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hhi=h/(2m) Planck’s constant

hw photon energy
a(hw) absorptivity
r(ho) reflectivity
t{hw) transmission
e(hw) = a(hw)  emissivity
o(hw) absorption coefficient
k Boltzmann’s constant
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T temperature
nj concentration of particle type j
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Ae electron affinity
¢ electrical potential
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4 voltage = [Ne(x1) — Me(x2)] /€
€FC Fermi energy for electron distribution
in conduction band
Epv Fermi energy for electron distribution

in valence band
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Preface

Mankind needs energy for a living. Besides the energy in our food necessary to sustain our
body and its functions (100 W), 30 times more energy is used on average to make our life
more comfortable. Electrical energy is one of the most useful forms of energy, since it can
be used for almost everything. All life on earth is based on solar energy following the inven-
tion of photosynthesis by the algae. Producing electrical energy through photovoltaic energy
conversion by solar cells is the human counterpart. For the first time in history, mankind is
able to produce a high quality energy form from solar energy directly, without the need of the
plants. Since any sustainable, i.e. long term energy supply must be based on solar energy,
photovoltaic energy conversion will become indispensable in the future.

This book nrn\ndpq fundamental understanding of the functioning of solar cells. The
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discussion of the principles is as general as possible to provide the basis for present technol-
ogy and future developments as well. Energy conversion in solar cells is shown to consist of
two steps. The first is the absorption of solar radiation and the production of chemical en-
ergy. This process takes place in every semiconductor. The second step is the transformation
into electrical energy by generating current and voltage. This requires structures and forces
to drive the electrons and holes, produced by the incident light, through the solar cell as an
electric current. These forces and the structures which enable a directional charge transport
are derived in detail. In the process it is shown that the electric field present in a pn junction
in the dark, usually considered a prerequisite for the operation of a solar cell, is in fact more
an accompanying phenomenon of a structure required for other reasons and not an essential

o~ tv; ~F o 1 11 Th + 1 £ : 1
property of a solar cell. The structure of a solar cell is much better represented by a semicon-

ducting absorber in which the conversion of solar heat into chemical energy takes place and
by two semi-permeable membranes which at one terminal transmit electrons and block holes
and at the second terminal transmit holes and block electrons. The book attempts to develop
the physical principles underlying the function of a solar cell as understandably and at the
same time as completely as possible. With very few exceptions, all physical relationships are
derived and explained in examples. This will provide the non-physicists particularly with the
background for a thorough understanding.

Emphasis is placed on a thermodynamic approach which is largely independent of exist-
ing solar cell structures. This allows a general determination of the efficiency limits for the
conversion of solar heat radiation into electrical energy and also demonstrates the potential

N Y7 _
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Shockley and H. J. Queisser.!
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xii Preface

This book is the result of a series of lectures dealing with the physics of solar cells. I am
grateful to the many students who called my attention to errors and suggested improvements.

The material presented here, which differs from the usual treatment of solar cells relying on an
electric field for a driving force, is the result of several years of collaboration with my teacher,

1'[7 T

I\Uppﬂl

In some respects this book is more rigorous than is customary in semiconductor device
physics and in solar cell physics in particular. The most obvious is that identical physical
quantities will be represented by identical symbols. Current densities will be represented by
Jj and the quantity which is transported by the current is defined by its index, as in jg for
the density of a charge current or je for the density of a current of electrons. In adhering
to this principle, all particle concentrations are given the symbol n, with ne representing the
concentration of electrons, ny, the concentration of holes and ny the concentratlon of photons

I hope that those who are used to n and p for electron and hole concentr

too difficult to adapt to a more logical notation.

The driving force for a transition from exhausting energy reserves, as we presently do, to
using renewable energies, is not the exhaustion of the reserves themselves, aithough oil and
gas reserves will not last for more than one hundred years. The exhaustion does not bother
most of us, since it will occur well beyond our own lifetime. We would certainly care a
lot more, if we were to live for 500 years and would have to face the consequences of our
present energy use ourselves. The driving force for the transition to renewable energies is
rather the harmful effect which the byproducts of using fossil and nuclear energy have on
our environment. Since this is the most effective incentive for using solar energy, we start
by discussing the consequences of our present energy economy and its effect on the climate.
The potential of a solar energy economy to eliminate these problems fully justifies the most
intensive efforts to develop and improve the photovoltaic technology for which this book tries
to provide the foundation.

Peter Wiirfel



1 Problems of the Energy Economy

The energy economy of nearly all and in particular, of the industrialized countries is based on
the use of stored energy, mainly fossil energy in the form of coal, oil and natural gas, as well
as nuclear energy in the form of the uranium isotope U235. Satisfying our energy needs from
reserves, introduces two problems. A source of energy can continue only until it is depleted.
Well before this time, that is, at the latest right now, we have to consider how life will continue
after this source of energy is gone and we must begin to develop alternatives. Furthermore,
unpleasant side effects accompany the consumption of the energy source. Materials long
buried under the surface of the earth are released and find their way into air, water and into our
food. Up to now, the disadvantages are hardly perceptible, but they will lead to difficulties for
future generations. In this chapter we estimate the size of the fossil energy resources, which,
to be precise, are comprised not only of fossil energy carriers, but also of the oxygen in the air

which is burned together with them. In addition, we will examine the cause of the greenhouse
effect, which 1s a practically unavoidable consequence of burning fossil fuels.

1.1 Energy economy

The amount of chemical energy stored in fossil energy carriers is measured in energy units,
some more, some less practical. The most fundamental unit is the Joule, abbreviated J, which
is, however, a rather small unit representing the amount of energy needed to heat 1 g of water
by a quarter of a degree, or the amount of energy which a hair drier with a power of 1 kW
consumes in 1 ms. A more practical unit is the kilo Watt hour (kWh), which is 3.6 x 106 J.

1 LWh ic the anaraov rnantainad in 100 o nf rhnarnlate Tha nnly nrnhlam with thic 11nif ic that it
AYYLL 10wl Clibi g ¥ Lulnallivia Ul 1vv g Ul Liiulyviale,. 1THC ULy PIUUICHIL Wil ULLS Uil 1o a1

is derived from the Watt, the unit for power, which is energy per time. This makes energy equal
to power times time. This awkwardness leads to a lot of mistakes in the non-science press like
kW per hour for power, since most people mistake kW for energy which they perceive as the
more basic quantity. The energy of fossil fuels is often given in barrels of oil equivalents or in
(metric) tons of coal equivalents (t coal equ.).

The following relations apply:

1 kWh = 3.6x10°] = 1 kWh
ltcoalequ. = 29x107 1] = 8200 kWh
1 kg oil = 1.4 kgcoalequ. = 12.0 kWh
1 m® gas = 1.1 kgcoalequ. = 9.0 kWh
1 barrel oil = 195 kg coalequ. = 1670 kWh

Physics of Solar Cells: From Principles to New Concepts. Peter Wiirfel
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2 1 Problems of the Energy Economy

Table 1.1: Primary energy consumption in Germany in 2002.

Type Consumption Per capita consumption
(100t coal equ./a) (kW/person)
Oil 185 2.24
Gas 107 1.30
Coal 122 1.48
Nuclear energy 62 0.75
Others 17 0.21
Total 494 5.98

Table 1.2: World primary energy consumption 2002.

Type Consumption Per capita consumption
(10” t coal equ./a) (kW/person)
Gil 4.93 0.82
Gas 3.19 0.53
Coal 3.36 0.56
Nuclear energy 0.86 0.14
Others 0.86 0.14
Total 13.2 2,19

The consumption of chemical energy per time is an energy current (power) taken from the
energy reserves. Thus, the consumption of one ton of coal per year, averaged over one year
amounts to an energy current of

1t coal equ./a = 8200kWh/a = 0.94kW .

We look at Germany, as an example of a densely populated industrialized country. Ta-
ble 1.1 shows the 2002 consumption of primary energy in Germany, with a population of
82.5 x 10°, These figures contain a consumption of electrical energy per year of

570TWh/a = 65GW = 0.79kW /person .

The energy consumption per capita in Germany of 598 kW is very high compared with
the energy current of 2000kcal/d = 100W = 0.1kW taken up by human beings in the form
of food, representing the minimum requirement for sustaining life.

Table 1.2 shows the 2002 consumption of primary energy in the world, with a population
of 6 x 10°, This energy consumption is supplied from the available reserves of energy with the
exception of hydro, wind and biomass. The presently remaining reserves of energy are shown
in Table 1.3. This is the amount of energy that is estimated to be recoverable economically
with present-day techniques at present prices. The actual reserves may be up to 10 times as
large, of about 10 x 10'? t coal equi.

The global energy consumption of 13.2 x 10° t coal equ. per year appears to be very small
when compared with the continuous energy current from the sun of

1.7 x 10" W = 1.5 x 10'"*kWh/a = 1.8 x 10 t coal equ./a

which radiates towards the earth.



1.2 Estimate of the maximum reserves of fossil energy 3

Table 1.3: The world’s remaining energy reserves.

Type Reserves in

10° t coal equ.
Oil 210
Gas 170
Coal 660
Total 1040

In densely populated regions such as Germany, however, the balance is not so favourable
if we restrict ourselves to the natural processes of photosynthesis for the conversion of so-
lar energy to other useful forms of energy. The mean annual energy current which the sun
radiates onto Germany, with an area of 0.36 x 10°km?, is about 3.6 x IU‘*K"Wh/a =43 x
10'%¢ coal equ./a. Photosynthesis, when averaged over all plants, has an efficiency of about
1% and produces around 400 x 10° t coal equ./a from the energy of the sun. This is insufficient
to cover the requirements of primary energy of 494 x 10°t coal equ./a for Germany. What is
even more important, is that it also shows that over the entire area of Germany, plants are not
able to renrndnr‘e the oxygen hv nhntnqvntheqm which i1s consumed in the combustion of gas,

oil and coal. And this does not even take into consideration that the bio-mass produced in the
process is not stored, but decays, which again consumes the oxygen produced by photosynthe-
sis. This estimate also shows that solar energy can cover the energy requirements of Germany
over its area only if a substantially higher efficiency for the conversion process than that of
photosynthesis can be achieved. The fact that no shortage in the supply of oxygen will result
in the foreseeable future is owed to the wind, which brings oxygen from areas with lower
consumption. Nevertheless, well before oxygen is in short supply we will be made aware of
an increase in the combustion product CO».

1.2 Estimate of the maximum reserves of fossil energy

For this estimate! we assume that neither free carbon nor free oxygen was present on the earth

hefore the beginnine of organic life. The fact that carbon and oxygen react auicklv at the
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high temperatures prevailing during this stage of the earth’s history, both with each other to
form CO, and also with a number of other elements to form carbides and oxides, is a strong
argument in support of this assumption. Since today there are still elementary metals on the
surface of the earth, even though only in small amounts, it must be assumed that neither free
carbon nor free oxygen was available to react.

The free oxygen found in the atmosphere today can therefore only be the result of photo-
synthesis occurring at a later time. The present-day amount of oxygen in the atmosphere thus
allows us to estimate the size of the carbon reserves stored in the products of photosynthesis.

During photosynthesis, water and carbon dioxide combine to form carbohydrates, which
build up according to the reaction

n X (HQO -I—COz) = nxCH,O+n x 0.

'G. Falk, W. Ruppel, Energie und Entropie, Springer-Verlag, Berlin 1976.



4 1 Problems of the Energy Economy

A typical product of photosynthesis is glucose: CsH 206 = 6x CH;O. For this compound
and also for most other carbohydrates, the ratio of free oxygen produce i

also for most other carbohydrates, the ratio of fr 1 by photosynthesis to
carbon stored in the carbohydrates is:

Imol Oy = 1mol C or
32g0, =12gC

The mass of the stored carbon m¢ can therefore be found from the mass of free oxygen mg,:

12
32

The greatest proportion of the oxygen resulting from photosynthesis is found in the atmo-
sphere and, to a lesser extent, dissolved in the water of the oceans. The fraction in the atmo-
sphere is sufficiently large to be taken as the basis for an estimate.

From the pressure pg = 1 bar = 10 N/cm? on the surface of the earth resulting from the air
surrounding our planet, we can calculate the mass of air from the relationship mai, X g = pg X
area:

me = == Mo,.

2
. pe/g = M = 1kg/cm cm2.
10m/s?

Multiplying by the surface of the earth gives the total mass of air

.\:_./nrpn fman) nr/()'—'—'
FAIR/ divR

mair = 1kg/cm? x 4RReanh =5 x 10" tons of air.

Since air consists of 80% N> and 20% O, (making no distinction between volume percent and
weight percent), the mass of oxygen is: mg, = 101t 0. The maximum amount of carbon
produced in photosynthesis and now present in deposits on the earth is therefore:

19

32
Up to now 10.4 x 1012t coal equ. have been found.

Thus, there is reason to hope that the reserves of fossil energy will continue to grow as
a result of continued exploration. In fact, in recent years the known reserves have grown

hacatice mnre hae hean fnimmd than wae ~ronenimad Theare ars rmimonire that
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mec = mo, =400 x 10'? tons of carbon.

large reserves of methane hydrate can be found in moderate depths on the ocean floor. This
compound dissociates into methane and water when it is warmed up or is taken out of the
ocean. The prospects of possibly large reserves, however, must not distract our attention from
the urgency of restricting the mining of these reserves. If we actually use up the entire reserves
of carbon for our energy requirements, we will in fact reverse the photosynthesis of millions
of years and in doing so eliminate all our oxygen. Even if more than the estimated 400x 10!

tons of carbon should exist, we cannot burn more than 400 X% 102 tons of carbon because of
the limited amount of oxygen.

If we examine oil and gas consumption as an example for the consumption of fossil en-
ergy reserves over a long period of time, e. g., since the birth of Christ, Figure 1.1 gives a
frightening picture. Up to the beginning of the twentieth century, the consumption of reserves
was practically negligible. From this time on, it then rises exponentially up to a maximum

value which will be reached in one or two decades. Consumption will then fall off again, as
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oil consumption
. 9
in 10"t coal equ. /a

0 1000 2000 _ years after Chr,

Figure 1.1: Annual consumption of oil. The area under the curve gives the estimated total oil reserves.

have fallen off to one half of thelr original levels. The reserves which have accumulated over
millions of years will then literally go up in smoke over a time of only about one hundred
years. Here, the elimination of energy reserves is the lesser problem. Much worse will be
the alteration of the atmosphere as a result of the products of combustion. These effects will
last for a long time. Even if later generations have changed over to supplying energy from
regenerative sources, they will still suffer from the heritage which we have left them.

1.3 The greenhouse effect

COz is produced in the combustion of fossil energy carriers. The increase in the concentration
of carbon dioxide in our atmosphere will have serious consequences for our climate. At the
present time the atmosphere contains a fraction of 0.03 % of CO,. This corresponds to 2.3 x

1nl2+ A~
L O1 L s,

1.3.1 Combustion

Pure carbon is consumed according to the reaction C + Oy = CO;. Accordingly 12gC+32¢g
O, = 44 g CO;. The mass of CO, produced by combustion is given by the mass of carbon
consumed according to mco, = 44/12 mc. The combustion of 1t of carbon thus results in
3.7t of COy;.

For different compounds of carbon other relationships apply:
— Carbohydrates:

30g CH,0+32¢ 0, = 18g H,0 +44¢ CO,

resulting in mco, = 1.47 mcu,o. This is the chemical reaction for the combustion of food
in the human body.

— Methane (main component of natural gas):



6 1 Problems of the Energy Economy

The present global consumption of the 10'%t coal equ. /a produces globally = 2.2 x 10'0t
of CO2 per year. Half of this is dissolved in the water of the oceans, and half remains in the
atmosphere. If the annual energy consumption does not continue to rise, the amount of CO;
in the atmosphere will double only after about 200 years. However, it is necessary to take
into account that energy consumption continues to increase. At the present time the growth of
one percent per year is relatively low. In the developing countries, energy consumption even
decreased in 1999, because of the inability of these countries to pay for more energy. If global
energy consumption continues to increase at about one percent per year, the CO, concentration
in the atmosphere will have doubled already after about 100 years. This increase is less the
result of a per capita increase in energy consumption than a result of the increasing global
population, The increasing CQO; concentration in the atmosphere will have consequences for
the temperature of the earth.

1.3.2 The temperature of the earth

The temperature of the earth is stationary, i. e., constant in time if the energy current absorbed
from the sun and the energy current emitted by the earth are in balance. We want to estimate
the temperature of the earth in this steady state condition. For this purpose we will make use
of radiation laws not derived until the following chapter.

The energy current density from the sun at the position of the earth (but outside the earth’s
atmosphere) is

JE,sun = 1.3kW /m?

For the case of complete absorption, the energy current absorbed by the entire earth is the
energy current incident on the projected area of the earth:

IE abs = TR JE sun with  R. = 6370km (radius of the earth) .

According to the Stefan—Boltzmann radiation law, the energy current density emitted by the
earth into space is given by

JEean =6T¢  where ©=5.67%x108W/(m’K*)
is the Stefan—-Boltzmann constant. The energy current emitted by the entire earth is
IE,emit = 4n Rg o] ];4 .

From the steady state condition g abs = /g emi¢ it follows that the estimated mean temperature
of the earth is 7. =275K.

The mean temperature of the earth is in fact around 288 K. The approximate agreement is,
however, only coincidental. Taking into account that about 30% of the incident solar radiation
is reflected back into space by the atmosphere of the earth and thus only about 70% (1 kW /m?)
reaches the surface of the earth, a temperature of 258 K then results. The actual temperature
of the earth is in fact greater, because the radiation emitted by the earth is partly absorbed
in the atmosphere. The atmosphere then becomes warmer and emits heat back to the earth.
The same effect occurs in greenhouses where the glass covering absorbs the thermal radiation
emitted by the greenhouse and emits some of it back into the greenhouse.

We can understand the greenhouse effect of the atmosphere using a simple model. Due to

a temperature of 6000 K of the sun, the solar radiation spectrum (expressed as energy current
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A

Figure 1.2: Balance of the absorbed and emitted energy currents on the surface of the earth.

per wavelength) has a maximum at about 0.5 ym, at which the atmosphere is transparent. Due
to the lower temperature of the earth, the emission from the earth has its maximum at about
10 um (in the infrared). All tri-atomic molecules, including CO,, are good absorbers in the
infrared region. Consequently, while most of the incident solar radiation reaches the surface
of the earth, a great part of the energy emitted from the surface is absorbed in the atmosphere.
This causes warming of the atmosphere, which in turn leads to heat emission back to the earth.
The temperature of the earth is a maximum when the radiation from the surface of the earth
is completely absorbed by the atmosphere, a situation which will be faced if the atmospheric
concentration of CO; continues to rise.

In our model, we assume that the earth’s surface absorbs all radiation incident upon it from
the sun and the atmosphere. In the steady state, it must also emit the same energy current. All
energy emitted in the infrared region is assumed to be absorbed by the atmosphere. This leads
to the condition of Figure 1.2:

1
IE,earth - [E,_sun + EIE. atm -

Since radiation emitted by the earth’s surface is fully absorbed by the atmosphere, the solar
energy current incident on the surface of the earth can only be emitted into space by emission
from the atmosphere. This leads to the following conditions:

1

EIE.atm =IE am and I carth = 2IE,sun .

It then follows that

Ig. carth = 4T R2 O T yreenouse = 2MRS % 1.3kW/m?
This yields a temperature of

Te. greenhouse = V2 Te = 1.19 x 275K = 327K = 54°C .

With this mean temperature, the earth would be virtually uninhabitable.

However, the increased absorption of infrared radiation in the atmosphere due to human
influences represents only half of the CO, production. The other half results from methane,
fluorinated hydrocarbons and nitrogen oxides.

In order to CDlilllalC the gree"}‘ ouse effect we have treated th

11
allowing the solar radiation to pass through, but absorbing the radiation from the earth. In view
of the fact that the temperature of the atmosphere is not uniform, a better description would be
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in the form of several fire screens placed behind each other. Extending the fire-screen model
to n fire screens, the temperature of the earth’s surface becomes

4
Te,greenhouse =Tevn+l1

T larco valitae F 55 41 o
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0 temperature of the ear
ular, even greater than the temperature of the sun. This result is of course not correct, because
at such high temperatures an essential condition of the model is no longer satisfied. If the
temperature of the earth were equal to that of the sun, the spectrum emitted from the earth
would be identical with the solar spectrum. It would then no longer be possible for the solar
radiation to pass through the atmosphere, while the radiation emitted from the earth would be
absorbed, as assumed for the fire screen model.

As long as the requirements are satisfied, with more than one fire screen a higher temper-
t

0w
ature results. The conditions prevailing on venus clearly show this. The distance of venus

from the sun is 0.723 times the distance of the earth from the sun. The energy current density
of the solar radiation at the position of venus is therefore twice that reaching the earth. The
atmosphere of venus is comprised aimost entirely of CO,. Treating the atmosphere of venus
as a single fire screen yields a temperature of 116°C for venus, a factor of /2 greater than for
the earth. The actual temperature of venus is, however, 475 °C.

The number of fire screens required to describe the atmosphere depends on the mean free
path of the emitted radiation after which it is absorbed in the atmosphere. This determines the
spacing of the fire screens in the model. Because of the high density of venus’ atmosphere,
with a pressure of 90 bar, this mean free path is much shorter on venus than on earth.

Fortunately, we do not have to fear temperatures on the earth like those found on venus.
Even if the entire supply of oxygen on the earth were consumed, resulting in a CO, pressure of
about 0.2 bar, the temperature of the earth could never reach the temperature of venus. Never-
theless, serious alterations already occur even with much lower temperature increases, which
are not only possible but in fact very probable on earth. We also have to consider that there
are numerous feed-back effects. The most dangerous would be the release of large quantities
of methane, an even more effective greenhouse gas than CO;, when methane hydrate melts in
a warmer ocean.



2 Photons

Photons are particles of light. Photons to which the human eye reacts, that is which we see,
have energies Aim between 1.5eV and 3eV. They always move with the velocity of light, in
a vacuum with a velocity of ¢y = 3 x 108 m/s and in a medium with refractive index n with
a velocity of ¢ = ¢o/n. The fact that we can also describe light as an electromagnetic wave
is in no way contradictory. The square of the field strength of the electromagnetic wave
describes the location of the photons. In contrast to the behaviour familiar from shot peliets,
photons obey the laws of quantum mechanics and not those of the more common Newtonian
mechanics. The differences from Newtonian mechanics become apparent only for particles of
very low energy (including the mass). Since it is difficult to visualize particles which do not
move along a straight line, in a dualistic approach the wave property is generally invoked to
describe diffraction and interference phenomena and the particle property is used to describe
the quantum-like transport of energy, as in this book.

2.1 Black-body radiation

A black body is defined as a body which completely absorbs radiation of all photon energies
k. Tts absorptivity is

a(fiw)=1. Q2.1)

A possible example of a black body is a tiny hole in a cavity. Photons incident on the hole
are not reflected, but are absorbed inside the cavity. The hole is described as black, because it
appears black when the inner part of the cavity is at a low temperature and very few photons
are emitted by the walls of the cavity. When the inner part is at a high temperature, the cavity
is like a furnace. We then of course see a very bright hole, through which we can view the
interior of the furnace. Nevertheless, regardless of whether it emits radiation, the hole absorbs
all incident radiation and is therefore still described as a black body.
The sun is a black body, as is every body which is sufficiently thick and non-reflecting.

2.1.1 Photon density ny in a cavity (Planck’s law of radiation)

Planck’s law of radiation describes the photon density dny(%®) in a cavity for photon energies
between fim and Am+ dAm. As always for the definition of particle densities, we first determine
the density D of states for these particles. The particle density is then found by applying an
occupation or distribution function f. For photons, this takes the form
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Figure 2.1: Bose-Einstein distribution function for gy = 0. The dashed line represents the Boltzmann
distribution exp(—/0,/kT ), a good approximation for o > 2kT .

Here Dy(7m) is the density (per volume and per energy interval dZiw) of the states which the
photons can occupy, and fy(fiw) is the probability of occupation or the distribution function
which determines the distribution of photons over the states as a function of the energy f.

Distribution function fy(fi®) for photons
Because of their integral spin, the Bose—Einstein distribution (Figure 2.1), which describes the
probability for the occupation of states with the energy A®, applies for the photons:
1
exp (ﬁ‘ﬁ_ﬁ“‘/) —1

kT

(2.3)

Here, and always in the combination k7T, k denotes the Boltzmann constant & = 8.617 X
1079 eV/K, and v is the chemical potential of the photons, which has the value gy = 0 for

anlar radiatinn ol gonaral far tharmal radiation Qinpo the digtrilaitinn fiinctian £ {ﬁl\\
OUIAlL 1audidativll auu lll Svlivial 100 UICTIIiALI TAGiduoil. OIncee uid qisdioudon runcion JY\ILW}

depends only on the energy %® of the photons, we must also know the density of the states
Dy(hw) as a function of the energy.

Density of states D,(%®) for photons

Two particles can be distinguished only if they are in different states. Two states are different
when their location x and momentum p differ by more than the minimum of the uncertainty
Ax,Ap of one of these states. For one dimension, this Heisenberg Uncertainty Principle has
the form

AxAp, > h. (2.4)

Particles which cannot be distinguished as a result of the Uncertainty Principle are in the
same state. In geometrical and momentum space, a state therefore has the “phase space”
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volume

AxAp AyAp, AzAp, = I

Since the photon are not localized in the cavity, the uncertainty in their position must be taken
as L.-. .-.“ 1 | uiiie ~fF L.-. Aoty avianding 1n tha and - Aienntinmo and T T us
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Ax=L, andconsequently Ap,=h/L,

Possible values for the x component of the momentum lie in intervals with a width of h/L,
with

P =0, i]’l/Lx, iZh/Lx,

The relationships for Ap, and Ap, are analogous. States having the volume V = L, L, L; in
geometrical space then have the volume Ap,Ap,Ap, = /\n =h /V in momentum space. Fig-
ure 2.2 illustrates the volume of the states and their homogeneous distribution in momentum
space. This result is based Solely on the Heisenberg Uncertainty Principle and does not con-
ldl[l d.Ily SPCLlllb pdl I.lL«lC plUpC[ llCS dllu lUl llllS reason ll. 15 not Ullly Vd.llU lU[ pllUlUllS Ul.lt a S0
for electrons, which will be treated later.

A property specific to light is its occurrence in two directions of polarization normal to
each other with independent intensities. It is therefore necessary to consider two indepen-
dent types of photons (with opposite spins). Each volume Ap? = #*/V in momentum space
therefore contains two photon states, one for each type of photon.

Since the distribution function fy(Z®) for the photons depends on energy and not on mo-
mentum, we need the density of photon states per energy interval, rather than the density
of states in momentum space. For this we need the relationship between momentum p and
energy fimd

hw =c |p|

which is a specific property of photons.
All states in which the photons have energies Ao’ < A and thus |p'| < |p| lie within a
sphere of radius |p| = A®/c in momentum space. The number of such states is

o 2x(n/3)pd  (81/3)V(fw)’
R T RN )

(2.5)

P.

p &~

Figure 2.2: Volumes of the states in momentum space.
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From (2.5) we obtain the de nsity of states per volume and energy interval as the increase
dNy resulting from an increase in the energy of dAio.
Dy{fiw) = 1 « dVy(fiw)  (ho)? (2.6)
Vo odie w2

Here i = h/2m. The velocity ¢ of the photons is their velocity in the cavity. If the cavity is
empty, the photons have the velocity of light in vacuum ¢g, With increasing index of refraction
the velocity co/n of the photons decreases, resulting in an increasing density of states for the
photons.

A problem results when photons pass from one medium to another with a lower index
of refraction, i.e., from a higher to a lower density of states, such as from glass to air. In
order to accommodate all photons in the low-index material with fewer photon states, the
occupation function f, would have to increase. This, however, is not allowed by the second
principle of thermodynamics, as will be shown later, since it would result in annihilation of
entropy. For the same value of the distribution function f,(7®), to keep the entropy constant,
only part of the photons can be accommodated in the low-index material. Nature chooses to

ttally; wnflant lhanl- 3t tha nday matarial tha mhatane whinh can nat o ancnemmmndatad

I.Ul.ally ICIIVLL DAV 11ILY l.llC 111511-111\.161\ 11iawcliial, uic PllUlUllb WwiIiiCii Cdil 1ot OC abbUllllllUUal.bU
in the fewer states of the medium with the lower index of refraction. Exchange of photons
between two media is restricted to the same number of states in both media in such a way
that all states in a restricted solid angle in the high-index medium communicate with all states
in an unrestricted solid angle in the low-index medium. Snell’s law of refraction is another
consequence of this principle. In addition to total internal reflection, a discontinuity of the
refractive index at an interface causes reflection even for photons within the solid angle range
in which photons are exchanged, e. g., all photons incident from the low-index medium. This

tvnp of rpﬂpr‘hnn hr\\mﬂupr can be eliminated h\/ an anti-reflection r‘nnhng in contrast to

fard W wadiaaaiiaaiieSe iz KRaanaTiwRAwWSLINSED ASRRvaaa

the total internal reflection of the photons 1nc1dent from the high-index medium, but with
momenta outside the restricted solid angle.

The density of states (2.6) accounts for all photon states, regardiess of their direction of
motion, which is the direction of their momentum p. At every location within the cavity, the
motion of the photons is in all directions, 1. e., their motion is isotropic. Of interest to us here
are the photons which are able to leave the cavity through the hole. At any location within
the cavity, these are the photons moving towards the hole, i.e., having a momentum vector
pointing in this direction. Since the photons do not collide with each other and maintain their
direction, we can find these photons by determining their density per solid angle at every
location inside the cavity and multiply the density per solid angle by the solid angle element
dQ subtended by the hole. Imagine here a sphere, with a radius R given by the distance to the
hole, around the location of interest of the photon density per solid angle d€2. This solid angle
element dQ2 includes all photons passing through the surface element dO of the sphere, which
defines the hole. The solid angle is defined as dQ = dO/R?.

The maximum value of £ 1s 47, for a solid angle which includes all directions. For an
isotropic distribution of states in momentum space, the density of states per solid angle is

Dy o(hw) = Dy(hw) /4T .
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Energy distribution of photons

The density of states and the distribution function lead us to Planck’s law of radiation, which
describes the number of photons per volume and per photon energy interval dA® in the solid
angle element d€2 .
dny(hw)
dhw

(ho)? dQ 1
= Dyo(hm) fy(hw) dQ = : (2.7
Y,.Q( )fY( ) 4n3h3(c‘o/n)3 exp(h(o/kT) |
The photon density per photon energy interval dny/dfic has its maximum value at i®max =
1.59 kT.
With the energy per photon €y = /i) we find the energy of the photons per volume and per
photon energy interval dfi® in the solid angle interval dQ

dey(hw) (hw)? dQ 1
dAim 4713353(60/11)3 exp(h(n/kT) -1

The energy density per photon energy dey/dhw is called a spectrum. It has its maximum value
at a photon energy of

= Dy 0 (i) f;(ho) ho dQ = (2.8)

AWmax = 2.82kT . (2.9)

In the literature another spectrum is often used, the energy density per wavelength dey/dA as
a function of A. With the relationship

hw = hv = ’% from which follows dA® = *% dir , (2.10)
(2.8) is transformed into
dey (A
ey(A) _ 2h(:5d£2 1 | .11
dA A exp(hc/AkT) — 1

We have left out the minus sign contained in (2.10), which simply means that the photon
energy fio decreases with increasing wavelength A. The maximum value of dey/dA is at a

vyravalansth
WaVClCllElll
he yum eV
Amax = ————— = 0.2497 .
4965 kT kT
To convert photon energies %® to wavelengths A we make use of Eq. (2.10):
ROA = hc = 1.240eV ym , (2.12)
From Eq. (2.8) the total energy of radiation per volume in the cavity, or the energy density, is
co 4m
hw)® dhio
eY:/ 3 () /dQ, (2.13)
/ 43R (co/n)? [exp(Aod/kT) — 1]
Setting x = Aw/kT, the energy density is
¢ 7 dde 24
Ey = ,(lf) R - - 47'[:“—""?—'{("——,‘“ T4. (214)
" AR (co/n)? .(1)’ et 1 15k (co/n)°

N —
nt/15
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The same result is of course obtained by integrating Eq (2 ) over the wavelength,

With reference to Eq. (2.7), the density of all photons in the cavity becomes
(kT)* [ 2dx 2404118 _,
= 4 e a— T- . .
AU ) 0 U/t
—
2.40411
The average photon energy of black-body radiation is thus given by
(hw) = ey/ny = 2.701kT . (2.16)

2.1.2 Energy current through an area dA into the solid angle dC

The energy t‘]Panf\i ner solid anole ingide the cavitv is en = ¢../4m for the entire spectrum. It
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is transported by photons which move with the velocity ¢. We would like to find the energy
current through a small hole in the cavity with surface area dA, directed into a small solid angle
element d€2 normal to dA. Figure 2.3 shows that those photons which at time ¢t = 0 are within
the volume dV = L2dQ dL and are moving towards the hole, will fly through the hole at time
t = L/c¢ for a time interval dt = dL/c. With them the energy flows through the hole dA and
into the solid angle element dQ. For an isotropic distribution, the fraction dQ /47 = dA /4nL?
of the energy dE = ey dV contained in the volume element dV flows through the hole during
the time d¢, and the energy current is
dIe—:Y %i—’gﬁdg:egcdﬂtdﬂ, (2.17)
and is as large as one would expect from the homogeneous energy density at the location
of the hole. This equation also tells us that the point source radiator (dA = (), so popular
in geometrical optics, would require an infinitely large energy density for a non-zero energy
current and, therefore, cannot exist.
Let us now examine the propagation of the radiation towards areceiver. The energy current

emitted from a radiatine area dA; towards a receiver area HAA at a distance of Ri» can be

MliiitivAae L1V QA Lduidrilig aiva \.uxl Y¥ Gai s JEVL VA & | s LA VR N I AN S <0 R BN

described from two different points of view (Figure 2.4):

Figure 2.3: An energy current /g originating from the volume element dV is flowing through the hole
with area dA of the cavity, into the solid angle d€2.
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Figure 2.4: Solid angle dQ, under which the receiver area dA; is seen from the emitter dA, and solid
angle d€2; under which dA; is seen from dA;.

— Viewed from the radiation source, the energy current d/g; is emitted from all points of
the surface area dA, into the solid angle d2; = dA,/R?,

— Viewed from the receiver, the energy current d/g; is incident from the solid angle dQ; =
dA, /R, onto all points of the surface area dA,.

Both of course represent the same energy current
. T 14 n2 . ey, ) m TGN
dig) = eqic dA| dA2/Ry, = dlgy = eqac dA2 dA|/RY; . (2.18)

We see that the energy density per solid angle eq| = eq7 is the same at dA; and at dA, and
thus does not change during the energy transport through the vacuum. In the same way, the
energy current density per solid angle

JEQ = eqc

also does not change along the path from the radiation source to the receiver. The fact that
the energy current d/g; incident on the receiver surface decreases with increasing distance
R\, from the emitter, follows simply from the decreasing magnitude of the solid angle d2, =
dA; /R, under which the emitter is seen.

Alth el <1 A~f 1: 1 tha nA A £ Aigt 1+ | - 1.
AINOUZNn we aeline soiia c’ii’iglﬁ% uy the size and distance of distant OojeClL

emphasized that the solid angle d€2 into which radiation is emitted at the location of the emitter
(or from which radiation is received at the location of the receiver), is a local variable which
describes the momentum distribution of the photons (with respect to direction) at this location,

According to Figure 2.5 the energy current from a surface element dA, of the sun incident
upon a surface element dA. of the earth when dA and dA. are both normal to a line connecting

Figure 2.5: Solid angle dQ under which the surface element dAs on the sun is viewed from the earth,
and solid angle dQ. under which the surface element dA. on the earth is viewed from the sun.
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the sun and the earth over the distance Ry, is given by

dIE,sun—earth = €QsunC dQe dA

dA. dA
= €Q.qunC ‘—CD;._ - (2.19)
Nge

= eq sun € dA. d€)s .

It follows from the first expression that the energy current density per solid angle on the sun
at a point of the surface element dA; is

df E sun—earth

A dO. = €, sun C - (2.20)

jE,Qgsun =

In accordance with the third line of Eq. (2.19) this is identical with the energy current density

T T

per solid angle on the earth at a point on the surface element dA,

dIE.sun—earth
dA. dQ,

JE, Q,earth = =€Q s €= jE,.Q,sun .

This is an important result. Even though the energy current per surface area, the energy current
density, decreases with distance from the sun, near the sun it is of course much larger than on
the earth, the energy current density per solid angle remains unchanged. Close to the sun, the
sun simply subtends a larger solid angle than when viewed from a location on the earth.

A long, thin tube, which when you look through it defines a small solid angle, can be used
as an instrument to measure jg o as long as the emitter fills a larger solid angle than defined
by the tube.

In order to find the energy current emitted from the entire sun towards the earth we must
integrate over the surface of the sun, taking into account that not all surface elements are
oriented normally to the line connecting the earth and the sun.

2.1.3 Radiation from a spherical surface into the solid angle d€2

We can determine the energy current density d/g which is radiated into the solid angle dQ. in
a direction other than normal to the surface element dA; by just looking at the sun. In spite
of its spherical shape, we see the sun as a uniformly bright disc (apart from a slight drop in
intensity very close to the edge). This enables us to conclude that each surface element on
the sun which appears to have the same size, when viewed from the earth, in fact radiates
the same energy current in our direction. The apparent size dA! of a surface element dA; in
Figure 2.6 is the projection of dA¢ onto a plane normal to the line connecting the earth and the
sun, that 1s

dA. = dA;cos
and the energy current emitted towards the earth (i. ¢., into d€2;) is
dlg e = jg,0d€ dA cos B .

This dependence is called Lambert’s law.
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Figure 2.6: Energy current from the surface element dAg on the surface of the sun into the solid angle
dQ. under which the earth is viewed from the sun.

Figure 2.6 shows that all surface elements located on a ring around the line connecting the
earth and the sun are positioned at the same angle in relation to this line. The radius of this
ring is r = R, sin¥, where R; is the radius of the sun. The area of the ring is

dAs = 2mrRs dO = 27RZsin® d© .

Since only the hemisphere directed towards us radiates energy to the earth, the total energy
current which the sun radiates to the earth is
w/2

Ipe = ji.o d9 / 2R sindcos © dv . 2.21)
0

Since cos® d® = d(sin¥) the integration is simple, and

T . V" n2 I e Xa 2
Ige = JE.Q U3 TUR; (2.22)
This is exactly the result that we had expected: the energy current emitted from the sun to
the earth is the same as that of a flat disc with a radius R; oriented perpendicularly to the line

connecting the earth and the sun.

2.1.4 Radiation from a surface element into a hemisphere
(Stefan—Boltzmann radiation law)

Let us now imagine a hemisphere of radius R surrounding the surface element dA from which
radiation is emitted. All surface elements lying on a ring on the hemisphere are then seen from
dA at the same angle relative to the normal to the surface element. The rest follows in the same
way as in Section 2.1.3. The area of the ring dO = 2nR? sin¥d® defines a solid angle element
dQ = dO/R? = 2nsin® dV. Integration over all energy currents diy = jg o dQdAcos® then
yields the total energy current emitted from the surface element dA into the hemisphere

I = jeomdA. (2.23)
The energy current density emitted from the surface element dA into a hemisphere is

JE = jEQT=eyqcT = cey/4 . (2.24)
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Figure 2.7: Dependence of the emitted energy current d/g on the angle ¥ relative to the normal to the
surface. The length of the arrow on the right is a measure of the magnitude of d/g.

Making use g. (2.14) for the energy density ey of black-body radiation then gives the
Stefan—Boltzmann radiation law
2,4
: kT4 4
T°=0T". 2.25
JE= (i (2.25)

The value of the Stefan—Boltzmann constant ¢ = 5.67 x 10 8W/(m?K*). The Stefan-
Boltzmann law for the emission of black bodies was originally discovered experimentally in
1879 by Stefan and later derived theoretically by Boitzmann. We keep in mind that because
of the dependence of the energy current density on cos® at the location of the emitter, as
shown in Figure 2.7, the total energy current density emitted into the hemisphere (Q = 2m) is
obtained by multiplying the energy current density per solid angle by , as the effective solid
angle for the emission of a planar black body into the hemisphere.
Eq. (2.24) also allows us to write the energy density per solid angle in the form

eq = = T (2.26)
Ttc

For a black body, the energy current density per solid angle 1s

, oT*
JEQ = ——
T
and the energy current density emitted normal to a surface into the small solid angle element
dQ is

Q
jg = oT“d? . (2.27)

As already mentioned, the dependence of the energy current on cos¥ means that a light-
emitting surface appears equally bright at all angles.

As a consequence of this so-called Lambert’s law for an emitting black, planar surface, the
energy current density per solid angle observed from outside the surface jg g is independent
of the angle ¥ at which the emitting surface is viewed. The dependence of the energy current
density jg on the angle of viewing results from a dependence of the solid angle subtended by
the emitting area. This behaviour precludes the recognition of any further details of a body by
the emitted radiation, except for its contour.

This so-called Lambert behaviour cannot be taken for granu:u appl €8 Siri 1y Uluy
for the surfaces of bodies which absorb all radiation incident upon the , 1. black bodies.

Weakly absorbing bodies such as a sheet of transparent plastic, in which low concentrations
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of dye molecules are dissolved, behave differently. These molecules emit light isotropically
(e.g. as luminescence radiation when being excited by higher energy photons). This light is
not attenuated by absorption and remains isotropic. If we look onto the large surface of the
pane, we see all molecules, just as if we look onto the edge of the pane, because as a result
of their low concentration the dye molecules do not conceal each other. The eye perceives the
same number of photons from each molecule, regardless of the direction from which we look
at the pane. The edge therefore appears much brighter than the large surfaces. This property is
common to luminescent plastic jewelry. Our interpretation is strictly valid only for materials
with refractive index n = 1, for n > 1 the emission is less isotropic.

Very different designations are in use for energy transport by radiation. In this book we
will continue to use the terms:

Energy current Ie (measured in W)

Energy current density  jg (measured in W/m?)

Energy current density

P\-rl [LLW N AN ) ausu- Jbsz LiIvdadsuivu lll V' .'\11.1 oLy .
These terms are physically clear and we thmk that the name for the transport of energy should
not depend on the medium by which the energy is transported.

2.2 Kirchhoff’s law of radiation for non-black bodies

In the cavity of Figure 2.8 two plates are positioned opposite each other at a distance small
compared to their lateral dimensions (different from the drawing). Plate 2 on the right is black,
like the hole of a cavity, and absorbs all incident radiation completely (a; = 1). Plate | on the
left represents a real material. It reflects (according to its reflectivity ), transmits (according
to its transmission ¢;) and absorbs (according to its absorptivity @) the respective part of the
radiation incident from the black plate djg > or from the black walls of the cavity jg,,. Since
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to the exchange of photons with an energy between /i@ and A® + dfA®, by inserting a filter
between the plates. Radiation with other photon energies is perfectly reflected by the filter.
The energy emitted by the black plate 2 in the energy interval dA at the temperature 7> with

filter

Figure 2.8: Exchange of radiation between two plates in a cavity with a filter in between, transmitting
only photons with energy Am.



20 2 Photons

the energy current density djg 2 (A®, 72) follows from Planck’s law of radiation in (2.8) and is

dQ (hw)?
. 2.28
473k (co/n)? exp(Aw/kT)— 1 e (29

The radiation incident on plate | is either reflected, transmitted or absorbed, so that

djE(ﬁ(D) =

r(A®) + 1 (Ao) +a; (Aw) = 1. (2.29)

Plate 1 also emits radiation, which is €;(A®) djg; and differs from the energy current
dje,1 emitted by a black body of the same temperature 7; by its (still unknown) emissivity
g1 (hw).

In a steady state, each plate must emit the same amount of energy as it absorbs. We
examine the energy balance for the black-body plate 2 . The energy current incident onto the
black-body, plate 2, is comprised of the energy refiected by plate 1, the energy which plate 1
emits at its temperature 77 and the energy from the black cavity walls at the temperature T,
transmitted by plate 1. Since the absorptivity of plate 2 is a; (i®) = 1 all the incident energy
is absorbed and must be balanced by the emitted energy current d jg » which is transmitted by
the filter:

dje2(A0, ) = r(hw)dje2(hw, D) +& (hw) dje 1 (An,T))

+1 (h(ﬂ) djE’w(ﬁ(D,Tw) (2.30)

Thermal equilibrium of course prevails in the cavity, and the exchange of radiation between
the plates must not disturb this state. If the exchange of radiation were to cause differences
in temperature, one could set up a thermoelectric generator for the generation of electrical
energy which would convert thermal energy completely into electricity. However, this would
have to destroy entropy in contradiction with the Second Principle of Thermodynamics,

With T} = T; = Ty and consequently djg 1 = djg 2 = djg w in Eq. (2.30) we obtain

ri(ho) +1, (ho) + € (Ao) =1 . (2.31)

2

Comnarino with Ea (2
Lomparing with kEq. (2.

g1 (hw) =1 — r1 (ho) — 1 (h®) = a; (Ao) . (2.32)

9) we find

The emissivity €(A®) of a body at the photon energy A is equal to its absorptivity a(A®)
at the same photon energy. This relationship is Kirchhoff’s law of radiation stating that the
energy current density emitted by a non-black body in the energy interval dA® into the solid
angle element dQ is

a(hw) dQ (ho)’

djg (ho) = AR (co/n)? exp(hw/kT)—1

dhi . (2.33)

It is transported by the emitted photon current density

a(ho) dQ (hw)?
4T3 1 (co /n)? exp(ho/kT) -1

djy (ho) = dho (2.34)

The absorptivity a(A®) is characteristic of a body and is a function of the body’s geometry. It
describes the fraction of the incident light which is absorbed by the body. It is related to the
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absorption coefficient (), which is a material property and independent of the geometry
of a body. Neglecting multiple reflection, the transmission of a plate of thickness d is

t(ho) = [1 — r(h®)] exp—a(Am)d] . (2.35)
From a = 1 — r — ¢t we obtain the absorptivity of a plate of thickness d
a(hw) = [1 — r(ho) {1 —exp[—a(hw)d]} . (2.36)

2.2.1 Absorption by semiconductors

In the next chapter we learn that solar cells are made from semiconductors. The absorption
of solar radiation by solar cells is therefore characterized by a threshold photon energy %og.
Only photons with energies greater than /g can be absorbed. Photons with lower energies
are either reflected or transmitted. Let us assume that reflection has been eliminated by an
appropriate antireflection coating and that the semiconductor absorber is thick enough so that
no photons with energy > hwg are transmitted. The absorptivity is then approximated by
a(ho < fiog) =0 and a(ho > hog) = 1.
The energy current density absorbed by such a semiconductor plate is

o 7 (ho)?
] = dAw . 2.37
JEabs = 4 e / exp(Ae/kT) — | (2.37)
hog
This integral can be evaluated. With i®/kT = x and fiwg/kT = xg and rewriting
1 exp(—x) =
= =exp(—x) ) exp(—nx exp(—nx) ,
exp(x)—1 1—exp(—x) '; n;l

which is valid for x > 0, Eq. (2.37) becomes

jE,abs =

Partial integration then gives
1~ 1 oy 4 [aa} ra P N
_ dQkT)" & X3, .sxG 6xg 6
abs = ———— ) exp(— + =+ ==+ 2.38
JE, ubs AR 2 ,,):1 p(—nxg) ( 2 3 n4) ( )

For fitog >> kT, that is x > 1, only a few terms of this series are required to obtain sufficient
accuracy. Accordingly, for the absorbed photon current density we obtain

_ dQ (kT)? x%, 2xg | 2
abs = —— i ) exp(—nxg +—= ). (2.39)
Jv,abs AR 2 E p( ) n2 3
2.3 The solar spectrum
Figure 2.9 shows the solar energy current density per photon energy interval as a function of

the photon energy which is incident on the earth before entering the atmosphere. It agrees
well with a spectrum calculated from Eq. (2.33) if we assume that the sun is a black body and
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Figure 2.9: Energy current density per photon energy from the sun as a function of the photon energy
just outside the earth’s atmosphere (heavy line) compared with a black body at a temperature of 5800 K
(thin line).
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Figure 2.10: Energy current density per wavelength from the sun as a function of the wavelength outside
the earth’s atmosphere (heavy line) compared with a black body at a temperature of 5800 K (thin line).

has a temperature Tg of 5800 K. At this temperature of the surface of the sun, k75 = 0.5eV.
The solar spectrum has a maximum at /iy, = 2.82kTg = 1.41eV, i.e,, in the infrared part
of the spectrum, as seen in Figure 2.9. This is just outside of the visible range extending from
1.5eV to 3eV. The average energy of the solar photons is 2.7kTs = 1.35eV.

Most often a different quantity is presented as the solar spectrum. It is the energy current
density per wavelength interval as a function of the wavelength as shown in Figure 2.10.
This solar spectrum has a maximum at Ay, = 0.5um, corresponding to a photon energy of
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ho = 2.48 eV and distinctly different from the value i®p,x found from the photon energy spec-
trum. Although both spectra are called solar spectra, they are completely different quantities
and have different units. We will, therefore, use different names and call the energy current
density per energy interval djg/dfm as a function of the photon energy, shown in Figure 2.9,
the energy spectrum, and the energy current density per wavelength interval as a function of
the wavelength djz /dA, shown in Figure 2.10, the wavelength spectrum.

The energy current density outside the atmosphere, that is the integral over each of the
curves in Figure 2.9 or 2.10, has a value of

JE.AMo = 1353W/m? . (2.40)

The form of the spectrum in Figure 2.9 by itself is not sufficient to assert that the source,
namely the sun, actually has a temperature of 75 = 5800K. While the spectrum has its max-
imum at the photon energy expected for this temperature, it is also possible to produce an
energy current density per photon energy with the form and magnitude as shown in Figure 2.9
with much colder light bulbs and appropriate filters. This is the basis for solar simulators used
to test solar cells. The temperature of the radiation source, provided it is black, only follows
from the spectrum after considering the solid angle d€2 subtended by the radiation source,
which for the sun is Qg = 6.8 x 1077,

Only the energy current density per solid angle (and per photon energy or per wavelength)
is a measure of the temperature of a thermal emitter. For a solar simulator, radiating the same
energy current density per photon energy onto an absorber, the radiation emerges from a much
larger solid angle than for the sun.

2.3.1 Air Mass

Solar radiation is partially absorbed during its passage through the atmosphere. The absorption
is aimost entirely caused by gases of low concentration in the infrared region of the solar
spectrum, by water vapour (H,0O), carbon dioxide (CO3), laughing-gas (N;O), methane (CHy),
fluorinated hydrocarbons, as well as by dust and, in the ultraviolet region of the spectrum, by
ozone and oxygen. Absorption of course increases with the length of the path through the
atmosphere and therefore with the mass of air through which the radiation passes. For a
thickness /y of the atmosphere, the path length / through the atmosphere for radiation from the
sun incident at an angle & relative to the normal to the earth’s surface is given by

[ = l()/COS(X .

The ratio //lp is called the air-mass coefficient. It characterizes the real solar spectrum result-
ing from the absorption of a layer of air of thickness /. The spectrum outside the atmosphere
is designated by AMO and that on the surface of the earth for normal incidence by AM1. A
typical spectrum for moderate climates 1s AM1.5, which corresponds to an angle of incidence
of solar radiation of 48° relative to the surface normal.

The energy spectrum AM1.5 shown in Figure 2.11 is regarded as the standard spectrum
for measuring the efficiency of solar cells used terrestrially, i. e., on the surface of the earth.
The integral over this spectrum, the energy current density onto a surface normal to the sun
for a cloudless sky, is defined to be

jE_.AM].S = 1.()kW/m2 .
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Figure 2,11: The AM1.5 spectrum (heavy line) compared with a black body at a temperature of 5800 K
(thin line).

This maximum energy current density is only negligibly larger for the AM 1.0 spectrum. The
maximum energy current density varies only slightly from the tropics to the moderate zones.
The differences in the amount of energy incident onto a horizontal surface in one year are,
however, much greater. In Germany this is around 1000kWh/(m?2a). We therefore speak of
1000 sun-hours (with 1 kW /m?) per year.

Averaged over the year, the mean energy current density in Germany is 115W/m?, and
roughly a factor of ten less than the maximum energy current density of the AM1.5 spec-
trum. The greatest annual amount of incident solar energy is found in Saudi Arabia, with a
value of around 2500kWh/(m?a). This corresponds to an average energy current density of
285W/m?. The average value over the entire earth is 230 W /m?.

For the AMO spectrum, outside the atmosphere, the energy current density averaged over
the entire earth is easy to calculate. We only have to divide the energy current /. = 1353 x

-D W /2 inaid h th hy tha tafal £ an oF th il (A D2 tay hin
“’“earth vY /101 incigent upon tie eartin Oy i€ Lotal surrace arca o1 tiie eartin \h”u‘earth/ to obtain

the value (j.) = 1/4 x 1353W/m? = 338 W /m? for the average energy current density, if
there were no atmosphere.

2.4 Concentration of the solar radiation

Viewed from the earth, the sun has an angular diameter tg of 32', corresponding to a solid
anole of
angle of

Qs = 21 [sin®do=21(1—cos 25 (2.41)
J \ 2/
0
= 6.8x107°.
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Figure 2.12: An imaging system projecting two area elements onto each other by redirecting their
thermally emitted radiation must not disturb the thermal equilibrium between them.

It is due to this small value of the solid angle Qg that the energy current density on the earth

2 . . .
has a value of only 1kW/m=. When a greater energy current density is needed in order to

obtain higher temperatures or increase the output of solar cells, it is necessary to focus the
nearly parallel incidence of radiation using lenses or mirrors. This reduces the irradiated area
and increases the solid angle from which the radiation impinges on the receiver surface. What
happens then with the energy current density per solid angle? For an answer, we will make
use of the deliberations of Helmholtz and Clausius from the year 1864.

Figure 2.12 shows two area elements dA;| and dA», projected onto each other by an imag-
ing system. Because of the reversibility of the light path, dA; is the image of dA; and dA;
is the image of dA;. We assume that both area elements are black bodies which, without any
further illumination, emit thermal radiation towards each other through the transparent imag-
ing system. Although the thermal radiation will be redirected by the imaging system, once
again, the thermal equilibrium between dA; and dA; must not be disturbed in order not to
violate the Second Principle of Thermodynamics. Thus, the area dA, must receive exactly the
same amount of radiation from the lens or the imaging system as it emits towards it. This
equality of absorbed and emitted energy currents must exist not only for any photon energy,
as in Section 2.2, but also for any direction, that is any solid angle element, as defined by an
area element on the surface of the lens. By redirecting the radiation from dA, the imaging
system (the lens) must therefore behave like a black body, emitting radiation towards dA; with
the temperature of dA;. But in contrast to a real black body, it selectively radiates only in the

direction of dA> and in no other direction. We have alreadv seen that. for the propacation of
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radiation in free space, the energy current density per solid angle remains unchanged and is
therefore exactly the same at the location of the lens in the direction towards dA; as at the
location of dA; from the direction of the lens. Due to thermal equilibrium, this is of course
exactly the same as the energy current density per solid angle at the location of dA,. During
passage through a non-absorbing and non-emitting ideal imaging system, the energy current
density per solid angle remains unchanged.

The reversibility of the light path also implies thermodynamic reversibility. This in turn
means that no entropy is created during passage through an imaging system. And in fact
the conservation of the energy current density per solid angle in regions with the index of
refraction n, with simultaneous conservation of the energy per photon, is identical with the
conservation of entrﬁpy More pi‘eCiam_y, for the propagauﬁn of radiation not attenuated U_y’ ab-
sorption or scattering, even when the index of refraction n changes, the occupation probability
of the photon states fy in Eq. (2.3) remains the same.
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2.4.1 The Abbé sine condition

The energy current emitted in Fig. 2.12 from dA; in the direction (3, @) into the solid angle
element dQQ; = sin®; d¥; do; is
CUE’] = jE_‘Q,] dAlcosﬁl simS‘l dﬁl d(Pl . (2.42)

This energy current is incident upon dA; and as a result of thermal equilibrium is identical
with the energy current emitted from dA; in the direction ($,¢2) into the solid angle element
dQy =sin% d%» d(p2

dIg 2 = jE o2 dAzcosOpsinty dd, d@y =dig ) . (2.43)

In order to generalize the condition in (2.43) by allowing for different media with different
indices of refraction in front of and behind the lens in regions 1 and 2, we have to take into
account Eq. (2.33) for the energy current densities per solid angle,

: 2 2
JEQ,I €3 Ny PPN
- =5 =" (2.44)
JEQ?2 €] n5

The entire energy current absorbed by the area element dA, or emitted by it towards the lens
is obtained by integrating over the entire lens or over the angle §; from O to v, where v is the
angle relative to the optical axis at which the edge of the lens is viewed from dA;, and over @,
from O to 2w

IE,Z = jE,Q,Z dAzTCSil’lzv . (245)

In exactly the same way we find the entire energy current emitted by the area element dA,
towards the lens or obtained from the lens to be

) S ST [ S S £ ALY
i1 = JEQ.1 QA TSN i, (2.40)

where u is the angle at which the edge of the lens is viewed from dA;.

Since the two energy currents must be equal due to thermal equilibrium, and using
Eq. (2.44) we obtain the Abbé sine condition for optical imagery
n?dA, sin?u = n3dA, sin’v . (2.47)

The basis of this condition is the conservation of the energy current density per solid angle in
regions with the same index of refraction n, even when it is passing through imaging systems.
This law of conservation is in no way trivial. As it turns out, it contradicts the simple imaging
laws of geometrical optics.

2.4.2 Geometrical optics

In accordance with geometrical optics, for the imaging of the sun by a lens with radius rz,
producing an image with area Ap as in Figure 2.13, we expect that the energy current incident
upon the lens is also incident upon the image Ag of the sun. The energy current incident upon
the lens is

. 2
IE = jE sun nry
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Figure 2.13: Image of the sun with an area Ag in the focal plane of a lens with radius r;, and focal length

f.
where jg g 18 the energy current density of the solar radiation at the location of the lens. The
energy current density in the image Ap is then

JE.image = IE/AB = jE.sunTri /AB .

The concentration factor C is a measure of the enhancement of the energy current density by
the lens and, according to geometrical optics, is therefore

C= jE,image B TU‘%

JE sun AB
The size of the image Ag, formed in the focal plane because of the large distance from
the sun, depends only on the focal length f of the lens and not on its size. Since the aperture
angle Qg of a bundle of rays incident upon the middle of the lens remains unchanged during
passage through the lens, we have on the image side Qs = Ag/ f2.
Expressing the radius of the lens as

rp = ftanvy
in terms of the maximum angle v of incidence onto the image, we finally arrive at

_ T2
C= o tan“v . (2.48)

[
=79

In agreement with the assumption that the energy current incident upon the lens is also incident
upon the image of the sun, the concentration factor becomes arbitrarily large when the lens is
made arbitrarily large. As an example, let us imagine a lens with v > 45°, that is r;, > f. For
this lens C > 1t/Qs.

The ratio 2r;/ f represents the f-number of lenses, expressed as the ratio 1:(f/2rz). 1:1.4
or 1:2.0 or 1:2.8 are typical values for fast camera lenses, In the example above, the f-number
would be > 1:0.5. Certainly, no one has ever heard of such a lens, because it would in
fact violate the Second Law of Thermodynamics. For this lens, according to Eq. (2.27) and
Eq. (2.48) the energy current density in the image of the sun would be

jE image — CJE sun ~ i‘Q_S'GTS‘l
bl g . QS n
so that
. 4
JE image > OTg

and therefore greater than on the surface of the sun where it is 67,
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Under steady state conditions a black body in the image of the sun, with a perfectly re-
flecting rear surface and therefore unable to emit radiation from this side, would have to emit

from the front side the absorbed energy current density jg image = (STlimge > 6Ty Its temper-

ature Timage Would then have to be greater than that of the sun 7. The emitted energy current
1 image also implies the emission of an entropy current. According to Boltzmann, the entropy
current emitted by a black body of temperature Tipm,g. is related to the emitted energy current
by

4 IE Jmage

3 Timage

S,image —

This would be less than the entropy current absorbed together with the same energy current
IE,image
r 4 IE,image

1S abs =
3 Tun

This would be possible only if entropy were continuously destroyed in the image of the sun.
However, the Second Law of Thermodynamics forbids this.
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The correct determination of the enhancement of the energy current density by the use of
concentrating optics, takes into account the conservation of the energy current density per
solid angle je q sun. Accordingly, viewed from the image of the sun the entire lens appears to
be as bright as the sun (do not try this out!) and fills a cone with the angle v. According to
Eq. (2.45) the energy current density in the image of the sun is

- . . 2
JE image = JE.Qsun TSNV .

With jg quin = £ jE 0 sun the concentration factor becomes

IE.d T .
C=fEmae _ T gn2y, (2.49)
jEsm Qs

The maximum concentration is found for v = 90°

Conax = Qis — 46200, 2.5
The contradiction between Eq. (2.48), based on geometrical optics of an undistorted image,
and Eq. (2.49), based on thermodynamics and the impossibility of destroying entropy, can
be resolved for imaging systems with curved principal “planes”. The maximum possible f-
number is 1:0.5 and requires a principal image-side plane in the form of a hemisphere, curved
around the focal point. This is, however, not totally achievable.

The maximum concentration can nevertheless be obtained by other means. It ensures that
an absorbing body reaches the temperature of the sun, if it loses energy only by emission
towards the sun. In this situation it is in radiative equilibrium with the sun. Let us assume that
the absorber is already at the temperature of the sun. It would then remain at this temperature
ll ll WEIe Wlllll[l a Ld._Vll.y Wll.[l Wdllb at lllC Leﬁ]peraLUIC Ul I.IlC bLLIl l.[ldl lb as lllUU.gll ll. LUU.IU
only see the sun. It would also remain at the temperature of the sun if it were located in a

cavity with perfectly reflecting walls, that is, as though it could only see itself. Figure 2.14
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Figure 2.14: A lens projects an image of the sun onto an absorber in a perfectly reflecting cavity.
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lens placed in the wall of a reflecting cavity produces an image of the sun which is at least
as large as the cross-section of the absorber. Since the absorber then sees only the sun or
itself, it would reach the temperature of the sun if there were perfect mirrors. According to
this consideration, the structural principle of concentrators can now be defined very simply.
A good concentrator must be designed so as to direct towards the sun the greatest possible
amount of thermal radiation emitted by the absorber.

The ideal arrangement shown in Figure 2,14 permits the determination of the maximum
efficiency with which solar energy can be converted into electrical energy.

2.5 Maximum efficiency of solar energy conversion

In order to utilize the incident solar energy in the arrangement of Figure 2.14, heat must be
extracted from the absorber and conducted to a heat engine. Using an ideal heat engine,
i.e., a Carnot engine, we obtain the greatest possible amount of electrical energy. Due to the
extraction of energy, the temperature of the absorber 75 will be lower than the temperature of
the sun 7s. It must be lower in order not to emit as much energy as is absorbed.

The useful net absorbed energy current I i which can be extracted from the absorber of
cross-sectional area A is the difference hptwpen the absorbed energy current h abs and the

SASSTOULLANIIA ALV A A0 AU IRAINT DU LWOUL AL AL QUL DT Liibl SNeiiliat 2 apy SrAAe AT

energy current Jg_emy emitted through the lens towards the sun. Ideal]y, both fill the same solid
angle €1, at which the lens is viewed from the absorber. For a more general discussion we
will allow for different solid angles, Q. for the incident radiation and Q. for the emitted
radiation:

Q Q it
abs TS4_ emi

Ig wit = Ig abs — IE emit = © ( T,f) AA .

We can now define the efficiency for obtaining Ig ) as

. 4
IE uiil —1- IE,cmit 1 Qemit Z/_\_
IE ,abs I E abs Qabs; TS4

Nabs =

This relation states that for a high efficiency of net absorption M, the temperature T of the
absorber should be as low as possible to avoid the emission of radiation.
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Along with the heat energy current /g yi1, the entropy current Is = Ig i1/ Ta is transferred
from the absorber to the heat engine. According to the Second Law of Thermodynamics,
entropy cannot be destroyed, but it can in fact be created. In an ideal Carnot engine, entropy
is conserved. Since the absorbed entropy current /s cannot be stored in the engine, it must be
transported to another container, a heat reservoir, If this accepts the entropy at the temperature
Ty, the entropy current will be accompanied by a heat energy current Tpls from the engine to
this heat reservoir. Only the difference between the absorbed energy current and that given to
the reservoir is supplied by the Carnot engine as an entropy-free energy current, e. g., in the

form of electrical energy If 1,

Ig ot = Ig yiit — Tols = Tals — Tols .
The efficiency for this process is
Ig a4 TaAls—Tpls To
T Igun Tals 0 Ta
The efficiency of such an ideal heat engine is known after its discoverer as the Carnot effi-
ciency. For a high Carnot efficiency, the temperature T of the absorber should be as high as
possible.

The overall efficiency Ny for the conversion of solar energy to entropy-free energy, e. g.
electrical energy, by a black-body absorber combined with a Carnot engine is

e (2.51)

_Ige Igea Ipun
IE,abs E.util {E,abs

Qemit T T;

A 0
Mbc = (1 - = 1—— ). (2.52)

Q'abs TS Ta
Figure 2.15 displays nyc as a function of T4 for Ts = 5800K and 7y = 300K for maximum
concentration, 1. e., equal solid angles of incident and emitted radiation as seen in Figure 2.14,

The overall efficiency has a maximum value of 0.85 for an absorber temperature Ty = 2478 K.
This high efficiency value demonstrates that solar energy is very high-quality energy, because
of the high temperature of the sun.

Since the thermal radiation from the sun at a temperature 7s = 5800K is absorbed by the
absorber at a lower temperature T, the absorption process creates entropy. We will accept
this, because we want to obtain the greatest possible energy current, and the heat radiated
back to the sun is lost to us.

An interesting aspect arises if we had to pay for solar energy, but could also get a refund
for energy returned to the sun (which would not be unjustified, since it would actually prolong
the sun’s lifetime). Under these conditions maximal concentration must be chosen and also a
temperature of the absorber which is only slightly (by d7") smaller than 75. The net absorbed
energy current then is

y _ [Qabs i Q::mit
1E abs = I_ Oig —

Since this is the energy current, for which we would have to pay, the absorption efficiency is
Tabs = 1. The net absorbed entropy current is
4 Qabs

IS,abs = 3

Q
o [TS3 Ty — dT)3] Ap 4 ;"S GT2dT Ay .
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Figure 2.15: Efficiency e for the conversion of solar heat energy by a black absorber and a Carnot
engine as a function of the absorber temperature Ty, for maximum concentration {Qemi = Qyps. heavy
line) and for non-concentrated radiation (Qepiy = T, Qaps = 6.8 x 1072, broken line).

This time, the absorption process does not generate entropy, since the ratio of absorbed energy
and entropy currents is equal to the sun’s temperature 75. It is no surprise that the overall
efficiency for this reversible process, including the Carnot engine, is M = 1 — Ty /75. The
output of the engine is, however, rather small, since almost all of the incident solar radiation
is emitted back to the sun and an efficiency which relates the energy output not to the net
absorbed, but to the incident energy current, is almost zero.

A slight improvement in efficiency over the combination of a black absorber and a Carnot
engine is found for a combination of a monochromatic absorber and a Carnot engine. How-
ever, very (infinitely) many absorbers, each for a different photon energy interval, are needed
to cover the whole solar energy spectrum. Each absorber would have its own Carnot engine
and operate at its own optimal temperature.

We start with a single monochromatic absorber, absorbing all incident solar photons which
are in a narrow energy interval dZi® around a photon energy of, e. g., it = 1.5eV and emit-
ting photons in the same energy interval according to its temperature. Again, we assume
maximal concentration of the incident solar radiation, i. e. equal solid angles for incident and
emitted radiation. Ubiug Planck’s c:quauuu for the puutuu current uemuy per puULOI“l CIicrgy
in Eq. (2.34), the net absorbed photon current, the difference between absorbed and emitted
photon currents is

djy, net(h(o) = djv‘ abs — djy, emit
N D

exp (ho/kTs) — 1  exp(ho/kTx) —1
where the factor m contains all the constants including the solid angle. Each net absorbed
photon carries its energy /® to the Carnot engine, which produces from it entropy-free energy

of an amount of 2w (1 — 7, /Ts) per photon, resulting in an energy current delivered by the
Carnot engine of

] dhw , (2.53)

T;
djE. Camot (i®)) = djy, net (i) ) (1 — T—i) .



32 2  Photons

2.5 . e — e S
energy current from Camot engan\
2,04
net absorbed photon current /
eI N \Q
1,5
1,0
i
0.5 RN \ |
U T T T T T

0,0 0,5 1,0 1,5
free energy per photon / eV

Figure 2.16: Net absorbed photon current of 1.5 ¢V photons as a function of the free energy per photon
produced by a Carnot engine. The hatched rectangle, the largest rectangle for any point on the photon
current curve, belongs to the point of maximum power, which also follows from the maximum of the
energy current curve,

Both the net absorbed photon current and the free energy per photon, depend on the ab-
sorber temperature 74. By varying T4 we find pairs of absorbed photon current and free
energy per photon, which are plotted in Figure 2,16 as the thick line. The current of free en-
ergy delivered by the Carnot engine is the area of a rectangle formed by the x- and y-values
of each point on this curve. The hatched rectangle has the largest possible arca and belongs to
the point of maximum power on the curve. This point of maximum power follows from the
maximum of the energy current djg camot(/#®) shown by the thin line.

The off f o 1
The efficiency of energy conversion is found by dividing the energy current d

by the incident monochromatic energy current smd; I, abs(fiw). This efficiency is shown as a
function of the photon energy in Figure 2.17 for maximum concentration. For the conversion
of the whole solar spectrum, many monochromatic conversion engines have to operate in
parallel. The entropy-free energy obtained from them is the integral over the energy current
per photon energy interval weighted with the appropriate monochromatic efficiency. For the
overall efficiency this output energy current must be divided by the incident energy current

resu]ting in a value of 86%, slightly higher than the 85% obtained with a black absorber and a
]P Carnot enome

So far, efficient energy conversion has had to avoid the emission of photons towards the
sun as far as possible. The temperature of the absorber, therefore, had to be substantially
lower than the temperature of the sun, This lower temperature of the absorber, however, gives
rise to unwanted entropy generation which could only be avoided when the absorber has the

same temperature as the sun, where the net absorbed energy current is zero. In this dilemma,
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Figure 2.17: Efficiency of monochromatically absorbing Carnot engines as a function of the photon
energy for fully concentrated black-body radiation of 5800K.
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Figure 2.18: Balance of absorbed and emitted energy and entropy currents for a reversible heat engine
working with radiation.

we might ask ourselves how high the efficiency would be if it were possible for a black body
at a temperature Tp < Ts to absorb the radiation from the sun without creating entropy. This
efficiency is called the Landsberg efficiency. It follows from a balance of absorbed and emitted
energy and entropy currents under the condition of reversibility as indicated in Figure 2.18.

Aty nlaoadan th cnlne e dint: givam ~fF in fuye x N vanrt ad lan~lr

ThC CllllUpy ansoroeca WlL].l sOi1ar 1au1auuu ].D Blvell vll ili tWO WCI._YB i pait lD UlllllLCU uUavn
to the sun, together with the thermal radiation at the temperature Ty, and the remaining part
goes to a heat reservoir at the ambient temperature Ty, implying a loss of encrgy.
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Assuming that the absorbing engine sees only the sun, the absorbed energy current density is
jE,abs = GTS4 .
For black-body radiation, the density of the entropy current absorbed is

4 jE abs 4 3

= — = =0T§ .

3% 30

The energy current density emitted by the absorber with temperature Ty (to the sun) is given
by

jS,abs =

- 4
JE,emit =0Ty ,

and the entropy current density emitted is

n order to get rid of all the entropy absorbed, the entropy current density js res iS trans-
ferred to the reservoir. With the entropy the energy current density
ir:' vae — 1N 1€ png
J‘_’l\.«ﬂ AW S N ]

is therefore transported to the reservoir and lost for conversion. The condition of reversibility,
that is the conservation of entropy, takes the form

jS,abs = jS.cmit + jS,res -
This leads to the relationships

_ 4

JS,res = 50 (T53 - Tﬁ)
and

— / 3
Glipl\ig —14) -

4
(")
q

JE,res =
The entropy-free, utilizable energy current density jg ¢ is
JE.el = JE,abs — JE,emit — JE,res-
The Landsberg efficiency is therefore
Jee oT{+4/36Ty(T§ —T})

= jE,abs - GTS4
T 4T, T3
= 1-A2__“Z{1-24), 2.54
¢ 3T ( Tg) (259

Figure 2.19 compares the Landsberg efficiency mp with the efficiency npc of a single black
absorber combined with a Carnot engine. The lower the absorber temperature Ty the greater
is L. However, it is highly questionable whether the reversible absorption of radiation of a
temperature 75 by a black body of a temperature T4 < Ty is permitted by nature. In this respect
the Landsberg efficiency sets an upper limit to any kind of solar energy conversion.
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pared with the efficiency npc (thin line) of a solar heat engine with a single black absorber.

Later, when looking at semiconductors, we will discover absorbers capable of absorbing
the incident radiation without creating entropy, even though their temperature is much lower
than that of the radiation. Nevertheless, in these states they emit photons with a chemical
potential greater than zero. This is different from thermal radiation, for which photons have a
chemical potential equal to zero. In spite of this, we cannot take advantage of this property of
semiconductors because, even though their temperature is lower, in order to avoid the creation
of entropy they emit photons with so great a chemical potential that the photon current density
emitted towards the sun has exactly the same magnitude as that obtained from the sun and no
net energy can be transferred to a Carnot engine without the production of entropy.
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The thermal energy which the absorber in Figure 2.14 supplies to the Carnot engine 1s con-
tained almost entirely in the random oscillations of the atoms in a solid about their rest po-
sitions. The energy of the oscillations is quantized, similar to the electromagnetic modes of
a cavity. For the electromagnetic field in the cavity, the vibrational quanta are the photons,
and for the atomic oscillations of a solid, the vibrational quanta are called phonons. Phonon
energies €r range from 0eV to 0.05¢V. Only in exceptional cases can phonons be directly
generated by the absorption of photons. The absorption of photons takes place through the ex-
citation of electrons into states of higher energy. In order that photons of any arbitrary energy
can be absorbed, i.e., for a body to be black, a continuous, uninterrupted range of excitation
energies must be available to the electrons. For metals, this is in fact the case. Metals would
represent the closest approximation to an ideal black body, if they did not reflect most of the
incident light. This type of reflection, however, can be eliminated by roughening the surface
which renders a metal completely black. You will experience this yourself when you scrub an
aluminium pot with some scouring powder and a cloth. The tiny aluminium particles scrubbed
off the pot make the cloth totally black. Due to the continuous energy range for electrons in
a metal, an electron being excited by having absorbed a photon, loses this extra energy cas-
ily, step by step, in small portions, by generating phonons. Although this may require many
steps, the process typically takes place in times of the order of 10~!2s, Since in metals, the
excitation energy remains for only such a short time in the electron gas, their direct utilization
has a poor efficiency, although the emission of the excited electrons out of the metal is used
in photomultipliers for the fast detection of single photons. Figure 3.1 is a schematic diagram

for the absorption of a photon by an electron in a metal and the subsequent loss of the energy
to phonons.
£, 4

&

Figure 3.1: Excitation of an electron in the conduction band of a metal by the absorption of a photon
with energy %® and the subsequent loss of the excitation energy by the generation of single phonons
with energy €r.

Physics of Solar Cells: From Principles to New Concepts. Peter Wiirfel
Copyright (©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[SBN: 3-527-40428-7
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Figure 3.2; Excitation of an electron from the valence band to the conduction band of a semiconductor
by the absorption of a photon with energy Aw.

In semiconductors, this mechanism is different. Semiconductors are materials in which
the range of excitation energies is interrupted by an energy gap of width €. Figure 3.2 illus-
trates this schematically. The energy range below the gap, called the valence band, is nearly
completely occupied with electrons. The energy range above the gap, called the conduction

the photon must have at least the energy h(D = Ec,. Photons w1th smaller energles cannot exc1te
electrons. They are not absorbed. They are either transmitted or reflected by the semiconduc-
tor. (We ignore the weak absorption by phonons, impurities and free charge carriers.)
Electrons being excited well into the conduction band in a semiconductor as shown in Fig-
ure 3.2, start to lose their energy as quickly as in a metal by step-wise generation of phonons,
However, once the electrons have reached the lower edge €c of the conduction band, losing
energy in small steps by generating phonons is no longer possible, because there are no states
for electrons with a little less energy. Returning to a state in the valence band requires the loss
of the gap energy € in a single step. Possible processes are the simultaneous generation of a
large number of phonons or, alternat1vely, the emission of a photon. Both processes are, how-
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cver, much less plubablc than the ach—Wlac gl eration 0
states. As a result, the electrons may “live” up to 10735 in the conduction band. It is this
comparatively long time that allows the processes for the conversion of electron energy into

electrical energy to take place.

3.1 Electrons in semiconductors

As we have already seen for photons in a cavity, the density of the electrons dn. with energy
g, distributed over the energy interval d€. is comprised of the density of states D.(€.) and a
distribution function f; (€. ), which defines the occupation of the electron states:

dne(ee) = De(ge) fe(ee) de. . (3.1)

The distribution of the electrons over the states must satisfy three conditions:

- F AP PR.y IR,

1. According to the Pauli Exclusion Principle for particles with non-integrai Sp"u, there can
never be more than one particle in the same quantum state. This applies for
with a spin 7i/2, in contrast to photons, which have a spin /.
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Figure 3.3: The Fermi distribution function f{€.) defines the probability that an electron occupies a
state with energy €e.

2. The occupation of the states depends only on the energy and not, e. g., on the momenturn.
3. The occupation of the states must lead to a minimum of the free energy F = E — TS.

If the distribution of electrons over the states were to take place in such a way that the energy E
is a minimum, the valence band would be completely occupied and the conduction band would
be empty for all temperatures 7. Under these conditions the entropy § of the electrons would
be zero, since there is only one possibility of producing a fully occupied valence band and an
empty conduction band. Promoting a few electrons from the valence band to the conduction
band would then lead to an increase in the energy, but to a still greater increase in the entropy
as well. This is because there are now many possibilities for removing an electron from any
of 10?3 states per cm® of the valence band and exciting it to any of 10% states per cm® of the
conduction band. The “heat” T§ increases and the free energy F is reduced. If there is already
a certain number of electrons in the conduction band, the increase in entropy with another
electron transition is correspondingly less. The increase in TS exactly compensates for the
increase in the energy £ when the free energy F reaches its minimum value.
The distribution function which satisfies all of these conditions is the Fermi distribution

fc(ec) — :

1

€ — £ '
exp( ekT F) +1

This contains the Fermi energy €p as a characteristic energy. Figure 3.3 shows the Fermi
distribution function. For states with €. < €r, fe(€.) = 1, so that the states are completely
occupied. Conversely, for f.(€. > €r) & 0, states with €. >> g are not occupied. Half of the
states with €, = €f are occupied.

(3.2)

3.1.2 Density of states D.(€.) for electrons

In isolated atoms the electrons have discrete energy values, separated by large gaps on the
energy scale. Decreasing the inter-atomic distance down to only a few A in a solid introduces
interaction among the atoms and causes the previously identical energy values to split into as

many diffarant valiiage ac tha enlid hag atarie Thic mieang that the aroinag 1nrata anano
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values now become energy ranges in which the energy values lie so closely together that they
appear to form a continuum. These regions of permitted electron energies are known as bands,
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Figure 3.4: Energy of electron states in sodium as a function of the interatomic distance a between the
sodium atoms. aq is the inter-atomic distance in solid sodium. States in the shaded energy ranges are
occupied by electrons.

The stronger the interaction of the electrons with neighbouring atoms, the wider the bands
become, The interaction is of course strongest for the outer shell vaience eiectrons. Since these
electrons have the greater energies, the width of the bands increases with increasing energy,
while the gaps between the bands decrease correspondingly until they disappear entirely at a
certain energy. At higher energies the bands then overlap. Figure 3.4 illustrates this behaviour
for sodium atoms.

Sodium has the chemical valence one, and correspondingly only one of the two 3s electron
states per atom is occupied. The band originating from the 3s states in solid sodium is therefore
only half filled with electrons. In the continuous energy range of the 3s band, a great many
unoccupied states are thus available to these “valence” electrons. This allows them to be given
the additional energy, going along with the necessary additional velocity required for a charge
current to flow. A partly occupied band is the prerequisite for metallic conductivity. A partly
occupied band is therefore called a conduction band. Conversely, pure semiconductors and
insulators are non-conductors, because (at least at 7 = 0K) the uppermost occupied energy
band is completely occupied. This is called the valence band. The next higher band, separated
by the energy gap €g, 1s the conduction band, which (at least at 7 = 0 K) is unoccupied.

In order to determine the density of states, we proceed exactly as for photons. First,

makine use of the IT‘I’]PP‘l‘fQI‘I’lf\I Princinle we determine the volume ner state and the density
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of states in momentum space. Then, because the distribution function depends only on the
energy, we have to convert the density in momentum space to the density of states per energy
interval using the relationship between energy and momentum for electrons.

As for photons, two states differ in location and momentum by at least as much as the
Uncertainty Principle defines, resulting in a phase space volume per state of

(Ax)(ap)° =1’
If we treat the electrons as not localized, their uncertainty in position is (Ax)* = V, where V
is the volume of the entire crystal. In momentum space, a state then has the volume

h3

(Ap) = v
All states with momentum |p'| < | p| fill a spherical volume of (4/3)7|p|* in momentum space.
The number N of states is found by dividing this volume by the volume of a state in momentum
space:
4nip|*V

N =,

(3.3)
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As for photons, these momentum states apply for two electrons with opposite spins. The
number of states available to electrons with momentum |p’| < |p} is therefore

8n|pPVv
Nelloh = 2V

In order to determine the density of states as a function of the electron energy, we need the
relationship between momentum and energy which for electrons in a crystal, might be quite
different from that for a free electron. Here we recall that the probability for the occupation
of states depends only on their energy. In order that no current flows in the equilibrium state,
an equal number of states must be occupied in any arbitrary direction at positive and negative
momentum. For this reason, the states must have the same density per energy at positive and
negative momentum. Since the states are equidistant in momentum space, we conclude that
the energy must be an even function of the momentum. To a first approximation, then

(3.4)

€ =€c+ap” +
By analogy with free electrons, we set ¢ = 1/(2m}) and call m; the effective mass of the
electrons. The kinetic energy of the electrons in the vicinity of €c is then given by
r’ <
€ kin =€ —ECc = " (3.9)
‘ 2m

If the energy depends on the direction of the momentum, as for non-cubic crystals, the
effective mass m; is a tensor. The energies for oppositely directed momentum values are,
however, always identical, so that & xip(P) = € kin(—P)-

Setting p from Eq. (3.5) into Eq. (3.4), assuming that the effective mass does not depend
on the energy, gives the number of states between €, and &¢

8V (2m>)3/2 372

Inre< c) 3h3 (Ec - EC} (3.6)
We obtain the density of states D, in the conduction band as the umber of electron states per
volume and per energy interval at the energy €, by differentiating Eq. (3.6).
3/2
1 dN, 2m;
Delee) = o e —an () e —ec) 2 a7)
V dg. \ AT

Figure 3.5 shows the density of states of the conduction and valence bands for germanium.
Important for the following discussion is only the fact that the densities of states at the upper

Dz,
A
S

Figure 3.5: Density of states for electrons in the conduction and valence bands of the semiconductor
germanium.
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Figure 3.6: Energy g of the electrons for a direct semiconductor as a function of their momentum
pe. The minimum of the conduction band and the maximum of the valence band occur at the same
momentum p. = 0.
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agreement with Eq. (3.7), provided that we choose m} properly For the upper boundary of a

band, at ey for the valence band, for example, it should not come as a surpnse that we must
choose m; < 0. Treating electrons as quasi-free particles although they are in the field of the
atoms (=~ 10'Y V/m) will lead to more peculiar properties. For electrons in the conduction
band close to ec we actually expect the relationship between energy and momentum shown in
Figure 3.6,

p?

2mx’

<

€. —ECc = (3.8)

and obtain the effective mass of the electrons by matching

1 d%
m: dp?

[+

to the actual energy—momentum relationship. At the upper boundary €y of the valence band
ge — &y < 0 and according to Eq. (3.8) and to d*¢. /dp? < 0, a negative mass must be assigned
to the electrons.

For the &.(p.) relationship in Figure 3.6 the excitation of an electron from the valence
band to the conduction band with the smallest possible energy, £c — €y = €g, occurs without a

~h i t113vv Thi tati ig L a i t trancitian nd m A 1t ith
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this band structure are called direct semiconductors. An example of a direct semiconductor is
GaAs (gallium arsenide).

Figure 3.7 shows the band structure of an indirect semiconductor. This behaviour is unex-
pected from the idea of free particles. Here, the electrons have their lowest energy €c in the
conduction band at a momentum different from zero, leading to the relation

(Pe - pe.0)2

*
2m}

€. —&c = (3.9)
Excitation from the maximum of the valence band to the minimum of the conduction band
is only possible with a change of momentum. This type of transition is called an indirect
transition.

Since in the absence of current the total momentum of the electrons vanishes, the band
structure, i. e., the €.(p.) relationship, must be symmetric with respect to the energy axis at
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Figure 3.7: Energy of the electrons for an indirect semiconductor as a function of their momentum. The
minimum of the conduction band and the maximum of the valence band occur at different values of the
momentum pe of the electrons.

Pe = 0. In particular, there must always be an even number of minima for the conduction band
when these lie at p. # 0. Examples of important indirect semiconductors are Ge (germanium)
and Si (silicon).

3.1.3 Density of electrons
The density of electrons in the energy interval €, €. + dg; is
dng(ge) = De(€e) fo(ge) dee . (3.10)

Integration over all energies in the conduction band gives the density of free electrons in the
conduction band, or simply the density of electrons. From this point on, the term electrons
will refer only to the electrons in the conduction band:

o~
(W8]
v
[y
p——g

For the integration, we can make use of the density of states from Eq. (3.7), which is, however,

valid only for the lower part of the conduction band, and apply it to the entire band (and
even beyond this — o), because the exponentlal decrease of f(€.) leads to vanishingly small

integrands for large values of €. For ep < €c —3kT we can ignore
of the expression for the Fermi distribution in Eq. (3.2), giving

the ‘+l lll I.llC UCIlUlIlllld.l.Ul

ne = Nc exp (Eck_TEF) . (3.12)
2amkT \3?
Nc =2(—“’Z—§~) . (3.13)

Nc is called the effective density of states of the conduction band. For m = m, it has the value
Ne=2x10"cem™ . (3.14)

The simplification to the integration obtained by neglecting the “+1” in the denominator of
the Fermi function is permissible for ne << Nc.
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Since a completely occupied valence band does not permit charge transport, the few un-
occupied states, known as holes, nlav an important role. Using the same aanXImatl on as for
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electrons, the density of the holes 1S

v SN
nh=jDe(8e)[1_fe(5e)] de. = Ny exp (_tFthv) ) (3.15)

where Ny = 2 (2nm2kT / h2)3/ ? is the effective density of states of the valence band.
Before examining the properties of holes more closely, we will state the important rela-
tionship

Ry = NC exp (— k_ & \ Ny exp (— EFk_TEV)
= NNy exp( fe— Ev) = NcNv exp( G) . (3.16)

The product of the electron density and the hole density does not depend on the position of the

Fermi energy and therefore neither does it denpnd on the individual densities of the electrons
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or the holes. Consequently, it cannot be 1nﬂuenced by doping. In a pure, so-called intrinsic
semiconductor the electrons in the conduction band originate from the valence band. The
density of the electrons #. is then equal to the density of holes ny, and both are known as the
intrinsic density ;.

£

Relth = niz = NcNvyexp (——G) . 317
kT

For an intrinsic semiconductor, the position of the Fermi energy is not exactly in the middle

of the energy gap because of different effective densities of states in the conduction and the

valence band. It rather follows from the condition n. = ny in Eq. (3.12) and Eq. (3.15):

1 1 Ny
= — — kT In — 18
€F 2(8v+€c) + 5 nNc (3.18)

or expressed in terms of the effective masses contained in N¢ and Ny
1
2

€ = (Ev+8c)+3kT1nm—i‘- (3.19)
[

Since we know the distribution of the electrons over the states, we can calculate their mean
energy

1 r 3
(&) = - € De(8e) fel€e)de = ec+ - kT {3.20)
He 2
£C
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conduction band) is (g, — £c> = 3/2kT, showing that the electrons in a non-degenerate semi-

conductor (&g < &c — 3kT), where n, < Nc, form an ideal gas.
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Figure 3.8: A band with a missing electron of p. > 0 has a total momentum Zp. < ( resulting in an
electrical current jp > 0.

3.2 Holes

For each electron state with momentum p,. there is also a state with the oppositely directed
momentum. For a completely filled band the total momentum is therefore zero, and no current
flows.

We will illustrate the properties of holes for the example of a band with a single unoccupied
state. For this purpose, we will first remove an electron with charge —e and velocity v, from
the valence band and secondly, in an alternative description, create the missing electron by
adding a hole to the completely filled valence band. The, as vet unknown, properties of the
hole will then follow from a comparison of the two descriptions.

The current in a band results from summing over the velocities ve of all occupied states.

The removal of an electron with the velocity 7. from the completely filled band, results in

c € c €
jo= g L vei=-ra L Vei —{—gafe) = 321)
Vol occupied Vol all states Vol Vol
states . ;
=0 (filled band)

The same current is obtained by introducing a hole with unknown charge g, and unknown
velocity ¥, to a completely filled band:

. c
-]Q = _V ol L Ve:i \Unl (322)
all states
. hole
=0 (filled band)
so that
. e _ h -
= w1 = v’ 3.23
0= 1 T Vol (3.23)

The charge of a band in which an electron is missing is the same as the charge resulting from
adding a positive elementary charge to a completely filled band, that is the charge of the hole
is

gh = +e€.

From Eq. (3.23) it then follows, that v, = v, for a hole in a state in which the missing electron
has a velocity ve. This implies that the accelerations of the missing electron (in fact, the sum

over all electrons in the band except the missing electron) and of the hole, as a reaction to an
1 $O that

s DWW LLIQL
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The effective mass of the hole is therefore

o
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— —m, .

=xb 3

m

For the momentum of all electrons of a band in which an electron with momentum p. is
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p= Y. P —pe= ) B +pn,
filled band filled band

ﬁh :_ﬁe .

For the energy €, of the hole representing the missing electron of energy €., we obtain in the
same way

€p = —€ .

The properties of a band result from summing either over all occupied states or over all unoc-
cupied states. For a nearly empty band, such as the conduction band, a description in terms of
the occupied states is simple, since the few electrons present form an ideal gas. For a nearly
filled band, such as the valence band, a description in terms of the occupied states is com-
plicated, because the electrons at the upper edge of the band have a negative effective mass
and their velocities and momenta are oppositely directed. A nearly filled band can thus be
described more easily in terms of the few unoccupied states, i. e. the holes. These then carry
a positive charge, have a positive effective mass and, as with the electrons in the conduction
band, form an ideal gas. Their mean energy is

(en) = —ev + 34T . (3.24)

The holes are not merely an imaginary concept, but are just as real as the electrons since the
properties of the band can be equally well described in terms of the occupied or the unoccupied
states. It is therefore entirely unnecessary first to explain phenomena in which the states of
the valence band participate, in terms of electrons, before making the transition to the hole
description. The description of holes in the valence band as positively charged particles with
a positive effective mass is, in fact, so real that with sufficient kinetic energy they can knock
electrons out of their chemical bond, that is excite them by impact ionization from the valence
band to the conduction band.

Figure 3.9 illustrates the transition of an electron from the valence band to the conduction
band following the absorption of a photon 'y with energy Aw. In this process, the semiconductor

absorbs the energy and the momentum of the photon.

€. A e
Ze ho
N N
/ \h@i P,

Figure 3.9: Creation of an electron—hole pair by the absorption of a photon.
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tum p. and energy &, whlle he valence band has an addltlonal hole with momentum py and
energy €,. We therefore see the excitation as the creation of an electron (in the conduction
band) and a hole (in the valence band) and describe this process as the chemical reaction

Y — e+h.

This process must of course satisfy the conservation of momentum py = pe + pn and the
conservation of energy &y = A = € + .

Figure 3.10 shows an energy scale for electrons. Its zero point is defined by the energy of
a free electron in vacuum in an electrical potential ¢ = 0, having a kinetic energy &g xin = 0.
In relation to this zero point, the electrons bound in the semiconductor have a negative energy
€.. The energy €}, of the holes is then positive. For them the boundaries of the bands gc, &y
should really be drawn folded upwards about the zero line. This representation is, however,
complicated and not commonly used. Instead, we enter the hole energies in the same way as
the electron energies and take account of their magnitude and sign by the length and direction
of arrows. Arrows pointing upwards indicate positive energies. For electron energies the

arrows pglnt downwards. since thev are negative with respect to the zero llnp and for hole

s DALY Uiy Qv UGV L VYLl VIRV LU LI LRV By QAL LVE VAN

energies the arrows point upwards. With this representation the sum &, + g, is then equal to
the difference of the distances from the zero line in Figure 3.10.

3.3 Doping

Doping of semiconductors means the introduction of impurity atoms. In the simplest case,
these atoms replace the atoms of the semiconductor at their lattice positions. Figure 3.11
depicts this schematically for a lattice of atoms with a valency of four.

Donors (D) are impurity atoms which, as a rule, have one valence electron more than is

—AnACeon Al arns~nal A with tha hi. Th 1 + i A F.
necessary for chemical OOMaing witn the neiguuourmg atoins. 1ne eiectron not requirea ior

bonding is electrically bound to its atom by Coulomb forces as a negative charge in the field
of a positive charge. To a first approximation, we expect this binding energy to be that of the
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Figure 3.11: By doping lattice atoms are replaced by impurity atoms having a higher (D) or lower (A)
valency.
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electron in a hydrogen atom with the difference that we have to use the effective mass instead
of the real mass of the electron,

* 4
n,c
g = ————— = 13.5eV— . (3.25)
2(4meg)2h mg

Since the donor is, however, in a semiconductor and not in vacuum, the electric field binding
the electron to the nucleus is somewhat weakened due to polarization of the neighbouring
atoms. We must therefore replace the dielectric permittivity of free space €y in the binding
energy of the electron for the H atom by the permittivity of the semiconductor g¢q. For typical
semiconductors such as Ge, Si and GaAs, the dielectric function € has values > 10 for fre-
quencies up to 10!° Hz, leading to a drastic reduction in the binding energy down to < 0.1eV.
For the same reason, in fact, (the chemical bond of) NaCl dissolves in H,O.

The electron bound to the donor has the energy ep which, because of the weak Coulomb
binding, is only slightly smaller than the lower edge &c of the conduction band, the lowest
energy of free electrons within the semiconductor. Donors therefore donate their electrons
easily to the conduction band, a property which gives them their name.

Acceptors (A) are impurity atoms which, as a rule, have one valence electron less than is
necessary for chemical bonding with the neighbouring atoms. An electron which fills this hole
in the bond has no Coulomb attraction to the impurity atom. Consequently, it is not bound as

strongly as an electron in the valence band. Since the missing Coulomb bond is, however, only

a weak bond, as we have already seen for donors, the energy of an electron at the acceptor is
only slightly greater than the upper edge €y of the valence band. Acceptors therefore accept an
electron easily (i. e., with little excess energy) from the valence band, a property, from which
their name is derived.

In the hole picture, which as we have seen is simpler for the valence band, this means:
holes are only weakly bound to acceptors and are easily (i. e., with little expenditure of energy)
donated to the valence band.

For lattices of Ge and Si, with a valency of four, P (phosphorus) atoms or As (arsenic)
atoms (both with a valency of five) are the most common donors, while B (boron) or In (in-
dium) (both with a valency of three) are the usual acceptors.

For the GaAs lattice, consisting of Ga (with a valency of three) and As (with a valency
of five), silicon (with a valency of four) is a donor when it is incorporated into a Ga position
and an acceptor when it is incorporated into an As position. The type of incorporation in the
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lattice depends on the temperature. A more important acceptor is Zn (zinc), with a valency of
two, at a Ga position, and a more important donor is CI (chlorine), with a valency of seven, at
an As position.
Homogeneous doping is achieved technically by adding the dopant to a semiconductor
melt. uunomogeneou% u0pmg, 11“1“1‘p01 tant for semiconductor devices, as we will see, is achieved
at high temperatures by the diffusion of dopant atoms from the vapour phase or from the liquid
or solid phase in contact with the semiconductor. Another possibility is the implantation of the
doping material in ionic form into the semiconductor. With this ion implantation, the spatial
distribution of dopant atoms can be more sharply defined. On the other hand, greater damage
occurs to the lattice, which may be annealed at high temperatures.
Whether a doping material actually changes the density of electrons or holes depends on

the energy of the electrons in the dopant atom, and also on the temperature. For the occupation
of all states. the Fermi distribution Q‘l"\l"\]lPQ for the hands< and the donant atome Thic definec the

Qi Srlatedy tIEw 3 WAIIRER MUl iv LIl PLvs 1UL v UGBS GRIW W WU G GUVIIID . L RIS WAL SS i

density of the positively charged holes and the 1onized donors as well as that of the negatively
charged electrons and the ionized acceptors. By doping, a semiconductor remains electrically
neutral, so that the charge density is

p=e(nm+n,—n.—n,)=0. (3.26)
Here n. from Eq. (3.12) and ny, from Eq. (3.15) are just as much functions of the Fermi energy
£€F as

-1
€p —€EF
+ = 1— —_ 1

e on(%5)

and

-1

Ep— &

A=A [CXP(%)“} :
L AN / J

Eq. (3.26) therefore defines the position of the Fermi energy &g.

Figure 3.12 shows the temperature dependence of the electron and hole concentrations in
an n-type semiconductor with a band gap of 1eV and effective densities of states of N¢ =
Ny =2 x 10" /em?, doped with 10'¢ donors per cm® with an energy level ep = ec —0.05¢eV.

In a wide temperature ranege around room temperature the electron concentration is indepen-

A0 LLALIpPRI R L SGLEY QLVAMIIL 1V IVALIPAI QYL L W WAV VL VUL n Qi Vi R

dent of the temperature and is equal to the donor concentration. According to Eq. (3.17) the
hole concentration falls off steeply with decreasing temperature. At lower temperatures not
all of the donors are ionized. From the decrease of the electron concentration with decreasing
temperature the activation energy for exciting electrons from the donor level to the conduction
band (0.05 eV in Figure 3.12) can be obtained. This works, however, only if the donor concen-
tration is much larger than the acceptor concentration. In a more compensated but still n-type
semiconductor the temperature dependence of the electron concentration does not reveal the
activation energy of the donors. At high temperatures electron and hole concentrations rise
steeply with increasing temperature. They become equal and much larger than the doping
concentration and the semiconductor becomes intrinsic.

As a result of doping with shallow donors to which electrons are on 1y weakly bound, the

Fermi energy €r at room temperature is less than €p, since the donors are unoccupied. For
doping with shallow acceptors to which holes are only weakly bound, the Fermi energy €f at
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Figure 3.12: Temperature dependence of electron and hole concentrations in an n-type semiconductor
with a band gap of 1 eV, containing 10'® donors per cm® with an energy level e = 0.05 eV below the
conduction band edge €c.

room temperature is greater than €4. At room temperature, donors and acceptors are almost
completely ionized.

D—D'+e A— A" +h
e =~ np Hp =~ Ap .

With the incorporation of donors, a semiconductor becomes an electron conductor or n-type

conductor, and with the incorporation of acceptors it becomes a hole conductor or p-type

con Ayt Talda 2 1 oieac thhn Alaat. ron an Alala dawwciting o At an o2 ALt o Ty I'mi eneregy
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an n-type and p-type semiconductor doped with either shallow donors or shallow acceptors
about room temperature.
The Fermi energy is obtained from Eq. (3.12) and is

N
81:=8c—-len—C ,
Re

or from Eq. (3.15)

N
8F=8v—}—len—X )
M

are in the range of 10'> /cm? 10 101° /cm . This is relatively

Tvmcal dopi ing con 1centrations

small compared with the lattice atom density, which is about 10%* /em?, Thls slight admixture
does not significantly change the chemical nature of the semiconductor. The energies of the

ectron and hole states in the bands thus remain largely the same. In order for a slight doping
to be effective the semiconductor must be purified down to concentrations which are small

relative to the doping concentrations.



3.4  Quasi-Fermi distributions 31

Table 3.1: Electron and hole densities in n-type and p-type semiconductors.

He M €F
2 2
n: H N,
n-tvne . 82 IR m = L = _1 er =¢~—kTIn e
JF ¢ “L 1 = = Vi aad
Re np np
2 2
n; n: Ny
p-type n.= -1 =-1 Ry = Ra gg =€y +kTIn —
M A nA

Incorporation of both donors and acceptors in a semiconductor does not lead to increased
concentrations of both electrons and holes. Eq. (3.17), nern = n? applies to doped semi-
conductors as well. The electrons donated from the donors are instead largely taken up by
the acceptors. (Alternatively, one could say that the holes which the acceptors leave behind
are found in the donor atoms). Donors and acceptors are both ionized without creating free
electrons and free holes. For shallow impurities, only the difference between the donor and ac-
ceptor concentrations is effective. Intrinsic concentrations of electrons and holes can therefore
be obtained in impure semiconductors as well by compensated doping, making the concentra-

hnnq nf donors and accentors Pnllal
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Donors have the property that they are neutral with respect to the charge at the unperturbed
lattice site when they are occupied by an electron and carry a positive elementary charge when
they are unoccupied. Acceptors, on the other hand, have a negative charge in the occupied
state and are neutral in the unoccupied state. Donor-like impurities exist with energies not
only in the vicinity of the conduction band. For deep donors, the hydrogen atom is not a good
model. Deep donors are ineffective as donors, and for solar cells are, in fact, even harmful.
If their electron energies are in the middle of the band gap, they act as recombination centers,
and if they are close to the valence band they act as hole traps and remove holes from the
valence band. Similarly, acceptor-like impurities with electron energies in the middle of the
band gap also act as recombination centers, and if they are close to the conduction band they

art ag alanterm tramge Bar grnd gelar calle 35 ot ilas 1mmrriting vurith alactemn anmaroiac
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middle of the band gap must be eliminated to avoid excessive recombination, as discussed in
the section on recombination via impurities on page 68.

3.4 Quasi-Fermi distributions

In a solar cell additional electrons and holes are produced by the absorption of photons from
solar radiation. Figure 3.2 illustrates this process schematically. Immediately after their gen-
eration the energy distribution of the additional electrons and holes reflects the broad energy
spectrum of the absorbed photons (indicating the high photon temperature) and is different
from that in the dark state as shown by Figure 3.13. Due to collisions with the lattice by which
phonons are emitted and absorbed, the energy distribution changes very rapidly After about

100 ~Anllicio . T1a ~F 1012, tha Aozl Al ot b actahlichad
100 collisions over a timescale of 10 § tnc aarxk-state CINCIEgY umuluuuuu 1s established

where electrons and holes are each in thermal and chemical equilibrium with the phonons and
have a mean kinetic energy of € xin = (3/2) kTp.
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Figure 3.13: The broad energy distribution of electrons and holes, right after their generation by solar
radiation, refiects the broad energy spectrum of the photons. After about 10 125 electrons and holes are
thermalized into a narrow room temperature distribution.

After this thermalization the charge carriers exist for as long as their “lifetime” in their
bands, which is long compared with their thermalization time, before they disappear by re-
combination. Since the thermalization time is so short, the steady state energy distribution in
the bands differs very little from a room temperature distribution, even for continuous irradia-
tion. Due to the frequent collisions with the atoms the electrons and holes are in a temperature
equilibrium with the lattice, in which Pauli’s Principle is obeyed and a minimum of the Free
Energy is established, just as in the dark state. The distribution of electrons and holes over the
states in their bands must therefore be a Fermi distribution at room temperature.

By irradiation, both the electron density and the hole density are greater than in the dark,
that is ne > nQ and ny > n), respectively. neny is then greater than #}, which could not be
achieved by doping. The temperature in the Fermi function required for describing the irradi-
ated state must be the lattice temperature, because only this temperature gives a distribution
with gxin = (3/2)kTp. Due to the increased electron density, the Fermi energy describing their
distribution in the conduction band must be closer to the conduction band than in the dark.
Due to the increased hole density, the Fermi energy describing their distribution in the valence
band must be closer to the valence band.

The solution to this dilemma is as follows. There are (always) two Fermi distributions, the
distribution f¢ with the Fermi energy €gc, which applies for the occupation of the states in the
conduction band and the (shallow) donors with electrons; and another Fermi distribution fv
with the Fermi energy €ry, which applies for the occupation of the states in the valence band
and the (shallow) acceptors with electrons, and therefore also defines the hole density in the
valence band.

The density of electrons (in the conduction band) 1s

/e oo\
ne = Neexp | ———— 3.27
e =Neexp |~ ) (3.27)
and that of the holes (in the valence band) is

np = Ny exp (_EF_V?.E_Y) . (3.28)
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Figure 3.14: In an illuminated semiconductor the occupations of the conduction band (C) and the va-
lence band (V) are described by different Fermi distributions fc and fy.

It then follows that

— € £ €
Renp = NoNy exp (— v ) ( FC — FV) (3.29)

or

Hetlh = n exp (8——~FC €rv )
oflh =
kT

Figure 3.14 shows these two Fermi distributions, It also shows that, especially in the energy
range between €rc and €py the distributions contradict each other. If fc applies, the states
in this energy range would have to be occupied, but if fy applies they would have to be
unoccupied. In fact, neither distribution applies in this range of energies. In an illuminated
semiconductor the occupation between erc and ey is governed by kKinetics, the preferential
capture of holes or electrons. We will return to this point when recombination via impurities

(3.30)

3.4.1 Fermi energy and electrochemical potential

On the energy scale shown in Figure 3.10 the energy of the electrons &, is divided into potential
energy €c and kinetic energy €y, Where ec comprises the potential chemical energy —x.
also known as the electron affinity and the electrical potential energy —e@. If an electron is
removed from the semiconductor, as is the case when a charge current flows through a solar
cell, the energy within the semiconductor decreases by the entire energy €. of the electron.
But is this energy in fact the energy delivered to a load as electrical energy?

To answer this question we must consider that, according to Gibbs, the exchange of an
amount of energy dE is linked to other quantities, which are exchanged as well.

dE(S,V.N;,Q,...) =TdS — pdV + Y dN; + 9 dQ +... (3.31)

It is usual to refer to the energy exchange in terms of the quantity exchanged along with the
energy. If only entropy S is exchanged with the energy, the energy exchanged is called heat.
AV S Aallad Arstemecncoimna 1 Anarcy ANT. Aallad tha Alaa al anaray ~f tha ~Ala
‘UUV JD Lalicud LUIIIPICDDIUHCU. cuc15_y, Ju;\.uv, J.D calica l.llC LllCllllbal Cllcls)’ 01 uic Pa.l u\.dc
species i, and @dQ is called electrical energy. There are many other forms of energy as well,

e. g., magnetic energy, which are, however, of no interest in connection with solar cells. These
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Figure 3.15: Two compartments separated by a piston contain hydrogen H» and oxygen O at different
temperatures 7, pressures p and chemical potentials .

energy forms are in all cases products of “intensive” variables and “extensive”, quantity-like,

variables. In order to distinguish between these, let us imagine two identical systems which we

put together to form a new system, twice as large. The intensive variables like temperature T,
or pressure p then remain unchanged, while the values of the extensive variables — including
the energy — become twice as large.

The extensive quantities , the entropy S, the volume V, the amounts ; of the different
particle species i, the charge Q and others of no importance for solar cells, are the energy
carriers. For most of these, laws of conservation apply. For entropy, conservation applies only
partially: it can be created, but can never be destroyed.

The intensive variables, temperature 7', pressure p, the chemical potential y; of the particle
species I and electrical potential ¢ define the amount of energy exchanged with the energy car-
riers. The gradients of the intensive variables drive currents of the respective energy carriers.
Since the current of an energy carrier must vanish when its intensive variable is in equilibrium,
the intensive variable then must have the same value everywhere.

When a system is in equilibrium with respect to one intensive variable, it is not necessarily
in equilibrium with respect to other variables. Figure 3.15 explains this clearly. It shows two
compartments of a vessel separated by a mobile piston immobilized for the moment. The two
compartments contain different gases, in one is hydrogen and in the other is oxygen, which
therefore have different chemical potentials. In addition, the temperatures and pressures shall
also be different. As a result of the temperature difference between the compartments, entropy

. . “ye . . .
Anwe thranoh the ctill immahilizad nictan 11ntil tha tammnaratnirac in the twn camnartmantc ars
LUV D LILVU AL LI DUl JUMBUVUILLZCU PIOLULL UL LT WPl atui Lo L uie uwU LU Ppal UlCiive aiv

the same. Temperature equilibrium, often called simply thermal equilibrium, then prevails.
However, the pressures and chemical potentials of the gases are still different and not in equi-
librium. We will now remove the blockade of the piston, after which it will come to rest (pos-
sibly after several oscillations and dissipation of energy) at the position where the pressure
is the same in both compartments. We now have equilibrium of temperature and pressure.
Chemical equilibrium, that is the same chemical potentials for hydrogen and oxygen in the
two compartments, only occurs by the exchange of gas particles after opening a hole in the
piston until each particle type has the same density or concentration in both compartments.
Still another equilibrium, that of the chemical reaction between hydrogen and oxygen to form
water, may then be attained by a small spark accompanied by a loud explosion. These equi-
libria are all uluepe nt of each other. That these t‘:CIumDria never occur all at the same time
is of paramount 1mportance for our existence. Consequently, it is entirely meaningful to dis-

tinguish between different types of equilibria (and also non-equilibria) and therefore to name
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these separately as temperature equilibrium, pressure equilibrium, chemical equilibrium, etc.
The common designation “thermodynamic equilibrium”, while it may sound more impressive,

is however meaningless because it says nothing about the type of equilibrium. Furthermore,
it also leads us to the false conclusion that “thermodynamic non-equilibrium” prevails and all
equilibrium relations are invalid when only one of several intensive quantities is not in equi-
librium. Fortunately, a general thermodynarmic equilibrium as a state in which all conceivable
intensive variables are in equilibrium does not exist in the real world, considering that our very
own existence would hardly be possible under such conditions.

In the following we will make frequent use of the fact that some equilibria exist and allow
the use of such equilibrium relations as the Fermi distribution and that there are also non-
equilibrium states which are far more difficult to describe.

We will now return to the problem addressed above, namely the question of how much

electrical energy does a semiconductor deliver when an electron—hole pair is removed, Sur-

AvALLIVGL Wiivig J MUWS 8 SVLHILVUVHIUWLZ LU Wi VWl Vvl Gl Wi vl VTV PGLL B0 1 Waa VAL,

prisingly, for solar cells just as for batteries, this is not just the energy form ¢ dQ , since the
charge Q of the solar cell does not change when electrons and holes are removed, again just as
for a battery, in which exactly the same number of electrons fiows in through one contact as
flows out through the other contact. We know, however, that looking for electrical energy in
fact means looking for that part of the energy of the electron-hole pairs which is not accom-
panied by entropy. This part is the Free Energy F(T,V.N;,Q....) = E — TS. With the removal
of dN, electrons, the free energy of a body changes by

dF.(T,V,N.,Q) =dE. —d(TSe) = —SedT — pedV + uedN, + @dQ .
With the removal of dN, holes, the free energy changes by

The total change in the free energy is dFF = dF. +dF,.

Even if no charge is removed from the solar cell at the end with an electrical current, we
must still consider that the electrons and holes are charged particles, so that changes in their
numbers are coupled to a change in the total charge.

dQ = z;edN; .
where z; = +1 for holes and z; = —1 for electrons. It then follows that

widN; + @ dQ = (u; + zje@) dN; =1, dN; .
Due to this fundamental coupling of charge and particle number, only one coupled electro—
chemical equilibrium, and no separate chemical and electrical equilibria, exist for the elec-
trons and holes. M. = u. — e is the electrochemical potential of the electrons. For electrons
in electrochemical equilibrium, it has the same value everywhere. 1, = un + e@ is the electro-
chemical potential of the holes and for holes in electrochemical equilibrium, it has the same
value everywhere.

For the steady-state operation of solar cells, the temperature 7" and the volume V occupied

by the electrons and holes are constant. Furthermore, with the flow of an electric current,
equal numbers of electrons and holes are always removed or added, i.e., dN, = dN;, = dN.

The change in the free energy, and thus the energy, which a solar cell delivers to a load with
dN electrons and holes is then

dF = dFe +dFy = (Me +Mn) dNV . (3.32)
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The question now remains of how to relate the electrochemical potentials to the already
known quantities. In Eq. (3.20) we found the mean energy of the electrons to have the value
(€.) = €c + (3/2) kT and, correspondingly, for the holes, the value (&,) = —ey + (3/2)kT.
We arrive at the same expectation values for the energy per particle of one type by dividing
the total energy for particles of one type by the number of such particles. For electrons, the

total energy is
E. =TS8 — peVe +MeNe

and the mean energy per electron

V. !
Ee/Ne = (€) = TGo — % F1Ne = ec + (3/2)kT . (3.33)
€
Similarly, for holes
Vi
Eh/Nh = (8h> To,— % +Mh = —Ev+(3/2)kT. (3.34)

The quantities 6. and 6y, are the entropy per electron and per hole, respectively. Since elec-
trons and holes are ideal gases, we can make use of the relationship between 6 and the particle
density # discovered by Sackur and Tetrode for ideal gases,

32
o=k { 5/2+1n {z (2“2’2”) /n” . (3.35)

Substituting the effective mass m* of the electrons and holes from Eq. (3.13) for m we find

Gen =k (5/2+1n CV). (3.36)

e h

For ideal gases with particle number N the equation of state is
pV = NkT . (3.37)

With Eq. (3.36) and Eq. (3.37), we find from Eq. (3.33) for electrons
3 5 N,
(€e) =€c+ kT = KT |Z+In{—=)|—kT 47
2 2 Ne
M
gc—Te = kTIn ( C)
Re
which leads to
ne = Neexp {%} |

This is identical with Eq. (3.27), and we can now identify the electrochemical potential of the
electrons with their Fermi energy

Ne = €FC . (3.39)

(3.38)

—ey—Mh=4kTIn —) (3.40)
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Figure 3.16: The energy forms of electrons and holes.

and

Nh+&v
=N — ] . 41
np = Ny exp ( T ) (3.41)
Comparison with Eq. (3.28) shows that
Mh = —€FvV . (3.42)

These values are shown in Figure 3.16.
The free energy delivered to a load by dN electrons and holes is

dF =dF. +dF, = Me +Mn) AN = (epc —€py) AN .

This result is in good agreement with the expectation that the electron—hole system of an
unilluminated semiconductor, that is one which sees only the 300 K ambient radiation and
is in equilibrium with it, cannot deliver electrical energy because for this state €gc — €py =
Te +MNn = 0. The electrochemical energy of an electron-hole pair, being the sum of the elec-
trochemical potentials of an electron and a hole at the same location x at which the electron
and the hole are in the same electrical potential @, 1s equal to the chemical energy of the

electron-hole pair because an electron-hole pair is uncharged:
Ne(x) +Mn(x) = pe (x) — eQ(x) + pin (x) +e@(x) = pre(x) + pan (x) . (3.43)

This is important for the conversion of solar energy into chemical energy as in photosynthesis.
This conversion takes place in every semiconductor exposed to light without any additional
measures.

3.4.2 Work function

The absolute value of the chemical potential for electrons g is also known as the work func-
tion. This is the energy which must be expended in order to excite an electron from a bound
state in a semiconductor or metal lhcuuau_y, i.C. Uy thermionic emmaluu, to a state of a free
electron in vacuum. We assume that, while leavmg the solid, the electron is still in the same

electrical potential, so that its electrical energy —e¢ remains unchanged. For metals, in which



58 3  Semiconductors

all states up to the Fermi energy are occupied, it is evident from Figure 3.16 that the work
function is equal in magnitude to the chemical potential y.. In semiconductors, however,
there are no electrons at all with energies equal to the Fermi energy, since the Fermi energy is
somewhere within the band gap.

The work function q) is determined cxpt:[uucu y‘ from the ten mperafure depenuence V)
the electron current emitted by thermionic emission, which is found to be proportional to
exp(—0/kT). This emission current is proportional to the concentration of electrons e free NOt
bound to the semiconductor material, but still belonging to the same Fermi distribution, which
have an energy of at least €. = —e@. As in the derivation of the concentration of electrons in

the conduction band, which have an energy of at least €, = €c, we find from Eq. (3.12)

—eQp—¢ —eQ— . t+e
e exp (S0 ) =g (- LI E Y ()

for both semiconductors and metals. The thermal work function as an invariable property of a
compound is characteristic for metals only. For semiconductors, it depends on the doping and

1s oreater if a semiconductor is n_rlnnpr] than if it is n-doped. Fr\”nunnﬁ ninnrp 3. 16 we can
& AU A WIPLE S WLy t’ LiLLALl 11 tl

decompose the chemical potenual Ue of the electrons in the semlconductor into a component
Ue 0, determined by the chemical environment of the electrons, i. e., by the base material, and
independent of their concentration, and into a concentration-dependent component

e = He o+ kT In ( Nc) (3.44)

For semiconductors, the property which is characteristic for the base material is the concentrat-
ion-independent component of the chemical potential of the electrons u, o or its magnitude,
the electron affinity . = —pe o, from which the work function is calculated according to
Eq. (3.44) for a known electron concentration.

Work functions can also be obtained experimentally from photoemission as the smallest
photon energy for which the emission of electrons into the vacuum is observed. For metals,
there is no significant difference compared with the thermionic work function. For semicon-
ductors, however, photoemission does not measure the work function but the energy of the
transition from the upper edge of the valence band into the vacuum. Due to the much lower
density of electrons in the conduction band, transitions from the conduction band into the
vacuum are much more difficult to observe.

3.5 Generation of electrons and holes

Electrons and holes are produced by processes which can supply at least the minimum genera-
tion energy €g of an electron—hole pair. This includes impact ionization, in which an electron
(or hole) with enough kinetic energy knocks a bound electron out of its bound state (in the
valence band) and promotes it to a state in the conduction band, thereby creating an electron
and a hole. The same process of exciting an electron from the valence band to the conduction
band may take place with a giant lattice vibration supplying the energy or by the absorption
of a photon. In the presence of impurities providing states with energies in the energy gap,
the excitation can take place in several steps and the generation energy €g can be supplied in

smaller portions by phonons or even photons.
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3.5.1 Absorption of photons

For solar cells, the generation of electrons and holes by the absorption of photons is the most
important process. The probability for the absorption of a photon of energy % is defined by
the absorption coefficient ot(2®), which is a material property, independent of the geometry
of a body. Since absorption requires that an electron-hole pair is generated, a.{A®) is propor-
tional to the density of occupied states in the valence band in which a hole can be generated,
and unoccupied states in the conduction band in which an electron can be generated. The
changes in occupation by the absorption of a photon must, of course, conserve momentum
and energy.

Direct transitions

Direct transitions are transitions in which the momentum of the electron-hole sysiem does
not change. The balance of momentum is then consistent with a reaction exclusively with
photons, which have a negligible momentum as a result of the very large value of the velocity
of light in the definition of their momentum p, = Aw/c,

py=Petpn~0, andthus p.=—py.

Energy conservation, /iy = €. + &, together with the energy—momentum relations of direct
semiconductors shown in Figure 3.6,

p? 2
Ee=€c+ > and & =—ey+ o, (3.45)
2m} 2my
leads to
2 2
hio = ec —ey + 2 +ph )
2mf  2my
Since from the conservation of momentum pZ = pi = p?, it follows that
2 1 2
. b — ) =egrL— (3.46)
Z \me mh / chomb

Meomb = (mgmy )/ (ms +m;) is the so-called combined mass.

In Eq. (3.46) the dependence of the energy %® of a direct transition on the momentum
is very similar to that of the energy—-momentum relation of an electron in the conduction
band (Eq. (3.45)). In the same way as the quantization of momentum together with this re-
lation leads to the density of electron states in the conduction band in Eq. (3.7), the energy—
momentum relation in Eq. (3.46) results in the so-called combined density of states for direct

optical transitions,

47
2 1/2
Dcomb(hm) _3(2mcomb) 3/ (ﬁ(ﬂ—ﬁg) / . (347
The probability of photon absorption, i.e., the change in the photon current density djy
over a distance dx by absorption is

defines the absorption coefficient
states,
d jy(hw) _
dx

p oportlonal to the absorption coefficient and to jy. This
o(fim), which is proportional to the combined density of

—o(h) jy(hw) (3.48)
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Figure 3.17: Absorption coefficient & of the “direct”” semiconductor gallium arsenide and the “indirect”
semiconductor silicon.

(i) o< Deomp (A0) o< (i —eg)'/? . (3.49)

Integration of Eq. (3.48) leads to the well known dependence of the photon current on the
distance x from the surface at x = 0 in an absorbing body:

jv(x) = jy(o) exp(—owx) .

For semiconductors with the energy—momentum relation shown in Figure 3.6, in which direct
transitions with almost no change in the momentum are p0581b1e we expect the square- -root de-

noroy far the alhcearntian cne ST
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Photons with /i < €g are not absorbed by electron-hole generation and (fim < €g) =0
Photons of this energy are either reflected or transmitted. For fim > £g, o shows the steep
rise in accordance with the theoretical expectations o (fi® — £g)1/2 up to values of 10* /cm.
For larger values of o the complexity of the real band structure of GaAs causes deviations
from the square-root dependence. At the absorption edge at fio = £ = 1.4eV, an exponential
increase is superimposed over the square-root dependence. This is known as the Urbach tail,
which results from statistical fluctuations of the band gap caused by lattice vibrations. Since
for a distance from the surface x = 1 /a the intensity is attenuated by afactorof e, Ly=1/a
is called the penetration depth of the photons Due to the large absorption coefficient and the
small penetration depth of the photons in GaAs and other direct semiconductors, a solar cell
made from these materials does not have to be thicker than only a few um in order to absorb
the absorbable part of the solar spectrum with photon energies ® > £g.
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/il\ o

Figure 3.18: Energy €. of electron states in the conduction and valence bands between which transitions
are possible with the absorption of a photon y and the simultaneous absorption or emission of a phonon
I

Indirect transitions

In an indirect semiconductor, a transition between the maximum of the valence band &y and
the minimum of the conduction band &c is not possible with only the absorption of a photon,
because the momentum py = Aw/c of the photon is too small. The momentum balance is
satisfied through the participation of another “particle”, a lattice vibration or a phonon. Due

ith cmall HO) h 1 t —
to the large mass of the atoms, phonons with small energies AQ have a large momentum py.

In an indirect transition a phonon I can either be absorbed with the absorption of a photon
A

Yy+I'—e+h

Py Pr =Pe+ pn

ho+hQ =¢€.+¢&,, (3.50)
PRGNS NS R I RGN FRP. I I |
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Yy—e+h+D

Py=Pet+pantpr
ho =¢€.+¢, +hQ . (3.51)

The participation of the phonons allows photon-induced transitions from every state of the va-
lence band to every state of the conduction band for which the energy balance shown in Figure
3.18 is satisfied. The transition probability into one state of the conduction band is then pro-
portional to the number of all states in the valence band separated from this conduction band
state by the photon energy /i® plus or minus the phonon energy %€Q2. To find the probability for
the absorption of a photon of energy /® we have to integrate over all states of the conduction
band with the energy €. i, which are accessible from the valence band, with the simultaneous
emission or absorption of a phonon. The smallest value for the kinetic energy of the electrons
1$ € kin = O for a transition to the minimum of the conduction band and the highest possible
value is € kin = AW+ /i — g for a transition from the maximum of the valence band to the

nn“r]lin‘>:n“ Lnnfl
CULIUUC LIV Uallud.

hothQ—<q
o fim) o« /0 D¢ (€c.kin) Dv (0 £ AQ — €6 — €c kin) dEe kin -
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With the energy dependence of the densities of states of Eq. (3.7) the integration yields
o{fim) o< (i — e + AQ)? . (3.52)

The plus sign applies for the simultaneous absorption of a photon and a phonon, and the minus
sign for the emission of a phonon with the absorption of a photon. Because of the requirement
of phonon participation in order to satisfy the conservation of momentum, the absorption
coefficient of an “indirect” semiconductor is small. Figure 3.17 shows the dependence of the
absorption coefficient on the photon energy for silicon, a typical indirect semiconductor. The
quadratic dependence on the photon energy is well developed. Near the band gap /i = eg =
1.12eV the absorption coefficient of silicon is so small that the band gap cannot be seen in
Figure 3.17. Also, the absorption and emission of phonons cannot be distinguished.

Due to the small value of a for indirect transitions, the penetration depth for photons in
an indirect semiconductor is 1arge In order to absorb all the PllUlOﬂS with A > £G, which
can be absorbed from the solar spectrum, an indirect semiconductor in the geometry of a
plane-parallel plate must be more than 100um thick. Along with silicon, germanium is also
an indirect semiconductor.

3.5.2 Generation of electron—hole pairs

An important equation for the following considerations is the continuity equation. In its gen-
eral form for a quantifiable variable e. g., for the concentration of a certain type i of particle,
it is
on;(x)
ot

This relation expresses the simple consideration that the density »; of particles of type i in a
volume element at the location x increases with time when these particles are generated at a
rate G;, that n; decreases when particles at the location x are annihilated at the rate R;, or when
they escape from the volume element at the location x, because the particle current density j;
flowing away towards the right (to larger x) is greater than that flowing in from the left (from

cIMma 11 Y\ QVI‘\I“DC(‘D[‘] l‘\\l r‘]l‘i ; s n
DLLICAEL A S \ul\tll\-ﬂ)k)\.ﬂ\.-l UJ iy Jl ~ T

= Gi(x) — R;(x) — div j;(x) . (3.53)

In order to gain familiarity with the use of the continuity equation, we will apply this
equation to a case for which we already know the solution, namely to the photon current
penetrating the semiconductor and being attenuated due to absorption. If an external photon
current density jy is incident onto the semiconductor and no photons are created within the
semiconductor (Gy = 0), then in steady state, where no changes occur over time,

ony _

ot
With Ry = o.jy the expected proportionality between the rate of annihilation and the photon
density (which moves at the velocity of light) is expressed. For light incident in the x-direction

thic vialdc
uiis YiCiGs

.o dj :
lejY=ay=—RY=—U.jy.
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Integrating, we find
%) = iy(0) exp(~ax)

the absorption law with which we are already familiar. Here, jY(O)
nenetrarmo the surface of the semiconductor. It is less than the inci

Jy.in due to reflection at the surface
JY(O) = (1 - r)j‘y‘in .

With the transmission of a body of thickness d
t =(1—r)exp(—ad)

the total absorbed photon current becomes

L
2 .
TIRT
: =
y w
=4
&

Jabs = (1=r—1) jyin = (1 = r)[1 —exp(—0td)] jy.in = @jy,in -
The absorptivity a = (1 —r}[1 —exp(—a.d)] applies for a plane-parallel plate of thickness d,
if multiple reflection is neglected.
Since both a hole and an electron are produced for each absorbed (or annihiiated) photon,
they are both generated at the rate
(G = IA_R.._NJ (T\

=1 'l AN

This assumes that an absorbed photon always generates only one electron and one hole. How-
ever, if the photon energy A® is at least twice as large as the band gap €, one of the two
charge carriers can then have a kinetic energy of &, > €g. This charge carrier, whether
an electron or a hole, is then able to knock an electron out of its chemical bond and thus
produce another electron—hole pair by impact ionization. Due to the symmetry of the band
structure of the valence and conduction band, however, the energy of the photon is more or
less equally divided among the electron and the hole. In this case multiple electron-hole
pair generation by impact ionization would occur only for photon energies /i > 3€&g. This
fundamental possibility requires a band structure for the semiconductor which ensures the
conservation of energy and momentum. In real solar cells with band gaps > leV, however, it
occurs only with very low probability and requires photon energies hardly found in the solar
spectrum,

As an example for the production of one electron—hole pair per absorbed photon, we will
calculate the generation rate of electrons and holes resulting from the absorption of the 300 K
black-body radiation of the environment. As equilibrium rates they will be labelled with a
superscript 0. Photons of different energies contribute according to the value of the absorption
coefficient o.(Aw):

Ge=G, = R}= / o(ho) d jy(ho)
0

B Q [ olho)(hn)?
B 4n3fz3c2fexp (ﬁm) .
kTG,
c is the speed of propagation in the medium and is smaller than in vacuum by the refractive
index n of the medium. This means that the photon current density per solid angle, and

dho . (3.54)
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Figure 3.19: In accordance with the law of refraction at the interface between two media, only photons
from a smaller solid angle in the medium with the larger refractive indeX, are exchanged with the other
medium. Photons for which the momentum lies in the solid angle range inaccessible from outside
undergo tota] internal reflection (dashed light path).

therefore the absorption rate, is proportional to n°. Since the photon current density does not
change during the transition from the vacuum into the medium except by reflection, the larger
photon current density per solid angle in the medium must be restricted to a range of solid
angles into which photons flow from outside, which is smaller by a factor of n? than the solid
angle range Qyacuum in the vacuum from which they come. This is the reason for Snell’s Law
of Refraction, according to which the photons make a smaller angle with respect to the surface
normal in a medium than in vacuum. This is illustrated in Figure 3.19.

The generation rate of electron—hole pairs by photons incident from outside follows from
Eq. (3.54) by setting Q = & and ¢ = ¢p, the vacuum velocity of light. These are, however,
not all photons absorbed in the medium. Let us assume that the semiconductor is in thermal
and chemical equilibrium with its environment and that no current flows. Then at every lo-
cation within the semiconductor and in every solid angle element, exactly the same number
of photons must be emitted as are absorbed. Since photon emission is generally isotropic,
the radiation in the medium is also isotropic with Qmqedgium = 4%. Furthermore, in this state of
equilibrium the radiation in the semiconductor is also homogeneous, so that j$ +# jg (x). As
we have just seen, certain solid angle ranges are not accessible to photons from outside. Ac-
cording to the Principle of Detailed Balance the photons emitted inside the medium into the
inaccessible solid angic rangc, cannot leave the medium, they undergo total internal reflection.
In equilibrium with the 300 K environment, these photons are absorbed and re-emitted inside
the medium and contribute to the generation and recombination rates which then follow from
Eq. (3.54) by setting Q = 47 and ¢ = ¢y/n, the speed of light in the medium.

For electrons and holes it is not meaningful to define a density per volume and per solid
angle, because after a few collisions with phonons, i.e., in less than 10~!3s, an isotropic mo-
mentum distribution is established. The momentum of electrons and holes is then uniformly
distributed over a solid angle range Q = 4.

In addition to the generation of electrons and holes by the absorption of photons, they
may also be generated by thermal transitions from the valence band to the conduction band in
the absence of radiation, involving impurities. In thermal and chemical equilibrium with the
environment, the non-radiative generation and recombination rates must also be balanced. We
will come back to thermal generation of electron—hole pairs by the absorption of phonons in
the next section, where we discuss non-radiative recombination.
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3.6 Recombination of electrons and holes

The different processes for the production of electrons and holes discussed in Section 3.5 also
exist in reverse, that is processes in which electrons and holes are annihilated in a reaction

n ag rnr'nmlﬂlnof Fram the enerey cat frea in thic reantinn nhatn nhn
knuvv'u as recomoination. r'rom e ener £Y OUL LIVU 11 ulld 1vdaluUnl, Puutuuo or Puuuuuo arg

produced or both are produced 31mu1tane0usly In thermal and chemical equilibrium with the
radiation in the environment, in which »? nh = n , the rates of production and annihilation
are exactly balanced for each of the different mechamsms. This is known as the Principle of
Detailed Balance.

3.6.1 Radiative recombination, emission of photons
R

adiative recombination, in which a hole reacts with an electron and _Qduces a nh()t_, n. is ex-

actly the reverse of absorptlon (in the pure electron description it is the spontaneous transition
of an electron from the conduction band to an unoccupied state in the valence band).

e+h—vy.

Since a free electron and a free hole must find each other, the rate of radiative recombination
at which electrons and holes are annihilated and photons are generated increases with the
congcentration of electrons and the concentration of holes

Gy = Re = Rh = Bnenh - (355)

Here B is the coefficient for radiative recombination which remains to be determined.

In equilibrium with the radiation in the environment, in which neny, = n“nﬁ = n

G$ =RV =R) = Rg =G =G} = Brln} . (3.56)
0

It follows immediately from this equation that the product ngnh cannot depend on the doping
and must therefore be constant, with a value of n7, as long as the absorption coefficient for

band-band transitions and therefore the rate of absorption of photons R does not depend on

the doping. Doping would have a significant effect on the absorption coefficient only if the
density of impurities were in the same order of magnitude as the density of states in the bands.

The equality between (J" and K;, which in equilibrium applies not only in integral form
over the spectrum but also i 1n each photon energy interval di®, is the result of Kirchhoff’s
law of radiation. Microscopically, this means that in thermal and chemical equilibrium with
the radiation of the environment, the rates of all generation processes are compensated indi-
vidually by equally large rates of recombination processes between the same initial and final
states: this is the Principle of Detailed Balance. For the calculation of Gg we therefore take

the expression for G from Eq. (3.54)

e}
GV =RI=Gl=G)= / dho . (3.57)

A ) (h_)_l
0 SP\kn

Knowledge of the absorption coefficient a(A®), determined from absorption measurements,
and of r; then allows to calculate the coefficient B for radiative recombination in Eq. (3.55).
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The rate per volume at which photons in silicon in equilibrium with the 300 K black-body
radiation of the environment are generated is given by

Y

G2(Si) =3 x 10° ——
v(S) % cm3s

— Bn? .
For silicon n; = 10'° /cm? and therefore

3
. _j5yem
B(Si) =3 x 10715V
In a state of non-equilibrium between the electrons and holes in the semiconductor on one
side and the photons in the 300 K radiation of the environment on the other side, resulting,
e. g., from incident solar radiation or injection or extraction of electrons and holes with an
electric current, nen, 7 n-2 For extraction without additional production, in fact n.n, < n2
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distributions at the lattice temperature, with a mean kinetic energy of (gxin) = (3/2)kTy. In
a state of non-equilibrium with the 300K radiation of the environment, photons are conse-
quently emitted with the same energy distribution as in equilibrium with the 300 K radiation,
but at the different rate
g -0 felth

Y= Sy T (3.58)
G
With reference to the quasi-Fermi energies in Eq. (3.29) we can now write
0 €rC — Epv
Gy= Gy exp (T) . (3.59)

Due to solar irradiation, the emission rate of photons increases in proportion to neny,. Since
the annihilated electron-hole pairs are lost for the electric current which a solar cell must
deliver, it 1s of interest to know the total current of photons emitted by a semiconductor of
thickness d. This is not just the emission rate in Eq. (3.58) multiplied by the thickness of the

semiconductor, since some of the emitted photons are reabsorbed and generate electron—hole
nmrQ FIQ'?III"I

Although this would be a good exercise in the application of the continuity equation, the
integration of the emission and absorption rates of the photons over the volume of the semi-
conducior and the consideration of ioial internal reflection at the surface is a raiher confusing
calculation, Instead, we will once again make use of the Principle of Detailed Balance to de-
termine the total loss of electron-hole pairs in a cell due to radiative recombination in a more
elegant way.

In thermal and chemical equilibrium with the radiation of the environment, the photon
current density d j$ (hw) emitted from the surface of a body into the environment must be

equal to the photon current density incident from the environment and absorbed by the body:

0 0 0
djyem = dJyaps = a(hw)d Jy -
In non-equilibrium of homogeneous electron and hole distributions, the emitted photon cur-
rent density is larger by the same factor neny/n? by which the emission rate in Eq. (3.58) is

lllLl Cd.bCU, 50 llld.l

djyem(i®) = a(fiw) nenh

dj9(hw) . (3.60)

i
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Here a(hw) is the absorptivity which, without considering multiple internal reflection, is
a(hm) = [1 — r(hm)}{1 — expl—a(/i®)d]}. The absorptivity is always < 1 — r and for a thick-
ness d > 1/a, a =1 — r, independent of the thickness. This means that the emitted photon
current density reaches a limit value for large thickness, which then no longer depends on the
thickness. While the rate of radiative recombination uiu:gialcu over the volume increases lin-
early with the volume, for a large thickness, most of the emitted photons are reabsorbed and
generate electron—hole pairs again. The loss of electron—hole pairs by radiative recombina-
tion is given only by the photons which are emitted through the surface of the semiconductor.
The effective rate of radiative recombination is proportional to the surface area and does not
depend on the volume, if the thickness is larger than the penetration depth of the photons.

Expressing Eq. (3.60) in terms of the quasi-Fermi energies, we obtain
Q (hw)?
AR 2 exp(hw/kT) —1

This result is based on the Boltzmann approximation of the Fermi distribution i deriving the
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and (3.15). For this approximation the Fermi energies had to be a few k7" away from the band
edges. The same restriction applies to the absorption coefficient in the radiative recombination
rate (per volume) and to the absorptivity in the emitted photon current (per surtace area). The
condition of a full valence band and an empty conduction band on which their derivation in
Section 3.5 is based and for which the absorption coefficient is usually measured, is no longer
a good approximation, if the Fermi energies come close to the band edges. Eq. (3.61) is
therefore only approximately true. An exact derivation is given in Section 3.7.
In place of Eq. (3.61) the exact result is'

Q (ho)?

AT 13 e? ex [ hod — (erc —€pv) ) 1
A Y |

In this form, as the generalized Planck Radiation Law, it describes both the emission of thermal
radiation for (€pc — €py) = 0 and the emission of luminescence radiation for (epc — €pv) # 0.
The difference of the Fermi energies (erc — €rv) turns out to be the chemical potential t+y of
the emitted photons. For the operation of solar cells, where (€gc — €pv) is several kT smaller
than €¢, Eq. (3.61) is, however, a very good approximation.

djyem = a(fio) dho . (3.62)

3.6.2 Non-radiative recombination

With the recombination of an electron and a hole, the energy set free must always be taken
up by other particles. For non-radiative recombination these are primarily other electrons or
holes (Auger recombination) or phonons (impurity recombination).

Auger recombination

Auger recombination is the reverse of impact ionization, in which an electron or a hole with
high kinetic energy knocks another electron out of its bond, thereby creating a free electron

'P. Wiirfel, J. Phys. C 15 (1982) 3967.
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Figure 3.20: In Auger recombination, the energy set free by recombination of an electron-hole pair
is absorbed by a free carrier (an electron in this figure) and is subsequently dissipated by generating
phonons in collisions with the lattice.

and a free hole. In the reverse process, the energy set free during recombination is transferred
to an electron or a hole as kinetic energy which is subsequently lost to the lattice through

collisions with phonons. Figure 3.20 illustrates the process of Auger recombination in which
energy and momentum must initially be conserved.
If an electron absorbs the energy, two electrons and one hole participate in the reaction.

The recombinaiion raie 1s then
_ 2
RAug,e = Cene Rp

and is large for strong n-doping.
If a hole absorbs the recombination energy, the recombination rate is

RAug.h = Ch ne ”ﬁ .
This is relatively large in materials with strong p-doping.

ph =N

fKAug
In silicon the constants have the value

an Cm6
Ce(Si) ~ G (S1) 1 x 10790 =

A pn solar cell requires doping. How strong the doping should be will be discussed later.

For this structure, Auger recombination represents a practicaily unavoidable loss and largely
determines the efficiency limits of the best silicon solar cells.

Recombination via impurities

In equilibrium with 300 K radiation of the environment, for which n2rn® = n? and the genera-
tion of electrons by photons is compensated by radiative recombination, non-radiative recom-
bination processes are also compensated by the reverse processes, i.e., non-radiative genera-
tion processes in which electrons are excited via states in the energy gap or, less frequently,
as a result of the absorption of many phonons, even directly from the valence band to the
conduction band.

1[1 rt:dl bUldr LCllb reCOfHDlH&thH Vld lTTlpUl"llleS lS t: prcuu‘mm&nl rcu)‘r‘l 111 t on pro CESS
and will therefore be discussed in detail. Impurities which offer electron states with ener-

gies approximately in the middle of the forbidden zone play the most important role. They
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Figure 3.21: Electrons and holes produced by the absorption of photons with the generation rate G are
captured by impurities with the rates R imp and Ry, ;mp and they are emitted thermally with the rates
Ge.imp and Gy, imp from the impurities back into the bands.

capture electrons and holes over a series of excited states, with successive dissipation of en-
ergy. Since the recombination energy can thus be impartied to ihe laitice in small portions
through the production of individual phonons, the non-radiative transition of an electron from
the conduction band to the valence band, which is tantamount to the capture of an electron
and a hole by an impurity, can take place much more easily. In the following analysis, we will
therefore neglect radiative recombination compared with non-radiative recombination. The
rates of generation and recombination involving impurities and considered in the analysis, are
shown in Figure 3.21. The analysis follows the calculations of Shockley, Read and Hall.?

As an example, we will examine a single type of acceptor-like impurity, having a con-
centration #imp with a known electron energy €imp and a known capture cross-section G, for
electrons and o, for holes in a homogeneously excited semiconductor under open circuit con-
ditions, 1. e., without current flow. Under these conditions all electrons and holes must even-
tually recombine. During their lifetime they will distribute homogeneously by diffusion. This
allows to replace the actual and inhomogeneous generation rate of electron-hole pairs due
to illumination by an average over the total volume of a semiconductor. Since for this con-
sideration recombination via impurities is assumed to be dominant, no other recombination
mechanism is considered.

The electron concentration ne (in the conduction ban 1anges in time due to the rate
of generation G, = Gy, = G = a(hw) jy/d by the absorption f photons averaged over the
thickness d and it changes by the rate R imp of capture into impurities occupied by holes and
Dy I.IIC rate o1 llleITla.] Cllll\blUIl Ue ]mp llUIll 11“1‘1purit168 OCCUPICU Dy ClCLt I1S. lllC COﬁlrlUUllU[l
of the 300 K radiation from the environment and radiative recombination are neglected. The
continuity equations for the changes in the concentrations of electrons (in the conduction
band) ., of holes (in the valence band) ny, and of occupied impurity states, i. e., of electrons
trapped in impurities n. jmp as a function of the generation and recombination rates shown in
Figure 3.21 are

-
[

=

jo
S
]

'3‘

on
a_: = G- Re,imp + Ge,imp (3.63)

on
a—th = G- thmp + Gh_imp (3'64)
one . . - . s
g tmp = Reimp — Rnimp — Geimp + Ghimp (3.65)

2W. Shockley, W. T. Read, Phys. Rev. 87 (1952) 835. R. N, Hall, Phys. Rev. 83 (1951) 228,
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These are three equations for the three unknown concentrations #e, #, and #e, imp- Unfortu-
nately, these eguations are not linearly independent, so that, e. g., the third equation follows
from the difference of the first and the second equation. We obtam the missing third inde-
pendent equation from the cond1t10n that charge neutrallty of the semiconductor must prevail

evern L,.... b 1% PRy
€11 WIIEI e Auierer

€ (i’tD+ — Heg — n; + ny — ne,imp) =0. (3.66)

In this equation we assume that the impurities are negatively charged when they are occupied
by electrons, i.e., they are acceptor-type impurities. For donor-type impurities, positively
charged when not occupied by electrons, (—ne,imp) must be replaced by (njmp — Me,imp), Where
nimp is the concentration of the impurities.

We now have to determine the various generation and recombination rates. The rate of re-
combination I\e imp at which electrons vanish from the conduction band follows from a parel_y
kinetic argument. Whenever an electron that moves through the lattice at its thermal velocity
Ve, comes within a capture cross-section G, of an impurity that is occupied by a hole, it will be
captured. Impurities that are already occupied by an electron will not capture a second elec-
tron, because the energy of a second electron state is much higher and may lie in the energy

range of the conduction band. The rate at which capture happens to all electrons is
Re.imp = CeVelelh,imp » (3.67)

where np imp is the density of impurities not occupied by an electron and thus occupied by a
hole, which are the recombination partners for the electrons. The capture cross-sections for
electrons, G, and for holes, Gy, have values of the order of 10713 m2.

Similarly, the recombination rate for holes is given by

Rh.imp = OhVh7h#e imp - (3.68)

An impurity is likely to have different cross-sections for electrons and holes. An unoccupied
donor-type impurity is posﬁwe]y charged and consequently has a large capture cross-section

1, lect hil ad t T 1
for electrons, while an unoccupied acceptor-type impurity is neutral, with a small capture

cross section for electrons. Conversely, the capture cross-section for holes is large for an
occupied, and therefore negative, acceptor impurity and is small for an occupied and neutral
donor impurity.

In Equations (3.67) and (3.68) the occupation of impurity states, and as a result the con-
centration of electrons ne jmp ot holes np,imp in the impurities, is not known. If the energy &mp
of the electrons in the impurities lies between the quasi-Fermi energies, the occupation of the
impurities is not defined by either of the Fermi distributions but is rather determined by the
kinetics.

For the generation rates of electrons or holes from the impurities into the bands, we know
that they must be proportional to the concentration of electrons # jyp 01 holes s jmp = Ajmp —

e ,imp in the ll’IlpUI'lIle The generdllon rate of electrons 1s

Ge,imp = ﬁenc,imp . (3.69)

In the same way, the generation rate of holes is

Gh,imp = ﬁh”h,imp = ﬁh (nimp - ne,imp) . (3.70)
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Here B and P}, are as yet unknown coefficients of emission. For their determination we make
use of the Principle of Detailed Balance in the dark, inherent in the thermal and chemical
equilibrium with radiation from the environment. According to Egs. (3.63), (3.67) and (3.69),
in the absence of external excitation (G = 0) and in a steady state

on
a_: = —GCcVelle (”imp - ne,imp) -+ Be”e.imp =0. (3.71)

From Eq. (3.71) we can calculate the density of impurities occupied by electrons in the dark,
which we already know is given by the equilibrium Fermi distribution,
l l

He imp = Himp—Ff ———— = Him .
elVelle I —
kT

(3.72)

With n, = N¢ exp|-(&c - €r)/kT], we find for the coefficient of emission of electrons from
the impurity into the conduction band

’ EC —Eimp

Be = GeveNe exp (A T : (3.73)

and similarly for the coefficient of emission of holes from the impurity into the valence band
8imp —Ev

Bh = GthNV exp (—T . (3.74)

The capture cross-sections and the coefficients of emission are likely to depend on the energy
distribution of the free charge carriers. Due to the rapid thermalization, however, electrons and
holes have the same energy and velocity distributions under illumination as in the dark. Cap-
ture cross-sections and emission coefficients are therefore expected to have the same values
both in the dark and under illumination,

We now have all the ingredients to solve Egs (3.63) to (3.66), which define the concentra-
tions of the electrons, holes and occupied (as well as unoccupied) impurities as a function of
the external rate of generation G of electrons and holes, and not only in the steady siate. For
non-steady state processes this system of equations can, however, only be solved numerically.

For the steady state case, we find from Eq. (3.65) for the density of impurities occupied by
electrons

A

€; — £
Pimp {Gevene + opvpNy exp [A M] }

kT
He.imp = (8 S ) (E- s ) .(3.73)
CcVe {ne + Ncexp {—C—lem—p} } + Opvh {nh + Ny exp [Alml;(TV} }
This result, which is not important by itself, inserted into Eq. (3.63) gives
Hehy — 17
G = . (3.76)
ne + Nc exp [—(EC — Eimp)/kT} n np+ Ny exp [A (eimp — Ev)/kT}
RimpOhVh RimpOeVe

The left side represents the rate of generation of both electrons and holes. For the steady
state case, then, on the right side we have the recombination rate, with the same value for
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both electrons and holes. Here njmpGnvy is the rate per hole of hole capture if all impurities
are occupied by electrons. Its reciprocal value Ty min = 1/(RimpOrvy) is the smallest mean
lifetime of a hole in the valence band between generation and capture since it implies that all
1mpur1tles are occupled by electrons. Simllarly, Te,min = =1/ (nlmpceve) is the mean lifetime of
dan ClCLLlUll l[l I.llC LUllUULllUll Ud[lu WllCll au uupuutu:b are ULLUPICU Uy llUle Wlllbll lb UIC
smallest possible value of the electron lifetime. The minimal lifetimes defined in this way
represent lower limits for the actual lifetimes when the impurities are only partially occupied.

Since splitting of the Fermi energies is the main objective of a solar cell, it is worthwhile

to express Equation (3.76) in terms of the Fermi energies. We use the relations

g —€
ne = njexp (—lk—TFC) (3.77)
[ Ery — &)
np, = njexp ikk—T (3.78)
C*vimp\ [ Si—simp\
Nc exp (——— = njexp (——,T (3.79)
~1imp €v \ <imp & 3
Ny exp k———) = n; exp (k— (3.80)

where €; is the value of the Fermi energy in an intrinsic semiconductor in the dark, and find
from (3.76)

N [exp (M) _ 1]
1
- T
G = k (3.81)
Erpc — € E; — £ i— €& € E;
Th,min iexp as 'i+e p( . liiﬂe min iexp( Fvi +exp (— ,Am’mpﬂ
AN /] I \ kT /]

For a good solar cell we want the difference in the Ferm1 energies, i.e., the numerator of
(3.81), to be large. For a given generation rate G, the denominator must then be large, too,
requiring large minimal lifetimes, Conversely, a material produces a poor solar cell when
the numerator and the denominator of (3.81) are both small. If the minimum lifetimes of the

halec T nd alactrane + ara amial tha danaminatar will he minimal if an tha ane
HUICS un min anag CieCcurons ue min €% C{ual, uiv UClhUiiiinarul wiiil Uc il mai 11, Uil uiv ULl

hand, the impurity level &, coincides with the position of the Fermi energy in the intrinsic
state (&mp = €;) and, on the other hand, if the Fermi energies €rc and €py are symmetrical
about the intrinsic Fermi energy €; which is approximately in the middle of the energy gap
(€pc — & = & - €py). In an homogeneous material the latter condition is fulfilled only if it
is intrinsic. Doping, regardless of whether n-type or p-type, will increase the splitting of the
Fermi energies for a given generation rate compared with an intrinsic material.

For equal minimal lifetimes of electrons and holes the difference in the Fermi energies
£rc — €py for a constant generation rate G is determined from Eq. (3.81) and shown in Fig-
ure 3.22 as a function of the impurity level €,,. As expected, €pc — €pv is small, when the
electrons in the impurities have energies Eimp in the middle of the energy gap. The damaging
uluu(:[“lce Ul lllC liTlpullllCS 1'3 d.lSO gfea.ler lll Weamy uop(:u I-l‘latel‘ia.l "Wut’:)f(: l.IlC Ferrﬁl energlt:b
are more nearly symmetrical about the middle of the energy gap than in strongly doped mate-

rial. Whether the material is p-doped or n-doped, however, is irrelevant. The type and level of
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Figure 3.22: Difference in the Fermi energies as a function of the impurity energy €mp for a constant
rate of generation G = 10'7 /(cm?s) and for different doping levels. The doping concentration can be
inferred from the difference between the Fermi energy in the dark € and the intrinsic Fermi energy
g; from Egs. (3.77) or (3.78). The impurities have a concentratlon of Himp = 10'4 /em? with equal

capture cross-sections for electrons and holes of ¢ = 1071 cm?, the velocity of electrons and holes is
v = 10° m/s resulting in a minimal lifetime of T = 107%s

doping can be seen from the position of the Fermi energy €. in the dark state. The greater the

cppnrqhnq |r.‘_ —¢:| of the eguilibrium Fermi energy from the intrinsic Fermi energy, i.e., the

aidnl <) L1l oYy ;;u.uu,uu LTI Al 11O 0 EINNTIAASIC el Iigt ., T
oJ

closer the equilibrium Fermi energy is to one of the band edges, the stronger the doping of the
material. For n-doped material Eg -- € > 0 and for p-doped material E([; —g < 0.

The concentrations of additional electrons and holes due to the external generation rate
G can be determined analytically from Eq. (3.76) for small impurity concentrations #;,p and
weak excitation. Furthermore, we will divide the charge carrier densities into those in the
dark state and those produced by the external generation, ne = ng + Ane and n, = ng + Any,,
respectively. From the charge neutrality condition in Eq. (3.66) it follows that for a small
impurity concentration nimp << Ane, Anp, the additional concentrations of electrons and holes
are equal, An. = Anp, = An. The condition of weak excitation is fulfilled, if An < ng + ng.
With these restrictions, it follows from Eq. (3.76) for capture cross-sections not too different

£C — & imp — €
f (e tm)| 0 yexp| - Eme BV
fi 2
Aﬂ _= G i’th.mln L 0 X -! +Tc‘_min L o -! « (3.82)

0 0,0
ng +ny ne +ny
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Figure 3.23: Lifetime T of electrons and holes in p-doped silicon limited by impurity recombination
as a function of the impurity energy €;mp, measured from the upper edge of the valence band. With
each curve from the inside towards the outside, the accentor densitv increases h\f a factor of 100 from
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= 10'2 /cm3 to np = 10'® Jem®. The generation rate is G = 107 /(cm? s), the impurities have a
concentration of Ajmp = 10'% /em® with equal capture cross-sections for electrons and holes of ¢ =

103 cm? and the velocity of electrons and holes is v = 10° m/s resulting in a minimal lifetime of
-6
Tmin = 10 S.

Figure 3.23 shows the ratio An/G, which is also the mean lifetime t of electrons and holes,
as a function of €;yp in p-doped silicon. Te min = Th min = 10795 was used for the calculation,
resulting from an impurity density njmp = 10" /cm”, a capture cross-section for electrons and
holes of 6 = 10~1% ¢cm? and a velocity of v = 10° m/s. We see in Figure 3.23 that the lifetime
T becomes shorter and the recombination accordingly more effective as the energy level of the
impurity €mp approaches the intrinsic Fermi energy, which is in the middle of the forbidden
zone, if the effective masses of electrons and holes are equal.

Whean the imnnrity laval 1¢ nlace ta thae candnctinn hand tha 1m mnu tlno are lace affor
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because most of the time they are not occupied by electrons. Captured electrons are much
more frequently emitted back to the conduction band than annihilated by recombination with
a hole captured from the valence band. When the impurity level is in the vicinity of the valence
band, impurities are most of the time occupied by electrons, and captured holes are emitted
back to the valence band before they can recombine by electron capture. In the middle of the
forbidden zone, occupation by electrons and holes is equally probable. Both electrons and
holes find enough free impurity states to be captured and re-emission is less probable. We
also recognize the extreme demands on the concentration of impurities with energies in the
middle of the gap and therefore on the purity of the material in order to obtain lifetimes of a
few milliseconds, as is achieved in good silicon solar cells.

A large splitting of the Fermi energies and a large lifetime of electrons and ho 1 a
both indications of a good quality solar cell material. A closer look at Figures 3.22 an

3.23 seems to reveal an inconsistency. While increasing doping concentrations lead to an

a

I
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Figure 3.24: Recombination via surface states continuously distributed over energy in the energy gap of
a semiconductor.

increasing splitting of the Fermi energies in Figure 3.22, they result in decreasing lifetimes
in Figure 3.23. The explanation is simple. In a p-type semiconductor under low excitation
(An < n) the splitting of the Fermi energies is Aeg = kT In (nenh / n ) As long as the lifetime
T and with it the electron concentration n. = An = G7 decreases ]ess strongly than the doping
concentration and with it n{ increases, then the splitting of the Fermi energies will rise with the
doping concentration, although the lifetime decreases. The question of whether the splitting
of the Fermi energies or the lifetime is the more important quantity for a solar cell, will be
addressed later.

If, as in a real material, impurity states with different energies &y, and different capture
cross-sections are present, then contributions from each of them must be added to the recom-
bination rate Ripp, the generation rate Gijmp and the charge neutrality condition in Egs. (3.63)
to (3.66). But as we have seen in Figures 3.22 and 3.23, impurity states with energy in the

middle of the band gap dominate the recombination properties.

Surface recombination

States with energies in the forbidden zone which are very effective mediators for non-radiative
recombination are found in large concentrations on the surface of a material, where neighbour-

. o e ara Mo ln“nrn. availalhla ¢~ tha lattiosa ot A xhara e ..-.h. malaciilag N
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or H>O) are adsorbed. These so-called surface states often have a continuous distribution over
energy in the forbidden zone, as illustrated in Figure 3.24. The effect of the surface states
on non-radiative recombination can be treated in the same way as the effect of the bulk states
before. If the concentration of the surface states per energy and their cross-section for capture
of electrons and holes are known as a function of energy, the total recombination rate is the
sum over the contributions from each energy interval.

In a simpler treatment, all the contributions are lumped into a single expression. For

lectrons, for example, the recombination rate via surface states 1s
Ry = Oge Ve Fig,h fe (3 83)
1T pen P tha sannmalinatinm; vata ~AF Al antsne nan aran 2 tha dancityy ~f crirfars ctatac
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per area occupied by a hole and #, is the concentration of electrons at the surface. The product
Os.e Ve nig h has the dimension of a velocity and is known as the surface recombination velocity
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Figure 3.25: The continuous distribution of a high density of states around the Fermi energy in a metal
results in a high interface recombination velocity at a semiconductor—metal contact.

VR, of the electrons. It is characteristic for the surface quality, but it is not a material property
alone, since it depends on the occupation of the surface states and thus on the excitation
conditions,

Rse =VRe N - (3.84)

As with impurities in the bulk of a semiconductor, surface states are most effective with
respect to recombination when their electron energies lie in the middle of the forbidden zone.
Much less is known about the chemical nature of the surface states and their electron energies
than for impurities in the bulk of a semiconductor. In most cases, we must restrict their
characterization to the surface recombination velocity.

Poor surfaces with high surface recombination velocities of 105-10%cm/s are those freely
exposed to air, which adsorb H>O and O3 or react chemically with these substances.

Metallic surfaces required as contacts for the supply of electric current are especially prob-
lematic. As can be seen in Figure 3.25, the forbidden zone of the semiconductor is adjacent
to the continuous distribution of states in the conduction band of the metal. To a good ap-
proximation, we can consider the surface recombination velocity at a metallic contact to be
VR metal =~ oo, The resulting infinitely large recombination rate is compensated in the dark by a
generation rate which is likewise infinitely large. Any additional generation rate at the semi-
conductor/metal interface due to light absorption is negligibly small compared with the dark

. .o .
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at a metallic contact do not differ from their equilibrium values in the dark state for which
ndn) = n?. In the same way, the Fermi energies are not separated at a metal contact.

With Slllcon, good surfaces can be prepared by carefully controlled oxidation under clean
room conditions. Surface state densities of Dg < 100 /(cm? eV) can be obtained at Si/SiO,
interfaces, with recombination velocities of vg < 10cm/s.

Such perfect surface passivation is possible only for Si/SiO, and for the combination of
a few 1II-V compounds having the same lattice constants. In spite of this, contact with an-
other semiconductor in the form of a cover layer usually leads to lower surface recombination
velocities than for a free surface or for the contact with a metal. In order for the recombina-
tion on the surface of the cover layer to remain insignificant, no electron-hole pairs should be
gt:IlCrdlt:U Wlllll[l lIllb layef DCHIICOHUUCtOFD Wll.[l a ldfgC DdIlU gdp U:,G > JK:V) are lIlet:lOft:
chosen for passivating cover layers. These are transparent in the visible range and are also

known as window layers.
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3.6.3 Lifetimes

Because of recombination, a charge carrier once produced does not “survive” arbitrarily long
in its band. If electrons and holes are produced by the absorption of light and the light source
is suddenly switched off, the charge carriers then vanish after a mean lifetime t. Once again,
the continuity equation tells us how:

0
ai: — Ge—Ro— div e .
We will restrict ourselves here to a spatially homogeneous system (div j. = O) and divide

the concentrations and rates into what is present in equilibrium, with » ng = n , and what

is caused by deviations from equilibrium. This division of the recombination rate, e. g., for
electrons, is meaningful only if it changes in proportion to the electron density 7., that is when

the density of the recombination partners, the holes, is constant:
d(ng + An
( enf e) = Gg-i—AGe—— (R2+AR3) . (3.85)
Since onf /ot = = () characterizes the equilibrium dark state, for the additional con-
centration of electrons
JAn
at ¢ = AGe - ARe
On suddenly switching off AG,, we then have for radiative recombination
dA
=% = —AR. = ~BmAne . (3.86)

This equation assumes that the generation of electrons and holes can be switched off, because
it is caused entirely by photons incident from outside. It does not consider the re-absorption
of the photons emitted by radiative recombination. The equation is therefore valid only for
small semiconductor thicknesses. If we also consider the re-absorption of photons produced
in thick bodies, the electron density falls off more slowly by radiative recombination as the
thickness of the body increases. The effective rate of radiative recombination is only caused
by the photons leaving the semiconductor through the surface and is thus surface-related in

cantract t0 non.radiative reacamhinatinn which 1¢ valinmeaoraelatad Faoar camicaondnetaore thicl
contrast (o non-radgiative recomoination wilicn 1s voiume-reialed. ror semiconauciors tUicker

than the penetration depth of the photons the effective rate of radiative recombination saturates
and becomes independent of the thickness. From then on the radiative lifetime increases with
the thickness.

Equation (3.86) can be integrated easily for the electrons in a heavily doped p-conductor
in which, because of the strong p-doping, the density of holes ny = ng + Anp, = ng is nearly
independent of illumination. We refer to this case, in which the additional concentrations
are small relative to the majority carrier concentration in the dark state, as “weak excitation”
or “weak injection”. For solar cells in unfocussed solar radiation, this condition 1s fulfilled.

Eq. (3.86) then yields
Ang(t) = Ang(0) exp(—t/Te rad) - (3.87)

The characteristic time Te rag = 1/B ng is called the lifetime (of the minority charge carriers,
here electrons) for radiative recombination.
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In p-type silicon, with a typical hole density of ng = 106 /cm3, the lifetime for electrons
with respect to radiative recombination is

1
Te,rad = =0.03s .
o ax10-1s % x 1016 /em3

Making use of the lifetime, we can write the recombination rate in general as
AR, = An. /1. .
Suddenly switching on AG, starting from a state of equilibrium, we obtain
Anc(t) = AGt {1 —exp(—1/1e)} - (3.88)

The additional steady state concentration of electrons resulting from an additional generation
rate by light absorption is

Ane = AG, T, - (3.89)
For non-radiative recombination in a steady state, once again AR, = AG. = An. /7. and thus
1 e B a YA
Te= ———— . (3.90)
Ge Ve Mh,imp

Figure 3.23 shows this lifetime as a function of the position of the impurity level.

If the density of the recombination partners varies with time, the lifetime also changes
with ime. We then speak of the momentary lifetime. Everything said here for the electrons in
a p-conductor applies equally for the holes in an n-conductor and in general for the respective
minority charge carriers.

The density of the free charge carriers can be monitored by the microwave reflection they
cause. From the decay following the swiiching off of the illumination, the lifetime is experi-
mentally determined, which is an indicator of the quality of the semiconductor material.

As a result of transitions between the valence band and the conduction band, electrons
and holes are created in pairs, so that AG. = AGy,. If only donors or acceptors are present,
completely ionized at room temperature, and otherwise there are only negligibly few impuri-
ties, the conservation of charge in (3.66) then requires that An, = Any, and therefore 1, = T4
as well. This 1s a surprising result in view of the large differences in the densities of electrons
and holes in a doped semiconductor.

The different recombination processes take place in parallel to each other in a semicon-
ductor. The total recombination rate is the sum of the rates for the different recombination
mechanisms. If each of them is characterized by a lifetime 1; which the electrons or holes
would have if no other recombination process were present, then the total lifetime follows
from

Ro= 0 _ YR -y
Te. tot ; ALY
to be
1 1
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If no electron—hole pairs are extracted, 1. e., at open circuit, all charge carriers produced must
eventually recombine, and AG. = AR, = An.T; 1. The additional concentration of electrons
Ane in steady state is proportional to their lifetime.

The upper limit for the lifetime of electrons 18 T raq if all recombination mechanisms are
aVOiUCU, CALCP[ lUl ldUldllVC lCLUlllUllldllUll, Wlllbll lb uuavmuaunc Sllle uic llldAllllulll Ub-
tainable concentrations of electrons and holes occur if there is only radiative recombination,
the knowledge of radiative recombination and of the emitted photon currents is of great im-

portance for the determination of maximum efficiencies.

3.7 Light emission by semiconductors

l‘

ight is emitted by radiative recombination of electron—hole pairs. This light emissio
used as a diagnostic tool for the quality of the semiconductor. The generalized Planck equation
in (3.62) describes the emission of light by any material as a function of its absorptivity and of
ithe chemical poieniial of its electron—hole pairs and these quantities can be deduced from the
emitted light. The generalized Planck relation is so important that a rigorous derivation shall
confirm its validity.

can be

3.7.1 Transition rates and absorption coefficient

The generalized Planck law for the emission of photons is derived in the same way as Planck’s
original formula, except that the body absorbing or emitting radiation contains electron dis-
tributions in separate energy ranges which require different Fermi functions. This has conse-
quences for the absorption coefficient and the probability of photon emission.

We analyze the absorption and emission rates per volume of photons by a semiconductor
for radiative transitions between states in energy ranges of width de at energies €; in the
valence band and €; in the conduction band involving photons with energy in the energy range
ho---ho+ dho. The states are occupied according to two different Fermi functions f(€;) and
f{€2). Other transitions between states with the same energy difference contributing to the
interaction with photons of the same energy % are disregarded for the moment.
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photon current density djy is

djy(hw)
dhw
where M contains the matrix element for the transition and D1, is the combined density of

states between which the transitions occur,
The rate of stimulated emission of photons is likewise

djy(hw)
dho

drop(A®) = M2 Do f(e) [1 - f(€2)] dho | (3.91)

dryim (hw) = |M|* D12 [1 — f(e1)] fle2) dhw (3.92)

drspon(10) = [M[* " Dy(he)Dia |1~ (1) f(e2) dho>. (3.93)
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where the density of states for photons in the solid angle Q in a medium with refractive index
nis

Qi

43R ¢

and ¢y 1s the vacuum velocity of light.

Stimulated emission is a process by which a photon is duplicated, producing one additional
photon in exactly the same state as the incident photon initiating the transition. These photons,
therefore, cannot be distinguished from non-absorbed photons. The net absorption rate at
which photons disappear and which defines the absorption coefficient ;2 (A®) then is

draps(A®) = dryp(hw) — dryim (Ao) (3.95)
= |M|*Dp[f(e)) - f(e2)]djy(hied) = o

=1 1 LJ

Dy(ho) = (hw)? (3.94)

resulting in an absorption coefficient
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This relation is different from the derivation of the absorption coefficient in Section 3.5.1,

where an occunied valence band ( £{e:) = 1) and an emntv conduction band ( f(cn\ OY had
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been assumed. The important relation (3.96) allows us to replace the factor M and the com-
bined density of states 1> in the spontaneous emission rate by the absorption coefficient
o2 (Aw) and makes this treatment applicable to real materials for which only the absorption
coefficient is known:

[1- f(e1)] f(2)
f(e1) - f(e2)

With the Fermi functions for the states at energy €; in the valence band for which the Fermi
energy is €pyv and for €, in the conduction band for which the Fermi energy is €gc:

drepon (A©) = alz(hm)%ODy(ho)) dho . (3.97)

and f(&;) =

Since Eq. (3.98) does not depend on the energies €| and €; explicitly, but only on their
difference £, each pair of states with energies €; in the conduction band and €; in the valence
band with the same energy difference g —€& = = ho contributes to (3.98) in the same way. All

possible transitions between valence band and conduction band with the photon energy kA are
accounted for and are contained in (3.98), if a(i®) now is the absorption coefficient for all
these transitions.

A problem is that the emission rate of the photons cannot be observed. What can be

observed and measured is the photon current emitted through a surface. To find the emitted
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photon current, we have to integrate the difference between photon emission and absorption
rates

divdjy(x) = drepon(x) —otdjy(x) . (3.99)
We will treat only the simple case of a homogeneously excited semiconductor, in which drpen
is constant. Far from the surface in an infinitely thick semiconductor, emission and absorption
rates balance each other and the photon current is constant for x — oo, This equilibrium photon
current inside the semiconductor is, from (3.99),

de(w) = drspont/a . (3.100)
Integration of Eq. (3.99) over a homogeneous semiconductor of finite thickness d yields
. Q (h®)? dho
djy(ho) = a(hw) T (2) — [ho) ~(erc— rv) 1] , (3.101)
L kT )
where the integration gives
a(hw) = [1 — r(h®)][1 — exp(—oud)] (3.102)

for the emissivity of a homogeneous semiconductor of thickness d equal to its absorptivity.
Eq. (3.101) is the photon current emitted into the solid angle Q outside the semiconductor
after accounting for reflection at the surface.

Eq. (3.101) is a generalization of Kirchhoff’s and Planck’s laws and is valid for materi-
als, which are neither black nor have a single Fermi distribution over all states. It reduces
to Planck’s original emission law for a thermal emitter, in which all electrons belong to a
single Fermi distribution, for which €gc — €¢py = 0. The difference in the Fermi energies
Ueh = €Fc — €y 1s the Free Energy per electron-hole pair, also called the chemical potential of
electron-hole pairs. It is free of entropy and we may therefore hope to transfer it into electrical
energy without loss. Electron-hole pairs which recombine, generate photons which are emit-
ted. These photons carry the Free Energy of the electron-hole pairs, and yy = pen = €rc —€pv
is recognized as the chemical potential of the photons.

It is often areued that the chemical nntentm] of the hmnne 18, =0 by nature 3 because
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their number 7y is not conserved. Accordmg to this argument a minimum of the Free Energy
F could only exist, if in dF = --- +pydny+--- =0, the chemical potential gy = 0, since non-
conservation of ny would aliow dny # 0. This argument is difficult to understand. Photons
carry other quantities like energy, momentum and angular momentum which are strictly con-
served. Furthermore, photons do not react with each other, a photon cannot split into two by
itself. Changes in the photon number are only possible in reactions with matter. The involve-
ment of other particles, electrons or phonons, ensures the conservation of energy, momentum
and angular momentum when the photon number changes. The annihilation of a photon by
the generation of an electron—hole pair with conservation of energy and momentum, discussed
in this chapter is an example. We know other cases where the number of particles is not con-
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reactions in general that the number of the particles involved is not conserved. As an example,
we look at the reaction of hydrogen with oxygen to form water

Hy+ 30, <> H20.

L. D.Landau, E. M. Lifschitz, Course of Theoretical Physics, Vol. V, Butterworth, Heinemann 1980.
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Equilibrium exists, if
dF =+ +up, dNu, + po, dNo, + un,0 dMg,0 +-+- =0
With the Changes in the particle numbers in the reaction dNVy, = 2dNp, = —dNy,0 we find

R, L P,

the Cqull Ull Uit Conaiton

HH, T+ 5;102 = HH,0 -

We conclude that non-conservation of the particle numbers does not lead to zero chemical
potentials, if a well-defined relation among the particle numbers exists as in every chemical
reaction.

The absorption and emission processes of photons are chemical reactions as well, in which
electron—hole pairs are generated or annihilated. The chemical reaction is

et+h+=7v.

By the same argument as for the hydrogen—oxygen reaction, equilibrium between the
electron—hole pairs and the emitted photons exists, if

Ne +Mh = Ue + Hh = EFC — EFV = Uch = Hy .

This equilibrium requires frequent interactions between electron—hole pairs and photons,
i. e., frequent absorption and emission as will be present if the semiconductor is in a perfectly
reflecting cavity and the temperature and chemical potential of its electron—hole pairs are kept
constant (we will learn later, how this is achieved). This equilibrium exists also in a homo-
geneously excited semiconductor which is thicker than the penetration depth of the photons,
where photons are repeatedly emitted and re-absorbed before they reach the surface.

It must be emphasized that the validity of the generalized Planck equation (3.98) and
(3.101) is not restricted to a situation of equilibrium between electron—hole pairs and photons.
This equilibrium was not required in its derivation. The only condition for its validity is that
the Fermi distributions for the energy ranges between which optical transitions occur (e. g.,
conduction band and valence band) must be well defined, which is the case if the recombina-
tion lifetimes of electrons and holes are much longer than the scattering times.

The above treatment is valid quite generally, even if egc — €py > h®, where the denomina-

tarin (3 08) and (3 101) 3 “ 343 i fant i
tor in {(3.98) and (3.101) is negative. Under the same condition, the absorption coefficient in

(3.96) is negative too, and the spontaneous emission rate in (3.97) and (3.98) remains positive.
When the absorption coefficient is negative, stimulated emission overcompensates the rate of
upward transitions and the semiconductor amplifies the incident light as in a laser. Amplifi-
cation results from a negative absorption coefficient, which leads to a negative absorptivity a,
increasing exponentially with the thickness d in Eq. (3.102). €rc — €pv > A® is also known
as the condition for lasing. An equilibrium between the electron—hole pairs and the photons

cannot exist if €gc — €pv > A because then the emission rate of the semiconductor is always
larger than the rate of photon absorption, since the semiconductor is a photon current amplifier

than the rate of photon absorption, since the se tor is a photon ampl
under this condition.

Eq. (3.98) describes the rate of radiative transitions. In a real material, there are also non-
radiative transitions occurring in parailel and in addition. This does not invalidate Eq. (3.98),
as long as the assumptions are justified that two separate Fermi distributions describe the

occupation of states in the two energy ranges between which the transitions occur.
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The generalized Planck law in Eq. (3.98) is important for solar cells, because it allows
one to determine the smallest, theoretically possible recombination rate, the longest possible

lifetime and the largest possible difference of the Fermi energies. But the generalized Planck
law has practical importance as well.
PR |
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arameters, it allows the )(pu
mentalist to determine the difference in the Fermi energies from an absolute measurement of
the emitted photon current and a knowledge of the absorptivity a(%®). The knowledge of the
difference in the Fermi energies allows a better characterization of a solar cell material than
does the lifetime of electrons and holes.
Alternatively, the absorptivity and from it the absorption coefficient can be obtained from
(3.101) by measuring the emitted photon current if the difference in the Fermi energies is

known. Measuring the emitted photon current density in absolute units is not easy experimen-

ta]]y 1f the difference in the Fermi enerciec 1€ not known bt the emitted nhoton current 1g
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known except for a constant instrumental factor, the measured photon current can be adjusted
to Eq. (3.101), if the absorptivity is known at one single photon energy allowing one to obtain
the absorptivity a(fw) at all other photon energies in the measured luminescence spectrum,



4 Conversion of Thermal Radiation into Chemical Energy

In Chapter 2 we have seen what a Carnot engine can do, which operates with the heat gained
from a black or a monochromatic absorber of solar radiation. The absorber was characterized
by a high temperature T and a chemical potential of its electron—hole excitations of y.p = 0.
A solar cell remains at about Ty = 300 K and if it had uep, = O as well, it would not be able to
convert heat into an entropy-free form of energy. But as was shown in Chapier 3, eleciron—hoie
pairs in an illuminated semiconductor have a chemical potential of e, # 0, which means that
conversion of solar heat into chemical energy has already taken place in the semiconductor.

In order to examine this conversion in more detail, we will follow the generation and ther-
malization of electrons and holes step by step. These steps are shown in Figure 4.1. In the first
step, photons absorbed from fully concentrated solar radiation establish an energy distribution
of the electron—hole pairs, which is identical to the energy distribution of the absorbed photons
reflecting the high temperature of the sun, 7. Radiative recombination of electron-hole pairs
results in the emission of photons with the same spectrum and filling (for maximal concen-
tration) the same solid angle as the absorbed photons. This will not be changed, when, in a
next step, scattering of electrons and holes between each other is allowed (the interaction with
the lattice vibrations is still switched off), since scattering preserves the number of electrons
and holes and the average energy per electron—hole pair. The temperature of the electron—hole
pairs defined by their energy distribution is still T, = T5. In this situation the emitted photons
and the electron—hole pairs in the semiconductor are in thermal and chemical equilibrium with
the solar radiation and have a chemical potential of uy = yen = 0.
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Figure 4.1: Electrons and holes generated by photons with energy A lose energy by thermalization,
which produces chemical energy per electron—hole pair .

Physics of Solar Cells: From Principles to New Concepts. Peter Wiirfel
Copyright ©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40428-7
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When concentration is not at maximum and emitted photons cover a larger solid angle than
the absorbed photons, the emitted photon current density per solid angle is smaller than the

absorbed, but still has the same spectrum. In this situation 7¢, = Ts because of the spectrum,

equ111br1um with the sun with no sphttmg of the Fermi energies. In a r gh estimate, the
average energy of the electron-hole pairs is then €g + 3kTs. From Eq. (3.29) it follows that,
atTeh =Ts

NcNvy
Peh(Ts)=€FC—EFv:€GkTsln( ):0,
Hehlp

from which kTgIn (NcNy /neny) = €.

In the next step, the interaction with the lattice vibrations is switched on. This leads to
a cooling of the electrons and holes, until after about 10~ 25 the lattice temperature Tp is
reached, while the concentrations of electrons and holes remain constant. For T, = T

SOAT AT\
NcNy
ten (To) = €rc — €rv = €6 —kTplIn ( ) :
MeMh
Because of the constant concentrations of electrons and holes and neglecting the temperature

dependence of the effective densities of states Nc and Ny, this finally gives us an estimate of
the chemical energy per electron—hole pair produced by the cooling process

ten (To) = €rc — epv = €6(1 - Ty /Ts) .

This relation looks like a Carnot efficiency, but it is different. For the efficiency we have to
compare €rc — €py not with €g but with the energy €g + 3kTs per electron—hole pair before
the cooling. We can then see a large energy loss resulting from thermalization, which can be
attributed to the production of entropy by the lattice vibrations. The cooling of electrons and
holes at constant concentrations is therefore far from an ideal process for the production of
chemical energy, if we start from a broad energy distribution. Although in this consideration,
no electron-hole pairs have been extracted from the semiconductor absorber, an equilibrium
between the sun and the semiconductor does not exist, if the semiconductor is at a different
temperature. A non-zero chemical potential of its electron-hole pairs reduces the entropy

. . . . . .
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as many photons as it absorbs, but it does not fully compensate the temperature difference,
since the emitted spectrum is different from the absorbed spectrum, and less energy is emitted
than is absorbed.

Figure 4.2 shows the exact result of the thermalization of electron—hole pairs generated
by non-concentrated sunlight and by 300 K background radiation under open circuit condi-
tions, when there is only radiative recombination. Applying the generalized Planck law from
Eq. (3.101), the comparison of the average energy {fi®aps) of the absorbed photons which
is invested for the generation of each electron-hole pair with the average energy {h(’)er‘m{) of
the emitted photons, shows the energy loss by thermalization which, however, results in the
chemical energy per electron—hole pair . This chemical energy can, e. g., initiate further
Lllemlcal reaCuOHS das lll pllUlUbyIllITESlb wucrc d 101“1g ferm blUfage Ul t‘:nt‘:rgy lb aCﬂle—Vt:(.l lll
a solar cell, the chemical energy is an intermediate product, from which electrical energy can

be obtained by a further step.
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Figure 4.2: Average energy of absorbed photons {(fit,},s) from a non-concentrated AMO0-spectrum and
from the 300 K background radiation, the average energy of emitted photons {fiwem;t) and the chemical
potential of electron—hole pairs up, of a semiconductor as a function of its band gap € for radiative
recombination under open circuit conditions, resulting from the generalized Planck radiation law. The
difference between (A0} and (h®emi) is lost by thermalization of the electron—hole pairs.

The chemical energy per electron—hole pair is the sum of the electrochemical potentials of
the electrons and the holes, and therefore

Ne +Th = Me +Hn = €FC — EFV .
Acrccnrding tn Fa 2 70) thic aoivag 11¢
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Hall
He+uh=8Fc—8Fv=kT1n( ezh) : “4.1)

If we again separate the particle densities into dark-state and additional densities, so that
ne = ne 0+ An, and consider the case of a p-type semiconductor with ny, ~ ng (weak excitation)
we then find

[ A

e+ th = kT In k1+ n)) (4.2)
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only the change in the chemical potential of the minority charge carriers (here the electrons)

or the change in their Fermi energy.
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4.1 Maximum efficiency for the production of chemical
energy

Is it imaginable that a material at room temperature is in equilibrium with the sun, in which
it emits towards the sun as many photons, as much energy and as much entropy as it absorbs
from the sun? As we have seen in the last paragraph, the main problem is the energy loss
accompanying the entropy production during the thermalization process. Figure 4.3 shows
that an energy loss cannot occur, if the states available for electrons and holes are confined to
a narrow energy interval. Such a material could only absorb almost monochromatic radiation.
Alternatively, if in a broad band semiconductor the electrons and holes are generated by almost
monochromatic radiation, and only into those states in which they are after the thermalization,
can an energy loss be avoided. For maximum efficiency, we therefore make the following
idealized assumptions:

1. Only radiative recombination takes place.
2. There is no extraction of electrons and holes.

3. There are no thermalization losses. Absorption and emission are monochromatic, with
an energy of i = € and an absorptivity of a(hw = €g) = | over an interval dhm. We
can consider this condition fulfilled by a filter enclosing the semiconductor, which is
transparent only for A® = €, reflecting all other photons.

4. The rate of generation is at maximum. This condition is achieved by maximum concen-
tration, where the solid angles for absorption ¢ and emission Q. p;, are equal.

thea a n 1
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equal to the absorbed photon current. Referring to Eq. (2.34) and Eq. (3.101) this means that
di Qermit e2,dho Qabs g2 dhiw 4 3
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Figure 4.3: Electrons and holes generated in narrow energy ranges by monochromatic radiation have
the same energy distribution after thermalization as before.
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With condition 4, iy = Qabs, under which the semiconductor would reach the temperature
of the sun Tg unless we hold its temperature constant at T = Tp, we find the chemical energy
per electron-hole pair

Ty
Heh = He + th = €G \1-—> . 4.4)
The efficiency for the conversion of solar heat into chemical energy is
He + Hn Ty
= =1— = 4.5

This is the Carnot efficiency, a limiting value which is obtained for the conversion of heat into
an entropy-free form of energy when the conversion process is reversible, i.e., takes place
without the production of entropy. We can now see that an ideal semiconductor, which only
has radiative recombination, represents an ideal converter of heat into chemical energy in

monochromatic operation.
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sun, in which not only are the absorbed and emitted photon currents equal, as expressed by
Eq. (4.3), but also the energy currents which follow from the photon currents by multiplication
with the photon energy which for absorption and emission have the same value ht = €. For
the absorbed and emitted radiation, the entropy per photon state is!

oy=k[(1+ f)In(1 + f) — fIn(f)], (4.6)

where fy is the Bose—Einstein distribution function

1
K= =
exp (M;{—T”Y) —1

The exponent in the distribution function has the same value for the sun and the semiconduc-
tor according to Eqs. (4.3) and (4.4) with g + up, = J“Y because of the chemical equilibrium
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material with absorptivity a(f® = €g) = 1. In addition, absorption and emission involve the
same number of photon states because of ,ps = Qemiy. Under these conditions, the entropy
absorbed with the photons from the sun is equal to the entropy emitted with the photons to-
wards the sun. This all shows that an equilibrium is possible between the sun and a material
at room temperature, if the absorption and emission of photons is limited to the same narrow
energy range. This equilibrium requires the right combination of temperature T and chemical
potential u as expressed by Eq. (4.4), which is why we may call it a thermo-chemical equilib-
rium, The chemical energy produced by reversible, non-dissipative cooling of electrons and
holes is carried away by the emitted photons. The emitted photons, known as luminescent
radiation from LEDs, look the same as the solar photons. For monochromatic radiation, there
is no way to decide whether they have a high temperature 7" and a small chemical potential p,
or a low temperature and a large chemical potential.

The process in which all the chemical energy is emitted with the photons is in fact of
no interest to us. We are instead interested in how much chemical energy can be harvested

4.7)

1C. Kittel, Elementary Statistical Physics, Wiley 1958.
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with the electron-hole pairs, if we knew how to extract them from the absorber. From the
continuity equation for the electrons under steady-state conditions,
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on .
a—: =G, R. divdj. =0,

we see that
divdjo = Ge — R, (4.8)

gives just the rate with which electrons can be extracted from a volume element, since more
flow out of this element than into it when G, > R.. We are considering a differentially small
electron current dj., since it results from absorption and emission in a differentially small
photon energy interval dAw®.

Integrating Eq. (4.8) over the volume of the semiconductor gives the total extracted elec-
tron current d j,

dje=/Gedfocdx.

If we again restrict ourselves to radiative recombination, the extracted electron current density
is given by the difference between the absorbed and emitted photon current densities, which
already includes photon recycling by re-absorption. Thus,

dje = dj'y, abs — dj’Y,emit - (4.9)

The same relationship is true for the holes. The current of extracted electron-hole pairs is
djen = dje = djn.

For a spatially constant chemical potential of the electron-hole pairs pe, = const, jap
follows from the relations in Eq. (4.3) for the absorbed and emitted photon currents.
In an approximation to the generalized Planck law, when y.n < € — 3kT allows us to

neglect the “—1” in the denominator of the Planck law, we find according to Eq. (4.1)
c 0%elh . 0 He + Hh
dje = djyabs — dJy 2 d Jy,abs — d]y exp T ) (4.10)
L ,i hY rd

where jf; is the photon current density absorbed and emitted in equilibrium with the 300K
background radiation.

The condition g + up = constant is fulfilled, for example, when electrons and holes are
produced uniformly throughout the volume as a result of weak absorption or when they are
uniformly distributed throughout the volume as a result of large diffusion constants and life-
times.

For a given current of absorbed photons djyaps, the current dj.n of extracted electrons
and holes is shown in Figure 4.4 as a function of the chemical energy extracted along with
the electron-hole current. We see that the extracted electron—hole current is nearly equal to
the absorbed photon current for small values of ye, = ue + tn, where almost no photons are
emitted. The emitted photon current djyemit rises exponentially with ye + uh, until the open
circuit situation is reached at peh o, where absorbed and emitted photon currents are equal and
no electron-hole pairs are extracted. The current of chemical energy extracted along with the
electron-hole pairs is

dju = djen (te + ) -
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Figure 4.4: Current djyem; of emitted photons as a function of the chemical energy yeh = pe +
of the electron-hole pairs. The dark rectangle is the current of chemical energy extracted along with
the current d jeh = djy.abs — djy.emit Of extracted electron-hole pairs. It is produced from the current of
absorbed energy represented by the grey rectangle.

Its maximum value 1s the largest rectangle (dark grey in Figure 4.4), which can be fitted be-

tween the absorbed and emitted photon currents. The absorbed energy current in the interval
dhomis dig T ho and 15 iven hv the lichtlv shaded rectancle with the bhroken border in Fi g-
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ure 4.4. The efficiency w1th Wh1ch chemical energy is obtained from the absorbed radiation is
finally given by the ratio of the dark and lightly shaded rectangles.

Figure 4.5 shows the efficiency 1} with which chemical energy is extracted as a function of
the chemical potential of the electron-hole pairs. It starts with zero at g, = 0, when electrons
and holes are so effectively extracted that none can accumulate, then it rises linearly and
reaches a maximum at the point of maximum power (mp), after which it drops sharply down
to zero at the open circuit situation, where all electron—hole pairs recombine to emit photons.
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Figure 4.5: Efficiency n with which chemical energy is extracted as a function of the chemical potential
Ueh of the electron-hole pairs of monochromatic absorbers for different photon energies.
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Figure 4.6: Monochromatic efficiency Nmono(€g ) for obtaining chemical energy g + up, as a function of
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solar radiation.

In order to find the maximum efficiency with which chemical energy can be obtained from
fully concentrated solar radiation, we proceed as follows. From the generalized Planck law in
Eq. (3.101) the absorbed and emitted photon currents are found as a function of the monochro-
matic photon energy. For each photon energy the chemical potential gy, in the emitted photon
current is varied until the value gep ;mp 18 found for which the current of extracted chemical
energy 1s maximal. Dividing this chemical energy current by the absorbed monochromatic
energy current gives the efficiency MNmono(€g) as a function of the band gap.

The result of this calculation 1s shown in Figure 4.6 for non-concentrated radiation and for
fully concentrated radiation. The efficiencies are rather large and rise with the band gap €g,
demonstrating the high value of solar energy. In order to make proper use of the total solar
spectrum, very (infinitely) many monochromatic absorbers have to be employed. The overall
efficiency then follows from an integration of the efficiency Mmono(€G) over the spectrum after
weighting each interval diw with its share of the absorbed energy current.

/0 TNmono(€G ) A® d jy abs

fo Jied  jyas

The total efficiency is 86% for fully concentrated radiation from a 5800 K sun and 67% for
non-concentrated radiation from a solid angle of 6.8 x 1072

Although we were able to calculate with what efficiency chemical energy can be obtained
from an 1lluminated semiconductor by an extraction of some of the generated electron—hole
pairs, we still have no idea, how a device should look, which allows this extraction of electron—
hole pairs and their energy. This is the subject of the next chapter.

n

2A. deVos, Proceedings 5. E.C. Photovoltaic Solar Energy Conf., Athens 1983, p. 186.
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When electrons and holes are removed pair-wise from the same location and along the same
path, there is no charge current connected with the extraction, because an electron-hole pair
is electrically neutral. Electrical energy currents are bound to charge currents. It is therefore
necessary to separate the electrons and the holes and extract them along different paths as
shown in Figure 5.1. Extraction, in fact, is the wrong word. Electrons and holes must rather
be driven out of an absorber by some internal force, since they must still be able to perform
work 1n an external circuit.

In this chapter we will find out what the forces are by which electrons and holes are driven
and how they may be provided by a solar cell structure.

5.1 Transport of electrons and holes

Electrons have many “handles” where forces can be applied. The gradient of the gravita-
tional potential acts on their mass, and the gradient of the electrical potential on their charge.
The temperature gradient acts on their entropy, and the gradient of the chemical potential on
their quantity. The gravitational force is negligibly small. Temperature gradients give rise
to thermoelectric effects and we disregard them in connection with solar cells. Even though
we already know that the charge and number of particles are coupled during the exchange of
electrons or holes, and consequently the forces acting on them are coupled, too, we will first
treat the effects of these forces separately. For this, we will assume that only one of the two

forceg (crrndlpnt of the electrical nntr—‘ntml and Urndmnt of the chemical nnhﬂntm]\ 18 different

from zero. At the same time, we must not forget that the forces acting on the charge and on
the quantity both act on the same particles and must therefore be added to a resultant force,
which is then responsible for driving the particies.

Ja

H—

Figure 5.1: Electrons in the conduction band and holes in the valence band have to move in different
directions to produce an electrical charge current jg.

Physics of Solar Cells: From Principles to New Concepis. Peter Wiirfel
Copyright (€)2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3.527-40428-7
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Figure 5.2: Electron energies in an electric field for uniform electron and hole concentrations.

5.1.1 Field current

The electric field E = —grad ¢ is the driving force acting on the charge. It is the only driving
force for the charge current of electrons and holes if their concentration is spatially uniform.
For electrons, then, their chemical potential

He
= kT'In{ —
MHe = Me o+ (NC ) )

1s independent of position and
gradlue = 0 ?

the driving force for the diffusion current, still to be discussed, is zero. Figure 5.2 illustrates
the dependence on position of the electron energies. The difference between the Fermi energy
erc and the conduction band edge €c does not depend on position, because the concentration
of electrons is assumed to be uniform throughout, The gradient of €¢ is equal to the gradient

of the electrical energy —e@ because of the uniform electron affinity e = —ue o in a uniform
material.
The density of the charge field current for particles of type 7 with a charge per particle of

Zi€ 18

Jo.ri = zieni{vi) . (5.1)

The particles — with a concentration n; — move at the mean velocity {v;} and carry along the
charge z;e. Since the mean value of the velocity in the absence of an electric field, the mean
thermal velocity (v}, is zero, (v;) is the mean value of the velocity in the presence of an
electric field, or the drift velocity, which is small compared with vy,.

Due to their motion, which is mainly thermal, the charge carriers collide with obstacles,
caused by any disturbance of the perfect periodicity of a crystal, such as phonons or impurities.
The mean distance between collisions is called the mean free path.

1 HC mean llIIlC TC i DCLWCBII two LOlllblOIlb lb LdllCU LIlC LUlllblUIl llHlC Hl l.IlC thlC lleld,
the motion between collisions is characterized by the acceleration a; = z;eE /m}. Because of
the exponential distribution of the time intervals between collisions — a few particles undergo
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Figure 5.3: Electron energies for a position-dependent electron concentration in the absence of an elec-
tric field.

collisions only after a time much longer than T, ; — the mean velocity is given by

(Vl'> = /O d; CXP(WI/Tc-.i) dt =a;T.,
thus
(V,’) = Z,'—*’CC,,'E . (52)
m;
b; = et ;/m] is called the mobility of the particles of type i. The density of the field current is
then
Jori= Z;?'en,-biE = G;F .
Here 6; = z;?‘en,-b,- 1s the conductivity of the particles of type i. Making use of £ = —grad ¢ we

can also express the charge current in terms of the gradient of the electrical energy per particle

Z[e(p
G;

Jo.ri=——grad(z;ep) . (5.3)
‘ Zie

For electrons with z; = —1 this 1s

; G, ) .

Jo.fe = — grad(—cQ) (5.4)
and for holes with z; = +1

. Gh

Jorn=—-_ grad(eq). (5.5)

5.1.2 Diffusion current

When the electrical potential is the same at every location, that 1s grad ¢ = 0, a pure diffusion
current flows 1f the concentration is non-uniform. As Figure 5.3 shows, in a semiconductor
made of uniform material the conduction band edge €c then has the same value every-
where. The difference between the Fermi energy €rc and the conduction band edge 1s the
concentration-dependent and therefore non-uniform component of the chemical potential of
the electrons
. N

He —Heo = KT In ]_VE :

where N¢ is the effective density of states for electrons.
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In the usual representation by Fick’s Law, the charge current due to a non-uniform con-
centration of particles of type i is given by

jo.di=zie(—D;gradn;) (5.6)

with the diffusion coefficient D;. In this form, the current of the particles of type i is not
proportional to their concentration #; and thus does not allow us to recognize the driving
force acting on this concentration of particles. We can make the current proportional to the
concentration by transforming this expression

gradn;

Jo.di= ziemD;
H;

zieniDj
kT

In contrast to Fick’s Law this expression is valid for an inhomogeneous chemical environment
(grad ;o # 0) as well, which would cause a diffusion current even if the concentration were

Jodi=— grady; .

Using the so-called Einstein Relation between diffusion coefficient D; and mobility b;

b,‘ . c

D; kT
we finally arrive at

ien;b; o}

joai =~ gradp; = — — grady; (5.7)

For electrons with z; = —1, the diffusion current is given by
o
Joae = gradp. (5.8)

and for holes with z; = +1, the diffusion current is

<

Jodn=— % gradpy, . (5.9)

5.1.3 Total charge current

We have seen that there are two driving forces acting on all electrons and two other driving
forces acting on all holes. To get the currents caused by the forces, they have to be multiplied
by the conductivities. If both forces, the gradient of the electrical energy and the gradient of
the chemical potential are present simultaneously, they have to be added to give a resultant
force which i1s then multiphied by the conductivity to give the resultant current. We have

[
.
'~

G;
joi= e {grady; + grad(z;eq)} (5.10)
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Figure 5.4: Constant Fermi energy in a semiconductor in which both an electric field and a concentration
gradient exist,

or
G
i

] G
— grad(u; + z;e) = -—

Joi= - ~ gradm; . (5.11)

e e

The gradient of the electrochemical potential, gradm; = grad(y; + z;e@), now gives us the
combination of the individual forces acting separately on the quantity of the particles and on
their charge. The gradient of the electrochemical potential is the total force which in a general
case drives the total current, when either the concentration of the particles or their chemical
environment or the electrical potential, or all three, are inhomogeneous.

This procedure may not be very common. In most books, even in the general case, the
argument is based on field and diffusion currents, as though there were electrons which “feel”
only the electric field and others which only contribute to the diffusion current.

Since the only charged particles moving in a semiconductor are electrons and holes, the
total charge current is

Ge

. O
Jo =~ gradne - fgradnh , (5.12)

Faars | Fig R [ ——

or, making use of the quasi Fermi energies, for which grc = 1. and

jah
a2}
o]
<
Il
i
E

G c
jo=~2 gradepc + — gradepy . (5.13)
e e

This relationship is always true, i. e., when either an electric field or a concentration gradient,
or both, exist.

Figure 5.4 gives an example in which both an electric field and concentration gradients for
electrons and holes exist. According to Equation (5.13), the charge current jg is zero in spite
of non-zero field and diffusion forces, because the Fermi energies are uniform. A separate
description of the effects of the field and diffusion forces concludes that a field current and a
diffusion current both flow and that both compensate each other exactly. The result, a zero
total charge current, is identical. Nevertheless, the idea behind this result, i.e., all electrons
and holes produce the field current as a result of the motion induced by the field, and at the
same time all electrons and holes produce the diffusion current in the opposite direction, 1s
incorrect.

That the field and diffusion currents do not exist separately can be seen very well if we
examine the energy dissipation, that is the generation of Joule heat associated with every
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current flow because of the scattering of the charge carriers. The rate of energy dissipation per
volume element dpg /dt is proportional to the particle current density and the driving force.

For the field current, it follows from Eq. (5.3) that

ﬂ _— M {_ n’rqr‘{v.nﬂ\\\ — 12
dr e b SN IR
and for the diffusion current it follows from Eq. (5.7) that
dpE J A 2

As expected, in both cases the rate of energy dissipation dpg /d¢ > 0, even if the individual
currents flow in opposite directions and compensate each other.

Figure 5.4 illustrates the case of thermal and electrochemical equilibrium of electrons
and holes, as discussed in detail for the example of the pn-junction in Section 6.4. In this
equilibrium state, dissipation of energy must not occur. In reality, the electrons and holes do
not move in any preferred direction beyond their thermally random motion, because the forces
acting on them add to a total force of gradeg = 0, and no energy is dissipated.

The situation is the same as for the molecules in the air. There are also two forces acting on

them: the gravitational force pulling them downwards and the pressure gradient or the gradient

of the chemical potential pushing them upwards. We know the result. The distribution of the
molecules is such that the two forces compensate each other. There is only Brownian motion
of the molecules about an equilibrium position and there are no currents.

This discussion shows that field and diffusion currents are pure fiction and do not exist
separately, and only the total current representation according to Eq. (5.13) 1s correct.

However, it may not be concluded from this discussion that a mathematical treatment
of charge transport in semiconductors in terms of field and diffusion currents is incorrect.
Mathematically, there is no difference, whether the driving forces are first added to give a
resultant driving force, which is then multiplied by the conductivity to yield the total current,
or whether the driving forces are first multiplied separately by the conductivity and then added
10 glVC L[lC l.ULdl current. J.llC Ulllereﬁce lb l[l l.llC Pll)’blbdl piCture WIllLll lUllUWS lr()lll the
mathematical procedure. We obtain the physically correct description for the motion of the
charge carriers only when we first add the driving forces to give a resultant driving force,
which is the gradient of the Ferm energy.

5.2 Separation of electrons and holes

Now that we are familiar with the driving force for the motion of electrons and holes, we will
return to the original problem of defining a structure in which illumination produces a charge
current, along with an electrical voltage V at its terminals arising from a difference of the

Fermi eneroies at the left terminal and the i1

Lviiil Vil s Gl v dviL Wil ang inn 1 Aizizi

eV = €peft — €Frignt 7 0 -

R R bR | Py ml : ...«,.

YycC Wlll chln WlLIl d IlUI OgBIlCOU\ly CXpUbCU n- UUPCU Semiconaucior. 1nis 18 a Sir e
which, because of its symmetry, there is no preference for the transport of electrons in one
direction and holes in the opposite direction and no current or voltage is expected.

L7 ure in
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Figure 5.5: Distribution of the Fermi energies of a homogeneously illuminated n-type semiconductor
with strong surface recombination on the left and on the right.

Figure 5.5 shows the Fermi energies between the bands. As a result of an assumed strong
surface recombination, the concentrations of electrons and holes at the surfaces at the right
and left do not differ from their values in the dark state, even though the semiconductor is

illuminated. The Fermi energies for the conduction and valence bands, which are different

JOSEPSS SRR EALA WY 223 AR R RAILA e AU WL LW LIELINE LY} VAIUIILL DAl vy 22122 (.50 N Lws R )

inside the semiconductor, therefore merge into a single Fermi energy at the surface. This
results in gradients for the two Fermi energies, which drive electrons and holes towards both
surfaces, where they recombine. Since the absence of an external circuit implies that no charge
current can flow, the particle currents of electrons and holes flowing to the same surface must
be equal. Due to the larger conductivity of electrons for the n-conductor under discussion, it
follows from Eq. (5.13) that the gradient of the Fermi energy for the conduction band €gc is
smaller then the gradient of €py. In a p-conductor this would be just the opposite. This fact
leads us to conclude that replacing the n-doping in the right half of Figure 5.5 by p-doping
must give the distribution of Fermi energies in Figure 5.6, for a situation where no charge

current flows. We see that in an illuminated pn conﬁguratlon without charge current, i.e¢.,

Q1
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with strong surface recombination, fixing the carrier concentrations at the surfaces at different
values
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Figure 5.6: Distribution of the Fermi energies in a homogeneously illuminated pn structure.
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The electrons flow towards the left when their electrochemical potential, the Fermi energy,
Te = €rC, decreases towards the left, The holes flow towards the right when their electrochem-

ical potential, M, = —€py, decreases towards the right (when €gv increases towards the right).
For the electron current towards the left and the hole current towards the right the gradients
of the Fermi energies €gc on the left and €py on the right are small, since the conductivi-
ties of the electrons in the n-conductor and of the holes in the p-conductor, are large. This
is the important property which causes the Fermi energies at the two surfaces to be differ-
ent.

The gradients of the Fermi energies for the valence band in the n-conductor on the left
and for the conduction band in the p-conductor on the right, which are unavoidable due to the
convergence of the Fermi energies at the surface, can become large. This results from the very
small concentrations, and consequently small conductivities, of holes in the n-conductor and

. . . .
af alectrane in the nocandnctar The arranogament nf Fioure § A 1¢ hawever nnt an 1deal con-
UL wlww L UL 11 LR t’ ASAWIRLVATA AR W) i A Ll ullull&\-’lll\-'ll\- WL o4 l&ul\-’ FelF 13y LIV YY W ¥ Wiy 1IUVL Al IVl WUl

verter of chemical energy into electrical energy, because the difference in the Fermi energies
between the left and right surfaces is less than the separation within the semiconductor. The
chemical energy per electron—hole pair (€pc — €py) resulting from exposure to light cannot be
fully utilized by an external circuit. This is due to too small a concentration of electrons in
the n-conductor and of holes in the p-conductor in the dark state, at least near the surfaces,
which require a non-negligible gradient for the majority carrier Fermi energies, even under
open circuit conditions, to compensate the current of the minority carriers. A charge current
flows in an external circuit, when the voltage V between the terminals is reduced below the
open circuit value. This will increase the gradients of the Fermi energies for the majority car-
riers and decrease the gradients for the minority carriers, resulting in a preferential movement
of electrons to the left and of holes to the right in Figure 5.6. We will return to this point in
the following chapter.

The prerequisite for the existence of the gradients of the Fermi energies required to drive
the currents (without applying a voltage externally) is the separation of the Fermi energies.
Since the charge current densities of the electrons and holes are, at most, equal to the current
density of the photons absorbed, multiplied by the elementary charge, (in Si < 42mA/cm?),
for the usual doping levels of (101 —1017) cm™3 in both the n-conductor and the p-conductor,

only a very small Fermi energy gradient is required for the majorlty carriers. In spite of the
he Aiffaranca 'F

g
Ly 1% u111\.«1 llh e

terminals of the solar cell:

1 right
V= —-/ gradepc dx . (5.14)
]

eft

Since €pc = €pv in both terminals, one could also integrate over grad €gy.
That the voltage is given by the difference between the Fermi energies on the left an

with eV = A€f, results from the fact that gradeF is the driving force for the charge current
in the external circuit as well, e. g., in a voltmeter with finite internal resistance (an infinite

internal resistance does not exist). The voltmeter shows (0 V when there is no driving force
for the electrons within the voltmeter, i.e., grad g = 0 within the voltmeter or Agg = 0 at its

terminals.
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We see that a voltmeter in fact always measures differences in the electrochemical poten-
tial of the electrons if these are the only mobile particles within the instrument. A voltmeter

does not measure differences A@ of the electrical potential as, e. g., between the left and right
sides of the semiconductor in Figure 5.4, where it would show O V.

5.3 Diffusion length of minority carriers

Our goal is that as many of the charge carriers, produced by the absorption of photons, as
possible flow towards the terminals of the solar cell. Unfortunately, however, the existence
of the driving force for the charge carriers is not sufficient. Since the electrons and holes
recombine after a lifetime, they must also be able to reach the terminals in this time. For the
structure shown in Figure 5.6 the transport mechanism is diffusion. There is no gradient of
the electrical potential and no field present in Figure 5.6.

To see how far an electron can travel by diffusion before it vanishes by recombination,
we look at a simple example, where electrons are injected with a current d

p-conductor as minority charge carriers, as in Figure 5.7. The electrons will move in the x-
direction, in the y- and z-directions the system shall be homogeneous. The charge injected
with the electrons will quickly be removed by a rearrangement of the many holes in the p-
conductor without, however, eliminating the electrons as particles as explained in Section 5.4.

The steady-state distribution of the additionally injected electrons in the x-direction is
given by the continuity equation

0

%zGe~Re~divje:O. (5.15)
For the particle diffusion current,

- — dne 1 v . — dzne

je - "“'Ue_ and alVJe — “UQW.

In the p-conductor

n? He(x n’ An.(x
Ge=G'=-° and R.= o¥) _ fie | Atelx)
Te Te Te Te
Tt then follows from Ea. (5.15) that
It then follows from Eq. (5.15) that
Ane(x) d?Ane(x)
- +D.——==0. 5.16)
T, ¢ dx? (
A r~|e
0 X

Figure 5.7: Distribution of electrons injected as minority charge carriers into a p-conductor.



102 5 Conversion of Chemical Energy into Electrical Energy

The solution takes the form
17)
The characteristic length L. is the diffusion length (here for the electrons). Substituting this
result into Eq. (5.16) we obtain

Le = /DeTe . (5.18)

For electrons in pure silicon D, = 35 cm? /s. For a lifetime of, e. g., T, = 10-5s, Le = 60um.
In very pure silicon, diffusion lengths of a few millimeters are obtained for electrons,

The diffusion length is the mean path length for the diffusion of a charge carrier during
its lifetime. In the homogeneously illuminated pn-structure in Figure 5.6 only those electrons
will reach the n-conductor which are generated in the p-conductor at a distance not larger than
their diffusion length.

Once the electrons are within the n-conductor, in a region in which the electrons are the
majority charge carriers, their recombination has no effect on the charge current. Even though
they recombine in the n-conductor, recombination does not eliminate their charge. Since the
charge is transported by the majority carriers, as will be explained in the next paragraph, other
electrons will contlnue to transport the charge. Recomblnatlon reduces the charge current only

o~
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5.4 Dielectric relaxation

In our discussion of the diffusion of electrons in a p-conductor in the previous paragraph, we
did not consider the formation of space charge resulting from the charge of the injected elec-
trons and its effect on the transport of the electrons. We will now show that any space charge
of minority carriers is rapidly removed by a rearrangement of the majority carriers. In an oth-
erwise completely homogeneous system with conductivity 6, a space charge po(x) is assumed
to exist at the time ¢ = 0. We will examine how rapidly it decays via the charge current jp
driven by the field of the space charge. We assume that the majority carriers dominate the con-
ductivity and that their rearrangement causes only negligible changes of their concentration,
so that diffusion is not important.

The continuity equation for the charge takes the form
op o
a_Q = —divjg . (5.19)
t

Because charge is strictly conserved, there are no rates of production and annihilation. One of
Maxwell’s equations relates the space charge density pg to the electric field strength E

divD =eggpdivE = pg . (5.20)
The electric field produces a charge current jo = 6E, from which we find

div jop =ocdivE+ Egrado . (5.21)
Because of the assumed homogeneity, grado = 0. Substituting Eq. (5.21) into Eq. (5.19) and
ramlacring Hv E fram Fa (8 2M
FEp1acCing aiv L Irom 124, (J.2y),

0 . c

%P0 = —CdIvE = ——pg (5.22)
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with the solution
/
po(t) = pol0)exp (

€€y/0 is known as the dielectric relaxation time. If it is small compared with the lifetime
of the minority carriers, their motion is essentially unaffected by the initial space charge. In
this example, the diffusion of electrons into the p-conductor of Figure 5.6 pulls compensating
charge by dielectric relaxation of the majority carriers (holes) through the contacts into the
p-conductor.

In n-silicon, with a doping of 10'7 /cm”’, an electron mobility of b, = 1000cm? /(Vs) and
€ = 12, the dielectric relaxation time is £89/6 = 6 x 107 !#s, and consequently several orders
of magnitude smaller than the lifetimes.

\
) : (5.23)

€€p / 6)

5.5 Ambipolar diffusion

For the treatment of diffusion in Section 5.3 we have assumed that the diffusing particles were
minority carriers with a concentration much smaller than that of the majority carriers. As
a result, the space charge accompanying the injected minority carriers had been completely
eliminated by dielectric relaxation of the majority carriers.

Now we discuss the case of electrons and holes produced by light absorption close to
the surface, both in large concentrations compared with the concentrations in the dark state.
Due to their concentration gradients they diffuse from the surface into the interior. We will
assume that the electrons have the larger mobility, larger diffusion coefficient and therefore
move faster. Electrons and holes will therefore partly separate. This leads to the formation
of a positive space charge near the surface caused by the holes left behind and a negative
space charge due to the electrons in the interior. The electric field caused by this charge
distribution is directed so as to compensate for the different mobilities of electrons and holes.
The electrons are slowed down and the holes are accelerated. This coupled motion for a

strong, non-homogeneous excitation is referred to as ambipolar diffusion. Since this involves
the motion of electrons and holes with the same velocity in the same direction, there is no
charge current associated with ambipolar diffusion.

The particle currents of the electrons and the holes are

c
jo = —D.gradn.— —E (5.24)
e
c
jh = —Dygradnp + hE.
e
Since the charge current vanishes,
Jjo = eDe gradne — eDy gradny + (0. +0n)E =0, (5.25)
we find that the electric field associated with ambipolar diffusion is given by
e
E= p—— (Dpgradny — Degradne) . (5.26)

It is because of this field that the electrons and holes move with the same velocity, so that
Je = jn- Since very small differences in the concentrations already produce large space charges
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and high field strengths, the distributions of electrons and holes cannot be very different and
gradn. =~ gradny = grad n. The resulting approximation for the field in Eq. (5.26) substituted

LELLE ] ERRE LU § 11180 L1} L PS50

into Eq. (5.24) gives the particle currents in the field E

jom ju= — 22Ot Die . (5.27)
Ge + Ch
Since this has the form of the diffusion current equation, we can define
DeGh + DhGe
Dy = ——— 1% (5.28)
Ge + OCh

as the ambipolar diffusion coefficient.

5.6 Dember effect

To conclude this chapter, we will present an example to show how important it is to distinguish
between electrical potential differences and electrochemical potential differences.

We will calculate the electrical potential difference resulting from the electric field of am-
bipolar diffusion. This means that the same assumptions of strong, inhomogeneous excitation
apply, as a result of which the minority carrier concentration is greater than the majority car-
rier concentration in the dark. With the Einstein relation D; = b;kT /e we express the diffusion
coefficients in Eq. (5.26) by the mobilities, apply the approximation that electrons and holes
have the same distribution (gradrne ~ gradayp), multiply both numerator and denominator in

Eq. (5.26) by e(be + by,) and find

kT by — b d(c.+ 0o kT by — be
_ KT by — b gra (Ge+on) _ KT by - ¢ grad In(Ge — ) (5.29)
Using £ = — grad ¢, following integration, we find the electrical potential difference between

the surface (x = 0) and the interior of the semiconductor (x = o) resulting from inhomoge-
neous exposure to light. This is the Dember voltage,

- In .
e be+bp  \ Ge(o0) +0n(e0),

For the concrete case in which electrons and holes diffuse from the surface of a semiconductor,
where they are produced, into the interior, with the electrons being more mobile (b > by), the
surface then becomes positively charged and assumes a potential, which is more positive by
AQp than in the interior.

In order to correctly understand the meaning of the Dember effect, we will examine the
case in which the electrons are mobile, while the holes are immobile (b, = 0, 6, = 0). For
this case, the Dember voltage reaches its maximum possible value

ne(o)
ne (oo ) '
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be measured as a steady-state voltage. For immobile holes, the electron particle current must
vanish together with the charge current under the condition of open circuit during a voltage

App = ¢(0) — () = (5.30)

A(p: 1
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Figure 5.8: Distribution of potentials in the dark state (left) and on illumination of the free left surface
of a semiconductor in which only electrons are mobile.

measurement. From Eq. (5.12) the electrochemical potential e for the electrons must have
the same value everywhere when the electron current is zero. Thus, no measurable voltage is
found as the difference of the electrochemical potentials between the left and right sides. Fig-

ure 5.8 shows the distribution of the potentials. The electrical potential difference in Eq. (5.31)
can be read directly from the separation between the conduction band edge €c and the Fermi
energy €rc in Figure 5.8. Its value in Eq. (5.31) is thus based on a constant Fermi energy with
the consequence that no voltage is measurable.

A Dember potential difference (we avoid the term voltage, which we want to be reserved
for measurable voltages) always arises from an inhomogeneous generation of electrons and
holes when these have different mobilities. As expected, the Dember potential difference
vanishes when the electrons and holes have the same mobilities and 1s a maximum when one
of the carrier types is immobile.

The Dember effect becomes less important in a semiconductor with metal contacts. A
concentration gradient, such as assumed in our example, can only develop at a surface where
the recombination rate is not especially high. Taking into account that voltages are measured
between metal contacts at which, due to the large recombination rate at this interface, the
electron and hole densities remain unchanged even when exposed to light, we then find the
potential distribution for immobile holes between two identical metal contacts shown in Fig-
ure 5.9. Here, the production of electron—hole pairs has been extended to a small region close
to the surface in order to be able to see any changes in the concentration. Once again, we see
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Figure 5.9: Distribution of potentials in a semiconductor with metal contacts in which only electrons
are mobile, in the dark state (left) and with the left surface exposed to light (right).
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electrical potential differences between the surface and the interior. Because of the unchanged
concentrations at the metal contacts, however, the Dember effect does not produce either an
electrical or an electrochemical steady state potential difference between the metal contacts
when only one charge carrier type is mobile.
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difference arises as a result of inhomogeneous illumination when only one charge carrier type
is mobile and when they are distributed according to Fermi statistics over the available states.
This restriction to the Fermi distribution is necessary in order to exclude the photoemission
of electrons from semiconductors and metals into vacuum (or into other media), which does
result in measurable voltages.

A voltage deriving from charge carriers behaving according to the Fermi distribution re-
quires at least two different mobile carrier types. This is true in general. For solar cells, these

N
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For the preceding discussion it was important to distinguish between electrical and elec-
trochemical potential differences and we will emphasize the essential differences once again.

Electrochemical potential differences are measurable as steady-state voltages and are as-
sociated with currents. The driving forces for the currents are the gradients of the electro-
chemical potentials and the voltage drop resulting from a charge current through a resistor in
a steady state is an electrochemical potential difference.

By contrast, electrical potential differences, as seen already from their relation to the
charge density in Poisson’s Equation, are related to the charge distribution. Temporal
changes to the charge distribution can produce measurable voltages, which are, however,
non-stationary. As an example, we can take the Dember effect for an illuminated, free surface
of a semiconductor without contact, connected on the unilluminated rear side to one terminal
of a voltmeter. The second terminal of the voltmeter is connected to a transparent, conduc-
tive layer in close proximity to the illuminated surface. In this arrangement, the voltmeter
is capacitively coupled to the semiconductor surface. If the surface of the semiconductor
becomes positively charged relative to the interior during illumination, the transparent elec-
trode connected by the voltmeter to the rear contact of the semiconductor becomes negatively
charged. The charge transport through the voltmeter then produces a voltage called surface
photo-voltage. It depends on the series connection of the capacitance between the transparent

alantrade and the anirfacre and the canaritance hatwee a8 o arg
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charge in the semiconductor. Here it is important that the voltage shown by the voltmeter is
non-stationary and decays after the RC time of the voltmeter measurement circuit although
the semiconductor surface is still illuminated.

Just as electrochemical potential differences are distributed according to the values of
series-connected resistances, through which the same current flows, electrical potential dif-
ferences are distributed according to the (reciprocal) values of series-connected capacitances,
which carry the same charge.

(R} .
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5.7 Mathematical description

We have now gathered all the equations which, together with the appropriate boundary condi-
tions, allow us to solve all problems of semiconductor devices. These equations are as follows.
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— For the charge current:

Jo=—€je+ejn; (5.32)

For the particle currents:

, c
Jo = _gzg gradne , (5.33)
. c
Jh = - ;3—3 gradny ; (5.34)

— For the carrier concentrations:

Me G Re—divie, (5.35)

at c € €

on .

3: = Gp—Rn—divjn; (5.36)
— For the electrical potential:

Vo= P2 (5.37)

ggy

This system of equations must be solved for every point in the solar cell subject to the bound-
ary conditions. This is a complicated numerical procedure. In the discussion of the solar cell
we will not proceed in this direction, since it is rather abstract and conceals the physics behind
the solar cell, rather than elucidating it.



6 Basic Structure of Solar Cells

In order to properly understand the requirements for a solar cell, which is to generate current
and voltage, we will first turn to a similar problem which may be easier to understand and
which demonstrates that the working of a solar cell has more of a chemical than an electrical
nature.

6.1 A chemical solar cell

Figure 6.1 illustrates a hypothetical chemical solar cell in which water (H,0) is decomposed
into hydrogen (H;) and oxygen (O3) by the absorption of high-energy photons. As a result, the
hydrogen and oxygen pressures in the cell rise above their equilibrium values. If no hydrogen
and oxygen are removed, that is in the open-circuit state under steady-state conditions, the

nartial nregsures reach values at which the reverse reaction, the recombination of hvdrogen
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and oxygen to water, occurs at the same rate as the decomposition reaction. Clearly, the
partial pressures decrease with increasing probability of the reverse reaction. With a catalyst,
such as a large platinum surface, the reverse reaction would have such a high probability that,
even with the additional production of hydrogen and oxygen by decomposition, the partial
pressures remain at practically the equilibrium values.

Similar to a solar cell, we want to extract the gases separately and with them their chemical
energy. How can we remove the gases separately from the mixture in the reaction cell? This
requires membranes which selectively transmit only one of the gases. A semi-permeable
membrane on the left in Figure 6.1 transmits the hydrogen and blocks the oxygen, while
another membrane permeable for oxygen on the right, blocks the hydrogen It the partial

Figure 6.1: Hypothetical chemical solar cell in which water is decomposed into hydrogen and oxygen
by the absorption of photons. Hydrogen and oxygen can be separately removed through membranes
which selectively pass hydrogen on the left and oxygen on the right.

Physics of Solar Cells; From Principles to New Concepts. Peter Wiirfel
Copyright (©2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40428-7
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than outside, this gas will flow through its membrane out of the cell. For a membrane with
good permeability, only a slight difference in the partial pressures or the chemical potentials
between the inside and the outside is sufficient for the transport of the gases. The chemical
energy obtained from the decomposition of the water is greatest in the open-circuit state, when
the gdbC\ are not re i"lUVCU d.llu ICLUlIlUlllC DUL l[l thC dUbCIlLC Ul gdb llUW no LllCilllLdl CllClgy
is removed. On the other hand, removing the gases decreases their partial pressures. For
the other limiting case, when all of the gases produced are removed and the recombination
rate is at its equilibrium value, the partial pressures and chemical potentials are also at their
equilibrium values and consequently no chemical energy is supplied with the gas flow. In
order to obtain the maximum chemical energy current, we must therefore accept a certain
level of recombination. In the following, we will analyze the performance of this chemical

solar cell quantitatively.

Frnm the min;mum Of the ree Enern’\r nr the sanilihrinm nf all camnonentce 1n the chemeo
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ical cell at constant temperature and volume and without illumination

dF = uy, dNu, + o, dNo, + 0 dNw,0 = 0. (6.1)

From the chemical reaction

H, + % 0, = H,0
changes in the number of the molecules are related by

dNHz = 2dN02 - —dNH20
and Eq. (6.1) becomes

1

HH, + 3 HO, = HH0 5 (6.2)
which, as we have seen before, could have been read directly from the reaction equation.
Eq. (6.2) is valid for chemical equilibrium. When the sum of the chemical potentials of the
gases is larger than the chemical potential of the water, there is a net production of water from
the gases. When the sum of the chemical potentials of the gases is smaller than the chemical
potential of the water, there is a net production of the gases from the dissociation of water.
The chemical potentials of the gases depend on their concentrations in the same way as for
electrons and holes, whereas the chemical potential of the water molecules does not change
when the amount of water changes, since the concentration of water molecules in the water
stays constant.

Pgas
Mgas = o + 4T In ( : ) ) (6.3)
Po

where the proportionality between concentration and partial pressure p was used. The standard
pressure po is usually chosen as 1 bar under standard conditions. With the relation in (6.3), a
relation for the partial pressures of hydrogen and oxygen in chemical equilibrium with liquid
water at 300 K, which is the equivalent of the relation between the concentrations of electrons

and holes in an unilluminated semiconductor, nong = n , 1s found from Eq. (6.2).

/pg \//pn—\
Hy Oy o 1 —
kT In (—7-2—-) = H0OH,O —MOH, — 5H0,0; = —2.46¢eV . (64)
0
- Aﬁ F£LAN :» Loz 1 S0 LT __1__“,: S TR, TR PR A
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for the equilibrium concentrations of electrons or holes by doping, one of the partial pres-
sures can be chosen at will. When the partial pressure of oxygen is p%2 = 0.2bar as in air,
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the equilibrium partial pressure of hydrogen is only p% = 1.8 x 10"* bar, If the hydrogen
partial pressure is reduced below this value, the reenmhmatmn rate of the gases is smaller

than the thermal rate of splitting of water molecules until the equilibrium pdl‘tldl pressure is
re- establ1shed Smce 1 H, molecule reacts with 1 5 Oz molecule to give 1 molecule of H>O,

This recombination rate for non-equilibrium partial pressures can be expressed by the equilib-
rium recombination rate

Ry, = R, 2—pH”pOZ .
4] 4]
Pu,\/ Po,

When, by illumination, the generation rate is increaqed from the equilibrium generation rate

(6.5)

hydrogen rbitrarily counted positive if it is flowing into the cell, is
Ju, =2jo, = Ru, —Gnu,
s .
. . 0 FHao/FOy O
Ju, =2jo, = KRy, Gy, —AGH,
0 0
sz Po,

sz = 2j02 = RH2 (66)

The interpretation is simple. Hydrogen and oxygen will flow into the cell in a steady state only
if more molecules in the cell disappear by recombination than are generated by water splitting.
On the other hand, molecules flow out of the cell only if more are generated in the cell than re-
combine, If we assume that the gradients of the partial pressures required to drive the currents

tal
are small, the partial pressures in the cell and in the gas bottles in Figure 6.1 are approximately

the same, as is also shown in Figure 6.2. As a result, the currents of hydrogen and oxygen are
limited only by the rates of their chemical reaction and not by transport resistances.

P H,-membrane 0,-membrane

Po,

P,

” X

Figure 6.2: The conductivities for hydrogen in the hydrogen membrane on the left and for oxygen in the
oxygen membrane on the right, are assumed to be large. The gradients of the partial pressures required
to drive the currents are therefore small and do not show up in the spatial distribution of the pressures,
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0
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Figure 6.3: Current of hydrogen, positive if flowing from the hydrogen bottle in Figure 6.1 into the cell
a function of the hvdrnoen nartml pressure, without illumination (broken line) and with additional
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generatlon AGy, by illumination (solid line). The oxygen pressure is kept constant.

The hydrogen current flowing between the hydrogen bottle and the cell is shown in Fig-
ure 6.3 as a function of the hydrogen pressure in the hydrogen bottle, while the oxygen pres-

. .
1 kant tant Th T
sure is kept constant. The current changes with the hydrogen pressure only b

recombination rate. The generation rate, in the dark and under illumination does not depend
on the hydrogen pressure. At zero hydrogen pressure in the cell and outside, there is no re-
combination and all molecules generated flow out of the cell. The open-circuit pressure at zero
current, when the recombination rate equals the generation rate, is the equilibrium pressure
in the dark and a larger pressure with illumination. For still larger pressures, more molecules
disappear by recombination than are generated. They are replenished by a positive current
flowing into the cell.

'h
-+
f=n
Ly}

We could also plot the hydrogen current as a function of the chemical potential of
hydrogen while keepmg the chemical potential of the oxygen constant, This plot has the
advantage that the chemical energy exchanged between the gas bottles and the cell shows up

as a rectangie as for the electron—hole current in Figure 4.4. With Egs. (6.2) and (6.3), the
recombination rate can be written as

/.unz + l/quz _HHQO\

Ru, = R%z exp k — T - ) , (6.7)
and the dependence of the hydrogen currents on the chemical potentials is
, _ +1/2u0, —

which is shown in Figure 6.4.

6.2 Basic mechanisms in solar cells
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wWe now turn {0 a bCInlLUIlULlCtUr bUld.f CCll lIl winicn, lI bLCd 01 IlyUngCIl dl1Ud nygCIl d.LlUl-
tional electrons and holes are generated by illumination. This is the only difference from the
chemical cell in the last section. The thorough discussion of the chemical cell was intended to
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Figure 6.4: Current of hydrogen, positive if flowing from the hydrogen bottle in Figure 6.1 into the cell
as a function of the deviation A(uy, + % po,) of the chemical potentials of hydrogen and oxygen from
their equilibrium values, without illumination (broken line) and with additional generation AGy, by
illumination (solid line). A smaller and more realistic equilibrium generation rate G?_h than in Figure 6.3
is assumed. The shaded rectangle is the largest current of chemical energy delivered by the cell.

show the parallels and to emphasize the importance of the chemical reaction between electrons
and holes in semiconductors.

What do we learn from the chemical solar cell? $
permeable membranes are required on both sides of the absorber, such that electrons can only
flow out to the left and holes to the right, forcing them to generate a charge current flowing
from left to right in the cell.

A membrane which is permeable for electrons and which blocks the holes would be a
material, which has a large conductivity for electrons and a small conductivity for holes. We
already know that an n-type semiconductor has this property. However, different from the
hydrogen membrane, which has a very small mobility for oxygen, the hole conductivity in an
n-type semiconductor is small because of a small concentration of holes. In order to function
properly as an electron membrane, we have to make sure that holes are not injected from the
absorber. A hole membrane is, of course, a p-type semiconductor, into which electrons must
not be injected. Figure 6.5 shows a solar cell structure which has the required properties. The
injection of holes into the electron membrane on the left is prevented by giving it a larger
band gap, resulting in an energy barrier in the valence band for the holes. In the same way a
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Figure 6.5: An n-type electron membrane on the left allows electrons generated in the absorber by
illumination, to flow to the left while blocking the holes. A p-type hole membrane on the right allows
holes to flow to the right blocking the electrons. Electrons are driven by an invisibly small gradient of
—€pc, holes are driven by an invisibly small gradient of €gy.
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larger band gap of the hole membrane on the right, combined with a smaller electron affinity,
causes an energy barrier in the conduction band for the electrons. Due to their larger band
gap, the membranes transmit almost all of the photons to be absorbed in the absorber. As
for the partial pressure distribution in Figure 6.3 transport resistances for electrons and holes
are assumed to be small (which is realistic) and gradients of the Fermi energies required to
drive the electrons to the left and the holes to the right are negligibly small. Metal contacts
are assumed to make contact with the membranes which forces the Fermi energies to join at
the surface. The large gradient of €py in the electron membrane on the left does not lead to an
appreciable hole current to the left because of the very small hole concentration in the electron
membrane, obvious from the large distance of €¢gy from the valence band. The same holds for
the electrons in the hole membrane, accordingly.

For the conversion of chemical energy into electrical energy in a solar cell we have found

a structure in which the electrons and holes flow outwards throush different contacts, This
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structure is virtually identical with the structure for the removal of hydrogen and oxygen from
the chemical reaction cell. In the following, we will discuss different arrangements which
fulfil the same requirements with different degrees of perfection. Special emphasis is given to
the pn-junction because of its technical importance and its model character for other devices,
although it is not quite as ideal for a solar cell as the hetero-structure in Figure 6.5.

6.3 Dye solar cell
A very good example of the solar cell structure required, with membranes for electrons on one
side and for holes on the other side, is the electrochemical dye solar cell, shown in Figure 6.6."
The “semiconductor” in which the absorption of photons produces electron—hole pairs is a dye
layer. Since the electrons and holes in the dye layer have very small mobilities, this layer must
be very thin in order for the charge carriers to reach the membranes within their lifetimes.

The dye is applied as a monomolecular layer to a good electron conductor in the form of
TiO;. As Figure 6.6 illustrates, the electrons in the dye reach the conduction band of the TiO;
without difficulty. However, due to the large band gap of more than 3 eV of TiO;, the holes
present in the dye encounter a high barrier for the transition to the valence band of the TiO;.

On the other hand, the thin, only monomolecular dye layer required for efficient charge
transfer has the disadvantage that the absorption of photons in one layer is very poor, since
their penetration depth 1/a into the dye is much larger than the thickness of the dye layer. In
order to compensate for this disadvantage, the TiO; layer is therefore composed of particles,
only a few nm in size, in a porous structure. All TiO; particles are coated with the dye on their
free surfaces, so that complete absorption of the photons is achieved with the many dye layers
encountered by the photons.

The porous structure, however, greatly complicates the contact between the dye and a p-

tunea holea memhrane fhrnn nh which tha halec fcan Anow ontwarde Thic nrohlem i 1S Qn]\rnﬂ unfh
| = W LIV 1% LllWEiaLsL ull\-{, L1 ¥Y LRIV 1L Lll\.’ LAV 1% ) Willll LIV YY WLILYY WAL WBT. A L1110 tll AVAWILTS Y Ey e Y Aiuvil

the use of an electrolyte that penetrates into all the pores. The iodine ions of an iodine redox
system (I7/1y") provide for charge transport. The energy of an electron in I~ differs only very
slightly from the energy of an electron in the ground state of the dye, so that the flow of holes

'B. O’Reagan, M. Griitzel, Nature 353 (1991) 737.
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Figure 6.6: Dye solar ceil in which the electron—hole pairs are produced in a ruthenium bipyridil dye.
The electrons flow outwards towards the left through the n-conductor TiO; and the holes towards the
right through the iodine ions with which the acetonitrile electrolyte is doped.

from the dye to the electrolyte is unproblematic. The flow of the excited electrons from the
dye into the electrolyte is, however, prevented since the electrolyte has no states at the energy
of the excited electrons.

At first glance, this electrochemical cell would appear almost ideally to fulfil the require-
ments for the selective transport of electrons towards the left in the TiQ; and of holes towards
the right in the electrolyte. Besides direct recombination via the direct transition of an elec-
tron from its excited state in the dye to its ground state, there is also recombination via an
indirect path which we can regard as an internal shunt. Excited electrons which flow to the
conduction band of the TiO, can also reach the ground state of the dye via surface states of
the TiO; particles, either directly or after a transition to the redox system. This back-reaction
of the electrons is facilitated by the large surface area of the TiO3, which is, however, required
in order to combine sufficient absorption with the poor transport properties of the dye. It is
therefore not certain whether the dye solar cell represents a solar cell suitable for practical ap-
plication. The absorption of the dye needs improvement by extending it over a greater spectral
region. Problems remaining to be clarified include its stability over a period of 20 years with
respect to decomposition reactions and the possibility of the electrolyte leaking out or drying
out. A solid state hole conductor would be preferable, but a way has to be found to fill it into
all these tiny pores.

6.4 The pn-junction

A good, although not ideal, realization of the structure of a solar cell as discussed in the
previous section can be found in commercially available solar cells made of crystalline silicon.
A p-region about 300um thick, moderately doped with an acceptor concentration of np =
rnls_1nl6éy 7.3 tha ahonrlas o candurichad hotween a lace tha +hi ) Aeesndd
\l v — 1y } (L9 U § U as Ll.lC dDSOrDET is aauuwu,ucu DELWCECI 4 1E5S ulan l ‘ulll llll\,l\, lllélll_y UUPCU
n-layer on the illuminated side, as the electron membrane and another thin, highly-doped p-

layer on the rear side, as the hole membrane. All of this consists of crystalline silicon. The
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pn-junction, formed by the electron membrane and the absorber, near which most electrons
and holes are generated, is eqnemallv lmnnrtanr for the solar cell and other devices and will

therefore be the subject of a more detalled discussion.

6.4.1 Electrochemical equilibrium of electrons in a pn-junction in the
dark

In thermal equilibrium with the environment, including the 300 K background radiation, no
current may flow in the pn-junction if there is no external energy source. This means that

I. jo=0

and as a result of chemical equilibrium with the 300K radiation

2. MetMh=py=0.
From Eq. (5.12) jo is given by

o} o]
Jo= ?e gradm, — ?h gradn, =0

From 2, above, it follows that gradm. = —gradn; and therefore

0] 10}
jo= i:—hgradne:o.

Since 6, + oy, # 0, gradn, = 0.

This tells us that, in the dark, the electrochemical potential 1. of the electrons (as well
as the electrochemical potential M, of the holes) has the same value everywhere in the pn-
junction. This is the implication of electrochemical equilibrium between electrons in the n-
region and electrons in the p-region. Indicating values in the p-region far away from the pn-
junction by a superscript p and in the n-region far away from the pn-junction by a superscript
n, we have

— el — b n e n
Ne = yeo+kT1n e =1 =u.g+kTIn —— —e@ (6.9)
C C
Since only a small fraction of the semiconductor atoms is replaced by doping atoms, the chem-

1cal environment for a free electron, which determines the value of . ¢, remains unchanged.
For ,uf o = M, o the difference in the electrical potentials between the p-region and the n-region
is, from (6.9),

kT  nt
"= —1In-5 .
¢ -9 e " ap

Using ng = np and nf = n2 /na this potential difference, called the diffusion voltage, is

kT
¢ —¢f = L ln ”D?A , (6.10)

€ ”i

Xr_ ~m O PEa—

We can visualize this potential difference as arising in the following way. We start with the
spatially separated and electrically neutral p-conductor and the n-conductor being at the same
electrical potential. When making contact, the greater chemical potential of the electrons in
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the n-conductor (and of the holes in the p-conductor) drives a diffusion current of electrons
from the n-conductor to the p-conductor and a hole diffusion current from the p-conductor to
the n-conductor. This builds up a positive charge in the n-conductor and a negative charge in
the p-conductor. The diffusion currents continue to flow until an electrical potential difference
¢" — @ is established for which 1Y = 1%, so that gradme = 0 and gradT, = 0. The driving
force then no longer exists, and the charge current can no longer flow.

For electrochemical equilibrium, in which the gradient of the electrical energy is compen-
sated by the gradient of the chemical energy, the electrons and holes do not experience any
forces. Still, they are mobile in random Brownian motion.

6.4.2 Potential distribution across a pn-junction

The potential difference @" — @ is the result of the electrochemical equilibrium of the elec-

trons in the n- and p-regions. The distribution of this potential difference over the n-conductor
and the p-conductor follows from the relationship with the distribution of the charge density

e From the Maxwell equation
divD = Po
with D = eggoE and with £ = — grad ¢ we find Poisson’s Equation
divE = —divgradg = —V?¢@ = Po (6.11)
880

The interface between the n- and p-regions is assumed to extend much farther in the y-
and z-directions than the width of the space charge layer to be derived. This allows a one-
dimensional treatment, giving

fo_ _po (6.12)
dx? €0

In the n-region the density of the space charge is
LN /o + /\\_ re(p(x n]}\ P 2
pp(x)=e (np —nelx)) =e kl—expl j) (6.13)

This relationship follows from Figure 6.7, which schemat1cally depicts the potential distribu-
tion and the charge distribution.

Unfortunately, however, for this space charge density, Poisson’s Equation can only be
solved numerically. According to Schottky, we can approximate the charge distribution by a
spatially constant positive space charge density in a region up to an, as yet, undefined depth
wn on the n-side. A constant negative space charge density is assumed up to wp in the p-region
which compensates the positive space charge in the n-region, as shown in Figure 6.7.

pp=enp ~enp for — Wy <x <0
pi:—en;‘%—en,A_ for 0§X<Wp-
The sum of the charges O, = enpwy, in the n-region and Qp = —enawj in the p-region is

On+Qp =0, and the electric field strength differs from zero only between —w;,, and w,. From
the sum of the charges
W = 2wy (6.14)
na
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Figure 6.7: Distribution of the space charge density pg and of the electrical energy —e® per electron in
a pn-junction.

and the entire thickness of the space charge layer is

— (14 ). (6.15)
s

For the boundary conditions E(—wy, ) = 0 for the electric field and ¢(—wy, ) = ¢" for the electri-

cal potential, integration of Poisson’s Equation (6.12) with pg = p{, in the range —w; <x <0

of the n-region yields

@ (x) = = 3o (rFwn) + 4" (6.16)

and for the boundary conditions E (wp) = 0 and ¢(wp) = ¢7 integration with pg = p’é in the
range 0 < x < w;, of the p-region yields

en 2
(p?\x)=2—A(x—wp) P (6.17)
€€
For the given charge distribution the potential is continuous everywhere including at x = 0.
Frgm e (TN —_—fn (ﬂ\ it thitg fallaw o that
1 8 n‘\Uj p\U} 1L LILUD 1VIIVUYY D Lllal
e
n 2 2
] —(pp = — (nDWn +nAWp) . (6.13)
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With reference to Eqs (6.14) and (6.15), we can now determine the total thickness w of the
space charge layer, since @©" — @7 is known from the electrochemical equilibrium according to

Eq. (6.10):

we ) 0D (o0 gy (6.19
V © NARD

For the asymmetrical pn-junction of a Si solar cell, with np = 10'® /em? and ny = 1016 /em?,
Eq. (6.14) shows that the space charge layer in the p-region is much thicker than in the n-
region. Its extension into the p-region wy, is essentially equal to the total thickness w which,
for the doping levels above, has a value of w = 0.35um. Over this distance, the change in
potential is ¢" — @” = 0.9V as follows from Eq. (6.10). At least for crystalline silicon, the

extension of the space charge layer is therefore much smaller than the penetration depth of the
nhatance and thea fll‘F‘Fl cinn lanathe

photons and the diffusion lengths.

From the discussion of the recombination mechanisms in Chapter 3, we know that high
doping levels favour Auger recombination and should be avoided in a solar cell. Are there
minimum doping levels required for a pn-junction solar cell? The probiem is that the conver-
sion of chemical energy of the electron—hole pairs into electrical energy is incomplete, when
the difference between the Fermi energies in the contacts €g jef; — €F right 15 Smaller than the
difference between the Fermi energies egc — €py in the absorber, as shown in Figure 5.6. In-
complete conversion has to do with the generation of entropy. A comparison of Figure 5.6
with Figure 6.5, where the conversion is complete, indicates that the entropy per electron G,
which increases with the distance of the Fermi energy €grc from the conduction band, increases
from the interior towards the left surface in Figure 5.6. Entropy generation is obvious, since
the entropy rises at the expense of the free energy of the electrons 1 = €rc. The same hap-
pens to the entropy per hole 6, increasing with the distance of the Fermi energy €gy from the
valence band and rising towards the right surface. This entropy generation is avoided, if care
is taken that the concentration of the electrons in a pn-junction is at least the same everywhere
on the path of the carriers, towards their membrane.

From the considerations above, it follows that the majority carrier concentrations in the
dark in the regions functioning as membranes must be at least as large as the additional con-
centrations generated by illumination. Since the dark concentrations of the majority carriers

are Df‘lllﬂ] t fht:l f‘ﬂf\;f\ﬂ con

thic condition i< a
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equivalent to the condition

pP.n

nDNA neh

kTIn—52 =e(¢" —¢”) > epc—epy = kT1n ;2" . (6.20)

i i

This requires suitable doping to correctly match the potential difference ¢” — ¢” in the dark to
the expected chemical energy per electron—hole pair during illumination.

In Figure 6.5 we have chosen e(¢@" — ¢?) = €rc — €y, so that the electrical potential dif-
ference between the p- -conductor and the n-conductor membranes just vanishes during illumi-
mation e ~Armdeac virn & £ Al Py - _ Tha alantrinal matantial AifFaram a
Hiauull, Dy LUllLlaDL lll l 15u1c e U U‘\\.l.’ \l} } ~ C[-«L Cl-V 11I€ CIECirical PULClllel QiIcrence

vanishes in this case as well for the assumed illumination level, but the photo-voltage mea-
sured at the contacts is smaller than the difference between the Fermi energies inside the cell:
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Figure 6.8: Potential distribution in an illuminated solar cell in which the diffusion voltage is e(¢@" —
¢°) > €pc — €pv.-

so chemical energy is wasted. Figure 6.8 gives the potential distribution for a more strongly
doped cell, for which e{¢" — ¢°) > €pc — €py. The chemical energy per electron—hole pair is
now completely converted into electrical energy. Due to the increasing probability of Auger
recombination with increased doping, however, the doping density should not be larger than
necessary.

6.4.3 Current—voltage characteristic of the pn-junction

For the charge current through a pn-junction we distinguish between the forward direction, in
which the electrons of the n-region and the holes of the p-region flow towards the pn-junction,
and the reverse direction, in which electrons and holes flow away from the pn-junction.

In the forward direction, shown in the upper part of Figure 6.9, both the electrons com-
ing from the n-region and the holes coming from the p-region move as minority carriers into
the oppositely doped region, where they recombine after an average path length of one dif-
fusion length, More than a diffusion length away from the pn-junction, the minority carrier
concentration is much smaller than the majority carrier concentration, both in the dark and
with illumination (weak excitation), so that the charge current is carried only by the majority

p‘lw"ﬂ" I“ fl"lﬂ m_o I‘Dﬂ'lr\r\ k‘, DID{"fI‘nY\C Q“f‘ m fhﬂ ™_ rnn"n“ ]"\‘f ]’\{\ID(‘
Calliers, i ull N-TCgion OY CieCions 4l Il Ul p-ICgion Oy ntis.

In the reverse direction, shown in the lower part of Figure 6.9, electrons come from the
p-region and holes from the n-region. Since the charge current in the p-region 1s made up
entirely of holes, no electrons are transported through the p-region. The electrons emerging
from the p-region must have been produced there. But only those electrons generated in the
p-region which have not recombined before can reach the n-region. These electrons must have
been generated at a distance not farther than a diffusion length from the n-region. For the same
reason, only those holes generated at a distance not farther than a diffusion length from the
p-region can reach the p-region. For both the forward and the reverse direction, the charge of
the charge current is transferred from the electrons to the holes within a diffusion length on
both sides of the pn-junction.

UULblUU dan Ulectrﬁﬂ U111U510fl 161‘1gt[1 Le to i_ g it or a IlUll‘J UlllUblUIl 161‘1ng1 Lh to LIIC
left of the pn-junction, the charge current is a pure electron current in the n-region and a

pure hole current in the p-region. The charge current is then given by integrating over the
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egion, i.e., in the forward direction (upper part), electrons and holes flow towards the
pn—junction wh ere they recombine. In the reverse dlrectlon (lower part) for a posmve polarity of the
sa
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contributions to the hole current (alternatively, the contributions to the electron current). If the
forward charge current is arbitrarily counted as positive (electrons and holes flow towards the
pn-junction),

I
JQ:—e[ div j, dx | 6.21)
~Ly

since jp = 0 for x < —Ly, but j, = jo /e forx > L.
From the continuity equation for holes under steady-state conditions
an
Ul'lvn

o

Again, we divide the generation rate into the components Gg in the dark and AGy, from the
illumination

=Gy—Ry—divj, =0, div j, = G — Ry, .

Gh = G +AG, .
The recombination rate for radiative recombination is accordingly
Rn=RO™E — RD exp (T]e "h) , (6.22)
n1 kT

where, because of Ne + My = 0 in equilibrium with the 300 K photons and phonons
Gh =Ry

We can now write the charge current of Eq. (6.21) as

Le .
Jo= —e/“Lh {Gg [1 —exp (ﬂ anhﬂ +AGh} dx . (6.23)
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In principle, the sum of the electrochemical potentials 1 + 1y, 1s a function of the position and
depends on the resistances which limit the charge current,

Resistances, however, occur as two different types:

1. The familiar type, when the transport resistance is limiting the current. Then

, c
Jo=—71 gradm .

2. The less familiar type, when the current is limited by the resistance of a chemical reaction
as in the reaction of hydrogen and oxygen in the chemical solar cell in Section 6.1 and of
electrons and holes with photons and phonons in a semiconductor cell

e+h=1y,nl.

In this case

Jh P £ n

aly j = U —n .,
If the chemical reaction is limiting the current, as it did in the chemical solar cell, no more
electrons and holes can flow away from the pn-junction than are produced there, and no
more can flow towards the pn-junction than disappear there as a result of recombination.

We can estimate the voltage drop across the transport resistance. The charge current
through a solar cell is limited by the absorbed photon current and is a maximum of 42 mA /cm?
for silicon in non-focussed solar radiation. For a doping concentration of na = 10'® /cm? and
a mobility of by, = 470cm? /(Vs) the conductivity is 6, = 0.75 /(Q cm).

The voltage drop is then 1 /e gradn, = jp/0n =56 mV /cm, for a thickness of 300um thus
less than 2mV. This is negligible compared with (ne + My )/e, which is of the order of 1V.
We conclude that the transport resistance is negligible. The current through a pn-junction is
instead limited by the reaction resistance.

We therefore have

gradnp ~ 0 for x> —Lp

oo
jam
-

gradme =~ 0 for x< L

so that

nc+nh7éf(x) for —Lp<x<Le.

It then follows that 1. + M = eV where V is the voltage between the terminals for the n-region
and the p-region.

From the considerations above, it follows that the exponential function in the integrand
in Eq. (6.23) is constant over the range of the integration limits. This greatly simplifies the
integration of Eq. (6.23), and we obtain the current—voltage characteristic of the pn-junction

Le

Jo=eG (Le+ L) [exp(z—‘;) 1} —e AGp dx . (6.24)
Ly
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An external short-circuit (V = 0) defines the short-circuit current jgc

I‘Lg f.Ll_‘
jQ = —e AGh dx = —e AGe dx — j\C . (6'25)
—1y Ly

In the dark (AG, ;, = 0) and for large negative voltages (exp(eV /kT) <« 1) we find the reverse
saturation current jg, which is independent of the voltage,

jo=—eGoy (Le +Ly) = —Js . (6.26)

The short-circuit current ji. and the reverse saturation current jg are the essential elements of
the current—voltage characteristic of a pn-junction

) ) eV .
Jo=1Js [CXP ( kT) - 1} + Jse - (6.27)

With Eq. (6.26) we can calculate the reverse saturation current for an ideal pn-junction, in
which electron—hole pairs are produced only by the absorption of 300 K background radiation
using the generation rate in Eq. (3.54) and the lifetime from Section 3.6.3.

In real pn-junctions, we must also consider the electron-hole generation by non-radiative
transitions, as the reverse process of non-radiative recombination. The rate of generation
cannot then be given in general form. However, it can be expressed in terms of the diffusion

. . . . . .
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recombination processes. For equilibrium between generation and recombination, the lifetime
(of the minority carriers) together with the concentration of the minority carriers determines
the generation rate, so that

) ”5 ”ﬁ
Re b= -,
Te Th

From L = /Dt we obtain T, = L2/D, and T, = L2/Dy. Making the substitutions nl = n? /ns
and n! = 7 /np then gives us the reverse saturation current

D D
. 2 e h
= en; + . 6.28
IS enl ( nALc nDLh ) ( )

This expression for the reverse saturation current is valid even for real pn-junctions in which
recombination is predominantly non-radiative, when empirically determined values are used
for the diffusion lengths of the electrons and holes.

For the short-circuit current, only the photons absorbed within the diffusion lengths are of
interest. The pn-junction must therefore be no more than a distance L, away from the surface.
In fact, the n-layer at the surface is chosen to be very thin, its absorption can be neglected. 1t
must also be taken into account that the probability for the absorption of photons varies with
the photon energy fiw. The generation rate resulting from light incident onto the n-layer at
x = 0 is found by integration over the incident photon current spectrum dj,(f®,x = 0). This
yields
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The contribution to the short-circuit current in the interval diwm is

fLe .
dj. (o) = —e[l —r(hO)] djy(hco.O)a(hco)j e " dx (6.29)
0

= e[l — r(r@)]{1 — exp[—a(Am)L]} djy(hm,0) .
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Mo

Figure 6.10: Charge current of the pn-junction in the dark (dashed line) and with illumination (solid
line) as a function of the voltage. The sign of the voltage corresponds to the polarity of the p-region. The
shaded rectangle represents the maximum power delivered by the illuminated pn-junction.

[1 — r(Aw)]{1 — exp|—o(h®W)L.]} is the familiar absorptivity a{fiw, L. ) of a layer of thick-
ness L, for photons with an energy A®. If the diffusion length is greater than the thickness of
the solar cell, the absorptivity for the actual thickness must be used.> The short-circuit current
is given by the photon current absorbed within the shorter of the two lengths, the diffusion
length of the electrons or the thickness of the solar cell. This gives

e =—e [ a(ho,Le)djy{1,0)

Figure 6.10 shows the current—voltage characteristic for the pn-junction in the dark and
with illumination. The similarity with the characteristic of the chemical cell in Figure 6.4 is
no surprise since, for both, the current is limited by chemical reactions. The similarity is even
greater. We leave it to the reader to show that the same linear current characteristic as shown
in Figure 6.3 for the chemical cell is found for the semiconductor cell as well, if the current is

At
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In addition to the short-circuit current, the open-circuit voltage V. is important. From

lexo (€Y (1L —o

jo=1s LCXP\ T } J+Jsc =0 (6.30)
we obtain
kT [ :
VOC:—ln( —L) . (6.31)
€ Js

It is very important for the voltage that the reverse saturation current jg is as small as possible.
The generation rate in the dark G y has its lowest possible value, when electron—hole pairs
are generated only by the absorptlon of 300K radiation from the environment and therefore
recombine only radiatively. In this case the recombination rate is proportional to exp(eV /kT)
resulting in the familiar current--voltage characteristic of the pn-junction. From the discussion
of different recombination processes in Chapter 3, we know that the recombination rate has a
different dependence on the difference between the Fermi energies for Auger recombination

or for recombination via impurities, which leads to a different dependence of the current on
the voltage.

This result requires that a perfect hole membrane at the rear side of the cell prevents the electrons from reaching
the back contact where they would otherwise recombine, without contributing to the short-circuit current.
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6.5 pn-junction with impurity recombination,
two-diode model

The current-voltage characteristic calculated for the pn-junction in the previous section is
based on the assumption that only radiative recombination takes place. This is the ideal situa-
tion which enables us to determine upper limits for the open-circuit voltage and the efficiency
of a solar cell. In real solar cells, however, recombination via impurities predominates, as dis-
cussed in detail in Section 3.6.2, From there we know that impurities with an electron energy
in the middle of the forbidden zone contribute particularly strongly to recombination. In order
to evaluate the influence of impurity recombination on the current—voltage relationship, we
will therefore restrict ourselves to this type of impurity, with &y, = €; in the middle of the for-
bidden zone. Furthermore, it is assumed that electrons and holes have equal thermal velocities
v and are captured with the same cross-sections, 6. With this simplification, Eq. (3.76) leads
to the relationship

Rimp = NimpO V1 (6.32)

For a given voltage V and thus a given difference €rc — €pv = eV between the Fermi
energies, Figure 6.11 shows the recombination rate Rjmp as a function of the mean value
of the Fermi energies relative to the position & of the impurity level in the middle of the
forbidden zone. It can be seen that the recombination rate has a pronounced maximum, when
the impurity level lies in the middle between the Fermi energies.
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Figure 6.11: Impurity recombination rate Rjm, as a function of the mean value of the Fermi energies
(€pc + €pv ) /2 relative to the edge of the valence band €y in a semiconductor with an energy gap of
€G = 1.12¢eV calculated for an applied voltage of V =0.4V.
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Figure 6.12: Potential distribution in a pn-junction with impurities at €; in the middle of the forbidden
zone.

This behaviour is understandable from Figure 6.12, which shows the potential distribution
in a pn-junction at an applied voltage V and the position of the impurity levels relative to
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because their electron energies are above the Fermi energies, and in the n-region, on the left,
they are largely occupied. In both regions the recombination rate is small. The recombination
rate is large only where the impurity level is in between the Fermi energies, that is right at
the pn-junction. There €gc — € = € — €py = eV /2. This means that the recombination rate in

Eq. (6.32) is
exp (i) 1
k7 (6.33)

I=cam)

Let us further assume that this recombination rate is constant over the thickness w of the space
charge layers and also consider that exp{(eV /kT) — 1 = [exp(eV /2kT )+ 1] [exp(eV /2kT) — 1].
As a result, the impurity recombination leads to an additional charge current of

_ ew G VHimpH; eV _ eV |
JQ,imp = % {exp (2k_T) = 1} = Js2 {CXP (%—T) - 1} : (6.34)

This current flows in addition to the current produced by band-band recombination, which
determines the current over the region of the diffusion lengths. Because of the different voltage
dependence, at small voltages, impurity recombinaiion predominates and at large voliages
band-band recombination predominates. The total current, including the short-circuit current

due to illumination, is

eV . eV ,
Jo = Jst CXP{(kT)*1}+JszeXP{(2k—T)—1}+Jsc- (6.35)

Except for the short-circuit current, we can visualize this total current as arising through two
types of diodes connected in parallel. One diode with the reverse current jg, in which only
band-band recombination takes place, is connected in parallel with two diodes in series both
having a reverse current jg» and in which only impurity recombination occurs in the space
charge region. Because of the series connection, only half of the voltage is applied to each of
these two diodes. This summarizes the two-diode model, which considers both band—band and
impurity recombination and reproduces the current—voltage characteristic of real pn-junctions

relatively well.

Rimp = NimpOVvn,;
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A remark may be appropriate at this point. The exponential dependence of the current on
the voltage in a pn-junction is often seen as being caused by the potential barrier between the
n- and p- s1de, Wthh the carriers in the forward direction of the current have to surmount. In
this description it is very hard to understand that the carriers “see” only half of this barrier
when they subsequently disappear by impurity recombination. We know, however, that the
rise of the forward current is instead caused by the dependence of the recombination rate on
the difference between the Fermi energies and it is no surprise that these dependencies are
different for different recombination processes.

We have seen that the properties of even a homo-junction, a pn-junction consisting of the
same base material, can be interpreted in terms of the membrane model. The contributions to
the current originate from chemical reactions between electrons and holes on the one hand,

and photons and phonons on the other hand, occurring within a reaction volume extending
from a diffusion leneth left of the junction to a diffusion lensth risht of the junction. The
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material, outside of the reaction volume, n-type on one side, p-type on the other side, serve
as membranes, in which charge transport involves only the majority carriers. pn-junctions are
not ideal for solar cells for the following reason. For the best performance of a solar cell,
the recombination probability should be made as small as possible and the semiconductor
material as pure as possible, allowing only for radiative recombination. We have learned in
Section 3.6.3 that the radiative lifetime of electrons is 30 ms in p-type silicon doped with
10'® /cm® acceptors, typical for crystalline silicon solar cells. For this lifetime the diffusion
length is L, ~ 1 cm. In order to preserve the function of the hole membrane on the p-side which
keeps the electrons away from the hole contact at the rear, the p-region of the solar cell would
have to be thicker than that. The solar cell would then have to be much thicker than required
to absorb the absorbable photons with /i > £, a waste of precious material. We will see in
Section 7.3, how this problem is solved. In any case, the membrane function is necessary to
prevent minority carriers from reaching the wrong metal contact, although gradients of their
electrochemical potentials exist to drive them into the wrong direction.

6.6 Hetero-junctions

In Figure 5.6 we saw that there is transport in the wrong direction in a homo-junction, that
is electrons flow to the contact on the p-side and holes to the n-side. The associated charge
current by which the total current is reduced was neglected in the calculation of the current—
voltage characteristic for the pn-junction. In fact, neglecting this contribution is justified only
when measures are taken to eliminate this current or its cause, which is recombination at
the interface with the metal contact. One possibility is shown in Figure 6.5. The electrons
flow through an n-conductor out of the cell, and the holes through a p-conductor, both with
a large energy gap. Due to the resulting very low concentration of minority carriers in the
membranes it is justified to neglect minority carrier currents in the wrong direction, namely
an electron current towards the p-side and a hole current towards the n-side. The structure
of Flgulc 6.5 I'e(]uhcs three different materials; an aua()rbmg semiconductor in the middle,

between two semiconductors with a larger energy gap and different electron affinities ..
Such combinations of different materials are known as hetero-junctions.
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Figure 6.13: Two different semiconductors prior to making contact.

In addition to preventing interface recombination at metal contacts, hetero-junctions are
important, when it is not possible to prepare a pn-junction from a single material, a so-calied
homo-junction. There are in fact many materials which can only be doped either n-type or
p-type. This includes nearly all materials with an energy gap greater than 2.5eV. This is one
of the reasons why it is so difficult to manufacture blue-emitting LEDs, with the exception of
GaN,

For solar cells and other electronic components it is not sufficient to bring semiconductors
with suitable energy gaps and electron affinities into contact. It is more important that the
interfaces are as free as possible of states with energies in the forbidden gap, in order to elimi-
nate additional recombination and also to prevent electrical charging due to preferred trapping
of one carrier type. Material combinations fulfilling these conditions are very rare. One suit-
able combination is silicon—silicon dioxide, in which the silicon dioxide cannot be doped and
therefore serves as an insulator, Nevertheless, we will see later that this combination is of
great importance for silicon solar cells. Most other known combinations with a low density of
interface states consist of I1I-V compounds and are based on gallium arsenide.

The distribution of the electrical potential and of the band edges can be determined for

a heterojunction just as easily as for a normal pn-junction, if the interfaces are not charged,

thi 11 th — ~
since this implies that the dielectric displacement D = eggE and the electrical potential ¢ are

continuous over the interface. Due to the continuity of D, the field strengths E to the right and
left of the interface differ by the ratio of the dielectric constants €.

In Figure 6.13 we see two different semiconductors, at the left semiconductor 1, which is
n-doped, and at the right semiconductor 2, which is p-doped. In order to determine the po-
tential distribution in the dark, we will begin in Figure 6.14 with semiconductor 1, for which
~ except for the possible occurrence of a space charge layer — the electrical potential is held

constant to the left of the interface. In electrochemical equilibrium with the p-conductor, the
Fermi energy has the same value evervwhere To the noht of a space oharoe Inver nn«:hlv

occurring at the interface, the band edges £c and ey and the electron afﬁn1t1es ¥, of semicon-

ductor 2 are entered relative to the Fermi energies with the same values as in Figure 6.13.
The disiribution of the elecirical poteniial is deiermined by the charge disiribution and is

independent of the electron affinity or the energy gap. Due to the continuity of the electri-

cal potential across the interface, in the case without charge in interface states, the resulting



6.7 Semiconductor-metal contact 129

¥ 3 . .
€] semiconductor 1  semiconductor 2

: 2
1 Xe
-ep A
hy

GF—-—F—-+———- —=

xV

N e e e

Figure 6.14: The two different semiconductors of Figure 6.13 in contact.

potential distribution is, apart from the different slope arising from the ratio of the dielectric
constants, the same as for the normal pn-junction in Section 6.4.

According to Eq. (6.9), the electrical potential difference between the neutral regions of
the n-conductor and the p-conductor is

l 2
e(o' — %) = peo+len( ) — 10— len(”ez) : (6.36)
NC NC

where the standard values of the chemical potential u, o of the electrons are now given by the
different electron affinities . of the two semiconductors:

I 2 2l
“e._() —Heo = Xe — Xe -
The difference in the electron affinities also determines the discontinuity A€c in the conduction

band edges and, together with the difference €g in the energy gaps, the discontinuity Agy of
the valence band edges directly at the interface.

A l 2 2 |
AEC = SC_E’C :xe —Xe

| 2 2 1 2 |
Aey = &y —&y =Y.~ A TEG—EG .

By selecting materials with suitable electron affinities, ., and energy gaps, €g, as in Fig-
ure 6.5, it is possible to avoid discontinuities in the band edges for the majority carriers and
produce them for the minority carriers, and in this way to control the charge transport.

6.7 Semiconductor-metal contact

Metal contacts are to allow an unimpeded charge transport between the solar cell and an exter-

nal load. The contact with a metal must therefore not cause a depletion of the majority charge

carriers in the adjoining semiconductor. The potential distribution at the semiconductor-metal

contact follows the same rules as at a semiconductor—semiconductor contact. Figure 6.15
ol cmmainmmAdiiatoae and o matal hafaes vealimoa ~antant and At ot
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The metal is characterized solely by the chemical potential e i of its electrons. The ab-
solute value of the chemical potential is known as the work function of the metal. In contact,
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Figure 6.15: Schematic energy diagram of a semiconductor and metal before making contact (left) and
in contact (right).

an electrical potential difference arises, as for the case of two semiconductors, correspond-
ing to the difference in the work functions. Due to the high concentration of electrons in the
metal, the charge distribution in the metal degenerates to a surface charge. The entire poten-
tial difference between the metal and the semiconductor, therefore, appears across the space
charge layer of the semiconductor. In Figure 6.15, we have assumed that there is no charge
at the contact interface other than the surface charge of the metal, so that the electrical po-
tential is continuous across the interface. From this figure, we can see that metals having a
smaller work function than the semiconductor cause an accumulation of electrons in the ad-
jacent semiconductor. Metals with a small work function, therefore, are favourable for the
exchange of electrons and make good, so-called ohmic, contacts to n-type semiconductors.
Conversely, metals with a large work function make good, ohmic contacts to p-type semicon-
ductors. Electrons see a potential barrier from the Fermi energy of the metal to the conduction
band of the semiconductor, equal to the difference between the work function of the metal
and the electron affinity of the semiconductor. Heat is consumed when electrons cross the
barrier in travelling from the metal to the semiconductor, resulting in a Peltier cooling effect.
If, according to the direction of the charge current, electrons travel from the semiconductor to
the metal, a Peltier heating effect is observed.

For contacts on covalent semiconductors. silicon articular. however. the band bendin
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in the semiconductor is found to depend less strongly on the work function of the metal than
would be expected from the difference in the work functions. This is probably due to the
presence of surface states on the silicon surface, which are charged due to the contact with
the metal. Together with the surface charge on the metal, the surface charge on the silicon
forms a charge double layer, over which a potential step occurs which depends on the dipole
moment of this layer. The potential difference between the interior of the semiconductor
and the interior of the metal is still given by the difference in the work functions, but it is
now divided between the band bending of the space charge layer and the, usually unknown,
potential difference across the dipole layer.

Table 6.1: Work functions and electron affinities of common semiconductors and metals.

Si GaAs In Ag Al  Au Pt
Work function /eV 412 426 428 5.1 5.65
Electron affinity /eV ~ 4.01 4.07
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Figure 6.16: Holes from the valence band can tunnel through a thin potential barrier of a strongly
p-doped depletion layer into the metal.

Contacts with good carrier exchange can also be prepared based on another principle.
If the semiconductor 1s very highly doped, at least in the vicinity of the contact, a majority
carrier depletion layer caused by an inappropriate work function of a metal is only very thin.
It can in fact, for suitably high doping levels, be so thin that the majority charge carriers can
tunnel through this potential barrier between the semiconductor and the metal. Aluminium
has a smaller work function than p-doped silicon and is, therefore, not expected to be a good
contact material for it. If, however, after deposition, the aluminium is allowed to diffuse at
high temperatures into the silicon, where it forms acceptor states, a strongly p-doped layer
results with a potential distribution as shown in Figure 6.16. The thin barrier in the valence
band permits good hole exchange between the valence band of the silicon and the conduction
band of the Al contact by tunnelling. Generating a strongly doped p™-layer in front of the
metal contact also improves the membrane character of the p-region.

6.7.1 Schottky contact

The basic principle of a solar cell, namely having two membranes, one exchanging electrons
and the other exchanging holes, can be fulfilled simply by a homogeneously doped semicon-

ductor with two different metal contacts, one chmic contact for the exchanece of the mmnrltv
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carriers and a second which causes depletion of the majority carriers, and thus accumulation
of minority carriers. This second contact is called a Schottky contact. For an n-conductor,
its work function must be much greater than that of the semiconductor, and for a p-conductor
much smaller.

Figure 6.17 shows the potential distribution at a Schottky contact on a p-conductor in
the dark. It must, however, be noted that Schottky contacts are simple to prepare only for a
few semiconductors. Furthermore, they have the disadvantage that the required unimpeded
exchange of the minority carriers is unavoidably coupled with a high level of surface recom-
bination at the metal contact. For solar cells, Schottky contacts play a role only in the testing
of new materials. Past experience has shown that well-functioning contacts, assumed to be

Al ~ttlox; Antan o camiirnandl = hatae~ tiamng Fremiad Al al ran ti~
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of the metal with the semiconductor. An example is the contact between copper (Cu) and
n-type cadmium sulfide (CdS), where p-conducting Cu,S is formed.
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Figure 6.17: A metal with a small work function (left) forms a Schottky contact on a p-conductor with
a larger work function. On the right side, a metal with a large work function forms an ohmic contact.
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Figure 6.18: In an MIS (Metal Insulator Silicon) structure a very thin oxide layer between the metal and
the silicon prevents surface recombination. The depletion of holes in the p-conductor is the result of a
positive charge trapped in the oxide near the silicon.

6.7.2 MIS contact

In order to reduce the surface recombination at the Schottky contact, one can insert an oxide
layer between the metal and the semiconductor. Even though it is an insulator, this is no
serious obstacle when it is sufficiently thin to allow electrons or holes to tunnel through the
thin potential barrier. However, the depletion of majority carriers in the semiconductor is then
not as pronounced, because a part of the difference in the work functions is now occurring
across the oxide layer and not in the semiconductor.

In MIS (Metal Insulator Silicon) structures® this disadvantage is compensated by exploit-
ing a property of silicon dioxide. Impurity atoms bound to silicon dioxide (e. g., sodium) are
frequently ionized, i.e., charged. Their charge is neutralized by the charge in the metal and
in the semiconductor. If the oxide is positively charged at the interface to the semiconductor,
holes are pushed away from the interface and electrons are accumulated. Figure 6.18 shows
that a potential distribution similar to that of a Schottky contact results in the p-conductor, but
now without the disadvantage of a high level of surface recombination.

3K, Jaeger, R, Hezel, Proc 18. IEEE PV Spec. Conf., Las Vegas (1985}, p. 388.
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6.8 The role of the electric field in solar cells

The reader may find it confusing that the electric field which exists in the dark and, although
somewhat reduced, also in the light in a pn-junction, is of no significance for our understanding
of the solar cell. The criterion for a solar cell structure is that electrons and holes are forced by
membranes into different directions and that on their path their entropy is conserved. When
this condition is fulfilled, in some structures, e. g., in a pn-junction of uniform material, an
electric field will be present between the membranes. The direction of the short-circuit charge
current in a pn solar cell agrees with the direction of this field. This seems to be sufficient to
believe that it is also causing this current. To exaggerate somewhat, this is mere coincidence. It
would be a completely unnecessary restriction to exclude structures for solar cells in which no
electric field is present, but which have the membrane function incorporated and which fulfil

the condition of conservation of entropy. The dye solar cell in Section 6.3 is a good example.

The intimate mixture of electron membrane (TiO;), dye and hole membrane (electrolyte) on
a nanometer scale, does not allow the formation of an extended space charge and of a field.
Another exampie wiil be given at the end of this section.

We frequently read that it is just the electric field of a pn-junction which supplies the
driving force for the currents flowing during illumination. Let us take a closer look at this
argument. If it were true that the charge carriers were driven by the field, then they would
be continuously accelerated by the field and slowed down by collisions with the lattice. The
field would perform work to keep them moving. There would have to be a source of energy
present which continuously supplied energy to compensate for the energy dissipated during
each collision of the charge carriers (see Section 5.1.3) in order to maintain a constant current.
Such an energy source is, however, not present. We can see this best by comparison with a
simple example.

Imagine a capacitor filled with a material that insulates in the dark and becomes conduc-
tive, as a result of the generation of electrons and holes, when illuminated. This capacitor is
charged in the dark, and the voltage source is then disconnected. An electric field is present in
the material between the plates of the capacitor. When this material is illuminated, a current
will flow. Electrons flow to the positively charged plate and holes to the negatively charged
plate. These particles gain energy from the field which is subsequently dissipated by phonon

scatterine. However, the field is weakened hv the charce transport, and the capacitor is dis-
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charged. The current vanishes after a dlelectrlc relaxation time, and the electric field vanishes
because the energy of the electric field stored in the capacitor during the charging process is
used up. A steady-state current driven by an electric field requires a continuous source of
energy which maintains the field, in other words, a battery.

We have made some effort to distinguish between an electrochemical potential difference,
which is measured by a voltmeter and an electrical potential difference, which is not. In fact,
something must be wrong in our physics education, if we think that a DC current can at all be
driven in a closed circuit by a purely electrical potential difference. The word potential alone
should tell us that no energy can be gained by moving a charge along any closed path. When
it is back at the starting point, it has the same electrical energy again and no energy could have
been diSSipated oyd charge il im 111UV1115 uuuugu aresistive medium. As an examplc, r 15L‘11‘e 6.19
shows water which can flow in a closed circuit. There is also a driving force, the gradient of
the gravitational potential @, driving the water downwards. We know that the water in the
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Figure 6.19: Water in a closed pipe does not flow, although the gradient of the gravitational potential &
drives it downwards.

pipe will not flow. If it would flow downhill on one side, it would have to flow uphill on the
other side. But how does the water on the right “know” that it goes uphill on the left? A
pressure gradient exists which compensates the gravitational force at every point. The same
happens in a pn-junction. The gradient of the electrical potential is only maintained because it

is compensated by the gradient of the chemical potential. Otherwise, the pn-junction would be

discharged in the same way as the capacitor above, since there is no energy source to support
the field.

Figure 6.20 shows a pn-junction with contacts on the n- and p-side. The contacts are made
from the same metal as the wire (not shown) which connects them to ensure a short-circuit.
Outside the semiconductor, the electrical potential ¢ has the same value everywhere along
the circuit, seen on the left and on the right in the figure. Inside the semiconductor it varies,
due to the variation in chemical composition (doping). A charge cannot benefit from this
variation of the electrical potential by going around the circuit, since it goes uphill as much as
it goes downhill in the electrical potential ¢. Electrons and holes can, however, benefit from
gradients of their electrochemical potentials, 1. = €rc and N, = —€py, and the asymmetry of
the membranes establishes preferred directions, for the electrons to go to the left and for the
holes to go to the right.

A metal n P . metal

Figure 6.20: The distribution of the electrical potential @ in a pn-junction with metal contacts shows
that a charge cannot gain energy from moving around a closed circuit.
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Figure 6.21: Potential distribution in a pn-junction, where the electron affinity Xe(x) = —p o(x) com-
pensates the concentration dependent part kTin[n ( /NC] of the chemical potential. Left: in the dark
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In order to make perfectly clear that the electric field is irrelevant for the energy conversion
in a solar cell, we construct a pn-junction in an, admittedly cumbersome but physically not
forbidden, way where the p-side is uncharged relative to the n-side in the dark and no field
is present. For the construction principle we build on what we know about hetero-junctions.
According to Eq. (6.36) the electrical potential difference between two bodies is determined
by the difference in their work functions or by the difference in the chemical potentials g, of
their electrons. Since the difference in the chemical potentials depends on the difference in the
electron affinities and the ratio of the electron concentrations, it is conceivable to construct a
pn-junction from continuously changing materials in such a way that all of them have the same
energy gap and also have the same chemical potential for their electrons. In this structure, a
spatial variation of the electron concentration, increasing from the p-side to the n-side, is
compensated by a spatial variation of the electron afﬁnity %e. also increasing from the n-

to the p-region. In the Hnrlz in electrochemical equilibrium, this structure has the nnfpnhnl

(SRS g () AFLE il ikl 11 Wwiv il Vwiilwiiliwias nALIilfl ausiiny LEiELY 1183 Liane Ainviavaia
S~y I

distribution shown on the left in Figure 6.21.

When this structure is illuminated, an electric field is produced which is oppositely ori-
ented to the field in the normal pn-junction and increases with the illumination intensity. It
would drive electrons to the p-region and holes to the n-region, if it were the only force, as
seen on the right in Figure 6.21. Does this then mean that the current in this pn-junction flows
in a different direction from that in a normal pn-junction?

The actual driving forces, namely the gradients of the electrochemical potentials, are iden-
tical with those in a normal pn-junction. The pn-junction illustrated in Figure 6.21 therefore
behaves exactly as a normal pn-junction and has the same current—voltage characteristic, even
though the electric field is opposing the charge current. We know that the exponential depen-
dence of the current on the voltage is caused by the dependence of the recombination rate on
the difference between the Fermi energies and that it is therefore the same for the hypothetical
pn-junction in Figure 6.21 as for a normal pn-junction.
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That charge currents are flowing against an electric field in an energy source is, by the way,
nothing unusual. We find this in every battery. While electrons flow from the minus pole to
the plus pole in the external circuit, the continuity of the charge current requires that negative
ions within the battery flow from the plus pole to the minus pole. They are able to do so,
because a gradient of their chemical potential overcompensates the gradient of the electrical
potential giving them a gradient of their electrochemical potential in the right direction, their
only driving force.
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In connection with the derivation of the current-voltage characteristic, we have neglected a
voltage drop over the transport resistances as being negligibly small. With this approximation,
the voltage V at the contacts of a sufficiently doped solar cell is given by the separation of the
Fermi energies, eV = €gc — €py. In addition, we did not consider currents of minority carriers
flowing in the wrong direction, in spite of the large gradients of their Fermi energies, because
of the small conductivity of the minority carriers in regions which function as semi-permeable
membranes for the majority carriers.

With this approximation, all electrons and holes produced by the illumination, which do
not recombine, contribute to the charge current. For homogeneous excitation at short-circuit,
this is exactly the number of electron-hole pairs produced within the diffusion lengths. This
approximation is justified especially in structures such as in Figure 6.5, in which the disconti-
nuities at the band edges prevent the flow of minority charge carriers to the wrong side.

A solar cell structure consisting of an absorber with n- and p-type membranes supplies
a charge current at a voltage V with eV = €pc — €py = e + . It supplies electrical energy
equal to the chemical energy pe -+ per electron-hole pair. This structure is able to convert the
chemical energy produced by illumination of a semiconductor absorber entirely into electrical
energy.

7.1 Maximum efficiency of solar ceiis

The maximum energy current delivered by a solar cell is given by the largest rectangle fitting
under the current—voltage characteristic, as shown in Figure 4.1. It defines the “maximum

power point” for the charge current density jn, and the voltage Vmp For a given current—
vnltaoe characteristic, it is therefore lmnm'mnt to have an alonnthm in order to find the maxi-

mum power point.
Independently of the form of the characteristic, the functional relationship between jp and

V, the condition for maximum power yields
d(joV)=4djoV +jodV =0,

and thus
47 .
().~ ().,
dV / mp V /mp
This relationship is illustrated geometrically in Figure 7.1. From this construction, the maxi-
mum power pomt oceurs, where the tangent to the characterlstlc makes the same angle with a
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Figure 7.1: Geometrical construction of the maximum power point.

For a certain form of the characteristic, namely for radiative recombination, in Eq. (6.27)

. v .
do _ . € o Vme) _ _Jm (7.2)
dv ~ kT \ kT J Vinp

With
_ eV )
Jmp—JSieXP( T )—1}+jsc

and

JS(, e‘/OC

S 1

oo ()
we find from Eq. (7.2)

vm—kT!exn( e(Voc = ““’\—11 (13)

Solutions of this equation, and thus the maximum power point, can be found by numerical
techniques. With the fill factor

J mpvmp
JscVoc
we define a measure for how well the maximum power rectangle fits under the characteristic.
For only radiative recombination js. V,,c represents the chemical energy current emitted by the

photons in the open-circuit state, in which all electrons and holes must recombine.
An approximate value for the fill factor can be obtained from Eq. (7.3). This gives us

kT eVinp kT eVoc

Since the logarithm depends only weakly on its argument, we have substituted Vi for Vip in
the logarithm, With this resuit for Vi, we derive the current ji, at the maximum power point
from the characteristic and find an approximate fill factor
P eVoe/kT —In (1 + eVy /kT) (7.5)
B 1+ eVoe /KT ‘ ‘

Values of the fill factor are between 0.8 and 0.9.

FF = (7.4)
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Maximum short-circuit current

A large short-circuit current requires a solar cell as thick as possible to maximize its absorp-
tivity. With anti-reflection coatings, we can theoretically reduce the reflection to r = 0. For a
cell with large thickness and at the same time a large diffusion length, the absorptivity over
the diffusion length is given by a(A® > €g) ~ 1. The short-circuit current produced by the
absorbed photon current is then

[=5]

= —e [0 a(1®) djyson (70) = —e | djysun(0) . (7.6)

£G

Maximum open-circuit voltage

The open-circuit voltage V. defines the separation €pc — €py of the Fermi energies at which
recombination is in equilibrium with electron—hole generation throughout the entire ceil. Due
to the exponential decay of the photon current density within the semiconductor, the rate
of generation (per volume) is greatest at the surface. The electrons and holes produced are
distributed by diffusion more or less uniformly over the thickness, depending on the diffusion
length. The recombination rate is then everywhere equal to the averaged generation rate.
When the thickness of the solar cell is reduced and surface recombination is prevented, the
recombination rate (per volume) and with it €gc — €py must increase, because the averaged
generation rate increases with decreasing cell thickness. The open-circuit voltage reaches a
maximum when the thickness of the cell goes to zero. The open-circuit voltage increases
only slightly, however, with decreasing thickness and this in no way compensates for the
short-circuit current loss. In any case, a cell should not be made unnecessarily thick, not
only in order to save on material. The optimum thickness is reached, when a further increase
in the thickness causes as much additional recombination at maximum power as it provides
additional generation by more absorbed photons.

The greatest voltage is achieved if there is only radiative recombination, and then, sur-
prisingly, the thickness of thick solar cells no longer plays a role. It is true that the total

recombination rate increases in proportion to the volume. In thick cells. however. a large part
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of the photons produced by recombination does not reach the surface and is reabsorbed, pro-
ducing electron-hole pairs again. The effective recombination rate integrated over the entire
cell is equal to the photon current jy emir €mitted through the surface, which reaches a satura-
tion value in thick cells, when the absorptivity reaches its maximum value « = 1 — r, which
no longer depends on the thickness.

If the diffusion lengths are large compared with the thickness, the electrons and holes are
uniformly distributed over the volume of the cell. For such a homogeneous distribution, we
have in the approximation to the generalized Planck equation

E£rc — €
Jy.emit —/ (ho) d.] (h(D) €xXp (%) . (7.7)

For the maximum short-circuit current, a(h® > €g) = 1, and replacing €gc — €pv by eV, the
total rate of radiative recombination is

eV \ f°°d (ho (7.8)
Jy,emit = ekakT) jec, Jy( ) :

independent of the thickness.
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Defining the charge current from the p-region to the n-region (towards the left in Fig-
ure 6.5) as nmmve the charge current delivered by the solar cell is

Jo= ejy, emit (V) - ejy, abs (7.9)

) eV
jo= e[exp (kT)—l} [ affno) - f Ay, sun(i0) (7.10)
G

Since the spectra of the 300 K background radiation d jY (ho) and of the sun d jy sun (@) (out-
side the atmosphere AM0 and on the surface of the earth AM1.5) are known, the maximum
energy current (joV)max = jmpVmp can be determined from Eq. (7.10) and, from this, the
efficiency

Jmp Vimp . (7.11)
|10 djgntio)

n=

7.2 Efficiency of solar cells as a function of their energy gap

The short-circuit current of a solar cell depends on the absorbed photon current. It is a max-
imum for a semiconductor with an energy gap €; = 0 and decreases with increasing €g. The
open-circuit voltage V. is, however, zero for ¢ = 0 and increases with increasing energy
gap. The efficiency 1 is therefore zero at £ = 0 and at €5 — oo. Somewhere in between is its
maximum. From Eq. (7.10) and Eq. (7.11) we can calculate the efficiency 1 as a function of
the energy gap €g when only radiative recombination takes place for the case of thick cells, in

which a(ho < 8(;) 0 and a(fw > &g) = 1.
F'ionrp 7.2 cnrpc the result for the AMO Qppr\trnm outside the atm thprp and F‘lcnrp 7.3
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for the AM1.5 spectrum on the surface of the earth. We find a broad maximum, Wthh indi-
cates that semiconductors with an energy gap &€ between 1 eV and 1.5 eV are suitable for
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Figure 7.2: Efficiency of solar cells with radiative recombination only as a function of their energy gap
for the AMO spectrum, non-concentrated (solid line) and for full concentration (dashed line).
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Figure 7.3: Efficiency of solar cells with radiative recombination only as a function of the energy gap
for the AM 1.5 spectrum.

solar cells. For the AM1 .5 enpr‘fnlm thea avirpnm efficiencies are ereater than for the AMO
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spectrum, because absorpt1on in the atmosphere mainly eliminates photom w1th hw < 1eV,
which cannot be utilized by solar cells with optimal band gaps. Silicon and gallium arsenide
are especially well suited for the AM1.5 spectrum.

7.3 The optimali silicon solar ceil

Silicon has many advantages. It is the second most abundant element in the earth’s crust
and is thus available in practically unlimited amounts. Silicon is not toxic, On exposure
to air, silicon forms an oxide surface layer which fully protects it and prevents any further
corrosion. The interface between Si and SiO, when grown under clean-room conditions has
a very low density of surface states, with a very low surface recombination velocity. With
€ = 1.12eV, silicon has a favourable energy gap for the conversion of solar energy. Besides
all these advantages, silicon with its indirect optical transitions has the serious disadvaniage
of weak absorption. Consequently, silicon must be much thicker than a semiconductor with
direct transitions. Moreover, due to the weak absorption the generation of electron-hole pairs
is distributed over a large penetration depth 1 /o of the photons and at least one kind of carrier
must diffuse over a large distance in order to reach the contact. This implies that this carrier
type must also have a large diffusion length and lifetime. As a result of the poor absorption,
not only is more silicon needed, but silicon must also have a higher purity than if the optical
transitions were direct,

In the usual structure of a solar cell, the contacts are applied to opposite surfaces. For the
illuminated surface, a non-transparent contact poses a problem. Metal contacts are therefore
arranged in narrow strips, in comb-like structures leaving most of the surface uncovered. The
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Figure 7.4: Cross-section of a silicon pn solar cell.

charge must then flow in the membrane layer towards the contact strips parallel to the surface.
A high doping level is required in this layer to avoid an intolerably large series resistance.
Adjacent to the thin membrane layer is a weakly doped absorber region over the greatest part
of the solar cell thickness. Since electrons have a greater mobility than holes and thus a greater
diffusion length for a given lifetime, they are chosen to be the minority carriers. The large
middle region of the cell is therefore p-doped and the surface is strongly n-doped, with the
designation n, to function as an electron membrane. In order to minimize the loss of electrons
by surface recombination at the back contact, strong p -doping is used in front of the back
contiact to CSldUllbIl a [lUlC 1‘1‘161‘1‘10[&1‘1& 1llC ICUUCthI_l Ul l.llC fecorﬂ[-)li_latl()ﬂ at I.llb' rear contact
is commonly attributed to the so-called “back surface field” originating from the negative
charge of the p*-doped region, thought to repel the electrons. This repulsion is, however, not
recognizable in the total force (gradmn.) and the smaller recombination probability is instead
due to the reduced concentration of electrons in the p™-layer.

Due to the high conductivity of the rear p*-layer a metal contact is not required over the
entire rear surface. The areas of the front and rear surfaces without metal contact are covered
with a passivating layer, silicon dioxide or silicon nitride, in order to reduce the rate of surface
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reflects the photons not yet absorbed and thus enhances absorption in the cell. The oxide layer
on the front side is in the form of a A/4 layer to reduce reflection for the wavelength range
around A in the infrared and red part of the spectrum, where the absorbabie photon current
has its maximum. Reflection in the blue is less reduced which gives silicon solar cells their
characteristic blue appearance.

Figure 7.4 illustrates a cross-section through this structure. The current—voltage charac-
teristic in Figure 7.5 was calculated for the AM 1.5 spectrum, assuming that the front side
is non-reflecting and only the unavoidable radiative recombination and Auger recombination
corresponding to the necessary doping levels are considered, but not surface recombination.
This cell has an efficiency of 25%.

7.3.1 Light trapping

The absorptivity of a body increases as the reflectivity is reduced and the path of the photons
within the body becomes longer. This triviality enables us to consider still another way to im-
prove the avSOﬁ)tlvuy than Uy an anti-reflection coaung and a large thickness. The reuculvuy
of a body decreases when the reflected photons are deflected in such a way that they impinge

on the body a second time. The pyramid-shaped structure of Figure 7.6 makes this possible.
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Figure 7.5: Charge current jo as a function of the voltage V for a Si solar cell with a thickness of
400 gm illuminated by the AM 1.5 spectrum, The maximum power given by the rectangle corresponds to
an efficiency of 25%.
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Figure 7.6: Surface texture for reducing reflection and increasing the length of the light path.

For light reflected twice, the total reflectivity is given by
Fotal = "12 .

A surface with 10% reflection as a planar surface reflects only 1% in a structure, where each
reflected photon hits the surface a second time.

In addition, as a result of the textured surface, together with a reflecting rear surface, the
light path in a solar cell is considerably increased compared with normal incidence on a planar
surface. The photons entering the cell are deflected in an oblique direction due to refraction
at the textured surface. And, even more important, after reflection at the rear surface, there is
a high probability of their impinging on the surface from within the cell at such an angle that
they experience total internal refiection.

At the critical angle for total internal refiection

|

Si

sinQlr =

3

f

-

Since the index of refraction for silicon with ng; = 3.5 and for most other solar cell materials
is very large, only those photons which strike the surface at an angle of less than ot = 16.6°
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to the local surface normal are not totally reflected. Most photons are therefore trapped and, if
they are not absorbed, leave the solar cell only after multiple reflection when they happen to
strike the surface at an angle of less than 16.6°. We can easily estimate how much longer the
mean light path will be, if we assume that the passage through the textured surface, together
with reflection at the rear surface, leads to an isotropic distribution of the weakly absorbed
photons in the solar cell. The photons which are emitted through the surface then have the
same angular distribution with which a black-body Lambertian surface emits photons. For
this angular distribution, the photons leaving through the front surface cover an effective solid
angle of 7 outside the solar cell (for the assumed large index of refraction), as described
in Section 2.1.4. The isotropic distribution internally fills the solid angle 4x, in which the
photon current density per solid angle j, ¢ is greater by a factor of n? than outside the solar
cell.

Fnar a
rOra

The absorbed photon current Iy g is found from the balance of the photon currents. Inci-
dent photons can either be reflected, absorbed or scattered and redirected to emerge back out
through the surface. This assumes that all photons are reflected from the rear surface. In this
balance, we neglect the emission of photons within the absorber.!

(1 - r)I'Y,iDC - I'Y,em + I’Y}abs .

For the assumed isotropic and homogeneous distribution of photons with the photon current
density jy.o per solid angle, the photon current absorbed in the volume V =AL is

I'\!! abs — 4750.‘/]7’9 .
The photon current leaving through the surface is
n .
I'Yeem =A (1 —"I’) n-_i-JY‘Q .

The absorptivity for perfect light trapping is therefore

a o IY,abS . (1 r) I'Y’abs
tr: = =] — ) —
rap I'y,inc Iy,em — I’Y,abs

- —Fr

trap (1 —I‘)Tt/n2+4n(xL
1—r

) ' 7.12

Utrap (1 — r)/(4n20(.L) 11 ( )

For small values of the absorption coefficient & we find the absorptivity ay.p, = 4n*oL. For
a reflectivity r which is not too large, it is surprising that the absorptivity does not depend on
the reflectivity. For silicon, ayap is a factor of 4n§i ~ 50 greater than the absorptivity without
light trapping. Relative to a single pass along the normal to the surface, the mean light path is
then enhanced by this factor of 411%i ~ 50.

'E. Yablonovitch, J. Opt. Soc. Am. 72 (1982) 899.
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Although the above derivation is based on a homogeneous distribution of photons, which
is a good approximation only when o < 1/L, Eq. (7.12) is also valid to a high degree of
accuracy for larger values of o since the saturation value ay.,p = 1 ~ r is already reached for
o < 1/L and cannot increase further, even for larger values of o. Figure 7.7 shows that, by
light trapping, high absorptivity values can be obtained even for thin silicon layers in spite of
silicon’s small absorption coefficient.

The enhancement of the absorptivity by light trapping can reach even greater values. In
the derivation above we have assumed that the photons leaving through the surface are emitted
into the entire hemisphere, that is, into an effective solid angle 7 as a result of the Lambertian
behaviour of the scattering surface. Because of the reversibility of light paths, incident radia-
tion from the entire hemisphere is able to enter the cell at the same time through the surface.
For this type of light trapping, the solar cell does not have to track the sun’s position.

Accordine to the discussion in Section 2.1.1. the maximum concentration of solar radia

ALV S Y LI MO OO EL 11 W Wi Al L9 viiW 22l RRARAMARER WASLIN AL VAR LIRS RS Sadar 1 Ga

is obtained when the photons emitted from the surface of an absorber are not emitted into t h
entire hemisphere, but only towards the sun. Theoretically, it is conceivable that, with an
appropriate surface structure, a photonic crystal structure, photons leaving through the surface
will be directed only towards the sun. The density of the photons in the semiconductor which
are not absorbed or only weakly absorbed, then increases to a value which is larger by a factor

2 than the photon density at the surface of the sun. Such a structure would, however, not
change the incident photon current density. It is a structure for minimum emission rather than
for maximum concentration. A solar cell which only exchanges radiation with the sun would
of course have to track the position of the sun. If we make this effort, the absorptivity for
absorbed photons with /i@ > € would increase much more steeply than shown in Figure 7.7,
and silicon solar cells could be made still thinner. For radiative recombination Oluy, a gream
voltage would result, while the absorbed photon current, and with it the charge current of the
solar cell, would only be slightly improved.
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Figure 7.8: Structure of the best silicon solar cell manufactured to date with an efficiency of 24.4%,
developed by M.Green’s group.
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icon, in spite of its low absorptlon coefficient. However we must consider that the stlmated
increase in the mean light path is based on the incoherent scattering of photons, valid only
when the dimensions of the surface structure and the thickness of the cell are large compared
with the wavelength. For smaller structures, coherence and interference phenomena must be
considered. In Figure 7.7 we see that a 20um thick silicon film with light trapping has a
higher absorptivity than a 400um thick wafer without light trapping. A higher absorptivity
results in a larger short-circuit current. In addition, the open-circuit voltage is larger for the
thin cell, because impurity recombination and Auger recombination have a smaller probabil-
ity in a smaller volume. The probability for radiative recombination, however, increases in
companson with the other recombination processes, since it depends only on the abSOrpth—
uy Decreasi ing the thickness, while mamtamng d hlgh abS01’puvuy makes the solar cell more
ideal.

A high-efficiency, thin-film silicon solar cell would be a great achievement because of
silicon’s favourable properties for the environment and its chemical stability. One problem for
future development is that thin silicon films require a substrate for support. The only known
substrate on which single crystal silicon films can be grown is, however, crystalline silicon.
Although only the crystal structure of the substrate is needed and not the purity required for a
solar cell, it is still an expensive substrate. Recently, poly-crystalline silicon films have been
grown on a variety of substrates including glass, a very promising development.

Light trapping by textured surfaces also improves the properties of thick cells by reducing
reflection and enhancing the absorption of photons with A = €. The best silicon solar cell for
the unconcentrated AM1.5 spectrum is made from very pure silicon and has all the properties
mentioned above for an optimal Si solar cell. Its efficiency is 24.4%. Figure 7.8 illustrates
its structure.

2J. Zhao, A. Wang, M. Green, F. Ferrazza, Appl. Phys. Lett. 73 (1998) 1991.
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7.4 Thin-film solar cells

Silicon has so many advantages for solar cells that other materials can compete only when
they do not share its disadvantage, the poor absorption of light. In materials competing with

cilirn the tranaoits haturaon the valance and randiictinn handc et he dirert Thae ]ﬁmn -
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tion coefficient then has a large value. For the absorption of that part of the solar spectrum
which can be absorbed, a thickness of only a few um is sufficient for thin-film solar cells. For
the same number of recombination centers as in a thick silicon cell, a higher impurity con-
centration and the presence of grain boundaries in the film can be tolerated. Because of the
smaller distances to the membranes at the surfaces, the diffusion lengths can also be smaller.
This allows the use of materials with lower mobility. All these advantages hold the promise
of significant cost reductions for the production of solar cells.

Due to the close proximity to the surface with its high surface recombination, a well devel-
oped membrane is required at least on the front surface. Since electron-hole pairs should not
be generated in this layer, it must have a large energy gap. It is called a window layer, through
which photons pass unimpeded, but which protecis electrons and holes from recombining at
the front contact. The interface between the window layer and the absorber should have a low
density of interface states in order to prevent recombination there.

A disadvantage of many materials with direct transitions and favourable energy gaps, with
the exception of amorphous silicon, is that they cannot be doped equally well n-type and p-
type. The structure required for solar cells then demands hetero-junctions. Examples include
the combination of n-type CdS/p-type CulnSe; (abbreviated as CIS) or n-type CdS/p-type
CdTe, where the window material CdS is the electron membrane in both cases.

It is interesting to note that amorphous silicon (a-Si) also belongs to the class of thin-film
materials. Amorphous silicon is silicon without a crystalline structure. Because of the lack
of long-range order, i. €., structural uniformity is found only over very small volumes, by the
Uncertainty Principle of Eq. (2.3), the momentum of electrons in bound states (valence band)
and unbound states {conduction band) is largely undetermined. As a result, no phonons are
required for transitions between these states in order to satisfy the conservation of momentum.
The transitions are direct and have large absorption coefficients. However, the lack of order
has the disadvantage that the states for electrons and holes are not confined to bands; the
states fill the entire forbidden zone. The inclusion of about 10% hydrogen (a-Si:H) serves
to saturate many of the dangling bonds of the silicon atoms in the amorphous structure. The
density of states in the forbidden zone is drastically reduced, and the material can now be
doped. However, the saturation of dangling bonds with hydrogen is not totally stable. During
illumination, the bonds are again broken by the capture of holes. This property, known as the
Staebler-Wronski effect, leads to a continuous decrease in the efficiency of solar cells made
of a-Si:H.

The thickness of a solar cell is an important issue. It is not only that a larger amount of pre-

[P N | adad £oaw 4 thinl an ~all thimmar ~all Anald tAlavota Tace ~mtisanl meatass

blUUb 1Hiatcliidl l\ neeaca 1or a I.lll\.vl\Cl Cill, a l.lllll].lCl CCi1 CouI1a I.UlClClI.C J L] UlJl.ll].lcu lllCll.CliCl}
properties. Organic materials could be very useful for solar cells because of their good ab-
sorption properties and of good luminescent quantum yields, indicating dominant radiative
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(a) (b)

Figure 7.9: (a) In the plane arrangement of an absorber between electron and hole membranes, the
diffusion lengths L. j, must be larger than the thickness of the absorber and the thickness must be larger
than the penetration depth 1/ of the photons. (b) Many absorbing layers in a meander-like structure
combine good absorption with a small distance between the membranes.
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trons and holes. In the common plane arrangement of an absorber between two membranes,
shown on the left of Figure 7.9, the diffusion lengths must be larger than the thickness of
the absorber and the thickness must be larger than the penetration depth 1/ of the photons.
If this were a generally necessary condition, then many organic materials would never make
good solar cells. In fact, these conditions are sufficient, but not really necessary. The neces-
sary condition for the absorption is that there is enough absorber material to absorb the light;
how the material is arranged is not important. Two separate thin layers absorb as much as a
single layer which is twice as thick. The necessary condition for the transport of electrons
and holes is that they must be able to reach the membranes, requiring the diffusion lengths
to be larger than the distance between the membranes. The arrangement in Figure 7.9 (b)
fulfils the conditions of absorption and transport as well and would allow the use of absorber
materials with arbitrarily small diffusion lengths. This principle of separating the absorber
thickness from the distance between the membranes is successfully realized in the dye so-
lar cell described in Chapter 5. There, the distance between the membranes, TiO, for the
electrons and the 1~ /I~ -redox system for the holes, has a minimal value, the thickness of
the mono-molecular dye layer. Nevertheless, many dye layers provide for sufficient absorp-
tion,

The organic or plastic solar cell is another example.? In this solar cell a p-type polymer
SErves [)Ulll as aDS()rf)er a[lLl as HOIC ITleITlD[dI]E 1nc ﬁlCLlrUIlb lU.IlilCl 1[0IT1 lIlClr DUU.I](.I CXLII.UI]
state in the absorber to a mobile state in n-type fullerene molecules while the holes stay in the
polymer. The polymer and the fullerene are thoroughly mixed into a blend to facilitate the
charge carrier separation. This makes the arrangement different from Figure 7.9 (b), where
care was taken that the electron membrane makes contact with only one of the electrodes and
the hole membrane only with the other electrode. With the mixing of electron and hole mem-
branes in the plastic solar cell, as well as in the dye cell, a strong inhibition of the exchange of
one carrier type must be present at each of the electrodes to prevent internal shunts. In the dye

cell, hole exchange between the indium-tin-oxide electrode on the TiO; and the redox system

is very poor, but is excellent with the small platinum islands on the counter electrode.
With the small distance between the membranes and the resulting large interface area,
interface recombination is enhanced and may be a problem.,

3C. ). Brabec, N. S. Sariciftci, . C. Hummelen, Adv. Funct. Maser. 11 (2001) 15.
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Figure 7.10: Equivalent circuit for a solar cell consisting of (from left) diode D; with direct recom-
bination, diodes D7 with impurity recombination, current source I, parallel resistance Ry, and series
resistance Rg.

The plastic solar cell is again an example of the case where the mixing on a nanometer
scale of electron and hole membranes prevents the build-up of space charge and electric fields.
Charge carriers are, nevertheless, separated and a diode current-voltage characteristic is ob-
served, demonstrating that the electric field and a potential barrier, both absent in plastic solar
cells, are not the causes for the properties of diodes.

7.5 Equivalent circuit

In the current-voltage characteristic for the solar cell in Eq. (6.35) we can regard the current
Ip as the sum of the current through the pn-junction in the dark and the current /. from a
current source, connected in parallel for the currents to add.

Figure 7.10 shows the equivalent circuit diagram, extended by two additional elements.
The resistance Ry, in parallel with the two diodes of the two-diode model, represents the
shunts which can occur in real solar cells across the surfaces, at pin-holes in the pn-junction or
at grain boundaries. The series resistance Rg accounts for all voltage drops across the transport

resistances of the solar cell and its connections to a load. The current—voltage characteristic
then takes the form

e(V—IpR e(V —IpR V —IpR
Ip = Is) [exp (%) ~ 1} +1s2 [exp ((T;?S)) ~ 1] +Isc+—RQ—S (7.13)
p

Figure 7.11 illustrates how the characteristic is affected by varying R, and Rs separately.
The effect of the series resistance alone is a displacement of the characteristic in the direction
of lower voltages, in proportion to the current. The effect of the parallel resistance alone is
a displacement of the characteristic to higher positive currents, in proportion to the voltage.
Both effects, separately and combined, lead to a smaller fill factor FF.

7.6 emperati

Solar cells deliver only a small part of the absorbed energy current as electrical energy to
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temperature than the environment. For solar irradiation of 1 kW/ m? the temperature difference
to the environment may be some 10 K.
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Figure 7.11: Current-voltage characteristic of a solar cell with: (2) Rg = 0Q, R, = 50€; and (3)
Rs =58, Ry = o0, compared with (1) Rg = 0Q and Ry = oo,

Heating reduces the size of the energy gap. The absorbed photon current increases, leading
to a slight increase in the short-circuit current js.. The heating has a detrimental effect on the
open-circuit voltage. From

| kT ReRh
VC = - = ""‘*1 ’ 7.14
o e(ne+ﬂh) o n( ”12 ) ( )

we find for the temperature dependence

Voo k. (nemy KT [1dne 1dmy 1d(nd)]

F — +—— - . (7.15)

a7 e \ n? / e|_nedT ny AT n? dTJ
Here

n? = NcNyexp (*%)
and

d () _ % 2

dr kT2
It follows that

- |
dT T e \nedT nh ar

No general statements can be made about the expressions in parentheses, except that both
are probably < 0, and that the first expression is negligible in an n-conductor and the second
exnresslon in a p-conductor. The temperature denendence is caused essentially by (VM —

€g/e)/T. The temperature dependence is more pronounced in bad cells, where V. is small.
For a silicon cell with V,c = 0.6Vand e =1.12eV at T = 300K, dVOC/dT =-—1 7mV/K

This means that the open-circuit voltage decreases by 0.3% per degree of temperature rise. A

temperature increase of 50 K reduces the open-circuit voltage by 85 mV, that is by 14%. The

efficiency is reduced accordingly.
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7.7 Intensity dependence of the efficiency

We know from earlier discussions that maximum efficiencies are obtained for maximum con-
centration of the incident radiation. Since concentration means that a smaller area is requlred

‘Fnr a rv“rnn anaroy rnrrant 1t i¢c an nntinn far avnanc 1ve crilar £rall materia
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of the efficiency can be expected is all the better.
The short-circuit current jy is simply given by the absorbed photon current and increases,
as expressed by Eq. (7.6), proportional to the intensity.
jsc = _er,abs (7-17)

The open-circuit voltage V,,. defines the difference between the Fermi energies at which the
total recombination rate in the cell is equal to the total generation rate given by the absorbed

photon current. With j. — ne we find from Pn ('7 R\
photon cu With 7y emit JY abs We Iind Iy
kT € Jy,abs
Voe=—1In {14 2L : (7.18)
€ \ Js /

where js is the reverse saturation current. For jyans > Js, true for any observable light inten-
sity, the open-circuit voltage V. increases logarithmically with the intensity.
The fill factor, finally, as given by Eq. (7.5) can be approximated for V. >> kT roughly by
kT
FF=1—— (7.19)
Voc
and increases very slightly with the open-circuit voltage. To a first approximation the increase
of the fill factor with the intensity can be neglected.
In the efficiency

FF]SCVOC
f > d oy qun (70)

the linear increase with the intensity of the denominator is compensated by the linear increase
in the short-circuit current in the numerator, and the efficiency is seen to increase with the
intensity by the logarithmic increase in the voltage. Transport resistances have not been con-
sidered in this discussion. For the large currents generated by high intensities, this is certainly
problematic.

~J
[\
(=
=

; (1.

7.8 Efficiencies of the individual energy conversion
processes

With a theoretical limit for the efficiency of 1 = 0.3 for the AMQ spectrum, energy conversion
with a solar cell is still well away from the theoretical limit of My = 0.85 for the solar
heat engine of Section 2.1.1. It is very instructive once again to examine the processes in
a enlaor ~Anll tndividially amd heaals A~ thn wnrall affiamar 1 thna AFfGAinmning ~F tlhhna
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individual processes in order to recognize where the greatest losses occur. Figure 7.12 shows

the individual processes schematically.



152 7 Limitations on Energy Conversion in Solar Cells

Figure 7.12: Individual processes in a solar cell.

The first process is the absorption of the incident energy current. Its efficiency has to ac-

sorbed energy current is given by the absorbed photon current times the mean energy (faps)
of the absorbed photons. Let us assume that each absorbed photon generates just one electron—
hole pair which, at short-circuit, contributes to the current. Then

jE,abs = jy,abs (hmabs> = '—% (hmabs> . (7-21)

The absorption efficiency is

The efficiency of this process is

(€c+€n) '

Tlthermalization = < hwabs) (7.23)

The third factor defining the maximum chemical energy (ge + th )oc = €Voe Which can be
obtained from the energy (€ + €p) of the electron-hole pairs is the efficiency accounting for
the difference between free energy and energy with a thermodynamic factor

eV,
Mihermodynani = * (7.24)

€ +Eh)
This maximum chemical energy per electron-hole pair at open-circuit is, however, completely
lost with the emitted photons. To gain energy, we have to go to the maximum power point.
This brings in the last factor, the fill factor FF, which determines how much of the maximum
chemical energy current — j. V. the solar cell delivers at the maximum power point as an
electrical energy current jump Vinp.

fonp Vi
FF=Imp’mp (7.25)
.]choc
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The product of all these efficiencies gives the overall efficiency

N jE,abs <€e +€h> eVoc jmmep o _ijVmP (7.26)
jE. in (hmabs> (Ee + eh) jchoc JE in
N\ ; ~ - (. - ~ \__,,\’.__/
Mabs Tithermalization "nll'nermodynﬂmic FF

For silicon, and in particular, for the 20um thick cell with light trapping, whose absorptivity
is shown in Figure 7.7, exposure to the AM 1.5 spectrum gives the following values

(Agaps) = 1.80eV

(€e+€n) = €g+3kT = 1.2eV

Je =413A/m*  jo, =401A/m?
Vo =0.770V  Vpp =0.702V .

The efficiencies are therefore

nabs == 0.74

o . X Y e W e
Tthermalization = V.U /

MNthermodynamic = 0.04
FF=0.89.

The overall efficiency is then 1 = 0.74 % 0.67 x 0.64 x 0.89 = 0.28.
The efficiencies for thermalization and for the conversion of the energy of the electron-
hole pairs into chemical energy are particularly small and thus in need of improvement.



8 Concepts for Improving the Efficiency of Solar Cells

As was shown in the previous chapter, even avoiding all non-radiative recombination pro-
cesses leaves us with a solar cell efficiency well below the theoretical maximum value of
1 = 0.86, derived in Chapter 2 as the upper limit for solar energy conversion. The main
reasons were identified as losses by thermalization and the non-absorption of low-energy pho-
tons. In order to improve the efficiency, we must focus primarily on reducing these losses.
We will now discuss different methods by which this can be accomplished, in principle. The
underlying conditions are idealized, often to such an extent that it is difficult to imagine how
they can be met, in practice. Nevertheless, it is still important to examine these methods in
order to recognize the principles for possible improvements. A detailed discussion of these
methods was recently presented by M.Green.'

8.1 Tandem cells

The reduction of thermalization losses and the improvement in the absorption efficiency can
be simultaneously achieved by offering the solar cell only photons within the narrow energy
interval g < AW < €g + de and processing the other photons by solar cells with a different
band gap. Cells operated in this way are known as tandem cells.

For a black-body solar spectrum, a solar cell with the energy gap €g and the idealized
absorptivity a(Aw < €g) = 0, a(h® > £g) = 1, has the short-circuit current

Jse = —¢ anw (8.1)
8¢ — .
3
n°hc i \ _
& exp (k S) 1
..... LA B TR A.‘.A“_¢ [ I P LS. oil Y o [ P i | [P S

rlgun: 0 l glVCb ine snort-circuit cuirent Jsc dad a 1Uneioull Ul UiC CHCLEY gdp CG/C TUHUWILE,
thermalization, the energy current flowing into the electron—hole pairs is

JEeh = —jsc€G/e = Jy,abs €G - (8.2)

Using (€. + &) = € instead of €g + 3kT we here divide the overall efficiency  somewhat
differently (and not entirely correct) into the thermalization and the thermodynamic efficien-
cies.

The shaded rectangle in Figure 8.1 indicates the energy current jg o transferred to the
electron-hole pairs after thermalization, for the energy gap at which jg en has its maximum
value.

Ina A. Green. Third Generation [} PP VU S S
IVl UJCC“ IHH'H UL’HC’UI“}H HU!UVUHLHL\), Dpllllgcl ¥

Physics of Solar Cells; From Principles to New Concepts. Peter Wiirfel
Copyright (©2005 WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim
ISBN: 3-527-40428-7
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black-body spectrum with 7g = 5800K.

The area under the curve ji(€g/e) is the entire incident energy current jg sun coming from
the sun. This can best be seen if we determine the variation of d j. of the short-circuit current
for a small variation deg in the band gap of the absorber

. .Qs 82
djsc = —¢ 323 0 .
4n°kR’c exp (/f_TG'S) -1

and then integrate over the variation in the absorbed energy current —(gg/e) djs., caused by
the variation in the band gap deg, thus

deg (8.3)

oW

f°°8G Qg [ £

= b e T wwree o exp( )_1

deg . (8-4)

Since the vaiue of a definite integral does not depend on the names of the variabies, (we couid
also call it A instead of €g), Eq. (8.4) is recognized to describe the density of the incident
solar energy current. The largest rectangle, shaded in Figure 8.1, showing the energy current
transferred to the electron—hole pairs after thermalization, corresponds to 42% of the incident
energy current. The area under the curve to the right of the rectangle gives the energy current,
which is lost by thermalization. The area below the rectangle down to the ji.(€G/e) curve is
the energy current, which is not utilized, because it is not absorbed by the solar cell. A solar
cell with &g = 1.1eV would thus have an efficiency of 42%; if all of the energy of the electron—
hole pE‘ui‘S could be converied into electrical energy, i.e., if the mermouynamic emuency were
equal to 1. This value, called the ultimate efficiency by Shockley and Queisser® can, however,
not be achieved at room temperature, because entropy must not be annihilated and some of
the energy of the electron—hole pairs is room temperature heat.

2W. Shockley, H. . Queisser, J. Appl. Phys. 32 (1961) 510.
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Figure 8.2: Current—voltage characteristics of two solar cells with energy gaps €, = 1.8eV and g =
0.98¢V.

Figure 8.2 shows the same curve as Figure 8.1, this time illustrating how two solar cells

with different energy gaps €1 and €g2 divide the incident energy current of the AMO spectrum.

The energy current first falls on the cell with the greater energy gap €g;, which absorbs all
photons with i® > €5, and transmits all photons with A® < €g;. The cell behind, with the
lower energy gap, then absorbs the photons with €53 < A® < €.

For the two cells depicted in Figure 8.2 the current-voltage characteristics are also shown
together with the cross-hatched rectangles indicating the maximum electrical energy current
which the cells deliver. Here again, we assume that only radiative recombination is present.

Figure 8.3 gives the efficiency obtained from two cells having the energy gaps €g; and €g2
when their energy currents are added. For the AMO spectrum the optimal combination consists

of eg, = 1.0eV and €51 = 1.9eV, yielding an overall efficiency of N = 0.44,

Figure 8.3: Efficiency for two solar cells in tandem operation, with energy gaps €g) and €5 for the
AMO spectrum when their energy currents are added.
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Figure 8.4: Electrical series connection of two solar cells by a tunnel junction provides efficient recom-
bination of electrons and holes without requiring a difference between their Fermi energies.

ﬂowmg out of the n-membrane of the left cell and holes flowing out of the p- membrane of the
right cell recombine in a tunnel junction. In the tunnel junction, electrons and holes belong to
the same Fermi distribution (€r; = €p3) and recombination proceeds without a difference in
the Fermi energies. As is seen in the figure, the Fermi energy must lie in the conduction band
of the n-membrane on one side and in the valence band of the p-membrane on the other side,
requiring high doping concentrations (np,n4 > Nc, Ny). Since the tunnel junction is very thin,
the absorption by its high free-carrier concentrations is very small.

Thermalization was found to be necessary for the conversion of solar heat into chemical
energy in Chapter 2. Thermalization losses are reduced or even prevented when the gener-
ated electrons and holes populate only narrow energy ranges at the band edges, as explained
above. This condition can be expressed in a different way. Prevention of thermalization losses
requires many different Fermi distributions (one for each energy range) with many different
Fermi energies. The tandem in Figure 8.4 has three different Fermi energies, one more than
for a single-material solar cell.

Series connection forces the same charge current to flow through all the cells. Figure 8.5
shows how the current—voltage characteristic of a tandem results from the characteristics of
two cells with different short-circuit currents and different open-circuit voltages. For a given
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Figure 8.5: Current—voltage characteristic for the series connection of two solar cells with different
short-circuit currents and open-circuit voltages. For each value of the current jg the voltages V| and V,
are added to give the total voltage V.,
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current, the voltages Vi and V, are determined from the characteristics of the individual cells
and added to give the voltage V of the tandem configuration. The cell with the smaller short-
circuit current determines the total current.

In order to prevent losses due to a series connection, as in Figure 8.5, the energy gaps must
be chosen so that the currenis jp, at the maximum power poinis are the same for all cells. The
solar radiation spectrum, however, changes over the day and the year due to different path
lengths through the atmosphere, and the equality of the currents jy,, of different cells cannot
always be maintained. For a tandem of three cells, a configuration where the series connection
of the two cells with the smaller band gaps is connected in parallel to the third cell with the
largest band gap, is found to be less sensitive to spectral variations than a series connection of

all three cells.?

8.2 Concentrator cells

In Chapter 2 we considered how strongly we can focus the incident solar radiation. For con-
centrated radiation, the same power is delivered by a solar cell with smaller area than for non-
concentrated radiation. Another advantage is that concentrated radiation can be processed
with greater efficiency, as discussed in Chapter 7.

In areas with much more direct, unscattered solar radiation, the additional expense for
concentration is rewarded by a better efficiency from a smaller solar cell. When the radiation
is concentrated with lenses or mirrors, the solar cell sees only a part of the hemisphere and, in
the limiting case of maximum concentration, only the sun, The greater the concentration, the
more carefully the concentrating system must track the path of the sun. The concentration of
radiation also has disadvantages. The improvement in the efficiency assumes that, in spite of
an increase in the incident radiation, the temperature of the cell remains the same. But in fact
the temperature of the cell rises, and with poor cooling the efficiency can even decrease with
increasing concentration. Another disadvantage is the result of the larger electrical currents
causing larger voltage losses across the series resistance of the cell and in the leads.

Spec1a1 solar cells known as concentrator cells have been developed for concentrated ra-
diation. Because of the higher temperatures, semiconductors with a larger energy gap are
alwayb aavamagcom HOWCVCI’ mcy musi be able i0 absorb a bUIHblelitly 1arge ‘part of the
solar spectrum. Cells made of GaAs are well suited for this. Because of their smaller surface
areas, more expensive materials and more expensive constructions become economical. For
concentrator systems, tandem cells based on III-V compounds have become cost effective.
For silicon concentrator cells a more complicated design was developed, where the n- and
p-type membranes for the electrons and the holes are in the form of point contacts, all placed
on the back side of the cell as shown in Figure 8.6.

The electrons and holes flow out of the n- and p-doped regions, placed alternately on the
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the contacts do not cause shadowing and can be kept relatively large to avoid series resistances.
In order to reduce Auger recombination to a minimum, the greatest part of the solar cell is not
doped. The highly-doped regions required as membranes and to conserve the entropy per

3T, Trupke, P. Wiirfel, J. Appl. Phys. 96 (2004) 2347.
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Figure 8.6: The p- and n-type membranes for holes and electrons and the metal contacts of the point-
contact cell for concentrated radiation, are both placed on the back side of the cell.

solar cells filter

Figure 8.7: In the thermo-photovoltaic converter, the intermediate absorber is surrounded in an evacu-
ated cavity by solar cells illuminated by its thermal radiation.

particle are limited to the contacts. For concentration by a factor of 100 an efficiency of 28%
was obtained with a silicon cell. This was, however, for a temperature of 25°C, which requires
intensive cooling.* For a tandem a record efficiency of 38.9% for a monolythic configuration
of three cells consisting of GalnP, GalnAs and Ge operating at a concentration of the solar
radiation by a factor of 490 was reported.’

8.3 Thermo-photovoltaic energy conversion

The solar-thermal conversion method of Section 2.1.1 can be modified to be applicable to
solar cells. Figure 8.7 illustrates the principle.

A focussing optical system is used to concentrate the solar radiation onto an intermediate
absorber which, as a result, is heated to the temperature Tp. Solar cells with an energy gap
£g are placed concentrically around the intermediate absorber. They have an interference
filter on their surface, which transmits all photons with eg < o < € + de without loss and
reflects all other photons, which cannot be used optimally, back to the intermediate absorber.
These photons, together with the photons emitted by the solar cell and transmitted by the
filter, help to maintain the temperature T of the intermediate absorber. If the recombination
is entirely radiative and the photons emitted by the cells are re-absorbed by the absorber and
are therefore not lost, the cells can be operated close to their open-circuit voltage and thus

4R. M. Swanson, Proc. 8. E.C. Photovoltaic Solar Energy Conference, Florence 1988.
SM. Yamaguchi et al., Proc. 19. EU Photovoltaic Solar Energy Conference, Paris 2004,
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have the efficiency derived in Eq. (4.5) for the conversion of the absorbed photon energy, 1. €.,
T

Neen = 1 — T_A (8.6)

Since this is the Carnot efficiency, which was used for the efficiency of the heat engine of
the solar-thermal conversion process described in Section 2.1.1, we find, for the thermo-
photovoltaic conversion process, the same efficiency as for the solar-thermal conversion, thus

_ Ta\* Ty
=l-(z) (%) ®7

with a maximum value of m —= 0.85 at an absorber temperature of 75 = 2478K.

The implementation of this concept in practice is difficult for two reasons. At the optimal
temperature of the intermediate absorber of To = 2478 K all materials evaporate so strongly
that the interference filter is quickly covered with an opaque layer. Moreover, in practice it
is not possible to construct an interference filter transmitting only in a narrow energy interval
and reflecting the rest of the spectrum, while also being free of absorption. With the use of,
e. g., silicon solar cells, only a very small portion of the photons emitted from the intermediate
absorber have the required energy Aw > €g. Even very little absorption by the interference
filter of all the other puutOHS leads to a considerable loss. Smaller band gap materials like
GaSb are more favourable for thermo-photovoltaic conversion.

In the construction principle of Figure 8.7, another drawback is hidden. The absorber must
be able to emit almost as much energy as it absorbs in the narrow energy interval transmitted
by the filter. Since T is much smaller than the temperature of the sun Tg, the emitting area
must be much larger than the absorbing area. A factor of 4, as provided by the arrangement in
Figure 8.7 1s far from sufficient.

This problem can be solved by an even wilder idea, called thermo-photonics.® Emission of
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emitting
area of the intermediate absorber. (To prevent transmission by the semiconductor of smaller
energy photons emitted by the absorber, a mirror must be placed between the semiconductor
and the absorber.) When the semiconductor is supplied with membranes such as a solar cell,
it can be operated as a light-emitting diode (LED). A LED is the same engine as a solar cell,
only operated in reverse, just as a refrigerator or heat pump is a reversely operated heat engine.
If some of the power delivered by the solar cells is used to drive the LED on the absorber, the
emitted intensity is enhanced enormously. Although some of the energy emitted by the LED
is Free Energy supplied by the solar cells, most of it is heat supplied by the absorber. As a
result, the area and the temperature of the emitter can be reduced, provided an LED can be
made, which works at about 1000 °C with close to 100% external quantum efficiency.

With the arrangement shown in Figure 8.7, however, the intermediate absorber does not
have to be heated by the sun. It is also possible to heat the intermediate absorber in another
way, €.g., by burning gas. Radiation losses to the environment would then not have to occur,
because the cavity can be completely closed, optically. The conversion of heat into electrical
energy in this way was first proposed in the Soviet Union for nuclear reactors. The basic
concept was to surround incandescent reactor fuel elements with solar cells. Fortunately, no
one had the courage to try this out.

M, A. Green, Proceedings 16th E.C. PV Solar Energy Conf. (2000) p. 51,
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Figure 8.8: Transition of an electron from a higher band to the minimum of the conduction band by
impact ionization in an indirect semiconductor, resulting in the additional generation of an electron and
a hole at the band edges.

8.4 Impactionization

Electrons and holes possessing large kinetic energies as a result of generation by high-energy
photons can dissipate their kinetic energy in two ways. One is by elastic collisions with the
lattice atoms, in which energy is transferred in small portions to the lattice atoms until thermal
equilibrium with the lattice is established. The other is by inelastic collisions with the lattice
atoms in which, by impact ionization, another electron is knocked off its chemical bond or,
in other words, in which a free electron and a free hole are produced, as shown in Figure 8.8.
Both processes take place in parallel and compete with each other. With elastic collisions the
excitation of lattice vibrations is at the expense of the energy of the electron—hole system,
while the number of the electrons and holes remains constant. With impact ionization the
absorbed energy remains in the electron—hole system, but is more uniformly distributed over
a larger number of electrons and holes than were originally generated by the absorption of
the photons. Impact ionization, therefore, looks very promising for solar energy conversion

because some of the enerev removed from the electrons and holes durine thermalization is
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used to generate additional electron—hole pairs.’

In order to examine the efficiency of the impact ionization process, we will exclude the
competing process, namely the interaction of electrons and holes with the lattice vibrations,
which leads to thermalization at constant concentrations. The electrons and holes are then iso-
lated from the lattice vibrations. They do not “know’” about the temperature of the lattice and
cannot come into thermal equilibrium with the lattice. Collisions between electrons and holes
are, however, permitted. This ensures that electrons and holes have a uniform temperature T4,
although this is not the same as the lattice temperature. Finally, according to the Principle of
Detailed Balance, we must expressly consider Auger recombination as the inverse process of
impact ionization.®
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holes under these conditions. The simplest answer, unfortunately, may be the most difﬁcu]t to
understand. It is based on the difference between thermalization and impact ionization: while

7], H. Werner, R. Brendel, H. J, Queisser, First World Conf. on Photovoltaic Energy Conversion, Hawaii. 1994,
8P, Wiirfel, Solar Energy Materials and Solar Cells, 46 (1996) 43,
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during thermalization, by scattering with phonons, no electrons (or holes) are annihilated
or created, so that their number remains constant, during impact ionization and its inverse
process, Auger recombination, the number of electrons and holes changes. This has significant
consequences for the values of the electrochemical potentials of the electrons and holes. The
change of the particle numbers by impact ionization and Auger recombination is unrestricted,
except for the condition to establish a minimum of the Free Energy of the electrons and the
holes. Thus

dF = .. 4 NedNe +MpdM, +... =0.

With impact ionization and Auger recombination, electrons and holes are always created or
annihilated in pairs, that is dV. = dNV, = dN and
dF = ...+ (Me+Mn}dN+...=0.

Because the number of particles does not remain constant and is not tied to other particle
numbers as in a chemical reaction, dNV # 0, so that

MNe+Mh = 0

We will attempt to make this result more plausible. Let us assume that the Free Energy of the
electrons and holes describes a state with 1o +7p > 0. With a reduction in the number of parti-
cles due to Auger recombination, i. e., with dN < 0 and therefore dF* < 0, the Free Energy can
be further reduced. With the reduction in the number of particles, 1. +1y, also decreases, until
for Ne +Mn = 0 a further reduction of the particle number no longer reduces the Free Energy
and equilibrium is established between impact ionization and Auger recombination. Since the
total energy of the electron—hole system is preserved, by reducing the particle number, Auger
recombination leads to an increase in the energy per particle, i. e., in the mean kinetic energy
of the electrons and holes. This in turn leads to an increase in their temperature, and in the
number of electrons and holes capable of participating in impact ionization, until the rate of
impact ionization is exactly the same as the rate of Auger recombination and Ne +Mp =0

If, however, scattering with the lattice atoms and Auger recombination and impact ioniza-
tion, all occur at high rates, the temperature of the electrons and holes will be the same as the
lattice temperature, and in equilibrium with impact ionization and Auger recombination, the
only possible state is one with Tep, = Ty and Me +7p, = 0, which does not permit the conversion
of energy. It is therefore very important that thermalization and impact ionization, together
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not improve the efficiency of solar cells, but in fact reduce it, if the probability for impact
ionization (and Auger recombination, inevitably) were slightly increased while the interaction
with phonons predominates.

We thus establish the fact that the interaction with the lattice vibrations maintains the
temperature of the electron—hole system constant at the lattice temperature Ty and, on exposure
to light, produces a state with ne +1ny > 0. Impact ionization and Auger recombination, on
the other hand, maintain a state with no separation of the Fermi energies, e +Mn = 0, but in
the absence of interaction with the lattice vibrations and on exposure to light, produce a state
with T > T.

The problem of how to obtain electrical energy from hot electrons and holes then remains
to be solved. nnergy conversion Uy means of I‘I‘I‘lpaa ionization first prOuuces hot electrons
and holes with no chemical energy. Chemical energy, and finally electrical energy, must be

obtained in subsequent steps.



8.4 Impact ionization 165

8.4.1 Hot electrons from impact ionization

The temperature T4 of the electrons and holes in the absorber can be found very easily from
the magnitude of the emitted energy current. In contrast to the interaction with phonons, where
at open-circuit the emitted photon current is equal to the absorbed photon current, for impact
ionization at open-circuit the emitted energy current must be equal to the absorbed energy
current, since by impact ionization/Auger recombination the electron—hole system does not
lose energy. The chemical potential of the emitted photons is then gy = 1. +1n = 0, and we
can calculate the temperature T of the electrons and holes by using Planck’s Law in Eq. (2.32)
for the emitted energy current. For maximum concentration of the incident solar radiation we
find, of course, Ta = Tg at open circuit.

For conventional solar cells based on thermalization of electrons and holes in the absorber,
complete conversion of chemical energy into electrical energy was achieved by membranes,
n-type for the transport of electrons to one contact and p-type for the transport of holes to the
other contact. This type of membrane is not sufficient for hot carriers. In addition to the selec-

ot ~f alant
tive transport of electrons and holes, the membranes must now also serve the thermodynamic

function of producing chemical energy from the heat of the electrons and holes by cooling
them down to the temperature of the environment.

We will discuss this problem for the electrons, the solution can then easily be applied to the
holes as well. If we would allow an exchange of electrons between absorber and membrane
for all electron energies in the absorber, the thermalization of the electrons in the membrane
would lead to a large energy loss, from %kTA in the absorber to %kTo in the membrane (less,
however, than in a conventional solar cell). Secondly, with the unimpeded exchange of elec-
trons between the absorber and the membrane, the electrons in the absorber would be cooled
as well and would no longer be capable of impact ionization. This would result in a state with
Ne +Nn = 0 and Ta = Tp. However, as we have seen earlier, the entire energy loss caused by
thermalization can be prevenied, if the elecirons in the membrane can only occupy siaies over
a narrow range Ag, at the energy €., as shown in Figure 8.9.

For Ag. < kTp, the occupation of the electron states in the membrane cannot significantly
change by interaction with the phonons. As a result, the entropy of the electrons also remains
unchanged and thermalization takes place isentropically. Since the number of particles re-
mains constant during thermalization in the membrane, the electrochemical potential of the
electrons increases. Figure 8.9 demonstrates that the same process takes place with the holes
at an energy €, in the hole membrane. The isentropic cooling therefore produces the chemical
and electrochemical energy per electron-hole pair,

He+th =MNe+Mh = (€ +&n)(1 —To/Ta) - (8.8)
The arrangement of Figure 8.9 is a working solar cell. The voltage is
V=MNc+M)/e, (8.9)

and the current is

Jo = e(JE,absorbed — JE,emitted)/ (€ + €n) - (8.10)
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Figure 8.9: Energies of electrons and holes in the absorber, in which impact ionization and Auger
recombination are in equilibrium at 75 > Tp, and in membranes through which electrons and holes flow
outwards and where they are in temperature equilibrium with the environment at 7 = 7.

We can visualize its operation by increasing the current from zero, the open-circuit situation,
where the emitted energy current equals the absorbed energy current. With increasing current
the energy in the electron—hole system decreases and with it the electron—hole temperature Ty
in the absorber. Due to the lower temperature, the emitted energy current is reduced and also
the voltage. The current rises until, at zero voltage, the short-circuit situation is obtained. A
still larger current may be withdrawn by applying a negative voltage, spending energy from a
battery, which would cool the remaining electrons and holes down to Ty < Tp.

It is interesting that the open-circuit voltage is determined by the energies at which the
electrons and holes are removed and not by the absorber material. If the rates of removal of
electrons and holes are small compared with the rate of impact ionization/Auger recombina-
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hardly be affected by the removal process. Electrons and holes removed at the energies €. and
gp, will quickly be replenished by impact ionization/Auger recombination and carrier—carrier
scattering. Although the charge current and the voltage depend on the energies with which
electrons and holes are removed, it is very surprising that the energy current delivered by the
cell, obtained by multiplying Egs. (8.9) and (8.10), is independent of the removal energies.
Large removal energies give a large voltage and a small current and small removal energies
give a large current and a small voltage, both resulting in the same energy current.

The efficiency is maximum at maximum concentration of the solar radiation, when the
temperature T of the electrons and holes is equal to the temperature Tg of the sun at open-
circuit. Since in the absence of interactions with the lattice vibrations the absorbed energy
reI_I-lEllI_lS lIl lIlC eu:uron—mnc S}’SLCIII ll. lb dUVc-lI-llageOl]S to dUbUrD as T_I-IULII as pOSSiDlC Dy
reducing the band gap &g of the absorber material to zero. The electron—hole system is then a

black body and, according to Eq. (2.24), absorbs the energy current (‘)‘TS4 and emits the energy
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Figure 8.10: Effictency for a hot carrier cell with impact ionization for non-concentrated incident solar
radiation with Q& = Qg and for maximum concentration with Q = 7,

current 672, at the temperature 75. With Egs. (8.9) and (8.10), the efficiency with which
electrical energy is delivered is

oV o(Td—T T T T
oT¢ oTy Ta TS Ta

and is therefore identical with the efficiency of the ideal solar heat engine in Eq. (2.52) in
Section 2.1.1 and of the thermo-photovoltaic conversion process discussed in the previous
section. The efficiency has its maximum value of N« = 0.85 at a temperature of the electron—
hole system of T4 = 2478K, if we assume a temperature of 7g = 5800K for the sun.

Figure 8.10 shows that the efficiency at full concentration falls off with increasing energy
gap, because of the decreasing absorption. Without concentration, for Q = Qg, that is for the
AMO spectrum, however, a non-zero energy gap is preferable, otherwise more photons would
be emitted than absorbed at small photon energies. For € > { the balance becomes more
favourable.

An earlier proposal for a hot-carrier solar cell by Ross and Nozik” which did not account
for impact ionization and Auger recombination, finds even higher efficiencies for narrow-
gap semiconductors under less then full concentration of the solar radiation. Similar to a
conventional solar cell, the process of carrier-carrier scattering, while leading to a uniform
temperature, 1s assumed to leave the number of electron-hole pairs unchanged, increasing by
one for each absorbed photon and decreasing by one for each emitted photon. This assumption
leads to high temperatures and negative chemical potentials of the electron-hole pairs for
less than full concentration. Since electrons and holes are withdrawn through mono-energy
contacts, scattering of the carriers with each other is necessary to replenish the carriers in
the energy range from where they are withdrawn. A probiem is that a distinction between
scattering events which keep the carrier concentrations constant and impact ionization and
Auger recombination which don’t, is physically impossible in narrow gap semiconductors.
The problem becomes obvious for the case where electron—hole pairs are withdrawn with an

9R. T. Ross, A. I. Nozik. /. Appl. Phys. 53 (1982) 3813.
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energy that is smaller than the average energy of the absorbed photons. The more electron—
hole pairs are withdrawn, the more energy per pair is piling up for the remaining electron—
hole pairs. As a result, their temperature increases beyond any reasonable limit, far beyond
the sun’s temperature. No such problems are encountered when impact ionization and Auger
eCO"nUllldllUll arc ld..l&Cll llllU account.

We thus see that impact ionization and Auger recombination allow ideal energy conver-
sion, provided that interaction with the lattice vibrations is excluded. However, no material
in bulk form is known in which these conditions are even approximately fulfilled. In a (very)
thin film, however, one can imagine that electrons and holes can be removed in much less than

10~ 25, long before they are thermalized.

8.5 Two-step excitation in three-level systems

If interaction with phonons cannot be prevented, thermalization losses can be reduced by
dividing the incident spectrum over more than one transition as we have seen with tandem
cells. In a three-level system, where the levels can be bands as well, three different transitions
may occur in a single material: directly from the lower level to the upper level and in addition
by a two-step process from the lower level to the intermediate ievel and from there to the upper
level. In both ways electrons are generated at the upper level and holes at the lower level.

8.5.1 Impurity photovoltaic effect

In Section 3.6.2 we have discussed non-radiative transitions between the bands and an impu-
rity level. Impurities with energies for electrons in the middle of the energy gap were found to
greatly enhance recombination, which is detrimental for the efficiency. In the analysis, gener-

ation of electron—hole pairs by optical transitions was neglected. Now we do just the opposite.

Our model now permits only radiative transitions between the bands and to and from an im-
purity level. Thermalization of free charge carriers is considered, but not impact ionization or
non-radiative recombination.!®

The model, as shown in Figure 8.11, has states in the valence band with €. < €y, at the
impurity level €iyp and in the conduction band with €. > €c. In order to optimally utilize the
incident spectrum, the photons will be distributed over the different transitions in such a way
that photons capable of a higher energy transition, e.g., band-band, are not wasted in lower
energy transitions. For the impurity energy €imp in the lower half of the energy gap (not in
the middle), photons having energies €jmp — &v < A < € — €imp are exclusively absorbed in
transitions from the valence band to the impurity. Photons having €¢ — €jmp < A < €c — &y
are exclusively absorbed in transitions from the impurity to the conduction band, and photons
having fi® > €c — ey provide for the band—band transitions.

The absorption properties of the impurities are characterized by optical cross-sections,
Ov; for transitions from the valence band to the impurity and G;¢ for transitions from the
impurity to the conduction band. Optical cross-sections are of the same order of magnitude as
geometrical cross-sections, 107!% cm? is a typical value. Although optical cross-sections vary
with energy, we assume them to be constant over the energy range of absorbable photons.

104, Luque, A. Marti, Phys. Rev. Lets. 78 (1997) 5014.
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Figure 8.11: In addition to radiative band--band transitions with the rates G and R, radiative transitions
between the bands and the impurity are taken into account. Non-radiative transitions are excluded.

The electrons and holes are assumed to have a high mobility resulting in their homoge-
neous distribution, even though they are generated inhomogeneously. The steady state concen-
trations belonging to a given value of the charge current, follow from the continuity equations
for the particle densities, in which in addition to generation and recombination we consider the
contribution to the charge current by the divergence of the electron and hole currents. From

the concentrations of electrons and holes, the sum of their electrochemical potentials and thus
the voltage can be derived. The continuity equations are
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E‘E = Gy + Gic — Rpp — Ric—div je =0 (8.12)
onp ..
7 = Gpp +Gvi— Rpp — Ry i —div j, =0 (8.13)
anfe‘imp —R _

5 - Ric— Gic+Gvi—Ryvi=0 (8.14)

In the last equation the divergence of the particle current is missing, since electrons in the
impurities are considered immobile, so they do not contribute to the current.

Since these three equations are not independent, we need the charge neutrality as an ad-
ditional equation, as in Section 3.6.2. As a result of the high absorption required, however,
the impurity concentration nimp is now no longer negligible compared with the densities of
the electrons and holes. For this reason, most impurities must be electrically neutral, that is
either occupied, if they are donor-like, or unoccupied if they are acceptor-like. Both situations
are unfavourable for the desired impurity absorption, since for transitions from the valence
band to the impurity they must be unoccupied, and for transitions from the impurity to the
conduction band they must be occupied. The smaller of the two transition rates will determine
the rate at which electrons are excited to the conduction band and holes to the valence band
by two-step impurity transitions. For optimal absorption properties, we therefore choose half
of the impurities to be donor-like and half acceptor-like, and

po =e(ny — ne +Mimp/2 ~Reimp) =0 . (8.15)

Alternatively, if the impurities are donor-like, an occupation probability of % is achieved by
doping the material additionally with half as many shallow acceptors as there are impurities.

Either way, the Fermi energy in the dark has to coincide with the impurity level.
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The generation rates, averaged over the thickness d, are given by
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1
1

Gy = E Apb dj'y(h(l))
Ec—&y
} réc—Ey
Gic = P aic djy(ﬁ(l)) (8.16)
ECc—Eimp
1 €C—Eimp .
Gvi = 3 ay i djy(hw)
Eimp —EV

The absorptivity for the band-band transitions is assumed to be ay, = 1, whereas the ab-
sorptivities for the impurity transitions depend on the concentration and occupation of the
impurities,

ajc =1 —exp(—aicd) ayi=1—exp(—ay;id),
where the absorption coefficients follow from Eq. (3.96)

0f«i,C:(')'i,Cnimp(fi—fC) and aVl—O'Vlnlmp(fV ﬁ)

These equations determine the generation rates due to illumination, but also in the dark state
with its incident 300 K background radiation. According to the Principle of Detailed Balance,
in this state of chemical equilibrium with the background radiation, the recombination rates
must have the same value as the generation rates. The Principle of Detailed Balance is ac-
counted for, if we write the recombination rates in terms of the generalized Planck radiation
law. The rate of downward transitions per energy from a level j to a level i, averaged over the
thickness 4 is, from Eq. (3.101),

dR;; 1 1 (hw)?
AL = jaihl A_9%3 9 Mtrn fo . o ) (8.17)
an a 4N cy exp AW ACE, ) T ek 1
e
This rate is then integrated over the energy range associated with the band to band, valence
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band to impurity, and impurity to conduction band transmons, to give the actual recombination
rates.
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current (or the hole current) over the thickness d of the cell and, because of the assumed
homogeneous distribution of the electrons and holes, it is given by

jo=-edivj. d =-edivj, d. (8.18)

PR R, [
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For a given charge current the continuity equations (8.12)—(8.14) are solved for the positions of
the Fermi energies subject to charge neutrality. This yields the current—voltage characteristic

of the cell, since the voltage is given by V = (epc — €pv)/e. From its maximum power point
the efficiency is finally determined.

The result for different energy gaps and optimized positions of the impurity level can be
seen in Figure 8.12 for the AMO0 spectrum. For this calculation a high impurity concentration
was assumed ensuring ajc = ay,i = 1. The equations outlined above, however, allow us to
account for smaller concentrations and inadequate occupation of the impurities, which may

even vary in the course of the current—voltage characteristic.
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Figure 8.12: Efficiency as a function of the energy gap €c — €y for radiative band-band transitions

and radiative transitions between the bands and an impurity level at €;,,. Non-radiative transitions are
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excluded. The numbers at the curve give the optimal position of the impurity level with regard to the
valence band for selected band gaps.
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Figure 8.13: Equivalent circuit for a solar cell with an impurity level between valence and conduction
bands as shown in Figure 8.11.

The efficiency reaches a maximum value of 1 = (.46 for an energy gap €c —&y = 2.4eV
and an impurity level at &iy,p — &y = 0.93¢V.

This result reminds us of the improvement of the efficiency by tandem cells, since here as
well, the incident spectrum is divided over different transitions leading to smaller thermaliza-
tion losses. Figure 8.13 shows that the occupation of the various states is represented by more
than two, namely three, different Fermi energies, a condition for reduced thermalization losses
known from the discussion of tandem cells. In fact, since the rate of recombination transitions

o Anon_.m.“nrl e tha diffarnnns hntizrann tha B, Fr tha + ~1v rl h ¢ i
is determined Oy uic diricremnce octween tnic r ermi energies 10T thnie states inv /01VEQ, €aclil transi-

tion can be represented by a current-voltage characteristic. This leads to the equ1valent circuit
shown in Figure 8.13. The solar cell representing the band—band transition is connected in
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parallel to a series connection of two solar cells representing the transitions involving the im-
purity level. Variations of the absorptivities in the course of the current—voltage characteristic
can, however, not be treated in an equivalent circuit model.

As for tandem cells, it is expected that the efficiency increases when more than one im-
purity level is present and the incident spectrum is divided into smaller portions over more
transitions. Ensuring good absorption properties for all transitions, however, is a problem.
Moreover, it must be emphasized that non-radiative recombination has been excluded. Al-
though the optimal position of the impurity level for optical transitions is not in the middle of
the energy gap, where non-radiative recombination is most probable, including non-radiative

recombination will certainly reduce the improvement expected from impurity transitions.
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A considerable loss of energy in a solar cell is due to the photons with energy A < €5 which

are not absorbed. It would be very convenient if two or more of these useless photons could
be converted into one photon with energy A > &g, which could then be absorbed by the
solar cell. In the following discussion, €g defines the band gap of the solar cell for which
small-energy photons will be up-converted. That such an up-conversion of the photon energy
is not forbidden by thermodynamics is demonstrated by Figure 8.14, which shows a device
consisting of a tandem of two small band gap solar cells connected to an LED. These solar
cells absorb small-energy photons, and due to their series connection, deliver a voltage which
is large enough to drive the LED with a large band gap to emit photons with energy 7® > £
which can be absorbed by the solar cell we have in mind. There is no doubt that this type
of up-conversion will work. One may, however, ask why we do not use the electrical energy
from the small-gap solar cells directly instead of investing it into an LED. We remember that

~la alleg and T ED Ligiirs
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circuit of a three-level system represented by two bands and an impurity level in Figure 8.13
in the previous section.

&, solarcell 1 solar cell 2 LED

Figure 8.14: Two solar cells with small band gaps drive a LED with a large band gap, to emit photons
useful for a large band gap solar cell, thereby up-converting two small energy photons into one higher
energy photon.
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Figure 8.15: An up-converter behind a solar cell absorbs small energy photons, transmitted by the solar
cell, in a 2-step excitation process. Higher energy photons with @ > g emitted by the up-converter
generate additional electron-hole pairs in the solar cell.
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and with up-converted photons from a 6000 K black body spectrum, from a solid angl Qs 6.8 x 107
(thick line) and with maximum concentration from Q = 7 (thin line),

A three-level system placed behind a solar cell could be used to convert small-energy
photons transmitted by the solar cell into higher-energy photons supplied to the soiar cell, in
addition to the photons absorbed directly from the sun as shown in Figure 8.15. A mirror
behind the up-converter ensures that all emitted photons are directed towards the solar cell. A
closer inspection of the impractical but functioning up-converter in Figure 8.14 reveals that it
is better represented by a four-level system than by a three-level system. The sum of the band
gaps of the two solar cells is larger than the band gap of the LED. In fact, detailed calculations
along the line outlined in the last section show that an energy loss, indicated in Figure 8.15
at the upper level, is necessary to prevent the recombination of the electron—hole pairs via the
intermediate level with the re-emission of two small-energy photons.

Figure 8.16 shows a substantial improvement in the efficiency of a solar cell for an in-
cident 6000 K black-body spectrum. As always, the efficiency is larger for maximum con-
centration than for non-concentrated radiation. The possible efficiencies of a solar cell with

YT, Trupke, M. A. Green, P, Wiirfel, J. Appl. Phys. 92 (2002) 4117.
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Figure 8.17: Efficiency of a solar cell as a function of its band gap £g operating with directly absorbed
and with down-converted photons from a non-concentrated 6000 K black-body spectrum for a down-
converter placed on the rear side of the solar cell (thin line). The efficiency for operation only with
photons from the down-converter when it is placed on the front side is smaiier (thick iine).

up-conversion and of the impurity photovoltaic effect are very similar. Both use two-step ex-
citations to absorb otherwise non-absorbed photons. The up-conversion, however, has distinct
advantages. First, the up-converter is a purely optical device and can consist of a material
such as an organic dye, in which electrons and holes are virtually immobile, but which has a
high quantum efficiency. Second, the up-converter is a separate device which can be applied
to exasting well developed bifacial solar cells. Third, since the up-converter is separated from
the solar cell, it would very little interfere with the recombination processes in the solar cell.
Applying an up-converter to a solar cell would not do any harm, it could only improve the
solar cell’s efﬁuency, even if it is not W(‘Ji‘klﬁg q'uu.e as well as theﬁi‘ethauy’ predlcted

Since in a three-level system, the recombination from the upper level is more probable
via the intermediate level instead of directly to the lowest level, a three-level system can be
used for down-conversion.!? In this process, a high-energy photon is absorbed in a transition
from the lowest level to the upper level. By the back transition, via the intermediate level, two
small-energy photons are emitted. Applied to a solar cell, a down-converter reduces the ther-
malization loss incurred by the absorption of photons with A > 2 £ by splitting these photons
into two photons with /i > €g. Since high-energy photons are not transmitted by the solar
cell, the high-energy part of the spectrum must be diverted by a dichroic mirror or other means
to the rear side of the cell, where the down-converter is placed. In addition, another dichroic
mirror transmitting high-energy photons but reflecting small energy photons is applied to the
back of the down-converter, where it prevents the ioss of smail-energy photons produced in
the down-converter. The efficiency for a solar cell combined with a down-converter on its
backside is shown in Figure 8.17 by the thin line as a function of the band gap of the solar
cell.

2T, Trupke, M. A. Green, P. Wiirfel, J. Appl. Phys. 92 (2002) 1668.
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A much simpler and more elegant method would be to place the down-converter on the
front side of the solar cell. In this arrangement, all the incident solar photons, which the solar
cell could absorb, are absorbed by the down-converter, Photons with &g < A < 2¢g are
absorbed in transitions involving the intermediate level and larger energy photons cause direct
transitions from the lower to the upper level. Nearly all photons emitted by the down-converter
have an energy #® > €g and could be absorbed by the solar cell. However, being on the front
side of the solar cell, no mirror directing all the emitted photons into the solar cell can be
applied and one might think that this deficiency leads to the loss of one-half of the photons
being emitted through the front surface towards the sun. This is not necessarily the case. We
remember that the probability for emission is proportional to the density of photon states. This
makes the emitted photon currents proportional to the square of the index of refraction. If a
material for the down-converter is chosen which has the same large index of refraction as the

solar cell. all the photons emitted towards the solar cell enter the solar cell without reflection
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whereas most of the photons emitted towards the front surface are totally reflected.

For the down-converter on the rear side of the solar cell, a maximum efficiency of almost
40% is found. A smalier efficiency of 36% is found, caused by the ioss of down-converted
photons, when the down-converter is placed on the front side of the solar cell. An index of
refraction of n = 3.6 was used for the down-converter and the solar cell, which prevents the
loss by total internal reflection of most down-converted photons,

Small band gap solar cells are advantageous in combination with a down-converter,
whereas higher band gap solar cells are favourable with an up-converter. For both systems,
the calculations consider only radiative transitions, which may, however, be closer to reality
in materials which do not require good transport properties for electrons or holes.
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In the first chapter we saw that our present energy economy cannot continue in its current
form, because we are in the process of changing the environment in which we live. Mankind
and all other forms of life have developed over millions of years by adapting to the conditions
around us in a continuous process of evolution. We have good reason to describe changes to
these conditions, which are too rapid for life to adapt to, as natural disasters. Life on earth is
an extremely complex system, and even today we do not fully understand the interrelations
within this system. If we do not wish to risk life as a whole or parts thereof by significant
departures from the present equilibrium, we should tolerate only minor changes in the prevail-
ing conditions. Every system reacts linearly to minor changes, even our complex ecosystem.
Small changes to the natural processes result in small changes of the properties of the envi-
ronment. The restriction to minor changes means that we may make use only of processes
existing in the natural state of equilibrium. The burning of wood, coal, oil and gas occurs as
a natural process as well, resulting in the natural production of CO,, CO and SO,. Burning
of wood, coal, oil and gas could thus be tolerated, if their burning by man only caused minor
changes to natural processes. However, we are presently proceeding rapidly to violate this
condition. The amounts produced by mankind are no longer minor changes. The condition of
causing only minor changes is, in any case, violated when processes are used or substances
produced which do not exist in nature and it is almost impossible to predict how the environ-
ment will react. This is particularly true for many waste products from nuclear energy use.
An example which shows what can happen if formerly non-existing substances are introduced
into the environment is that of chlorinated fluoro-hydrocarbons (CFC), which do not occur at

all in nature. Thev were regarded as entirely harmless. since thev are non-toxic and chemically

all in nature. They were regarded rely harmless, since they are non-toxic and chemically
inert. It came as a great surprise to learn that they in fact destroy the ozone layer and also are,
to a large extent, responsible for the greenhouse effect. Many more examples exist, where the
violation of the condition of minor changes has led to unpleasant surprises.

No such surprises are to be expected when electricity is generated from solar energy by
solar cells. In making use of the processes taking place in a solar cell, we are only linking
ourselves into processes which would in any case occur without us. In our absence, solar
radiation would be absorbed by the earth and, in part, be reflected back into space. In the
course of this process, the earth heats up to just the temperature at which it can re-emit the
energy current absorbed from the sun. It is very important that we do not alter this process
signiﬁcantly Viewed from the standpoint of thermodynamics, the solar heat, very valuable at
}‘e sun’s temperature of roughly 6000K, is cooled down to the earth’s temperature, where it

is practically worthless and is then emitted into space. What is changed, if the solar radiation
is processed by solar cells? Part of the absorbed heat (in fact, most of it in real systems with
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efficiencies of 20% or less) is cooled at the site of the solar cells down to the temperature
of the environment in the same way as it would be without the solar cells. The electrical
power generated by the solar cells is then re-routed through consumers before friction and
other dissipative processes finally degrade it to heat at the temperature of the environment,
from where it is emitted into space. The energy balance between the absorbed and the emitted
energy currents remains unchanged. With the use of solar cells, we simply allow the natural
process of cooling the solar heat to take place in ways of greater benefit to us.

The preceding chapters have not only shown that solar cells are well suited for obtaining
electrical power from solar energy, they have also shown that there is no better way to do this
than with the intelligent utilization of solar cells, e.g., in tandem cell arrangements, because
the possible efficiencies of these systems coincide with general efficiency limits predicted by
thermodynamics. This has two consequences. On the one hand, there is no need to continue
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cient. On the other hand, since we cannot hope for future discoveries and technologies with
significantly greater efficiencies, there is no reason to wait any longer to begin the serious
development of a solar-energy economy.

Our present energy economy consumes oxygen and produces CO;. Because of the fast
and extensive spreading of gases in the atmosphere, this is a global, and not simply a local,
problem. For heavily populated and industrialized areas such as Germany, where so much
oxygen is burnt that none would be left to breathe, this spreading of the gases is very for-
tunate. But it also makes it very difficult for politicians to decide on radical changes in the
present energy economy, because continuing with the present energy consumption has little
consequences locally, or, the other way round, the required very considerable local efforts are
not rewarded on a local basis if they are not implemented globally.

A global energy supply by solar energy on the present level must be easily possible, oth-
erwise we would already be suffering from substantial global warming. If our power require-
ments were not small compared with the solar energy current reaching the earth, their coverage
from resources would result in an increase in the temperature of the earth, even without the
greenhouse effect in order to allow for the emission of this additional energy into space.

A quick estimate indicates that a solar-based global energy economy could, in principle,
be implemented relatively easily. The greater part of the globally consumed 10 x 10'*kWh/a,
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countries with less than average sunshine like Sweden, most of these requirements can be met
using well-insulated solar warm-water collectors. The rest, roughly 5 x 10'3kWh/a, could be
generated by solar cells. Most of this would be used for the production of hydrogen, since
this is an easily transported and easily stored form of chemical energy. In sunny areas, with
incident solar radiation of more than 2000kWh/(a m?), a total efficiency of no more than
10 percent over an area of 500 km times 500km equal to 2.5 x 10! m?, would be sufficient.
Much larger areas are available in the sunny deserts. Nevertheless, covering such an enormous
area with solar cells is presently unimaginable. The problems with a future solar-based energy
economy would be alleviated, if we could reduce our energy requirements, or at least maintain
them at their present level.

This vision of a solar-en ergy future, at the present t1

-2

time hardly possible for pol 1 rea-
sons alone, must not let us lose sight of what solar energy can presently contrlbute to our
energy requirements. Fortunately, there is enormous potential in the industrialized countries
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themselves, because otherwise the technologies required for use in the deserts would hardly
be dPVP]ﬂnPd As an examnlf- of an industrialized country, we will assess the situation for
solar generation of electrical power in Germany.

In Germany, there are about 80 million people living in an area of 357000km?. This
gives a population density of 226 persons per km?, with 4425m? available (0 each person. In
Germany, the sun supplies about 1000kWh/(am?), i.e., 115W/m? averaged over the year.
Over the area of 4425m? per person, the sun supplies around 500 kW. Compared with this, the
current power requirement of 5.7 kW/person, 0.76 kW per person of this as electrical power,
appear as almost negligibly small. Not all of this area will be used with high efficiency. The
Germans allow themselves the “luxury” of using 180000km?, that is half of the total arca
of Germany, to satisfy an energy requirement of merely 0.1 kW per person. This, however,
is our most important energy requirement, our food, produced on agricultural farmland and
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To satisfy the electrical power requirements with solar cells, assuming an efficiency of
20%, which will become possible in the near future, we would need an area of 33 m? per per-
son. This is very nearly as much as the average area of 35 m? living space available per person
in Germany. Industrial buildings additionally account for at least the same area. Assuming
three-story buildings on average gives a floor space of 23m? per person for buildings in Ger-
many. The roof surface arcas will be somewhat greater. Only those oriented towards the north
are unsuitable for solar cells. Furthermore, especially with multi-storied buildings, the wall
areas oriented towards the south are very well suited.

From this estimate, we can see that the areas at and on top of existing buildings are already
sufficient for nearly covering our present energy requirements by the use of solar cells, even in
a country which does not receive the most sunshine. There is no reason whatever to speak of
replacing forests with solar cells. Since there is more sunshine in summer than in winter and
more energy is needed in winter than in summer, it is necessary to store energy in the summer
for use in winter. This problem remains to be solved, and will certainly entail storage losses.
This, of course, makes additional roof surface necessary. At present, though, a large amount of
electrical power is wasted in producing low-temperature heat for heating buildings and for hot
water. We could, in fact, manage with considerably less electrical power without any loss of
comfort. Even for the relatively poor amount of sunshine in Germany, the enormous potential
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fully justifies the most
intensive efforts to develop a solar-energy economy.

In view of the high population density and high rate of power consumption in industrial-
ized countries like Germany, it seems more probable that not all of the power requirements
will be met by utilizing only the solar energy captured in these countries. Even in an age of
solar energy it 1is, in fact, more likely that industrialized countries will import energy from

sunnier and less heavily populated countries, in very much the same way as today.



Appendix

Fundamental constants

Boltzmann constant

Planck constant

velocity of light
elementary charge
permittivity of free space
Stefan—Boltzmann constant

solid angle of solar disc

k=1.3807x 107 Ws/K =8.617x 107¢V/K
h=06.626x 107 Ws?=4.136 x 107 PeVs
hi=1.0546x 107 W s? =6.582x 10~'%eV s
Cvac = 2.998 X 108 m/s

e=1.602x10"YAs

g0 =8.85x10712As/(Vm)

6 =5.67 x 1078 W/(m? K*)

Q, =6.8x107°

RWA = heyye = 1.240eV um

1 \Y
504 x10T—
AT3R 2, (eV)* m?

Units of energy

eV =1.602x10717]

1] =1Ws=1Nm

1 kWh = 3.6 x 10°]

Material constants at 300 K

Ge Si GaAs

£ /eV 0.66 1.12 1.42

x/eV 4.13 4.01 4.07

£ 16 11.9 13.1

Nc/em™3 1x101°  3%x101% 5x10V7

Ny /em ™3 6x 10  1x10"% 7x10'8

n;/cm™3 23%x 1017  1x109 2.1 x10°

m? [ me 0.88 1.08 0.067

m? [me 0.29 0.55 0.47

be ! [cm?/(V 8)] 3800 1450 8500

bn/lem*/(Vs)] 1800 480 400
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Standard global AM1.5 spectrum

with 1000 W /m? total radiation

A djg /dA A djg /dA A djg /dA

A W/(mPpm) P W/(m%pm) P W/(m%um)
0.3050 95 0.7400 1271.2 1.5200 262.6
0.3100 423 07525 11939  1.5390 2742
0.3150 1078 07575 11755  1.5580 275.0
0.3200 181.0 0.7625 643.1 1.5780 244 .6

0.3250 246.8 0.7675 1030.7 1.5920 247.4
0.3300 395.3 0.7800 1131.1 1.6100 228.7
0.3350 390.1 0.8000 1081.6 1.6300 244.5
0.3400 435.3 0.8160 849.2 1.6460 234.8
0.3450 438.9 0.8237 785.0 1.6780 220.5

0.3500 483.7 0.8315 9164 1.7400 171.5
0.3600 520.3 0.8400 959.9 1.8000 30.7
0.3700 666.2 0.8600 978.9 1.8600 2.0
0.3800 712.5 0.8800 933.2 1.9200 1.2
0.3900 720.7 0.9050 748.5 1.9600 21.2
0.4000 1013.1 09150 667.5 1.9850 91.1
0.4100 1158.2 0.9250 690.3 2.0050 26.8
0.4200 1184.0 0.9300 403.6 2.0350 99.5
0.4300 1071.9 0.9370 258.3 2.0650 60.4
0.4400 1302.0 0.9480 313.6 2.1000 39.1
0.4500 1526.0 0.9650 526.8 2.1430 82.2
0.4600 1599.6 0.9800 646.4 2.1980 71.5
0.4700 1581.0 0.9935 746.8 2.2700 70.2
0.4300 1628.3 1.0400 690.5 2.3600 62.0
0.4900 1539.2 1.0700 637.5 2.4500 21.2
0.5000 1548.7 1.1000 412.6 2.4940 18.5
0.5100 1586.5 1.1200 108.9 2.5370 3.2
0.5200 1484.9 1.1300 189.1 2.9410 4.4
0.5300 1572.4 1.1370 132.2 2.9730 7.6
0.5400 1550.7 1.1610 339.0 3.0050 6.5
0.5500 1561.5 1.1800 460.0 3.0560 3.2
0.5700 1507.5 1.2000 423.6 3.1320 54
0.5900 1395.5 1.2350 480.5 3.1560 19.4
0.6100 1485.3 1.2900 413.1 3.2040 1.3
0.6300 1434.1 1.3200 250.2 3.2450 32
0.6500 1419.9 1.3500 325 3.3170 13.1
0.6700 1392.3 1.3950 1.6 3.3440 3.2
0.6500 1130.0 1.4425 55.7 3.4500 13.3
0.7100 1316.7 1.4625 105.1 3.5730 11.9
0.7180 1010.3 1.4770 105.5 3.7650 9.8
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0.7244 1043.2 1.4970 182.1 4.0450 7.5




Index

Abbé sine condition, 26, 28 coupled equilibria, 55
absorption coefficient, 60, 79, 80 current-voltage characteristic

measurement, 83 for impurity recombination, 125

negative, 82 pn-junction, 120, 122, 124

absorptivity, 20, 21

negatlve, 82 Dember effect, 104

of semiconductors, 21 density of states
acceptors, 48 combined, 59
air mass, 23 CffCCIiVG, 43
AMO spectrum, 23, 24, 157, 170 for electrons, 39, 41
AM1 spectrum, 23 for photons, 10, 12, 80
AM .5 spectrum, 23, 24, 182 detailed balance, 64, 65, 71
ambipolar diffusion, 103 dielectric relaxation, 102
anti-reflection coating, 12, 142 diffusion current, 95

diffusion length, 101, 120

battery, 55, 133, 136, 166 diffusion voltage, 116
black body, 9, 18 direct transitions, 59

radiation, 9 distribution function
Boltzmann constant, 181 for electrons, 38
Bose-Einstein distribution, 10 for photons, 10

donors, 47
carbon dioxide, 3 doping, see semiconductors, doping
atmospheric concentration, 5 down-conversion of photons, 172

Carnot efficiency, 89 drift velocity, 95
Carnot engine, 29-31, 35, 37
cavity, 9, 37 earth
chemical energy, 85 energy emission, 6
chemical equilibrium, 54 temperature, 6, 8
chemical potential effective mass, 41, 42

electrons, 94 efficiency

photons, 81 as function of energy gap, 140
collision time, 94 intensity dependence, 151
concentration of radiation, 24, 28 maximum, 29, 30, 88
concentrator, 29 monochromatic, 92
concentrator cells, 160 overall, 92
conduction band, 40, 46 Einstein relation, 96

germanium, 41 electric field in a solar cell, 133
conductivity, 95 electrochemical equilibrium
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in pn-junction, 116
electrochemical potential, 53, 55
of electrons, 56
of holes, 57
electron affinity, 129
electron capture, 70
cross-section, 70, 71, 73,75
electron emission, 71
electron-hole pairs
average energy, 86
chemical energy, 86, 87
equilibrium with photons, 89
generation, 58, 6264, 81
interaction with photons, 82
momentum, 59
recombination, see recombination
recombinstion, 79

temperature, 85
elementary charge, 181

amiccinn nf nhatane 70
CLILIDDIULL VI plLiVLULLS, 77

spontaneous, 79
stimulated, 79
emissivity, 20, 81
energy
consumption, 2, 5
current from sun, 2
density, 13
dissipation, 98
economy, 1, 177
maximum reserves, 3
of radiation, 13
reserves, 2—4
units, 1, 181
energy current, 19
per solid angle, 15
energy—momentum relation, 59, 60
entropy, 30, 34
of electrons, 56
of holes, 56
of photons, 89
equilibrium, see thermodynamic equilibrium
equivalent circuit, 149

Fermi distribution, 39
Boltzmann approximation, 67
Fermi energy, 56, 58
Fick’s law, 96
field current, 94
fill factor, 138, 149, 151

f-number, 27, 28
focussing, 24
free energy, 55

gallium arsenide, 42, 48, 128
generation rate, 63

geometrical optics, 26

global warming, 178
greenhouse effect, 5-7, 177, 178

hetero-junction, 127, 131, 147
holes, 45

homo-junction, 128

hot electrons, 165

impact ionization, 63, 163

impurity photovoltaic effect, 168

impurity states, 70

index of refraction, 25, 175
silicon, 143

indirect transitions, 61

Kirchhoff’s law, 19

Lambert’s law, 18
Landsberg efficiency, 33, 34
laser, 82
laser condition, 82
lifetime, 74, 77
for radiative recombination, 77
upper limit, 79
light
polarization, 11
trapping, 142, 146
velocity, 181

maximum power point, 137
mean free path, 94
membrane
for electrons, 113
for holes, 113
semi-permeable, 109
metal contact, 129
energy diagram, 130
MIS contact, 132
mobility, 95
momentum space, 11

oil consumption, 5
open-circuit voltage, 124, 139, 146, 150



Index

optical transitions, 79
ozone layer, 177

Pauli Principle, 38

Peltier effect, 130

permittivity of free space, 181

phase space, 10

phonon energy, 37

photoemission, 58

photomultiplier, 37

photon absorption, 59
probability, 59

photonic crystal structure, 145

nhn[gn( 9

photosynthesis, 3

Planck constant, 181

Planck’s radiation law, 9, 13, 20
generalized, 67, 79

pn-junction, 115, 116, 119, 120, 123, 133135
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potential distribution, 117
Poisson’s equation, 117

quasi-Fermi distribution, 51, 52

recombination, 65

Auger, 67

efficiency, 74

non-radiative, 67

radiative, 65, 79

surface, 75

vﬁlOChy, 76

via impurities, 68
recombination centers, 51
recombination rate, /1 78
redox system, 114
reflection, 142

total internal, 12, 64, 143, 144
resistance

parallel, 149

reaction, 122

series, 149

transport, 122
reverse saturation current, 123, 124

Schottky contact, 131, 132
semiconductors, 37

direct, 42

doping, 47

ideal, 89

-V, 76, 128, 160
illuminated, 53
indirect, 43, 61, 62
intrinsic, 44
n-type, 49

p-type, 50

short-circuit current, 123, 124, 139, 140, 146,

155

sine condition, see Abbé sine condition
Snell’s law of refraction, 12, 64
solar cells

chemical, 109, 113, 122

dye, 114

efficiency, 140

energy conversion, 137

maximum Pff‘lr‘mnr‘y 137

213 /w1211 oraaaloiase

minimal thickness, 147
plastic, 148
thin film, 147
solar disc, 16
solid angle, 15, 181
solar spectrum, 21, 22
solid angle, 12, 15
space charge density, 117
space charge layer, 128
spectrum, 13
Dldcblcl VVIUUDI\I UllUbL, l“l'l
Stefan—-Boltzmann constant, 181
Stefan—-Boltzmann radiation law, 6, 17, 18

sun

m]w‘nn’ 141

as black body, 9, 21
radiation spectrum, 6
SpB(.lTLlIll see QUldI' Spt‘:urum
surface charge, 130
surface photo-voltage, 106
surface states, 75, 76

density, 75

tandem cells, 155

series connection, 159
temperature dependence of Vi, 149
temperature of the earth, 6
thermalization, 52, 85
thermo-photonics, 162
thermo-photovoltaic conversion, 161
thermodynamic equilibrium, 54, 55
three-level system, 168, 173

182



186

tunnel junction, 159
two-diode model, 125
two-step excitation, 168

uncertainty principle, 10, 11, 40
up-conversion of photons, 172

valence band, 40, 46

germanium, 41
venus atmosphere, 8
vibrational quanta, 37

warm-water collectors, 178

work function, 57
measurement, 58



