify the
unfeasible aspects of a project or face the
consequences.

� Quality. What good is a project if it’s com-
pleted on time and on budget but the soft-
ware is full of bugs, errors, and crashes
all the time? Quality is the successful com-
pletion of the project scope, not just the
consumption of the project budget and
schedule. We discuss quality in Chapter 6.

� Stakeholder expectations. Managing
stakeholder expectations is an ongoing
process — you’ll do this through your com-
munication (see Chapter 4). From the
moment of the project launch, you must
work alongside the stakeholders to capture
their vision for the project deliverable and
then document that vision into requirements,
architecture, and execution. Throughout the
project, constant communication ensures
that the project is moving in alignment with
the expectations of the stakeholders.

� Human Resources. Knowledgeable tech-
nical resources are in great demand. You
run the risk of your top developers being
recruited by other firms. What steps are you
taking toward employee retention?

� Technical accuracy. If your project team
doesn’t know how to create the deliverable
that the stakeholder is expecting, this is a
risk. The project team must be trained and
developed in order to reach the project con-
clusion that you and the stakeholder are
expecting. Team development is discussed
in Chapter 7.

10_749346 ch05.qxp 8/31/06 12:01 AM Page 115

Table 5-1 Sample Qualitative Risk Impact Matrix
Risk Probability Impact Risk Score

Server crashes Low Medium Low

Lack of developers High Medium High

Firmware changes Low Medium Low

Requirement to install
service packs High Medium Medium

Meteorites strike company Low Low Low
headquarters

As you can probably guess, rating impact can be a subjective process, but as
long as you’re not doing your risk assessment in a vacuum, the subjectivity
isn’t likely to bring your project down. Calm down; you’re probably safe. With
the help of your team members to assign the probability and impact, you can
apply multiple perspectives in your rankings. There’s not a ton of proof that
any of these risks are more or less likely to occur, but don’t underestimate
the experience of project team members and stakeholders.

Prepare for some heated discussions on why a risk is rated Medium instead
of High. Remind the participants that this is only the first round of risk analy-
sis and that scores can change.

When everyone agrees on the ranking of each of the risks, you must determine
which risks are small enough to accept and which risks need more analysis.

Usually risks with a medium or greater ranking qualify for quantitative analysis.

Relying on Quantitative Analysis
Quantitative analysis is the process of measuring your risk exposure. Quantifi-
cation requires more than going with your gut feeling; you need to conduct
interviews, set up prototypes, do expert analysis, and set up simulations.

As you can guess, quantitative analysis takes time — and usually some invest-
ment. Someone has to interview the stakeholders. Someone has to create the
prototype, the simulations, and complete the analysis. Some stakeholders,
customers, and project managers are likely to argue against completing a

116 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 116

quantitative analysis because of the time and cost involved to do it correctly.
It’s up to you to convince them that it’s worth the extra effort.

The investment in completing the interviews, prototypes, and simulations is
generally much smaller than responding to the crushing effects on a project’s
time and cost baselines if a risk is realized.

Here’s a trick to remember the difference between qualitative and quantita-
tive analyses: Qualitative analysis means that you’re describing the qualities
of the risks; quantitative analysis gives a quantity, usually a number, and
often with a dollar sign next to it, of the impacts of those risks. Qualitative
analysis is better for smaller projects (under $100,000 and shorter than three
months). Larger projects, with more money at stake and longer durations,
require more quantitative analysis.

Creating a Contingency Reserve
Quantitative analysis also uses a risk impact matrix, like qualitative analysis,
though a cardinal scale is mostly used here (see “Ranking risks,” earlier in
this chapter). This risk impact matrix also quantifies the dollars or time the
project stands to lose, or gain, because of the risk.

What the project needs is a contingency reserve that will alleviate the
expenses of the risks should they come into fruition. You know how much to
set aside for this contingency reserve by using the quantitative risk impact
matrix. Table 5-2 gives you an idea of what a matrix might reveal.

Table 5-2 Sample Quantitative Risk Impact Matrix
Risk Probability Impact Risk Score

Server crashes .10 ($5,000) ($500)

Lack of developers .90 ($80,000) ($72,000)

Firmware changes .20 (10 days) (2 days)

Requirement to install
service packs .70 ($2,000) ($1,400)

Rebate from Manufacturer
(risk opportunity) .80 $1,000 $800

Contingency reserve needed $73,100

117Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 117

The impact of each risk is quantified by a negative dollar amount or by an
assessment of time lost, though some organizations turn time into dollars.
This negative dollar amount represents the cost the project will incur if the
risk event occurs. Notice that the rebate from the manufacturer risk will actu-
ally save the project $1,000 if it comes to fruition.

The sum of the risk event values, both positive and negative, is the amount of
contingency funds that should be reserved for this project. Don’t get too excited
that the amount of the contingency reserve is less than the sum of all the risks.
The probability for all of the risks occurring is not 100 percent, so you won’t get
100 percent of the dollar amount associated with each risk. You’re banking that
some of the risk events will occur and some of the events won’t.

Using Software Models
for Risk Management

Within software project management, there are models that help the project
manager alleviate the biggest risk of them all — failure. Models are adapted
from grandfather programs, serious thought and planning, or they evolve
based on past experience. Whatever approach you or your organization
takes, the model needs to be documented, and the rules need to be defined
and then followed.

118 Part II: Planning Your Software Project

Avoiding the code-and-fix model
The code-and-fix model of risk management
is hardly a model at all, but we remain amazed
at how often we discover its use when we
consult with various companies. The code-and-
fix model is reactionary — and it’s rubbish.
Basically, you start out with a dreamy set of
requirements and willing programmers. The
project manager and the project team meet, yak
about the software, and then coding begins.

Everyone holds their breath like they’re in
the waiting room of the hospital. The program-
mers are the surgeons, but they really don’t

understand the operation, so they hack away
until the cash and time dribbles away or light-
ning strikes and they declare, “It’s alive!”

The code part comes first, and it’s followed by
rounds (and rounds) of fixing. This model, if you
really want to call it that, is weak, weak, weak.
It might be ideal for an afternoon of prototyping
or playing what-ifs, but it’s a risk-enriched
approach (that is an approach that is chock-full
of risks); in fact, it’s the highest-risk model you
can use in software development. Avoid it like,
well, just avoid it.

10_749346 ch05.qxp 8/31/06 12:01 AM Page 118

You can find dozens of software development models. Each of them has pros
and cons, but one thing is always true: Whichever model you use must be
accepted and followed by everyone, from the management team to the pro-
ject team and the stakeholders. It doesn’t do anyone much good to have a
model and not follow it. The following sections describe the most popular
software models on a continuum from risk-enriched models (high-risk
approaches) to risk-averse models (relatively risk-free approaches).

There’s no such thing as an organization that doesn’t have a software devel-
opment model. Even if it’s patched together and made up as the project
moves along, it’s a model. The point of any model is to reduce the risk of
failure.

Using the waterfall model
If you’ve ever taken a programming class, you’ve encountered the classic
waterfall approach to programming. In case you were lucky, and never had to
take a programming class, here’s the deal: The waterfall model uses a series
of phases to move the project along. Each phase creates a deliverable, usu-
ally a document that captures what the phase has accomplished. Figure 5-3
shows the progression of the model.

Concept Phase

Requirements Phase

High-Level Design

Detailed Design Phase

Implementation Phase

Testing Phase

Project Release

Figure 5-3:
The

waterfall
model

follows a
series of

phases to
reach

completion.

119Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 119

With the completion of each phase comes a new stage, with the product of
the phase transitioning (just like a waterfall) into the next phase. Here’s the
progression:

1. Come up with a concept.

In phase one, you and the stakeholders build the concept document,
which explains the goals and constraints (such as time and cost) of the
project, and a rough order of magnitude estimate (ROM) is created. We
discuss ROM in more detail in Chapter 9.

2. Determine the requirements.

In phase two, using the concept document, the project team completes the
document that details the requirements of the project deliverables. This
document includes all of the systems, technologies, and technical inter-
faces for the deliverables. The requirements document is really the progres-
sively elaborated version of the concept document. (How’s that for jargon?)

3. Create a high-level design.

You may hear the high-level design phase (phase three) referred to as the
satellite point of view or the view from 20,000 feet. Whatever. The high-level
phase consists of the big architectural building blocks of the software
you’re creating. The high-level design document defines how program-
mers will implement the requirements document. See an evolution here?

4. Narrow down the design to create a detailed design.

Ah, now we’re getting somewhere. In phase four, based on the high-level
design document, you and the programmers can get into the details of
how the application will be developed. The output of this phase? You
guessed it: the detailed design document.

5. Code implementation phase.

In phase five, it’s time to follow the documents you’ve created with your
project team by actually coding. This phase usually includes unit testing
to ensure that what’s being built actually follows all the documents cre-
ated up until now.

6. Testing phase.

At this stage, you test the entire application to ensure that all the units
are coded and working as expected — before your customers see it. This
is the quality control phase. If you find problems, then you’ve got more
work to do. The goal of this phase, of course, is to keep mistakes out of
the customers’ hands. When all is well, the deliverable is released.

At first glance this looks like a rock-solid model, and it can be. However, the
risk with this model is that if changes trickle, or flood, into the project, you
basically have to start over. This is because the project is founded on the
original capture of the project vision, the requirements, and so on. Changes
to the fundamentals can (and will) affect how the application is built. And
then troubles ensue.

120 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 120

Using the spiral model
The spiral model is the safest, or most risk adverse, model available. An orga-
nization that uses the spiral model examines the project as a whole and then
breaks down the project into subprojects, each of which are categorized by
risks. The subprojects are then organized from risk heavy to risk lean.

With the spiral model, you tackle the areas of the project where most of the
toughest risks are first. This approach, which is frankly our favorite, hits the
project risks head-on and then moves on to the next risk-laden subproject.

We like this approach so much because there’s nothing more frustrating than
investing months in a project only to have it roadblocked by giant risks in
month seven. With this approach, everyone knows whether the project can
succeed right away based on the team’s ability to plow through the hardest
risks first. This model builds confidence and gains momentum. The logic is
simple: If these are the toughest risks, then the project will only get easier
from here. And it usually does.

So why’s it called a spiral model? Take a look at Figure 5-4; see how the pro-
ject starts at the center and spirals out like a cinnamon roll? The completion
of each subproject enables the project to move on to the next subproject
until the project spirals all the way out to the release.

Start
Requirements

Conceptual
Design

Architectural
Design

Risk
Analysis

Risk
Analysis

Prototype

Prototype

Simulations Models

Software
Requirements

Requirements
Validation

Development
Plan

Development
Design

Development
Validation

Progress to
next iteration

Costs

Progress

Figure 5-4:
The spiral

model uses
iterations to

move the
project to

completion.

121Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 121

Here’s the general approach:

1. Set a goal.

In the goal-setting phase, all the stakeholders work together to deter-
mine the goals, constraints, and alternatives for the project completion.

2. Conduct alternative investigations.

The purpose here is to investigate all of the possibilities to best achieve
the project goals. In some organizations, you may create a feasibility
study at this stage.

3. Conduct risk management.

Remember all that business earlier in this chapter about qualitative and
quantitative risk analysis? This is it. You and the stakeholders have to
examine, rank, and score all the project risks. Examining and ranking
risks is a key activity for the spiral model because this process helps
you and the project team to arrange the subprojects.

4. Create the deliverables.

Based on the goals, alternative identification, and risk management, the
project team creates a deliverable for this subproject. Each subproject
delivers something that enables the project to move to the next iteration
of the process. When you’re starting out, the first deliverable may just
be the verification of the goals, feasibility, and risk assessment.

5. Plan the next iteration.

As the project moves forward, you plan the next iteration of the soft-
ware. This includes business like fixing bugs, adding new features, and
making other improvements.

6. Determine what to do next.

Based on the previous step, you determine what needs to happen next.
After you make that determination, you move all the way back to step
one and move through these steps with the next subproject.

Although we readily admit that this approach is one of our favorites, we also
acknowledge that it’s tough to implement. Change- and process-averse pro-
ject managers may find this model challenging. It’s time consuming to imple-
ment, but it creates good software. Some companies use this approach for
the first few iterations of a software release and then all future iterations
move in the waterfall approach.

122 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 122

Using the V model
This model is called the V model because, well, because the progression of the
project forms a V. Look at Figure 5-5; see the V? This is a risk-averse develop-
ment model because the completion of each phase prompts a corresponding
test phase. Before the project moves forward, the test must be passed. This
model is technically an expansion of the waterfall model, with added verifica-
tion and testing. Like the waterfall model, each phase creates documentation
of what’s been completed in the project.

Here’s a breakdown of the V model progression:

1. Set the project requirements.

The project requirements are identified and agreed upon by the project
manager, the project sponsor, and other key stakeholders.

2. Design the architecture.

The requirements are decomposed into functions and system compo-
nents, and the project estimates for time and costs are updated. The
refined estimates must be approved by the customer or the project’s
management team before the project moves forward.

Requirements Phase

Architectural Design Phase

Detailed Design Phase

Implementation

System Test Phase

Integration Test Phase

Unit Test Phase

Requirements

Functional Specs

Design Specs Code

Unit Test Records

Integration Test Records

System Test Records

verifies

verifies

verifies

Figure 5-5:
The V model

uses a
series of
tests for

each
completed

phase to
move the

project
forward.

123Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 123

3. Elaborate on the architecture with a detailed design.

In the detailed design phase, the software’s design phase is broken down
further and designed, and a detailed design document is created. The
detailed design document maps to the project requirements and speci-
fies how the software will be created.

4. Implement the code.

In the implementation phase, the code is implemented according to the
detailed design document.

5. Test individual units.

In order for the project to move forward, units are tested to confirm that
the software works as described in the detailed design document. This
is called the unit test phase. If the project passes the tests, the project
moves forward. If not, the problems must be corrected and passed
through the tests again.

6. Test how everything works together.

In the integration test phase, you confirm that the software operates as
the project stakeholders defined it (see Step 1).

7. Test the whole system.

In the system test phase, compile the software and test the system as a
whole. Successful testing of this phase allows the system to be released.

Can you guess this model’s weakness? If you said that the requirements are
very specific, you win. This model must have exact requirements from the
project stakeholders, specifically the project customer, from the outset. If the
requirements are not well defined at the beginning of the project, then there’ll
be trouble as the project moves to completion. All of the builds and testing
are founded on the early requirements of the project launch. In addition, if
changes are introduced into the project at any point, the project may have to
move backward, integrate the changes, and go through appropriate testing
before the project may move forward.

Using the scrum development model
If you’ve ever played rugby (and really, who hasn’t?) you know that scrum
means huddle up and get an out-of-play ball back into play so the teams can
hurry up and bash each others’ noggins. Scrum, in software development,
means working in quick iterations, building team empowerment, and being
adaptable. Figure 5-6 illustrates what the scrum model looks like.

124 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 124

As in rugby, the scrum development model has lots of rules that the project
team and the project manager must live by. The first key rule in scrum is to
never interrupt the programmers while they’re working. The second crucial
rule is that everyone must follow the same process for work prioritization. In
addition, scrum depends on solid communication, collocated teams, and
quick, accurate team meetings. Here’s how it works:

1. Set up a plan.

In the planning phase, the project team plans how to reach the project
objectives. This phase includes prioritizing and making time and cost
estimates, and focuses on detailing the software’s functions.

2. Design the architecture.

In the architecture design phase, the team designs the software func-
tions, breaks down the functions into units, and defines any additional
features or components.

Planning Phase

Architecture/High Level Design

Closure

Sprints

Develop

W
rap

Review

A
dj

us
t

Figure 5-6:
Scrum relies

on sprints
for bursts of

software
develop-

ment.

125Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 125

3. Start sprinting.

Sprints are short, iterative bursts of software development. The result of
a sprint is to reach a milestone within the project. Sprints typically last
from one to four weeks. Multiple development teams may work simulta-
neously within the project, each working on their own sprints. Each
sprint includes the following features:

• Development. The work packet is initiated. The development team
completes the analysis, design, implementation, testing, and docu-
mentation.

• Wrap. The packet is wrapped. In other words, the work packet is
closed. The code is verified as operational, and documentation of
the work is created.

• Review. The project team reviews the work, points out and
resolves issues, and adds items to the backlog for future resolu-
tions. Risk is reviewed and mitigation efforts are introduced.

• Adjustment. The results of the review process are documented
and, if necessary, compiled into work packets.

4. Close out the project.

During the closure phase, the project results are tested and deemed
accurate. The software is then prepped for release.

The scrum model is ideal for software development because of its rapid
acceptance of changes and adaptability to issues within the development
process. However, scrum requires managers and project stakeholders to
respect all of the rules of scrum for it to be successful.

Preparing a Risk Response Plan
Every project, regardless of the software development model you use, has
project risks. As the expert project manager, you (along with your project
team) surely have identified the project risks, used quantitative and qualita-
tive risk analyses, and scored and ranked your risks. But is this enough? Of
course not.

Typically you, the project team, and the project stakeholders do an initial
qualitative risk analysis. That’s the listing and ranking of your project risks.
Figure 5-7 shows the scale of the risks you can usually live with, the risks with
impacts you want to reduce, and the risks you want to work to eliminate. The
risk response plan helps you come to these decisions.

126 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 126

The risk response plan is a document that details the identified risks within a
project, their impact, and their associated costs, and then identifies how the
project team will respond to the risks. In addition, the risk response plan nods
to the process of risk management. Risk identification, the first step of risk
management, is an iterative process that happens throughout the project —
not just at the beginning.

Avoiding risks
Often the most desirable risk response is to just avoid the risk. This means
getting creative in the project scheduling, assigning senior developers to key
activities, or creating other workarounds so that the risk doesn’t come into
play. You’ve done risk avoidance if you’ve done any of the following:

� Changed a project plan to avoid risk interruption

� Used an established approach to software development rather than a
newfangled model

� Hired experts to consult the project team during the development
process

� Spent additional time with the project stakeholders to clarify all project
objectives and requirements

ModerateLow High

Low

Moderate

High

Accept

Mitigate

Eliminate

Risk to Project Success

Pr
oj

ec
t P

rio
rit

y

Figure 5-7:
Your risk

response
plan helps

you see that
not all risks
need to be
eliminated.

127Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 127

Transferring risks
Have you ever just wanted to get someone else to do a portion of a project
because the technology involved was too complex, you were unfamiliar with
a new programming language, or you feared that the impact of the project on
your organization, if the project failed, would be too great? Probably so. If
you ever went forward with the procurement process and hired a consultant
to do the project for you, or even farmed out a risky portion of a project,
you’ve completed transference.

Transference means that the risk doesn’t go away. It’s just someone else’s
responsibility now. You’ve used transference if you’ve ever done any of the
following:

� Purchased insurance, such as errors and omissions insurance

� Hired experts to complete a portion of the project work

� Demanded warranties from vendors

� Brought in consultants to test units and builds of your software

Be aware that the risk has not disappeared; you have just transferred it. In
fact, if the vendor doesn’t deliver on time, you still absorb the impact.
Transferring risks introduces a whole new set of risks that you and your team
must identify, analyze, and respond to.

Mitigating risks
Risk mitigation is about reducing the impact and/or the probability of risk.
Remember qualitative and quantitative risk analyses? (If not, read some of
the earlier sections in this chapter.) When you implement risk mitigation
strategies, you typically examine the risks with medium to high scores for
risk mitigation opportunities. In other words, you attempt to answer ques-
tions like, “How can the impact, the probability, or both be reduced to a level
that we can live with?”

Ideally, you’d like to reduce both the impact and the likelihood of a risk
occurring, but often when you’re mitigating risk you choose to mitigate either
one or the other — usually you suck it up and accept the lesser of two evils.
You’ve used mitigation if you’ve ever done the following:

� Added extra testing, verification, or customer approval activities to
ensure that the software conforms to requirements

� Reduced the number of processes, activities, or interactions within a
smaller project to streamline and focus project management activities
on accomplishing specific project tasks

128 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 128

� Developed and tested prototypes, used user acceptability testing
processes, or launched pilot groups within your organization before
releasing the software

Accepting the risks
When you accept certain risks, either the risks are so low that the project can
live with them, or the risks are inevitable but the project must move forward
anyway. Sometimes you just know that you can’t prevent an identified risk,
you just suck it up, work towards a solution, and deal with it.

Here’s an example of risk acceptance. Say you’re working with a non-collocated
team and you’ll be doing lots of traveling between sites to manage and lead
the project team. A risk that you have to accept, like it or not, is weather.
Weather delays could affect the project and you have very little response to
weather delays other than communicating electronically.

Usually, risk acceptance is for the smaller, puny risks that have a very low
probability, a very low impact, or both. However, any risk you do not identify,
you automatically accept!

Examining Risk Responses and Impacts
Have you ever made one small change to your software development plan
and watched, aghast, as the change mushroomed into a huge issue that
delayed your project for weeks? The same thing can happen with your risk
response plan. Before a risk response is implemented, the project manager
and the project team need to examine the full effect of the response.

The project team and the project manager should determine when the risk
response should be implemented. Two terms here to recognize are

� Risk threshold: The line of demarcation that signals that a risk is about
to come into play and that some response should happen. The risk thresh-
old can be a date for completion, a percentage of the work that is not com-
plete, a failed test, or any other event that signals a pending risk.

� Risk trigger: A trigger is an event within the project that triggers a pre-
planned response to the identified risk.

Thresholds and triggers often work together. For example, you may decide that
if the project is not 50 percent complete by March 1 then you risk missing the
final deadline. To reduce this risk, you plan to hire consultants to help finish
the project if that March 1 deadline isn’t met. The threshold is the requirement
for March 1, and the trigger is whether or not the project is 50 percent complete.

129Chapter 5: Planning for Software Project Risks

10_749346 ch05.qxp 8/31/06 12:01 AM Page 129

If the team passes through the threshold without meeting the requirements,
the trigger is squeezed and consultants come aboard to help finish the project.

Handling the ripple effect of risk response
Any response to a risk can create other problems: schedule delays, a dip in
team morale, an increase in cost, and more. Acknowledging the domino effect
that risk responses can have on a project is important if you want to be real-
istic in your project management role. There are two key risks that come
from risk responses that should be examined with every risk response:

� Residual risks: Residual risks are usually tiny risks that linger after a
risk response. These are generally accepted and the project moves for-
ward. For example, if you switch gears and bring in consultants to help
meet your final deadline, responsibilities within your project team might
shift. You may lose a day as your programmers adjust to their new roles.
This residual risk is not as big a deal as possibly missing your final dead-
line, so it’s one you can accept and live with.

� Secondary risks: Secondary risks are more serious. They occur when a
risk response creates significant new project risks. For example, say you
hire a company to help complete the project work. A secondary risk
could be that the company you’ve hired doesn’t complete the project on
time. Each secondary risk should be analyzed and a risk response
should be planned for the risk event. You can begin to see why risk man-
agement is an iterative and ongoing process!

Getting to say, “I told you so!”
Your best friend when it comes to risk identification is documentation. If you
fail to document a risk, then the risk never existed — at least as far as your
management team is concerned. Risk documentation is vital for project suc-
cess. Each risk should be documented as part of qualitative risk analysis and
then periodically revisited to see whether the initial risk analysis was flawed.

Some organizations create a risk management database to enter all of the
identified risks along with their risk scores, impacts, and probability ratings.
As the project moves forward, you can use the risk database to view risks
that are pending, have passed, or that may have come to fruition.

Risk management is an important phase of your project planning and
deserves the time and analysis of you and your project team. To find out
more about this ever growing field, read Project Manager’s Spotlight on Risk
Management by Kim Heldman (Wiley).

130 Part II: Planning Your Software Project

10_749346 ch05.qxp 8/31/06 12:01 AM Page 130

Chapter 6

Planning for Software Quality
In This Chapter
� Defining quality in software projects

� Working with your organization’s quality policy

� Creating a quality management plan

� Identifying how changes in time and cost will affect project quality

When it comes to quality, you’ve probably heard some great clichés:

� Quality is planned into a project, not added through inspection (you
should spend your time in planning quality instead of inspecting after
you have errors).

� It’s always cheaper (and more efficient) to do a job right the first time
around.

� Why is there always time to do work right the second time?

� Always underpromise and overdeliver.

These sure are some catchy slogans, and clichés become clichés because
they’re usually accurate. In this chapter we explore what quality is, how to
plan it into your project, and how to create a quality management plan.

Defining Quality
Before you can plan for quality, you must first define what quality is. Ask your
customers, your project team, your management team, and even yourself
what quality is and you get a variety of answers:

� What customers say: The software you create lives up to expectations,
is reliable, and does some incredible things the customer doesn’t expect
(or even think of).

� What your project team says: The work is completed as planned and as
expected, with few errors — and fewer surprises.

11_749346 ch06.qxp 8/30/06 10:16 PM Page 131

132 Part II: Planning Your Software Project

� What managers say: The customer is happy and the project delivers on
time and on budget.

� What you may say: The project team completes its work according to its
estimates, the customer is happy, and management is happy with the
final costs and schedule.

Quality, for everyone concerned, is the ability of the project and the project’s
deliverable to satisfy the stated and implied requirements. Quality is all of
the items we mention here, but it’s more than just the deliverable; it’s follow-
ing a process, meeting specified requirements, and performing to create the
best possible deliverable. Everything, from the project kickoff meeting to the
final testing, affects the project quality.

Referring to the product scope
As the project manager, your primary concern is satisfying the product scope.
The product scope is the description of the software the customer expects
from your project.

If you work primarily to satisfy the product scope, then you’ll be in good
shape with satisfying the customer’s expectations for quality. But, in order to
satisfy the product scope you must first have several documents:

� Product scope description document. This document defines what the
customer expects from the project. What are the characteristics of the
software? This description becomes more complete as you progress
through the project and gather more knowledge.

� Project requirements document. This document defines exactly what
the project must create without being deemed a failure. What types of
functionality should stakeholders be able to perform with the software?
This document prioritizes the stakeholders’ requirements.

� Detailed design document. This document specifies how the project
team will create units that meet the project requirements, which in turn
will satisfy the product scope.

� Metrics for acceptability. Many software projects need metrics for
acceptability. These metrics include speeds, data accuracy, and metrics
from user acceptability tests. You’ll need to avoid vague metrics, such as
good and fast. Instead, aim to define accurate numbers and determine
how the values will be captured.

Satisfying the product scope will assure that the customer is happy with you
and with deliverables the project team has created. You will only satisfy the
product scope if you plan how to do it. Quality is no accident.

11_749346 ch06.qxp 8/30/06 10:16 PM Page 132

Referring to the project scope
The project scope defines all of the work (and only the required work) to
create the project deliverable. The project scope defines what will and won’t
be included in the project deliverable. Project scope is different than the
product scope, because the product scope describes only the finished deliv-
erable, whereas the project scope describes the work and activities needed
to reach the deliverable.

You really have to put the project scope in writing, and have it signed by the
project manager and the project sponsor. For some projects, such as internal
projects, other stakeholders may also need to sign off on the project scope.
For projects that are completed for customers outside of the organization,
the project scope is written in a statement of work (SOW), and included in the
contract details.

You must define the project scope so that you can use it as an appropriate
quality tool. The project scope draws a line in the sand when it comes to pro-
ject changes. Changes, as we’re sure you’ve experienced, can trickle into the
project and cause problems with quality. Even the most innocent changes
can bloom into monsters that wreck your project.

Figure 6-1 shows the project manager’s approach to project changes and
quality. Early in the project, during the initiation and planning stages, you can
safely entertain changes to the project. After you create the project scope,
however, your rule when it comes to changes should be “Just say no!”

Changes to the project may affect the quality of the product. This isn’t to say
that changes should come into a project at all — far from it. But changes to
the project must be examined, weighed, and considered for the affect on time,
cost, and impact on project quality.

Project Timeline

Project manager

Stakeholder

In
flu

en
ceFigure 6-1:

Stakeholder
influence
wanes as

the project
moves

towards
completion.

133Chapter 6: Planning for Software Quality

11_749346 ch06.qxp 8/30/06 10:16 PM Page 133

The product scope and the project scope support one another. If the cus-
tomer changes details in the product scope, your project scope will also
change. If not, then your project team will be completing a project scope that
won’t create what the customer expects.

Avoiding gold-plated software
You create gold-plated software when you complete a project, and the software
is ready to go to the customer, but suddenly realize that you have money to
burn. If you find yourself with a hefty sum of cash remaining in the project
budget, you may feel tempted to fix the situation with a lot of bling. After all,

134 Part II: Planning Your Software Project

Going the extra mile?
One cliché that rings true is that it’s always
better to underpromise and overdeliver. We’ve
heard project managers tell us this is their
approach to keep people happy. It sounds good,
right? A customer asks for a piece of software
that can communicate with a database through
a Web form. Your project team, however, cre-
ates a piece of software that can communicate
through a Web form to the customer’s database,
and you add lots of query combinations for each
table in the database. Fantastic!

A valid argument can be made that you should
never underpromise, but promise what you can
deliver and live up to those promises. Techni-
cally, in project management, quality is achieved
by meeting the customer’s expectations — not
more than they expect, and certainly not less
than they expect.

Surprising the customer with more than the pro-
ject scope outlines can actually backfire, for the
following reasons:

� The customer may believe the project deliv-
erable could have been completed faster
without all the extras you’ve included.

� The customer may believe the project deliv-
erable could have been completed for
fewer dollars without all the extras you’ve
included.

� If the customer discovers bugs in the soft-
ware, the blame may lie with the extras.

� The customer may not want the extras,
regardless of how ingenious you believe
they are.

� Overdelivering is not meeting expectations;
you’re not giving the customer what he or
she asked for.

Now, having put the wet blanket on the fire of
creativity, let us say this: communicate. We
can’t emphasize enough how important it is to
tell the customer what you can do, even if it’s
more than what the customer has originally
asked for. In software development, customers
may need guidance on what each deliverable
can do, and they look to you as the expert to
help them make those decisions. But notice this
process is done before the project execution
begins, not during the implementation phase.

11_749346 ch06.qxp 8/30/06 10:16 PM Page 134

if you give the project deliverable to the customer exactly as planned, several
things may happen:

� Your customer may be initially happy that you’ve delivered underbud-
get. Then they’ll wonder whether you cut corners or just didn’t have a
clue as to the actual cost of the project.

� The customer may wonder why your estimate and the actual cost of the
project deliverable are not in sync.

� The remaining budget will be returned to the customer unless your con-
tract stipulates otherwise.

� Other project managers may not be happy that you’ve created a massive,
unused project budget when their projects have been strapped for cash.

� Key stakeholders may lose confidence in your future estimates and
believe them to be bloated, padded, or fudged.

This is, in case you haven’t guessed, a bad thing. The best thing to do is to
deliver an accurate estimate to begin with and avoid this scenario altogether.
We discuss time estimates in Chapter 8 and cost estimates in Chapter 9. For
now, know that your customer’s confidence in future estimates is always mea-
sured on your ability to provide accurate estimates at the beginning of the
process.

If you find yourself in the scenario where you have a considerable amount of
cash left in the project budget, the best thing to do is to give an accurate
assessment to the customer of what you’ve accomplished in the project and
what’s left in the kitty. Don’t eat up the budget with extras, and don’t beat
yourself up over it. Mistakes happen, especially to beginners, and it’s still
more forgivable to be underbudget than it is to be overbudget.

So should you also present extras to the customer when you present the pro-
ject’s status and the remaining budget? If the extras are value-added scope
changes, we say yes. If the extras are truly gold-plated extras to earn more
dollars, then we say no. Software quality is based on whether the product
delivers on its promises. If the proposed changes don’t make the software
better, no one needs them.

What you do on your current project may influence what you get to do on
future projects. Honesty now pays dividends later.

Examining quality versus grade
Quality and grade are not the same thing. Low quality is always a problem,
but low grade may not be. Quality, as you know, is the ability of software to

135Chapter 6: Planning for Software Quality

11_749346 ch06.qxp 8/30/06 10:16 PM Page 135

deliver on its promises. Grade is the ranking or classification we assign to
things.

Consider your next flight. You expect the airplane to safely launch, fly, and
land. And you expect to be reasonably comfortable during the flight. You
expect the behavior of the crew and fellow passengers to be relatively con-
siderate, even if they’re a little cramped and annoyed. (You have to factor in
that crying baby three rows back. It’s not the baby’s fault, after all.)

Now consider where you’re seated on the airplane. Are you in first class or
coach? That’s the grade!

Within software developments we also have grades and quality issues. A
quick, cheap software fix may be considered low grade, but it can still be a
high-quality software solution because it satisfies the scope of the simple
project. On the other hand, the rinky-dink approach won’t work during the
development of a program to track financial data through e-commerce solu-
tions for an international company.

During the planning process, one goal of stakeholder analysis is to determine
the requirements for quality and grade.

Working with a Quality Policy
A quality policy isn’t a policy that’s “real good.” A quality policy is an
organization-wide policy that dictates how your organization will plan,
manage, and then control quality in all projects. This policy sets the
expectations for your projects, and everyone else’s, for metrics of
acceptability.

Quality policies fall under the big umbrella of quality assurance (QA). QA is an
organization-wide program, the goal of which is to improve quality and to
prevent mistakes.

So who decides what quality is and what’s bunk? You might guess and say the
customer, which to some extent is true, but generally the quality policy is set
by management. The quality policy can be written by the geniuses within
your organization, or your organization may follow a quality system and the
proven quality approaches within these systems. For example, your company
might participate in any number of proprietary and nonproprietary organiza-
tions, thereby pledging to adhere to their quality policies. The following sec-
tions discuss a few of them.

136 Part II: Planning Your Software Project

11_749346 ch06.qxp 8/30/06 10:16 PM Page 136

Working ISO programs
The International Organization for Standardization (ISO) is a worldwide body
with 153 members that convenes in Geneva, Switzerland. The goal of the ISO
is to set compatibility standards for all industries, to establish common ground,
and to maintain interoperability between businesses, countries, and devices.

In case you’re wondering, the abbreviation for the International Organization
for Standardization is ISO, not IOS. This is because of all the different coun-
tries represented and the varying languages; they decided to use the abbrevi-
ation of ISO taken from the Greek isos, which means equal.

There are many different ISO programs, but the most popular is ISO 9000. An
ISO 9000-certified organization focuses on business-to-business dealing and
striving to ensure customer satisfaction. An ISO 9000-certified organization
must ensure that it

� Establishes and meets the customer’s quality requirements

� Adheres to applicable regulatory requirements

� Achieves customer satisfaction throughout the project

� Takes internal measures to continually improve performance, not just once

You can learn more about ISO programs and how your organization can par-
ticipate by visiting their Web site: www.iso.org.

Visit these Web sites for more assistance with quality management:

� www.managementhelp.org

� www.cqm.org

� www.asq.org

Getting a Total Quality
Management workout
The U.S. Naval Air Systems Command originated the term Total Quality
Management (TQM) as a means of describing the Japanese-style management
approach to quality improvement.

TQM requires that all members of an organization contribute to quality
improvements in products, services, and the work culture. The idea is that if

137Chapter 6: Planning for Software Quality

11_749346 ch06.qxp 8/30/06 10:16 PM Page 137

everyone is involved in quality and works to make the total environment
better, then the services and products of the organization will continue to
improve.

In software development, TQM means that the entire team works to make the
development of the software better, the process from start to completion
better, and the deliverable better as well. TQM is largely based on W. Edwards
Deming’s 14 Points for Quality. Here’s how Deming’s 14 points and TQM are
specifically applicable to software development (you can find out more about
W. Edwards Deming in the nearby sidebar, “W. Edwards Deming and the soft-
ware project manager”):

1. Create constancy of purpose for improving products and services.
Every developer must agree and actively pursue quality in all of his or
her software creation, testing, and development.

2. Adopt the new philosophy. This philosophy can’t be a fad. The software
project manager has to constantly motivate the project team to work
towards quality.

3. Cease dependence on inspection to achieve quality. Software develop-
ment has a tradition of coding and inspection, and then reacting to
errors. This model is dangerous because developers begin to lean on the
testing phase to catch errors, rather than striving to incorporate quality
into the development phase. As a rule, quality should be planned into
software design, never inspected in.

4. End the practice of awarding business on price alone; instead, mini-
mize total cost by working with a single supplier. The idea here is that
a relationship will foster a commitment to quality between you and the
supplier that’s a bit more substantial than an invoice and a check.

5. Constantly strive to improve every process for planning, production,
and service. Quality planning and delivery is an iterative process.

6. Institute training on the job. If your software developers don’t know
how to develop, they’ll certainly create some lousy software. If your
team doesn’t know how to do something, you must train them.

7. Adopt and institute leadership. The project manager must identify how
to lead and motivate the project team, or the team may lead itself,
remaining stagnant.

8. Drive out fear. Are your software developers afraid of you? If so, how
can they approach you with ideas for quality improvements, news on
development, and flaws they’ve identified within the software? Fear does
nothing to improve quality.

9. Break down barriers between staff areas. If your office looks more like
the set of West Side Story, with your developers (the Sharks) out to get
the database administrators and the database administrators (the Jets)

138 Part II: Planning Your Software Project

11_749346 ch06.qxp 8/30/06 10:16 PM Page 138

out to get the network engineers, you need to stop the hate. Okay, hate
may be too strong of a word, but gulfs between related areas are actually
giant pitfalls that trap your quality. You’ve got to establish relationships,
trust, and open communication between the staff areas that interoperate.

10. Eliminate slogans, exhortations, and targets for the workforce. Slogans
don’t improve quality; they frustrate workers. When you constantly
remind people that “Quality is Everyone’s Job!” you underscore the fact
that simply talking about quality doesn’t actually improve it. See Points
3 and 5.

139Chapter 6: Planning for Software Quality

W. Edwards Deming and the
software project manager

William Edwards Deming was born on October
14, 1900, long before software development. So
what do his philosophies on quality have to do
with software project management? Plenty.

Deming is most known for his influence on the
manufacturing success Japan experienced
after World War II. It was Deming’s demand for
statistical quality control and his management
principles that allowed Japan to recover from
the financial impact of WWII and then become
a leader in the world economy. Deming’s great-
est influence on software development, in our
opinion, is what’s called the Deming Cycle, as
the following figure demonstrates.

Here’s how this cycle applies to software pro-
ject management:

1. Plan. You and your project team plan the pro-
ject work, anticipate changes by analyzing
strengths, weaknesses, opportunities, and
threats (SWOT), and then predict the results
for the different facets of your project.
Projects fail at the beginning, not the end.

2. Do. With your plan established, you can
execute the work. The work, however,
should be completed in small steps in a
controlled environment.

3. Study. This is the quality control portion of
the circle. You, the project team, and the
subject matter experts must check the work
for accuracy.

4. Act. Act to improve the process or standard-
ize your approach in project development.
When you’re done, the process starts over.

This approach is ideal in software project man-
agement because it’s logical regardless of the
software development model to which you sub-
scribe. The goal is always the same — to
reduce the number of errors and improve the
results. Deming’s approach is iterative and
enables projects to constantly improve from
launch to completion.

Plan

Do

Check

Ac
t

11_749346 ch06.qxp 8/30/06 10:16 PM Page 139

11. Eliminate numerical quotas for the workforce and numerical goals for
management. You can tell your developers to churn out 2,000 lines of
code a day, and they’ll probably do it. But they won’t guarantee that
the code will be any good. A quota is not the same as a demand for qual-
ity code.

12. Remove barriers that rob people of pride of workmanship, and elimi-
nate the annual rating or merit system. Developers should be able to
take pride in their work and their accomplishments, and be rewarded
accordingly.

13. Institute a vigorous program of education and self-improvement for
everyone. Training, especially in IT, is paramount. Without proper edu-
cation, how can you expect your team to deliver?

14. Put everybody in the company to work accomplishing the transforma-
tion. For Deming’s approach to work, everyone must participate. A few
folks here and there won’t make much of an impact in most organizations.

Slipping into the sixth sigma
Unless you’ve been living in a cave or coding COBOL for the past few years,
you’ve no doubt heard of Six Sigma. Six Sigma is a procedure that strives to
reduce waste, errors, and constantly improve quality through the services
and deliverables an organization produces. Six Sigma was developed by some
really smart people at Motorola who received the Malcolm National Quality
Award in 1988 for their Six Sigma methodology.

Most software is created and tested, then the errors are fixed, patched, or
ignored, and then the entire process starts over. Software development, for
the most part, focuses on inspection to ensure quality; this is quality control.
Six Sigma, however, focuses on preventing the mistakes from entering the
process at all; this is quality assurance.

The Six Sigma program was invented by the smart folks at Motorola during
the 1980s. Their creation paid off with an increase in profits, customer satis-
faction, and quality awards. Their program went on to be adapted as a stan-
dard for quality assurance by the American Society of Quality (ASQ). Visit
ASQ at www.asq.org.

Figure 6-2 shows the range of possibilities for sigma. According to ASQ, most
organizations perform at three to four sigma, where they drop anywhere
between 20 and 30 percent of their revenue due to a lack of quality. If a company
can perform at Six Sigma, it only allows 3.4 defects per million opportunities.

140 Part II: Planning Your Software Project

11_749346 ch06.qxp 8/30/06 10:16 PM Page 140

The primary points of Six Sigma are

� We don’t know what we don’t know. Makes sense, right? A lack of
knowledge keeps organizations trapped in their current environment,
losing revenue, and preventing progress.

� We don’t do what we don’t know. If you don’t know what you should be
doing you cannot do it.

� We won’t know until we measure. Aha! The real action in Six Sigma is to
measure in order to improve.

� We don’t measure what we don’t value. Six Sigma looks at what does
and does not need to be measured, and then prompts the developer or
project manager to act accordingly. If you value your programmers’
time, your software’s errors, and your customer satisfaction, you’ll mea-
sure them all.

� We don’t value what we don’t measure. This is a call to action! What
should you be measuring that you’re not?

0-1-2-3 321

Mean
Re

la
tiv

e
fre

qu
en

cy

Six Sigma from Mean

Sigma from Mean

One Sigma from Mean

Figure 6-2:
Organi-
zations

operating at
the Sixth

Sigma allow
only 3.4

defects per
million.

141Chapter 6: Planning for Software Quality

11_749346 ch06.qxp 8/30/06 10:16 PM Page 141

Using homegrown, in-house
quality solutions
You don’t have to follow any prepackaged approach to quality in order to
create quality software. Your organization may have its own internal quality
program that you and your project team must follow. And that’s just fine.

Sometimes in-house programs are more fluid than the rigid programs from
outside organizations. The danger, of course, is that a fluid approach may
also be seen as a passive approach. The project manager must commit to the
in-house quality policy and demand that the project team do the same.

Any and all in-house solutions should have the following attributes:

� A written document that details the organization’s quality manage-
ment approach. Verbal policies don’t count.

� A defined system to identify quality, and identified procedures for
performing a quality audit. A quality audit proves that a project has fol-
lowed the quality policy.

� Metrics and procedures on how to perform quality control (QC). QC
is inspection driven, and the procedures may vary among disciplines
within an organization.

� A boilerplate quality management plan that all projects use to guide
project planning, execution, and completion. The quality management
plan sets the rules of how a project should perform and defines the
expectations of the project manager to achieve the expected quality.

� Procedures on how to update, change, or challenge the quality man-
agement plan. This is an important component because there will likely
be circumstances that require the quality plan to flex, change, or evolve.
If the quality management plan doesn’t define this procedure, then you
may fall victim to the old adage: The reason we’re doing it this way is
because we’ve always done it this way.

Balancing Time, Cost, and Quality
The Iron Triangle of project management, as shown in Figure 6-3, requires
that all three constraints of a project remain balanced in order for a project
to be successful. Right smack in the middle of the Iron Triangle is quality.
This is because if the sides of the triangle are not kept in balance, quality is
most likely to suffer. So, if your scope increases, then your time, cost, or both
will also need to increase or quality will suffer.

142 Part II: Planning Your Software Project

11_749346 ch06.qxp 8/30/06 10:16 PM Page 142

So how much quality is enough? When it comes to software development,
you may create a scale of errors, bugs, and gremlins that sneak into the code.
For example, you rank the bugs you’ve identified from 1 to100, with 100 being
the most severe. Any bugs below a score of 20 may be accepted for now,
while everything over 20 needs to be fixed. Some organizations, however,
would like to aim for a zero-tolerance policy on bugs. Sounds great, but is it
possible or profitable?

First, consider the possibilities. How do you know an error exists until some-
one finds it? You can test, complete peer reviews, and hire third parties to
examine your code for months or years on end and not find errors. Does this
mean there are no errors within the software? No, it just means that none
have been found — yet.

Now, consider the profit. If your organization spends months or years exam-
ining, inspecting, and testing code, the market window can easily open and
shut for your software before you even get the program packaged. And who
pays for all of the inspection? It isn’t feasible to demand perfection on most
software projects because of the time and expense to prove the existence of
perfection (or more accurately, the absence of known errors).

Examining optimal quality
Optimal quality describes how much quality is expected in return for the cost
to achieve that level of quality. For example, you could create a flawless piece
of software that allows users to track all of their online purchases, shipping
expenses, and even the interest for each item purchased with their credit
cards. But, would anyone buy the software if you charged $600? This is what
you might end up charging per copy because your project team spent
months perfecting and testing the code.

Quality

Scope

CostTi
m

e
Figure 6-3:

Quality is
affected by

the balance
of the Iron

Triangle.

143Chapter 6: Planning for Software Quality

11_749346 ch06.qxp 8/30/06 10:16 PM Page 143

Probably not. We can pretend that the ideal sale price for this piece of soft-
ware is $25 per copy. A business analyst would determine the market size,
the percentage of the market that would actually buy the software, and pre-
dict the gross profit on your software. The analyst would then work with you
to determine how long and how much it’d take to actually create the soft-
ware. The difference between the actual costs of the software creation and
the actual sales is the net profit. Now you’re getting to optimal quality.

The gross profit would have to be greater than the costs to create the soft-
ware or there’s no return on investment (ROI). The optimal quality, in this
instance, is how much quality should be built into the software while still
allowing for a profit margin. Ideally, the cost of quality is much lower than the
final profit margin. That’s the equation that keeps businesses in the black.

Optimal quality, fun as it is, has two related costs for you to consider:

� Cost of quality: This is the amount that you have to spend to achieve
optimal quality. Chalk up expenses like time for planning, development,
and testing, but don’t forget the cost of training or direct project
expenses like hardware and software. Of course, you can’t forget to pay
third parties, such as quality assurance testers and consultants like your
business analyst.

� Cost of nonconformance to quality: This is the cost assigned to wasted
labor, wasted materials, and rework when your project team delivers
poor and faulty code. This cost also ripples out to a loss of sales
because of errors, returns, and unhappy customers who bought and
relied on your lousy software.

When it comes to quality, your goal as a project manager is to first determine
the project scope in relation to the cost and required schedule. Then you’ll
have to consider the costs required to achieve the expected level of quality.
In some instances, you’ll have to examine the profit margin expected in order
to realize what the optimal quality for your project should be.

Some project managers worry that if they train their staff they’ll leave the
company to work for the competition. Motivational speaker Zig Ziglar said,
“Which is worse: training your staff and potentially losing them or not train-
ing your staff and keeping them?”

Considering quality when making changes
One of the biggest influences on quality is changes to the project scope. We
discuss change control at length in Chapter 13, but this section explains why
you should consider project quality when approving changes. Don’t get the

144 Part II: Planning Your Software Project

11_749346 ch06.qxp 8/30/06 10:16 PM Page 144

idea that we believe changes should be discouraged in project management.
Sometimes changes are absolutely necessary in order to make your stake-
holders happy. The two points to consider regarding change control are

� Consider how changes may affect quality, and address this in your
change control plan and your quality management plan.

� Changes are not evil beings to be avoided. They are a necessary part of
any project, and your process for dealing with them should be
addressed in your change control plan.

What you need is integrated change control. Integrated change control is a
method to examine change and its influence on the project as a whole. When
changes are proposed, answer all of the following questions:

� What affect does this change have on the project scope? If your scope
grows, then you’ll need to reflect additional time and cost considera-
tions to incorporate the change. The inverse is true as well; the cus-
tomer may want to remove deliverables from the scope, but this doesn’t
always mean that the cost or quality baselines should be adjusted.
Sometimes you’ve already invested time and monies into the deliver-
ables they now want removed from the project.

� What affect does this change have on cost and time? Obviously this
question is considered in light of the scope growing or shrinking, but the
consumption of time or funds to satisfy a change request may spread
your schedule and budget too thin to maintain quality.

One of the biggest mistakes software project managers make is trying to
please everyone by accepting changes without reflecting time and cost
changes. Then they’ll overwork their project team to achieve the project
objectives, and quality suffers. Don’t be that kind of boss.

145Chapter 6: Planning for Software Quality

11_749346 ch06.qxp 8/30/06 10:16 PM Page 145

146 Part II: Planning Your Software Project

11_749346 ch06.qxp 8/30/06 10:16 PM Page 146

Chapter 7

Building the Project Team
In This Chapter
� Putting your WBS to work for you

� Balancing leadership and management responsibilities

� Acquiring the appropriate project resources

� Determining your project roles and responsibilities

� Exploring the various organizational structures

� Associating power and authority with organizational structure

Projects are not solo activities. Projects are performed by people, and
these people are the folks on your project team. You need your project

team to help you plan, estimate, execute, and complete the project. And your
project team needs you to help them complete their work, lead the project to
completion, and act as a shield against the stakeholders that may badger
them for changes, gossip, and updates. The goal is to build a symbiotic rela-
tionship.

As a software project manager, you really must have two personalities: a
leader and a manager. The leader in you must motivate, align, and direct your
project team. You want to help your project team members reach their goals
and aspire to new challenges. The manager in you, however, is concerned
with just one thing: getting the project successfully completed.

When you recruit, build, and shape your project team, there must be a bal-
ance between leadership and management. On one hand you just want your
project team members to get their work done. On the other hand, you’d like
to inspire them to achieve great results, grow as individuals, and contribute
to the project’s success.

This chapter shows you how to build your project team. In Chapter 11, we
address strategies for leading your project team.

12_749346 ch07.qxp 8/31/06 12:08 AM Page 147

Determining Your Project Needs
The first step in finding all of the resources needed for your project is to
determine what resources are needed in your project. Take advantage of the
people in your organization who have expertise about the software product,
the programming environment, and so on. These people can help you deter-
mine the resources you need. Web application designers, analysts, develop-
ers, and database administrators, in particular, are the experts to whom
you turn.

Revisiting the work breakdown structure
To accurately predict resources, you need to know exactly what the project
scope entails. Remember the work breakdown schedule (WBS) we mention in
Chapter 3? The WBS is a deliverables-oriented decomposition of the project
scope. It includes everything the project will create in order to complete the
project scope. The WBS is your scope baseline.

Figure 7-1 demonstrates a portion of a WBS. In this part of the WBS, you iden-
tify products and activities so that you know what roles you need to fill. If
your WBS calls for CBT (computer-based training), you will require someone
who knows how to create computer-based training materials.

Resources are not just people, but materials, facilities, and equipment that
you need to buy, rent, or create. For example, the CBT may require new
development software, new application licenses, and even hiring a training
expert to help with that portion of the project.

Creating a roles and responsibilities matrix
One of the best tools you can use to identify resources is a roles and responsi-
bilities matrix. The purpose of this matrix is to identify all the individuals,
groups, and departments that are affected by the project and to show what
project components require these different entities to interact.

148 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 148

You won’t identify individuals in this matrix, but departments, such as sales
and marketing. You may also identify roles, such as the Visual Studio devel-
oper, the Oracle database administrator (DBA), and the project sponsor. The
idea is to identify the roles of each project participant. You can fill in the
names of the individuals who will fill these roles later. Here’s what you need
to do to create your own roles and responsibilities matrix:

1. Identify the major deliverables of the project.

Use the WBS (discussed in Chapter 3) to identify the major deliverables.

If your project is still in its infancy, you can use this time to create your
WBS. The first column in Table 7-1 identifies the major deliverables.

GNU Dev Project

PM Activities System Training System Testing

Planning

Meetings

Schedule

Budget

Development

Handouts

Classes

Scenario

Simulations

Pilot Testing

War room

Workstations

Software

UAT

Pilot group

Production

Post-test

QA/QC

CBT

Courseware

Figure 7-1:
A WBS

helps
identify the

deliverables
and

resources.

149Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 149

2. Identify the roles of project participants.

It’s not Bob, Susan, and Sally you’re identifying here — it’s the title,
department, or specialty that will fill the role. Depending on your pro-
ject, you may have a big team or a relatively small team. More likely than
not, you’ll have all the roles plotted across the top of Table 7-1.

3. Assign a legend to the matrix.

The legend identifies the coding structure the table uses. You can make
this anything you like, though the preferred standard is to use the RASCI
acronym:

• Responsible for the work

• Approves the work

• Supervises the work

• Consults on the work

• Informed of the work

4. Visually identify each stakeholder’s participation.

Mark the intersection of the stakeholder and the major deliverable.

150 Part II: Planning Your Software Project

Inspecting the resource pool
In some organizations, the project manager
inherits the project team. In other organizations,
the project manager or the functional managers
must recruit project team members. In any
instance, as the project manager, you must
ensure that the project team you’re working
with has the correct skill sets to complete the
work to create the project scope.

Think about any software project you’ve man-
aged in the past. When the project’s business
needs were identified, did you instantly begin to
think of some experts in your organization that
you’d like to have on the project? Or did you
think of the folks that you didn’t want on your
project? Or, finally, did you draw a blank and
think of no one that would qualify to help you
complete the project work?

Examining the resource pool is more than just
rifling through your mental inventory of the

talent in your organization. Ideally, your or-
ganization has a database that catalogs em-
ployees’ abilities, past projects, and interests in
expanding their skills in various applications.
This database can be built in conjunction with
human resources and the historical information
from past projects that your organization has
completed.

If your organization doesn’t have the luxury of a
resource pool database, you should consider
building one or having someone on your team
build one. In the meantime, you have to network
within your company to find the folks you need
to complete the project work. Sometimes, the
project team will find you instead of you finding
them. When word gets out that you’re starting
an exciting new project, some potential team
members will jump at the chance to be involved.

12_749346 ch07.qxp 8/31/06 12:08 AM Page 150

5. Integrate the matrix into the change control system.

After you complete the matrix and the stakeholders are in agreement
about the roles and responsibilities, any proposed changes should be
referred to the role that approves the work. You’re setting up a clear
chain of command here, so you must make sure that all the stakeholders
know which roles have the authority over the identified components.
This pre-execution process eliminates arguments later in the project
when changes to the project scope will inevitably be proposed. Making
changes to the scope is discussed in Chapter 13.

Table 7-1 Sample Roles and Responsibilities Matrix
Major Project Project Developer DBA Network Key
Deliverable Manager Sponsor Engineer Stakeholders

Application S/A C R I I C/A
requirements

Database S/A C C R I C/A
requirements

Network S/A C C C R C/A
requirements

Application S/A I R R I C/A
build(s)

Database S/A I C S/A I C/A
design

Database S/A I C R C/A
build

Server and S/A I I C R C/A
network creation

System testing S/A I R C C C/A

Application S/A I R I C C/A
analysis

System S/A I I I R C/A
engineering

System test and S/A C R I R C/A
evaluation

Evaluation S/A I R I C C/A
analysis

System S/A C R C C C/A
documentation

151Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 151

Table 7-1 (continued)
Major Project Project Developer DBA Network Key
Deliverable Manager Sponsor Engineer Stakeholders

Training S/A C R C C C/A

Dual support S/A C R C C C/A
processes

Finding the Talent
If you’re lucky, your organization has a database of the resources in your com-
pany, and you can quickly determine who has what talents. You can simply scan
the resources, examine people’s skill sets, compare their current and pending
workload to your project demands, and begin building your project team.

If you read that above paragraph and thought, “Gee, that’d be nice,” you’re in
for a tougher assignment. You have to find, investigate, survey, and hunt for
the resources you need on your project. Then you have to cross your fingers,
and hope they’re available.

If you find yourself in the camp of project managers without the resource
pool database, you can rely on historical information to see who has talent in
specific areas. Historical information, the collection of past project records,
can help you identify the skills in your resource pool.

What’s that? You don’t have historical information? Here are three sources to
find the talent you need:

� Ask other project managers in your organization to point you towards
the talent you need.

� Ask Human Resources staff, functional managers, and your colleagues to
point you to the talent you need on your project team.

� Be a pioneer by creating and making your project’s historical informa-
tion to help you and other project managers in the future.

Asking the Right Questions
(In the Right Way)

You want to get the right people on your project — the people that can get
the work done. But project management isn’t just about getting the work

152 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 152

done, that’s just plain old management. Project management also includes
leadership — aligning, directing, and motivating people to act independently
for the greater good of the project.

By asking the right questions of your team members, and then listening to
their answers, you can come one step closer to leading an organized, unified,
and loyal team while also managing the day-to-day aspects of the project.

Get used to asking open-ended questions. If you ask a team member, “You
want to advance your career, right?” you’re only going to get one answer. But
if you ask, “In what direction would you like your career to head?” you enable
the individual to answer your question honestly. See “Finding a star,” later in
this chapter, for more tips on getting honest answers from team members.

Asking questions that facilitate
resource management
If you have team members stretched thin by several other labor-intensive
projects, you need to know that — yesterday!

You need to ask questions of your project team members to determine what
their schedules are like and whether they have vacations or other events
looming, and to identify which areas of the project they’re most interested in.
You’re not looking to make promises or demands here; you’re only finding
out what the team members’ requirements and interests are.

This process allows you to make the best decisions when it comes to
resource assignments. Ideally, you want to assign people to the activities they
are most interested in, because they’re likely to perform at their potential for
these activities; however, that’s not always feasible, so don’t make any
promises during this phase of questions. Their calendar constraints, skill
sets, and your confidence in them may all discourage you from assigning
them to the work they want to do.

You may discover that some of your team members love to do the boring,
tedious work that software development is full of. Some individuals actually
enjoy pouring over code and completing rounds and rounds of application
testing. Not everyone wants to be front and center with the project develop-
ment, and not everyone wants to be in the middle of lots of inefficient meet-
ings and conferences. These folks just want to come in, write their code, and
be left alone. That’s fine; there’s always a place for that. It’s your mission, if
you choose to accept it, to find out who those people are and let them code
without the need to have a lot of interaction with stakeholders. Determine
the interests and skills of your project team members and provide the appro-
priate environment for them to flourish.

153Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 153

Here are some questions you should ask your project team members:

� What other projects are you working on?

� What time commitments do you have on these projects?

� What areas of this project excite you the most?

� What areas of this project do you dread?

� What areas of this type of project work have you done before?

� Have you ever worked with technology such-and-such (whichever new
technology you might be using for your project)?

Asking questions that facilitate
leadership potential
By asking questions that help you discover what motivates people, you can
put your leadership skills to their best use. We discuss project leadership in
more depth in Chapter 11, but as a general rule, you must have a real desire
to know your team, and empathy for the people you’re trying to lead.

Project leadership requires a genuine interest in your project team members.
You want to know what their interests are and what their goals are beyond
your project, even your organization. Your desire is to help them reach their
goals even if means that they may one day leave your project, your organiza-
tion, and you, their favorite project manager, far behind.

If you don’t know how to lead, emulate a leader you admire. This could be
someone from your own organization — or a public figure — whose leader-
ship skills you respect.

Here are questions you should ask your project team members in order to
strengthen your leadership opportunities:

� What are your career goals?

� Are there any areas within this project that can bring you closer to
achieving your career goals?

� What excites you about this project?

� What would you like to contribute to the project?

� What would you like to learn from this project?

� How can this project help you move forward?

� What opportunities do you see to make this project better?

154 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 154

Finding a star
When you’re having a conversation with prospective project team members,
your goal is to find out how they can help you complete the project and how
you can help them achieve their goals so that you can create a win/win situa-
tion. The STAR interview method is an approach that you can use to help the
prospect identify experiences, and cut through some bunk that may slip into
their recollections.

STAR stands for situation, task, action, and result. The idea is that you ask
questions that require the prospective team member to discuss a specific
task or situation he faced and what actions he took to resolve the issue. The
belief behind this concept is that a person’s past behavior is an indicator of
his future behavior.

Here’s how it works:

1. You present the project team member with a situation.

For example, you could say, “Tell me about a development project where
you went above and beyond the call of duty to ensure quality in the
deliverable?”

2. The team member then responds with a situation, followed by the task
of going above and beyond the call of duty.

3. You may have to prompt the individual for the actions that he or she
took and ask the person to explain the results of his or her actions on
the project.

The STAR approach is often used in job interviews, and gives you insight
into a person’s experience, accomplishments, and strengths.

Follow your organization’s rules and procedures when asking questions of your
team. This process is not a job interview, but a fact-finding mission. You’re
trying to discover important information about the team member — not run an
interrogation. Don’t go overboard or intimidate your team members.

Working with organizational structures
Before you can get to the project team involvement, you need to have a project
team. In some organizations, the project manager works with the same project
team over and over. In other organizations, the project team is cherry-picked
based on the demands of each project and the individual skills required.

Your project team will be assembled based on your organizational structure,
and you have to abide by the policies implemented by your company’s Human
Resources team. You need to understand what you’re allowed to do when it
comes to recruiting team members. As a general rule, if you don’t know, ask.

155Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 155

Determining Who Is Really in Charge
It’s imperative to know who the real project manager is. If you have ever been
on a project where the project team looked to you for a decision and then
was shocked to see the project sponsor step in and make the decision for
you, you know what we’re talking about.

Here’s a scenario: Your project team members bypass you and go to func-
tional managers, stakeholders, or even the project sponsor with issues that
need to be resolved.

Did you say, “Grrr . . .”?

Within your organization there needs to be a clear picture of who’s in charge.
That person is the only one who should be making crucial decisions, serving
as the hub of communications, and approving project work. Ideally, um, that
person is you.

The level of power you have as a project manager is tied to the structure of
your organization. Organizational structure is just a fancy way of determining
where the power is within your company. It’s more than just the power at the
top of the flow chart, but rather who has the project power when it comes to
making decisions for your project team. Have a slurp of coffee. This stuff is
theory on paper — but powerful in action.

Organizational structures come in five flavors. Each organizational structure
has pros and cons, and each structure identifies the level of power the project
manager should have (notice the cautionary phrase “should have”). Your orga-
nizational structure will also influence how your team is gathered. Figure 7-2
does its thing to show you five of these structures in action.

Here is an overview of the six organizational structures:

� Projectized: Assigns the power to the project manager

� Strong Matrix: Assigns more power to the project manager than the
functional (department) manager

� Balanced Matrix: Assigns equal power to the project manager and the
functional manager

� Weak Matrix: Assigns more power to the functional manager than the
project manager

� Functional: Assigns the power to the functional manager

� Composite: Intermingles parts of the other organizational structures

156 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 156

Functioning in a functional organization
At the bottom of the pile is the functional structure. The functional structure is
an organization that treats each department like its own little organization;
each department — Sales, Finance, IT, Manufacturing, and so on — is an inde-
pendent fiefdom. Each department acts as its own entity within the organiza-
tion and they purchase services from one another.

In a functional structure, the functional manager has all the power over all the
projects in his or her realm. The members of a PM’s team come from within
the same department, and the project manager may also be known as a pro-
ject coordinator or expeditor because he or she is just carrying out the
instructions of the functional manager. The project manager has little to no
authority in this structure.

Usually projects do not cross functional boundaries. The project team will
work on the project on a part-time basis while the remainder of their time is
assigned to their normal day-to-day activities. There are some pros and cons
to this structure:

� Communication is shallow, because only the team, the project manager,
and the functional manager need to communicate with each other. This
feature can be either a major pain or a major benefit. With less power
comes less responsibility for communicating across departments. That
frees up the PM to do the more detailed aspects of his or her job well. Of
course, the down side of having less power to communicate is that when
you have something important to say, no one may be listening.

� There is no confusion about who’s in charge. The functional manager
is the one with all the real power. This can be a pro and a con, as well,

Projectized Strong Matrix Weak Matrix FunctionalBalanced
Matrix

Composite

Note: ‘Composite’ is a blend
of the other five structures

Project
Manager

Functional
Manager

Power

Figure 7-2:
The level of
power you

have
depends on

which of
these orga-

nizational
structures

your
company

adheres to.

157Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 157

depending on your vantage point (or upon how much of a control freak
and/or power junkie your boss is).

� Alternatively, the project manager and functional manager may wres-
tle over project power. This is the ugliest of situations. There’s nothing
good here, unless maybe your boss is really incompetent and you can
get a promotion.

� Technical decisions may be made by someone with little (or no) tech-
nical experience. Again, not too many bonuses here.

� The project manager has no power to make project decisions but
holds the blame if the project fails. Ah, bliss.

Mixing it up in a matrix
A matrix structure, unlike the functional structure, uses resources from all
over the organization, not just a single department. A matrix structure allows
project team members to participate in projects and in operations. The idea
is that by blending resources with a common eye towards organizational suc-
cess, rather than just department success, everyone wins.

Sounds good on paper.

There are three types of matrix structures with each depicting the amount of
power assigned to the project manager:

� Weak matrix: The functional manager has more power than the project
manager does over the project

� Balanced matrix: The functional manager and the project manager have
equal power over the project

� Strong matrix: The project manager has more power than the functional
manager does over the project

The matrix structure also allows project team members to be on multiple
projects at the same time, rather than one project at a time. The project man-
ager may also be managing multiple projects or serve as a resource in one
project while managing a different project. Matrix structured organizations
often have projects that interact, such as the software development project
and the software training project.

Pros of a matrix structure include the following:

� Resources can be used from all over the organization.

� The project manager may work as project manager on a full-time basis.

158 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 158

� The project may shift resources based on other projects or team mem-
bers’ roles in the project.

� Project team members are not on the project full-time, but only when
their discipline is needed.

There are lots of problems with matrix structures:

� Power struggles abound. Welcome to the world.

� The project team is often confused about who’s in charge. (“My sister,
my mother, my sister, my mother . . .”)

� Because there’s no single functional manager, the PM faces huge com-
munications demands. The PM must communicate with all of the func-
tional managers of the project team members. It’s a nightmare. Take our
word for it.

� The project team members are probably on multiple projects with dif-
ferent project managers. Let’s get ready to rumble — there may be com-
petition for resources.

� Team members may feel overutilized as they are involved in multiple
projects.

On a higher level, the project managers may compete for resources,
time, and priority among all the projects in the organization.

Prospering in the projectized structure
At the top of the heap is the projectized structure. This model assigns the pro-
ject manager all the power, and the project team is on this one project full-
time for the duration of the project’s life.

This is ideal for organizations that have high-profile projects or they complete
projects for other organizations — such as an IT integrator. The project team
focuses all of the effort and concentration on one project, completes it, and
then, usually, moves on to the next project. In this type of structure, the pro-
ject manager may take on functional manager responsibilities, such as salary
responsibilities, hiring and firing, and other personnel management functions.

This structure is great because

� The project team contributes to projects full-time.

� Communication demands are greatly reduced.

� The project manager has autonomy over project decisions.

� Usually a project office or program office will support the project manager.

159Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 159

The downside of a projectized organization is that the project team may have
anxiety when the project wraps up. The anxiety centers on what the project
team will do after the project is completed. Some team members are folded
into new projects, while other project team members may be dismissed. The
project team may also feel internal power struggles for project leadership.
The projectized model may use contract employees on a short-term basis, so
when the project’s done, these individuals may become inessential.

160 Part II: Planning Your Software Project

Five personality types you don’t want on your team
There are five types of project team members
that we don’t ever want on our projects — and
that you don’t want on yours. If you notice some
characteristics from the following lists in people
you work with, you have to take action to mold
these folks into the exciting, project-delivering
team members that all project managers envy.

� The Cowboy: This person is wild and loony.
Cowboys are high-strung, willing to experi-
ment on the fly, and can’t remember what
they’ve done to the code — or why. Cow-
boys don’t think twice about adding inap-
propriate comments to the code, hiding
Easter eggs in the application, and tinkering
with the project scope. Cowboys are often
smart and fast workers and like to be cre-
ative. Rustle these folks in by establishing
rules and procedures, quality control, such
as peer review, and direct conversations on
what’s permissible and what activities
should be put out to pasture.

� The Mouse: The Mouse is a shy, timid
person who needs your direction, approval,
and strong hand on every action he or she
takes. Mice can be easily influenced by
team members, stakeholders, and their own
fear to move forward with their work. Your
job is to teach mice to roar by building their
confidence and forcing them to make deci-
sions on their own.

� The Rock: Tough, stubborn, and hard to
move, that’s the Rock. Rocks are the folks

who usually have years of experience and
want to do things their way because it’s the
right way. These are the types of folks who
say, “There are two ways to develop an
application: my way and the right way —
and they are both the same.” Deal with the
Rock by establishing a firm chain of com-
mand and sticking to it.

� The Linguist: Linguists love language, and
they don’t know when to stop talking. Their
endless conversations eat up project time,
meeting time, and steal time from other
developers, who are working on their
assignments (or trying to). You’ll have to
deal with these folks directly by steering
them back in the right direction — toward
the point of the discussion. If the linguist
starts rambling during a meeting, you might
say something such as “Amanda, let’s get
back to the topic of system testing.” If a lin-
guist disrupts the project team, you have to
step in occasionally.

� The Uncle: Remember your favorite uncle?
He’s the guy with all the jokes, funny stories,
and magic tricks. You like your uncle, but
you don’t need him on your project. Uncles
(or aunts) are often quick workers, and they
assume that the rest of the project team
works as fast as they do. Assign more chal-
lenging work to these people to make sure
they don’t get bored and start pulling quar-
ters from their teammates’ ears.

12_749346 ch07.qxp 8/31/06 12:08 AM Page 160

Cooling in a composite structure
We said there were six structures, but if you were counting, and we know that
you were (you’re so detail oriented), we only mentioned five. The last struc-
ture is a composite. A composite is a structure that uses a blend of any of the
five structures. For example, Wacky-Wicky, Inc., follows a traditional func-
tional structure.

This business has a high-profile, important project in the offing, so it breaks out
one project team and assigns a full-time project manager to the project. This
relatively conservatively structured organization has emulated a projectized
structure for one project; meanwhile, the rest of the employees at Wacky-Wicky
are jealous because they still have to follow the functional structure.

Hosting Your First Project Team Meeting
The first time the project team meets, it’s just to get to know one another, if
they don’t already, and to establish the ground rules and procedures of how
the project will operate. The first meeting is your opportunity to establish
several key things:

� You’re in charge

� The scope of the project and what the customer is expecting

� Introductions if the project team members don’t know one another

� Identification of the roles of the project team members

� High-level objectives for time, cost, and quality

� Your expectations regarding communication and issue escalation

� Any caveats, issues, or pending decisions with the project work

For your first project team meeting, and for every project team meeting here-
after, you should provide an agenda prior to the meeting and invite project
team members to comment on the accuracy of the agenda. By getting an
agenda together in advance, you enable the project team to take responsibil-
ity for airing important issues and other business. An agenda also enables
you to set the tone (“this is official — we even have an agenda”) and to stick
to the agenda rather than rambling from topic to topic.

The longer your project team is in a meeting, the longer they’re away from
their project work, so make the effort to make your team meetings efficient
and effective.

161Chapter 7: Building the Project Team

12_749346 ch07.qxp 8/31/06 12:08 AM Page 161

Your first project meeting should also introduce your approach to project
management, especially if some (or all) members of the project team haven’t
worked with you in the past. You set the stage and set expectations, and you
allow the project team to identify what they can expect from you in return.
Your first project team meeting should also accomplish the following:

� You establish the flow of communication between you, the project team,
and stakeholders

� You provide an overview of the change control system, including ver-
sioning and configuration management (find out more about change con-
trol in Chapter 13)

� You establish immediate activities for the project team

� You open the floor to discuss issues and pending decisions

� You distribute the project charter and scope statement

� You distribute a team directory (or refer to its online location) so team
members can easily contact one another

If there are electronic procedures, such as how to check the software’s current
build, how to use the risk database access, or how to view the project plan
files, this information should be printed and distributed to the project team.

Finally, your first project team meeting should identify the process of record-
ing the team meeting minutes. Yes, someone should record the minutes of
every meeting you have with your project team. This may be a project man-
agement assistant if you’re operating in a projectized or strong matrix, or
members of the project team can take turns documenting the meeting min-
utes. The minutes document promises, discussions, timelines, due dates, and
the conversation of the project meeting.

Working with Organizational Policies
Every organization has rules about managing project teams. Your level of
power is determined by the organizational structure, but levels of power
associated with the human resources may override any power you assume
you have. For example, you may be operating in a strong matrix, but that
doesn’t mean you can fire project team members at will, regardless of how
much they bother you.

You need to work with your manager, Human Resources department, and the
managers of the project team members to determine what actions you can take
before there’s a need to take any actions at all. Know the rules and procedures
before the project work begins so that you know what you’re allowed to do.

162 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 162

For example, if you’re responsible for completing reviews of the project team
members, compiling reports to send to their functional managers, or report-
ing each team member’s performance to an HR manager, you’ve got some
influence over team members’ willingness to complete the project work.

Never go to management with just a problem. Always goes to management
when you’ve got a problem and a suggested solution, whether it’s concerning
HR issues or any issues.

163Chapter 7: Building the Project Team

Relying on the Project Human Resources
Management plan

You should have a plan for managing your
project team. In each organizational structure,
from functional to projectized, you need an HR
Management plan that establishes several
things:

� Who has the authority over the project team

� The process for team member discipline

� How team members are brought into and
released from the project team

� The expectation for the roles within the pro-
ject team

� Rules and policies specific to the project
you’re managing

You can create the Project Human Resources
Management plan for each project from a boil-
erplate document. Just to be clear, you can’t
arbitrarily create an HR Management plan with-
out a sign-off from someone in HR. Your plan
should be in alignment with already established
policies and procedures, and fit your organiza-
tion’s culture.

The point of the HR Management plan is to
ensure that everyone on the project team
knows how the project will operate, who’s in
charge, and what’s expected. It also outlines
consequences if team members don’t perform
as expected.

12_749346 ch07.qxp 8/31/06 12:08 AM Page 163

164 Part II: Planning Your Software Project

12_749346 ch07.qxp 8/31/06 12:08 AM Page 164

Chapter 8

Creating Project Time Estimates
In This Chapter
� Getting organized before you start

� Getting a PND in order

� Letting history be your guide

� Finding the critical path

� Making an estimate

It’s Monday morning and you’re hard at work on one of the many projects
you manage for your company, a large manufacturer. Susanna, the Chief

Operating Officer, pops into your office because she wants to chat with you
about a new project. She explains that the purpose of the project is to create
a piece of software that will measure the productivity of each piece of equip-
ment on the shop floor.

She envisions that the software will somehow connect to the machinery on the
shop floor and measure the speed and efficiency of each piece of equipment.
The measurements taken by the software will allow the organization to make
changes to improve productivity. Susanna says that she’ll leave all the tech
stuff up to you and your experts, but she does have some ideas on what the
software interface should look like and what components it should measure.

And then she asks, “So, how long will this take to create?”

Isn’t that a great question? You don’t have enough information, most likely, to
give a reasonable answer. You don’t know the project scope or the required
resources to interface with the manufacturing equipment. You also have sev-
eral other projects in the mix. But Susanna needs an answer now. You could
give a guesstimate, but she’ll hold you to it. What’s your best move?

First, stall. In fact, whenever possible, you should avoid specifics, especially if
you’re just starting out as a project manager. Wait until you’ve had a chance to
evaluate all the details. Coincidentally, the point of this chapter is to help you
evaluate and plan a timeline. We explain how to create time estimates, how to
schedule project work, how to create a project calendar, and how to avoid sce-
narios in which you give a bad estimate because you’re being pressed.

13_749346 ch08.qxp 8/30/06 10:18 PM Page 165

Organizing Information Before
You Build a Timeline

Here’s a rough order of the things you need to do if you want to provide a
truly useful and accurate time estimate:

1. Gather requirements (see Chapter 6).

2. Create a WBS (see Chapter 3).

3. Determine skill sets and resources (see Chapter 7).

4. Create a project network diagram PND (we discuss the PND in the follow-
ing section).

5. Develop a rough order of magnitude (ROM) estimate (we discuss this
topic later in this chapter).

6. Develop an approximate time estimate.

7. Create a schedule.

8. Optimize the schedule (we explain these topics later in this chapter).

9. Finalize the estimate with a schedule baseline.

Every project manager’s goal is to create the most accurate estimate possi-
ble. Unfortunately, finding the best technique to accomplish this task takes
time. But with the right tools, you can do it. Make sure you have a work
breakdown structure (WBS). The WBS is needed because it reflects every-
thing that the project manager and the project team must create to complete
the job. The more details you have, the better prepared you’ll be to factor in
delays, risks, and small, time-consuming jobs when you work out the project
network diagram and the project timeline.

Understanding the Importance
of a Project Network Diagram

A project network diagram (PND) is a roadmap of the sequence of activities
needed to complete the project work. In Figure 8-1, you see a PND in which
each node represents an activity and the arrows indicate the dependencies.
We discuss how to create your very own PND in this chapter.

166 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 166

The PND focuses on the sequence of the activities needed to complete the
project scope as well as the precedent activities (represented by the arrows)
and the activity durations. When you create the PND, you can examine how
long the project might take to complete.

PNDs are great because they enable you to visually sequence the work. That
way, you have a better chance of estimating more accurate durations. Here
are some other reasons to enjoy PNDs:

� You won’t be able to assess how long the project might actually take
until you see the order in which the work should, or can, happen.

� You can make educated decisions about the order of the activities that
may influence project timings, forecasting, and labor assignments.

The PND can help you assign tandem tasks together, streamlining your
timeline. Your team can do some activities in tandem with other activi-
ties, while others must happen in a particular order.

� If, after putting together the PND, you discover that some tasks are more
complicated than others, you can assign these activities to more experi-
enced team members. For example, if time is tight, consider assigning a
senior developer to a task instead of training a new developer to do the
work. When you have a bit more time, you can provide some profes-
sional development to a less experienced developer, but not when the
software is due, like, yesterday.

� Some activities are effort-driven, which means that you can add more
labor to complete the work faster.

� Some activities are of fixed duration, which means they’ll take the same
amount of time regardless of how many people you put on them.

Start D

2

2

1

5

5

6

6

3 2

2

4

FinishE

B

H

F

A

G

C

Figure 8-1:
Project

network
diagrams

visualize the
project

work.

167Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 167

Preparing to Create Your PND
Before you can hop in and create your PND, you need to gather several items.
Perhaps the most important information you must possess are the names or
assigned roles of your team members. Your project team members are the
folks closest to the project work, so they understand what the project work
entails. You need them to help you make the best decisions about which
activities should happen in which order — and how long these activities
might take.

You need your favorite document, the work breakdown structure (WBS).
Well, you don’t need just the WBS, but also the activity list that comes from
the WBS. If you haven’t read Chapter 3 yet, the WBS is a deliverables-oriented
decomposition of the project scope. The information in the WBS tells you
what activities have to happen. At the end of your project you use the WBS to
prove that your project team has completed all of the work listed in the PND
according to the product scope and project scope. In other words, the WBS is
a pretty important document.

You use progressive elaboration when you’re developing a project schedule.
At the start of the project, you create the schedule based on the require-
ments that you’ve gathered, but as you gain more detailed knowledge of the
project specifications, you fine-tune the schedule and make it more compre-
hensive. The concept of progressive elaboration builds on the fundamental
principle that project management is an iterative process; it just keeps get-
ting better with age.

Determining What May
Happen — and When
With your team and tools gathered, you’re almost ready to begin plotting out
the network diagram. Projects rarely fit together like a string of pearls —
activities don’t tend to happen in a sequential and orderly fashion. Most pro-
jects are more like a web, where chains of activities branch out and then
come back together as the project draws to a close.

In the real world, your project will have different branches, representing rela-
tionships between activities. Activities are categorized in the following ways,
depending on their placement in the project network diagram:

� Predecessor: Activities that precede the downstream activities

� Successor: Activities that come after predecessor activities

168 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 168

Any activity, other than the first and last activity in the network diagram, can
be a predecessor and successor. The relationship between predecessors and
successors describes when activities begin and end. The following describes
the four relationships you can use in a network diagram:

� Finish-to-start: The predecessor activity must finish before the successor
activity can start. This is the most common relationship type. Example:
The Web server must be running before the SQL database can connect.

� Finish-to-finish: Two activities must finish at the same time. The two
activities don’t have to begin at once, but they must end at the same
time. Example: The user acceptability testing and the third-party
reviews of the build must complete at the same time.

� Start-to-start: Two activities must begin at the same time. The two activi-
ties may be of varying duration, so they don’t have to end at the same
time, but they have to start at the same time. Example: The final build
of the software and the creation of the online help system should start at
the same time.

� Start-to-finish: The predecessor activity must start in order for the succes-
sor activity to finish. This is the most unusual of all the relationship types
and is rarely used. You might run across it if you do just-in-time scheduling
or manufacturing. Example: The software testing can’t be completed until
the quality control department reviews the testing results.

169Chapter 8: Creating Project Time Estimates

Fudging and wiggling with leads and lags
In addition to successor and predecessor rela-
tionships, which we discuss elsewhere in this
chapter, lead time and lag time can help you
make a more accurate PND. Lag time is waiting
time. Lead time is time you spend waiting —
hurry up!

Here’s how you can put lead and lag time to use:

� Add lag time to separate activities. For exam-
ple, you might add five days of lag time
between compiling the software and the
successor activity of operational transfer.
Operational transfer occurs when you leave
the implementation phase of your project

and enter the support phase. There is usu-
ally a separate team or department that sup-
ports the software after it is implemented.

� Subtract lead time between activities when
you know that the schedule is a bit padded.
For example, you may have a finish-to-start
relationship between the online help system
and the training documentation. By adding
three days of lead time to the training doc-
umentation activity, the start of the training
activity can overlap with the online help
system.

13_749346 ch08.qxp 8/30/06 10:18 PM Page 169

Factoring in external dependencies
Many projects depend on vendors or other projects to move forward. These
are referred to generally as external dependencies, and are typically out of the
project manager’s control. You need to identify as many external dependen-
cies as possible early on so that you can plot their timing in your network
diagram. For example, if you know that a consultant will be involved in the
project at a specific point, you can plan all of the work that needs to be com-
pleted before the consultant is scheduled to arrive.

Putting together all the pieces
After you assemble your project team and outline all of its future activities,
you need to begin snapping together the PND. Over time, you will develop
your own signature method for creating a project network diagram, but try
this method first:

1. Transfer each identified activity to its own designated sticky note.

2. Arrange all the sticky notes on a whiteboard in the order that the
activities should take place.

If activities can occur in tandem, place those corresponding sticky notes
in a column.

3. Draw relationships between each activity.

You simply draw a line with an arrow going from the predecessor to the
successor activity.

4. Let the PND creation cool for a day or two.

5. Revisit the PND with the project team to examine the network for
errors, risks, or mistakes.

6. Document any risks, issues, or pending decisions.

7. Transfer the PND creation from the whiteboard to your favorite pro-
ject management information system.

If you have a very large software project with over 100 activities (or however
many activities your organization deems a large project), you won’t find using
sticky notes for each activity useful as much as you will find it cumbersome
and difficult to follow, if not downright sticky. For a very large project, it may
be more efficient to use sticky notes for those items at the deliverable level
instead of the activity level. Another option would be to break your large
software project down into subprojects and use the sticky notes for the
subprojects.

170 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 170

Using hard logic
As you and the project team begin to plot out the sequence of activities, you’ll
rely first on hard logic. Hard logic describes the work that must be done in a
particular order. For example, consider that you must install an operating
system before you can install the application. The application has to be
installed before you can collect the data. And so on.

Hard logic is also known as evaluating mandatory dependencies. You and the
project team need to identify the hard logic within your project so that you
can map out the activities in the correct order. You can always revisit your
PND and change the relationships between activities as the project moves
forward; however, wouldn’t you rather make sure that the relationships are
correct the first time?

Relying on soft logic
You use soft logic, sometimes called evaluating discretionary dependencies,
when you make choices to arrange activities in a particular order not because
you have to, but because you and the project team feel it’s the best order of the
work. For example, you could have several developers working on different
portions of the same application all at the same time, but by using soft logic
you might arrange the activities to have the developers work on the different
portions of the application in a sequential order.

Relying on network templates
Creating a PND sounds like a bunch of work because it is a bunch of work.
Planning the sequence of activities takes time and effort. In addition, heated
debates, conflicts, and open issues can hinder how the work progresses.

Now for some good news: If you do the same type of work over and over, you
don’t have to start from scratch every time. Instead, you can create a project
network diagram template. A template, as you know, is a standardized docu-
ment that has basic information and common activities already filled in. A
good template just requires you to fill in the correct dates for the major activ-
ities your team performs.

You can easily create a template by using a past project of similar work. The
catch, however, is that you’ll also want to review the lessons learned from the
past project to ensure that the work on your next project goes as expected.
Great templates are made, not born. The network template should be accu-
rate, yet fluid, so that you can adapt it to each future project.

171Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 171

Identifying subnets and fragnets
Within your PND, you may also find it useful to identify subprojects or out-
sourced portions of your project. These other projects are identified as sub-
nets and fragnets and are often visualized in the network diagram as a cloud
that shows the predecessor activities and successor activities of the subnet.

For example, you may outsource the creation of the application’s online help
system. You probably won’t want to map out all of the steps your vendor will
follow to complete the help system, but you will want to make sure that this
portion of the project work is visualized in the network diagram. Make sure
that the predecessors reach the outsourced work, and that the successors
are dependent on the outsourced work.

Using Historical Information to Complete
Inexact Activity Time Estimates

To create an accurate time estimate of how long the project will last, you
need your PND. The network diagram shows the sequence of events, which,
when combined with the duration estimates and resource availability, tell
you the total duration for the project.

But what if you have someone breathing down your neck right now? In the
real world, you can’t do all the work you should do to give a good estimate to
your stakeholders. However, you do have a few options for estimating (in a
less than exact way) how long a project will last before you create the project
network diagram.

Activity duration estimating, like the project network diagram creation, isn’t a
solo activity. You need your project team members’ participation, because
they are the folks that are closest to the project work; they’re the folks who’ll
be doing the work. A better source of input than team member’s recollec-
tions, however, is documented historical information.

Historical information comes from past project performance. This is assum-
ing, of course, that historical information exists and that it is accurate and
readily available. Keep accurate assessments of your project work and com-
plete your lessons-learned documentation as the project moves towards
completion. Your current project will eventually become your future histori-
cal information.

172 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 172

Identifying Activity Duration Influencers
Every project has attributes and influencers that may cause the actual activity
durations to fluctuate. Activity duration influencers are any conditions that may
cause the duration estimates you provide to be inaccurate, unstable, or subject
to change. By documenting these influencers during your duration estimates,
you’re covering your, er, assets. Be sure to communicate which conditions can
cause the project to last longer (or, on rare occasions, shorter) than planned.
The following sections list the most common influencers.

Documenting project assumptions
Project assumptions include anything that you believe to be true, but that
you can’t prove to be true. For example, you assume that the vendor will
deliver the hardware by a given date. Or you assume that if your team has to
travel there won’t be any extensive travel delays due to weather. Common
project assumptions to consider:

� Hardware conflicts won’t exist

� Software conflicts won’t exist

� Technology interoperability won’t hinder the project’s progress

� The project team will deliver work as scheduled

� The project team will have access to needed systems

� The needed resources will be available throughout the project

� Changes to the project scope will follow a predefined change control
system

Project assumptions must be documented as early as possible in the project
planning phase to ensure that all of the stakeholders are working under the
same set of assumptions. You document the assumptions in the project
scope statement, which we describe in Chapter 3.

If an assumption is later proven not to be true, the assumption may be a risk
to your project. One of the first places you go to identify project risks is the
assumption log.

Documenting project constraints
A constraint is anything that may restrict the project manager’s ability to get
the project done. Constraints are usually identified as rules, regulations, or
restrictions that the project manager must work within while completing the

173Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 173

project work. For example, if you know that you must have the project com-
pleted by December 30, that’s a schedule constraint. Here are some common
constraints to consider:

� Budget constraint: You have a preset budget to meet an identified scope.

� Schedule constraint: You have a deadline for the project completion or
dates within the project to deliver key components of the software.

� Technical constraint: You may need to program in a certain language,
or build software that is consistent with legacy applications.

� Regulations: You may need to follow legal or industry-specific regula-
tions that require your project team to do extra work, complete extra
communications, and so on.

� Resource constraint: Your project team members may be on multiple pro-
jects at the same time, so they’ll likely have conflicts within their schedule
and your project’s schedule. Resources can also include facilities, equip-
ment, and materials that you may need to complete the project.

� Organizational constraints: This is a big bucket of constraints that your
organization enforces on your project. Consider internal procedures,
meetings, communications, quality assurance programs, and more.

� Skills and competency levels: If your project team members don’t have
the capacity to deliver the project scope, they will constrain your ability
to get the project work done.

Like assumptions, constraints can turn into risks if the constraint impacts the
ability to deliver the project.

Considering the project risks
You need to consider project risks when you create activity duration esti-
mates, because if the risks do come into play you may face delays.

Consider a project to create and distribute a piece of software to 25,000
users. One of the risks involved is that a vendor may be late delivering its
portion of the project. If the vendor is late, then there’s a ripple effect, not
only for the vendor’s lateness, but also for your quality review of the vendor’s
deliverable, the possibility of rework, the time to incorporate the vendor’s
deliverable into your project, and on and on — your project may have many
items yet to complete that depend on this single deliverable.

In addition to vendor delays, common risks include the following:

� Project team members’ delays

� Errors and omissions that lead to reworking

174 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 174

� Scope creep

� Project resources assigned to too many project activities simultaneously

Considering resource requirements
and capabilities
When you begin to estimate how long a software project will take to com-
plete, you must consider the amount of labor you need to satisfy the project
scope. If you think you need eight C# developers and you’ve only got three
available, your project will either have to hire more developers or extend the
project schedule to allow for your developer shortage.

Most software development projects are labor driven, which means that you
can add more labor to drive the project duration down. However, as Figure
8-2 depicts, the law of diminishing returns restricts a project manager from
adding infinite resources. Eventually, you reach a limit where the productivity
actually goes down when you add more people. Just because 8 developers
can finish a project in four months doesn’t necessarily mean that you can add
16 developers to complete the job in half the time.

175Chapter 8: Creating Project Time Estimates

Getting a bird’s-eye view of the law
of diminishing returns

Did you skip Econ 101? No problem. Here’s what
you need to know about the law of diminishing
returns:

� There is a fixed amount of yield, and your
yield is in proportion to the amount of labor
assigned. The classic example from Econ
101 is harvesting a wheat field. There’s only
so much wheat in the field, regardless of
how much labor you add, so getting the field
harvested in half the time won’t pay off. You
still have to pay all those extra laborers. The
same idea applies to software develop-
ment. More labor doesn’t immediately
equate to a better piece of software or more
profits.

� Adding labor doesn’t guarantee time sav-
ings. If you’ve ever heard the expression
“Too many cooks spoil the broth,” you may

know what we’re getting at here. Maybe
you have even experienced this phenome-
non when you put a ton of developers on
a project, only to realize that instead of
working they argued with each other over
how to do the project work. This isn’t just a
fluke — it’s a likely occurrence.

� Adding labor doesn’t equate to relative pro-
ductivity. As more and more developers are
added to the project, each developer will
create slightly less code than the developer
that’s been on the project longer. In other
words, the first developer will likely do the
most labor because she’s been on the pro-
ject since day one, while the newest devel-
oper won’t create as much code simply
because there’s less to accomplish in the
project.

13_749346 ch08.qxp 8/30/06 10:18 PM Page 175

Anticipating the first-time,
first-use penalty
At the onset of each project, you need to consider the competency and talent
levels of your project team. If the team is not proficient in the development
environment, your time estimates aren’t likely to be very accurate. If you’re
developing software in a new language or this is a type of project you’ve never
done before, then your team may suffer from the first-time, first-use penalty.

The first-time, first-use penalty means that if you’ve never done something
before, you’re likely to not be very good at it. The good news is that you can
accurately predict the penalty: It’ll inevitably take longer to complete the
work (and may cost more too) because everyone on the project team is
learning as they go. Think of first-time, first-use as similar to the concept of
the learning curve. The learning curve states that efficiency increases the
more times a person repeats a task. Simply account for a bit more time on the
project, because you know it’s going to be bumpy.

Making the Project Duration Estimate
Management wants to know two things:

1. How much?

2. How long?

We discuss costs in Chapter 9. In the previous sections, we’ve discussed all
the inputs you need to enter to find the time estimate, as well as all the risks

Efficiency

Labor

Yield

Productivity

Figure 8-2:
The law of

diminishing
returns

restricts the
amount of

productivity
a project
manager

will realize
by adding

more labor.

176 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 176

and factors you need to take into account. Now it’s time for politics. You must
be smart when you consider what type of an estimate management is really
looking for.

Creating a rough order
of magnitude estimate
If you’re caught in an elevator with your boss and he throws out some wild
idea for a piece of software, fully expecting an answer about the project dura-
tion, chances are your estimate won’t be all that reliable. After all, you’re in
an elevator, trying to guess at the project scope, the project requirements,
and you’ve really got no clear idea on how many resources you’ll need or
their ability to complete the project activities.

At best, you can provide a rough order of magnitude (ROM) estimate. A ROM
estimate can be wildly off target — from 25 to 75 percent off, or even more, so if
you give one, be sure to add a disclaimer. We explain the relationship between
ROM and your budget in Chapter 9.

Hallway estimates, elevator estimates, and coffee shop estimates are danger-
ous to offer because the second that management hears a timeframe, it
becomes a guarantee. Always, always, always preface ROM estimates with,
“This is a wild estimate and I would need to gather more definitive project
requirements in order to give you a more reliable estimate,” or you’ll be
haunted by whatever schedule you offer. Unfortunately, even with that pre-
amble, you may still be haunted by the estimate.

Creating an analogous estimate
An analogous estimate is an estimate that creates an analogy between your
proposed project and one that’s been done in the past. Say you’re managing a
new project to create a database to track help desk calls. The project needs
to track who’s calling, how often they’re calling, and what their issues are. If
you managed a similar project a year ago to track sales calls, you can pull out
that project’s archives, lessons learned, and timeline to see what resource
you think your current project will need to complete.

If your previous project took six months from start to finish, and it matches
the current scope of your project, and you have approximately the same
number and type of resources, you have a little historical evidence to create
an analogous estimate.

177Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 177

Of course, there will differences in scope, so you’ll have to use your expert
judgment and input from your project team to determine an accurate time-
line. Perhaps the new project is more detailed. If so, you may want to start
out with nine months as your analogous estimate.

Creating a parametric estimate
A parametric estimate is one of the simplest estimates to offer (even if the
term doesn’t sound so simple), but you may not have many opportunities to
employ it in software project management. When using a parametric esti-
mate, you find a parameter, usually in the form of units. For example, you
might say that it takes 8 hours per unit to install. If you have 500 units, you
multiply the parameter (8) times 500 to get your estimate in hours (in this
example, the job will get done in 4,000 hours, or ten 40-hour weeks).

Using parametric estimates in software project management is difficult because
you’re usually estimating time for the developers, not for units they’re creating.
It may be possible to use a parametric estimate when you’re troubleshooting,
fixing databases, or pushing software out to clients via a network, but usually
you can find a better way to predict timelines in software projects.

If your shop completes projects for other organizations, you may have
already developed your own parametric estimates. Some IT integrators do
the same type of projects over and over, so they can predict how long that
project will take based on the number of developers assigned to the project.
They simply use the number of developers assigned to the project as the
parameter for predicting time.

You have to be careful when using a developer as a parameter. On paper, you
can reason that two developers can work faster than one, but that’s not
always true. One developer may have superior skills, better organizational
skills, and a higher level of proficiency than the other.

In addition, there’s the concept of a day’s worth of work. A developer can bill
for eight hours of labor every day, but meetings, phone calls, and distractions
all steal time away from your project. Tracking metrics, such as time devoted
to creating code versus time in meetings, planning, troubleshooting, and so
on, can give you solid input to how many hours it’ll take to complete a pro-
ject, and then you can extrapolate from there how many days it’ll take to get
the whole thing done, but doesn’t this seem like a lot of work?

Estimating Do’s and Don’ts
Here are some tips to help you come up with the best timeline estimate
possible:

178 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 178

� Don’t work alone: Work with your project team to examine your project
network diagram, determine the duration of each activity, and then
determine when the project will be able to complete.

� Don’t work in a vacuum: Even if you’ve got all your team asking ques-
tions and shaking it, a Magic 8 Ball will not help you come up with an
accurate timeline.

� Do get everyone onboard: Let us repeat: No one on your team is
allowed to use a Magic 8 Ball. Their time estimates must be as accurate
as possible.

� Don’t bloat: Every task estimate team members provide tends to end up
being overinflated, and your project, on paper, looks like it’ll take a lot
longer than it should.

When you begin padding time estimates, you succumb to Parkinson’s
Law. Parkinson’s Law states that work will expand to fill the amount of
time allotted to it. So when Bob says it’ll take 40 hours to do a task that
should only take 30 hours, it’ll magically take 40 hours to complete. Bob
will take as much time as he’s given, not because he’s a bad guy, but
because he’s human. This is also called students’ syndrome.

� Do take advantage of management reserve: Management reserve is a
collection of time that’s appended to the end of your network diagram.
It’s usually 15 percent of the project duration, although you can deter-
mine how much based on your comfort level with the project scope.
All estimates, you should stress to the bigwigs, are accurate without
padding. The reserve is there so that when real issues arise, you can
take it if you need it.

Using PERT for the Most
Accurate Estimates

One approach to creating an accurate time estimate is something called
PERT. PERT means program evaluation and review technique; it’s an estimat-
ing approach that requires three estimates for every activity to account for
uncertainty:

� Optimistic: The best-case scenario

� Most likely: The most-likely time

� Pessimistic: The worst that can happen

With PERT, you just plug these estimates into a simple formula:

Pessimistic + Optimistic + (4 × the Most Likely)

179Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 179

Then divide the sum by 6. Figure 8-3 shows the formula in action. PERT is the
only time-estimating technique that has a level of risk assessment built into
it, because it considers the worst-case scenarios.

Knowing What to Say if the Boss
Wants an Estimate Now

Remember Susanna, the COO in the introduction to his chapter? If she wants
answers to her questions, you should respond by covering the following
details, without exception, before giving her any concrete answers (Memorize
this list!):

� Clarify that this is only an estimate. Based on the information you’ve
been supplied, WBS or not, you’ll never really know how long it’ll take to
complete the project until the project is done. Every estimate you create
should identify that this is an estimate, not fact.

� List your assumptions. You may be assuming that the project team will
not have to complete the user acceptability testing. You may be assuming
that the project will not require you to push the software image to every
desktop in your organization. Or you may be assuming that your project
team can work offsite. Whatever the assumptions are that you used to
create the estimate, you need to provide them to the stakeholders.

� Offer a range of variance. A range of variance usually consists of that
important phrase, “plus or minus. . . .” For example, you might say it’ll
take two months to complete, “plus three weeks or minus a week.”

� State the length of validity for the estimate. If business is currently
slow, your timeline might be shorter than when your developers are
cranking through so many projects that they don’t know whether they’re
coming or going. Put a length of validity on the estimate (say 30 days).

P+O+(4M)

6

P= Pessimistic
O= Optimistic
M= Most Likely

60+15+(4*25)

6
= 29 hours

Figure 8-3:
PERT

requires
three

scenarios to
calculate

a time
estimate.

180 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 180

If you don’t put a cap on your timeline, good old Murphy’s Law states
that the stakeholder will disappear until the minute you’ve booked your
developers on seven different projects.

� Provide some background on how the estimate was created. If you
used analogous data, then say so. If you based the estimate on your gut
feelings, say so. If it was a rough day and you relied heavily on the Magic
8 Ball, then really say so (and take a vacation). Your background for the
time estimate may simply consist of the scope the customer defined, but
you should document it.

Understanding the Way
PND Paths Interact

It’s been said that the first 90 percent of the project takes 90 percent of time.
The remaining 10 percent of the project takes the other 90 percent of the
time. How often is that the case? Hopefully, not with your projects, but if
you’re like most software project managers, it is true.

Calculating the critical path
You should locate the critical path (or most time-consuming part) of your
PND. The critical path is not the most urgent path in the PND; it’s just the
path that takes the longest to get from the first task to last task. What makes
this path critical is the fact that if any projects on the path get delayed, the
whole project will miss its deadline.

Figure 8-4 is a simple network diagram with all of the activity duration esti-
mates completed. In this sample, there are four paths to completion:

1. ABEHJ = 10 days

2. ACGJ = 11 days

3. ACFIJ = 15 days

4. ADFIJ = 16 days

In this example, the path of activities ADFIJ will take 16 days to complete.
Path ADFIJ is the critical path because if any of the activities on this path are
delayed, the project will be late as well.

The other paths in the project have to be completed as well, and it is possible
that delays on the other paths can change the critical path, but as it stands
right now, the longest path of the project will last 16 days.

181Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 181

You may notice activity C, which precedes activities F and G. This means C
must be completed before F and G, even though C is not on the critical path.
The point is that just because an activity is important doesn’t mean that it’s
on the critical path — and vice-versa. The critical path only shows how long
the project will last.

Most project management information systems (PMIS) software, including
good old Microsoft Project, can find the critical path for you. However, PMIS
is a tool to assist the project manager; it doesn’t replace you.

Calculating float
Take a look at Figure 8-4. If path ADFIJ is the critical path and cannot be
delayed without delaying the project, what does that say about all the other
paths? If you guessed, or knew, that you could possibly delay these noncriti-
cal path activities without affecting the project end date, you’re correct.

The other paths have what is called float. Float is the opportunity to delay an
activity without affecting when the next activity is scheduled to start. Float
allows the project manager to delay activities to move resources, wait for
vendors, or use soft logic for resource scheduling, all without affecting the
project end date. It’s great.

Float is also called slack.

D

E

2

2

25

6

4

3 1

1

4

4

9

B
H

J

I

F

A G

ABEHJ = 10 days
ACGJ = 11 days
ACFIJ = 15 days
ADFIJ = 16 days

C

Figure 8-4:
Finding the

critical path
in your
project

network
diagram.

182 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 182

Again, most PMIS software can do all the math business for you and show
you the float, but we’re going to walk you through the process anyway. Here’s
the process for the first part to complete what’s called the forward pass:

1. Start with the first activity and assign an Early Start (ES) of 1, because
you start the project on day one.

2. Add the ES to the duration of the activity and then subtract 1 to find
the Early Finish (EF) of the first activity.

This number represents the earliest you can complete the task. The next
activity’s ES is the next day. In Figure 8-5, the EF of Activity A is 2, so the
ES of Activities B and D are 3, the next day in the project schedule.

3. Whenever an activity has two predecessors, such as Activity F, you
take the largest predecessor and then add 1 to find the ES.

This is because all of the predecessor tasks must be completed before
the project can move forward.

Now that the entire forward pass has been completed, you start at the end of
the network diagram and work backward to find the Late Start (LS) and the
Late Finish. Here’s the process as shown in Figure 8-6:

1. Start at the end of the PND and assign the LF as the last day of the
project.

This is the latest it can finish without being late.

D

E

2
Du

Es

Ef

2 2

5

5

5

6 6

4 63

7 6
8 13

3

3 3

1

1 1414

1

4 10

15
16

7

7 11

9

B
H

J

I

F

A G

ABEHJ = 12 days
ACGJ = 13 days
ACFIJ = 14 days
ADFIJ = 16 days

C

ES = Early start
EF = Early finish
Du = Duration

Units shown in weeks

Figure 8-5:
The forward

pass finds
the earliest

date
activities

can finish.

183Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 183

2. Subtract the duration of the activity and then add 1 to equate to the
latest the activity can begin.

3. To find the LS of the predecessor activity, simply go to one day before
the LS of the current activity.

For example, in Figure 8-6, notice how Activities H and I both have an LF
of 14, just one day before Activity J is slated to begin.

4. Whenever an activity has two successors, as in Activity C, always
choose the smaller of the two Late Starts.

This is because the activity must finish just one day prior to the sched-
uled start date of the successor.

5. Complete the backward pass for all paths in the project.

Applying float to the project
Knowing that you have a couple days of float here and there throughout your
project network diagram can make a big difference. These are activities that
can be strategically delayed without delaying the end date of your project.

If some activities are slipping behind schedule, or you need to move
resources from one activity to another, you can take advantage of activities
that have float and delay their start date — or expand their duration.

D

E

2 8
10

10 10

10

11
14

14

2

2

2

Du

5

5

5

6 6

4

4

63

7

7

7

6
8 13

8 13

3

3

3 3

1

1 14

14

14

14

1

1

4 10

15

LS

16

7

7 11

9

B
H

J

I

F

A G

ABEHJ = 12 days
ACGJ = 13 days
ACFIJ = 14 days
ADFIJ = 16 days

C

LS = Late start
LF = Late finish
Du = Duration

Units shown in weeks

LF
Figure 8-6:

The
backward

pass
identifies
the latest

day
activities
can start.

184 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 184

Here are some reasons to be glad for float:

� You can reallocate resources: Say you’ve assigned four developers to an
activity that is scheduled to last ten days. If you remove two of the devel-
opers, you reason, the activity will take twice as long because there’s
only half the effort. If you examine the float on the activity and notice
that you’ve actually got 12 days of float, you’re in good shape; now you
can move two of the developers to other work, allow the remaining two
developers to work as planned, and still finish the activity before the next
successor is scheduled to start. Float gives you scheduling options.

� You can give people a break: Sometimes, if your project team has been
pushed to extreme limits, you can use float to examine where you have
opportunities to give them a break. This is, to an extent, resource-leveling
heuristics within float. In other words, you’re flattening the amount of
time project team members must work without extending the project
scheduling.

� You can work around unforeseen scheduling issues: Maybe your crack
developer has a long-planned vacation, or perhaps someone has a death
in the family or an illness that takes him away for a few days. With float,
you can make simple adjustments without any pain.

Creating the Project Schedule
Just because your PND says the project duration will be 18 weeks doesn’t
mean it’ll actually be 18 weeks. You have lots of things to consider:

� Project dependencies, such as resources, vendors, materials, and people.

� Availability of resources, specifically the developers and stakeholder
inputs for testing.

� Priority of the project. Sure, sure, your project is slated to last 18 weeks,
but if it’s not all that important, the work may be done sporadically over
the course of 16 weeks.

� Weekends, holidays, lines of business, and other interruptions of the
project implementation.

Working with the project calendar
The project calendar describes when the project work can take place. The
project calendar is often defined by a manager or the customer, but it may
sometimes be defined by the project manager. Most software development
projects take place during normal business hours: Monday through Friday,
8:00 a.m. to 6:00 p.m. Nothing fancy.

185Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 185

Imagine a developer, however, who’s been placed on-site to complete a por-
tion of the project. The customer may request that the developer work only
between the hours of 8:00 a.m. and 4:00 p.m. In this instance, the customer
has set the project calendar working times. Now throw on top of this all the
company holidays that your company has, and that limits the project work-
ing time even more.

You must examine the project calendar to predict when a project will be com-
plete. That 18-week project may end up taking much longer than predicted
because of interruptions like holidays and weekends. One approach you can
use to calculate when a project will end is to use a Gantt chart, as Figure 8-7
shows. A Gantt chart is simply a project schedule smashed onto a calendar.
Notice in Figure 8-7 that the Gantt chart does not include weekends for pro-
ject activities.

Working with a resource calendar
Your project team members have a life beyond your project. They have vaca-
tions, doctor appointments, sick kids, and more. In addition, your project
team members may be working on more than one project at a time and they
can’t allot all of their working hours to your project.

Figure 8-7:
A Gantt

chart shows
the project

schedule
against the

backdrop of
a calendar.

186 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 186

As you build the resource calendar, which identifies when the resources you
need are available to do the project work, you need to bear these factors in
mind. The resource calendar conveniently takes into consideration multiple
projects, holidays, and time away from the project. Some project manage-
ment software can also help you to coordinate the amount of hours per week
allotted to your project versus the amount of time allotted to other projects
within your organization.

After you create the resource calendar, you’ll need to revisit the Gantt
chart and rearrange the availability of resources. More likely than not, this
switcheroo will increase the overall project duration, but not the amount of
labor needed to complete the project.

Using resource-leveling heuristics
Resource-leveling heuristics is an approach to flatten the amount of time that
employees work on your project. For example, consider a project that requires
its project team members to work 75 hours a week for the next 15 weeks. There
aren’t too many developers who’d be happy to work 75 hours per week for the
next 15 weeks (or ever, for that matter). Even if they were eager to do so,
paying that much overtime would be costly, and after a while they’d be
exhausted, disgruntled employees who produce poor-quality products.

In this wild instance, resource-leveling heuristics allows you to enter a value
for labor, such as 40 hours per week, as a maximum value. Then the additional
time that you’ve assigned for your project team is lopped off of the current
schedule and appended to the end of the project.

Some project managers try to use resource leveling only for activities that
are not on the critical path. In other words, if your project is slated to last 18
weeks and this requires overtime in order to complete the project activities,
it’s tough noogies! Resource leveling then takes advantage of float by only level-
ing resource overage on activities that have some amount of float. Noncritical
path activities, of course, have no float, so the project team members will have
to work the overtime in order to hit the target for project completion.

Your individual situation and your organization’s policies will determine
whether or not you use resource leveling. It isn’t a good practice or a bad
practice; it’s just a tool you can use to make adjustments in your project
schedule so that you can meet your deadlines.

187Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 187

Crashing and fast tracking your project
So your project is running late and no one is happy. Your customer needs the
software you’re creating, your project team won’t get their bonuses if the
work isn’t completed on time, and you’re aching to finish the project as
promised. You do have options.

Crashing the project
Crashing the project means that you identify the effort-driven activity and you
add more effort. In theory, the additional labor will reduce the amount of
time it takes to complete that project work. Crashing a project, however,

188 Part II: Planning Your Software Project

Begging for more time
If you’re overbudget and running out of time,
you’re more likely to get more time than you are
to get more money. However, being in a position
where you have to ask for either isn’t very much
fun. From your stakeholders’ point of view, if you
missed your target end date (no matter what the
reason), it’s your fault. When you ask for more
time to complete the project, here are some
things you should explain when you present
your case:

� Why the delay has occurred: Don’t assign
blame or point fingers, but show why the
delay occurred. For example, if you couldn’t
move forward with the project because the
stakeholders wouldn’t sign off on scope
verification, milestone reviews, or other
documentation, tell them so in a nonac-
cusatory way. But if the delay is because of
your errors and omissions, be honest here
as well.

� What needs to happen for the project to be
complete: Often there’s very little left for the
project team to do to complete the project
work. Include a status report of the project
and explain why the project will need more
time in order to complete.

� If you have some deliverables to present to
the stakeholders, show them: You may have
just a few deliverables to complete, but
some immediate deliverables may help the
stakeholders move ahead with their plans.
Also, presenting deliverables demonstrates
good faith.

� Who needs to be involved: Determine
which stakeholders are affected by the pro-
ject delay and communicate with them,
even if they’re not decision makers.
Communication shouldn’t be delayed just
because the project is.

� What you’ll say when you compose a
lessons learned document: In your lessons
learned document, be certain to explain
why the project is running late so that you
or other project managers don’t repeat the
same mistake.

� Your confidence level in the new deadline:
You don’t want to replace a bad date with
another bad date (just ask our editors).
You want to offer a good date that’s honest
and reflects what you’re capable of com-
pleting, rather than what you hope you can
complete.

13_749346 ch08.qxp 8/30/06 10:18 PM Page 188

always drives up the cost of the project, because you have to pay for the
additional labor. If you want to crash a project, identify

� The activities that are resource-driven and can be crashed

� Whether you have enough time for the newly added labor to ramp up
the project

� What effect the new labor may have on the project team’s cohesiveness

� What impact the additional labor will have on the project budget

� Whether the law of diminishing returns is in effect here

� How competent the newly added labor is to complete your project work

Fast tracking the project
Fast tracking sounds speedy because it is. Fast tracking is when you allow two
activities or project phases that you’d ordinarily do sequentially to either be
done in tandem or to overlap just a bit.

Fast tracking increases risks. Consider this example: If you allow the second
phase of your development project to begin before the testing of the first
phase is complete and there’s a major error in phase one, you have major
problems that won’t save you any time at all:

� You lose the time you allowed for the second phase of the work to begin.

� You lose time because you have to go backward to do the rework.

Fast tracking increases risks. The more risks your project incurs, the less
likely it is to be successful. Save fast tracking for those times when you can
control or limit the risks that fast tracking is certain to bring.

189Chapter 8: Creating Project Time Estimates

13_749346 ch08.qxp 8/30/06 10:18 PM Page 189

190 Part II: Planning Your Software Project

13_749346 ch08.qxp 8/30/06 10:18 PM Page 190

Chapter 9

Building Your Project Budget
In This Chapter
� Creating cost estimates

� Creating procurement documents

� Reducing the project scope

� Obtaining additional budget dollars

Projects cost money. Think about all the things you have to buy in order
to make your software project successful:

� Developers’ time

� Consultants’ time

� Development software

� Hardware

� Pizza (food motivates people, especially programmers)

In order to predict how much a project will cost, you have to consider all the
things that will be required in order to reach a successful completion. After
you create the estimates, then you can commit the funds.

Your managers and customers, however, probably want to review your esti-
mates before shelling out dough. They need to understand how you create
the project cost estimates, and are likely to query you on the funds your pro-
ject needs. In this chapter you discover how to estimate costs and spend the
money in a fiscally responsible manner. We also show you how to react when
things don’t go as planned.

Creating Cost Estimates
A project cost estimate is pretty much a budget. You sit down and you try to
account for all realistic costs so that you can give a stakeholder a fairly accurate
ballpark figure for the project. To achieve accurate cost estimates, you and your
customers need to recognize and understand everything a project requires.

14_749346 ch09.qxp 8/30/06 10:18 PM Page 191

All the necessary information isn’t usually available until later in the planning
process, but that won’t stop customers and your managers from asking you
cost questions that they expect to have answered right now.

After getting initial cost estimates, your customers and bosses will send you
back to the proverbial drawing board for more research and planning.
Eventually, you’ll find yourself having a conversation in which you justify all
your costs and your clients and bosses attempt to find areas to cut costs in
your deliverable. You may go several rounds before everyone is finally in
agreement with the project cost estimate.

Sometimes projects never get past the project cost estimate stage. A cus-
tomer may see your initial estimate and scrap the whole project because it’s
too expensive. Sometimes, stakeholders are just fishing, or running the num-
bers, to see whether a solution is cost effective. Don’t feel bad. Your estimate
isn’t to blame.

Using the right resources
(and using them wisely)
Before you create an estimate you, should first know the rules of how your
organization approaches estimating. Some companies may not have any
policy or direction on creating cost estimates, but most have some guidelines
the project manager should follow. Here are some do’s and don’ts:

� Do know your company’s estimating policies. You and the stakeholder
must operate within the confines of your company’s policy on cost esti-
mating. Typically these policies define the contracts and documents that
need to be in place before you even create an estimate. For example, you
may need a statement of work (SOW), statement of objectives (SOO), or a
project scope statement. These documents show how the estimate is
created, who approves the estimate, and the refinement process for
updating the project estimate.

� Do use cost estimating templates. You should love templates. They save
time and keep documents uniform across the company. A cost estimat-
ing template captures the most common elements, standardizes the pro-
ject costs, and streamlines the estimating process.

� Don’t ignore historical information. History can be very helpful in cost
estimating. Use any information within the organization that relates to
the project scope or the product scope you’re estimating.

Pay attention to lessons learned documentation from other similar pro-
jects. Lessons learned documentation can tell you where other project
managers went wrong, discovered faster, cheaper approaches, and
avoided pitfalls within their projects.

192 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 192

� Do get project team input. Estimating is rarely a solo activity. You
should rely on the input of your project team. Be aware, however, that
team member recollections aren’t as reliable as documented historical
information.

� Do speak with other project managers who have worked on similar
projects. Using lessons learned documentation is great, but you can also
gain a lot by actually communicating with those who have gone down
the same path that you’re heading. It’s amazing what people remember
when you get them talking about a subject.

Creating a rough estimate
If you’re ever asked to give your best-guess cost estimate under less-than-
ideal circumstances, then you’ve been a project manager for at least two
hours. Staving off impossible-to-answer questions without seeming as though
you don’t know anything is one of your primary jobs as a project manager.
It’s important that you remind everyone that an estimate is not a guarantee.

Technically, this estimate is called a rough order of magnitude (ROM) esti-
mate. Some folks call this a hallway estimate or an elevator estimate. These
estimates usually have a wild qualifier, such as –25 percent to +75 percent on
actual costs. You use these qualifiers because you provide a ROM estimate
when you don’t yet have enough detail to provide a more definitive cost esti-
mate. Figure 9-1 shows the range of variance customers can expect with a
ROM estimate; as you can see, it’s not particularly reliable.

ROM estimates are unreliable, and some project managers, assuming that
they have the power to just say no, won’t offer them. Does it make sense to
not provide a ROM? Sure. It’s likeus asking how much it’ll cost to build a
house. Define a house. Define the materials. Define the time frame. And on

Co
st

s

Schedule

-25%

ROM Estimate+75%

Figure 9-1:
ROM

estimates
are wild and

unreliable.

193Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 193

and on the questions would have to go. It’s difficult, if not impossible, to give
an accurate estimate on anything if the requirements and scope of the pro-
ject are not defined. As you progress through the project planning and gain
more information about the project requirements, your estimates will be
more reliable. Instead of a range of +75 percent to –25 percent, your next esti-
mate may be +40 percent to –10 percent.

Traditionally, ROM estimates have a nice way of coming back to haunt pro-
ject managers. There’s something mystical about the first number manage-
ment hears when it comes to estimates. Be wary of ROM estimates.

Creating a budget estimate
While a ROM estimate is nice for conversations, it’s impossible to use for any
substantial software project plan. ROM estimates are little more than wishes
and blue sky. In order to create an accurate estimate, or at least a more accu-
rate estimate, you need more information. The next level of estimating for a
project is to create a budget estimate.

The budget estimate is somewhat more reliable because you’ve got a better
grasp on what’s actually to be included in your software as you spend more
time gathering requirements. The qualifier for budget estimates is typically
–10 percent to +25 percent.

Budget estimates are typically created based on historical information. If
you’ve done a similar project in the past, you can use this historical informa-
tion to predict what your current project is going to cost. Using historical
information is called analogous estimating or top-down estimating because you
start at the top of the project and you move quickly to the deliverables, draw-
ing analogies to previous projects as you go. Again, although it’s a great place
to start, when used all alone, analogous estimating doesn’t yield the most
reliable results. We discuss analogous estimating in more depth in Chapter 8.

Creating a definitive estimate
The final, and most accurate, estimate type is the definitive estimate. Even its
name sounds accurate. The definitive estimate requires a detailed decompo-
sition of everything the project will create. It takes time to create and is also
known as bottom-up estimating. Its qualifier is usually –5 percent to +10 per-
cent. Figure 9-2 shows the range of variance customers can expect with a
definitive estimate.

194 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 194

To create a definitive estimate you need a work breakdown structure (WBS)
in place. You have to examine every deliverable within the WBS. You also
must consider all the needed materials, labor, resources, and risks that may
influence project costs, as well as all the other elements that contribute to
the bottom line of the project.

The reason you must consider project risks when you create your cost esti-
mates is that if a risk materializes, it may negatively affect the scheduled
activities and the costs.

Because so much of software development is based on labor, you may find
that you’re building your project estimates using a parametric model. A para-
metric model uses specific parameters, such as cost per hour, cost per line of
code, or cost per network drop, to predict how much the project will cost.
Parametric modeling is fine as long as you document how the estimate was
created. In some organizations, parametric modeling won’t work, because
each developer’s time is accounted for and billed independently.

Although it takes more time to create a definitive estimate, it’s always better
to spend time up front creating an accurate estimate than to spend time beg-
ging for more cash later (and explaining why your estimate was off the mark).

Creating an Accurate Estimate
Assuming that you have time and resources to create a definitive estimate (as
we discuss in the previous section), you want to make sure that the estimate
you create is as accurate as possible. An inaccurate cost estimate can upset
stakeholders, make you appear foolish, put your project at risk, and shake

Co
st

s

Schedule

-5%

Definitive Estimate+10%

Figure 9-2:
Definitive
estimates

are the most
accurate.

195Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 195

your stakeholders’ confidence in you. In order to create an accurate estimate,
you need to include the following in every estimate you create:

� Product scope: The product scope documents the product requirements
and the characteristics of the product (for example, a list of the software
functionality). It includes thorough detail in order to facilitate further
project planning.

� Project scope: The project scope describes the project deliverables and
defines the work that will be accomplished. It includes product require-
ments, schedule milestones, WBS, assumptions and constraints, and
methods of change control. It also defines the process for how the final
deliverable will be accepted by the customer.

� Assumptions: You assume there won’t be delays. You assume you’ll have
all the resources you need. You assume that this is an estimate, not a
quote.

� Constraints: Any constraints that have been brought to the table at this
point need to be documented. A constraint is anything that limits the
project manager’s options; examples can include

• Time constraints: You must have the project done in four months.

• Resource constraints: You can only use two developers on the
project.

• Development environment restraints: You must develop in
COBOL.

• Budget restraints: Your budget is capped at $250,000.

� Timeframe: We discuss timeframe in detail in Chapter 8. Essentially, you
need to let stakeholders know that this estimate is a limited-time offer
that depends on currently available resources. If the stakeholders want
to do this project in five months when all your developers are wrapped
up in other projects, you might have different numbers.

� Range of variance: The range of variance describes the +/– every esti-
mate should have. For example, as discussed previously in this chapter,
you create a ROM estimate for a project to create a new piece of soft-
ware. You estimate the project to cost $150,000 with a possible variance
from +25 percent to –10 percent. For input into the range of variance,
you use any or all of the following resources: marketplace conditions,
commercial databases, cost-estimating policies and templates, historical
information, project files, team members’ knowledge, lessons learned
documentation, project scope statement, WBS, project management
plan, schedule management plan, resource management plan, and risk
register.

196 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 196

Considering Project Profitability
There are other approaches to estimating how much a project will cost.
Software project management depends on the time your developers take to
complete tasks. Obviously, the more time you estimate it’ll take for your pro-
ject team to complete the software, the more it’ll cost to create the product.
Your particular circumstances will vary:

� If you’re billing just for the developers’ time, then you need to consider the
resource rates for the programmers that will be working on the project.

� If your organization completes projects for other organizations, then you
have to consider the profit margin your project should create.

� If you’re a software project manager completing internal projects, then
you’ll be considering the straight rate for the developers’ time.

If you’re completing a project for another organization (that is, you’re develop-
ing software for another company that’s paying your company a fee to develop
the software), you’re in this business to make a profit for your company.

The faster the team can successfully complete the work, the higher the pro-
ject’s profitability. As a project manager, you may have to consider the
resource rates that you pay your project team members against what your
company bills for their time. In other words, you want to have a higher vari-
ance between what you pay the developers and what you charge other com-
panies for their time.

For example, Susan is a senior developer who earns roughly $50 per hour
from your firm. Your company likely charges more than $50 an hour for her
time. Now consider Sammy. Sammy earns roughly $30 per hour because he’s
less experienced than Susan. Some organizations bill more for Susan’s time
than for Sammy’s time because of the difference in experience. Some organi-
zations, however, don’t differentiate between developers; they just offer an
hourly rate for each developer’s time.

If your company bills more experienced developers at a higher rate, you must
examine whether it’s more cost effective to utilize Sammy or more cost effec-
tive to pay more for Susan. For example, Sammy may take longer to complete
a task than Susan would, but Susan could be better utilized on more higher-
priority, more profitable activities. Making these decisions is called value
engineering — determining which resource is best for the project activities
and which resource is best for the project profitability.

On the other hand, if you’re completing projects internally and not for organi-
zations outside your own, it’s likely you won’t have to worry as much about the

197Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 197

developers’ hourly costs. You have to worry only about adhering to your pro-
ject budget. Someone (the customer or project stakeholder) is paying for the
developers’ time, or their salaries are incorporated into the cost of doing busi-
ness. You need to understand what approach your project should follow when
it comes to accounting and billing for your project team members’ time.

Planning for Contingencies
Estimates are usually based on idealized concepts of how things will go, while
the actual project is full of conditions, risks, and (if you’re smart) contingency
plans.

Plan on dealing with known unknowns. A known unknown is any event that is
governed by Murphy’s Law. You know there will be problems; you just don’t
know exactly what those problems will be or when they’ll crop up. If you
don’t accommodate for these snafus up front when you create your budget,
things can go bad. Unfortunately, some problems may be unavoidable, but
they can still devastate a budget:

� Errors and omissions in the product scope mean that the developers
take longer than expected once they figure out what they’ve missed.

� Errors and omissions in the project work mean that tasks need to be
performed that were never planned for.

� Miscommunications of all kinds can cause work to be undone and
require reworking.

� Failure in user acceptability testing can mean you go back to the draw-
ing board.

� Failure in quality control may mean that you have to recode a bunch
of stuff.

� A hard drive crashes during a routine backup, and some development
work needs to be done. (We know you would never forget to back up
your work!)

� Poor requirements gathering means that your developers are working
without all the necessary information.

� Project management errors mean that you spin your wheels a bit (hey,
you’ll get better with time).

What you need is a contingency reserve. A contingency reserve, sometimes
called a contingency allowance, is hidden treasure, a set amount of funds that
the project manager may use to respond to known unknowns throughout the
project.

198 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 198

Don’t get too excited. This reserve is allotted for uncertain events, risks, and
issues that are anticipated but not confirmed. You can’t use contingency
funds as part of your project budget for execution.

Controlling Project Costs
Great news! Your project is moving ahead and you’re making progress. You’re
spending the project budget. As your project team develops the software,
their labor consumes the monies that were allotted to pay for their labor.
You’ve also spent cash on resources such as training, support materials,
servers and hardware, software, bonuses, and more.

Well, not so fast. You have to account for every red cent your project consumes.

Understanding accounting blue dollars
In some organizations, everything you spend is blue dollars. Blue dollars
describe the funds that are internal to an organization and just shift between
departments — no one’s actually writing a check for the project work. If this
scenario describes your organization, you still have to accurately keep an
accounting of all the dollars you spend.

Understanding work-for-hire accounting
If you’re a project manager in an organization that completes projects for
other companies, then you’ve got a more evident responsibility to guard the
project costs: the project’s profitability. A common reason that organizations
lose money on projects is due to poor fiscal management on the part of the
software project manager. Don’t let that be you.

If your company hopes to achieve a profit margin of 10 percent on every pro-
ject you manage, errors, sloppy work, incomplete requirements gathering, late
deliverables, and faulty judgments will quickly eat into that profit. If a software
project is incredibly late, wrong, or buggy, the 10 percent margin begins to
erode, and before you know it, your company is paying out-of-pocket to deliver
the project.

A project manager who’s losing money is a project manager who’s on the
way out.

199Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 199

Following simple strategies to
manage project expenses
You need to take active steps to monitor and control the costs within your
project.

Getting a plan together
The first step in managing costs is to have an accurate and reliable project
plan. Projects often fail at the beginning, instead of at the end. If your project
plan is skewed, faulty, or half-cocked, the implementation will be as well. Flip
to Chapter 2 for further information on project planning.

One of the components of the project plan is a cost management plan, which
describes how you will plan, estimate, budget, and control your project
costs. The more detailed and accurate these estimates are, the less likely you
are to have budget surprises.

Another component of the project plan is the human resources management
plan, which details processes and policies regarding the members of the pro-
ject team, such as roles and responsibilities, reporting structures, improving
project team members’ skills and enhancing their knowledge, accepted hiring
and firing considerations, and staffing plans.

Although the cost management plan and human resources management plan
are listed separately, in actual practice, they interact and overlap. For exam-
ple, your cost management plan probably lists the cost of resources (people)
required to complete the software project.

Reviewing costs and performance
When you’ve got a solid plan, then you need a method to review costs and
performance of the project team. This is vital in every software development
project because the project is built on how efficiently project team members
use their time. You need to track and measure the team members’ time to
complete the project activities.

Just because you need to ensure that team members manage their time well
does not mean that it’s open season to micromanage. Everyone works his or
her own way, and you need to allow staff to feel free to be idiosyncratic —
within reason, of course. However, using historical information and analo-
gous information, you can (and should) attempt to estimate how long various
tasks will take (see Chapter 8). You can also set incremental deadlines for
partial deliverables.

200 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 200

201Chapter 9: Building Your Project Budget

Knowing the actual cost of scope changes
Meet Marti. She’s a software project manager
for a financial advisement firm. She’s managing
a project to create a software program that will
enable the financial advisers within her com-
pany to track clients’ activities, portfolios, con-
tact information, and communications. The
software will interact with databases and inter-
nal and external Web servers, and provide real-
time secure transactions with commodities,
stocks, and bonds.

Marti and the experts on her project team have
been working closely with Thomas Lippy, the
chief operating officer and main stakeholder, to
develop the project requirements. Thomas has
signed off on the requirements document and is
eager for Marti to get to work on the project. He
believes that the software will help their com-
pany grow by 15 percent each year.

The rough order of magnitude estimate for the
project was $750,000, +75 percent to –25 per-
cent. The moment the WBS was created, Marti
provided a definitive estimate of $1.5 million, +10
percent to –5 percent. Thomas approved the
definitive estimate, and the team went to work
creating the software.

At each milestone within the project, Thomas
was given the opportunity to review the pro-
ject’s work and to inspect the timeline and the
budget. This also provided Thomas an opportu-
nity to tinker with the project requirements. At
each milestone review, Thomas added more
deliverables to the project scope. Over the
course of the project, Thomas added the fol-
lowing requirements to the project deliverable:

� Field changes to the financial adviser’s
input screen

� Interaction with the company’s IP-based
telephone system for customer lookup

� Incorporation of a client Web site for cus-
tomers to securely access their portfolios

� Integration with legacy databases for trend
analysis

� Multiple views, searches, and tools for cus-
tomers and financial advisers to access
data

These changes increased the project scope,
which, in turn, increased the project costs
by $450,000. Remember the Iron Triangle? You
can’t increase the project scope without affect-
ing either budget or schedule (or both). When
Marti discussed the changes and their impact
with Thomas, Thomas was unhappy that these
changes could nearly double the original pro-
ject budget. Marti explained that there are sev-
eral factors that affect project costs:

� The time to research each change takes
time away from doing the project work.
Someone has to pay for the developers’
time to do the research.

� Some changes require that progress be
reversed in order to incorporate the new
changes.

� Some of the requested changes would
add time to the system testing phase of the
project.

� Many of the changes required modifica-
tions to the training documentation.

� The legacy database change required Marti
to hire a contractor because the project
team did not have the skill set to configure
the middleware to interact with the software.

� The project team had to expand to include a
network engineer to configure the IP-based
telephones to interact with the software the
team was designing.

(continued)

14_749346 ch09.qxp 8/30/06 10:18 PM Page 201

Conducting variance analysis
Any time you experience differences between what was planned and what was
experienced, you have a variance. Variance analysis enables you to complete
root cause analysis. Your goal is to find out why the actual project costs are
differing from your estimates so that you can stop the bleeding. You can even
correct the overruns if you’re good at root cause analysis. We cover variance
analysis and root cause analysis in Chapter 14.

When you track and measure, you have opportunities to react. For example, if
Bob is slipping on his assignments, but Jan is way ahead, you can balance the
load by giving some of Bob’s work to Jan. Your root cause analysis may tell you
that Bob’s not confident in this area of the project work, or that he’s on seven
other projects, or that his time estimates were over-optimistic. Whatever the
reason, you can now react and make process changes to correct the problem.

Software project management tools, such as Microsoft Project, can help you
determine where activities are slipping, complete trend analyses, and simu-
late what may happen if project costs continue to mushroom. The goal, of
course, is to make corrective actions to get the project back on financial
track and to prevent similar mistakes from entering the project again.

Having More Project than Cash
Ready for some bad news? Sometimes there’s nothing you can do when it
comes to your project being overbudget. Sometimes all your planning, hard
work, efforts to control costs, attempts to keep changes at bay, and efforts to
keep your project team on track all go down the drain.

Whatever the reason your project has begun to rival the budget for the movie
Waterworld (we hope the product isn’t quite as bad), you’re stuck between a
failing project and a hard place. You’ve got to fix this thing.

202 Part II: Planning Your Software Project

� The multiple views, searches, and tools
increased the developers’ work time, which
also drove costs up.

� Bonuses for the project team are based on
the budget for the project. As the project’s
budget grew, so did the bonuses for the pro-
ject team. However, team members became
frustrated that they had to change their
work throughout the project, so the loss of
morale likely affected project performance.

Marti and Thomas agreed that the changes to
the project scope were value-added changes,
but the changes’ value may be marginal. Track-
ing the impact of the project benefits after the
deliverable moves into production is the only
method to analyze the true cost-effectiveness
of the changes and their profitability for the
organization.

(continued)

14_749346 ch09.qxp 8/30/06 10:18 PM Page 202

The first thing you need to do is sit down and revisit your plan so that you
can consider your options. Yes, you do have options.

Completing root cause analysis
Before you pull your hair out or quit your job to run a dental floss farm, do
some root cause analysis of the problem — or problems. Chances are, you prob-
ably have a hint as to the cause of your budgetary crisis. These things rarely
crop up suddenly, but fester for a while. Root cause analysis enables you to map
out problems so that you can respond. We cover this thoroughly in Chapter 14.

Just to be crystal clear, root causes are problems that you, the project man-
ager, can control. Weather, for example, is not a root cause because you don’t
have control over the weather.

You don’t need any fancy software to complete a root cause analysis. You just
need to work with your team and the appropriate stakeholders to list the
problem and all possible causes. But remember, time is money. Balance the
amount of time you spend on root cause analysis with the time you will be
away from the project. Obviously, for you and your team to spend an exorbi-
tant amount of time away from the project determining cause without also
using that time to come up with a plan to address the root cause is a little on
the counterproductive side.

Here’s what you should accomplish with root cause analysis:

� Identify what has happened, how it has happened, and why it was
allowed to happen to prevent the problem from happening again

� Identify specific underlying causes and their effects so you can put steps
into place that will improve overall performance

� Chart the causes and contributing causes through trends, data collection,
and project analysis

� Facilitate a conversation on root cause identification to lead to a
solution — and to prevent the problem from recurring

Collecting data
Your first step in root cause analysis is to collect the data that contributed to
the problem. This process is the largest part of root cause analysis. Here are
some common themes in software projects that you’ll want to consider in
your analysis:

� Time delays

� Rework

� Inaccurate time estimates

203Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 203

� Inadequate scope definition

� Performance issues during testing

� Risks and threats that have affected the project

Causal factor charting
Causal factor charting, as explained in Chapter 14, is a flowchart of activity
sequences leading up to an identified issue and identified circumstances that
affected the problem. This process is about more than finding a single, major
blunder. You need to identify all the circumstances that led to the problem:
competency levels, communication breakdown, lack of testing, and so on.

You begin causal factor charting in tandem with your data collection. It helps
you and the project team identify the problems and how the problems have
caused the project budget to be consumed faster than what was anticipated.

Identifying the root cause
Now that you and the project team have completed the causal factor chart-
ing, you need to identify why each causal factor existed. The answer to the
question “Why did this problem happen?” tells you the root cause and where
the project began to erode.

Yes, you have to do root cause identification with every single causal factor
you’ve identified, and no, this is not an easy process. The point of the process,
however, is to identify where the problems started, what trends may be run-
ning through your project, and how you’ll prevent the problems from recur-
ring. (Of course, you may also identify some positive trends in your project and
use them to your advantage in the problem resolution stage of this process.)

Reacting to the causes
What good is root cause analysis if there is no response? You must react to
the causes in the project or your project is bound to repeat the same mis-
takes over and over. Not addressing issues can cause your project to go
deeper and deeper into the red.

The outcome of root cause analysis will help you, and management, determine
what the best route for your project is. And that’s what the rest of this chapter
is all about. You cannot, must not, go to management with a problem unless
you can clearly identify the problem. And then, of course, you must propose a
solution. If your problem is simply “I’m out of cash,” and your solution is,
“Gimme some more money,” you’re setting yourself up for failure, dismissal,
or, at the very least, a shake in management’s confidence in your abilities.

You may identify some surprising positive trends (Lucy is always ahead of
schedule and her work is always perfect; your team has really picked up the
slack since Ralph was out sick; or Mary is chronically overworked, but Jon
isn’t) that can help you toward a solution.

204 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 204

Reducing the project scope
After you identify the cause of the project failure, one of the first options you
can recommend is to reduce the project scope. This option may be a tough
sell (and difficult to accomplish) because the client has already approved the
deliverable. Reducing the project scope may not be an option if you have
contractual obligations.

The Iron Triangle, which we discuss in Chapters 2 and 3, requires that all
three side of the triangle (cost, time, and scope) remain equal for the project
to be successful. Figure 9-3 shows what your Iron Triangle probably looks like
at this point of your project. Notice that the line for the scope is much longer
than the lines for time and cost. You can lop off parts of the project scope to
be closer to the budget you’ve been allotted. This will allow you and the
stakeholders to have a deliverable and to still be close to the original budget.
Another option is to add to the cost part of the triangle or the schedule portion.

The problem with trimming the project scope is that it’s not always feasible.
Chopping the scope leaves you with less of a deliverable, especially if the causes
of the budget overrun are related to errors, rework, and rejections from testing.

But if the project team does have a deliverable — or at least part of the
deliverable — it may be enough to move the project into production with a
bit more work. And what of the remaining scope? You’ve got options:

� Live with the deliverable as it is if the project is a low priority and not
expected to make much money. Of course, this may not be an option in
every scenario.

� Live with the deliverable as it is if the software is a stop-gap tool.

Scope

CostTi
m

eFigure 9-3:
The Iron
Triangle

must remain
in balance
for project

success.

205Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 205

� Live with deliverable for the short term and then move the project into
versioning.

� Live with the deliverable as it is because there’s no more cash available
to sink into the project.

Trimming the project scope can be a great solution (okay, it’s not great, but it
is acceptable — sometimes) for projects that have never been attempted
before. Projects with undertakings that have no historical information, no
point of reference, and no expert judgment to rely on are projects that are
just begging to run over on cost. By reducing the scope, you’re able to create
a deliverable and not go wildly over on cost overruns.

This approach, as Figure 9-4 illustrates, is most feasible if you have incorpo-
rated kill points into your project. A kill point is a point during the project
where the project is slated for review. The idea is that management reviews
the overall success of your project up to a certain deliverable. If your project
is doing well, congrats! You get to advance to the next phase of your project.
If your project is not doing so hot, then your project is cancelled or postponed.

Begging for cash
If trimming the project scope is not an option (and often it’s not), then your
option is limited to asking for more cash to complete the project. Typically, it’s
easier to get more time than money, but because you’re usually buying the devel-
opers’ time to complete the project work, time and money are tied together.

When you’re forced into this scenario, you really need all the facts about
what has gone wrong and why. Most importantly, you need to be able to
determine how you’ll avoid making the same mistakes again. You can use
your lessons learned document and your root cause analysis as tools to show
what has caused the problem and how you’ll prevent the problem from hap-
pening again. No one, especially management, wants to infuse your project
budget with more dollars only to see the problem reappear over and over.

Phase 1

Phase 2

Kill points

Phase 3

Phase 4

Figure 9-4:
Kill points

are oppor-
tunities to

stop the
project.

206 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 206

Tactfully remind management or the customers why the project was initiated.
This may help steer additional funds to your project. If the project was worth
initiating, then it’s likely worth continuing.

Recognizing Budgetary Problems
Before You Get to the Root Cause
Analysis Stage

It should never be a huge surprise to you, your bosses, the stakeholders,
your clients, or even your project team that your project budget is suddenly
gone. The words surprise and suddenly shouldn’t even be used in the same
sentence as the word budget.

As the project moves through phases, milestones, and even deliverables, you
should easily be able to track expenses against the amount of work you’ve com-
pleted for the dollars spent. Figure 9-5 shows a cost baseline project that’s in
month four of eight months. The solid line represents the project’s cost estimate
while the dashed line represents the actual costs of the project to date. The differ-
ence between what was estimated and what is being experienced is the variance.
If this project continues on the same path, the project costs will likely continue to
mushroom and move farther and farther away from the original estimates.

When costs exceed the estimates, you’ll likely have to do a variance report for
management so that you can explain why the actual costs aren’t in line with

Schedule

Actual costs EstimateCo
st

s

Variance

Figure 9-5:
A variance

is the
difference

between the
estimate
and the

actual
costs.

207Chapter 9: Building Your Project Budget

14_749346 ch09.qxp 8/30/06 10:18 PM Page 207

your estimates. The variance report, sometimes called an exceptions report,
details the cause of the cost. Get to work on this report at the first hint of a
problem. Do not wait until you have completely run out of cash!

Dealing with a Budget Problem
that Your Bosses Know about
(But Haven’t Addressed)

Your project is out of money and you need more funds to complete the work.
You’ve completed variance reports, so management knows what’s what, but
your bosses haven’t exactly jumped at the opportunity to pour more funds
into your project.

When things get to that hysterical point, call a civilized meeting with manage-
ment (bring all your documentation) so they are forced to examine the vari-
ance reports to determine whether the same problems have recurred
throughout the project or whether new problems, risks, and other cost-eating
monsters have crept into the execution.

Before you enter this meeting, prioritize the major problems that have con-
sumed the project budget so that you can identify the cause of the problem
and who may need to help pay for completing the project scope. For example,
if one of the project stakeholders failed to provide accurate requirements,
then your project team may have built the software according to the supplied
requirements. The stakeholder then may reject the software because, while it
matches their supplied requirements, it’s not what they actually wanted.

Just be very careful to never walk into a meeting with the intent of placing
blame or escaping blame. Take ownership and accept accountability when
something goes awry. For example, if a stakeholder failed to provide accurate
requirements, what did you do to alleviate that situation?

While this scenario is all too common, the stakeholder should bear some of
the blame. But so should the project manager. One of your key activities is to
communicate with, not to, the stakeholders regarding their requirements. It’s
easier, and more cost effective, to spend more time ensuring the accuracy of
the requirements before your team builds a piece of software the stakeholder
doesn’t want.

After you and management have identified the cost problems, the stakehold-
ers have to evaluate the overall worth of the project and determine what to
do next. If the project is worthy, far enough along in the project deliverable,
and you’ve done a good job of explaining the cost overruns and how you will
react to them in the future, then you can probably expect to continue work-
ing on the project with more funds.

208 Part II: Planning Your Software Project

14_749346 ch09.qxp 8/30/06 10:18 PM Page 208

Part III
Executing

Your Software
Project Plan

15_749346 pt03.qxp 8/30/06 10:16 PM Page 209

In this part . . .

Part III shows you how to put your hard work and
impressive planning into action. You’ve created your

project plans — now execute them. Discover how you can
develop your team, and find out how to best manage con-
flicts. In this part, you also figure out the various types
of vendor contracts and discover how to execute your
quality management and risk management plans.

15_749346 pt03.qxp 8/30/06 10:16 PM Page 210

Chapter 10

Working the Project Plan
In This Chapter
� Appreciating the usefulness and limitations of project management information systems

� Understanding quality management planning

� Dabbling in quality management theories

� Managing software project risks

� Exploring the risk management plan

� Identifying information gathering techniques

� Documenting your effectiveness

Do you want to create software project plans that other project managers
talk about for years to come? Do you want to be the envy of your peers

as they gaze longingly at your quality management plans and slobber all over
your risk management plans?

To be the talk of the software project management community, all you need
is to perform the proper planning, use the appropriate tools and techniques,
and figure out how to make the most of what others have already done. If
you’re proactive in your software project management efforts, your project
plans will be a success. In this chapter, we show you all the types of plans
you must deal with and show you how to use them.

Authorizing the Project Work
You should have your work authorized before you ever start working on your
software project. After all, no one wants to take a chance on working on a
software project — or any project for that matter — that was never autho-
rized. Your project is officially and formally authorized as a part of the pro-
ject charter, which we discuss in Chapters 1 and 2. A work authorization
system (WAS), one of the inputs to the project charter, is a tool that autho-
rizes the work activities that need to be completed to ensure the success of
your software project. Your organization defines who is responsible for

16_749346 ch10.qxp 8/30/06 10:18 PM Page 211

authorizing the project work as part of the WAS; it may be your client, your
sponsor, or a particular governing body within the organization.

Creating a work authorization system
Your organization probably has a pretty standard method for authorizing
software project work, so you should refer to its outline for the exact proce-
dure. The WAS is simply a document that includes information on

� Project tasks that need to be completed

� Sequence for completing required tasks

� Documents and/or deliverables that need to be developed

� Methods of tracking project progress

� Required approvals for authorizing work

� Project start date

� Project end date

� Required resources

� Special considerations

The work authorization system should be completed before a project begins
and it may also be completed before the future phases of a project begin.
When one phase of the project ends, your organization may have a phase-end
review so that they can close the current phase of the project before starting
the next phase. Such systems are sometimes called phase gates. During this
process, the appropriate stakeholders for your organization authorize the
next phase of the project.

Using a project management
information system
A project management information system (PMIS) is a set of automated tools
that enable you and your project team to gather information, develop and
track the project plan, and keep track of the status of your software project
and communicate that information to the appropriate stakeholders. These can
be homegrown systems, off-the-shelf systems, or enterprise-wide systems.

PMIS enables you to:

� Track resources to find out whether team members are available,
overextended, and on track with their deadlines.

212 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 212

� Control project changes, making updates as needed.

� Track project activities, such as writing specifications, documenting unit
test plans, or creating CBTs.

� Report on the status of project activities using templates. The template
may be a dashboard that is incorporated into the PMIS; it could also be
a standard report set up in the PMIS.

� Compare the current status of your project to a baseline.

� Track risks associated with the project.

� Analyze project conflicts, such as a resource being overextended or two
activities being assigned sequentially when they should be consecutive.

� View and share project calendars.

� Check the status of project costs and schedule.

PMIS software is handy because it allows you to view, share, track, and report on
many project activities. In fact, some types of PMIS software enable you to share
this information on the Web. Take a gander at Microsoft Project 2003 For Dummies
by Nancy Stevenson (Wiley) for more information on Microsoft Project.

Ensuring Quality in Execution
Project quality management is one of the project management knowledge
areas described by the Project Management Institute (www.pmi.org). The
purpose of this knowledge area is to ensure that the requirements of the pro-
ject are met. In other words, if the project quality is being effectively man-
aged, then the software that you were contracted to develop is the software
that you actually develop.

213Chapter 10: Working the Project Plan

Avoiding the PMIS panacea
Although PMIS software can help you to keep
track of the status of your project, even the best
PMIS can’t:

� Guarantee that you will have a successful
project

� Think for you

� Solve problems for you

� Hide your mistakes from others

You must know how to be a successful software
project manager on your own. Use PMIS as a
tool — one of many tools — to help you keep
track of project activities, control changes, align
resources, and share relevant information with
the appropriate stakeholders.

16_749346 ch10.qxp 8/30/06 10:18 PM Page 213

For information about how project quality management fits into the larger
scheme of things, see the sidebar, elsewhere in this chapter, called
“Remembering the nine project management knowledge areas.”

The three processes from the PQM knowledge area are

� Quality planning: For quality planning, you use your firm’s quality
policy and its standards and regulations as input. You develop the qual-
ity planning during the planning phase of the project. Determining the
quality standards for the project should be fully integrated into the rest
of your project planning.

� Quality assurance: Quality assurance is one of the executing process
areas and is concerned with performing quality audits so that you can
ensure stakeholders that the quality management plan is being adhered
to. Make sure that the software systems you are developing satisfy the
quality standards that you and your stakeholders developed during the
quality planning phase. The tools and techniques you can use for quality
planning are benefit/cost analysis, quality audits, benchmarking, cost of
quality analysis, and flowcharts. We discuss all of these tools later in
this chapter.

Whenever you can, you should work smarter, not harder. You can save a
lot of time and effort if you use templates for the quality tools. If your
organization doesn’t provide templates, be sure to create templates
yourself as you develop your quality planning tools. Making templates
may be extra work, but they pay off during your next project and on into
the future when you can use the templates that you created.

� Quality control: Quality control is one of the controlling process areas,
and it deals with monitoring your software project to ensure that it con-
forms to the appropriate quality standards. This phase also helps you fix
the areas of your project that contain broken processes that are causing
the project to fall short of the quality standards. The inputs for the qual-
ity control process are work results, quality management plan, opera-
tional definitions, and checklists. You should also conduct inspections, a
trend analysis, sampling, and use Pareto charts.

Say that you’re developing software that enables physicians, nurses, and
other clinicians in a hospital to place lab, medication, and radiology orders.
All of these orders need to travel to the appropriate corresponding systems
quickly and efficiently. The hospital has specific needs:

� Orders must be delivered efficiently and quickly to the correct departments.

� When the departments receive the orders, they must correctly identify
what’s needed, for whom, and how fast.

214 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 214

For example, with your software, a doctor should be able to enter a complete
blood count (CBC) lab order into the hospital order entry system; when the
CBC order travels to the hospital’s lab system, it must come into the lab
system identified as a CBC order, and not as a pregnancy test.

You might perform the following types of testing to ensure the quality of your
hospital system code:

� Unit testing: A unit test ensures the quality of the specific areas of the
software. For example, when users click a particular button in the hospi-
tal software, they see the appropriate item.

� Functional testing: Functional testing ensures that the software func-
tions according to the requirements. For example, when users click a
tab, they are taken to the appropriate area of the system. The purpose of
functional testing is to perform processes that a typical user would per-
form and is primarily concerned with identifying issues found within the
user’s logical workflow.

215Chapter 10: Working the Project Plan

Remembering the nine project
management knowledge areas

In Chapter 1, we introduce the nine project
knowledge areas outlined by the Project
Management Institute (PMI). PMI is a nonprofit
organization that sets standards and facilitates
development for project management profes-
sionals. Here’s an overview:

� Project Scope Management: Controlling
the planning, execution, and content of the
project.

� Project Time Management: Managing every-
thing that affects the project’s schedule.

� Project Cost Management: Cost estimating,
budgeting, and controlling the purse.

� Project Quality Management: Ensuring
that the product you are producing is a
quality product and that it meets customer
expectations.

� Project Human Resources Management:
Hiring and managing the competent people
working on your project.

� Project Communications Management:
Making sure that the people who need
information get it — when they need it.

� Project Risk Management: Anticipating and
handling risks, as well as taking advantage
of opportunities that can help a project.

� Project Procurement Management: Creating
vendor contracts and purchasing goods
and services.

� Project Integration Management: Ensuring
the coordination of all the other knowledge
areas.

16_749346 ch10.qxp 8/30/06 10:18 PM Page 215

� Integrated testing: If the software interfaces with other software pro-
grams, integrated testing ensures that the two systems communicate
appropriately. For example, a physician writes an order for a CAT scan in
the hospital order entry system and that order flows to the radiology
system as a CAT scan order and does not come through as a toe x-ray.

� Volume testing: If your software is to be used in a hospital where many
clinicians will be using it simultaneously from any of several different
computers, volume testing ensures that the software can withstand
having multiple simultaneous users.

When you create the quality management plan, you document how you plan
to measure the quality of the project and the product. As part of your quality
management plan, you must spell out which specific types of software testing
you will perform in order to ensure quality.

There are several quality management theories that may assist you in finding
out more about project quality management, and each one has its own set of
tools and techniques. We discuss them in Chapter 6.

Understanding the Interoperability
of the Quality Management Plan

The quality management processes of quality planning, quality assurance, and
quality control don’t operate in a vacuum. It’s a beautiful image (wouldn’t it be
cool to visualize these quality processes dancing around in a vacuum?), but
not entirely accurate. In reality, they all work together, and are tied to other
important planning, execution, and control processes in your project.

Actually, the processes interact with each other throughout the course of the
project. There would be no point in having quality assurance if you didn’t
have quality planning, because there would be no processes to audit if you
hadn’t already planned those processes.

PQM is not just concerned with the quality of the project but also the quality
of the product — that is, the quality of the systems you’re developing. The
aim for high quality is one reason that you perform software testing. Can you
imagine finishing any software project without completing the appropriate
software testing? You perform the various types of software testing to ensure
the appropriate quality.

216 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 216

Following Quality Assurance
Using the quality assurance process, you ensure that the project meets the
project specifications that were set out at the start of the project in the plan-
ning stage. Quality audits are tools and techniques that you may use during
the assurance process. For example, if, during the planning phase of your
project, you documented that your project team would conduct unit testing
before functional testing, one thing you’d determine during the audit would
be whether you actually followed that predefined process. If a quality audit
reveals that you performed steps out of order (functional testing before unit
testing, tsk, tsk), you need to implement plans to correct this inefficiency.

Quality audits may also be used to ensure that your project team is following
your organization’s coding standards.

During the quality assurance stage of a software project, an independent
review of your processes is used to ensure the quality of the project so that
you can identify and eliminate inefficient processes and procedures. Quality

217Chapter 10: Working the Project Plan

Using benefit/cost analysis and benchmarking
Preventing errors is usually more cost effective
than fixing them after they make their way into
the software. During your quality management
planning, you can use a benefit/cost analysis to
determine whether the benefit of meeting qual-
ity requirements is worth the cost to implement
the quality standards. For example, the benefits
for incorporating quality requirements such as
system testing are that you’ll spend less time
recoding the software, your project will cost
less (project team members won’t have to
spend as much time fixing bugs), your cus-
tomer’s satisfaction will be improved, and,
depending on the software, unknown third par-
ties will benefit. Consider those untold millions
who could be affected if you’re implementing
software in the health care industry (failure of
your software could affect patient safety) or the
banking industry (people could lose real money

if your software doesn’t know where to put the
decimal).

Benchmarking is a quality planning tool that
enables you to compare your project to other
similar software projects so that you can have
some standard to judge your project against.
For example, if most projects like yours usually
require two print servers and your project
requires eight print servers, you are over your
benchmark, at least in this area of the project.

Another quality planning tool that you may use in
your software project is flowcharting. You can
create flowcharts with a paper and pencil or with
an application such as Microsoft Visio. You
create a picture or diagram that shows the
sequence of steps you might take for a particu-
lar quality planning activity. For instance, you
might list the steps required for integrated testing.

16_749346 ch10.qxp 8/30/06 10:18 PM Page 217

assurance deals with making sure project work is being performed in an
effective and efficient manner.

Audits are usually involved in quality assurance.

In addition to quality audits, another set of tools and techniques that you can
use to ensure quality assurance on your project are the quality planning tools
that you used when creating your quality management plans, such as bene-
fit/cost analysis, benchmarking, and flowcharting.

If you have a choice, your approach to quality assurance should be proactive
instead of reactive. You want to have adequate quality policies in place —
testing, coding standards, and so on — before releasing code to your cus-
tomers. Preventing bugs in your code is much more efficient than fixing bugs
after they enter the code.

Following the Quality Policy
During the planning phase of all software projects, you define your quality
management plan and outline how you plan to ensure quality in your project
and your product. You document how you plan to confirm that the project
will satisfy the stated requirements. You also outline how you can continue
to make quality improvements.

Think of the consequences of not following your quality policy for your soft-
ware project:

� Your team wrote code for a system (like the hospital software system we
discuss earlier in this chapter) that allows physicians to place medica-
tion orders; this info gets passed to the pharmacy system. Your team did
not perform sufficient integration testing and you discover that when a
physician enters mg for a unit of measure on a medication, this appears
in the pharmacy system as gram. Ouch! This is an extreme example just
to demonstrate the importance of following your quality policy. Chances
are, something this important would never get to the testing phase; a
mistake like this would likely be caught during requirements gathering.

� Your team wrote the code for a banking program, but the team didn’t do
anything to address decimal points, and neglected to perform sufficient
functional testing. Now, when a teller enters a customer deposit of $10,
the software records a deposit of $100. Good news for the customer;
unemployment for the project manager.

218 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 218

� Instead of planning for a smart inventory system for an online shopping
firm, your team skipped out early. When the program was complete, you
didn’t perform sufficient testing. Now, whenever a customer orders a 40-
watt light bulb, he or she receives a 12-ounce jar of spicy canned meat.
Yum! Your customers might really enjoy the taste of the canned meat,
but that won’t light up the room, will it?

These are also examples of why the cost of quality should be built into the
project plan. You should spend your time preventing errors rather than fixing
errors after they occur. It is more cost efficient and no one will end up eating
their meat in the dark. This concept is often referred to as prevention over
inspection.

The cost of quality includes the costs of all your software testing, as well as
any other steps you take to ensure the quality of your product and project. It
is your responsibility as the project manager to ensure that your team fol-
lows the quality policy, and you have the ultimate responsibility for the qual-
ity of the final product.

You need to know your firm’s quality policy, because it is an input to the qual-
ity planning process. The quality policy (as you may have guessed) states
your organization’s approach to quality. Quality is not a subjective compo-
nent that can be decided upon by your team on a per-project basis. However,
your team should understand and follow the quality policy determined by
your organization.

Managing Software Project Risks
Everything you do has built-in risks. When you reached to pull this book off the
bookshelf, you risked losing your balance and falling in the bookstore, becom-
ing the laughing stock of the store. You also took a risk of discovering some-
thing new and becoming a better software project manager in the process.

Risk management is concerned with identifying potential risks for your pro-
ject and then putting a plan together to deal with them if they occur. A risk to
your software project is an uncertain event or condition that, if it occurs,
affects at least one project objective, such as time, costs, scope, or quality.
Risks are usually seen as negative events, but there is such a thing as a posi-
tive risk. A risk with a positive consequence is that a project that one of your
developers is working on gets postponed or cancelled. This risk is a negative
for some other poor, sad PM, but the effect is a positive for you that can
translate into improved deadlines and code quality.

219Chapter 10: Working the Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 219

If you knew with certainty every scenario that could possibly happen with
your software project, you would not need a risk management plan. But
chances are, you will never start a project with 100 percent complete infor-
mation at hand. Things change. Team members may leave to take other job
offers, thus putting your schedule at risk. Your technology may become obso-
lete, thus putting the quality of your project at risk. One of your preferred
vendors may go out of business, forcing you to seek solutions elsewhere at
perhaps a higher price, thus putting your costs at risk.

Accept the fact that dealing with risks is just a normal part of project plan-
ning. When you’re working on a project, you’re creating a unique product or
service. Because the product or service has never been created before, you
can’t possibly have all the facts.

Gathering the ingredients for a
solid risk management plan
The best place to start when creating a risk management plan is to identify
and document the risks that may occur and then strategize on how to deal
with or avoid them. This plan should occur early in the project. Your goal is
to increase the probability and impact of positive events while decreasing the
probability and impact of negative events.

Here are the ingredients you need when setting up a risk management plan:

� The project scope statement: Because the project scope statement con-
tains information regarding the products and services you are creating
with the project and has information regarding what is and is not
included in your project, you will need to use this in developing your
risk management plan.

� The project management plan: The project management plan lists the
activities, resources, task sequence, and schedule; you will use this to
identify and plan for risks concerned with these areas.

� Your organization’s risk tolerance strategy: You must also know your
organization’s general attitude toward risks when developing your risk
management plan. If the organization tends to have a low tolerance for
risk, you may not want to consider some activities that you would other-
wise have no problem doing. On the other hand, if your organization has
a high risk tolerance, you may want to allow for certain activities that
other firms may never consider.

220 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 220

If your organization already has certain methods that they use for defining
terms and concepts for creating risk categories, use them when defining your
risk management plan.

Examining typical risks
The following list includes some examples of some of the risks you may
encounter and should plan for during your software project:

� Key resources (materials and personnel) leaving your project

� Technology becoming obsolete

� Stakeholders attempting to enhance the scope of your project (scope
creep)

� Leadership changing direction

� Labor disputes or strikes

� Schedule delays due to issues with off-site resources

� Personnel resources being squeezed because they are working on too
many projects simultaneously

� Lack of commitment to project funding

� Software testing revealing major bugs that could impact the timeline

Getting a plan together
We’re sure you can think of other risks for your specific projects. The more
often you create project plans and risk management plans for your software
projects, the easier it will become to develop risk management plans.

As we said in Chapter 1, there are nine knowledge areas, identified by the
Project Management Institute (PMI), to consider in project management.
These knowledge areas interact with and affect each another. The knowledge
area that impacts risk is (unoriginally) called project risk management. Table
10-1 lists the six processes involved with project risk management, as well as
a brief definition of each process.

221Chapter 10: Working the Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 221

Table 10-1 Project Risk Management Processes
Risk Management Process Definition

Risk management planning Planning on how to deal with project risk manage-
ment activities

Risk identification Identifying the risks that could potentially affect
your software project

Qualitative risk analysis Deciding on the priorities of each risk and deter-
mining the probability of a risk actually happening

Quantitative risk analysis Assigning a number to each risk so that you can
analyze its possible affects

Risk response planning Planning how you will respond to each risk so that
you can minimize threats to your project objectives

Risk monitoring and control Tracking and monitoring existing risks as well as
identifying new risks while you evaluate the effec-
tiveness of your risk management plan and make
appropriate revisions

Each of these risk management processes has particular tools and tech-
niques that you can use as you develop your risk management plan. The
tools and techniques for the first process — risk management planning —
are planning meetings and analysis.

Gathering information
to identify real risks
As you begin planning your software project, you need to hold meetings with
appropriate stakeholders, such as current team members and associates in
the firm who have worked on similar projects in the past. All these people,
and others who may have information to contribute to the success of your
project, can share their experiences and expertise. During these initial meet-
ings, with your firm’s risk tolerance in mind, you will begin gathering informa-
tion to develop your risk management plan. Your organization may even have
templates that you can use for these activities.

During the risk management planning phase, you’re likely to be performing risk
identification because you and other appropriate stakeholders will be review-
ing project documentation, such as previous project plans and project files.

222 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 222

To gather information for your risk management plan, you may use some of
the following techniques:

� Brainstorming: Be sure to document all ideas regarding risk identifica-
tion. The idea that you omit because it sounds lame could end up being
the best idea of all. Another reason to accept all ideas is so that no one
feels that their idea is too dumb to be accepted. You never want some-
one with an idea to avoid raising his or her hand because this could
potentially keep you from discovering some valuable information.

� SWOT analysis: This analysis documents the strengths, weaknesses,
opportunities, and threats to your project. You’ll be surprised at how
much easier it is to identify risks after you’ve thoroughly explored each
of these areas.

� Delphi: This strategy is sort of like anonymous brainstorming. You and
others provide your input on risk identification but no one knows who
submitted particular ideas.

One method of accomplishing this is to have people send an e-mail to a
particular person and have that person consolidate the items into one
document (without assigning names to each idea). Another method is to
have everyone place his or her documented ideas into a receptacle (a
suggestion box) and have someone take all of the documentation and
consolidate it. One advantage of this technique is that those people who
are shy or uneasy about providing input in meetings can speak freely
without being concerned with how they look to others. You receive
input from those that you might not otherwise hear from.

� Root cause analysis: You discuss risks and the likely causes of each risk.
If there are many risks associated with a particular cause, root cause
analysis provides you with the information you need in order to priori-
tize your risks. When you see that several risks are associated with a
particular cause, you can make sure that you put more effort into mini-
mizing those risks.

� Interviewing: Chances are, you already have access to several experts
regarding risk identification. These are the people who have already cre-
ated risk management plans for your firm. Don’t be shy. Talk to them.
They probably won’t bite.

� Don’t reinvent the wheel: You may already have contact with people
who have already done all of this work before, so take advantage of their
expertise.

As you gather the information regarding types of potential risks, the probabil-
ity of each risk occurring, and the potential impact of each risk, you can start
to develop a risk probability and impact matrix to show each risk and its
potential impact on project objectives that deal with the Iron Triangle of cost,

223Chapter 10: Working the Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 223

time, and quality. To obtain the risk assignment, you multiply the probability
by the impact: P × I = RA. Table 10-2 shows an example impact matrix.

Table 10-2 Risk Probability and Impact Matrix
Risk Probability Impact Risk

Assignment

Technology becoming obsolete .6 .9 .54

Key resource leaving project .3 .8 .24

Execs changing direction .4 .8 .32

Major bugs in software .4 .7 .28

The first column in the risk probability and impact matrix lists each identifi-
able risk. The second column, probability, indicates, in a decimal format, how
likely a risk is to occur. For example, if you determine that there is a 60 per-
cent probability that technology will become obsolete, you enter a .6 in this
column. Probability should always be listed as a number between 0.0 (no
probability) and 1.0 (100 percent certainty). The third column, impact,
assigns a number to the impact of an event occurring. For example, your
organization may say that any event that will have a high impact should be
assigned a .9 or 1, and anything with a relatively low impact should be
assigned a value somewhere between .1 and .3. To determine the probability
and impact of a risk, you should use expert judgment and gather information
from other stakeholders who have knowledge and expertise regarding your
software project.

Monitoring and Controlling Risks
Risk monitoring and control is the last risk management planning process
listed in Table 10-1. After you identify your project’s risks, perform qualitative
and quantitative analyses, document your risk management plan, and define
your responses to the risks, you can start working on the project. Along the
way, you will be monitoring and controlling your risks.

You may create a database or register to keep track of each previously identi-
fied risk, identify and document new risks, and track the response plans for
each risk. There may even be instances where a risk that you documented at
the start of the project is no longer valid; you should make revisions to your
risk management plan to address this change.

224 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 224

You can use a risk database as part of your risk management plan to track
and respond to project risks, as well as to monitor and control risks. How-
ever, you don’t need a database to monitor and control risks. It’s just an
added tool that may assist you with your risk management planning.

These processes interact with each other and are ongoing throughout the life
of your software project. You will continue to monitor and control risks based
on whether or not identified risks are still valid, new risks have been identi-
fied, a risk probability has changed, or any other number of factors that
could affect your risk management plan.

You don’t need to overcomplicate what really should be a standard part of
your project planning. You can track risks with a risk database or with a
spreadsheet or even with good old-fashioned paper and pen (but who uses
those things anymore?). The method you use is not as important as your
commitment to following through on identifying, tracking, planning for, and
responding to each risk.

Of course, if you do have a database where you can store project planning
information such as risk management data, you may be able to easily report
on the risk management aspects of the project. Here are a couple of benefits
of creating a database for your risk management data:

� A database will enable you to keep the appropriate stakeholders
informed of any issues related to risk management.

� A database will also aid you and your organization in creating a more
solid risk management plan for future projects.

� A risk management database can become part of your firm’s historical
database, contributing to the company’s overall risk management strat-
egy. Who knows? They might even name the database after you.

Managing Secondary and Residual Risks
As you develop your risk management plan, you need to consider secondary
and residual risks:

� A secondary risk is a risk that occurs because of a planned risk response.
For example, you may identify as a primary risk the fact that Kathy, a key
resource, is leaving your project. As part of your response to that risk, you
hire a new programmer, Peter, when Kathy leaves. Maybe Peter stretched
the truth on his resume and did not have the experience that he indicated
he had. All you know is that he ends up causing more problems than

225Chapter 10: Working the Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 225

solutions with the project. Peter’s hiring is a secondary risk because it
came about due to the planned risk response. You should identify sec-
ondary risks and create a response plan for these risks.

� A residual risk, on the other hand, is a risk that just won’t get the hint
and go away. It stays. You can’t avoid it or get rid of it. For example, you
identify declining team morale as a primary risk. After you implement
steps to respond to this risk, such as team building activities, you still
have one or two team members who continue to be miserable. Nothing
you try will change the attitudes of those team members. You may have
to accept that misery as a residual risk.

The bottom line is that you still need to manage these risks as well as the pri-
mary risks identified in the planning process.

Documenting Risk Management
Effectiveness

How effective is your risk management plan? Why should you document the
effectiveness of your risk management planning? Why do you care? Here are
some reasons why you care:

� You can use the data that demonstrates your project effectiveness as
you start developing the plans for your next software project. This infor-
mation will help you (and others) to use your risk management effective-
ness documentation as lessons learned documentation.

� You can use this documentation to improve the risk management planning
on your current project and on the next phase of your current project.

� You can use this documentation to improve your chances of getting a
promotion for being intelligent enough to create a strong risk manage-
ment plan and the documentation to support it.

You should hold post project reviews (otherwise known as meetings) to
gather feedback from stakeholders regarding the effectiveness of your risk
management plan, elicit suggestions on how it could be improved, as well as
discuss what areas of the plan were particularly successful. This information
will be extremely valuable when you (or others) start planning for your next
software project.

226 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 226

227Chapter 10: Working the Project Plan

Getting it done
This is what project management is all about —
getting the project to completion.

Getting your software project to a successful
completion should not be a painful process. In
fact, it can be quite enjoyable. You just have to
think logically and remember the keys to suc-
cessful project management. Use your resources;
talk to other successful software project man-
agers who have done this type of project already.

Find out what they do to ensure success. Chances
are they will tell you they created a quality product
by using the appropriate tools and techniques
available to create a solid quality management
plan.

No project is without risk, so remember to plan for
the potential risks and identify responses to each
risk. Risk management is an iterative process and
should be performed at each project phase.

16_749346 ch10.qxp 8/30/06 10:18 PM Page 227

228 Part III: Executing Your Software Project Plan

16_749346 ch10.qxp 8/30/06 10:18 PM Page 228

Chapter 11

Working with Project People
In This Chapter
� Forming a project team

� Managing project conflicts

� Dealing with project stakeholders

� Using project management powers

Projects are not solo endeavors. You have to let go, delegate responsibili-
ties, and lead your project team to complete the job. People — the

people you hire and the people you work for — are involved in each step of
the project. You depend on those people to perform their tasks, and they
depend on your help to lead them to project completion. Everyone involved
has some stake in the success of the project, and cooperation is imperative
to accomplish what must be done.

Chapter 7 introduces you to many of your responsibilities and duties as a
software project manager. Taking these roles seriously will help you to find
the optimal mix of human resources, so that you can then motivate, align,
and direct the team. Chapter 7 also discusses how to build the project team
and walk the fine line between leadership and management.

This chapter continues that discussion, with the focus now on the concept of
leading your project team. Without further ado, here’s all the information you
need on facilitating your team’s success.

Examining the Phases
of Team Development

Remember your first college class? You sat in a room with a bunch of
strangers and wondered what you were doing there. The temperature of the
room was unbearable and no one spoke more than a muffled, “hi,” to those
who accidentally made eye contact with them for a split second.

17_749346 ch11.qxp 8/30/06 10:18 PM Page 229

Only one or two people knew each other from high school. They sat together
and nervously discussed Frisbee golf, the weather, or the prospects of the local
football squad while you all waited for class to start. No one was comfortable.

The professor insisted upon reading every single word of the verbose syl-
labus as if none of you could read it on your own. When the hour was over,
you shuffled out and may have mumbled a few words to the person beside
you before seamlessly disappearing into the crowd on the sidewalk again.

At some point in the semester, all of that changed. People in the room started
talking to each other before the class began. They started talking to each
other after the class was over. Occasionally, they even talked to each other
during class — not just contributing to the class discussion, but making snide
comments and jokes.

The strangers in the room became a team — a temporary group brought
together for a short time (a semester) for the purpose of passing the class.
Some members of the team valued being in that class more than others and
some still wished they were anywhere else but there. Some contributed more —
possibly because they grasped the content or were fascinated or stimulated by
it, or simply because their personalities made them more gregarious than those
around them. Some were not right for the class and left, while others transferred
in a little late.

The professor was delighted to have some of those students. Others were
more of a challenge, and the professor wondered why they were there. Some
pesky folks may have needed more individual attention or additional
resources to supplement what they already had, and one or two could not
grasp the material at all.

This pattern of team building continually repeats itself. It plays out in every
project team assembled in school, in business, and in life. Members start out
being quiet and uncomfortable — eventually we all move away from that.
Understanding this pattern — and ways to speed up the process — can make
you a more effective software project manager.

A team is a group of people brought together temporarily for a determined
length of time for the purpose of achieving a specific goal.

Understanding the life cycle
of a typical project team
Being a team leader is a major part of your job as the software project man-
ager. But just throwing a bunch of people into a conference room, pushing a
project manager in front of them, and assigning them activities doesn’t make
them a team.

230 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 230

When they function at their best, teams are cohesive units of resources work-
ing together for a common cause. Get that? Working together. Not working
against one another, for another, or on their own accord. Teams are fascinat-
ing entities when they’re working properly.

For some project managers, a good team is any team that can get the work
done. These project managers don’t care if the team members like one
another, the project manager, or even the project work. Sounds like a great
time: a disinterested project manager lording over individuals cranking out
code independently of one another.

Project teams have a natural process they go through to become cohesive.
The process consists of four distinct phases, which, if you watch closely, you
can see (or just check out Figure 11-1):

1. Forming. At the beginning, team members gather together and intro-
duce themselves. It’s the “Hi, how are you?” phase of project team devel-
opment. Everyone is polite, cordial.

2. Storming. Heated discussions, disagreements, and struggle for team
leadership occur in this phase. Storming is the phase of the project
when someone on the project team is going to take charge. You may see
power struggles between team members. Someone with more seniority
may feel superior to a junior team member, or someone with a special-
ized skill may feel that he or she has more to offer. A team member with
advanced education may feel that his or her opinion is more valuable
than others’. Conflicts and disagreements about the direction of the pro-
ject are likely as team members struggle to work cohesively together.

3. Norming. In this stage, things settle down. Team members have gotten
to know each other and start to deal more with issues on the project
than with issues with other team members. You may still notice tension
in the air, but for the most part, folks have accepted their roles on the
project team.

Pe
rf

or
m

in
g

Forming

Storm
ing

Norming

Figure 11-1:
Project

teams move
through four

phases.

231Chapter 11: Working with Project People

17_749346 ch11.qxp 8/30/06 10:18 PM Page 231

4. Performing. Forget the power struggles and politics — we’ve got to get
this project done! In this stage, performing is the primary goal. The pro-
ject team members have accepted their roles and are working hard to
meet goals and deadlines.

Making a team out of a group of people
The transition from individual to team member rarely occurs at the same
time for any two people. It is, however, often accompanied by a number of
things:

� A belief that everyone is working toward a common goal.

� A feeling that the goal everyone is working toward is worthwhile.

� The creation of trust among members of the team. The members feel as
if it is okay to speak out and be noticed.

� An acceptance of responsibility. Members realize that if the goal (to
complete the project) is to be accomplished, everyone must contribute.

Moving from individual to team member is something that some do quite
easily — they are always looking for something to be a part of — and some-
thing that others do quite hesitantly. It is your job — your responsibility — to
help this process along and lead them in the right direction.

Training the project team
Earlier in this chapter, we use the analogy of a college class to describe a team.
Everyone starts out as strangers and then becomes a part of the group. The ideal
is that when the group comes together, it does so in a way that enables each
person to contribute positively. On occasion, however, the opposite happens.

Students sometimes form subgroups that impede the educational process.
Whether this happens because the professor is incompetent, the students
just happen to be overly rebellious, or for some other reason, the result is the
same: The hour in the classroom is not conducive to learning and it ends up
being a waste of time for the semester. Even though the professor may not be
the reason that the negative subgroup formed, he or she is still the one who
must deal with the situation.

You cannot afford to be the professor in this situation. You cannot afford to
lose control of the situation, or become the butt of the joke or the person
who represents a drain of time and energy. Professors have the enviable posi-
tion of having a fresh start two to three times every year, and you do not.

232 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 232

Doing Some Fun Team-Building Exercises
Don’t roll your eyes.

When many think of team building, they think of making a fool of themselves
in some torturous exercise that doesn’t seem to really have anything to do
with the task at hand. You may hear apocryphal stories of teams that go
hiking through the mountains so that they can bond. I’m still waiting for sto-
ries of project team members that were chased by bears and snakes, and
wandered lost in the woods for hours.

You don’t need the Smoky Mountains, however, to do some team building. At
any library (read Team Building for Diverse Work Groups by Selma G. Myers,
and published by Wiley), and at a plethora of Web sites, you can find informa-
tion on simple exercises that can be used to build effective teams. These
include everything from the aforementioned survival mission to being able to
suspend countless tennis balls for a short period of time. When you look at
these, you should ask but one question: Why are we doing this?

Here’s a list of just a few popular team-building exercises:

� Golfing or putt-putt

� Bowling

� Geocaching (going on a geographically oriented treasure hunt)

� Outdoor rope courses (Check out The Power of Team Building: Using
Rope Techniques by Harrison Snow, published by Wiley)

� Paintball

� Hide-and-go-seek

The reason for any team building is to help the members establish trust in one
another and come out of their shells; you want to expedite the natural team-
building process in order to make the team more cohesive and get results faster.
The goal of team-building exercises is really simple: Build a cohesive team.

When choosing what type of exercise to employ, you should know something
about the members of your team. If you take the wrong approach, you can
end up with the wrong results. For example, taking a group of insecure pro-
grammers and making them play baseball against a college team probably
isn’t going to make them respect you much and feel as if they gained anything
from the experience. Take that same group of programmers, give them a box
of Lego blocks and a remote control car, tell them to create a city that the car
can maneuver through, and they’ll be off and running. This simple exercise
demands the whole team be involved and work together towards a common
cause. Its simplicity doesn’t overpower the purpose of the exercise.

233Chapter 11: Working with Project People

17_749346 ch11.qxp 8/30/06 10:18 PM Page 233

Be careful when choosing team-building exercises. Some activities require
participants to compete with one another while others require members to
work together to accomplish a common goal.

If you have more questions about team building, check out Team Building for
the Future: Beyond the Basics by Steve L. Phillips and Robin L. Elledge for
more information on team building. You should also check in with your orga-
nization’s HR or Organizational Development department. The smart people
in this part of your company may have more information about team devel-
opment than you realize.

Managing Project Conflicts
Will you complete your project without a single problem or hitch? Absolutely —
and then you’ll wake up. If projects were easy enough to be completed with-
out any problems, there wouldn’t be a need for project managers. Your pri-
mary job would become updating your resume.

Too often, we tend to think of conflict as a bad thing. Life would be better if
everyone would just think like you do and agree with you. So much more
would be possible. In reality, conflict enables greatness.

If there wasn’t any conflict, would anything ever get better? What a bland,
boring project it’d be without any challenges or disagreements.

It is all right if team members sometimes disagree, feel passionate about the
project, and take a stance on an issue. You want them to express those opin-
ions, share them, and explain why they are important. When team members
use their skills of arguing logically and thinking critically to examine issues,
they contribute to the project’s success by coming up with original ideas to
solve problems. When dynamic people express their ideas and opinions,
especially in complicated projects, creative solutions arise.

Of course, you also want them to disagree in a civilized manner, to follow
directions when asked, to be willing to compromise, to see the point of view
of others, and to accept that their opinion may be just that. When this hap-
pens, the team wins, the project improves, and everyone benefits from it.

Still, sometimes conflicts need your attention. In the following sections, we
address the methods you can use to address conflicts with various stake-
holders involved in the project. Here’s a teaser: The first rule is to listen
before you respond.

234 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 234

Dealing with stakeholders
You are the iconic representation of the project. When there is a disagree-
ment, you are the one that others turn to for solutions. Stakeholders have an
important interest riding on the success of the project, and they are looking
to you to make their vision a successful reality.

When stakeholders feel that a project is in jeopardy, or that it runs the risk of
not being as successful as it could be, they are going to come running to you
like a crime victim runs to a police officer. They want you to solve any con-
flicts and make it all okay.

Your first job is to listen, and your second job is to act. In that order. Don’t
try and immediately jump to any conclusions on how they feel or how highly
they value what they are concerned about. Repeat back what they’ve said so
that they feel assured that you get what they’re saying.

After you have assured them that you do understand their issues, begin
to address them. Every situation is different. Sometimes the stakeholder is
correct — the project must proceed this way because that is the mandate.
Other times, the stakeholder simply does not have all the information; that’s
when you need to introduce the relevant information and persuade the stake-
holder about why your position is the best one.

Of course, the best thing to do is to be proactive so that you can prevent
being in this unenviable position in the first place. Stakeholders may be upset
because they don’t have all the pertinent information or they are seeing a sit-
uation through their eyes only. Documenting, implementing, and following a
thorough communication plan to ensure appropriate stakeholders receive
the appropriate information at — you guessed it — the appropriate times
can help you prevent some of these conflicts.

If the stakeholder is correct, don’t be afraid to say so. Few things go so far
today as admitting that you might be wrong and that someone else might be
right. The progress of the project also has some bearing on the outcome of
the disagreement, as Figure 11-2 demonstrates. Early on in the project, the
stakeholders’ influence on changes and scope verification should be high,
but as the project nears completion, their influence should wane. During the
early phases of the project, when the stakeholder influence is high, the stake-
holder conflicts or issues may be more prominent than at times when the
stakeholder influence is not as high.

If the stakeholder is wrong, say so. Delicacy is paramount — there are many
ways of letting people know that they are wrong, but few are as successful as
education (and avoiding use of the phrase “you’re wrong”). Explain why your
thoughts differ and focus on the end result.

235Chapter 11: Working with Project People

17_749346 ch11.qxp 8/30/06 10:18 PM Page 235

Few issues are truly black and white, which means that using phrases like
“you’re wrong” or “I’m right” just serve to create unnecessary contention. You
can express your reasonable conclusion based on your intimate experience
with the project, but if a stakeholder still disagrees, you may have to imple-
ment plans that you don’t like. You expect your team members to follow your
instructions even if they disagree. As part of a larger team, that’s also your job.

In all cases, whether right or wrong, the stakeholder wants assurance —
assurance that the project will be successful and that they made a good
choice by choosing to be involved in it.

Dealing with project team members
Fire them all. (Kidding.) Although firing difficult members of your team is an
approach that has been employed by many a manager, it is the wrong tactic
to take. Conflict can be a sure sign that members within the team are com-
fortable enough to express themselves — and that’s something that you can
exploit for greater success. Isn’t greater success what every project manager
hopes for?

Some experts in project management advocate moving team members to var-
ious teams over time. As the members become more comfortable with each
other, they tend to disagree less often, so mixing up the dynamics by adding
new members can be beneficial.

The members of the team should know that it is okay to disagree with each
other, and they should be comfortable doing so. However, they should also
know that you will often make final decisions.

Project Timeline

Completion

Requirements
gathering

Scope statement

Milestone reviews

Scope verificationSt
ak

eh
ol

de
r I

nf
lu

en
ce

Figure 11-2:
Stakeholder

influence
wanes as

the project
nears

completion.

236 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 236

As a general rule, we like to take a democratic approach to project manage-
ment: The team members are the experts, with the SPM approving their deci-
sions and providing direction when necessary. Sometimes, however, you
have to yield to the circumstances of your project, and you may have no
other choice but to become more autocratic. And in rare situations, your
pleasant democracy could become a dictatorship. You obviously want this to
be the exception, not the rule. Teams that lead themselves with some over-
sight are happier; and happier times get more work done.

When a conflict arises that demands your involvement, you should listen to
each party individually and weigh what they are saying — paying particular
attention to why each person is passionate about the issue. You need to
know whether the conflict and solution are in the best interest of the cus-
tomer, a stakeholder, or the party voicing the issue.

After you have weighed the matter, gather the parties in a meeting and
explain the decision that you have come to. Here are some conflict resolution
do’s and don’ts to consider when you have this meeting:

� Do make sure to address each and every concern that was expressed
to you.

� Don’t let things get emotional. Let the parties cool down, and don’t let
them rehash the issue in this meeting.

� Do clearly state the reason why you elected to go with the solution that
you did.

� Don’t let the parties walk out of your office before you tell them that you
understand that they may not be pleased with the decision. Reiterate
that it’s the best decision and that they need to accept it for now.

� Do make sure that the parties understand that they need to let things go
and get back to work.

� Do make certain that the team members leave knowing that when
another conflict comes up, you will listen to it openly and objectively
and make the right decision again.

Documenting project conflicts
and resolutions
Conflicts should be looked upon with the same weight and value of every
other part of a project. You should document specific conflicts, the parties
involved, and the resolutions. This info can be helpful on future projects, as
well as when you need to make changes to this project at a later time.

237Chapter 11: Working with Project People

17_749346 ch11.qxp 8/30/06 10:18 PM Page 237

For example, suppose a team member felt adamantly that the user interface
should have a different look and feel, but you decided to go with the one that
the focus groups preferred. If the final software product fails to gain accep-
tance with the end users, and interface is brought up as a potential cause for
the failure, you can talk to the team member who disagreed with your deci-
sion. That person can do a detailed study in to what changes could be made.
In the following section, “Using Your Super Magic Project Manager Powers,”
we get into more specific scenarios for resolving conflicts.

Using Your Super Magic Project
Manager Powers

You’re the boss, darn it! You don’t have to go any further than that — every
time an issue comes up, just stamp your fist and make that proclamation. Let
your team know that you’re the one getting paid the big bucks and storm out
of the room.

Oh, wait. That might have worked in the production era of Henry Ford, but
that approach doesn’t work so well in the workplace of today.

The reason tantrums fail is because we no longer can stand behind someone
assembling parts on a line and make sure they are not tarrying — speeding
up the line if it is suspected they are. In today’s world, work is far more
mental. You speed up the line with motivation, rewards, and praise.

As a software project manager, you have several powers at your disposal.
Every manager, and in fact, every team, has varying degrees of success utiliz-
ing these powers.

Your greatest power is your knowledge and understanding of your team
members. Know what drives them so that you can apply your other powers
strategically to match every situation.

Forcing a decision
As much as we all love democracy, there are times when someone just has to
make a decision. You are that someone.

You don’t have to be so bold about it as to demand that your every whim be
obeyed; you can be more subtle. Your manner and your focus can steer deci-
sions in the path that you want them to take. You have to be careful about
forcing everything to go your way, because everyone else should have a say if

238 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 238

you want to maintain team cohesiveness. You don’t want an army of ants, but
sometimes you need to force the decision and move on.

The following discourse shows you what we mean:

Team member 1: Before we go any further, we need to test this part of the soft-
ware on every Linux platform currently shipping and make sure that there are
no issues.

Team member 2: We have tested it on three Linux platforms already! Those are
the ones that most corporations are using. We’ve found no issues, and as long as
they are using the same kernel, the software should run the same on every
implementation.

Team member 1: We can’t afford to wait until the project is finished to find that
it doesn’t work on every version. We need to find and identify the problems now.

Team member 2: If we do that with every single module as it is developed, that
will slow us down and we’ll never make the dates.

Project manager: I can understand what you’re saying. We can’t afford for the
final build to not run everywhere, but we are a long way from that. Let’s check
each module, as it is finished, on three versions and alternate those versions —
always using two of the most popular ones. That way we stand a good chance of
catching issues early on and adapting to them. Now, about the interface. . . .

In this discourse, the project manager listens to both parties and respects
what they are saying before quickly making a decision and moving on to the
next topic. In making that decision, the PM references the key points of both
discussions, offers a compromise, and ends the discussion. This is a highly
effective strategy in many instances because it addresses both the serious
quality assurance issue, as well as the crucial timeline issue while also keep-
ing everyone happy.

Relying on expert power
One rule of life is that expert opinions have more weight than others. You
may not realize it, but you have expert power because you have valuable
experience and knowledge to make sound decisions.

Consider this discussion:

Team member 1: I think we’re crazy if we don’t stop and check every module
on every platform. Unless we are doing that, there is no guarantee that the final
product will run without error for every customer.

239Chapter 11: Working with Project People

17_749346 ch11.qxp 8/30/06 10:18 PM Page 239

Team member 2: We don’t have the time or manpower to check every module
in that way. A better solution is to just wait and check the final product on every
machine.

Team member 1: I’m not about to go along with that! If it doesn’t work, we
wasted all of this time creating nothing.

Project manager: When I taught at MIT, we recommended checking each module
on a few platforms. I used that method when I developed the DST and it worked
well. Let’s go with that — it’s worked for me over and over in my experience.

By bringing into the conversation the name of a prestigious school, and by
conjuring up past projects, the project manager has been established as an
expert in the topic. If you follow this technique, you can make a decision and
quickly move on.

Be careful with this technique. While you may demonstrate your expertise, if you
use the wrong tone you may come across as an elitist and your team members
may get the impression that you’re working too hard to establish that you’re
better than they are. You need to find the right balance between showing team
members that you’re an expert while identifying with their day-to-day issues.

One of the best ways to praise a team member is to acknowledge the individ-
ual as an expert. We all like to think that we know more than anyone else in
some category, and there is nothing so rewarding as hearing someone in a
position of power say, “Hey, you really know your stuff.”

Using coercive power
Usually, coercion is defined as compelling a person to act by employing a
threat.

The coercive power that remains at your disposal typically involves reper-
cussions directly related to job performance. This coercion can be as simple
as demanding that team members work weekends if the project falls behind,
or as complex as threatening to transfer an employee to another department
or telling individuals that their work practices may warrant a note in their HR
file. Of course, you never want to overstep your boundaries or abuse your
power when it comes to HR issues, so be sure to understand your firm’s
human resources policies.

One of the most feared threats for employees today involves the performance
improvement plan (PIP). Contrary to the name, it’s not really viewed as a map
for improving employee performance as much as it is viewed as a means of
documenting any weaknesses in the worker’s performance and sending a
message that termination is a distinct possibility. Consider the following
exchange:

240 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 240

Project manager: Evan, I understand that you haven’t been finishing your
assignments on time.

Team member 1: That’s not my fault. I didn’t get the software I needed from
Kristin until Thursday. When I got it, it didn’t work right and I had to basically
redo everything she did.

Project manager: You got it on Thursday, but when did you request it from her?

Team member 1: Thursday.

Project manager: Don’t you think you should have requested it sooner? Isn’t
this pretty much the same thing that happened with the last project, and the one
before it, as well?

Team member 1: I had to spend all my time redoing what should have been
done in the first place.

Project manager: That is not your assignment, is it? If anything that reaches
you is not ready, you need to bring that to my attention. I don’t see any record of
you ever documenting any changes you’ve made to the stub files. Can you show
me what you did?

Team member 1: I didn’t write down the changes.

Project manager: Did you save them?

Team member 1: No. I just did what I needed to do; then I started in on my part
of it.

Project manager: Again, this isn’t the first time this has happened, is it?

Team member 1: No.

Project manager: Do you know what your deadline is for turning over the next
phase?

Team member 1: This Friday.

Project manager: Are you going to make that?

Team member 1: I am going to try.

Project manager: I need you to do more than try. I need you to make that date
or else the whole project might slip. I’ve started working on a performance
improvement plan. I don’t want to go that way, but if you don’t make if by Friday,
you’re going to be in here looking that over. Do you understand what that means?

241Chapter 11: Working with Project People

17_749346 ch11.qxp 8/30/06 10:18 PM Page 241

Team member 1: Yes, but . . .

Project manager: Let’s talk about the “but” on Friday. I want you to get out
there and start working on that module.

Notice the large number of questions the project manager is asking. These are
all questions that the project manager already knows the answer to but is
asking in order to get the team member to acknowledge that there is a prob-
lem. After the team member agrees that the problem exists, the natural out-
come seems to be the PIP — or, more specifically, the threat of it. As long as the
team member does not want the negative consequence, the coercion works.

Rewarding the project team
You can still be a tough boss (as described in the previous section) and do
kind things, as well. Being the one who gets to reward people can be very
rewarding for you, too. Rewards are a wonderful motivator, if properly
applied, and can give you results like no other form of inspiration. Not only
do rewards make the team members happy, but they feel good to give.

When you begin planning for the project, include a few lines in the budget for
rewards. These do not have to be expensive (forget about that new car!) because
you’ll be surprised at how hard some will work for very little. If you don’t believe
us on this, just think back to the last time you went to a county fair or carnival.
Some people will spend hundreds of dollars playing impossible games to win a
prize they could easily purchase at the dollar store. They value the prize, not
because of the worth associated with it, but because of the task they had to do
to get it. Then there are those people who respond to public recognition. They
just want to know that others recognize their efforts and accomplishments.

One of the best rewards anyone can get is praise. It costs nothing but can
generate immense loyalty and commitment — but you have to mean it. No
one likes a fake who offers fake kudos.

Using this train of thought, you can create relatively inexpensive prizes that
employees want and will compete to get. For example, you can offer tee
shirts, hats, or other clothing items with the company logo (or team logo) to
employees who finish their tasks ahead of schedule. You can also offer pizza
parties at lunch for teams who have zero defects, dinner gift certificates, or
other thoughtful rewards for a job well done.

If you do not have any money set aside for rewards, offer intangibles — the
ability to take a day off if some arbitrary criteria are met. Give the gift of leav-
ing early or coming in late, parking in a special spot in the lot, or using the
new monitor to the workers who keep the project on (or ahead of) schedule.

242 Part III: Executing Your Software Project Plan

17_749346 ch11.qxp 8/30/06 10:18 PM Page 242

The one thing you have to be careful of with rewards is that they have to be
valued by those receiving them. One way to devalue them is to give too many.
If everyone gets a reward — or if they get a reward without having to do
much of anything — then the rewards fail to be a motivator.

Another issue with rewards is that once they are given, they come to be
expected. Giving $100 to each team member at project completion fails to
motivate anyone after doing it for a few years. If you fail to give it after one
project, because budgets are tight, the entire team will revolt — they’ve come
to see the reward as part of their pay, and not as a reward.

You and Your Positional Power
Sometimes you just have to be the manager. It feels good to pass out rewards.
It feels good to offer praise. It feels good to sit back with your feet on the
desk and your hands behind your head.

That isn’t all there is to management, however. As a project manager, you’ll
find yourself in situations where you simply have to step in and assume the
tough role. You’ll have to remind someone that you’re in charge of the project
and that your decision is the one that matters.

This is not a role that anyone relishes. No one wakes up in the morning look-
ing forward to facing a team member who wants to challenge every decision
and make accusations about lack of leadership.

Someone had confidence in you, or you would not be in the position that you
are currently in. If you feel shaky, you need to find that confidence within
yourself and let it exude. The only way to face a challenge of your position is
to face it head on — immediately.

243Chapter 11: Working with Project People

Theories of human resources
The field of human resources, in general, and
motivational theory, specifically, is nothing new.
A great many of the best minds in the world
have turned their attention to this area. The fol-
lowing five theories offer insight to this topic.

Hertzberg’s Theory of Motivation: In 1959,
Frederick Hertzberg wrote The Motivation to

Work, which focused on what people want
from their jobs. Convinced that it is not just a
paycheck that we crave, but also positive expe-
riences, he did a study asking engineers and
accountants what parts of their jobs pleased
and displeased them.

(continued)

17_749346 ch11.qxp 8/30/06 10:18 PM Page 243

244 Part III: Executing Your Software Project Plan

He took the results and divided them into two
categories: hygiene factors and motivational
factors. Hygiene factors, also known as main-
tenance factors, are those that serve basic
(animalistic) needs. They include supervision,
salary, physical working conditions, job secu-
rity, company policies, and so on.

Motivational factors serve specific human
needs. These needs can be specific to individ-
uals. He argued that hygiene factors are not
enough to motivate anyone (but the lack of any
of them can lead to lack of motivation), and only
motivational factors can encourage people to
devote themselves to a cause.

McGregor’s Theory X and Y: Douglas McGregor
formulated ideas about management by talking
with those who practiced it. What he found is
that managers fall into two camps — those
who think people are inherently lazy and dislike
work (Theory X), and those who think work is a
natural part of life (Theory Y). He created a set
of assumptions for each and a kind of contin-
uum upon which they lay.

For example, within Theory X, there are those
who believe that scientific management is the
only answer (hard X) and those who think
human relations can be of great help (soft X).

Ouchi’s Theory Z: William Ouchi thought that
McGregor’s X and Y needed something more
added to them and came up with Theory Z. This
theory essentially pulls in and combines man-
agement practices from the United States and
Japan. Instead of saying only the two ends of the
spectrum exist, it offers the importance (as moti-
vators) of job security, individual responsibility,
career paths, and the like — in other words, it
looks at work as part of the whole picture

instead of looking at it independent from every-
thing else.

Halo Effect: A number of researchers have
devised what is known as the halo effect. In
essence, this theory states that we tend to view
a person in all areas the way we see them in
one. Thus, if Spencer is a wonderful team
member who always gets his work done on
time and without problem, we tend to think
favorably of Spencer in all areas — he probably
has a great home life, and would make a won-
derful manager.

On the other hand, if Roy can’t turn his work in
on time, we tend to think that he would make a
bad manager and probably has a bad home life,
and so on.

Many cues are used in determining how to
decide whether a person is one thing or
another — someone wearing glasses is often
thought of as being smart, a company is thought
to be successful if it has one popular product,
and so on.

Expectancy Theory: Victor Vroom is the father
of the expectancy theory, which states that
people decide whether or not to be motivated
by three criteria. All three criteria must be pre-
sent, or motivation is foregone. The first of the
criteria is the perceived importance of the
reward that could be had. The second is the
feeling that actions will lead to the result (per-
formance is a factor). The third criterion is the
actual connection between the performance
and the reward. For example, a person believes
that the team will only achieve its results if
everyone participates more than they usually
would and that the result would be a bonus
for all.

(continued)

17_749346 ch11.qxp 8/30/06 10:18 PM Page 244

Chapter 12

Procuring Goods and Services
In This Chapter
� Finding the right vendor

� Hosting a bidders’ conference

� Understanding contracts

� Negotiating contract issues

� Writing your statement of work

� Closing the contract

� Performing vendor audits

You’ve put a lot of work into determining your project’s scope, documenting
your project plan, and creating a super change control system. You have

the cream of the crop for your project team. What’s left to do? Well, lots. In
order to complete your project to satisfy your stakeholders’ requirements, you
need an application for software testing. Yes, that’s right, you need a software-
testing doohickey.

You’ve already decided that it is out of the scope of the project to create
the testing doohickey yourself, so you must purchase the software-testing
system for your project. This is called a make or buy decision. You’ve decided
to buy, so now you start the procurement process, which includes all the
activities involved when you purchase goods or services. Although you have
lots of options when you participate in the procurement processes, they all
have one thing in common: Procurement (the art of buying resources) is usu-
ally a formal written process.

To get back to our procurement scenario, you know that several testing-
services firms are in the market, but you need to find just the right one for
a reasonable cost, and you only want to deal with a reputable vendor. You
must go in search of the perfect vendor for this project, or at least the
perfect vendor for you.

18_749346 ch12.qxp 8/30/06 10:15 PM Page 245

If all this sounds like it makes sense, but you’re still not sure how to do it,
don’t worry. We’re going to tell you everything you need to know. Keep read-
ing, Weedhopper, and the solution will appear before your eyes. This chapter
tells you about vendors, SOWs, contracts, and more.

Finding a Vendor
If your customers or stakeholders already have a list of preferred vendors,
then much of your work is already done for you. You just choose a vendor
from that list. Assuming, though, that you have to start from scratch, here is
a starting list of what you need to consider when seeking a vendor (this list
applies whether you’re seeking a software vendor, a hardware vendor, or any
other type of vendor for your project):

� Risk tolerance: In Chapter 5, we discuss risk tolerance. An organiza-
tion’s risk tolerance is defined as its ability and willingness to take on
risks. If your firm has a high risk tolerance, then you can consider ven-
dors that someone with a lower risk tolerance wouldn’t consider. For
example, a vendor who is new to the field of software testing may be
acceptable to you, whereas a firm with a lower risk tolerance would
want only established software-testing vendors.

� Cost: If cost is one of your biggest considerations, you need to find a
software-testing vendor who can get you the most bang for your buck.

� Time: If time is your biggest concern, you must find a vendor who can
successfully complete the work within a tight timeframe. Unfortunately,
if you want something done in a hurry, you usually have to pay big
bucks for it, so be sure cost isn’t too big a factor.

Your choice in vendor depends on the priorities and requirements of your
organization and your stakeholders.

As you search for your vendors, your process works a little something like
this:

1. Send out a Request for Information (RFI).

2. Set up a bidders’ conference.

A bidders’ conference is optional, not required.

3. Send a Request for Proposals (RFP).

4. Review proposals and make your final decision.

246 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 246

After you’ve navigated these waters, you’re almost done acquiring the ser-
vice or product you need for your project.

Using RFIs to solicit vendors
Say you’ve made the decision to outsource or purchase a portion of your
software project work (perhaps the software testing) and now you’re ready to
start soliciting vendors. How are the appropriate vendors going to find out
that you need something they can provide?

Because the entire procurement planning process is usually formal, you need
to prepare appropriate documentation for all phases, including the phase at
which you solicit vendors. You need to ask for information from various ven-
dors so that you can ensure that you’re getting the best software testing
system. By asking for information from more than one vendor, you enable
yourself to explore and compare capabilities of various systems and vendors,
and to ensure that the process remains competitive.

The best way to solicit information from vendors is to create formal docu-
mentation to request information. This formal request is appropriately
referred to as a Request for Information (RFI).

In the RFI, you present your wish list, which details your best-case scenario
(list of your most desired software requirements) of what you’ll need for your
software testing. In addition to asking the basic questions about price and
cost, for example, your RFI might contain the following list of requirements
and questions:

� The software testing application must integrate with the development
database residing on our on-site servers.

� Is any specialized hardware required on our end?

� How long has your company been providing application-testing
services?

� What are the general qualifications of the personnel who would be pro-
viding software-testing services?

� Can you perform the software testing on-site, or do we have to come
to you?

After you receive satisfactory answers to these and the other questions in
your RFI, you’re on your way to Happy Testingville!

247Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 247

Hosting a bidders’ conference
Remember when you were in high school and you had those parties in your
parents’ basement? All your friends came and tried to impress each other.
Ah, those were the days. Well, a bidders’ conference is similar to those base-
ment bashes, but now they have a fancier name and no Spin the Bottle.

In high school, each party was different and had its own tone: You had after-
game parties, parents-are-out-of-town-for-the-weekend parties, and post-prom
parties. Well, the same is true for bidders’ conferences — each one is its own
adventure. In your own practice, you may run into different types of bidders
conferences, and just like those high school festivities, each one can have its
own advantages and disadvantages.

There is more than one correct way to host a bidders’ conference.

The bidders’ conference is the second-best opportunity for vendors to
impress you; the best opportunity, obviously, is a knock-you-out-cold pro-
posal that you can’t turn down — but that comes later. You can set up a bid-
ders’ conference as an informal meeting, where you sit around a conference
table and have a discussion with a couple of vendors, or you can set up a
formal round-table forum with several suitors vying to outdo each other.

In any meeting, however, it is imperative that you maintain control — all ven-
dors think that they have the best solution to every development issue and
they will take every opportunity to gain control of the meeting and convince
you that they are the best. If vendors take over, you’ll end up hearing sales
pitch after sales pitch. That’s okay, but you need to have control so that you
can ask the hard questions. You get the picture.

You know who you consider to be viable vendor candidates, and you can
control the conference by controlling who you invite. Whether you send
formal, written requests for vendors to attend, or simply invite the vendors
by e-mail or phone, control of the meeting begins with who you invite.
Occasionally, a vendor may hear of your project through the grapevine, con-
tact you, and ask to attend. The decision is yours, but know what the vendor
offers before you extend an invitation. If the vendor doesn’t understand your
process, it is unwise to bring him in at the last minute.

A day in the life of a bidders’ conference
The bidders’ conference is the place for all parties to ask questions regarding
your project and the various offerings. As the person hosting the conference,

248 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 248

you must make an opening statement that outlines your agenda and high-
lights specific areas that you would like the vendors to address concerning
their product or service. Members of your team and other stakeholders you
have invited should also express any specific interests or concerns that they
would like the vendors’ solutions to address. The software vendors may have
questions for you to clarify your requirements and wishes. By the time the
vendors are with you, you can determine the commonalities in their offerings
and address specific differences in each supplier’s capabilities.

Often, when a vendor provides an explanation to one of your questions, one
of his competitors may jump in to challenge or one-up the explanation. This
is where the process can get interesting, and also where you must exert your
control.

Ideally, a bidders’ conference is the mechanism to discover in greater detail
each provider’s true abilities, as well as any new developments in his offering
since the RFI was returned. Keep your exaggeration detector well tuned; in
the heat of competition, many of the vendors’ offerings suddenly gain greater
powers, as when Mr. Gadget yells, “Go, go, gadget!” and all manner of fantas-
tic gizmos and abilities suddenly manifest in his arms and legs.

Finally, give the vendors the opportunity to make a final statement as to their
capabilities and continued interest in working on your project. At the close of
the meeting, present each of the interested and eligible parties a Request for
Proposal (RFP) package and give them an overview of the logistics for the
presentation of all proposals, including due date and any unique requirements
you are placing on the bid process. At this point, you can sit back and wait
for the real information to come in.

Setting up criteria for RFPs
A Request for Proposals (RFP) is your request for various vendors to provide
the down-and-dirty, cut-to-the-chase offer to sell you their products or ser-
vices. In the RFP, you specify exactly what you want vendors to supply. You
also provide the logistical and service requirements that must be provided to
accomplish your objective.

Logistical requirements are the delivery and installation timelines for any
equipment and products; service requirements are contracts concerning war-
ranties, maintenance, and upgrades after any warranties expire. Because the
offerings in the proposal become incorporated in the contract for the pur-
chase, what the vendors offer are what they truly believe they can provide,
and they may vary significantly from their RFIs. They’re likely to differ from
any statements made at the bidders’ conference.

249Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 249

In a perfect world (and we know there is one out there somewhere), what
suppliers propose to sell and what they have discussed prior to the actual
offer will be exactly the same. That’s the perfect world, and it’s out there, but
we aren’t living in it.

Evaluate all proposals carefully, because the second you accept one, any
terms and stipulations included in the proposal may be included in the pur-
chase contract and may override any terms and conditions you may have
negotiated outside the vendor’s boilerplate purchase quotation form.

Selecting the Vendor
After you get some proposals, get out your magnifying glass and detective
hat and get ready to investigate all the offerings to arrive at a vendor selec-
tion. The devil is in the details. As you read through the proposals you’ve
received from the vendors clamoring for your business, you can clearly see
that all of the offerings handle the big stuff — the main items that you want to
purchase — pretty much the same. Only the details differ, and these details
(and the differences) can make or break the proposal.

What happens if you select a supplier to provide an application, but in the
small print of the contract is a disclaimer stating that all support for the
application will be provided through the crew of a pirate ship anchored off
the coast of Sumatra? Well, the first time you need support, you’ll discover
that you would like to be the captain of that ship, because when the applica-
tion doesn’t perform and your project falls behind schedule and encounters
cost overruns, you’ll be swimming for your professional life. There’s got to be
a better way. Well, we can give you some tips for evaluating the proposals for
applications you commission. Read on.

Considering market conditions
Market conditions may influence the desirability of your contract to pur-
chase. If there is a booming market for software development, the software
vendors may have all the business they can handle. If that is the case, you’re
dealing with a seller’s market and probably won’t get the terms and conces-
sions you would expect in other times. If, however, business is slow for the
vendors, you can realistically expect to get some good deals on performance
guarantees and payment terms.

250 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 250

Even in the best of times, be sure to thoroughly read the contracts before
committing to anything. Sometimes, and not usually intentionally, the terms
agreed to in writing don’t match what was discussed and agreed to orally.

The written terms almost always win in any contract dispute.

Everything in life is negotiable, and in slow times for the suppliers, negotia-
tions can be favorable for you. If you are offered a good deal, or you just plain
negotiated the deal of a lifetime, get it in writing as fast as you can and get the
job done. You’ll look good for negotiating a good contract, look better when
your project is running like a precision clock, and look great when you bring
the project in on time and under budget. That is the plan, isn’t it?

Using a screening system
Remember the devil — the one hiding in the details? Start to get rid of it by
using a screening system to sort through all the ins and outs of the proposals
before you. A screening system can be something as simple as making a plus/
minus (or pros and cons) list on a legal pad. Or, you may use a database with
artificial intelligence for filtering all the offerings. Any screening system should,
in the end, give you a clear idea of the advantages and disadvantages of each
vendor. Sometimes, one vendor shows a clear advantage over the others and
makes the selection simple; unfortunately that doesn’t often happen.

In any system, be sure that you can tally and evaluate the minutiae of the
contracts, as well as the major items. Know how tech support functions and
where it is supplied. Technical support must be available when you need it,
not when it’s convenient for the vendor.

Using the help of others
It’s also beneficial to ensure that your system involves other people. Though
the final decision is yours, you might as well have more than one set of eyes
looking into all the facets of a proposal. Team members may see something
you missed, or may verify a pertinent detail you weren’t sure of. An evalua-
tion committee using a screening tool such as a product comparison spread-
sheet can provide essential input and insights as you approach decision time.
A properly used screening system can greatly diminish the chances of signing
up to a less than desirable stipulation in a purchase contract.

251Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 251

Implementing a weighting system
Any screening and evaluation system you use should incorporate a weighting
system. A weighting system looks at all the criteria. Some features of an appli-
cation may be considered absolutely essential for your use, while others may
not be as necessary. Those features deemed essential should have greater
weight than other functions so that as you investigate and rank the vendor
proposals, the essential functions play a larger role in determining the out-
come of your selection process than the less important functions.

In systems using a weighting function, the various requirements of the
system are assigned numeric values indicating how each evaluator sees the
system meeting the particular feature. That number is then multiplied by a
weighted factor to arrive at the true value of that feature in relationship to the
other features in the system.

The weighting factor is generally a percentage of 1, so that if a weight is .4,
that value is seen as more important to the overall value of the system than a
feature that is weighted as .2. In theory, all the features should be assigned a
numeric value related to how well the evaluator perceived the feature to ful-
fill its function. The numbers would be multiplied by their weighting factor;
then those outcomes would be totaled to provide a single numeric rating for
the software testing system. See Table 12-1 for an example of what you may
see in a weighting system that you might use during vendor demonstrations.

Table 12-1 Weighting System
Vendor: Testy McTesty

Demonstration Item Weight (0–0.5) Your Score (0–5) Total

Ease of use 0.5 5 2.5

System security 0.4 5 2.0

User configuration 0.4 4 1.6

On-site support 0.5 3 1.5

Vendor experience 0.2 5 1.0

Documentation 0.3 3 0.9

Interfaces 0.4 4 1.6

TOTAL 11.1

252 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 252

If your selection of a vendor is based solely on a weighting system, then the
testing system garnering the highest numeric rating would be the automatic
selection. But that isn’t usually the case. Sometimes other factors play into a
selection, but using a weighted screening system can provide valuable input
into the ability of the system being evaluated to do what you need it to do.

Negotiating for the Best Solution
You’ve considered the market conditions, used an elaborate — or not —
screening system that incorporated a well thought out weighting system, and
selected a winner from all the vendors who came begging for your attention
and business. That’s the end of it, right? Not hardly. Now you have to negoti-
ate the final contract and get the ball rolling on the actual implementation of
the system.

What? You thought that after the evaluation process was done, and the
vendor was selected, that you could just sign the contracts and move on?
Well, think again. You can’t just take the vendor’s offer at face value, unless
you want to risk leaving money on the table and setting yourself up for some
substantial heartache when the fine print in the vendor contract kicks in. Now
is when the real negotiation begins, starting with the price of the system.
Everything else — remember everything is negotiable — comes later.

Starting with price
When you requested a proposal from vendors, you may have specified that
you wanted their best and final price for the products they were offering.
And, of course, when the proposals came in, vendors said that the offer was
the vendor’s best and final price. Yeah, right. That might have happened
once, but nobody in the history of the planet remembers it.

As you know, because you develop software, there’s a substantial profit margin
in software after it’s released and matures. That “best and final” price you were
offered is so heavy on profit that it wouldn’t float if it was loaded on a super-
tanker. You always have room to negotiate pricing for a software product.

Also know that every component offered in the vendor’s bid has a monetary
value attached to it. Even if the vendor won’t budge on the actual price, you
can negotiate extended warranties, additional services, or other items that
add value to the deal. The big margin is in the actual software, and a vendor

253Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 253

can afford to drop the price of the software and not take as much of a loss as
if time is added to the warranty or support hours are extended.

Negotiate! That’s an order! You can get a better deal than the original pro-
posal, and you can be assured that the vendor expects to have to negotiate
the price. Ample margin was built into the pricing to give you a discount on
the price and still hit his profit targets. Pretend this software is a brand-new
car, and that the vendor is a cheesy salesperson at the dealership.

Considering time, cost, and quality issues
When negotiating your contract, don’t focus solely on pricing. You have to
consider the rest of the Iron Triangle. You have targets to meet for your main
project, and whatever application solutions you choose must be able to fit in
with your project timelines, budget, and quality requirements.

Your chosen vendor must be able to provide a timely installation of the con-
tracted, properly working application when you need it. For example, if you
use a vendor to create your testing application, and the time comes when
you’re ready to test your software, but — oops — the testing application isn’t
ready, you might as well not have any testing ability at all. You’ve paid for
something that isn’t available, and the delay in testing your product will cost
money in lost time and lost productivity for your development team. If the
timeline slips significantly, it may also cost you your career.

Here’s what you need to negotiate as far as the Iron Triangle is concerned:

� Be sure that your agreement with the software vendor includes timelines
and benchmarks that are realistic regarding your needs.

� Include penalties for not meeting targets.

Don’t jeopardize your project by allowing the vendor to provide a prod-
uct at a time that is clearly out of touch with your reality.

� Factor in all the costs when purchasing your application.

Be sure you know what is covered under your warranty and what ser-
vices you might be paying for in areas where the warranty doesn’t apply.

� Spell out how much support in manpower and equipment you need to
assure a smooth implementation.

� Make sure that other resources with costs are accounted for in writing,
including such items as room space for testing, extra computer servers,
additional power capabilities, and cabling for the testing equipment.

254 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 254

All of these costs come out of someone’s budget, and if you don’t specify
that they are coming out of the vendor’s budget, they’re coming out of
yours.

� Make sure there’s something in writing that gives you an out if some-
thing doesn’t work as specified. You must be able to control the quality
of the product you are producing, and therefore you must also be able to
rely on the quality of the software application you are buying. Be sure
that it works as advertised; call the vendor’s user references and be sure
you receive a working demonstration of the system before you buy.
Verify that the software package you see demonstrated is the one you
will be buying. Don’t get caught buying a new version of the application
software that hasn’t been tested and debugged.

Unless you are really adventurous, you don’t want to be fixing the
vendor’s software at the same time you’re attempting to fix your own.
Avoid beta versions of an application or “bleeding edge” releases of soft-
ware. Let somebody with a higher risk tolerance be a guinea pig. You
don’t need the headaches, the poor press in your employer’s office, and
the possibility of slowing down or ruining your project.

Administering Contracts
If your company has a legal department, be sure to have one of its represen-
tatives review the contract first and alert you of any potential problems and
help you negotiate the terms if necessary. Now you’re ready to administer the
contract. But first you must consider which type of contract is best for you.

The type of contract you negotiate determines whether you bear most of
the risk or whether the vendor bears most of the risk. Ideally, you want the
vendor to shoulder most of the risk; of course, the vendor wants you to bear
the bulk of the risk in any agreement. The truth is, you’ll meet somewhere in
the middle.

In unusual circumstances, for instance, when an application you purchase is a
new version or is otherwise untested (and we told you not to buy that), the risk
in a transaction is shared between the parties. Extenuating circumstances can
shift a larger portion of the risk to one of the parties of the contract, but in gen-
eral, because both parties have a vested interest in the success of the product
and its use, risk is usually split on a more or less equal basis. Of course, part of
negotiating the contract is an effort to shift some of that risk away from yourself
and your sponsor, and with a little luck and a lot of skill, you can accomplish
that task.

255Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 255

Selecting the contract type
Some of the most basic contract types are listed in Table 12-2. Just keep in
mind that this is not an exhaustive list, but it’s enough to whet your appetite.

Table 12-2 Contract Types Defined
Contract Type Definition Who Bears the Risk?

Fixed price contracts You pay the vendor an The vendor bears the risk
(contracts with a single agreed upon price for here because he’s getting
fee) the work paid the same amount

whether he has to spend
more time on the project
than expected or the
project goes as planned.

Reimbursed costs The vendor is reim- The buyer bears more of
contracts bursed for all costs the risk here because if

incurred prices increase after
signing the contract, the
buyer still has to reim-
burse for the higher costs
even though the buyer
doesn’t get extra goods or
services for the increased
price.

Time and materials The vendor is reim- The buyer bears more of
contracts bursed for the time the risk because if it takes

and materials during the vendor longer to com-
completion of the plete the project, the
project buyer has to pay for that

extra time. Also, if the
price of the materials
increases, the buyer pays
more for those materials.

Writing the terms and conditions
Terms and conditions are the details of a contract that define every aspect of
its implementation and how its requirements on all parties are performed.
Some of the items usually covered in the terms and conditions of a contract

256 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 256

were mentioned in the section called “Solving problems and compromising,”
later in this chapter.

The terms and conditions don’t so much cover what you are buying (that
information is spelled out in the purchase agreement), but address the issues
surrounding your purchase, such as how and when payment will occur,
where delivery is considered to occur, how long the warranty and any exten-
sions will be, and who is responsible for any extraneous work and materials
outside the basic package being bought by you, the fearless project manager.
While some of these items seem like no-brainers, you would be surprised at
the impact they can have on your transaction. For instance:

� Free On Board (FOB) point: Otherwise known as the place where deliv-
ery is considered to occur. We have no idea where the term originated or
what that means, exactly. What we do know is that FOB origin means
that the title to the product transfers to the buyer at the point the prod-
uct is manufactured and shipped, and FOB destination means that the
title transfers at the buyer’s location.

“So what?” you ask. Well here’s what. If the title transfers at the point of
manufacture and shipping (FOB origin), then technically the buyer owns
the product at that point and is responsible for its transportation, insur-
ance, and so on immediately upon its release from the sellers location. If
the truck carrying the product is snatched by space creatures, you’re
still responsible for the product, even though the space creatures are
enjoying your software. Hey, you can’t control the space creatures!

Negotiate the best FOB clause you can get. If the seller insists that the
FOB be origin, agree to it if he agrees to insure and deliver the product.
Often, the seller wants the FOB to be origin for bookkeeping reasons —
the vendor can claim revenue for the product after the title transfers,
which looks good at the end of a fiscal quarter. The person you talk to
may be very accommodating in that situation.

257Chapter 12: Procuring Goods and Services

Understanding how contracts and
risk management coexist

All contracts come with some built-in risk. If you
want less risk you have to pay for it. Risk is just
like any other commodity in a contract that you
pay for. If you engage in a fixed fee contract, for
instance, the vendor assumes most of the risk,

because the vendor gets paid the same amount
whether or not he has to spend more time on
the project. To compensate for this risk, you are
expected to pay more for that type of contract.

18_749346 ch12.qxp 8/30/06 10:15 PM Page 257

� Payment terms: Should you pay the entire purchase price at the con-
tract signing? Nope. Most contracts involving software are structured so
that payment occurs in stages. Typically, some portion of the purchase
price is paid with the signing of the contract, and other portions are
payable at certain points during the installation and implementation.
Some usual pay point triggers are

• At product delivery

• At initial installation

• Upon first use

• After completion of installation

• At product acceptance

Graduated payment works for both sides of the agreement; the vendor
gets payments at various milestones, insuring that he gets income from
his investment in his product to help cover his costs; the buyer gets to
hold on to his capital longer and has some leverage to insure that the
vendor continues to provide the product and services he has agreed to
provide.

Nothing says leverage like withholding payment for incomplete or inade-
quate services and products. The final payment, usually at product
acceptance, happens when both sides agree that the work was com-
pleted satisfactorily and the contract is fulfilled. This step usually
includes a formal sign-off, which documents that the contract has been
successfully performed.

� Extraneous work and materials: This is work that’s not included in the
product purchase unless otherwise specified. In many cases, software
vendors provide only the software of which their product consists.
Usually, they specify that any hardware, cabling, air conditioning, infra-
structure or other factors necessary for the successful implementation
of their product are to be provided by the buyer.

This works for both sides of the agreement because the vendor doesn’t
have to provide components that may not be compatible with the stan-
dard requirements, and the buyer can control the environment in which
the application runs. This part of the contract should be specified, how-
ever, and the company providing the software should provide a list of
recommended equipment that is compatible with its application.

Creating the statement of work
The statement of work (SOW) is a written document that details the scope of
the work that the vendor will perform and is an output of the procurement
planning process. The SOW can either be written by the buyer or by the seller.

258 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 258

Usually, the SOW is written by the vendor, because the vendor will perform
the work. The buyer may have input into the SOW, and in some cases may
actually write it with the input and consent from the vendor. No matter who
writes it, the SOW needs to contain enough detail so that full expectations for
the project are understood by all parties. As with most of the other project
management processes, the SOW may be revised after more information is
obtained.

The statement of work, at a minimum, should include in detail

� The product that is being installed

� The process and procedures for installing the product

� A specific statement about who will be doing the work

� A specific list of resources that are necessary for completing the project

� Specific milestones for marking the advancement of the project

� The expected amount of time to achieve completion of the project

The SOW is a formal document and should be incorporated in the contract
for the software application that you have purchased.

Solving problems and compromising
Problems? Issues? What are you talking about? You bought the application
that fits your needs and negotiated a great contract that covers all your
bases. Or so you thought. Despite the best intentions of both you and your
chosen vendor, problems sometimes arise during the application of the terms
of your agreement.

Usually, the vendor is very accommodating in working through issues with
the customer. After all, unresolved problems are terrible for attracting repeat
business and can be deadly if customers discuss the problems in public
forums within an industry. It is extremely hard to sell a product after one or
more respected users have aired unresolved issues to their colleagues, so
vendors generally work diligently to resolve disagreements before they reach
a critical stage.

Sometimes, despite everyone’s best intentions, disputes can’t just be talked
out. Accordingly, all purchase agreements and product warranties include
stipulations for dispute resolution and remedies for disagreements between
the contracting parties.

259Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 259

Arbitration is a common remedy for resolving disputes that involve perfor-
mance and implementation issues, and it’s a better way to address these
issues than a good old-fashioned lawsuit.

Most, if not all, contracts also specify where the arbitration or legal proceed-
ings arising from a dispute will be administered. Typically, software vendors
want disputes to be resolved in the vendor’s home state, and you (the buyer)
probably want them to be handled in yours. This can be an important point in
contract negotiations because the available remedies and penalties under con-
tract law can vary from state to state. Be sure that you can live with whatever
jurisdiction you agree to use. Your employer or sponsor may have strict guide-
lines regarding these issues, and you should always be aware of their needs.

Know what can and what can’t be disputed under the terms of your agree-
ment. Most contracts contain clauses releasing either party from their obliga-
tions under certain circumstances, such as damage due to monsoons, falling
meteors, or other natural disasters.

In general, anything other than these factors, as well as terms of delivery
and performance, are considered negotiable items in the contract and can
be altered with the agreement of both parties to the contract. Issues such as
when delivery occurs, who insures equipment and product, who owns the
code, and how the product is delivered can all be negotiating points, and
they can all affect your satisfaction with the contract you sign. When done
correctly, a well-negotiated contract addresses all these issues and leaves
little to chance concerning what is expected from you and your vendors.

If all parties know what is expected from your agreement, there should be
little need for dispute resolution. Compromise and working through issues
are always better than going to arbitration, being sued, and creating a hostile
and tense working environment that you might have to endure due to a
poorly executed contract.

Be flexible in dealing with issues, but also be firm in insisting that the provi-
sions of the contract be upheld. It’s just good business, and neither party
should be upset with conforming to their responsibilities under their mutu-
ally agreed upon contract.

Closing the Vendor Contract
Time flies when you’re having fun, and boy, have you had a ball. Tempus has
fugit and you’re at the end of the implementation of your software application.

260 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 260

What now? Through the whole process of acquiring your application, you
have conformed to a system in which you monitored and documented every
event related to your system acquisition. Now is the time to review your find-
ings, get together with the software application vendor, and close out the con-
tract. Read on for some insight into what you need to do to conclude your
contract.

Auditing the goods and services
As the project manager, you need to ensure that the software application
you purchased performed as agreed upon. If you have some of the vendors’
employees perform areas of the system testing, you’re expected to demon-
strate the results of the audits of these testing services.

If you have a dispute — either you don’t agree that the vendor adequately
performed the software testing or their application was down longer than
agreed upon percentages — you need to take the appropriate action. Some
typical responses include withholding payment, insisting that the vendor rec-
tify the situation, or (in serious situations that can’t be resolved) going to
arbitration.

But one way or the other you need to audit the products or services that
you receive in order to make sure you get what you paid for. It’s best to
make auditing an ongoing process (hint, hint, build it into the project time-
line) instead of waiting until the end of the project to announce that the
vendor didn’t meet an agreed upon objective. This auditing process may
include scheduled meetings with the vendor to discuss outstanding issues,
written status reports from the vendor, and acceptance of predefined deliver-
ables at scheduled due dates.

Signing off for the procured
goods and services
There are trigger points for contract payments at defined times or accom-
plishment targets in the contract. The final trigger is your acceptance of the
system as a complete and functioning product. When you and the vendor
agree that the goods and services you received are the goods and services
you expected, you can sign off that the vendor has met its obligation.

261Chapter 12: Procuring Goods and Services

18_749346 ch12.qxp 8/30/06 10:15 PM Page 261

Signing off is a formal transaction with full documentation indicating both
your and the vendor’s agreement that the project is complete to the satisfac-
tion of all stakeholders. At this point, and only at this point, is the contract
complete. Great job on managing a subproject to your main project, but hold
the champagne — this is a business transaction, after all. Wait until you’re off
the clock!

262 Part III: Executing Your Software Project Plan

18_749346 ch12.qxp 8/30/06 10:15 PM Page 262

Part IV
Controlling Your
Software Project

19_749346 pt04.qxp 8/30/06 10:15 PM Page 263

In this part . . .

Every time you work on a big software project, things
tend to get slippery. Stakeholders want changes,

contractors miss deadlines. Exerting control is a signifi-
cant factor in successful software project management, so
Part IV helps you understand the importance of managing
and tracking changes to your software project with an eye
on reining things in. You discover how to create effective
change control plans while proactively tracking project
performance.

19_749346 pt04.qxp 8/30/06 10:15 PM Page 264

Chapter 13

Managing Changes to
the Software Project

In This Chapter
� Planning for and managing project changes

� Managing your project’s scope

� Creating and following a change control system

� Getting a handle on project costs

� Dealing with variances in your schedule

� Expecting and accepting changes

P lan for changes. That’s right; you will encounter changes during your
software project, so accept these facts, and just plan for them. Maybe a

key team member will be removed from the project at a critical time or your
stakeholders will determine that some of the functionality that they didn’t
want at the beginning of the project is now critical. Or perhaps an outsourc-
ing portion of your project that you planned to have completed in six weeks
will now be extended for three more weeks. Don’t blow a gasket.

Encountering changes during your software project is not a sign that you
planned poorly; it’s a sign that you are living in the real world where people
change their minds, risks are encountered, and stuff happens. You’re better off
accepting the fact that you will encounter changes so that you can plan accord-
ingly. That’s why the title of this chapter is “Managing Changes to the Software
Project” instead of “Trying to Eliminate All Changes to the Software Project.”

20_749346 ch13.qxp 8/30/06 10:15 PM Page 265

Introducing the Controlling
Process Group

According to the Project Management Institute, the project management pro-
cess group that deals with managing change is the controlling process group. You
will discover a lot more about process groups if you decide to move forward in
your career and take the PMP (Project Management Professional) exam (see the
appendix for information about this certification exam).

The controlling process group is used to measure and compare where you
are with where you planned to be. The controlling process group is con-
cerned with monitoring and controlling the following factors:

� Scope

� Schedules

� Costs

� Risks

� Communication

� Team member performance

� Contract administration

� Quality

Controlling the Project Scope
As the project manager, it is your responsibility to remain constantly aware of
all the details surrounding the scope of the project. The best way to get off to
a good start in this department is to clearly and thoroughly define the scope
at the start of the project. In this section, we talk about controlling the scope
you set up earlier (if you want more information on defining project scope,
check out Chapter 3).

If you have a thorough, well-planned scope to begin with, others will find mis-
interpreting the scope later more difficult.

You need to be aware of the potential for scope creep, which is an odd phe-
nomenon in which some stakeholders lose perspective and begin to make
requests that were never part of the original plan. You can recognize scope

266 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 266

creep when you begin hearing people express expectations that certain
functionality — that you never planned for — ought to be included.

With project management experience, you will start to notice the types of
activities that precipitate requests for changes. For example, during project
meetings, certain stakeholders may start talking about functionality that
wasn’t included in the scope. They may talk about these extras as if adding
them is no big deal. They may even act as if everyone knew that this function-
ality was expected all along.

If you’re past the planning phase and you ever hear a stakeholder say, “Why
don’t we consider adding something new to the interface,” or other words to
that effect, such as “Well, while we’re doing X, we might as well do Y,” beware.
The stakeholder may make it sound as if both activities go hand in hand, but
only one of the items is actually part of the project scope. It’s up to you to
manage and control the scope before you end up having to add all kinds of
unplanned bells and whistles. With each project that you manage, tactics like
these become more obvious and easy to recognize. Just be aware of them
and add them to your very own lessons learned document so that you only
have to deal with them once.

Also keep in mind that scope refers to all the work — and only the work —
that your team needs to accomplish to successfully complete the project. If an
item isn’t part of the documented scope, then your team shouldn’t be doing it.
Any other response to scope creep can get you into trouble. The biggest dan-
gers, not surprisingly, have to do with the other two sides of the Iron Triangle,
the timeline and the budget. Additional factors include adding chaos and
disharmony to your team’s dynamic. Can you say “new job search?”

Examining the project scope
The project scope includes all of the work and only the work that needs to be
completed to successfully bring the project to fruition. You have several oppor-
tunities to examine your scope as you progressively elaborate the project scope.
Progressive elaboration occurs when you develop the scope through several
stages — making the scope more complete with each pass-through.

You and your stakeholders must continue to examine the project scope,
which is actually what you and your customer agree at any particular point in
time is the work that needs to be completed.

As an example, at the start of the project when you are beginning to gather
project requirements, you and your client may agree that the project scope is

267Chapter 13: Managing Changes to the Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 267

to generate a software program that constructs online report card applica-
tions for a local school system. Initially, you and the client agree that the pro-
ject should include methods for

� Allowing each teacher to document scores for individual students

� Preventing a teacher from adding or changing scores of students who
are not in his or her class

� Enabling teachers to print individual reports for their classes

� Sending automatically generated reports to the principal

� Generating reports that show trends in students’ scores, as well as class-
room averages

� Allowing teachers to input scores for both midterm and final grades

� Permitting parents to log on to view daily homework assignments

Later, after facilitating several of the efficient customer meetings that you
documented so thoroughly in your project communication plan, you and
your client agree that the scope of the project now must also include new
methods for the following:

� Generating communication to parents when a student’s average score
for any class goes below a predefined level

� Generating e-mails to the principal and department chair whenever a
teacher has a classroom average that reaches a predefined level (for
instance, the average student grade in one teacher’s class is 72 percent)

� Allowing teachers to input documentation from parent/teacher
conferences

� Allowing teachers and guidance counselors to document student behav-
ior problems

� Forcing teachers to change their passwords every 30 days

� Creating a password-controlled, secure area where parents can log on to
view their child’s grades and progress

� Dialing the pizza parlor on the corner to have them automatically deliver
a large sausage and mushroom pizza to the teacher’s lounge each Friday
(just wanted to see if you were alert)

Now that you and the client have reexamined the scope and agreed that it
needs to change, you should document these changes and follow a prede-
fined change control process.

268 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 268

Every time the scope changes, you must, must, must document the change —
as well as its potential impact on costs and timelines — and then make sure
the client signs off. This is significant because it forces both you and the
client to examine and progressively elaborate the scope, agreeing on changes
before they are documented as part of the scope. But most importantly, you
have proof for later, when the client acts surprised that the project took
longer and cost more than originally planned.

Creating and following a
change control system
You must create an effective change control system because changes are
inevitable and even at times necessary. One way to prepare for these changes
is to create and follow (and set the expectation that others will also follow)
an effective change control system.

The purpose of the change control system is to identify, monitor, and learn
from the changes occurring in your project. Your change control system may
consist of tools, such as a database or spreadsheet to record your proposed
changes, and you may also have a change control board (CCB) to review and
approve changes in your firm. Project team members would document their
proposed changes and present them to the CCB for evaluation and approval.
If you do have a CCB, then all project changes would need to go before the
CCB. The CCB might have just two members or it could be a large committee.
The number of members varies from firm to firm. If you have too many mem-
bers on your CCB, though, making decisions may take longer.

Although you may only be concerned with your own proposed change, the
CCB is aware of all project changes and could determine whether your
change may affect other portions of the software project. In effect, the CCB
keeps everybody honest.

Instead of, or in addition to, a CCB, you might also track changes with a
change control database where project team members or other stakeholders
may enter their proposed changes. The CCB or SPM can then review and
either approve or deny each requested change.

If your software project is relatively small, you may not need a whole data-
base. Why bother with all that infrastructure stuff when a simple spreadsheet
will do? Stakeholders simply record changes on the spreadsheet, and later
the CCB (or another review body) lists each project change request as
approved, rejected, or on hold for further investigation.

269Chapter 13: Managing Changes to the Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 269

You can use a spreadsheet to further track the changes after they’ve been
approved. You can record when changes are implemented into the various
system environments so that you can monitor the consistency of the different
system environments. This documentation could also be used for a root cause
analysis if you encounter system problems after changes are implemented.

As an example, a typical change control spreadsheet could look similar to
Table 13-1.

Table 13-1 Change Control Spreadsheet
Change Owner Accept/ Factors Date in Date in Date in
Request Reject Test QA Produc-

Environ- tion
ment

Add functionality Sara A 05/02 05/15 05/17
for secure K.
e-mail of student
progress reports

Remove Amanda R Would N/A N/A N/A
Discipline M. affect other
field from teacher areas using
conference page Discipline

field

Create report to Adam A Approved 08/22 08/30 08/30
notify principal of D. by client,
teacher’s average stakeholder,
classroom grade and sponsor
of 72%

Define your change control system early in the project. You don’t want to be
confronted with proposed changes without having the appropriate processes
in place to deal with them. Also, make sure that all of the appropriate stake-
holders are aware of and understand the steps to take in order to follow the
appropriate change control processes.

Don’t forget to include emergency change requests in your change control
system. Although normal changes may require CCB approval during its regu-
larly scheduled meetings, you may want to create a separate process for emer-
gency changes. For example, a stakeholder who has a change that is considered
an emergency may be able to take the change request to one of three or four
individuals who are authorized to approve the emergency change. Even though
you may have a separate approval process for this, make sure that stakeholders
complete the appropriate documentation so that you have a record of who
approved the change and why it was implemented without CCB approval.

270 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 270

Be sure to define what constitutes an emergency change:

� If you’re creating software in the healthcare industry, an emergency
change may be anything that, if left alone, could affect patient care or
patient safety.

� In some firms, an emergency change is anything that, left alone, may
cause the organization to lose money.

The project team members need to understand the attributes that cause
a change to be considered an emergency.

Documentation is crucial in the event of a system problem. You can quickly
view the documentation for all changes that were done just prior to the prob-
lem and use the information to perform a root cause analysis.

Determining the value of
the proposed change
When project changes are proposed, you need to determine the cost of
implementing the change, as well as the value that the proposed change will
add to the project. For example, if it will cost $500 to implement a change but
that change will add a value of $10,000 to the overall project, you may have a
better chance of getting that change approved than if the cost of your change
is $10,000 and only brings $500 in added value.

Of course, you’re not guaranteed that a change will get approved just because
it adds more value to your project than it costs. You still have to consider the
other parts of your Iron Triangle — time and scope. Maybe your proposed
change will add $10,000 in value to your project, but if it completely changes
the scope or adds six months to an already tight timeline, then those areas
will also need to be taken into consideration when determining whether or not
to implement a change.

Correcting mistakes
At times, you’ll be required to make project changes in order to correct
mistakes — either in coding or software testing or because of misunder-
standings, miscommunications, or any number of other reasons. If you have
the appropriate change control system in place and you complete the appro-
priate project planning processes, making corrections is a more manageable
experience.

271Chapter 13: Managing Changes to the Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 271

You can take certain steps to keep potential mistakes to a minimum:

1. During the planning processes, spend the appropriate amount of time
gathering project requirements.

You may be tempted to hurry through this phase so that you can quickly
get to the fun stuff, but the time you spend here will save you time later.

2. Follow your well-defined communication management plan.

You can avoid many mistakes if you proactively communicate with the
appropriate stakeholders.

3. Create a comprehensive risk management plan.

When potential risks materialize, you will be ready to deal with them
instead of being caught by surprise.

4. Define and document your scope management plan.

Your project team will be less likely to misunderstand the scope and
potentially make mistakes if the scope is clearly defined, documented,
and communicated.

One way or the other, you and your project team members will probably
make mistakes during the course of your software project. The main thing to
know is that (usually, anyway) no single mistake is the cause of a major disas-
ter. Of course, lots of little mistakes are never good for a project either.

Controlling Project Costs
Earlier in this chapter, we mention the Project Management Institute (PMI)
project management process groups. The project management process group
that is concerned with controlling project scope, costs, schedule, quality, and
risks is the controlling process group.

Just like the other parts of the Iron Triangle, scope and timelines, controlling
costs is essential. In this section, we talk a little bit about the methods you
can use to control your project costs.

You can’t change one of the sides in the Iron Triangle without affecting the
other sides. For example, if you start cutting costs by eliminating personnel,
you will probably increase the timeline. If you add bells and whistles to the
scope, then you will most likely increase the time and the cost of the project.
Get it? By the way, we talk about costs in more detail in Chapter 9.

272 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 272

If you allow your costs to vary from your original plan without going through
the appropriate processes to identify the need for changes, gain the appropri-
ate approval, and follow the identified change control processes, you won’t
just affect the cost of your project, but you could also negatively affect other
areas of the project as well. You could also use this documentation as part of
your lessons learned.

Managing project cost variances
During the planning phase of your software project, you gather information
you need to create your cost estimates, budgets, and baselines (see Chapter 9).
Chances are that with a software project, most of your costs will be associ-
ated with resources required to complete the project, including program-
mers, analysts, software engineers, application testers, and other personnel.

Throughout the project, you need to be aware of variances in what you
planned for your project to cost, compared to actual costs. For example, if
you planned to have a certain percentage of experienced programmers and
a certain proportion of junior or associate programmers, this ratio will be
affected if a junior programmer is removed from the project and you replace
her with a senior programmer. This action will affect your project costs and
create a variance.

Aside from the cost of resources creating project cost variance, other actions
or decisions can also potentially create a project cost variance. For instance,
say you start to run out of time on your project and instead of creating a
thoughtful and innovative plan of corrective action, you decide to sweep the
problem under the rug by just eliminating one phase of system testing. After
all, if there were bugs or problems in the software, wouldn’t they have been
caught in one of the previous phases of testing? “Besides,” you say to your-
self as you justify this craziness, “I’ll be the hero of Projectville when the
client sees how much time and money I’m saving by skipping one small
system testing phase of the project!” This ingenious decision to eliminate
some system testing could result in added time to the project due to recod-
ing, eliminating bugs, and then more thorough testing.

Adding and removing resources creates cost variances, but your bad deci-
sions can also create cost variances. Be careful of the project decisions you
make; they can, and probably will, have lasting implications, not just for this
one particular part of your project, but also for future phases.

273Chapter 13: Managing Changes to the Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 273

Estimating the cost of change
When you estimate the cost of a change, you should consider not just the
part of the project that you’re changing, but also other affects of this change.
For example, making a change to the project schedule could affect project
costs with either a cost increase or cost decrease, depending on how you are
modifying the schedule. Likewise, making a change to the project costs may
also affect the quality of the project or product. Take all of these costs into
consideration when estimating the cost of any change.

During the planning phase of your software project, when you create your
cost management plan, you identify the methods you might use to identify
cost changes in your project. Don’t forget to also identify ways to have these
changes approved, and don’t forget to identify who’s in charge of approving
these changes (perhaps you need a CCB, as described in the section “Creating
and following a change control system,” earlier in this chapter).

It would be a harmonious idea to also identify during the planning phase
the methods you would use for estimating the cost of project changes. This
should all be decided and documented during the project planning phase in
your cost management plan.

Forecasting variance
In Chapter 14, we tell you how to measure and monitor your costs (and
schedule) using earned value management (EVM), so now you have some-
thing to look forward to. At any point in time during your project, you should
be able to determine how much your actual costs vary from your projected
costs. Forecasting variance can be useful for several reasons, but the most
important is that your stakeholders will expect this information from you and
you will want to know whether and when you need to take corrective action
to bring your project costs back in line.

If you know your earned value (EV) and you know your actual cost (AC), then
you can calculate your cost variance (CV). Here’s the least you need to know:

� To determine the AC, simply add up all the costs for the time period that
you are measuring.

� To determine the EV, look at the amount you budgeted for the work your
team has completed at a particular time in the project schedule.

� To determine the CV, subtract the AC from the EV (CV = EV – AC). This
difference is how much you vary in the costs that you expected to incur
at this point in time and your actual costs for the same time period.

274 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 274

When you know your cost variance, you can start taking steps to get the
costs back in line, if necessary. Along with bringing the costs back in line,
don’t forget to follow the meticulous communication plan that you docu-
mented during your planning phase. In that communication plan, you indi-
cated the appropriate stakeholders with whom to communicate regarding
costs variances, and more.

Controlling the Project Schedule
When creating the project schedule during the planning phase of your soft-
ware project, you probably spent a large portion of your time gathering infor-
mation. You probably did most or all of the following:

� Spoke to project managers who had managed similar projects

� Gathered requirements from appropriate stakeholders and worked with
them and your project team to prioritize and sequence the tasks

� Built the schedule from the ground up focusing on each of the project
activities, their definition, their sequencing, and estimating their durations

� Considered the appropriate resources required to complete the project
successfully in the desired timeframe

� Built in contingency time in the event that a phase of the project
runs over

� Created a schedule management plan that defined how you would con-
trol the project schedule and manage project time variances

Taking your time with gathering requirements, speaking to the appropriate
resources, and crafting a thoughtfully considered schedule management plan
will save you a lot of time in the long run. Armed with these requirements,
you can proactively ward off schedule issues and variances before they get
insurmountable.

Managing project time variances
Say you did everything right: You created an extremely thorough work break-
down structure (WBS), you spoke to the appropriate people to gather their
insight and wisdom, you spent a suitable amount of time gathering require-
ments, and you created your project network diagram. Everything should
flow flawlessly, right? Right! In the Ivory Tower Project World everything

275Chapter 13: Managing Changes to the Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 275

would go like a dream, but you’re here with us — in the real world — and
sometimes stuff happens.

Maybe you did all the right things during your schedule development, but
let’s just say that something has gone amiss and your schedule is no longer
on track. Don’t panic. There are steps you can take to manage project time
variances. Because you’re already here and you’re already reading this, we
may as well tell you what those steps are.

Before you manage your project time variances, you would of course need to
determine that you actually have a project time variance. As part of the con-
trolling processes, you will be monitoring your project schedule and determin-
ing if where you are now is where you said you would be when you created
your schedule. The schedule controlling processes are concerned with

� Using the project schedule as an input to compare your actual results
with your plan

� Using your performance reports (part of your communication plan) as
an input to compare where you are in the schedule with where you
planned to be in the schedule

� Looking at your approved change requests to determine whether the
changes that have been approved and implemented have impacted your
timeline

� Reviewing the schedule management plan to specify how you will track
and monitor changes to the schedule

You will use all these criteria above as inputs to monitor and control your
software project schedule and manage the variances. There are also useful
tools and techniques to use in monitoring your schedule. One of these tools
is a project management information system (PMIS). There are many good
ones on the market, but we’re most familiar with Microsoft Project. You can
find out more about this software by reading Microsoft Project 2003 For
Dummies by Nancy Stevenson (Wiley).

PMIS is only as good as the information it’s fed and will never replace an
effective project manager. Don’t expect the PMIS to manage and control your
schedule for you just as you would not expect a hammer to build a house for
you; it’s only a tool.

Some of the other tools you might use to manage and monitor schedule vari-
ances include the following:

� Schedule change control system: Devise a system (spreadsheet,
database — whatever works for you and your particular project)
where you can receive schedule change requests, assess their impact

276 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 276

and value, and document their acceptance or denial. This doesn’t have
to be something fancy or technical; it just has to be a process that works
for your project.

� Performance measurement methods: Use these to produce your sched-
ule variance and Schedule Performance Index (SPI), which you can find
out more about in Chapter 14. The bottom line is that these numbers,
your schedule variance and SPI, will tell you how big of a deal a particu-
lar change really is and will help you determine if you need to take cor-
rective action.

� Variance analysis: Use this to determine whether where you planned to
be in the schedule is the same as where you really are in the schedule.
This will also help you in determine what (if any) corrective action to take.

This is not an exhaustive list of all the tools and techniques that could possi-
bly help you in managing schedule variances and controlling your schedule.
This is just a list to get you started and point you in the direction of knowing
that there are ways to monitor your schedule; you need to decide which
methods are right for your project.

Estimating impact of change
on the project schedule
When a stakeholder submits a change request using the change control
system that you defined and communicated, you will need to determine the
impact of the potential change. The requested change may impact the project
costs, schedule, and/or scope, but for the benefit of this section we are just
focusing on the impact to the project schedule.

Instead of providing some fancy-schmancy formulas (although we do love for-
mulas, especially the fancy-schmancy kind), we’re just going to go over some
practical advice based on our experience as project managers. When some-
one submits a change request, you would be wise to discuss each change
with a change control board or some other body so that you can gain insight
from others as to what impact this change could have. There may be others
involved in the discussion with the CCB who can offer some wisdom as to
other areas this change could affect. As you go through the proposed change
requests, you may want to ask yourself (or the CCB) some of the following
questions:

� What happens to the project if we don’t implement this change? For
example, if you don’t implement the change, and something you need
won’t function, this change could have a higher priority than other
changes.

277Chapter 13: Managing Changes to the Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 277

� What are the implications for the system testing if we do implement
this change request? In other words, when you implement a change to
your software project, you not only have to test that particular code, but
you need to test other areas of your application that may be affected.
Also, you need to extend the schedule in order to accomplish all the
testing.

� If we implement this particular change, what other areas of the actual
project will we be affecting? Consider each of those areas to determine
whether you need to change the project schedule.

� Are there other changes in the project that I can implement in order
to reduce the impact of this particular change? For example, if you
move forward with this change, you can prevent schedule delays by
adding a programmer to a portion of the project.

� Is there enough positive impact in implementing this change that can
counteract the negative implications? For example, maybe you add
three weeks to your schedule, but the actual change will increase the
value of the product.

Forecasting schedule variances
In Chapter 14 we discuss Schedule Performance Index (SPI), which is used to
trend the performance of your project and allows you to forecast how effi-
cient your project is operating. Determining your SPI permits you to forecast
schedule variances. We don’t want to ruin your fun in reading Chapter 14, so
we won’t go into painstaking detail on SPI and trend analysis, but we do want
to whet your appetite.

Forecasting schedule variances enables you to look ahead to determine
whether you’re on schedule. Having this knowledge provides you with an
opportunity to show your creative talents and start defining corrective action
to bring the project schedule back in line with your plan.

In a previous portion of this chapter we showed you how to calculate your
earned value, actual costs, and cost variance to determine whether your
actual costs were in line with your plan. There are some similar formulas to
use for forecasting schedule variances. Here they are:

� If you know your planned value (PV) and you know your earned value
(EV), then you can calculate your schedule variance (SV).

� Your PV indicates, for a particular period, how much work was sup-
posed to be completed.

278 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 278

� Your EV indicates the work that was really completed during a particular
period.

� To determine your SV, you subtract your PV from your EV (SV = EV – PV).
This difference is how much you vary in where you are in the schedule
compared with where you expected to be for the same time period.

After you know your schedule variance, you can start taking the necessary
steps to get the project schedule back to where it needs to be. Again, after
you determine that you have a schedule variance, and you’ve gone through
the correct processes to get the necessary approvals to implement the
changes, you should follow your scrupulous and carefully defined communi-
cation plan that you documented during your planning phase.

Follow your communication plan to communicate with the appropriate stake-
holders regarding the schedule variances and corrective action.

279Chapter 13: Managing Changes to the Software Project

Knowing why you should expect changes
No matter how diligently you gathered stake-
holder requirements and how detailed your pro-
ject plan is, you will, at some point(s) in your
software project, experience a need for project
changes. Changes are to be expected; that’s why
you have risk management and communication

plans and change control. In software projects,
changes can mushroom into expensive, time-
munching beasts, but with the proper planning,
change control processes, and expectation set-
ting, you can manage the changes.

20_749346 ch13.qxp 8/30/06 10:15 PM Page 279

280 Part IV: Controlling Your Software Project

20_749346 ch13.qxp 8/30/06 10:15 PM Page 280

Chapter 14

Using Earned Value Management
in Software Projects

In This Chapter
� Defining earned value and other whimsical terms

� Calculating formulas for earned value management

� Determining if you are over- or underbudget

� Determining if you are behind or ahead of schedule

� Pulling it all together

� Deciding what to do with this information

You never want to lose track of the notion that you must measure your
performance throughout the duration of your software project. Even if

everything appears to be rosy, the project team is having fun, your stakehold-
ers adore you, and your sponsor is turning cartwheels in the hall, you still
need to measure performance so you can quantify whether or not your pro-
ject is progressing as expected. When you measure a project’s performance,
you give yourself the opportunity to proactively eliminate molehills before
they become mountains by figuring out where the moles are hiding.

Defining Earned Value Management
Earned value management (EVM) is a way of measuring your performance
(and the performance of your project team) at any given date or point in the
schedule. As your project progresses, you should take the opportunity to
analyze costs, the schedule, and other issues (in this chapter we just focus
on costs and schedule). You use the EVM measurements to compare your
projected progress with your actual progress on a certain date.

You use EVM to answer the question, “What is the value of the work that you
and your team have completed as of today or as of some other particular date?”

21_749346 ch14.qxp 8/30/06 10:18 PM Page 281

When you perform EV analysis on your project, you assign a number to the
progress of your cost and your schedule. As you put value into your project,
you should be getting value back from your project. Analyzing your earned
value enables you to determine the difference (if any) between how much
value you planned to add to your project and how much value you are actu-
ally adding to your project.

During the communication planning phase of your project, you should create
plans that define how your performance measurements are reported and how
often you need to create and distribute that information. For a project lasting
several years, you may have designated in your communication plan that you
will prepare quarterly performance measurement reports. For a project lasting
less than a year, it makes more sense to distribute this information monthly.

Using EVM, you put these plans into action by reporting the status of your
project as of a particular point in time. Always communicate your progress to
appropriate stakeholders. You don’t necessarily have to report findings to all
stakeholders.

Understanding what earned
value is (and isn’t)
Earned value is a means of measuring your performance on a project by eval-
uating the status of your project costs and schedule. You can also perform EV
analysis on other areas of your project, but in this chapter we focus on the
two big ones.

When you use EV analysis, you compare where you are with where you planned
to be, with an eye on taking corrective action, if necessary, to realign costs
and schedule.

Discovering the other pieces
of the EV formula
To complete this analysis, you need to calculate a few formulas. Don’t be
scared; these are very simple computations. If you can add and subtract, you
can perform EV calculations. Here are the primary terms and formulas you
need to understand:

� Planned value (PV)

� Actual cost (AC)

� Earned value (EV)

282 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 282

If you studied or read a version of the Guide to the Project Management Body
of Knowledge (PMBOK) that was published prior to the year 2000, you may
have seen different terms for these formulas. Since 2000, the PMBOK has
updated its terminology, as you can see in Table 14-1.

Table 14-1 Earned Value Terms, Then and Now
This Is the Current Formula This Is the Old-School Formula

Planned value (PV) Budgeted Cost of Work Scheduled (BCWS)

Actual cost (AC) Actual Cost of Work Performed (ACWP)

Earned value (EV) Budgeted Cost of Work Performed (BCWP)

Calculating EV doesn’t solve all your project’s problems. This analysis won’t
solve all of your cost and scheduling issues and it won’t take a disastrous
project and turn it into a gold-standard project. It is simply a way of measur-
ing your project’s performance at a certain point in time; you can use the
results of the earned value analysis to find the root cause of your cost or
schedule variances so that you can decide if these need corrective action.

Determining a project’s worth
Many project managers say that a project is worth nothing until it creates
something; a software project takes on value when it adds value to your
stakeholders. Well, that’s only partially true. Your project is always worth
something. From the first second you invest time and money in your project,
it has value because of that investment. Even if your project fails, its worth
can be determined by other factors:

� How much the team and other future teams learn from the mistakes
made or opportunities that arose: (Information about lessons learned
documentation is available in Chapter 17.)

� How much you can use the code in future projects: You may be able to
take parts of the code that did not work in this project and pour them
into another software project, thus saving time and resources on the
new project.

� How much you can make by selling the salvageable parts of your pro-
ject: You can take the parts of the code that didn’t work, sell them to
another organization, and then use that money to fund more viable soft-
ware projects at your own firm.

But when discussing worth or value of a software project, in this instance we
are talking about the value you get from a project compared to what you put

283Chapter 14: Using Earned Value Management in Software Projects

21_749346 ch14.qxp 8/30/06 10:18 PM Page 283

into it. Your project should create value to your stakeholders, and through-
out the project you should periodically evaluate the value of your project.

Discovering the Earned Value
Management Formulas

In this section you discover the meaning of each of these EVM terms, as well
as how to calculate the formulas. Please keep in mind that there are many
other terms and formulas related to EVM; we just focus on the most basic
ones. If you’re looking form more information about EVM, check out A
Practical Guide to Earned Value Project Management by Charles I. Budd and
Charlene S. Budd (Management Concepts).

Memorizing formulas when you understand what they mean is better than
memorizing them in a void. After you understand the main concepts, you will
be better off.

For our example, say your imaginary company has been contracted to create
a software program that can be used in vehicles to alert drivers to oncoming
radar. In fact, the software can automatically bring the car down to the cor-
rect speed limit. The program can be positioned to preconfigured settings to
recognize whether the driver should be driving the city speed limit or the
highway speed limit.

You have budgeted $120,000 for the cost of the project and you are in the
third month of the 12-month project.

You’ve done a great job on all your project planning, communication plan-
ning, scope management, and schedules, and you’ve won awards for your
risk management plan; now, it’s time to report the status of the costs and
schedule for the project to your sponsor and stakeholders.

Just keep in mind that you are comparing planned results to actual results.
During the project planning process, you determined what you expected the
costs and schedule to be at particular points in time, and now you are figur-
ing out whether your cost and schedule plans were accurate.

The following is an explanation of some of the basic earned value terminology:

� Planned value (PV): Planned value refers to how much you planned for
particular activities to cost during a certain stretch of time. You created
these estimates when you started your project planning. Planned value
is the cost for activities that you expected you and your team would
have completed as of a particular time period, and it answers the

284 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 284

question: “What did we say would be the value of the work that the team
completed as of this particular date?”

� Actual cost (AC): Actual cost refers to how much the project work actu-
ally costs as of a certain date. It answers the question: “How much have
we spent on this debacle — I mean project — anyway?” Actual cost
includes the indirect costs of the project as well as the direct costs of
the project if you considered these in your project planning process.

The direct costs include all monies spent directly for your software pro-
ject. For example, wages for resources assigned to work only on your
software project are direct costs. Indirect costs refer to monies spent on
resources or other items that may be shared among several projects,
such as overhead.

Subtract the AC from the PV (or the PV from the AC). The difference
between these numbers tells you how much over or under budget you are.

� Earned value (EV): EV provides you with a measure of your project’s
progress as of a certain date. EV answers the question: “What is the
value of this project work as of this particular date or particular point in
the schedule?”

To determine your project’s EV, combine all the costs budgeted for work
that your team has accomplished at this point.

The formula for figuring the EV is total budget multiplied by the percent-
age of work complete. For example, if you have completed 50 percent of
a $300 project, your EV is $150.

You can plot these values (PV, AC, EV) on a spreadsheet so that you can
easily see (and show stakeholders) the variances. If all the lines on the
graph line up on top of each other, you don’t have a variance — the
work is progressing exactly as you said it would, and you’re up for the
Supreme Project Manager of the Universe award, the envy of all the
other project managers who now grovel at your feet and constantly seek
your advice on estimating costs. Table 14-2 gives you a quick under-
standing of how these formulas work.

Table 14-2 Earned Value Formulas
Term Meaning

Planned value (PV) Planned percentage complete × the amount Budgeted
at Completion (BAC)

Actual cost (AC) Indirect costs + Direct costs + All other costs from
your original project plan

Earned value (EV) Actual percentage complete × the amount Budgeted
at Completion (BAC)

285Chapter 14: Using Earned Value Management in Software Projects

21_749346 ch14.qxp 8/30/06 10:18 PM Page 285

� Budgeted at Completion (BAC): This refers to the amount that you
planned for the cost of the project. In our example, we budgeted $120,000
for the cost of the entire software project. When you add all the planned
values for all the project activities, you get a total BAC. In our example,
your BAC is $120,000. BAC is the total cumulative PV at completion.

� Estimate at Completion (EAC): Looking at where you are at this point
in time, how much work do you estimate it will take to complete the
scheduled activities? The answer to that question is your EAC. To gather
your EAC data, use what you know about where things stand right now
to estimate what your costs will be when the project is completed. You
evaluate your project’s performance as of a particular point in time.

Playing with Values
When you understand how planned value, actual cost, and earned value
relate to your project, you can start figuring out how to calculate these num-
bers so that you, your sponsor, and your stakeholders can have a meaningful
snapshot of where your project stands with regard to costs and schedule.

Calculating your PV
How much did you plan to have completed at this point in time? Your per-
centages may vary, but for our example, we say that you planned on having
25 percent of the code completed by June 29. But you’ve actually completed
just 20 percent.

If your BAC is $120,000 and you planned on having 25 percent of the project
completed, here’s what the math yields:

PV = Planned % complete × BAC

Planned % complete = 25%

Budget at Completion (BAC) = $120,000

PV = .25 × $120,000 = $30,000

You had planned on your project having a value of $30,000 at this point in time.

286 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 286

Calculating earned value
After you know the planned value, you can calculate the earned value (the value
that you have earned on your project) of your software project relatively easily.
First consider what earned value means — how much work your team com-
pleted at a particular point in time. Just take the actual percent of the project
that your team has completed and multiply by how much you said you would
spend for the entire project.

Multiply the actual percentage of the project complete by how much you
planned on spending (BAC).

In our example we have completed 20 percent of the project, so here are the
details:

EV = Actual % complete × BAC

Actual % complete = 20%

Budget at Completion (BAC) = $120,000

EV = .20 × $120,000 = $24,000

At this point in time, your project has an earned value of $24,000.

Because you planned on your project having a value of $30,000 at this point
in time, but it only has a value of $24,000, you have a $6,000 variance (which
we discuss later).

Calculating your AC
You add your direct costs to your indirect costs to determine your actual
cost (AC). Say for the sake of argument that the AC is $25,000.

Now that you understand all of these terms and you know how to calculate
the formulas, you also know whether or not your team is ahead of or behind
the planned schedule. You now know whether your costs are more or less
than you planned and you have been able to quantify your progress.

With this knowledge, you not only can plan for what changes you need to
make for the rest of the project, but also report your progress to your

287Chapter 14: Using Earned Value Management in Software Projects

21_749346 ch14.qxp 8/30/06 10:18 PM Page 287

sponsor and stakeholders in a language that they can all understand. Maybe.
They should. Oh, they will.

Understanding this information also aids you in determining if you need to
make changes to your cost and schedule estimates.

Creating a new EAC
When your project sponsor or stakeholders ask about your Estimate at
Completion (EAC), they are asking you to forecast the total value of the pro-
ject based on project performance thus far. EAC answers the question, “What
do you expect the total value of the project will be when all the work activi-
ties of the project are completed?”

You use the EAC to forecast the total value considering how efficiently you
are completing project activities. There are many formulas out there to aid
you in determining your EAC, but for starters just consider one.

You must take into account two things when determining your EAC: your BAC
and your CPI. We explain how to calculate your CPI later (see “Finding your
cost and schedule performance indexes”), so just take our word for it now
that your CPI is 0.96. The ideal CPI is 1.00 or more.

Your CPI tells you how much you are getting for every dollar you spend. In
other words, you consider how much you expected to spend and how much
you are getting for each dollar you expected to earn.

To calculate your EAC, you divide your BAC by your CPI.

EAC = BAC ÷ CPI

In your example, this would be EAC = $120,000 ÷ 0.96 = $125,000. Seems logical,
doesn’t it? You budgeted $120,000, but you know your project isn’t going as effi-
ciently as planned because your CPI is less than one. If it’s not as efficient as
you planned, then you know you’re spending more money than you expected.
If you continue going at this rate, then instead of spending $120,000 as you orig-
inally budgeted, you should expect to spend $125,000 at completion.

EAC answers the question, “How much do you expect the project to cost
based on where you are in relation to the cost and the schedule?”

There are many variations of each of these formulas. If you plan on studying
for the PMP certification, you should memorize the formulas in the Guide to
the Project Management Body of Knowledge (PMBOK). The primary point to

288 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 288

keep in mind is that you want to figure out how much your cost and schedule
vary from what you had originally planned.

Determining the estimate
to complete the project
When you determine the estimate to complete (ETC) your project, you esti-
mate how much more you should expect to spend for the rest of the project
activities based on your performance thus far. You can do this mathemati-
cally without a lot of swanky formulas.

Say you already know that your actual costs are $25,000, and that you know
that your EAC is $125,000. So you can expect that to complete the project
activities you will have to spend $125,000 – $25,000, which is $100,000.

You expected to spend $125,000 and you’ve actually spent $25,000 thus far,
so you have $100,000 more costs to completion if the variances you’ve had
thus far can be considered typical and you expect future variances to also be
typical. Knowing that you have $100,000 left in your budget to spend is not
enough information to tell you whether you’re over- or underbudget. But you
need to know where your project stands at this moment if you want to deter-
mine whether you’re within your budget. We explain what to do with these
numbers in the following sections.

Uh-oh! What’s your variance?
Of course, there’s no point in calculating all these formulas unless you deter-
mine how much the values vary from your project estimates. You use vari-
ance analysis to start figuring out if your variance is significant, what the
reason for the variance is, and what, if anything, you should do about it.

First you should determine your cost variance (CV). You perform a variance
analysis to determine whether you’re over- or underbudget and ahead of or
behind schedule. This analysis provides you with the information you need
to proactively make changes to get your project back on the right path.

Usually, variance analysis is performed on the cost and the schedule, but you
could also perform a variance analysis on project scope, risks, quality, or
other measurable areas of your project. In this chapter, we focus primarily on
variance analysis for costs and schedule.

Table 14-3 summarizes the variance formulas we discuss in the next couple of
sections.

289Chapter 14: Using Earned Value Management in Software Projects

21_749346 ch14.qxp 8/30/06 10:18 PM Page 289

Table 14-3 Variance Formulas
Concept Formula

Cost Variance (CV) CV = EV – AC

Schedule Variance (SV) SV = EV – PV

Variance at Completion (VAC) VAC = BAC – EAC

Calculating cost variance (CV)
How much did you plan to spend? How much did you actually spend? What’s
the difference? CV just tells you how much your actual costs were compared
to how much you planned to spend.

How much did you spend compared to how much you planned to spend? You
find the answer to this question by looking at the difference between your
earned value (EV) and your actual costs (AC).

For example, if your EV is $24,000 and your AC is $25,000, here are the numbers:

CV = EV – AC

EV = $24,000

AC = $25,000

EV – AC = –$1,000

The difference between the EV and the AC is –$1,000. In this example, you
spent more than you planned to spend, so you end up with a negative number.

A negative number indicates that you are not doing as well as you planned;
your actual costs are higher than you estimated. A positive number tells you
that you are doing better than planned; you are not spending as much as you
planned to spend.

Because your cost variance is –$1,000, your actual costs are $1,000 more than
you budgeted. You have a negative cost variance, which is no reason to go
out and buy party hats and paint the town purple.

Calculating schedule variance (SV)
Where are you in your schedule? Where did you actually plan to be in your
schedule? What’s the difference? SV tells you how much your schedule differs

290 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 290

from your plan. Even though we are talking about a schedule, the variance is
displayed in dollars. After all, time is money. To determine the variance, take
the difference between the earned value and the planned value.

For example, say your EV is $24,000 and your PV is $30,000.

SV = EV – PV

EV = $24,000

PV = $30,000

EV - PV = –$6,000

Because your SV is –$6,000, your team isn’t doing as well as you had planned
with regards to the schedule.

A positive number for your SV indicates that your team is ahead of schedule.
You know that you’re behind schedule when you have a negative number for
your schedule variance.

Evaluating your Variance at Completion
We show you several variance formulas in the previous sections. A variance
just tells you how much you vary from where you expected to be. One other
item to evaluate is your Variance at Completion (VAC). VAC is the difference
between what you budgeted to spend when you documented your original
project plan and how much you expect to spend by the time you complete
your project.

To determine the VAC, you need to consider how much you budgeted to
spend and, considering where you are right now, how much you estimate you
will spend by the time the fat lady sings. The difference between these two is
the VAC.

Say your budget at completion is $120,000 and your EAC (considering where
you are in the project right now) is $125,000. Here’s what you do to determine
the VAC:

VAC = BAC – EAC

BAC = $120,000

EAC = $125,000

VAC = $120,000 – $125,000 = –$5,000

291Chapter 14: Using Earned Value Management in Software Projects

21_749346 ch14.qxp 8/30/06 10:18 PM Page 291

You can probably guess that because you have a negative number for your VAC,
the current numbers indicate that the project will cost more than you origi-
nally planned. A positive number for your VAC indicates that your project is
going better than you expected. A value of 1 indicates that you’re right on
budget.

Finding your cost and schedule
performance indexes
You can do several calculations to determine whether your software project
is progressing as efficiently as you and your stakeholders expected. Use
these performance indexes to trend your project’s performance and predict
how efficient your project will be for the duration. An index indicates how
efficiently your project is progressing and may be used to predict your pro-
ject’s future performance. Table 14-4 summarizes the index formulas we
describe in the following sections.

Table 14-4 Index Formulas
Index Formula

Cost Performance Index (CPI) CPI = EV ÷ AC

Schedule Performance Index (SPI) SPI – EV ÷ PV

Calculating your Cost Performance Index (CPI)
Cost Performance Index (CPI) answers the question, “How much are you get-
ting for each dollar you are spending on your project?” To determine CPI,
divide the earned value by your actual cost: CPI = EV ÷ AC.

For example, if your earned value is $24,000 and your actual cost is $25,000,
finding your CPI looks like this:

CPI = EV ÷ AC

EV = $24,000

AC = $25,000

EV ÷ AC = 0.96

Okay, now that you have your CPI, what does it mean? It means that you’re
getting $0.96 for each $1.00 that you expected to earn.

292 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 292

If your CPI is 1, then your project is right where you expected it to be. If your
CPI is greater than 1, your project is doing better than you expected; you’re get-
ting more than a dollar for every dollar that you expected to earn. If your CPI is
less than 1, you are not getting as much as you expected on your project.

In our example, you are earning less than $1.00 for every dollar you expected
to earn. Still, 96 cents isn’t too far from the mark.

Calculating your Schedule Performance Index (SPI)
SPI answers the question, “Where are you in the schedule compared to where
you expected to be at this point in time?” To calculate your SPI, you divide EV
by the PV. Here’s an example, with some made-up numbers:

SPI = EV ÷ PV

EV = $24,000

PV = $30,000

EV ÷ PV = 0.8

293Chapter 14: Using Earned Value Management in Software Projects

Whoop-dee-doo! What does this mean
to a software project?

Calculating PV, AC, and EV, along with vari-
ances, enables you to determine whether your
project is on the right path. These calculations
help you to predict how your software project
will progress based on where you are now. The
variances compare where you are with where
you expected to be.

Now that you know how to calculate all of
these numbers, what does that mean? A CPI
of 1 means that your project is costing you
exactly what you planned for it to cost. So,
logically, if the CPI is less than 1, you are spend-
ing more than you expected, and if your CPI is
greater than 1, you are spending less than you
expected. For example, if your CPI is 1.25, you’re
getting $1.25 for every dollar that you expected.
If your CPI is .99, you’re getting 99 cents for
every dollar that you expected.

Similarly, if your SPI is 1, your schedule is 100
percent where it should be. So, if the SPI is
greater than 1, that’s good. If your SPI is less
than 1, that’s bad. For example, an SPI of 1.25
indicates that the project is performing at a rate
of 125 percent, and if your SPI is .99, the project
is performing at 99 percent of where you
expected to be with regards to the schedule.

What does all this mean to your software pro-
ject? These calculations are necessary to
determine if you are over- or underbudget and if
you are over or behind on your schedule. This
gives you the information you need to determine
if your variance is enough to make significant
changes such as increasing the number of pro-
grammers or revising timelines.

21_749346 ch14.qxp 8/30/06 10:18 PM Page 293

Because your SPI is 0.8, your schedule is progressing at 80 percent of the rate
that you planned.

You guessed it! If your number is less than 1 for your CPI or your SPI, that’s
not a good sign. A number less than 1 indicates that your software project is
either overbudget or behind schedule. If the value of your SPI is 1, that would
mean that your schedule is going exactly as planned.

294 Part IV: Controlling Your Software Project

21_749346 ch14.qxp 8/30/06 10:18 PM Page 294

Chapter 15

Tracking Project Performance
In This Chapter
� Setting the proper project goals

� Keeping track of project performance

� Understanding the benefits and limitations of a PMIS

� Being a fine host for a project status meeting

� Communicating effectively with the appropriate stakeholders

� Communicating good and bad news

Your project is underway and things appear to be going well, or so you
think. How do you know how things are really working? Is your project

on time, within budget, meeting not just your, but also your stakeholders’,
expectations? Unless you have a system for measuring and quantifying the
performance of your project and all its components, you really don’t know
whether you’re moving things in the right direction.

To be sure that you can show that your project is progressing as planned,
you must be able to not only measure the various items involved in getting
the project to closure (see Chapter 14 for information on one kind of assess-
ment, earned value management), but also to communicate to the appropri-
ate stakeholders that things are going as anticipated. After all, if stakeholders
aren’t convinced, you may find yourself with a plan and no project to go with
it. You might also find yourself at an employment agency trying to finagle a
new software project management position.

So how do you prove that everything is as it should be with your project?
Well, that’s why you’re reading this chapter, isn’t it?

22_749346 ch15.qxp 8/30/06 10:17 PM Page 295

Planning Project Metrics
Setting up metrics is Step 3 of a fool-proof, four-step plan:

1. Set your project goals.

2. Use your leadership capabilities, project management skills, influence,
and problem-solving skills to meet those project goals.

3. Create project metrics to tell you whether you’ve reached those pro-
ject goals.

4. Use your communication management plan to disseminate that infor-
mation to your project stakeholders.

But what are metrics? Here’s a quick-and-dirty definition: Your project metrics
are the processes, tools, and techniques that you use to measure the progress
of your software project. The reason measuring your project progress is so
important is because metrics enable you to proactively recognize whether

� You’re on track with your software project

� You’re ahead of or behind schedule

� You’re under- or overbudget

� You’re performing to the quality standards defined by your organization

� Your project team members are performing to their maximum ability

� The potential risks you’ve identified have materialized and could poten-
tially adversely affect the project

� You need to intervene to bring the project back on track

As you plan your software project metrics, keep in mind that you should be
proactive; find problems before they find you. That’s the point.

Establishing project goals
Before you establish the project goals for your software project, you should
become familiar with the goals of the organization. A good software project
plan supports and aligns with the strategic goals of the organization.

After you define the project goals, all of the other project management
processes should support those goals. For example, the quality management
plan should support the quality goals of the software project and the prod-
uct. Have you ever heard the expression, “If you don’t know where you want
to go, then how will you know when you arrive?” The same concept applies
to setting project goals.

296 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 296

Planning for project metrics
Here are some of the project metrics you might use with your quality man-
agement plan to determine whether you’re meeting the quality goals defined
in your quality management plan for your software project:

� Benchmarking: This process compares your current project activities
to those performed in other similar projects. For example, you might
compare the development phase of your project with the development
project, similar in size and scale to yours, that’s already complete. The
benchmark for completing the development phase may be three months
less than what you scheduled. Similarly, you might use a benchmark for
comparing the number of errors found during the system testing phase
of a project similar in scope to yours. If the other project found fewer
errors than yours, you may have a problem. You can display benchmark
information in a manner that makes sense for your project. It could be as
simple as a bar chart with one bar displaying a ten-week testing phase
for your project and another bar showing a seven-week testing phase for
a similar size project.

� Pareto (pa-ray-toh) charts: These are histograms (or bar graphs) that
display project issues and rank order of the causes of those problems.

� Control charts: Charts that show processes that are not reliable or
stable.

� Project audits: Audits that are used to determine whether particular
project processes conform to defined parameters.

� Procurement metrics: Metrics that are used to evaluate contractors and
vendors.

� Earned value management: A tool that allows you to ascertain whether
you’re on schedule, within budget, and on track with your software pro-
ject (see Chapter 14).

Your organization may have other specific project metrics that you need to
become familiar with. You have several options out there, and some may be
better for a particular project than others. In general, we think it’s helpful to
be familiar with a broad range of project metrics so that you can determine
what will work best in any given situation.

The project metrics that help you succeed in the software project you’re cur-
rently managing may not be the same project metrics that will work in your
next software project. Be flexible and open to using a variety of project met-
rics that suit the needs of each individual project.

297Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 297

Determining realistic project milestones
Consider the major events or accomplishments in your life; these are consid-
ered milestones. Some examples are

� Turning 21

� Landing that first project management job

� Getting hitched

� Buying a car

� Earning a promotion

You may have different milestones, but a project milestone list should consist
of realistic, attainable milestones such as the following:

� Contract signed

� Project team in place

� Phase 1 development complete

� Unit testing complete

� Project acceptance sign-off

� Final payment received

You’re better off setting realistic project milestones that you can successfully
meet than you are setting unrealistic project milestones and missing every
deadline, overrunning your budget, and fighting scope creep every step of
the way.

Sometimes the organization or the client may impose unrealistic schedule
milestones. Unrealistic deadlines are a great example of a project constraint —
something that limits you or your project team. But when you have the power
to do so, create realistic project milestones. Work with your project team, other
project managers who have completed similar projects, and other stakeholders
to help you in setting realistic milestones. Don’t be hesitant to use the resources
available to you to assist you in setting realistic milestones.

Implementing a Tracking Plan
Hey, are your metrics working? How do you know? By implementing a track-
ing plan, of course. A tracking plan puts all the metrics you’ve determined are
important to work for you.

298 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 298

Using project baselines
As you start working your software project plan and progress through the
scheduled activities, you will undoubtedly encounter differences between the
plan and the work that’s actually being completed. You can use your project
baselines to compare where you are with where you should be. Your cost
baseline includes your project costs for all of the software project activities.
Your schedule baseline is a particular version of the approved (by the project
management team) project schedule with the project start and end dates.
Your quality baseline details the quality objectives of your software project.
You use your quality baseline to measure your project performance with
regards to quality. You use all of your project baselines as metrics to deter-
mine whether your project is on track.

The project baseline describes what you should be delivering, so it makes
the most sense that you use the WBS and the project scope statement as
your project baseline. Why reinvent the wheel? If you change the scope, you
change your project baseline. Here are just a few of the changes that could
potentially occur and affect your baselines:

� Programmers resign in the middle of the project, creating changes in
resource allocation.

� Vendors don’t meet their deadlines, causing you to push back some of
your own deadlines.

� Contractors create unexpected costs that must somehow miraculously
be covered by your project budget.

� Risks that were unknown prior to creating your project plan suddenly
materialize.

� Technology becomes obsolete, necessitating a change in methodology.

During the planning process, when you set up your change control plan
(which we explain in Chapter 13), you identify changes (by type and by sever-
ity) that require change request submissions and must be evaluated by the
change control board. If you encounter any of these or other unexpected
changes during your software project, you will need to make changes to your
project plan and you may need to establish a new software project baseline.

Do you recall, starting in Chapter 1 and continuing in almost every other
chapter, where we discussed the project scope statement and the work
breakdown structure (WBS)? Well, the project scope statement and the WBS
are what should be considered as the project scope baseline for your soft-
ware project; the project scope baseline details the work that you are to
complete.

299Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 299

If someone requests an activity or deliverable that is not contained within
your WBS or project baseline, you should also expect to see a project change
request; no doubt, you will need to modify your baseline if the project change
request is approved.

Only implement changes that have been approved by your change control
board or follow the specific change processes defined by your firm; other-
wise, you will jeopardize the integrity of your project baseline schedule.

When you receive the change request and it is approved by the change con-
trol board, you will change your software project scope statement and now
have a new project scope baseline. Easy as pie, right? Well, at least easy as a
cupcake.

Stressing accuracy in reporting
A solid communication plan spells out how specific types of information
should be spread to particular stakeholders. Your project sponsor and other
executives may require a high-level report or summary of the software pro-
ject status, whereas another project stakeholder — the software training
manager, for example — may only need info about, and screen prints of,
items to be included in end-user training. Sometimes, knowing what to com-
municate (and to whom) is pretty obvious. You would not go into an execu-
tive steering committee meeting carrying a handful of screen prints of each
item to be included in end-user training. That would be too much detail for an
executive steering committee meeting. (In general, when talking to execu-
tives, be brief and limit the discussion to a view from 30,000 feet unless you
are asked to provide specifics.)

In Chapter 4, we discuss performance reporting as a part of your comprehen-
sive communication management plan. Performance reporting is just a term
used to indicate what you do when you provide appropriate stakeholders
with the information they need regarding the status of your software project.

Look at Table 15-1 for examples of types of performance reports typically dis-
tributed to selective stakeholders.

Table 15-1 Performance Reporting
Stakeholder Communication

Executives Presentation at steering committee meetings; status
summary reports; milestone reports; risk summaries

Client Cost reports; budget variance reports; schedule
reports; resource reports; budget reports

300 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 300

Stakeholder Communication

Project Team Status reports; schedule change reports; issue
review meetings; project team meetings

Functional Managers Project team performance; milestone reports

In all of the examples in Table 15-1, you should consistently strive for accu-
racy. If you must give a presentation to your company’s executives, it’s under-
standable that you may be nervous and even a little scared to provide them
with any negative news on your software project. Maybe you think it’s better
not to tell them that you’ve missed a major milestone because they might
start to question your project management skills.

Don’t be tempted to misrepresent the facts; it will catch up with you in due
course. Seriously, do you think you could miss a major milestone and no one
would notice?

It’s imperative that you are completely accurate in all of your performance
reporting for the following and a host of other reasons:

� Your client, executives, team, and other stakeholders will appreciate your
integrity and come to count on you as someone who tells it like it is.

� The truth will always catch up with you sooner or later. Wouldn’t you
prefer to be the one to give the facts instead of telling a tale and being
exposed later? Who would trust you then?

� Your truthfulness demonstrates your leadership ability. If your team
members know that you lie, then why should they be honest about their
own progress (or lack thereof) when they provide status reports? Your
team will follow your example of integrity.

� The performance reporting you complete will be used to make other
project decisions regarding budget, cost, scope, schedule, resources,
and so on. It’s crucial to the integrity of the project that your perfor-
mance reporting be completely accurate at all times so that you and
others don’t make bad decisions based on inaccurate data.

� Being inaccurate in some of your performance reporting may result in
schedule slippage, cost overruns, scope creep, and the immediate need
to update your resume.

Your mother was right; always tell the truth, even when it hurts. And even if
she didn’t tell you to be accurate in your performance reporting, do it anyway.

Take the time to gather all of the pertinent facts for your specific perfor-
mance reporting requirements before providing project reports, summaries,
or presentations. The information that you omit because you ran out of time
could be the information that your client deemed crucial to hear.

301Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 301

Using a Project Management
Information System
A Project Management Information System (PMIS) is an automated program
that can assist you in some of your software project management activities.
PMIS software can definitely make things easier for you, but it will not do
your job for you and it will not correct you if you make a mistake.

You can use PMIS software to do the following:

� Create performance reports, resource reports, tracking reports, status
reports, and progress reports

� Schedule resources and view resource constraints

� Create a project baseline

� Track project progress

� Track and report on project issues and risks

� Organize and schedule tasks

� List task predecessors and successors

� Publish and share project information with your project team and other
stakeholders

� View project calendars, charts, and network diagrams

� Perform other project tasks or calculations, depending on the specific
PMIS that you use

PMIS software, such as Microsoft Project, usually includes many useful tools
and techniques that you and your software project team can use to gather,
track, share, and communicate project information. You can discover more
information about Microsoft Project by perusing Microsoft Project 2003 For
Dummies by Nancy Stevenson (Wiley) and by visiting www.microsoft.com.

You should be able to find several good PMISs on the Web that will meet your
needs and are free, or you can complete some research and, depending on
the needs of your software project, purchase a solid and reliable PMIS. Just
don’t expect even a top-of-the-line PMIS to do your job for you or make you
appear more competent than you really are.

Tracking Project Performance
You should be proactive in tracking project performance to find problems
before the problems find you. At any given time you should be able to pro-
vide information on project performance regarding schedule, costs, scope,

302 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 302

and quality. You should at least be tracking your project performance thor-
oughly enough to know whether your software project is

� Ahead of or behind schedule

� Over- or underbudget

� Within the confines of your scope baseline

� Meeting the requirements of your quality management plan

Read on to discover some ways that you can track your project performance
so that when your client stands beside you on the elevator for two minutes,
asking how the software project is going, you can provide a quick summary.

Using earned value management
In Chapter 14 we discuss how you must track and quantitatively measure pro-
ject performance throughout the life of your software project. You can’t just
count on your gut feeling or intuition that all is right with the project.

Earned value management (EVM) is a means of quantifying your project
performance. That means you put a value, like 20 percent, on your progress.
That 20 percent can represent the amount of work completed. If you planned
to have 40 percent complete, that’s not great progress.

Earned value management is a handy way of measuring your project perfor-
mance so that you can determine whether you’re where you said you would
be at a particular point in time. You can use EVM to track and monitor pro-
ject performance and then use your communication management plan to dis-
tribute this information to your stakeholders. See how all these pieces are
coming together now? Check out Chapter 14 for more information.

Creating Pareto charts
A Pareto chart is a quality control tool that you can use to track items or
processes that don’t conform as they should. This chart helps you see where
your problems are and where you should be focusing the work efforts of your
project team. The logic behind this tool is that, usually, a small number of
causes (20 percent) create a large number (80 percent) of the issues in a pro-
ject. Ever hear of the 80/20 rule?

Here’s a fun little history lesson for you. Vilfredo Pareto was an Italian econo-
mist who, in the early 1900s, wrote a mathematical formula to explain that
80 percent of the wealth in his country was owned by 20 percent of the popu-
lation. Other economists, scientists, engineers, and professors have applied
this same principle to many other areas, including project management.

303Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 303

Say you have 100 project issues in your issues database. Pareto’s rule says
that 80 of them are the result of 20 of the causes. The Pareto chart enables
you to easily see what types of issues are causing most of the problems on
your project. Some typical causes of problems in a software project include

� Inadequate software testing

� Vendor noncompliance

� Improper end-user training

� Lack of defined scope

� User error

� Technical issues

� Technology becoming obsolete

Keep in mind that every project is different and the problem causes we list
here may not be typical of every project. These are just examples for instruc-
tional purposes. Also keep in mind that even though we use the Pareto chart
for looking at the causes in system testing, training, and implementation, you
can use Pareto charts as a metric in other areas of your software project.

Table 15-2 shows a list of issues, causes, and ranks for a software implemen-
tation in which physicians and nurses enter their patients’ medication and
laboratory orders into a medical software system. These problems and
causes are related to the testing phase of the project, but you can use the
Pareto chart to review the causes of problems in other areas of your project.

Table 15-2 Data Collection for Creating Pareto Chart
Issue Cause and Explanation Rank

Nurse could not find Training: End user was not looking 2
chest x-ray order. in the proper place for this order.

Lab test report did Technical issue: Printers not set 1
not print. up correctly.

Nurse Manager requests Training: This report is already in 2
a patient summary report production. Nurse Manager needs
to be written. training on how to find the report

in the system.

Physician reports that Technical issue: Programmer needs 1
her computer screen to make configuration change.
is freezing up while
placing orders.

304 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 304

Issue Cause and Explanation Rank

Nurse states that patient Technical issue: Report is printing 1
report is not printing. but the printer is configured to

print at the incorrect nursing unit.

Unit Secretary cannot Security: Unit Secretary doesn’t 3
locate a patient in have the appropriate security
the system. clearance to see this patient’s

information. Programmer will make
change in security setting.

We’ve ranked the causes in Table 15-2 from 1 to 3 to show that the number 1
cause of the issues listed in the table is technical issues. Based on this data,
you now know that you should focus more of your efforts on fixing these
technical problems so as to eliminate the majority of the issues.

To set up your own Pareto chart, you should create a table similar to the one
in Table 15-2. The table doesn’t have to be too elaborate, but it does need to
show the issues, causes, and rankings of each cause for each listed problem.
When your table is complete, you can put all of the data into a Pareto chart
to visually illustrate the issues that are causing most of the problems.

The visual nature of a Pareto chart is one of its most useful features. You can
show your project team and other stakeholders why the team needs to focus
its efforts in particular areas. See Figure 15-1 for an example of a Pareto chart
derived from the data gathered in the above table.

305Chapter 15: Tracking Project Performance

Having fun by snooping through
the issues database

Have you ever just randomly reviewed a soft-
ware project issues database or issues spread-
sheet just to look at the trends in the issues and
the causes? Some Saturday night when you’re
really bored and you could be going out to some
goofy party with friends, stay at work and
review as many of your project issues as you
can in, say, 30 minutes. Make a chart listing
each issue and its cause. We bet that you will
have lots of issues listed but the cause of each
project issue won’t be unique. You will probably

be able to categorize each cause into just a few
main categories.

Then you can display these categories into a
lovely Pareto chart where the problems are
listed in order by rank. The most frequent issue
is ranked first; the second most frequent is
ranked second, and so on.

You can group specific categories based on
common causes: training, technical issues, and
security, for example.

22_749346 ch15.qxp 8/30/06 10:17 PM Page 305

Pareto charts can also help as you continue to strive to understand how you
can accomplish each of your future projects more efficiently and document
your lessons learned.

Creating control charts
Like Pareto charts, control charts perform quality control functions on your
software projects. A control chart can assist you in determining whether par-
ticular processes fall above or below a specified control area. If a process falls
outside of the control area or beyond acceptable limits, it probably is not a
reliable or consistent process and may require some tweaking (that’s a tech-
nical term).

The control chart contains three horizontal lines:

� One line represents the acceptable upper limit.

� One line represents the acceptable lower limit.

� One line, in the middle, represents the mean.

The data points that you plot outside of the upper and lower limits represent
issues that may be the result of special causes. After you identify a special
cause, you can attempt to eliminate it so that it doesn’t result in future errors.

Types of Issues

of

 Is
su

es
3

2

1

0
Technical Training Security

Figure 15-1:
This Pareto

chart is a
basic bar

graph that
ranks the

most
common

causes for
the most
common

problems in
the post-

implementa-
tion phase of

a software
project.

306 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 306

By defining your acceptable upper and lower limits (your organization may
determine these), you plot your data points on the control chart to reveal
which data points fall above or below the acceptable limits representing
potentially inefficient processes. These processes that display beyond the
acceptable limits need to be fine-tuned.

Control charts help you determine variation of processes and diagnose prob-
lem areas in projects. The benefits of control charts are (nearly) endless:

� To show whether schedule variances are within acceptable limits.

� To identify the volume of scope changes.

� To evaluate the number of days of variance in your schedule (are you 22
days behind where you said you’d be?).

� To give a visual representation of dollars spent outside of budget.

� To show which problem items were found during individual phases of
system testing.

� After the product is complete, you can use a control chart to show
whether the number of configuration issues discovered during unit test-
ing is outside of acceptable limits.

You use your organization’s or the client’s quality standards (or a combi-
nation of both) for determining the upper and lower limits. Ask your pro-
ject sponsor for the organization’s quality standards.

Look at Figure 15-2 for an example of a control chart.

Upper Control Limit

Lower Control Limit

Mean

Within the lower control limit

Within the upper control limit

Figure 15-2:
This control

chart shows
a series of

data points
that remain

within the
control

limits.

307Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 307

Because the purpose of this book is not to make you a quality management guru
or a professor of quality management techniques, but to give you the basic soft-
ware project management information that can help you become a tremendous
software project manager, we don’t go into microscopic detail regarding control
charts. In fact, loads of publications have been written regarding both of these
quality control techniques as well as other quality management tools and tech-
niques. You may benefit from reading more about Walter Shewhart, who is
widely credited with being the first to use control charts.

As with all other project management processes, tools, and techniques, you
should use control charts, Pareto charts, and other quality management
tools as part of your lessons learned documentation. These charts (and the
associated documentation) improve your chances of making each project
more effective and efficient than the last. You will amaze yourself and your
friends with your superb competence.

Communicating Project Performance
Okay, so you’ve used lots of fancy-schmancy data analysis and quality control
tools and techniques to show you if you are on track, behind schedule, overbud-
get, underbudget, or within the defined limits of your project scope. Now, what
are you going to do with all of that information? Well, chances are you are going
to rely on your thorough and brilliant communication management plan so that
you can provide the appropriate stakeholders with the information they need.

Relying on the communication
management plan
When you created your communication management plan, you defined how you
would communicate, with whom you would communicate, and what informa-
tion each stakeholder required. In Chapter 4 we discuss that there would proba-
bly be more communication at the beginning and at the end of the project, but
not as much during the execution phase of the project. This idea makes sense
when you consider the amount of time you spend gathering requirements at the
start of the project; you have a lot more communication needs at that time.

As the project winds down, you have a lot of performance reporting require-
ments; you must show project status, resource plans, contract closure, and
more. And, of course, during the execution phase of the project, especially
during milestones, your project will require you to do more communicating
than at other points.

308 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 308

Automating project communications
If you could automate all of your project communications, life would be swell.
But no amount of automation is likely to ever take the place of the water cooler
or the coffee machine. Those informal methods of communication, where a
few (or more) people gather to discuss the status of the project, are crucial
to a project’s success. The only potential for problems occurs when people
start rumors, or when more talking happens in the break room than in the
project status meetings. (As far as we know, no one has invented the technol-
ogy to completely eradicate rumors.)

Even though you may not be able to — or even desire to — eliminate all infor-
mal and formal communications, you can automate some of your software
project communication. Here are just a few reasons why you should:

� To save time

� To enable stakeholders to receive particular communications at regu-
larly scheduled intervals that they can anticipate

� To provide standardization in automated project communications (if you
provide templates, some forms of communications will follow a standard
format that excludes unnecessary information)

� To reduce the amount of noise in communications (if you can provide
online reports instead of presentations in meetings, you avoid long
meetings filled with side conversations and other interruptions)

The most important point to remember about project communication,
whether it’s automated or manual, is to clearly and concisely provide the
information to the appropriate stakeholders. (See “Stressing accuracy in
reporting,” earlier in this chapter, for more information.)

Some examples of automated project communications are

� Project status reports, sent via e-mail, that are always due by 1:00 p.m.
on Wednesdays, to a specified number of stakeholders.

� Project event alerts for certain predefined project events, such as team
meetings or critical issues update meetings.

� Automatic pages to remind stakeholders of project activities. For exam-
ple, a team member may receive an automatic page if he is past his due
date on his input to an issue resolution.

� Automatic e-mail alerts when a project schedule (or other predefined pro-
ject management tool) has been updated. Only the stakeholders affected
by the change would receive the e-mail. For example, a stakeholder would

309Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 309

receive an e-mail alert if a change control request has been approved for
his area.

� Project information that is automatically sent from PMIS software to a
lessons learned document.

With a little imagination and the help of solid PMIS software, you can come
up with other ways to automate some of your project communications.

Hosting status meetings
There are some tricks of the trade that you can employ to hold an effective
and dynamic status meeting; good status meetings are crucial to project suc-
cess because you will have important information to communicate during
these meetings and you need to hold everyone’s attention.

One of the most important points to remember regarding hosting a project
status meeting (or any meeting) is to sufficiently prepare for the meeting. You
would never invite guests for dinner, and then, when they saunter in the front
door, shamefully utter, ‘Uh, hi, guys . . . maybe I should decide what I’m fixing
you for dinner now, right?” Your invited guests would rightfully expect to
walk in the front door and be pleasantly confronted with the aroma of your
fine, tasty cuisine. Well, the same principle applies to hosting stakeholders at
a project status meeting except that they should not expect any aromas. The
food would just be a bonus.

In order to adequately prepare, prior to the status meeting, understand why
you are holding the project meeting and what you do and don’t want to take
the time to discuss. This is important because people may start to discuss
topics that are not within the scope of your project meeting. If you let them
talk, your 30-minute meeting may become a two hour free-for-all.

Getting an agenda together
Prepare and distribute a meeting agenda prior to the meeting. We usually dis-
tribute meeting agendas at least 24 hours prior to the status meeting so as to
provide all stakeholders sufficient time to review the agenda before arriving
at the meeting. People should walk into the meeting knowing what is going to
be discussed.

To help maintain everyone’s focus, there are certain items that you should
include on every meeting agenda. You can get a sample agenda by skipping
ahead to Chapter 19.

For obvious reasons, be sure to always include the meeting purpose and
objective when you write up your agenda. Attendees need to know why they
are coming to that project meeting so as to make better use of everyone’s
time. This will also provide attendees with the opportunity to send someone
else from their team in their place.

310 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 310

You should also include a list of attendees so that everyone invited may
gauge the necessity of his or her presence at the meeting. For example, if
you’re a functional manager, you may be interested in knowing why you were
invited to a project meeting where the list of attendees included technical
people only. People do make mistakes, right? There’s always the possibility
that you were invited in error. This would give someone the opportunity to
call and find out if they were invited accidentally.

It’s obvious why you would want to include the start time of a project meet-
ing, but you should also include the end time of the meeting on the agenda so
that people know when to leave!

Document the names of the facilitator and minute taker for every project meet-
ing so that all attendees know that someone is in charge of the meeting and so
they understand that minutes will be recorded. And then make sure that person
does take minutes — when meeting attendees understand that what they are
saying is being documented, they stay more focused on the topic at hand. Don’t
forget to distribute the meeting minutes as soon as possible after the meeting.

If someone does inform you that there is a mistake in the minutes, be sure to
distribute a corrected version of the meeting minutes to the entire group of
invitees (even those who did not attend). This is also documentation that will
become a part of the project records, so it’s important that everything is
accurate.

Parking off-topic discussions
If something comes up during the meeting but it isn’t part of the agenda, you
should park that idea to be addressed at a later time. A parking lot is merely a list
of topics that need further discussion or review but are currently being parked.

It helps to efficiently move the meeting along if the attendees know that the
purpose of the meeting is to discuss a defined list of topics; if a topic is not
on the agenda, it should be parked to either be discussed later or added to
the next meeting’s agenda.

Sharing good and bad news
As the software project manager, you can expect to have the fabulous job of
communicating both bad and good news at various times throughout your
project.

In Chapter 4 we explained the different styles of communication — formal
and informal, automated and manual, written and spoken — and they are all
appropriate at different times and with particular stakeholders. For example,
you would not expect (usually) to provide informal communication during an
executive steering committee meeting. We’re sure that could happen at times,
but usually that would be a more formal communication.

311Chapter 15: Tracking Project Performance

22_749346 ch15.qxp 8/30/06 10:17 PM Page 311

However, when speaking with your team about a small issue, you may send
an e-mail or individually drop by everyone’s cube for a chat.

Communicating bad news
But there is one absolute regarding sharing bad news with your project team
or other stakeholders: Never ever share bad news in an e-mail. If you have
some negative news to relate to your team or to other stakeholders, do this
in person if possible. Of course, if your project team contains members from
all over the world, that may be impossible. But if at all possible, give bad
news in person, or at least on the phone.

If, for example, your deadline just got pushed forward two months and your pro-
ject team now must work 16-hour days instead of its usual 12-hour days, spread-
ing the word in an e-mail may lead to a mutiny — and that’s a whole other book.

If someone is absent when you deliver bad news, be sure that you follow up
with that individual as soon as possible. The last thing Susie needs is to hear
from the janitor that all her work needs to be redone in half the time because
of a slight error on her part.

Communicating via e-mail
People can’t see your body language or that smile (or smirk) on your face
when you communicate via e-mail. When someone reads an e-mail from you,
he or she can only guess what you really meant if you are not perfectly clear.
Don’t try to flower up your writing or try to make it cute. Just say what you
have to say in a professional manner and be concise, as well as unambiguous.

If you try to make a joke in an e-mail and the receiver doesn’t understand
what you’re trying to say, or doesn’t get your sick sense of humor, the results
are invariably the same: misunderstandings, resentment, and hurt feelings.
Don’t try to be funny; it’s safer to just consistently maintain a sense of profes-
sionalism in your communications — after all, you get paid to be a software
project manager, not a comic.

Communicating good news
When you communicate good news, it doesn’t matter as much which plat-
form you use. You should still be clear, concise, and unambiguous, but posi-
tive messages are almost always well received no matter what form of
communication you choose.

The one area where you may have a problem with good news is leaving some-
one out of the loop or forgetting to give credit to someone who deserves it.
Be generous with your praise, and be sure to follow up with individuals who,
for whatever reason, missed your announcement.

312 Part IV: Controlling Your Software Project

22_749346 ch15.qxp 8/30/06 10:17 PM Page 312

Part V
Closing Your

Software Project

23_749346 pt05.qxp 8/30/06 10:17 PM Page 313

In this part . . .

Part V supplies you with the knowledge you need to
bring your software project to a successful and sys-

tematic end. Look here to sharpen your project documen-
tation skills, write excellent historical documents, and
figure out your lessons learned. You also find information
that can help you tie up loose ends regarding vendor con-
tracts. Also find tips on making product documentation
and help files all the easier for end users to understand
and navigate.

23_749346 pt05.qxp 8/30/06 10:17 PM Page 314

Chapter 16

Finalizing the Project
Management Processes

In This Chapter
� Closing your software project

� Wrapping up loose ends

� Remembering quality control

� Planning for system turnover

� Celebrating your team’s success

� Liberating your team

� Becoming a better software project manager with your team’s input

The goal of any software project is successfully building the software
you’ve been commissioned to create. Therefore, everything you do, even

at the beginning, builds toward the goal of closing the project. Setting expec-
tations with vendors, preparing your scope management plan, and starting
your lessons learned documentation — all activities you start early in the
project — are things you must do to close the project. In this chapter, we dis-
cuss all the important chores and functions of closing down a successful soft-
ware project. The only topic that we don’t cover here is the lessons learned
documentation. Never fear: Lessons learned are covered in Chapter 17.

Closing the Software Project
The end of the software project is an exciting time for the software project
manager. Along with planning a festive celebration with your team, you’re
busy performing the actions that go with the closing process group of project
management. These activities include ensuring that the appropriate stake-
holders are satisfied with the final product, closing out vendor contracts,

24_749346 ch16.qxp 8/30/06 10:17 PM Page 315

completing and distributing your lessons learned documents (see Chapter 17),
performing audits, and releasing your software project team. Primarily, you
need to tie up all loose ends and bring all activities to a clear, crisp end.

Before you consider your software project closed, you may also want to make
sure that all project issues are resolved or turned over to the support team. If
you created a database to track issues that affect the project, you can run
reports to demonstrate to the appropriate stakeholders that all issues are
closed. There’s also a possibility that during the planning phase of your soft-
ware project you set the expectation that at project closure, the only open
issues would be those with a low priority.

Just make certain that you are meeting the requirements that were set at the
beginning of the software project. You should create a checklist for project
closure to ensure that nothing is forgotten and to make sure that all closing
activities are handled in a timely and effective manner. The following is a list
of items that you need to consider in your project closure checklist:

� Met with help desk to review system

� Met with appropriate operational staff to turn over software

� Reviewed system training requirements with operational staff

� Received sign-off from operational staff

� Completed and distributed performance reports

� Completed and distributed system documentation

� Completed quality audits

� Completed vendor audits

� Completed performance review or offered performance input for project
members

� Distributed to team members questionnaire on project management
performance

� Received sign-off on scope verification and formal acceptance of all pro-
ject deliverables

� Closed vendor contracts

Create a checklist with all appropriate action items included so that you can
go through this project closure checklist with your project team. Your list is
likely to have quite a few more items on it — this one’s for example only.

You don’t want to take a chance on leaving any loose ends to be resolved by
someone else after you move on to your next project.

316 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 316

Completing quality control
Because you’ve been performing quality control on your software project
throughout the course of the project — checking that your project results
consistently conform to your project standards, and making modifications as
required — the idea of project quality control should not be completely new
to you.

At the beginning, during the quality planning portion of the software project,
you identify the quality standards you expect to meet, and decide how you
will meet these standards. Later, you use these standards to conduct quality
assurance testing. Quality assurance follows the methods that you decide
upon to make sure that the project used necessary processes to meet the
quality requirements that you defined.

Quality assurance and quality control aren’t the same thing. Quality assur-
ance is testing that occurs during the main part of the project. Quality con-
trol monitors and tracks the project results to make sure that the product
meets quality standards, making final rectifications when necessary.

If part of the project or the product does not meet the quality standards, you
make the improvements that are necessary to meet the quality standards
set forth.

As a part of your quality control process, you might create a quality checklist
to ensure that you and your team members have performed all of the required
steps required to adhere to your set quality standards. Quality checklists are
great tools for your testing staff so that they can document that they’re fol-
lowing the correct processes. See Table 16-1 for an example of typical fields
you may use for your quality checklist.

317Chapter 16: Finalizing the Project Management Processes

Knowing your scope verification
from your quality control

The difference between scope verification and
quality control is that quality control has to do
with making sure that your product is up to the
quality standards that your client has set forth
for this project. Scope verification, on the other

hand, has more to do with the stakeholders for-
mally accepting the deliverables of the project.
When the stakeholders formally accept the
completed project scope and all of the resulting
deliverables, they are verifying the project scope.

24_749346 ch16.qxp 8/30/06 10:17 PM Page 317

You can create one quality checklist for the project to ensure your project
team is adhering to project quality requirements, and create a quality check-
list for the product to make sure that the software is made in accordance
with industry standards for quality.

Table 16-1 Project Quality Checklist
Project Quality Activity Responsible Person Complete

The project work plan has all Project Manager Yes
predecessor and successor
tasks identified

The project work plan includes Project Manager Yes
the appropriate change control
activities

All firm-wide standards and Communications Manager In Process
regulations have been
distributed to appropriate
team members

System documentation is Documentation Due 05/02
complete and accurate

Turnover meetings with help Project Manager Due 05/07
desk manager have been
scheduled

Turnover meetings with Project Manager Yes
operational staff have
been scheduled

You can perform quality control testing before scope verification (see the fol-
lowing section “Completing scope verification”) or you can perform quality
control at the same time as scope verification.

Completing scope verification
During the planning phase of every project management process, project
managers the world over create a scope management plan; this plan details
how you define your software project scope and declares how the project
scope should be controlled to prevent scope creep. In your scope manage-
ment plan, you must also record how you will verify your scope. Indeed, in
the quality planning stage, you describe how the software would be formally

318 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 318

accepted by the appropriate stakeholders. Your firm may already have a set
process on how the scope will be verified. If not, some options for methods of
acceptance of the product/project (scope verification) are

� A sign-off sheet for formal acceptance of all project deliverables. This
would be signed by you along with all appropriate stakeholders. See
Table 16-2 for an example of some of the items to capture on this formal
deliverables acceptance spreadsheet.

� A letter or e-mail from the client. A less formal solution, the letter
should state that the client accepts the software product or system in its
current state and that the client is satisfied with the results.

� A formal project closure meeting. During the meeting, you do a short
presentation on the final product and the clients agree that you and your
team have successfully created what they asked you to create.

Table 16-2 Scope Verification Sign-Off Sheet Example
Deliverable Client Sign-Off Responsible Sign-Off

Team Member Date

System Documentation Client Stakeholder Project Manager 05/01

Training Manual Systems Training Training 05/01
Manager Coordinator

Support Material Help Desk Manager Cut Over Manager 05/05

Testing Results Testing Manager Project Manager 04/17

No matter which method of scope verification you choose, you should always
get something formal in writing from the clients stating that they are satisfied
with the final deliverables of the software project. Even if the client is your
best friend (or perhaps especially if the client is your best friend), the neces-
sary formality of having something in writing is vital to the process, and will
benefit you if the client later requests a change to the software. You can also
use the documentation as part of your portfolio later, or frame it and create
an appealing geometric tile pattern on the wall of your cube.

Closing Out Vendor Contracts
The closing process group includes all activities associated with bringing
your software project to a close; this process includes finalizing all proceed-
ings with your vendors.

319Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 319

In some instances the software project manager is the vendor; in other
instances, the software project manager performs closing activities with
other vendors. There’s also a possibility that you could simultaneously wear
both hats; depending on the hats, that may, at times, look silly. This process
of closing vendor contracts indicates that the client is satisfied with the pro-
ject deliverables (or that you are satisfied with the deliverables provided by
one of your vendors).

The following sections go over some of the activities related to closing out
the vendor contracts.

Auditing vendors’ work and deliverables
Would you ever consider walking into the showroom at your neighborhood
car dealership and buying a car without at least looking at it? Most of us
probably wouldn’t even consider turning over any cash without taking the
car for a test drive, kicking a tire or two, and pretending to catch a glimpse at
what’s under the hood.

The same concept applies in the case of paying vendors for their work and
deliverables; you should perform an audit to verify that the work meets all
the documented requirements of the software project.

Of course, you wouldn’t want to wait until the final phases of your project to
ensure the vendor understands the project requirements and is conforming to
them. Throughout the project you should conduct meetings with your vendors
to ensure the work is progressing appropriately. You should also create and
distribute documentation, such as performance reports, after these meetings.

Before a vendor can send you a payment request, you must ensure that the
vendor has completed all of the stated requirements on the testing. Check
out Chapter 12, in which we provide a detailed example in which the software
project manager contracts with a vendor to perform each phase of the
system testing on a software project. For such a vendor relationship, where
the responsibilities include creating quality testing software, the audits
would include making sure that a vendor

� Performs all appropriate testing phases

� Documents all issues discovered during testing

� Assigns each issue a priority — low, medium, high, critical

� Completes and distributes all required performance reports to the
appropriate stakeholders

� Creates and distributes the appropriate reports from the testing issues
database

320 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 320

This list of audits will vary depending on what kind of vendor you’re working
with and the specific tasks the vendor has been given.

You may also conduct periodic inspections and audits of a vendor’s work so
that you know whether there is a problem long before the project is com-
pleted. These inspections and audits could be either scheduled or random —
or both. You will also be viewing performance reports outlined in your com-
munication plan.

No matter how you perform audits throughout the process, you must still
perform a final audit at project closure before you formally accept the
vendor’s final deliverables. If you’re the vendor, expect the client to perform
an audit on your work.

The vendor audit could be something as simple as a checklist or as elaborate
as a formal meeting with a presentation of all appropriate deliverables. See
Table 16-3 for an example of data that you should capture in a vendor audit.
This checklist is for a vendor company that’s been hired to perform all
phases of the testing for the software you’ve been hired to create.

Table 16-3 Vendor Audit of Software Testing for
Vendor Testy McTesty

Deliverable Date Completed Notes

Unit Testing 02/01 Two outstanding low-priority
issues to be resolved by Technical
Team by May 2.

Functional Testing 03/02 No outstanding unresolved issues.

Integrated Testing 04/02 One outstanding medium-priority
issue to be resolved by Interface
Team by May 15.

Volume Testing 04/04 Conforms to stakeholder
requirements.

Testing Summary and 05/20 All documentation completed in
Documentation appropriate format.

Testing Sign-off Sheets 05/22 All sign-off sheets completed by
appropriate stakeholders

In this example, the vendor has several unresolved issues discovered during
the software testing. Unresolved issues may be acceptable to you if you hired
the vendor to expose issues so that your team could resolve them. If you

321Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 321

hired the vendor to expose and then resolve issues, you may not want to sign
off on the project. Your expectations would certainly have been outlined and
agreed upon at the beginning of the project when you signed your contract.

Paying the bills
If you work for a large firm, they probably already have processes in place for
paying vendors. This process usually occurs in the accounts payable depart-
ment. It is your responsibility to make sure you understand the processes so
you will know whether you have accountabilities in this area.

Regardless of whether you work for a large firm, a small company, or work as
an independent contractor who outsources some work to other independent
contractors, you have a payment system in place.

Before you pay your vendors, be sure the appropriate audits, inspections,
and performance reports have been successfully completed and distributed
to the appropriate stakeholders. As with all other aspects of project manage-
ment, be proactive. Set the expectations at the beginning of the project and
follow your well-documented communication plan to ensure all appropriate
stakeholders have been communicated with regarding all deliverables that
must be successfully completed before payments can be made.

Completing the Project (Or at Least
Transferring It to Someone Else)

So far you’ve been mired in the sometimes overwhelming details of creating
and modifying project plans, completing tasks, setting milestones, facilitating
stakeholder meetings, and meeting your tight deadlines. You and your soft-
ware project team have gotten used to the daily grind of writing code, testing
that code, rewriting the code, retesting, and so on, with the ultimate goal of
completing the system on schedule. Of course, you have worked hard to con-
sistently exceed stakeholder expectations, and now you can see that you’ve
reached your goal: This project is almost over. It’s finally time to turn the
software over to the operational team. You always knew this time would
come; you obviously didn’t expect to be stuck in project mode forever did
you? We hope not.

As with everything else with project management, you should be proactive in
your approach to turning over your project.

322 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 322

The activities leading up to your system activation (or go-live) include the
necessary steps to prepare your operational team or production team for the
transition. These steps may include

� Getting the help desk up to speed: Begin involving the help desk associ-
ates in informational meetings toward the end of your project so that
they can be prepared to support the system.

� Engaging the help desk personnel in the system activation support:
These associates can get great information from your project team, end
users, and other stakeholders as they provide end-user support during
the go-live process. For example, they log user problems, answer user
questions, resolve issues, and more.

� Getting the operational staff off and running: You need to ensure that
the operational staff understands what kind of training they will need in
order to provide ongoing support for the software. You won’t necessar-
ily need to provide this training, but you need to provide input on this
vital subject.

� Facilitating at least one turnover meeting with some of your key team
members, the help desk staff, the appropriate members of the organi-
zation’s operational team, and any other pertinent stakeholders:
During turnover meetings, you and other stakeholders have the oppor-
tunity to review the system documentation and answer questions.

� Making sure that your system documentation is complete, concise,
and correct: You and your team have built the system and someone on
your team should have been assigned the task of completing system
documentation.

Don’t forget that someone also needs to be assigned the ongoing task of
keeping the system documentation up to date. That most likely will not
be someone from your project team, but just remember to remind the
operational staff that it needs to be done.

This is not an exhaustive list of system turnover activities. Your organization
may have mandatory steps you should take when turning over the software
to those who will be supporting it.

Be sure to know what your organization or client expects of you and your
team when you hand over the system to the operational team. Be proactive.
You should gather this information during the planning process. The actions
you take at the end of your project will be what people will most remember
about you and your leadership. You don’t want to come to the end of your
project and get caught saying, “Duh, was I supposed to do that?”

323Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 323

Celebrating!
Although celebrating is something that often gets put aside because of new
priorities and team members moving on to other software projects, some of
your team members (and some professional project managers, ahem!) may
insist that this is the most important portion of the project.

You’ve all worked hard to accomplish your goals and exceed stakeholder
expectations. Take the time to show everyone — your team members and
other stakeholders — how much you appreciate them. Project team members
will be grateful and will remember that you are the type of project manager
who values your team, which is an important impression to leave because
you will undoubtedly form new project teams for your future projects. No one
wants to work for a software project manager who doesn’t show appreciation
for the team.

Celebrate your success, not just because it’s good for the team, and your
image as a leader, but because it gives you an opportunity to let other project
managers and executives know what your project was all about — and what a
fantastic job you did. Under the auspices of tooting your team members’ horns,
you can legitimately toot your own horn — which is never a bad political
move if you do it without being a brag.

324 Part V: Closing Your Software Project

Planning your celebration
You don’t have to rent a ballroom and have a
formal dance-off or anything. Just do something
to show appreciation, such as:

� Take your project team for a scheduled
lunch at the local pizza parlor.

� Have a massage therapist come in for an
afternoon to provide free massages (this is
also a great reward at the stressful times
during the project; you can’t imagine what
this can do for your team morale!).

� Schedule an outing at a local park and
allow team members to bring their families.
This is also a great opportunity to show
families how much you appreciate their
spouses, parents, and kids.

� Have a team appreciation day where you
prepare a meal for your project team mem-
bers. You and other key stakeholders could
actually serve the meal.

� Rent out a movie theater for a day and allow
team members to bring their families to all
watch a movie together.

The possibilities are endless and will vary with
the scope and success of your software project
(as well as the limitations of your budget), but
you should do something to show you appreci-
ate your team and celebrate their success,
commitment, and hard work. The more thought-
ful your expression is the better.

24_749346 ch16.qxp 8/30/06 10:17 PM Page 324

Releasing project team members
from the project team
Well, you and your software project team members have spent an exorbitant
number of hours working together these last few weeks, months, or years.
You’ve overcome seemingly insurmountable obstacles and created software
that’s so outstanding that you even surprised yourselves. You’ve completed
your lessons learned documentation (see Chapter 17) that you began at the
start of your project, and you’ve shared it with all your team members and
appropriate stakeholders. You’ve expressed to your project team members
how much you appreciate their efforts, and your team has celebrated its suc-
cess together. Now it’s time for your project team to disperse.

As with all other aspects and phases of project management, be proactive in
disbanding your team. Don’t wait until you’re at the project closing festivities
and say, “Hey, by the way, you can sleep in tomorrow.”

Because you started out with such a well-defined project plan that included
all phases of your software project and you communicated this plan to your
team, everyone knew at the start of the project when they would be released
(or rolled off). To be proactive, you should review roll-off dates with your
team members on a regular basis; sometimes project end dates fluctuate, and
you don’t want anyone to be surprised. For example, initially you may have
agreed that an individual would be on your team for eight months, but if the
project is extended, you would certainly want that team member to stay until
the project is completed.

Nobody likes surprises (except little kids), so be sure project team members
know the dates they’ll be needed right from the start. Before they’re released
from this software project they will probably already be planning their next
steps, especially if they’re contractors without the security of a health plan
and a set salary. Being aware of their project roll-off date well in advance will
enable your project team members to

� Begin reviewing other software project opportunities if they are private
consultants or contractors.

� Start ramping up for their next project if they work for an organization
that has another project ready to begin.

� Continue working with you on the next project you manage because
they really liked the way you showed your appreciation at the project
closing celebration! Of course, they want to work with you because you
are a model software project manager.

� Begin managing their own software projects after learning superior pro-
ject management skills and techniques from such a superb teacher —
that’s you.

325Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 325

Be sure each team member understands the time expectations of this project
so that they can be proactive in planning their next opportunities.

Writing evaluations
You may be expected to write employee evaluations on all project team
members. Make sure you know these expectations right from the start so that,
again, you can be prepared for this by keeping employee documentation
throughout the project. In some instances, you won’t be expected to write the
employee review, but you will need to provide input to the team member’s
functional manager for the evaluation. Follow the rules of your organization
when conducting employee evaluations.

Employee evaluations can be an unbelievably time-consuming pastime. If you
have a large team and you have to do evaluations for all of them, develop a
system, and don’t procrastinate.

Receiving evaluations
You may find it beneficial to ask the team to evaluate your performance as
the software project manager. After all, these people know your work charac-
teristics better than anyone else, and if you’re evaluating them, they should
be able to evaluate you. Plus, it really helps drive home the sense that you
are interested in their opinion.

Evaluations provide you with the input that will help you to improve your
skills as a software project manager. When you improve your project manage-
ment and leadership skills, you benefit, and so do your future clients.

Writing evaluation questions that give you results
You may want to write evaluations that ask employees to rate you on a five-point
scale. Better yet, provide a combination of questions that require written/
typed response and objective ratings.

Here’s a list of questions, along with a better way of asking the question so
that you can get more detailed feedback and avoid the dreaded yes-or-no
answer:

� Good question: Did the project manager communicate project changes
in a timely manner?

Better question: Rate the project manager’s timeliness when communi-
cating project changes (1 = not applicable; 2 = not timely; 3 = often, but
not always, timely; 4 = usually timely; 5 = always timely).

� Good question: Did the project manager achieve the project scope?

Better question: Using a five-point scale, rate how well the project man-
ager achieved the project scope (1= not applicable; 2 = the scope was
not met at all; 3 = the scope was mostly met, but there was some scope

326 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 326

creep; 4 = the scope was met, but there was some minor scope creep; 5 =
the scope was achieved in all areas flawless).

� Good question: Did the project manager make the most of resource
skills? How could this have been improved?

Better question: Rate the project manager’s management and allocation
of resource skills. How could this have been improved?

� Good question: Was the project manager a good communicator?

� Better question: What suggestions can you offer the project manager
that would help him improve his communication

• To the project team?

• Across functional teams?

• With appropriate stakeholders?

� Good question: Was the project manager a good leader?

� Better question: How would you suggest that the project manager
improve her leadership skills?

� Good question: Were meetings effective?

� Better question: Using a five-point scale, rate the project manager’s
meeting facilitating skills. What suggestion do you have on how these
skills could be improved?

� Good question: Did the project manager seem to know what he was
doing?

� Better question: Overall, how would you rate this project manager’s pro-
ject management skills and expertise? What suggestions would you offer
to improve overall project management skills of this project manager?

� Good question: Was the project manager responsible?

� Better question: Rate the project manager’s willingness to take responsi-
bility for his own actions and mistakes.

� Good question: Did the project manager give credit to team members
for their successes?

� Better question: How did this project manager perform at giving credit
to others for their successes?

The primary goal of this should be to include questions that will provide
your team members with the opportunity to provide honest and helpful feed-
back that will allow you to grow as a project manager.

Remember, even if one of your team members makes a negative comment,
that’s still positive if you learn from that comment.

327Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 327

Your team members may suggest that you allow them to give you feedback
anonymously. You may do whatever feels right, but in our experience, if you’re
trying to build a sense of accountability, your team should feel empowered to
offer all reasonable and constructive feedback with their name attached. We’re
all accountable for our actions and our words, and we should all be willing to
own what we say. Welcome the feedback — positive or negative — as long as
a name is attached to it.

Case Study: Completing
a Project Post Mortem

You are a software project manager for KT Consulting, Inc., a medium-size con-
sulting firm specializing in software project management. You’ve been with the
company since it was founded six years ago and are one of the most respected
project managers in the firm. That’s why senior management asked you to
lead a project for a sometimes difficult client — Barbwire Helmets, Inc. —
which wants to create Web-based tutorials for its production staff.

The client is a manufacturing firm creating much sought after barbwire helmets,
and is having some difficulty with worker safety because some employees have
not been following proper safety procedures. The executives have determined,
through root cause analysis, that the employees aren’t following the appropriate
procedures because they don’t always understand what those procedures are.

The client held several meetings with you to define the business purpose and
objectives of the project. These are as follows:

� Business purpose: Decrease the number of worker accidents, which will
result in

• Fewer fines by the associated government agencies

• Increased worker productivity due to less time off work because of
injuries

• Increased employee morale

• Decrease in money spent on broken equipment

• Decrease in health and accidental death/dismemberment insurance

� Project objectives: Create a Web-based tutorial for production workers
that will instruct employees on appropriate safety procedures for manu-
facturing barbwire helmets:

• Software should provide a database where employee scores are kept

• Tutorial should provide hints when an employee enters an incor-
rect answer

328 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 328

• System reports should be automatically distributed to employees’
supervisors, and they should include final scores and number of
attempts before passing

• System should require 80 percent for passing score

• Software should allow training department to schedule classes
online

• System should send online reports to managers if an employee reg-
isters for a class but does not show up on the specified day

• Full system documentation, including instructions on how to trou-
bleshoot most common errors, should be included with the system

You’re energized about starting such an interesting software project, and
have been anxious about working with Barbwire Helmets, Inc. You hope that
this will be as exciting as your last project, working with Fire-Filled Pants, Inc.
You’re ready to get rolling. You’ve gathered the appropriate project team
members, met with the client to understand the project requirements, and
started the project planning process.

Your client, Mr. Safedee, is impressed with the amount of detail that you’ve
put into the scope documents, project plan, quality management plan, and
risk management plan. He’s also impressed that you understand the impor-
tance of involving the appropriate stakeholders right from the beginning. You
reviewed the work breakdown structure (WBS) with the client and the team
and everyone understands that if a task is not in the WBS, it will not be done —
no exceptions. Your software project team is thrilled that you’ve set the cor-
rect expectations with the client. They know that you will have fewer prob-
lems in the future by performing this level of detail in the planning now.

Your client is satisfied with the project schedule plan, cost management plan,
and risk management plan. Your project team understands the roles and
responsibilities matrix and the staffing management plan. Everything is going
so well that you’re wondering why your boss warned you about working with
this difficult client. What’s so hard about all this, you wonder?

Then you look at the schedule and realize that with the small size of your team
and the tight schedule required of you, you will not be able to complete the
entire project in time. You and Mr. Safedee agree that you should outsource
part of your project. You decide that you will contract out the software testing
phase of your project. You contact Testy McTesty, the world-renowned soft-
ware testing agency, and your contact agrees to provide the following serv-
ices for your WBT project:

� Unit software testing

� Functional software testing

� Integrated software testing

� Volume testing

329Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 329

� Issue identification

� Issue resolution

� Testing documentation

You and the Testy McTesty representatives agree to a fixed-price contract
with an incentive for completing by a predetermined date. This is important
to you because you need to have time to perform other activities after the
software is completely tested and you don’t want to take a chance on getting
behind schedule.

You’ve documented all of the details in your procurement management plan
and contract management plan and included constraints, assumptions, dead-
lines, performance reporting requirements, evaluation criteria, payment
methods, and change control.

You understand from your client, Barbwire Helmets, Inc., what is expected of
you as the vendor; Testy McTesty, your vendor, understands what is
expected of you, their client. All is right with the world.

Being the exceptional software project manager that you are and working
with your brilliant hand-selected project team, you complete the Web-based
tutorials on time and within budget. Testy McTesty completes its portion of
the project but have a few testing issues from the integrated software testing
phase. These issues are still unresolved. You don’t worry too much about it,
though, because these issues are deemed a low priority.

At project closure, your client, Barbwire Helmets, Inc., performs the following
actions:

� Quality audits

� Scope verification

� Close vendor contracts

� Receive your invoices

� Performance review on your work as the project manager

You and your client sign the scope verification documents and all project clo-
sure documents and you perform the following actions:

� Document performance reviews on your team members

� Provide surveys to your project team members to solicit their input on
your performance as a project manager

330 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 330

� Complete your lessons learned document (the one that you started at
the beginning of your project)

� Review lessons learned documentation with your team members and
distribute it to the appropriate stakeholders

� Celebrate your team’s success by writing an article about your project
team in your company’s newsletter; distributing gift certificates to each
team member; holding a team lunch where you prepare and serve the
meal; providing hot air balloon rides for your team members and their
families

� Perform audits of Testy McTesty’s work

� Receive Testy McTesty’s invoices and pay your bills

� Close out all contracts

� Turn over all system documentation and review it with your client

When you submit your performance reports to your superiors, they realize
that this wasn’t a difficult client after all. You explain to your superiors that
because you were proactive and followed the appropriate software project
management processes throughout the project, you gained the trust and
respect of the client and attained a higher level of continuous success. You
also explain that because you make a habit of documenting what you learn
from each project, you have continued to hone your skills. You attribute the
fact that you have the respect and admiration of your team to your positive
attitude and generosity when the hard work is complete.

Your superiors agree, you get promoted, and you are engaged to teach other KT
Consulting project managers the proper methods of project management —
particularly the activities around project closure.

331Chapter 16: Finalizing the Project Management Processes

24_749346 ch16.qxp 8/30/06 10:17 PM Page 331

332 Part V: Closing Your Software Project

24_749346 ch16.qxp 8/30/06 10:17 PM Page 332

Chapter 17

Documenting Your
Software Project

In This Chapter
� Writing the lessons learned document

� Documenting a project

� Documenting your documentation

� Creating the help manual

All too often, project managers look at writing the documentation for
their projects with the same vim and vigor with which they used to

apply to writing thank you cards to their grandmothers. But the truth is, a
project worth doing is a project worth documenting. Documenting your plans
for a project is essential, but it’s just as important to document what actually
happened during the project. This documentation is future historical infor-
mation: What you write today will help you and others tomorrow.

Documentation makes a historical record of the experiences — mistakes
and successes — from which you’ve learned in your software project. What
seems crystal clear in your mind now may not be so clear two years later
when it is time to update the software and start the project anew. Think of
how much information will be lost if members of your team quit, retire, or
transfer to other departments.

25_749346 ch17.qxp 8/30/06 10:19 PM Page 333

Using Teamwork When Writing
Documentation

The project was not a solo project; if it was, you couldn’t really call yourself a
manager. Because many hands worked on the project, many hands should also
work on the documentation. Developers can write sections about development
lessons learned, to be read by future developers, far better than you can. Your
focus should be on the project manager’s section, as well as rounding up the
whole document to make sure it has as consistent a look and feel as possible.

Some project managers add a technical writer to the team from the beginning
with the purpose of them heading up the creation of a look-and-feel document
(to direct the formatting and tone of written work from a corporate perspec-
tive) or style guide (to handle standards for spelling, grammar, and other par-
ticulars), as well as accompanying documentation for your project. In fact,
many companies have set procedures for formatting and writing important
documents. If your budget allows you to hire a technical writer, you’ll find
that this is money well spent.

Here are a couple of important tips to keep in mind:

� Have meetings: When you finish the lessons learned document, the docu-
ment should be something that everyone on the team is familiar and
comfortable with. That does not mean they have to agree with all of it —
many times we would like to not see specific problems put in writing in
the hopes that they will be more quickly forgotten — but it does mean
that you should hold meetings to discuss issues and work through them.

� Set milestones: Just as timelines exist for other parts of the project, they
should exist for the documentation as well. You will find yourself need-
ing to provide motivation to keep it moving along. Treat this part of the
project as if it is as important as the creation of any module or compo-
nent (it is as important!), and make sure that it gets done.

You may meet resistance from your team when it comes to documenting
lessons learned. Reluctance to create this documentation can often be a
result of fear. A developer may wonder, “If everyone else knows what I know,
I won’t be needed.” When you encounter this belief, you need to confront it
head on and assure the individual that this document can serve to illustrate
to everyone just how much they do know and make them even more relevant
and valuable — not the reverse.

334 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 334

Completing the Lessons Learned
Documentation

The input to any project should be the lessons learned document from previous
projects. The output from any project should be the lessons learned document
for future projects. In other words, you use previous lessons learned documents
when you start your project. When your project is complete, you should be
able to produce a lessons learned document as one of your deliverables.

You should always start your lessons learned document at the beginning of
your project to ensure you capture lessons learned right from the start. See
Chapter 2 for information about initiating, planning, and beginning a project.

Arguably, the lessons learned document can become the single most impor-
tant document that a software project manager is ever involved in. It is your
chance to pass on information to other project managers and to maintain
records for yourself. Lessons learned can save untold time and money.

Maintaining the lessons learned documentation throughout the entire project
helps to keep things in perspective; you can show your software project team
that it’s acceptable to make mistakes (everyone does it) as long as you learn
from mistakes and use the knowledge you gained to make better project deci-
sions in the future. You can empower your staff to take calculated risks if
they know that all mistakes offer opportunities to learn.

335Chapter 17: Documenting Your Software Project

Three factors to consider when you write
Whenever you write anything, whether it’s
lessons learned documentation, training mate-
rials, or system test plans, there are always
three factors that you should take into account:

� The method of documentation (printed or
electronic): If it is electronic, can the docu-
ment exist within another document, or
must it be a stand-alone document? If it is
printed, is it a subset of a large document or
a stand-alone entity?

� The scope of the documentation: Should
the document only address a change that
was made, or should it be all-inclusive?
Any time you make a major change to the

operation of a site, you need to document
exactly what was done. Needless to say,
you should also only make one major change
at a time to fully realize the ramifications of
that change before making any others.

� The target audience: Is the document to be
used to jog your memory six months from
now, or is it something to distribute to all
users? If it is only for you, you can get by
with a few lines of terse notes. If it is for dis-
tribution to users, you need to be specific
and offer as much background information
as necessary without going overboard.

25_749346 ch17.qxp 8/30/06 10:19 PM Page 335

The lessons learned document is the written history that the project existed
and the story of how it came to be and what you learned from the project.
Without this document, the project runs the risk of being forgotten over time.
Although the project may or may not prove to be important in the long run,
the lessons learned from it will always have immeasurable value. You should
document lessons learned for every project — even if the project is cancelled
at an early stage — because every project can teach you something.

Getting your historical information
together at the beginning of a project
Whenever you start a new project, you should always seek out all existing
lessons learned documents from similar projects that have come before and
use them to help prepare for your upcoming venture. And when you write
your own lessons learned document, you should bear in mind that others will
be reading this document in the future, so you should write to that audience.

Your best input for project planning is historical information, which can include

� Lessons learned documents

� Past project files

� Procurement information

� Interviews with previous project team members

� Rumors, gossip, and hearsay — kidding! (This kind of “data” is never
reliable.)

See Chapters 2 and 3 and all of Part II if you’re not sure how to go about plan-
ning your project.

Creating a lessons learned spreadsheet
at the beginning of the project
At the very beginning of your project, before you can even imagine an ending,
you ought to create a spreadsheet to document mistakes and successes. Better
yet, why not create a template for the spreadsheet so that major project areas
are covered. Share the template with your team and make documenting lessons
learned a regular agenda item for your team meetings, asking the question,
“What did we learn from this?” If you enforce this level of critical thinking,
team members will take ownership of this process, and they will be as proud
of their successes as they are glad they learned from their mistakes. The final

336 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 336

product — the lessons learned documentation — is a great historical docu-
ment that shows the cumulative results of their contributions.

Look at the example of a lessons learned spreadsheet in Table 17-1 to inspire
you about how to use this valuable tool in your own software projects. Remem-
ber, the column headings should vary depending on the particular type of
software project that you’re managing. You’ll be amazed at how quickly this
spreadsheet becomes a regularly expected part of your regularly scheduled
project team meetings, and your team will take pride in making contributions
to it.

Table 17-1 Lessons Learned Spreadsheet for Future Documentation
Topic Project Lesson Team

Area Learned Owner

Testing Workflow Prior to starting the testing Testing
Testing phase, we need to set the Manager

expectation that testers
don’t stop to resolve
issues — they just need
to document each issue.

Testing Workflow During workflow testing, Testing
Testing we need to encourage Manager

end users to perform their
normal job functions.

Training End-User During the planning phase, Client
Training we need to set the expec-

tation that 90% of end users
must be trained in order to
ensure successful system
implementation.

Reports End-User Start gathering information Client
Reports on needed end-user reports

at the beginning of the
project to compensate for
the learning curve for stored
procedures.

Print Testing Testing Ensure that all appropriate Project
project team members Manager
understand the complexities
of testing the print capabil-
ities of the project.

337Chapter 17: Documenting Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 337

Organizing Your Lessons
Learned Document

While you may want to impress others with a long discourse, only professors
love long essays. Future project managers — your audience — value lists of
practical tips. You should record only the vital information that’ll likely be
needed later for reference.

A quick online search will yield dozens of lessons learned document tem-
plates. Every organization has its own methods and includes different infor-
mation. Also, some info is of greater or lesser importance depending on the
type of software project. That said, every lessons learned document should
include the following information:

� A summary or foreword section

� Lessons learned by major stakeholders involved in the development of
the software

� Acknowledgments, references, and resources

Every lessons learned document should evaluate the overall project successes
and failures, as well offer an assessment on what the better approach should
be. The document should not just be a list of problems that lacks evidence of
reflection and discovery.

Organizing the summary of your document
The lessons learned document should begin with a summary section identify-
ing why it exists, what type of project this was, and what the timeframe for
completion was. For example, you might write something like this:

The Corona project was a project in which we built a Web-based program
that allowed the residents of Corona, California, to pay traffic tickets online.
Originally expected to last six months, the project lasted roughly eight
months, between January 2 and August 15, 2006.

This section can be called the Foreword, the Summary, or any similar title,
but its purpose is to allow the reader to quickly identify whether the rest of
the document is worth reading. The foreword should not be more than one
page and may include a specific list of functions the software was originally
contracted to include.

338 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 338

Many introductory sections also include acknowledgements and lists of
those involved in the project. It helps to have this information readily avail-
able at the beginning of the document so that future readers can seek out you
or another member of the team as questions arise.

Organizing the meat of the document
Following this introductory section is the actual documentation of lessons
learned. You can take one of several approaches to writing this portion of the
document — from listing activities in chronological order to alphabetizing
under topics. No matter which approach you take, we highly recommend that
this material be divided into sections.

One of the easiest divisions you can choose is to break the content down into
lessons learned by various key stakeholders, with each group getting its own
section. Prioritize the order of the groups based on who is most likely to
need the information. For example:

� Lessons learned by developers (this should be the first section because
developers have a higher chance of needing the information than others).

� Lessons learned by project managers (second in importance).

� Lessons learned by users (third in importance).

� Lessons learned for other participants.

In every part, you list problems and solutions. You should be as specific as
possible about the problems; problems have a tendency to follow patterns,
so your specific description of a problem (and its coordinating solution) may
mirror something a future reader is facing. The best thing you can do with a
lessons learned document is give future readers an “A-ha” moment when they
stumble across your text in the two-years-from-now time capsule and realize
that you just helped them immensely.

Organizing your references,
contributors, and resources
After the meat of the document, the lessons learned document should end
with a section of references, resources, and contributors. The acknowledge-
ments section at the beginning of the document tends to list everyone who
worked on the project, while the contributors section often lists those who

339Chapter 17: Documenting Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 339

contributed to the document. Although you may like to believe that those two
lists were identical, some people have the gift of writing and organization,
and some don’t. You may discover that pulling coherent, usable documenta-
tion from some team members is next to impossible.

Some members are a part of the team because their skill and expertise is
needed in an area other than documentation. As much as you may not want
to, you’ll have to accept the fact that the writing is not something they are
good at. Of course, accepting this fact may be a whole lot easier if the team
members are crack coders!

Documenting the project’s successes
Success is sweet.

It feels good to accomplish something and know that you pulled off a task
that was very difficult. It makes you feel all warm inside and beam with pride.
But you know this already, right?

Many people tend to downplay success and pass it off with, “Ah, shucks, it
was nothing,” or, “Just got lucky.” Inside we may know that we did the impos-
sible, but are afraid that saying so out loud will sound like bravado. After all,
no one likes a braggart.

Regardless of how you feel inside, you cannot be afraid to commit the suc-
cesses to paper as part of your lessons learned documentation. Be honest
about what was accomplished and don’t be afraid to toot your own horn if
necessary. The success came because you figured out what worked and
directed your team to get the job done, and that is something that someone
else can benefit from on their next project.

Commit it to paper, be honest about it, and feel good about it!

Documenting the project’s failures
Along the path, you experienced failures as well as successes. You went in
one direction believing that it was the best path to follow, then were blind-
sided by an issue that you never gave much forethought to. This is natural
with almost every project. These are the unknown unknowns that whack you
in the head and wreck your project.

That experience of failure needs to be a part of your lessons learned docu-
mentation. You document your failures so that future projects will not run the
risk of being similarly blindsided and so that readers can see what worked for

340 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 340

you and move down those venues instead. This is your opportunity to save
others from a whack in the head by incorporating these successes and fail-
ures into your lessons learned document.

Not everything works. It’s the way of life. It’s the way of projects.

Thomas Edison patented 1,093 inventions — that’s 1,093 successes he had
with projects. Now imagine how many things didn’t work out. Each one of
those failed projects represented an opportunity to learn and refine skills.
Some of Edison’s inventions even came as the result of trying to do one thing
and ending up with a completely different result. This story is repeated time
and time again in history. The invention of Sticky Notes came about as a result
of trying to create glue. The invention backfired, and the glue only sort of stuck.

What was tried and did not work is just as important as what was tried that
did work. If you document, in your lessons learned documentation, the route
that led to failure, you’ll create a map that keeps someone else from going
down that same road, wasting money and time racing to a dead end.

Sometimes an entire project ends in failure. When that happens, the project
truly becomes nothing more than a feasibility study. Documenting the causes
of the failure can really help out in the long term. You can say whether you
think future projects of this type can ever be feasible and offer specific rec-
ommendations that ultimately improve your company’s strategic approach.

Documenting the better approach
It’s a question we all hate: If you could change any one thing, what would it
be? If you could go back in time, knowing then what you know now, what
would you do differently? What would have been a better approach than the
one you took?

While the exercise may seem unoriginal, or even passé, it is judicious and
more than just an exercise in analytical reasoning. Keep in mind that you are
creating a document to be read for future projects. Telling a better approach
to take, even if only in the theoretical sense, can give the next project a better
starting place than the one you used.

Offering advice for future
project managers
Having just completed a project, you know what worked and what didn’t. You
know what you would do differently, and you know what subtle changes you
would make if you had the chance to do it all over again.

341Chapter 17: Documenting Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 341

You also know that sometimes your advice isn’t heeded, just as you some-
times discount the advice of others who offer it to you. Even if you feel as if
no one cares about your advice, you need to write down every bit of the
advice you have. Pretend that the audience consists only of you. Write this
section to yourself and no one else. Put it in the report, and know that those
who read it have the chance to gain from it.

As long as you write this section with the frame of mind that you can learn
from it the next time you read it, you will be doing better than 99 percent of
the project managers who complete this section.

You may be tempted to add advice like, “Never work with that rotten pro-
grammer from ABC Programming, Inc. He’s arrogant and lazy, and he never
does what you ask him to do.” Of course we know we don’t need to tell you
this, but we’re going to tell you anyway. Do not put anything in writing that
expresses a negative, emotional opinion to other people. Even if you feel like
your project was unsuccessful because of the actions of individuals, express
these concerns neutrally and in general terms, such as, “A high level of pro-
gramming skill was needed in this project. I advise future project managers to
give unknown candidate programmers a brief skills test and conduct thor-
ough interviews when filling the positions. Make sure someone in HR calls
outsource candidates’ references.”

Creating the User Manual
and Help System

Every piece of software needs a user manual and a help system associated
with it, even if the piece of software is a subcomponent of a much larger soft-
ware product. If you’re building a subcomponent, the documentation for this
smaller piece may simply need to be incorporated into an already-existing
framework; alternatively, it may need to have stand-alone documentation and
help files. If you’re creating a stand-alone product or a component with stand-
alone help and documentation, you have a real onus to create the best docu-
mentation available.

Your technical writer or assigned team member should start creating the
user manual and user help documents at the start of the project. This is an
important deliverable to your software project, and should not be withheld
until the end of the project.

We’ve all heard the usual gripes that users don’t read the documentation, and
that they just want someone to do it for them. Developers often like to ask,
“How hard can it be to press the Help key?” Before you give these complaints
any merit, let us ask a question: When was the last time you read the manual
accompanying the software you bought, whether it be a development pack-
age, a word processor, or something else?

342 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 342

Odds are that you didn’t read it any more than the user wants to read what
you write. Why? Because you think the documentation that accompanied your
purchase is worthless, too long, and was written by someone who doesn’t
speak your native language, is inaccurate, wrong, confusing. . . . You get the
idea. We’ll let you in on a secret: The For Dummies empire was built to fill a
gap between the needs of software users and the worthless documentation
they received from manufacturers.

You want the documentation you read to give you the answer to the question
you have in a way you can understand it. Then you want to move on with
your life. Amazingly, that is what the user of your software wants from the
documentation you create, as well.

This is another area where it can often pay huge dividends if you can afford
to have a technical writer as part of the team. Having an experienced person
in this field can lessen the burden on the team.

The following sections offer broad areas of advice for creating documentation
for your software product. Read The Practical Guide to Project Management
Documentation by John Rakos, Karen Dhanraj, Scott Kennedy, Laverne Fleck,
Steve Jackson, and James Harris (Wiley) for more information on creating
project documentation. Your company probably has specific guidelines that
you should follow, as well.

Using the project scope as a reference
The starting point of anything the user is to see should be the project scope.
Why did this software get created in the first place? What purpose does it ful-
fill? The user is using the software for that very purpose, and the only thing
they want to know is how to accomplish this specific task.

Begin with the scope, and then work through the operations, always focusing
on the fact that the user hopes to reach the end point as quickly (and pain-
lessly) as possible.

Establishing operational transfer
Operational transfer, the movement from the project implementation phase to
the support phase, is about more than just the user coming to understand
your new application to the point of being productive. It also represents the
availability of the project team and the supporting IT staff to help users. You
need to coordinate, that is, really communicate, the interaction of the folks
that’ll be using your software, the department that will support your soft-
ware, and the project team that created the software.

343Chapter 17: Documenting Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 343

Keeping in mind that the end user is trying to successfully complete a specific
task (whether that is generating a report about drinking water in the Amazon,
formatting a disk while making giggling squeals, or something else that your
software does), you need to focus on walking those users through that process.

Here are some basic steps to follow when it comes to documenting opera-
tional transfer:

1. Start with the assumption that users have never used your software
before.

They are not familiar with your train of thought, and do not know how to
do the task that they realize they need to do.

Good documentation starts with logical programmers who create pro-
grams that allow users to perform tasks using a variety of simple, uni-
form methods. If you’ve had good programmers working on your project
and good quality assurance and testing, you already know where things
are working and where things may require extra explanation. You also
know which scenarios are most likely and which scenarios are least
likely (you can guess that someone won’t be trying to use the spell
checker in software meant to record complex statistical data) so that
you can focus on the areas that users are most likely to need help in.

2. Walk users through a very quick, common operation from start to finish.

Don’t go into any options or special features. Walk through the most
basic operation imaginable and document each step.

Don’t make too many assumptions about the level of technological abili-
ties of users. We hope you figured out the users’ abilities when you talked
with the client and set up the product scope. But just because a program
performs a simple task doesn’t mean that the user is technologically
unsophisticated — and vice-versa. Maybe a piece of software does
something pretty advanced. That doesn’t mean that the user has the
same skills as your programmers.

3. Discuss how someone may need to deviate from that basic operation if
users need to do other things.

Explain why someone would want to read from another file, format the
output a specific way, or whatever else your software can do.

4. Begin walking through the operations again.

This time, incorporate the option(s) that will make the changes. Again,
assume the reader has no experience with your software and was not
part of the team that created it. You don’t want to talk down to users,
but you do want to avoid racing through the material as if you were talk-
ing to a new developer joining the team.

344 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 344

345Chapter 17: Documenting Your Software Project

Death by documentation
All too often, we tend to think of documentation
as an add-on component to a project rather
than as an actual part of the project. The truth of
the matter is that documentation can make all
the difference between whether a project is a
success or a failure.

Time after time, companies have created good
products and then not invested the necessary
resources into their documentation. Many of
these products failed in the marketplace, not
because they were bad products, but because
people didn’t know how to use them.

There once was a large software company
(which no longer exists) that used to make a
very good development package. Version 3 of
this company’s software was very well liked and
stood a great chance of becoming the dominant
development platform in a specific field.

Wanting to gain that market domination, the
company put all of its resources into coming
out with version 4 — something that would blow
the socks off everything else on the market. The
company changed the user interface in version
4. It changed the options. It changed the calls.
It changed so much about the product that
users could barely tell by looking at version 4
of the product that it was the same product as
version 3.

In fact, the company had created a develop-
ment product that was well ahead of its time,
and should have moved programming forward
dramatically. What happened, however, is that
the whole thing backfired and the software was
dismissed. Meanwhile, another company came
along and released the development software
that became the de facto standard.

What went wrong? How did this company fail
so miserably?

The company sold the product for two prices.
The first price gave you only the software media.
The second price (roughly twice as much) gave
users the software media and thousands of
pages of bound manuals on how to use it.

Most programmers thought that moving from
version 3 to version 4 would be an evolutionary
move (as opposed to a revolutionary move), and
didn’t buy the manuals (or couldn’t convince
their managers that it was worth paying twice
as much for the product to get the books).
Without the manuals, developers fumbled
around and couldn’t figure out how to do what
they needed to do. Frustrated and angry, devel-
opers abandoned the package.

Those who did get the manuals were over-
whelmed — literally — by thousands of pages
spread out through five books that cross-
referenced one another so much that users had
to have all the books open at once in order to
figure out how to do what you wanted to do.
Those who spent the extra money also aban-
doned the new platform.

Eventually the platform died; not because it was
not good, but because the documentation killed
it. Properly written documentation, properly
packaged with a superb product, could have
propelled the company to a position of envy.

When you design your documentation, keep this
tale in the back of your mind and make certain
that your products don’t fall prey to the same
fate. This catastrophe is easy enough to pre-
vent, but you must make a conscientious effort
to do so.

25_749346 ch17.qxp 8/30/06 10:19 PM Page 345

Avoiding helpless help systems
Here are some important questions:

� Have you ever called an automated help system and been put on hold
and transferred from one extension to another, never talking to a human
being, and getting hung up on after an hour of frustration?

� Have you ever asked someone a question and been more confused by
the answer than you were when you started?

� Have you ever tried to read a reference book (not this one, of course)
and wondered what language it was written in?

� Have you every worked with a program whose help system crashed?

� Have you every worked with a program whose help system contradicted
itself?

Those are situations most of us can identify with and they share the same
end result: frustration. When you want an answer, you want an answer that
you understand, and you want it now. Here’s what users don’t want:

� They don’t want to be sent somewhere else.

� They don’t want to have to think about and process what was said.

� They don’t want to have learned more than they need to know at this
minute.

When you design a help system, whether it lives online or in a print format,
you need to keep users in mind and KISS.

The best rule is to place yourself in the position of the end user you are creat-
ing the material for. As long as you keep these basic tenets in mind, you’ll
create documentation and help systems better than most that are currently
out there.

346 Part V: Closing Your Software Project

25_749346 ch17.qxp 8/30/06 10:19 PM Page 346

Part VI
The Part of Tens

26_749346 pt06.qxp 8/30/06 10:19 PM Page 347

In this part . . .

The two chapters in the Part of Tens provide you with
lots of useful information on what you should and

should not do to ensure a successful project.

While each project is different than every other software
project, some items or disciplines are likely to always
increase the chances of the project’s success. By avoiding
the points in Chapter 18 and by applying the tips in
Chapter 19, you greatly enhance the likelihood of your
project being successful and of maintaining a degree of
sanity as the project progresses.

In the Appendix, you can find some useful and interesting
information regarding resources and professional develop-
ment support, courtesy of the Professional Management
Institute. You can also find out more about the PMP and
CAPM certification exams. These exams are tough, but
they can take you to the pinnacle of project management
success.

26_749346 pt06.qxp 8/30/06 10:19 PM Page 348

Chapter 18

Ten Ways to Make Your Software
Project Crash and Burn

In This Chapter
� Avoiding that boring planning stuff

� Ignoring risk management

� Not relying on your team

� Building an Iron Triangle

� Keeping yourself invisible

� Making your schedules totally unrealistic

� Making sure the team loses respect for you

You can make your software project crash and burn in so many ways that
limiting this chapter to just ten is difficult. Some of the forces that could

terminate your project are beyond your control: Say the CIO resolves to pull
the project for financial reasons; or perhaps your project sponsor decides
not to sponsor the project because of political considerations. Maybe the
alignment of the planets just does not make the project feasible.

In this chapter we focus on just ten ways that you — and you alone, without
the intervention of the Head Honcho, project sponsor, or astrological omens —
can kill a software project.

Failing to Plan
Failing to plan ahead is the most obvious way to fail. If you’re looking for the
quickest way to end your project, don’t spend the majority of the total pro-
ject time on planning. In fact, why not just avoid planning altogether? That
ought to ensure that the project never takes off.

27_749346 ch18.qxp 8/30/06 10:20 PM Page 349

Planning is the most time-intensive part of the project management process
because it involves all of the project management knowledge areas. Planning
includes creating project plans, gathering requirements, crafting communica-
tion plans, forming risk management plans, and developing quality manage-
ment plans.

Because creating project plans is an iterative process, it can get pretty
tedious. You develop a project plan, something happens, and then you have
to adjust the plan and communicate these changes to the appropriate stake-
holders. It’s really quite boring to do things right (especially if you have to do
them right more than once), so we suggest not concerning yourself with any
types of planning.

Where planning is concerned, here are the two things you should definitely
not do if you really want to blow your software project out of the water:

� Don’t create a communication plan. The stakeholders and sponsor will
eventually hear the status of the project anyway, so why bother develop-
ing the communication plans? An added bonus is that you can spend the
time you save looking for a new job.

� Don’t bother with resource management planning. Most project man-
agers believe it’s worthwhile to create a resource management plan that
outlines the requirements for people, equipment, supplies, and so on.
Planning resources is highly overrated. Instead of planning for and docu-
menting your resource needs so that you can be prepared for each
phase of your software project, it is much easier to just figure everything
out as you go.

Ignoring Risk Management
As we discuss in Chapter 5, there are risks inherent in every project. Actually,
there are risks in everything you do. You took a risk when you picked up this
book — you could have dropped the book on the big toe of your left foot and
ended up in the emergency room. But you determined that the rewards you
would get from reading this book were well worth the risks. And of course
you were right.

If you consistently ignore risks, you consistently miss opportunities associ-
ated with taking a chance on an anticipated outcome. Risks do not always
have a negative outcome. Julius Caesar would never have become emperor
had he not crossed the Rubicon. People who plan for risks often win.

Risks are categorized into two categories, pure and business. You can’t do
much about a pure risk. If Caesar had contracted malaria while crossing the

350 Part VI: The Part of Tens

27_749346 ch18.qxp 8/30/06 10:20 PM Page 350

Rubicon River and died, well, that’s a pure risk he would’ve taken and lost.
Business risks, on the other hand, can be anticipated and planned for. As the
project manager, you may have to cross the metaphorical Rubicon when you
accelerate a project in order to decrease time to market, or gamble that an
inexperienced programmer will write in good code, free of errors, so that you
can decrease costs. If these gambles succeed, you may have managed to
swim the English Channel, never mind the Rubicon (which is a rather poor
excuse for a river to begin with).

Projects are more likely to fail at the beginning and succeed at the end. They
fail at the beginning because of the huge quantity of unknowns that you must
plan for. You have to think about scope creep, technology advances, and the
unrealistic expectations of the stakeholders. There are so many risks associ-
ated with software project management that it would take too long to plan for
all of them — even if you could identify all of them.

So why bother creating a risk management plan, performing qualitative and
quantitative analyses, and worrying about risk assessments when you already
know that all projects have a ton of risks? What’s the point of documenting
and planning for risks when you already know they are going to occur? Either
play the odds or just hope for the best; things will work out some way. If you
really want your project to crash and burn, take a risk and don’t create a risk
management plan.

It takes much longer to fix problems that occur because of a lack of risk man-
agement planning than to avoid them in the first place. But because we’re
talking about ways to kill a project, failing to adequately plan for as many risks
as possible will assure that your path to project success will be blocked by
the project Rubicon.

Letting Your Ego Lead the Project
This may be a complete shock to you, but you really don’t know everything,
and even if you did (which you don’t), you can’t do everything. You need to
rely on others to help complete your software project. Everyone on your
team and all of your stakeholders have something to offer to the success of
the project. Trying to perform all project tasks on your own or without solic-
iting input from your subject matter experts is a brilliant step if you want to
sabotage your project.

Trying to do everything on your own is easy enough, but to really kill your
project right, be sure to also deny that you will make mistakes along the way.
Remember the story from Chapter 17 regarding the invention of sticky notes?
In the process of trying to create one thing, someone made a mistake and

351Chapter 18: Ten Ways to Make Your Software Project Crash and Burn

27_749346 ch18.qxp 8/30/06 10:20 PM Page 351

created something completely different. If that inventor’s ego had been too
large to admit the mistake, we may not have sticky notes today. Think of the
consequences:

� A gentle breeze could scatter all of your reminders into oblivion.

� You might be forced to stick reminders to your walls with the sharp edge
of a pistachio shell, staples, or a miniature hammer and nails coordi-
nated to match your cubicle’s personalized design scheme.

� You would have to throw all your notes on the floor and hope for
the best.

Documenting your mistakes enables others to benefit from your errors. Don’t
worry about it; most of these mistakes have been made by other project man-
agers at one time or another. Of course, if you don’t want others to learn from
your mistakes, but you do want to show off your enormous ego, never admit
your mistakes. Whatever you do, don’t ask stakeholders or team members
for their input on any area of the project. The project is sure to sink, but not
before giving you an ulcer.

Letting Your Iron Triangle Melt
No, the Iron Triangle doesn’t refer to a large sandwich with three types of
cheeses and plenty of sautéed onions on lightly toasted rye. As we explain in
Chapter 1, the Iron Triangle refers to the universal project constraints of time,
cost, and scope.

If you make a change to one constraint in the Iron Triangle, you must also
change the other constraints in order to maintain balance.

Of course, you could melt this Iron Triangle and thus make the software pro-
ject crash and burn by

� Agreeing to move up a deadline without securing other resources.
This tactic is great because you have the potential for blowing your
deadline and increasing costs.

� Agreeing to enhance or add to major product features without
increasing the timeline. Way to kill your staff! Of course, if you want to
add bling, you have two choices: pay overtime (blowing your budget) or
blow your deadline.

� Allowing resources to leave the project early without adding time to
the project’s deadlines or hiring a replacement. If you make a change
to any of the sides of the Iron Triangle, you need to change the shape
and balance of the entire triangle so that the project timeline, cost, and
scope remain in balance.

352 Part VI: The Part of Tens

27_749346 ch18.qxp 8/30/06 10:20 PM Page 352

Hiding from the Project Team
There are times, especially when deadlines approach and things are particu-
larly frantic, that you will be tempted to hide in the nearest broom closet,
retreat to a bathroom stall with your feet propped up, or become a
chameleon and blend into the wallpaper. Even the most experienced project
managers have been tempted to hide out a time or two.

Becoming invisible to your project team creates some very interesting
scenarios:

� One of your programmers could inadvertently redefine a project
requirement. Oh, who cares — requirements are for the weak anyway.

� The team may resort to turf wars. Will they settle the tiff with a dance-
off or with fisticuffs?

� Your sponsor may realize that the software project can be completed
without its project manager. While you’re hiding, we hope you’re circu-
lating your resume.

You are the project manager; it’s your responsibility to manage the project.
You’ve got to be visible to motivate the team, resolve conflicts, distribute
project information, and help to create a cooperative and compatible project
team. If you want to crash your project, go ahead and check out. Your team,
sponsor, and stakeholders may miss you, but they’ll get over it. And you’ll
find a new job eventually.

Hovering over the Project Team
Smothering your project team can be just as detrimental to your project man-
agement success as hiding from your project team. If you want to kill your
chances for managing a successful software project

� Don’t worry about teaching leadership; it’s not really your job,
anyway. Some project managers like to strike a balance between offering
guidance and support and allowing team members to learn from their
mistakes. Others, like you, just micromanage every detail.

� Don’t concern yourself with affording your team members with the
opportunity to demonstrate their creative problem-solving skills.
Enabling team members to use their knowledge, education, and experi-
ence to complete their assigned tasks would be good for their personal
and professional development. Which would be good for the project.
Which you don’t want.

353Chapter 18: Ten Ways to Make Your Software Project Crash and Burn

27_749346 ch18.qxp 8/30/06 10:20 PM Page 353

� Cripple your staff’s ability to do anything, large or small, without your
approval. Don’t show team members that you trust their judgment to
make important decisions. Whatever you do, don’t let them act on those
decisions without your approval.

� When in doubt, hover. Breathe down their necks and look over their
shoulders. These actions afford you with the chance to gaze at all their
family photos and the knickknacks on their desks.

When you hover over your project team, all kinds of great things start to
happen. Team members will begin to come to you every time they have a
simple question, such as:

� What color should I make the heading of this section?

� Should I have three lines of comments in this section or two?

� Does this look better with four radio buttons or should I remove one?

� Can you make Bob stop looking at me funny at meetings?

Remember that you have a dual role as a manager and a leader. If you are
doing a superb job of leading your team (motivating, inspiring, and directing
them), then you can focus more time on managing the project. Team mem-
bers will recognize that you have the confidence in them to do their work
successfully.

On the other hand, if you hover over your team, you take a chance on:

� Frustrating team members.

� Creating an atmosphere of mistrust.

� Encouraging team members to come to you for even the simplest
questions.

� Forcing your team members to become robots who never have to think
on their own because they have someone else to do that for them.

Creating Unrealistic Schedules
Remember, there will be times when the CIO or some other fancy pants will
vaguely relate the objectives of a software project and casually ask you how
long it will take to complete a project before you have the information neces-
sary to answer that question with a shred of accuracy. Sometimes, you can
stall by telling the CIO that you will get back to her with an answer as soon as
you receive more specific information, but other times she will insist on an

354 Part VI: The Part of Tens

27_749346 ch18.qxp 8/30/06 10:20 PM Page 354

immediate answer. As we discuss in Chapter 8, you need to consider so many
variables before answering scheduling questions:

� What is the scope of the project?

� How many experienced programmers can you hire?

� What is the budget?

� What are the requirements of the project; what functions should the
user be able to perform with the software?

� What is the business question that this project will answer?

� What are the assumptions and constraints (flip to Chapters 2 and 3 for
more information)?

� Who are the stakeholders?

� What are the activities that need to be completed, and in what sequence
must they be performed?

� What is the risk tolerance (check out Chapter 5) of the department or
organization?

� What are the risks of the project?

� How will project success be determined?

You have to consider all of these questions (and more) to answer that one
simple question: How long will it take? Surely (we hope you don’t mind being
called Surely), you can go ahead and trivialize the entire project management
process by giving a quick answer to that question. Then again, you could
always go ahead and put together unrealistic schedules. Your team will thank
you for all the free time they’ll have if you stretch out the schedule too much.
Or, you can take the time necessary to effectively create the time estimates
and provide a realistic and accurate project schedule.

Consistently Being Inconsistent
Consistency is the most crucial consideration. No it isn’t. Yes it is. It could be,
maybe. The point is that when you are the project manager, people are going
to rely on you to consistently provide accurate and timely project communi-
cations; you also have to make key project decisions that will have significant
consequences to many stakeholders.

Team members are going to ask about their schedules as well as about their
roles and responsibilities. Your sponsor and other stakeholders are going to

355Chapter 18: Ten Ways to Make Your Software Project Crash and Burn

27_749346 ch18.qxp 8/30/06 10:20 PM Page 355

require information regarding project status, risks, timelines, and trouble
issues. Kind of scary isn’t it?

Maybe you’ll get lucky and be able to work with a team that doesn’t appreci-
ate consistency because it’s so boring and predictable. The feeling of uncer-
tainty may provide your team with a sense of excitement, because they know
that at any moment you will change your mind about a decision you made
yesterday or change their on-site work schedule. Your team’s morale is sure
to increase as members band together to try to figure out how to sabotage
you. Just be careful about eating that homemade brownie they bring you.

Your stakeholders may be thankful for the opportunity to try to figure out
what you really mean when you talk to them, and jump at the chance to
second guess everything you say. Sponsors will understand if you change
your mind every time you talk to them, right? Yeah right.

After you gain a reputation for being inconsistent — either in determining
schedules or taking a particular stand or dealing with conflicts — this reputa-
tion sticks with you and people quit relying on you. Consistently being incon-
sistent can deep-six your project, but the long-term impact is that you will be
labeled a flake every time you’re given a project to manage in the future.

Doing Nothing
How hard can it be to do nothing? Just don’t respond to any requests for
information and don’t take any initiative toward planning your project or
resolving issues. For example, don’t do these things:

� Give your sponsor regular status updates. What a pain it would be to
manufacture reports of your ongoing process.

� Create a thorough project plan. You don’t really need to gather require-
ments — not when you could get a manicure instead.

� Create a risk management plan. You’re not doing anything at all, which
means you’re not taking any risks. So why bother managing risks that
don’t exist?

� Come up with budget, time estimates, and a definition of scope. These
things take way too much time, anyway.

� Come up with a quality management plan. Let the product come out as
the programmers originally intended, even if it doesn’t work.

356 Part VI: The Part of Tens

27_749346 ch18.qxp 8/30/06 10:20 PM Page 356

You may think it’s easy to do nothing and to refrain from being proactive in
resolving issues and conflicts, and it is — at first. You need to make sure that
the project is completed successfully, on time, and within budget. Of course,
it is your prerogative to do nothing, and result in terminating your project.

Being a Wimp
Here are some facts for you: As the project manager, you’re required to make
some tough decisions; sometimes you have to say no to either your team
members or to stakeholders; you won’t always be liked or popular; and you
will have to answer some tough questions from your sponsor if anything goes
amiss with the project. You can’t always be the most popular person in the
room, but you can earn respect if you do the right things for the right reasons
and expect the same from the rest of the team.

If you want to aid the crash and burn of your project, be a wimp. Specifically,
here’s what you must do:

� Be sure to give your team members everything they want. Sometimes
teams need incentives, but a hot tub in the break room is out of the
question.

If you give everyone everything they want, you can be the most popular
project manager on the block. You can join all the other popular project
managers in the unemployment line and you can share stories about the
glory days when you were a wimpy project manager.

You shouldn’t withhold from your team the things they really need, how-
ever, like tools, training, and resources.

� If your team members want to schedule vacations during critical due
dates, let them. Your lead programmer shouldn’t miss his own wedding,
but you should find out whether team members have vacation conflicts
before you hire them.

� If your stakeholders decide they must have time-consuming feature
changes without changing the timeline or cost of the project, go ahead
and agree to those changes. After all, saying no or negotiating is just
too hard.

� Never take a definitive stand on any tough issues. A project manager
never seems less trustworthy than when he or she appears to be weasel-
ing out of giving a straight answer.

357Chapter 18: Ten Ways to Make Your Software Project Crash and Burn

27_749346 ch18.qxp 8/30/06 10:20 PM Page 357

Wimpy project managers don’t last long in that career. It is absolutely impos-
sible to be an effective software project manager (or any kind of project man-
ager) and be a wimp. The personality trait and the job description don’t work
together. They can’t work together.

To be an effective project manager who can gain the respect of your sponsor,
team members, and key stakeholders, you will be called upon to make tough
decisions on a regular basis. You need to know when to take a stand and when
to negotiate. Being a strong leader doesn’t mean you have to be Machiavellian
or rigid; you can still earn respect by being flexible and fair and by giving staff
some things while holding back on others. Although you need to have firm
guidelines in place so that others know what to expect of you, you also need
to make some decisions on an individual basis. If you would prefer to be a
wimp, then you should look into another profession — such as being a pro-
fessional big baby.

358 Part VI: The Part of Tens

27_749346 ch18.qxp 8/30/06 10:20 PM Page 358

Chapter 19

Ten Ways to Make Any Software
Project Better

In This Chapter
� Knowing which questions to ask

� Understanding the importance of project communication

� Creating project success

� Developing thorough project plans

� Being proactive in recognizing failure

� Documenting your way to success

� Being a thoughtful host for project meetings

� Improving your chances for project success

You’ve done your homework, read this book, received advice from other
software project managers, and created a terrific software project plan.

That’s wonderful! Congratulations. Now let us help you make that terrific pro-
ject plan even better. There may be just a few things that you can do to make
your software project even more brilliant.

Asking the Right Questions
Universities and colleges should offer classes in how to ask questions. In fact,
Asking Questions 101 should be a required course for all project managers
because it is such an important skill and is so often underrated.

When you’re gathering requirements for your project, you must ask ques-
tions of many people, particularly other software project managers.

You need to talk to project managers who have completed similar projects so
that you can get their input on what lessons they learned from their projects.
Many new project managers ask experienced project managers about mistakes

28_749346 ch19.qxp 8/30/06 10:19 PM Page 359

made or lessons learned from previous projects, but don’t forget to also ask
what went well on the project so that you can modify those activities to fit
your particular software project.

Don’t forget that other more experienced project managers can be a terrific
resource for you.

One of the most important questions you can ask of your sponsor and appro-
priate stakeholders is, “How will we know that this project is successful?”
Make sure you know what success is supposed to look like for this particular
software project.

Of course, after you have asked all of the appropriate questions of the appro-
priate stakeholders, be sure to document and distribute these answers and
requirements so that if you have made a mistake or an omission, stakehold-
ers have an early opportunity to communicate this back to you.

Being a Good Communicator
Don’t underestimate the power and importance of communication.

Stakeholders can tolerate a lot of things, but they will not tolerate being
unaware of something that they should have already known.

You might discover that you are going to encounter some cost overruns.
That’s bad news by anyone’s standards. You may have just found out through
software testing that you have a huge bug in your program and that’s going to
extend your already tight schedule. That’s not exactly something to call
home about or a cause for celebration.

But both of these issues, as well as others, would be a lot more palatable if
you communicate them to the appropriate stakeholders as soon as they come
to light. If you don’t, you run the risk that your stakeholders will hear about
these issues through the grapevine. You do not want that to happen.

Communicating effectively doesn’t just entail conveying negative informa-
tion. To communicate successfully, you must relate all project information to
appropriate stakeholders.

Take the time at the start of the project to develop thorough communication
plans. Document the method of communication, the receiver of each commu-
nication, and the time period for each communication. Then, stick to it. You
won’t regret taking the time to implement a communication plan, and we
guarantee that sooner or later communicating effectively will be one of your
saving graces.

360 Part VI: The Part of Tens

28_749346 ch19.qxp 8/30/06 10:19 PM Page 360

Showing Your Leadership Skills
A project manager must have visible leadership skills. You will be making
tough decisions, sometimes communicating painful information, dealing with
difficult people, and managing important risks. You must have impressive
leadership skills to prevail in difficult circumstances like these.

Keep in mind that someone can be an effective manager and a so-so leader at
the same time. A good manager can track issues and changes, manage
resources, and write a great project plan. A leader can keep the project’s
vision in mind, get others to agree about its direction and goals, and inspire
and motivate the software project team to accomplish those goals.

Creating the Right Project Plan
Okay, you’re ready to start developing your project plan. Have you

� Spoken with the appropriate stakeholders?

� Met with experienced project managers who have already completed
similar projects?

� Collaborated with your project team members to understand their
strengths, weaknesses, and experiences?

� Understood how each team member can contribute to project success?

� Discussed expectations with your project sponsor so that you both can
develop a clear understanding of what project success will look like?

� Documented your software project’s assumptions and constraints so
that you know how they affect your software project?

� Developed a solid change control system so that you can prevent scope
creep?

� Documented and distributed a clear, concise communication plan?

� Created the project charter (or ensured that someone else created it)
and received sign-off by the project sponsor?

Creating a project plan isn’t something that you do at the beginning of the
project and then put away in a drawer somewhere only to be removed when
you hit a snag or need scrap paper. Creating project plans is an iterative
process that occurs throughout the life of the project. You may modify
the plans depending on situations or problems that occur throughout the
project.

361Chapter 19: Ten Ways to Make Any Software Project Better

28_749346 ch19.qxp 8/30/06 10:19 PM Page 361

Keep in mind that one of the purposes of the project plans is to document
and communicate exactly what you hope to accomplish when you create the
software. You must document the resources required to accomplish project
tasks, start and end dates of each task, and predecessors and successors of
each task (what has to happen first and what has to happen next). Before you
document all of this information, be sure to

� Talk with the appropriate stakeholders

� Gather all of the requirements

� Meet with your sponsor

� Talk to other project managers who have gone before you

If you thoroughly do all of these things, you will most likely create a thorough
and accurate project plan.

Finding the Correct Sponsor
The sponsor for your software project has the authority to assign resources
and offer guidance in resolving issues. These are not responsibilities for just
any doofus; you must pick the right doofus. Just kidding.

It is imperative that you find the correct sponsor because this person can
apply muscle on your behalf when necessary and, because of his or her exec-
utive position in the firm, can help you enforce project decisions.

The project sponsor also has the customer’s needs in mind, understands the
business objectives of the software project, can help resolve issues, has a
role in developing the project’s strategic objectives, and is your main point of
contact for all executive-level decisions.

Because the sponsor for your software project is the one you have to rely on
at crunch time, you want a sponsor who is actively engaged in the project.
Avoid a sponsor who has so many other irons in the fire that she won’t have
the time to focus on project issues.

Also, the project sponsor will be the one who announces to the world that
you are the Big Wig Project Manager for this software project. Ideally, you
should have a positive and constructive relationship with this person.

You may not always enjoy the luxury of choosing a project sponsor. Many
times you are merely told who the sponsor is. If all this information is moot
because you have no say in who your project sponsor is, here’s what you can
do: Make your sponsor look really, really good. Take on all the best attributes
you can and then give credit to the sponsor. And smile.

362 Part VI: The Part of Tens

28_749346 ch19.qxp 8/30/06 10:19 PM Page 362

Recognizing Failure Before It Arrives
How can you recognize something before it even arrives? It’s possible, and
you don’t have to be clairvoyant, either. If you know how to look for the signs
of impending failure before the failure actually occurs, in fact, you’ll have a
significant advantage in the software project management game.

The other crucial element (perhaps more crucial than simply recognizing
signs of failure) is being proactive in dealing with potential issues before fail-
ure bears its ugly head. You know that if you see or smell smoke, there’s
probably a fire nearby, right? Great, but recognition makes no difference if
you don’t run for the fire extinguisher.

Remember that projects are more likely to fail at the beginning than at the
end. So do everything in your power to prevent failure at the beginning.
Spend a sufficient amount of time planning your software project, gathering
requirements from your customers, and developing a strong, solid communi-
cation plan (and adhering to it), then use those exceptional leadership skills
of yours to build a strong, motivated, software project team.

Here are a few signs of potential project failure:

� Have you or anyone from your project team started to let a few dead-
lines slip? That’s bad. What’s worse is if no one’s even a bit surprised
anymore when deadlines do slip.

� Has your project changed so much you don’t recognize it anymore? If
too much scope creep has, um, crept in, your project is in danger.

� Are you starting to have a high turnover from your team? If people are
dropping like flies (for whatever reason), they are taking knowledge with
them. That’s bad. But what’s worse is if they’re leaving because morale
is low or because they don’t respect their project manager.

� Speaking of low morale, are you seeing signs of it? Are team members
bickering more often than usual, losing interest in the project, or putting
silly words in the middle of their software code just to see if anyone
notices? Are programmers sleeping at their desks, coming in late, leav-
ing early, or taking marathon lunches?

� Has your sponsor been missing meetings with you? Does he or she
appear disconnected from the project?

� Have your stakeholders started getting a vacuous look in their eyes
whenever you mention deliverables and risks?

� Has the sponsor started to micromanage you? Do you lack the autonomy
you need to bring the project to a successful completion?

363Chapter 19: Ten Ways to Make Any Software Project Better

28_749346 ch19.qxp 8/30/06 10:19 PM Page 363

After you know what these signs are, deal with them as soon as you spot
them. Be proactive; don’t wait for your Invitation to Project Failure to show
up in your interoffice mail box.

The key to turning around an imperiled project is communication. This
means not just talking with your sponsor and team members, but listening,
too. Then you must act.

Planning, Planning, and
a Little More Planning

There are five process groups involved in project management. These
process groups are

� Initiation

� Planning

� Executing

� Monitoring and controlling

� Closing

You will spend most of your time in the planning phase, and this is completely
logical when you think of all the activities that you and your software project
team will accomplish during the planning process. You will be

� Developing project management plans

� Developing project schedules

� Defining project scope

� Estimating duration of activities

� Estimating costs and budgets

� Documenting communication plans

� Creating risk management and quality management plans

� Planning the scope

� Creating the work breakdown structure

� Determining the project sequence of activities

� Estimating the types and quantities of project resources

Planning is not a one-time deal. That’s why they call it an iterative process.

364 Part VI: The Part of Tens

28_749346 ch19.qxp 8/30/06 10:19 PM Page 364

Documenting Your Project
Even if You Don’t Want To

But then again, why wouldn’t you want to document your software project?
As we say in Chapter 17, a project worth doing is a project worth document-
ing. Your project is worth doing, right? Not only should you be documenting
your software project plans as well as all of the subsidiary plans, but you also
need to document your lessons learned.

Here are some tips for documenting lessons learned:

� Start early: Most people start their lessons learned documents at the
end of a project, but they should start this documentation at the begin-
ning of a project. Create a spreadsheet that has placeholders for each
area of your project and then add to this document as the project pro-
gresses. By the time you close the project, you will already have a nearly
complete lessons learned document that you and others can use for
your future software projects.

� Make it a group thing: You could even make lessons learned an agenda
item for each of your project team meetings. After team members
become accustomed to seeing this lessons learned document and
watching it grow as the project progresses, they will start feeling owner-
ship of the document. The project team will also get used to thinking in
terms of every issue or problem resulting in a lesson learned instead of
just considering problems as something to overcome.

� Spread it around: When your software project is complete, you can dis-
tribute the lessons learned document to your project team and then
complete it with the team during the post project review meeting. Your
team, your sponsor, and all the stakeholders over all the land will be in
awe of your superior project management powers.

Hosting a Successful Project Meeting
Have you ever attended a meeting that reminded you of a three-ring circus?
There was no agenda, one guy was talking on his cellphone, several people
were having side conversations, you weren’t sure of the purpose of the meet-
ing, and not only that, but the donuts were stale? Don’t let this happen to
you. Hosting a successful project meeting is not that difficult, and requires
just a little planning and thoughtfulness.

First, and maybe most importantly, send out an agenda to all invitees prior to
the meeting. In the agenda, document the purpose of the meeting. So far, this

365Chapter 19: Ten Ways to Make Any Software Project Better

28_749346 ch19.qxp 8/30/06 10:19 PM Page 365

doesn’t sound too difficult, right? Well, it doesn’t get any more difficult than
that. On the agenda, document each agenda item, along with the responsible
person and the time span for each agenda item. When attendees walk into a
conference room, they should have absolutely no doubt as to the purpose of
the meeting. Here is an example of a well-prepared meeting agenda:

Meeting Agenda for Review of Training Methodology
Meeting Date: Tuesday, November 12

Meeting Time: 1:00–2:00 p.m.

Meeting Location: Room 123A

Facilitator: Mary

Recorder: Tony

Meeting Invitees: Bob, Tom, Sue, Mary, Tony, Glenda, Gladys, Roger

Meeting Purpose: The purpose of this meeting is to review the train-
ing methodology for the software that will be
implemented on June 10 of next year.

Agenda Item 1: Discuss the three basic training methodologies
(1:00–1:30 p.m. [Tony])

Agenda Item 2: Review the CBT (1:30–1:45 p.m. [Glenda])

Agenda Item 3: Questions and Next Steps (1:45–2:00 p.m. [Tony])

Next Meeting: Tuesday, November 19

Next Meeting Location: Room 123B

Be sure the agenda is distributed prior to the meeting. When attendees walk
in the room for the meeting, they should already understand the purpose of
the meeting.

Here are some helpful hints for making the meeting more efficient:

� Start the meeting on time. The best way to get people to be at a meeting
on time is to gain a reputation for always starting a meeting on time.

� Stay on topic. When someone brings up a topic that is not on your
agenda, offer to place that item on the parking lot, which is a document
where you keep items to be discussed at a later time.

� Play the librarian. When two or more people begin to have a side dis-
cussion, calmly remind them that everyone needs to stay focused and
stay away from side topics. Is that subtle enough? After you say that
once, you’re unlikely to say it again.

366 Part VI: The Part of Tens

28_749346 ch19.qxp 8/30/06 10:19 PM Page 366

� Always talk about follow-ups. The last agenda item should include next
steps or follow up. Before they leave the meeting, all attendees should
have a clear understanding as to what will happen next and when it
should happen.

� Don’t let the minutes pass you by. Always, without fail, every time, for-
ever and ever, follow up each meeting with meeting minutes. Distribute
them as soon after the meeting as possible and be sure to ask for correc-
tions or additions to the minutes. If someone sends you changes to your
minutes, send out the corrected minutes as soon as possible. Be sure to
include all appropriate stakeholders in the meeting minutes, whether or
not they attended the meeting.

Post the minutes on either a team Web page or a shared drive some-
where on the network. Stakeholders should have easy access to all meet-
ing minutes and they should be stored in an organized fashion.

Establishing Project Rules
Before the Project Begins

It’s so easy to follow rules when you know what they are. It’s pretty much a
no-brainer to follow an established, well-known rule.

If you want project team members to adhere to project rules, make sure they
know what the rules are before the project begins. Better yet, ask your team
members to contribute to the list of project rules. Take advantage of the
expertise and intelligence of the smart people you hired. People are always
more likely to follow rules if they helped develop them.

After you establish guidelines, cover them in the project kick-off meeting. Go
over each rule and ask if anyone needs clarification. Don’t forget to follow up
with documentation.

Communicating Good and Bad News
Remember when you were little and you broke your neighbor’s window
with your curve ball, or received a bad grade in citizenship, or “accidentally”
cut your brother’s hair? You were probably a little apprehensive about telling
your parents the bad news. That attitude gets carried over into adulthood.
People may not be eager to communicate bad news, but they have no prob-
lem communicating good news.

367Chapter 19: Ten Ways to Make Any Software Project Better

28_749346 ch19.qxp 8/30/06 10:19 PM Page 367

It may not be easy, but you need to communicate both good and bad news in
a timely manner. Stakeholders have to know what’s going on, and it’s your
responsibility to communicate with them. This is really easy advice to under-
stand, but surprisingly difficult to follow.

It’s best to communicate bad news as soon as you have the information.

Believe me, your stakeholders will react more positively if they hear news in
a timely manner than if you wait and tell them something when it’s too late.

If the schedule may slip, or your costs may be overrun, or you think you
might be losing a key team member, promptly communicate that. You never
know, someone to whom you’re communicating may just be able to help you
with the problem or issue. At the least, give them that opportunity.

368 Part VI: The Part of Tens

28_749346 ch19.qxp 8/30/06 10:19 PM Page 368

Appendix

Formal Project Management
Training and Certification

In This Appendix
� Introducing PMP Certification

� Getting to know the PMI

� Knowing certification requirements

As with any other professional field, there are organizations, certifica-
tions, and career development opportunities that you should be aware

of. Accountants have their CPA (Certified Professional Accountant) designa-
tion; engineers can take tests to become PEs (Professional Engineers); and
project managers can look forward to obtaining their PMP (Project
Management Professional) status through the Project Management Institute.

PMI supports all areas of project management, not just software project
management.

Getting Up Close and Personal with
the Project Management Institute

The Project Management Institute (PMI), founded in 1969, is an increasingly
influential and prominent organization that focuses on enhancing and encour-
aging the career development of project management professionals, while
offering opportunities for professional development and knowledge sharing.
PMI serves as a project management resource. Membership benefits include

� Access to project management professional publications that exhibit
examples of successful project management ventures. The PMI’s publi-
cations are immensely helpful in providing peer learning opportunities
and mentorship.

29_749346 app.qxp 8/30/06 10:19 PM Page 369

� Opportunities to join special interest groups and local chapters in the
PMI network. You can teach others and receive information from other
professionals who work in the same field as you, or in other fields.

� Access to knowledge areas, project management career information, and
training information and opportunities.

� Memberships in PMI colleges, where members share a common interest
and expertise in a particular project management knowledge area.

� Numerous opportunities for professional development and networking.

Visit the PMI Web site at www.pmi.org for more information and to discover
a plethora of other reasons for joining this prestigious organization.

PMI has over 200,000 members (and it continues to grow) from over 100
countries. The current annual membership fee of $119 for an individual mem-
bership or $30 for a student membership is a bargain.

Finding Out Whether the Project
Management Professional
Certification Is for You

If you’re already a project manager or work on project teams as a developer or
in some other capacity, you probably know several project managers. Conduct
an informal poll: Of all the project managers with whom you are familiar, how
many have their PMP certification? Probably not many. The PMP certification
isn’t an easy qualification to obtain. This certification is the top of the line
because it’s so difficult to obtain, and it is very highly regarded.

Earning the Project Management Professional (PMP) certification is a chal-
lenging and arduous feat. First, before you can even start the certification
process, you have to have worked as a project manager for a predefined
number of hours. The conventional wisdom is that as you continue to work
as a project manager and gain experience in the field, you will become better
at being a project management professional. After all, most people learn best
through experience, so you should become better at project management the
longer you do it, right?

When you become a PMP, you also pledge to abide by the PMI code of profes-
sional conduct. You can find out more about the PMI code of conduct from
the PMI Web site and from almost every PMP certification study guide on the
market.

370 Software Project Management For Dummies

29_749346 app.qxp 8/30/06 10:19 PM Page 370

Some of the other requirements for obtaining PMP certification are

� High school diploma or a comparable certification.

� At least 35 hours of project management education.

� A minimum of 7,500 hours working in a leadership role and providing
direction for particular types of tasks.

� At least 60 months of project management experience.

PMI randomly audits applications, so be sure to keep all of your
documentation.

� You must pass the PMP certification exam, which consists of 200 multiple-
choice questions. The questions you get are random, so if you and your
best buddy take the exam at the same time in the same location, you
won’t be asked the same questions.

If you have a baccalaureate degree (otherwise known as a bachelor’s degree),
you only have to work 4,500 hours in a leadership role. And instead of 60
months of project management experience, you’ll only need 36 months.

Understanding what a PMP
certification says to others
The esteemed PMP certification demonstrates to potential employers, stake-
holders, your project team, and others with an understanding of the difficulty
of attaining PMP status, that you have completed the arduous requirements
necessitated of this standing. This accomplishment also shows that you have
a solid understanding of project management concepts and principles. When
you earn the PMP certification, it shows that you are willing to work hard and
that you take your choice of careers and professional field seriously. Obtaining
your PMP certification validates that you understand the principles and
accepted practices of the project management field. It also proves that you
are willing to go the extra mile to attain professionalism in the field of project
management. The PMP certification is recognized all over the world.

Understanding what the PMP
certification gets you
Obtaining your status as a PMP is likely to increase your chances of a higher
salary, advancement in the project management field, and the respect of your
peers. Your skin will glow, there will be an aura about you, and your teeth will
be whiter. Plus, it’s cool to have another set of initials after your name.

371Appendix: Formal Project Management Training and Certification

29_749346 app.qxp 8/30/06 10:19 PM Page 371

Getting started
If you are thinking of working toward your PMP certification, first of all, great
decision. Secondly, here is a checklist of things you should be doing now:

� Study project management books for the certification (look for books
with PMP and Certification in the title).

� Accept the fact that passing the PMP certification exam relies on you
thoroughly understanding the Project Management Body of Knowledge
(PMBOK) and that although you may answer a question one way if you
answer based just on your own professional experience, you need to
consider the answer based on the PMBOK.

� Take as many practice tests as you can get your hands on.

� Read, reread, and then read again the most recent version of the
PMBOK, paying particular attention to

• Project Management Processes

• Project Management Knowledge Areas

• Inputs, Outputs, and Tools/Techniques of each knowledge area

• Professional Responsibility (this is something you will be expected
to know and to embrace)

� Know every mathematical formula ever written.

To pass the four-hour PMP certification exam, you need to achieve a score of
approximately 69 percent. Don’t be surprised or disappointed if you don’t
pass the PMP certification exam on your first attempt. It’s not an easy exami-
nation; if it was, it wouldn’t be as prestigious or influential. Many people do
not pass the test on their first attempt, and this is nothing to be ashamed of.
You can take the test three times within a year; if the third time isn’t a charm,
you must wait one year to reapply to take the certification exam.

If you earn a 72 percent on the exam and someone else earns a 99 percent,
you still receive the same certification and it doesn’t indicate on the certifi-
cate that you received a particular score; it just says that you passed. So,
don’t sweat it; you just need to pass the test.

When studying the PMBOK and other reference materials, make sure you
know how to apply the concepts. Don’t just memorize definitions or formulas,
or you will be in trouble when you attempt to take the PMP certification exam.
The exam asks you to apply the concepts and formulas to specific scenarios.

372 Software Project Management For Dummies

29_749346 app.qxp 8/30/06 10:19 PM Page 372

After you earn your PMP certification, you’re required to obtain 60 profes-
sional development units (PDUs) every three years to maintain your profes-
sional status. If you fail to do this, you have to take another test in order to
regain your PMP certification.

You can earn PDUs by:

� Taking courses

� Writing papers

� Participating in various self-directed learning activities

� Taking part in professional activities

� Volunteering for community or professional groups

What Is the CAPM Certification?
The PMP certification is not the only credential offered by the Project
Management Institute. Another professional certification offered by PMI is
the Certified Associate in Project Management (CAPM) certification. The
CAPM is a professional designation geared toward members of project teams,
as well as those who are just starting out in the field of project management.
If you’re not quite ready or willing to take the PMP certification, the CAPM
certification is a great opportunity for you to find out more about and con-
tribute to the field of project management.

The CAPM certification is also sought out by professionals in many fields
who want to show that they are knowledgeable and willing to invest their
time and energy to the field of project management.

Earning the PMI CAPM certification is also a prestigious and valuable recogni-
tion of your interest in and knowledge of project management principles.

Just as with the Project Management Professional certification, you must
meet some requirements to earn the designation. These prerequisites are

� High school diploma or a comparable certification

� A minimum of 1,500 hours working on a project team

� 23 hours of formal project management training

373Appendix: Formal Project Management Training and Certification

29_749346 app.qxp 8/30/06 10:19 PM Page 373

Deciding between the
PMP and the CAPM

You can visit the PMI Web site to find out how to register for both certifica-
tion exams. Here are some specifics if you can’t wait that long:

� PMI members: The computer-based PMP exam is $405. The computer-
based CAPM test is $225.

� PMI nonmembers: The computer-based PMP is $555. The CAPM is $300.

Maybe both the CAPM and the PMP are right for you — at different points in
your career. The CAPM might be right for you now and the PMP certification
could be appropriate for you in the future. One way or the other, both Project
Management Institute professional certifications are impressive credentials
to obtain and both will demonstrate that you are knowledgeable of project
management practices and processes.

If you’re already a PMP, you can’t take the CAPM exam.

While the PMP certification is valid for three years, the CAPM certification is
valid for five years. At the end of five years, you can take the CAPM certifica-
tion exam again, or, if you meet the requirements, you can register to take the
PMP certification exam.

Both of these certifications can assist you in developing your career in the
field of project management, and either may be right for you at different
points in your career.

374 Software Project Management For Dummies

29_749346 app.qxp 8/30/06 10:19 PM Page 374

• Numerics •
8/80 Rule, 72
14 Points for Quality (Deming), 138–140

• A •
accuracy in communication, tips for

ensuring, 80–81
acknowledgments section of lessons

learned documentation, 339–340
active listening, 95
activity duration estimates assumptions,

documenting project, 173
constraints, documenting project,

173–174
first-time, first-use penalty affecting, 176
influencers, 173–176
law of diminishing returns affecting,

175–176
overview, 172
resource requirements and capabilities,

175–176
risks, considering project, 174–175

actual cost (AC)
formula for, 285
overview, 282–283, 287–288
project costs, 274

ad-hoc meetings, 105
advice for future project managers, 341–342
agenda for status meetings, 310–311
American Society of Quality (ASQ), 140
analogous estimate, creating, 177–178
assumptions

cost estimates, included in, 196
documenting project, 173
project scope statement, included in, 68

audits
of goods and services from vendors, 261
overview, 297
of work and deliverables, 320–322

automating communication,
105–106, 309–310

• B •
BAC (budgeted at completion), 286
bad news, communicating, 312, 367–368
balanced matrix structure, 158
baselines, using project, 299–300
begging for cash, 206–207
benchmarking, 217, 297
benefit comparison as method of selection

of projects, 45
benefit/cost analysis, 217
benefit-cost ratios, 47
better approach, documenting, 341
better project methods

communicating good and bad news,
367–368

communicator, being a good, 360
documentation tips, 365
failure, recognizing potential, 363–364
hosting a successful project meeting,

365–367
leadership skills, showing, 361
planning as iterative process, 364
project plan, creating the right, 361–362
questions, asking the right, 359–360
rules, establishing, 367
sponsor, finding the correct, 362

bidders’ conference, 248–249
Blanchard, Ken (Managing

For Dummies), 53
blue dollars, 16, 199
body language, 95
brainstorming, 114, 223
breakdowns in communication,

avoiding, 85–88
Budd, Charles I. and Charlene S. (A

Practical Guide to Earned Value
Project Management), 284

budget
constraints, 64–65
estimate, creating, 194
exceeding your, 202–207

Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 375

budget (continued)
problems recognized before you get to the

root cause analysis stage, 207–208
problems your bosses know about but

haven’t addressed, dealing with, 208
under budget, coming in, 134–135

budgeted at completion (BAC), 286
business analysis, 30
business risks, 108–110

• C •
calendar, 100–101
cardinal approach to risk ranking, 114
causal factor charting, 204
cause and effect diagram, 30, 31
celebrating your success, 324
Certified Associate in Project Management

(CAPM) certification, 373, 374
change. See also controlling process group

expectation of, 279
quality considered when making, 144–145

change control board (CCB), 269–270
change control system, 18, 269–271
charters, 34–36, 54
closing the project

case study for, 328–331
celebrating your success, 324
checklist for, 316
completing the project, 322–328
overview, 38–39, 315–316
project team, releasing project team

members from, 325–328
quality control, completing, 317–318
scope verification, 317–319
system turnover activities, 323
vendor contracts, closing out,

260–262, 319–322
code of accounts, using, 73–74
code-and-fix model, 118
coercive power, using, 240–242
coffee talk, 105
communicating project performance

automating project communications,
309–310

bad news, communicating, 312, 367–368
communication management plan, relying

on the, 308
e-mail, communicating via, 312

good news, communicating, 312, 367–368
overview, 308
status meetings, hosting, 310–311

communication
accuracy in, tips for ensuring, 80–81
across the enterprise, 87–88
active listening, 95
ad-hoc meetings, 105
automating, 105–106
of bad news, 312, 367–368
body language, 95
breakdowns in, avoiding, 85–88
calendar, 100–101
coffee talk, 105
communication channels,

calculating, 88–91
conference/phone calls, 104
e-mail, 104–105
with executive layer of organization,

96–97
FAQ, creating, 85–86
feedback, 95
formal communication, 104–105
with functional management layer of

organization, 97–98
of good news, 312, 367–368
ineffective communication, 82–83
informal communication, 105
instant messaging, 105
layers in organization, 96–100
modalities for, 104–106
need for, defining when there is a,

100–103
nonverbal communication, 95
overview, 80
paralinguistics, 95
presentations, 104
with programmers, 83–84, 98–99
project management information system

(PMIS), 105–106
project summary reports, 97
with project team, 98–99
reports, 104
schedule, 100–101
stakeholder meetings, hosting, 102, 103
team meetings, hosting, 102
text messaging, 105
what you (project manager) need to hear,

99–100

376 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 376

communication channels,
calculating, 88–91

communication management plan
building, 91–95
communication explanation, 92
communication responsibility matrix,

93–94
duration, 92
frequency, 92
modality, 92
overview, 91
purpose, 92
relying on, 308
responsibility, 92–93
ten-minute meetings, setting up, 94

communication responsibility
matrix, 93–94

communicator, being a good, 360
competence constraints, 65
completing the project, 322–328
composite structure, 161
compromising on contracts, 259–260
compromising used to resolve conflicts, 60
conference/phone calls, 104
conflicts

compromising used to resolve, 60
cost conflicts, 59
forcing used to resolve, 60
personality conflicts, 59
policy and procedure conflicts, 59
priority conflicts, 59
problem solving used to resolve, 60
project team conflicts, managing, 234–238
resolving, 60–61
resource conflicts, 59
schedule conflicts, 59
smoothing used to resolve, 60–61
sources of common, 58–60
technical belief conflicts, 59
withdrawal used to resolve, 61

consensus, reaching project, 30–31
constrained optimization as method of

selection of projects, 45
constraints

budget constraints, 64–65
competence constraints, 65
cost constraints, 14, 16
cost estimates, included in, 196
documenting project, 173–174

management constraints, 65–66
overview, 13–16
resource constraints, 65
schedule constraints, 64
scope constraints, 14, 16, 17–18
technology constraints, 65
time constraints, 13, 15–16
universal project constraints, 13–14

contingencies, planning for, 198–199
contingency reserve, 117–118, 198
contracts

administering, 255–260
closing out, 319–322
compromising on, 259–260
extraneous work and materials, 258
free on board (FOB) point, 257
overview, 255
payment terms, 258
problem solving for, 259–260
risk management effecting, 257
statement of work (SOW), creating,

258–259
terms and conditions in, writing, 256–258
type of, selecting, 256

contributors section of lessons learned
documentation, 339–340

control charts, 297, 306–308
control of project, 38
controlling process group

overview, 266
project costs, controlling, 272–275
project schedule, controlling, 275–279
project scope, controlling, 266–272

cost
conflicts, 59
constraints, 14, 16
finding vendors, 246
of nonconformance to quality, 144
prioritizing, 64
of quality, 144
questions about, 42

cost estimates
accurate estimate, creating, 195–196
assumptions included in, 196
blue dollars, 199
constraints included in, 196
contingencies, planning for, 198–199
controlling project costs, 199–202
definitive estimate, creating, 194–195

377Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 377

cost estimates (continued)
guidelines for creating, 192–193
managing, 200–202
overview, 191–192
product scope included in, 196
profitability of project, considering,

197–198
project plan used to create, 200
project scope changes, actual cost of,

201–202
project scope included in, 196
range of variance included in, 196
reviewing costs and performance,

200–202
rough estimate, creating, 193–194
timeframe included in, 196
variance analysis included in, 202
variance report, 208
work-for-hire accounting, 199

cost performance index (CPI), calculating,
292–293

cost risks, 115
cost variance (CV)

calculating, 289–290
overview, 274–275

cowboy personality, avoiding, 160
“Cramming More Components onto

Integrated Circuits” (Moore), 21
crashing the project, 188–189
critical path, calculating, 181–182
current state of project to future state of

project, moving from, 32–33

• D •
data collection for root cause analysis,

203–204
decisions, forcing, 238–239
decomposition of project scope

statement, 71
definitive estimate, creating, 194–195
deliverables included in project scope

statement, 68
delivering exactly what is promised, 17
Delphi method, 114, 223
Deming, W. Edwards (14 Points for

Quality), 138–140

development language, 51
Dhanraj, Karen (The Practical Guide

to Project Management
Documentation), 343

discretionary dependencies, 171
documentation

of conflicts and resolutions, 237–238
help systems, 346
lack of, 345
lessons learned documentation, 335–342
look-and-feel document, 334
method of, 335
operational transfer, establishing,

343–344
overview, 130
poorly written documentation, 345
project scope used as reference for, 343
scope of, 335
style guide, 334
target audience for, 335
teamwork’s importance when writing, 334
tips for, 365
user manual, 342–343

doomed projects, recognizing, 54
dream team, building, 52–53

• E •
EAC (estimate at completion), 286, 288–289
earned value (EV)

calculating, 287
formula for, 285
overview, 282–283
project costs, 274

earned value management (EVM)
actual cost (AC), 282–283, 285, 287–288
budgeted at completion (BAC), 286
cost performance index (CPI),

calculating, 292–293
cost variance (CV), calculating, 289–290
earned value (EV), 282–283, 285, 287
estimate at completion (EAC),

286, 288–289
estimate to complete the project (ETC),

determining, 289
formulas, 284–286
overview, 281–282

378 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 378

planned value (PV), 282–283, 284–285, 286
schedule performance index (SPI),

calculating, 293–294
schedule variance (SV), calculating,

290–291
using, 303
values, calculating, 286–294
variance analysis, 289–292
variance at completion (VAC), evaluating,

291–292
worth of project, determining, 283–284

Economy, Peter (Managing
For Dummies), 53

ego, leading with your, 351–352
8/80 Rule, 72
Elledge, Robin L. (Team Building for the

Future: Beyond the Basics), 234
e-mail, 104–105, 312
emergency change requests, 270–271
enterprise-wide communication, 87–88
estimate at completion (EAC), 286, 288–289
estimate to complete the project (ETC),

determining, 289
estimating cost of change, 273
estimating impact of change on project

schedule, 277–278
EV. See earned value
evaluations for project team, 326–328
EVM. See earned value management
examining project scope, 267–269
exclusions included in project scope

statement, 68
execution of project, 38
executive layer of organization,

communication with, 96–97
executives, questions to ask, 28
executives’ selection of projects

benefit comparison as method of
selection, 45

constrained optimization as method of
selection, 45

murder boards, 46
overview, 44–45
return on investment (ROI), 46–49
scoring model, 46

expectancy theory, 244
expeditor, 157
expert power, relying on, 239–240

external dependencies, 170
extraneous work and materials, 258
extreme programming, 37
eXtreme Programming in Action: Practical

Experiences from Real World Projects
(Lippert, Roock, & Wolf), 37

• F •
failed projects, management of, 19
failure

avoiding project team, 353
documenting, 340–341
early on, likelihood of, 112–113
ego, leading with your, 351–352
hovering over project team, 353–354
inconsistency leading to, 355–356
Iron Triangle, not maintaining, 352
nothing, doing, 356–357
planning, lack of, 349–350
recognizing potential, 363–364
risk management, ignoring, 350–351
schedules, creating unrealistic, 354–355
timidness leading to, 357–358

FAQ, creating, 85–86
fast tracking the project, 189
feasibility risks, 115
feasibility study

conducting, 34
overview, 42–43
subject matter expert (SME) used to

create, 43–44
feedback, 95
finish-to-finish relationship, 169
finish-to-start relationship, 169
first project team meeting, hosting your,

161–162
first-time, first-use penalty, 23–24, 176
fishbone diagram, 30, 31
Fleck, Laverne (The Practical Guide

to Project Management
Documentation), 343

float
advantages of, 185
applied to project, 184–185
calculating, 182–184

forcing used to resolve conflicts, 60
forecasting schedule variances, 278–279

379Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 379

formal communication, 104–105
formulas

actual cost (AC), 285
earned value (EV), 285
earned value management (EVM),

284–286
planned value (PV), 284–285

14 Points for Quality (Deming), 138–140
fragnets, identifying, 172
free on board (FOB) point, 257
functional management, 28–29, 97–98
functional manager, 157
functional organization, 157–158
functions included in project scope

statement, 69
future value, finding, 48

• G •
Gantt chart, 186
goals, establishing project, 296
gold-plated software, avoiding, 134–135
good news, communicating, 312, 367–368
grade compared to quality, 135–136
Guide to the Project Management Body of

Knowledge (PMBOK), 283, 288

• H •
halo effect, 244
Happy Yarns (case study), 74–75
hard logic, using, 171
hardware, 52
Harris, James (The Practical Guide

to Project Management
Documentation), 343

Health Insurance Portability and
Accountability Act of 1996
(HIPPA) regulations, 63

Heldman, Kim (Project Manager’s Spotlight
on Risk Management), 130

help systems, 346
Hertzberg, Frederick (The Motivation to

Work), 243
Hertzberg’s Theory of Motivation, 243–244
historical information, using, 336

hosting
bidders’ conference, 248
status meetings, 310–311
successful project meeting, 365–367

hovering over project team, 353–354
human resources

expectancy theory, 244
halo effect, 244
Hertzberg’s Theory of Motivation,

243–244
management plan for project team, 163
McGregor’s Theory X, 244
McGregor’s Theory Y, 244
Ouchi’s Theory Z, 244
risk, 115
theories of, 243–244

• I •
inconsistency leading to failure, 355–356
industry-specific regulations, 63
ineffective communication, 82–83
influences included in project scope

statement, 70
informal communication, 105
in-house quality solutions, 142
initiation of software project

charters, 34–36, 54
cost, questions about, 42
current state of project to future state of

project, moving from, 32–33
doomed projects, recognizing, 54
executives’ selection of projects,

understanding of, 44–49
feasibility study, 34, 42–44
overview, 25
politics, how to deal with, 31–32
process groups, 32–39
product description, 34, 35, 49–51
product scope, 50
purpose, identifying project, 25–31
stakeholders, 39–41
wish list, creating, 51–54

instant messaging, 105
integrated change control, 145
International Organization for

Standardization (ISO), 137

380 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 380

interviewing
project team, 152–155
stakeholders, 57–58
used to gather information for risk

management plan, 223
Iron Triangle

not maintaining, 352
overview, 14–15
quality in, 142–143
scope creep affecting, 17–18

Ishikawa diagram, 30, 31
ISO 9000, 137

• J •
Jackson, Steve (The Practical Guide

to Project Management
Documentation), 343

• K •
Kennedy, Scott (The Practical Guide

to Project Management
Documentation), 343

key stakeholders, 39
kill points, 206
knowledge areas, 11–12, 215
known unknowns, 198

• L •
lag time, 169
law of diminishing returns, 15, 175–176
layers in organization and communi-

cation, 96–100
lead time, 169
leadership

overview, 23
potential, asking questions that

facilitate, 154
skills, showing, 361

lessons learned documentation
acknowledgments section, 339–340
advice for future project managers,

341–342
better approach, documenting, 341
contributors section, 339–340

documentation tips, 365
failures, documenting, 340–341
historical information, using, 336
lessons learned spreadsheet created at

the beginning of the project, 336–337
overview, 22
successes, documenting, 340
summary section, 338–339

life cycle of project team, 230–232
linguist personality, avoiding, 160
Lippert, Martin (eXtreme Programming in

Action: Practical Experiences from
Real World Projects), 37

look-and-feel document, 334
lost time, documenting, 22

• M •
make or buy decision, 245
management by projects, 13
management constraints, 65–66
Managing For Dummies (Nelson, Economy,

& Blanchard), 53
mandatory dependencies, 171
market conditions, considering, 250–251
matrix structure, 158–159
McGregor, Douglas (HR theories), 244
McGregor’s Theory X, 244
McGregor’s Theory Y, 244
members, conflict with, 236–237
Microsoft Project Server, 106
Microsoft Project 2003 For Dummies

(Stevenson), 213, 276, 302
milestones, determining realistic

project, 298
mistakes in project scope, correcting,

271–272
mitigating risks, 128–129
modalities for communication, 104–106
monitoring risks, 224–225
Moore, Gordon

“Cramming More Components onto
Integrated Circuits,” 21

Moore’s Law, 21
Moore’s Law, effects of, 21–22
more time, requesting, 188
The Motivation to Work (Hertzberg), 243

381Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 381

mouse personality, avoiding, 160
murder boards, 46
Myers, Selma G. (Team Building for Diverse

Work Groups), 233

• N •
needs, determining your project, 148–152
negotiating for best solution with vendors,

253–255
Nelson, Bob (Managing For Dummies), 53
net present value (NPV), finding, 48–49
nonverbal communication, 95

• O •
Occupational Safety and Health Admin-

istration (OSHA) regulations, 63
off-topic discussions, 311
operational transfer, establishing, 343–344
operations

projects compared, 12–13
questions to ask, 29

optimal quality, 143–144
ordinal approach to risk ranking, 114
organizational policies, working with,

162–163
organizational structures

balanced matrix structure, 158
composite structure, 161
functional organization, 157–158
matrix structure, 158–159
overview, 156–157
projectized structure, 159–160
strong matrix structure, 158
weak matrix structure, 158
working with, 155–161

OSHA (Occupational Safety and Health
Administration) regulations, 63

Ouchi, William (Theory Z), 244
Ouchi’s Theory Z, 244
overbudget

begging for cash, 206–207
kill points, 206
overview, 202–203
project scope, reducing, 205–206
root cause analysis to determine why you

are, 203–204

• P •
Pacific Edge, 106
paralinguistics, 95
parametric estimate, creating, 178
Pareto charts, 297, 303–306
Parkinson’s Law, 179
paying vendors, 322
payment terms in contracts, 258
performance improvement plan (PIP), 240
performance reporting, accuracy in,

300–301
personality conflicts, 59
personality types to avoid for project

team, 160
PERT (program evaluation and review

technique), 179–180
Phillips, Steve L. (Team Building for the

Future: Beyond the Basics), 234
planned value (PV)

calculating, 286
formula for, 284–285
overview, 282–283

planning process
extreme programming, 37
iterative process, planning as, 364
lack of, 349–350
methodologies for formal project

management planning, 37
overview, 36–37, 296–298
rolling wave planning, 37
scrum, 37
spreadsheet of mistakes and

successes, 36
PMBOK (Guide to the Project Management

Body of Knowledge), 283, 288
PMI. See Project Management Institute
PMIS (Project Management Information

System), 105–106, 212–213, 302
PMP certification. See Project Management

Professional (PMP) certification
PND. See project network diagram
policy and procedure conflicts, 59
politics, how to deal with, 31–32
poorly written documentation, 345
The Power of Team Building: Using Rope

Techniques (Snow), 233
powers of project manager, 238–243

382 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 382

PQM. See project quality management
A Practical Guide to Earned Value Project

Management (Budd & Budd), 284
The Practical Guide to Project Management

Documentation (Rakos, Dhanraj,
Kennedy, Fleck, Jackson, & Harris), 343

predecessor activities, 169
present value, finding, 47
presentations, 104
price negotiation with vendors, 253–254
Primavera, 106
priority conflicts, 59
proactive communication, 22
problem solving

for contracts, 259–260
used to resolve conflicts, 60

process groups, 19–20, 32–39
procurement

closing the vendor contract, 260–262
contracts, administering, 255–260
described, 53, 245
finding a vendor, 246–250
negotiating for best solution with vendor,

253–255
selecting vendors, 250–253

procurement metrics, 297
product description, 34, 35, 49–51
product scope

cost estimates, included in, 196
overview, 16, 50
project scope compared, 55–56
quality in, 132
stakeholder analysis used

to determine, 56–58
profitability of project, considering,

197–198
program evaluation and review technique

(PERT), 179–180
programmers, communication with,

83–84, 98–99
project calendar, working with, 185–186
project communications management, 11
project coordinator, 157
project costs

actual cost (AC), 274
controlling, 199–202, 272–275
cost variance (CV), 274–275
earned value (EV), 274

estimating cost of change, 273
management, 11
variance, 273, 274–275

project duration estimate
analogous estimate, creating, 177–178
overview, 176–177
parametric estimate, creating, 178
rough order of magnitude estimate, 177
time estimates, 176–178

project human resources management, 11
project integration management, 12
project management

change control system, 18
constraints, 13–16
delivering exactly what is promised, 17
of failed projects, 19
Iron Triangle of project

management, 14–15
knowledge areas, 11–12, 215
law of diminishing returns, 15
leadership compared, 23
overview, 10–12
process groups, 19–20
of successful projects, 18

Project Management Information System
(PMIS), 105–106, 212–213, 302

Project Management Institute (PMI)
CAPM certification, 373–374
membership benefits of, 369–370
overview, 11, 369–370
PMP certification, 370–374

Project Management Professional (PMP)
certification

advantages of, 371
CAPM certification compared, 374
others, what it says to, 371
overview, 370–371
professional development units

(PDUs), 373
requirements for, 370–371
steps for, 372–373

project manager
coercive power, using, 240–242
decisions, forcing, 238–239
expert power, relying on, 239–240
overview, 238
powers of, 238–243
rewarding the project team, 242–243

383Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 383

Project Manager’s Spotlight on Risk
Management (Heldman), 130

project metrics
audits, 297
benchmarking, 297
communicating project performance,

308–312
control charts, 297
earned value management (EVM), 297
goals, establishing project, 296
milestones, determining realistic

project, 298
overview, 296
Pareto charts, 297
planning, 296–298
procurement metrics, 297
tracking plan for, implementing a, 298–302
tracking project performance, 302–308

project network diagram (PND)
activities, categorization of, 168
applying float to project, 184–185
calculating float, 182–184
creating, 170–171
critical path, calculating, 181–182
discretionary dependencies, 171
external dependencies, 170
finish-to-finish relationship, 169
finish-to-start relationship, 169
fragnets, identifying, 172
hard logic, using, 171
lag time, 169
lead time, 169
mandatory dependencies, 171
network templates for, 171
overview, 166–167
predecessor activities, 169
preparation for, 168–172
relationships in, 169
soft logic, using, 171
start-to-finish relationship, 169
start-to-start relationship, 169
subnets, identifying, 172
successor activities, 169
time estimates, 166–172, 181–185

project plan
benchmarking, 217
benefit/cost analysis, 217
project quality management (PQM),

213–216

quality assurance, 217–218
quality audits, 217–218
quality policy, following, 218–219
risk management plan, 219–227
used to create cost estimates, 200
work authorization system (WAS),

211–213
project procurement management, 12
project quality management (PQM)

overview, 11, 213–216
quality assurance, 214
quality control, 214
quality planning, 214

project reviews, 226
project risk management, 12
project scope

avoiding mistakes, 272
change control board (CCB), 269–270
change control system for, 269–271
changes, actual cost of, 201–202
controlling, 266–272
creating, 67–70
emergency change requests, 270–271
examining, 267–269
included in cost estimates, 196
management, 11
mistakes, correcting, 271–272
overview, 16, 17
product scope compared, 55–56
proposed change to, determining

value of, 271
quality in, 133–134
reducing, 205–206
scope creep, 266–267
used as reference for documentation, 343
what not to include in, 70

project scope statement
assumptions included in, 68
decomposition of, 71
deliverables included in, 68
exclusions included in, 68
functions included in, 69
influences included in, 70
other projects included in, 70
project scope, 68–70
technical structure included in, 69
what to include in, 68–70

project sponsor, 40
project summary reports, 97

384 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 384

project team
avoiding project team, 353
communication with, 98–99
conflicts, managing, 234–238
cowboy personality, avoiding, 160
documenting conflicts and resolutions,

237–238
evaluations for, receiving, 326
evaluations for, writing, 326–328
first project team meeting, hosting your,

161–162
hovering over project team, 353–354
human resources management plan

for, 163
interviewing, 152–155
leadership potential, asking questions

that facilitate, 154
life cycle of, 230–232
linguist personality, avoiding, 160
members, conflict with, 236–237
mouse personality, avoiding, 160
needs, determining your project, 148–152
organizational policies, working with,

162–163
organizational structures, working with,

155–161
overview, 39–40
performance improvement plan (PIP), 240
personality types to avoid for, 160
project manager, powers of, 238–243
releasing project team members from,

325–328
resource management, asking questions

that facilitate, 153–154
resource pool, inspecting, 150
rewarding, 242–243
rock personality, avoiding, 160
roles and responsibilities matrix,

creating, 149–152
stakeholders, conflict with, 235–236
STAR interview method, 155
talent, finding the, 152
team-building exercises for, 233–234
training, 232
uncle personality, avoiding, 160
work breakdown schedule (WBS),

148–149
project time management, 11
projectized structure, 159–160

proposed change to project scope,
determining value of, 271

pure risks
overview, 108
in software projects, 109

purpose of project
business analysis, 30
consensus, reaching project, 30–31
identifying, 25–31
interviews used to determine, 30
overview, 25–26
root cause analysis, 30
stakeholders, talking to, 26–29

PV. See planned value

• Q •
qualitative risk analysis, 113, 116, 117
quality

budget, coming in under, 134–135
changes, considering quality when

making, 144–145
cost of, 144
cost of nonconformance to, 144
defined, 131–132
gold-plated software, avoiding, 134–135
grade compared, 135–136
in Iron Triangle, 142–143
optimal quality, 143–144
overview, 131–132
policy, 136–142
in product scope, 132
in project scope, 133–134

quality assurance (QA)
overview, 136
project plan, 217–218
project quality management (PQM), 214

quality audits, 217–218
quality control

completing, 317–318
overview, 214

quality of product from vendors, 255
quality planning, 214
quality policy

following, 218–219
14 Points for Quality, 138–140
in-house quality solutions, 142
ISO programs, 137
overview, 136

385Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 385

quality policy (continued)
Six Sigma methodology, 140–141
Total Quality Management (TQM),

137–140
quality risks, 115
quantitative risk analysis, 116–117

• R •
Rakos, John (The Practical Guide to Project

Management Documentation), 343
range of variance

included in cost estimates, 196
overview, 27

ranking risks, 114–116
regulations, 63
reports, 104
request for information (RFI), 247
request for proposals (RFPs), 249–250
requirements document, 66
residual risks, 130, 226
resolving conflicts, 60–61
resource calendar, working with, 186–187
resource conflicts, 59
resource constraints, 65
resource management, asking questions

that facilitate, 153–154
resource pool, inspecting, 150
resource requirements and capabilities,

175–176
resource-leveling heuristics, using, 187
return on investment (ROI)

benefit-cost ratios, 47
future value, finding, 48
net present value (NPV), finding, 48–49
overview, 46–47
present value, finding, 47

reviewing costs and performance, 200–202
rewarding project team, 242–243
RFI (request for information), 247
RFPs (request for proposals), 249–250
risk assessment, 22
risk impact matrix, 114–116, 117
risk management

accepting risks, 129
avoiding risks, 127
brainstorming, 114
business risks, 108, 109–110
cardinal approach to risk ranking, 114

code-and-fix model, 118
contingency reserve, 117–118
cost risks, 115
Delphi method, 114
documentation, 130
effecting contracts, 257
failure early on, likelihood of, 112–113
feasibility risks, 115
human resources risk, 115
identifying risks, 113–114
ignoring, 350–351
mitigating risks, 128–129
ordinal approach to risk ranking, 114
overview, 107–108
pure risks, 108, 109
qualitative risk analysis, 113, 116, 117
quality risks, 115
quantitative risk analysis, 116–117
ranking risks, 114–116
residual risks, 130
risk impact matrix, 114–116, 117
risk opportunities, 108
risk response plan, preparation of,

126–129
risk threshold, 129–130
risk trigger, 129–130
scope risks, 115
scrum development model, 124–126
secondary risks, 130
software models for, 118–126
spiral model, 121–122
stakeholder expectations risk, 115
stakeholder risk tolerance, 111–112
technical accuracy risk, 115
technology risks, 110–111
time risks, 115
transferring risks, 128
utility function, 111–112
V model, 123–124
waterfall model, 119–120
in your organization, 113–116

risk management plan
brainstorming used to gather

information for, 223
controlling risks, 224–225
Delphi used to gather information for, 223
effectiveness of, documenting, 226
gathering information to identify real

risks, 222–224

386 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 386

interviewing used to gather
information for, 223

monitoring risks, 224–225
overview, 219–220
processes involved with, 221–222
project plan, 219–227
project reviews, 226
residual risks, 226
risk probability and impact matrix,

223–224
root cause analysis used to gather

information for, 223
secondary risks, 225–226
setup for, 220–221
SWOT analysis used to gather

information for, 223
typical risks, examining, 221

risk opportunities, 108
risk probability and impact matrix, 223–224
risk response plan

accepting risks, 129
avoiding risks, 127
mitigating risks, 128–129
overview, 126–127
preparation of, 126–129
transferring risks, 128

risk threshold, 129–130
risk tolerance and finding a vendors, 246
risk trigger, 129–130
rock personality, avoiding, 160
ROI. See return on investment
roles and responsibilities matrix, creating,

149–152
rolling wave planning, 37
Roock, Stephen (eXtreme Programming in

Action: Practical Experiences from
Real World Projects), 37

root cause analysis
causal factor charting, 204
data collection for, 203–204
identifying root cause, 204
overbudget, to determine why you are,

203–204
overview, 30, 203
reacting to causes, 204
risk management plan, used to gather

information for, 223
rough estimate, creating, 193–194
rules, establishing, 367

• S •
Sarbanes-Oxley Act, 27
Sarbanes-Oxley compliance (SOX)

regulations, 63
Sarbanes-Oxley For Dummies

(Welytok), 27, 63
schedule performance index (SPI)

calculating, 293–294
overview, 278

schedule variance (SV), calculating,
290–291

schedules
conflicts, 59
constraints, 64
controlling, 275–279
crashing the project, 188–189
creating, 185–189
creating unrealistic, 354–355
estimating impact of change on, 277–278
fast tracking the project, 189
forecasting schedule variances, 278–279
Gantt chart, using, 186
more time, requesting, 188
overview, 100–101, 185
project calendar, working with, 185–186
resource calendar, working with, 186–187
resource-leveling heuristics, using, 187
schedule performance index (SPI), 278
time variances, managing, 275–277

scope constraints
managing, 16
overview, 14
product scope, 16
project scope, 16, 17

scope creep, 17–18, 266–267
scope risks, 115
scope verification, 317–319
scoring model, 46
screening system for vendors, 251
scrum, 37
scrum development model, 124–126
secondary risks, 130, 225–226
selecting vendors, 250–253
setup for risk management plan, 220–221
signing off on procured goods and

services, 261–262
Six Sigma methodology, 140–141
SME (subject matter expert), 43–44

387Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 387

smoothing used to resolve conflicts, 60–61
Snow, Harrison (The Power of Team Building:

Using Rope Techniques), 233
soft logic, using, 171
software models for risk management,

118–126
software project management

acceptable range of variances, 24
first-time, first-use penalty, 23–24
lessons learned, documenting, 22
lost time, documenting, 22
Moore’s Law, effects of, 21–22
overview, 10–12
proactive communication, 22
risk assessment, 22
unique aspects of, 20–24

software projects, attributes of, 10
software scope

constraints, 64–66
cost and prioritizing, 64
Health Insurance Portability and

Accountability Act of 1996 (HIPPA)
regulations, 63

industry-specific regulations, 63
negotiations, 64
Occupational Safety and Health Admin-

istration (OSHA) regulations, 63
options, choosing, 63–64
overview, 61–62
regulations, adhering to, 63
requirements, 62
requirements document, getting a

signed, 66
Sarbanes-Oxley compliance (SOX)

regulations, 63
stakeholder buy-in, 64
time and prioritizing, 64

sources of common conflicts, 58–60
SOW (statement of work), 51, 258–259
SPI. See schedule performance index
spiral model, 121–122
sponsor, finding the correct, 362
spreadsheet of mistakes and successes,

use of a, 36
stakeholder analysis used to determine

product scope, 56–58
stakeholder buy-in, 64

stakeholder expectations risk, 115
stakeholder meetings, hosting, 102, 103
stakeholder risk tolerance, 111–112
stakeholders

analysis of, 56–58
conflict with, 235–236
executives, questions to ask, 28
expectations of, 40–41
functional management, questions

to ask, 28–29
influence of, 41
interviewing, 57–58
involvement of, 62
key stakeholders, 39
managing stakeholder objectives, 58–61
operations, questions to ask, 29
overview, 26–27
project sponsor, 40
project team, 39–40
questions to ask, 26–27
sources of common conflicts, 58–60
talking to, 26–29

standards, 63
STAR interview method, 155
start-to-finish relationship, 169
start-to-start relationship, 169
statement of work (SOW), 51, 258–259
status meetings

agenda for, 310–311
hosting, 310–311
off-topic discussions, 311

Stevenson, Nancy (Microsoft Project 2003
For Dummies), 213, 276, 302

strong matrix structure, 158
students’ syndrome, 179
style guide, 334
subject matter expert (SME), 43–44
subnets, identifying, 172
successes, documenting, 340
successful projects, management of, 18
successor activities, 169
summary section in lessons learned

documentation, 338–339
SV (schedule variance), 290–291
SWOT analysis used to gather information

for risk management plan, 223
system turnover activities, 323

388 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 388

• T •
talent, finding the, 152
Team Building for Diverse Work Groups

(Myers), 233
Team Building for the Future: Beyond the

Basics (Phillips & Elledge), 234
team meetings, hosting, 102
team member’s help in selecting

vendors, 251
team-building exercises for project team,

233–234
teamwork’s importance when writing

documentation, 334
technical accuracy risk, 115
technical belief conflicts, 59
technical structure included in project

scope statement, 69
technology constraints, 65
technology risks, 110–111
ten-minute meetings, setting up, 94
terms and conditions in contracts, writing,

256–258
text messaging, 105
theories of human resources, 243–244
time and prioritizing software scope, 64
time constraints, 13, 15–16
time estimates

activity duration estimating, 172–176
now, what to respond to request for time

estimate, 180–181
overview, 166
PERT used for accurate, 179–180
project duration estimate, 176–178
project network diagram (PND),

166–172, 181–185
project schedule, creating, 185–189
tips for creating, 178–179

time risks, 115
time variances, managing, 275–277
timeframe included in cost estimates, 196
timeline, importance of following, 254
tools, finding the ideal, 51–52
Total Quality Management (TQM), 137–140
tracking plan

baselines, using project, 299–300
overview, 298

performance reporting, accuracy in,
300–301

using a Project Management Information
System (PMIS), 302

tracking project performance
overview, 302–303
using control charts, 306–308
using earned value management

(EVM), 303
using Pareto charts, 303–306

training, 52, 232

• U •
uncle personality, avoiding, 160
universal project constraints, 13–14
user manual, 342–343
utility function, 111–112

• V •
V model, 123–124
values, calculating, 286–294
variance analysis

earned value management (EVM),
289–292

included in cost estimates, 202
variance at completion (VAC), 291–292
variance, forecasting, 274–275
variance report, 208
vendors

auditing goods and services from, 261
auditing work and deliverables, 320–322
bidders’ conference used to find, 248–249
closing the vendor contract,

260–262, 319–322
contracts, administering, 255–260
cost and finding, 246
finding, 246–250
finding preferred, 53–54
logistical requirements, 249
market conditions, considering, 250–251
negotiating for best solution with,

253–255
paying, 322
price negotiation, 253–254
quality of product from, 255

389Index

30_749346 bindex.qxp 8/30/06 10:19 PM Page 389

vendors (continued)
RFIs used to solicit, 247
RFPs, setting up criteria for, 249–250
risk tolerance and finding a, 246
screening system for, 251
selecting, 250–253
service requirements, 249
signing off on procured goods and

services, 261–262
team member’s help in selecting, 251
time and finding a, 246
timeline, importance of following, 254
weighting system used for selecting,

252–253
Vroom, Victor (expectancy theory), 244

• W •
WAS. See work authorization system
waterfall model, 119–120
WBS. See work breakdown structure
WBS Dictionary, 74
weak matrix structure, 158
weighting system used for selecting

vendors, 252–253
Welytok, Jill Gilbert (Sarbanes-Oxley

For Dummies), 27, 63
wish list

creating, 51–54
development language, 51
dream team, building, 52–53

hardware, 52
overview, 51
resources, 52
tools, finding the ideal, 51–52
training, 52
vendor, finding a preferred, 53–54

withdrawal used to resolve conflicts, 61
Wolf, Henning (eXtreme Programming in

Action: Practical Experiences from
Real World Projects), 37

work authorization system (WAS)
creating, 212
overview, 211–212
PMIS, using, 212–213

work breakdown structure (WBS)
code of accounts, using, 73–74
creating, 71–72
8/80 Rule, 72
Happy Yarns (case study), 74–75
overview, 70–71
templates used to create, 72
updating, 73
WBS Dictionary, 74

work packages, 72
work-for-hire accounting, 199
worth of project, determining, 283–284

390 Software Project Management For Dummies

30_749346 bindex.qxp 8/30/06 10:19 PM Page 390

