
at x by moving in the direction of the field. On the other
hand, an electron and neutron do not interact electrically
with each other because a neutron, carrying no electric
charge, does not respond to the electric field created by the
electron. Equivalently, the neutron does not create electric
fields to which the electron can respond. Thus we also have:

Definition 2.  Charges2 are also responders to the fields.
The stronger the charge, the stronger the response.

Charges are often called the coupling constants because
their strength determines the coupling, or interaction,
strength with the corresponding fields.

As we shall see shortly in greater detail, there is a strik-
ing symmetry between electric and magnetic fields in our
description of electromagnetism. That is, the equations gov-
erning the dynamics of the electric and magnetic fields are
unchanged when the fields are exchanged. For example,
the energy density of electromagnetic fields3 is

which is manifestly symmetric in E and B. Thus, analogous
to the formulation of electric charges, it is certainly conceiv-
able that there exist magnetic charges which are sources
and responders to the magnetic fields. See Figure 3. A par-
ticle carrying magnetic charge is called a magnetic mono-
pole.

The first comment that can be made about a magnetic
monopole is that it has not been observed experimentally.
Nevertheless, as Ed Witten once asserted in his Loeb Lec-
ture at Harvard, almost all theoretical physicists believe in
the existence of magnetic monopoles, or at least hope that
there is one. There was an upsurge of interest in the subject
in 1970s and 1980s for several compelling reasons.The
study of magnetic monopoles has brought together many
seemingly unrelated concepts in physics through the fasci-
nating notion of duality. Duality is a symmetry that relates
two distinct theories in such a way that they describe the
same physics. Descriptions of magnetic monopoles in the
modern physics lead to the strong/weak coupling duality that
relates a theory that describes a strong force to another

Theory of Magnetic Monopoles and Electric-Magnetic Duality:
A Prelude to S-Duality

PhysicsJ. Undergrad. Sci. 3: 47-55 (Summer 1996)

JUN S. SONG is a recent graduate of Harvard College, having majored in physics. He independently authored this article, which has received the Bowdoin Prize for exemplary writing
in the natural sciences. Mr. Song is also the recipient of the Thomas T. Hoopes Prize and the Herchel Smith Scholarship. He will be attending Cambridge University for the next year
before pursuing a Ph.D. at the Massachusetts Institute of Technology.

JUN S. SONG

We present a self-contained, elementary description of
magnetic monopoles in classical physics. The electric-
magnetic duality is discussed both in non-relativistic
particle mechanics and in relativistic classical field
theory. In the process, we will see that magnetic mono-
poles appear as soliton solutions in certain field theo-
ries. The paper concludes with brief comments on S-
duality. The ultimate goal is to make the abstract under-
standable to the general public, thus making clear the
possibility  of the existence of magnetic monopoles.

Introduction

I do not think that I know what I do not know.

—Plato, Apology

Anyone who is familiar with elementary physics or chem-
istry would agree that an electron is a point-like particle with
electric charge 1.602 x 10-19 Coulombs. It is equally well
known that opposite electric charges attract and like ones
repel. But what is charge? Qualitatively, there are two types
of electric charge, + and - as commonly called, and the
amount of charge determines the strength of the force be-
tween two charged objects. The more the charge, the stron-
ger the force. There now arises another question: How is
the force created, or, more appropriately, how do charged
particles interact? To answer this question, we first note the
remarkable fact that the electric force depends only on
charge and not on the particular nature of particles. For ex-
ample, the electric force between two muons, which are
particles with the same charge as the electron but 200 times
heavier, is equal to that between two electrons in the same
external conditions. Hence, it seems that the fundamental
concept that we must understand before we delve into more
difficult questions is that of “charge.”

In order to describe electromagnetism, Faraday introduced
the concept of fields as mediators of interaction. Since our physi-
cal world has three spatial dimensions, electric and magnetic
fields are 3-component vectors1 defined at every point in space.
See Figure 1. Equivalently, the fields are vector-valued func-
tions of space and are sometimes called the vector fields. In
classical electrodynamics, electric charges are sources of elec-
tric fields. A point-like particle with positive (negative) electric
charge has an electric field radially pointing outwards (inwards),
as in Figure 2. Hence, we define:

Definition 1.  Charges are sources of the fields. The stron-
ger the charge, the stronger the fields.

How, then, do charged particles interact? Electric charges
are also responders to the electric field, so that a positively
charged particle at position x responds to an external field

Figure 1. Vector fields.  (a) The length of the arrow represents the magnitude
of the vector A at point P and the arrow points in the direction of A; (b) vector
field evaluated at several points in space; (c) we usually connect the arrows
into smooth lines such that the direction of the line represents the direction of
the field and the concentration of the lines represents the magnitude.



would serve as an elementary guide to the curious minds
who are not conversant in theoretical physics but are open
to new suggestions.

Classical Electrodynamics

Scientists tend to overcompress, to make their ar-
guments difficult to follow by leaving out too many
steps. They do this because they have a hard time
writing and they would like to get it over with as
soon as possible.... Six weeks of work are sub-
sumed into the word “obviously.”

—Sidney Coleman

It is always difficult to explain a specific phenomenon
that arises in a particular theory to a person who is unfamil-
iar with the theory itself. Hence, in order to preclude any
unnecessary confusion, we begin each section with a gen-
eral survey on various branches of modern physics.

Each description of our world is characterized by certain
parameters.The moon revolving around the earth is character-
ized by a long distance scale since both the size of the moon
and the earth-moon distance are large. On the other hand, the
electron-proton system of a hydrogen atom is characterized by
short distance. The two most pertinent parameters in the de-
velopment of physics have been speed and length. It seems
that there is no one branch of physics that is useful at all scales
of speed and length. Broadly speaking, we can divide our theo-
ries into four categories, each being applicable to physics at
different scales: non-relativistic classical mechanics (NRCM),
relativistic classical mechanics (RCM), non-relativistic quan-
tum mechanics (NRQM), and quantum field theory (QFT). Their
relevant scales are summarized in Figure 4. We will see how
magnetic monopoles arise in each theory.
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theory that describes a weak force. More precisely, calcula-
tions involving strong forces in one theory can be obtained
from calculations involving weak forces in another theory
related by the symmetry. Hence, the duality could play a
prominent role in understanding the strong and weak inter-
actions in nature.

On the other hand, the lack of experimental evidence of
magnetic monopoles has led to their blind rejection by many
people who are not really familiar with the underlying physics
and mathematics. Outside the realm of theoretical physics, the
absence of evidence has been mistranslated as an evidence
of absence, and the current educational system reflects this
unfortunate fact. For example, it is typically taught in high school
or introductory physics classes that magnetic monopoles do
not exist. Not surprisingly, we have discovered through a short
survey that the response of the general public, when asked on
the subject of magnetic monopole, dominantly falls into two
categories: “What is a magnetic monopole?” and “It doesn’t
exist.” It thus seems that many people have been wrongly taught
what to think by the absolute prejudgment of the skeptics on
the matter and have been misled into thinking that they know
what they do not know. It is clearly illogical to argue absolutely
that magnetic monopoles do not exist merely based on the
absence of evidence. After all, most profound aspects of na-
ture are not manifest, and open-mindedness and unceasing
curiosity are what have allowed the astonishing progress in
the 20th century physics.

Consequently, the main aim of this paper is two-fold. First,
we will further explain what magnetic monopoles are in order
to establish a common ground of understanding for possible
debates. Then, we will address the question of how magnetic
monopoles, if they exist, can be described in theoretical phys-
ics, leading us to the subject of electric-magnetic duality. At the
same time, we will try to convey the theoretical reasons in fa-
vor of their existence. It should be noted that the ultimate goal
of our exposition is not to convince the reader of the existence
of magnetic monopoles but to make him or her aware of the
possibility of their existence.

This paper is organized as follows. The next section
discusses the electric-magnetic duality in classical electro-
dynamics. We then explain Dirac’s quantum mechanical con-
struction of monopole states and the quantization condition.
In following sections, we discuss magnetic monopoles as
classical soliton solutions in relativistic field theory and ex-
plain the Montonen-Olive duality conjecture. We conclude
with brief comments on S-duality.

Since we do not assume much background in physics,
many explicit calculations will have to be replaced by vague
words. Even though our treatment would be inevitably in-
complete and somewhat cursory, we hope that this paper

Figure 2. Electric field configurations of point particles. Figure 3. Magnetic field configurations of a magnetic monopole.

Figure 4. Four regimes of physics.



(3)-(6)

The equations are no longer symmetric under the duality trans-
formation. Equations 4 and 5 seem to be missing something
on their right hand sides. To see exactly what they are missing,
we need to explain the meaning of ∇ · B, also called the diver-
gence of B or simply divB. Let V be a volume enclosed by a
surface S in space. ∇ · B integrated over the volume V gives
4π times the total amount of magnetic charge g contained in
V.5 Similarly, ∇ · B evaluated at point x gives 4π times the mag-
netic charge density at x. Hence, Equation 4 says that there is
no magnetic charge at any point in space. Roughly speaking,
moving charges are equivalent to currents. But because the
above Maxwell equations assume that there is no magnetic
charge, there is no magnetic current J

m
 on the right hand side

of Equation 5. Hence, the absence of magnetic charge ruins
the duality. In physics jargon, we say that the absence of mag-
netic charge breaks the symmetry.

In order to maintain the electric-magnetic duality, we
need to weaken our assumption. That is, we now assume
that magnetic monopoles may exist, but we just have not
been able to observe them experimentally. We thus modify
the previous Maxwell equations by putting in the magnetic
charge and current densities, ρ

m
 and J

m
:

(7)-(10)

The above equations now look more symmetric, but the sym-
metry is not entirely apparent. With a moment of thought,
we see that our new Maxwell equations are left unchanged
under the following duality transformations

;                                         (11)

;                                         (12)

Physically, the duality transformation exchanges the roles
of the electric and magnetic fields. Since charges are the
sources and responders to the fields, we also need to ex-
change the electric and magnetic charge and current densi-
ties in order to leave the theory invariant. This duality sym-
metry can be understood by using a toy model. Suppose
that there are two worlds—one much like our world, so call
it Reality, and the other called Wonder Land. Call the elec-
tric and magnetic fields in Reality E and B, respectively, and
their counterparts in Wonder Land E and B. Similarly, the
electric and magnetic charges in Reality are ρ

e
 and ρ

m
 and

those in World Land ρ
e
 and ρ

m
, respectively. For simplicity,

we assume that all charges are stationary so that there are
no currents. Assume that Reality and Wonder Land are

Most readers will be familiar with non-relativistic classical
mechanics from their everyday experience. Examples of NRCM,
which is applicable at low speed and long distance scales, are
Newtonian mechanics and elementary electromagnetism. By
low speed, we mean low compared to the speed of light which
is c = 3 x 108 meters/second, and by long, we mean long com-
pared to the atomic scale which is ordinarily about 10-10 meters.
To describe the trajectory of a baseball thrown upwards against
the gravity, Newton’s 2nd law is sufficient.

Electric-Magnetic Duality: Marriage of Electricity and
Magnetism.  In classical electrodynamics, the fundamental
quantities are the electric and magnetic fields, E and B.
Electric charges both create and respond to electric fields,
so that two charges interact because one charge responds
to the field created by the other, and vice versa. Basically,
all electromagnetic problems can be reduced to finding the
electric and magnetic fields for given sources and boundary
conditions. Even more fundamentally, all electromagnetic
effects can be derived from a set of eight differential equa-
tions known as the Maxwell equations, which are over 100
years old. The following Maxwell equations for a vacuum
without sources possess an interesting symmetry:

(1)

Anyone4 staring at the above equations can probably see
that the above equations are symmetric under the exchange
of E and B. More precisely, they are invariant under

and                                      (2)

This symmetry is called the electric-magnetic duality, and
the exchange of electric and magnetic fields in Equation 2
is known as the duality transformation. The duality has the
following physical interpretation: In classical physics, a
vacuum is an empty space without any particles. The elec-
tric-magnetic duality simply implies that a theory that de-
scribes a vacuum consisting only of the electric and mag-
netic fields, E

1
 and B

1
 respectively, has the same physical

interpretation as another theory that describes a vacuum
with the electric field E

2
 = B

1
 and the magnetic field B

2
 = -E

1
.

In particular, the energy densities are the same, i.e.,

and the electromagnetic waves propagating in the two vacuo
are identical. As we shall see, generalization of this dual
description of the same physics by two distinct theories has
a profound consequence in modern theoretical physics.

Unfortunately, the above symmetry seems to be spoiled
in nature by the fact that we clearly have electric charges
but have not yet observed any magnetic charges. To un-
derstand the statement, assume that there are electric
charge density ρ

e
 and current density J

e
 but no correspond-

ing magnetic counterparts. The Maxwell equations then
become:

Journal of Undergraduate Sciences49 Physics

~ ~

~~

∆

∆

∆



related by the electric-magnetic duality. This assumption im-
plies that E = B and B = -E. Since charges are sources of
the fields, it also implies that ρ

e
 = ρ

m
 and ρ

m
 = -ρ

e
. Further-

more, Reality has abundant electric charges, but magnetic
charges are very rare. Wonder Land, on the other hand,
has a lot of magnetic charges but very few electric charges.
But remember that magnetic (electric) charges in Wonder
Land become electric (magnetic) charges in Reality when
we make the electric-magnetic duality transformations. Now
suppose that a physicist in Reality wants to calculate the
force of electric field E on an electron with electric charge e.
After many sleepless nights, the physicist discovers that the
electromagnetism in Reality admits a dual description. This
dual description is none other than the corresponding elec-
tromagnetism in Wonder Land. Hence, to study the behav-
ior of an electron in Reality, the physicist decides to do the
calculation using Wonder Land’s theory of electromagne-
tism. Throughout his calculation, the physicist must keep in
mind that the roles of electricity and magnetism are ex-
changed in Reality and Wonder Land. Consequently, in
Wonder Land, he calculates the force of the external mag-
netic field B = -E on a magnetic monopole with magnetic
charge g = -e. The electric-magnetic duality guarantees that
the force he has just computed is equal to the force on the
electron in Reality. Hence, the two theories of electromag-
netism in Reality and Wonder Land provide dual descrip-
tions of the same physics. One can use either theory to get
the same answer as long as he remembers that the elec-
tricity and magnetism exchange roles. Figure 5 compactly
summarizes the relevant points.

This extremely fascinating phenomenon of duality has
a highly non-trivial and unexpected generalization in field
theory. To prepare the reader for the upcoming discussion,we
now digress to introduce the theory of special relativity.

Special Theory of Relativity: A Lightning Introduction.
When the objects in which we are interested move at a speed
comparable to the speed of light, simple Newtonian mechan-
ics cannot be applied. Classical mechanics must be modi-
fied by the special theory of relativity when the relevant par-
ticles move at high speeds, and the resulting theory is the
relativistic classical mechanics, the subject of the second
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box in Figure 4. The theory of special relativity was first pro-
posed by Einstein. One of the most popularized equation in
physics, namely E = mc2, is a consequence of this theory.
Special relativity is formulated based on Einstein’s two
postulates:

Postulate 1.  The laws of physics are the same to all inertial
observers.

Postulate 2.  The vacuum speed of light is the same to all
inertial observers.

An observer traveling at constant speed is said to be an
inertial observer. The first postulate says that two inertial
observers traveling at different speeds agree on the physical
laws that describe any given phenomenon. The second
postulate appears to contradict the human intuition. It states
that the speed of light in vacuum is the same for both a
stationary observer and an inertial observer who is traveling
at any given constant speed. Suppose that I ride on an ide-
alized Harvard Shuttle Bus traveling at very high, but con-
stant, speed in the direction of light and that my twin brother6

has missed the bus and stands still on the ground. We both
measure the speed of light, which is in the direction of the
Shuttle Bus. According to normal human intuition, the speed
that I measure should be slower than that measured by my
brother. Nevertheless, the second postulate correctly as-
serts that the speed must be the same for both of us.7 From
the two postulates, many consequences can be derived.
For example, moving objects appear to be contracted and
moving clocks seem to run slower with respect to a station-
ary clock.

Special relativity is the theory that has been most accu-
rately tested by experiments, and no deviation from the pre-
dictions of the theory is known to date. A physical theory
that incorporates special relativity in a consistent manner is
said to be Lorentz invariant. The special theory of relativity
is also the most treasured and upheld principle in physics,
and the requirement of Lorentz invariance imposes severe
restrictions on relativistic mechanics. In modern physics, we
reject all relativistic theories that are not Lorentz invariant. It
is truly amazing that the Maxwell equations, which were writ-
ten down before the development of special relativity, are
Lorentz invariant.

This concludes our brief digression on the subject. In
the next section, we will concentrate on the non-relativistic
quantum mechanical description of magnetic monopoles.

Quantum Mechanics and Dirac Monopole

Non-relativistic quantum mechanics describes physics
at low speed and a short distance scale. In quantum me-
chanics, the distinction between particle and wave becomes
blurry. Waves, which were classically thought to be distinct
from particles, gain particle-like interpretations, and in turn,
particles begin to behave like waves. So is an electron a
particle or wave? The answer is both; electrons behave
sometimes like particles and sometimes like waves. The
same statement holds true for other particles and waves,
and this mysterious phenomenon is referred to as particle-
wave duality. The electromagnetic waves also gain a par-
ticle-like interpretation, and the associated particle is known
as a photon.

Because of the limitation of space, we end our intro-
duction to quantum mechanics with a short list of important

Figure 5. Picture of the dual worlds.  The duality transformation amounts to
a rotation by 90 degrees in the abstract field space.
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features that characterize the theory. We hope that this sur-
vey will make the reader feel less intimidated by our subse-
quent discussions. We omit many important aspects which
we consider unnecessary for the purpose of understanding
this paper. A few defining characteristics of quantum me-
chanics are:

(1) Everything that we want to know about the be-
havior of a particular particle can be obtained from
a single function associated with the particle in
given external conditions. The function is called a
wave-function, and changing the external condi-
tions changes the wave-function. Despite the de-
ceptive simplicity of the idea, finding the exact wave-
function is impossible in most cases.

(2) The world looks discrete quantum mechanically.
That is, when the world is viewed at the atomic
scale, many quantities that we observe become
discrete. A familiar example is the atomic spectra
of hydrogen atoms, displaying the discrete energy
levels of the atoms.

(3) The physical quantities that we can observe in
experiments are called observables. Roughly
speaking, each observable becomes an operator
that acts on the wave-function. An operator acts
on a function to get another function. By quantiza-
tion of classical systems we mean this correspon-
dence between observables and operators. This
operator nature of observables accounts for the
discreteness of the world in atomic scale.

Dirac Monopole and Charge Quantization.  There is one
fundamental problem in describing magnetic monopoles in
quantum mechanics. In the last section, we noted that the
fundamental quantities in classical electrodynamics are the
electric and magnetic fields. In quantum mechanics, on the
other hand, the electric and magnetic fields do not provide a
complete description of the electromagnetic effects on the
wave-functions of the charged particles. Hence, the funda-
mental quantities in quantum mechanical formulation of elec-
trodynamics are not the electric and magnetic fields but
another vector field called vector potential A and a function
called scalar potential φ. One of the identities in vector cal-
culus tells us that

Identity 1.  For all vector fields A, ∇ · (∇ x A)    0.

We emphasize that Identity 1 is true for all A. Thus, if write
B as

B = ∇ x A (13)

then Equation 4 in the previous section is automatically sat-
isfied. A in Equation 13 is the vector potential that plays the
fundamental role in quantum mechanics. On the other hand,
recall that Equation 8 states that

∇ · B = 4πρ
m

(8)

where ρ
m
 is the magnetic charge density. This equation tells

us that B cannot be written as ∇ x A, because B = ∇ x A
implies that ∇ · B = (∇ x A) = 0 by Identity 1, producing a
contradiction:

We want ∇ · B = 4πρ
m
, but

B = ∇ x A implies ∇ · B    0 = 4πρ
m
  =  CONTRADICTION

Hence it appears that Equation 14, which implies the pres-
ence of magnetic charge, forbids us from using Equation
13, which gives us the vector potential A. But as we just
noted, we need A in quantum physics. One of the reasons
that we need the vector potential is that without it, we can-
not describe an electron in a magnetic field. It thus appears
that we must reject magnetic monopoles in quantum me-
chanics in order to maintain the vector potential, which must
appear in the form of Equation 13.

Nevertheless, in 1931, P. A. M. Dirac showed that it is
indeed possible to have both magnetic charge and the vec-
tor potential in quantum mechanics, and he derived an
unexpectedly pleasant result. Let us first explain how he
circumvented the problem for a point-like magnetic mono-
pole, as in Figure 3. From the last section, recall that ∇ · B
integrated over a volume V gives 4π times the amount of
magnetic charge enclosed in the volume. Hence, for a point-
like magnetic monopole and any three-dimensional vol-
ume V enclosing the monopole, Equation 14 is equivalent
to:

(15)

where g is the magnetic charge of the monopole. Before we
go on, we state a theorem from vector calculus.

Theorem 1 (Divergence Theorem).  Let V be a three-di-
mensional volume bounded by a closed surface S. Then,
for a vector function F,

where da is an infinitesimal area element pointing out of the
surface S. See Figure 6.

The theorem states that we can transform the original inte-
gral over the volume V into a new integral over the surface
S bounding V. This is possible if we have that funny symbol8

∇ · in front of the vector function F.
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Figure 6. Cross section  of a three-dimensional volume V bounded by a closed
surface S.
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singular along the Dirac String to cancel the infinity of SOME-
THING. Hence, in the presence of a magnetic monopole,
the vector potential cannot be defined everywhere. Thus, to
describe the physics of magnetic monopoles, we must use
two vector potentials A

1
 and A

2 
which are related by a trans-

formation. See Figure 8. Our approach is less elegant than
Dirac’s original than Dirac’s original formulation, but the re-
sult is the same. This monopole with a line of singularity is
called the Dirac monopole.

We now state a remarkable consequence of this con-
struction without proof. Dirac has shown that the existence
of magnetic monopoles explains the quantization of electric
charge. In nature, all electric charges seem to appear as
integral multiples of the electron’s charge. If we call electron’s
charge e, then all electric charges that we find in nature can
be written as en, for some integer n. This peculiar property
of the charges is known as the quantization of electric charge.
Prior to Dirac, no one could explain this phenomenon. Us-
ing magnetic monopoles, Dirac unexpectedly found a pos-
sible explanation for the charge quantization. More precisely,
the Dirac quantization condition says that in the presence of
magnetic monopoles, the product of electric and magnetic
charges must be an integral multiple of 1/2. In equations, all
electric and magnetic charges in nature, ei and gj respec-
tively, must satisfy:

Theorem 2 (Dirac Quantization).

eigj = (1/2)nij, for some integer nij. (20)

We emphasize that the Dirac quantization condition must
hold for all magnetic and electric charges in nature. This is
possible only if there exist basic units of electric and mag-
netic charges, e0 and g0 respectively, such that all charges
are integral multiples of them:

For all ei in nature, ei = nie0 (ni is an integer). (21)

For all gj in nature, gj = njg0 (nj is an integer). (22)

Furthermore, e0 and g0 are unique up to sign and they sat-
isfy the Dirac quantization condition themselves.

e0g0 = (1/2)n0, for some integer n0. (23)

Thus, the existence of magnetic monopoles provides an
explanation for the fact that electric charges in nature are

Our task is to find the vector potential A such that the
magnetic field B can be written in the form of Equation 13 as
much as possible and, at the same time, Equation 15 is
satisfied. Hence, in the spirit of Equation 13, we can de-
compose B into two parts:

B = ∇ x A + SOMETHING. (16)

By Identity 1, the first term in the above expression does not
contribute when it is substituted into the integral in Equation
15:

(17)

Using the Divergence Theorem, we can rewrite it as

(18)

Since our goal is to write out the magnetic field B in terms of
∇ x A as closely as possible, we must let SOMETHING van-
ish in most places such that B = ∇ x A almost everywhere.
(Remember that SOMETHING cannot vanish everywhere
since Equation 18 says the integral over the surface S must
not be zero.) Dirac argued that we can judiciously chose
SOMETHING such that it vanishes everywhere on the sur-
face S expect at one point P where it is infinite. SOMETHING
must be infinite at P for the following reason. Suppose that
SOMETHING is zero everywhere on the surface S except at
one point where it is finite. It can be proven mathematically
that the integral of such a function over the surface is zero,
which contradicts Equation 18. Hence, on the surface S, we
have

B = ∇ x A + (SOMETHING which is infinite at
point P and zero elsewhere). (19)

Now, recall that the volume V was arbitrarily chosen.
That is, Equation 15 holds for any V that contains the mag-
netic monopole. Then, in the above argument, SOMETHING
must be infinite at one point on each surface bounding an
arbitrary V. This implies that SOMETHING must be infinite
on a line connecting the monopole to infinity, as can be clearly
seen in Figure 7. This line of singularity is called the Dirac
String. Since the magnetic field is a physical quantity that
we can measure in a laboratory, it should not be infinite at
any point. The regularity of the magnetic field in Equation
19 implies that the vector potential A has to be infinite or

Figure 7. Dirac String. (a)  SOMETHING has to be infinite at one point P
i
 on

any surface bounding an arbitrary volume that contains the monopole. (b)
Since the magnetic field B is a continuous function of space, we can join the
singular points into a line connecting the monopole to infinity.

Figure 8. Two vector potentials.  Since the vector potential is singular along
the Dirac String, we need two vector potentials to describe electrons in the
magnetic field of the magnetic monopole. (a) A1, which is singular along the
negative z-axis, is used when the electron is away from the negative z-axis.
(b) A

2
, which is singular along the positive z-axis, is used when the electron is

near the negative z-axis.
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integral multiples of the electron’s charge. Ignoring the
quarks for the moment, we can let e0 be equal to the charge
of the electron.

Strong-Weak Coupling Duality: First Child.  We now dis-
cuss the profound implication of electric-magnetic duality in
conjunction with the Dirac quantization condition. Recall that
the duality transformation exchanges the electric and mag-
netic fields by exchanging the corresponding charges:

Electric charge e —> Magnetic charge g
Magnetic charge g —> -(Electric charge e) (24)

Now, using the Dirac quantization condition, we get

Electric charge e —> Magnetic charge g = (1 / 2e)
Magnetic charge g —> -(Electric charge e) = -(1 / 2g), (25)

where we let n = 1 for simplicity. But from the Dirac quantiza-
tion condition we see that as the quantity e approaches zero, g
= (1 / 2e) approaches infinity, and vice versa. Hence, since the
strength of charge determines the strength of the force involved,
the electric-magnetic duality together with the Dirac quantiza-
tion condition implies that there is a symmetry that exchanges
the strong and weak forces. In physics jargon, we say that the
duality reverses the strong and weak coupling constants. In
nature, there exists a nuclear force which is strong and a weak
force by which particles decay. If a strong-weak coupling dual-
ity similar to the electric-magnetic duality exists in nature, then
the strong and weak forces could be merely different manifes-
tations of the same thing. In that case, the human intellect would
reveal one of nature’s hidden beauties, giving us the under-
standing of one of many mysteries that underlie our existence.
We devote the next section to generalizing the strong-weak
coupling duality to relativistic field theory.

Classical Field Theory and Solitons

The very concept of law of nature reflects a termi-
nology which appears to be the heritage of a nor-
mative metaphor rooted in the ancestral image of
a universe ruled by God. Maybe, a deeper con-
cept which underlies more basically our way of
thinking in physics is that of symmetry, which moves
us from the normative or legal metaphor to the belief
that beauty is the closest to truth.

—César Gómez

The beauty of physics lies in our description of nature
as well as in nature itself. Beauty often reveals itself as a
symmetry or duality in our theories, serving as a guiding
principle for physicists. Nowhere in theoretical physics is
the concept of symmetry more pronounced than in classical
and quantum field theory. Quantum field theory (QFT) is an
incorporation of special relativity into quantum mechanics
and forms the fourth box in Figure 4. As the figure suggests,
QFT describes the atomic world at high speed. It should be
noted that special relativity itself is a space-time symmetry.
Recall that in quantum mechanics, we quantized the classi-
cal systems by turning the observables into operators and
assigning wave-functions to particles. In QFT, we quantize
the wave-functions, i.e., we turn the wave-functions into op-
erators. These operators are called quantum fields because
they satisfy the defining characteristics of fields discussed

in the second section. Namely, they are defined at every
point in space-time and are often vectors in an abstract vec-
tor space. There is a one-to-many correspondence between
particles and fields. That is, for each particle, we can find
many fields describing the particle, but we usually choose
the one that is most convenient. Intuitively, it is clear that
particles traveling at high speed have high energies. Hence,
QFT provides a quantum mechanical description of physics
at very high energy. When energy gets high, many surpris-
ing things can happen. A photon, which is the particle asso-
ciated with the electromagnetic fields, can transform into an
electron-positron pair. The positron is the anti-particle of the
electron, with the same mass but opposite quantum num-
bers.9 It thus seems possible that photons can create a mag-
netic monopole-anti-monopole pair. There are several rea-
sons for not observing such a creation in the laboratory, two
of which are:

(1) The calculated attractive force between a mag-
netic monopole and its anti-particle is much greater
than that between an electron and a positron. It is
consequently much more difficult to create the
monopole-anti-monopole pair in the laboratory.

(2) Calculations predict that magnetic monopoles
are superheavy. Heavy particles require high en-
ergy to be produced, and magnetic monopoles may
be too heavy to be produced in current high en-
ergy accelerators.

Classical field theory (CFT) is the long distance limit of
QFT, and thus, it is the limit in which operators become ordi-
nary functions and numbers. Hence, the quantum fields be-
come ordinary fields much like the electric and magnetic
fields in classical electrodynamics, and we do not have to
worry about subtleties, such as removing infinities from physi-
cal quantities, that arise in quantum physics. We say that
there is a symmetry10 when the Lagrangian11 of our system
has the same form under certain transformations on the
fields. In field theory, symmetry governs the dynamics by
restricting the form of the Lagrangian from which all relevant
equations and interactions are derived. An example of sym-
metry transformations is multiplication of the fields by a com-
plex number. When we make different transformations at
different space-time points, we must introduce a new field
in order to maintain the symmetry. This new field is called
the gauge field and is responsible for the interactions among
various particles. For example, when we multiply the fields
by different complex numbers at different points in space-
time and demand that the Lagrangian is left unchanged
under the transformation, then we must introduce a new
gauge field, and this field is nothing but the photon field,
which is a combination of the vector potential A and the
scalar potential φ. Furthermore, from the Lagrangian, we
can derive the equations of motion for the fields, and in the
example just mentioned, the equations are indeed the Max-
well equations. We now state a beautiful theorem without
proof:

Theorem 3 (Noether’s Theorem).  For every symmetry,
there is a conserved quantity.

What is the conserved quantity in the above example of
multiplication by complex numbers? It is the electric charge!
In general, the conserved quantities are the charges that
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(2) In the original field theory, the magnetic mono-
poles are solitons, and the gauge fields are elemen-
tary particles. In the dual theory, magnetic mono-
poles become the elementary gauge particles, and
solitons carry electric charge which is now topo-
logical.

(3) Since the electric and magnetic charges sat-
isfy the Dirac quantization condition, the duality
transformation exchanges the strong and weak
couplings.

Montonen and Olive conjectured that this “dual” theory is in
fact exactly the original theory with just the charges and the
fields relabeled. Even though they have not been able to
prove the conjecture, their work has provided a significant
basis for the subject of S-duality, which is one of the most
active research areas in today’s high energy particle theory.
We will now make a few remarks on S-duality.

S-Duality: The Next Generation.  S-duality is a generaliza-
tion of the electric-magnetic duality to include more symme-
tries. Recall that the electric-magnetic duality has only two
symmetry transformations—namely, the identity transforma-
tion, which does absolutely nothing to the theory, and the
duality transformation, which exchanges the charges. In
mathematical notations, the electric-magnetic duality acts
on electric charge e as

or

S-duality generalizes these two transformation to a group of
transformations consisting of infinite elements. More pre-
cisely, S-duality asserts that certain field theories are un-
changed under all transformations for the form

(27)

a, b, c, d are integers and ad - bc = 1,

where τ is a generalized charge. The set of all such trans-
formations is called the modular or SL(2,Z) group. If S-dual-
ity is a true symmetry of nature, then we have an infinite
number of theories that are equivalent to each other and
which are all related by the modular group. Further investi-
gation of this subject would be beyond the scope of our
presentation.

Conclusion

In this paper, we have seen that magnetic monopoles
are certainly possible in physics. The existence of mag-
netic charge in quantum mechanics provides an explana-
tion for charge quantization in nature. Generalization of the
electric-magnetic duality to classical field theory leads to
many surprising results, combining seemingly unrelated
topics such as solitons, strong and weak forces, and charge
quantization into one unifying theory. Despite the many at-
tractive features, the present theory does not require mag-
netic monopoles to exist. Likewise, it does not forbid them
to exist. In fact, it is very hard to believe that magnetic
monopoles which lead to extremely profound theories such
as S-duality are mere accidents in our attempts to under-
stand nature.

correspond to different forces in nature. We sometimes call
such charges Noetherian charges.

There is another type of conserved charge called the
topological charge. Topological charge is not a consequence
of some continuous symmetry, but rather it arises from to-
pological considerations. For example, consider the map
from a circle onto another circle in two dimensions. The
number of times that the first circle winds around the sec-
ond circle is conserved because we cannot change the num-
ber unless we break the circle in some way. Equivalently,
consider wrapping around a solid disk with a rubber band in
two dimensions. The number of times that the rubber band
winds around the disk is conserved because the number
cannot change unless we tear the rubber band apart or go
to higher spatial dimensions. This argument is clear from
Figure 9. In general, topological charges are conserved
quantities arising from the fact that we cannot deform two
maps, or field configurations, continuously into each other.

Montonen-Olive Duality Conjecture: Second Child.  We
are now ready to discuss the electric-magnetic duality con-
jecture by Montonen and Olive. In certain field theories, mag-
netic monopoles arise as solitons. Classically, solitons are
extended objects with smeared out energy or mass densi-
ties, whereas particles are point-like objects with localized
point-like mass densities. A soliton is interpreted as a com-
posite particle which is a bound state of two or more el-
ementary particles. Hence, in some field theories, we can
have magnetic monopoles which are solitons composed of
more elementary particles. Magnetic monopoles as solitons
were first constructed by Polyakov and ’t Hooft. Surprisingly,
magnetic and electric charges have different origins in field
theory. As previously mentioned, electric charges are the
conserved quantities under a continuous symmetry. On the
other hand, ’t Hooft and Polyakov have shown that mag-
netic charges appear as topological charges. Furthermore,
the electric and magnetic charges satisfy the Dirac quanti-
zation condition.

In 1977, Montonen and Olive conjectured that the field
theory which was considered by ’t Hooft and Polyakov con-
tains the electric-magnetic duality in the following sense.
Under the electric-magnetic duality transformation, the
original field theory becomes a dual theory, with possibly
different forms of Lagrangian and interactions, such that:

(1) Electric and magnetic charges exchange roles.
That is, the magnetic charge, which is a topologi-
cal charge in the original field theory, becomes a
Noetherian charge in the dual theory.

Figure 9. Topological charge.  The number of times of winding around the
disk is conserved in two dimensions. (a) cannot be deformed into (b) without
breaking the curve or going to higher spatial dimensions.
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Symmetries in physics are almost always hidden and
often defy what is apparent. In this paper, we have tried to
show the reader the hidden symmetry of nature that the
physics of magnetic monopoles may reveal someday. The
development of the theory of S-duality is still in its rudimen-
tary stage, and a lot of work needs to be done to unravel the
mysteries of the physical world.

The author regrets that he couldn’t discuss the last sec-
tion to his heart’s content due to the lack of time and space.
An extensive study of gauge field theory and S-duality us-
ing the language of algebraic topology will be treated else-
where by the author.12
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(1) A vector has both a magnitude and a direction in space.

(2) We avoid using the term “electric charge” because the two defi-
nitions hold true for other forces of fundamental interaction. For
example, mass is a source for the gravitational field and also re-
sponds to the field. The heavier the mass, the stronger the gravita-
tional field and force. Hence, mass can be viewed as a gravita-
tional charge.

(3) Throughout this paper, E denotes the electric field, B the mag-
netic field. Bold-faced letters represents vectors and |  | represents
the magnitude of a vector.

(4) We feel that knowledge of vector calculus is totally unneces-
sary for the purpose of understanding the underlying symmetry. A
reader who is not familiar with vector calculus may think of such
marks as ∇ as ∇ · as being abstract symbols, or as different ways
of writing derivatives.

(5) This is true in general for any vector field A that satisfies the
inverse square law, in particular for the gravitational field.

(6) The author is not lying.

(7) This is true if we assume that the air is replaced by vacuum and
that my brother and I are wearing really expensive space-suits.

(8) We have been intentionally avoiding the actual discussion of
vector calculus for the same reason that we don’t think that a per-
son has to know the meaning and name of individual playing cards
in order to sort a deck of cards into piles of the same suit. The
Divergence Theorem is merely a useful device that allows us to
throw away the ∇ · notation without the need to worry what it means.

(9) Roughly, quantum numbers are conserved quantities that char-
acterize each particle. An example would be electric charge.

(10) By symmetry, we really mean continuous symmetries that can
vary smoothly. For example, if the symmetry is multiplication by a
number, we should be able to vary that number continuously to
other numbers and the symmetry should still hold.
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(11) Lagrangian is equal to the kinetic energy minus the potential
energy of the system and is expressed in terms of the fields.

(12) Song, J. S. 1996. Geometry of S-Duality and Gauge Theories
(A. B. Thesis, Harvard University).
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